Sample records for abe midex mission

  1. The AstroBiology Explorer (ABE) MIDEX Mission: Using Infrared Spectroscopy to Identify Organic Molecules in Space (United States)

    Sandford, S. A.


    The AstroBiology Explorer (ABE) mission is one of four selected for Phase A Concept Study in NASA's current call for MIDEX class missions. ABE is a cooled space telescope equipped with spectrographs covering the 2.5-20 micron spectral range. The ABE mission is devoted to the detection and identification of organic and related molecular species in space. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace.

  2. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Identifying Organic Molecules in Space (United States)

    Ennico, Kimberly; Sandford, Scott; Allamandola, Louis; Bregman, Jesse; Cohen, Martin; Cruikshank, Dale; Greene, Thomas; Hudgins, Douglas; Kwok, Sun; Lord, Steven; DeVincenzi, D. (Technical Monitor)


    The Astrobiology Explorer (ABE) is a MIDEX mission concept, currently under Concept Phase A study at NASA's Ames Research Center in collaboration with Ball Aerospace & Technologies, Corp., and managed by NASA's Jet Propulsion Laboratory. ABE will conduct infrared spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Ritchey-Chretien telescope and three moderate resolution (R = 2000-3000) spectrometers together covering the 2.5-20 micron spectral region. Large format (1024 x 1024 pixel) IR detector arrays will allow each spectrometer to cover an entire octave of spectral range per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to approx. 7.5 K by a solid hydrogen cryostat. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the approx. 1.5 year mission lifetime.

  3. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Using Infrared Spectroscopy to Identify Organic Molecules in Space (United States)

    Sandford, Scott A.; Ennico, Kimberly; Allamandola, Louis; Bregman, Jesse; Greene, Thomas; Hudgins, Douglas


    One of the principal means by which organic compounds are detected and identified in space is by infrared spectroscopy. Past IR telescopic and laboratory studies have shown that much of the carbon in the interstellar medium (ISM) is in complex organic species but the distribution, abundance and evolutionary relationships of these materials are not well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept designed to conduct IR spectroscopic observations to detect and identify these materials and address outstanding problems in astrobiology, astrochemistry, and astrophysics. ABE's core science program includes observations of planetary nebulae and stellar outflows, protostellar objects, Solar System objects, and galaxies, and lines of sight through dense molecular clouds and the diffuse ISM. ABE is a cryogenically-cooled 60 cm diameter space telescope equipped with 3 cross-dispersed R-2000 spectrometers that share a single common slit. Each spectrometer measures one spectral octave and together cover the entire 2.5-20 micron region simultaneously. The spectrometers use state-of-the-art InSb and Si:As 1024x1024 pixel detectors. ABE would operate in a heliocentric, Earth drift-away orbit and have a core science mission lasting approximately 1.5 years. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corp.

  4. The Imminent Swift MIDEX Mission (United States)

    Gehrels, Neil


    Swift is a NASA MIDEX mission that is in development for launch in Fall 2004. It is a multiwavelength observatory for transient astronomy. The goals of the mission are to determine the origin of gamma-ray bursts and their afterglows and use bursts to probe the early Universe. The mission will also perform a hard x-ray survey at the 1 milliCrab level and will continuously monitor the sky for transients. A wide-field gamma-ray camera will detect more than a hundred GRBs per year to 3 times fainter than BATSE. Sensitive narrow-field X-ray and UV/optical telescopes will be pointed at the burst. location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions will be determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. The instrumentation is a combination of existing flight-spare hardware and design from XMM and Spectrum-X/JET-X contributed by collaborators in the UK and Italy and development of a coded-aperture camera with a large-area (approximately 0.5 square meter) CdZnTe detector array. The ground station in Malindi is contributed by the Italian Space Agency. The instruments have now completed their fabrication phase and are currently being integrated on the observatory for final testing. Key components of the mission are vigorous follow-up and outreach programs to engage the astronomical community and public in Swift.

  5. The AstroBiology Explorer (ABE) Mission (United States)

    Sandford, S. A.


    Introduction: Infrared spectroscopy in the 2.5- 16 micron range is a principle means by which organic compounds can be detected and identified in space via their vibrational transitions. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Furthermore, the presence of D-enriched organics in meteorites suggests that a portion of these materials survives incorporation into protosolar nebulae. Unfortunately, neither the distribution of these materials in space nor their genetic and evolutionary relationships with each other or their environments are currently well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept designed to use infrared spectroscopy to address outstanding problems in Astrochemistry which are particularly relevant to Astrobiology and are amenable to astronomical observation. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation and the Jet Propulsion Laboratory. ABE was selected for Phase A study during the last MIDEX AO round, but has yet to be selected for flight.

  6. RFP for the Auroral Multiscale Midex (AMM) Mission star tracker

    DEFF Research Database (Denmark)

    Riis, Troels; Betto, Maurizio; Jørgensen, John Leif;


    This document is in response to the John Hopkins University - Applied Physics Laboratory RFP for the Auroral Multiscale Midex Mission star tracker.It describes the functionality, the requirements and the performance of the ASC Star Tracker.......This document is in response to the John Hopkins University - Applied Physics Laboratory RFP for the Auroral Multiscale Midex Mission star tracker.It describes the functionality, the requirements and the performance of the ASC Star Tracker....

  7. The AstroBiology Explorer (ABE) Mission Concept (United States)

    Sandford, Scott A.


    Infrared spectroscopy in the 2.5-16 micron range is a principle means by which organic compounds can be detected and identified in space via their vibrational transitions. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept currently under study by a team of partners: NASA's Ames Research Center, Ball Aerospace and Technologies Corporation, and the Jet Propulsion Laboratory. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) The evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) The chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to HII regions and dense clouds, (3) The distribution of organics in the diffuse ISM, (4) The nature of organics in the Solar System (in comets, asteroids, satellites), and (5) The nature and distribution of organics in local galaxies. The technical considerations of achieving these science objectives in a MIDEX-sized mission will be presented.

  8. AstroBiology Explorer Mission Concepts (ABE/ASPIRE) (United States)

    Sandford, Scott; Ennico, Kimberly A.


    The AstroBiology Explorer (ABE) and the Astrobiology Space InfraRed Explorer (ASPIRE) Mission Concepts are two missions designed to address the questions (1) Where do we come from? and (2) Are we alone? as outlined in NASA s Origins Program using infrared spectroscopy to explore the identity, abundance, and distribution of molecules of astrobiological importance throughout the Universe. The ABE mission s observational program is focused on six tasks to: (1) Investigate the evolution of ice and organics in dense clouds and star formation regions, and the young stellar/planetary systems that form in them; (2) Measure the evolution of complex organic molecules in stellar outflows; (3) Study the organic composition of a wide variety of solar system objects including asteroids, comets, and the planets and their satellites; (4) Identify organic compounds in the diffuse interstellar medium and determine their distribution , abundance, and change with environment; (5) Detect and identify organic compounds in other galaxies and determine their dependence on galactic type; and (6) Measure deuterium enrichments in interstellar organics and use them as tracers of chemical processes. The ASPIRE mission s observational program expands upon ABE's core mission and adds tasks that (7) Address the role of silicates in interstellar organic chemistry; and (8) Use different resolution spectra to assess the relative roles and abundances of gas- and solid-state materials. ABE (ASPIRE) achieves these goals using a highly sensitive, cryogenically-cooled telescope in an Earth drift-away heliocentric orbit, armed with a suite of infrared spectrometers that cover the 2.5-20(40) micron spectral region at moderate spectral resolution (R>2000). ASPIRE's spectrometer complement also includes a high-resolution (R>25,000) module over the 4-8 micron spectral region. Both missions target lists are chosen to observe a statistically significant sample of a large number of objects of varied types in

  9. FAME selected for MIDEX 2004 launch (United States)

    Urban, S. E.; Seidelmann, P. K.; Germain, M.; Horner, S.; Greene, T.; Harris, F.; Johnson, M.; Johnston, K. J.; Monet, D.; Murrison, M.; Phillips, J.; Reasenberg, R.; Vassar, R.

    FAME, the Full-sky Astrometric Mapping Explorer, was selected for the MIDEX mission of NASA and is sheduled for a 2004 launch. Project goals and design, as well as data analysis and recent experiments are summarized.

  10. Space Science Education with MIDEX/IMAGE (United States)

    Taylor, W. W. L.; Odenwald, S. F.; Green, J. L.; Burch, J. L.


    The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) was selected as one of two MIDEX programs approved by NASA for a year 2000 launch. Its mission is to acquire, for the first time, a variety of 3-D images of magnetospheric boundaries and plasma distributions in the near-Earth environment. It will investigate their changes due to interactions with the solar wind on time scales from minutes to months. In response to the significant opportunities inherent in the IMAGE data for enhancing K-12 education in Earth and space science, the MIDEX/IMAGE project has begun the development of a WWW-based site (URL= which includes a program called POETRY: Public Outreach, Education, Teaching and Reaching Youth. The POETRY site contains: descriptive material on the spacecraft and mission objectives; an illustrated glossary of common space science terms; a primer on the physical processes under investigation; an archive of classroom activities highlighting space science concepts; and an 'Ask Dr. Magneto' area where students and teachers can pose questions and receive answers. This paper will review the design of this site, and present a selection of representative classroom activities designed to supplement earth science and physical science curricula.


    Directory of Open Access Journals (Sweden)

    Chao Li


    Full Text Available Key-Policy Attribute Based Encryption (KP-ABE has always been criticized for its inefficiency drawbacks. Based on the cloud computing technology, computation outsourcing is one of the effective solution to this problem. Some papers have proposed their schemes; however, adversaries in their attack models were divided into two categories and they are assumed not to communicate with each other, which is obviously unrealistic. In this paper, we first proved there exist severe security vulnerabilities in these schemes for such an assumption, and then proposed a security enhanced Chosen Ciphertext Attack (SE-CCA model, which eliminates the improper limitations. By utilizing Proxy Re-Encryption (PRE and one-time signature technology, we also constructed a concrete KP-ABE outsourcing scheme (O-KP-ABE and proved its security under SE-CCA model. Comparisons with existing schemes show that our constructions have obvious comprehensive advantages in security and efficiency

  12. Abe's Womenomics needs to include men too


    Macnaughtan, Helen


    Japanese Prime Minister Shinzo Abe has pledged to enable more women to participate in the Japanese workforce. But his policy has largely amounted to rhetoric and there has been no discussion of the impact of these policies for male employment. In this article I argue that in order to realistically increase opportunities for women, the current system of male-focused employment needs to be reconfigured.

  13. Recent trends in acetone, butanol, and ethanol (ABE production

    Directory of Open Access Journals (Sweden)

    Keikhosro Karim


    Full Text Available Among the renewable fuels considered as a suitable substitute to petroleum-based gasoline, butanol has attracted a great deal of attention due to its unique properties. Acetone, butanol, and ethanol (ABE can be produced biologically from different substrates, including sugars, starch, lignocelluloses, and algae. This process was among the very first biofuel production processes which was commercialized during the First World War. The present review paper discusses the different aspects of the ABE process and the recent progresses made. Moreover, the microorganisms and the biochemistry of the ABE fermentation as well as the feedstocks used are reviewed. Finally, the challenges faced such as low products concentration and products` inhibitory effects on the fermentation are explained and different possible solutions are presented and reviewed.

  14. A Study to Determine Competencies Needed by ABE/APL Teachers. (United States)

    Mocker, Donald W.; Spear, George E.

    The research was conducted to identify competencies appropriate for adult basic education (ABE) teachers who use the adult performance level (APL) approach, and to determine which are critical for ABE/APL teachers. A jury of APL authorities was impaneled to: (1) validate that all ABE competencies established by Mocker in 1974 were appropriate for…

  15. The Correctional Benefits of Education: A Follow-Up of Canadian Federal Offenders Participating in ABE. (United States)

    Porporino, Frank J.; Robinson, David


    Followup of 1,736 adult basic education (ABE) participants released from prison showed that (1) ABE completers had the lowest recidivism rates; (2) offenders at greater risk of recidivism benefited most from completion; and (3) ABE participation helped in postrelease job search and gave a sense of control. (SK)

  16. Kidney Dialysis Patients Discover New Hope through ABE Program. (United States)

    Amonette, Linda; And Others

    A program was developed to provide adult basic education (ABE) to kidney patients while they are receiving dialysis treatment. The program, which relies on an individualized learning approach, involved the coordinated efforts of the following parties: West Virginia Dialysis Facilities, Inc.; the Charleston Renal Group; and the Kanawha County Adult…

  17. Enhancing clostridial acetone-butanol-ethanol (ABE) production and improving fuel properties of ABE-enriched biodiesel by extractive fermentation with biodiesel. (United States)

    Li, Qing; Cai, Hao; Hao, Bo; Zhang, Congling; Yu, Ziniu; Zhou, Shengde; Chenjuan, Liu


    The extractive acetone-butanol-ethanol (ABE) fermentations of Clostridium acetobutylicum were evaluated using biodiesel as the in situ extractant. The biodiesel preferentially extracted butanol, minimized product inhibition, and increased production of butanol (from 11.6 to 16.5 g L⁻¹) and total solvents (from 20.0 to 29.9 g L⁻¹) by 42% and 50%, respectively. The fuel properties of the ABE-enriched biodiesel obtained from the extractive fermentations were analyzed. The key quality indicators of diesel fuel, such as the cetane number (increased from 48 to 54) and the cold filter plugging point (decreased from 5.8 to 0.2 °C), were significantly improved for the ABE-enriched biodiesel. Thus, the application of biodiesel as the extractant for ABE fermentation would increase ABE production, bypass the energy intensive butanol recovery process, and result in an ABE-enriched biodiesel with improved fuel properties. PMID:20585897

  18. Impacts of Acetone–Butanol–Ethanol (ABE) ratio on spray and combustion characteristics of ABE–diesel blends

    International Nuclear Information System (INIS)

    Highlights: • Spray and combustion characteristics of ABE–diesel blends were studied. • Volatility and latent heat show competitive effects on spray performance. • There exists a critical ABE ratio between 20% and 50% spray characteristics. • Soot reduction potential of blends significantly increase with ABE ratio. • Among tested blends, ABE50 can maintain diesel combustion characteristics. - Abstract: Acetone–Butanol–Ethanol (ABE), the intermediate product while producing bio-butanol, has been proposed to be used as an alternative fuel directly to reduce the butanol recovery/separation costs. It is important to understand how the ABE ratio influences the combustion process because of the large differences in physical and chemical properties between the ABE components and diesel. Therefore, a wide range of ratios of ABE (0%, 20%, 50%, and 80% in volume referred to as D100, ABE20, ABE50 and ABE80 respectively) were blended with diesel and combusted in a constant volume chamber under various ambient temperatures (1200 K, 1000 K, and 800 K) and various ambient oxygen concentrations (21%, 16%, and 11%). Mie scattering images of the liquid spray and broadband flame luminosity images were captured by a high speed camera coupled with a copper vapor laser beam as light source. The results show that ABE20 exhibits spray characteristics similar to those of D100 while ABE50 exhibits spray characteristics similar to those of ABE80. However, the sprays of ABE50 and ABE80 are much shorter and narrower compared to those of D100 and ABE20. It is predicted that there exists a critical ratio between 20% and 50% for ABE, beyond which the spray characteristics of the blend will be dominated by ABE. The intermediate ABE blend, ABE50 achieves a shorter ignition delay (slightly longer than that of D100) and combustion duration compared to those of ABE20 and ABE80 because of its improved spray performance and relatively low latent heat and high cetane number. The natural

  19. Combining Experimentation and Theory A Hommage to Abe Mamdani

    CERN Document Server

    Bonissone, Piero; Magdalena, Luis; Kacprzyk, Janusz


    The unexpected and premature passing away of Professor Ebrahim H. "Abe" Mamdani on January, 22, 2010, was a big shock to the scientific community, to all his friends and colleagues around the world, and to his close relatives. Professor Mamdani was a remarkable figure in the academic world, as he contributed to so many areas of science and technology. Of great relevance are his latest thoughts and ideas on the study of language and its handling by computers. The fuzzy logic community is particularly indebted to Abe Mamdani (1941-2010) who, in 1975, in his famous paper An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller, jointly written with his student Sedrak Assilian, introduced the novel idea of fuzzy control. This was an elegant engineering approach to the modeling and control of complex processes for which mathematical models were unknown or too difficult to build, yet they could effectively and efficiently be controlled by human operators. This ground-breaking idea has found innumerable a...

  20. The Swift GRB Mission (United States)

    Gehrels, Neil; Chincarini, Guido


    Swift is a MIDEX mission that is in development for launch in October 2004. It is a multiwavelength transient observatory for GRB astronomy. The goals of the mission are to determine the origin of GRBs and their afterglows and use bursts to probe the early Universe. A wide-field gamma-ray camera will detect mare than 100 GRBs per year to -3 times fainter than BATSE. Sensitive narrow-field X-ray and UV/optical telescopes will be pointed at the burst location in 20 to 75 sec by an autonomously controlled spacecraft. Far each burst, aresec positions will be determined and optical/UV/X-ray/gamma-say spectrophotometry performed. Measurements of redshift will be made for many burstes. The instrumentation is a combination of superb existing flight-spare hardware and design from XMM and Spectrum-X/JET-X contributed by collaborators in the UK and Italy and development of a coded-aperture camera with a large-area (approx. 0.5 square meter) CdZnTe detector array. Key components of the mission are vigorous follow-up and outreach programs to engage the astronomical community and public in Swift. The talk vi11 describe the mission statue and give a summary of plans for GRB operations. It is likely that Swift will have just been launched at the time of the conference.

  1. More than a "Basic Skill": Breaking down the Complexities of Summarizing for ABE/ESL Learners (United States)

    Ouellette-Schramm, Jennifer


    This article describes the complex cognitive and linguistic challenges of summarizing expository text at vocabulary, syntactic, and rhetorical levels. It then outlines activities to help ABE/ESL learners develop corresponding skills.

  2. Recruitment Issues and Strategies for Adults Who Are Not Currently Participating in Literacy and Adult Basic Education (ABE) Programs. (United States)

    Kohring, Aaron

    Adult basic education (ABE) and literacy programs have used many different strategies and tools to recruit new students. A small sampling of Tennessee ABE programs shows the more effective recruitment strategies are word-of-mouth referrals; newspaper advertisements and articles; fliers; brochures; posters, radio messages, and public service…

  3. Arcus: An X-ray Grating Spectroscopy Mission (United States)

    Smith, Randall K.; Arcus Collaboration


    We present the design and scientific motivation for Arcus, an X-ray grating spectrometer mission to be proposed to NASA as a MIDEX in 2016. This mission will observe structure formation at and beyond the edges of clusters and galaxies, feedback from supermassive black holes, the structure of the interstellar medium and the formation and evolution of stars. Key mission design parameters are R~3000 and >700 cm^2 of effective area at the crucial O VII and O VIII lines, with the full bandpass going from ~10-50Å. Arcus will use the silicon pore optics proposed for ESA's Athena mission, paired with off-plane gratings being developed at the University of Iowa and combined with MIT/Lincoln Labs CCDs.

  4. Thesis: A Combined-light Mission For Exoplanet Molecular Spectroscopy (United States)

    Deroo, Pieter; Swain, M. R.; Tinetti, G.; Griffith, C.; Vasisht, G.; Deming, D.; Henning, T.; Beaulieu, J.


    THESIS, the Transiting Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft, is a concept for a MIDEX/Discovery class exoplanet mission. Building on the recent Spitzer and Hubble successes in exoplanet characterization and molecular spectroscopy, THESIS would extend these types of measurements to a large population of planets including non-transiting planets and super-Earths. The ability to acquire high-stability, spectroscopic data from the near-visible to the mid-infrared is a unique aspect of THESIS. A strength of the THESIS concept is simplicity low technical risk, and modest cost. By enabling molecular spectroscopy of exoplanet atmospheres, THESIS mission has the potential to dramatically advance our understanding of conditions on extrasolar worlds while serving as a stepping stone to more ambitious future missions.

  5. Abe homotopy classification of topological excitations under the topological influence of vortices

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Shingo, E-mail: [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Physics, and Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Yokohama, Kanagawa 223-8511 (Japan); Kobayashi, Michikazu [Department of Basic Science, University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Kawaguchi, Yuki [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Yokohama, Kanagawa 223-8511 (Japan); Ueda, Masahito [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); ERATO Macroscopic Quantum Control Project, JST, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)


    Topological excitations are usually classified by the nth homotopy group {pi}{sub n}. However, for topological excitations that coexist with vortices, there are cases in which an element of {pi}{sub n} cannot properly describe the charge of a topological excitation due to the influence of the vortices. This is because an element of {pi}{sub n} corresponding to the charge of a topological excitation may change when the topological excitation circumnavigates a vortex. This phenomenon is referred to as the action of {pi}{sub 1} on {pi}{sub n}. In this paper, we show that topological excitations coexisting with vortices are classified by the Abe homotopy group {kappa}{sub n}. The nth Abe homotopy group {kappa}{sub n} is defined as a semi-direct product of {pi}{sub 1} and {pi}{sub n}. In this framework, the action of {pi}{sub 1} on {pi}{sub n} is understood as originating from noncommutativity between {pi}{sub 1} and {pi}{sub n}. We show that a physical charge of a topological excitation can be described in terms of the conjugacy class of the Abe homotopy group. Moreover, the Abe homotopy group naturally describes vortex-pair creation and annihilation processes, which also influence topological excitations. We calculate the influence of vortices on topological excitations for the case in which the order parameter manifold is S{sup n}/K, where S{sup n} is an n-dimensional sphere and K is a discrete subgroup of SO(n+1). We show that the influence of vortices on a topological excitation exists only if n is even and K includes a nontrivial element of O(n)/SO(n).

  6. Moral Education in Japan The Coming of a New Dawn, Abe s New Moral Education


    Bolton, Kristoffer Hornburg


    This thesis studies the current debate surrounding moral education in Japan, choosing to focus on the criticism of the Abe administration s proposed educational reform. Moral education has received criticism for being overly nationalistic, being too similar to its pre-war iteration, and for supposedly brainwashing children. A majority of this criticism has been centered on the new textbook, Watashitachi no Doutoku. Its predecessor, Kokoro no Nooto, raised similar concerns and critics fear a w...

  7. Abe homotopy classification of topological excitations under the topological influence of vortices

    International Nuclear Information System (INIS)

    Topological excitations are usually classified by the nth homotopy group πn. However, for topological excitations that coexist with vortices, there are cases in which an element of πn cannot properly describe the charge of a topological excitation due to the influence of the vortices. This is because an element of πn corresponding to the charge of a topological excitation may change when the topological excitation circumnavigates a vortex. This phenomenon is referred to as the action of π1 on πn. In this paper, we show that topological excitations coexisting with vortices are classified by the Abe homotopy group κn. The nth Abe homotopy group κn is defined as a semi-direct product of π1 and πn. In this framework, the action of π1 on πn is understood as originating from noncommutativity between π1 and πn. We show that a physical charge of a topological excitation can be described in terms of the conjugacy class of the Abe homotopy group. Moreover, the Abe homotopy group naturally describes vortex-pair creation and annihilation processes, which also influence topological excitations. We calculate the influence of vortices on topological excitations for the case in which the order parameter manifold is Sn/K, where Sn is an n-dimensional sphere and K is a discrete subgroup of SO(n+1). We show that the influence of vortices on a topological excitation exists only if n is even and K includes a nontrivial element of O(n)/SO(n).

  8. Sistem Akuntansi Piutang Dagang Pada Pedagang Besar Farmasi PT. Trido Abed Utama Medan




    The purpose of this research is to examine the accounting procedures of credit sales and account receivable collections implemented in PT Trido Abed Utama and to examine wheter the procedures has given adequete internal control. The research method used is Descriptive Method and Comperative Method, while the types of data used Qualititative data which consist of primary data and secondary data. Data collections techniques are inquiries, bibliography, and documentation. The responded of. this ...

  9. The Swift Gamma Ray Burst Mission (United States)

    Gehrels, Neil


    Swift is an international mission managed by NASA as part of its MIDEX program. It is a multiwavelength transient observatory for GRB astronomy that will launch in 2004. The goals of the mission are to determine the origin of GRBs and their afterglows and use bursts to probe the early Universe. A wide field gamma-ray camera will detect more than a hundred GRBs per year to 2-5 times fainter than BATSE. Sensitive narrow-field X-ray, and UV/optical telescopes will be pointed at the burst location in 20 to 75 sec by an autonomously controlled 'swift' spacecraft. For each burst, arcsec positions will be determined and optical/UV/x-ray/gamma-ray spectrophotometry performed. Measurements of redshift will be made for many of the bursts. The instrumentation is a combination of superb existing flight-spare hardware and design from XMM and Spectrum-X/JET-X contributed by collaborators in the UK and Italy and development of a coded-aperture camera with a large-area (approx. 0.5 square meter) CdZnTe detector array. The instruments have now completed their fabrication phase and are integrated on the observatory for final testing. Key components of the mission are vigorous follow-up and outreach programs to engage the astronomical community and public in Swift. The talk will describe the mission and its status and give a summary of our plans for GRB operations.

  10. The Swift MlDEX Mission (United States)

    Gehrels, Neil


    Swift is a NASA MIDEX mission that is in development for launch in 2004. It is a multiwavelength observatory for transient astronomy. The goals of the mission are to determine the origin of gamma-ray bursts and their afterglows and use bursts to probe the early Universe. The mission will also perform a hard x-ray survey at the 1 milliCrab level and will continuously monitor the sky for transients. A wide- field gamma-ray camera will detect more than a hundred GRBs per year to 3 times fainter than BATSE. Sensitive narrow-field X-ray and Uv/optical telescopes will be pointed at the burst location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions will be determined and optical/W/X-ray/gamma-ray spectrophotometry performed. The instrumentation is a combination of existing flight-spare hardware and design from XMM and Spectrum-X/JET-X contributed by collaborators in the UX and Italy and development of a coded-aperture camera with a large-area (-0.5 square meter) CdZnTe detector array. The ground station in Malindi is contributed by the Italian Space Agency. The instruments have now completed their fabrication phase and are currently being integrated on the observatory for final testing. up and outreach programs to engage the astronomical community and public in Swift.

  11. Multi-authority ABE for Access Control in Cloud Storage%基于 MA-ABE 的云存储访问控制方法∗

    Institute of Scientific and Technical Information of China (English)

    李谢华; 张蒙蒙; 刘鸿; 王勇军


    针对于跨域云数据访问控制中的安全性和有效性问题,提出了一种基于树访问结构的多授权机构属性加密(Attribute-Based Encryption,ABE)的跨域数据访问控制方法。通过建立分散授权模型,将属性私钥的生成与中央认证机构(Central Authority,CA)分离,由数据属主(Data Owner,DO)和授权机构分别生成并分发属性私钥组件。利用基于访问结构树的控制策略,有效预防了用户之间以及用户和授权机构之间的联合攻击。此外,用户密钥计算无需使用全球唯一标识(Global Identity,GID),支持匿名用户跨域数据访问。最后,利用双线性判定Diffie-Hellman(Decision Bilinear Diffie-Hellman,DBDH)假设理论分析了方案的安全性。研究结果表明,本方案在解密操作和加解密平均时间上具有较高的性能,能够有效地应用于多授权机构并存的云存储环境。%In order to improve the security and efficiency of data access control under multi-authority environment,an access-tree based multi-authority ABE (ATB-MAABE)has been proposed in this paper. In ATB-MAABE,CA is only used for public parameters generating and authority verification,which re-duces the security risk introduced by CA.Access control policy is defined by the DO(data owner),and the attribute-based secret key components are generated by DO and different attributes authorities.By using the access tree based control policy,this scheme can prevent the attacks from the user and authority collu-sion.Furthermore,the user's global identifier (GID)is not required in secret key generating,which can support anonymous data control and sharing.Finally,the security proof is given by using the Decisional Bilinear Diffie-Hellman (DBDH )assumption,and the experiment results show the efficiency of this scheme in encryption/decryption operations.

  12. Effect of cellulosic sugar degradation products (furfural and hydroxymethylfurfural) on acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii P260 (United States)

    Studies were performed to identify chemicals present in wheat straw hydrolysate (WSH) that enhance acetone butanol ethanol (ABE) productivity. These chemicals were identified as furfural and hydroxymethyl furfural (HMF). Control experiment resulted in the production of 21.09-21.66 gL**-1 ABE with a ...

  13. The MAP Autonomous Mission Control System (United States)

    Breed, Juile; Coyle, Steven; Blahut, Kevin; Dent, Carolyn; Shendock, Robert; Rowe, Roger


    The Microwave Anisotropy Probe (MAP) mission is the second mission in NASA's Office of Space Science low-cost, Medium-class Explorers (MIDEX) program. The Explorers Program is designed to accomplish frequent, low cost, high quality space science investigations utilizing innovative, streamlined, efficient management, design and operations approaches. The MAP spacecraft will produce an accurate full-sky map of the cosmic microwave background temperature fluctuations with high sensitivity and angular resolution. The MAP spacecraft is planned for launch in early 2001, and will be staffed by only single-shift operations. During the rest of the time the spacecraft must be operated autonomously, with personnel available only on an on-call basis. Four (4) innovations will work cooperatively to enable a significant reduction in operations costs for the MAP spacecraft. First, the use of a common ground system for Spacecraft Integration and Test (I&T) as well as Operations. Second, the use of Finite State Modeling for intelligent autonomy. Third, the integration of a graphical planning engine to drive the autonomous systems without an intermediate manual step. And fourth, the ability for distributed operations via Web and pager access.

  14. "Enne diskussiooni võta 100 g (40°-80°)!" : Gustav Naani kolm kirja Abe Liebmanile / Gustav Naan ; kommentaarinud Helen Lausma-Saar

    Index Scriptorium Estoniae

    Naan, Gustav, 1919-1994


    Kirjad pakuvad lisateavet selle kohta, kuidas kujunes marksistlik-leninlik-stalinlik Eesti ajaloo kontseptsioon. Annavad võimaluse heita pilgu Gustav Naani mõttemaailma ja ridade vahelt saab aimu Abe Liebmani rollist ajalooteaduse ümbermõtestamisel

  15. Optimización de un medio de cultivo industrial para la fermentación acetobutilica (abe)



    The industrial culture media for butanol-ethanol-acetone fermentation (ABE) was optimized by experimental design. A butanol resistant mutant isolated from Clostridium acetobutylicum DSM 1732 was used. This mutant produced 15.5 g/1 of total solvents, 30% more than the wild strain solvent production. Mutant strain resists a concentration of 2,5% v/v meanwhile the type strain resists 1 % v/v butanol concentration. Molasses of sugar cane as carbon source were used. The molasses concentration was ...

  16. Magnesium production from Asian Abe-Gram dolomite in pidgeon-type reactor

    International Nuclear Information System (INIS)

    Ore mineral characterization and various experimental test work were carried out on Asian Abe-Garm dolomite, Qazvin province, Iran. The test work consisted of calcining, chemical characterization, LOI determination, and reduction tests on the calcined dolomite (doloma), using Semnan ferrosilicon. Calcining of dolomite sample was carried out at about 1400degreeC in order to remove the contained CO2, moisture, and other easily volatilised impurities. The doloma was milled, thoroughly mixed with 21percentSemnan ferrosilicon and briquetted in hand press applying 30 MPa pressure. The briquettes were heated at 1125-1150degreeC and 500 Pa in a Pidgeon-type tube reactor for 10-12 hours to extract the magnesium. Ferrosilicon addition, relative to doloma, was determined based on the chemical analysis of the two reactants using Mintek's Pyrosim software package. Magnesium extraction calculated as 77.97percentand Mg purity of 96.35percent. The level of major impurities in the produced magnesium crown is similar to those in the crude metal production.

  17. Allopurinol-mediated lignocellulose-derived microbial inhibitor tolerance by Clostridium beijerinckii during acetone-butanol-ethanol (ABE) fermentation. (United States)

    Ujor, Victor; Agu, Chidozie Victor; Gopalan, Venkat; Ezeji, Thaddeus Chukwuemeka


    In addition to glucans, xylans, and arabinans, lignocellulosic biomass hydrolysates contain significant levels of nonsugar components that are toxic to the microbes that are typically used to convert biomass to biofuels and chemicals. To enhance the tolerance of acetone-butanol-ethanol (ABE)-generating Clostridium beijerinckii NCIMB 8052 to these lignocellulose-derived microbial inhibitory compounds (LDMICs; e.g., furfural), we have been examining different metabolic perturbation strategies to increase the cellular reductant pools and thereby facilitate detoxification of LDMICs. As part of these efforts, we evaluated the effect of allopurinol, an inhibitor of NAD(P)H-generating xanthine dehydrogenase (XDH), on C. beijerinckii grown in furfural-supplemented medium and found that it unexpectedly increased the rate of detoxification of furfural by 1.4-fold and promoted growth, butanol, and ABE production by 1.2-, 2.5-, and 2-fold, respectively. Since NAD(P)H/NAD(P)(+) levels in C. beijerinckii were largely unchanged upon allopurinol treatment, we postulated and validated a possible basis in DNA repair to account for the solventogenic gains with allopurinol. Following the observation that supplementation of allopurinol in the C. beijerinckii growth media mitigates the toxic effects of nalidixic acid, a DNA-damaging antibiotic, we found that allopurinol elicited 2.4- and 6.7-fold increase in the messenger RNA (mRNA) levels of xanthine and hypoxanthine phosphoribosyltransferases, key purine-salvage enzymes. Consistent with this finding, addition of inosine (a precursor of hypoxanthine) and xanthine led to 1.4- and 1.7-fold increase in butanol production in furfural-challenged cultures of C. beijerinckii. Taken together, our results provide a purine salvage-based rationale for the unanticipated effect of allopurinol in improving furfural tolerance of the ABE-fermenting C. beijerinckii. PMID:25690312

  18. A first principles study of structural stability, electronic structure and mechanical properties of ABeH3 (A = Li, Na)

    International Nuclear Information System (INIS)

    Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of ABeH3 (A = Li, Na) for three different crystal structures, namely orthorhombic (Pnma), monoclinic (P21/c) and triclinic (P-1) phase. Among the considered structures monoclinic (P21/c) phase is found to be the most stable one for all the three hydrides at ambient condition. The electronic structure reveals that these materials are wide band gap semiconductors. The calculated elastic constants indicate that these materials are mechanically stable at ambient condition

  19. Steps towards a Medium-Energy Gamma-ray Mission (United States)

    McEnery, Julie

    We propose to develop, fabricate, and test a small-scale medium-energy (0.2 - 500 MeV) gamma-ray telescope, optimized for photon detection in both the Compton-scattering and pair-production regimes. The instrument will consist of a double-sided Si-strip tracking detector with energy deposition readout, a composite CdZnTe-strip (CZT) and CsI(Tl)-log calorimeter with high spatial and good energy resolution, and a highly efficient anti-coincidence detector (ACD). This instrument will be a prototype for a potential future MIDEX-scale mission (ComPair) designed to provide a more than order of magnitude increase in sensitivity to the MeV gamma-ray Universe compared to past missions. ComPair will provide a significant improvement in both angular and energy resolution over previous instruments operating in the 0.2-100 MeV range, offering a truly new window on this poorly explored energy range. In this proposal, the team proposes to develop and test the key detection elements for ComPair, integrate these elements in a prototype telescope, perform a series of beam tests to demonstrate the performance, and perform a balloon test flight to study the background rejection capability of the prototype instrument. As a result, we will establish the proof of concept for a Si-CZT Compton-Pair space telescope and elevate the TRL for the ComPair technology to 6-7.

  20. Continuous Acetone–Butanol–Ethanol (ABE) Fermentation with in Situ Solvent Recovery by Silicalite-1 Filled PDMS/PAN Composite Membrane

    DEFF Research Database (Denmark)

    Li, Jing; Chen, Xiangrong; Qi, Benkun; Luo, Jianquan; Zhuang, Xiaojie; Su, Yi; Wan, Yinhua


    The pervaporation (PV) performance of a thin-film silicalite-1 filled PDMS/PAN composite membrane was investigated in the continuous acetone–butanol–ethanol (ABE) production by a fermentation–PV coupled process. Results showed that continuous removal of ABE from the broth at three different......–710 g/m2h. Membrane fouling was negligible for the three different dilution rates. The solution-diffusion model, especially the mass transfer equation, was proved to be applicable to this coupled process....

  1. Gas mission; Mission gaz

    Energy Technology Data Exchange (ETDEWEB)



    This preliminary report analyses the desirable evolutions of gas transport tariffing and examines some questions relative to the opening of competition on the French gas market. The report is made of two documents: a synthesis of the previous report with some recommendations about the tariffing of gas transport, about the modalities of network access to third parties, and about the dissociation between transport and trade book-keeping activities. The second document is the progress report about the opening of the French gas market. The first part presents the European problem of competition in the gas supply and its consequences on the opening and operation of the French gas market. The second part presents some partial syntheses about each topic of the mission letter of the Ministry of Economics, Finances and Industry: future evolution of network access tariffs, critical analysis of contractual documents for gas transport and delivery, examination of auxiliary services linked with the access to the network (modulation, balancing, conversion), consideration about the processing of network congestions and denied accesses, analysis of the metering dissociation between the integrated activities of gas operators. Some documents are attached in appendixes: the mission letter from July 9, 2001, the detailed analysis of the new temporary tariffs of GdF and CFM, the offer of methane terminals access to third parties, the compatibility of a nodal tariffing with the presence of three transport operators (GdF, CFM and GSO), the contract-type for GdF supply, and the contract-type for GdF connection. (J.S.)

  2. [The mission]. (United States)

    Ruiz Moreno, J; Blanch Mon, A


    After having made a historical review of the concept of mission statement, of evaluating its importance (See Part I), of describing the bases to create a mission statement from a strategic perspective and of analyzing the advantages of this concept, probably more important as a business policy (See Parts I and II), the authors proceed to analyze the mission statement in health organizations. Due to the fact that a mission statement is lacking in the majority of health organizations, the strategy of health organizations are not exactly favored; as a consequence, neither are its competitive advantage nor the development of its essential competencies. After presenting a series of mission statements corresponding to Anglo-Saxon health organizations, the authors highlight two mission statements corresponding to our social context. The article finishes by suggesting an adequate sequence for developing a mission statement in those health organizations having a strategic sense. PMID:10983153

  3. An Investigation of the Factors That Motivate Adults to Participate in Adult Basic Education (ABE) Classes at a Southeastern Wisconsin Community College (United States)

    Crump-Phillips, Maureen R.


    This study assessed the plausibility of using Ajzen's (1991) theory of planned behavior (TPB) to identify the factors that motivate adults to participate in Adult Basic Education (ABE) classes at a Southeast Wisconsin Community College. The original TPB (Ajzen, 1991) attests that planned behaviors are determined by behavioral intentions which are…

  4. Direct in situ butanol recovery inside the packed bed during continuous acetone-butanol-ethanol (ABE) fermentation. (United States)

    Wang, Yin-Rong; Chiang, Yu-Sheng; Chuang, Po-Jen; Chao, Yun-Peng; Li, Si-Yu


    In this study, the integrated in situ extraction-gas stripping process was coupled with continuous ABE fermentation using immobilized Clostridium acetobutylicum. At the same time, oleyl alcohol was cocurrently flowed into the packed bed reactor with the fresh medium and then recycled back to the packed bed reactor after removing butanol in the stripper. A high glucose consumption of 52 g/L and a high butanol productivity of 11 g/L/h were achieved, resulting in a high butanol yield of 0.21 g-butanol/g-glucose. This can be attributed to both the high bacterial activity for solvent production as well as a threefold increase in the bacterial density inside the packed bed reactor. Also reported is that 64 % of the butanol produced can be recovered by the integrated in situ extraction-gas stripping process. A high butanol productivity and a high glucose consumption were simultaneously achieved. PMID:27005413

  5. A quantitative metabolomics study of high sodium response in Clostridium acetobutylicum ATCC 824 acetone-butanol-ethanol (ABE) fermentation. (United States)

    Zhao, Xinhe; Condruz, Stefan; Chen, Jingkui; Jolicoeur, Mario


    Hemicellulose hydrolysates, sugar-rich feedstocks used in biobutanol refinery, are normally obtained by adding sodium hydroxide in the hydrolyze process. However, the resulting high sodium concentration in the hydrolysate inhibits ABE (acetone-butanol-ethanol) fermentation, and thus limits the use of these low-cost feedstocks. We have thus studied the effect of high sodium on the metabolic behavior of Clostridium acetobutyricum ATCC 824, with xylose as the carbon source. At a threshold sodium concentration of 200 mM, a decrease of the maximum cell dry weight (-19.50 ± 0.85%) and of ABE yield (-35.14 ± 3.50% acetone, -33.37 ± 0.74% butanol, -22.95 ± 1.81% ethanol) were observed compared to control culture. However, solvents specific productivities were not affected by supplementing sodium. The main effects of high sodium on cell metabolism were observed in acidogenesis, during which we observed the accumulation of ATP and NADH, and the inhibition of the pentose phosphate (PPP) and the glycolytic pathways with up to 80.73 ± 1.47% and 68.84 ± 3.42% decrease of the associated metabolic intermediates, respectively. However, the NADP(+)-to-NADPH ratio was constant for the whole culture duration, a phenomenon explaining the robustness of solvents specific productivities. Therefore, high sodium, which inhibited biomass growth through coordinated metabolic effects, interestingly triggered cell robustness on solvents specific productivity. PMID:27321153

  6. Simulated Mission

    Institute of Scientific and Technical Information of China (English)



    @@ On June 3,27-year-old Chinese astronaut trainer Wang Yue walked into a mock spaceship at a Moscow research institute with five other foreign space enthusiasts in an unprecedented simulation of a manned mission to Mars.

  7. Industrial culture media optimization for acetrobutilic Fermentation Optimización de un medio de cultivo industrial para la fermentación acetobutilica (abe)


    Ramos J.; Buitrago G.; Silva E. D.; Sierra J; Montoya D.


    The industrial culture media for butanol-ethanol-acetone fermentation (ABE) was optimized by experimental design. A butanol resistant mutant isolated from Clostridium acetobutylicum DSM 1732 was used. This mutant produced 15.5 g/1 of total solvents, 30% more than the wild strain solvent production. Mutant strain resists a concentration of 2,5% v/v meanwhile the type strain resists 1 % v/v butanol concentration. Molasses of sugar cane as carbon source were used. The molasses concentration was ...

  8. Research on DCP-ABE Scheme Supporting Attribute Reuse%一种支持属性重用的DCP-ABE方案研究

    Institute of Scientific and Technical Information of China (English)

    连科; 赵泽茂; 王丽君; 贺玉菊



  9. MUSE and ABE Concept

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping; JI Yang


    A perspective view for next generation mobile wireless network is given in this paper, named as Mobile Ubiquitous Service Environment (MUSE). The main mechanisms and principles for MUSE and related issues are also given.

  10. Industrial culture media optimization for acetrobutilic Fermentation Optimización de un medio de cultivo industrial para la fermentación acetobutilica (abe

    Directory of Open Access Journals (Sweden)

    Ramos J.


    Full Text Available The industrial culture media for butanol-ethanol-acetone fermentation (ABE was optimized by experimental design. A butanol resistant mutant isolated from Clostridium acetobutylicum DSM 1732 was used. This mutant produced 15.5 g/1 of total solvents, 30% more than the wild strain solvent production. Mutant strain resists a concentration of 2,5% v/v meanwhile the type strain resists 1 % v/v butanol concentration. Molasses of sugar cane as carbon source were used. The molasses concentration was determined based on the necessary glucose concentration for producing 15 g/1 of butanol as limit product in the ABE fermentation. The nutrients were calculated in according lo literature reports and lo highest biomasse production on vegetative medium 3.8g/l. For determining which variables have significant effect on the total solvent production, the PLAKET-BURMAN method was used. The final concentrations of the culture medium were determined by EVOP-Simplex method. A liter of optimized industrial medium is composed by: molasses 130 g, biotin 4.0 mg, PAB A 3.0 mg, KH2PO41.8 g, yeast extract 3.0 g, minerals stock 4 ml and distilled water lo complete 1 liter; pH 6.1 before sterilization. Using this medium the total solvents production was 24,6 g/1. The production increment is equivalent lo 58,7%, compared lo the mutant strain before the medium was optimized. En el presente trabajo se optimizó un medio de cultivo industrial para la fermentación acetobutilica (ABE mediante la aplicación de diseño de experimentos. Se empleó una mutante espontánea resistente al butanol aislada de la cepa de Clostridium acetobutylicum DSM 1732 la cual tolera una concentración de butanol de 2.5% v/v. La mutante produce 15.5 g/1 de solventes totales que representan 30% más que la cepa silvestre. Para diseñar el medio se empleó como fuente de carbono, melazas de caña. Los nutrientes se calcularon de acuerdo con la máxima cantidad de biomasa obtenida en medio vegetativo (3

  11. Índices de calidad ambiental de aguas del Arroyo Caañabe mediante tests microbiológicos y ecotoxicológico

    Directory of Open Access Journals (Sweden)

    Tomás López Arias


    Full Text Available El Arroyo Caañabe, es un curso de agua que corre a través de los Departamentos Central y Paraguarí (República del Paraguay. Las descargas de origen agropecuario, urbano e industrial contaminan sus aguas. En este trabajo se evalúa la calidad del arroyo mediante sus características fisicoquímicas, ecotoxicológicas, microbiológicas y se la comparan con la legislación vigente. Se colectaron muestras en los meses de Julio y Setiembre del año 2014. Se estudiaron tres sitios denominados S1, ubicado en aguas arriba de la Ciudad de Carapegua; S2 en la intersección del arroyo con la Ruta 1, y S3, en la zona límite de las ciudades de Carapegua y Nueva Italia. Se realizaron ensayos de toxicidad aguda con Daphnia magna, Lactuca sativa, y alevines de Danio rerio; además de ensayos crónicos en Tetradesmus wisconsinenesis, D. rerio y Allium cepa. Se evaluaron los grupos y especies microbianos siguientes: aerobios mesófilos, enterobacterias, coliformes totales, coliformes fecales, E. coli, Pseudomona aeruginosa, mohos y levaduras; además se determinaron índices de calidad y de contaminación. Los resultados indican que las aguas del arroyo presentaron características de clase II y de clase III según el padrón establecido por la Secretaría del Ambiente del Paraguay. El índice de calidad de agua (ICA arrojó valores comprendidos entre 52 y 62 lo que otorga la clasificación de "regular"; mientras que el índice de contaminación trófica (ICOTRO presentó valores entre 0,12 y 0.26, indicando "eutrofización". Los recuentos de coliformes fueron superiores en el segundo muestreo, aunque dentro lo establecido por la norma. La presencia de P. aeruginosa en los tres puntos constituye un riesgo para la salud. Ensayos ecotoxicológicos agudos mostraron que las aguas presentan escasos efectos letales, no obstante los ensayos crónicos en A. cepa y el test de micronúcleos en D. rerio indican potenciales efectos citotóxicos y genotóxicos de las

  12. Privacy protection scheme in cloud computing using CP-ABE based on data partition%云环境下一种基于数据分割的CP-ABE隐私保护方案

    Institute of Scientific and Technical Information of China (English)

    施荣华; 刘鑫; 董健; 胡炳浩; 李西柯


    According to cloud computing privacy protection,this paper proposed a CP-ABE (cipertext policy-attribute based encryption)scheme based on data partition which improved security,it reduced the performance overhead,overcome untrustful three sides.This scheme used the data ideological to divide date into big and small block of data,then divided the big data block into small pieces and encrypting the small data block with CP-ABE algorithms.Manager deals with experimental analy-sis,in a cloud environment,this scheme has advantages on the safety and performance overhead and extension.%针对云计算隐私安全保护,提出了一种基于数据分割的CP-ABE (密文策略的基于属性的加密方案)隐私保护方案,克服了云环境下不可信第三方、安全性和性能开销的三大难题。本方案利用数据分割思想将数据分为大数据块和小数据块,通过分割策略对大数据块再进行分块,并用CP-ABE 算法对小数据块进行加密。经理论分析及实验仿真表明,在云环境下,此方案在安全问题、开销问题及扩展问题上都有很大优势。

  13. Dukovany ASSET mission preparation

    International Nuclear Information System (INIS)

    We are in the final stages of the Dukovany ASSET mission 1996 preparation. I would like to present some of our recent experiences. Maybe they would be helpful to other plants, that host ASSET missions in future

  14. Five Analysis of Abe no nakamaro Monument in Xi'an%解读西安阿倍仲麻吕纪念碑的五条线索

    Institute of Scientific and Technical Information of China (English)

    王军; 张婧


    张锦秋大师的早期作品西安阿倍仲麻吕纪念碑是唐代中日往来的重要纪念物,论文从历史语境、基址环境、碑石叙事、创作经历和碑石文化五条线索对其进行解读,揭示阿倍仲麻吕纪念碑建筑形式与空间表象下的深层涵义和文化价值。%Taking as one of significant memorial buildings for Chinese-Japanese culture communication, the paper attempts to review the monument to Abe no nakamaro in Xi’an by analyzing the historic background, situation, architectural narrative, experience of architects, and Chinese stele culture, and to reveal the underlying meaning and cultural value underneath both the architectural form and space of the monument.

  15. IAEA International Missions in Lithuania

    International Nuclear Information System (INIS)

    Description of international missions during the period of 1999-2001 is presented. At that period three IAEA international missions took place: Mission of International Physical Protection Advisor Service in 1999, Mission of International Probabilistic Safety Assessment Review Team in 2000 and Mission of International Regulatory Review Team in 2001. Topics addressed during the missions are presented

  16. JPL Mission Bibliometrics (United States)

    Coppin, Ann


    For a number of years ongoing bibliographies of various JPL missions (AIRS, ASTER, Cassini, GRACE, Earth Science, Mars Exploration Rovers (Spirit & Opportunity)) have been compiled by the JPL Library. Mission specific bibliographies are compiled by the Library and sent to mission scientists and managers in the form of regular (usually quarterly) updates. Charts showing publications by years are periodically provided to the ASTER, Cassini, and GRACE missions for supporting Senior Review/ongoing funding requests, and upon other occasions as a measure of the impact of the missions. Basically the Web of Science, Compendex, sometimes Inspec, GeoRef and Aerospace databases are searched for the mission name in the title, abstract, and assigned keywords. All get coded for journal publications that are refereed publications.

  17. The STEREO Mission

    CERN Document Server


    The STEREO mission uses twin heliospheric orbiters to track solar disturbances from their initiation to 1 AU. This book documents the mission, its objectives, the spacecraft that execute it and the instruments that provide the measurements, both remote sensing and in situ. This mission promises to unlock many of the mysteries of how the Sun produces what has become to be known as space weather.

  18. Juno Mission Simulation (United States)

    Lee, Meemong; Weidner, Richard J.


    The Juno spacecraft is planned to launch in August of 2012 and would arrive at Jupiter four years later. The spacecraft would spend more than one year orbiting the planet and investigating the existence of an ice-rock core; determining the amount of global water and ammonia present in the atmosphere, studying convection and deep- wind profiles in the atmosphere; investigating the origin of the Jovian magnetic field, and exploring the polar magnetosphere. Juno mission management is responsible for mission and navigation design, mission operation planning, and ground-data-system development. In order to ensure successful mission management from initial checkout to final de-orbit, it is critical to share a common vision of the entire mission operation phases with the rest of the project teams. Two major challenges are 1) how to develop a shared vision that can be appreciated by all of the project teams of diverse disciplines and expertise, and 2) how to continuously evolve a shared vision as the project lifecycle progresses from formulation phase to operation phase. The Juno mission simulation team addresses these challenges by developing agile and progressive mission models, operation simulations, and real-time visualization products. This paper presents mission simulation visualization network (MSVN) technology that has enabled a comprehensive mission simulation suite (MSVN-Juno) for the Juno project.

  19. Lunar Missions and Datasets (United States)

    Cohen, Barbara A.


    There are two slide presentations contained in this document. The first reviews the lunar missions from Surveyor, Galileo, Clementine, the Lunar Prospector, to upcoming lunar missions, Lunar Reconnaissance Orbiter (LRO), Lunar Crater Observation & Sensing Satellite (LCROSS), Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS), Gravity Recovery and Interior Laboratory (GRAIL), Lunar Atmosphere, Dust and Environment Explorer (LADEE), ILN and a possible Robotic sample return mission. The information that the missions about the moon is reviewed. The second set of slides reviews the lunar meteorites, and the importance of lunar meteorites to adding to our understanding of the moon.

  20. The Dipper Satellite: A Medium-Class Explorer Mission to the Threshold of Space (United States)

    Pfaff, R. F., Jr.; Acuna, M.; Bounds, S.; Hoffman, R.; Mahaffy, P.; Earle, G.; Fesen, C.; Heelis, R.; Blake, J.; Christensen, A.; Clemmons, J.


    planetary waves on a range of spatial scales. A proposal to design, build, operate, and analyze data from instruments on the Dipper spacecraft within the schedule and budget constraints of NASA's MIDEX program was submitted to NASA in 1998. This presentation summarizes the main features of the mission.

  1. The Community College Mission. (United States)

    Vaughan, George B.


    Argues that the community college's mission has been and will be constant with respect to its social role to educate; its responsiveness to community needs; its focus on teaching; its open access philosophy; and its commitment to a comprehensive curriculum. Examines social tensions affecting the mission. (DMM)

  2. Bering Mission Navigation Method

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Jørgensen, Peter Siegbjørn;


    "Bering", after the name of the famous Danish explorer, is a near Earth object (NEO) and main belt asteroids mapping mission envisaged by a consortium of Danish universities and research institutes. To achieve the ambitious goals set forth by this mission, while containing the costs and risks...

  3. The Pioneer Venus Missions. (United States)

    National Aeronautics and Space Administration, Mountain View, CA. Ames Research Center.

    This document provides detailed information on the atmosphere and weather of Venus. This pamphlet describes the technological hardware including the probes that enter the Venusian atmosphere, the orbiter and the launch vehicle. Information is provided in lay terms on the mission profile, including details of events from launch to mission end. The…

  4. Mission Medical Information System (United States)

    Johnson-Throop, Kathy A.; Joe, John C.; Follansbee, Nicole M.


    This viewgraph presentation gives an overview of the Mission Medical Information System (MMIS). The topics include: 1) What is MMIS?; 2) MMIS Goals; 3) Terrestrial Health Information Technology Vision; 4) NASA Health Information Technology Needs; 5) Mission Medical Information System Components; 6) Electronic Medical Record; 7) Longitudinal Study of Astronaut Health (LSAH); 8) Methods; and 9) Data Submission Agreement (example).

  5. STS-69 Mission Insignia (United States)


    Designed by the mission crew members, the patch for STS-69 symbolizes the multifaceted nature of the flight's mission. The primary payload, the Wake Shield Facility (WSF), is represented in the center by the astronaut emblem against a flat disk. The astronaut emblem also signifies the importance of human beings in space exploration, reflected by the planned space walk to practice for International Space Station (ISS) activities and to evaluate space suit design modifications. The two stylized Space Shuttles highlight the ascent and entry phases of the mission. Along with the two spiral plumes, the stylized Space Shuttles symbolize a NASA first, the deployment and recovery on the same mission of two spacecraft (both the Wake Shield Facility and the Spartan). The constellations Canis Major and Canis Minor represent the astronomy objectives of the Spartan and International Extreme Ultraviolet Hitchhiker (IEH) payload. The two constellations also symbolize the talents and dedication of the support personnel who make Space Shuttle missions possible.

  6. IPPAS Mission to Hungary

    International Nuclear Information System (INIS)

    At the request of the Government of Hungary (received from the Hungarian Atomic Energy Authority HAEA by IAEA on 20 June 2012), the IAEA agreed to conduct an IPPAS mission to Hungary in May – June 2013. Initial discussions were held in September 2012, within the scope of GC56 meetings in Vienna, during which a general issues related to the conduct of the mission were discussed. In order to continue preparation for the mission, formal preparatory meeting was convened at HAEA from 22 to 23 January 2013. The scope of the mission included the review of the Hungarian nuclear security legislative and regulatory framework for nuclear and other radioactive material and associated facilities, regulatory practices (licensing, inspections and enforcement) and coordination between organizations involved in physical protection. The scope of the mission also covered a review and evaluation of the physical protection systems in place at Budapest Research Reactor and the Central Isotope Storage Facility, at Paks NPP and Spent Fuel Interim Storage Facility, as well as the assessment of the physical protection arrangements for transport of nuclear and other radioactive material. The interface with nuclear material accountancy procedures and cyber security related issues were addressed during the mission. The paper aims at provide information on the preparation for the mission and the content of the Advance Information Package describing the Hungarian physical protection regime, while the presentation provides certain conclusions drawn by the IPPAS team. (author)

  7. NASA Earth science missions (United States)

    Neeck, Steven P.; Volz, Stephen M.


    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its space missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. Through partnerships with national and international agencies, NASA enables the application of this understanding. The ESD's Flight Program provides the spacebased observing systems and supporting ground segment infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth system science research and modeling activities. The Flight Program currently has 15 operating Earth observing space missions, including the recently launched Landsat-8/Landsat Data Continuity Mission (LDCM). The ESD has 16 more missions planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key data sets needed for climate science and applications, and small-sized competitively selected orbital missions and instrument missions of opportunity utilizing rideshares that are part of the Earth Venture (EV) Program. The recently selected Cyclone Global Navigation Satellite System (CYGNSS) microsatellite constellation and the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument are examples. In addition, the International Space Station (ISS) is being increasingly used to host NASA Earth observing science instruments. An overview of plans

  8. The LISA Pathfinder mission

    International Nuclear Information System (INIS)

    In this paper, we describe the current status of the LISA Pathfinder mission, a precursor mission aimed at demonstrating key technologies for future space-based gravitational wave detectors, like LISA. Since much of the flight hardware has already been constructed and tested, we will show that performance measurements and analysis of these flight components lead to an expected performance of the LISA Pathfinder which is a significant improvement over the mission requirements, and which actually reaches the LISA requirements over the entire LISA Pathfinder measurement band. (paper)

  9. Exobiology and Future Mars Missions (United States)

    Mckay, Christopher P. (Editor); Davis, Wanda, L. (Editor)


    Scientific questions associated with exobiology on Mars were considered and how these questions should be addressed on future Mars missions was determined. The mission that provided a focus for discussions was the Mars Rover/Sample Return Mission.

  10. NEP missions to Pluto

    International Nuclear Information System (INIS)

    Nuclear Electric Propulsion (NEP) has the potential to deliver fast trips to the distant outer planets and to be enabling for orbiter missions to Pluto, the moons of the distant outer planets, and Kuiper belt objects. This paper summarizes results of a mission study for a Pluto Flyby and a Pluto Orbiter. It was concluded that the flyby mission trip time would be about 6-10 years, depending on how lightweight the power system could be made for a given power level. The trip time was not too sensitive to whether the initial condition was earth escape or earth orbit if a larger power system could be assumed for the earth-orbit option because of the larger launch mass that could be used in that case. The trip time for the orbiter mission was projected to be about 9-14 years

  11. Cassini's Solstice Mission (United States)

    Seal, David; Mitchell, Robert


    With the recent approval of NASA's flagship Cassini mission for seven more years of continued operations, dozens more Titan, Enceladus and other icy moon flybys await, as well as many occultations and multiple close passages to Saturn. Seasonal change is the principal scientific theme as Cassini extends its survey of the target-rich system over one full half-season, from just after northern winter solstice at arrival back in 2004, to northern summer solstice at the end of mission in 2017. The new seven-year mission extension requires careful propellant management as well as streamlined operations strategies with smaller spacecraft, sequencing and science teams. Cassini's never-before-envisioned end of mission scenario also includes nearly two dozen high-inclination orbits which pass between the rings and the planet allowing thrilling and unique science opportunities before entry into Saturn's atmosphere.

  12. Autonomous Mission Operations Project (United States)

    National Aeronautics and Space Administration — Future human spaceflight missions will occur with crews and spacecraft at large distances, with long communication delays, to the Earth. The one-way light-time...

  13. Pakistan Mission System (United States)

    US Agency for International Development — Pak Info was designed by OAPA to fill in the knowledge and reporting gaps in existing agency systems for the Pakistan Mission. It tracks the program approval...

  14. Uganda Mission PRS (United States)

    US Agency for International Development — A web-based performance reporting system that is managed by IBI that interfaces with the Mission's GIS database that supports USAID/Uganda and its implementing...

  15. NEEMO 7 undersea mission (United States)

    Thirsk, Robert; Williams, David; Anvari, Mehran


    The NEEMO 7 mission was the seventh in a series of NASA-coordinated missions utilizing the Aquarius undersea habitat in Florida as a human space mission analog. The primary research focus of this mission was to evaluate telementoring and telerobotic surgery technologies as potential means to deliver medical care to astronauts during spaceflight. The NEEMO 7 crewmembers received minimal pre-mission training to perform selected medical and surgical procedures. These procedures included: (1) use of a portable ultrasound to locate and measure abdominal organs and structures in a crewmember subject; (2) use of a portable ultrasound to insert a small needle and drain into a fluid-filled cystic cavity in a simulated patient; (3) surgical repair of two arteries in a simulated patient; (4) cystoscopy and use of a ureteral basket to remove a renal stone in a simulated patient; and (5) laparoscopic cholecystectomy in a simulated patient. During the actual mission, the crewmembers performed the procedures without or with telementoring and telerobotic assistance from experts located in Hamilton, Ontario. The results of the NEEMO 7 medical experiments demonstrated that telehealth interventions rely heavily on a robust broadband, high data rate telecommunication link; that certain interventional procedures can be performed adequately by minimally trained individuals with telementoring assistance; and that prior clinical experience does not always correlate with better procedural performance. As space missions become longer in duration and take place further from Earth, enhancement of medical care capability and expertise will be required. The kinds of medical technologies demonstrated during the NEEMO 7 mission may play a significant role in enabling the human exploration of space beyond low earth orbit, particularly to destinations such as the Moon and Mars.

  16. Mars Observer mission


    Albee, A. L.; Arvidson, R.E.; Palluconi, F. D.


    The Mars Observer mission will extend the exploration and characterization of Mars by providing new and systematic measurements of the atmosphere, surface, and interior of the planet. These measurements will be made from a low-altitude polar orbiter over a period of 1 Martian year, permitting repetitive observations of the surface and of the seasonal variations of the atmosphere. The mission will be conducted in a manner that will provide new and valuable scientific data using a distributed d...

  17. Human exploration mission studies (United States)

    Cataldo, Robert L.


    The Office of Exploration has established a process whereby all NASA field centers and other NASA Headquarters offices participate in the formulation and analysis of a wide range of mission strategies. These strategies were manifested into specific scenarios or candidate case studies. The case studies provided a systematic approach into analyzing each mission element. First, each case study must address several major themes and rationale including: national pride and international prestige, advancement of scientific knowledge, a catalyst for technology, economic benefits, space enterprise, international cooperation, and education and excellence. Second, the set of candidate case studies are formulated to encompass the technology requirement limits in the life sciences, launch capabilities, space transfer, automation, and robotics in space operations, power, and propulsion. The first set of reference case studies identify three major strategies: human expeditions, science outposts, and evolutionary expansion. During the past year, four case studies were examined to explore these strategies. The expeditionary missions include the Human Expedition to Phobos and Human Expedition to Mars case studies. The Lunar Observatory and Lunar Outpost to Early Mars Evolution case studies examined the later two strategies. This set of case studies established the framework to perform detailed mission analysis and system engineering to define a host of concepts and requirements for various space systems and advanced technologies. The details of each mission are described and, specifically, the results affecting the advanced technologies required to accomplish each mission scenario are presented.

  18. Future Titan Missions (United States)

    Waite, J. H.; Coustenis, A.; Lorenz, R.; Lunine, J.; Stofan, E.


    New discoveries about Titan from the Cassini-Huygens mission have led to a broad range of mission class studies for future missions, ranging from NASA Discovery class to International Flagship class. Three consistent science themes emerge and serve as a framework for discussing the various mission concepts: Goal A: Explore Titan, an Earth-Like System - How does Titan function as a system? How are the similarities and differences with Earth, and other solar system bodies, a result of the interplay of the geology, hydrology, meteorology, and aeronomy present in the Titan system?; Goal B: Examine Titan’s Organic Inventory—A Path to Prebiological Molecules - What is the complexity of Titan’s organic chemistry in the atmosphere, within its lakes, on its surface, and in its putative subsurface water ocean and how does this inventory differ from known abiotic organic material in meteorites and therefore contribute to our understanding of the origin of life in the Solar System?; and Goal C: Explore Enceladus and Saturn’s magnetosphere—clues to Titan’s origin and evolution - What is the exchange of energy and material with the Saturn magnetosphere and solar wind? What is the source of geysers on Enceladus? Does complex chemistry occur in the geyser source? Within this scientific framework the presentation will overview the Titan Explorer, Titan AND Enceladus Mission, Titan Saturn System Mission, Titan Mare Explorer, and Titan Submersible. Future timelines and plans will be discussed.

  19. Robotic Mission Simulation Tool Project (United States)

    National Aeronautics and Space Administration — Energid Technologies proposes a software tool to predict robotic mission performance and support supervision of robotic missions even when environments and...

  20. Autonomous Mission Operations Roadmap (United States)

    Frank, Jeremy David


    As light time delays increase, the number of such situations in which crew autonomy is the best way to conduct the mission is expected to increase. However, there are significant open questions regarding which functions to allocate to ground and crew as the time delays increase. In situations where the ideal solution is to allocate responsibility to the crew and the vehicle, a second question arises: should the activity be the responsibility of the crew or an automated vehicle function? More specifically, we must answer the following questions: What aspects of mission operation responsibilities (Plan, Train, Fly) should be allocated to ground based or vehicle based planning, monitoring, and control in the presence of significant light-time delay between the vehicle and the Earth?How should the allocated ground based planning, monitoring, and control be distributed across the flight control team and ground system automation? How should the allocated vehicle based planning, monitoring, and control be distributed between the flight crew and onboard system automation?When during the mission should responsibility shift from flight control team to crew or from crew to vehicle, and what should the process of shifting responsibility be as the mission progresses? NASA is developing a roadmap of capabilities for Autonomous Mission Operations for human spaceflight. This presentation will describe the current state of development of this roadmap, with specific attention to in-space inspection tasks that crews might perform with minimum assistance from the ground.

  1. KuaFu Mission

    Institute of Scientific and Technical Information of China (English)

    XIA Lidong; TU Chuanyi; Schwenn Rainer; Donovan Eric; Marsch Eckart; WANG Jingsong; ZHANG Yongwei; XIAO Zuo


    The KuaFu mission-Space Storms, Aurora and Space Weather Explorer-is an "L1+Polar" triple satellite project composed of three spacecraft: KuaFu-A will be located at L1 and have instruments to observe solar EUV and FUV emissions, and white-light Coronal Mass Ejections (CMEs), and to measure radio waves, the local plasma and magnetic field,and high-energy particles. KuaFuB1 and KuaFu- B2 will bein polar orbits chosen to facilitate continuous 24 hours a day observation of the north polar Aurora Oval. The KuaFu mission is designed to observe the complete chain of disturbances from the solar atmosphere to geospace, including solar flares, CMEs, interplanetary clouds, shock waves, and their geo-effects, such as magnetospheric sub-storms and magnetic storms, and auroral activities. The mission may start at the next solar maximum (launch in about 2012), and with an initial mission lifetime of two to three years. KuaFu data will be used for the scientific study of space weather phenomena, and will be used for space weather monitoring and forecast purposes. The overall mission design, instrument complement, and incorporation of recent technologies will target new fundamental science, advance our understanding of the physical processes underlying space weather, and raise the standard of end-to-end monitoring of the Sun-Earth system.

  2. The Hinode Mission

    CERN Document Server

    Sakurai, Takashi


    The Solar-B satellite was launched in 2006 by the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), and was renamed Hinode ('sunrise' in Japanese). Hinode carries three instruments: the X-ray telescope (XRT), the EUV imaging spectrometer (EIS), and the Solar Optical Telescope (SOT). These instruments were developed by ISAS/JAXA in cooperation with the National Astronomical Observatory of Japan as domestic partner, and NASA and the Science and Technology Facilities Council (UK) as international partners. ESA and the Norwegian Space Center have been providing a downlink station. The Hinode (Solar-B) Mission gives a comprehensive description of the Hinode mission and its instruments onboard. This book is most useful for researchers, professionals, and graduate students working in the field of solar physics, astronomy, and space instrumentation. This is the only book that carefully describes the details of the Hinode mission; it is richly illustrated with full-color ima...

  3. Country programming mission. Namibia

    International Nuclear Information System (INIS)

    In response to a request from the Government of Namibia conveyed in a letter dated 29 November 1990 IAEA provided a multi-disciplinary Programming Mission which visited Namibia from 15 - 19 July 1991. The terms of reference of the Mission were: 1. To assess the possibilities and benefits of nuclear energy applications in Namibia's development; 2. To advise on the infrastructure required for nuclear energy projects; 3. To assist in the formulation of project proposals which could be submitted for Agency assistance. This report is based on the findings of the Mission and falls into 3 sections with 8 appendices. The first section is a country profile providing background information, the second section deals with sectorial needs and institutional review of the sectors of agriculture including animal production, life sciences (nuclear medicine and radiotherapy) and radiation protection. The third section includes possible future technical co-operation activities

  4. STS-95 Mission Insignia (United States)


    The STS-95 patch, designed by the crew, is intended to reflect the scientific, engineering, and historic elements of the mission. The Space Shuttle Discovery is shown rising over the sunlit Earth limb, representing the global benefits of the mission science and the solar science objectives of the Spartan Satellite. The bold number '7' signifies the seven members of Discovery's crew and also represents a historical link to the original seven Mercury astronauts. The STS-95 crew member John Glenn's first orbital flight is represented by the Friendship 7 capsule. The rocket plumes symbolize the three major fields of science represented by the mission payloads: microgravity material science, medical research for humans on Earth and in space, and astronomy.

  5. Mars Stratigraphy Mission (United States)

    Budney, C. J.; Miller, S. L.; Cutts, J. A.


    The Mars Stratigraphy Mission lands a rover on the surface of Mars which descends down a cliff in Valles Marineris to study the stratigraphy. The rover carries a unique complement of instruments to analyze and age-date materials encountered during descent past 2 km of strata. The science objective for the Mars Stratigraphy Mission is to identify the geologic history of the layered deposits in the Valles Marineris region of Mars. This includes constraining the time interval for formation of these deposits by measuring the ages of various layers and determining the origin of the deposits (volcanic or sedimentary) by measuring their composition and imaging their morphology.

  6. The Asteroid Impact Mission (United States)

    Carnelli, Ian; Galvez, Andres; Mellab, Karim


    The Asteroid Impact Mission (AIM) is a small and innovative mission of opportunity, currently under study at ESA, intending to demonstrate new technologies for future deep-space missions while addressing planetary defense objectives and performing for the first time detailed investigations of a binary asteroid system. It leverages on a unique opportunity provided by asteroid 65803 Didymos, set for an Earth close-encounter in October 2022, to achieve a fast mission return in only two years after launch in October/November 2020. AIM is also ESA's contribution to an international cooperation between ESA and NASA called Asteroid Impact Deflection Assessment (AIDA), consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the AIM rendezvous spacecraft. The primary goals of AIDA are to test our ability to perform a spacecraft impact on a near-Earth asteroid and to measure and characterize the deflection caused by the impact. The two mission components of AIDA, DART and AIM, are each independently valuable but when combined they provide a greatly increased scientific return. The DART hypervelocity impact on the secondary asteroid will alter the binary orbit period, which will also be measured by means of lightcurves observations from Earth-based telescopes. AIM instead will perform before and after detailed characterization shedding light on the dependence of the momentum transfer on the asteroid's bulk density, porosity, surface and internal properties. AIM will gather data describing the fragmentation and restructuring processes as well as the ejection of material, and relate them to parameters that can only be available from ground-based observations. Collisional events are of great importance in the formation and evolution of planetary systems, own Solar System and planetary rings. The AIDA scenario will provide a unique opportunity to observe a collision event directly in space, and simultaneously from ground-based optical and

  7. Mission Critical Networking

    Energy Technology Data Exchange (ETDEWEB)

    Eltoweissy, Mohamed Y.; Du, David H.C.; Gerla, Mario; Giordano, Silvia; Gouda, Mohamed; Schulzrinne, Henning; Youssef, Moustafa


    Mission-Critical Networking (MCN) refers to networking for application domains where life or livelihood may be at risk. Typical application domains for MCN include critical infrastructure protection and operation, emergency and crisis intervention, healthcare services, and military operations. Such networking is essential for safety, security and economic vitality in our complex world characterized by uncertainty, heterogeneity, emergent behaviors, and the need for reliable and timely response. MCN comprise networking technology, infrastructures and services that may alleviate the risk and directly enable and enhance connectivity for mission-critical information exchange among diverse, widely dispersed, mobile users.

  8. The Gaia mission

    CERN Document Server

    Eyer, L; Pourbaix, D; Mowlavi, N; Siopis, C; Barblan, F; Evans, D W; North, P


    Gaia is a very ambitious mission of the European Space Agency. At the heart of Gaia lie the measurements of the positions, distances, space motions, brightnesses and astrophysical parameters of stars, which represent fundamental pillars of modern astronomical knowledge. We provide a brief description of the Gaia mission with an emphasis on binary stars. In particular, we summarize results of simulations, which estimate the number of binary stars to be processed to several tens of millions. We also report on the catalogue release scenarios. In the current proposal, the first results for binary stars will be available in 2017 (for a launch in 2013).

  9. The ALEXIS mission recovery

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, J.; Armstrong, T.; Dingler, B.; Enemark, D.; Holden, D.; Little, C.; Munson, C.; Priedhorsky, B.; Roussel-Dupre, D.; Smith, B. [Los Alamos National Lab., NM (United States); Warner, R.; Dill, B.; Huffman, G.; McLoughlin, F.; Mills, R.; Miller, R. [AeroAstro, Inc., Herndon, VA (United States)


    The authors report the recovery of the ALEXIS small satellite mission. ALEXIS is a 113-kg satellite that carries an ultrasoft x-ray telescope array and a high-speed VHF receiver/digitizer (BLACKBEARD), supported by a miniature spacecraft bus. It was launched by a Pegasus booster on 1993 April 25, but a solar paddle was damaged during powered flight. Initial attempts to contact ALEXIS were unsuccessful. The satellite finally responded in June, and was soon brought under control. Because the magnetometer had failed, the rescue required the development of new attitude control-techniques. The telemetry system has performed nominally. They discuss the procedures used to recover the ALEXIS mission.

  10. Analysis on Proactive Contribution to Peace Foreign Tendency of the Abe Regime%安倍政权的"积极和平主义"外交动向分析

    Institute of Scientific and Technical Information of China (English)



    In September, 2013 Abe proposed to include the Proactive Contribution to Peace into national security strategy. By conducting theoretical analysis and realistic interpretation of the Proactive Contribution to Peace proposed by Abe, we could fully understand the basic trend of Japanese diplomatic policy and its change tendency in the future. Based on the analysis of the theory of Proactive Contribution to Peace, the author would put forward the paradox of the Proactive Contribution to Peace and then would analyze the interaction between the paradox of reality and theory. Along with the further promotion of the Proactive Contribution to Peace, and based on the evolvement and interaction of Japanese foreign policy and security policy in its internal affairs and diplomacy, regional security and neighboring international relations, the dynamical variable of Abe's the Proactive Contribution to Peace would be assessed accordingly.%2013年9月,安倍提出将积极和平主义纳入国家安全保障战略.通过对安倍所提出的积极和平主义进行理论分析与现实解读,有助于更为充分地理解日本外交基本态势与未来变化的趋势.基于积极和平主义的分析,进一步阐释安倍所提出的积极和平主义的悖论,进而分析理论与现实悖论的互动.随着积极和平主义推进,基于日本外交与安保政策在本国内政外交、地区安全、周边国际关系自身逐层次的推演与彼此的互动所逐步展现,对积极和平主义的动力变量进行相应评估.

  11. Mission Operations Assurance (United States)

    Faris, Grant


    Integrate the mission operations assurance function into the flight team providing: (1) value added support in identifying, mitigating, and communicating the project's risks and, (2) being an essential member of the team during the test activities, training exercises and critical flight operations.

  12. Interpreting the Mission. (United States)

    Yarrington, Roger


    Underscores the importance of increasing public understanding and support of the community college mission in the 1980s. Suggests increased public relations efforts, community forums, the use of television advertisements, and efforts to gain the support of state legislators and officials. (AYC)

  13. The LISA Pathfinder Mission (United States)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L. I.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.


    LISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter. The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper

  14. STS-80 Mission Insignia (United States)


    This mission patch for mission STS-80 depicts the Space Shuttle Columbia and the two research satellites its crew deployed into the blue field of space. The uppermost satellite is the Orbiting Retrievable Far and Extreme Ultraviolet Spectrograph-Shuttle Pallet Satellite (ORFEUS-SPAS), a telescope aimed at unraveling the life cycles of stars and understanding the gases that drift between them. The lower satellite is the Wake Shield Facility (WSF), flying for the third time. It will use the vacuum of space to create advanced semiconductors for the nation's electronics industry. ORFEUS and WSF are joined by the symbol of the Astronaut Corps, representing the human contribution to scientific progress in space. The two bright blue stars represent the mission's Extravehicular Activities (EVA), final rehearsals for techniques and tools to be used in assembly of the International Space Station (ISS). Surrounding Columbia is a constellation of 16 stars, one for each day of the mission, representing the stellar talents of the ground and flight teams that share the goal of expanding knowledge through a permanent human presence in space.

  15. Planetary cubesats - mission architectures (United States)

    Bousquet, Pierre W.; Ulamec, Stephan; Jaumann, Ralf; Vane, Gregg; Baker, John; Clark, Pamela; Komarek, Tomas; Lebreton, Jean-Pierre; Yano, Hajime


    Miniaturisation of technologies over the last decade has made cubesats a valid solution for deep space missions. For example, a spectacular set 13 cubesats will be delivered in 2018 to a high lunar orbit within the frame of SLS' first flight, referred to as Exploration Mission-1 (EM-1). Each of them will perform autonomously valuable scientific or technological investigations. Other situations are encountered, such as the auxiliary landers / rovers and autonomous camera that will be carried in 2018 to asteroid 1993 JU3 by JAXA's Hayabusas 2 probe, and will provide complementary scientific return to their mothership. In this case, cubesats depend on a larger spacecraft for deployment and other resources, such as telecommunication relay or propulsion. For both situations, we will describe in this paper how cubesats can be used as remote observatories (such as NEO detection missions), as technology demonstrators, and how they can perform or contribute to all steps in the Deep Space exploration sequence: Measurements during Deep Space cruise, Body Fly-bies, Body Orbiters, Atmospheric probes (Jupiter probe, Venus atmospheric probes, ..), Static Landers, Mobile landers (such as balloons, wheeled rovers, small body rovers, drones, penetrators, floating devices, …), Sample Return. We will elaborate on mission architectures for the most promising concepts where cubesat size devices offer an advantage in terms of affordability, feasibility, and increase of scientific return.

  16. Mission and Assets Database (United States)

    Baldwin, John; Zendejas, Silvino; Gutheinz, Sandy; Borden, Chester; Wang, Yeou-Fang


    Mission and Assets Database (MADB) Version 1.0 is an SQL database system with a Web user interface to centralize information. The database stores flight project support resource requirements, view periods, antenna information, schedule, and forecast results for use in mid-range and long-term planning of Deep Space Network (DSN) assets.

  17. Mission from Mars:

    DEFF Research Database (Denmark)

    Dindler, Christian; Eriksson, Eva; Iversen, Ole Sejer;


    In this paper a particular design method is propagated as a supplement to existing descriptive approaches to current practice studies especially suitable for gathering requirements for the design of children's technology. The Mission from Mars method was applied during the design of an electronic...

  18. The Mothership Mission Architecture (United States)

    Ernst, S. M.; DiCorcia, J. D.; Bonin, G.; Gump, D.; Lewis, J. S.; Foulds, C.; Faber, D.


    The Mothership is considered to be a dedicated deep space carrier spacecraft. It is currently being developed by Deep Space Industries (DSI) as a mission concept that enables a broad participation in the scientific exploration of small bodies - the Mothership mission architecture. A Mothership shall deliver third-party nano-sats, experiments and instruments to Near Earth Asteroids (NEOs), comets or moons. The Mothership service includes delivery of nano-sats, communication to Earth and visuals of the asteroid surface and surrounding area. The Mothership is designed to carry about 10 nano-sats, based upon a variation of the Cubesat standard, with some flexibility on the specific geometry. The Deep Space Nano-Sat reference design is a 14.5 cm cube, which accommodates the same volume as a traditional 3U CubeSat. To reduce cost, Mothership is designed as a secondary payload aboard launches to GTO. DSI is offering slots for nano-sats to individual customers. This enables organizations with relatively low operating budgets to closely examine an asteroid with highly specialized sensors of their own choosing and carry out experiments in the proximity of or on the surface of an asteroid, while the nano-sats can be built or commissioned by a variety of smaller institutions, companies, or agencies. While the overall Mothership mission will have a financial volume somewhere between a European Space Agencies' (ESA) S- and M-class mission for instance, it can be funded through a number of small and individual funding sources and programs, hence avoiding the processes associated with traditional space exploration missions. DSI has been able to identify a significant interest in the planetary science and nano-satellite communities.

  19. The Double Star mission

    Directory of Open Access Journals (Sweden)



    Full Text Available The Double Star Programme (DSP was first proposed by China in March, 1997 at the Fragrant Hill Workshop on Space Science, Beijing, organized by the Chinese Academy of Science. It is the first mission in collaboration between China and ESA. The mission is made of two spacecraft to investigate the magnetospheric global processes and their response to the interplanetary disturbances in conjunction with the Cluster mission. The first spacecraft, TC-1 (Tan Ce means "Explorer", was launched on 29 December 2003, and the second one, TC-2, on 25 July 2004 on board two Chinese Long March 2C rockets. TC-1 was injected in an equatorial orbit of 570x79000 km altitude with a 28° inclination and TC-2 in a polar orbit of 560x38000 km altitude. The orbits have been designed to complement the Cluster mission by maximizing the time when both Cluster and Double Star are in the same scientific regions. The two missions allow simultaneous observations of the Earth magnetosphere from six points in space. To facilitate the comparison of data, half of the Double Star payload is made of spare or duplicates of the Cluster instruments; the other half is made of Chinese instruments. The science operations are coordinated by the Chinese DSP Scientific Operations Centre (DSOC in Beijing and the European Payload Operations Service (EPOS at RAL, UK. The spacecraft and ground segment operations are performed by the DSP Operations and Management Centre (DOMC and DSOC in China, using three ground station, in Beijing, Shanghai and Villafranca.

  20. B plant mission analysis report

    International Nuclear Information System (INIS)

    This report further develops the mission for B Plant originally defined in WHC-EP-0722, ''System Engineering Functions and Requirements for the Hanford Cleanup Mission: First Issue.'' The B Plant mission analysis will be the basis for a functional analysis that breaks down the B Plant mission statement into the necessary activities to accomplish the mission. These activities are the product of the functional analysis and will then be used in subsequent steps of the systems engineering process, such as identifying requirements and allocating those requirements to B Plant functions. The information in this mission analysis and the functional and requirements analysis are a part of the B Plant technical baseline

  1. Sentinel-2 Mission status (United States)

    Hoersch, Bianca; Colin, Olivier; Gascon, Ferran; Arino, Olivier; Spoto, Francois; Marchese, Franco; Krassenburg, Mike; Koetz, Benjamin


    Copernicus is a joint initiative of the European Commission (EC) and the European Space Agency (ESA), designed to establish a European capacity for the provision and use of operational monitoring information for environment and security applications. Within the Copernicus programme, ESA is responsible for the development of the Space Component, a fully operational space-based capability to supply earth-observation data to sustain environmental information Services in Europe. The Sentinel missions are Copernicus dedicated Earth Observation missions composing the essential elements of the Space Component. In the global Copernicus framework, they are complemented by other satellites made available by third-parties or by ESA and coordinated in the synergistic system through the Copernicus Data-Access system versus the Copernicus Services. The Copernicus Sentinel-2 mission provides continuity to services relying on multi-spectral high-resolution optical observations over global terrestrial surfaces. Sentinel-2 capitalizes on the technology and the vast experience acquired in Europe and the US to sustain the operational supply of data for services such as forest monitoring, land cover changes detection or natural disasters management. The Sentinel-2 mission offers an unprecedented combination of the following capabilities: ○ Systematic global coverage of land surfaces: from 56°South to 84°North, coastal waters and Mediterranean sea; ○ High revisit: every 5 days at equator under the same viewing conditions with 2 satellites; ○ High spatial resolution: 10m, 20m and 60m; ○ Multi-spectral information with 13 bands in the visible, near infra-red and short wave infra-red part of the spectrum; ○ Wide field of view: 290 km. The data from the Sentinel-2 mission are available openly and freely for all users with online easy access since December 2015. The presentation will give a status report on the Sentinel-2 mission, and outlook for the remaining ramp-up Phase, the

  2. The THEMIS Mission

    CERN Document Server

    Burch, J. L


    The THEMIS mission aims to determine the trigger and large-scale evolution of substorms by employing five identical micro-satellites which line up along the Earth's magnetotail to track the motion of particles, plasma, and waves from one point to another and for the first time, resolve space-time ambiguities in key regions of the magnetosphere on a global scale. The primary goal of THEMIS is to elucidate which magnetotail process is responsible for substorm onset at the region where substorm auroras map: (i) local disruption of the plasma sheet current (current disruption) or (ii) the interaction of the current sheet with the rapid influx of plasma emanating from reconnection. The probes also traverse the radiation belts and the dayside magnetosphere, allowing THEMIS to address additional baseline objectives. This volume describes the mission, the instrumentation, and the data derived from them.

  3. Towards A Shared Mission

    DEFF Research Database (Denmark)

    Staunstrup, Jørgen; Orth Gaarn-Larsen, Carsten

    A mission shared by stakeholders, management and employees is a prerequisite for an engaging dialog about the many and substantial changes and challenges currently facing universities. Too often this essen-tial dialog reveals mistrust and misunderstandings about the role and outcome of the...... the context of universities. Although the economic aspects of value are important and cannot be ignored, we argue for a much richer interpretation of value that captures the many and varied results from universities. A shared mission is a prerequisite for university management and leadership. It makes...... it possible to lead through processes that engage and excite while creating transparency and accountability. The paper will be illustrated with examples from Denmark and the Helios initiative taken by the Danish Academy of Technical Sciences (ATV) under the headline “The value creating university...

  4. Deep Blue Mission

    Institute of Scientific and Technical Information of China (English)


    The Chinese Navy dispatches ships to the Gulf of Aden on a second escort mission, marking its growing strength in the face of more diverse challenges Elarly in the morning of April 23, crew- imembers from the Chinese Navy’s second escort fleet in the Gulf of Aden Igathered on deck and saluted to the east, paying their respects to the motherland in celebration of the 60th anniversary of the Chinese Navy. This fleet,

  5. Asteroid Kinetic Impactor Missions (United States)

    Chesley, Steven


    Asteroid impact missions can be carried out as a relatively low-cost add-ons to most asteroid rendezvous missions and such impact experiments have tremendous potential, both scientifically and in the arena of planetary defense.The science returns from an impactor demonstration begin with the documentation of the global effects of the impact, such as changes in orbit and rotation state, the creation and dissipation of an ejecta plume and debris disk, and morphological changes across the body due to the transmission of seismic waves, which might induce landslides and toppling of boulders, etc. At a local level, an inspection of the impact crater and ejecta blanket reveals critical material strength information, as well as spectral differences between the surface and subsurface material.From the planetary defense perspective, an impact demonstration will prove humankind’s capacity to alter the orbit of a potentially threatening asteroid. This technological leap comes in two parts. First, terminal guidance systems that can deliver an impactor with small errors relative to the ~100-200 meter size of a likely impactor have yet to be demonstrated in a deep space environment. Second, the response of an asteroid to such an impact is only understood theoretically due to the potentially significant dependence on the momentum carried by escaping ejecta, which would tend to enhance the deflection by tens of percent and perhaps as much as a factor of a few. A lack of validated understanding of momentum enhancement is a significant obstacle in properly sizing a real-world impactor deflection mission.This presentation will describe the drivers for asteroid impact demonstrations and cover the range of such concepts, starting with ESA’s pioneering Don Quijote mission concept and leading to a brief description of concepts under study at the present time, including the OSIRIS-REx/ISIS, BASiX/KIX and AIM/DART (AIDA) concepts.

  6. Heat Capacity Mapping Mission (United States)

    Nilsson, C. S.; Andrews, J. C.; Scully-Power, P.; Ball, S.; Speechley, G.; Latham, A. R. (Principal Investigator)


    The Tasman Front was delineated by airborne expendable bathythermograph survey; and an Heat Capacity Mapping Mission (HCMM) IR image on the same day shows the same principal features as determined from ground-truth. It is clear that digital enhancement of HCMM images is necessary to map ocean surface temperatures and when done, the Tasman Front and other oceanographic features can be mapped by this method, even through considerable scattered cloud cover.

  7. Multi-Mission SDR Project (United States)

    National Aeronautics and Space Administration — Wireless transceivers used for NASA space missions have traditionally been highly custom and mission specific. Programs such as the GRC Space Transceiver Radio...

  8. Mission Critical Occupation (MCO) Charts (United States)

    Office of Personnel Management — Agencies report resource data and targets for government-wide mission critical occupations and agency specific mission critical and/or high risk occupations. These...

  9. Mars Exploration Rover mission (United States)

    Crisp, Joy A.; Adler, Mark; Matijevic, Jacob R.; Squyres, Steven W.; Arvidson, Raymond E.; Kass, David M.


    In January 2004 the Mars Exploration Rover mission will land two rovers at two different landing sites that show possible evidence for past liquid-water activity. The spacecraft design is based on the Mars Pathfinder configuration for cruise and entry, descent, and landing. Each of the identical rovers is equipped with a science payload of two remote-sensing instruments that will view the surrounding terrain from the top of a mast, a robotic arm that can place three instruments and a rock abrasion tool on selected rock and soil samples, and several onboard magnets and calibration targets. Engineering sensors and components useful for science investigations include stereo navigation cameras, stereo hazard cameras in front and rear, wheel motors, wheel motor current and voltage, the wheels themselves for digging, gyros, accelerometers, and reference solar cell readings. Mission operations will allow commanding of the rover each Martian day, or sol, on the basis of the previous sol's data. Over a 90-sol mission lifetime, the rovers are expected to drive hundreds of meters while carrying out field geology investigations, exploration, and atmospheric characterization. The data products will be delivered to the Planetary Data System as integrated batch archives.

  10. NASA's Terrestrial Planet Finder Missions (United States)

    Coulter, Daniel R.


    NASA has decided to move forward with two complementary Terrestrial Planet Finder (TPF) missions, a visible coronagraph and an infrared formation flying interferometer. These missions are major missions in the NASA Office of Space Science Origins Theme. The primary science objectives of the TPF missions are to search for, detect, and characterize planets and planetary systems beyond our own Solar System, including specifically Earth-like planets.

  11. The Sunrise Mission


    Barthol, P.; Gandorfer, A.; Solanki, S. K.; Schüssler, M.; Chares, B.; Curdt, W.; Deutsch, W. (Walter); Feller, A.; Germerott, D.; Grauf, B.; Heerlein, K.; Hirzberger, J.; Kolleck, M.; Meller, R.; Müller, R.


    The first science flight of the balloon-borne \\Sunrise telescope took place in June 2009 from ESRANGE (near Kiruna/Sweden) to Somerset Island in northern Canada. We describe the scientific aims and mission concept of the project and give an overview and a description of the various hardware components: the 1-m main telescope with its postfocus science instruments (the UV filter imager SuFI and the imaging vector magnetograph IMaX) and support instruments (image stabilizing and light distribut...

  12. The PICARD mission (United States)

    Thuillier, G.; Prado, J.-Y.

    The understanding of the physical processes taking place in the Sun allows construction of solar models. These models are validated by comparison between predictions and observations. Most of the observations are total and spectral solar irradiance, temperature, frequencies of oscillation, diameter, and asphericity, as well as their variations as a function of time. By 2006 and beyond, several missions dedicated to solar observations will be operated in particular PICARD and Solar Dynamics Observer which have complementary measurements and a strong scientific synergy for the study of the solar variability and its consequence for the Earth's climate.

  13. The Gaia mission

    CERN Document Server



    Gaia is a cornerstone mission in the science programme of the European Space Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We...

  14. Instrumentation and new missions (United States)

    Nicastro, Fabrizio; Cash, W.; Bautz, M.; Elvis, M.


    A Soft X-Ray Grating Mission: Missing Baryons, AGN Outflows, Cosmic Feedback, Coronae Doppler Tomography, and much more | I will review the parameters of the new generation of high efficiency high resolution X-ray grating spectrometers, and present possible mission configurations, which would allow soft X-ray spectrometry to be performed on a large variety of astrophysical sources, with high diagnostic power. Resolving powers of R~4000 at 0.5 keV correspond to velocity accuracies of only few tens of km per second, sufficient to separate physical and dynamical phases of the low red shift photo-ionized and shock-heated inter-galactic medium (IGM), investigate mechanical and metal-feedback from galaxies to their surrounding circum- galactic medium (CGM) and IGM, study the physics and kinematics of AGN outflows, probing the dynamics of hot X-ray gas in clusters from their center to their virial radius and beyond, Doppler-mapping X-ray coronae of active stars.

  15. The FAME mission (United States)

    Johnston, Kenneth J.


    The Full-sky Astrometric Mapping Explorer (FAME) space mission will perform an all sky astrometric survey with unprecedented accuracy. FAME will produce an astrometric catalog of 40 million stars between 5th and 15th visual magnitude. For the bright stars (5th to 9th magnitude), FAME will determine the positions and parallaxes to better than 50 μas, with proper motion errors of 70 μas per year. For the fainter stars (between l0th and 15th magnitude), FAME will determine positions and parallaxes accurate to better than 500 μas with proper motions errors less than 500 μas per year. FAME will also collect photometric data on the 40 million stars. The accuracy of a single observation of a 9th magnitude star will be 1 mmag. The FAME mission will impact almost all areas of astrophysics. It will find planets revolving around nearby stars, further studies of stellar evolution, determine the location of dark matter in the Milky Way galaxy, and measure the size and age of the universe. It will also establish a celestial reference frame with an accuracy better than a microarcsecond.

  16. Apollo 11 Mission Commemorated (United States)

    Showstack, Randy


    On 24 July 1969, 4 days after Apollo 11 Mission Commander Neil Armstrong and Lunar Module Eagle Pilot Eugene “Buzz” Aldrin had become the first people to walk on the Moon, they and Apollo 11 Command Module Pilot Michael Collins peered through a window of the Mobile Quarantine Facility on board the U.S.S. Hornet following splashdown of the command module in the central Pacific as U.S. President Richard Nixon told them, “This is the greatest week in the history of the world since the creation.” Forty years later, the Apollo 11 crew and other Apollo-era astronauts gathered at several events in Washington, D. C., to commemorate and reflect on the Apollo program, that mission, and the future of manned spaceflight. “I don’t know what the greatest week in history is,” Aldrin told Eos. “But it was certainly a pioneering opening the door. With the door open when we touched down on the Moon, that was what enabled humans to put many more footprints on the surface of the Moon.”

  17. STS-78 Mission Insignia (United States)


    The STS-78 patch links past with present to tell the story of its mission and science through a design imbued with the strength and vitality of the 2-dimensional art of North America's northwest coast Indians. Central to the design is the space Shuttle whose bold lines and curves evoke the Indian image for the eagle, a native American symbol of power and prestige as well as the national symbol of the United States. The wings of the Shuttle suggest the wings of the eagle whose feathers, indicative of peace and friendship in Indian tradition, are captured by the U forms, a characteristic feature of Northwest coast Indian art. The nose of the Shuttle is the strong downward curve of the eagle's beak, and the Shuttle's forward windows, the eagle's eyes, represented through the tapered S forms again typical of this Indian art form. The basic black and red atoms orbiting the mission number recall the original NASA emblem while beneath, utilizing Indian ovoid forms, the major mission scientific experiment package LMS (Life and Materials Sciences) housed in the Shuttle's cargo bay is depicted in a manner reminiscent of totem-pole art. This image of a bird poised for flight, so common to Indian art, is counterpointed by an equally familiar Tsimshian Indian symbol, a pulsating sun with long hyperbolic rays, the symbol of life. Within each of these rays are now encased crystals, the products of this mission's 3 major, high-temperature materials processing furnaces. And as the sky in Indian lore is a lovely open country, home of the Sun Chief and accessible to travelers through a hole in the western horizon, so too, space is a vast and beckoning landscape for explorers launched beyond the horizon. Beneath the Tsimshian sun, the colors of the earth limb are appropriately enclosed by a red border representing life to the Northwest coast Indians. The Indian colors of red, navy blue, white, and black pervade the STS-78 path. To the right of the Shuttle-eagle, the constellation

  18. General Mission Analysis Tool (GMAT): Mission, Vision, and Business Case (United States)

    Hughes, Steven P.


    The Goal of the GMAT project is to develop new space trajectory optimization and mission design technology by working inclusively with ordinary people, universities businesses and other government organizations; and to share that technology in an open and unhindered way. GMAT's a free and open source software system; free for anyone to use in development of new mission concepts or to improve current missions, freely available in source code form for enhancement or future technology development.

  19. Mission requirements: Skylab rescue mission SL-R (United States)


    The Skylab Program includes three low earth orbit missions. These missions are designated SL-1/SL-2,SL-3 and SL-4. In addition to the three nominal Skylab missions, the program includes the Skylab Rescue Mission (SL-R). The SL-R mission is designed to provide a safe return of the Skylab crew in the event the Command Service Module (CSM) becomes disabled while docked to the Saturn Workshop (SWS). Mission requirements for the SL-R mission only are presented. SL-R mission configuration will be a CSM (modified with a field installed kit) manned by two crewmen launched on a Saturn IB Launch Vechicle. The SL-R CSM will rendezvous and dock with the SWS (or Orbital Assembly (OA), consisting of the SWS and disabled CSM, if the disabled CSM has not previously been jettisoned). The SWS configuration includes a Multiple Docking Adapter (MDA), Apollo Telescope Mount (ATM), Airlock Module (AM), and an S-IVB stage (modified as an Orbital Workshop (OWS), previously launched and inserted into orbit on a two-stage Saturn V Launch Vehicle for the SL-1/SL-2 mission.

  20. Phobos Sample Return mission (United States)

    Zelenyi, Lev; Zakharov, A.; Martynov, M.; Polischuk, G.

    Very mysterious objects of the Solar system are the Martian satellites, Phobos and Deimos. Attempt to study Phobos in situ from an orbiter and from landers have been done by the Russian mission FOBOS in 1988. However, due to a malfunction of the onboard control system the landers have not been delivered to the Phobos surface. A new robotics mission to Phobos is under development now in Russia. Its main goal is the delivery of samples of the Phobos surface material to the Earth for laboratory studies of its chemical, isotopic, mineral composition, age etc. Other goals are in situ studies of Phobos (regolith, internal structure, peculiarities in orbital and proper rotation), studies of Martian environment (dust, plasma, fields). The payload includes a number of scientific instruments: gamma and neutron spectrometers, gaschromatograph, mass spectrometers, IR spectrometer, seismometer, panoramic camera, dust sensor, plasma package. To implement the tasks of this mission a cruise-transfer spacecraft after the launch and the Earth-Mars interplanetary flight will be inserted into the first elliptical orbit around Mars, then after several corrections the spacecraft orbit will be formed very close to the Phobos orbit to keep the synchronous orbiting with Phobos. Then the spacecraft will encounter with Phobos and will land at the surface. After the landing the sampling device of the spacecraft will collect several samples of the Phobos regolith and will load these samples into the return capsule mounted at the returned vehicle. This returned vehicle will be launched from the mother spacecraft and after the Mars-Earth interplanetary flight after 11 monthes with reach the terrestrial atmosphere. Before entering into the atmosphere the returned capsule will be separated from the returned vehicle and will hopefully land at the Earth surface. The mother spacecraft at the Phobos surface carrying onboard scientific instruments will implement the "in situ" experiments during an year

  1. Manned Mars mission cost estimate (United States)

    Hamaker, Joseph; Smith, Keith


    The potential costs of several options of a manned Mars mission are examined. A cost estimating methodology based primarily on existing Marshall Space Flight Center (MSFC) parametric cost models is summarized. These models include the MSFC Space Station Cost Model and the MSFC Launch Vehicle Cost Model as well as other modes and techniques. The ground rules and assumptions of the cost estimating methodology are discussed and cost estimates presented for six potential mission options which were studied. The estimated manned Mars mission costs are compared to the cost of the somewhat analogous Apollo Program cost after normalizing the Apollo cost to the environment and ground rules of the manned Mars missions. It is concluded that a manned Mars mission, as currently defined, could be accomplished for under $30 billion in 1985 dollars excluding launch vehicle development and mission operations.

  2. The Messenger Mission to Mercury

    CERN Document Server

    Domingue, D. L


    NASA’s MESSENGER mission, launched on 3 August, 2004 is the seventh mission in the Discovery series. MESSENGER encounters the planet Mercury four times, culminating with an insertion into orbit on 18 March 2011. It carries a comprehensive package of geophysical, geological, geochemical, and space environment experiments to complete the complex investigations of this solar-system end member, which begun with Mariner 10. The articles in this book, written by the experts in each area of the MESSENGER mission, describe the mission, spacecraft, scientific objectives, and payload. The book is of interest to all potential users of the data returned by the MESSENGER mission, to those studying the nature of the planet Mercury, and by all those interested in the design and implementation of planetary exploration missions.

  3. Descope of the ALIA mission

    CERN Document Server

    Gong, Xuefei; Xu, Shengnian; Amaro-Seoane, Pau; Bai, Shan; Bian, Xing; Cao, Zhoujian; Chen, Gerui; Chen, Xian; Ding, Yanwei; Dong, Peng; Gao, Wei; Heinzel, Gerhard; Li, Ming; Li, Shuo; Liu, Fukun; Luo, Ziren; Shao, Mingxue; Spurzem, Rainer; Sun, Baosan; Tang, Wenlin; Wang, Yan; Xu, Peng; Yu, Pin; Yuan, Yefei; Zhang, Xiaomin; Zhou, Zebing


    The present work reports on a feasibility study commissioned by the Chinese Academy of Sciences of China to explore various possible mission options to detect gravitational waves in space alternative to that of the eLISA/LISA mission concept. Based on the relative merits assigned to science and technological viability, a few representative mission options descoped from the ALIA mission are considered. A semi-analytic Monte Carlo simulation is carried out to understand the cosmic black hole merger histories starting from intermediate mass black holes at high redshift as well as the possible scientific merits of the mission options considered in probing the light seed black holes and their coevolution with galaxies in early Universe. The study indicates that, by choosing the armlength of the interferometer to be three million kilometers and shifting the sensitivity floor to around one-hundredth Hz, together with a very moderate improvement on the position noise budget, there are certain mission options capable ...

  4. Andra's remediation missions - 59210

    International Nuclear Information System (INIS)

    Document available in abstract form only. Full text of publication follows: For many years now, the French National Radioactive Waste Management Agency (Agence nationale pour la gestion des dechets radioactifs Andra) has been cleaning up several sites contaminated with radioactivity, bearing in mind that all such remediation missions share the unique peculiarity of being performed entirely outside the nuclear-power-generation field. Thanks to the 2006 Planning Act and the new corporate circular in the legal field, to the implementation of the CNAR for organisational purposes, to the public technical subsidy for dedicated storage facilities and the disposal facility for VLL waste (Centre TFA) from a financial standpoint, Andra's new structure is now in place to ensure a proactive approach to manage the environmental liabilities arising from the sites polluted by radioactive materials, which, although scarce in number, each confront us with a specific challenge. (authors)

  5. The Planck mission

    CERN Document Server

    Bouchet, François R


    These lecture from the 100th Les Houches summer school on "Post-planck cosmology" of July 2013 discuss some aspects of the Planck mission, whose prime objective was a very accurate measurement of the temperature anisotropies of the Cosmic Microwave Background (CMB). We announced our findings a few months ago, on March 21$^{st}$, 2013. I describe some of the relevant steps we took to obtain these results, sketching the measurement process, how we processed the data to obtain full sky maps at 9 different frequencies, and how we extracted the CMB temperature anisotropies map and angular power spectrum. I conclude by describing some of the main cosmological implications of the statistical characteristics of the CMB we found. Of course, this is a very much shortened and somewhat biased view of the \\Planck\\ 2013 results, written with the hope that it may lead some of the students to consult the original papers.

  6. The Sunrise Mission

    CERN Document Server

    Barthol, Peter; Solanki, Sami K; Schüssler, Manfred; Chares, Bernd; Curdt, Werner; Deutsch, Werner; Feller, Alex; Germerott, Dietmar; Grauf, Bianca; Heerlein, Klaus; Hirzberger, Johann; Kolleck, Martin; Meller, Reinhard; Müller, Reinhard; Riethmüller, Tino L; Tomasch, Georg; Knölker, Michael; Lites, Bruce W; Card, Greg; Elmore, David; Fox, Jack; Lecinski, Alice; Nelson, Peter; Summers, Richard; Watt, Andrew; Pillet, Valentin Martínez; Bonet, Jose Antonio; Schmidt, Wolfgang; Berkefeld, Thomas; Title, Alan M; Domingo, Vicente; Blesa, Jose Luis Gasent; Iniesta, Jose Carlos del Toro; Jiménez, Antonio López; Álvarez-Herrero, Alberto; Sabau-Graziati, Lola; Widani, Christoph; Haberler, Peter; Härtel, Klaus; Kampf, Dirk; Levin, Thorsten; Grande, Isabel Pérez; Sanz-Andrés, Angel; Schmidt, Elke


    The first science flight of the balloon-borne \\Sunrise telescope took place in June 2009 from ESRANGE (near Kiruna/Sweden) to Somerset Island in northern Canada. We describe the scientific aims and mission concept of the project and give an overview and a description of the various hardware components: the 1-m main telescope with its postfocus science instruments (the UV filter imager SuFI and the imaging vector magnetograph IMaX) and support instruments (image stabilizing and light distribution system ISLiD and correlating wavefront sensor CWS), the optomechanical support structure and the instrument mounting concept, the gondola structure and the power, pointing, and telemetry systems, and the general electronics architecture. We also explain the optimization of the structural and thermal design of the complete payload. The preparations for the science flight are described, including AIV and ground calibration of the instruments. The course of events during the science flight is outlined, up to the recovery...

  7. Analysis on the Realistic Diplomacy of the Abe Administration toward ASEAN%日本安倍政府对东盟的现实主义外交刍议

    Institute of Scientific and Technical Information of China (English)



    日本安倍政府“巧妙”利用与东盟建立友好合作关系40周年的重要节点,通过频繁的政治互动与密集的经济合作,深化了日本与东盟在地区政治、经济、安全等各个维度上的政策拟合度。不仅如此,迫于现实与战略层面的利益考虑,安倍政府试图借助政治拉拢与经济控制,把东盟塑造成“遏制中国发展”的潜在战略盟友。但由于存在过分强调主观意志、工具主义与利益至上等严重的局限性,日本安倍政府对东盟的外交战略注定无法达到预期效果,也难以在现实层面拉拢东盟构筑对华包围圈。%The Abe asministration les by the rightists“skillfully”makes use of the 40 th anniversary of the friensly cooperative relations between Japan ans ASEAN to increase the fitting segree of policies between the two in fielss inclusing politics,economics ans security through frequent political interaction ans economic cooperation. Moreo-ver,forces by the interests in realistic ans strategic levels,the Abe asministration attempts to establish ASEAN a potential strategic ally of“containing Chinese sevelopment”by roping it in politically ans controlling it economical-ly. Nonetheless,sue to the restrictions causes by its stressing too much on subjective will,instrumentalist ans in-terests-first principles,it is soomes that Japanese siplomacy towars ASEAN can neither meet its expectations nor sraw ASEAN in builsing an encirclement targetes China on a practical level.

  8. The Space Technology 8 Mission


    Franklin, Stephen; Ku, Jentung; Spence, Brian; McEachen, Mike; White, Steve; Samson, John; Some, Rafael; Zsoldos, Jennifer


    The Space Technology 8 (ST8) mission is the latest in NASA’s New Millennium Program technology demonstration missions. ST8 includes a spacecraft bus built by industry, flying four new technology payloads in low- Earth orbit. This paper will describe each payload, along with a brief description of the mission and spacecraft. The payloads include a miniature loop heat pipe intended to save mass and power on future small satellites, designed and built by NASA’s Goddard Sp...

  9. Mission planning for autonomous systems (United States)

    Pearson, G.


    Planning is a necessary task for intelligent, adaptive systems operating independently of human controllers. A mission planning system that performs task planning by decomposing a high-level mission objective into subtasks and synthesizing a plan for those tasks at varying levels of abstraction is discussed. Researchers use a blackboard architecture to partition the search space and direct the focus of attention of the planner. Using advanced planning techniques, they can control plan synthesis for the complex planning tasks involved in mission planning.

  10. The CATSAT Student Explorer Mission


    Forrest, D. J.; Levenson, K.; Vestrand, W. T.; Reister, K.; J. Smith; Wood, C.; Williams, C.; Whitford, C.; Watcon, D.; Owens, A.


    CATSAT (Cooperative Astrophysical and Technology SATellite) is one of three missions being developed under NASA/USRA's Student Explorer Demonstration Initiative (STEDI) for launch in 1997-98. STEDI is a pilot program to "assess the efficacy of smaller, low-cost spaceflight missions ... that is matched to the traditional process of research and development at universities". This program allows $4 million and 2-3 years for all aspects of the mission, i.e. instrument and satellite development, i...

  11. NASA's Asteroid Redirect Mission (ARM) (United States)

    Abell, Paul; Mazanek, Dan; Reeves, David; Naasz, Bo; Cichy, Benjamin


    The National Aeronautics and Space Administration (NASA) is developing a robotic mission to visit a large near-Earth asteroid (NEA), collect a multi-ton boulder from its surface, and redirect it into a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts will explore the boulder and return to Earth with samples. This Asteroid Redirect Mission (ARM) is part of NASA’s plan to advance the technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s. Subsequent human and robotic missions to the asteroidal material would also be facilitated by its return to cislunar space. Although ARM is primarily a capability demonstration mission (i.e., technologies and associated operations), there exist significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, asteroidal resources and in-situ resource utilization (ISRU), and capability and technology demonstrations. In order to maximize the knowledge return from the mission, NASA is organizing an ARM Investigation Team, which is being preceded by the Formulation Assessment and Support Team. These teams will be comprised of scientists, technologists, and other qualified and interested individuals to help plan the implementation and execution of ARM. An overview of robotic and crewed segments of ARM, including the mission requirements, NEA targets, and mission operations, will be provided along with a discussion of the potential opportunities associated with the mission.

  12. Do trade missions increase trade?


    Head, Keith; Ries, John


    In an effort to stimulate trade, Canada has conducted regular trade missions starting in 1994, often led by the Prime Minister. According to the Canadian government, these missions generated tens of billions of dollars in new business deals. This paper uses bilateral trade data to assess this claim. We find that Canada exports and imports above-normal amounts to the countries to which it sent trade missions. However, the missions do not seem to have caused an increase in trade. In the preferr...

  13. Simulation of Mission Phases (United States)

    Carlstrom, Nicholas Mercury


    This position with the Simulation and Graphics Branch (ER7) at Johnson Space Center (JSC) provided an introduction to vehicle hardware, mission planning, and simulation design. ER7 supports engineering analysis and flight crew training by providing high-fidelity, real-time graphical simulations in the Systems Engineering Simulator (SES) lab. The primary project assigned by NASA mentor and SES lab manager, Meghan Daley, was to develop a graphical simulation of the rendezvous, proximity operations, and docking (RPOD) phases of flight. The simulation is to include a generic crew/cargo transportation vehicle and a target object in low-Earth orbit (LEO). Various capsule, winged, and lifting body vehicles as well as historical RPOD methods were evaluated during the project analysis phase. JSC core mission to support the International Space Station (ISS), Commercial Crew Program (CCP), and Human Space Flight (HSF) influenced the project specifications. The simulation is characterized as a 30 meter +V Bar and/or -R Bar approach to the target object's docking station. The ISS was selected as the target object and the international Low Impact Docking System (iLIDS) was selected as the docking mechanism. The location of the target object's docking station corresponds with the RPOD methods identified. The simulation design focuses on Guidance, Navigation, and Control (GNC) system architecture models with station keeping and telemetry data processing capabilities. The optical and inertial sensors, reaction control system thrusters, and the docking mechanism selected were based on CCP vehicle manufacturer's current and proposed technologies. A significant amount of independent study and tutorial completion was required for this project. Multiple primary source materials were accessed using the NASA Technical Report Server (NTRS) and reference textbooks were borrowed from the JSC Main Library and International Space Station Library. The Trick Simulation Environment and User

  14. Japan-Africa Trade Relationship and Abe Regime’s Policy towards Africa Economy%日非经贸关系及安倍政权的对非经济政策

    Institute of Scientific and Technical Information of China (English)

    石其宝; 程永明


    Japanese government has been developing the economic relationship toward Africa for several decades, but the progress is slow. Japanese academic circles and economic circles often criticized the Japanese government that they didn’t pay enough attention to Africa. After 1990s, Japan made full use of the platform of Tokyo International Conference on African Development (TICAD) to increase the focus on Africa in the full range. Especially, the Abe regime launched a series of economic policies to Africa, aiming at strengthening economic relations with each state in Africa, and seeking more economic interests and international discourse right.%日本对非经济关系虽然已有数十年的历史,但进展缓慢,日本学界及经济界也常常批评日本政府对非洲不够重视。90年代以后日本充分利用非洲发展会议(TICAD)这一平台,全方位地加大了对非洲的关注力度,尤其是目前的安倍政权更是推出了一系列的非洲经济政策,旨在增强同非洲各国的经济关系,谋求更多的经济利益和国际话语权。

  15. Disruptive Propulsive Technologies for European Space Missions


    Koppel, Christophe; Valentin, Dominique; Blott, Richard; Jansen, Frank; Ferrari, Claudio; Bruno, Claudio; Herdrich, Georg; Gabrielli, Roland


    Advanced space technologies have been reviewed and analysed in view of heavy interplanetary missions of interest for Europe and European industry capabilities. Among the missions of interest: o Heavy robotic missions to outer planets, o Asteroid deflection missions, o Interplanetary manned mission (at longer term). These missions involve high speed increments, generally beyond the capability of chemical propulsion (except if gravitational swing-by can be used). For missions bey...

  16. Life at Mission Creep U (United States)

    Dubrow, Greg; Moseley, Bryan; Dustin, Daniel


    The term "mission creep" was originally coined nearly a hundred years ago to describe the gradual process by which a military mission's stated methods and goals change, and recently the term has been applied to incremental organizational changes. In this article, the term is used to describe what happens when a teaching-oriented college or…

  17. Liquid Effluents Program mission analysis

    International Nuclear Information System (INIS)

    Systems engineering is being used to identify work to cleanup the Hanford Site. The systems engineering process transforms an identified mission need into a set of performance parameters and a preferred system configuration. Mission analysis is the first step in the process. Mission analysis supports early decision-making by clearly defining the program objectives, and evaluating the feasibility and risks associated with achieving those objectives. The results of the mission analysis provide a consistent basis for subsequent systems engineering work. A mission analysis was performed earlier for the overall Hanford Site. This work was continued by a ''capstone'' team which developed a top-level functional analysis. Continuing in a top-down manner, systems engineering is now being applied at the program and project levels. A mission analysis was conducted for the Liquid Effluents Program. The results are described herein. This report identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and sources of constraints, estimates the resources to carry out the mission, and establishes measures of success. The mission analysis reflects current program planning for the Liquid Effluents Program as described in Liquid Effluents FY 1995 Multi-Year Program Plan

  18. Draft Mission Plan Amendment

    International Nuclear Information System (INIS)

    The Department of Energy's Office Civilian Radioactive Waste Management has prepared this document to report plans for the Civilian Radioactive Waste Management Program, whose mission is to manage and dispose of the nation's spent fuel and high-level radioactive waste in a manner that protects the health and safety of the public and of workers and the quality of the environment. The Congress established this program through the Nuclear Waste Policy Act of 1982. Specifically, the Congress directed us to isolate these wastes in geologic repositories constructed in suitable rock formations deep beneath the surface of the earth. In the Nuclear Waste Policy Amendments Act of 1987, the Congress mandated that only one repository was to be developed at present and that only the Yucca Mountain candidate site in Nevada was to be characterized at this time. The Amendments Act also authorized the construction of a facility for monitored retrievable storage (MRS) and established the Office of the Nuclear Waste Negotiator and the Nuclear Waste Technical Review Board. After a reassessment in 1989, the Secretary of Energy restructured the program, focusing the repository effort scientific evaluations of the Yucca Mountain candidate site, deciding to proceed with the development of an MRS facility, and strengthening the management of the program. 48 refs., 32 figs

  19. The Sunrise Mission (United States)

    Barthol, P.; Gandorfer, A.; Solanki, S. K.; Schüssler, M.; Chares, B.; Curdt, W.; Deutsch, W.; Feller, A.; Germerott, D.; Grauf, B.; Heerlein, K.; Hirzberger, J.; Kolleck, M.; Meller, R.; Müller, R.; Riethmüller, T. L.; Tomasch, G.; Knölker, M.; Lites, B. W.; Card, G.; Elmore, D.; Fox, J.; Lecinski, A.; Nelson, P.; Summers, R.; Watt, A.; Martínez Pillet, V.; Bonet, J. A.; Schmidt, W.; Berkefeld, T.; Title, A. M.; Domingo, V.; Gasent Blesa, J. L.; Del Toro Iniesta, J. C.; López Jiménez, A.; Álvarez-Herrero, A.; Sabau-Graziati, L.; Widani, C.; Haberler, P.; Härtel, K.; Kampf, D.; Levin, T.; Pérez Grande, I.; Sanz-Andrés, A.; Schmidt, E.


    The first science flight of the balloon-borne Sunrise telescope took place in June 2009 from ESRANGE (near Kiruna/Sweden) to Somerset Island in northern Canada. We describe the scientific aims and mission concept of the project and give an overview and a description of the various hardware components: the 1-m main telescope with its postfocus science instruments (the UV filter imager SuFI and the imaging vector magnetograph IMaX) and support instruments (image stabilizing and light distribution system ISLiD and correlating wavefront sensor CWS), the optomechanical support structure and the instrument mounting concept, the gondola structure and the power, pointing, and telemetry systems, and the general electronics architecture. We also explain the optimization of the structural and thermal design of the complete payload. The preparations for the science flight are described, including AIV and ground calibration of the instruments. The course of events during the science flight is outlined, up to the recovery activities. Finally, the in-flight performance of the instrumentation is discussed.

  20. Draft Mission Plan Amendment

    Energy Technology Data Exchange (ETDEWEB)



    The Department of Energy`s Office Civilian Radioactive Waste Management has prepared this document to report plans for the Civilian Radioactive Waste Management Program, whose mission is to manage and dispose of the nation`s spent fuel and high-level radioactive waste in a manner that protects the health and safety of the public and of workers and the quality of the environment. The Congress established this program through the Nuclear Waste Policy Act of 1982. Specifically, the Congress directed us to isolate these wastes in geologic repositories constructed in suitable rock formations deep beneath the surface of the earth. In the Nuclear Waste Policy Amendments Act of 1987, the Congress mandated that only one repository was to be developed at present and that only the Yucca Mountain candidate site in Nevada was to be characterized at this time. The Amendments Act also authorized the construction of a facility for monitored retrievable storage (MRS) and established the Office of the Nuclear Waste Negotiator and the Nuclear Waste Technical Review Board. After a reassessment in 1989, the Secretary of Energy restructured the program, focusing the repository effort scientific evaluations of the Yucca Mountain candidate site, deciding to proceed with the development of an MRS facility, and strengthening the management of the program. 48 refs., 32 figs.

  1. COSMOS 2044 Mission: Overview (United States)

    Grindeland, R. E.; Ballard, R. W.; Connol, J. P.; Vasques, M. F.


    The COSMOS 2044 spaceflight was the ninth Soviet-International joint mission dedicated to space biomedicine and the seventh in which the United States has participated. The unmanned Vostok vehicle carried 10 rats and two rhesus monkeys on its 14-day voyage. This spaceflight yielded an unprecedented bounty of data on physiological responses to the microgravity environment. The tissues studied and the numbers and types of studies performed by members of the international science community constituted a new record. Many of the results obtained by the approximately 80 American scientists who participated are reported in the series of COSMOS 2044 papers in this issue. Descriptions of the spaceflight and animal procedures are detailed elsewhere. The broad goals of the space biomedical program are threefold. The first is to characterize qualitatively and quantitatively the biological responses to the microgravity environment, be they adaptive or pathological. The second goal is to clarify the physiological-biochemical mechanisms mediating the responses to microgravity. The third goal of this program is to use the space environment as a tool to better understand adaptive and disease processes in terrestrial organisms.

  2. Odyssey: a Solar System Mission

    CERN Document Server

    Christophe, B; Anderson, J D; Asmar, S; Bério, Ph; Bertolami, O; Bingham, R; Bondu, F; Bouyer, Ph; Bremer, S; Brillet, A; Courty, J-M; Dittus, H; Foulon, B; Gil, P; Johann, U; Jordan, J F; Kent, B; Lämmerzahl, C; Lévy, A; Métris, G; Nock, K T; Olsen, Ø; Páramos, J; Prestage, J D; Progrebenko, S V; Rasel, E; Rathke, A; Reynaud, S; Rievers, B; Samain, E; Sumner, T J; Theil, S; Touboul, P; Turyshev, S; Vrancken, P; Wolf, P; Yu, N


    The Solar System Odyssey mission uses modern-day high-precision experimental techniques to answer some of the important questions on the laws of fundamental physics which determine dynamics in the solar system. It could lead to a major discovery by using readily available technologies and could be flown early within the Cosmic Vision time frame. The mission proposes to perform a set of precision gravitation experiments from the vicinity of Earth to the deep Solar System far beyond the orbit of known planets: verification of gravity in the deep Solar System, measurement of Eddington's parameter, investigation on fly-by anomaly, mapping of gravity field in the outer solar system. The Odyssey mission focuses its efforts on the challenge of designing a deep space mission within the cost of 300Meuros. This challenge restricts the main mission design choices (launcher, energy and payload options) and trade-offs in science goals. The payload definition emphasises demonstrated technology, with non gravitational force...

  3. Mission Planning and Scheduling System for NASA's Lunar Reconnaissance Mission (United States)

    Garcia, Gonzalo; Barnoy, Assaf; Beech, Theresa; Saylor, Rick; Cosgrove, Sager; Ritter, Sheila


    In the framework of NASA's return to the Moon efforts, the Lunar Reconnaissance Orbiter (LRO) is the first step. It is an unmanned mission to create a comprehensive atlas of the Moon's features and resources necessary to design and build a lunar outpost. LRO is scheduled for launch in April, 2009. LRO carries a payload comprised of six instruments and one technology demonstration. In addition to its scientific mission LRO will use new technologies, systems and flight operations concepts to reduce risk and increase productivity of future missions. As part of the effort to achieve robust and efficient operations, the LRO Mission Operations Team (MOT) will use its Mission Planning System (MPS) to manage the operational activities of the mission during the Lunar Orbit Insertion (LOI) and operational phases of the mission. The MPS, based on GMV's flexplan tool and developed for NASA with Honeywell Technology Solutions (prime contractor), will receive activity and slew maneuver requests from multiple science operations centers (SOC), as well as from the spacecraft engineers. flexplan will apply scheduling rules to all the requests received and will generate conflict free command schedules in the form of daily stored command loads for the orbiter and a set of daily pass scripts that help automate nominal real-time operations.

  4. Multi-mission Satellite Management (United States)

    Jamilkowski, M. L.; Teter, M. A.; Grant, K. D.; Dougherty, B.; Cochran, S.


    NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. CGS's multi-mission capabilities allows management all of assets as a single enterprise, more efficiently using ground resources and personnel and consolidating multiple ground systems into one. Sophisticated scheduling algorithms compare mission priorities and constraints across all ground stations, creating an enterprise schedule optimized to mission needs, which CGS executes to acquire the satellite link, uplink commands, downlink and route data to the operations and data processing facilities, and generate the final products for delivery to downstream users. This paper will illustrate the CGS's ability to manage multiple, enterprise-wide polar orbiting missions by demonstrating resource modeling and tasking, production of enterprise contact schedules for NOAA's Fairbanks ground station (using both standing and ad hoc requests), deconflicting resources due to ground outages, and updating resource allocations through dynamic priority definitions.

  5. The Magnetospheric Multiscale Mission (United States)

    Burch, James

    Magnetospheric Multiscale (MMS), a NASA four-spacecraft mission scheduled for launch in November 2014, will investigate magnetic reconnection in the boundary regions of the Earth’s magnetosphere, particularly along its dayside boundary with the solar wind and the neutral sheet in the magnetic tail. Among the important questions about reconnection that will be addressed are the following: Under what conditions can magnetic-field energy be converted to plasma energy by the annihilation of magnetic field through reconnection? How does reconnection vary with time, and what factors influence its temporal behavior? What microscale processes are responsible for reconnection? What determines the rate of reconnection?
In order to accomplish its goals the MMS spacecraft must probe both those regions in which the magnetic fields are very nearly antiparallel and regions where a significant guide field exists. From previous missions we know the approximate speeds with which reconnection layers move through space to be from tens to hundreds of km/s. For electron skin depths of 5 to 10 km, the full 3D electron population (10 eV to above 20 keV) has to be sampled at rates greater than 10/s. The MMS Fast-Plasma Instrument (FPI) will sample electrons at greater than 30/s. Because the ion skin depth is larger, FPI will make full ion measurements at rates of greater than 6/s. 3D E-field measurements will be made by MMS once every ms. MMS will use an Active Spacecraft Potential Control device (ASPOC), which emits indium ions to neutralize the photoelectron current and keep the spacecraft from charging to more than +4 V. Because ion dynamics in Hall reconnection depend sensitively on ion mass, MMS includes a new-generation Hot Plasma Composition Analyzer (HPCA) that corrects problems with high proton fluxes that have prevented accurate ion-composition measurements near the dayside magnetospheric boundary. Finally, Energetic Particle Detector (EPD) measurements of electrons and

  6. STS-99 / Endeavour Mission Overview (United States)


    The primary objective of the STS-99 mission was to complete high resolution mapping of large sections of the Earth's surface using the Shuttle Radar Topography Mission (SRTM). This radar system will produce unrivaled 3-D images of the Earth's Surface. This videotape presents a mission overview press briefing. The panel members are Dr. Ghassem Asrar, NASA Associate Administrator Earth Sciences; General James C. King, Director National Imagery and Mapping Agency (NIMA); Professor Achim Bachem, Member of the Executive Board, Deutschen Zentrum fur Luft- und Raumfahrt (DLR), the German National Aerospace Research Center; and Professor Sergio Deiulio, President of the Italian Space Agency. Dr. Asrar opened with a summary of the history of Earth Observations from space, relating the SRTM to this history. This mission, due to cost and complexity, required partnership with other agencies and nations, and the active participation of the astronauts. General King spoke to the expectations of NIMA, and the use of the Synthetic Aperture Radar to produce the high resolution topographic images. Dr. Achim Bachem spoke about the international cooperation that this mission required, and some of the commercial applications and companies that will use this data. Dr Deiulio spoke of future plans to improve knowledge of the Earth using satellites. Questions from the press concerned use of the information for military actions, the reason for the restriction on access to the higher resolution data, the mechanism to acquire that data for scientific research, and the cost sharing from the mission's partners. There was also discussion about the mission's length.

  7. The Science of Mission Assurance

    Directory of Open Access Journals (Sweden)

    Kamal Jabbour


    Full Text Available The intent of this article is to describe—and prescribe—a scientific framework for assuring mission essential functions in a contested cyber environment. Such a framework has profound national security implications as the American military increasingly depends on cyberspace to execute critical mission sets. In setting forth this prescribed course of action, the article will first decompose information systems into atomic processes that manipulate information at all six phases of the information lifecycle, then systematically define the mathematical rules that govern mission assurance.

  8. Tropical Rainfall Measuring Mission (United States)


    Tropical rainfall affects the lives and economics of a majority of the Earth's population. Tropical rain systems, such as hurricanes, typhoons, and monsoons, are crucial to sustaining the livelihoods of those living in the tropics. Excess rainfall can cause floods and great property and crop damage, whereas too little rainfall can cause drought and crop failure. The latent heat release during the process of precipitation is a major source of energy that drives the atmospheric circulation. This latent heat can intensify weather systems, affecting weather thousands of kilometers away, thus making tropical rainfall an important indicator of atmospheric circulation and short-term climate change. Tropical forests and the underlying soils are major sources of many of the atmosphere's trace constituents. Together, the forests and the atmosphere act as a water-energy regulating system. Most of the rainfall is returned to the atmosphere through evaporation and transpiration, and the atmospheric trace constituents take part in the recycling process. Hence, the hydrological cycle provides a direct link between tropical rainfall and the global cycles of carbon, nitrogen, and sulfur, all important trace materials for the Earth's system. Because rainfall is such an important component in the interactions between the ocean, atmosphere, land, and the biosphere, accurate measurements of rainfall are crucial to understanding the workings of the Earth-atmosphere system. The large spatial and temporal variability of rainfall systems, however, poses a major challenge to estimating global rainfall. So far, there has been a lack of rain gauge networks, especially over the oceans, which points to satellite measurement as the only means by which global observation of rainfall can be made. The Tropical Rainfall Measuring Mission (TRMM), jointly sponsored by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of

  9. Executive Summary - Our mission

    International Nuclear Information System (INIS)

    On September 1st 2003, the Henryk Niewodniczanski Institute of Nuclear Physics in Cracow joined the Polish Academy of Sciences. The Polish Academy of Sciences (PAN), founded in 1952, is a state-sponsored scientific institution acting through an elected corporation of leading scholars, their research organizations and through numerous scientific establishments. PAN is a major national scientific advisory body acting via its scientific committees which represent all disciplines of science. There are currently 79 PAN research establishments (institutes and research centers, research stations, botanical gardens and other research units) and a number of auxiliary scientific units (such as archives, libraries, museums, and PAN stations abroad). Our Institute is currently one of the largest research institutions of the Polish Academy of Sciences. The research activity of the Academy is financed mainly from the State budget via the Ministry of Scientific Research and Information Technology. The mission of the Institute of Nuclear Physics, IFJ is stated in its Charter. According to Paragraphs 5, 6, and 7 of the 2004 Charter, the Institute's duty is to carry out research activities in the following areas:1. High energy and elementary particle physics (including astrophysics), 2. Nuclear physics and physics of mechanisms of nuclear interaction, 3. Condensed matter physics, 4. Interdisciplinary research, and in particular: in radiation and environmental biology, environmental physics, medical physics, dosimetry, nuclear geophysics, radiochemistry and material engineering. The main tasks of the Institute are: 1. To perform research in the above disciplines, 2. To promote the development of scientists and of specialists qualified to carry out research in these disciplines, 3. To organize a Post-Doctoral Study Course, 4. To permit, through agreements with national and foreign research institutions, external scholars to train and gain academic qualifications in the Institute

  10. General Mission Analysis Tool (GMAT) (United States)

    Hughes, Steven P. (Compiler)


    This is a software tutorial and presentation demonstrating the application of the General Mission Analysis Tool (GMAT) to the critical design phase of NASA missions. The demonstration discusses GMAT basics, then presents a detailed example of GMAT application to the Transiting Exoplanet Survey Satellite (TESS) mission. Other examples include OSIRIS-Rex. This talk is a combination of existing presentations; a GMAT basics and overview, and technical presentations from the TESS and OSIRIS-REx projects on their application of GMAT to critical mission design. The GMAT basics slides are taken from the open source training material. The OSIRIS-REx slides are from a previous conference presentation. The TESS slides are a streamlined version of the CDR package provided by the project with SBU and ITAR data removed by the TESS project.

  11. KEPLER Mission: development and overview. (United States)

    Borucki, William J


    The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170,000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many 'blind alleys' before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170,000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth. PMID:26863223

  12. SpinSat Mission Overview


    Nicholas, Andrew; Finne, Ted; Galysh, Ivan; Mai, Anthony; Yen, Jim; Sawka, Wayne; Ransdell, Jeff; Williams, Shae


    The SpinSat flight is a small satellite mission proposed by the Naval Research Laboratory and Digital Solid State Propulsion (DSSP) LLC to demonstrate and characterize the on-orbit performance of electrically controlled solid propellant technology in space. This is an enabling technology for the small satellite community that will allow small satellites to perform maneuvers. The mission consists of a 22-inch diameter spherical spacecraft fitted with Electrically Controlled Solid Propellant th...

  13. Surgery in a mission hospital.


    Hankins, G. W.


    The western-trained surgeon working in a mission hospital in a developing country finds that in spite of the heavy demands placed upon him the work can be most absorbing, challenging, and satisfying. Some impressions gained during 31/2 years working in the department of surgery of a mission hospital in Kathmandu, Nepal, are recorded. Particular reference is made to the striking differences in disease incidence, as brought out in a review of operative surgery for 1977.

  14. Rosetta mission operations for landing (United States)

    Accomazzo, Andrea; Lodiot, Sylvain; Companys, Vicente


    The International Rosetta Mission of the European Space Agency (ESA) was launched on 2nd March 2004 on its 10 year journey to comet Churyumov-Gerasimenko and has reached it early August 2014. The main mission objectives were to perform close observations of the comet nucleus throughout its orbit around the Sun and deliver the lander Philae to its surface. This paper describers the activities at mission operations level that allowed the landing of Philae. The landing preparation phase was mainly characterised by the definition of the landing selection process, to which several parties contributed, and by the definition of the strategy for comet characterisation, the orbital strategy for lander delivery, and the definition and validation of the operations timeline. The definition of the landing site selection process involved almost all components of the mission team; Rosetta has been the first, and so far only mission, that could not rely on data collected by previous missions for the landing site selection. This forced the teams to include an intensive observation campaign as a mandatory part of the process; several science teams actively contributed to this campaign thus making results from science observations part of the mandatory operational products. The time allocated to the comet characterisation phase was in the order of a few weeks and all the processes, tools, and interfaces required an extensive planning an validation. Being the descent of Philae purely ballistic, the main driver for the orbital strategy was the capability to accurately control the position and velocity of Rosetta at Philae's separation. The resulting operations timeline had to merge this need of frequent orbit determination and control with the complexity of the ground segment and the inherent risk of problems when doing critical activities in short times. This paper describes the contribution of the Mission Control Centre (MOC) at the European Space Operations Centre (ESOC) to this

  15. Urinary albumin in space missions

    DEFF Research Database (Denmark)

    Cirillo, Massimo; De Santo, Natale G; Heer, Martina;


    Proteinuria was hypothesized for space mission but research data are missing. Urinary albumin, as index of proteinuria, was analyzed in frozen urine samples collected by astronauts during space missions onboard MIR station and on ground (control). Urinary albumin was measured by a double antibody...... radioimmunoassay. On average, 24h urinary albumin was 27.4% lower in space than on ground; the difference was statistically significant. Low urinary albumin excretion could be another effect of exposure to weightlessness (microgravity)....

  16. Executive Summary - Our mission

    International Nuclear Information System (INIS)

    Full text: The Henryk Niewodniczanski Institute of Nuclear Physics (Instytut Fizyki Jadrowej im. Henryka Niewodniczanskiego, IFJ PAN) is currently the largest research institution of the Polish Academy of Sciences (Polska Akademia Nauk). The research activity of the Academy is financed mainly from the State budget via the Ministry of Science and Higher Education. The mission of IFJ PAN is stated in its Charter. According to Paragraphs 5, 6, and 7 of the 2004 Charter, the Institute's duty is to carry out research activities in the following areas: 1. High energy and elementary particle physics (including astrophysics), 2. Nuclear physics and strong interaction, 3. Condensed matter physics, 4. Interdisciplinary research, in particular: in radiation and environmental biology, environmental physics, medical physics, dosimetry, nuclear geophysics, radiochemistry and material engineering. The main tasks of the Institute are: 1. To perform research in the above disciplines, 2. To promote the development of scientists and of specialists qualified to carry out research in these disciplines, 3. To organize a Post-Graduate Study Course, 4. To permit, through agreements with national and foreign research institutions, external scholars to train and gain academic qualifications in the Institute's laboratories, 5. To collaborate with national and local authorities in providing them with expertise in the Institute's research topics, especially concerning radiation protection. These tasks are fulfilled by: 1. Performing individual and coordinated research through individual and collective research grant projects, 2. Initiating and maintaining cooperation with laboratories, organizations and institutions performing similar activities, in Poland and abroad, 3. Conferring scientific degrees and titles, 4. Distributing research results obtained, through peer-reviewed publications and other public media, 5. Organizing scientific meetings, conferences, symposia, training workshops, etc

  17. The Asteroid Redirect Mission (ARM) (United States)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Mazanek, Dan; Reeves, David; Ticker, Ronald


    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM). Mission Description: NASA's ARM consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), the first robotic mission to visit a large (greater than ~100 m diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, demonstrate a planetary defense technique, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will take the Orion capsule to rendezvous and dock with the robotic vehicle, conduct multiple extravehicular activities to explore the boulder, and return to Earth with samples. NASA's proposed

  18. Mission Design Overview for the Phoenix Mars Scout Mission (United States)

    Garcia, Mark D.; Fujii, Kenneth K.


    The Phoenix mission "follows the water" by landing in a region where NASA's Mars Odyssey orbiter has discovered evidence of ice-rich soil very near the Martian surface. For three months after landing, the fixed Lander will perform in-situ and remote sensing investigations that will characterize the chemistry of the materials at the local surface, sub-surface, and atmosphere, and will identify potential provenance of key indicator elements of significance to the biological potential of Mars, including potential organics and any accessible water ice. The Lander will employ a robotic arm to dig to the ice layer, and will analyze the acquired samples using a suite of deck-mounted, science instruments. The development of the baseline strategy to achieve the objectives of this mission involves the integration of a variety of elements into a coherent mission plan.

  19. Future Missions to Study Signposts of Planets (United States)

    Traub, Wesley A.


    This talk will focus on debris disks, will compare ground and space and will discuss 2 proposed missions, Exoplanetary Circumstellar Environments And Disk Explorer (EXCEDE) and Zodiac II. At least 2 missions have been proposed for disk imaging. The technology is largely in hand today. A small mission would do excellent disk science, and would test technology for a future large mission for planets.

  20. 309 Building deactivation mission analysis report

    International Nuclear Information System (INIS)

    This report presents the results of the 309 Building (Plutonium Fuels Utilization Program) Deactivation Project mission analysis. Hanford systems engineering (SE) procedures call for a mission analysis. The mission analysis is an important first step in the SE process. The functions and requirements to successfully accomplish this mission, the selected alternatives and products will later be defined using the SE process

  1. Mission Operations of LISA Pathfinder (United States)

    Hewitson, Martin

    The mission operations of LISA Pathfinder will focus on extracting the maximum science from the mission. In order to do that, the operational timeline must remain flexible and be able to adapt to new information about the system as it comes in. At the end of the science operations phase, the goal is to have optimised the system to produce the quietest free-fall of the test-masses possible, as well as to have built up a comprehensive noise model of the system to allow robust performance projections of future LISA-like missions. This talk will discuss some of the details of the operational scenarios and talk about the approach to optimising performance and establishing a system noise budget.

  2. The inner magnetosphere imager mission

    International Nuclear Information System (INIS)

    After 30 years of in situ measurements of the Earth's magnetosphere, scientists have assembled an incomplete picture of its global composition and dynamics. Imaging the magnetosphere from space will enable scientists to better understand the global shape of the inner magnetosphere, its components and processes. The proposed inner magnetosphere imager (IMI) mission will obtain the first simultaneous images of the component regions of the inner magnetosphere and will enable scientists to relate these global images to internal and external influences as well as local observations. To obtain simultaneous images of component regions of the inner magnetosphere, measurements will comprise: the ring current and inner plasma sheet using energetic neutral atoms; the plasmasphere using extreme ultraviolet; the electron and proton auroras using far ultraviolet (FUV) and x rays; and the geocorona using FUV. The George C. Marshall Space Flight Center (MSFC) is performing a concept definition study of the proposed mission. NASA's Office of Space Science and Applications has placed the IMI third in its queue of intermediate-class missions for launch in the 1990's. An instrument complement of approximately seven imagers will fly in an elliptical Earth orbit with a seven Earth Radii (RE) altitude apogee and approximately 4,800-kin altitude perigee. Several spacecraft concepts were examined for the mission. The first concept utilizes a spinning spacecraft with a despun platform. The second concept splits the instruments onto a spin-stabilized spacecraft and a complementary three-axis stabilized spacecraft. Launch options being assessed for the spacecraft range from a Delta 11 for the single and dual spacecraft concepts to dual Taurus launches for the two smaller spacecraft. This paper will address the mission objectives, the spacecraft design considerations, the results of the MSFC concept definition study, and future mission plans

  3. Small Explorer for Advanced Missions - cubesat for scientific mission (United States)

    Pronenko, Vira; Ivchenko, Nickolay


    A class of nanosatellites is defined by the cubesat standard, primarily setting the interface to the launcher, which allows standardizing cubesat preparation and launch, thus making the projects more affordable. The majority of cubesats have been launched are demonstration or educational missions. For scientific and other advanced missions to fully realize the potential offered by the low cost nanosatellites, there are challenges related to limitations of the existing cubesat platforms and to the availability of small yet sufficiently sensitive sensors. The new project SEAM (Small Explorer for Advanced Missions) was selected for realization in frames of FP-7 European program to develop a set of improved critical subsystems and to construct a prototype nanosatellite in the 3U cubesat envelope for electromagnetic measurements in low Earth orbit. The SEAM consortium will develop and demonstrate in flight for the first time the concept of an electromagnetically clean nanosatellite with precision attitude determination, flexible autonomous data acquisition system, high-bandwidth telemetry and an integrated solution for ground control and data handling. As the first demonstration, the satellite is planned to perform the Space Weather (SW) mission using novel miniature electric and magnetic sensors, able to provide science-grade measurements. To enable sensitive magnetic measurements onboard, the sensors must be deployed on booms to bring them away from the spacecraft body. Also other thorough yet efficient procedures will be developed to provide electromagnetic cleanliness (EMC) of the spacecraft. This work is supported by EC Framework 7 funded project 607197.

  4. The virtual mission approach: Empowering earth and space science missions (United States)

    Hansen, Elaine


    Future Earth and Space Science missions will address increasingly broad and complex scientific issues. To accomplish this task, we will need to acquire and coordinate data sets from a number of different instrumetns, to make coordinated observations of a given phenomenon, and to coordinate the operation of the many individual instruments making these observations. These instruments will need to be used together as a single ``Virtual Mission.'' This coordinated approach is complicated in that these scientific instruments will generally be on different platforms, in different orbits, from different control centers, at different institutions, and report to different user groups. Before this Virtual Mission approach can be implemented, techniques need to be developed to enable separate instruments to work together harmoniously, to execute observing sequences in a synchronized manner, and to be managed by the Virtual Mission authority during times of these coordinated activities. Enabling technologies include object-oriented designed approaches, extended operations management concepts and distributed computing techniques. Once these technologies are developed and the Virtual Mission concept is available, we believe the concept will provide NASA's Science Program with a new, ``go-as-you-pay,'' flexible, and resilient way of accomplishing its science observing program. The concept will foster the use of smaller and lower cost satellites. It will enable the fleet of scientific satellites to evolve in directions that best meet prevailing science needs. It will empower scientists by enabling them to mix and match various combinations of in-space, ground, and suborbital instruments - combinations which can be called up quickly in response to new events or discoveries. And, it will enable small groups such as universities, Space Grant colleges, and small businesses to participate significantly in the program by developing small components of this evolving scientific fleet.

  5. New Horizons Mission to Pluto (United States)

    Delgado, Luis G.


    This slide presentation reviews the trajectory that will take the New Horizons Mission to Pluto. Included are photographs of the spacecraft, the launch vehicle, the assembled vehicle as it is being moved to the launch pad and the launch. Also shown are diagrams of the assembled parts with identifying part names.

  6. Pluto Express: Mission to Pluto (United States)

    Giuliano, J. A.


    Pluto is the smallest, outermost and last-discovered planet in the Solar System and the only one that has never been visited by a spacecraft from Earth. Pluto and its relatively large satellite Charon are the destinations of a proposed spacecraft mission for the next decade, being developed for NASA by scientists and engineers at NASA's Jet Propulsion Laboratory.

  7. Kepler planet-detection mission

    DEFF Research Database (Denmark)

    Borucki...[], William J.; Koch, David; Buchhave, Lars C. Astrup


    The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet’s surface. During the first 6 weeks of observations, Kepler...

  8. Mission Statements: One More Time. (United States)

    Detomasi, Don


    It is argued that well-conceived college and university mission statements can be useful in setting objectives for planning and for public information dissemination and marketing. The experience of the University of Calgary (Alberta) illustrates a successful process of drafting and reaching agreement on such a document. (MSE)

  9. Catholic Higher Education as Mission (United States)

    Lowery, Daniel


    This article uses the work of Anthony J. Gittins to reframe our understanding of Catholic higher education as mission. The broad adoption of this framework would require a common intellectual foundation, the possibility of which is dismissed by many. An accessible ontology is implied, however, in the existential analysis and theology of Karl…

  10. Gravitational-wave Mission Study (United States)

    Mcnamara, Paul; Jennrich, Oliver; Stebbins, Robin T.


    In November 2013, ESA selected the science theme, the "Gravitational Universe," for its third large mission opportunity, known as L3, under its Cosmic Vision Programme. The planned launch date is 2034. ESA is considering a 20% participation by an international partner, and NASA's Astrophysics Division has indicated an interest in participating. We have studied the design consequences of a NASA contribution, evaluated the science benefits and identified the technology requirements for hardware that could be delivered by NASA. The European community proposed a strawman mission concept, called eLISA, having two measurement arms, derived from the well studied LISA (Laser Interferometer Space Antenna) concept. The US community is promoting a mission concept known as SGO Mid (Space-based Gravitational-wave Observatory Mid-sized), a three arm LISA-like concept. If NASA were to partner with ESA, the eLISA concept could be transformed to SGO Mid by the addition of a third arm, augmenting science, reducing risk and reducing non-recurring engineering costs. The characteristics of the mission concepts and the relative science performance of eLISA, SGO Mid and LISA are described. Note that all results are based on models, methods and assumptions used in NASA studies

  11. LISA Pathfinder: mission and status

    International Nuclear Information System (INIS)

    LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission. The technologies required for LISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise led to the implementation of the LISA Pathfinder mission to test the critical LISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the LISA constellation by shrinking the 5 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the LISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. LISA Pathfinder is due to be launched in 2013 on-board a dedicated small launch vehicle (VEGA). After a series of apogee raising manoeuvres using an expendable propulsion module, LISA Pathfinder will enter a transfer orbit towards the first Sun-Earth Lagrange point (L1). After separation from the propulsion module, the LPF spacecraft will be stabilized using the micro-Newton thrusters, entering a 500 000 km by 800 000 km Lissajous orbit around L1. Science results will be available approximately 2 months after launch.

  12. The DEMETER Science Mission Centre

    Czech Academy of Sciences Publication Activity Database

    Lagoutte, D.; Brochot, J.; Y.; de Carvalho, D.; Elie, F.; Harivelo, F.; Hobara, Y.; Madrias, L.; Parrot, M.; Pincon, J. L.; Berthelier, J. J.; Peschard, D.; Seran, E.; Gangloff, M.; Sauvaud, J. A.; Lebreton, J. P.; Štverák, Štěpán; Trávníček, Pavel M.; Grygorczuk, J.; Slominski, J.; Wronowski, R.; Barbier, S.; Bernard, P.; Gaboriaud, A.; Wallut, J. M.


    Roč. 54, č. 5 (2006), s. 428-440. ISSN 0032-0633 Institutional research plan: CEZ:AV0Z30420517 Keywords : Mission Centre * Data processing Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.509, year: 2006

  13. The Europa Ocean Discovery mission

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.C. [Los Alamos National Lab., NM (United States); Chyba, C.F. [Univ. of Arizona, Tucson, AZ (United States); Abshire, J.B. [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center] [and others


    Since it was first proposed that tidal heating of Europa by Jupiter might lead to liquid water oceans below Europa`s ice cover, there has been speculation over the possible exobiological implications of such an ocean. Liquid water is the essential ingredient for life as it is known, and the existence of a second water ocean in the Solar System would be of paramount importance for seeking the origin and existence of life beyond Earth. The authors present here a Discovery-class mission concept (Europa Ocean Discovery) to determine the existence of a liquid water ocean on Europa and to characterize Europa`s surface structure. The technical goal of the Europa Ocean Discovery mission is to study Europa with an orbiting spacecraft. This goal is challenging but entirely feasible within the Discovery envelope. There are four key challenges: entering Europan orbit, generating power, surviving long enough in the radiation environment to return valuable science, and complete the mission within the Discovery program`s launch vehicle and budget constraints. The authors will present here a viable mission that meets these challenges.

  14. Planned CMB Satellite Mission Overview (United States)

    Lee, Adrian


    I will summarize space missions that are in the planning stage to measure the polarized spatial fluctuations of the cosmic microwave background (CMB). Space missions are complementary to ground-based observatories. First, the absence of atmospheric emission results in a wider range of frequencies that can be observed, which in turn improves removal of galactic foreground emission. Second, the stable observations possible from space give high-fidelity measurements at angular scales of tens of degrees where inflation theory predicts a peak in the B-mode angular power spectrum. Robust detection of both this ``reionization'' peak and the ``recombination'' peak at degree angular scales will give the most convincing case that the fingerprints of inflation have been detected. CMB polarization space missions in the planning stage include CORE+, LiteBIRD, and PIXIE. Science goals for all these missions include the detection and characterization of inflation and the characterization of the reionization epoch. CORE+ and LiteBIRD are imaging telescopes with sub-Kelvin superconducting focal-plane detector arrays with several thousand detectors. PIXIE is a two-beam differential spectrometer that will measure the Planck spectrum of the CMB in addition to searching for inflation.

  15. The Europa Clipper Mission Concept (United States)

    Pappalardo, Robert; Goldstein, Barry; Magner, Thomas; Prockter, Louise; Senske, David; Paczkowski, Brian; Cooke, Brian; Vance, Steve; Wes Patterson, G.; Craft, Kate


    A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon's surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite's ice and ocean, composition, and geology. The set of investigations derived from the Europa Clipper science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces within and beneath the ice shell), Topographical Imager (for stereo imaging of the surface), ShortWave Infrared Spectrometer (for surface composition), Neutral Mass Spectrometer (for atmospheric composition), Magnetometer and Langmuir Probes (for inferring the satellite's induction field to characterize an ocean), and Gravity Science (to confirm an ocean).The mission would also include the capability to perform reconnaissance for a future lander

  16. IntroductionThe Cluster mission

    Directory of Open Access Journals (Sweden)

    M. Fehringer

    Full Text Available The Cluster mission, ESA’s first cornerstone project, together with the SOHO mission, dating back to the first proposals in 1982, was finally launched in the summer of 2000. On 16 July and 9 August, respectively, two Russian Soyuz rockets blasted off from the Russian cosmodrome in Baikonour to deliver two Cluster spacecraft, each into their proper orbit. By the end of August 2000, the four Cluster satellites had reached their final tetrahedral constellation. The commissioning of 44 instruments, both individually and as an ensemble of complementary tools, was completed five months later to ensure the optimal use of their combined observational potential. On 1 February 2001, the mission was declared operational. The main goal of the Cluster mission is to study the small-scale plasma structures in three dimensions in key plasma regions, such as the solar wind, bow shock, magnetopause, polar cusps, magnetotail and the auroral zones. With its unique capabilities of three-dimensional spatial resolution, Cluster plays a major role in the International Solar Terrestrial Program (ISTP, where Cluster and the Solar and Heliospheric Observatory (SOHO are the European contributions. Cluster’s payload consists of state-of-the-art plasma instrumentation to measure electric and magnetic fields from the quasi-static up to high frequencies, and electron and ion distribution functions from energies of nearly 0 eV to a few MeV. The science operations are coordinated by the Joint Science Operations Centre (JSOC, at the Rutherford Appleton Laboratory (UK, and implemented by the European Space Operations Centre (ESOC, in Darmstadt, Germany. A network of eight national data centres has been set up for raw data processing, for the production of physical parameters, and their distribution to end users all over the world. The latest information on the Cluster mission can be found at

  17. Geomagnetism mission concepts after Swarm

    International Nuclear Information System (INIS)

    Complete text of publication follows. While planning for the ESA Swarm mission has been a primary focus of geomagnetism over the past decade, the long time lags necessary for satellite missions dictate that planning for the next mission begin even before the launch of Swarm. Swarm will measure, for the first time, the E-W gradient of the magnetic field. In 2006, NASA launched a minisatellite magnetometer constellation mission (ST-5) to test technologies and software. The ST-5 constellation made the first along-track gradient measurements. One of the concepts under consideration for missions after Swarm is to systematically measure spatial gradients. The radial gradient could be measured using either an 'uncontrolled' fleet of satellites at different altitudes and local times, or by two or more satellites in a cartwheel configuration. Small-scale static features (degrees > 13) of the core field remain unknown because of their overlap with the crustal field, but they are of critical importance in core flow modeling. To what extent can small-scale features of the core field be separated from longer-wavelength crustal fields using radial gradients? We discuss this question in the context of a model study in which we attempt to recover separate core and crustal fields. The long wavelength crustal field model input is based on the seismic 3SMAC model, updated using MF-6. The core field model input is based on CHAOS-2. We will discuss the extent to which such a separation is ill-posed, and dependent on details of the parameterization. We will also discuss the extent to which such a separation is affected by the presence of annihilators.

  18. The Asteroid Redirect Mission (ARM) (United States)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Mazanek, Dan; Reeves, David; Ticker, Ronald


    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM). Mission Description: NASA's ARM consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), the first robotic mission to visit a large (greater than ~100 m diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, demonstrate a planetary defense technique, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will take the Orion capsule to rendezvous and dock with the robotic vehicle, conduct multiple extravehicular activities to explore the boulder, and return to Earth with samples. NASA's proposed

  19. The Lunar Prospector Discovery mission: Mission and measurement description

    International Nuclear Information System (INIS)

    Lunar Prospector, the first competitively selected planetary mission in NASA's Discovery Program, is described with emphasis on the radiation spectrometer instrumentation and anticipated scientific data return. Scheduled to be launched in January 1998, the mission will conduct a one year orbital survey of the Moon's composition and structure. The suite of five instruments are outlined: neutron spectrometer, alpha particle spectrometer, gamma-ray spectrometer, electron reflectometer and magnetometer. Scientific requirements and measurement approach to detect water/ice to a sensitivity of 50 ppm (hydrogen), measure key elemental constituents, detect radioactive gas release events and accurately map the Moon's gravitational and magnetic fields are given. A brief overview of the programmatic accomplishments in meeting a tightly constrained schedule and budget is also provided

  20. Multiple Space Debris Collecting Mission -- Optimal Mission Planning

    CERN Document Server

    Cerf, Max


    This paper addresses the problem of planning successive Space Debris Collecting missions so that they can be achieved at minimal cost by a generic vehicle. The problem mixes combinatorial optimization to select and order the debris among a list of candidates, and continuous optimization to fix the rendezvous dates and to define the minimum fuel orbital maneuvers. The solution method proposed consists in three stages. Firstly the orbital transfer problem is simplified by considering a generic transfer strategy suited either to a high thrust or a low thrust vehicle. A response surface modelling is built by solving the reduced problem for all pairs of debris and for discretized dates, and storing the results in cost matrices. Secondly a simulated annealing algorithm is applied to find the optimal mission planning. The cost function is assessed by interpolation on the response surface based on the cost matrices. This allows the convergence of the simulated algorithm in a limited computation time, yielding an opti...

  1. Multiple Space Debris Collecting Mission -- Optimal Mission Planning


    Cerf, Max


    This paper addresses the problem of planning successive Space Debris Collecting missions so that they can be achieved at minimal cost by a generic vehicle. The problem mixes combinatorial optimization to select and order the debris among a list of candidates, and continuous optimization to fix the rendezvous dates and to define the minimum fuel orbital maneuvers. The solution method proposed consists in three stages. Firstly the orbital transfer problem is simplified by considering a generic ...

  2. Spacelab life sciences 2 post mission report (United States)

    Buckey, Jay C.


    Jay C. Buckey, M.D., Assistant Professor of Medicine at The University of Texas Southwestern Medical Center at Dallas served as an alternate payload specialist astronaut for the Spacelab Life Sciences 2 Space Shuttle Mission from January 1992 through December 1993. This report summarizes his opinions on the mission and offers suggestions in the areas of selection, training, simulations, baseline data collection and mission operations. The report recognizes the contributions of the commander, payload commander and mission management team to the success of the mission. Dr. Buckey's main accomplishments during the mission are listed.

  3. ABE Women: Gaining a New Voice. (United States)

    Griffin, Carrie; And Others


    In the Dayton (Ohio) Literacy Project, female welfare recipients in adult basic education meet with college students to increase the women's reading, writing, and speaking skills and help them come to think of themselves as "knowers." (SK)

  4. Downstream process options for the ABE fermentation. (United States)

    Friedl, Anton


    Butanol is a very interesting substance both for the chemical industry and as a biofuel. The classical distillation process for the removal of butanol is far too energy demanding, at a factor of 220% of the energy content of butanol. Alternative separation processes studied are hybrid processes of gas-stripping, liquid-liquid extraction and pervaporation with distillation and a novel adsorption/drying/desorption hybrid process. Compared with the energy content of butanol, the resulting energy demand for butanol separation and concentration of optimized hybrid processes is 11%-22% for pervaporation/distillation and 11%-17% for liquid-liquid extraction/distillation. For a novel adsorption/drying/desorption process, the energy demand is 9.4%. But all downstream process options need further proof of industrial applicability. PMID:27020411

  5. The Mercury dual orbiter mission

    International Nuclear Information System (INIS)

    The Mercury Orbiter (MeO) will carry out a full range of particles, fields, and planetary imaging science at Mercury. Present mission plans call for a launch in 1999 with a flight time of about 4.5 years. By means of multiple Venus and Mercury gravitational assists, the mission can be accomplished with present U.S. launch vehicles and a very large payload can be placed in orbit around Mercury. The dual-spacecraft concept will permit outstanding scientific study of solar cosmic rays and the solar wind throughout the inner heliosphere from 0.3 AU to 1.0 AU. Modest enhancements to the planned magnetospheric instruments and utilization of onboard solar instruments will permit unique investigation of solar particle acceleration and transport with the MeO spacecraft

  6. Status of the DIOS mission (United States)

    Tawara, Y.; Sakurai, I.; Furuzawa, A.; Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Hoshino, A.; Akamatsu, H.; Ishikawa, K.; Mitsuda, K.; Yamasaki, N. Y.; Takei, Y.; Shinozaki, K.; Masui, K.; Yoshino, T.; Hagihara, T.; Kimura, S.; Yoshitake, H.


    We present the current status of a small X-ray mission DIOS (Diffuse Intergalactic Oxygen Surveyor), consisting of a 4-stage X-ray telescope and an array of TES microcalorimeters, cooled with mechanical coolers, with a total weight of about 400 kg. The mission will perform survey observations of warm-hot intergalactic medium using OVII and OVIII emission lines, with the energy coverage up to 1.5 keV. The wide field of view of about 50' diameter, superior energy resolution close to 2 eV FWHM, and very low background will together enable us a wide range of science for diffuse X-ray sources. We briefly describe the current status of the development of the satellite, and the subsystems.

  7. Java Mission Evaluation Workstation System (United States)

    Pettinger, Ross; Watlington, Tim; Ryley, Richard; Harbour, Jeff


    The Java Mission Evaluation Workstation System (JMEWS) is a collection of applications designed to retrieve, display, and analyze both real-time and recorded telemetry data. This software is currently being used by both the Space Shuttle Program (SSP) and the International Space Station (ISS) program. JMEWS was written in the Java programming language to satisfy the requirement of platform independence. An object-oriented design was used to satisfy additional requirements and to make the software easily extendable. By virtue of its platform independence, JMEWS can be used on the UNIX workstations in the Mission Control Center (MCC) and on office computers. JMEWS includes an interactive editor that allows users to easily develop displays that meet their specific needs. The displays can be developed and modified while viewing data. By simply selecting a data source, the user can view real-time, recorded, or test data.

  8. The GAMMA-400 Space Mission

    CERN Document Server

    Cumani, P; Bonvicini, V; Topchiev, N P; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, S; Bongi, M; Bottai, S; Castellini, G; Cattaneo, P W; Dedenko, G L; De Donato, C; Dogiel, V A; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Leonov, A A; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Menshenin, A L; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Pearce, M; Picozza, P; Popov, A V; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Taraskin, A A; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G


    GAMMA-400 is a new space mission which will be installed on board the Russian space platform Navigator. It is scheduled to be launched at the beginning of the next decade. GAMMA-400 is designed to study simultaneously gamma rays (up to 3 TeV) and cosmic rays (electrons and positrons from 1 GeV to 20 TeV, nuclei up to 10$^{15}$-10$^{16}$ eV). Being a dual-purpose mission, GAMMA-400 will be able to address some of the most impelling science topics, such as search for signatures of dark matter, cosmic-rays origin and propagation, and the nature of transients. GAMMA-400 will try to solve the unanswered questions on these topics by high-precision measurements of the Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission and the spectra of cosmic-ray electrons + positrons and nuclei, thanks to excellent energy and angular resolutions.

  9. The Solar Spectroscopy Explorer Mission

    CERN Document Server

    Bookbinder, Jay


    The Solar Spectroscopy Explorer (SSE) concept is conceived as a scalable mission, with two to four instruments and a strong focus on coronal spectroscopy. In its core configuration it is a small strategic mission ($250-500M) built around a microcalorimeter (an imaging X-ray spectrometer) and a high spatial resolution (0.2 arcsec) EUV imager. SSE puts a strong focus on the plasma spectroscopy, balanced with high resolution imaging - providing for break-through imaging science as well as providing the necessary context for the spectroscopy suite. Even in its smallest configuration SSE provides observatory class science, with significant science contributions ranging from basic plasma and radiative processes to the onset of space weather events. The basic configuration can carry an expanded instrument suite with the addition of a hard X-ray imaging spectrometer and/or a high spectral resolution EUV instrument - significantly expanding the science capabilities. In this configuration, it will fall at the small end...

  10. Mission design for LISA Pathfinder

    International Nuclear Information System (INIS)

    Here we describe the mission design for SMART-2/LISA Pathfinder. The best trade-off between the requirements of a low-disturbance environment and communications distance is found to be a free-insertion Lissajous orbit around the first collinear Lagrange point of the Sun-Earth system (L1), 1.5 x 106 km from Earth. In order to transfer SMART-2/LISA Pathfinder from a low Earth orbit, where it will be placed by a small launcher, the spacecraft carries out a number of apogee-raise manoeuvres, which ultimatively place it to a parabolic escape trajectory towards L1. The challenges of the design of a small mission are met, fulfilling the very demanding technology demonstration requirements without creating excessive requirements on the launch system or the ground segment

  11. LISA Pathfinder: mission and status

    Energy Technology Data Exchange (ETDEWEB)

    Antonucci, F; Cavalleri, A; Congedo, G [Dipartimento di Fisica, Universita di Trento and INFN, Gruppo Collegato di Trento, 38050 Povo, Trento (Italy); Armano, M [European Space Astronomy Centre, European Space Agency, Villanueva de la Canada, 28692 Madrid (Spain); Audley, H; Bogenstahl, J; Danzmann, K [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik und Universitaet Hannover, 30167 Hannover (Germany); Auger, G; Binetruy, P [APC UMR7164, Universite Paris Diderot, Paris (France); Benedetti, M [Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Boatella, C [CNES, DCT/AQ/EC, 18 Avenue Edouard Belin, 31401 Toulouse, Cedex 9 (France); Bortoluzzi, D; Bosetti, P; Cristofolini, I [Dipartimento di Ingegneria Meccanica e Strutturale, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Caleno, M; Cesa, M [European Space Technology Centre, European Space Agency, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Chmeissani, M [IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Ciani, G [Department of Physics, University of Florida, Gainesville, FL 32611-8440 (United States); Conchillo, A [ICE-CSIC/IEEC, Facultat de Ciencies, E-08193 Bellaterra, Barcelona (Spain); Cruise, M, E-mail: [Department of Physics and Astronomy, University of Birmingham, Birmingham (United Kingdom)


    LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission. The technologies required for LISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise led to the implementation of the LISA Pathfinder mission to test the critical LISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the LISA constellation by shrinking the 5 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the LISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. LISA Pathfinder is due to be launched in 2013 on-board a dedicated small launch vehicle (VEGA). After a series of apogee raising manoeuvres using an expendable propulsion module, LISA Pathfinder will enter a transfer orbit towards the first Sun-Earth Lagrange point (L1). After separation from the propulsion module, the LPF spacecraft will be stabilized using the micro-Newton thrusters, entering a 500 000 km by 800 000 km Lissajous orbit around L1. Science results will be available approximately 2 months after launch.

  12. Space Technology Mission Directorate Briefing


    Gazarik, Dr. Michael


    As Associate Administrator, Dr. Gazarik manages and executes the Space Technology programs, focusing on infusion into the Agency’s exploration and science mission needs, proving the capabilities needed by the greater aerospace community, and developing the Nation’s innovation economy. Prior to this appointment, Gazarik was deputy chief technologist and director for space technology, focusing on enabling effective implementation of the Space Technology programs. At NASA's Langley Researc...

  13. Mars Observer's Global Mapping Mission


    Albee, A. L.; Palluconi, D. F.


    The Mars Observer mission, scheduled for launch in September 1992, will provide an orbital platform at Mars from which the entire Martian surface and atmosphere will be observed beginning in late 1993. Mars Observer will extend the exploration and characterization of Mars by providing new and systematic measurements of the surface and atmosphere of the planet. These measurements will be made from a low-altitude polar orbiter over a period of one Martian year (687 Earth days), permitting repet...

  14. Low Energy Mission Planning Toolbox Project (United States)

    National Aeronautics and Space Administration — The Low Energy Mission Planning Toolbox is designed to significantly reduce the resources and time spent on designing missions in multi-body gravitational...

  15. Adaptive planning of emergency aerial photogrammetric mission (United States)

    Shen, Fuqiang; Zhu, Qing; Zhang, Junxiao; Miao, Shuangxi; Zhou, Xingxia; Cao, Zhenyu


    Aiming at the diversity of emergency aerial photogrammetric mission requirements, complex ground and air environmental constraints make the planning mission time-consuming. This paper presents a fast adaptation for the UAV aerial photogrammetric mission planning. First, Building emergency aerial UAVs mission the unified expression of UAVs model and mechanical model of performance parameters in the semantic space make the integrated expression of mission requirements and low altitude environment. Proposed match assessment method which based on resource and mission efficiency. Made the Adaptive match of UAV aerial resources and mission. According to the emergency aerial resource properties, considering complex air-ground environment and mission requirements constraints. Made accurate design of UAV route. Experimental results show, the method scientific and efficient, greatly enhanced the emergency response rate.

  16. The ASTRO-H Mission

    CERN Document Server

    Takahashi, Tadayuki; Kelley, Richard; Aharonian, Felix; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Awaki, Hisamitsu; Bamba, Aya; Bando, Nobutaka; Bautz, Mark; Blandford, Roger; Boyce, Kevin; Brown, Greg; Chernyakova, Maria; Coppi, Paolo; Costantini, Elisa; Cottam, Jean; Crow, John; de Plaa, Jelle; de Vries, Cor; Herder, Jan-Willem den; DiPirro, Michael; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew; Fujimoto, Ryuichi; Fukazawa, Yasushi; Funk, Stefan; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gandhi, Poshak; Gendreau, Keith; Gilmore, Kirk; Haba, Yoshito; Hamaguchi, Kenji; Hatsukade, Isamu; Hayashida, Kiyoshi; Hiraga, Junko; Hirose, Kazuyuki; Hornschemeier, Ann; Hughes, John; Hwang, Una; Iizuka, Ryo; Ishibashi, Kazunori; Ishida, Manabu; Ishimura, Kosei; Ishisaki, Yoshitaka; Isobe, Naoki; Ito, Masayuki; Iwata, Naoko; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Katagiri, Hideaki; Kataoka, Jun; Katsuda, Satoru; Kawaharada, Madoka; Kawai, Nobuyuki; Kawasaki, Shigeo; Khangaluyan, Dmitry; Kilbourne, Caroline; Kinugasa, Kenzo; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Kosaka, Tatsuro; Kotani, Taro; Koyama, Katsuji; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lebrun, Francois; Limousin, Olivier; Loewenstein, Michael; Long, Knox; Madejski, Grzegorz; Maeda, Yoshitomo; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; Miller, Jon; Mineshige, Shin; Minesugi, Kenji; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Koji; Mori, Hideyuki; Mukai, Koji; Murakami, Hiroshi; Murakami, Toshio; Mushotzky, Richard; Nakagawa, Yujin; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakazawa, Kazuhiro; Namba, Yoshiharu; Nomachi, Masaharu; Dell, Steve O'; Ogawa, Hiroyuki; Ogawa, Mina; Ogi, Keiji; Ohashi, Takaya; Ohno, Masanori; Ohta, Masayuki; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Parmer, Arvind; Petre, Robert; Pohl, Martin; Porter, Scott; Ramsey, Brian; Reynolds, Christopher; Sakai, Shin-ichiro; Sambruna, Rita; Sato, Goro; Sato, Yoichi; Serlemitsos, Peter; Shida, Maki; Shimada, Takanobu; Shinozaki, Keisuke; Shirron, Peter; Smith, Randall; Sneiderman, Gary; Soong, Yang; Stawarz, Lukasz; Sugita, Hiroyuki; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tamura, Keisuke; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tozuka, Miyako; Tsuboi, Yoko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Yasunobu; Uchiyama, Hideki; Ueda, Yoshihiro; Uno, Shinichiro; Urry, Meg; Watanabe, Shin; White, Nicholas; Yamada, Takahiro; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko; Yamauchi, Makoto; Yamauchi, Shigeo; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa


    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe by performing high-resolution, high-throughput spectroscopy with moderate angular resolution. ASTRO-H covers very wide energy range from 0.3 keV to 600 keV. ASTRO-H allows a combination of wide band X-ray spectroscopy (5-80 keV) provided by multilayer coating, focusing hard X-ray mirrors and hard X-ray imaging detectors, and high energy-resolution soft X-ray spectroscopy (0.3-12 keV) provided by thin-foil X-ray optics and a micro-calorimeter array. The mission will also carry an X-ray CCD camera as a focal plane detector for a soft X-ray telescope (0.4-12 keV) and a non-focusing soft gamma-ray detector (40-600 keV) . The micro-calorimeter system is developed by an international collaboration led by ISAS/JAXA and NASA. The simultaneous broad bandpass, coupled with high spectral reso...

  17. Prospects for Future Helioseismology Missions (United States)

    Scherrer, Philip H.

    The progress afforded by present and past helioseismology missions has been the topic of this and numerous previous conferences. The primary conclusion of the 1983 NASA study on prospects for solar oscillations have been basically confirmed. That is, part of the job can be done on the ground but a significant part can only be done from space. While we have made significant progress, it is also clear that additional opportunities to use helioseismic techniques to better understand stellar interiors remain. Recent advances in local helioseismology in particular point to additional observing requirements. These include larger field of view at high resolution in order to follow magnetic region development, longer baselines in longitude to probe the bottom of the convection zone and below, and a high latitude vantage point to examine processes near the rotation axis. Several possible missions have been discussed recently to address these issues. They include SONAR, Farside Observer, Solar Polar Imager, and Solar Probe. The basic concepts of these missions will be discussed along with the continuing role for enhanced ground based observations.

  18. Apollo 11 Lunar Mission Logo (United States)


    This is the flight insignia, or logo, for the Apollo 11 mission, the first manned lunar landing mission. Descending on the lunar surface, the eagle in the logo depicts the Lunar Module (LM), named 'Eagle''. Carrying astronauts Neil Armstrong and Edwin Aldrin, the 'Eagle' was the first crewed vehicle to land on the Moon. Astronaut Collins piloted the Command Module in a parking orbit around the Moon. Aboard a Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. Armstrong was the first human to ever stand upon the lunar surface, followed by Edwin (Buzz) Aldrin. The crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. The surface exploration was concluded in 2½ hours. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished. The Saturn V launch vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun.

  19. Science Mission Definition Studies for TROPIX (United States)

    Fennell, J. F.


    This document summarizes the results of mission definition studies for solar electric propulsion missions that have been carried out over the last approximately three years. The major output from the studies has been two proposals which were submitted to NASA in response to Announcements of Opportunity for missions and an ongoing Global Magnetospheric Dynamics mission study. The bulk of this report consists of copies of the proposals and preliminary materials from the GMD study that will be completed in the coming months.

  20. COMS normal operation for Earth Observation mission (United States)

    Cho, Young-Min


    Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service since April 2011. The COMS is located on 128.2° East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. For this Earth observation mission the COMS requires daily mission commands from the satellite control ground station and daily mission is affected by the satellite control activities. For this reason daily mission planning is required. The Earth observation mission operation of COMS is described in aspects of mission operation characteristics and mission planning for the normal operation services of meteorological observation and ocean monitoring. And the first year normal operation results after the In-Orbit-Test (IOT) are investigated through statistical approach to provide the achieved COMS normal operation status for the Earth observation mission.

  1. Mechanical design of the Mars Pathfinder mission (United States)

    Eisen, Howard Jay; Buck, Carl W.; Gillis-Smith, Greg R.; Umland, Jeffrey W.


    The Mars Pathfinder mission and the Sojourner rover is reported on, with emphasis on the various mission steps and the performance of the technologies involved. The mechanical design of mission hardware was critical to the success of the entry sequence and the landing operations. The various mechanisms employed are considered.

  2. CHEOPS: A transit photometry mission for ESA's small mission programme

    Directory of Open Access Journals (Sweden)

    Queloz D.


    Full Text Available Ground based radial velocity (RV searches continue to discover exoplanets below Neptune mass down to Earth mass. Furthermore, ground based transit searches now reach milli-mag photometric precision and can discover Neptune size planets around bright stars. These searches will find exoplanets around bright stars anywhere on the sky, their discoveries representing prime science targets for further study due to the proximity and brightness of their host stars. A mission for transit follow-up measurements of these prime targets is currently lacking. The first ESA S-class mission CHEOPS (CHaracterizing ExoPlanet Satellite will fill this gap. It will perform ultra-high precision photometric monitoring of selected bright target stars almost anywhere on the sky with sufficient precision to detect Earth sized transits. It will be able to detect transits of RV-planets by photometric monitoring if the geometric configuration results in a transit. For Hot Neptunes discovered from the ground, CHEOPS will be able to improve the transit light curve so that the radius can be determined precisely. Because of the host stars' brightness, high precision RV measurements will be possible for all targets. All planets observed in transit by CHEOPS will be validated and their masses will be known. This will provide valuable data for constraining the mass-radius relation of exoplanets, especially in the Neptune-mass regime. During the planned 3.5 year mission, about 500 targets will be observed. There will be 20% of open time available for the community to develop new science programmes.

  3. 75 FR 9578 - Executive-Led Trade Mission to Colombia and Panama; Change to Mission Dates (United States)


    ... International Trade Administration Executive-Led Trade Mission to Colombia and Panama; Change to Mission Dates..., September 20-24, 2010, to be led by a senior Commerce official. The mission will focus on helping U.S... participating in the Executive-led Trade Mission to Colombia and Panama must complete and submit an...

  4. The BRITE Nanosatellite Constellation Mission (United States)

    Schwarzenberg-Czerny, Alexander; Weiss, Werner; Moffat, Anthony; Zee, Robert E.; Rucinski, Slavek; Mochnacki, Stefan; Matthews, Jaymie; Breger, Michel; Kuschnig, Rainer; Koudelka, Otto; Orleanski, Piotr; Pamyatnykh, Alexei; Pigulski, Andrzej; Grant, Cordell

    BRITE Constellation, short for "BRIght Target Explorer Constellation," is a group of six seven-kilogram nanosatellites from Austria, Poland and Canada carrying three-centimeter aperture optical telescopes. The purpose of the mission is to photometrically measure low-level oscilla-tions and temperature variations in the sky's 286 stars brighter than visual magnitude 3.5, with unprecedented precision and time sampling not achievable through terrestrial-based methods. These stars turn out, for the most part, to be among the most luminous -either massive stars during their whole lifetimes or medium-mass stars at the very end of their nuclear burning phases. Such stars dominate the ecology of the Universe and the current massive ones are believed to represent the lower mass-range of the first stars ever formed (although long gone from the local Universe). Astronomers are eager to measure the variable behavior of lumi-nous stars in order to explore their inner workings in a unique way. BRITE Constellation will investigate the role that stellar winds play in setting up future stellar life cycles, and will measure pulsations to probe the histories and ages of luminous stars through asteroseismology. The three-axis pointing performance (1 arcminute RMS stability) of each BRITE satellite is a significant advancement by the University of Toronto's Space Flight Laboratory over any-thing that has ever flown before on a nanosatellite, and is a critical element that enables the high precision photometry mission. The University of Vienna and FFG/ALR (Austria's space agency) are financing the development of two satellites and development is nearing completion. The Polish Academy of Sciences is preparing two additional satellites. The Canadian Space Agency is also expected to fund two satellites in the constellation. This paper will summarize the science objectives of the mission and describe the progress to date.

  5. Small power plant reverse trade mission

    Energy Technology Data Exchange (ETDEWEB)


    This draft report was prepared as required by Task No. 2 of the US Department of Energy, Grant No. FG07-89ID12850 Reverse Trade Mission to Acquaint International Representatives with US Power Plant and Drilling Technology'' (mission). As described in the grant proposal, this report covers the reactions of attendees toward US technology, its possible use in their countries, and an evaluation of the mission by the staff leaders. Note this is the draft report of one of two missions carried out under the same contract number. Because of the diversity of the mission subjects and the different attendees at each, a separate report for each mission has been prepared. This draft report has been sent to all mission attendees, specific persons in the US Department of Energy and Los Alamos National Lab., the California Energy Commission (CEC), and various other governmental agencies.

  6. Crew Transportation System Design Reference Missions (United States)

    Mango, Edward J.


    Contains summaries of potential design reference mission goals for systems to transport humans to andfrom low Earth orbit (LEO) for the Commercial Crew Program. The purpose of this document is to describe Design Reference Missions (DRMs) representative of the end-to-end Crew Transportation System (CTS) framework envisioned to successfully execute commercial crew transportation to orbital destinations. The initial CTS architecture will likely be optimized to support NASA crew and NASA-sponsored crew rotation missions to the ISS, but consideration may be given in this design phase to allow for modifications in order to accomplish other commercial missions in the future. With the exception of NASA’s mission to the ISS, the remaining commercial DRMs are notional. Any decision to design or scar the CTS for these additional non-NASA missions is completely up to the Commercial Provider. As NASA’s mission needs evolve over time, this document will be periodically updated to reflect those needs.

  7. Draft 1988 mission plan amendment

    International Nuclear Information System (INIS)

    This draft 1988 amendment to the Mission Plan for the Civilian Radioactive Waste Management Program has been prepared by the US Department of Energy (DOE). The purpose is to inform the Congress of the DOE's plans for implementing the provisions of the Nuclear Waste Policy Amendments Act of 1987 (P.L. 100-203) for the Civilian Radioactive Waste Management Program. This document is being submitted in draft form to Federal agencies, states, previously affected Indian Tribes, affected units of local government, and the public. After the consideration of comments, this amendment will be revised as appropriate and submitted to the Congress. 39 refs., 7 figs., 4 tabs

  8. Reconfigurable Software for Mission Operations (United States)

    Trimble, Jay


    We developed software that provides flexibility to mission organizations through modularity and composability. Modularity enables removal and addition of functionality through the installation of plug-ins. Composability enables users to assemble software from pre-built reusable objects, thus reducing or eliminating the walls associated with traditional application architectures and enabling unique combinations of functionality. We have used composable objects to reduce display build time, create workflows, and build scenarios to test concepts for lunar roving operations. The software is open source, and may be downloaded from https:github.comnasamct.

  9. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros


    Although the first satellite observations of the Earth’s magnetic field were already taken more than 50 years ago, continuous geomagnetic measurements from space are only available since 1999. The unprecedented time-space coverage of this recent data set opened revolutionary new possibilities for...... exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...

  10. Low Cost Mission to Deimos


    Quantius, Dominik; Päsler, Hartmut; Braukhane, Andy; Gülzow, Peter; Bauer, Waldemar; Vollhardt, Achim; Schubert, Daniel; Romberg, Oliver; Scheibe, Karsten; Hoffmann, Harald; Börner, Anko


    The German non-profit amateur satellite organisation AMSAT-Deutschland successfully designed, built and launched four HEO satellites in the last three decades. Now they are going to build a satellite to leave the Earth orbit based on their flight-proven P3-D satellite design. Due to energetic constraints the most suitable launch date for the planned P5-A satellite to Mars will be in 2018. To efficiently use the relatively long time gap until launch a possible prior Moon mission came into mind...

  11. Mission Analysis of Robotic Low Thrust Missions to the Martian Moons Deimos And Phobos


    Derz, Uwe; Ohndorf, Andreas; Bischof, Bernd


    The Martian moons Deimos and Phobos are interesting targets for exploration missions, especially within the frame of a crewed Mars orbit mission. To minimize the risk to a crew and also to support EVA site selection, a robotic precursor mission should investigate both moons in advance. The focus of this study is on mission analysis of such a precursor mission that utilizes low-thrust propulsion, in particular Electric Propulsion, for the transfer to the Martian system. We assum...

  12. Astronaut Leroy Chiao, assigned as mission specialist for the mission, prepares to ascend stairs to (United States)


    STS-72 TRAINING VIEW --- Astronaut Leroy Chiao, assigned as mission specialist for the mission, prepares to ascend stairs to the flight deck of the fixed base Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC). Chiao will join an international mission specialist and four other NASA astronauts aboard the Space Shuttle Endeavour for a scheduled nine-day mission, now set for the winter of this year.

  13. Astronaut Brian Duffy, mission commander for the STS-72 mission, prepares to ascend stairs to the (United States)


    STS-72 TRAINING VIEW --- Astronaut Brian Duffy, mission commander for the STS-72 mission, prepares to ascend stairs to the flight deck of the fixed base Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC). Duffy will be joined by four other NASA astronauts and an international mission specialist aboard the Space Shuttle Endeavour for a scheduled nine-day mission, now set for the winter of this year.

  14. Ravens satellite mission concept study

    CERN Document Server

    Donovan, Eric F


    The concept for Ravens satellite mission was proposed in response to a CSA AO for potential Canadian mission contributions to the International Living With a Star (ILWS) program. Ravens was conceived of to fill an important gap in the ILWS program: global imaging. Ravens will build on the heritage of world-class global imaging carried out in Canada. It would do much more than provide global observations to complete the system level capabilities of ILWS. Ravens would be comprised of two satellites on elliptical polar orbits, relatively phased on those orbits to provide the first-ever continuous (ie., 24 hours per day 7 days per week) global imaging of the northern hemisphere auroral and polar cap regions. This would provide the first-ever unbroken sequences of global images of the auroral response during long duration geomagnetic processes like storms and steady magnetospheric convection events. Ravens could track the spatio-temporal evolution of the global electron and proton auroral distribution, and would o...

  15. The NeXT Mission

    CERN Document Server

    Takahashi, T; Mitsuda, K; Kunieda, H; Petre, R; White, N; Dotani, T; Fujimoto, R; Fukazawa, Y; Hayashida, K; Ishida, M; Ishisaki, Y; Kokubun, M; Makishima, K; Koyama, K; Madejski, G M; Mori, K; Mushotzky, R; Nakazawa, K; Ogasaka, Y; Ohashi, T; Ozaki, M; Tajima, H; Tashiro, M; Terada, Y; Tsunemi, H; Tsuru, T G; Ueda, Y; Yamasaki, N; Watanabe, S


    The NeXT (New exploration X-ray Telescope), the new Japanese X-ray Astronomy Satellite following Suzaku, is an international X-ray mission which is currently planed for launch in 2013. NeXT is a combination of wide band X-ray spectroscopy (3 - 80 keV) provided by multi-layer coating, focusing hard X-ray mirrors and hard X-ray imaging detectors, and high energy-resolution soft X-ray spectroscopy (0.3 - 10 keV) provided by thin-foil X-ray optics and a micro-calorimeter array. The mission will also carry an X-ray CCD camera as a focal plane detector for a soft X-ray telescope and a non-focusing soft gamma-ray detector. With these instruments, NeXT covers very wide energy range from 0.3 keV to 600 keV. The micro-calorimeter system will be developed by international collaboration lead by ISAS/JAXA and NASA. The simultaneous broad bandpass, coupled with high spectral resolution of Delta E ~ 7 eV by the micro-calorimeter will enable a wide variety of important science themes to be pursued.


    Directory of Open Access Journals (Sweden)

    F. Gandor


    Full Text Available This paper presents a development of an open-source flight planning tool for Remotely Piloted Aircraft Systems (RPAS that is dedicated to high-precision photogrammetric mapping. This tool contains planning functions that are usually available in professional mapping systems for manned aircrafts as well as new features related to GPS signal masking in complex (e.g. mountainous terrain. The application is based on the open-source Java SDK (Software Development Kit World Wind from NASA that contains the main geospatial components facilitating the development itself. Besides standard planning functions known from other mission planners, we mainly focus on additional features dealing with safety and accuracy, such as GPS quality assessment. The need for the development came as a response for unifying mission planning across different platforms (e.g. rotary or fixed wing operating over terrain of different complexity. A special attention is given to the user interface, that is intuitive to use and cost-effective with respect to computer resources.

  17. The Sentinel-2 Mission Products (United States)

    Gascon, Ferran


    In the framework of the Global Monitoring for Environment and Security (GMES) programme, the European Space Agency (ESA) in partnership with the European Commission (EC) is developing the Sentinel-2 optical imaging mission devoted to the operational monitoring of land and coastal areas. This system will deliver a new generation of optical data products designed to directly feed downstream services acting in several domains such as land management, agricultural industry, forestry, food security, or disaster control management following floods, volcanic eruptions, landslides, etc. The Sentinel-2 mission designed to generate products with accurate radiometric and geometric performances (including multi-temporal imagery co-registration). To maximize the products suitability and readiness to downstream usage for the majority of applications, the Sentinel-2 PDGS will systematically generate and archive Level-1C products, which will provide Top of Atmosphere (TOA) reflectance images, orthorectified using a global DEM and UTM projection. A Level-1B product will also be available for expert users and will provide the radiometrically corrected pixels in sensor geometry with the geometric model appended. Finally, a complementary atmospheric correction and enhanced cloud screening algorithm is being prototyped in parallel with the goal of providing some initial capabilities to the users, by means of a specific software toolbox operated on their platforms, to translate the Level-1C TOA reflectance image into Bottom of Atmosphere (BOA) reflectance.

  18. The Virtual Mission Operations Center (United States)

    Moore, Mike; Fox, Jeffrey


    Spacecraft management is becoming more human intensive as spacecraft become more complex and as operations costs are growing accordingly. Several automation approaches have been proposed to lower these costs. However, most of these approaches are not flexible enough in the operations processes and levels of automation that they support. This paper presents a concept called the Virtual Mission Operations Center (VMOC) that provides highly flexible support for dynamic spacecraft management processes and automation. In a VMOC, operations personnel can be shared among missions, the operations team can change personnel and their locations, and automation can be added and removed as appropriate. The VMOC employs a form of on-demand supervisory control called management by exception to free operators from having to actively monitor their system. The VMOC extends management by exception, however, so that distributed, dynamic teams can work together. The VMOC uses work-group computing concepts and groupware tools to provide a team infrastructure, and it employs user agents to allow operators to define and control system automation.

  19. The Cassini-Huygens mission

    CERN Document Server

    The joint NASA-ESA Cassini-Huygens mission promises to return four (and possibly more) years of unparalleled scientific data from the solar system’s most exotic planet, the ringed, gas giant, Saturn. Larger than Galileo with a much greater communication bandwidth, Cassini can accomplish in a single flyby what Galileo returned in a series of passes. Cassini explores the Saturn environment in three dimensions, using gravity assists to climb out of the equatorial plane to look down on the rings from above, to image the aurora and to study polar magnetospheric processes such as field-aligned currents. Since the radiation belt particle fluxes are much more benign than those at Jupiter, Cassini can more safely explore the inner regions of the magnetosphere. The spacecraft approaches the planet closer than Galileo could, and explores the inner moons and the rings much more thoroughly than was possible at Jupiter. This book is the second volume, in a three volume set, that describes the Cassini/Huygens mission. Thi...

  20. The Simbol-X Mission

    International Nuclear Information System (INIS)

    The elucidation of key questions in astrophysics, in particular those related to black hole physics and census, and to particle acceleration mechanisms, necessitates to develop new observational capabilities in the hard X-ray domain with performances several orders of magnitude better than presently available. Relying on two spacecrafts in a formation flying configuration, Simbol-X will provide the world-wide astrophysics community with a single optics long focal length telescope. This observatory will have unrivaled performances in the hard X-ray domain, up to ∼80 keV, as well as very good characteristics in the soft X-ray domain, down to ∼0.5 keV. The Simbol-X mission has successfully passed a phase A study, jointly conducted by CNES and ASI, with the participation of German laboratories. It is now entering phase B studies with the participation of new international partners, for a launch in 2015. We give in this paper a general overview of the mission, as consolidated at the start of phase B.

  1. Water Cycling &the GPM Mission (United States)

    Smith, E. A.


    The GPM mission is currently planned for start in the late'07 - early'08 time frame. Its main scientific goal is to help answer pressing scientific problems arising within the context of global and regional water cycles. These problems cut across a hierarchy of scales and include climate-water cycle interactions, techniques for improving weather and climate predictions, and better methods for combining observed precipitation with hydrometeorological prediction models for applications to hazardous flood-producing storms, seasonal flood/draught conditions, and fresh water resource assessments. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like "core" satellite carrying a dual-frequency Ku-Ka band precipitation radar and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination. The other constellation members will include new dedicated satellites and co-existing operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve 3-hour sampling at any spot on the globe - continuously. The constellation's orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the "core" satellite providing measurements of cloud-precipitation microphysical processes plus calibration-quality rainrates to be used with the other retrieval information to ensure bias-free constellation coverage. GPM is organized internationally, involving existing, pending, projected, and under-study partnerships which will link NASA and NOAA in the US, NASDA in Japan, ESA in Europe, ISRO in India, CNES in France, and possibly ASI in Italy, KARI in South Korea, CSA in Canada, and AEB in Brazil. Additionally, the program is actively pursuing agreements with other international collaborators and domestic scientific agencies

  2. Bone Metabolism on ISS Missions (United States)

    Smith, S. M.; Heer, M. A.; Shackelford, L. C.; Zwart, S. R.


    Spaceflight-induced bone loss is associated with increased bone resorption (1, 2), and either unchanged or decreased rates of bone formation. Resistive exercise had been proposed as a countermeasure, and data from bed rest supported this concept (3). An interim resistive exercise device (iRED) was flown for early ISS crews. Unfortunately, the iRED provided no greater bone protection than on missions where only aerobic and muscular endurance exercises were available (4, 5). In 2008, the Advanced Resistive Exercise Device (ARED), a more robust device with much greater resistance capability, (6, 7) was launched to the ISS. Astronauts who had access to ARED, coupled with adequate energy intake and vitamin D status, returned from ISS missions with bone mineral densities virtually unchanged from preflight (7). Bone biochemical markers showed that while the resistive exercise and adequate energy consumption did not mitigate the increased bone resorption, bone formation was increased (7, 8). The typical drop in circulating parathyroid hormone did not occur in ARED crewmembers. In 2014, an updated look at the densitometry data was published. This study confirmed the initial findings with a much larger set of data. In 42 astronauts (33 male, 9 female), the bone mineral density response to flight was the same for men and women (9), and those with access to the ARED did not have the typical decrease in bone mineral density that was observed in early ISS crewmembers with access to the iRED (Figure 1) (7). Biochemical markers of bone formation and resorption responded similarly in men and women. These data are encouraging, and represent the first in-flight evidence in the history of human space flight that diet and exercise can maintain bone mineral density on long-duration missions. However, the maintenance of bone mineral density through bone remodeling, that is, increases in both resorption and formation, may yield a bone with strength characteristics different from those

  3. The Titan Saturn System Mission (United States)

    Coustenis, A.; Lunine, J.; Lebreton, J.; Matson, D.; Erd, C.; Reh, K.; Beauchamp, P.; Lorenz, R.; Waite, H.; Sotin, C.; Tssm Jsdt, T.


    A mission to return to Titan after Cassini-Huygens is a high priority for exploration. Recent Cassini-Huygens discoveries have revolutionized our understanding of the Titan system, rich in organics, containing a vast subsurface ocean of liquid water, surface repositories of organic compounds, and having the energy sources necessary to drive chemical evolution. With these recent discoveries, interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds an important second target in the Saturn system. The mission concept consists of a NASA-provided orbiter and an ESA-provided probe/lander and a Montgolfiere. The mission would launch on an Atlas 551 around 2020, travelling to Saturn on an SEP gravity assist trajectory, and reaching Saturn about 9.5 years later. The flight system would go into orbit around Saturn for about 2 years. During the first Titan flyby, the orbiter would release the lander to target a large northern polar sea, Kraken Mare, and the balloon system to a mid latitude region. During the tour phase, TSSM will perform Saturn system and Enceladus science, with at least 5 Enceladus flybys. Instruments aboard the orbiter will map Titan's surface at 50 m resolution in the 5 micron window, provide a global data set of topography and sound the immediate subsurface, sample complex organics, provide detailed observations of the atmosphere, and quantify the interaction of Titan with the Saturn magnetosphere. A subset of the instruments would provide spectra, imaging, plume sampling and particles and fields data on Enceladus. Instruments aboard the balloon will acquire high resolution vistas of the surface of Titan as the balloon cruises at 10 km altitude, as well as make compositional measurements of the surface, detailed sounding of crustal layering, and chemical measurements of aerosols. A magnetometer, will permit sensitive detection of induced or intrinsic fields

  4. Space Mission : Y3K (United States)


    ESA and the APME are hosting a contest for 10 - 15 year olds in nine European countries (Austria, Belgium, France, Germany, Italy, the Netherlands, Spain, Sweden and the United Kingdom). The contest is based on an interactive CD ROM, called Space Mission: Y3K, which explores space technology and shows some concrete uses of that technology in enhancing the quality of life on Earth. The CD ROM invites kids to join animated character Space Ranger Pete on an action-packed, colourful journey through space. Space Ranger Pete begins on Earth: the user navigates around a 'locker room' to learn about synthetic materials used in rocket boosters, heat shields, space suits and helmets, and how these materials have now become indispensable to everyday life. From Earth he flies into space and the user follows him from the control room in the spacecraft to a planet, satellites and finally to the International Space Station. Along the way, the user jots down clues that he or she discovers in this exploration, designing an imaginary space community and putting together a submission for the contest. The lucky winners will spend a weekend training as "junior astronauts" at the European Space Centre in Belgium (20-22 April 2001). They will be put through their astronaut paces, learning the art of space walking, running their own space mission, piloting a space capsule and re-entering the Earth's atmosphere. The competition features in various youth media channels across Europe. In the UK, popular BBC Saturday morning TV show, Live & Kicking, will be launching the competition and will invite viewers to submit their space community designs to win a weekend at ESC. In Germany, high circulation children's magazine Geolino will feature the competition in the January issue and on their internet site. And youth magazine ZoZitDat will feature the competition in the Netherlands throughout February. Space Mission: Y3K is part of an on-going partnership between the ESA's Technology Transfer

  5. TerraSAR-X mission (United States)

    Werninghaus, Rolf


    The TerraSAR-X is a German national SAR- satellite system for scientific and commercial applications. It is the continuation of the scientifically and technologically successful radar missions X-SAR (1994) and SRTM (2000) and will bring the national technology developments DESA and TOPAS into operational use. The space segment of TerraSAR-X is an advanced high-resolution X-Band radar satellite. The system design is based on a sound market analysis performed by Infoterra. The TerraSAR-X features an advanced high-resolution X-Band Synthetic Aperture Radar based on the active phased array technology which allows the operation in Spotlight-, Stripmap- and ScanSAR Mode with various polarizations. It combines the ability to acquire high resolution images for detailed analysis as well as wide swath images for overview applications. In addition, experimental modes like the Dual Receive Antenna Mode allow for full-polarimetric imaging as well as along track interferometry, i.e. moving target identification. The Ground Segment is optimized for flexible response to (scientific and commercial) User requests and fast image product turn-around times. The TerraSAR-X mission will serve two main goals. The first goal is to provide the strongly supportive scientific community with multi-mode X-Band SAR data. The broad spectrum of scientific application areas include Hydrology, Geology, Climatology, Oceanography, Environmental Monitoring and Disaster Monitoring as well as Cartography (DEM Generation) and Interferometry. The second goal is the establishment of a commercial EO-market in Europe which is driven by Infoterra. The commercial goal is the development of a sustainable EO-business so that the e.g. follow-on systems can be completely financed by industry from the profit. Due to its commercial potential, the TerraSAR-X project will be implemented based on a public-private partnership with the Astrium GmbH. This paper will describe first the mission objectives as well as the

  6. Agile: From Software to Mission System (United States)

    Trimble, Jay; Shirley, Mark H.; Hobart, Sarah Groves


    The Resource Prospector (RP) is an in-situ resource utilization (ISRU) technology demonstration mission, designed to search for volatiles at the Lunar South Pole. This is NASA's first near real time tele-operated rover on the Moon. The primary objective is to search for volatiles at one of the Lunar Poles. The combination of short mission duration, a solar powered rover, and the requirement to explore shadowed regions makes for an operationally challenging mission. To maximize efficiency and flexibility in Mission System design and thus to improve the performance and reliability of the resulting Mission System, we are tailoring Agile principles that we have used effectively in ground data system software development and applying those principles to the design of elements of the mission operations system.

  7. The draft Mission Plan Amendment

    International Nuclear Information System (INIS)

    The draft Mission Plan Amendment provides an opportunity for States and Indian Tribes and other involved parties to participate in a process that no other nation affords its citizens. More than just a comment period on a Department of Energy document, the amendment that is to be submitted later this year will lay before Congress, the documentary basis on which to make decisions about the scope and timing of the high-level waste program in what Secretary Herrington has called a ''crossroads'' years. The Amendment will distill the view of the participants and also preset them to Congress as an integral part of the document. After four years of effort, the Nation is being afforded an opportunity to ask itself again whether the Act passed in 1982 is working and remains the best way to protect the public interest

  8. Job Orders (Ordres de mission)

    CERN Multimedia

    FI Department


    Please note that individual job orders and continuous job orders (valid for one calendar year, i.e. from 1st January to 31st December) must henceforth be completed via EDH and approved by the Department Leader concerned (or the person appointed by him via EDHAdmin). Once approved, the form must be printed and kept for the duration of the mission by the driver to whom the job order is issued. You will find the icon for this document on the EDH Desktop, as well as on-line help on how to use it. In emergencies, paper copies of individual job orders (SCEM may be issued outside normal working hours by the Fire Brigade (Meyrin Site, Building 65). Organisation & Procedures, FI Department, Tel. 73905 Relations with the Host States Service, Tel. 72848

  9. I satelliti della missione EROS

    Directory of Open Access Journals (Sweden)

    Stefano De Corso


    Full Text Available EROS mission satellitesThe EROS (Earth Remote Observation Satellite constellation is property of ImageSat International N.V. an international company and a commercial provider of high-resolution, satellite earth-imagery collected by its Earth Remote Observation Satellite. EROS A is equipped with a camera whose focal plane of CCD (Charge Coupled Device detectors produces a standard image resolution of 1.9 meters. EROS B slightly larger and similar in appearance to EROS A, the new satellite has superior capabilities, including a larger camera of CCD/ TDI type (Charge Coupled Device/Time Delay Integration, with standard panchromatic resolution of 0.70 m at an altitude of about 500 km, a larger on-board recorder, improved pointing accuracy and a faster data communication link.

  10. The Global Precipitation Measurement Mission (United States)

    Jackson, Gail


    The Global Precipitation Measurement (GPM) mission's Core satellite, scheduled for launch at the end of February 2014, is well designed estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)'s highly successful rain-sensing package [3]. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65o non-Sun-synchronous orbit to serve as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will provide measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements will place greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM Core Observatory was developed and tested at NASA

  11. LISA Pathfinder: A Mission Status (United States)

    Hewitson, Martin; LISA Pathfinder Team Team


    On December 3rd at 04:04 UTC, The European Space Agency launched the LISA Pathfinder satellite on board a VEGA rocket from Kourou in French Guiana. After a series of orbit raising manoeuvres and a 2 month long transfer orbit, LISA Pathfinder arrived at L1. Following a period of commissioning, the science operations commenced at the start of March, beginning the demonstration of technologies and methodologies which pave the way for a future large-scale gravitational wave observatory in space. This talk will present the scientific goals of the mission, discuss the technologies being tested, elucidate the link to a future space-based observatory, such as LISA, and present preliminary results from the in-orbit operations and experiments.

  12. Cassini Mission Sequence Subsystem (MSS) (United States)

    Alland, Robert


    This paper describes my work with the Cassini Mission Sequence Subsystem (MSS) team during the summer of 2011. It gives some background on the motivation for this project and describes the expected benefit to the Cassini program. It then introduces the two tasks that I worked on - an automatic system auditing tool and a series of corrections to the Cassini Sequence Generator (SEQ_GEN) - and the specific objectives these tasks were to accomplish. Next, it details the approach I took to meet these objectives and the results of this approach, followed by a discussion of how the outcome of the project compares with my initial expectations. The paper concludes with a summary of my experience working on this project, lists what the next steps are, and acknowledges the help of my Cassini colleagues.

  13. The ultraviolet astronomy mission: Columbus (United States)

    Wilson, R.


    An ultraviolet astronomy mission (Columbus) is described. It exploits the spectral region between 900 and 1200A, which is extremely rich in containing the Lyman lines of hydrogen and deuterium and the Lyman band of their molecules, together with the resonance lines of many important ions. High resolving power and high sensitivity provide a unique capability for studying the brightest members of neighboring galaxies, the HeI and HeII absorption systems in quasars out to a red shift of 2, and the halos of intervening galaxies. Complementary focal plane instruments are planned in order to allow observations to longer (2000A) and shorter (100A) wavelengths. This wide coverage embraces the resonance lines of all the cosmically abundant elements and a wide range of temperature zones up to 100 million K.

  14. The heat capacity mapping mission (United States)

    Short, N. M.


    The first in a series of low cost Atmospheric Explorer Satellites, the Heat Capacity Mapping Mission (HCMM) was designed to evaluate the utility of thermal inertial and other thermal and reflectance data for: (1) discriminating bedrock and unconsolidated regolith types; (2) mapping soil moisture; (3) measuring plant canopy temperatures; (4) examining thermal circulation in large bodies of water; and (5) monitoring urban heat islands. Final reports from the HCMM investigator's program are beginning to define the utility of day/the night thermal data. Under favorable circumstances, some major rock types can be identified, soil moisture in extensive agricultural and alluvial terrains can be detected and at least semiqualitatively assessed; and circulation of currents in large bodies of water can be followed by noting thermal patterns.

  15. Agency staff on special missions

    International Nuclear Information System (INIS)

    The IAEA Secretariat includes 190 scientists and engineers whose special qualifications cover most of the branches of nuclear science and applications of nuclear energy. This gives it a unique international concentration of specialized skills and knowledge, but increasingly this know-how is being taken straight to Member States. While the nucleus of the work of the technical Divisions is at the IAEA Headquarters, the Agency is sending out more and more of its specialists for short-term assignments 'in the field' to help and advise Member governments. These assignments are distinct from the longer-term technical assistance projects, for which specialists are recruited from outside the Secretariat and only occasionally from its staff. he different types of help that the Agency's Secretariat gives to Member States covers a wide range of subjects. The legal staff gives advice on basic laws and on safety regulations, and has done so in 35 countries. It has also accepted more than 30 trainees from Member States to work in its offices at headquarters since 1961. Scientists, economists and engineers go out to Member States to advise on problems linked to the planning of nuclear power programmes or to the building and commissioning of their first nuclear power plants. Inspectors from the Department of Safeguards and Inspection help to set up systems of nuclear materials management and control which are essential for safe and efficient operation of nuclear plants and for governmental surveillance of nuclear industry. Specialists in nuclear medicine have helped calibrate instruments and to advise the setting up of clinics. Staff geologists have advised many countries about the development of uranium ore. he list of specialities covered is very wide. We have singled out one type of mission as an example of the help that the IAEA can give in a field of particular importance. This is the safety and siting mission. (author)


    Directory of Open Access Journals (Sweden)

    Mario Bertaina


    Full Text Available The JEM-EUSO mission explores the origin of the extreme energy cosmic rays (EECRs above 50EeV and explores the limits of the fundamental physics, through the observations of their arrival directions and energies. It is designed to open a new particle astronomy channel. This superwide-field (60 degrees telescope with a diameter of about 2.5m looks down from space onto the night sky to detect near UV photons (330 ÷ 400nm, both fluorescent and Cherenkov photons emitted from the giant air showers produced by EECRs. The arrival direction map with more than five hundred events will tell us the origin of the EECRs and allow us to identify the nearest EECR sources with known astronomical objects. It will allow them to be examined in other astronomical channels. This is likely to lead to an  nderstanding of the acceleration mechanisms perhaps producing discoveries in astrophysics and/or fundamental physics. The comparison of the energy spectra among the spatially resolved individual sources will help to clarify the acceleration/emission mechanism, and also finally confirm the Greisen–Zatsepin–Kuz’min process for the validation of Lorentz invariance up to γ ~ 1011. Neutral components (neutrinos and gamma rays can also be detected as well, if their fluxes are high enough. The JEM-EUSO mission is planned to be launched by a H2B rocket about 2017 and transferred to ISS by H2 Transfer Vehicle (HTV. It will be attached to the Exposed Facility external experiment platform of “KIBO”.

  17. Beyond LISA: Exploring Future Gravitational Wave Missions


    Crowder, Jeff; Cornish, Neil J.


    The Advanced Laser Interferometer Antenna (ALIA) and the Big Bang Observer (BBO) have been proposed as follow on missions to the Laser Interferometer Space Antenna (LISA). Here we study the capabilities of these observatories, and how they relate to the science goals of the missions. We find that the Advanced Laser Interferometer Antenna in Stereo (ALIAS), our proposed extension to the ALIA mission, will go considerably further toward meeting ALIA's main scientific goal of studying intermedia...

  18. Mission Reliability Estimation for Repairable Robot Teams (United States)

    Trebi-Ollennu, Ashitey; Dolan, John; Stancliff, Stephen


    A mission reliability estimation method has been designed to translate mission requirements into choices of robot modules in order to configure a multi-robot team to have high reliability at minimal cost. In order to build cost-effective robot teams for long-term missions, one must be able to compare alternative design paradigms in a principled way by comparing the reliability of different robot models and robot team configurations. Core modules have been created including: a probabilistic module with reliability-cost characteristics, a method for combining the characteristics of multiple modules to determine an overall reliability-cost characteristic, and a method for the generation of legitimate module combinations based on mission specifications and the selection of the best of the resulting combinations from a cost-reliability standpoint. The developed methodology can be used to predict the probability of a mission being completed, given information about the components used to build the robots, as well as information about the mission tasks. In the research for this innovation, sample robot missions were examined and compared to the performance of robot teams with different numbers of robots and different numbers of spare components. Data that a mission designer would need was factored in, such as whether it would be better to have a spare robot versus an equivalent number of spare parts, or if mission cost can be reduced while maintaining reliability using spares. This analytical model was applied to an example robot mission, examining the cost-reliability tradeoffs among different team configurations. Particularly scrutinized were teams using either redundancy (spare robots) or repairability (spare components). Using conservative estimates of the cost-reliability relationship, results show that it is possible to significantly reduce the cost of a robotic mission by using cheaper, lower-reliability components and providing spares. This suggests that the

  19. Bids requested for Genesis Mission analytical facilities


    Burnett, Donald S.


    The Genesis Discovery mission, to be launched in January 2001, will expose ultrapure materials to the solar wind for about 2 years and then return this sample to Earth for isotopic and chemical analysis in terrestrial laboratories. Sample return missions use the best available instrumentation to achieve mission science goals. To complete the Genesis science objectives, advanced instrumentation that surpasses present laboratory sample analysis capabilities is required. Advanced Analytical ...

  20. Towards a graphical language for quadrotor missions


    Schwartz, Benjamin; Nägele, Ludwig; Angerer, Andreas; MacDonald, Bruce A.


    This paper presents an approach for defining Unmanned Aerial Vehicle (UAV) missions on a high level. Current methods for UAV mission specification are evaluated and their deficiencies are analyzed. From these findings, a new graphical specification language for UAV missions is proposed, which is targeted towards typical UAV users from various domains rather than computer science experts. The research is ongoing, but a first prototype is presented.

  1. GSFC Safety and Mission Assurance Organization (United States)

    Kelly, Michael P.


    This viewgraph presentation reviews NASA Goddard Space Flight Center's approach to safety and mission assurance. The contents include: 1) NASA GSFC Background; 2) Safety and Mission Assurance Directorate; 3) The Role of SMA-D and the Technical Authority; 4) GSFC Mission assurance Requirements; 5) GSFC Systems Review Office (SRO); 6) GSFC Supply Chain Management Program; and 7) GSFC ISO9001/AS9100 Status Brief.

  2. NASA Laboratory Analysis for Manned Exploration Missions (United States)

    Krihak, Michael K.; Shaw, Tianna E.


    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood-urine chemistry and biomolecular measurements in future space exploration missions.

  3. Rapid Automated Mission Planning System Project (United States)

    National Aeronautics and Space Administration — The proposed innovation is an automated UAS mission planning system that will rapidly identify emergency (contingency) landing sites, manage contingency routing,...

  4. Autolanding for Sample Return Missions Project (United States)

    National Aeronautics and Space Administration — Future NASA and commercial missions will increasingly target destinations with challenging topography and limited communication including unmapped asteroids,...

  5. Large Area X-Ray Spectroscopy Mission (United States)

    Tananbaum, H.


    The Large Area X-ray Spectroscopy (LAXS) mission concept study continues to evolve strongly following the merging of the LAXS mission with the Next Generation X-ray Observatory (NGXO, PI: Nick White) into the re-named High Throughput X-ray Spectroscopy (HTXS) Mission. HTXS retains key elements of the LAXS proposal, including the use of multiple satellites for risk-reduction and cost savings. A key achievement of the program has been the recommendation by the Structure and Evolution of the Universe (SEUS) (April 1997) for a new start for the HTXS mission in the 2000-2004 timeframe.

  6. [The mission of Princeton Plasma Physics Laboratory

    International Nuclear Information System (INIS)

    This report discusses the following about Princeton Plasma Physics Laboratory: its mission; requirements and guidance documents for the QA program; architecture; assessment organization; and specific management issues

  7. Lessons learned from IAEA fire safety missions

    International Nuclear Information System (INIS)

    The IAEA has conducted expert missions to evaluate fire safety at the following nuclear power plants: the Zaporozhe plant in the Ukraine, the Borselle plant in the Netherlands, the Medzamor plant in Armenia, the Karachi plant in Pakistan, the Temelin plant in the Czech Republic, and the Laguna Verde plant in Mexico. The scope of these missions varied in subject and depth. The teams sent from the IAEA consisted of external fire experts and IAEA staff. All the missions were of great use to the host countries. The participating experts also benefited significantly. A summary of the missions and their findings is given. (author)

  8. Cassini Solstice Mission Maneuver Experience: Year Two (United States)

    Arrieta, Juan; Ballard, Christopher G.; Hahn, Yungsun


    The Cassini Spacecraft was launched in October 1997 on a mission to observe Saturn and its moons; it entered orbit around Saturn in July 2004 for a nominal four-year Prime Mission, later augmented by two extensions: the Equinox Mission, from July 2008 through September 2010, and the Solstice Mission, from October 2010 through September 2017. This paper provides an overview of the maneuver activities from August 2011 through June 2012 which include the design of 38 Orbit Trim Maneuvers--OTM-288 through OTM-326-- for attaining 14 natural satellite encounters: seven with Titan, six with Enceladus, and one with Dione.

  9. Cassini Solstice Mission Maneuver Experience: Year One (United States)

    Wagner, Sean V.; Arrieta, Juan; Ballard, Christopher G.; Hahn, Yungsun; Stumpf, Paul W.; Valerino, Powtawche N.


    The Cassini-Huygens spacecraft began its four-year Prime Mission to study Saturn's system in July 2004. Two tour extensions followed: a two-year Equinox Mission beginning in July 2008 and a seven-year Solstice Mission starting in September 2010. This paper highlights Cassini maneuver activities from June 2010 through June 2011, covering the transition from the Equinox to Solstice Mission. This interval included 38 scheduled maneuvers, nine targeted Titan flybys, three targeted Enceladus flybys, and one close Rhea flyby. In addition, beyond the demanding nominal navigation schedule, numerous unforeseen challenges further complicated maneuver operations. These challenges will be discussed in detail.

  10. ESPA for Lunar and Science Missions Project (United States)

    National Aeronautics and Space Administration — NASA mission planning in the next decade includes small spacecraft and secondary flight opportunities on Evolved Expendable Launch Vehicles (EELVs), specifically...

  11. Sustainable, Reliable Mission-Systems Architecture (United States)

    O'Neil, Graham; Orr, James K.; Watson, Steve


    A mission-systems architecture, based on a highly modular infrastructure utilizing: open-standards hardware and software interfaces as the enabling technology is essential for affordable and sustainable space exploration programs. This mission-systems architecture requires (a) robust communication between heterogeneous system, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered system are applied to define the model. Technology projections reaching out 5 years are mde to refine model details.

  12. Tank waste remediation system (TWRS) mission analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rieck, R.H.


    The Tank Waste Remediation System Mission Analysis provides program level requirements and identifies system boundaries and interfaces. Measures of success appropriate to program level accomplishments are also identified.

  13. SLS launched missions concept studies for LUVOIR mission (United States)

    Stahl, H. Philip; Hopkins, Randall C.


    NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. The multi-center ATLAST Team is working to meet these needs. The MSFC Team is examining potential concepts that leverage the advantages of the SLS (Space Launch System). A key challenge is how to affordably get a large telescope into space. The JWST design was severely constrained by the mass and volume capacities of its launch vehicle. This problem is solved by using an SLS Block II-B rocket with its 10-m diameter x 30-m tall fairing and estimated 45 mt payload to SE-L2. Previously, two development study cycles produced a detailed concept called ATLAST-8. Using ATLAST-8 as a point of departure, this paper reports on a new ATLAST-12 concept. ATLAST-12 is a 12-m class segmented aperture LUVOIR with an 8-m class center segment. Thus, ATLAST-8 is now a de-scope option.

  14. Composable Mission Framework for Rapid End-to-End Mission Design and Simulation Project (United States)

    National Aeronautics and Space Administration — The innovation proposed here is the Composable Mission Framework (CMF)?a model-based software framework that shall enable seamless continuity of mission design and...

  15. A university-based distributed satellite mission control network for operating professional space missions (United States)

    Kitts, Christopher; Rasay, Mike


    For more than a decade, Santa Clara University's Robotic Systems Laboratory has operated a unique, distributed, internet-based command and control network for providing professional satellite mission control services for a variety of government and industry space missions. The system has been developed and is operated by students who become critical members of the mission teams throughout the development, test, and on-orbit phases of these missions. The mission control system also supports research in satellite control technology and hands-on student aerospace education. This system serves as a benchmark for its comprehensive nature, its student-centric nature, its ability to support NASA and industry space missions, and its longevity in providing a consistent level of professional services. This paper highlights the unique features of this program, reviews the network's design and the supported spacecraft missions, and describes the critical programmatic features of the program that support the control of professional space missions.

  16. International Task Force on Volunteer Cleft Missions. (United States)

    Yeow, Vincent K L; Lee, Seng-Teik T; Lambrecht, Thomas J; Barnett, John; Gorney, Mark; Hardjowasito, Widanto; Lemperle, Gottfried; McComb, Harold; Natsume, Nagato; Stranc, Mirek; Wilson, Libby


    The International Task Force on Volunteer Cleft Missions was set up to provide a report to be presented at the Eighth International Congress of Cleft Palate and Associated Craniofacial Anomalies on September 12, 1997, in Singapore. The aim of the report was to provide data from a wide range of different international teams performing volunteer cleft missions and, thereafter, based on the collected data, to identify common goals and aims of such missions. Thirteen different groups actively participating in volunteer cleft missions worldwide were selected from the International Confederation of Plastic and Reconstructive Surgery's list of teams actively participating in volunteer cleft missions. Because of the time frame within which the committee had to work, three groups that did not respond by the stipulated deadline were omitted from the committee. The represented members and their respective institutions have undertaken more than 50 volunteer cleft missions to underdeveloped nations worldwide within the last 3 years. They have visited over 20 different countries, treating more than 3,500 patients worldwide. Based on the data collected and by consensus, the committee outlined recommendations for future volunteer cleft missions based on 1) mission objectives, 2) organization, 3) personal health and liability, 4) funding, 5) trainees in volunteer cleft missions, and 6) public relations. The task force believed that all volunteer cleft missions should have well-defined objectives, preferably with long-term plans. The task force also decided that it was impossible to achieve a successful mission without good organization and close coordination. All efforts should be made, and care taken, to ensure that there is minimal morbidity and no mortality. Finally, as ambassadors of goodwill and humanitarian aid, the participants must make every effort to understand and respect local customs and protocol. The main aims are to provide top-quality surgical service, train local

  17. Prospective Ukrainian lunar orbiter mission (United States)

    Shkuratov, Y.; Litvinenko, L.; Shulga, V.; Yatskiv, Y.; Kislyuk, V.

    Ukraine has launch vehicles that are able to deliver about 300 kg to the lunar orbit. Future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after Clementine and Lunar Prospector missions and the future missions, like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical polarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface in a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are: a synthetic aperture imaging radar (SAR), ground-penetrating radar (GPR), and imaging polarimeter (IP). The main purpose of SAR is to study with high resolution (50 m) the permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential of resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for permanent manned bases on the Moon. Radar imaging and mapping of other interesting regions could be also planned. Multi-frequencies multi-polarization soun d ing of the lunar surface with GPR can provide information about internal structure of the lunar surface from meters to several hundred meters deep. GPR can be used for measuring the megaregolith layer properties, detection of cryptomaria, and studies of internal structure of the largest craters. IP will be a CCD camera with an additional suite of polarizers. Modest spatial resolution (100 m) should provide a total coverage or a large portion of the lunar surface in oblique viewing basically at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional radiophysical experiments are considered with the use of the SAR system, e.g., bistatic radar

  18. BRRISON Mission Design and Development (United States)

    O'Malley, Terence; Kremic, T.; Adams, D.; Arnold, S.; Cheng, A.


    In September 2012, the comet C/2012 S1 “ISON” was discovered by Russian amateur astronomers. A team consisting of personnel from Glenn Research Center (GRC) Space Science Project Office, the Johns Hopkins University Applied Physics Lab (APL), and the Southwest Research Institute (SWRI) was established to identify the science return on a high altitude balloon mission to observe ISON, and develop a plan based on re-using most of the hardware from the Stratospheric Terahertz Observatory (STO). The team determined that measuring the comet’s H20/CO2 ratio with an infra-red Camera would be a high-value and unique scientific contribution of a balloon borne payload. The BRRISON scientific payload consists of a heritage 80-cm telescope, a near-ultraviolet visible optical bench and instruments, and an infrared optical bench and instruments. The telescope, which has flown on prior balloon missions, consists of a light-weighted f/1.5 hyperboloid 80 cm diameter primary and a secondary mirror to provide an f/17 beam. The near ultra-violet and visible cameras and associated instruments are being integrated to an optics bench by SwRI. These instruments consist of a fine steering mirror (FSM) and a CMOS high rate camera to provide sub-arcsec pointing, and a CCD camera for low noise science operation, and a dichroic for splitting the f/17 beam between the two cameras. The infrared optics bench and instruments consist of an optics bench, re-imaging optics and cold stop, filter wheel and filters, and an infrared camera that is sensitive over the required wavelengths of 2.5 - 5 microns. The IR optics bench and instruments will be enclosed in an aluminum housing, which will be cooled to reduce the thermal background contribution to the IR signal. The BRRISON gondola is composed of a metal frame that carries and protects the science payload and subsystems and is the structural interface with the balloon flight train. They are composed of a Command & Control system, a Pointing

  19. 78 FR 4135 - Programmatic Environmental Impact Statement for the Training Mission and Mission Support... (United States)


    ... to Mr. Gene Zirkle, NEPA/ Wildlife Program Manager, Environmental Division, Building 2159 13th Street... Department of the Army Programmatic Environmental Impact Statement for the Training Mission and Mission... Statement (PEIS) to evaluate the impacts of current and future training and mission-related activities...

  20. Evaluating Mission Drift in Microfinance: Lessons for Programs with Social Mission (United States)

    Hishigsuren, Gaamaa


    The article contributes to a better understanding of implications of scaling up on the social mission of microfinance programs. It proposes a methodology to measure the extent, if any, to which a microfinance program with a poverty alleviation mission drifts away from its mission during rapid scaling up and presents findings from a field research…

  1. Evolution of Orion Mission Design for Exploration Mission 1 and 2 (United States)

    Gutkowski, Jeffrey P.; Dawn, Timothy F.; Jedrey, Richard M.


    The evolving mission design and concepts of NASA’s next steps have shaped Orion into the spacecraft that it is today. Since the initial inception of Orion, through the Constellation Program, and now in the Exploration Mission frame-work with the Space Launch System (SLS), each mission design concept and pro-gram goal have left Orion with a set of capabilities that can be utilized in many different mission types. Exploration Missions 1 and 2 (EM-1 and EM-2) have now been at the forefront of the mission design focus for the last several years. During that time, different Design Reference Missions (DRMs) were built, analyzed, and modified to solve or mitigate enterprise level design trades to ensure a viable mission from launch to landing. The resulting DRMs for EM-1 and EM-2 were then expanded into multi-year trajectory scans to characterize vehicle performance as affected by variations in Earth-Moon geometry. This provides Orion’s subsystems with stressing reference trajectories to help design their system. Now that Orion has progressed through the Preliminary and Critical Design Reviews (PDR and CDR), there is a general shift in the focus of mission design from aiding the vehicle design to providing mission specific products needed for pre-flight and real time operations. Some of the mission specific products needed include, large quantities of nominal trajectories for multiple monthly launch periods and abort options at any point in the mission for each valid trajectory in the launch window.

  2. A Computer System for Mission Managers (United States)

    Tolchin, Robert; Achar, Sathy; Yang, Tina; Lee, Tom


    Mission Managers' Workstation (MMW) is personal-computer-based system providing data management and reporting functions to assist Space Shuttle mission managers. Allows to relate events and stored data in timely and organized fashion. Using MMW, standard reports formatted, generated, edited, and electronically communicated with minimum clerical help. Written in PASCAL, BASIC, and assembler.

  3. Mars Telecom Orbiter mission operations concepts (United States)

    Deutsch, Marie-Jose; Komarek, Tom; Lopez, Saturnino; Townes, Steve; Synnott, Steve; Austin, Richard; Guinn, Joe; Varghese, Phil; Edwards, Bernard; Bondurant, Roy; De Paula, Ramon


    The Mars Telecom Orbiter (MTO) relay capability enables next decadal missions at Mars, collecting gigabits of data a day to be relayed back at speeds exceeding 4 Mbps and it facilitates small missions whose limited resources do not permit them to have a direct link to Earth.

  4. Multi-mission telecom analysis tool (United States)

    Hanks, D.; Kordon, M.; Baker, J.


    In the early formulation phase of a mission it is critically important to have fast, easy to use, easy to integrate space vehicle subsystem analysis tools so that engineers can rapidly perform trade studies not only by themselves but in coordination with other subsystem engineers as well. The Multi-Mission Telecom Analysis Tool (MMTAT) is designed for just this purpose.

  5. Mission management for unmanned aircraft systems


    Valenzuela Arroyo, Marta


    The goal of this project is to design and implement a mission manager for unmanned aircraft systems. The mission manager will work under the USAL architecture designed by the ICARUS UAV group at the EPSC. The student will be able to learn programming skills, working with a group, and research.

  6. Tank waste remediation system mission analysis report

    International Nuclear Information System (INIS)

    The Tank Waste Remediation System Mission Analysis Report identifies the initial states of the system and the desired final states of the system. The Mission Analysis Report identifies target measures of success appropriate to program-level accomplishments. It also identifies program-level requirements and major system boundaries and interfaces

  7. Radiation Hardness Assurance (RHA) for Small Missions (United States)

    Campola, Michael J.


    Varied mission life and complexity is growing for small spacecraft. Small missions benefit from detailed hazard definition and evaluation as done in the past. Requirements need to flow from the system down to the parts level and aid system level radiation tolerance. RHA is highlighted with increasing COTS usage.

  8. Applications of nuclear propulsion to Mars missions (United States)

    Rosen, Robert; Reck, Gregory M.; Bennett, Gary L.


    The basic features of a piloted mission to Mars is described, and it is shown how nuclear propulsion can improve upon the various performance measures of such a mission. An overview of the history and types of nuclear propulsion in the U.S. is presented. Current planning to develop nuclear propulsion technology for the Space Exploration Initiative is addressed.

  9. Basic radio interferometry for future lunar missions

    NARCIS (Netherlands)

    Aminaei, Amin; Klein Wolt, Marc; Chen, Linjie; Bronzwaer, Thomas; Pourshaghaghi, Hamid Reza; Bentum, Mark J.; Falcke, Heino


    In light of presently considered lunar missions, we investigate the feasibility of the basic radio interferometry (RIF) for lunar missions. We discuss the deployment of two-element radio interferometer on the Moon surface. With the first antenna element is envisaged to be placed on the lunar lander,

  10. Mission Accretion in the California Community Colleges. (United States)

    Gaskin, Lori L.

    This study examines mission accretion, or the process by which the mission of the community college has broadened over time, in California's community colleges. The historical community college emphasis on transfer, occupational and remedial education, and community service has expanded to include the nontraditional educational initiatives of…

  11. Solar Power for Future NASA Missions (United States)

    Bailey, Sheila G.; Landis, Geoffrey A.


    An overview of NASA missions and technology development efforts are discussed. Future spacecraft will need higher power, higher voltage, and much lower cost solar arrays to enable a variety of missions. One application driving development of these future arrays is solar electric propulsion.

  12. Challenges and trends in global healthcare missions. (United States)

    Tazelaar, Grace


    Changes in travel, communications, and technology are impacting how the ministry of healthcare missions is being implemented around the globe. This article discusses five emerging trends in healthcare missions, offering rationale for each and a vision for bringing health and healing among all peoples of the world. PMID:21853716

  13. Electrodynamic Tethers for Novel LEO Missions (United States)

    Kantner, Michael; Hoyt, Robert; Scardera, Michael; Johnson, Charles


    The exponential increase of launch system size - and cost - with deltaV makes missions requiring large total impulse cost prohibitive. Northrop Grumman and partners have matured a fundamentally different method for generating propulsion using electrodynamic tethers (EDTs) that escapes the limitations of the rocket equation. With essentially unlimited delta V, we can perform new classes of missions that are currently unaffordable or unfeasible.

  14. NASA's Missions for Exoplanet Exploration (United States)

    Unwin, Stephen


    Exoplanets are detected and characterized using a range of observational techniques - including direct imaging, astrometry, transits, microlensing, and radial velocities. Each technique illuminates a different aspect of exoplanet properties and statistics. This diversity of approach has contributed to the rapid growth of the field into a major research area in only two decades. In parallel with exoplanet observations, major efforts are now underway to interpret the physical and atmospheric properties of exoplanets for which spectroscopy is now possible. In addition, comparative planetology probes questions of interest to both exoplanets and solar system studies. In this talk I describe NASA's activities in exoplanet research, and discuss plans for near-future missions that have reflected-light spectroscopy as a key goal. The WFIRST-AFTA concept currently under active study includes a major microlensing survey, and now includes a visible light coronagraph for exoplanet spectroscopy and debris disk imaging. Two NASA-selected community-led teams are studying probe-scale (important targets with transit spectroscopy on JWST), and build on the work of ground-based instruments such as LBTI and observing with HIRES on Keck. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2014. California Institute of Technology. Government sponsorship acknowledged.

  15. NICER: Mission Overview and Status (United States)

    Arzoumanian, Zaven; Gendreau, Keith C.


    NASA's Neutron star Interior Composition Explorer (NICER) mission will explore the structure, dynamics, and energetics of neutron stars through soft X-ray (0.2-12 keV) timing and spectroscopy. An external attached payload on the International Space Station (ISS), NICER is manifested on the Commercial Resupply Services SpaceX-11 flight, with launch scheduled for late 2016. The NICER payload is currently in final integration and environmental testing. Ground calibration has provided robust performance measures of the optical and detector subsystems, demonstrating that the instrument meets or surpasses its effective area, timing resolution, energy resolution, etc., requirements. We briefly describe the NICER hardware, its continuing testing, operations and environment on ISS, and the objectives of NICER's prime mission—including precise radius measurements for a handful of neutron stars to constrain the equation of state of cold, ultra-dense matter. Other contributions at this meeting address specific scientific investigations that are enabled by NICER, for neutron stars in their diverse manifestations as well as for broader X-ray astrophysics through a brief, approved Guest Observer program beginning in 2018.

  16. ORION: A Supersynchronous Transfer Orbit mission (United States)

    Walters, I. M.; Baker, J. F.; Shurmer, I. M.


    ORION F1 was launched on 29th November 1994 on an Atlas IIA launch vehicle. It was designed, built and delivered in-orbit by Matra Marconi Space Systems Plc and was handed over to ORION Satellite Corporation on 20th January 1995 at its on-station longitude of 37.5 deg W. The mission differed significantly from that of any other geostationary communications satellite in that the Transfer Orbit apogee altitude of 123,507 km was over three times geosynchronous (GEO) altitude and one third of the way to the moon. The SuperSynchronous Transfer Orbit (SSTO) mission is significantly different from the standard Geostationary Transfer Orbit (GTO)mission in a number of ways. This paper discusses the essential features of the mission design through its evolution since 1987 and the details of the highly successful mission itself including a detailed account of the attitude determination achieved using the Galileo Earth and Sun Sensor (ESS).

  17. Analyzing the designs of planet finding missions

    CERN Document Server

    Savransky, D; Cady, E


    We present an extended framework for the analysis of direct detection planet finding missions using space telescopes. We describe the components of a design reference mission (DRM), including the complete description of an arbitrary planetary system, the description of a planet finding instrument, and the modeling of an observation at an arbitrary time. These components are coupled with a decision modeling algorithm, which allows us to automatically generate DRMs with simple mission rules that lead to an optimized science yield. This automated DRM generation is then employed to perform a Monte Carlo analysis to produce the distribution of science deliverables and costs for a mission concept. Along with the details of our implementation of this algorithm, we discuss validation techniques and possible future refinements. We apply this analysis technique to three mission concepts: an internal pupil mapping coronagraph, an external occulter, and the THEIA XPC concept (also an occulter based design). The focus of ...

  18. ORION: A Supersynchronous Transfer Orbit mission (United States)

    Walters, I. M.; Baker, J. F.; Shurmer, I. M.


    ORION F1 was launched on 29th November 1994 on an Atlas IIA launch vehicle. It was designed, built and delivered in-orbit by Matra Marconi Space Systems Plc and was handed over to ORION Satellite Corporation on 20th January 1995 at its on-station longitude of 37.5 deg W. The mission differed significantly from that of any other geostationary communications satellite in that the Transfer Orbit apogee altitude of 123,507 km was over three times geosynchronous (GEO) altitude and one third of the way to the moon. The SuperSynchronous Transfer Orbit (SSTO) mission is significantly different from the standard Geostationary Transfer Orbit (GTO)mission in a number of ways. This paper discusses the essential features of the mission design through its evolution since 1987 and the details of the highly successful mission itself including a detailed account of the attitude determination achieved using the Galileo Earth and Sun Sensor (ESS).

  19. The Method of Mission Oriented Maintenance

    Institute of Scientific and Technical Information of China (English)


    In a real application, equipment in good condition sometimes have to be repairedbecause the equipment does not satisfy the requirements of the mission; However, it is notnecessary to repair some equipment with failures because the failures do not affect the mission completion. In these cases, maintenance activity guided by present maintenance methodsmay sometimes affect the mission completion in time or bring about extra maintenance. To overcome the shortage of present maintenance methods, we propose an idea and method of missionoriented maintenance (MOM) to deal with the maintenance policy on these kinds of problems. This method can work out different maintenance policies corresponding to differentmissions with full consideration of missions and mission requirements for the equipment.

  20. Mission applications for advanced photovoltaic solar arrays

    International Nuclear Information System (INIS)

    The compatibility of the advanced photovoltaic solar array (APSA) for future space missions was examined by considering the impact on the spacecraft system in general. The lightweight flexible blanket array system (> 130 w/kG) was compared to rigid arrays and an RTG (radio-isotope thermoelectric generator) static power source for a wide range of assumed future Earth orbiting and interplanetary mission applications. The study approach was to establish assessment criteria and a rating scheme, identify a reference mission set, perform the power system assessment for each mission, and develop conclusions and recommendations to guide future APSA technology development. This paper discusses the three selected power sources, the assessment criteria and rating definitions, the reference missions, and presents the assessment results in a tabular format

  1. The Economics of NASA Mission Cost Reserves (United States)

    Whitley, Sally; Shinn, Stephen


    Increases in NASA mission costs have led to analysis of the causes and magnitude of historical mission overruns as well as mitigation and prevention attempts. This paper hypothesizes that one cause is that the availability of reserves may reduce incentives to control costs. We draw a comparison to the insurance concept of moral hazard, and we use actuarial techniques to better understand the increase in mission costs due to the availability of reserves. NASA's CADRe database provided the data against which we tested our hypothesis and discovered that there is correlation between the amount of available reserves and project overruns, particularly for mission hardware cost increases. We address the question of how to prevent reserves from increasing mission spending without increasing cost risk to projects.

  2. Concepts For An EO Land Convoy Mission (United States)

    Cutter, M. A.; Eves, S.; Remedios, J.; Humpage, N.; Hall, D.; Regan, A.


    ESA are undertaking three studies investigating possible synergistic satellite missions flying in formation with the operational Copernicus Sentinel missions and/or the METOP satellites. These three studies are focussed on:- a) ocean and ice b) land c) atmosphere Surrey Satellite Technology Ltd (SSTL), the University of Leicester and Astrium Ltd are undertaking the second of these studies into the synergetic observation by missions flying in formation with European operational missions, focusing on the land theme. The aim of the study is to identify and develop, (through systematic analysis), potential innovative Earth science objectives and novel applications and services that could be made possible by flying additional satellites, (possibly of small-class type), in constellation or formation with one or more already deployed or firmly planned European operational missions, with an emphasis on the Sentinel missions, but without excluding other possibilities. In the long-term, the project aims at stimulating the development of novel, (smaller), mission concepts in Europe that may exploit new and existing European operational capacity in order to address in a cost effective manner new scientific objectives and applications. One possible route of exploitation would be via the proposed Small Mission Initiative (SMI) that may be initiated under the ESA Earth Explorer Observation Programme (EOEP). The following ESA science priority areas have been highlighted during the study [1]:- - The water cycle - The carbon cycle - Terrestrial ecosystems - Biodiversity - Land use and land use cover - Human population dynamics The study team have identified the science gaps that might be addressed by a "convoy" mission flying with the Copernicus Sentinel satellites, identified the candidate mission concepts and provided recommendations regarding the most promising concepts from a list of candidates. These recommendations provided the basis of a selection process performed by ESA

  3. Full Mission Astronaut Radiation Exposure Assessments for Long Duration Lunar Surface Missions (United States)

    Adamczyk, Anne; Clowdsley, Martha; Qualls, Garry; Blattnig, Steve; Lee, Kerry; Fry, Dan; Stoffle, Nicholas; Simonsen, Lisa; Slaba, Tony; Walker, Steven; Zapp, Edward


    Risk to astronauts due to ionizing radiation exposure is a primary concern for missions beyond Low Earth Orbit (LEO) and will drive mission architecture requirements, mission timelines, and operational practices. For short missions, radiation risk is dominated by the possibility of a large Solar Particle Event (SPE). Longer duration missions have both SPE and Galactic Cosmic Ray (GCR) risks. SPE exposure can contribute significantly toward cancer induction in combination with GCR. As mission duration increases, mitigation strategies must address the combined risks from SPE and GCR exposure. In this paper, full mission exposure assessments were performed for the proposed long duration lunar surface mission scenarios. In order to accomplish these assessments, previously developed radiation shielding models for a proposed lunar habitat and rover were utilized. End-to-End mission exposure assessments were performed by first calculating exposure rates for locations in the habitat, rover, and during Extra-Vehicular Activities (EVA). Subsequently, total mission exposures were evaluated for the proposed timelines. Mission exposure results, assessed in terms of effective dose, are presented for the proposed timelines and recommendations are made for improved astronaut shielding and safer operational practices.

  4. Hospital mission and cost differences. (United States)

    Sorrentino, E A


    The results show no significant differences on average length of stay, cost per patient day, or cost per admission among non-profit, government, and for-profit hospitals when controlling for bed capacities, occupancy rates, number of Medicare/Medicaid days, and hospitals without nurseries. For-profit hospital manhours per patient day were significantly lower than non-profit and government hospitals. This is an important finding because patient-care delivery is labor-intensive. A majority of for-profit hospitals do not have nurseries, which means that they should have more manhours per patient day. As indicated earlier, the manhours for hospitals with nurseries are higher than those for hospitals without nurseries. This indicates cost-cutting behavior on the part of a majority of for-profit hospitals. This method of limiting expenditures by decreasing labor costs associated with certain services is consistent with profit-maximization. The findings of this study with regard to cost differences among non-profit and for-profit hospitals contradict previous research. However, a recent study by Kralewski, Gifford and Porter (1988) noted that whereas ownership, when considered alone, differentiates hospitals, when evaluated within each community, most of the investor-owned and non-for-profit hospital differences disappear. Similar questions have been raised as to whether non-profit hospitals truly differ from for-profit hospitals (Pauly 1987). Caution needs to be exercised in attempting to extrapolate the findings of this study, because of the dynamic health care environment. Hospital ownership changes over time, reimbursement rules affect behavior, and internal factors in organizational operation affect outcomes. These should be considered in future studies exploring organizational mission and cost differences. PMID:10293600

  5. Astronaut Clothing for Exploration Missions (United States)

    Poritz, Darwin H.; Orndoff, Evelyne; Kaspranskiy, Rustem R.; Schesinger, Thilini; Byrne, Vicky


    Astronaut clothes for exploration missions beyond low Earth orbit need to satisfy several challenges not met by the currently-used mostly-cotton clothing. A laundering system is not expected to be available, and thus soiled garments must be trashed. Jettisoning waste does not seem feasible at this time. The cabin oxygen concentration is expected to be higher than standard, and thus fabrics must better resist ignition and burning. Fabrics need to be identified that reduce logistical mass, that can be worn longer before disposal, that are at least as comfortable as cotton, and that resist ignition or that char immediately after ignition. Human factors and psychology indicate that crew well-being and morale require a variety of colors and styles to accommodate personal identity and preferences. Over the past four years, the Logistics Reduction Project under NASA's Advanced Exploration Systems Program has sponsored the Advanced Clothing System Task to conduct several ground studies and one ISS study. These studies have evaluated length of wear and personal preferences of commercially-available exercise- and routine-wear garments made from several fabrics (cotton, polyester, Merino wool, and modacrylic), woven and knitted. Note that Merino wool and modacrylic char like cotton in ambient air, while polyester unacceptably melts. This paper focuses on the two components of an International Space Station study, onboard and on the ground, with astronauts and cosmonauts. Fabrics were randomized to participants. Length of wear was assessed by statistical survival analysis, and preference by exact binomial confidence limits. Merino wool and modacrylic t-shirts were worn longer on average than polyester t-shirts. Interestingly, self-assessed preferences were inconsistent with length-of-wear behavior, as polyester was preferred to Merino wool and modacrylic.

  6. The Pascal Mars Scout Mission (United States)

    Haberle, R. M.; Fonda, Mark (Technical Monitor)


    Except for Earth, Mars is the planet most amenable to surface-based climate studies. Its surface is accessible, and the kind of observations that are needed, such as meteorological measurements from a long-lived global network, are readily achievable. Weather controls the movement of dust, the exchange of water between the surface and atmosphere, and the cycling of CO2 between the poles. We know there is a weather signal, we know how to measure it, and we know how to interpret it. Pascal seeks to understand the long-term global behavior of near-surface weather systems on Mars, how they interact with its surface, and, therefore, how they control its climate system. To achieve this, Pascal delivers 18 Science Stations to the surface of the planet that operate for three Mars years (5.6 Earth years). The network has stations operating in the tropics, midlatitudes, and polar regions of both hemispheres. During entry, descent, and landing, each Pascal probe acquires deceleration measurements to determine thermal structure, and descent images to characterize local terrain. On the surface, each Science Station takes daily measurements of pressure, opacity, temperature, wind speed, and water vapor concentration and monthly panoramic images of the landing environment. These data will characterize the planet's climate system and how atmosphere-surface interactions control it. The Pascal mission is named after 17th century French Scientist, Blaise Pascal, who pioneered measurements of atmospheric pressure. Pressure is the most critical measurement because it records the "heartbeat" of the planet's general circulation and climate system.


    Directory of Open Access Journals (Sweden)



    Full Text Available The mission is generic expression of reason for the existence of an organization. Organizational mission ensure continuity of existence beyond the objectives and targets of activities. It is the expression of an organization's responsibilities towards the environment in which it belongs. As the organization grows and its activities or environmental conditions change, managers adapt their strategies, but stated mission will remain valid for a period of time or unchanged throughout the life of the organization. All managerial elements of the organization are aligned with stated mission, starting from the organization structure, management behavior or specific business processes. The focus of the mission of an higher education institution on a need or several integrated needs, on customers who manifest this need and on how they can be met, that really means defining of its strategic domanin, as a sphere of influence of the organization in their environment. In this sphere of influence, three components integrate on three levels of the mission: to establish needs; identify the customer type to which an organization adress and key competencies that differentiate it from the rest competitors. To that context identifies four specific forms of academic institutions starting from their mission and strategic area: autocratic academic institutions, meritocrate academic institutions, democratic academic institutions, bureaucrats academic institutions.

  8. The Alfvén mission concept (United States)

    Berthomier, M.; Fazakerley, A. N.


    The Alfvén mission is a candidate to the 2014 ESA Call for M-class science missions. Its main scientific objective is to elucidate the universal physical processes at work in the Auroral Acceleration Region (AAR). The AAR is a unique laboratory for investigating strongly magnetized plasmas at an interface where ideal magneto-hydrodynamics does not apply. The Alfvén mission will investigate fundamental and multi-scale physical processes that govern what Nobel Prize laureate Hannes Alfvén named the Plasma Universe. The mission concept is designed to teach us where and how the particles that create the aurorae are accelerated, how they emit radiation, and to elucidate the ion heating and outflow processes which are slowly removing the Earth's atmosphere. The only way to distinguish between the models describing acceleration processes at the heart of Magnetosphere-Ionosphere (MI) coupling is to combine high-time resolution in situ measurements (as pioneered by the FAST mission), multi-point measurements (as pioneered by CLUSTER), and auroral arc imaging in one mission. Taking advantage of the existing dense network of ground based observatories the Alfvén mission will also allow a major breakthrough in our understanding of solar terrestrial relationships by providing key experimental measurements to large scale models of MI electrodynamics.

  9. Lofty missions, down-to-earth plans. (United States)

    Rangan, V Kasturi


    Most nonprofits make program decisions based on a mission rather than a strategy. They rally under the banner of a particular cause, be it "fight homelessness" or "end hunger." And since their causes are so worthwhile, they support any programs that are related--even tangentially--to their core missions. It's hard to fault people for trying to improve the state of the world, but that approach to making decisions is misguided. Acting without a clear long-term strategy can stretch an agency's core capabilities and push it in unintended directions. The fundamental problem is that many nonprofits don't have a strategy; instead, they have a mission and a portfolio of programs. But they hardly make deliberate decisions about which programs to run, which to drop, and which to turn down for funding. What most nonprofits call "strategy" is really just an intensive exercise in resource allocation and program management. This article outlines for nonprofits a four-step process for developing strategy. The first step is to create a broad, inspiring mission statement. The second step is to translate that core mission into a smaller, quantifiable operational mission. For instance, an agency whose core mission is to fight homelessness must decide if its focus is rural or urban and if it should concentrate on low-income housing loans or on establishing more shelters. The third step is to create a strategy platform; that is, the nonprofit decides how it will achieve its operational mission. Decisions about funding and about client, program, and organizational development are all made here. Once that platform is established, the nonprofit is ready to move to step four--making reasoned, strategic decisions about which programs to run and how to run them. The agency that follows these steps will improve its focus and its effectiveness at fulfilling its mission. PMID:15029795


    Directory of Open Access Journals (Sweden)

    Glen Segell


    Full Text Available NATO answered a call for assistance from the African Union (AU in theirAMIS mission in the Darfur region of Sudan in April 2005, providing airlift andtraining in conjunction with the European Union until the end of the mission inDecember 2007. This was the first time that NATO entertained a task on the Africancontinent. NATO undertook the mission on humanitarian grounds without invokingany treaty and without any member state’s security being under any direct threat.This was a milestone in NATO’s history, and it provides a case to understandingregional alliances, regionalism and the development of trans-regionalism.

  11. Training Concept for Long Duration Space Mission (United States)

    O'Keefe, William


    There has been papers about maintenance and psychological training for Long Duration Space Mission (LDSM). There are papers on the technology needed for LDSMs. Few are looking at how groundbased pre-mission training and on-board in-transit training must be melded into one training concept that leverages this technology. Even more importantly, fewer are looking at how we can certify crews pre-mission. This certification must ensure, before the crew launches, that they can handle any problem using on-board assets without a large ground support team.

  12. Tropical Rainfall Measurement Mission (TRMM) Operation Summary (United States)

    Nio, Tomomi; Saito, Susumu; Stocker, Erich; Pawloski, James H.; Murayama, Yoshifumi; Ohata, Takeshi


    The Tropical Rainfall Measurement Mission (TRMM) is a joint U.S. and Japan mission to observe tropical rainfall, which was launched by H-II No. 6 from Tanegashima in Japan at 6:27 JST on November 28, 1997. After the two-month commissioning of TRMM satellite and instruments, the original nominal mission lifetime was three years. In fact, the operations has continued for approximately 17.5 years. This paper provides a summary of the long term operations of TRMM.

  13. Cassini Solstice Mission Maneuver Experience: Year Three (United States)

    Wagner, Sean V.; Arrieta, Juan; Hahn, Yungsun; Stumpf, Paul W.; Valerino, Powtawche N.; Wong, Mau C.


    The Solstice Mission is the final extension of the Cassini spacecraft s tour of Saturn and its moons. To accommodate an end-of-mission in 2017, the maneuver decision process has been refined. For example, the Cassini Project now prioritizes saving propellant over minimizing maneuver cycles. This paper highlights 30 maneuvers planned from June 2012 through July 2013, targeted to nine Titan flybys and the final Rhea encounter in the mission. Of these maneuvers, 90% were performed to maintain the prescribed trajectory and preserve downstream delta V. Recent operational changes to maneuver executions based on execution-error modeling and analysis are also discussed.

  14. Deep Space 2: The Mars Microprobe Mission


    Smrekar, Suzanne; Catling, David; Lorenz, Ralph; Magalhães, Julio; Moersch, Jeffrey; Morgan, Paul; Murray, Bruce; Presley, Marsha; Yen, Albert; Zent, Aaron; Blaney, Diana


    The Mars Microprobe Mission will be the second of the New Millennium Program's technology development missions to planetary bodies. The mission consists of two penetrators that weigh 2.4 kg each and are being carried as a piggyback payload on the Mars Polar Lander cruise ring. The spacecraft arrive at Mars on December 3, 1999. The two identical penetrators will impact the surface at ∼190 m/s and penetrate up to 0.6 m. They will land within 1 to 10 km of each other and ∼50 km from the Polar La...

  15. Integrated Network Architecture for NASA's Orion Missions (United States)

    Bhasin, Kul B.; Hayden, Jeffrey L.; Sartwell, Thomas; Miller, Ronald A.; Hudiburg, John J.


    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. The series of missions will begin with a new crew exploration vehicle (called Orion) that will initially provide crew exchange and cargo supply support to the International Space Station (ISS) and then become a human conveyance for travel to the Moon. The Orion vehicle will be mounted atop the Ares I launch vehicle for a series of pre-launch tests and then launched and inserted into low Earth orbit (LEO) for crew exchange missions to the ISS. The Orion and Ares I comprise the initial vehicles in the Constellation system of systems that later includes Ares V, Earth departure stage, lunar lander, and other lunar surface systems for the lunar exploration missions. These key systems will enable the lunar surface exploration missions to be initiated in 2018. The complexity of the Constellation system of systems and missions will require a communication and navigation infrastructure to provide low and high rate forward and return communication services, tracking services, and ground network services. The infrastructure must provide robust, reliable, safe, sustainable, and autonomous operations at minimum cost while maximizing the exploration capabilities and science return. The infrastructure will be based on a network of networks architecture that will integrate NASA legacy communication, modified elements, and navigation systems. New networks will be added to extend communication, navigation, and timing services for the Moon missions. Internet protocol (IP) and network management systems within the networks will enable interoperability throughout the Constellation system of systems. An integrated network architecture has developed based on the emerging Constellation requirements for Orion missions. The architecture, as presented in this paper, addresses the early Orion missions to the ISS with communication, navigation, and network services over five

  16. Design of an Extended Mission for GRAIL (United States)

    Sweetser, Theodore H.; Wallace, Mark S.; Hatch, Sara J.; Roncoli, Ralph B.


    The GRAIL extended mission will extend the measurement of the lunar gravity field beyond what was achieved by the primary GRAIL mission this past spring (2012). By lowering the orbits of the two GRAIL spacecraft to less than half the altitude of the primary mission orbits on average, the resolution of the gravity field measurements will be improved by a factor of two, yielding a signicant improvement in our knowledge of the structure of the upper crust of the Moon. The challenges of flying so low and the design which will meet those challenges is presented here.

  17. Autonomy requirements engineering for space missions

    CERN Document Server

    Vassev, Emil


    Advanced space exploration is performed by unmanned missions with integrated autonomy in both flight and ground systems. Risk and feasibility are major factors supporting the use of unmanned craft and the use of automation and robotic technologies where possible. Autonomy in space helps to increase the amount of science data returned from missions, perform new science, and reduce mission costs.Elicitation and expression of autonomy requirements is one of the most significant challenges the autonomous spacecraft engineers need to overcome today. This book discusses the Autonomy Requirements Eng

  18. Optical Payload for the STARE Mission

    Energy Technology Data Exchange (ETDEWEB)

    Simms, L; Riot, V; De Vries, W; Olivier, S S; Pertica, A; Bauman, B J; Phillion, D; Nikolaev, S


    Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) is a nano-sat based mission designed to better determine the trajectory of satellites and space debris in orbit around earth. In this paper, we give a brief overview of the mission and its place in the larger context of Space Situational Awareness (SSA). We then describe the details of the central optical payload, touching on the optical design and characterization of the on-board image sensor used in our Cubesat based prototype. Finally, we discuss the on-board star and satellite track detection algorithm central to the success of the mission.

  19. NASA's Planetary Science Missions and Participations (United States)

    Green, James


    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. Last year, PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of

  20. Planet Detection: The Kepler Mission (United States)

    Jenkins, Jon M.; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.; Van Cleve, Jeffrey


    The search for exoplanets is one of the hottest topics in astronomy and astrophysics in the twenty-first century, capturing the public's attention as well as that of the astronomical community. This nascent field was conceived in 1989 with the discovery of a candidate planetary companion to HD114762 [35] and was born in 1995 with the discovery of the first extrasolar planet 51 Peg-b [37] orbiting a main sequence star. As of March, 2011, over 500 exoplanets have been discovered* and 106 are known to transit or cross their host star, as viewed from Earth. Of these transiting planets, 15 have been announced by the Kepler Mission, which was launched into an Earth-trailing, heliocentric orbit in March, 2009 [1,4,6,15,18,20,22,31,32,34,36,43]. In addition, over 1200 candidate transiting planets have already been detected by Kepler [5], and vigorous follow-up observations are being conducted to vet these candidates. As the false-positive rate for Kepler is expected to be quite low [39], Kepler has effectively tripled the number of known exoplanets. Moreover, Kepler will provide an unprecedented data set in terms of photometric precision, duration, contiguity, and number of stars. Kepler's primary science objective is to determine the frequency of Earth-size planets transiting their Sun-like host stars in the habitable zone, that range of orbital distances for which liquid water would pool on the surface of a terrestrial planet such as Earth, Mars, or Venus. This daunting task demands an instrument capable of measuring the light output from each of over 100,000 stars simultaneously with an unprecedented photometric precision of 20 parts per million (ppm) at 6.5-h intervals. The large number of stars is required because the probability of the geometrical alignment of planetary orbits that permit observation of transits is the ratio of the size of the star to the size of the planetary orbit. For Earth-like planets in 1-astronomical unit (AU) orbits† about sun-like stars

  1. The Mission Assessment Post Processor (MAPP): A New Tool for Performance Evaluation of Human Lunar Missions (United States)

    Williams, Jacob; Stewart, Shaun M.; Lee, David E.; Davis, Elizabeth C.; Condon, Gerald L.; Senent, Juan


    The National Aeronautics and Space Administration s (NASA) Constellation Program paves the way for a series of lunar missions leading to a sustained human presence on the Moon. The proposed mission design includes an Earth Departure Stage (EDS), a Crew Exploration Vehicle (Orion) and a lunar lander (Altair) which support the transfer to and from the lunar surface. This report addresses the design, development and implementation of a new mission scan tool called the Mission Assessment Post Processor (MAPP) and its use to provide insight into the integrated (i.e., EDS, Orion, and Altair based) mission cost as a function of various mission parameters and constraints. The Constellation architecture calls for semiannual launches to the Moon and will support a number of missions, beginning with 7-day sortie missions, culminating in a lunar outpost at a specified location. The operational lifetime of the Constellation Program can cover a period of decades over which the Earth-Moon geometry (particularly, the lunar inclination) will go through a complete cycle (i.e., the lunar nodal cycle lasting 18.6 years). This geometry variation, along with other parameters such as flight time, landing site location, and mission related constraints, affect the outbound (Earth to Moon) and inbound (Moon to Earth) translational performance cost. The mission designer must determine the ability of the vehicles to perform lunar missions as a function of this complex set of interdependent parameters. Trade-offs among these parameters provide essential insights for properly assessing the ability of a mission architecture to meet desired goals and objectives. These trades also aid in determining the overall usable propellant required for supporting nominal and off-nominal missions over the entire operational lifetime of the program, thus they support vehicle sizing.

  2. Factors Contributing to Unsuccessful Re-Proposed Missions (United States)

    Anteau, Gillian R.


    JPL often re-proposes unselected missions after technology advancement and mission concept development. Feedback given as major and minor weaknesses and strengths in prior rounds are addressed in later versions of proposals. This feedback provides insight into the factors that affect perceptions of risk and value. My research involved an in-depth case study of an original mission, Mission-A, and the re-proposed mission, Mission-B, after a multi-year technology development effort.In 2002, Mission-A was rated as Category III, with above average science merit (top score) and High Risk. To reduce risk, NASA invested technology development funds. In 2006 the re-formulated Mission-A mission, renamed Mission-B, was rated Category IV, good to very good science, and Medium Risk. While the risk rating improved from Mission-A to Mission-B, the overall results were worse.

  3. Planning for Planetary Science Mission Including Resource Prospecting Project (United States)

    National Aeronautics and Space Administration — Advances in computer-aided mission planning can enhance mission operations and science return for surface missions to Mars, the Moon, and beyond. While the...

  4. 2016 Mission Operations Working Group: Earth Observing-1 (EO-1) (United States)

    Frye, Stuart


    EO-1 Mission Status for the Constellation Mission Operations Working Group to discuss the EO-1 flight systems, mission enhancements, debris avoidance maneuver, orbital information, 5-year outlook, and new ground stations.

  5. Software Innovation in a Mission Critical Environment (United States)

    Fredrickson, Steven


    Operating in mission-critical environments requires trusted solutions, and the preference for "tried and true" approaches presents a potential barrier to infusing innovation into mission-critical systems. This presentation explores opportunities to overcome this barrier in the software domain. It outlines specific areas of innovation in software development achieved by the Johnson Space Center (JSC) Engineering Directorate in support of NASA's major human spaceflight programs, including International Space Station, Multi-Purpose Crew Vehicle (Orion), and Commercial Crew Programs. Software engineering teams at JSC work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements for genuinely mission critical applications. The innovations described, including the use of NASA Core Flight Software and its associated software tool chain, can lead to software that is more affordable, more reliable, better modelled, more flexible, more easily maintained, better tested, and enabling of automation.

  6. Pointing control for the International Comet Mission (United States)

    Leblanc, D. R.; Schumacher, L. L.


    The design of the pointing control system for the proposed International Comet Mission, intended to fly by Comet Halley and rendezvous with Comet Tempel-2 is presented. Following a review of mission objectives and the spacecraft configuration, design constraints on the pointing control system controlling the two-axis gimballed scan platform supporting the science instruments are discussed in relation to the scientific requirements of the mission. The primary design options considered for the pointing control system design for the baseline spacecraft are summarized, and the design selected, which employs a target-referenced, inertially stabilized control system, is described in detail. The four basic modes of operation of the pointing control subsystem (target acquisition, inertial hold, target track and slew) are discussed as they relate to operations at Halley and Tempel-2. It is pointed that the pointing control system design represents a significant advance in the state of the art of pointing controls for planetary missions.

  7. Multi-Mission MicroSDR Project (United States)

    National Aeronautics and Space Administration — Toyon proposes to develop a low-power and compact reconfigurable radio specifically targeted to NASA mission needs. We envision the radio to be well matched to...

  8. The Legacy of the FUSE Mission (United States)

    Sonneborne, George


    The Far Ultraviolet Spectroscopic Explorer (FUSE) mission was a far-ultraviolet space telescope that performed high resolution (R=20,OOO) spectroscopy in the 905 - 1187 A spectral range. FUSE primarily observed stars and distant galaxies to study interstellar and intergalactic gas through absorption spectroscopy, as well as the properties of the objects themselves. This capability complemented the Hubble Space Telescope at longer wavelengths, and provided the international astronomical community with access to an important part of the electromagnetic spectrum. FUSE was a joint project of NASA, CNES, and CSA. The mission operated from 1999 to 2007. This review talk will summarize the scientific impact of the FUSE mission on several key scientific problems, as well as lessons learned for future mission concepts.

  9. A mission planner for an autonomous tractor

    DEFF Research Database (Denmark)

    Bochtis, Dionysis; Vougioukas, S.G.; Griepentrog, Hans W.


    In this article, a mission planner of field coverage operations for an autonomous agricultural tractor is presented. Missions for a particular autonomous tractor are defined using an XML (extendible markup language) formatted file that can be uploaded to the tractor through the user interface....... Using the tree hierarchy of the mission file, several actions are determined, including the sequence of points the tractor has to follow, the type of motion between successive points (e.g.,straight motion or maneuvering), the type of predefined turning routine used in maneuvering, and the actions...... that should be taken once the tractor reaches the desired point (e.g., raising or lowering the attached tool, turning on or turning off the ower take-off). In order to automatically create the XML mission files, a program was developed using the MATLAB technical programming language. The program uses data...

  10. Cloud Computing Techniques for Space Mission Design (United States)

    Arrieta, Juan; Senent, Juan


    The overarching objective of space mission design is to tackle complex problems producing better results, and faster. In developing the methods and tools to fulfill this objective, the user interacts with the different layers of a computing system.

  11. Multi-Mission Space Exploration Vehicle Project (United States)

    National Aeronautics and Space Administration — Missions to date have orbited and roved, but sub-planetary worlds elude exploration. This investigation proposes to develop technology for venturing underground...

  12. Operational efficiency subpanel advanced mission control (United States)

    Friedland, Peter


    Herein, the term mission control will be taken quite broadly to include both ground and space based operations as well as the information infrastructure necessary to support such operations. Three major technology areas related to advanced mission control are examined: (1) Intelligent Assistance for Ground-Based Mission Controllers and Space-Based Crews; (2) Autonomous Onboard Monitoring, Control and Fault Detection Isolation and Reconfiguration; and (3) Dynamic Corporate Memory Acquired, Maintained, and Utilized During the Entire Vehicle Life Cycle. The current state of the art space operations are surveyed both within NASA and externally for each of the three technology areas and major objectives are discussed from a user point of view for technology development. Ongoing NASA and other governmental programs are described. An analysis of major research issues and current holes in the program are provided. Several recommendations are presented for enhancing the technology development and insertion process to create advanced mission control environments.

  13. DOE and NASA joint Dark Energy mission

    CERN Multimedia


    "DOE and NASA announced their plan for a Joint Dark Energy Mission (JDEM) on October 23, 2003, at the NASA Office of Space Science Structure and Evolution of the Universe Subcommittee (SEUS) meeting" (1 paragraph).

  14. Enterprise Information Architecture for Mission Development (United States)

    Dutra, Jayne


    This slide presentation reviews the concept of an information architecture to assist in mission development. The integrate information architecture will create a unified view of the information using metadata and the values (i.e., taxonomy).

  15. Shuttle mission simulator software conceptual design (United States)

    Burke, J. F.


    Software conceptual designs (SCD) are presented for meeting the simulator requirements for the shuttle missions. The major areas of the SCD discussed include: malfunction insertion, flight software, applications software, systems software, and computer complex.

  16. Atrial Fibrillation During an Exploration Class Mission (United States)

    Lipsett, Mark; Hamilton, Douglas; Lemery, Jay; Polk, James


    This slide presentation reviews a possible scenario of an astronaut having Atrial Fibrillation during a Mars Mission. In the case review the presentation asks several questions about the alternatives for treatment, medications and the ramifications of the decisions.

  17. STS 125 Samples: the Hubble Servicing Mission (United States)

    James, John T.


    The toxicological assessments of 2 grab sample canisters (GSCs) from the Shuttle are reported in a table. Based on the end-of-mission sample, the Shuttle atmosphere was acceptable for human respiration.

  18. Heat Capacity Mapping Mission: 1978-1980 (United States)

    U.S. Geological Survey, Department of the Interior — NASA's Heat Capacity Mapping Mission (HCMM) project collected Earth data in the visible and thermal bands between April 1978 and September 1980. This was an...

  19. PUREX Plant deactivation mission analysis report

    International Nuclear Information System (INIS)

    The purpose of the PUREX Deactivation Project mission analysis is to define the problem to be addressed by the PUREX mission, and to lay the ground work for further system definition. The mission analysis is an important first step in the System Engineering (SE) process. This report presents the results of the PUREX Deactivation Project mission analysis. The purpose of the PUREX Deactivation Project is to prepare PUREX for Decontamination and Decommissioning within a five year time frame. This will be accomplished by establishing a passively safe and environmentally secure configuration of the PUREX Plant, that can be preserved for a 10-year horizon. During deactivation, appropriate portions of the safety envelop will be maintained to ensure deactivation takes place in a safe and regulatory compliant manner

  20. Small Satellite Mars Missions using Electric Propulsion


    Price, ME; Wells, NS; Ball, AJ; Zarnecki, JC; Taylor, FW


    Two small satellite concepts are presented for low cost Mars system exploration. Both concepts use solar electric propulsion (SEP) to move from a low velocity Earth escape orbit to captured Mars orbits, and so are able to make use of smaller launcher vehicles, while still providing significant payload accommodation, despite their small size. Both missions achieve their Mars system operational orbits in less than 20 months from launch. The Mars Global Atmosphere Survey (MGAS) mission design ha...

  1. Computer-Generated Movies for Mission Planning (United States)

    Roberts, P. H., Jr.; vanDillen, S. L.


    Computer-generated movies help the viewer to understand mission dynamics and get quantitative details. Sample movie frames demonstrate the uses and effectiveness of movies in mission planning. Tools needed for movie-making include computer programs to generate images on film and film processing to give the desired result. Planning scenes to make an effective product requires some thought and experience. Viewpoints and timing are particularly important. Lessons learned so far and problems still encountered are discussed.

  2. On mission drift in microfinance institutions


    Armendáriz, Beatriz; Szafarz, Ariane


    This paper sheds light on a poorly understood phenomenon in microfinance which is often referred to as a “mission drift”: A tendency reviewed by numerous microfinance institutions to extend larger average loan sizes in the process of scaling–up. We argue that this phenomenon is not driven by transaction cost minimization alone. Instead, poverty–oriented microfinance institutions could potentially deviate from their mission by extending larger loan sizes neither because of “progressive lending...

  3. Saturn satellites as seen by Cassini Mission


    Coradini, A; Capaccioni, F.; Cerroni, P.; Filacchione, G.; Magni, G; Orosei, R.; F. Tosi; Turrini, D


    In this paper we will summarize some of the most important results of the Cassini mission concerning the satellites of Saturn. Given the long duration of the mission, the complexity of the payload onboard the Cassini Orbiter and the amount of data gathered on the satellites of Saturn, it would be impossible to describe all the new discoveries made, therefore we will describe only some selected, paramount examples showing how Cassini's data confirmed and extended ground-based observations. In ...

  4. Mission statement for the Engineering Test Facility

    International Nuclear Information System (INIS)

    This Mission Statement defines the ETF activity during its operating life. The results of those operations must provide the data, knowledge, experience, and confidence to continue to the next steps beyond ETF in making fusion power a viable energy option. The results from the ETF mission (operations are assumed to start early in the 1990's) are to bridge the gap between the base of magnetic fusion knowledge at the start of operations and that reqired to design the EPR/DEMO devices

  5. Value Creation using the Mission Breakdown Structure


    Andersen, Erling S.


    The modern concept of project success includes the project contributing to the value creation of its base organization. We need tools to discuss what the project itself and the base organization should do to enhance this value creation. The Mission Breakdown Structure tool helps a company set up a project with a clearly defined mission and secures an effective interplay between the base organization and its project. This article presents the tool in principle and use an illustrative real-life...

  6. The Planck Surveyor mission: astrophysical prospects


    De Zotti, G.; Toffolatti, L.; Argüeso, F.; Davies, R. D.; Mazzotta, P.; Partridge, R. B.; Smoot, G. F.; Vittorio, N.


    Although the Planck Surveyor mission is optimized to map the cosmic microwave background anisotropies, it will also provide extremely valuable information on astrophysical phenomena. We review our present understanding of Galactic and extragalactic foregrounds relevant to the mission and discuss on one side, Planck's impact on the study of their properties and, on the other side, to what extent foreground contamination may affect Planck's ability to accurately determine cosmological parameter...

  7. Tank waste remediation system mission analysis report

    International Nuclear Information System (INIS)

    This document describes and analyzes the technical requirements that the Tank Waste Remediation System (TWRS) must satisfy for the mission. This document further defines the technical requirements that TWRS must satisfy to supply feed to the private contractors' facilities and to store or dispose the immobilized waste following processing in these facilities. This document uses a two phased approach to the analysis to reflect the two-phased nature of the mission

  8. NASA reschedules Mars mission for 2018 (United States)

    Gwynne, Peter


    NASA has announced that its next mission to Mars will be launched in May 2018 following the discovery of a leak in a key scientific instrument. The mission – Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) – was originally scheduled to launch last month and reach Mars later this year, but the new launch window means it will now not land on the red planet until November 2018.

  9. Future Venus exploration: mission Venera-D (United States)

    Zasova, Ludmila

    Venus was actively studied by Soviet and US missions in 60-90-th years of the last century. The investigations carried out both from the orbit and in situ were highly successful. After a 15-year break in space research of Venus, the ESA Venus Express mission, launched in 2005, successfully continues its work on orbit around Venus, obtaining spectacular results. However, many questions concerning the structure and evolutions of the planet Venus, which are the key questions of comparative planetology and very essential for understanding the possible evolution of the terrestrial climate, cannot be solved by observations only from an orbit. Venera-D includes orbiter, lander, subsatellite, long living station on the surface. Venera-D is focused for both in situ and remote investigations of Venus of surface and atmosphere, as well plasma environment and solar wind interaction. Practically all experiments for Venera-D, will be provided by international teams. A Russia-US Venera-D Joint Science Definition Team has been formed in February 2014 to recommend a possible collaborative and coordinated implementation by considering the common aspects of Venera-D mission as presently defined, as well as the Venus Climate Mission recommended by the US Academies Decadal Survey of Planetary Science and the Venus Flagship mission studied by NASA in 2009. The team will provide its report by March 2015 and will likely lead to a coordinated or joint call for instruements and/or mission elements.

  10. NASA 2007 Western States Fire Missions (WSFM) (United States)

    Buoni, Greg


    This viewgraph presentation describes the Western states Fire Missions (WSFM) that occurred in 2007. The objectives of this mission are: (1) Demonstrate capabilities of UAS to overfly and collect sensor data on widespread fires throughout Western US. (1) Demonstrate long-endurance mission capabilities (20-hours+). (2) Image multiple fires (greater than 4 fires per mission), to showcase extendable mission configuration and ability to either linger over key fires or station over disparate regional fires. (3) Demonstrate new UAV-compatible, autonomous sensor for improved thermal characterization of fires. (4) Provide automated, on-board, terrain and geo-rectified sensor imagery over OTH satcom links to national fire personnel and Incident commanders. (5) Deliver real-time imagery to (within 10-minutes of acquisition). (6) Demonstrate capabilities of OTS technologies (GoogleEarth) to serve and display mission-critical sensor data, coincident with other pertinent data elements to facilitate information processing (WX data, ground asset data, other satellite data, R/T video, flight track info, etc).

  11. Logistics Reduction Technologies for Exploration Missions (United States)

    Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.


    Human exploration missions under study are limited by the launch mass capacity of existing and planned launch vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Although mass is typically the focus of exploration missions, due to its strong impact on launch vehicle and habitable volume for the crew, logistics volume also needs to be considered. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing six logistics technologies guided by a systems engineering cradle-to-grave approach to enable after-use crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. Reduction of mass has a corresponding and significant impact to logistical volume. The reduction of logistical volume can reduce the overall pressurized vehicle mass directly, or indirectly benefit the mission by allowing for an increase in habitable volume during the mission. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as mission durations increase. Early studies have shown that the use of advanced logistics technologies can save approximately 20 m(sup 3) of volume during transit alone for a six-person Mars conjunction class mission.

  12. Exploration Mission Benefits From Logistics Reduction Technologies (United States)

    Broyan, James Lee, Jr.; Schlesinger, Thilini; Ewert, Michael K.


    Technologies that reduce logistical mass, volume, and the crew time dedicated to logistics management become more important as exploration missions extend further from the Earth. Even modest reductions in logical mass can have a significant impact because it also reduces the packing burden. NASA's Advanced Exploration Systems' Logistics Reduction Project is developing technologies that can directly reduce the mass and volume of crew clothing and metabolic waste collection. Also, cargo bags have been developed that can be reconfigured for crew outfitting and trash processing technologies to increase habitable volume and improve protection against solar storm events are under development. Additionally, Mars class missions are sufficiently distant that even logistics management without resupply can be problematic due to the communication time delay with Earth. Although exploration vehicles are launched with all consumables and logistics in a defined configuration, the configuration continually changes as the mission progresses. Traditionally significant ground and crew time has been required to understand the evolving configuration and locate misplaced items. For key mission events and unplanned contingencies, the crew will not be able to rely on the ground for logistics localization assistance. NASA has been developing a radio frequency identification autonomous logistics management system to reduce crew time for general inventory and enable greater crew self-response to unplanned events when a wide range of items may need to be located in a very short time period. This paper provides a status of the technologies being developed and there mission benefits for exploration missions.

  13. Software engineering processes for Class D missions (United States)

    Killough, Ronnie; Rose, Debi


    Software engineering processes are often seen as anathemas; thoughts of CMMI key process areas and NPR 7150.2A compliance matrices can motivate a software developer to consider other career fields. However, with adequate definition, common-sense application, and an appropriate level of built-in flexibility, software engineering processes provide a critical framework in which to conduct a successful software development project. One problem is that current models seem to be built around an underlying assumption of "bigness," and assume that all elements of the process are applicable to all software projects regardless of size and tolerance for risk. This is best illustrated in NASA's NPR 7150.2A in which, aside from some special provisions for manned missions, the software processes are to be applied based solely on the criticality of the software to the mission, completely agnostic of the mission class itself. That is, the processes applicable to a Class A mission (high priority, very low risk tolerance, very high national significance) are precisely the same as those applicable to a Class D mission (low priority, high risk tolerance, low national significance). This paper will propose changes to NPR 7150.2A, taking mission class into consideration, and discuss how some of these changes are being piloted for a current Class D mission—the Cyclone Global Navigation Satellite System (CYGNSS).

  14. Importance measures for multi-phase missions

    Energy Technology Data Exchange (ETDEWEB)

    Vaurio, J.K., E-mail: jussi.vaurio@sulo.f [Prometh Solutions, Hiihtaejaenkuja 3K, 06100 Porvoo (Finland)


    Phased missions consist of consecutive operational phases where the system logic and failure parameters can change between phases. A component can have different roles in different phases and the reliability function may have discontinuities at phase boundaries. An earlier method required NOT-gates and negations of events when calculating importance measures for such missions with non-repairable components. This paper suggests an exact method that uses standard fault tree techniques and Boolean algebra without any NOT-gates or negations. The criticalities and other importance measures can be obtained for events and components relevant to a single phase or to a transition between phases or over the whole mission. The method and importance measures are extended to phased missions with repairable components. Quantification of the reliability, the availability, the failure intensity and the total number of failures are described. New importance indicators defined for repairable systems measure component contributions to the total integrated unavailability, to the mission failure intensity and to the total number of mission failures.

  15. Importance measures for multi-phase missions

    International Nuclear Information System (INIS)

    Phased missions consist of consecutive operational phases where the system logic and failure parameters can change between phases. A component can have different roles in different phases and the reliability function may have discontinuities at phase boundaries. An earlier method required NOT-gates and negations of events when calculating importance measures for such missions with non-repairable components. This paper suggests an exact method that uses standard fault tree techniques and Boolean algebra without any NOT-gates or negations. The criticalities and other importance measures can be obtained for events and components relevant to a single phase or to a transition between phases or over the whole mission. The method and importance measures are extended to phased missions with repairable components. Quantification of the reliability, the availability, the failure intensity and the total number of failures are described. New importance indicators defined for repairable systems measure component contributions to the total integrated unavailability, to the mission failure intensity and to the total number of mission failures.

  16. The Titan Mare Explorer Mission (TiME): A Discovery mission to a Titan sea (United States)

    Stofan, E. R.; Lunine, J. I.; Lorenz, R. D.; Aharonson, O.; Bierhaus, E.; Boldt, J.; Clark, B.; Griffith, C.; Harri, A.-M.; Karkoschka, E.; Kirk, R.; Mahaffy, P.; Newman, C.; Ravine, M.; Trainer, M.; Turtle, E.; Waite, H.; Yelland, M.; Zarnecki, J.


    The Titan Mare Explorer (TiME) is a Discovery class mission to Titan, and would be the first in situ exploration of an extraterrestrial sea. The mission is one of three recently chosen by NASA for a Phase A study; one mission will be downselected for launch in the summer of 2012. TiME is a lake lander, which would float on the surface of a sea, performing chemical, meteorological and visual observations.

  17. Evolution of Orion Mission Design for Exploration Mission 1 and 2 (United States)

    Gutkowski, Jeffrey P.; Dawn, Timothy F.; Jedrey, Richard M.


    The evolving mission design and concepts of NASA's next steps have shaped Orion into the spacecraft that it is today. Since the initial inception of Orion, through the Constellation Program, and now in the Exploration Mission frame-work with the Space Launch System (SLS), each mission design concept and program goal have left Orion with a set of capabilities that can be utilized in many different mission types. Exploration Missions 1 and 2 (EM-1 and EM-2) have now been at the forefront of the mission design focus for the last several years. During that time, different Design Reference Missions (DRMs) were built, analyzed, and modified to solve or mitigate enterprise level design trades to ensure a viable mission from launch to landing. The resulting DRMs for EM-1 and EM-2 were then expanded into multi-year trajectory scans to characterize vehicle performance and Earth-Moon geometry trends. This provides Orion's subsystems with stressing reference trajectories to help design their system. Now that Orion has progressed through the Preliminary and Critical Design Re-views (PDR and CDR) there is a general shift in the focus of mission design from aiding the vehicle design to providing mission specific products needed for pre-flight and real time operations. Some of the mission specific products need-ed include analysis of steering law performance, inputs into navigational accura-cy assessments, abort options at any point in the mission for each valid trajecto-ry in the launch window, recontact avoidance between the upper stage and Orion post nominal separation, etc.

  18. Re-Engineering the Mission Operations System (MOS) for the Prime and Extended Mission (United States)

    Hunt, Joseph C., Jr.; Cheng, Leo Y.


    One of the most challenging tasks in a space science mission is designing the Mission Operations System (MOS). Whereas the focus of the project is getting the spacecraft built and tested for launch, the mission operations engineers must build a system to carry out the science objectives. The completed MOS design is then formally assessed in the many reviews. Once a mission has completed the reviews, the Mission Operation System (MOS) design has been validated to the Functional Requirements and is ready for operations. The design was built based on heritage processes, new technology, and lessons learned from past experience. Furthermore, our operational concepts must be properly mapped to the mission design and science objectives. However, during the course of implementing the science objective in the operations phase after launch, the MOS experiences an evolutional change to adapt for actual performance characteristics. This drives the re-engineering of the MOS, because the MOS includes the flight and ground segments. Using the Spitzer mission as an example we demonstrate how the MOS design evolved for both the prime and extended mission to enhance the overall efficiency for science return. In our re-engineering process, we ensured that no requirements were violated or mission objectives compromised. In most cases, optimized performance across the MOS, including gains in science return as well as savings in the budget profile was achieved. Finally, we suggest a need to better categorize the Operations Phase (Phase E) in the NASA Life-Cycle Phases of Formulation and Implementation

  19. Cometary Coma Chemical Composition (C4) Mission (United States)

    Carle, Glenn C.; Clark, Benton C.; Knocke, Philip C.; OHara, Bonnie J.; Adams, Larry; Niemann, Hasso B.; Alexander, Merle; Veverka, Joseph; Goldstein, Raymond; Huebner, Walter; Morrison, David (Technical Monitor)


    Cometary exploration remains of great importance to virtually all of space science. Because comets are presumed to be remnants of the early solar nebula, they are expected to provide fundamental knowledge as to the origin and development of the solar system as well as to be key to understanding of the source of volatiles and even life itself in the inner solar system. Clearly the time for a detailed study of the composition of these apparent messages from the past has come. A comet rendezvous mission, the Cometary Coma Chemical Composition (C4) Mission, is now being studied as a candidate for the new Discovery program. This mission is a highly-focussed and usefully-limited subset of the Cometary Rendezvous Asteroid Flyby (CRAF) Mission. The C4 mission will concentrate on measurements that will produce an understanding of the composition and physical makeup of a cometary nucleus. The core science goals of the C4 mission are 1) to determine the chemical, elemental, and isotopic composition of a cometary nucleus and 2) to characterize the chemical and isotopic nature of its atmosphere. A related goal is to obtain temporal information about the development of the cometary coma as a function of time and orbital position. The four short-period comets -- Tempel 1, Tempel 2, Churyumov-Gerasimenko, and Wirtanen -which all appear to have acceptable dust production rates, were identified as candidate targets. Mission opportunities have been identified beginning as early as 1998. Tempel I with a launch in 1999, however, remains the baseline comet for studies of and planning the C4 mission. The C4 mission incorporates two science instruments and two engineering instruments in the payload to obtain the desired measurements. The science instruments include an advanced version of the Cometary Ice and Dust Experiment (CIDEX), a mini-CIDEX with a sample collection system, an X-ray Fluorescence Spectrometer and a Pyrolysis-Gas Chromatograph, and a simplified version of the Neutral

  20. Preliminary design of an asteroid hopping mission (United States)

    Scheppa, Michael D.

    In 2010, NASA announced that its new vision is to support private space launch operations. It is anticipated that this new direction will create the need for new and innovative ideas that push the current boundaries of space exploration and contain the promise of substantial gain, both in research and capital. The purpose of the study is to plan and estimate the feasibility of a mission to visit a number of near Earth asteroids (NEAs). The mission would take place before the end of the 21st century, and would only use commercially available technology. Throughout the mission design process, while holding astronaut safety paramount, it was the goal to maximize the return while keeping the cost to a minimum. A mission of the nature would appeal to the private space industry because it could be easily adapted and set into motion. The mission design was divided into three main parts; mission timeline, vehicle design and power sources, with emphasis on nuclear and solar electric power, were investigated. The timeline and associated trajectories were initially selected using a numerical estimation and then optimized using Satellite Tool Kit (STK) 9.s's Design Explorer Optimizer [1]. Next, the spacecraft was design using commercially available parts that would support the mission requirements. The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) was and instrumental piece in maximizing the number of NEAs visited. Once the spacecraft was designed, acceptable power supply options were investigated. The VASIMR VX-200 requires 200 kilowatts of power to maintain thrust. This creates the need for a substantial power supply that consists of either a nuclear reactor of massive solar arrays. STK 9.1's Design Explorer Optimizer was able to create a mission time line that allowed for the exploration of seven NEAs in under two years, while keeping the total mission DeltaV under 71 kilometers per second. Based on these initial findings, it is determined that a mission of this

  1. MNSM - A Future Mars Network Science Mission (United States)

    Chicarro, A. F.


    Following ESA' s successful Mars Express mission, European efforts in Mars Exploration are now taking place within the joint ESA-NASA Mars Exploration Programme, starting in 2016 with the Trace Gases Orbiter (TGO) focusing on atmospheric trace gases and in particular methane, and with the Entry and Descent Module (EDM). In 2018, a joint NASA-ESA rover will perform sample caching as well as geological, geochemical and exobiological measurements of the surface and the subsurface of Mars. A number of missions for 2020 and beyond are currently under study. Among those, a possible candidate is a Mars Network Science Mission (MNSM) of 3-6 surface stations, to investigate the interior of the planet, its rotational parameters and its atmospheric dynamics. These important science goals have not been fully addressed by Mars exploration so far and can only be achieved with simultaneous measurements from a number of landers located on the surface of the planet such as a Mars Network mission. In addition, the geology, mineralogy and astrobiological significance of each landing site would be addressed, as three new locations on Mars would be reached. Such Mars Network Science Mission has been considered a significant priority by the planetary science community worldwide for the past two decades. In fact, a Mars Network mission concept has a long heritage, as it was studied a number of times by ESA, NASA and CNES (e.g., Marsnet, Intermarsnet, Netlander and MarsNEXT mission studies) since 1990. Study work has been renewed in ESA recently with MNSM Science and Engineering Teams being set up to update the scientific objectives of the mission and to evaluate its technical feasibility, respectively. The current mission baseline includes three ESA-led small landers with a robotic arm to be launched with a Soyuz rocket and direct communications to Earth (no need of a dedicated orbiter). However, a larger network could be put in place through international collaboration, as several

  2. Kepler & K2: One spacecraft, Two Missions (United States)

    Batalha, Natalie


    This year, we mark twenty years of exploring the diversity of planets and planetary systems orbiting main sequence stars. Exoplanet discoveries spill into the thousands, and the sensitivity boundaries continue to expand. NASA's Kepler Mission unveiled a galaxy replete with small planets and revealed populations that don't exist in our own solar system. The mission has yielded a sample sufficient for computing planet occurrence rates as a function of size, orbital period, and host star properties. We've learned that every late-type star has at least one planet on average, that terrestrial-sized planets are more common than larger planets within 1 AU, and that the nearest, potentially habitable earth-sized planet is likely within 5pc. After four years of continuous observations, the Kepler prime mission ended in May 2013 with the loss of a second reaction wheel. Thanks to innovative engineering, the spacecraft gained a second lease on life and emerged as the ecliptic surveyor, K2. In many regards, K2 is a distinctly new mission, not only by pointing at new areas of the sky but also by focusing on community-driven goals that diversify the science yield. For exoplanets, this means targeting bright and low mass stars -- the populations harboring planets amenable to dynamical and atmospheric characterization. To date, the mission has executed 7 observing campaigns lasting ~80 days each and has achieved a 6-hour photometric precision of 30 ppm. A couple dozen planets have been confirmed, including two nearby (watch-list for future JWST campaigns. While Kepler prime is setting the stage for the direct imaging missions of the future, K2 is easing us into an era of atmospheric characterization -- one spacecraft, two missions, and a bright future for exoplanet science.

  3. INTEGRITY -- Integrated Human Exploration Mission Simulation Facility (United States)

    Henninger, D.; Tri, T.; Daues, K.

    It is proposed to develop a high -fidelity ground facil ity to carry out long-duration human exploration mission simulations. These would not be merely computer simulations - they would in fact comprise a series of actual missions that just happen to stay on earth. These missions would include all elements of an actual mission, using actual technologies that would be used for the real mission. These missions would also include such elements as extravehicular activities, robotic systems, telepresence and teleoperation, surface drilling technology--all using a simulated planetary landscape. A sequence of missions would be defined that get progressively longer and more robust, perhaps a series of five or six missions over a span of 10 to 15 years ranging in durat ion from 180 days up to 1000 days. This high-fidelity ground facility would operate hand-in-hand with a host of other terrestrial analog sites such as the Antarctic, Haughton Crater, and the Arizona desert. Of course, all of these analog mission simulations will be conducted here on earth in 1-g, and NASA will still need the Shuttle and ISS to carry out all the microgravity and hypogravity science experiments and technology validations. The proposed missions would have sufficient definition such that definitive requirements could be derived from them to serve as direction for all the program elements of the mission. Additionally, specific milestones would be established for the "launch" date of each mission so that R&D programs would have both good requirements and solid milestones from which to build their implementation plans. Mission aspects that could not be directly incorporated into the ground facility would be simulated via software. New management techniques would be developed for evaluation in this ground test facility program. These new techniques would have embedded metrics which would allow them to be continuously evaluated and adjusted so that by the time the sequence of missions is completed

  4. Operational Lessons Learned from NASA Analog Missions (United States)

    Arnold, Larissa S.


    National Aeronautics and Space Administration s (NASA) efforts in human space flight are currently focused on the Space Shuttle and International Space Station (ISS) programs, with efforts beginning on the future exploration opportunities. Both the Space Shuttle and ISS programs are important to the development of a capability for human exploration beyond Low Earth Orbit (LEO). The ISS provides extensive research capabilities to determine how the human body reacts to long duration stays in space. Also, the ISS and Shuttle can serve as a limited testbed for equipment or entire systems that may be used on missions to the Moon, Mars, or to a near-Earth asteroid. It has been nearly 35 years since the Apollo astronauts visited the Moon. Future space explorers will have to re-learn how to work and live on planetary surfaces, and how to do that for extended periods of time. Exploration crews will perform a wide assortment of scientific tasks, including material sampling and emplacement of automated instruments. Surface mission operations include the activities of the crew living and working, mission support from the Earth, and the operation of robotic and other remotely commanded equipment on the surface and in planetary orbit. Other surface activities will include the following: exploring areas surrounding a habitat; using rovers to collect rock and soil samples; setting up experiments on the surface to monitor the radiation environment and any seismic or thermal activity; and conducting scientific analyses and experiments inside a habitat laboratory. Of course, the astronauts will also have to spend some of their surface time "doing chores" and maintaining their habitat and other systems. In preparation for future planetary exploration, NASA must design the answers to many operational questions. What will the astronauts do on the surface? How will they accomplish this? What tools will they require for their tasks? How will robots and astronauts work together? What

  5. ESA Sentinel-1 Mission and Products (United States)

    Floury, Nicolas; Attema, Evert; Davidson, Malcolm; Levrini, Guido; Rommen, Björn; Rosich, Betlem; Snoeij, Paul

    The global Monitoring for Environment and Security (GMES) space component relies on existing and planned space assets by European States, the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the European Space Agency (ESA), as well as new complementary developments by ESA. The new developments are implemented in terms of five families of satellites called Sentinels. The Sentinel-1 mission is an imaging synthetic aperture radar (SAR) mission at C-band designed to supply all-weather day-and-night imagery to a number of operational Earth observation based services. Three priorities (fasttrack services) for the mission have been identified by user consultation working groups of the European Union: Marine Core Services, Land Monitoring and Emergency Services. These cover applications such as: - monitoring sea ice zones and the arctic environment, - surveillance of marine environment, - monitoring land surface motion risks, - mapping of land surfaces: forest, water and soil, agriculture, - mapping in support of humanitarian aid in crisis situations. Sentinel-1 has been designed to address medium resolution applications. It includes a main mode of operation that features a wide swath (250 km) and a medium resolution (5 m x 20 m). The two-satellite constellation offers six days exact repeat and the conflict-free operations based on the main operational mode allow exploiting every single data take. This paper describes the Sentinel-1 mission, provides an overview of the mission requirements, and presents some of the key user driven information products, the crucial requirements for operational sustainable services being continuity of data supply, frequent revisit, geographical coverage and timeliness. As data products from the Agency‘s successful ERS-1, ERS-2 and Envisat missions form the basis for many of the pilot GMES services, Sentinel-1 data products need to maintain and in some ways to improve data quality levels of the Agency

  6. X-Ray Surveyor Mission Concept (United States)

    Gaskin, Jessica


    An initial concept study for the X-ray Surveyor mission was carried-out by the Advanced Concept Office at Marshall Space Flight Center (MSFC), with a strawman payload and related requirements that were provided by an Informal Mission Concept Team, comprised of MSFC and Smithsonian Astrophysics Observatory (SAO) scientists plus a diverse cross-section of the X-ray community. The study included a detailed assessment of the requirements, a preliminary design, a mission analysis, and a preliminary cost estimate. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development—including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades, such as Con-X, AXSIO and IXO, and in most areas, points to mission requirements no more stringent than those of Chandra.

  7. High Energy Astrophysical Missions in Japan (United States)

    Tsunemi, Hiroshi

    There are five X-ray astronomy satellites launched from Japan. The latest satellite, Suzaku, was launched in 2005. MAXI is an all sky survey mission in X-ray that was attached to the ISS in 2009. These two are functioning at present. ASTRO-H is the only approved mission in X-ray that will be launched in 2014. There are four X-ray detectors on board ASTRO-H, SXS, SXI, HXI and SGD as well as X-ray telescopes made of thin foil mirrors. Most of the future missions heavily depend on them both in technology and in science. From this point of view, we have to concentrate on ASTRO-H so that we can expand our activities in future. In Japan, the small scientific satellite project is now on-going. Two missions are already allocated while no X-ray mission is approved. DIOS, PolariS, CAST and FFAST are proposed. Here we explain FFAST in detail that will study the evolution of the universe.

  8. The 'Granite' collegial mission of dialogue. Report

    International Nuclear Information System (INIS)

    The aim of the 'Granite' collegial mission of dialogue is to inform the French authorities, associations and population about the project of construction of an underground laboratory for the study of the disposal of high level and long-life radioactive wastes in a granitic environment. The aim of the dialogue was not to select a site but to collect the public reactions and advices about such a project. However, such a dialogue has partially failed because of a misunderstanding of the population about the aims of the mission. However, the mission has collected many point of views and questions which are developed in this report. The first and second chapters recall the process of the mission and its progress, while a third chapter stresses on the questions asked by the public and which concern the fear of nuclear wastes and the incompatibility between the disposal of wastes and the socio-economical development of the region concerned. Thanks to the lessons drawn from this experience, the mission has formulated some recommendations (chapter 4) concerning the need for a better information of the population about any topic in relation with the radioactive wastes. Some complementary information is provided in appendixes. (J.S.)

  9. Teamwork Reasoning and Multi-Satellite Missions (United States)

    Marsella, Stacy C.; Plaunt, Christian (Technical Monitor)


    NASA is rapidly moving towards the use of spatially distributed multiple satellites operating in near Earth orbit and Deep Space. Effective operation of such multi-satellite constellations raises many key research issues. In particular, the satellites will be required to cooperate with each other as a team that must achieve common objectives with a high degree of autonomy from ground based operations. The multi-agent research community has made considerable progress in investigating the challenges of realizing such teamwork. In this report, we discuss some of the teamwork issues that will be faced by multi-satellite operations. The basis of the discussion is a particular proposed mission, the Magnetospheric MultiScale mission to explore Earth's magnetosphere. We describe this mission and then consider how multi-agent technologies might be applied in the design and operation of these missions. We consider the potential benefits of these technologies as well as the research challenges that will be raised in applying them to NASA multi-satellite missions. We conclude with some recommendations for future work.

  10. The ExoMars 2016 mission (United States)

    Svedhem, Håkan; Vago, Jorge; de Groot, Rolf


    The ExoMars programme is a joint activity by the European Space Agency (ESA) and ROSCOSMOS, Russia. It consists of the ExoMars 2016 mission with the Trace Gas Orbiter, TGO, and the Entry Descent and Landing Demonstrator, Schiaparelli, and the Exomars 2018 mission which carries a lander and a rover.The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector for search of subsurface hydrogen. ESA is providing the TGO spacecraft and the Schiaparelli Lander demonstrator and two of the TGO instruments and ROSCOSMOS is providing the launcher and the other two TGO instruments.After the arrival of the ExoMars 2018 mission at the surface of Mars, the TGO will handle the communication between the Earth and the Rover and lander through its UHF communication system. The 2016 mission will be launched by a Russian Proton rocket from Baikonur in January 2016 and will arrive at Mars in October the same year. This presentation will cover a description of the 2016 mission, including the spacecraft, its payload and science and the related plans for scientific operations and measurements.

  11. Science Formulation of Global Precipitation Mission (GPM) (United States)

    Smith, Eric A.; Mehta, Amita; Shepherd, Marshall; Starr, David O. (Technical Monitor)


    In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). The new mission, which is now in its formulation phase, is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC), although not restricted to that branch of research. Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various areas in the course of the mission formulation phase that are of interest to the Natural Hazards scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning the rate of the global water cycling, cloud macrophysical-microphysical processes of flood-producing storms, and the general improvement in measuring precipitation at the fundamental microphysical level.

  12. Chandra mission scheduling on-orbit experience (United States)

    Bucher, Sabina; Williams, Brent; Pendexter, Misty; Balke, David


    Scheduling observatory time to maximize both day-to-day science target integration time and the lifetime of the observatory is a formidable challenge. Furthermore, it is not a static problem. Of course, every schedule brings a new set of observations, but the boundaries of the problem change as well. As spacecraft ages, its capabilities may degrade. As in-flight experience grows, capabilities may expand. As observing programs are completed, the needs and expectations of the science community may evolve. Changes such as these impact the rules by which a mission scheduled. In eight years on orbit, the Chandra X-Ray Observatory Mission Planning process has adapted to meet the challenge of maximizing day-to-day and mission lifetime science return, despite a consistently evolving set of scheduling constraints. The success of the planning team has been achieved, not through the use of complex algorithms and optimization routines, but through processes and home grown tools that help individuals make smart short term and long term Mission Planning decisions. This paper walks through the processes and tools used to plan and produce mission schedules for the Chandra X-Ray Observatory. Nominal planning and scheduling, target of opportunity response, and recovery from on-board autonomous safing actions are all addressed. Evolution of tools and processes, best practices, and lessons learned are highlighted along the way.

  13. A Mars 2011 Balloon Mission Trade Study (United States)

    Smith, I.; Lew, T.; Perry, W.

    Mars Scouts are competitively selected PI-led missions to further Mars exploration in ways that satisfy NASA s overall objectives but are not currently in the planned line of missions The current 2006 Announcement of Opportunity AO for Mars Scouts has just closed The goal of this SwRI study was to develop a new balloon mission concept to where it could be credibly proposed for the AO The balloon system was defined in the study as consisting of two parts the balloon flight system BFS and the balloon deployment inflation system DIS The BFS includes the balloon envelope accessory hardware and gondola The balloon includes the envelope seams end fittings load core inflation tube diffusers payload tether shock attenuator and separation hardware The DIS includes the balloon container deployment hardware sequencer tankage gas and control hardware Trade studies were performed to better define the mission design space These studies included 1 effect of varied atmospheric thermal loads 2 effect of varying latitudes 3 effect of payload mass for varying altitudes 4 effect of radiative material properties on balloon size mass 5 effect of material areal densities on balloon size mass and 6 effect of inflation gas on system masses Results of the balloon trade study for the Mars 2011 mission opportunity will be presented

  14. Definition phase of Grand Tour missions/radio science investigations study for outer planets missions (United States)

    Tyler, G. L.


    Scientific instrumentation for satellite communication and radio tracking systems in the outer planet exploration mission is discussed. Mission planning considers observations of planetary and satellite-masses, -atmospheres, -magnetic fields, -surfaces, -gravitational fields, solar wind composition, planetary radio emissions, and tests of general relativity in time delay and ray bending experiments.

  15. Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Crewed Mission (United States)

    Lopez, Pedro, Jr.


    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  16. Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Redirect Crewed Mission (United States)

    Lopez, Pedro, Jr.; Shultz, Eric; Mattfeld, Bryan; Stromgren, Chel; Goodliff, Kandyce


    The Asteroid Redirect Mission (ARM) is currently being explored as the next step towards deep space human exploration, with the ultimate goal of reaching Mars. NASA is currently investigating a number of potential human exploration missions, which will progressively increase the distance and duration that humans spend away from Earth. Missions include extended human exploration in cis-lunar space which, as conceived, would involve durations of around 60 days, and human missions to Mars, which are anticipated to be as long as 1000 days. The amount of logistics required to keep the crew alive and healthy for these missions is significant. It is therefore important that the design and planning for these missions include accurate estimates of logistics requirements. This paper provides a description of a process and calculations used to estimate mass and volume requirements for crew logistics, including consumables, such as food, personal items, gasses, and liquids. Determination of logistics requirements is based on crew size, mission duration, and the degree of closure of the environmental control life support system (ECLSS). Details are provided on the consumption rates for different types of logistics and how those rates were established. Results for potential mission scenarios are presented, including a breakdown of mass and volume drivers. Opportunities for mass and volume reduction are identified, along with potential threats that could possibly increase requirements.

  17. 75 FR 21597 - Business Development Trade Mission to Baghdad, Iraq (United States)


    ... International Trade Administration Business Development Trade Mission to Baghdad, Iraq AGENCY: International... organizing a trade mission to Baghdad, Iraq. This mission is scheduled for October 2010* and has been created... market. This mission will be led by a Senior Commerce Department official*. Nearly two thirds of...

  18. 77 FR 35353 - Biotech Life Sciences Trade Mission to Australia (United States)


    ... International Trade Administration Biotech Life Sciences Trade Mission to Australia AGENCY: International Trade... Biotech Life Sciences trade mission to Australia, October 29-November 2, 2012. The mission to Australia is... of the trade mission to Australia are to (1) increase U.S. exports to Australia, (2) introduce...

  19. Stennis engineer part of LCROSS moon mission (United States)


    Karma Snyder, a project manager at NASA's John C. Stennis Space Center, was a senior design engineer on the RL10 liquid rocket engine that powered the Centaur, the upper stage of the rocket used in NASA's Lunar CRater Observation and Sensing Satellite (LCROSS) mission in October 2009. Part of the LCROSS mission was to search for water on the moon by striking the lunar surface with a rocket stage, creating a plume of debris that could be analyzed for water ice and vapor. Snyder's work on the RL10 took place from 1995 to 2001 when she was a senior design engineer with Pratt & Whitney Rocketdyne. Years later, she sees the project as one of her biggest accomplishments in light of the LCROSS mission. 'It's wonderful to see it come into full service,' she said. 'As one of my co-workers said, the original dream was to get that engine to the moon, and we're finally realizing that dream.'

  20. Mathematical SETI Statistics, Signal Processing, Space Missions

    CERN Document Server

    Maccone, Claudio


    This book introduces the Statistical Drake Equation where, from a simple product of seven positive numbers, the Drake Equation is turned into the product of seven positive random variables. The mathematical consequences of this transformation are demonstrated and it is proven that the new random variable N for the number of communicating civilizations in the Galaxy must follow the lognormal probability distribution when the number of factors in the Drake equation is allowed to increase at will. Mathematical SETI also studies the proposed FOCAL (Fast Outgoing Cyclopean Astronomical Lens) space mission to the nearest Sun Focal Sphere at 550 AU and describes its consequences for future interstellar precursor missions and truly interstellar missions. In addition the author shows how SETI signal processing may be dramatically improved by use of the Karhunen-Loève Transform (KLT) rather than Fast Fourier Transform (FFT). Finally, he describes the efforts made to persuade the United Nations to make the central part...

  1. SWARM - An earth Observation Mission investigating Geospace

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Lühr, H.; Knudsen, D.;


    The Swarm mission was selected as the 5th mission in ESA's Earth Explorer Programme in 2004. This mission aims at measuring the Earth's magnetic field with unprecedented accuracy. This will be done by a constellation of three satellites, where two will fly at lower altitude, measuring the gradient...... of the magnetic field, and one satellite will fly at higher altitude. The measured magnetic field is the sum of many contributions including both magnetic fields and currents in the Earth's interior and electrical currents in Geospace. In order to separate all these sources electric field and plasma...... measurements will also be made to complement the primary magnetic field measurements. Together these will allow the deduction of information on a series of solid earth processes responsible for the creation of the fields measured. The completeness of the measurements on each satellite and the constellation...

  2. Software Schedules Missions, Aids Project Management (United States)


    NASA missions require advanced planning, scheduling, and management, and the Space Agency has worked extensively to develop the programs and software suites necessary to facilitate these complex missions. These enormously intricate undertakings have hundreds of active components that need constant management and monitoring. It is no surprise, then, that the software developed for these tasks is often applicable in other high-stress, complex environments, like in government or industrial settings. NASA work over the past few years has resulted in a handful of new scheduling, knowledge-management, and research tools developed under contract with one of NASA s partners. These tools have the unique responsibility of supporting NASA missions, but they are also finding uses outside of the Space Program.

  3. Evaluation of the electric utility missions

    International Nuclear Information System (INIS)

    The French law from February 10, 2000, about the modernization and development of the electric utility, has created new missions of public utility and foresees some compensation mechanisms for not handicapping the power operators in charge of these missions and for not creating competition distortions to their detriment on the European market. The author explains, first, the financial and economical stakes linked with these new missions. Then, he evokes the evolution of the energy context that has taken place between the 2. World war and the enforcement of the February 10, 2000 law, and he analyzes the systems foreseen for the power generation and distribution. For each public utility charge, the existing dispositions and those introduced by the law are analyzed and compared to the equivalent systems existing in other countries. Then, charge evaluation criteria and sharing rules and proposed. (J.S.)

  4. Mars MetNet Mission Status (United States)

    Harri, A.-M.; Aleksashkin, S.; Arruego, I.; Schmidt, W.; Genzer, M.; Vazquez, L.; Haukka, H.; Palin, M.; Nikkanen, T.


    New kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semihard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  5. Corporate culture and the healing mission. (United States)

    Clifton, R


    The health care revolution of the 1960s was affected not only by changes in government's public policy but also changes in Church teaching. As Medicare and Medicaid helped finance the building of many new facilities, religious institutes--influenced by the decisions of the second Vatican Council--began to redefine themselves. The growth in each area was a hopeful sign of the ability to care for more people and extend Jesus' healing mission. Today health care organizations face pressures to compete, diversify, and reorganize. To ensure that they remain renewed and vital in the midst of change, they must promote their mission and philosophy through reeducation and socialization. The chief executive officer, who ultimately is responsible for ensuring that the organization is value-driven, must not abdicate this responsibility. Maintaining a religious organization's mission is as essential to its survival as meeting the budget, developing a strategic plan, or recruiting physicians. PMID:10276820

  6. The Deep Space Atomic Clock Mission (United States)

    Ely, Todd A.; Koch, Timothy; Kuang, Da; Lee, Karen; Murphy, David; Prestage, John; Tjoelker, Robert; Seubert, Jill


    The Deep Space Atomic Clock (DSAC) mission will demonstrate the space flight performance of a small, low-mass, high-stability mercury-ion atomic clock with long term stability and accuracy on par with that of the Deep Space Network. The timing stability introduced by DSAC allows for a 1-Way radiometric tracking paradigm for deep space navigation, with benefits including increased tracking via utilization of the DSN's Multiple Spacecraft Per Aperture (MSPA) capability and full ground station-spacecraft view periods, more accurate radio occultation signals, decreased single-frequency measurement noise, and the possibility for fully autonomous on-board navigation. Specific examples of navigation and radio science benefits to deep space missions are highlighted through simulations of Mars orbiter and Europa flyby missions. Additionally, this paper provides an overview of the mercury-ion trap technology behind DSAC, details of and options for the upcoming 2015/2016 space demonstration, and expected on-orbit clock performance.

  7. All Sky Survey Mission Observing Scenario Strategy

    CERN Document Server

    Spangelo, Sara C; Unwin, Stephen C; Bock, Jamie J


    This paper develops a general observing strategy for missions performing all-sky surveys, where a single spacecraft maps the celestial sphere subject to realistic constraints. The strategy is flexible such that targeted observations and variable coverage requirements can be achieved. This paper focuses on missions operating in Low Earth Orbit, where the thermal and stray-light constraints due to the Sun, Earth, and Moon result in interacting and dynamic constraints. The approach is applicable to broader mission classes, such as those that operate in different orbits or that survey the Earth. First, the instrument and spacecraft configuration is optimized to enable visibility of the targeted observations throughout the year. Second, a constraint-based high-level strategy is presented for scheduling throughout the year subject to a simplified subset of the constraints. Third, a heuristic-based scheduling algorithm is developed to assign the all-sky observations over short planning horizons. The constraint-based...

  8. Constellation Program Mission Operations Project Office Status and Support Philosophy (United States)

    Smith, Ernest; Webb, Dennis


    The Constellation Program Mission Operations Project Office (CxP MOP) at Johnson Space Center in Houston Texas is preparing to support the CxP mission operations objectives for the CEV/Orion flights, the Lunar Lander, and and Lunar surface operations. Initially the CEV will provide access to the International Space Station, then progress to the Lunar missions. Initial CEV mission operations support will be conceptually similar to the Apollo missions, and we have set a challenge to support the CEV mission with 50% of the mission operations support currently required for Shuttle missions. Therefore, we are assessing more efficient way to organize the support and new technologies which will enhance our operations support. This paper will address the status of our preparation for these CxP missions, our philosophical approach to CxP operations support, and some of the technologies we are assessing to streamline our mission operations infrastructure.

  9. 3 EXPOSE Missions - overview and lessons learned (United States)

    Rabbow, E.; Willnekcer, R.; Reitz, G.; Aman, A.; Bman, B.; Cman, C.


    The International Space Station ISS provides a variety of external research platforms for experiments aiming at the utilization of space parameters like vacuum, temperature oscillation and in particular extraterrestrial short wavelength UV and ionizing radiation which cannot be simulated accurately in the laboratory. Three Missions, two past and one upcoming, will be presented. A family of astrobiological experimental ESA facilities called "EXPOSE" were and will be accommodated on these outside exposure platforms: on one of the external balconies of the European Columbus Module (EXPOSE-E) and on the URM-D platform on the Russian Zvezda Module (EXPOSE-R and EXPOSE-R2). Exobiological and radiation experiments, exposing chemical, biological and dosimetric samples to the harsh space environment are - and will be - accommodated on these facilities to increase our knowledge on the origin, evolution and distribution of life, on Earth and possibly beyond. The biological experiments investigate resistance and adaptation of organisms like bacteria, Achaea, fungi, lichens, plant seeds and small animals like mosquito larvae to extreme environmental conditions and underlying mechanisms like DNA repair. The organic chemical experiments analyse chemical reactions triggered by the extraterrestrial environment, especially short wavelength UV radiation, to better understand prebiotic chemistry. The facility is optimized to allow exposure of biological specimen and material samples under a variety of conditions, using optical filter systems. Environmental parameters like temperature and radiation are regularly recorded and down linked by telemetry. Two long term missions named according to their facility - EXPOSE-E and EXPOSE-R - are completed and a third mission is planned and currently prepared. Operations of all three missions including sample accommodation are performed by DLR. An overview of the two completed missions will be given including lessons learned as well as an outlook

  10. Hydrologic Research for the SWOT Mission (United States)

    Alsdorf, Doug; Mognard, Nelly; Cretaux, Jean-Francois; Calmant, Stephane; Biancamaria, Sylvain; Andreadis, Kostas; Schumann, Guy


    The Surface Water and Ocean Topography satellite mission (SWOT, is designed to measure the elevations of the world's water surfaces including both terrestrial surface waters and the oceans. CNES, NASA, and the CSA are partners in the mission, which is now in Phase A with a launch date of 2020. The mission teams have already made exciting advances, most notably the formation of the Science Definition Team. The SDT consists of three-dozen lead investigators and their research teams, spanning Europe and the U.S. and across oceanography and hydrology. The group will address hydrologic issues such as: What are the spatial resolutions, temporal samplings, and height accuracies required to address SWOT's hydrologic science questions? Can these be relaxed or improved from preliminary designs and thus what are the expected impacts on mission power requirements? To help address these issues, an airborne platform called "AirSWOT" has been developed. While AirSWOT flights are still in the planning stages, it is hoped that measurements will occur over several U.S. and French rivers, including some braided Alaskan rivers and some tropical rivers. These various hydrogeomorphic regimes will provide different settings in which to test discharge algorithms. Based on the results of a workshop held in June 2012, it is thought that river reaches, rather than river cross-sections, are optimum for SWOT estimates of discharge. As the SDT works through these important mission design issues, they will also help to further refine the mission hydrologic goals. For example, reservoirs around the world impact the water cycle via storage and release. Yet, a global comprehensive understanding of these changes remains unknown. What role will SWOT have in solving this problem, e.g., what are the fluvial geomorphic environments best suited for SWOT measurements of reservoirs?

  11. US Contributions to the Athena Mission (United States)

    Smith, Randall


    The science of the Hot and Energetic Universe, as embodied in the IXO mission, was highly ranked by the 2010 Decadal Review of Astronomy and Astrophysics. NASA therefore strongly supports the Athena mission, and plans significant contributions to the X-IFU, such as the micro-calorimeter array, that should enable more capabilities than in the original Athena proposal. NASA and US scientists are also examining, with ESA, possible contributions to other aspects of Athena. I will discuss the status and progress towards these contributions, both planned and potential.

  12. Phoenix - The First Mars Scout Mission (United States)

    Goldstein, Barry; Shotwell, Robert


    As the first of the new Mars Scouts missions, the Phoenix project was selected by NASA in August of 2003. Four years later, almost to the day, Phoenix was launched from Cape Canaveral Air Station and successfully injected into an interplanetary trajectory on its way to Mars. On May 25, 2008 Phoenix conducted the first successful powered decent on Mars in over 30 years. This paper will highlight some of the key changes since the 2008 IEEE paper of the same name, as well as performance through cruise, landing at the north pole of Mars and some of the preliminary results of the surface mission.

  13. Mission Implementation Constraints on Planetary Muon Radiography (United States)

    Jones, Cathleen E.; Kedar, Sharon; Naudet, Charles; Webb, Frank


    Cost: Use heritage hardware, especially use a tested landing system to reduce cost (Phoenix or MSL EDL stage). The sky crane technology delivers higher mass to the surface and enables reaching targets at higher elevation, but at a higher mission cost. Rover vs. Stationary Lander: Rover-mounted instrument enables tomography, but the increased weight of the rover reduces the allowable payload weight. Mass is the critical design constraint for an instrument for a planetary mission. Many factors that are minor factors or do not enter into design considerations for terrestrial operation are important for a planetary application. (Landing site, diurnal temperature variation, instrument portability, shock/vibration)

  14. Nuclear propulsion system options for Mars missions (United States)

    Emrich, William J., Jr.; Young, Archie C.


    This paper focuses on the use of a nuclear thermal rocket to accomplish a variety of space missions with emphasis on the manned Mars mission. The particle-bed-reactor type nuclear engine was chosen as the baseline engine because of its perceived versatility over other nuclear propulsion systems in conducting a wide variety of tasks. This study indicates that the particle-bed-reactor engine with its high engine thrust-to-weight ratio (about 20) and high specific impulse (about 950 to 1050 sec) offers distinct advantages over the larger and heavier NERVA-type nuclear engines.

  15. Coatings for the NuSTAR mission

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Jakobsen, Anders Clemen; Brejnholt, Nicolai;


    The NuSTAR mission will be the first mission to carry a hard X-ray(5-80 keV) focusing telescope to orbit. The optics are based on the use of multilayer coated thin slumped glass. Two different material combinations were used for the flight optics, namely W/Si and Pt/C. In this paper we describe the...... entire coating effort including the final coating design that was used for the two flight optics. We also present data on the performance verification of the coatings both on Si witness samples as well as on individual flight mirrors....

  16. Laser Propulsion and the Constant Momentum Mission

    International Nuclear Information System (INIS)

    We show that perfect propulsion requires a constant momentum mission, as a consequence of Newton's second law. Perfect propulsion occurs when the velocity of the propelled mass in the inertial frame of reference matches the velocity of the propellant jet in the rocket frame of reference. We compare constant momentum to constant specific impulse propulsion, which, for a given specification of the mission delta V, has an optimum specific impulse that maximizes the propelled mass per unit jet kinetic energy investment. We also describe findings of more than 50 % efficiency for conversion of laser energy into jet kinetic energy by ablation of solids

  17. The constellation X-ray mission

    International Nuclear Information System (INIS)

    The Constellation-X mission is a large collecting area X-ray facility, emphasizing observations at high spectral resolution (E/ΔE∼300-3000) while covering a broad energy band (0.25-40 keV). This mission will achieve a factor of 100 increased sensitivity over current capabilities and is optimized to observe the effects of extreme gravity close to black holes, and test models for the formation of large scale structure in the Universe. It is apart of NASA's strategic plan for launch towards the end of the first decade of the 21st century

  18. Communication strategies for colonization mission to Mars


    Machuca Varela, Pablo Antonio


    Earth-Mars cycler trajectories could be used as a periodic and cost-efficient human transportation system from Earth to Mars in a future mission to colonize Mars. Continuous and reliable communication between Mars and the Earth will be required in such a mission. In a circular-coplanar model, the existance of a particularly interesting cycler trajectory (ballistic outbound Earth-Mars S1L1 cycler trajectory) is proven, which has relatively short Earth-Mars transfer times, low relative velociti...

  19. JPL future missions and energy storage technology implications (United States)

    Pawlik, Eugene V.


    The mission model for JPL future programs is presented. This model identifies mission areas where JPL is expected to have a major role and/or participate in a significant manner. These missions are focused on space science and applications missions, but they also include some participation in space station activities. The mission model is described in detail followed by a discussion on the needs for energy storage technology required to support these future activities.

  20. A Look Inside the Juno Mission to Jupiter (United States)

    Grammier, Richard S.


    Juno, the second mission within the New Frontiers Program, is a Jupiter polar orbiter mission designed to return high-priority science data that spans across multiple divisions within NASA's Science Mission Directorate. Juno's science objectives, coupled with the natural constraints of a cost-capped, PI-led mission and the harsh environment of Jupiter, have led to a very unique mission and spacecraft design.

  1. Downsizing a Great Observatory: Reinventing Spitzer in the Warm Mission


    Storrie-Lombardi, Lisa J.; Dodd, Suzanne R.


    The Spitzer Space Telescope transitioned from the cryogen mission to the IRAC warm mission during 2009. This transition involved changing several areas of operations in order to cut the mission annual operating costs to 1/3 of the cryogen mission amount. In spite of this substantial cut back, Spitzer continues to have one of the highest science return per dollar ratio of any of NASA's extended missions. This paper will describe the major operational changes mad...

  2. Manned orbital systems concepts study. Book 3: Configurations for extended duration missions. [mission planning and project planning for space missions (United States)


    Mission planning, systems analysis, and design concepts for the Space Shuttle/Spacelab system for extended manned operations are described. Topics discussed are: (1) payloads, (2) spacecraft docking, (3) structural design criteria, (4) life support systems, (5) power supplies, and (6) the role of man in long duration orbital operations. Also discussed are the assembling of large structures in space. Engineering drawings are included.

  3. Systems Architecture for Fully Autonomous Space Missions (United States)

    Esper, Jamie; Schnurr, R.; VanSteenberg, M.; Brumfield, Mark (Technical Monitor)


    The NASA Goddard Space Flight Center is working to develop a revolutionary new system architecture concept in support of fully autonomous missions. As part of GSFC's contribution to the New Millenium Program (NMP) Space Technology 7 Autonomy and on-Board Processing (ST7-A) Concept Definition Study, the system incorporates the latest commercial Internet and software development ideas and extends them into NASA ground and space segment architectures. The unique challenges facing the exploration of remote and inaccessible locales and the need to incorporate corresponding autonomy technologies within reasonable cost necessitate the re-thinking of traditional mission architectures. A measure of the resiliency of this architecture in its application to a broad range of future autonomy missions will depend on its effectiveness in leveraging from commercial tools developed for the personal computer and Internet markets. Specialized test stations and supporting software come to past as spacecraft take advantage of the extensive tools and research investments of billion-dollar commercial ventures. The projected improvements of the Internet and supporting infrastructure go hand-in-hand with market pressures that provide continuity in research. By taking advantage of consumer-oriented methods and processes, space-flight missions will continue to leverage on investments tailored to provide better services at reduced cost. The application of ground and space segment architectures each based on Local Area Networks (LAN), the use of personal computer-based operating systems, and the execution of activities and operations through a Wide Area Network (Internet) enable a revolution in spacecraft mission formulation, implementation, and flight operations. Hardware and software design, development, integration, test, and flight operations are all tied-in closely to a common thread that enables the smooth transitioning between program phases. The application of commercial software

  4. Mars MetNet Mission Status (United States)

    Harri, Ari-Matti; Aleksashkin, Sergei; Arruego, Ignacio; Schmidt, Walter; Genzer, Maria; Vazquez, Luis; Haukka, Harri


    New kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested. 1. MetNet Lander The MetNet landing vehicles are using an inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized. The landing impact will burrow the payload container into the Martian soil providing a more favorable thermal environment for the electronics and a suitable orientation of the telescopic boom with external sensors and the radio link antenna. It is planned to deploy several tens of MNLs on the Martian surface operating at least partly at the same time to allow meteorological network science. 2. Scientific Payload The payload of the two MNL precursor models includes the following instruments: Atmospheric instruments: 1. MetBaro Pressure device 2. MetHumi Humidity device 3. MetTemp Temperature sensors Optical devices: 1. PanCam Panoramic 2. MetSIS Solar irradiance sensor with OWLS optical wireless system for data transfer 3. DS Dust sensor The descent processes dynamic properties are monitored by a special 3-axis accelerometer combined with a 3-axis gyrometer. The data will be sent via auxiliary beacon antenna throughout the

  5. Planning Coverage Campaigns for Mission Design and Analysis: Clasp for the Proposed DESDynI Mission (United States)

    Knight, Russell; McLaren, David; Hu, Steven


    Mission design and analysis present challenges in that almost all variables are in constant flux, yet the goal is to achieve an acceptable level of performance against a concept of operations, which might also be in flux. To increase responsiveness, our approach is to use automated planning tools that allow for the continual modification of spacecraft, ground system, staffing, and concept of operations while returning metrics that are important to mission evaluation, such as area covered, peak memory usage, and peak data throughput. We have applied this approach to DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) mission design concept using the CLASP (Compressed Large-scale Activity Scheduler/Planner) planning system [7], but since this adaptation many techniques have changed under the hood for CLASP and the DESDynI mission concept has undergone drastic changes, including that it has been renamed the Earth Radar Mission. Over the past two years, we have run more than fifty simulations with the CLASP-DESDynI adaptation, simulating different mission scenarios with changing parameters including targets, swaths, instrument modes, and data and downlink rates. We describe the evolution of simulations through the DESDynI MCR (Mission Concept Review) and afterwards.

  6. Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications (United States)

    Mishkin, Andrew; Lee, Young; Korth, David; LeBlanc, Troy


    For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.

  7. The Swift Gamma-Ray Burst Mission

    CERN Document Server

    Gehrels, N; Burrows, D N; Chincarini, G L; Cominsky, L R; Giommi, P; Hurley, K C; Marshall, F E; Mason, K O; Mészáros, P; Nousek, J A; Roming, P W A; Wells, A A; White, N E; Team, Swift Science


    The Swift mission, scheduled for launch in early 2004, is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is the first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts per year and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to determine the origin of GRBs; classify GRBs and search for new types; study the interaction of the ultra-relativistic outflows of GRBs with their surrounding medium; and use GRBs to study the early universe out to z>10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a new-generation wide-field gamma-ray (15-150 keV) detector; a narrow-field X-ray telescope; and a narrow-field UV/optical telescope. Redshift determin...

  8. Mission analysis report - deactivation facilities at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Lund, D.P.


    This document examines the portion of the Hanford Site Cleanup Mission that deals with facility deactivation. How facilities get identified for deactivation, how they enter EM-60 for deactivation, programmatic alternatives to perform facility deactivation, the deactivation process itself, key requirements and objectives associated with the deactivation process, and deactivation planning are discussed.

  9. Enhanced mission performance from autonomous instrument guidance

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Jørgensen, Peter Siegbjørn; Betto, Maurizio;


    and power consumption makes the mu ASC an ideal instrument for small, high yielding satellite missions. The ASC has hitherto been used by the satellite AOCS and the high accuracy scientific instrument for attitude recovery (among others onboard ORSTED, CHAMP, and GRACE), and satellite high accuracy target...

  10. Draft Strategic Laboratory Missions Plan. Volume II

    International Nuclear Information System (INIS)

    This volume described in detail the Department's research and technology development activities and their funding at the Department's laboratories. It includes 166 Mission Activity Profiles, organized by major mission area, with each representing a discrete budget function called a Budget and Reporting (B ampersand R) Code. The activities profiled here encompass the total research and technology development funding of the laboratories from the Department. Each profile includes a description of the activity and shows how the funding for that activity is distributed among the DOE laboratories as well as universities and industry. The profiles also indicate the principal laboratories for each activity, as well as which other laboratories are involved. The information in this volume is at the core of the Strategic Laboratory Mission Plan. It enables a reader to follow funds from the Department's appropriation to a specific activity description and to specific R ampersand D performing institutions. This information will enable the Department, along with the Laboratory Operations Board and Congress, to review the distribution of R ampersand D performers chosen to execute the Department's missions

  11. Levinas and the Mission of Education (United States)

    Zhao, Guoping


    The current educational discourse on Emmanuel Levinas's concept of subjectivity has focused on the pure openness and subjection of the self to the other. Based on such an understanding, some educational theorists hold that Levinas's work has given us new hope for the mission of education, while others deny its relevance. I suggest that this…

  12. Protein requirements for long term missions (United States)

    Stein, T. P.


    A key component of the diet for a space mission is protein. This first part of this paper reviews the reasons for emphasizing protein nurtition and then discusses what the requirements are likely to be. The second part discusses potential advantages of modifying these requirements and describes potential potential approaches to effecting these modificatons based on well established ground based models.

  13. Euclid Space Mission: building the sky survey

    CERN Document Server

    Tereno, I; Dinis, J; Scaramella, R; Amiaux, J; Burigana, C; Cuillandre, J C; da Silva, A; Derosa, A; Maiorano, E; Maris, M; Oliveira, D; Franzetti, P; Garilli, B; Gomez-Alvarez, P; Meneghetti, M; Wachter, S


    The Euclid space mission proposes to survey 15000 square degrees of the extragalactic sky during 6 years, with a step-and-stare technique. The scheduling of observation sequences is driven by the primary scientific objectives, spacecraft constraints, calibration requirements and physical properties of the sky. We present the current reference implementation of the Euclid survey and on-going work on survey optimization.

  14. Draft Strategic Laboratory Missions Plan. Volume II

    Energy Technology Data Exchange (ETDEWEB)



    This volume described in detail the Department`s research and technology development activities and their funding at the Department`s laboratories. It includes 166 Mission Activity Profiles, organized by major mission area, with each representing a discrete budget function called a Budget and Reporting (B & R) Code. The activities profiled here encompass the total research and technology development funding of the laboratories from the Department. Each profile includes a description of the activity and shows how the funding for that activity is distributed among the DOE laboratories as well as universities and industry. The profiles also indicate the principal laboratories for each activity, as well as which other laboratories are involved. The information in this volume is at the core of the Strategic Laboratory Mission Plan. It enables a reader to follow funds from the Department`s appropriation to a specific activity description and to specific R & D performing institutions. This information will enable the Department, along with the Laboratory Operations Board and Congress, to review the distribution of R & D performers chosen to execute the Department`s missions.

  15. NASA's Gravitational - Wave Mission Concept Study (United States)

    Stebbins, Robin; Jennrich, Oliver; McNamara, Paul


    With the conclusion of the NASA/ESA partnership on the Laser Interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons. the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines. and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility. to define a conceptual design evaluate kt,y performance parameters. assess risk and estimate cost and schedule. The Study results are summarized.

  16. Mission Operations Planning and Scheduling System (MOPSS) (United States)

    Wood, Terri; Hempel, Paul


    MOPSS is a generic framework that can be configured on the fly to support a wide range of planning and scheduling applications. It is currently used to support seven missions at Goddard Space Flight Center (GSFC) in roles that include science planning, mission planning, and real-time control. Prior to MOPSS, each spacecraft project built its own planning and scheduling capability to plan satellite activities and communications and to create the commands to be uplinked to the spacecraft. This approach required creating a data repository for storing planning and scheduling information, building user interfaces to display data, generating needed scheduling algorithms, and implementing customized external interfaces. Complex scheduling problems that involved reacting to multiple variable situations were analyzed manually. Operators then used the results to add commands to the schedule. Each architecture was unique to specific satellite requirements. MOPSS is an expert system that automates mission operations and frees the flight operations team to concentrate on critical activities. It is easily reconfigured by the flight operations team as the mission evolves. The heart of the system is a custom object-oriented data layer mapped onto an Oracle relational database. The combination of these two technologies allows a user or system engineer to capture any type of scheduling or planning data in the system's generic data storage via a GUI.

  17. An Analysis of Baccalaureate College Mission Statements (United States)

    Taylor, Barrett J.; Morphew, Christopher C.


    We examined baccalaureate colleges mission statements to better understand how these organizations represent themselves to potential students and other external constituent groups. We drew these documents from two sources, the colleges' official web sites and an archive constructed and maintained by "U.S. News and World Report." Most sampled…

  18. Is Middlesex County College Accomplishing Its Mission? (United States)

    Balabkins, Xenia P.

    Over the past few years, New Jersey's Middlesex County College (MCC) has placed an inordinate amount of attention and effort on the issue of student transfer to four-year institutions. Although attention to traditional academic goals is important, MCC's stated mission also addresses other important segments of the college's market. The college has…

  19. The Science Payload of the LOFT Mission

    DEFF Research Database (Denmark)

    Feroci, Marco; den Herder, J.; van der Klis, M.; Ray, P. S.; Takahashi, T.; Wilms, J.; Barret, D.; Bozzo, E.; Zane, S.; Stella, L.; Brandt, Søren; Pohl, M.; Hernanz, M.; Santangelo, A.; Watts, A.

    The scientific payload onboard the Large Observatory For x-ray Timing mission (LOFT, see presentation by P. Ray et al. at this meeting) is composed of two instruments, the Large Area Detector (LAD, 10 m2 effective area in the primary energy range 2-30 keV, 1-deg collimated field of view) and the ...

  20. Apollo 14 mission circuit breaker anomaly (United States)


    Continuity through the circuit breaker in the mechanically closed condition was prevented by a foreign substance on the contact surface onboard Apollo 14. It was concluded that this was the only failure of this type in over 3400 units that were flown, and since no circuit breaker is a single-point failure for crew safety or mission success, no corrective action was taken.

  1. AIR North Mission, Campaign final report

    International Nuclear Information System (INIS)

    The objective of the North Air mission is to provide a geological survey and to publish a scaled map at 1/500 000 of the northern part of Niger Republic situated between 20 degre North and Algerian border with an explicative notice

  2. Hard x-ray telescope mission

    DEFF Research Database (Denmark)

    Gorenstein, P.; Worrall, D.; Joensen, K.D.; Romaine, S.E.; Weisskopf, M.C.; Ramsey, B.D.; Bilbro, J.W.; Kroeger, R.A.; Gehrels, N.A.; Parsons, A.M.; Smither, R.K.; Christensen, Finn Erland; Citterio, O.; von Ballmoos, P.

    The Hard X-Ray Telescope was selected for study as a possible new intermediate size mission for the early 21st century. Its principal attributes are: (1) multiwavelength observing with a system of focussing telescopes that collectively observe from the UV to over 1 MeV, (2) much higher sensitivity...

  3. Coating optimization for the ATHENA+ mission

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Christensen, Finn Erland; Jakobsen, Anders Clemen;


    The ATHENA mission concept, now called ATHENA+, continues to be refined to address important questions in modern astrophysics. Previous studies have established that the requirement for effective area can be achieved using a combination of bi-layer coatings and/or simple graded multilayers. We find...

  4. NASA's Gravitational-Wave Mission Concept Study (United States)

    Stebbins, Robin; Jennrich, Oliver; McNamara, Paul


    With the conclusion of the NASA/ESA partnership on the Laser interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons, the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines, and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility, to define a conceptual design, evaluate key performance parameters, assess risk and estimate cost and schedule. The Study results are summarized.

  5. The Swift Gamna-Ray Burst Mission (United States)

    Gehrels, Neil


    Swift is a NASA Explorer mission that will be launched in late 2004. It is a multiwavelength observatory for transient astronomy. The goals of the mission are to determine the origin of gamma-ray bursts and their afterglows and use bursts to probe the early Universe. The mission will also perform a hard x-ray survey at the 1 milliCrab level and will continuously monitor the sky for transients. A wide-field gamma-ray camera will detect more than a hundred GRBs per year to 3 times fainter than BATSE. Sensitive narrow-field X-ray and UV/optical telescopes will be pointed at the burst location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions will be determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. The instrumentation is a combination of existing flight-spare hardware and design from XMM and Spectrum-X/JET-X contributed by collaborators in the UK and Italy and development of a coded-aperture camera with a large-area (-0.5 square meter) CdZnTe detector array. The ground station in Malindi is contributed by the Italian Space Agency. Key components of the mission are vigorous follow-up and outreach programs to engage the astronomical community and public in Swift.

  6. The Bering small vehicle asteroid mission concept

    DEFF Research Database (Denmark)

    Michelsen, Rene; Andersen, Anja; Haack, Henning;


    targets. The dilemma obviously being the resolution versus distance and the statistics versus DeltaV requirements. Using advanced instrumentation and onboard autonomy, we have developed a space mission concept whose goal is to map the flux, size, and taxonomy distributions of asteroids. The main focus is...

  7. Mission Reliability Estimation for Repairable Robot Teams

    Directory of Open Access Journals (Sweden)

    Stephen B. Stancliff


    Full Text Available Many of the most promising applications for mobile robots require very high reliability. The current generation of mobile robots is, for the most part, highly unreliable. The few mobile robots that currently demonstrate high reliability achieve this reliability at a high financial cost. In order for mobile robots to be more widely used, it will be necessary to find ways to provide high mission reliability at lower cost. Comparing alternative design paradigms in a principled way requires methods for comparing the reliability of different robot and robot team configurations. In this paper, we present the first principled quantitative method for performing mission reliability estimation for mobile robot teams. We also apply this method to an example robot mission, examining the cost-reliability tradeoffs among different team configurations. Using conservative estimates of the cost-reliability relationship, our results show that it is possible to significantly reduce the cost of a robotic mission by using cheaper, lower-reliability components and providing spares.

  8. STS-102/Expedition 2 Mission Overview (United States)


    John Shannon, STS-102 Lead Flight Director, Bernestine Dickey, STS-102 Launch Package Manager, and Rick La Brode, International Space Station (ISS) Lead Flight Director, give an overview of the STS-102 mission during a prelaunch press conference. Mr. Shannon discusses how the mission came into being and its objectives, including information on the launch and a day-by-day account of mission activities. Ms. Dickey gives details on the payload of STS-102, describing the system racks, cargo elements, and crew supplies delivered via the Leonardo Multi-Purpose Logistics Module. Mr. La Brode describes the current configuration of the ISS and upcoming changes. He also discusses the activities of the Expedition 2 crew during the next four months. Computer simulations show the ISS' current and future (after the STS-102 mission) configurations, the installations of Leonardo, and the move of the Pressurized Mating Adapter from one port to another on the Destiny Laboratory. The panel then answers questions from the press.

  9. "Sunshine": mission to reignite the sun

    CERN Multimedia

    Ebert, Roger


    "As a permanent winter settles upon the Earth, a specaship is sent on a desperate mission to drop a nuclear device into the sick sn and "reignite" it. To name the ship "Icarus I" seems like asking for trouble in two ways, considering the fate of the original Icaru and the numeral that omniously leaves room for a sequel." (1 page)

  10. The Constellation X-ray mission

    International Nuclear Information System (INIS)

    The Constellation-X mission is a large collecting area X-ray facility, emphasizing observations at high spectral resolution (E/ΔE∼300-3000) while covering a broad energy band (0.25-40 keV). By increasing the telescope aperture and utilizing efficient spectrometers the mission will achieve a factor of 100 increased sensitivity over current high-resolution X-ray spectroscopy missions. The use of focussing optics across the 10-40 keV band will provide a similar factor of 100 increased sensitivity in this band. Key technologies under development for the mission include lightweight high throughput X-ray optics, multilayer coatings to enhance the hard X-ray performance of X-ray optics, micro-calorimeter spectrometer arrays with 2 eV resolution, low-power and low-weight CCD arrays, lightweight gratings and hard X-ray detectors. When observations commence towards the end of the next decade, Constellation-X will address many pressing questions concerning the extremes of gravity and the evolution of the Universe

  11. Digital communication constraints in prior space missions (United States)

    Yassine, Nathan K.


    Digital communication is crucial for space endeavors. Jt transmits scientific and command data between earth stations and the spacecraft crew. It facilitates communications between astronauts, and provides live coverage during all phases of the mission. Digital communications provide ground stations and spacecraft crew precise data on the spacecraft position throughout the entire mission. Lessons learned from prior space missions are valuable for our new lunar and Mars missions set by our president s speech. These data will save our agency time and money, and set course our current developing technologies. Limitations on digital communications equipment pertaining mass, volume, data rate, frequency, antenna type and size, modulation, format, and power in the passed space missions are of particular interest. This activity is in support of ongoing communication architectural studies pertaining to robotic and human lunar exploration. The design capabilities and functionalities will depend on the space and power allocated for digital communication equipment. My contribution will be gathering these data, write a report, and present it to Communications Technology Division Staff. Antenna design is very carefully studied for each mission scenario. Currently, Phased array antennas are being developed for the lunar mission. Phased array antennas use little power, and electronically steer a beam instead of DC motors. There are 615 patches in the phased array antenna. These patches have to be modified to have high yield. 50 patches were created for testing. My part is to assist in the characterization of these patch antennas, and determine whether or not certain modifications to quartz micro-strip patch radiators result in a significant yield to warrant proceeding with repairs to the prototype 19 GHz ferroelectric reflect-array antenna. This work requires learning how to calibrate an automatic network, and mounting and testing antennas in coaxial fixtures. The purpose of this

  12. Emirates Mars Mission Planetary Protection Plan (United States)

    Awadhi, Mohsen Al


    The United Arab Emirates is planning to launch a spacecraft to Mars in 2020 as part of the Emirates Mars Mission (EMM). The EMM spacecraft, Amal, will arrive in early 2021 and enter orbit about Mars. Through a sequence of subsequent maneuvers, the spacecraft will enter a large science orbit and remain there throughout the primary mission. This paper describes the planetary protection plan for the EMM mission. The EMM science orbit, where Amal will conduct the majority of its operations, is very large compared to other Mars orbiters. The nominal orbit has a periapse altitude of 20,000 km, an apoapse altitude of 43,000 km, and an inclination of 25 degrees. From this vantage point, Amal will conduct a series of atmospheric investigations. Since Amal's orbit is very large, the planetary protection plan is to demonstrate a very low probability that the spacecraft will ever encounter Mars' surface or lower atmosphere during the mission. The EMM team has prepared methods to demonstrate that (1) the launch vehicle targets support a 0.01% probability of impacting Mars, or less, within 50 years; (2) the spacecraft has a 1% probability or less of impacting Mars during 20 years; and (3) the spacecraft has a 5% probability or less of impacting Mars during 50 years. The EMM mission design resembles the mission design of many previous missions, differing only in the specific parameters and final destination. The following sequence describes the mission: 1.The mission will launch in July, 2020. The launch includes a brief parking orbit and a direct injection to the interplanetary cruise. The launch targets are specified by the hyperbolic departure's energy C3, and the hyperbolic departure's direction in space, captured by the right ascension and declination of the launch asymptote, RLA and DLA, respectively. The targets of the launch vehicle are biased away from Mars such that there is a 0.01% probability or less that the launch vehicle arrives onto a trajectory that impacts Mars

  13. Using Natural Language to Enhance Mission Effectiveness (United States)

    Trujillo, Anna C.; Meszaros, Erica


    The availability of highly capable, yet relatively cheap, unmanned aerial vehicles (UAVs) is opening up new areas of use for hobbyists and for professional-related activities. The driving function of this research is allowing a non-UAV pilot, an operator, to define and manage a mission. This paper describes the preliminary usability measures of an interface that allows an operator to define the mission using speech to make inputs. An experiment was conducted to begin to enumerate the efficacy and user acceptance of using voice commands to define a multi-UAV mission and to provide high-level vehicle control commands such as "takeoff." The primary independent variable was input type - voice or mouse. The primary dependent variables consisted of the correctness of the mission parameter inputs and the time needed to make all inputs. Other dependent variables included NASA-TLX workload ratings and subjective ratings on a final questionnaire. The experiment required each subject to fill in an online form that contained comparable required information that would be needed for a package dispatcher to deliver packages. For each run, subjects typed in a simple numeric code for the package code. They then defined the initial starting position, the delivery location, and the return location using either pull-down menus or voice input. Voice input was accomplished using CMU Sphinx4-5prealpha for speech recognition. They then inputted the length of the package. These were the option fields. The subject had the system "Calculate Trajectory" and then "Takeoff" once the trajectory was calculated. Later, the subject used "Land" to finish the run. After the voice and mouse input blocked runs, subjects completed a NASA-TLX. At the conclusion of all runs, subjects completed a questionnaire asking them about their experience in inputting the mission parameters, and starting and stopping the mission using mouse and voice input. In general, the usability of voice commands is acceptable

  14. Radiation Protection for Lunar Mission Scenarios (United States)

    Clowdsley, Martha S.; Nealy, John E.; Wilson, John W.; Anderson, Brooke M.; Anderson, Mark S.; Krizan, Shawn A.


    Preliminary analyses of shielding requirements to protect astronauts from the harmful effects of radiation on both short-term and long-term lunar missions have been performed. Shielding needs for both solar particle events (SPEs) and galactic cosmic ray (GCR) exposure are discussed for transit vehicles and surface habitats. This work was performed under the aegis of two NASA initiatives. The first study was an architecture trade study led by Langley Research Center (LaRC) in which a broad range of vehicle types and mission scenarios were compared. The radiation analysis for this study primarily focused on the additional shielding mass required to protect astronauts from the rare occurrence of a large SPE. The second study, led by Johnson Space Center (JSC), involved the design of lunar habitats. Researchers at LaRC were asked to evaluate the changes to mission architecture that would be needed if the surface stay were lengthened from a shorter mission duration of 30 to 90 days to a longer stay of 500 days. Here, the primary radiation concern was GCR exposure. The methods used for these studies as well as the resulting shielding recommendations are discussed. Recommendations are also made for more detailed analyses to minimize shielding mass, once preliminary vehicle and habitat designs have been completed. Here, methodologies are mapped out and available radiation analysis tools are described. Since, as yet, no dosimetric limits have been adopted for missions beyond low earth orbit (LEO), radiation exposures are compared to LEO limits. Uncertainties associated with the LEO career effective dose limits and the effects of lowering these limits on shielding mass are also discussed.

  15. Validation of Mission Plans Through Simulation (United States)

    St-Pierre, J.; Melanson, P.; Brunet, C.; Crabtree, D.


    The purpose of a spacecraft mission planning system is to automatically generate safe and optimized mission plans for a single spacecraft, or more functioning in unison. The system verifies user input syntax, conformance to commanding constraints, absence of duty cycle violations, timing conflicts, state conflicts, etc. Present day constraint-based systems with state-based predictive models use verification rules derived from expert knowledge. A familiar solution found in Mission Operations Centers, is to complement the planning system with a high fidelity spacecraft simulator. Often a dedicated workstation, the simulator is frequently used for operator training and procedure validation, and may be interfaced to actual control stations with command and telemetry links. While there are distinct advantages to having a planning system offer realistic operator training using the actual flight control console, physical verification of data transfer across layers and procedure validation, experience has revealed some drawbacks and inefficiencies in ground segment operations: With these considerations, two simulation-based mission plan validation projects are under way at the Canadian Space Agency (CSA): RVMP and ViSION. The tools proposed in these projects will automatically run scenarios and provide execution reports to operations planning personnel, prior to actual command upload. This can provide an important safeguard for system or human errors that can only be detected with high fidelity, interdependent spacecraft models running concurrently. The core element common to these projects is a spacecraft simulator, built with off-the- shelf components such as CAE's Real-Time Object-Based Simulation Environment (ROSE) technology, MathWork's MATLAB/Simulink, and Analytical Graphics' Satellite Tool Kit (STK). To complement these tools, additional components were developed, such as an emulated Spacecraft Test and Operations Language (STOL) interpreter and CCSDS TM

  16. GPM Constellation Reconfiguration and Mission Status (United States)

    Hou, Arthur Y.


    The Global Precipitation Measurement (GPM) Mission is an international satellite mission that uses combined active and passive remote sensing techniques to improve global precipitation measurements derived from dedicated and operational passive microwave sensors. GPM is a science mission with integrated applications goals to (1) advance the knowledge of precipitation physics and the global water cycle variability, and (2) improve weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of global precipitation and innovative application methods. The GPM Mission is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA), with opportunities for additional domestic and international partners in satellite constellation buildup and ground validation activities. The GPM concept is centered on employing a dualfrequency precipitation radar and a microwave radiometer with high-frequency capabilities on a core satellite to serve as a physics observatory and calibration standard to provide a consistent framework for unifying precipitation measurements from a heterogeneous constellation of passive microwave sensors. Building on the siccess of TRMM, GPM extends combined radadradiometer precipitation measurements into the mid and high latitudes, with new science foci on improved capabilities for light-rain and snowfall measurements, as well as more accurate precipitation retrievals over land. With recent studies indicating that AMSU-B rainfall estimates are comparable in quality to those derived from conically-scanning radiometers over land, it is envisioned that cross-track microwave sounders with high-frequency channels on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS), NPOESS Preparatory Project (NPP), NOAA-N', and MetOp satellites can play a significant role in augmenting conically-scanning microwave radiometers to achieve better

  17. International partnership in lunar missions: Inaugural address

    Indian Academy of Sciences (India)

    Dr A P J Abdul Kalam


    I am delighted to participate in the 6th International Conference on Exploration and Utilization of the Moon organized by the Physical Research Laboratory,Ahmedabad.I greet the organizers, eminent planetary exploration and space scientists from India and abroad,academicians,industrialists,engineers,entrepreneurs and distinguished guests.I understand that the International Lunar Conference is a forum to discuss scienti fic results of the ongoing and future space missions related to lunar exploration.This conference will also be utilized to develop understanding on various strategies,initiatives and missions leading to a permanent human presence on our Moon as the future objective.I am happy to note that interactions that took place in the earlier conferences have been bene ficial to participating countries through the intense sharing of scientific knowledge,data and hands-on mission experiences of various space agencies pursuing lunar exploration programmes.I find that nearly 100 scientific papers are being presented in this conference and that the Moon missions being planned and conducted by all the space faring nations of the world are being presented,reviewed and discussed.I note with excitement that many key issues related to space science and Moon missions are being addressed in this conference.These deliberations are important for the world space science community.This will enable you to obtain a comprehensive picture of the goals and policies of all nations striving towards a common vision of space research,being made available for the bene fit of all mankind.Indeed this augurs well for progress towards universal peace and harmony that is a cherished goal of the people of the world as a whole.

  18. SMART-1 mission description and development status (United States)

    Racca, G. D.; Marini, A.; Stagnaro, L.; van Dooren, J.; di Napoli, L.; Foing, B. H.; Lumb, R.; Volp, J.; Brinkmann, J.; Grünagel, R.; Estublier, D.; Tremolizzo, E.; McKay, M.; Camino, O.; Schoemaekers, J.; Hechler, M.; Khan, M.; Rathsman, P.; Andersson, G.; Anflo, K.; Berge, S.; Bodin, P.; Edfors, A.; Hussain, A.; Kugelberg, J.; Larsson, N.; Ljung, B.; Meijer, L.; Mörtsell, A.; Nordebäck, T.; Persson, S.; Sjöberg, F.


    SMART-1 is the first of the Small Missions for Advanced Research in Technology of the ESA Horizons 2000 scientific programme. The SMART-1 mission is dedicated to testing of new technologies for future cornerstone missions, using Solar-Electric Primary Propulsion (SEPP) in Deep Space. The chosen mission planetary target is the Moon. The target orbit will be polar with the pericentre close to the South-Pole. The pericentre altitude lies between 300 and 2000 km, while the apocentre will extend to about 10,000 km. During the cruise phase, before reaching the Moon, the spacecraft thrusting profile allows extended periods for cruise science. The SMART-1 spacecraft will be launched in the spring of 2003 as an auxiliary passenger on an Ariane 5 and placed into a Geostationary Transfer Orbit (GTO). The expected launch mass is about 370 kg, including 19 kg of payload. The selected type of SEPP is a Hall-effect thruster called PPS-1350. The thruster is used to spiral out of the GTO and for all orbit maneuvers including lunar capture and descent. The trajectory has been optimised by inserting coast arcs and the presence of the Moon's gravitational field is exploited in multiple weak gravity assists. The Development Phase started in October 1999 and is expected to be concluded by a Flight Acceptance Review in January 2003. The short development time for this high technology spacecraft requires a concerted effort by industry, science institutes and ESA centres. This paper describes the mission and the project development status both from a technical and programmatic standpoint.

  19. Integrating Automation into a Multi-Mission Operations Center (United States)

    Surka, Derek M.; Jones, Lori; Crouse, Patrick; Cary, Everett A, Jr.; Esposito, Timothy C.


    NASA Goddard Space Flight Center's Space Science Mission Operations (SSMO) Project is currently tackling the challenge of minimizing ground operations costs for multiple satellites that have surpassed their prime mission phase and are well into extended mission. These missions are being reengineered into a multi-mission operations center built around modern information technologies and a common ground system infrastructure. The effort began with the integration of four SMEX missions into a similar architecture that provides command and control capabilities and demonstrates fleet automation and control concepts as a pathfinder for additional mission integrations. The reengineered ground system, called the Multi-Mission Operations Center (MMOC), is now undergoing a transformation to support other SSMO missions, which include SOHO, Wind, and ACE. This paper presents the automation principles and lessons learned to date for integrating automation into an existing operations environment for multiple satellites.

  20. New Hubble Servicing Mission to upgrade instruments (United States)


    The history of the NASA/ESA Hubble Space Telescope is dominated by the familiar sharp images and amazing discoveries that have had an unprecedented scientific impact on our view of the world and our understanding of the universe. Nevertheless, such important contributions to science and humankind have only been possible as result of regular upgrades and enhancements to Hubble’s instrumentation. Using the Space Shuttle for this fifth Servicing Mission underlines the important role that astronauts have played and continue to play in increasing the Space Telescope’s lifespan and scientific power. Since the loss of Columbia in 2003, the Shuttle has been successfully launched on three missions, confirming that improvements made to it have established the required high level of safety for the spacecraft and its crew. “There is never going to be an end to the science that we can do with a machine like Hubble”, says David Southwood, ESA’s Director of Science. “Hubble is our way of exploring our origins. Everyone should be proud that there is a European element to it and that we all are part of its success at some level.” This Servicing Mission will not just ensure that Hubble can function for perhaps as much as another ten years; it will also increase its capabilities significantly in key areas. This highly visible mission is expected to take place in 2008 and will feature several space walks. As part of the upgrade, two new scientific instruments will be installed: the Cosmic Origins Spectrograph and Wide Field Camera 3. Each has advanced technology sensors that will dramatically improve Hubble’s potential for discovery and enable it to observe faint light from the youngest stars and galaxies in the universe. With such an astounding increase in its science capabilities, this orbital observatory will continue to penetrate the most distant regions of outer space and reveal breathtaking phenomena. “Today, Hubble is producing more science than ever before in

  1. Mission assurance increased with regression testing (United States)

    Lang, R.; Spezio, M.

    Knowing what to test is an important attribute in any testing campaign, especially when it has to be right or the mission could be in jeopardy. The New Horizons mission, developed and operated by the John Hopkins University Applied Physics Laboratory, received a planned major upgrade to their Mission Operations and Control (MOC) ground system architecture. Early in the mission planning it was recognized that the ground system platform would require an upgrade to assure continued support of technology used for spacecraft operations. With the planned update to the six year operational ground architecture from Solaris 8 to Solaris 10, it was critical that the new architecture maintain critical operations and control functions. The New Horizons spacecraft is heading to its historic rendezvous with Pluto in July 2015 and then proceeding into the Kuiper Belt. This paper discusses the Independent Software Acceptance Testing (ISAT) Regression test campaign that played a critical role to assure the continued success of the New Horizons mission. The New Horizons ISAT process was designed to assure all the requirements were being met for the ground software functions developed to support the mission objectives. The ISAT team developed a test plan with a series of test case designs. The test objectives were to verify that the software developed from the requirements functioned as expected in the operational environment. As the test cases were developed and executed, a regression test suite was identified at the functional level. This regression test suite would serve as a crucial resource in assuring the operational system continued to function as required with such a large scale change being introduced. Some of the New Horizons ground software changes required modifications to the most critical functions of the operational software. Of particular concern was the new MOC architecture (Solaris 10) is Intel based and little endian, and the legacy architecture (Solaris 8) was SPA

  2. System for Contributing and Discovering Derived Mission and Science Data (United States)

    Wallick, Michael N.; Powell, Mark W.; Shams, Khawaja S.; Mickelson, Megan C.; Ohata, Darrick M.; Kurien, James A.; Abramyan, Luch


    A system was developed to provide a new mechanism for members of the mission community to create and contribute new science data to the rest of the community. Mission tools have allowed members of the mission community to share first order data (data that is created by the mission s process in command and control of the spacecraft or the data that is captured by the craft itself, like images, science results, etc.). However, second and higher order data (data that is created after the fact by scientists and other members of the mission) was previously not widely disseminated, nor did it make its way into the mission planning process.

  3. Open Source Next Generation Visualization Software for Interplanetary Missions (United States)

    Trimble, Jay; Rinker, George


    Mission control is evolving quickly, driven by the requirements of new missions, and enabled by modern computing capabilities. Distributed operations, access to data anywhere, data visualization for spacecraft analysis that spans multiple data sources, flexible reconfiguration to support multiple missions, and operator use cases, are driving the need for new capabilities. NASA's Advanced Multi-Mission Operations System (AMMOS), Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) are collaborating to build a new generation of mission operations software for visualization, to enable mission control anywhere, on the desktop, tablet and phone. The software is built on an open source platform that is open for contributions (

  4. Concurrent engineering: Spacecraft and mission operations system design (United States)

    Landshof, J. A.; Harvey, R. J.; Marshall, M. H.


    Despite our awareness of the mission design process, spacecraft historically have been designed and developed by one team and then turned over as a system to the Mission Operations organization to operate on-orbit. By applying concurrent engineering techniques and envisioning operability as an essential characteristic of spacecraft design, tradeoffs can be made in the overall mission design to minimize mission lifetime cost. Lessons learned from previous spacecraft missions will be described, as well as the implementation of concurrent mission operations and spacecraft engineering for the Near Earth Asteroid Rendezvous (NEAR) program.

  5. Space Missions Trade Space Generation and Assessment Using JPL Rapid Mission Architecture (RMA) Team Approach (United States)

    Moeller, Robert C.; Borden, Chester; Spilker, Thomas; Smythe, William; Lock, Robert


    The JPL Rapid Mission Architecture (RMA) capability is a novel collaborative team-based approach to generate new mission architectures, explore broad trade space options, and conduct architecture-level analyses. RMA studies address feasibility and identify best candidates to proceed to further detailed design studies. Development of RMA first began at JPL in 2007 and has evolved to address the need for rapid, effective early mission architectural development and trade space exploration as a precursor to traditional point design evaluations. The RMA approach integrates a small team of architecture-level experts (typically 6-10 people) to generate and explore a wide-ranging trade space of mission architectures driven by the mission science (or technology) objectives. Group brainstorming and trade space analyses are conducted at a higher level of assessment across multiple mission architectures and systems to enable rapid assessment of a set of diverse, innovative concepts. This paper describes the overall JPL RMA team, process, and high-level approach. Some illustrative results from previous JPL RMA studies are discussed.

  6. Round trip landing missions to the asteroid Eros, 1981 opportunity (United States)

    Zambo, G. A.


    A comprehensive, Del V (magnitude of impulsive velocity-change vector) study of short staytime (0 to 30 days), short total trip time (10 to 160 days) round trip landing missions (fast missions) is presented. The characteristics of the following selected round trip landing missions are described: mission A (fast mission) with 120-day total trip time, 0-day stay-time, and 73,000-fps total mission Del V; mission B (opposition class) with 380-day total trip time, 0-day staytime, and 52,000-fps total mission Del V; and mission C (conjuction class) with 540-day total trip time, 175-day staytime, and 39,000-fps total mission Del V. A study of large-tank Agena, chemical propulsion stage (CPS), and nuclear stage was conducted. A payload of 5000 pounds was assumed. The propulsion requirements for mission A were found to be two large-tank Agenas and ten CPSs (or alternatively, two large-tank Agenas and five nuclear stages) while mission B required two large-tank Agenas and two CPSs. Mission C can be performed with one large-tank Agena and one CPS.

  7. CEO Sites Mission Management System (SMMS) (United States)

    Trenchard, Mike


    Late in fiscal year 2011, the Crew Earth Observations (CEO) team was tasked to upgrade its science site database management tool, which at the time was integrated with the Automated Mission Planning System (AMPS) originally developed for Earth Observations mission planning in the 1980s. Although AMPS had been adapted and was reliably used by CEO for International Space Station (ISS) payload operations support, the database structure was dated, and the compiler required for modifications would not be supported in the Windows 7 64-bit operating system scheduled for implementation the following year. The Sites Mission Management System (SMMS) is now the tool used by CEO to manage a heritage Structured Query Language (SQL) database of more than 2,000 records for Earth science sites. SMMS is a carefully designed and crafted in-house software package with complete and detailed help files available for the user and meticulous internal documentation for future modifications. It was delivered in February 2012 for test and evaluation. Following acceptance, it was implemented for CEO mission operations support in April 2012. The database spans the period from the earliest systematic requests for astronaut photography during the shuttle era to current ISS mission support of the CEO science payload. Besides logging basic image information (site names, locations, broad application categories, and mission requests), the upgraded database management tool now tracks dates of creation, modification, and activation; imagery acquired in response to requests; the status and location of ancillary site information; and affiliations with studies, their sponsors, and collaborators. SMMS was designed to facilitate overall mission planning in terms of site selection and activation and provide the necessary site parameters for the Satellite Tool Kit (STK) Integrated Message Production List Editor (SIMPLE), which is used by CEO operations to perform daily ISS mission planning. The CEO team

  8. Automation of Hubble Space Telescope Mission Operations (United States)

    Burley, Richard; Goulet, Gregory; Slater, Mark; Huey, William; Bassford, Lynn; Dunham, Larry


    On June 13, 2011, after more than 21 years, 115 thousand orbits, and nearly 1 million exposures taken, the operation of the Hubble Space Telescope successfully transitioned from 24x7x365 staffing to 815 staffing. This required the automation of routine mission operations including telemetry and forward link acquisition, data dumping and solid-state recorder management, stored command loading, and health and safety monitoring of both the observatory and the HST Ground System. These changes were driven by budget reductions, and required ground system and onboard spacecraft enhancements across the entire operations spectrum, from planning and scheduling systems to payload flight software. Changes in personnel and staffing were required in order to adapt to the new roles and responsibilities required in the new automated operations era. This paper will provide a high level overview of the obstacles to automating nominal HST mission operations, both technical and cultural, and how those obstacles were overcome.

  9. Future X-ray timing missions

    CERN Document Server

    Barret, D; Staubert, R; Stella, L


    Thanks to the Rossi X-ray Timing Explorer (RXTE), it is now widely recognized that fast X-ray timing can be used to probe strong gravity fields around collapsed objects and constrain the equation of state of dense matter in neutron stars. We first discuss some of the outstanding issues which could be solved with an X-ray timing mission building on the great successes of RXTE and providing an order of magnitude better sensitivity. Then we briefly describe the 'Experiment for X-ray timing and Relativistic Astrophysics' (EXTRA) recently proposed to the European Space Agency as a follow-up to RXTE and the related US mission 'Relativistic Astrophysics Explorer' (RAE).

  10. Future X-Ray Timing Missions (United States)

    Barret, Didier; van der Klis, Michiel; Skinner, Gerry K.; Staubert, Rüdiger; Stella, Luigi

    Thanks to the Rossi X-ray Timing Explorer (RXTE), it is now widely recognized that fast X-ray timing can be used to probe strong gravity fields around collapsed objects and constrain the equation of state of dense matter in neutron stars. We first discuss some of the outstanding issues which could be solved with an X-ray timing mission building on the great successes of RXTE and providing an order of magnitude better sensitivity. Then we briefly describe the `Experiment for X-ray timing and Relativistic Astrophysics' (EXTRA) recently proposed to the European Space Agency as a follow-up to RXTE and the related US mission `Relativistic Astrophysics Explorer' (RAE).

  11. Combatting Managerial Complacency in Space Missions (United States)

    Johnson, C. W.


    Human factors techniques have made significant contributions to the safety of space missions. Physiological models help to monitor crew workload and performance. Empirical studies inform the design of operator interfaces to maximize finite cognitive and perceptual resources. Further progress has been made in supporting distributed situation awareness across multi-national teams and in promoting the resilience of complex, time critical missions. Most of this work has focused on operational performance. In contrast, most space-based mishaps stem from organizational problems and miss-management. In particular, this paper focuses on the dangers of complacency when previous successes are wrongly interpreted as guarantees of future safety. The argument is illustrated by the recent loss of NASA's Nuclear Compton Telescope Balloon; during a launch phase that 'no-one considered to be a potential hazard'. The closing sections argue that all senior executives should read at least one mishap report every year in order to better understand the hazards of complacency.

  12. Megha-Tropiques satellite mission: sensors performances (United States)

    Karouche, Nadia; Raju, Garuda


    MEGHA-TROPIQUES is an CNES-ISRO collaborative satellite mission designed to study processes related to large tropical convective systems and their life cycle, and to provide key elements related to atmospheric energy and water budget at various time and space scales. The satellite will perform high repetitive measurements using a low inclined (20°) orbit, and will carry 4 instruments : • MADRAS Instrument: A conical scanning microwave imager designed to estimate precipitations and clouds properties. • SAPHIR Instrument: A microwave sensor used to retrieve vertical humidity profiles. • SCARAB Instrument: An wide band optical radiometer used to retrieve Earth Radiation budget parameters. • GPS-ROS instrument: The sensor will provide temperature and humidity profiles of the Earth's atmosphere The MEGHA-TROPIQUES satellite is planned to be launched in 2011 by the Indian PSLV launcher. This paper presents the mission, the satellite definition and the measured performances of the sensors.

  13. No mission is impossible for LHCb

    CERN Multimedia

    CERN Bulletin


    Time: 01:37:51 am, 3 October, 2011. The LHC is producing million collisions per second in its detectors. But at that time, one collision is “more special” than the others in the LHCb detector: the milestone of 1 inverse femtobarn of luminosity is surpassed. What was considered as “mission impossible” at the beginning of the year is now “mission accomplished”.   Mike Lamont (Operations Group Leader), Pierluigi Campana (LHCb Spokesperson), Steve Myers (Director for Accelerators and Technology), and Paul Collier (Head of the Beams Department) celebrate the LHCb milestone. LHCb is the CERN experiment specialising in the study of b-quarks, whose properties and behaviour are likely to provide physicists with important hints on several physics processes, including some new physics. “One inverse femtobarn of luminosity corresponds to about seventy billion b-quark pairs decayed in the LHCb detector,” explains Pierluigi Cam...

  14. Subjective Sleep Experience During Shuttle Missions (United States)

    Whitmire, Alexandra; Slack, Kelley; Locke, James; Patterson, Holly; Faulk, Jeremy; Keeton, Kathryn; Leveton, Lauren


    It is now known that for many astronauts, sleep is reduced in spaceflight. Given that sleep is intimately tied to performance, safety, health, and well being, it is important to characterize factors that hinder sleep in space, so countermeasures can be implemented. Lessons learned from current spaceflight can be used to inform the development of space habitats and mitigation strategies for future exploration missions. The purpose of this study was to implement a survey and one-on-one interviews to capture Shuttle flyers' subjective assessment of the factors that interfered with a "good nights sleep" during their missions. Strategies that crewmembers reported using to improve their sleep quality during spaceflight were also discussed. Highlights from the interview data are presented here.

  15. The mission of a philosophical discourse

    Directory of Open Access Journals (Sweden)

    José Ricardo Perfecto Sánchez


    Full Text Available Attending to the inivitation for participating into the First International Seminary on Conflict Resolution and Peace Construction, we decided to inquire and write on “The mission of philosophical speech about Peace Construction, because we think that is more important to talk about social phenomenon of peace than about social phenomenon of violence, in spite of the tendency of investigating is to study violent facts. In our case, we have preferred to choose for examination and support the proposal of Alfono Fernández Herrería and Mary del Carmen López López on System-Complex Epistemology to built peace. At the same time we follow the Antropic Philosophy of Tomaso Bugossi in order to describe next points: an integral concept of human being like subject-person, distinction among Philosophy and philosophies, mission of a philosophical speech and construction of peace.

  16. Technology demonstration by the BIRD-mission (United States)

    Brieß, K.; Bärwald, W.; Gill, E.; Kayal, H.; Montenbruck, O.; Montenegro, S.; Halle, W.; Skrbek, W.; Studemund, H.; Terzibaschian, T.; Venus, H.


    Small satellites have to meet a big challenge: to answer high-performance requirements by means of small equipment and especially of small budgets. Out of all aspects the cost aspect is one of the most important driver for small satellite missions. To keep the costs within the low-budget frame (in comparison to big missions) the demonstration of new and not space-qualified technologies for the spacecraft is one key point in fulfilling high-performance mission requirements. Taking this into account the German DLR micro-satellite mission BIRD (Bi-spectral Infra-Red Detection) has to demonstrate a high-performance capability of spacecraft bus by using and testing new technologies basing on a mixed parts and components qualification level. The basic approach for accomplishing high-performance capability for scientific mission objectives under low-budget constraints is characterized by using state-of-the-art technologies, a mixed strategy in the definition of the quality level of the EEE parts and components, a tailored quality management system according to ISO 9000 and ECSS, a risk management system, extensive redundancy strategies, extensive tests especially on system level, large designs margins (over-design), robust design principles. The BIRD-mission is dedicated to the remote sensing of hot spot events like vegetation fires, coal seam fires or active volcanoes from space and to the space demonstration of new technologies. For these objectives a lot of new small satellite technologies and a new generation of cooled infrared array sensors suitable for small satellite missions are developed to fulfil the high scientific requirements of the mission. Some basic features of the BIRD spacecraft bus are compact micro satellite structure with high mechanical stability and stiffness, envelope qualification for several launchers, cubic shape in launch configuration with dimensions of about 620×620×550mm3 and variable launcher interface, mass ratio bus:payload = 62 kg:30

  17. Trailblazing Medicine Sustaining Explorers During Interplanetary Missions

    CERN Document Server

    Seedhouse, Erik


    To prepare for the day when astronauts leave low-Earth orbit for long-duration exploration missions, space medicine experts must develop a thorough understanding of the effects of microgravity on the human body, as well as ways of mitigating them. To gain a complete understanding of the effects of space on the human body and to create tools and technologies required for successful exploration, space medicince will become an increasingly collaborative discipline incorporating the skills of physicians, biomedical scientists, engineers, and mission planners. Trailblazing Medicine examines the future of space medicine in relation to human space exploration; describes what is necessary to keep a crew alive in space, including the use of surgical robots, surface-based telemedicine, and remote emergency care; discusses bioethical problems such as euthanasia, sex, and precautionary surgery; investigates the medical challenges faced by interplanetary astronauts; details the process of human hibernation.

  18. The Polarized Radiation Imaging and Spectroscopy Mission

    CERN Document Server

    André, Philippe; Banday, Anthony; Barbosa, Domingos; Barreiro, Belen; Bartlett, James; Bartolo, Nicola; Battistelli, Elia; Battye, Richard; Bendo, George; Benoȋt, Alain; Bernard, Jean-Philippe; Bersanelli, Marco; Béthermin, Matthieu; Bielewicz, Pawel; Bonaldi, Anna; Bouchet, François; Boulanger, François; Brand, Jan; Bucher, Martin; Burigana, Carlo; Cai, Zhen-Yi; Camus, Philippe; Casas, Francisco; Casasola, Viviana; Castex, Guillaume; Challinor, Anthony; Chluba, Jens; Chon, Gayoung; Colafrancesco, Sergio; Comis, Barbara; Cuttaia, Francesco; D'Alessandro, Giuseppe; Da Silva, Antonio; Davis, Richard; de Avillez, Miguel; de Bernardis, Paolo; de Petris, Marco; de Rosa, Adriano; de Zotti, Gianfranco; Delabrouille, Jacques; Désert, François-Xavier; Dickinson, Clive; Diego, Jose Maria; Dunkley, Joanna; Enßlin, Torsten; Errard, Josquin; Falgarone, Edith; Ferreira, Pedro; Ferrière, Katia; Finelli, Fabio; Fletcher, Andrew; Fosalba, Pablo; Fuller, Gary; Galli, Silvia; Ganga, Ken; García-Bellido, Juan; Ghribi, Adnan; Giard, Martin; Giraud-Héraud, Yannick; Gonzalez-Nuevo, Joaquin; Grainge, Keith; Gruppuso, Alessandro; Hall, Alex; Hamilton, Jean-Christophe; Haverkorn, Marijke; Hernandez-Monteagudo, Carlos; Herranz, Diego; Jackson, Mark; Jaffe, Andrew; Khatri, Rishi; Kunz, Martin; Lamagna, Luca; Lattanzi, Massimiliano; Leahy, Paddy; Lesgourgues, Julien; Liguori, Michele; Liuzzo, Elisabetta; Lopez-Caniego, Marcos; Macias-Perez, Juan; Maffei, Bruno; Maino, Davide; Mangilli, Anna; Martinez-Gonzalez, Enrique; Martins, Carlos J.A.P.; Masi, Silvia; Massardi, Marcella; Matarrese, Sabino; Melchiorri, Alessandro; Melin, Jean-Baptiste; Mennella, Aniello; Mignano, Arturo; Miville-Deschênes, Marc-Antoine; Monfardini, Alessandro; Murphy, Anthony; Naselsky, Pavel; Nati, Federico; Natoli, Paolo; Negrello, Mattia; Noviello, Fabio; O'Sullivan, Créidhe; Paci, Francesco; Pagano, Luca; Paladino, Rosita; Palanque-Delabrouille, Nathalie; Paoletti, Daniela; Peiris, Hiranya; Perrotta, Francesca; Piacentini, Francesco; Piat, Michel; Piccirillo, Lucio; Pisano, Giampaolo; Polenta, Gianluca; Pollo, Agnieszka; Ponthieu, Nicolas; Remazeilles, Mathieu; Ricciardi, Sara; Roman, Matthieu; Rosset, Cyrille; Rubino-Martin, Jose-Alberto; Salatino, Maria; Schillaci, Alessandro; Shellard, Paul; Silk, Joseph; Starobinsky, Alexei; Stompor, Radek; Sunyaev, Rashid; Tartari, Andrea; Terenzi, Luca; Toffolatti, Luigi; Tomasi, Maurizio; Trappe, Neil; Tristram, Matthieu; Trombetti, Tiziana; Tucci, Marco; Van de Weijgaert, Rien; Van Tent, Bartjan; Verde, Licia; Vielva, Patricio; Wandelt, Ben; Watson, Robert; Withington, Stafford; Cabrera, Nicolas


    PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high resolution, high sensitivity, full-sky observations of the sky emission at wavelengths ranging from millimeter-wave to the far-infrared. PRISM's main objective is to explore the distant universe, probing cosmic history from very early times until now as well as the structures, distribution of matter, and velocity flows throughout our Hubble volume. PRISM will survey the full sky in a large number of frequency bands in both intensity and polarization and will measure the absolute spectrum of sky emission more than three orders of magnitude better than COBE FIRAS. The aim of this Extended White Paper is to provide a more detailed overview of the highlights of the new science that will be made possible by PRISM

  19. Lunar Robotic Precursor Missions Using Electric Propulsion


    Winski, Richard G.


    A trade study is carried out for the design of electric propulsion based lunar robotic precursor missions. The focus is to understand the relationships between payload mass delivered, electric propulsion power, and trip time. The results are compared against a baseline system using chemical propulsion with LOX/H2. The major differences between the chemical propulsion based and electric propulsion based systems are presented in terms of the payload mass and trip time. It is shown that solar e...

  20. The Spitzer Warm Mission Science Prospects


    Stauffer, John R.; Mannings, Vincent; LEVINE, Deborah; Chary, Ranga Ram; Wilson, Gillian; Lacy, Mark; Grillmair, Carl; Carey, Sean; Stolovy, Susan; Ciardi, David; Hora, Joe


    After exhaustion of its cryogen, the Spitzer Space telescope will still have a fully functioning two-channel mid-IR camera that will have sensitivities better than any other ground or space-based telescopes until the launch of JWST. This document provides a description of the expected capabilities of Spitzer during its warm mission phase, and provides brief descriptions of several possible very large science programs that could be conducted. This information is intended to serve as input to a...

  1. STS-109 Mission Highlights Resource Tape (United States)


    This video, Part 1 of 4, shows the activities of the STS-109 crew (Scott Altman, Commander; Duane Carey, Pilot; John Grunsfeld, Payload Commander; Nancy Currie, James Newman, Richard Linnehan, Michael Massimino, Mission Specialists) during flight days 1 through 3. The activities from other flight days can be seen on 'STS 109 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002137664), 'STS 109 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139471), and 'STS-109 Mission Highlights Resource Tape' Part 4 of 4 (internal ID 2002137577). The main activity recorded during flight day 1 is the liftoff of Columbia. Attention is given to suit-up, boarding, and pre-flight procedures. The pre-launch crew meal has no sound. The crew members often wave to the camera before liftoff. The jettisoning of the solid rocket boosters is shown, and the External Tank is seen as it falls to Earth, moving over African dunes in the background. There are liftoff replays, including one from inside the cockpit. The opening of the payload bay doors is seen from the rear of the shuttle's cockpit. The footage from flight day 2 shows the Flight Support System for bearthing the HST (Hubble Space Telescope). Crew preparations for the bearthing are shown. Flight day 3 shows the tracking of and approach to the HST by Columbia, including orbital maneuvers, the capture of the HST, and its lowering onto the Flight Support System. Many views of the HST are shown, including one which reveals an ocean and cloud background as the HST retracts a solar array.

  2. Digital Spectrometers for Interplanetary Science Missions (United States)

    Jarnot, Robert F.; Padmanabhan, Sharmila; Raffanti, Richard; Richards, Brian; Stek, Paul; Werthimer, Dan; Nikolic, Borivoje


    A fully digital polyphase spectrometer recently developed by the University of California Berkeley Wireless Research Center in conjunction with the Jet Propulsion Laboratory provides a low mass, power, and cost implementation of a spectrum channelizer for submillimeter spectrometers for future missions to the Inner and Outer Solar System. The digital polyphase filter bank spectrometer (PFB) offers broad bandwidth with high spectral resolution, minimal channel-to-channel overlap, and high out-of-band rejection.

  3. Search and Rescue Mission Using Multicopters


    Steen, Thor Audun


    Search and rescue operations can greatly benefit from the use of autonomous unmanned aerial systems to survey the environment and collect evidence about the positions of missing persons. This thesis considers the design of an autonomous multicopter system for use in a search and rescue mission. The ArduPilot Mega is used as the autopilot and is presented together with detailed information about the utilized hardware and software. The design of a low- level control interface is implemented as ...

  4. The 2012 Moon and Mars Analog Mission (United States)

    Graham, Lee


    The 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were completed on Mauna Kea volcano in Hawaii in July 2012. The investigations were conducted on the southeast flank of the Mauna Kea volcano at an elevation of approximately 11,500 ft. This area is known as "Apollo Valley" and is in an adjacent valley to the Very Large Baseline Array dish antenna.

  5. Overview of the SCD1/Pegasus Mission


    Fernandez, Jaime; Santana, Carlos


    An overview of the third operational Pegasus mission, carrying the Brazilian Satelite de Coleta de Dados 1 (SCD1) satellite is presented. Developed by INPE, the 250 Ib, spin stabilized satellite will perform real time repeating of environmental data gathered by automatic ground stations throughout Brazil. The target orbit, 405 nm (750 km) at 25 deg inclination, was chosen to provide coverage of the entire Brazilian territory. A review of the SCD1 design, development and testing highlights the...

  6. Mars Science Laboratory Mission and Science Investigation


    Grotzinger, John P.; Crisp, J.; Vasavada, A R; Anderson, R.C.; Baker, C J; Barry, R.; Ferdowski, B.; Gilbert, J. B.; Golombek, M.; Jandura, L.; Maki, J; Simmonds, J. J.; Welch, R. V.


    Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (∼23 months), and drive capability of at least 20 km. Curiosity’s science payload was specifically assembled to assess habitability and inclu...

  7. Hard x-ray telescope mission

    DEFF Research Database (Denmark)

    Gorenstein, P.; Worrall, D.; Joensen, K.D.;


    and much better angular resolution in the 10 - 100 keV band, and (3) higher sensitivity for detecting gamma ray lines of known energy in the 100 keV to 1 MeV band. This paper emphasizes the mission aspects of the concept study such as the payload configuration and launch vehicle. An engineering team...... at the Marshall Space Center is participating in these two key aspects of the study....

  8. In Situ Consumable Production for Mars Missions


    Pauly, Kristian


    Consumables (propellants, air, water, etc.) for manned and unmanned space missions of the future shall no longer be imported laboriously from Earth, but rather be produced from indigenous resources. The groundwork of the required systems and their components must be developed. Along those lines, hardware elements and processes (in particular the Sabatier process) were computer modeled and also hardware tested at the NASA Johnson Space Center from January 1999 to May 2001 under normal conditio...

  9. A Recipe for Streamlining Mission Management (United States)

    Mitchell, Andrew E.; Semancik, Susan K.


    This paper describes a project's design and implementation for streamlining mission management with knowledge capture processes across multiple organizations of a NASA directorate. Thc project's focus is on standardizing processes and reports; enabling secure information access and case of maintenance; automating and tracking appropriate workflow rules through process mapping; and infusing new technologies. This paper will describe a small team's experiences using XML technologies through an enhanced vendor suite of applications integrated on Windows-based platforms called the Wallops Integrated Scheduling and Document Management System (WISDMS). This paper describes our results using this system in a variety of endeavors, including providing range project scheduling and resource management for a Range and Mission Management Office; implementing an automated Customer Feedback system for a directorate; streamlining mission status reporting across a directorate; and initiating a document management, configuration management and portal access system for a Range Safety Office's programs. The end result is a reduction of the knowledge gap through better integration and distribution of information, improved process performance, automated metric gathering, and quicker identification of problem areas and issues. However, the real proof of the pudding comes through overcoming the user's reluctance to replace familiar, seasoned processes with new technology ingredients blended with automated procedures in an untested recipe. This paper shares some of the team's observations that led to better implementation techniques, as well as an IS0 9001 Best Practices citation. This project has provided a unique opportunity to advance NASA's competency in new technologies, as well as to strategically implement them within an organizational structure, while wetting the appetite for continued improvements in mission management.

  10. The Stellar Imager (SI) Vision Mission


    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita; Team, SI Vision Mission


    The Stellar Imager (SI) is a UV-Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general and asteroseismic imaging of stellar interiors. SI is identified as a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap (May, 2005). SI will revolutionize ...

  11. System Design for Commercial Microsatellite Missions


    Lorenzini, Dino; Violi, Vincenzo


    This paper presents the results of a Microsat Feasibility Study conducted by Telespazio S.p.A and Interferometrics Inc. The study examined the feasibility of three possible near term space missions: (1) data collection and relay for environmental monitoring, (2) mobile messaging and digital communications, and (3) remote sensing of sulfur dioxide content in the atmosphere and detection of wild fires. The generalized system architecture consists of a network of low Earth orbit microsatellites,...

  12. An aerial 3D printing test mission (United States)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy


    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  13. General relativistic observables of the GRAIL mission


    Turyshev, Slava G.; Toth, Viktor T.; Sazhin, Mikhail V.


    We present a realization of astronomical relativistic reference frames in the solar system and its application to the GRAIL mission. We model the necessary spacetime coordinate transformations for light-trip time computations and address some practical aspects of the implementation of the resulting model. We develop all the relevant relativistic coordinate transformations that are needed to describe the motion of the GRAIL spacecraft and to compute all observable quantities. We take into acco...

  14. MACSAT - A Near Equatorial Earth Observation Mission (United States)

    Kim, B. J.; Park, S.; Kim, E.-E.; Park, W.; Chang, H.; Seon, J.

    MACSAT mission was initiated by Malaysia to launch a high-resolution remote sensing satellite into Near Equatorial Orbit (NEO). Due to its geographical location, Malaysia can have large benefits from NEO satellite operation. From the baseline circular orbit of 685 km altitude with 7 degrees of inclination, the neighboring regions around Malaysian territory can be frequently monitored. The equatorial environment around the globe can also be regularly observed with unique revisit characteristics. The primary mission objective of MACSAT program is to develop and validate technologies for a near equatorial orbit remote sensing satellite system. MACSAT is optimally designed to accommodate an electro-optic Earth observation payload, Medium-sized Aperture Camera (MAC). Malaysian and Korean joint engineering teams are formed for the effective implementation of the satellite system. An integrated team approach is adopted for the joint development for MACSAT. MAC is a pushbroom type camera with 2.5 m of Ground Sampling Distance (GSD) in panchromatic band and 5 m of GSD in four multi-spectral bands. The satellite platform is a mini-class satellite. Including MAC payload, the satellite weighs under 200 kg. Spacecraft bus is designed optimally to support payload operations during 3 years of mission life. The payload has 20 km of swath width with +/- 30 o of tilting capability. 32 Gbits of solid state recorder is implemented as the mass image storage. The ground element is an integrated ground station for mission control and payload operation. It is equipped with S- band up/down link for commanding and telemetry reception as well as 30 Mbps class X-band down link for image reception and processing. The MACSAT system is capable of generating 1:25,000-scale image maps. It is also anticipated to have capability for cross-track stereo imaging for Digital elevation Model (DEM) generation.

  15. Dawn Mission's Education and Public Outreach Program (United States)

    McFadden, Lucy-Ann A.; Wise, J.; Ristvey, J.; Warner, E. M.


    NASA's Dawn mission, the 9th Discovery mission, is the first to orbit two solar system bodies: Vesta (Oct 2011-Apr 2012), then Ceres (Feb-Jul 2015), the most massive Main Belt asteroids. The Education and Public Outreach (EPO) goals are to inspire the next generation of explorers; motivate students to pursue careers in science, technology, engineering and mathematics (STEM); to enhance the quality of STEM education at the K-13 level and engage the public in exploration and discovery. Dawn's website ( is central to the dissemination of products and activities. The Dawn E-Newsletter, with 2,301 subscribers, is produced on a quarterly basis. Leonard Nimoy narrated the mission video available on Google videos. Dawn Young Engineers build a paper model of the Dawn spacecraft and submit photos with their constructions. 366,050 names were collected to send to the asteroids. Speaker's kits for the Solar System Ambassadors are online and a poster can be printed via web at a local Office Max. Educational materials about dwarf planets, history and discovery of asteroids, ion propulsion and finding meteorites have been developed. In addition, numerous activities including an interactive activity on ion propulsion, identifying craters (ClickWorkers) and observing asteroids (Telescopes in Education and Amateur Observers' Program) appeal to formal and informal educational audiences. Educators from over 20 states convened in Florida for a workshop in June with the opportunity to meet mission scientists, learn about the modules and activities, observe Vesta through a telescope and tour KSFC. Plans for the coming years include developing modules on instrumentation, theories of the origin of the solar system and data analysis. A planetarium show, museum displays, a video field trip to the asteroid belt and additional educator workshops are planned. This work is funded by NASA's Discovery Program.

  16. Sensors and detectors in NASA's future missions (United States)

    Rubin, B.


    Advances in electronics are responsible for major improvements in NASA's sensing and detection capabilities for future space missions. Technologies such as charge-transfer devices, tunable diode lasers, millimeter and submillimeter wave solid-state receiver components, large-scale circuit integration, new electronic materials and processing techniques, and novel detector electronics are contributing to the goal of a tenfold increase in the capacity of data collection from future platforms and will be used for space exploration and utilization.

  17. Controlling UCAVs by JTACs in CAS missions (United States)

    Kumaş, A. E.


    By means of evolving technology, capabilities of UAVs (Unmanned Aerial Vehicle)s are increasing rapidly. This development provides UAVs to be used in many different areas. One of these areas is CAS (Close Air Support) mission. UAVs have several advantages compared to manned aircraft, however there are also some problematic areas. The remote controlling of these vehicles from thousands of nautical miles away via satellite may lead to various problems both ethical and tactical aspects. Therefore, CAS missions require a good level of ALI (Air-Land Integration), a high SA (situational awareness) and precision engagement. In fact, there is an aware friendly element in the target area in CAS missions, unlike the other UAV operations. This element is an Airman called JTAC (Joint Terminal Attack Controller). Unlike the JTAC, UAV operators are too far away from target area and use the limited FOV (Field of View) provided by camera and some other sensor data. In this study, target area situational awareness of a UAV operator and a JTAC, in a high-risk mission for friendly ground forces and civilians such as CAS, are compared. As a result of this comparison, answer to the question who should control the UCAV (Unmanned Combat Aerial Vehicle) in which circumstances is sought. A literature review is made in UAV and CAS fields and recent air operations are examined. The control of UCAV by the JTAC is assessed by SWOT analysis and as a result it is deduced that both control methods can be used in different situations within the framework of the ROE (Rules Of Engagement) is reached.

  18. Directed energy missions for planetary defense (United States)

    Lubin, Philip; Hughes, Gary B.; Eskenazi, Mike; Kosmo, Kelly; Johansson, Isabella E.; Griswold, Janelle; Pryor, Mark; O'Neill, Hugh; Meinhold, Peter; Suen, Jonathan; Riley, Jordan; Zhang, Qicheng; Walsh, Kevin; Melis, Carl; Kangas, Miikka; Motta, Caio; Brashears, Travis


    Directed energy for planetary defense is now a viable option and is superior in many ways to other proposed technologies, being able to defend the Earth against all known threats. This paper presents basic ideas behind a directed energy planetary defense system that utilizes laser ablation of an asteroid to impart a deflecting force on the target. A conceptual philosophy called DE-STAR, which stands for Directed Energy System for Targeting of Asteroids and exploration, is an orbiting stand-off system, which has been described in other papers. This paper describes a smaller, stand-on system known as DE-STARLITE as a reduced-scale version of DE-STAR. Both share the same basic heritage of a directed energy array that heats the surface of the target to the point of high surface vapor pressure that causes significant mass ejection thus forming an ejection plume of material from the target that acts as a rocket to deflect the object. This is generally classified as laser ablation. DE-STARLITE uses conventional propellant for launch to LEO and then ion engines to propel the spacecraft from LEO to the near-Earth asteroid (NEA). During laser ablation, the asteroid itself provides the propellant source material; thus a very modest spacecraft can deflect an asteroid much larger than would be possible with a system of similar mission mass using ion beam deflection (IBD) or a gravity tractor. DE-STARLITE is capable of deflecting an Apophis-class (325 m diameter) asteroid with a 1- to 15-year targeting time (laser on time) depending on the system design. The mission fits within the rough mission parameters of the Asteroid Redirect Mission (ARM) program in terms of mass and size. DE-STARLITE also has much greater capability for planetary defense than current proposals and is readily scalable to match the threat. It can deflect all known threats with sufficient warning.

  19. Safety and Mission Assurance Knowledge Management Retention (United States)

    Johnson, Teresa A.


    This viewgraph presentation reviews the issues surrounding the management of knowledge in regards to safety and mission assurance. The JSC workers who were hired in the 1960's are slated to retire in the next two to three years. The experiences and knowledge of these NASA workers must be identified, and disseminated. This paper reviews some of the strategies that the S&MA is developing to capture that valuable institutional knowledge.

  20. The Netherlands Experience with IPPAS Missions

    International Nuclear Information System (INIS)

    In May 2005 the Greenpeace organization carried out a protest demonstration on the site of the nuclear power plant Borssele in the southern part of the Netherlands. The action was well planned and was executed with military precision. The Dutch Government responded to the growing anxiety among politicians and the public by requesting the IAEA to do a security review in Borssele and also to look into the Governmental legislative and regulatory framework. These peer reviews under IAEA coordination are commonly known as missions of the International Physical Protection Advisory Service (IPPAS). From 2005 onwards all nuclear facilities had IPPAS missions and the Netherlands was the first country to conclude this endeavor by inviting a follow-up mission in early 2012. The Fukushima accident has shown that in order for the nuclear option to survive, the global nuclear security system has to be strengthened and become more transparent. The safety related accidents are considered to be a good lesson for nuclear security. The initiating events of a nuclear catastrophe could also be a malicious act that nobody foresaw. The Dutch Government felt that only by implementing the IAEA recommendations for Nuclear Security and having periodic independent peer reviews, international confidence could be created and public confidence could be restored. This was a also a conclusion of last year’s ad-hoc working group of European countries in Brussels, a conclusion that was endorsed by the European Council. The credo of the IAEA that IPPAS missions should be ‘de facto’ the norm, is supported by the Netherlands. (author)

  1. Combining meteorites and missions to explore Mars


    Mccoy, Timothy J.,; Corrigan, Catherine M.; Herd, Christopher D. K.


    Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions have been linked. Although the meteorite source locations are unknown, impact ejection modeling and spe...

  2. 5 in 1 Drill For Mars Sample Return Mission Project (United States)

    National Aeronautics and Space Administration — NASA is investigating a Mars Sample Return Mission, consisting of at least three separate missions: 1) Mars Astrobiology Explorer-Cacher, MAX-C (sample acquisition...

  3. The Role of Overseas Missions in Plastic Surgery Resident Education. (United States)

    Lim, Rizal; Thaller, Seth


    Surgical mission work serves an important role in the education of plastic surgeons. Here, we examine the ways that participation in surgical mission work enhances resident education from the trainee's perspective. PMID:26080142

  4. Parallel Enhancements of the General Mission Analysis Tool Project (United States)

    National Aeronautics and Space Administration — The General Mission Analysis Tool (GMAT) is a state of the art spacecraft mission design tool under active development at NASA's Goddard Space Flight Center (GSFC)....

  5. Human Robotic Systems (HRS): Robotic Technologies for Asteroid Missions Element (United States)

    National Aeronautics and Space Administration — During 2014, the Robotic Technologies for Asteroid Missions activity has four tasks:Asteroid Retrieval Capture Mechanism Development and Testbed;Mission Operations...

  6. Idaho National Laboratory Mission Accomplishments, Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Todd Randall [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Virginia Latta [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    A summary of mission accomplishments for the research organizations at the Idaho National Laboratory for FY 2015. Areas include Nuclear Energy, National and Homeland Security, Science and Technology Addressing Broad DOE Missions; Collaborations; and Stewardship and Operation of Research Facilities.

  7. Science Parametrics for TPF-Type Missions

    CERN Document Server

    Brown, Robert A


    We propose a science metric for pure-search missions of the scale of the Terrestrial Planet Finder. The metric is the expected number $N$ of discovered earthlike planets as a function of total exposure time $\\Sigma\\tau$. We estimate $N(\\Sigma\\tau)$ for a range of mission parameters: aperture $D=4-16$ m, inner working angle $IWA=0.0196''-0.3135''$, and $\\Sigma\\tau=10-1000$ d. Our technique involves (1) building a prioritized stack of all possible search observations of stars in the input catalog, including revisits, (2) constructing design reference missions by repeatedly selecting the observation with highest merit from the top of the stack, (3) estimating the density of $N$ by convolving the Bernoullian densities of executed observations, and (4) investigating the parametrical variations of $N$, $D$, $IWA$, and $\\Sigma\\tau$. For example, near the center of the range of parameters -- at $D=8$ m, $IWA=0.0784''$, $\\Sigma\\tau=100$ d -- we estimate $N=40$, that $N\\sim\\Sigma\\tau^{0.272}$, and that a factor-two imp...

  8. The TPF Mission at L2 (United States)

    Lo, Martin; Romans, Larry; Masdemont, Josep; Gomez, Gerard


    The Terrestrial Planet Finder (TPF) is one of the center pieces of NASA's Origins Program. The goal of TPF is to identify terrestrial planets around stars nearby the Sun. For this purpose, a space-based interferometer with a baseline of approximately 100 m is required. To achieve such a large baseline, a distributed system of five spacecraft flying in formation is an efficient approach. Since the TPF instruments need a cold and stable environment, a halo orbit about 4 is ideal. First, we describe formation flight near the Lagrange point is feasible for the TPF mission. Second, we propose a novel approach for human servicing of Lagrange point missions by placing a Lunar service station in an Lunar L1 orbit. The TPF spacecraft can be transferred to a Lunar L1 orbit in a few days and requires relatively little delta-V. This efficient transfer results from the system of low energy pathways connecting the entire Solar System generated by the Lagrange points. The halo orbits are the portals of this Interplanetary . A Lunar Station at the L,portal, in addition to servicing missions from the Sun-Earth Lagrange points, may play an even more important role in the future development of space.

  9. CNES Plans For Futur Atmospheric Missions (United States)

    Vidal-Madjar, D.; Deniel, C.

    One of the major challenges is to monitor the composition of our atmosphere in order to detect, to quantify and to understand possible modifications dues to anthropogenic activities and natural evolutions. If the new concepts are mainly driven by the scientific community and improvement of space technology, new missions are now also conceived to be a part of a global system able to deliver information helpful to guide environmental policies. In complement of ground based observations, satellite can offer continuous, homogeneous and global data sets. CNES had selected and started some studies on mission concepts like the TROpospheric Chemistry mission (TROC) dedicated to global tropospheric composition from a Low-Earth Orbit, or like the GEOstationnary Fourier Imaging Spectrometer (GEOFIS) in the frame of GEOTROPE proposal to ESA, to address the question of regional pollution. These studies are based on the expertise in Infra-red Fourier Transform spectrometer acquired by CNES with the development of the IASI instruments, which will fly on the Metop platforms, operated by Eumetsat. The presentation will also include CNES activities in the utilization and valorization of satellite data including support to ground-based observations for validation or demonstration purposes, modelisation/assimilation and development of the pole of competence ETHER.

  10. The Ultraviolet Spectrograph on NASA's Juno Mission (United States)

    Gladstone, G. Randall; Persyn, Steven C.; Eterno, John S.; Walther, Brandon C.; Slater, David C.; Davis, Michael W.; Versteeg, Maarten H.; Persson, Kristian B.; Young, Michael K.; Dirks, Gregory J.; Sawka, Anthony O.; Tumlinson, Jessica; Sykes, Henry; Beshears, John; Rhoad, Cherie L.; Cravens, James P.; Winters, Gregory S.; Klar, Robert A.; Lockhart, Walter; Piepgrass, Benjamin M.; Greathouse, Thomas K.; Trantham, Bradley J.; Wilcox, Philip M.; Jackson, Matthew W.; Siegmund, Oswald H. W.; Vallerga, John V.; Raffanti, Rick; Martin, Adrian; Gérard, J.-C.; Grodent, Denis C.; Bonfond, Bertrand; Marquet, Benoit; Denis, François


    The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter's far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno's other remote sensing instruments and used to place in situ measurements made by Juno's particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter's magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS.

  11. Euclid Mission: building of a Reference Survey

    CERN Document Server

    Amiaux, J; Mellier, Y; Altieri, B; Burigana, C; Da Silva, A; Gomez, P; Hoar, J; Laureijs, R; Maiorano, E; Oliveira, D Magalhaes; Renk, F; Criado, G Saavedra; Tereno, I; Augueres, J L; Brinchmann, J; Cropper, M; Duvet, L; Ealet, A; Franzetti, P; Garilli, B; Gondoin, P; Guzzo, L; Hoekstra, H; Holmes, R; Jahnke, K; Kitching, T; Meneghetti, M; Percival, W; Warren, S


    Euclid is an ESA Cosmic-Vision wide-field-space mission which is designed to explain the origin of the acceleration of Universe expansion. The mission will investigate at the same time two primary cosmological probes: Weak gravitational Lensing (WL) and Galaxy Clustering (in particular Baryon Acoustic Oscillations, BAO). The extreme precision requested on primary science objectives can only be achieved by observing a large number of galaxies distributed over the whole sky in order to probe the distribution of dark matter and galaxies at all scales. The extreme accuracy needed requires observation from space to limit all observational biases in the measurements. The definition of the Euclid survey, aiming at detecting billions of galaxies over 15 000 square degrees of the extragalactic sky, is a key parameter of the mission. It drives its scientific potential, its duration and the mass of the spacecraft. The construction of a Reference Survey derives from the high level science requirements for a Wide and a De...

  12. Agent-Supported Mission Operations Teamwork (United States)

    Malin, Jane T.


    This slide presentation reviews the development of software agents to support of mission operations teamwork. The goals of the work was to make automation by agents easy to use, supervise and direct, manage information and communication to decrease distraction, interruptions, workload and errors, reduce mission impact of off-nominal situations and increase morale and decrease turnover. The accomplishments or the project are: 1. Collaborative agents - mixed initiative and creation of instructions for mediating agent 2. Methods for prototyping, evaluating and evolving socio-technical systems 3. Technology infusion: teamwork tools in mISSIons 4. Demonstrations in simulation testbed An example of the use of agent is given, the use of an agent to monitor a N2 tank leak. An incomplete instruction to the agent is handled with mediating assistants, or Intelligent Briefing and Response Assistant (IBRA). The IBRA Engine also watches data stream for triggers and executes Act-Whenever actions. There is also a Briefing and Response Instruction (BRI) which is easy for a discipline specialist to create through a BRI editor.

  13. The SVOM gamma-ray burst mission

    CERN Document Server

    Cordier, B; Atteia, J -L; Basa, S; Claret, A; Daigne, F; Deng, J; Dong, Y; Godet, O; Goldwurm, A; Götz, D; Han, X; Klotz, A; Lachaud, C; Osborne, J; Qiu, Y; Schanne, S; Wu, B; Wang, J; Wu, C; Xin, L; Zhang, B; Zhang, S -N


    We briefly present the science capabilities, the instruments, the operations, and the expected performance of the SVOM mission. SVOM (Space-based multiband astronomical Variable Objects Monitor) is a Chinese-French space mission dedicated to the study of Gamma-Ray Bursts (GRBs) in the next decade. The SVOM mission encompasses a satellite carrying four instruments to detect and localize the prompt GRB emission and measure the evolution of the afterglow in the visible band and in X-rays, a VHF communication system enabling the fast transmission of SVOM alerts to the ground, and a ground segment including a wide angle camera and two follow-up telescopes. The pointing strategy of the satellite has been optimized to favor the detection of GRBs located in the night hemisphere. This strategy enables the study of the optical emission in the first minutes after the GRB with robotic observatories and the early spectroscopy of the optical afterglow with large telescopes to measure the redshifts. The study of GRBs in the...

  14. The importance of batteries in unmanned missions (United States)

    Klein, John W.


    The planetary program has historically used batteries to supply peak power needs for mission specific applications. Any time that additional power has been required in order to meet peak power demands or those applications where only limited amounts of power were required, batteries have always been used. Up until the mid to late 70's they have performed their task admirably. Recently, however, we have all become aware of the growing problem of developing reliable NiCd batteries for long mission and high cycle life applications. Here, the role rechargeable batteries will play for future planetary and earth observing spacecraft is discussed. In conclusion, NiCds have been and will continue to be the mainstay of the power system engineers tools for peak power production. Recent experience has tarnished its once sterling reputation. However, the industry has stood up to this challenge and implemented wide ranging plans to rectify the situation. These efforts should be applauded and supported as new designs and materials become available. In addition, project managers must become aware of their responsibility to test their batteries and insure quality and mission operating characteristics. Without this teamwork, the role of NiCds in the future will diminish, and other batteries, not as optimum for high performance applications (low mass and volume) will take their place.

  15. The Joint Dark Energy Mission (JDEM) Omega

    CERN Document Server

    Gehrels, Neil


    [JDEM-Omega is one of the three concepts that contributed to the Wide-Field Infrared Survey Telescope (WFIRST) mission advocated by the Astro2010 Decadal Survey. It is the concept on which the recommended observatory configuration is based.] The Joint Dark Energy Mission (JDEM) is a space-based observatory designed to perform precision measurements of the nature of dark energy in the Universe. It will make an order of magnitude progress in measuring the equation of state parameters of the Universe of most importance for understanding dark energy. JDEM-Omega is a wide-field space telescope operating in the near infrared. Dark energy measurements will be made via large surveys of galaxies and supernova monitoring. These will be an order of magnitude larger surveys than currently available and will provide enormous catalogs of astrophysical objects for many communities ranging from solar system to galaxy to galaxies/clusters to cosmology. JDEM-Omega is a mission concept collaboratively developed by NASA and the ...

  16. The Aerosol/Cloud/Ecosystems Mission (ACE) (United States)

    Schoeberl, Mark


    The goals and measurement strategy of the Aerosol/Cloud/Ecosystems Mission (ACE) are described. ACE will help to answer fundamental science questions associated with aerosols, clouds, air quality and global ocean ecosystems. Specifically, the goals of ACE are: 1) to quantify aerosol-cloud interactions and to assess the impact of aerosols on the hydrological cycle and 2) determine Ocean Carbon Cycling and other ocean biological processes. It is expected that ACE will: narrow the uncertainty in aerosol-cloud-precipitation interaction and quantify the role of aerosols in climate change; measure the ocean ecosystem changes and precisely quantify ocean carbon uptake; and, improve air quality forecasting by determining the height and type of aerosols being transported long distances. Overviews are provided of the aerosol-cloud community measurement strategy, aerosol and cloud observations over South Asia, and ocean biology research goals. Instruments used in the measurement strategy of the ACE mission are also highlighted, including: multi-beam lidar, multiwavelength high spectra resolution lidar, the ocean color instrument (ORCA)--a spectroradiometer for ocean remote sensing, dual frequency cloud radar and high- and low-frequency micron-wave radiometer. Future steps for the ACE mission include refining measurement requirements and carrying out additional instrument and payload studies.

  17. The system design of TRIO cinema Mission (United States)

    Jin, Ho; Seon, Jongho; Kim, Khan-Hyuk; Lee, Dong-Hun; Kim, Kap-Sung; Lin, Robert; Parks, George; Tindall, Craig; Horbury, T. S.; Larson, Davin; Sample, John

    TRIO (Triplet Ionospheric Observatory) CINEMA ( Cubesat for Ion, Neutral, Electron, MAg-netic fields) is a space science mission with three identical cubesats. The main scientific objec-tives are a multi-observation of ionospheric ENA (Energetic Neutral Atom) imaging, ionospheric signature of suprathermal electrons and ions and complementary measurements of magnetic fields for particle data. For this, Main payloads consist of a suprathermal electron, ion, neutral (STEIN) instrument and a 3-axis magnetometer of magnetoresistive sensors. The CINEMA is a 3-unit CubeSat, which translates to a 10 cm x 10 cm x 30 cm in volume and no more than four kilograms in mass. An attitude control system (ACS) uses torque coils, a sun sensor and the magnetometers and spin CINEMA spcaecraft 4 rpm with the spin axis perpendicular to the ecliptic plane. CINEMA will be placed into a high inclination low earth orbit that crosses the auroral zone and cusp. Three institutes are collaborating to develop CINEMA cubesats: i) two cubesats by Kyung Hee University (KHU) under their World Class University (WCU) program, ii) one cubesat by UC Berkeley under the NSF support, and iii) three magnetometers are provide by Imperial College, respectively. In this paper, we describe the system design and their performance of TR IO cinema mission. TRIO cinema's development of miniature in-strument and spacecraft spinning operation will play an important role for future nanosatellite space missions

  18. Juno at Jupiter: Mission and Science (United States)

    Bolton, Scott


    The Juno mission is the second mission in NASA's New Frontiers program. Launched in August 2011, Juno arrives at Jupiter in July 2016. Juno science goals include the study of Jupiter's origin, interior structure, deep atmosphere, aurora and magnetosphere. Jupiter's formation is fundamental to the evolution of our solar system and to the distribution of volatiles early in the solar system's history. Juno's measurements of the abundance of Oxygen and Nitrogen in Jupiter's atmosphere, and the detailed maps of Jupiter's gravity and magnetic field structure will constrain theories of early planetary development. Juno's orbit around Jupiter is a polar elliptical orbit with perijove approximately 5000 km above the visible cloud tops. The payload consists of a set of microwave antennas for deep sounding, magnetometers, gravity radio science, low and high energy charged particle detectors, electric and magnetic field radio and plasma wave experiment, ultraviolet imaging spectrograph, infrared imager and a visible camera. The Juno design enables the first detailed investigation of Jupiter's interior structure, and deep atmosphere as well as the first in depth exploration of Jupiter's polar magnetosphere. The Juno mission design, science goals, and measurements related to the atmosphere of Jupiter will be presented.

  19. Spacelab Life Science-1 Mission Onboard Photograph (United States)


    Spacelab Life Science -1 (SLS-1) was the first Spacelab mission dedicated solely to life sciences. The main purpose of the SLS-1 mission was to study the mechanisms, magnitudes, and time courses of certain physiological changes that occur during space flight, to investigate the consequences of the body's adaptation to microgravity and readjustment to Earth's gravity, and bring the benefits back home to Earth. The mission was designed to explore the responses of the heart, lungs, blood vessels, kidneys, and hormone-secreting glands to microgravity and related body fluid shifts; examine the causes of space motion sickness; and study changes in the muscles, bones, and cells. This photograph shows astronaut Rhea Seddon conducting an inflight study of the Cardiovascular Deconditioning experiment by breathing into the cardiovascular rebreathing unit. This experiment focused on the deconditioning of the heart and lungs and changes in cardiopulmonary function that occur upon return to Earth. By using noninvasive techniques of prolonged expiration and rebreathing, investigators can determine the amount of blood pumped out of the heart (cardiac output), the ease with which blood flows through all the vessels (total peripheral resistance), oxygen used and carbon dioxide released by the body, and lung function and volume changes. SLS-1 was launched aboard the Space Shuttle Orbiter Columbia (STS-40) on June 5, 1995.

  20. The MARS2013 Mars analog mission. (United States)

    Groemer, Gernot; Soucek, Alexander; Frischauf, Norbert; Stumptner, Willibald; Ragonig, Christoph; Sams, Sebastian; Bartenstein, Thomas; Häuplik-Meusburger, Sandra; Petrova, Polina; Evetts, Simon; Sivenesan, Chan; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Stadler, Andrea; Stummer, Florian; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja


    We report on the MARS2013 mission, a 4-week Mars analog field test in the northern Sahara. Nineteen experiments were conducted by a field crew in Morocco under simulated martian surface exploration conditions, supervised by a Mission Support Center in Innsbruck, Austria. A Remote Science Support team analyzed field data in near real time, providing planning input for the management of a complex system of field assets; two advanced space suit simulators, four robotic vehicles, an emergency shelter, and a stationary sensor platform in a realistic work flow were coordinated by a Flight Control Team. A dedicated flight planning group, external control centers for rover tele-operations, and a biomedical monitoring team supported the field operations. A 10 min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. The fields of research for the experiments were geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, in particular the communication infrastructure emulating the signal travel time between Earth and Mars. We report on the operational work flows and the experiments conducted, including a deployable shelter prototype for multiple-day extravehicular activities and contingency situations. PMID:24823799

  1. STS-121: Discovery Mission Overview Briefing (United States)


    Tony Ceccacci, Lead STS-121 Space Shuttle Flight director, and Rick LaBrode, Lead STS-121 ULF 1.1 International Space Station Flight Director, are shown in this STS-121 Discovery mission overview. Ceccacci begins with an overview of the mission and gives the mission goals. He also presents various slides of the STS-121 payload that includes: 1) Orbiter Docking System; 2) Integrated Cargo Carrier (ICC); 3) Multipurpose Logistics Module (MPLM); 4) TPS Sample Box Assembly; 5) Shuttle Remote Manipulator System (SRMS); and 6) Orbiter Boom Sensor System (OBSS). He shows a video presentation on the various processes involved in the inspections of the Orbiter that include: 1) Unberthing OBSS; 2) Starboard wing leading edge survey; 3) Wing leading edge passes; 4) Nose cap surveys; 5) Port side surveys; and 6) Docking with the International Space Station. Ceccacci ends his presentation with discussing the work performed from flight day 1 to flight day 14. Rick LaBrode begins with discussing the on-orbit status of the Expedition 13 crew. He then presents a video of the MPLM installation, forward hatch of MPLM, resupply stowage platform, resupply stowage racks, and Oxygen Generator System (OGS) rack. Questions are answered from the media.

  2. Mission Benefits Analysis of Logistics Reduction Technologies (United States)

    Ewert, Michael K.; Broyan, James Lee, Jr.


    Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA s Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash-to-gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.

  3. Nuclear electric propulsion mission engineering study. Volume 2: Final report (United States)


    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.

  4. Demonstration of Small Satellite Technologies by the Bird Mission


    K. Brieß; S. Montenegro; Bärwald, W.; Halle, W.; Kayal, H.; E. Lorenz; W. Skrbek; Studemund, H.; Terzibaschian, T.; Walter, I.


    The first satellites at the beginning of the space age were small satellites. Primarily because of the fact that the launch capacity was small. Later on the launchers and satellites grew, and today a lot of big missions with a high complexity are in space. These missions serve the science, the military and defense, commercial and operational users as well as public and private interests. Today’s technology allows the supplement of the big missions by small satellite missions. By exploring new...

  5. Mission X: Train Like an Astronaut Challenge (United States)

    Lloyd, Charles W.


    The Mission X: Train Like an Astronaut Challenge was developed in 2011 to encourage proper exercise and nutrition at an early age by teaching young people to live and eat like space explorers. The strong correlation between an unhealthy childhood diet and adolescent fitness, and the onset of chronic diseases as an adult is the catalyst for Mission X. Mission X is dedicated to assisting people on a global scale to live healthier lifestyles and learn about human space exploration. The Mission X: Train Like an Astronaut 2015 (MX15) International Challenge hosted almost 40,000 children on 800 teams, 28 countries affiliated with 12 space agencies. The MX15 website included 17 languages. MX15, the fifth annual international fitness challenges sponsored by the NASA Human Research Program worked with the European Space Agency and other space agencies from around the world. In comparison to MX14, MX15 expanded to include four additional new countries, increased the number of students by approximately 68% and the number of teams by 29%. Chile' and South Korea participated in the new fall Astro Charlie Walk Around the Earth Challenge. Pre-challenge training materials were made more readily available from the website. South Korea completed a prospective assessment of the usability of the MX content for improving health and fitness in 212 preschool children and their families. Mission X is fortunate to have the support of the NASA, ESA and JAXA astronaut corps. In MX15, they participated in the opening and closing events as well as while on-board the International Space Station. Italian Astronaut Samantha Cristoretti participated as the MX15 Astronaut Ambassador for health and fitness providing the opening video and other videos from ISS. United Kingdom Astronaut Tim Peake and US Astronaut Kate Rubins have agreed to be the MX Ambassadors for 2016 and 2017 respectively. The MX15 International Working Group Face-to-Face meeting and Closing Event were held at the Agenzia Spaziale

  6. Indian Space Science and Exploration Missions (United States)

    Chakravarty, S. C.

    mission life of ˜ 5 years. Based on an expert report, ISRO has announced its plan to launch the first moon mission (Chandrayaan-1), which could be realised with the existing ISRO capabilities of launch vehicle, satellite and related technologies. The mission has specific scientific goals to study the three-dimensional lunar surface geological features and distribution of elemental and mineralogical species to help understand the origin and evolution of lunar system. The mission goal is to place a lunar-craft, weighing about 525 kg and carrying ˜ 55 kg payload mass, at ˜ 100 km polar orbit of moon for high spatial resolution (5-20 km) mapping. The rationale for selecting these and other future space science missions along with the expected scientific results would be discussed.

  7. The ExoMars 2016 Mission (United States)

    Svedhem, Håkan; Vago, Jorge; de Groot, Rolf; McCoy, Don


    ExoMars is a joint programme of the European Space Agency (ESA) and Roscosmos, Russia. It consists of the ExoMars 2016 mission with the Trace Gas Orbiter, TGO, and the Entry Descent and Landing Demonstrator, EDM, named Schiaparelli, and the ExoMars 2018 mission, which carries a lander and a rover. The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector to search for subsurface hydrogen (as proxy for water ice and hydrated minerals). The mass of the TGO is 3700 kg, including fuel. The EDM, with a mass of 600 kg, is mounted on top of the TGO as seen in its launch configuration. The EDM is carried to Mars by the TGO and is separated three days before arrival at Mars. In addition to demonstrating the landing capability two scientific investigations are included with the EDM. The AMELIA investigation aims at characterising the Martian atmosphere during the entry and descent using technical and engineering sensors of the EDM, and the DREAMS suite of sensors that will characterise the environment of the landing site for a few days after the landing. ESA provides the TGO spacecraft and the Schiaparelli Lander demonstrator, ESA member states provide two of the TGO instruments and Roscosmos provides the launcher and the other two TGO instruments. After the arrival of the ExoMars 2018 mission at the surface of Mars, the TGO will handle all communications between the Earth and the Rover. The communication between TGO and the rover/lander is done through a UHF communications system, a contribution from NASA. The 2016 mission will be launched by a Russian Proton rocket from Baikonur in March 2016 (launch window 14-25 March) and will arrive at Mars on 19 October. This presentation will cover a description of the 2016 mission, including the spacecraft

  8. Benefits of advanced software techniques for mission planning systems (United States)

    Gasquet, A.; Parrod, Y.; Desaintvincent, A.


    The increasing complexity of modern spacecraft, and the stringent requirement for maximizing their mission return, call for a new generation of Mission Planning Systems (MPS). In this paper, we discuss the requirements for the Space Mission Planning and the benefits which can be expected from Artificial Intelligence techniques through examples of applications developed by Matra Marconi Space.

  9. 76 FR 11203 - Water Technology Trade Mission to India (United States)


    ... International Trade Administration Water Technology Trade Mission to India AGENCY: International Trade... Water Technology Trade Mission to India from February 28 to March 4, 2011. The purpose of the mission is to expose U.S. firms to India's rapidly expanding water and waste water market and to assist...

  10. 75 FR 60736 - Water Technology Trade Mission to India (United States)


    ... International Trade Administration Water Technology Trade Mission to India AGENCY: International Trade Administration, Department of Commerce. ACTION: Notice. ] Water Technology Trade Mission to India; February 28... Administration, U.S. and Foreign Commercial Service (CS), is organizing a Water Technology Trade Mission to...

  11. 300 Area fuel supply facilities deactivation mission analysis report

    International Nuclear Information System (INIS)

    This report presents the results of the 300 Area fuel supply facilities (formerly call ''N reactor fuel fabrication facilities'') Deactivation Project mission analysis. Hanford systems engineering (SE) procedures call for a mission analysis. The mission analysis is an important first step in the SE process

  12. 75 FR 51243 - Trade Mission to the Port of Veracruz (United States)


    ... the port; --Digital signature systems; --Equipment for refrigerated warehouses; --Machinery/equipment... International Trade Administration Trade Mission to the Port of Veracruz AGENCY: International Trade... executive-led trade mission to the Port of Veracruz, Mexico, for December 6-9, 2010. This mission...

  13. Remote sensing mission to Kazakstan (June-July 1997)

    International Nuclear Information System (INIS)

    The purpose of the present Review is to generally present the results of the AMPS Mission (Airborne Multi sensor Pod System Mission). The presented materials consist of brief descriptions of the results of the conducted work, the background of the project and prospects. Upon the completion of processing and analysis the Mission results will be expounded in a special report

  14. Automated Design of Multiphase Space Missions Using Hybrid Optimal Control (United States)

    Chilan, Christian Miguel


    A modern space mission is assembled from multiple phases or events such as impulsive maneuvers, coast arcs, thrust arcs and planetary flybys. Traditionally, a mission planner would resort to intuition and experience to develop a sequence of events for the multiphase mission and to find the space trajectory that minimizes propellant use by solving…

  15. Mission Status at Aura Science Team MOWG Meeting: EOS Aura (United States)

    Fisher, Dominic


    Presentation at the 24797-16 Earth Observing System (EOS) Aura Science Team Meeting (Mission Operations Work Group (MOWG)) at Rotterdam, Netherlands August 29, 2016. Presentation topics include mission summary, spacecraft subsystems summary, recent and planned activities, spacecraft anomalies, data capture, propellant usage and lifetime estimates, spacecraft maneuvers and ground track history, mission highlights and past spacecraft anomalies and reliability estimates.

  16. Optimization of Positioning of Ground Stations for Space Optical Missions


    Grishechkin, Boris; Braun, Armin; Wickler, Martin


    Every space mission which uses optical band, e.g. ground-satellite/satellite-ground laser telecommunication, optical earth observation, on-ground optical space debris tracking system, is drastically affected by the clouds in the troposphere of the Earth. Mission planning group of the German Space Operations Center (GSOC) is investigating the possibility to achieve the maximum performance of future optical space missions.

  17. 77 FR 71777 - Trade Mission to Egypt and Kuwait (United States)


    ... Trade Mission to Egypt and Kuwait March 10-14, 2013, published at 77 FR 33439, June 6, 2012 to revise... Mission to Egypt and Kuwait March 10-14, 2013, published at 77 FR 33439, June 6, 2012. Due to the... is needed to allow for additional recruitment and marketing in support of the mission....

  18. The NPOESS Preparatory Project: Mission Concept and Status (United States)

    Murphy, Robert E.; Taylor, Raynor; DeVito, Daniel S.; Smith, Janice K.; Henegar, Joy; Dodge, James C.; Wilczynski, Peter; Kelly, Michael; Schneider, Stanley; Welsch, Carol; Smith, James E. (Technical Monitor)


    National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project is a joint NASA/IPO (Integrated Program Office) mission to extend selected systematic measurements initiated by the Terra and Aqua missions and to provide risk reduction for NPOESS. The key sensor properties and mission features are summarized.

  19. 13 CFR 108.120 - Economic development primary mission. (United States)


    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Economic development primary mission. 108.120 Section 108.120 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS... Economic development primary mission. The primary mission of a NMVC Company must be economic development...

  20. 76 FR 17621 - Biotech Life Science Trade Mission to China (United States)


    ... International Trade Administration Biotech Life Science Trade Mission to China AGENCY: International Trade.... biotechnology and life science firms and trade organizations. The mission will introduce mission participants to.... Commercial Setting U.S. biotech and life science firms often consider China the most important future...