WorldWideScience

Sample records for abcb1 slc6a2 slc6a3

  1. Methylation of the SLC6a2 gene promoter in major depression and panic disorder.

    Directory of Open Access Journals (Sweden)

    Richard Bayles

    Full Text Available Reduced function of the noradrenaline transporter (NET has been demonstrated in patients with major depressive disorder (MDD and panic disorder. Attempts to explain NET dysfunction in MDD and panic disorder by genetic variation in the NET gene SLC6a2 have been inconclusive. Transcriptional silencing of the SLC6a2 gene may be an alternative mechanism which can lead to NET dysfunction independent of DNA sequence. The objective of this study was to characterise the DNA methylation state of the SLC6a2 gene promoter in patients with MDD and panic disorder. SLC6a2 promoter methylation was also analysed before and after antidepressant treatment. This study was performed with DNA from blood, using bisulphite sequencing and EpiTYPER methylation analyses. Patients with MDD or panic disorder were not found to differ significantly from healthy controls in the pattern of methylation of the SLC6a2 gene promotor. While significant correlations between methylation levels at some CpG sites and physiological measures were identified, overall the variation in DNA methylation between patients was small, and the significance of this variation remains equivocal. No significant changes in SLC6a2 promoter methylation were observed in response to antidepressant treatment. Further in-depth analysis of alternative mechanisms of transcriptional regulation of the SLC6a2 gene in human health and disease would be of value.

  2. DRD2 and SLC6A3 moderate impact of maternal depressive symptoms on infant cortisol.

    Science.gov (United States)

    Ludmer, Jaclyn A; Levitan, Robert; Gonzalez, Andrea; Kennedy, James; Villani, Vanessa; Masellis, Mario; Basile, Vincenzo S; Atkinson, Leslie

    2015-12-01

    Both maternal depressive symptoms and infants' dopamine-related genetic characteristics have been linked to infants' hypothalamic-pituitary-adrenal (HPA) functioning. This study investigated the interactive influence of maternal depressive symptoms and infant DRD2 and SLC6A3 genotypes on infant cortisol reactivity; whether this interaction reflects diathesis-stress or differential susceptibility; and whether this interaction influences the flexibility of the infant cortisol response across challenges known to exert differential effects on infant cortisol reactivity. A community sample of 314 mother-infant dyads participated in toy frustration (age 16 months) and maternal separation (age 17 months) challenges, and salivary cortisol was collected at baseline, +20, and +40min. Maternal depressive symptoms were assessed with the Beck Depression Inventory-II at infant age 16 months. Infant buccal cells were collected at both time points for genotyping. DRD2 and SLC6A3 genotypes moderated the relation between maternal depressive symptomatology and infant cortisol reactivity in a diathesis-stress manner in the context of toy frustration, and in a differential susceptibility manner in the context of maternal separation. Higher levels of maternal depressive symptoms predicted reduced cortisol flexibility across challenges for infants with at least one A1 allele of DRD2 and infants with the 10/10 genotype of SLC6A3. Results suggest that maternal depressive symptomatology is related to infants' cortisol reactivity and to the flexibility of that reactivity across psychosocial challenges, but this relation is dependent on the infant's genetic characteristics.

  3. Polymorphisms in the dopamine transporter gene (SLC6A3/DAT1) and alcohol dependence in humans: a systematic review

    NARCIS (Netherlands)

    Zwaluw, C.S. van der; Engels, R.C.M.E.; Buitelaar, J.K.; Verkes, R.J.; Franke, B.; Scholte, R.H.J.

    2009-01-01

    Dopamine neurotransmission has been a key player in attempts to identify genetic factors involved in alcohol dependence. The dopamine transporter terminates dopaminergic neurotransmission, making the gene encoding the transporter (SLC6A3/DAT1) an attractive candidate in clinical studies on alcohol d

  4. Polymorphisms in the dopamine transporter gene (SLC6A3/DAT1) and alcohol dependence in humans: a systematic review.

    NARCIS (Netherlands)

    Zwaluw, C.S. van der; Engels, R.C.M.E.; Buitelaar, J.K.; Verkes, R.J.; Franke, B.; Scholte, R.H.J.

    2009-01-01

    Dopamine neurotransmission has been a key player in attempts to identify genetic factors involved in alcohol dependence. The dopamine transporter terminates dopaminergic neurotransmission, making the gene encoding the transporter (SLC6A3/DAT1) an attractive candidate in clinical studies on alcohol d

  5. Genetic polymorphisms in the DRD2, DRD3, and SLC6A3 gene in elderly patients with delirium.

    NARCIS (Netherlands)

    Munster, B.C. van; Yazdanpanah, M.; Tanck, M.W.T.; Rooij, S.E.J.A. de; Giessen, E. van de; Sijbrands, E.J.G.; Zwinderman, A.H.; Korevaar, J.C.

    2010-01-01

    Dopamine excess appears to be critical in the final common pathway of delirium. The aim of this study was to investigate whether genetic polymorphisms in three dopamine-related genes (the dopamine receptor 2 (DRD2), dopamine receptor 3 (DRD3), and the dopamine transporter (SLC6A3) gene) were associa

  6. Frequency of 3' VNTR Polymorphism in the Dopamine Transporter Gene SLC6A3 in Humans Predisposed to Antisocial Behavior.

    Science.gov (United States)

    Cherepkova, E V; Aftanas, L I; Maksimov, N; Menshanov, P N

    2016-11-01

    Predisposition to antisocial behavior can be related to the presence of certain polymorphic variants of genes encoding dopaminergic system proteins. We studied the frequencies of allele variants and genotypes of variable number tandem repeat polymorphism in 3' untranslated region (3' VTNR) of the dopaminergic transporter SLC6A3 gene in Caucasian men committed socially dangerous violent and non-violent crimes. Alleles with 9 and 10 repeats were most frequent in both the control group and group of men predisposed to antisocial behavior. At the same time, the 10/10 genotype was more frequently observed in the group of men prone to antisocial non-violent behavior. Hence, the presence of certain variants of 3' VTNR polymorphism of SLC6A3 gene in men is associated with predisposition to certain forms of antisocial behavior.

  7. SLC6A3 and body mass index in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial

    Directory of Open Access Journals (Sweden)

    Hayes Richard B

    2009-01-01

    Full Text Available Abstract Background To investigate the contribution of the dopamine transporter to dopaminergic reward-related behaviors and anthropometry, we evaluated associations between polymorphisms at the dopamine transporter gene(SLC6A3 and body mass index (BMI, among participants in the Prostate, Lung, Colorectal and Ovarian (PLCO Cancer Screening Trial. Methods Four polymorphisms (rs6350, rs6413429, rs6347 and the 3' variable number of tandem repeat (3' VNTR polymorphism at the SLC6A3 gene were genotyped in 2,364 participants selected from the screening arm of PLCO randomly within strata of sex, age and smoking history. Height and weight at ages 20 and 50 years and baseline were assessed by questionnaire. BMI was calculated and categorized as underweight, normal, overweight and obese (2, respectively. Odds ratios (ORs and 95% confidence intervals (CIs of SLC6A3 genotypes and haplotypes were computed using conditional logistic regression. Results Compared with individuals having a normal BMI, obese individuals at the time of the baseline study questionnaire were less likely to possess the 3' VNTR variant allele with 9 copies of the repeated sequence in a dose-dependent model (** is referent; OR*9 = 0.80, OR99 = 0.47, ptrend = 0.005. Compared with individuals having a normal BMI at age 50, overweight individuals (A-C-G-* is referent; ORA-C-G-9 = 0.80, 95% CI 0.65–0.99, p = 0.04 and obese individuals (A-C-G-* is referent; ORA-C-G-9 = 0.70, 95% CI 0.49–0.99, p = 0.04 were less likely to possess the haplotype with the 3'variant allele (A-C-G-9. Conclusion Our results support a role of genetic variation at the dopamine transporter gene, SLC6A3, as a modifier of BMI.

  8. Dopamine transporter SLC6A3 genotype affects cortico-striatal activity of set-shifts in Parkinson's disease.

    Science.gov (United States)

    Habak, Claudine; Noreau, Anne; Nagano-Saito, Atsuko; Mejía-Constaín, Beatriz; Degroot, Clotilde; Strafella, Antonio P; Chouinard, Sylvain; Lafontaine, Anne-Louise; Rouleau, Guy A; Monchi, Oury

    2014-11-01

    Parkinson's disease is a neurodegenerative condition that affects motor function along with a wide range of cognitive domains, including executive function. The hallmark of the pathology is its significant loss of nigrostriatal dopamine, which is necessary for the cortico-striatal interactions that underlie executive control. Striatal dopamine reuptake is mediated by the SLC6A3 gene (formerly named DAT1) and its polymorphisms, which have been largely overlooked in Parkinson's disease. Thirty patients (ages 53-68 years; 19 males, 11 females) at early stages of Parkinson's disease, were genotyped according to a 9-repeat (9R) or 10-repeat (10R) allele on the SLC6A3/DAT1 gene. They underwent neuropsychological assessment and functional magnetic resonance imaging while performing a set-shifting task (a computerized Wisconsin Card Sorting Task) that relies on fronto-striatal interactions. Patients homozygous on the 10R allele performed significantly better on working memory tasks than 9R-carrier patients. Most importantly, patients carrying a 9R allele exhibited less activation than their 10R homozygous counterparts in the prefrontal cortex, premotor cortex and caudate nucleus, when planning and executing a set-shift. This pattern was exacerbated for conditions that usually recruit the striatum compared to those that do not. This is the first study indicating that the SLC6A3/DAT1 genotype has a significant effect on fronto-striatal activation and performance in Parkinson's disease. This effect is stronger for conditions that engage the striatum. Longitudinal studies are warranted to assess this polymorphism's effect on the clinical evolution of patients with Parkinson's disease, especially with cognitive decline.

  9. Pharmacogenetics of methylphenidate response in attention deficit/hyperactivity disorder: association with the dopamine transporter gene (SLC6A3).

    Science.gov (United States)

    Purper-Ouakil, D; Wohl, M; Orejarena, S; Cortese, S; Boni, C; Asch, M; Mouren, M C; Gorwood, P

    2008-12-05

    Pharmacogenetic studies investigating the 40-bp VNTR polymorphism at SLC6A3 and methylphenidate response have shown conflicting results and large differences in study design and efficacy endpoints. Our objective was to investigate the relation between the 3'-VNTR at SLC6A3 and variability in methylphenidate response in a sample of 141 ADHD children and adolescents, assessed before and after methylphenidate treatment with both clinical and neuropsychological outcome measures. 10-R homozygotes were significantly overrepresented in the low response group, but no genotype effect was shown in cognitive variables improvement. A meta-analysis of pharmacogenetic studies with comparable data (responders vs. non-responders) on a total of 475 subjects showed a significant association between the 10-10 genotype and low rates of methylphenidate response (mean Odds Ratio = 0.46; 95% CI [0.28-0.76]). Heterogeneity between these studies did not reach a significant level but, as publications with different endpoints were excluded from this meta-analysis, our results do not rule out a possible influence of study design. Copyright 2008 Wiley-Liss, Inc.

  10. Association between the SLC6A3 A1343G polymorphism and schizophrenia Associação entre o polimorfismo A1343G do SLC6A3 e esquizofrenia

    Directory of Open Access Journals (Sweden)

    Quirino Cordeiro

    2010-10-01

    Full Text Available Epidemiological studies have demonstrated that the genetic component is an important risk factor for the development of schizophrenia. The genes that codify the different compounds of the dopaminergic system have created interest for molecular investigations in patients with schizophrenia because the antipsychotic drugs, especially those of first generation, act on this cerebral system. Thus the aim of the present study was to investigate the possible association between a new single nucleotide polymorphism (rs6347 located in exon 9 of the protein transporter (SLC6A3 and schizophrenia. The distribution of the alleles and genotypes of the studied polymorphism was investigated in a sample of 235 patients and 834 controls matched by gender and age. There were statistical differences in the allelic (χ2=5.97, 1d.f. , p=0.01, OR=1.33-1.05Estudos epidemiológicos têm demonstrado que o componente genético é um importante fator de risco para a esquizofrenia. Os genes que codificam os diferentes componentes do sistema dopaminérgico passaram a despertar interesse para estudos moleculares em pacientes com esquizofrenia, pois os antipsicóticos, em especial os de primeira geração, exercem sua ação nesse sistema. Assim, o objetivo do presente estudo foi investigar a associação entre um novo polimorfismo de nucleotídeo único (rs6347 localizado no exon 9 do gene do transportador de dopamina (SLC6A3 e esquizofrenia. Um total de 235 pacientes e 834 controles pareados para sexo e idade foi selecionado para a investigação da distribuição dos alelos e genótipos do polimorfismo investigado entre os grupos de pacientes e controles. Houve diferenças estatisticamente significantes nas distribuições alélicas (χ2=5,97, 1d.f. , p=0,01, OR=1,33-1,05SLC6A3 A1343G mostrou associação com esquizofrenia na amostra estudada.

  11. Influence of the SLC6A3-DAT1 Gene on Multifaceted Measures of Self-regulation in Preschool Children

    Science.gov (United States)

    Cómbita, Lina M.; Voelker, Pascale; Abundis-Gutiérrez, Alicia; Pozuelos, Joan P.; Rueda, M. Rosario

    2017-01-01

    Development of self-regulation, the capacity to voluntarily modulate thoughts, emotions and actions is strongly related to the maturation of the dopamine-mediated executive attention network (EAN). The attention control processes associated with the EAN greatly overlap with efficiency of the executive functions and are correlated with measures of effortful control. Regulation of dopamine levels within the EAN, particularly in the basal ganglia is carried out by the action of dopamine transporters. In humans, the SLC6A3/DAT1 gene carries out the synthesis of the DAT protein. The 10-repeat allele has been associated with an enhanced expression of the gene and has been related to ADHD symptoms. Little is known about the impact of DAT1 variations on children's capacity to self-regulate in contexts that impose particular demands of regulatory control such as the school or home. This study defines a multi-domain phenotype of self-regulation and examines whether variations of the DAT1 gene accounts for individual differences in performance in 4–5 year old children. Results show that presence of the 10r allele is related to a diminished ability to exert voluntary regulation of reactivity. These findings shed light on the neurobiological mechanisms underlying individual differences in self-regulation during childhood. PMID:28154545

  12. Lack of Association between a 3'UTR VNTR Polymorphism of Dopamine Transporter Gene (SLC6A3) and ADHD in a Brazilian Sample of Adult Patients

    Science.gov (United States)

    Aperecida da Silva, Maria; Cordeiro, Quirino; Louza, Mario; Vallada, Homero

    2011-01-01

    Objective: To investigate a possible association between a 3'UTR VNTR polymorphism of the dopamine transporter gene (SLC6A3) and ADHD in a Brazilian sample of adult patients. Method: Study Case-control with 102 ADHD adult outpatients ("DSM-IV" criteria) and 479 healthy controls. The primers' sequence used were: 3'UTR-Forward: 5' TGT GGT…

  13. Lack of Association between a 3'UTR VNTR Polymorphism of Dopamine Transporter Gene (SLC6A3) and ADHD in a Brazilian Sample of Adult Patients

    Science.gov (United States)

    Aperecida da Silva, Maria; Cordeiro, Quirino; Louza, Mario; Vallada, Homero

    2011-01-01

    Objective: To investigate a possible association between a 3'UTR VNTR polymorphism of the dopamine transporter gene (SLC6A3) and ADHD in a Brazilian sample of adult patients. Method: Study Case-control with 102 ADHD adult outpatients ("DSM-IV" criteria) and 479 healthy controls. The primers' sequence used were: 3'UTR-Forward: 5' TGT GGT GAT GGG…

  14. SLC6A3 coding variant Ala559Val found in two autism probands alters dopamine transporter function and trafficking.

    Science.gov (United States)

    Bowton, E; Saunders, C; Reddy, I A; Campbell, N G; Hamilton, P J; Henry, L K; Coon, H; Sakrikar, D; Veenstra-VanderWeele, J M; Blakely, R D; Sutcliffe, J; Matthies, H J G; Erreger, K; Galli, A

    2014-10-14

    Emerging evidence associates dysfunction in the dopamine (DA) transporter (DAT) with the pathophysiology of autism spectrum disorder (ASD). The human DAT (hDAT; SLC6A3) rare variant with an Ala to Val substitution at amino acid 559 (hDAT A559V) was previously reported in individuals with bipolar disorder or attention-deficit hyperactivity disorder (ADHD). We have demonstrated that this variant is hyper-phosphorylated at the amino (N)-terminal serine (Ser) residues and promotes an anomalous DA efflux phenotype. Here, we report the novel identification of hDAT A559V in two unrelated ASD subjects and provide the first mechanistic description of its impaired trafficking phenotype. DAT surface expression is dynamically regulated by DAT substrates including the psychostimulant amphetamine (AMPH), which causes hDAT trafficking away from the plasma membrane. The integrity of DAT trafficking directly impacts DA transport capacity and therefore dopaminergic neurotransmission. Here, we show that hDAT A559V is resistant to AMPH-induced cell surface redistribution. This unique trafficking phenotype is conferred by altered protein kinase C β (PKCβ) activity. Cells expressing hDAT A559V exhibit constitutively elevated PKCβ activity, inhibition of which restores the AMPH-induced hDAT A559V membrane redistribution. Mechanistically, we link the inability of hDAT A559V to traffic in response to AMPH to the phosphorylation of the five most distal DAT N-terminal Ser. Mutation of these N-terminal Ser to Ala restores AMPH-induced trafficking. Furthermore, hDAT A559V has a diminished ability to transport AMPH, and therefore lacks AMPH-induced DA efflux. Pharmacological inhibition of PKCβ or Ser to Ala substitution in the hDAT A559V background restores AMPH-induced DA efflux while promoting intracellular AMPH accumulation. Although hDAT A559V is a rare variant, it has been found in multiple probands with neuropsychiatric disorders associated with imbalances in DA neurotransmission

  15. The SLC6A3 gene possibly affects susceptibility to late-onset alcohol dependence but not specific personality traits in a Han Chinese population

    Science.gov (United States)

    Huang, Chang-Chih; Kuo, Shin-Chang; Yeh, Yi-Wei; Chen, Chun-Yen; Yen, Che-Hung; Liang, Chih-Sung; Ho, Pei-Shen; Lu, Ru-Band; Huang, San-Yuan

    2017-01-01

    Dopaminergic dysfunction has an important role in the pathoetiology of alcohol dependence (AD). The purpose of this study was to determine whether the solute carrier family 6 member 3 (SLC6A3) gene (also known as the dopamine transporter DAT gene) was associated with AD, and whether variants in the SLC6A3 locus were associated with specific personality traits in patients with AD. Sixteen polymorphisms in SLC6A3 were analyzed using 637 patients with AD and 523 healthy controls. To reduce clinical heterogeneity, patients were classified into two subgroups: early-onset AD (EOAD) and late-onset AD (LOAD). The Tridimensional Personality Questionnaire was used to assess the personality traits novelty seeking (NS) and harm avoidance (HA) in the patients with AD. Using allele frequency and genotype distribution comparisons and logistic regression analysis, we found evidence of association between rs6350 and AD (P gene may have a role in susceptibility to late-onset AD in the Han Chinese population. PMID:28182634

  16. Associação entre polimorfismo SLC6A3 3’UTR VNTR e a resposta ao tratamento da dependência de nicotina

    Directory of Open Access Journals (Sweden)

    Guilherme Rubino de Azevedo Focchi

    2011-01-01

    Full Text Available Objetivo: Avaliar a associação entre a resposta ao tratamento da dependência de nicotina com bupropiona e a presença do polimorfismo SLC6A3 3’UTR VNTR, localizado no gene que codifica o transportador dopaminérgico. Método: Foram acompanhados no Ambulatório de Tabagismo do Instituto de Psiquiatria da Faculdade de Medicina da USP 100 pacientes do sexo masculino com diagnóstico de dependência de nicotina, sem outras patologias. Todos receberam bupropiona até 300 mg ao dia por 12 semanas, associada à terapia cognitivo-comportamental em grupo. A Escala de Fagerström foi aplicada no início e no final do tratamento, e avaliou-se a parada do uso de cigarros na última semana de tratamento e um mês após. Os pacientes tiveram 10 ml de sangue colhidos e genotipados para a existência do polimorfismo SLC6A3 3’UTR VNTR. Resultados: Não foi encontrada associação entre cessação do uso de cigarro e presença do polimorfismo. Conclusão: São necessários mais estudos para avaliar se a presença do polimorfismo SLC6A3 3’UTR VNTR estaria relacionada à melhor resposta ao tratamento da dependência de nicotina.

  17. Exploring DRD4 and its interaction with SLC6A3 as possible risk factors for adult ADHD: a meta-analysis in four European populations.

    Science.gov (United States)

    Sánchez-Mora, Cristina; Ribasés, Marta; Casas, Miquel; Bayés, Mònica; Bosch, Rosa; Fernàndez-Castillo, Noelia; Brunso, Lucas; Jacobsen, Kaya K; Landaas, Elisabeth T; Lundervold, Astri J; Gross-Lesch, Silke; Kreiker, Susanne; Jacob, Christian P; Lesch, Klaus-Peter; Buitelaar, Jan K; Hoogman, Martine; Kiemeney, Lambertus A L M; Kooij, J J Sandra; Mick, Eric; Asherson, Phil; Faraone, Stephen V; Franke, Barbara; Reif, Andreas; Johansson, Stefan; Haavik, Jan; Ramos-Quiroga, Josep Antoni; Cormand, Bru

    2011-07-01

    Attention-deficit hyperactivity disorder (ADHD) is a common behavioral disorder affecting about 4-8% of children. ADHD persists into adulthood in around 65% of cases, either as the full condition or in partial remission with persistence of symptoms. Pharmacological, animal and molecular genetic studies support a role for genes of the dopaminergic system in ADHD due to its essential role in motor control, cognition, emotion, and reward. Based on these data, we analyzed two functional polymorphisms within the DRD4 gene (120 bp duplication in the promoter and 48 bp VNTR in exon 3) in a clinical sample of 1,608 adult ADHD patients and 2,352 controls of Caucasian origin from four European countries that had been recruited in the context of the International Multicentre persistent ADHD CollaboraTion (IMpACT). Single-marker analysis of the two polymorphisms did not reveal association with ADHD. In contrast, multiple-marker meta-analysis showed a nominal association (P = 0.02) of the L-4R haplotype (dup120bp-48bpVNTR) with adulthood ADHD, especially with the combined clinical subtype. Since we previously described association between adulthood ADHD and the dopamine transporter SLC6A3 9R-6R haplotype (3'UTR VNTR-intron 8 VNTR) in the same dataset, we further tested for gene × gene interaction between DRD4 and SLC6A3. However, we detected no epistatic effects but our results rather suggest additive effects of the DRD4 risk haplotype and the SLC6A3 gene. Copyright © 2011 Wiley-Liss, Inc.

  18. Dopamine transporter SLC6A3 genotype affects cortico-striatal activity of set-shifts in Parkinson’s disease

    Science.gov (United States)

    Habak, Claudine; Noreau, Anne; Nagano-Saito, Atsuko; Mejía-Constaín, Beatriz; Degroot, Clotilde; Strafella, Antonio P.; Chouinard, Sylvain; Lafontaine, Anne-Louise; Rouleau, Guy A.

    2014-01-01

    Parkinson’s disease is a neurodegenerative condition that affects motor function along with a wide range of cognitive domains, including executive function. The hallmark of the pathology is its significant loss of nigrostriatal dopamine, which is necessary for the cortico-striatal interactions that underlie executive control. Striatal dopamine reuptake is mediated by the SLC6A3 gene (formerly named DAT1) and its polymorphisms, which have been largely overlooked in Parkinson’s disease. Thirty patients (ages 53–68 years; 19 males, 11 females) at early stages of Parkinson’s disease, were genotyped according to a 9-repeat (9R) or 10-repeat (10R) allele on the SLC6A3/DAT1 gene. They underwent neuropsychological assessment and functional magnetic resonance imaging while performing a set-shifting task (a computerized Wisconsin Card Sorting Task) that relies on fronto-striatal interactions. Patients homozygous on the 10R allele performed significantly better on working memory tasks than 9R-carrier patients. Most importantly, patients carrying a 9R allele exhibited less activation than their 10R homozygous counterparts in the prefrontal cortex, premotor cortex and caudate nucleus, when planning and executing a set-shift. This pattern was exacerbated for conditions that usually recruit the striatum compared to those that do not. This is the first study indicating that the SLC6A3/DAT1 genotype has a significant effect on fronto-striatal activation and performance in Parkinson’s disease. This effect is stronger for conditions that engage the striatum. Longitudinal studies are warranted to assess this polymorphism’s effect on the clinical evolution of patients with Parkinson’s disease, especially with cognitive decline. PMID:25212851

  19. Lack of association between VNTR polymorphism of dopamine transporter gene (SLC6A3 and schizophrenia in a Brazilian sample Ausência de associação entre o polimorfismo VNTR do gene do transportador de dopamina (SLC6A3 e esquizofrenia em uma população brasileira

    Directory of Open Access Journals (Sweden)

    Quirino Cordeiro

    2004-12-01

    Full Text Available A role of dopaminergic dysfunction has been postulated in the aetiology of schizophrenia. We hypothesized that variations in the dopamine transporter gene (SLC6A3 may be associated with schizophrenia. We conducted case-control and family based analysis on the polymorphic SLC6A3 variable number tandem repeat (VNTR in a sample of 220 schizophrenic patients, 226 gender and ethnic matched controls, and 49 additional case-parent trios. No differences were found in allelic or genotypic distributions between cases and controls and no significant transmission distortions from heterozygous parents to schizophrenic offspring were detected. Thus, our results do not support an association of the SLC6A3 VNTR with schizophrenia in our sample.Genes do sistema dopaminérgico são de escolha para a pesquisa de susceptibilidade para a esquizofrenia. Desse modo, possível contribuição do polimorfismo do gene do transportador de dopamina (SLC6A3 no aumento da vulnerabilidade para a esquizofrenia foi investigada no presente estudo. Analisou-se a distribuição do sítio polimórfico do gene do transportador de dopamina (VNTR em uma população de 220 pacientes com esquizofrenia (critério diagnóstico: DSM-IV e comparou-se com a distribuição em uma população controle de 226 indivíduos pareados para sexo e etnia. Nenhuma diferença foi observada na distribuição dos alelos entre casos e controles. O mesmo polimorfismo também foi investigado em uma segunda amostra composta por 49 trios (pais e probando. O resultado também foi negativo. Tais dados não dão suporte para a participação do polimorfismo do gene do transportador de dopamina no aumento de susceptibilidade para esquizofrenia na amostra estudada.

  20. No Association of BDNF, COMT, MAOA, SLC6A3, and SLC6A4 Genes and Depressive Symptoms in a Sample of Healthy Colombian Subjects

    Directory of Open Access Journals (Sweden)

    Yeimy González-Giraldo

    2015-01-01

    Full Text Available Background. Major depressive disorder (MDD is the second cause of years lived with disability around the world. A large number of studies have been carried out to identify genetic risk factors for MDD and related endophenotypes, mainly in populations of European and Asian descent, with conflicting results. The main aim of the current study was to analyze the possible association of five candidate genes and depressive symptoms in a Colombian sample of healthy subjects. Methods and Materials. The Spanish adaptation of the Hospital Anxiety and Depression Scale (HADS was applied to one hundred eighty-eight healthy Colombian subjects. Five functional polymorphisms were genotyped using PCR-based assays: BDNF-Val66Met (rs6265, COMT-Val158Met (rs4680, SLC6A4-HTTLPR (rs4795541, MAOA-uVNTR, and SLC6A3-VNTR (rs28363170. Result. We did not find significant associations with scores of depressive symptoms, derived from the HADS, for any of the five candidate genes (nominal p values >0.05. In addition, we did not find evidence of significant gene-gene interactions. Conclusion. This work is one of the first studies of candidate genes for depressive symptoms in a Latin American sample. Study of additional genetic and epigenetic variants, taking into account other pathophysiological theories, will help to identify novel candidates for MDD in populations around the world.

  1. Association analysis between a VNTR intron 8 polymorphism of the dopamine transporter gene (SLC6A3 and obsessive- compulsive disorder in a Brazilian sample Análise de associação entre um polimorfismo VNTR no intron 8 do gene do transportador de dopamina (SLC6A3 e transtorno obsessivo-compulsivo em uma amostra brasileira

    Directory of Open Access Journals (Sweden)

    Karen Miguita

    2007-12-01

    Full Text Available Family, twin and segregation analysis have provided evidences that genetic factors are implicated in the susceptibility for obsessive-compulsive disorder (OCD. Several lines of research suggest that the dopaminergic system may be involved in the pathophysiology of OCD. Thus, the aim of the present study was to investigate a possible association between a polymorphism located in intron 8 of the dopamine transporter gene (SLC6A3 and OCD in a Brazilian sample composed by 208 patients and 865 healthy controls. No statistically differences were observed in allelic and genotype distributions between cases and controls. No association was also observed when the sample was divided according to specific phenotypic features such as gender, presence of tic disorders co-morbidity and age at onset of obsessive-compulsive symptoms (OCS. Our results suggest that the intron 8 VNTR of the SLC6A3 investigated in this study is not related to the susceptibility for OCD in our Brazilian sample.Estudos de família, gêmeos e de segregação têm demonstrado que fatores genéticos estão envolvidos na susceptibilidade para o desenvolvimento do transtorno obsessivo-compulsivo (TOC. Várias linhas de pesquisa sugerem que o sistema dopaminérgico possa estar envolvido na fisiopatologia do TOC. Assim, o objetivo do presente estudo foi investigar uma possível associação entre o polimorfismo localizado no intron 8 do gene do transportador da dopamina (SLC6A3 e o TOC em uma amostra brasileira composta por 208 pacientes e 865 controles sadios. Nenhuma diferença estatisticamente significante foi observada nas distribuições alélicas e genotípicas entre os grupos de pacientes e controles. Nenhuma associação também foi observada quando as amostras foram divididas de acordo com características fenotípicas específicas, tais como gênero, presença de co-morbidade com tiques e idade de início dos sintomas obsessivo-compulsivo (SOC. Nossos resultados sugerem que o VNTR

  2. Comprehensive phenotype/genotype analyses of the norepinephrine transporter gene (SLC6A2 in ADHD: relation to maternal smoking during pregnancy.

    Directory of Open Access Journals (Sweden)

    Geeta A Thakur

    Full Text Available OBJECTIVE: Despite strong pharmacological evidence implicating the norepinephrine transporter in ADHD, genetic studies have yielded largely insignificant results. We tested the association between 30 tag SNPs within the SLC6A2 gene and ADHD, with stratification based on maternal smoking during pregnancy, an environmental factor strongly associated with ADHD. METHODS: Children (6-12 years old diagnosed with ADHD according to DSM-IV criteria were comprehensively evaluated with regard to several behavioral and cognitive dimensions of ADHD as well as response to a fixed dose of methylphenidate (MPH using a double-blind placebo controlled crossover trial. Family-based association tests (FBAT, including categorical and quantitative trait analyses, were conducted in 377 nuclear families. RESULTS: A highly significant association was observed with rs36021 (and linked SNPs in the group where mothers smoked during pregnancy. Association was noted with categorical DSM-IV ADHD diagnosis (Z=3.74, P=0.0002, behavioral assessments by parents (CBCL, P=0.00008, as well as restless-impulsive subscale scores on Conners'-teachers (P=0.006 and parents (P=0.006. In this subgroup, significant association was also observed with cognitive deficits, more specifically sustained attention, spatial working memory, planning, and response inhibition. The risk allele was associated with significant improvement of behavior as measured by research staff (Z=3.28, P=0.001, parents (Z=2.62, P=0.009, as well as evaluation in the simulated academic environment (Z=3.58, P=0.0003. CONCLUSIONS: By using maternal smoking during pregnancy to index a putatively more homogeneous group of ADHD, highly significant associations were observed between tag SNPs within SLC6A2 and ADHD diagnosis, behavioral and cognitive measures relevant to ADHD and response to MPH. This comprehensive phenotype/genotype analysis may help to further understand this complex disorder and improve its treatment

  3. The role of dopamine transporter (SLC6A3) and dopamine D2 receptor/ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1) gene polymorphisms in personality traits.

    Science.gov (United States)

    Kazantseva, A; Gaysina, D; Malykh, S; Khusnutdinova, E

    2011-06-01

    Variations in personality traits are caused by interactions between multiple genes of small effect and environmental factors. To date, gender- and ethnicity-specific variations in personality have been established. In the present study, we aimed to test: (1) the effects of four polymorphisms of dopamine system genes: ANKK1/DRD2 Taq1A, DRD2 rs6275, SLC6A3 40-bp VNTR and rs27072, on personality traits; (2) whether these effects differ between men and women and between Russians and Tatars. A sample of 652 healthy individuals (222 men and 430 women) of Caucasian origin (233 Russians and 419 Tatars) from Russia was subjected to personality traits assessment with Eysenck Personality Inventory (EPI) and Temperament and Character Inventory-125 (TCI-125). The associations between each personality trait and polymorphisms were assessed with regression models adjusted for gender and ethnicity. There were significant effects of ANKK1/DRD2 Taq1A on Neuroticism (p=0.016) and of SLC6A3 rs27072 on Persistence (p=0.021) in both genders. The association between ANKK1/DRD2 Taq1A A2/A2-genotype and higher Novelty Seeking and lower Reward Dependence was shown in men only (p for gender interaction=0.018). In women only, there was a significant association between SLC6A3 10R*G-haplotype and higher Persistence (p=0.002). Our findings provide evidence for a modifying effect of gender on the associations between dopamine system genes and approach-related traits (in men) and Persistence (in women).

  4. Low ABCB1 gene expression is an early event in colorectal carcinogenesis

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Vogel, Ulla Birgitte; Godiksen, Sine

    2013-01-01

    The ABCB1/MDR1 gene product ABCB1/P-glycoprotein is implicated in the development of colorectal cancer (CRC). NFKB1 encodes transcription factors regulating expression of a number of genes including ABCB1. We have previously found association between the ABCB1 C-rs3789243-T polymorphism and CRC...... risk and interactions between the ABCB1 C-rs3789243-T and C3435T polymorphisms and meat intake in relation to CRC risk (Andersen, BMC Cancer, 2009, 9, 407). ABCB1 and NFKB1 mRNA levels were assessed in intestinal tissue from 122 CRC cases, 101 adenoma cases (12 with severe dysplasia, 89 with mild......-moderate dysplasia) and from 18 healthy individuals, together with gene polymorphisms in ABCB1 and NFKB1. ABCB1 mRNA levels were highest in the healthy individuals and significantly lower in mild/moderate and severe dysplasia tissue (P...

  5. Human ABCB1 confers cells resistance to cytotoxic guanidine alkaloids from Pterogyne nitens.

    Science.gov (United States)

    Satake, Kazuhiro; Tsukamoto, Megumi; Mitani, Yuji; Regasini, Luis Octavio; da Silva Bolzani, Vanderlan; Efferth, Thomas; Nakagawa, Hiroshi

    2015-01-01

    Multidrug resistance (MDR) caused by human ABCB1 (P-glycoprotein/MDR1) is one of the major obstacles in chemotherapy. To understand the mechanism of MDR by ABCB1 and circumvent the MDR, in the present study, we established human ABCB1-expressing cells (Flp-In-293/ABCB1 cells) and examined the cytotoxic effects of four guanidine alkaloids from Pterogyne nitens (galegine, nitensidine A, pterogynidine and pterogynine) using Flp-In-293/Mock and Flp-In-293/ABCB1 cells. The activity of ABCB1 in Flp-In-293/ABCB1 cells were confirmed by typical substrates for ABCB1 (taxol and vinblastine) in MTT assay. Flp-In-293/ABCB1 cells were also resistant to the four guanidine alkaloids as well as taxol and vinblastine compared to Flp-In-293/Mock cells although the four guanidine alkaloids exhibited cytotoxicity against the two Flp-In-293 cells. Furthermore, the four guanidine alkaloids were also found to stimulate the ATPase activity of ABCB1 in ATPase assays. These results suggest that ABCB1 can confer the resistance to the cytotoxic guanidine alkaloids by transporting them.

  6. Clopidogrel Resistance with ABCB 1%ABCB1与氯吡格雷抵抗的研究进展

    Institute of Scientific and Technical Information of China (English)

    路英杰; 王立峰; 张旭昌; 王晓云

    2012-01-01

    氯吡格雷和阿司匹林双联抗血小板已是急性冠状动脉综合征和经皮冠脉介入术后的标准治疗,因此氯吡格雷抵抗越来越受到人们的关注,但焦点更多的集中在氧吡格雷氧化代谢基因(P2Y12、CYP3A4等)多态性方面,而对氯吡格雷吸收方面基因多态性的关注相对较少,本文就调控氯吡格雷在肠道吸收的基因(ABCB1)进行综述,并探讨其多态性与氯吡格雷抵抗的关系.%Clopidogrel and aspirin thermodynamie antiplatelet is a postoperative standard treatment of acute coronary syndrome and percutaneous coronary intervention (pci). People pay more and more attention to clopidogrel resistance, but more focus is concentrated on clopidogrel oxidative metabolism of genes (P2Y12 CYP3A4 etc.)polymorphism, gene polymorphism on absorption is few concerned.The gene (ABCB1) which regulates clopidogrel in intestinal absorption will be reviewed in this article,and discuss the relationship between the polymorphism of ABCB1 and clopidogrel resistance.

  7. P-gp substrate-induced neurotoxicity in an Abcb1a knock-in/Abcb1b knock-out mouse model with a mutated canine ABCB1 targeted insertion.

    Science.gov (United States)

    Swain, M D; Orzechowski, K L; Swaim, H L; Jones, Y L; Robl, M G; Tinaza, C A; Myers, M J; Jhingory, M V; Buckely, L E; Lancaster, V A; Yancy, H F

    2013-06-01

    Certain dog breeds, especially Collies, are observed to exhibit neurotoxicity to avermectin drugs, which are P-glycoprotein (P-gp) substrates. This neurotoxicity is due to an ABCB1 gene mutation (ABCB1-1Δ) that results in non-functional P-gp expression. A developed Abcb1a knock-in/Abcb1b knock-out mouse model expressing the ABCB1-1Δ canine gene was previously reported and mice exhibited sensitivity upon ivermectin administration. Here, model and wild-type mice were administered P-gp substrates doramectin, moxidectin, and digoxin. While knock-in/knock-out mice exhibited ataxia, lethargy and tremor, wild-type mice remained unaffected. In addition, no neurotoxic clinical signs were observed in either mouse type administered domperidone, a P-gp substrate with no reported neurotoxicity in ABCB1-1Δ Collies. Overall, neurotoxic signs displayed by model mice closely paralleled those observed in ivermectin-sensitive Collies. This model can be used to identify toxic P-gp substrates with altered safety in dog populations and may reduce dog use in safety studies that are part of the drug approval process.

  8. Low ABCB1 gene expression is an early event in colorectal carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Vibeke Andersen

    Full Text Available The ABCB1/MDR1 gene product ABCB1/P-glycoprotein is implicated in the development of colorectal cancer (CRC. NFKB1 encodes transcription factors regulating expression of a number of genes including ABCB1. We have previously found association between the ABCB1 C-rs3789243-T polymorphism and CRC risk and interactions between the ABCB1 C-rs3789243-T and C3435T polymorphisms and meat intake in relation to CRC risk (Andersen, BMC Cancer, 2009, 9, 407. ABCB1 and NFKB1 mRNA levels were assessed in intestinal tissue from 122 CRC cases, 101 adenoma cases (12 with severe dysplasia, 89 with mild-moderate dysplasia and from 18 healthy individuals, together with gene polymorphisms in ABCB1 and NFKB1. ABCB1 mRNA levels were highest in the healthy individuals and significantly lower in mild/moderate and severe dysplasia tissue (P<0.05 for both, morphologically normal tissues close to the tumour (P<0.05, morphologically normal tissue at a distance from the tumour (P<0.05 and CRC tissue (P<0.001. Furthermore, ABCB1 mRNA levels were lower in adenomas and carcinomas compared to morphologically normal tissue from the same individuals (P<0.01. The ABCB1 C-rs3789243-T and NFKB1 -94ins/del homozygous variant genotypes were associated with low ABCB1 mRNA levels in morphologically normal sigmoid tissue from adenoma cases (P<0.05 for both. NFKB1 mRNA levels were lower in both tumour and normal tissue from cancer patients (P<0.001 as compared to healthy individuals but we were unable to show association between NFKB1 -94ins/del genotype and NFKB1 mRNA levels. This study suggests that low ABCB1 mRNA levels are an early event in CRC development and that the two polymorphisms affect ABCB1 mRNA levels whereas low NFKB1 mRNA levels occur later in carcinogenesis. Low ABCB1 protein levels may promote colorectal carcinogenesis through increasing intracellular exposure to carcinogenic ABCB1 substrates.

  9. Impact of ABCB1 variants on neutrophil depression: a prospective study

    DEFF Research Database (Denmark)

    Bergmann, Troels Korshøj; Andersen, Charlotte Brasch; Gréen, Henrik

    2010-01-01

    toxicity was registered. Patients carrying one or two variant alleles of ABCB1 C3435T had progressively more pronounced neutrophil decrease at nadir (P-value 0.03). The same association was found for ABCB1 C1236T and G2677T/A with P-values of 0.06 and 0.02. No statistically significant correlations were...

  10. Cetuximab enhanced the efficacy of chemotherapeutic agent in ABCB1/P-glycoprotein-overexpressing cancer cells.

    Science.gov (United States)

    Wang, Fang; Chen, Yifan; Huang, Lihua; Liu, Tao; Huang, Yue; Zhao, Jianming; Wang, Xiaokun; Yang, Ke; Ma, Shaolin; Huang, Liyan; To, Kenneth Kin Wah; Gu, Yong; Fu, Liwu

    2015-12-01

    The overexpression of ATP-binding cassette (ABC) transporters is closely associated with the development of multidrug resistance (MDR) in certain types of cancer, which represents a formidable obstacle to the successful cancer chemotherapy. Here, we investigated that cetuximab, an EGFR monoclonal antibody, reversed the chemoresistance mediated by ABCB1, ABCG2 or ABCC1. Our results showed that cetuximab significantly enhanced the cytotoxicity of ABCB1 substrate agent in ABCB1-overexpressing MDR cells but had no effect in their parental drug sensitive cells and ABCC1, ABCG2 overexpressing cells. Furthermore, cetuximab markedly increased intracellular accumulation of doxorubicin (DOX) and rhodamine 123 (Rho 123) in ABCB1-overexpressing MDR cancer cells in a concentration-dependent manner. Cetuximab stimulated the ATPase activity but did not alter the expression level of ABCB1 or block phosphorylation of AKT and ERK. Interestingly, cetuximab decreased the cell membrane fluidity which was known to decrease the function of ABCB1. Our findings advocate further clinical investigation of combination chemotherapy of cetuximab and conventional chemotherapeutic drugs in ABCB1 overexpressing cancer patients.

  11. ABCB1 gene polymorphisms is not associated with drug-resistant epilepsy in Romanian children

    Directory of Open Access Journals (Sweden)

    Butila Anamaria Todoran

    2015-12-01

    Full Text Available Background: P-glycoprotein (P-gp, a drug efflux transporter, encoded by the gene MDR1 ABCB1 multidrug resistant, reduces the penetration through the brain by the AEDs. Overexpression of Pgp in blood-brain barrier in epileptic patients play an important rol in pharmacoresistance. The aim of this study was to evaluate a possible association between C1236T and G2677T ABCB1 gene polymorphisms and drug-resistant epilepsy in Romanian children.

  12. Purvalanol A, olomoucine II and roscovitine inhibit ABCB1 transporter and synergistically potentiate cytotoxic effects of daunorubicin in vitro.

    Directory of Open Access Journals (Sweden)

    Daniela Cihalova

    Full Text Available Cyclin-dependent kinase inhibitors (CDKi have high potential applicability in anticancer therapy, but various aspects of their pharmacokinetics, especially their interactions with drug efflux transporters, have not yet been evaluated in detail. Thus, we investigated interactions of five CDKi (purvalanol A, olomoucine II, roscovitine, flavopiridol and SNS-032 with the ABCB1 transporter. Four of the compounds inhibited efflux of two ABCB1 substrates, Hoechst 33342 and daunorubicin, in MDCKII-ABCB1 cells: Olomoucine II most strongly, followed by roscovitine, purvalanol A, and flavopiridol. SNS-032 inhibited ABCB1-mediated efflux of Hoechst 33342 but not daunorubicin. In addition, purvalanol A, SNS-032 and flavopiridol lowered the stimulated ATPase activity in ABCB1 membrane preparations, while olomoucine II and roscovitine not only inhibited the stimulated ATPase but also significantly activated the basal ABCB1 ATPase, suggesting that these two CDKi are ABCB1 substrates. We further revealed that the strongest ABCB1 inhibitors (purvalanol A, olomoucine II and roscovitine synergistically potentiate the antiproliferative effect of daunorubicin, a commonly used anticancer drug and ABCB1 substrate, in MDCKII-ABCB1 cells as well as in human carcinoma HCT-8 and HepG2 cells. We suggest that this pronounced synergism is at least partly caused by (i CDKi-mediated inhibition of ABCB1 transporter leading to increased intracellular retention of daunorubicin and (ii native cytotoxic activity of the CDKi. Our results indicate that co-administration of the tested CDKi with anticancer drugs that are ABCB1 substrates may allow significant dose reduction in the treatment of ABCB1-expressing tumors.

  13. Purvalanol A, olomoucine II and roscovitine inhibit ABCB1 transporter and synergistically potentiate cytotoxic effects of daunorubicin in vitro.

    Science.gov (United States)

    Cihalova, Daniela; Hofman, Jakub; Ceckova, Martina; Staud, Frantisek

    2013-01-01

    Cyclin-dependent kinase inhibitors (CDKi) have high potential applicability in anticancer therapy, but various aspects of their pharmacokinetics, especially their interactions with drug efflux transporters, have not yet been evaluated in detail. Thus, we investigated interactions of five CDKi (purvalanol A, olomoucine II, roscovitine, flavopiridol and SNS-032) with the ABCB1 transporter. Four of the compounds inhibited efflux of two ABCB1 substrates, Hoechst 33342 and daunorubicin, in MDCKII-ABCB1 cells: Olomoucine II most strongly, followed by roscovitine, purvalanol A, and flavopiridol. SNS-032 inhibited ABCB1-mediated efflux of Hoechst 33342 but not daunorubicin. In addition, purvalanol A, SNS-032 and flavopiridol lowered the stimulated ATPase activity in ABCB1 membrane preparations, while olomoucine II and roscovitine not only inhibited the stimulated ATPase but also significantly activated the basal ABCB1 ATPase, suggesting that these two CDKi are ABCB1 substrates. We further revealed that the strongest ABCB1 inhibitors (purvalanol A, olomoucine II and roscovitine) synergistically potentiate the antiproliferative effect of daunorubicin, a commonly used anticancer drug and ABCB1 substrate, in MDCKII-ABCB1 cells as well as in human carcinoma HCT-8 and HepG2 cells. We suggest that this pronounced synergism is at least partly caused by (i) CDKi-mediated inhibition of ABCB1 transporter leading to increased intracellular retention of daunorubicin and (ii) native cytotoxic activity of the CDKi. Our results indicate that co-administration of the tested CDKi with anticancer drugs that are ABCB1 substrates may allow significant dose reduction in the treatment of ABCB1-expressing tumors.

  14. Gut bitter taste receptor signalling induces ABCB1 through a mechanism involving CCK.

    Science.gov (United States)

    Jeon, Tae-Il; Seo, Young-Kyo; Osborne, Timothy F

    2011-08-15

    T2Rs (bitter taste-sensing type 2 receptors) are expressed in the oral cavity to prevent ingestion of dietary toxins through taste avoidance. They are also expressed in other cell types, including gut enteroendocrine cells, where their physiological role is enigmatic. Previously, we proposed that T2R-dependent CCK (cholecystokinin) secretion from enteroendocrine cells limits absorption of dietary toxins, but an active mechanism was lacking. In the present study we show that T2R signalling activates ABCB1 (ATP-binding cassette B1) in intestinal cells through a CCK signalling mechanism. PTC (phenylthiocarbamide), an agonist for the T2R38 bitter receptor, increased ABCB1 expression in both intestinal cells and mouse intestine. PTC induction of ABCB1 was decreased by either T2R38 siRNA (small interfering RNA) or treatment with YM022, a gastrin receptor antagonist. Thus gut ABCB1 is regulated through signalling by CCK/gastrin released in response to PTC stimulation of T2R38 on enteroendocrine cells. We also show that PTC increases the efflux activity of ABCB1, suggesting that T2R signalling limits the absorption of bitter tasting/toxic substances through modulation of gut efflux membrane transporters.

  15. Carfilzomib resistance due to ABCB1/MDR1 overexpression is overcome by nelfinavir and lopinavir in multiple myeloma.

    Science.gov (United States)

    Besse, A; Stolze, S C; Rasche, L; Weinhold, N; Morgan, G J; Kraus, M; Bader, J; Overkleeft, H S; Besse, L; Driessen, C

    2017-07-05

    Proteasome inhibitor (PI) carfilzomib (CFZ) has activity superior to bortezomib (BTZ) and is increasingly incorporated in multiple myeloma (MM) frontline therapy and relapsed settings. Most MM patients ultimately experience PI-refractory disease, an unmet medical need with poorly understood biology and dismal outcome. Pharmacologic targeting of ABCB1 improved patient outcomes, including MM, but suffered from adverse drug effects and insufficient plasma concentrations. Proteomics analysis identified ABCB1 overexpression as the most significant change in CFZ-resistant MM cells. We addressed the functional role of ABCB1 overexpression in MM and observed significantly upregulated ABCB1 in peripheral blood malignant plasma cells (PCs) vs untreated patients' bone marrow PC. ABCB1 overexpression reduces the proteasome-inhibiting activity of CFZ due to drug efflux, in contrast to BTZ. Likewise, the cytotoxicity of established anti-MM drugs was significantly reduced in ABCB1-expressing MM cells. In search for potential drugs targeting ABCB1 in clinical trials, we identified the HIV protease inhibitors nelfinavir (NFV) and lopinavir (LPV) as potent functional modulators of ABCB1-mediated drug export, most likely via modulation of mitochondria permeability transition pore. NFV and LPV restored CFZ activity at therapeutically relevant drug levels and thus represent ready-to-use drugs to be tested in clinical trials to target ABCB1 and to re-sensitize PC to established myeloma drugs, in particular CFZ.Leukemia advance online publication, 28 July 2017; doi:10.1038/leu.2017.212.

  16. ABCB1 haplotype and OPRM1 118A > G genotype interaction in methadone maintenance treatment pharmacogenetics

    Directory of Open Access Journals (Sweden)

    Barratt DT

    2012-04-01

    Full Text Available Daniel T Barratt1, Janet K Coller1, Richard Hallinan2, Andrew Byrne2, Jason M White1, David JR Foster3, Andrew A Somogyi1,41Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia; 2The Byrne Surgery, Specialist Drug and Alcohol Practice, Redfern, New South Wales; 3Division of Health Sciences, Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia; 4Department of Clinical Pharmacology, Royal Adelaide Hospital, Adelaide, South Australia, AustraliaBackground: Genetic variability in ABCB1, encoding the P-glycoprotein efflux transporter, has been linked to altered methadone maintenance treatment dose requirements. However, subsequent studies have indicated that additional environmental or genetic factors may confound ABCB1 pharmacogenetics in different methadone maintenance treatment settings. There is evidence that genetic variability in OPRM1, encoding the mu opioid receptor, and ABCB1 may interact to affect morphine response in opposite ways. This study aimed to examine whether a similar gene-gene interaction occurs for methadone in methadone maintenance treatment.Methods: Opioid-dependent subjects (n = 119 maintained on methadone (15–300 mg/day were genotyped for five single nucleotide polymorphisms of ABCB1 (61A > G; 1199G > A; 1236C > T; 2677G > T; 3435C > T, as well as for the OPRM1 18A > G single nucleotide polymorphism. Subjects’ methadone doses and trough plasma (R-methadone concentrations (Ctrough were compared between ABCB1 haplotypes (with and without controlling for OPRM1 genotype, and between OPRM1 genotypes (with and without controlling for ABCB1 haplotype.Results: Among wild-type OPRM1 subjects, an ABCB1 variant haplotype group (subjects with a wild-type and 61A:1199G:1236C:2677T:3435T haplotype combination, or homozygous for the 61A:1199G:1236C:2677T:3435T haplotype had significantly lower doses (median ± standard

  17. ABCB1 polymorphism predicts escitalopram dose needed for remission in major depression

    Science.gov (United States)

    Singh, A B; Bousman, C A; Ng, C H; Byron, K; Berk, M

    2012-01-01

    The ATP-binding cassette family of transporter proteins, subfamily B (MDR/TAP), member 1 (ABCB1) (P-glycoprotein) transporter is a key component of the blood–brain barrier. Many antidepressants are subject to ABCB1 efflux. Functional polymorphisms of ABCB1 may influence central nervous system bioavailability of antidepressants subject to efflux. Single-nucleotide polymorphisms (SNPs) at rs1045642 (C3435T) of ABCB1 have been associated with efflux pump efficiency. This may explain part of the interindividual variation in antidepressant dose needed to remit. Individuals (N=113) with DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) major depressive disorder (MDD) were treated with escitalopram (ESC) or venlafaxine (VEN) over 8 weeks. The17-item Hamilton Depression Rating Scale was assessed serially, blind to genotype. SNP rs1045642 of ABCB1 along with two SNPs previously reported to be in linkage disequilibrium with it (rs2032582 and rs1128503) were genotyped. Demographic features, clinical features, P450 metabolizer status and 5-HTTLPR (serotonin-transporter-linked promoter region) genotype were controlled for. Carriers of rs1045642 TT needed on average 11 mg of ESC to remit, whereas TC and CC carriers required 24 and 19 mg, respectively (P=0.0001). This equates to a 2.0- (95% confidence interval=1.5–3.4; P<0.001) fold greater ESC dose needed to remit for C carriers compared with TT carriers at rs1045642. Of VEN-treated subjects carrying TT genotype at rs1045642, 73.3% remitted compared with 12.5% for CC genotype (odds ratio=6.69; 95% confidence interval=1.72–25.9, P=0.006). These data suggest that antidepressant dose needed to remit can be predicted by an ABCB1 SNP. This has the potential clinical translation implications for dose selection and remission from MDD. PMID:23188198

  18. Association of ABCB1 genetic variants with renal function in Africans and in Caucasians

    Directory of Open Access Journals (Sweden)

    Elston Robert C

    2008-06-01

    Full Text Available Abstract Background The P-glycoprotein, encoded by the ABCB1 gene, is expressed in human endothelial and mesangial cells, which contribute to control renal plasma flow and glomerular filtration rate. We investigated the association of ABCB1 variants with renal function in African and Caucasian subjects. Methods In Africans (290 subjects from 62 pedigrees, we genotyped the 2677G>T and 3435 C>T ABCB1 polymorphisms. Glomerular filtration rate (GFR was measured using inulin clearance and effective renal plasma flow (ERPF using para-aminohippurate clearance. In Caucasians (5382 unrelated subjects, we analyzed 30 SNPs located within and around ABCB1, using data from the Affymetrix 500 K chip. GFR was estimated using the simplified Modification of the Diet in Renal Disease (MDRD and Cockcroft-Gault equations. Results In Africans, compared to the reference genotype (GG or CC, each copy of the 2677T and 3435T allele was associated, respectively, with: GFR higher by 10.6 ± 2.9 (P P = 0.06 mL/min; ERPF higher by 47.5 ± 11.6 (P P = 0.007 mL/min; and renal resistances lower by 0.016 ± 0.004 (P P = 0.004 mm Hg/mL/min. In Caucasians, we identified 3 polymorphisms in the ABCB1 gene that were strongly associated with all estimates of GFR (smallest P value = 0.0006, overall P = 0.014 after multiple testing correction. Conclusion Variants of the ABCB1 gene were associated with renal function in both Africans and Caucasians and may therefore confer susceptibility to nephropathy in humans. If confirmed in other studies, these results point toward a new candidate gene for nephropathy in humans.

  19. ABCB1 (MDR1) polymorphisms and ovarian cancer progression and survival

    DEFF Research Database (Denmark)

    Johnatty, Sharon E; Beesley, Jonathan; Gao, Bo;

    2013-01-01

    ABCB1 encodes the multi-drug efflux pump P-glycoprotein (P-gp) and has been implicated in multi-drug resistance. We comprehensively evaluated this gene and flanking regions for an association with clinical outcome in epithelial ovarian cancer (EOC).......ABCB1 encodes the multi-drug efflux pump P-glycoprotein (P-gp) and has been implicated in multi-drug resistance. We comprehensively evaluated this gene and flanking regions for an association with clinical outcome in epithelial ovarian cancer (EOC)....

  20. The multidrug resistance 1 gene Abcb1 in brain and placenta: comparative analysis in human and guinea pig.

    Science.gov (United States)

    Pappas, Jane J; Petropoulos, Sophie; Suderman, Matthew; Iqbal, Majid; Moisiadis, Vasilis; Turecki, Gustavo; Matthews, Stephen G; Szyf, Moshe

    2014-01-01

    The Multidrug Resistance 1 (MDR1; alternatively ABCB1) gene product P-glycoprotein (P-gp), an ATP binding cassette transporter, extrudes multiple endogenous and exogenous substrates from the cell, playing an important role in normal physiology and xenobiotic distribution and bioavailability. To date, the predominant animal models used to investigate the role of P-gp have been the mouse and rat, which have two distinct genes, Abcb1a and Abcb1b. In contrast, the human has a single gene, ABCB1, for which only a single isoform has been validated. We and others have previously shown important differences between Abcb1a and Abcb1b, limiting the extrapolation from rodent findings to the human. Since the guinea pig has a relatively long gestation, hemomonochorial placentation and neuroanatomically mature offspring, it is more similar to the human, and may provide a more comparable model for investigating the regulation of P-gp in the brain and placenta, however, to date, the Abcb1 gene in the guinea pig remains to be characterized. The placenta and fetal brain are barrier sites that express P-gp and that play a critical role of protection of the fetus and the fetal brain from maternally administered drugs and other xenobiotics. Using RNA sequencing (RNA-seq), reverse transcription-polymerase chain reaction (RT-PCR) and quantitative PCR (QPCR) to sequence the expressed isoforms of guinea pig Abcb1, we demonstrate that like the human, the guinea pig genome contains one gene for Abcb1 but that it is expressed as at least three different isoforms via alternative splicing and alternate exon usage. Further, we demonstrate that these isoforms are more closely related to human than to rat or mouse isoforms. This striking, overall similarity and evolutionary relatedness between guinea pig Abcb1 and human ABCB1 indicate that the guinea pig represents a relevant animal model for investigating the function and regulation of P-gp in the placenta and brain.

  1. P-gp/ABCB1 exerts differential impacts on brain and fetal exposure to norbuprenorphine.

    Science.gov (United States)

    Liao, Michael Z; Gao, Chunying; Shireman, Laura M; Phillips, Brian; Risler, Linda J; Neradugomma, Naveen K; Choudhari, Prachi; Prasad, Bhagwat; Shen, Danny D; Mao, Qingcheng

    2017-01-19

    Norbuprenorphine is the major active metabolite of buprenorphine which is commonly used to treat opiate addiction during pregnancy. Norbuprenorphine produces marked respiratory depression and was 10 times more potent than buprenorphine. Therefore, it is important to understand the mechanism that controls fetal exposure to norbuprenorphine, as exposure to this compound may pose a significant risk to the developing fetus. P-gp/ABCB1 and BCRP/ABCG2 are two major efflux transporters regulating tissue distribution of drugs. Previous studies have shown that norbuprenorphine, but not buprenorphine, is a P-gp substrate. In this study, we systematically examined and compared the roles of P-gp and BCRP in determining maternal brain and fetal distribution of norbuprenorphine using transporter knockout mouse models. We administered 1mg/kg norbuprenorphine by retro-orbital injection to pregnant FVB wild-type, Abcb1a(-/-)/1b(-/-), and Abcb1a(-/-)/1b(-/-)/Abcg2(-/-) mice on gestation day 15. The fetal AUC of norbuprenorphine was ∼64% of the maternal plasma AUC in wild-type mice, suggesting substantial fetal exposure to norbuprenorphine. The maternal plasma AUCs of norbuprenorphine in Abcb1a(-/-)/1b(-/-) and Abcb1a(-/-)/1b(-/-)/Abcg2(-/-) mice were ∼2 times greater than that in wild-type mice. Fetal AUCs in Abcb1a(-/-)/1b(-/-) and Abcb1a(-/-)/1b(-/-)/Abcg2(-/-) mice were also increased compared to wild-type mice; however, the fetal-to-maternal plasma AUC ratio remained relatively unchanged by the knockout of Abcb1a/1b or Abcb1a/1b/Abcg2. In contrast, the maternal brain-to-maternal plasma AUC ratio in Abcb1a(-/-)/1b(-/-) or Abcb1a(-/-)/1b(-/-)/Abcg2(-/-) mice was increased ∼30-fold compared to wild-type mice. Protein quantification by LC-MS/MS proteomics revealed significantly higher amounts of P-gp protein in the wild-type mice brain than that in the placenta. These results indicate that fetal exposure to norbuprenorphine is substantial and that P-gp has a minor impact on

  2. Polymorphisms in the ABCB1 gene and effect on outcome and toxicity in childhood acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Gregers, J; Gréen, H; Christensen, I J

    2015-01-01

    The membrane transporter P-glycoprotein, encoded by the ABCB1 gene, influences the pharmacokinetics of anti-cancer drugs. We hypothesized that variants of ABCB1 affect outcome and toxicity in childhood acute lymphoblastic leukemia (ALL). We studied 522 Danish children with ALL, 93% of all those...

  3. Targeting ABCB1-mediated tumor multidrug resistance by CRISPR/Cas9-based genome editing

    Science.gov (United States)

    Yang, Yang; Qiu, Jian-Ge; Li, Yong; Di, Jin-Ming; Zhang, Wen-Ji; Jiang, Qi-Wei; Zheng, Di-Wei; Chen, Yao; Wei, Meng-Ning; Huang, Jia-Rong; Wang, Kun; Shi, Zhi

    2016-01-01

    The RNA-guided clustered regularly interspaced short palindromic (CRISPR) in combination with a CRISPR-associated nuclease 9 (Cas9) nuclease system is a new rapid and precise technology for genome editing. In the present study, we applied the CRISPR/Cas9 system to target ABCB1 (also named MDR1) gene which encodes a 170 kDa transmembrane glycoprotein (P-glycoprotein/P-gp) transporting multiple types of chemotherapeutic drugs including taxanes, epipodophyllotoxins, vinca alkaloids and anthracyclines out of cells to contribute multidrug resistance (MDR) in cancer cells. Our data showed that knockout of ABCB1 by CRISPR/Cas9 system was succesfully archieved with two target sgRNAs in two MDR cancer cells due to the alteration of genome sequences. Knockout of ABCB1 by CRISPR/Cas9 system significantly enhances the sensitivity of ABCB1 substrate chemotherapeutic agents and the intracellular accumulation of rhodamine 123 and doxorubicin in MDR cancer cells. Although now there are lots of limitations to the application of CRISPR/Cas9 for editing cancer genes in human patients, our study provides valuable clues for the use of the CRISPR/Cas9 technology in the investigation and conquest of cancer MDR. PMID:27725879

  4. Complete Knockout of Endogenous Mdr1 (Abcb1) in MDCK Cells by CRISPR-Cas9.

    Science.gov (United States)

    Simoff, Ivailo; Karlgren, Maria; Backlund, Maria; Lindström, Anne-Christine; Gaugaz, Fabienne Z; Matsson, Pär; Artursson, Per

    2016-02-01

    Madin-Darby canine kidney II cells transfected with one or several transport proteins are commonly used models to study drug transport. In these cells, however, endogenous transporters such as canine Mdr1/P-glycoprotein (Abcb1) complicate the interpretation of transport studies. The aim of this investigation was to establish a Madin-Darby canine kidney II cell line using CRISPR-Cas9 gene-editing technology to knock out endogenous canine Mdr1 (cMdr1) expression. CRISPR-Cas9-mediated Abcb1 homozygous disruption occurred at frequencies of around 20% and resulted in several genotypes. We selected 1 clonal cell line, cMdr1 KO Cl2, for further examination. Consistent with an on-target effect of CRISPR-Cas9 in specific regions of the endogenous canine Abcb1 gene, we obtained a cell clone with Abcb1 gene alterations and without any cMdr1 expression, as confirmed by genome sequencing and quantitative protein analysis. Functional studies of these cells, using digoxin and other prototypic MDR1 substrates, showed close to identical transport in the apical-to-basolateral and basolateral-to-apical directions, resulting in efflux ratios indistinguishable from unity.

  5. Association of ABCB1 C3435T polymorphism with phenobarbital resistance in Thai patients with epilepsy.

    Science.gov (United States)

    Keangpraphun, T; Towanabut, S; Chinvarun, Y; Kijsanayotin, P

    2015-06-01

    One-third of patients with epilepsy are resistant to anti-epileptic drugs (AEDs). Drug-resistant epilepsy is believed to be multifactorial involving both genetic and non-genetic factors. Genetic variations in the ABCB1 gene encoding the drug efflux transporter, p-glycoprotein (p-gp), may influence the interindividual variability in AED response by limiting drugs from reaching their target. Phenobarbital (PB), one of the most cost-effective and widely used AEDs in developing countries, has been reported to be transported by p-gp. This study aimed to investigate the association of a genetic variant, ABCB1 3435C>T, and non-genetic factors with phenobarbital response in Thai patients with epilepsy. One hundred and ten Thai patients with epilepsy who were treated with PB maintenance doses were enrolled in this study. Two phenotypic groups, PB-responsive epilepsy and PB-resistant epilepsy, were defined according to the International League Against Epilepsy (ILAE) criteria. Subjects were genotyped for ABCB1 3435C>T (rs1045642). Multiple logistic regression analysis was tested for the association of ABCB1 3435C>T polymorphism and non-genetic factors with PB response. Sixty-two PB-responsive epilepsy subjects and 48 PB-resistant epilepsy subjects were identified. All genotype frequencies of the ABCB1 3435C>T SNP were consistent with the Hardy-Weinberg equilibrium (P > 0·05). The ABCB1 3435C>T polymorphism and type of epilepsy were associated with response to PB. Patients with PB-resistant epilepsy had a significantly higher frequency of ABCB1 3435CC genotype and had focal epilepsy more often than patients with PB-responsive epilepsy (adjusted OR = 3·962, 95% CI = 1·075-14·610, P-value = 0·039; adjusted OR = 5·936, 95% CI = 2·272-15·513, P-value phenobarbital. © 2015 John Wiley & Sons Ltd.

  6. ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells.

    Science.gov (United States)

    Vaidyanathan, Aparajitha; Sawers, Lynne; Gannon, Anne-Louise; Chakravarty, Probir; Scott, Alison L; Bray, Susan E; Ferguson, Michelle J; Smith, Gillian

    2016-08-09

    Clinical response to chemotherapy for ovarian cancer is frequently compromised by the development of drug-resistant disease. The underlying molecular mechanisms and implications for prescription of routinely prescribed chemotherapy drugs are poorly understood. We created novel A2780-derived ovarian cancer cell lines resistant to paclitaxel and olaparib following continuous incremental drug selection. MTT assays were used to assess chemosensitivity to paclitaxel and olaparib in drug-sensitive and drug-resistant cells±the ABCB1 inhibitors verapamil and elacridar and cross-resistance to cisplatin, carboplatin, doxorubicin, rucaparib, veliparib and AZD2461. ABCB1 expression was assessed by qRT-PCR, copy number, western blotting and immunohistochemical analysis and ABCB1 activity assessed by the Vybrant and P-glycoprotein-Glo assays. Paclitaxel-resistant cells were cross-resistant to olaparib, doxorubicin and rucaparib but not to veliparib or AZD2461. Resistance correlated with increased ABCB1 expression and was reversible following treatment with the ABCB1 inhibitors verapamil and elacridar. Active efflux of paclitaxel, olaparib, doxorubicin and rucaparib was confirmed in drug-resistant cells and in ABCB1-expressing bacterial membranes. We describe a common ABCB1-mediated mechanism of paclitaxel and olaparib resistance in ovarian cancer cells. Optimal choice of PARP inhibitor may therefore limit the progression of drug-resistant disease, while routine prescription of first-line paclitaxel may significantly limit subsequent chemotherapy options in ovarian cancer patients.

  7. Arabidopsis TWISTED DWARF1 functionally interacts with Auxin Exporter ABCB1 on the root plasma membrane

    DEFF Research Database (Denmark)

    Wang, Bangjun; Bailly, Aurélien; Zwiewka, Marta

    2013-01-01

    Plant architecture is influenced by the polar, cell-to-cell transport of auxin that is primarily provided and regulated by plasma membrane efflux catalysts of the PIN-FORMED and B family of ABC transporter (ABCB) classes. The latter were shown to require the functionality of the FK506 binding...... assays, we demonstrate a predominant lateral, mainly outward-facing, plasma membrane location for TWD1 in the root epidermis characterized by the lateral marker ABC transporter G36/PLEIOTROPIC DRUG-RESISTANCE8/PENETRATION3. At these epidermal plasma membrane domains, TWD1 colocalizes with nonpolar ABCB1....... In planta bioluminescence resonance energy transfer analysis was used to verify specific ABC transporter B1 (ABCB1)-TWD1 interaction. Our data support a model in which TWD1 promotes lateral ABCB-mediated auxin efflux via protein-protein interaction at the plasma membrane, minimizing reflux from the root...

  8. ABCB1 genetic variants in leukemias: current insights into treatment outcomes

    Directory of Open Access Journals (Sweden)

    Ankathil R

    2017-05-01

    Full Text Available Ravindran Ankathil Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia Abstract: Despite improvements in treatment of different types of leukemia, not all patients respond optimally for a particular treatment. Some treatments will work better for some, while being harmful or ineffective for others. This is due to genetic variation in the form of single-nucleotide polymorphisms (SNPs that affect gene expression or function and cause inherited interindividual differences in the metabolism and disposition of drugs. Drug transporters are one of the determinants governing the pharmacokinetic profile of chemotherapeutic drugs. The ABCB1 transporter gene transports a wide range of drugs, including drugs used in leukemia treatment. Polymorphisms in the ABCB1 gene do affect intrinsic resistance and pharmacokinetics of several drugs used in leukemia treatment protocols and thereby affect the efficacy of treatment and event-free survival. This review focuses on the impact of three commonly occurring SNPs (1236C>T, 2677G>T/A, and 3435C>T of ABCB1 on treatment response of various types of leukemia. From the literature available, some of the genotypes and haplotypes of these SNPs have been found to be potential determinants of interindividual variability in drug disposition and pharmacologic response in different types of leukemia. However, due to inconsistencies in the results observed across the studies, additional studies, considering novel genomic methodologies, comprehensive definition of clinical phenotypes, adequate sample size, and uniformity in all the confounding factors, are warranted. Keywords: leukemia, ABCB1 polymorphisms, chemotherapy response, survival

  9. Comparative analysis of ABCB1 reveals novel structural and functional conservation between monocots and dicots

    Directory of Open Access Journals (Sweden)

    Amandeep Kaur Dhaliwal

    2014-11-01

    Full Text Available Phytohormone auxin plays a critical role in modulating plant architecture by creating a gradient regulated via its transporters such as ATP-binding cassette (ABC B1. Except for Arabidopsis and maize, where it was shown to interrupt auxin transport, ABCB1’s presence, structure and function in crop species is not known. Here we describe the structural and putative functional organization of ABCB1 among monocots relative to that of dicots. Identified from various plant species following specific and stringent criteria, ZmABCB1’s ‘true’ orthologs sequence identity ranged from 56-90% at the DNA and 75-91% at the predicted amino acid (aa level. Relative to ZmABCB1, the size of genomic copies ranged from -27 to +1.5% and aa from -7.7 to +0.6%. With the average gene size being similar (5.8 kb in monocots and 5.7 kb in dicots, dicots have about triple the number of introns with an average size of 194 bp (total 1743 bp compared to 556 bp (total 1667 bp in monocots. The intron-exon junctions across species were however conserved. N-termini of the predicted proteins were highly variable: in monocots due to mismatches and small deletions of 1-13 aa compared to large, species-specific deletions of up to 77 aa in dicots. The species- family-, and group- specific conserved motifs were identified in the N-terminus and linker regions of protein, possibly responsible for the specific functions. The near-identical conserved motifs of Nucleotide Binding Domains (NBDs in two halves of the protein showed subtle aa changes possibly favoring ATP binding to the N-terminus. Predicted 3-D protein structures showed remarkable similarity with each other and for the residues involved in auxin binding.

  10. Vincristine-induced central neurotoxicity in a collie homozygous for the ABCB1Δ mutation.

    Science.gov (United States)

    Krugman, L; Bryan, J N; Mealey, K L; Chen, A

    2012-03-01

    A six-year-old, neutered, female collie was presented to an oncology specialty service after developing tetraparesis and self-mutilation that progressively worsened while receiving chemotherapy for lymphoma. Neurologic examination revealed ataxia, paresis and diminished conscious proprioception in all limbs with entire spinal reflexes. Magnetic resonance imaging of the brain and spinal cord was normal. Electromyography of the limbs ruled out a vincristine-induced peripheral neuropathy. Cerebrospinal fluid analysis and cerebrospinal fluid and serum testing for Neospora and Toxoplasma were normal. Results of MDR1 genotyping revealed that the dog was homozygous for the ABCB1-1Δ (MDR1) mutation. This clinical presentation strongly resembled the effects seen from inadvertent intrathecal administration of vincristine in humans. Dogs that are homozygous for the ABCB1-1Δ (MDR1) mutation should not receive standard dosages of chemotherapy drugs known to be eliminated by P-glycoprotein, the gene product of ABCB1. Testing for this mutation is strongly recommended before chemotherapy initiation for at-risk breeds.

  11. Pilot PET Study to Assess the Functional Interplay Between ABCB1 and ABCG2 at the Human Blood–Brain Barrier

    Science.gov (United States)

    Bauer, M; Römermann, K; Karch, R; Wulkersdorfer, B; Stanek, J; Philippe, C; Maier‐Salamon, A; Haslacher, H; Jungbauer, C; Wadsak, W; Jäger, W; Löscher, W; Hacker, M; Zeitlinger, M

    2016-01-01

    ABCB1 and ABCG2 work together at the blood–brain barrier (BBB) to limit brain distribution of dual ABCB1/ABCG2 substrates. In this pilot study we used positron emission tomography (PET) to assess brain distribution of two model ABCB1/ABCG2 substrates ([11C]elacridar and [11C]tariquidar) in healthy subjects without (c.421CC) or with (c.421CA) the ABCG2 single‐nucleotide polymorphism (SNP) c.421C>A. Subjects underwent PET scans under conditions when ABCB1 and ABCG2 were functional and during ABCB1 inhibition with high‐dose tariquidar. In contrast to the ABCB1‐selective substrate (R)‐[11C]verapamil, [11C]elacridar and [11C]tariquidar showed only moderate increases in brain distribution during ABCB1 inhibition. This provides evidence for a functional interplay between ABCB1 and ABCG2 at the human BBB and suggests that both ABCB1 and ABCG2 need to be inhibited to achieve substantial increases in brain distribution of dual ABCB1/ABCG2 substrates. During ABCB1 inhibition c.421CA subjects had significantly higher increases in [11C]tariquidar brain distribution than c.421CC subjects, pointing to impaired cerebral ABCG2 function. PMID:26940368

  12. ABCB1 genotypes and haplotypes in patients with dementia and age-matched non-demented control patients

    Directory of Open Access Journals (Sweden)

    Frankfort Suzanne V

    2006-09-01

    Full Text Available Abstract Amyloid β is an in vitro substrate for P-glycoprotein (P-gp, an efflux pump at the blood brain barrier (BBB. The Multi Drug Resistance (ABCB1 gene, encoding for P-gp, is highly polymorphic and this may result in a changed function of P-gp and may possibly interfere with the pathogenesis of Alzheimer's disease. This study investigates to what extent ABCB1 Single Nucleotide Polymorphisms (SNPs; C1236T in exon 12, G2677T/A in exon 21 and C3435T in exon 26 and inferred haplotypes exist in an elderly population and if these SNPs and haplotypes differ between patients with dementia and age-matched non-demented control patients. ABCB1 genotype, allele and haplotype frequencies were neither significantly different between patients with dementia and age-matched controls, nor between subgroups of different types of dementia nor age-matched controls. This study shows ABCB1 genotype frequencies to be comparable with described younger populations. To our knowledge this is the first study on ABCB1 genotypes in dementia. ABCB1 genotypes are presently not useful as a biomarker for dementia, as they were not significantly different between demented patients and age-matched control subjects.

  13. Genotype variability and haplotype profile of ABCB1 (MDR1) gene polymorphisms in Macedonian population.

    Science.gov (United States)

    Naumovska, Zorica; Nestorovska, Aleksandra K; Sterjev, Zoran; Filipce, Ana; Dimovski, Aleksandar; Suturkova, Ljubica

    2014-01-01

    The aim of this study was to evaluate the most common ABCB1 (MDR1, P-glycoprotein) polymorphisms in the population of R. Macedonia and compare the allele and haplotype frequencies with the global geographic data reported from different ethnic populations. The total of 107 healthy Macedonian individuals from the general population was included. Genotypes for the ABCB1 for three polymorphisms C1236T [rs1128503], G2677A/T [rs2032582] and C3435T [rs1045642] were analyzed by Real-Time PCR. Obtained allele frequencies for these three SNPs were similar to those observed in other European Caucasians. The detected genotype frequencies were 33.6% for 1236CC, 44.9% for 1236CT and 21.5% for 1236TT in exon 12; 32.7%, 44.9% and 22.4% for 2677GG, 2677GT and 2677GT consecutively in exon 21; and 25.2% for 3435CC, 52.3% for 3435CT and 22.5% for 3435TT in exon 26.Strong LD was observed in our study among all three SNPs with the highest association confirmed for C1236T and G2677T ((D'=0.859, r2=0.711). Eight different haplotypes were identified and the most prominent was the CGC haplotype (45.3%). Our study was the first to have documented the distribution of ABCB1 alleles, genotypes and haplotypes in the population of R. Macedonia. The obtained results can help in the prediction of different response to the drugs that are P-glycoprotein substrates. Additionally, in the era of individualized medicine the determination of the P-glycoprotein genotype might be a good predictive marker for determination of the subpopulations with higher risk to certain diseases.

  14. Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation

    DEFF Research Database (Denmark)

    Henrichs, Sina; Wang, Bangjun; Fukao, Yoichiro

    2012-01-01

    Polar transport of the plant hormone auxin is controlled by PIN-and ABCB/PGP-efflux catalysts. PIN polarity is regulated by the AGC protein kinase, PINOID (PID), while ABCB activity was shown to be dependent on interaction with the FKBP42, TWISTED DWARF1 (TWD1). Using co-immunoprecipitation (co...... target of PID phosphorylation that determines both transporter drug binding and activity. In summary, we provide evidence that PID phosphorylation has a dual, counter-active impact on ABCB1 activity that is coordinated by TWD1-PID interaction....

  15. Genomewide analysis of ABCBs with a focus on ABCB1 and ABCB19 in Malus domestica

    Indian Academy of Sciences (India)

    Juan Juan Ma; Mingyu Han

    2016-03-01

    The B subfamily of ATP-binding cassette (ABC) proteins (ABCB) plays a vital role in auxin efflux. However, no systematic study has been done in apple. In this study, we performed genomewide identification and expression analyses of the ABCB family in Malus domestica for the first time. We identified a total of 25 apple ABCBs that were divided into three clusters based on the phylogenetic analysis. Most ABCBs within the same cluster demonstrated a similar exon–intron organization. Additionally, the digital expression profiles of ABCB genes shed light on their functional divergence. ABCB1 and ABCB19 are two well-studied auxin efflux carrier genes, and we found that their expression levels are higher in young shoots of M106 than in young shoots of M9. Since young shoots are the main source of auxin synthesis and auxin efflux involves in tree height control. This suggests that ABCB1 and ABCB19 may also take a part in the auxin efflux and tree height control in apple.

  16. Thiazole-valine peptidomimetic (TTT-28) antagonizes multidrug resistance in vitro and in vivo by selectively inhibiting the efflux activity of ABCB1

    Science.gov (United States)

    Wang, Yi-Jun; Patel, Bhargav A.; Anreddy, Nagaraju; Zhang, Yun-Kai; Zhang, Guan-Nan; Alqahtani, Saeed; Singh, Satyakam; Shukla, Suneet; Kaddoumi, Amal; Ambudkar, Suresh V.; Talele, Tanaji T.; Chen, Zhe-Sheng

    2017-01-01

    Multidrug resistance (MDR) attenuates the chemotherapy efficacy and increases the probability of cancer recurrence. The accelerated drug efflux mediated by ATP-binding cassette (ABC) transporters is one of the major MDR mechanisms. This study investigated if TTT-28, a newly synthesized thiazole-valine peptidomimetic, could reverse ABCB1-mediated MDR in vitro and in vivo. TTT-28 reversed the ABCB1-mediated MDR and increased the accumulation of [3H]-paclitaxel in ABCB1 overexpressing cells by selectively blocking the efflux function of ABCB1, but not interfering with the expression level and localization of ABCB1. Animal study revealed that TTT-28 enhanced the intratumoral concentration of paclitaxel and promoted apoptosis, thereby potently inhibiting the growth of ABCB1 overexpressing tumors. But TTT-28 did not induce the toxicity (cardiotoxicity/myelosuppression) of paclitaxel in mice. In this study, we synthesized and evaluated a novel selective inhibitor of ABCB1 (TTT-28) with high efficacy and low toxicity. The identification and characterization of this new thiazole-valine peptidomimetic will facilitate design and synthesis of a new generation of ABCB1 inhibitors, leading to further research on multidrug resistance and combination chemotherapy. Furthermore, the strategy that co-administer MDR-ABCB1 inhibitor to overcome the resistance of one FDA approved, widely used chemotherapeutic paclitaxel, may be promising direction for the field of adjuvant chemotherapy. PMID:28181548

  17. Association of single nucleotide polymorphisms of ABCB1, OPRM1 and COMT with pain perception in cancer patients.

    Science.gov (United States)

    Wang, Xu-shi; Song, Hai-bin; Chen, Si; Zhang, Wei; Liu, Jia-qi; Huang, Chao; Wang, Hao-ran; Chen, Yuan; Chu, Qian

    2015-10-01

    Pain perception is influenced by multiple factors. The single nucleotide polymorphisms (SNPs) of some genes were found associated with pain perception. This study aimed to examine the association of the genotypes of ABCB1 C3435T, OPRM1 A118G and COMT V108/158M (valine 108/158 methionine) with pain perception in cancer patients. We genotyped 146 cancer pain patients and 139 cancer patients without pain for ABCB1 C3435T (rs1045642), OPRM1 A118G (rs1799971) and COMT V108/158M (rs4680) by the fluorescent dye-terminator cycle sequencing method, and compared the genotype distribution between groups with different pain intensities by chi-square test and pain scores between groups with different genotypes by non-parametric test. The results showed that in these cancer patients, the frequency of variant T allele of ABCB1 C3435T was 40.5%; that of G allele of OPRM1 A118G was 38.5% and that of A allele of COMT V108/158M was 23.3%. No significant difference in the genotype distribution of ABCB1 C3435T (rs1045642) and OPRM1 A118G (rs1799971) was observed between cancer pain group and control group (P=0.364 and 0.578); however, significant difference occurred in the genotype distribution of COMT V108/158M (rs4680) between the two groups (P=0.001). And the difference could not be explained by any other confounding factors. Moreover, we found that the genotypes of COMT V108/158M and ABCB1 C3435T were associated with the intensities of pain in cancer patients. In conclusion, our results indicate that the SNPs of COMT V108/158M and ABCB1 C3435T significantly influence the pain perception in Chinese cancer patients.

  18. ABCB1 genetic variant and its associated tacrolimus pharmacokinetics affect renal function in patients with rheumatoid arthritis.

    Science.gov (United States)

    Naito, Takafumi; Mino, Yasuaki; Aoki, Yuki; Hirano, Kumi; Shimoyama, Kumiko; Ogawa, Noriyoshi; Kagawa, Yoshiyuki; Kawakami, Junichi

    2015-05-20

    This study aimed to evaluate the blood exposure of and clinical responses to tacrolimus based on genetic variants of CYP3A5 and ABCB1 in patients with rheumatoid arthritis. Seventy rheumatoid arthritis patients treated with oral tacrolimus once daily were enrolled. Blood concentrations of tacrolimus and its major metabolite 13-O-demethylate at 12h after dosing were determined. The relationships between the tacrolimus pharmacokinetics and efficacy, renal function, and CYP3A5 and ABCB1 genotypes were evaluated. Dose-normalized blood concentration of tacrolimus was significantly higher in the CYP3A5*3/*3 group than in the *1 allele carrier group. A lower metabolic ratio of 13-O-demethylate to tacrolimus was observed in the CYP3A5*3/*3 group. The ABCB1 3435TT group had higher dose-normalized blood concentrations of tacrolimus and 13-O-demethylate. The blood tacrolimus concentration was inversely correlated with the estimated glomerular filtration rate (eGFR). ABCB1 C3435T but not CYP3A5 genotype had decreased eGFR. Patients lacking the CYP3A5*3 allele had a higher incidence of tacrolimus withdrawal. CYP3A5*3 increased the blood exposure of tacrolimus through its metabolic reduction. ABCB1 C3435T led to a higher blood exposure of tacrolimus and its major metabolite. The ABCB1 genetic variant and its associated tacrolimus pharmacokinetics affected renal function in rheumatoid arthritis patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effects of rifampicin, dexamethasone, St. John's Wort and Thyroxine on maternal and foetal expression of Abcb1 and organ distribution of talinolol in pregnant rats.

    Science.gov (United States)

    Saljé, Karen; Lederer, Kirstin; Oswald, Stefan; Dazert, Eike; Warzok, Rolf; Siegmund, Werner

    2012-08-01

    It is well accepted that ABCB1 plays a critical role in absorption, distribution and elimination of many xenobiotics and drugs. Only little is known about the regulation and function of ABCB1 during pregnancy. Thus, the aim of this study is to investigate maternal, placental and foetal Abcb1 expression and function in pregnant rats after induction with rifampicin, dexamethasone, St. John's wort (SJW) or thyroxine. Wistar rats were orally treated with rifampicin (250 mg/kg), SJW (1.0 g/kg), thyroxine (9 μg/kg), dexamethasone (1 mg/kg) or 0.5% methylcellulose suspension (control) for 9 days during late pregnancy (each N = 5). Afterwards, organ mRNA expression and protein content of Abcb1a were determined. Tissue concentrations of the ABCB1 probe drug talinolol were measured after repeated administration of the drug (100 mg/kg, 9 days) and after induction with oral rifampicin (250 mg/kg, 9 days, N = 5). Abcb1 expression was substantially lower in foetal than in maternal organs. Abcb1 was significantly induced by SJW in the maternal jejunum and placenta, by dexamethasone in foetal brain and liver and by thyroxine in the placenta and maternal and foetal brain. Rifampicin induced Abcb1 in all maternal and foetal organs. However, organ distribution of talinolol was not influenced by comedication of rifampicin. In conclusion, maternal and foetal Abcb1 organ expression in pregnant rats is inducible by nuclear receptor agonists. Although rifampicin regulates maternal and foetal Abcb1 expression, organ distribution of talinolol remains unchanged most likely caused by the known inhibitory effect of rifampicin on Abcb1 function.

  20. Triterpenoids from Momordica balsamina: Reversal of ABCB1-mediated multidrug resistance.

    Science.gov (United States)

    Ramalhete, Cátia; Mulhovo, Silva; Molnar, Joseph; Ferreira, Maria-José U

    2016-11-01

    The ability as P-glycoprotein (P-gp, ABCB1) modulators of thirty (1-30) triterpenoids of the cucurbitane-type was evaluated on human L5178 mouse T-lymphoma cell line transfected with the human MDR1 gene, through the rhodamine-123 exclusion assay. Compounds (1-26, and 29, 30) were previously obtained from the African medicinal plant Momordica balsamina, through both isolation (1-15) and molecular derivatization (16-26 and 29, 30). Compounds 27-28 are two new karavilagenin C (34) derivatives having succinic acid moieties. Apart from 4, 6, 8, 10 and 11, most of the isolated compounds (1-15) displayed strong MDR reversing activity in a dose-dependent mode, exhibiting a many-fold activity when compared with verapamil, used as positive control. At the lowest concentration tested, compounds 2 and 7 were the most active. However, a decrease of activity was found for the acyl derivatives (16-30). In a chemosensitivity assay, the MDR reversing activity of some of the most active compounds (1-3, 5, 7, 12-15) was further assessed on the same cell model. All the tested compounds, excepting 15, corroborated the results of the transport assay, revealing to synergistically interact with doxorubicin. Structure-activity relationship studies, taking into account previous results, showed that different substitution patterns, at both the tetracyclic nucleus and the side chain, play important role in ABCB1 reversal activity. An optimal lipophilicity was also recognized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Svenningsen, Katrine; Knudsen, Lina Almind

    2015-01-01

    and which may additionally affect ABC transporter function through nuclear receptors and transcriptional regulation. Another critical role of ABCB1 was suggested by the finding that ABCB1 expression identifies a subpopulation of pro-inflammatory Th17 cells which were resistant to treatment...

  2. Impact of ABCB1 Variants on Neutrophil Depression: A Pharmacogenomic Study of Paclitaxel in 92 Women with Ovarian Cancer

    DEFF Research Database (Denmark)

    Bergmann, Troels K; Andersen, Charlotte Brasch; Gréen, Henrik

    2012-01-01

    prospectively recruited Scandinavian Caucasian women with primary ovarian cancer who were treated with paclitaxel and carboplatin. A single investigator assessed the clinical toxicity in 97% of the patients. Patients carrying variant alleles of ABCB1 C3435T experienced more pronounced neutrophil decrease (63...

  3. The risk of clopidogrel resistance is associated with ABCB1 polymorphisms but not promoter methylation in a Chinese Han population

    Science.gov (United States)

    Su, Jia; Yu, Qinglin; Zhu, Hao; Li, Xiaojing; Cui, Hanbin; Du, Weiping; Ji, Lindan; Tong, Maoqing; Zheng, Yibo; Xu, Hongyu; Zhang, Jianjiang; Zhu, Yunyun; Xia, Yezi; Liu, Ting; Yao, Qi; Yang, Jun; Chen, Xiaomin; Yu, Jingbo

    2017-01-01

    The goal of our study was to investigate the contribution of ABCB1 expression to the risk of clopidogrel resistance (CR). Platelets functions were measured using the Verify-Now P2Y12 assay. Applying Polymerase Chain Reaction–Restriction Fragment Length Polymorphism (PCR-RFLP), the single-nucleotide polymorphisms (SNPs) was tested. Using bisulphite pyrosequencing assay, we investigated the association of the ABCB1 DNA methylation levels and CR. It was shown that female, hypertension, and lower albumin levels increased the risk of CR (P<0.05). If patients did not have hypoproteinaemia or had hypertension, the SNP in rs1045642 was associated with CR (CC vs. TT: albumin ≥35, P = 0.042; hypertension, P = 0.045; C vs. T: albumin ≥35, P = 0.033; hypertension, P = 0.040). Additionally, the platelet inhibition of the CT+TT genotype in rs1128503 was larger than that of the CC genotype (P = 0.021). Multivariate logistic regression analysis showed that male, higher albumin and hsCRP decreased the risk of CR, and the stent size maybe positively correlated with CR. The SNP in rs1045642 was related to all-cause mortality (P = 0.024). We did not find any relationship between the methylation levels of the ABCB1 promoter and CR. In conclusions, our study indicated that ABCB1 polymorphisms might be useful in further evaluating the pathogenesis of CR. PMID:28358842

  4. Functional G1199A ABCB1 polymorphism may have an effect on cyclosporine blood concentration in renal transplanted patients.

    Science.gov (United States)

    Mostafa-Hedeab, Gomaa; Saber-Ayad, Maha M; Latif, Inas A; Elkashab, Sahier O; Elshaboney, Tarek H; Mostafa, Magdy Ibrahim; El-Shafy, Sanaa Abd; Zaki, Magda M

    2013-08-01

    Cyclosporine A (CsA) shows significant inter-individual variability in its pharmacokinetics, which may be due to polymorphisms in ABCB-1 genes coding for P-glycoprotein. The aim of this study was to explore the role of genetic polymorphisms of ABCB-1 in affecting the CsA blood concentrations in renal transplanted patients over the first 3 months after transplantation. Renal transplanted patients receiving CsA (n = 40) were genotyped for ABCB -1 C3435T (I1145I) and G1199A (S400N) polymorphisms. CsA blood concentrations were measured on Day 7, 30, and 90 after transplantation. G1199A variant showed higher CsA blood concentrations in stable patients, that was significant for trough levels (198 vs. 136 ng/mL on Day 7, P = .004, 196 vs. 125 ng/mL on Day 30, P = .007, 194 vs. 121 ng/mL on Day 90, P = .005 for stable vs. unstable groups). Polymorphisms of ABCB-1 have only a minor effect on CsA blood concentrations. The functional G1199A polymorphism can affect the drug levels more than non-functional C3435T. This polymorphism might be of a potential prognostic value in renal transplanted patients. © The Author(s) 2013.

  5. Variants in CDA and ABCB1 are predictors of capecitabine-related adverse reactions in colorectal cancer

    Science.gov (United States)

    García, María I.; García-Alfonso, Pilar; Robles, Luis; Grávalos, Cristina; González-Haba, Eva; Marta, Pellicer; Sanjurjo, María; López-Fernández, Luis A.

    2015-01-01

    Adverse reactions to capecitabine-based chemotherapy limit full administration of cytotoxic agents. Likewise, genetic variations associated with capecitabine-related adverse reactions are associated with controversial results and a low predictive value. Thus, more evidence on the role of these variations is needed. We evaluated the association between nine polymorphisms in MTHFR, CDA, TYMS, ABCB1, and ENOSF1 and adverse reactions, dose reductions, treatment delays, and overall toxicity in 239 colorectal cancer patients treated with capecitabine-based regimens. The ABCB1*1 haplotype was associated with a high risk of delay in administration or reduction in the dose of capecitabine, diarrhea, and overall toxicity. CDA rs2072671 A was associated with a high risk of overall toxicity. TYMS rs45445694 was associated with a high risk of delay in administration or reduction in the dose of capecitabine, HFS >1 and HFS >2. Finally, ENOSF1 rs2612091 was associated with HFS >1, but was a poorer predictor than TYMS rs45445694. A score based on ABCB1-CDA polymorphisms efficiently predicts patients at high risk of severe overall toxicity (PPV, 54%; sensitivity, 43%) in colorectal cancer patients treated with regimens containing capecitabine. Polymorphisms in ABCB1, CDA, ENOSF1,and TYMS could help to predict specific and overall severe adverse reactions to capecitabine. PMID:25691056

  6. Molecular model of the outward facing state of the human P-glycoprotein (ABCB1, and comparison to a model of the human MRP5 (ABCC5

    Directory of Open Access Journals (Sweden)

    Sager Georg

    2007-09-01

    Full Text Available Abstract Background Multidrug resistance is a particular limitation to cancer chemotherapy, antibiotic treatment and HIV medication. The ABC (ATP binding cassette transporters human P-glycoprotein (ABCB1 and the human MRP5 (ABCC5 are involved in multidrug resistance. Results In order to elucidate structural and molecular concepts of multidrug resistance, we have constructed a molecular model of the ATP-bound outward facing conformation of the human multidrug resistance protein ABCB1 using the Sav1866 crystal structure as a template, and compared the ABCB1 model with a previous ABCC5 model. The electrostatic potential surface (EPS of the ABCB1 substrate translocation chamber, which transports cationic amphiphilic and lipophilic substrates, was neutral with negative and weakly positive areas. In contrast, EPS of the ABCC5 substrate translocation chamber, which transports organic anions, was generally positive. Positive-negative ratios of amino acids in the TMDs of ABCB1 and ABCC5 were also analyzed, and the positive-negative ratio of charged amino acids was higher in the ABCC5 TMDs than in the ABCB1 TMDs. In the ABCB1 model residues Leu65 (transmembrane helix 1 (TMH1, Ile306 (TMH5, Ile340 (TMH6 and Phe343 (TMH6 may form a binding site, and this is in accordance with previous site directed mutagenesis studies. Conclusion The Sav1866 X-ray structure may serve as a suitable template for the ABCB1 model, as it did with ABCC5. The EPS in the substrate translocation chambers and the positive-negative ratio of charged amino acids were in accordance with the transport of cationic amphiphilic and lipophilic substrates by ABCB1, and the transport of organic anions by ABCC5.

  7. Bullatacin Triggered ABCB1-Overexpressing Cell Apoptosis via the Mitochondrial-Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Yong-Ju Liang

    2009-01-01

    Full Text Available This paper was to explore bullatacin-mediated multidrug-resistant cell apoptosis at extremely low concentration. To investigate its precise mechanisms, the pathway of cell apoptosis induced by bullatacin was examined. Bullatacin causes an upregulation of ROS and a downregulation of ΔΨm in a concentration-dependent manner in ABCB1-overexpressing KBv200 cells. In addition, cleavers of caspase-9, caspase-3, and PARP were observed following the release of cytochrome c from mitochondria after bullatacin treatment. However, neither cleavage of caspase-8 nor change of expression level of bcl-2, bax and Fas was observed by the same treatment. Pretreating KBv200 cells with N-acetylcysteine, an antioxidant modulator, resulted in a significant reduction of ROS generation and cell apoptosis induced by bullatacin. Bullatacin-induced apoptosis was antagonized by z-LEHD-fmk, a caspase-9 inhibitor, but not by z-IETD-fmk, a caspase-8 inhibitor. These implied that apoptosis of KBv200 cells induced by bullatacin was associated with the mitochondria-dependent pathway that was limited to activation of apical caspase-9.

  8. Lack of Association of OPRM1 and ABCB1 Single-Nucleotide Polymorphisms to Oxycodone Response in Postoperative Pain

    DEFF Research Database (Denmark)

    Zwisler, Stine T; Enggaard, Thomas P; Mikkelsen, Soeren

    2011-01-01

    Purpose: The aim of the study was to search for an association between the single-nucleotide polymorphisms A118G in OPRM1 and C3435T and G2677T/A in ABCB1 and the analgesic effect of intravenous oxycodone in postoperative pain. Methods: There were 268 patients with postoperative pain after......, primarily, thyroidectomy. At given times during the first 24 hours postoperatively, their pain was rated at rest and during activity according to a numeric rating scale (0 = no pain, 10 = worst possible pain) and calculated as pain time area under the curve(0-24 hours). A negative answer in a final...... the tested single-nucleotide polymorphisms in OPRM1 and ABCB1 and changes in the analgesic effect of oxycodone....

  9. Lack of genetic association between OCT1, ABCB1, and UGT2B7 variants and morphine pharmacokinetics

    DEFF Research Database (Denmark)

    Nielsen, L M; Sverrisdóttir, E; Bjerregaard Stage, T

    2017-01-01

    (CL), and volume of distribution (VD). The area under the plasma concentration-time curve (AUC0-150min) and the maximum plasma concentration (Cmax) were also calculated. Pharmacodynamic data were measured as pain tolerance thresholds to mechanical stimulation of the rectum and muscle, as well as tonic...... cold pain stimulation ("the cold pressor test" where hand was immersed in cold water). Six different single nucleotide polymorphisms in three different genes (OCT1 (n=22), ABCB1 (n=37), and UGT2B (n=22)) were examined. RESULTS: Neither AUC0-150min, ktr, CL, nor VD were associated with genetic variants...... in OCT1, ABCB1, and UGT2B7 (all P>0.05). Similarly, the antinociceptive effects of morphine on rectal, muscle, and cold pressor tests were not associated with these genetic variants (all P>0.05). CONCLUSIONS: In this experimental study in healthy volunteers, we found no association between different...

  10. ABCB1 C1236T, G2677T/A and C3435T polymorphisms in systemic lupus erythematosus patients

    Directory of Open Access Journals (Sweden)

    T.P. Gonzalez

    2008-09-01

    Full Text Available P-glycoprotein (Pgp, the ABCB1 gene product, acts as an efflux pump that transports a large variety of substrates and is a mechanism of cell protection against xenobiotics. An increasing number of studies have shown that some ABCB1 polymorphisms may affect Pgp expression and activity, as well as affecting the development and susceptibility to diseases and pharmacological response. High activity of Pgp has been detected in systemic lupus erythematosus (SLE patients. The C1236T, G2677T/A, and C3435T are the most commonly studied single nucleotide polymorphisms in the ABCB1 gene. Therefore, their frequencies were determined in Brazilian individuals with European ancestry (N = 143 and in SLE patients (N = 137. Genotyping was performed by PCR-RFLP analysis using specific primers followed by incubation with the appropriate restriction enzymes. The resulting DNA fragments were visualized on agarose or polyacrylamide gels. No statistically significant differences were observed in allelic and genotypic frequencies between SLE and healthy subjects (Fisher exact test. Nevertheless, the 2677A allelic frequency was lower in SLE patients with malar rash (0.007 compared with patients without this feature (0.04; P = 0.0054, while the frequency of this variant was higher in SLE patients with pleuritis (0.07 compared with patients without this feature (0.01; P = 0.0156. We suggest that although the ABCB1 polymorphisms do not directly interfere in SLE susceptibility, their evaluation, especially the 2677A allele, in other immunological processes may be interesting since they can interfere in clinical features of this disease.

  11. Association of ABCB1 gene polymorphisms and haplotypes with therapeutic efficacy of glucocorticoids in Chinese patients with immune thrombocytopenia.

    Science.gov (United States)

    Xuan, Min; Li, Huiyuan; Fu, Rongfeng; Yang, Yanhui; Zhang, Donglei; Zhang, Xian; Yang, Renchi

    2014-04-01

    Resistance to glucocorticoids (GCs) remains a tricky problem complicating the therapy of ITP. Recently, ATP binding cassette gene B1 gene (ABCB1) was reported to be correlated with susceptibility and therapeutic efficacy of autoimmune diseases through P-glycoprotein (Pgp). We investigated three single nucleotide polymorphisms (SNPs) of ABCB1 and their haplotypes by PCR-RFLP (restriction fragment length polymorphism) method in 471 ITP patients and 383 healthy controls, patients were further assigned into GCs-responsive and -non-responsive group according to the therapeutic effects of GCs. We observed a remarkable difference in genotypes of G2677T/A between GCs-responsive and non-responsive group, but not between patients and controls. A frequently expression of T/A allele within G2677T/A was recorded in GCs-responsive group. Furthermore, we found that some haplotypes (CGC, CTC/CAC, CTT/CAT, TGC, TGT, TTC/TAC and TTT/TAT, in the order of position 1236-2677-3435) were presented significantly differences between non-responsive and responsive group. No difference of C1236T and C3435T polymorphisms was observed between ITP and controls, and between the GCs-responsive and -non-responsive group. Our findings suggest that ABCB1 polymorphisms, as well as haplotypes derived from C1235T, G2677T/A and C3435T, are associated with inter-individual differences of GCs treatment in ITP.

  12. Experimental coccidiosis influences the expression of the ABCB1 gene, a physiological important functional marker of intestinal integrity in chickens.

    Science.gov (United States)

    Haritova, Aneliya; Koinarski, Vencislav; Stanilova, Spaska

    2013-01-01

    Efflux transporters belonging to the family of ABC transporters have an important functional role in the maintenance of the intestinal barrier. As efflux transporters they prevent the absorption of toxic substances from feed, while at the same time facilitating the excretion of metabolic waste products as well as drugs from the circulation into the intestinal lumen. As Eimeria tenella infection significantly affects the integrity of caecum, the effects of experimental E. tenella infection on the levels of expression of ABCB1 mRNAs in the intestines and livers of broilers were evaluated. ABCB1 mRNA expression was quantified by qRT-PCR. Its expression levels were significantly down-regulated in the caecum of infected animals. The levels of ABCB1 mRNA were not changed in the duodenum and the liver. After treatment of the animals with sulfapyrazine for three days, not only a significant improvement of the clinical appearance but also a normalization of the P-gp expression was noticed. Although the current study cannot distinguish between the direct effect of the drug on the host and the drug action on the parasite, these results suggest that the treatment of coccidiosis with sulfachlorpyrazine also restored the expression of the investigated efflux transporter in the caecum. This is of clinical significance as P-glycoproteins contribute to the integrity of intestines and their function as important biological barriers, protecting poultry from pathogens and toxic compounds in animal feeds.

  13. Effect of ABCB1 and ABCC3 polymorphisms on osteosarcoma survival after chemotherapy: a pharmacogenetic study.

    Directory of Open Access Journals (Sweden)

    Daniela Caronia

    Full Text Available BACKGROUND: Standard treatment for osteosarcoma patients consists of a combination of cisplatin, adriamycin, and methotrexate before surgical resection of the primary tumour, followed by postoperative chemotherapy including vincristine and cyclophosphamide. Unfortunately, many patients still relapse or suffer adverse events. We examined whether common germline polymorphisms in chemotherapeutic transporter and metabolic pathway genes of the drugs used in standard osteosarcoma treatment may predict treatment response. METHODOLOGY/PRINCIPAL FINDINGS: In this study we screened 102 osteosarcoma patients for 346 Single Nucleotide Polymorphisms (SNPs and 2 Copy Number Variants (CNVs in 24 genes involved in the metabolism or transport of cisplatin, adriamycin, methotrexate, vincristine, and cyclophosphamide. We studied the association of the genotypes with tumour response and overall survival. We found that four SNPs in two ATP-binding cassette genes were significantly associated with overall survival: rs4148416 in ABCC3 (per-allele HR = 8.14, 95%CI = 2.73-20.2, p-value = 5.1×10⁻⁵, and three SNPs in ABCB1, rs4148737 (per-allele HR = 3.66, 95%CI = 1.85-6.11, p-value = 6.9×10⁻⁵, rs1128503 and rs10276036 (r² = 1, per-allele HR = 0.24, 95%CI = 0.11-0.47 p-value = 7.9×10⁻⁵. Associations with these SNPs remained statistically significant after correction for multiple testing (all corrected p-values [permutation test] ≤ 0.03. CONCLUSIONS: Our findings suggest that these polymorphisms may affect osteosarcoma treatment efficacy. If these associations are independently validated, these variants could be used as genetic predictors of clinical outcome in the treatment of osteosarcoma, helping in the design of individualized therapy.

  14. Fentanyl Enhances Hepatotoxicity of Paclitaxel via Inhibition of CYP3A4 and ABCB1 Transport Activity in Mice.

    Directory of Open Access Journals (Sweden)

    Jing-Dun Xie

    Full Text Available Fentanyl, a potent opioid analgesic that is used to treat cancer pain, is commonly administered with paclitaxel in advanced tumors. However, the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanism of action is not well studied. The purpose of this study was to investigate the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanisms of action. Pharmacokinetic parameters of paclitaxel were tested using reversed phase high-performance liquid chromatography (RP-HPLC. Aspartate transaminase (AST, alanine aminotransferase (ALT, and mouse liver histopathology were examined. Moreover, the cytotoxicity of anti-carcinogens was examined using 1-(4, 5-dimethylthiazol-2-yl-3,5-diphenylformazan (MTT, and the intracellular accumulation of doxorubicin and rhodamine 123 was detected by flow cytometry. Furthermore, the expression of ABCB1 and the activity of ABCB1 ATPase and CYP3A4 were also examined. In this study, the co-administration of fentanyl and paclitaxel prolonged the half-life (t1/2 of paclitaxel from 1.455 hours to 2.344 hours and decreased the clearance (CL from 10.997 ml/h to 7.014 ml/h in mice. Fentanyl significantly increased the levels of ALT in mice to 88.2 U/L, which is more than 2-fold higher than the level detected in the control group, and it increased the histological damage in mouse livers. Furthermore, fentanyl enhanced the cytotoxicity of anti-carcinogens that are ABCB1 substrates and increased the accumulation of doxorubicin and rhodamine 123. Additionally, fentanyl stimulated ABCB1 ATPase activity and inhibited CYP3A4 activity in the liver microsomes of mice. Our study indicates that the obvious hepatotoxicity during this co-administration was due to the inhibition of CYP3A4 activity and ABCB1 transport activity. These findings suggested that the accumulation-induced hepatotoxicity of paclitaxel when it is combined with fentanyl should be avoided.

  15. Breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-gp/ABCB1) transport afatinib and restrict its oral availability and brain accumulation.

    Science.gov (United States)

    van Hoppe, Stéphanie; Sparidans, Rolf W; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H

    2017-03-10

    Afatinib is a highly selective, irreversible inhibitor of EGFR and (HER)-2. It is orally administered for the treatment of patients with EGFR mutation-positive types of metastatic NSCLC. We investigated whether afatinib is a substrate for the multidrug efflux transporters ABCB1 and ABCG2 and whether these transporters influence oral availability and brain and other tissue accumulation of afatinib. We used in vitro transport assays to assess human (h)ABCB1-, hABCG2- or murine (m)Abcg2-mediated transport of afatinib. To study the single and combined roles of Abcg2 and Abcb1a/1b in oral afatinib disposition, we used appropriate knockout mouse strains. Afatinib was transported well by hABCB1, hABCG2 and mAbcg2 in vitro. Upon oral administration of afatinib, Abcg2(-/-), Abcb1a/1b(-/-) and Abcb1a/1b(-/-);Abcg2(-/-) mice displayed a 4.2-, 2.4- and 7-fold increased afatinib plasma AUC0-24 compared with wild-type mice. Abcg2-deficient strains also displayed decreased afatinib plasma clearance. At 2h, relative brain accumulation of afatinib was not significantly altered in the single knockout strains, but 23.8-fold increased in Abcb1a/1b(-/-);Abcg2(-/-) mice compared to wild-type mice. Abcg2 and Abcb1a/1b restrict oral availability and brain accumulation of afatinib. Inhibition of these transporters may therefore be of clinical importance for patients with brain (micro)metastases positioned behind an intact blood-brain barrier.

  16. Quinidine as an ABCB1 probe for testing drug interactions at the blood-brain barrier: an in vitro in vivo correlation study.

    Science.gov (United States)

    Sziráki, István; Erdo, Franciska; Beéry, Erzsébet; Molnár, Petra Magdolna; Fazakas, Csilla; Wilhelm, Imola; Makai, Ildikó; Kis, Emese; Herédi-Szabó, Krisztina; Abonyi, Tibor; Krizbai, István; Tóth, Gábor K; Krajcsi, Péter

    2011-09-01

    This study provides evidence that quinidine can be used as a probe substrate for ABCB1 in multiple experimental systems both in vitro and in vivo relevant to the blood-brain barrier (BBB). The combination of quinidine and PSC-833 (valspodar) is an effective tool to assess investigational drugs for interactions on ABCB1. Effects of quinidine and substrate-inhibitor interactions were tested in a membrane assay and in monolayer assays. The authors compared quinidine and digoxin as ABCB1 probes in the in vitro assays and found that quinidine was more potent and at least as specific as digoxin in ATPase and monolayer efflux assays employing MDCKII-MDR1 and the rat brain microcapillary endothelial cell system. Brain exposure to quinidine was tested in dual-/triple-probe microdialysis experiments in rats by assessing levels of quinidine in blood and brain. Comparing quinidine levels in dialysate samples from valspodar-treated and control animals, it is evident that systemic/local administration of the inhibitor diminishes the pumping function of ABCB1 at the BBB, resulting in an increased brain penetration of quinidine. In sum, quinidine is a good probe to study ABCB1 function at the BBB. Moreover, quinidine/PSC-833 is an ABCB1-specific substrate/inhibitor combination applicable to many assay systems both in vitro and in vivo.

  17. P-glycoprotein (ABCB1) inhibited network of mitochondrion transport along microtubule and BMP signal-induced cell shape in chimpanzee left cerebrum by systems-theoretical analysis.

    Science.gov (United States)

    Lin, Hong; Wang, Lin; Jiang, Minghu; Huang, Juxiang; Qi, Lianxiu

    2012-10-01

    We constructed the significant low-expression P-glycoprotein (ABCB1) inhibited transport and signal network in chimpanzee compared with high-expression (fold change ≥2) the human left cerebrum in GEO data set, by using integration of gene regulatory activated and inhibited network inference method with gene ontology (GO) analysis. Our result showed that ABCB1 transport and signal upstream network RAB2A inhibited ABCB1, and downstream ABCB1-inhibited SMAD1_2, NCK2, SLC25A46, GDF10, RASGRP1, EGFR, LRPPRC, RASSF2, RASA4, CA2, CBLB, UBR5, SLC25A16, ITGB3BP, DDIT4, PDPN, RAB2A in chimpanzee left cerebrum. We obtained that the different biological processes of ABCB1 inhibited transport and signal network repressed carbon dioxide transport, ER to Golgi vesicle-mediated transport, folic acid transport, mitochondrion transport along microtubule, water transport, BMP signaling pathway, Ras protein signal transduction, transforming growth factor beta receptor signaling pathway in chimpanzee compared with the inhibited network of the human left cerebrum, as a result of inducing inhibition of mitochondrion transport along microtubule and BMP signal-induced cell shape in chimpanzee left cerebrum. Our hypothesis was verified by the same and different biological processes of ABCB1 inhibited transport and signal network of chimpanzee compared with the corresponding activated network of chimpanzee and the human left cerebrum, respectively. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Sex differences in cyclosporine pharmacokinetics and ABCB1 gene expression in mononuclear blood cells in African American and Caucasian renal transplant recipients.

    Science.gov (United States)

    Tornatore, Kathleen M; Brazeau, Daniel; Dole, Kiran; Danison, Ryan; Wilding, Gregory; Leca, Nicolae; Gundroo, Aijaz; Gillis, Kathryn; Zack, Julia; DiFrancesco, Robin; Venuto, Rocco C

    2013-10-01

    Cyclosporine exhibits pharmacokinetic and pharmacodynamic variability in renal transplant recipients (RTR) attributed to P-glycoprotein (P-gp), an ABCB1 efflux transporter that influences bioavailability and intracellular distribution. Data on race and sex influences on P-gp in RTR are lacking. We investigated sex and race influences on cyclosporine pharmacokinetics and ABCB1 gene expression in peripheral blood mononuclear cells (PBMC). Fifty-four female and male African American and Caucasian stable RTR receiving cyclosporine and mycophenolic acid completed a 12-hour study. ABCB1 gene expression was assessed in PBMCs pre-dose and 4 hours after cyclosporine. Statistical analysis used mixed effects models on transformed, normalized ABCB1 expression and cyclosporine pharmacokinetics. Sex and race differences were observed for the dose-normalized area under the concentration curve (AUC0-12 /Dose) [P = .0004], apparent clearance [P = .0004] and clearance/body mass index (CL/BMI) [P = .027] with slowest clearance and greatest drug exposure in females. Sex and race differences were found pre-dose and 4 hours for ABCB1 [P cyclosporine clearance and lower ABCB1 gene expression in PBMC suggesting reduced efflux activity and greater intracellular drug exposure. © The Author(s) 2013.

  19. Lobular Distribution and Variability in Hepatic ATP Binding Cassette Protein B1 (ABCB1, P-gp): Ontogenetic Differences and Potential for Toxicity

    Science.gov (United States)

    Abanda, Ngu Njei; Riches, Zoe; Collier, Abby C.

    2017-01-01

    The ATP Binding Cassette B1 (ABCB1) transporter has critical roles in endo- and xenobiotic efficacy and toxicity. To understand population variability in hepatic transport we determined ABCB1 mRNA and protein levels in total liver lysates sampled from 8 pre-defined sites (n = 24, 18–69 years), and in S9 from randomly acquired samples (n = 87, 7 days–87 years). ABCB1 levels did not differ significantly throughout individual livers and showed 4.4-fold protein variation between subjects. Neither mRNA nor protein levels varied with sex, ethnicity, obesity or triglycerides in lysates or S9 (that showed the same relationships), but protein levels were lower in pediatric S9 (p < 0.0001), with 76% of adult ABCB1 present at birth and predicted to mature in 5 years. Pediatric total liver lysates were not available. In summary, opportunistic collection for studying human hepatic ABCB1 is acceptable. Additionally, ABCB1 may be lower in children, indicating differential potential for toxicity and response to therapy in this special population. PMID:28218636

  20. Impact of Genetic Polymorphisms of ABCB1 (MDR1, P-Glycoprotein) on Drug Disposition and Potential Clinical Implications: Update of the Literature.

    Science.gov (United States)

    Wolking, Stefan; Schaeffeler, Elke; Lerche, Holger; Schwab, Matthias; Nies, Anne T

    2015-07-01

    ATP-binding cassette transporter B1 (ABCB1; P-glycoprotein; multidrug resistance protein 1) is an adenosine triphosphate (ATP)-dependent efflux transporter located in the plasma membrane of many different cell types. Numerous structurally unrelated compounds, including drugs and environmental toxins, have been identified as substrates. ABCB1 limits the absorption of xenobiotics from the gut lumen, protects sensitive tissues (e.g. the brain, fetus and testes) from xenobiotics and is involved in biliary and renal secretion of its substrates. In recent years, a large number of polymorphisms of the ABCB1 [ATP-binding cassette, sub-family B (MDR/TAP), member 1] gene have been described. The variants 1236C>T (rs1128503, p.G412G), 2677G>T/A (rs2032582, p.A893S/T) and 3435C>T (rs1045642, p.I1145I) occur at high allele frequencies and create a common haplotype; therefore, they have been most widely studied. This review provides an overview of clinical studies published between 2002 and March 2015. In summary, the effect of ABCB1 variation on P-glycoprotein expression (messenger RNA and protein expression) and/or activity in various tissues (e.g. the liver, gut and heart) appears to be small. Although polymorphisms and haplotypes of ABCB1 have been associated with alterations in drug disposition and drug response, including adverse events with various ABCB1 substrates in different ethnic populations, the results have been majorly conflicting, with limited clinical relevance. Future research activities are warranted, considering a deep-sequencing approach, as well as well-designed clinical studies with appropriate sample sizes to elucidate the impact of rare ABCB1 variants and their potential consequences for effect sizes.

  1. ATP-binding cassette subfamily B member 1 (ABCB1) and subfamily C member 10 (ABCC10) are not primary resistance factors for cabazitaxel

    Institute of Scientific and Technical Information of China (English)

    Rishil J Kathawala; Yi-Jun Wang; Suneet Shukla; Yun-Kai Zhang; Saeed Alqahtani; Amal Kaddoumi; Suresh V Ambudkar; Charles R Ashby Jr; Zhe-Sheng Chen

    2015-01-01

    Introduction:ATP-binding cassette subfamily B member 1 (ABCB1) and subfamily C member 10 (ABCC10) proteins are efflux transporters that couple the energy derived from ATP hydrolysis to the translocation of toxic substances and chemotherapeutic drugs out of cells. Cabazitaxel is a novel taxane that differs from paclitaxel by its lower affinity for ATP-binding cassette (ABC) transporters. Methods:We determined the effects of cabazitaxel, a novel tubulin-binding taxane, and paclitaxel on paclitaxel-resistant, ABCB1-overexpressing KB-C2 and LLC-MDR1-WT cells and paclitaxel-resistant, ABCC10-overexpressing HEK293/ABCC10 cells by calculating the degree of drug resistance and measuring ATPase activity of the ABCB1 transporter. Results:Decreased resistance to cabazitaxel compared with paclitaxel was observed in KB-C2, LLC-MDR1-WT, and HEK293/ABCC10 cells. Moreover, cabazitaxel had low efficacy, whereas paclitaxel had high efficacy in stimulating the ATPase activity of ABCB1, indicating a direct interaction of both drugs with the transporter. Conclusion:ABCB1 and ABCC10 are not primary resistance factors for cabazitaxel compared with paclitaxel, suggesting that cabazitaxel may have a low affinity for these efflux transporters.

  2. Double-transduced MDCKII cells to study human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) interplay in drug transport across the blood-brain barrier.

    Science.gov (United States)

    Poller, Birk; Wagenaar, Els; Tang, Seng Chuan; Schinkel, Alfred H

    2011-04-04

    P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) combination knockout mice display disproportionately increased brain penetration of shared substrates, including topotecan and several tyrosine kinase inhibitors, compared to mice deficient for only one transporter. To better study the interplay of both transporters also in vitro, we generated a transduced polarized MDCKII cell line stably coexpressing substantial levels of human ABCB1 and ABCG2 (MDCKII-ABCB1/ABCG2). Next, we measured concentration-dependent transepithelial transport of topotecan, sorafenib and sunitinib. By blocking either one or both of the transporters simultaneously, using specific inhibitors, we aimed to mimic the ABCB1-ABCG2 interplay at the blood-brain barrier in wild-type, single or combination knockout mice. ABCB1 and ABCG2 contributed to similar extents to topotecan transport, which was only partly saturable. For sorafenib transport, ABCG2 was the major determinant at low concentrations. However, saturation of ABCG2-mediated transport occurred at higher sorafenib concentrations, where ABCB1 was still fully active. Furthermore, sunitinib was transported equally by ABCB1 and ABCG2 at low concentrations, but ABCG2-mediated transport became saturated at lower concentrations than ABCB1-mediated transport. The relative impact of these transporters can thus be affected by the applied drug concentrations. A comparison of the in vitro observed (inverse) transport ratios and cellular accumulation of the drugs at low concentrations with in vivo brain penetration data from corresponding Abcb1a/1b⁻/⁻, Abcg2⁻/⁻ and Abcb1a/1b;Abcg2⁻/⁻ mouse strains revealed very similar qualitative patterns for each of the tested drugs. MDCKII-ABCB1/ABCG2 cells thus present a useful in vitro model to study the interplay of ABCB1 and ABCG2.

  3. Influence of CYP2C19 and ABCB1 polymorphisms on plasma concentrations of lansoprazole enantiomers after enteral administration.

    Science.gov (United States)

    Miura, Masatomo; Motoyama, Satoru; Hinai, Yudai; Niioka, Takenori; Endo, Masahiro; Hayakari, Makoto; Ogawa, Jun-ichi

    2010-09-01

    An intraoral annihilation enteric-coated preparation of lansoprazole is often administered via intestinal fistula. The purpose of this study was to determine the plasma concentrations of lansoprazole enantiomers after enteral administration in subjects with cytochrome P4502C19 (CYP2C19) and ABCB1 C3435T genotypes. Fifty-one patients who underwent a curative oesophagectomy for oesophageal cancer were enrolled in this study. After a single enteral dose of racemic lansoprazole (30 mg), plasma concentrations of lansoprazole enantiomers were measured 4 h post-dose (C(4h)). There were significant differences in the C(4h) of (R)- and (S)-lansoprazole and the R/S-enantiomer ratio for three CYP2C19 genotype groups (*1/*1, *1/*2 ± *1/*3, and *2/*2 ± *2/*3 ± *3/*3 (poor metabolizers (PMs)), but not the ABCB1 C3435T genotypes. In a stepwise forward selection multiple regression analysis, the C(4h) of (R)- and (S)-lansoprazole were associated with CYP2C19 PMs (p = 0.0005 and lansoprazole R/S enantiomer index at C(4h) could be possible.

  4. ABCB1 and ABCC2 and the risk of distant metastasis in Thai breast cancer patients treated with tamoxifen

    Directory of Open Access Journals (Sweden)

    Sensorn I

    2016-04-01

    Full Text Available Insee Sensorn,1,* Chonlaphat Sukasem,2,* Ekaphop Sirachainan,3 Montri Chamnanphon,2 Ekawat Pasomsub,4 Narumol Trachu,5 Porntip Supavilai,1 Darawan Pinthong,1 Sansanee Wongwaisayawan6 1Department of Pharmacology, Faculty of Science, Mahidol University, 2Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 3Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 4Division of Virology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 5Research Center, Faculty of Medicine, Ramathibodi Hospital, 6Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand *These authors contributed equally to this work Background: Genetic polymorphisms of drug-metabolizing enzymes and transporters have been extensively studied with regard to tamoxifen treatment outcomes. However, the results are inconclusive. Analysis of organ-specific metastasis may reveal the association of these pharmacogenetic factors. The aim of this study is to investigate the impact of CYP3A5, CYP2D6, ABCB1, and ABCC2 polymorphisms on the risk of all distant and organ-specific metastases in Thai patients who received tamoxifen adjuvant therapy. Methods: Genomic DNA was extracted from blood samples of 73 patients with breast cancer who received tamoxifen adjuvant therapy. CYP3A5 (6986A>G, CYP2D6 (100C>T, ABCB1 (3435C>T, and ABCC2 (-24C>T were genotyped using allelic discrimination real-time polymerase chain reaction assays. The impacts of prognostic clinical factors and genetic variants on disease-free survival were analyzed using the Kaplan–Meier method and Cox regression analysis. Results: In the univariate analysis, primary tumor size >5 cm was significantly associated with increased risk of distant metastasis (P=0

  5. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Svenningsen, Katrine; Almind Knudsen, Lina;

    2015-01-01

    transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1....../Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes...... translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters...

  6. Pulmonary expression of CYP2A13 and ABCB1 is regulated by FOXA2, and their genetic interaction is associated with lung cancer.

    Science.gov (United States)

    Xiang, Chan; Wang, Jiucun; Kou, Xiaochen; Chen, Xiabin; Qin, Zhaoyu; Jiang, Yan; Sun, Chang; Xu, Jibin; Tan, Wen; Jin, Li; Lin, Dongxin; He, Fuchu; Wang, Haijian

    2015-05-01

    Inhaled xenobiotics such as tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone are mainly metabolized by phase I oxidase cytochrome P450, family 2, subfamily A, polypeptide 13 (CYP2A13), phase II conjugate UDP glucuronosyltransferase 2 family, polypeptide B17 (UGT2B17), and phase III transporter ATP-binding cassette, subfamily B (MDR/TAP), member 1 (ABCB1), with genetic polymorphisms implicated in lung cancer. Their genetic interaction and pulmonary expression regulation are largely unknown. We analyzed joint association for CYP2A13 and ABCB1 polymorphisms in 2 independent lung cancer case populations (669 and 566 patients) and 1 common control population (749 subjects), and characterized the trans-acting function of the lung development-related transcription factor forkhead box A2 (FOXA2). We undertook FOXA2 overexpression and down-regulation in lung epithelial cell lines, analyzed functional impact on the transactivation of CYP2A13, UGT2B17, and ABCB1, and measured correlation for their expressions in lung tissues. We found a substantial reduction in cancer risk (OR 0.39; 95% CI 0.25-0.61; Pinteraction = 0.029) associated with combined genotypes for CYP2A13 R257C and a functionary regulatory variant in the cis element of ABCB1 synergistically targeted by GATA binding protein 6 and FOXA2. Genetic manipulation of FOXA2 consistently influenced its binding to and transactivation of the promoters of CYP2A13, UGT2B17, and ABCB1, whose mRNA and protein expressions were all consistently correlated with those of FOXA2 in both tumorous and normal lung tissues. We therefore establish FOXA2 as a core transcriptional modulator for pulmonary xenobiotic metabolic pathways and uncover an etiologically relevant interaction between CYP2A13 and ABCB1, furthering our understanding of expression and function of the xenobiotic metabolism system.

  7. Associations between the functional polymorphisms in the ABCB1 transporter gene and colorectal cancer risk: a case-control study in Turkish population.

    Science.gov (United States)

    Özhan, Gül; Kara, Mehtap; Sari, Fatih M; Yanar, Hakan T; Ercan, Gulcin; Alpertunga, Buket

    2013-05-01

    Colorectal cancer is among the most common cancer types in the world and its etiology involves the interaction of genetic and environmental factors. ABCB1 is highly expressed in the apical surface of colonic epithelial cells and acts as an efflux pump by transporting toxic endogenous substances, drugs and xenobiotics out of cells. ABCB1 polymorphisms may either change its protein expression or alter its function. Several studies have reported a possible association between ABCB1 variants and colorectal cancer, but no consistent conclusion has been arrived at. Therefore, we aimed to investigate the relationship between colorectal cancer and the functional common variants of ABCB1 (1236C > T; 2677G > T/A; 3435C > T). The distributions of the variants were determined in 103 patients with colorectal cancer and 150 healthy volunteers using polymerase chain reaction-restriction fragment length polymorphism methods. ABCB1 1236C > T was statistically significantly associated with colorectal cancer risk (OR, odd ratio = 1.91; 95% CI, confidence interval = 1.09-3.35; p = 0.034). In haplotype-based analysis, the proportion of individuals with the ABCB1 haplotype C1236-G2677-T3435 was significantly more common in patients than in controls (OR = 11.96; 95% CI = 2.59-55.32; p = 0.0004). We believe that the findings may be beneficial to the development of efficacious preventive strategies and therapies for colorectal cancer.

  8. Possible association of ABCB1:c.3435T>C polymorphism with high-density-lipoprotein-cholesterol response to statin treatment - a pilot study.

    Directory of Open Access Journals (Sweden)

    Anna Sałacka

    2014-08-01

    Full Text Available The gene product ABCB1 (formerly MDR1 or P-glycoprotein is hypothesized to be involved in cholesterol cellular trafficking, redistribution and intestinal re-absorption. Carriers of the ABCB1:3435T allele have previously been associated with decreases in ABCB1 mRNA and protein concentrations and have been correlated with changes in serum lipid concentrations. The aim of this study was to investigate possible association between the ABCB1:3435T>C polymorphism and changes in lipids in patients following statin treatment. Outpatients (n=130 were examined: 43 men (33%, 87 women (67%: treated with atorvastatin or simvastatin (all patients with equivalent dose of 20 or 40 mg/d simvastatin. Blood was taken for ABCB1:3435T>C genotyping, and before and after statin treatment for lipid concentration determination (total cholesterol, high-density-lipoprotein-cholesterol (HDL-C, triglycerides. Change (Δ in lipid parameters, calculated as differences between measurements before and after treatment, were analyzed with multiple regression adjustments: gender, diabetes, age, body mass index, equivalent statin dose, length of treatment. Univariate and multivariate analyses showed significant differences in ΔHDL-C (univariate p=0.029; multivariate p=0.036 and %ΔHDL-C (univariate p=0.021; multivariate p=0.023 between patients with TT (-0.05 ± 0.13 g/l; -6.8% ± 20%; respectively and CC+CT genotypes (0.004 ± 0.15 g/l; 4.1 ± 26%; respectively. Reduction of HDL-C in homozygous ABCB1:3435TT patients suggests this genotype could be associated with a reduction in the benefits of statin treatment.

  9. Differential effects of c-myc and ABCB1 silencing on reversing drug resistance in HepG2/Dox cells.

    Science.gov (United States)

    Yahya, Shaymaa M M; Hamed, Ahmed R; Emara, Mohamed; Soltan, Maha M; Abd-Ellatef, Gamal Eldein F; Abdelnasser, Salma M

    2016-05-01

    Multidrug resistance (MDR) in various kinds of cancers represents a true obstacle which hinders the successes of most of current available chemotherapies. ATP-binding cassette (ABC) trasporter proteins have been shown to contribute to the majority of MDR in various types of malignancies. c-myc has recently been reported to participate, at least partly, in MDR to some types of cancers. This study aimed to test whether c-myc could play a role, solely or with coordination with other ABCs, in the resistance of HepG2 cells to doxorubicin (Dox). MDR has been induced in wild-type HepG2 and has been verified both on gene and protein levels. Various assays including efflux assays as well as siRNA targeting ABCB1 and c-myc have been employed to explore the role of both candidate molecules in MDR in HepG2. Results obtained, with regard to ABCB1 silencing on HepG2/Dox cells, have shown that ABCB1-deficient cells exhibited a significant reduction in ABCC1 expression as compared to ABCB1-sufficient cells. However, these cells did not show a significant reduction in other tested ABCs (ABCC5 and ABCC10) while c-myc silencing had no significant effect on any of the studied ABCs. Moreover, silencing of ABCB1 on HepG2 significantly increased fluorescent calcein retention in HepG2 cells as compared to the control cells while downregulation of c-myc did not have any effect on fluorescent calcein retention. Altogether, this work clearly demonstrates that c-myc has no role in MDR of HepG2 to Dox which has been shown to be ABCB1-mediated in a mechanism which might involve ABCC1.

  10. Clopidogrel Resistance and ABCB1 (3435C > T) Gene Polymorphism: A Meta Analysis%氯吡格雷抵抗与ABCB1 3435C>T基因位点多态性的Meta分析

    Institute of Scientific and Technical Information of China (English)

    彭锐; 张洪; 张英; 魏丹芸

    2015-01-01

    目的 探讨氯吡格雷抵抗与ABCB1 3435C >T基因住点多态性关联性.方法 计算机检索Pubmed、Science direct、Wiley online library、Web of Science、中国知网、万方数据库和维普中文科技期刊数据库,纳入氯吡格雷抵抗与氯吡格雷有效的随机对照试验,同时查阅检索结果中所附相似文献及参考文献,检索文献均为建库至2014年6月25日,采用RevMan5.0软件进行Meta分析及其他统计学分析.结果 共纳入文献6篇;患者中氯吡格雷抵抗2 619例、氯吡格雷有效2 799例.Meta分析结果显示,3435C>T位点多态性在等位基因模型、显性基因模型、共显性基因模型(CC/CT)和超显性基因模型下整体效应有统计学意义(P<0.05):等位基因模型OR=1.27,95% CI(1.13,1.42),显性基因模型OR=1.42,95% CI(1.22,1.65),共显性基因模型(CC/CT) OR=1.43,95% CI(1.20,1.69),超显性基因模型OR=1.30,95%CI(1.11,1.52).人种亚组分析表明,欧洲地区ABCB1 3435C>T位点基因多态性与氯吡格雷抵抗均无统计学意义(P>0.05);而亚洲地区ABCB1 3435C>T位点基因多态性与氯吡格雷抵抗在等位基因模型、显性基因模型、共显性基因模型(CC/CT)和超显性基因模型下整体效应有统计学意义(P<0.05):等位基因模型OR=1.57,95%CI(1.34,1.84),显性基因模型OR =2.11,95%CI(1.71,2.60)、共显性基因模型(CC/CT) OR=2.15,95% CI(1.72,2.69),超显性基因模型OR=1.82,95% CI(1.48,2.24).结论 亚洲地区,ABCB1 3435C>T位点基因多态性与氯吡格雷抵抗有相关性,而在欧洲地区则无相关性.

  11. Interactions between antiparkinsonian drugs and ABCB1/P-glycoprotein at the blood-brain barrier in a rat brain endothelial cell model.

    Science.gov (United States)

    Vautier, Sarah; Milane, Aline; Fernandez, Christine; Buyse, Marion; Chacun, Helene; Farinotti, Robert

    2008-09-05

    Parkinson's disease is a neurodegenerative disorder that requires treatment by dopaminergic agonists, which may be responsible for central side effects. We hypothesized that the efflux transporter ABCB1/P-glycoprotein played a role in brain disposition of antiparkinsonian drugs and could control central toxicity. We aimed to evaluate antiparkinsonian drugs as ABCB1 substrates and/or inhibitors in rat brain endothelial cells GPNT, in order to predict potential clinical drug-drug interactions. Among the antiparkinsonian drugs tested, levodopa, bromocriptine, pergolide and pramipexole were ABCB1 substrates. However, only bromocriptine could inhibit ABCB1 functionality with an IC(50) of 6.71 microM on Rhodamine 123 uptake and an IC(50) of 1.71 microM on digoxine uptake. Thus, bromocriptine at 100 microM is responsible for an increase of levodopa intracellular transport of about 2.05-fold versus control. Therefore, we can conclude that bromocriptine is a potent drug for medicinal interactions in vitro. Hence, in patients with Parkinson's disease, these results may be considered to optimise treatments individually.

  12. Blood-brain barrier P-glycoprotein function in healthy subjects and Alzheimer's disease patients : Effect of polymorphisms in the ABCB1 gene

    NARCIS (Netherlands)

    D.M.E. van Assema (Daniëlle); M. Lubberink (Mark); P. Rizzu (Patrizia); J.C. van Swieten (John); R.C. Schuit (Robert); J. Eriksson (Joel); P. Scheltens (Philip); M. Koepp (Matthias); A.A. Lammertsma (Adriaan); B.N.M. van Berckel (Bart )

    2012-01-01

    textabstractBackground: P-glycoprotein is a blood-brain barrier efflux transporter involved in the clearance of amyloid-beta from the brain and, as such, might be involved in the pathogenesis of Alzheimer's disease. P-glycoprotein is encoded by the highly polymorphic ABCB1 gene. Single-nucleotide po

  13. The antinociceptive effect and adverse drug reactions of oxycodone in human experimental pain in relation to genetic variations in the OPRM1 and ABCB1 genes

    DEFF Research Database (Denmark)

    Zwisler, Stine T; Enggaard, Thomas P; Noehr-Jensen, Lene

    2010-01-01

    The aim of this study was to search for a possible association between the variant allele of the single nucleotide polymorphisms A118G in the OPRM1 gene and C3435T and G2677T/A in the ABCB1 gene and altered antinociceptive effect and adverse drug reactions of oxycodone. Thirty-three healthy subje...

  14. One-Year Follow-up of Children and Adolescents with Major Depressive Disorder: Relationship between Clinical Variables and Abcb1 Gene Polymorphisms.

    Science.gov (United States)

    Blázquez, A; Gassó, P; Mas, S; Plana, M T; Lafuente, A; Lázaro, L

    2016-11-01

    Introduction: Differences in response to fluoxetine (FLX) may be influenced by certain genes that are involved in FLX transportation (ABCB1). We examined remission and recovery from the index episode in a cohort of patients treated with FLX, and also investigated associations between genetic variants in ABCB1 and remission, recovery, and suicide risk. Methods: This was a naturalistic 1-year follow-up study of 46 adolescents diagnosed with major depressive disorder (MDD). At 12 months they underwent a diagnostic interview with the K-SADS-PL. Results: It was found that remission was around 69.5% and recovery 56.5%. Remission and recovery were associated with lower scores on the CDI at baseline, with fewer readmissions and suicide attempts, and with lower scores on the CGI and higher scores on the GAF scale. No relationship was found between ABCB1 and remission or recovery. However, a significant association was observed between the G2677T ABCB1 polymorphism and suicide attempts. Conclusion: Other factors such as stressful events, family support, and other genetic factors are likely to be involved in MDD outcome.

  15. Associations of ABCB1, NFKB1, CYP3A, and NR1I2 polymorphisms with cyclosporine trough concentrations in Chinese renal transplant recipients.

    Science.gov (United States)

    Zhang, Yu; Li, Jia-li; Fu, Qian; Wang, Xue-ding; Liu, Long-shan; Wang, Chang-xi; Xie, Wen; Chen, Zhuo-jia; Shu, Wen-ying; Huang, Min

    2013-04-01

    Cyclosporine requires close therapeutic drug monitoring because of its narrow therapeutic index and marked inter-individual pharmacokinetic variation. In this study, we investigated the associations of CYP3A4, CYP3A5, ABCB1, NFKB1, and NR1I2 polymorphisms with cyclosporine concentrations in Chinese renal transplant recipients in the early period after renal transplantation. A total of 101 renal transplant recipients receiving cyclosporine were genotyped for CYP3A4(*)1G, CYP3A5(*)3, ABCB1 C1236T, G2677T/A, C3435T, NFKB1 -94 ins/del ATTG, and NR1I2 polymorphisms. Cyclosporine whole blood levels were measured by a fluorescence polarization immunoassay. Trough concentrations of cyclosporine were determined for days 7-18 following transplantation. The dose-adjusted trough concentration (C0) of cyclosporine in ABCB1 2677 TT carriers was significantly higher than that in GG carriers together with GT carriers [90.4±24.5 vs 67.8±26.8 (ng/mL)/(mg/kg), P=0.001]. ABCB1 3435 TT carriers had a significantly higher dose-adjusted C0 of cyclosporine than CC carriers together with CT carriers [92.0±24.0 vs 68.4±26.5 (ng/mL)/(mg/kg), P=0.002]. Carriers of the ABCB1 1236TT-2677TT-3435TT haplotype had a considerably higher CsA C0/D than carriers of other genotypes [97.2±21.8 vs 68.7±26.9 (ng/mL)/(mg/kg), P=0.001]. Among non-carriers of the ABCB1 2677 TT and 3435 TT genotypes, patients with the NFKB1 -94 ATTG ins/ins genotype had a significantly higher dose-adjusted C0 than those with the -94 ATTG del/del genotype [75.9±32.9 vs 55.1±15.1 (ng/mL)/(mg/kg), P=0.026]. These results illustrate that the ABCB1 and NFKB1 genotypes are closely correlated with cyclosporine trough concentrations, suggesting that these SNPs are useful for determining the appropriate dose of cyclosporine.

  16. 药物基因组学相关P450和ABCB1多态性及SNP检测技术%Pharmacogenomics-related P450 and ABCB1 Polymorphisms and SNP Detection Technology

    Institute of Scientific and Technical Information of China (English)

    眭维国; 张若菡; 陈洁晶; 戴勇

    2011-01-01

    药物基因组学(phamacogenomics)是临床检测遗传差异引起药物应答个体性差异的学科,它涉及药物代谢和有害的药物反应的预测等方面的内容.个性化药物和个性化治疗发展的关键条件是能够快速简便的检测出病人的遗传多态性.文章综述了药物基因相关问题,细胞色素酶P450和ABCB1转运蛋白的遗传多态性以及检测遗传多态性的相关技术.%Pharmacogenomics is the study of the influence of genetic factors on drug action. It is increasingly important for predicting metabolism and adverse reaction to drugs. A key requirement for the development of individualized medicine or personalized therapy is the ability to rapidly and conveniently test the genetic polymorphisms and mutations in patients. This review addresses the social issues in Pharmacogenomics testing, the cytochrome P450, human ACBC1 genetic polymorphismand some new methods for single nucleotide polymorphism ( SNP ) detection.

  17. Genetic association analysis of ATP binding cassette protein family reveals a novel association of ABCB1 genetic variants with epilepsy risk, but not with drug-resistance.

    Science.gov (United States)

    Balan, Shabeesh; Bharathan, Sumitha Prameela; Vellichiramal, Neetha Nanoth; Sathyan, Sanish; Joseph, Vijai; Radhakrishnan, Kurupath; Banerjee, Moinak

    2014-01-01

    Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED)-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype for AED-resistant epilepsy); juvenile myoclonic epilepsy (JME) (prototype for AED-responsive epilepsy); and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T) rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004). This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004) and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05) cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency for MTLE

  18. Genetic association analysis of ATP binding cassette protein family reveals a novel association of ABCB1 genetic variants with epilepsy risk, but not with drug-resistance.

    Directory of Open Access Journals (Sweden)

    Shabeesh Balan

    Full Text Available Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS (prototype for AED-resistant epilepsy; juvenile myoclonic epilepsy (JME (prototype for AED-responsive epilepsy; and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004. This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004 and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05 cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency

  19. Polymorphisms in CYP3A5, CYP3A4, and ABCB1 are not associated with cyclosporine pharmacokinetics nor with cyclosporine clinical end points after renal transplantation.

    Science.gov (United States)

    Bouamar, Rachida; Hesselink, Dennis A; van Schaik, Ron H N; Weimar, Willem; Macphee, Iain A M; de Fijter, Johan W; van Gelder, Teun

    2011-04-01

    The association of CYP3A5, CYP3A4, and ABCB1 single nucleotide polymorphisms (SNPs) with cyclosporine (CsA) pharmacokinetics is controversial. The authors studied the influence of these SNPs on CsA pharmacokinetics as well as on the incidence of biopsy-proven acute rejection (BPAR) and renal function after kidney transplantation. One hundred seventy-one patients participating in an international, randomized controlled trial were genotyped for CYP3A5*3, CYP3A4*1B and the ABCB1 1236 C>T, 2677 G>T/A, and 3435 C>T SNPs. The patients were treated with CsA, mycophenolate mofetil, and glucocorticoids. CsA was dosed to reach predose concentrations (C0) or two hours postdose concentrations (C2). Pharmacokinetic parameters were measured on Days 3 and 10 and Months 1, 3, 6, and 12 after transplantation. Renal function was assessed by measuring serum creatinine and calculating the creatinine clearance. The incidence of BPAR and delayed-graft function was recorded. CYP3A5, CYP3A4, and ABCB1 genotype were not associated with dose-adjusted CsA C0 or C2. The incidence of BPAR in this cohort was 16% and was comparable between the different ABCB1 genotype groups. No significant difference in the incidence of BPAR was found between CYP3A5 expressers (10%) and nonexpressers (18%) (P = 0.24) nor was there a difference in the incidence of BPAR between CYP3A4*1 homozygotes (5%) versus CYP3A4*1B carriers (18%) (P = 0.13). There were no differences with regard to creatinine clearance between the different CYP3A and ABCB1 genotype groups. According to the results, determination of CYP3A and ABCB1 SNPs pretransplantation is not helpful in determining the CsA starting dose and does not aid in predicting the risk of BPAR or worse renal function in an individual patient.

  20. Beta-Amyloid Downregulates MDR1-P-Glycoprotein (Abcb1 Expression at the Blood-Brain Barrier in Mice

    Directory of Open Access Journals (Sweden)

    Anja Brenn

    2011-01-01

    Full Text Available Neurovascular dysfunction is an important component of Alzheimer's disease, leading to reduced clearance across the blood-brain barrier and accumulation of neurotoxic β-amyloid (Aβ peptides in the brain. It has been shown that the ABC transport protein P-glycoprotein (P-gp, ABCB1 is involved in the export of Aβ from the brain into the blood. To determine whether Aβ influences the expression of key Aβ transporters, we studied the effects of 1-day subcutaneous Aβ1-40 and Aβ1-42 administration via Alzet mini-osmotic pumps on P-gp, BCRP, LRP1, and RAGE expression in the brain of 90-day-old male FVB mice. Our results demonstrate significantly reduced P-gp, LRP1, and RAGE mRNA expression in mice treated with Aβ1-42 compared to controls, while BCRP expression was not affected. The expression of the four proteins was unchanged in mice treated with Aβ1-40 or reverse-sequence peptides. These findings indicate that, in addition to the age-related decrease of P-gp expression, Aβ1-42 itself downregulates the expression of P-gp and other Aβ-transporters, which could exacerbate the intracerebral accumulation of Aβ and thereby accelerate neurodegeneration in Alzheimer's disease and cerebral β-amyloid angiopathy.

  1. Association between ABCB1 (MDR1) gene 3435 C>T polymorphism and colchicine unresponsiveness of FMF patients.

    Science.gov (United States)

    Ozen, Filiz; Silan, Coskun; Uludag, Ahmet; Candan, Ferhan; Silan, Fatma; Ozdemir, Semra; Atik, Sinem; Ozdemir, Ozturk

    2011-01-01

    The multidrug resistance gene-1 (MDR1, adenosine triphosphate-binding cassette transporter: ABCB1, P-glycoprotein) encodes membrane proteins that play a crucial role in protecting cells from xenobiotics, chemicals, and drugs. The TT genotype of 3435 codon in exon 26 of MDR1 gene causes overexpression of gene activity and effluxes many chemically diverse compounds across the plasma membrane. We studied the association between C3435T polymorphisms (single nucleotide polymorphism) of MDR1 gene and colchicine-resistant familial Mediterranean fever (FMF) patients. Total genomic DNA samples from 52 FMF patients of colchicine unresponsiveness were used for FMF (MEFV) and MDR1 genes profile analyses. Target genes were genotyped by multiplex PCR-based reverse-hybridization Strip Assay method. The preliminary current results showed increased T allele frequency (0.596) in colchicine unresponsiveness of FMF patients. The distributions of the CC, CT, and TT genotypes in colchicine nonresponder FMF patients were 17%, 46%, and 37%, respectively. Our results indicate that C3435T polymorphism in exon 26 of MDR1 gene is associated with colchicine resistance in nonresponder FMF patients during the common therapy protocol.

  2. Distribution of ABCB1, CYP3A5, CYP2C19, and P2RY12 gene polymorphisms in a Mexican Mestizos population.

    Science.gov (United States)

    Vargas-Alarcón, Gilberto; Ramírez-Bello, Julián; de la Peña, Aurora; Calderón-Cruz, Beatriz; Peña-Duque, Marco Antonio; Martínez-Ríos, Marco Antonio; Ramírez-Fuentes, Silvestre; Pérez-Méndez, Oscar; Fragoso, José Manuel

    2014-10-01

    The aim of the present study was to establish the gene frequency of six polymorphisms of the ABCB1, CYP3A5, CYP2C19, and P2RY12 genes in a population resident of Mexico City. The proteins encoded by these genes have been associated with the absorption, and biotransformation of clopidogrel. The ABCB1 T3435C, CYP3A5 V3 A6986G, P2RY12 G52T, P2RY12 C34T, CYP2C19 V2 and V3 (positions G681A and G636A, respectively), polymorphisms were analyzed by 5' exonuclease TaqMan genotyping assays in a group of 269 healthy unrelated Mexican Mestizo individuals. The CYP2C19 V3 G636A polymorphism was not detected in the Mexican Mestizos population. However, the studied population presented significant differences (P Mestizos population from other ethnic groups.

  3. The distribution of genetic polymorphism of CYP3A5, CYP3A4 and ABCB1 in patients subjected to renal transplantation

    OpenAIRE

    Vavić Neven; Rančić Nemanja; Cikota-Aleksić Bojana; Magić Zvonko; Cimeša Jelena; Obrenčević Katarina; Radojević Milorad; Mikov Momir; Dragojević-Simić Viktorija

    2016-01-01

    Background/Aim. Polymorphisms of genes which encode transporter P-glycoprotein and most important enzymes for tacrolimus pharmacokinetics can have significant influence reflecting on blood concentrations of this drug. The aim of this study was to examine the distribution of polymorphisms of CYP3A5, CYP3A4 and ABCB1 genes in patients subjected to renal transplantation, for the first time in our transplantation center. Methods. The research was designed as a prospective cross-sectional study wh...

  4. Association of polymorphisms of CYP2C9, CYP2C19, and ABCB1, and activity of P-glycoprotein with response to anti-epileptic drugs

    Directory of Open Access Journals (Sweden)

    S R Taur

    2014-01-01

    Full Text Available Background and Objective: Epilepsy, the most common neurological disorder, has treatment failure rate of 20 to 25%. Inter-individual variability in drug response can be attributed to genetic polymorphism in genes encoding different drug metabolizing enzymes, drug transporters (P-gp, and enzymes involved in sodium channel biosynthesis. The present study attempted to evaluate association of polymorphisms of CYP2C9, CYP2C19, and ABCB1, and P-gp activity with treatment response in patients with epilepsy. Materials and Methods: Patients with epilepsy on phenytoin and/or phenobarbital and/or carbamazepine were categorized into responders and non-responders as per the International League Against Epilepsy. Plasma drug concentration was estimated by high-performance liquid chromatography. P-gp activity was measured by flow cytometry using rhodamine efflux. The polymerase chain reaction (PCR-RFLP was used to study polymorphisms of ABCB1 (C3435T, CYP2C9 (416 C > T, and 1061 A > T, and CYP2C19 (681 G > A and 636 G > A. Results: Of total 117 patients enrolled in this study, genotype data was available for 115 patients. P-gp activity was higher in non-responders (n = 68 compared to responders (n = 47 (P T and 1061 A > T in CYP2C9 or 681 G > A and 636 G > A in CYP2C19 was observed with response phenotype in genotypic analysis. Significant genotypic (odds ratio, OR = 4.5; 95% CI, 1.04 to 20.99 and allelic association (OR = 1.73; 95% CI, 1.02 to 2.95 was observed with ABCB1 C3435T and response phenotype. Conclusions: The response to antiepileptics seems to be modulated by C3435T in ABCB1 or P-gp activity. At present, role of other genetic factors in treatment responsiveness in epilepsy appears limited, warranting analysis in a larger cohort.

  5. Effects of genetic polymorphisms of OPRM1, ABCB1, CYP3A4/5 on postoperative fentanyl consumption in Korean gynecologic patients.

    Science.gov (United States)

    Kim, Kye-Min; Kim, Ho-Sook; Lim, Se Hun; Cheong, Soon Ho; Choi, Eun-Jung; Kang, Hyun; Choi, Hey-Ran; Jeon, Jin-Woo; Yon, Jun Heum; Oh, Minkyung; Shin, Jae-Gook

    2013-05-01

    Fentanyl, a μ-opioid receptor agonist, is a substrate of P-glycoprotein. Its metabolism is catalyzed by CYP3A4 and CYP3A5. The aim of this study was to investigate the association between postoperative fentanyl consumption and genetic polymorphisms of μ-opioid receptor (OPRM1), ABCB1 (gene encoding P-glycoprotein), CYP3A4 and CYP3A5 in Korean patients. 196 female patients scheduled to undergo total abdominal hysterectomy or laparoscopic assisted vaginal hysterectomy under general anesthesia were enrolled in this study. Intravenous patient-controlled analgesia with fentanyl was provided postoperatively. Cumulative fentanyl consumption was measured during the first 48 hours postoperatively. The severity of pain at rest was assessed with the visual analogue scale. OPRM1 118A>G, ABCB1 2677G>A/T, ABCB1 3435C>T, CYP3A4*18 and CYP3A5*3 variant alleles were genotyped. The effects of genetic and non-genetic factors on fentanyl requirements were evaluated with multiple linear regression analysis. The 24-hour cumulative fentanyl doses were significantly associated with pain core, weight and type of surgery (p pain score, type of surgery and history of PONV or motion sickness (p Korean gynecologic patients, no association was found between genetic factors and postoperative fentanyl consumption.

  6. The functional influences of common ABCB1 genetic variants on the inhibition of P-glycoprotein by Antrodia cinnamomea extracts.

    Directory of Open Access Journals (Sweden)

    Ming-Jyh Sheu

    Full Text Available Antrodia cinnamomea is a traditional healthy food that has been demonstrated to possess anti-inflammatory, antioxidative, and anticacer effects. The purpose of this study was to evaluate whether the ethanolic extract of A. cinnamomea (EEAC can affect the efflux function of P-glycoprotein (P-gp and the effect of ABCB1 genetic variants on the interaction between EEAC and P-gp. To investigate the mechanism of this interaction, Flp-In™-293 cells stably transfected with various genotypes of human P-gp were established and the expression of P-gp was confirmed by Western blot. The results of the rhodamine 123 efflux assay demonstrated that EEAC efficiently inhibited wild-type P-gp function at an IC50 concentration of 1.51 ± 0.08 µg/mL through non-competitive inhibition. The IC50 concentrations for variant-type 1236T-2677T-3435T P-gp and variant-type 1236T-2677A-3435T P-gp were 5.56 ± 0.49 µg/mL and 3.33±0.67 µg/mL, respectively. In addition, the inhibition kinetics of EEAC also changed to uncompetitive inhibition in variant-type 1236T-2677A-3435T P-gp. The ATPase assay revealed that EEAC was an ATPase stimulator and was capable of reducing verapamil-induced ATPase levels. These results indicate that EEAC may be a potent P-gp inhibitor and higher dosages may be required in subjects carrying variant-types P-gp. Further studies are required to translate this basic knowledge into clinical applications.

  7. Breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1) restrict oral availability and brain accumulation of the PARP inhibitor rucaparib (AG-014699).

    Science.gov (United States)

    Durmus, Selvi; Sparidans, Rolf W; van Esch, Anita; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H

    2015-01-01

    Rucaparib is a potent, orally available, small-molecule inhibitor of poly ADP-ribose polymerase (PARP) 1 and 2. Ongoing clinical trials are assessing the efficacy of rucaparib alone or in combination with other cytotoxic drugs, mainly in breast and ovarian cancer patients with mutations in the breast cancer associated (BRCA) genes. We aimed to establish whether the multidrug efflux transporters ABCG2 (BCRP) and ABCB1 (P-gp, MDR1) affect the oral availability and brain penetration of rucaparib in mice. In vitro, rucaparib was efficiently transported by both human ABCB1 and ABCG2, and very efficiently by mouse Abcg2. Transport could be inhibited by the small-molecule ABCB1 and ABCG2 inhibitors zosuquidar and Ko143, respectively. In vivo, oral availability (plasma AUC0-1 and AUC0-24) and brain levels of rucaparib at 1 and 24 h were increased by the absence of both Abcg2 and Abcb1a/1b after oral administration of rucaparib at 10 mg/kg. Our data show to our knowledge for the first time that oral availability and brain accumulation of a PARP inhibitor are markedly and additively restricted by Abcg2 and Abcb1a/1b. This may have clinical relevance for improvement of rucaparib therapy in PARP inhibitor-resistant tumors with ABCB1 and/or ABCG2 expression and in patients with brain (micro)metastases positioned behind a functional blood-brain barrier.

  8. Common variants of HMGCR, CETP, APOAI, ABCB1, CYP3A4, and CYP7A1 genes as predictors of lipid-lowering response to atorvastatin therapy.

    Science.gov (United States)

    Poduri, Aruna; Khullar, Madhu; Bahl, Ajay; Sehrawat, B S; Sharma, Yashpaul; Talwar, Kewal K

    2010-10-01

    There is interindividual variation in lipid-lowering response to statins. The objective of this study was to investigate whether common variation in genes involved in lipid and statin metabolism modify the effect of statins on serum total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), and high-density lipoprotein-cholesterol concentration in coronary artery disease (CAD) patients. We studied the association between 18 single-nucleotide polymorphisms (SNPs) in six genes (HMGCR, CETP, APOAI, ABCB1, CYP3A4, CYP7A1) in response to atorvastatin therapy (20 mg/day) in 265 newly diagnosed CAD patients using multivariable adjusted general linear regression. Variant alleles of ABCB1 (-41A/G), HMGCR SNP29 G/T, rs5908A/G, rs12916C/T, and CYP7A1-204A/C polymorphisms were significantly associated with attenuated LDL-C reduction and variant alleles of CETP TaqI, -629C/A, and APOAI PstI polymorphisms were associated with higher increase in high-density lipoprotein-cholesterol. A three-loci interaction model consisting of CYP7A1rs892871AA/APOAIPstIP1P1/HMGCR rs12916CT was a better predictor for LDL-C lowering, when compared with single polymorphisms analysis on statin response. Variant genotypes of APOAI -2500C/T, CETP 405I/V, and ABCB1 3435C/T showed higher risk of myocardial infarction events (p < 0.05) in a 1-year follow-up of CAD patients. These results suggest that SNPs in lipid and statin pathway genes are associated with reduced LDL-C lowering by statins and identify individuals who may be resistant to maximal LDL-C lowering by statins.

  9. Combination analysis of NOS3, ABCB1 and IL23R polymorphisms with alcohol-induced osteonecrosis of the femoral head risk in Chinese males.

    Science.gov (United States)

    Wang, Yuan; Yang, Xuejun; Shi, Jianping; Zhao, Yan; Pan, Linlin; Zhou, Jinqiu; Wang, Guoqiang; Wang, Jianzhong

    2017-05-16

    Common variants of multiple genes played a crucial role in osteonecrosis of the femoral head (ONFH) onset which was proved by many previous reports. We hypothesized that polymorphisms in NOS3, ABCB1 and IL23R were related to individual differences in alcohol sensitivity and the development of alcohol-induced ONFH. In this case-control study, we evaluated 8 SNPs in three genes in the Chinese Han population including 355 male cases and 355 healthy male controls. These SNPs were genotyped by Sequenom MassARRAY RS1000. To identify their relationship with alcohol-induced ONFH susceptibility using χ2 test and genetic model analysis. We found an association with alcohol-induced ONFH susceptibility for 4 SNPs (rs743506, rs3918184, rs13233308 and rs6693831) in three genes after adjusted by age. The genotype "G/A" of rs743506 in NOS3 gene acts as a risk factor in genotype (P = 0.003), dominant (P = 0.048), recessive (P = 0.005) and additive model(P = 0.006); The genotype "T/C" of rs3918184 in NOS3 gene acts as a risk factor in genotype (P = 0.012) and recessive model (P = 0.009); The genotype "T/C" of rs13233308 in ABCB1 gene acts as a risk factor in genotype (P = 0.038) and additive model(P = 0.041); The genotype "T/C" of rs6693831 in IL23R gene acts as a protective factor in genotype model (P = 0.046). This study provides evidence for three alcohol-induced ONFH susceptibility genes (NOS3, ABCB1 and IL23R) in Chinese males and polymorphisms of them may be associated with alcohol-induced ONFH risk.

  10. Polymorphism of CYP3A4 and ABCB1 genes increase the risk of neuropathy in breast cancer patients treated with paclitaxel and docetaxel

    Directory of Open Access Journals (Sweden)

    Kus T

    2016-08-01

    Full Text Available Tulay Kus,1 Gokmen Aktas,1 Mehmet Emin Kalender,1 Abdullah Tuncay Demiryurek,2 Mustafa Ulasli,1 Serdar Oztuzcu,3 Alper Sevinc,1 Seval Kul,4 Celaletdin Camci1 1Department of Internal Medicine, Division of Medical Oncology, University of Gaziantep, Gaziantep Oncology Hospital, Gaziantep, Turkey; 2Department of Medical Pharmacology, 3Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey; 4Department of Biostatistics, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey Background: Interindividual variability of pharmacogenetics may account for unpredictable neurotoxicities of taxanes. Methods: From March 2011 to June 2015, female patients with operable breast cancer who had received docetaxel- or paclitaxel-containing adjuvant chemotherapy were included in this study. All patients were treated with single-agent paclitaxel intravenously (IV 175 mg/m2 every 3 weeks for four cycles, or IV 80 mg/m2 weekly for 12 cycles, and IV 100 mg/m2 docetaxel for four cycles as adjuvant treatment. We evaluated the relationship between neurotoxicity of taxanes and single-nucleotide polymorphisms of ABCB1, CYP3A4, ERCC1, ERCC2, FGFR4, TP53, ERBB2, and CYP2C8 genes. Taxane-induced neurotoxicity during the treatment was evaluated according to the National Cancer Institute Common Toxicity Criteria version 4.03 prior to each cycle. Chi-squared tests were used to compare the two groups, and multivariate binary logistic regression models were used for determining possible risk factors of neuropathy. Results: Pharmacogenetic analysis was performed in 219 females. ABCB1 3435 TT genotype had significantly higher risk for grade ≥2 neurotoxicity (odds ratio [OR]: 2.759, 95% confidence interval [CI]: 1.172–6.493, P: 0.017 compared to TC and CC genotype, and also CYP3A4 392 AA and AG genotype had significantly higher risk for grade ≥2 neurotoxicity (OR: 2.259, 95% CI: 1.033–4.941, P: 0.038 compared to GG genotype. For

  11. Single nucleotide polymorphisms of ABCB1 gene and response to etanercept treatment in patients with ankylosing spondylitis in a Chinese Han population

    Science.gov (United States)

    Yan, Rui-Jian; Lou, Ting-Ting; Wu, Yi-Fang; Chen, Wei-Shan

    2017-01-01

    Abstract Background: Etanercept was highly recommended for patients with ankylosing spondylitis (AS), as its efficacy has been confirmed in AS, while genetic polymorphisms, by affecting drug metabolism or drug receptor, lead to interindividual variability in drug disposition and efficacy. Therefore, this study aims to investigate whether ABCB1 gene polymorphisms can predict therapeutic response to etanercept in patients with AS. Methods: A total of 185 patients with AS in our hospital were recruited into our study from December 2012 to May 2015. The frequency distributions of genotype and allele of rs2032582, rs1128503, and rs1045642 were detected by polymerase chain reaction (PCR) and electrophoresis verification enzyme products method. AS patients received etanercept treatment for 12 weeks, followed by this would be evaluated by the bath AS disease activity index (BASDAI) score improvement and the assessment of spondyloArthritis international society 20/50/70 (ASAS20/50/70) score improvements to explore the relationship between genotype of ABCB1 gene polymorphisms and therapeutic response to etanercept in patients with AS. Results: After 12 weeks, the BASDAI score mean improvement value of rs2032582 A/A genotype was 2.87 ± 0.52. The ratios of patients with rs2032582 A/A genotype reaching the BASDAI50 and ASAS20 evaluation criteria were 64.29% and 92.86%, respectively. The results indicated that efficacy of etanercept was promoted in rs2032582 A/A genotype. The BASDAI score mean improvement value of rs1128503 C/C genotype was 2.79 ± 0.54 after 12 weeks. The ratios of patients with rs1128503 C/C genotype reaching the BASDAI50 and ASAS20 evaluation criteria were 66.67% and 93.94%, respectively. The results indicated that efficacy of etanercept was promoted in rs1128503 C/C genotype. However, no significant associations were observed between rs1045642 and therapeutic response to etanercept in AS patients. Conclusion: ABCB1 gene rs2032582 and rs1128503

  12. Association of the dopamine transporter (SLC6A3/DAT1) gene 9-6 haplotype with adult ADHD

    NARCIS (Netherlands)

    Franke, B.; Hoogman, M.; Vasquez, A Arias; Heister, J.G.A.M.; Savelkoul, P.J.M.; Naber, M.; Scheffer, H.; Kiemeney, L.A.L.M.; Kan, C.C.; Kooij, J.J.; Buitelaar, J.K.

    2008-01-01

    ADHD is a neuropsychiatric disorder characterized by chronic hyperactivity, inattention and impulsivity, which affects about 5% of school-age children. ADHD persists into adulthood in at least 15% of cases. It is highly heritable and familial influences seem strongest for ADHD persisting into

  13. Polymorphism of CYP3A4 and ABCB1 genes increase the risk of neuropathy in breast cancer patients treated with paclitaxel and docetaxel

    Science.gov (United States)

    Kus, Tulay; Aktas, Gokmen; Kalender, Mehmet Emin; Demiryurek, Abdullah Tuncay; Ulasli, Mustafa; Oztuzcu, Serdar; Sevinc, Alper; Kul, Seval; Camci, Celaletdin

    2016-01-01

    Background Interindividual variability of pharmacogenetics may account for unpredictable neurotoxicities of taxanes. Methods From March 2011 to June 2015, female patients with operable breast cancer who had received docetaxel- or paclitaxel-containing adjuvant chemotherapy were included in this study. All patients were treated with single-agent paclitaxel intravenously (IV) 175 mg/m2 every 3 weeks for four cycles, or IV 80 mg/m2 weekly for 12 cycles, and IV 100 mg/m2 docetaxel for four cycles as adjuvant treatment. We evaluated the relationship between neurotoxicity of taxanes and single-nucleotide polymorphisms of ABCB1, CYP3A4, ERCC1, ERCC2, FGFR4, TP53, ERBB2, and CYP2C8 genes. Taxane-induced neurotoxicity during the treatment was evaluated according to the National Cancer Institute Common Toxicity Criteria version 4.03 prior to each cycle. Chi-squared tests were used to compare the two groups, and multivariate binary logistic regression models were used for determining possible risk factors of neuropathy. Results Pharmacogenetic analysis was performed in 219 females. ABCB1 3435 TT genotype had significantly higher risk for grade ≥2 neurotoxicity (odds ratio [OR]: 2.759, 95% confidence interval [CI]: 1.172–6.493, P: 0.017) compared to TC and CC genotype, and also CYP3A4 392 AA and AG genotype had significantly higher risk for grade ≥2 neurotoxicity (OR: 2.259, 95% CI: 1.033–4.941, P: 0.038) compared to GG genotype. For FDGF4 gene with AG and GG genotype, OR was 1.879 (95% CI: 1.001–3.525, P: 0.048) compared to AA genotype with regard to any grade of neuropathy risk. We could not find any other association of other genotypes with neurotoxicity grades. Conclusion ABCB1 3435 TT genotype and CYP3A4 392 AA/AG genotypes may be used as predictors of neurotoxicity during taxane chemotherapy. PMID:27574448

  14. ABCB1-Gen-Polymorphismus in einer polnischen Kohorte ist mit Risiko für bullöses Pemphigoid assoziiert.

    Science.gov (United States)

    Rychlik-Sych, Mariola; Barańska, Małgorzata; Dudarewicz, Michał; Skrętkowicz, Jadwiga; Żebrowska, Agnieszka; Owczarek, Jacek; Waszczykowska, Elżbieta

    2017-05-01

    Polymorphismen im ABCB1-Gen, das für das P-Glykoprotein kodiert, können die intrazelluläre Konzentration von Xenobiotika beeinflussen und so zur Entwicklung von Autoimmunerkrankungen, einschließlich des bullösen Pemphigoids (BP), beitragen. In der vorliegenden Studie sollte untersucht werden, ob in einer polnischen Kohorte die C3435T- und G2677T/A-Polymorphismen im ABCB1-Gen mit dem Risiko für ein BP assoziiert sind. Die Studie umfasste 71 Patienten mit BP und 156 gesunde Probanden. Der C3435T-Polymorphismus wurde mittels PCR-RFLP bestimmt und der G2677T/A-Polymorphismus mittels Allel-spezifischer PCR. Es gab zwar keine Korrelation zwischen dem C3435-Polymorphismus und dem BP-Risiko, aber wir konnten eine derartige Assoziation hinsichtlich des G2677T/A-Polymorphismus nachweisen. Das relative Risiko eines BP war bei Personen mit dem 2677TA-Genotyp um mehr als den Faktor fünf erhöht (OR = 5,52; p = 0,0063) und bei Trägern des 2677TT-Genotyps mehr als verdoppelt (OR = 2,40; p = 0,0076). Mit 2,40 (p = 0,000018) war die OR bei Trägern des 2677T-Allels ebenfalls erhöht. Die höhere Prävalenz des 2677GG-Genotyps und des 2677G-Allels bei der Kontrollgruppe sowie eine OR < 1,0 (0,22 beziehungsweise 0,33) legen eine Schutzfunktion des 2677G-Allels hinsichtlich der Ausbildung eines BP nahe. Die Ergebnisse der vorliegenden Studie zeigen, dass der G2677T/A-Polymorphismus im ABCB1-Gen das Risiko für die Entstehung eines BP beeinflussen könnte. © 2017 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  15. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Svenningsen, Katrine; Almind Knudsen, Lina;

    2015-01-01

    AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development. METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette....../Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes...... translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters...

  16. IPEC-J2 MDR1, a Novel High-Resistance Cell Line with Functional Expression of Human P-glycoprotein (ABCB1) for Drug Screening Studies

    DEFF Research Database (Denmark)

    Saaby, Lasse; Helms, Hans Christian Cederberg; Brodin, Birger

    2016-01-01

    The P-glycoprotein (P-gp) efflux pump has been shown to affect drug distribution and absorption in various organs and to cause drug resistance in cancer therapy. The aim of this work was to develop a cell line to serve as a screening system for potential substrates of P-gp. This requires a cell...... line with high paracellular tightness, low expression of nonhuman ABC transporters, and high expression of functional human P-gp (ABCB1). The porcine intestinal epithelial cell line, IPEC-J2, was selected as a transfection host, due to its ability to form extremely high-resistance monolayers (>10,000 Ω...... for the efflux transport by substrate profiling, combined with application of P-gp and BCRP inhibitors. Furthermore, the compounds atenolol, citalopram, and mitoxantrone were identified as P-gp substrates. Functional P-gp expression was shown to be stable through at least 10 cell passages. In conclusion...

  17. Protein phosphatase complex PP5/PPP2R3C dephosphorylates P-glycoprotein/ABCB1 and down-regulates the expression and function.

    Science.gov (United States)

    Katayama, Kazuhiro; Yamaguchi, Miho; Noguchi, Kohji; Sugimoto, Yoshikazu

    2014-04-01

    P-glycoprotein (P-gp)/ABCB1 is a key molecule of multidrug resistance in cancer. Protein phosphatase (PP) 2A, regulatory subunit B, gamma (PPP2R3C), which is a regulatory subunit of PP2A and PP5, was identified as a binding candidate to P-gp. Immunoprecipitation-western blotting revealed that PP5 and PPP2R3C were coprecipitated with P-gp, while PP2A was not. PP5/PPP2R3C dephosphorylated protein kinase A/protein kinase C-phosphorylation of P-gp. Knockdown of PP5 and/or PPP2R3C increased P-gp expression and lowered the sensitivity to vincristine and doxorubicin. Consequently, our results indicate that PP5/PPP2R3C negatively regulates P-gp expression and function.

  18. Selected ABCB1, ABCB4 and ABCC2 Polymorphisms Do Not Enhance the Risk of Drug-Induced Hepatotoxicity in a Spanish Cohort

    Science.gov (United States)

    Ulzurrun, Eugenia; Stephens, Camilla; Ruiz-Cabello, Francisco; Robles-Diaz, Mercedes; Saenz-López, Pablo; Hallal, Hacibe; Soriano, German; Roman, Eva; Fernandez, M. Carmen; Lucena, M. Isabel; Andrade, Raúl J.

    2014-01-01

    Background and Aims Flawed ABC transporter functions may contribute to increased risk of drug-induced liver injury (DILI). We aimed to analyse the influence of genetic variations in ABC transporters on the risk of DILI development and clinical presentations in a large Spanish DILI cohort. Methods A total of ten polymorphisms in ABCB1 (1236T>C, 2677G>T,A, 3435T>C), ABCB4 (1954A>G) and ABCC2 (−1774G>del, −1549A>G, −24C>T, 1249G>A, 3972C>T and 4544G>A) were genotyped using Taqman 5′ allelic discrimination assays or sequencing in 141 Spanish DILI patients and 161 controls. The influence of specific genotypes, alleles and haplotypes on the risk of DILI development and clinical presentations was analysed. Results None of the individual polymorphisms or haplotypes was found to be associated with DILI development. Carriers homozygous for the ABCC2 −1774del allele were however only found in DILI patients. Hence, this genotype could potentially be associated with increased risk, though its low frequency in our Spanish cohort prevented a final conclusion. Furthermore, carriers homozygous for the ABCC2 −1774G/−1549A/−24T/1249G/3972T/4544G haplotype were found to have a higher propensity for total bilirubin elevations when developing DILI. Conclusions Our findings do not support a role for the analysed polymorphisms in the ABCB1, ABCB4 and ABCC2 transporter genes in DILI development in Spanish patients. The ABCC2 −1774deldel genotype was however restricted to DILI cases and could potentially contribute to enhanced DILI susceptibility. PMID:24732756

  19. Imatinib Reverses Doxorubicin Resistance by Affecting Activation of STAT3-Dependent NF-κB and HSP27/p38/AKT Pathways and by Inhibiting ABCB1

    Science.gov (United States)

    Sims, Jonathan T.; Ganguly, Sourik S.; Bennett, Holly; Friend, J. Woodrow; Tepe, Jessica; Plattner, Rina

    2013-01-01

    Despite advances in cancer detection and prevention, a diagnosis of metastatic disease remains a death sentence due to the fact that many cancers are either resistant to chemotherapy (conventional or targeted) or develop resistance during treatment, and residual chemoresistant cells are highly metastatic. Metastatic cancer cells resist the effects of chemotherapeutic agents by upregulating drug transporters, which efflux the drugs, and by activating proliferation and survival signaling pathways. Previously, we found that c-Abl and Arg non-receptor tyrosine kinases are activated in breast cancer, melanoma, and glioblastoma cells, and promote cancer progression. In this report, we demonstrate that the c-Abl/Arg inhibitor, imatinib (imatinib mesylate, STI571, Gleevec), reverses intrinsic and acquired resistance to the anthracycline, doxorubicin, by inducing G2/M arrest and promoting apoptosis in cancer cells expressing highly active c-Abl and Arg. Significantly, imatinib prevents intrinsic resistance by promoting doxorubicin-mediated NF-κB/p65 nuclear localization and repression of NF-κB targets in a STAT3-dependent manner, and by preventing activation of a novel STAT3/HSP27/p38/Akt survival pathway. In contrast, imatinib prevents acquired resistance by inhibiting upregulation of the ABC drug transporter, ABCB1, directly inhibiting ABCB1 function, and abrogating survival signaling. Thus, imatinib inhibits multiple novel chemoresistance pathways, which indicates that it may be effective in reversing intrinsic and acquired resistance in cancers containing highly active c-Abl and Arg, a critical step in effectively treating metastatic disease. Furthermore, since imatinib converts a master survival regulator, NF-κB, from a pro-survival into a pro-apoptotic factor, our data suggest that NF-κB inhibitors may be ineffective in sensitizing tumors containing activated c-Abl/Arg to anthracyclines, and instead might antagonize anthracycline-induced apoptosis. PMID:23383209

  20. ABCB1基因位点(C3435T)多态性与癫痫耐药关联性的Meta分析%Meta analysis of relationship between polymorphism of gene site (C3435T) of ABCB1 and antiepileptic drug resistant

    Institute of Scientific and Technical Information of China (English)

    彭锐; 张洪; 张英; 魏丹芸

    2015-01-01

    目的:探讨ABCB1的基因位点(C3435T)多态性与癫痫耐药关联性。方法计算机检索Pubmed、Science direct、Wiley online library、Web of Science、中国知网、万方数据库和维普中文科技期刊数据库,纳入抗癫痫药耐药与抗癫痫药敏感的随机对照试验,同时查阅检索结果中所附相似文献及参考文献,检索文献均为建库至2014年6月15日。由两名评价员单独进行文献筛选及资料提取,采用RevMan 5.0软件进行Meta分析及其他统计学分析。结果共纳入文献10篇,癫痫患者中耐药815例,敏感976例。Meta分析结果显示,C3435T位点多态性在等位基因模型、显性模型、隐性模型、共显性模型(CC/TT组)下整体效应差异有统计学意义(P0.05);而印度地区ABCB1 C3435T位点基因多态性与癫痫耐药在等位基因模型和隐性基因模型下整体效应差异有统计学意义(P0.05). In the allele gene model, OR=0.70, 95%CI (0.54, 0.93);recessive gene model, OR=0.72, 95%CI (0.49, 1.07). Conclusion ABCB1 C3435T loci polymor-phism dose not relate to the antiepileptic drug resistant among Chinese; but ABCB1 C3435T loci polymorphism relates to the antiepileptic drug resistant among Indian.

  1. Aryl hydrocarbon receptor regulates CYP1B1 but not ABCB1 and ABCG2 in hCMEC/D3 human cerebral microvascular endothelial cells after TCDD exposure.

    Science.gov (United States)

    Jacob, Aude; Potin, Sophie; Chapy, Hélène; Crete, Dominique; Glacial, Fabienne; Ganeshamoorthy, Kayathiri; Couraud, Pierre-Olivier; Scherrmann, Jean-Michel; Declèves, Xavier

    2015-07-10

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor activated by a variety of widespread persistent environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). It can transactivate the expression of several target genes. Recently AhR transcripts were detected in isolated human brain microvessels and in the hCMEC/D3 human cerebral microvascular endothelial cell line, an in vitro model of the human cerebral endothelium. To date AhR implication in the co-regulation of ABCB1, ABCG2 and CYP1B1 at human cerebral endothelium has not been addressed. Here we investigated whether AhR could co-regulate ABCB1, ABCG2 and CYP1B1 expressions in the hCMEC/D3 cell line. Exposure to TCDD induced a concentration-dependent increase in CYP1B1 expression. We demonstrated AhR involvement in the TCDD-mediated increase in CYP1B1 expression by using small interfering RNA against AhR. Western blotting analysis also revealed an increase in CYP1B1 protein expression following TCDD exposure in hCMEC/D3. Regarding ABCB1 and ABCG2, exposure to TCDD had no effect on their protein expressions and functional activities. In conclusion our data indicated a differential modulation of CYP1B1 and ABCB1/ABCG2 expressions in hCMEC/D3 cells following TCDD exposure.

  2. PET-CT imaging with [18F]-gefitinib to measure Abcb1a/1b (P-gp) and Abcg2 (Bcrp1) mediated drug-drug interactions at the murine blood-brain barrier

    NARCIS (Netherlands)

    Vlaming, M.L.H.; Läppchen, T.; Jansen, H.T.; Kivits, S.; Driel, A. van; Steeg, E. van der; Hoorn, J.W. van der; Sio, C.F.; Steinbach, O.C.; Groot, J. de

    2015-01-01

    Introduction: The efflux transporters P-glycoprotein (P-gp, ABCB1) and breast cancer resistance protein (BCRP, ABCG2) are expressed at the blood-brain barrier (BBB), and can limit the access of a wide range of drugs to the brain. In this study we developed a PET-CT imaging method for non-invasive, q

  3. The ABCB1, rs9282564, AG and TT Genotypes and the COMT, rs4680, AA Genotype are Less Frequent in Deceased Patients with Opioid Addiction than in Living Patients with Opioid Addiction

    DEFF Research Database (Denmark)

    Christoffersen, Dorte J; Damkier, Per; Feddersen, Søren

    2016-01-01

    because morphine and methadone more readily cross the blood-barrier in these subjects due to a lower efflux transporter activity of the ABCB1 (p-glycoprotein) transporter. Our results did not support this hypothesis, since no statistically significant difference (p=0.506) in the frequency of the TT...

  4. Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar.

    NARCIS (Netherlands)

    Tang, S.C.; Nguyen, L.N.; Sparidans, R.W.; Wagenaar, E.; Beijnen, J.H.; Schinkel, A.H.

    2014-01-01

    Crizotinib is an oral tyrosine kinase inhibitor approved for treating patients with non-small cell lung cancer (NSCLC) containing an anaplastic lymphoma kinase (ALK) rearrangement. We used knockout mice to study the roles of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) in

  5. Brain Accumulation of Ponatinib and Its Active Metabolite, N-Desmethyl Ponatinib, Is Limited by P-Glycoprotein (P-GP/ABCB1) and Breast Cancer Resistance Protein (BCRP/ABCG2).

    Science.gov (United States)

    Kort, Anita; van Hoppe, Stéphanie; Sparidans, Rolf W; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H

    2017-10-02

    Ponatinib is an oral BCR-ABL1 inhibitor for treatment of advanced leukemic diseases that carry the Philadelphia chromosome, specifically containing the T315I mutation yielding resistance to previously approved BCR-ABL1 inhibitors. Using in vitro transport assays and knockout mouse models, we investigated whether the multidrug efflux transporters ABCB1 and ABCG2 transport ponatinib and whether they, or the drug-metabolizing enzyme CYP3A, affect the oral availability and brain accumulation of ponatinib and its active N-desmethyl metabolite (DMP). In vitro, mouse Abcg2 and human ABCB1 modestly transported ponatinib. In mice, both Abcb1 and Abcg2 markedly restricted brain accumulation of ponatinib and DMP, but not ponatinib oral availability. Abcg2 deficiency increased DMP plasma levels ∼3-fold. Cyp3a deficiency increased the ponatinib plasma AUC 1.4-fold. Our results suggest that pharmacological inhibition of ABCG2 and ABCB1 during ponatinib therapy might benefit patients with brain (micro)metastases positioned behind an intact blood-brain barrier, or with substantial expression of these transporters in the malignant cells. CYP3A inhibitors might increase ponatinib oral availability, enhancing efficacy but possibly also toxicity of this drug.

  6. Brain accumulation of the EML4-ALK inhibitor ceritinib is restricted by P-glycoprotein (P-GP/ABCB1) and breast cancer resistance protein (BCRP/ABCG2)

    NARCIS (Netherlands)

    Kort, Anita; Sparidans, Rolf; Wagenaar, Els; Beijnen, Jacob; Schinkel, Alfred H.

    2015-01-01

    We aimed to clarify the roles of the multidrug transporters ABCB1 and ABCG2 in oral availability and brain accumulation of ceritinib, an oral anaplastic lymphoma kinase (ALK) inhibitor used to treat metastatic non-small cell lung cancer (NSCLC) after progression on crizotinib. Importantly, NSCLC is

  7. Pharmacogenetic evaluation of ABCB1, Cyp2C9, Cyp2C19 and methylene tetrahydrofolate reductase polymorphisms in teratogenicity of anti-epileptic drugs in women with epilepsy

    Directory of Open Access Journals (Sweden)

    Manna Jose

    2014-01-01

    Full Text Available Aim: Pregnancy in women with epilepsy (WWE who are on anti-epileptic drugs (AEDs has two- to three-fold increased risk of fetal malformations. AEDs are mostly metabolized by Cyp2C9, Cyp2C19 and Cyp3A4 and transported by ABCB1. Patients on AED therapy can have folate deficiency. We hypothesize that the polymorphisms in ABCB1, Cyp2C9, Cyp2C19 and methylene tetrahydrofolate reductase (MTHFR might result in differential expression resulting in differential drug transport, drug metabolism and folate metabolism, which in turn may contribute to the teratogenic impact of AEDs. Materials and Methods: The ABCB1, Cyp2C9, Cyp2C19 and MTHFR polymorphisms were genotyped for their role in teratogenic potential and the nature of teratogenecity in response to AED treatment in WWE. The allelic, genotypic associations were tested in 266 WWE comprising of 143 WWE who had given birth to babies with WWE-malformation (WWE-M and 123 WWE who had normal offsprings (WWE-N. Results: In WWE-M, CC genotype of Ex07 + 139C/T was overrepresented (P = 0.0032 whereas the poor metabolizer allele FNx012 and FNx012 FNx012 genotype of CYP2C219 was significantly higher in comparison to WWE-N group (P = 0.007 and P = 0.005, respectively. All these observations were independent of the nature of malformation (cardiac vs. non cardiac malformations. Conclusion: Our study indicates the possibility that ABCB1 and Cyp2C19 may play a pivotal role in the AED induced teratogenesis, which is independent of nature of malformation. This is one of the first reports indicating the pharmacogenetic role of Cyp2C19 and ABCB1 in teratogenesis of AED in pregnant WWE.

  8. Expression of multidrug resistance markers ABCB1 (MDR-1/P-gp) and ABCC1 (MRP-1) in renal cell carcinoma.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Renal cell carcinoma patients respond poorly to conventional chemotherapy, this unresponsiveness may be attributable to multidrug resistance (MDR). The mechanisms of MDR in renal cancer are not fully understood and the specific contribution of ABC transporter proteins which have been implicated in the chemoresistance of various cancers has not been fully defined in this disease. METHODS: In this retrospective study the expression of two of these transporter efflux pumps, namely MDR-1 P-gp (ABCB1) and MRP-1 (ABCC1) were studied by immunohistochemistry in archival material from 95 renal cell carcinoma patients. RESULTS: In the first study investigating MDR-1 P-gp and MRP-1 protein expression patterns in renal cell carcinoma patients, high levels of expression of both efflux pumps are observed with 100% of tumours studied showing MDR-1 P-gp and MRP-1 positivity. CONCLUSION: Although these findings do not prove a causal role, the high frequency of tumours expressing these efflux pumps suggests that they may be important contributors to the chemoresistance of this tumour type.

  9. ABCB1, ABCC2, SCN1A, SCN2A, GABRA1 gene polymorphisms and drug resistant epilepsy in the Chinese Han population.

    Science.gov (United States)

    Zhou, Luo; Cao, Yuze; Long, Hongyu; Long, Lili; Xu, Lin; Liu, Zhaoqian; Zhang, Ying; Xiao, Bo

    2015-06-01

    Drug resistance is common in epilepsy despite multiple available medications. Single nucleotide polymorphisms (SNP) may influence drug efficacy in epilepsy. We therefore aimed to clarify the association between polymorphisms of several controversial SNP loci and drug resistance in Chinese Han epilepsy patients from central China. Among all the 391 recruited subjects, 235 and 156 patients were classified into a drug responsive and resistant group, respectively, according to the definition of drug resistance proposed by the International League Against Epilepsy. The candidate SNP loci, including ATP-binding cassette (ABC) subfamily gene ABCB1 rs2032582 and rs1045642; ABC subfamily gene ABCC2 rs717620 and rs2273697; sodium channel subunit gene SCN1A rs3812718, SCN2A rs2304016; γ-amino butyric acid type A (GABAA) receptor subunit subtype gene GABRA1 rs2279020 were genotyped following the Illumina protocols. There were no significant differences in allelic or genotypic frequencies between the drug responsive and resistant patients. The polymorphisms of the above SNP loci may not be associated with drug resistance of epilepsy in the Chinese Han population.

  10. Triallelic single nucleotide polymorphisms and genotyping error in genetic epidemiology studies: MDR1 (ABCB1) G2677/T/A as an example.

    Science.gov (United States)

    Hüebner, Claudia; Petermann, Ivonne; Browning, Brian L; Shelling, Andrew N; Ferguson, Lynnette R

    2007-06-01

    Accurate measurement of allele frequencies between population groups with differing sensitivities to disease is fundamental to genetic epidemiology. Genotyping errors can markedly influence the biological conclusions of a study. This issue may be especially important now there is increasing recognition of triallelic single nucleotide polymorphisms (SNPs) in the genome and their possible role in diseases like inflammatory bowel disease. For example, the MDR1 (ABCB1) SNP G2677/T/A was, like many other triallelic SNPs, originally described as diallelic. Here, we report a comprehensive analyses of estimated allele frequencies of this SNP in a set of 73 human DNA samples, comparing six commonly used genotyping methods (Applied Biosystems Taqman, Roche LightCycler melting analysis, allelic discrimination PCR, DNA sequencing, Sequenom, and RFLP) from the angle of their error potential. Only Sequenom and DNA sequencing provided accurate measurements, if we had not had prior knowledge of the triallelic nature of this SNP. The other tested methods (with the exception of LightCycler) failed to show any indication of the presence of the rare third A- allele in a diallelic assay. Although most of the errors were due to the inability to detect the third allele, all methods except Sequenom and sequencing produced errors for the detection of the two common alleles G and T (LightCycler, 6 errors; PCR, 4 errors; RFLP, 2 errors; Taqman, 1 error). There is considerable variability in the reported frequencies of the different alleles of the MDR1 G2677/T/A SNP, and the role of this SNP in the etiology of inflammatory bowel disease has been controversial. Our data emphasize the importance of choosing the appropriate method for SNP detection and lead us to suggest that part of the previously reported variation may reflect artifacts associated with the different genotyping methodologies used. The failure to recognize the triallic nature of a SNP may lead to underestimations of real genetic

  11. Evaluation of P-glycoprotein (abcb1a/b) modulation of [(18)F]fallypride in MicroPET imaging studies.

    Science.gov (United States)

    Piel, Markus; Schmitt, Ulrich; Bausbacher, Nicole; Buchholz, Hans-Georg; Gründer, Gerhard; Hiemke, Christoph; Rösch, Frank

    2014-09-01

    [(18)F]Fallypride ([(18)F]FP) is an important and routinely used D2/D3 antagonist for quantitative imaging of dopaminergic neurotransmission in vivo. Recently it was shown that the brain uptake of the structurally related [(11)C]raclopride is modulated by P-glycoprotein (P-gp), an important efflux transporter at the blood-brain barrier. The purpose of this study was to determine whether the brain uptake of [(18)F]FP is influenced by P-gp. For examination of this possible modulation microPET studies were performed in a rat and a mouse model. Hence, [(18)F]FP was applied to Sprague Dawley rats, half of them being treated with the P-gp inhibitor cyclosporine A (CsA). In a second experimental series the tracer was applied to three different groups of FVB/N mice: wild type, P-gp double knockout (abcb1a/1b (-/-)) and CsA-treated mice. In CsA-treated Sprague Dawley rats [(18)F]FP showed an elevated standard uptake value in the striatum compared to the control animals. In FVB/N mice a similar effect was observed, showing an increasing uptake from wild type to CsA-treated and double knockout mice. Since genetically or pharmacologically induced reduction of P-gp activity increased the uptake of [(18)F]FP markedly, we conclude that [(18)F]FP is indeed a substrate of P-gp and that the efflux pump modulates its brain uptake. This effect - if true for humans - may have particular impact on clinical studies using [(18)F]FP for assessment of D2/3 receptor occupancy by antipsychotic drugs. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.

  12. Conformational analysis of human ATP-binding cassette transporter ABCB1 in lipid nanodiscs and inhibition by the antibodies MRK16 and UIC2.

    Science.gov (United States)

    Ritchie, Tasha K; Kwon, Hyewon; Atkins, William M

    2011-11-11

    The human ATP-binding cassette (ABC) transporter, P-glycoprotein (P-gp; ABCB1), mediates the ATP-dependent efflux of a variety of drugs. As a result, P-gp plays a critical role in tumor cell drug resistance and the pharmacokinetic properties of most drugs. P-gp exhibits extraordinary substrate and inhibitor promiscuity, resulting in a wide range of possible drug-drug interactions. Inhibitory antibodies have long been considered as a possible strategy to modulate P-gp-dependent cancer cell drug resistance, and it is widely suggested that the antibodies MRK16 and UIC2 inhibit P-gp by capturing a single isoform and preventing flux through the catalytic cycle. Although the crystal structures of many bacterial whole transporters, as well as isolated nucleotide-binding domains, have been solved, high resolution structural data for mammalian ABC transporters are currently lacking. It has been extremely difficult to determine the detailed mechanism of transport of P-gp, in part because it is difficult to obtain purified protein in well defined lipid systems. Here we exploit surface plasmon resonance (SPR) to probe conformational changes associated with these intermediate states for P-gp in lipid bilayer nanodiscs. The results indicate that P-gp in nanodiscs undergoes functionally relevant ligand-dependent conformational changes and that previously described inhibitory antibodies bind to multiple nucleotide-bound states but not the ADP-VO(4)-trapped state, which mimics the post-hydrolysis state. The results also suggest that the substrate drug vinblastine is released at stages that precede or follow the post-hydrolysis ADP-PO(4)·P-gp complex.

  13. Multiplicity of acquired cross-resistance in paclitaxel-resistant cancer cells is associated with feedback control of TUBB3 via FOXO3a-mediated ABCB1 regulation

    Science.gov (United States)

    Aldonza, Mark Borris D.; Hong, Ji-Young; Alinsug, Malona V.; Song, Jayoung; Lee, Sang Kook

    2016-01-01

    Acquired drug resistance is a primary obstacle for effective cancer therapy. The correlation of point mutations in class III β-tubulin (TUBB3) and the prominent overexpression of ATP-binding cassette P-glycoprotein (ABCB1), a multidrug resistance gene, have been protruding mechanisms of resistance to microtubule disruptors such as paclitaxel (PTX) for many cancers. However, the precise underlying mechanism of the rapid onset of cross-resistance to an array of structurally and functionally unrelated drugs in PTX-resistant cancers has been poorly understood. We determined that our established PTX-resistant cancer cells display ABCB1/ABCC1-associated cross-resistance to chemically different drugs such as 5-fluorouracil, docetaxel, and cisplatin. We found that feedback activation of TUBB3 can be triggered through the FOXO3a-dependent regulation of ABCB1, which resulted in the accentuation of induced PTX resistance and encouraged multiplicity in acquired cross-resistance. FOXO3a-directed regulation of P-glycoprotein (P-gp) function suggests that control of ABCB1 involves methylation-dependent activation. Consistently, transcriptional overexpression or downregulation of FOXO3a directs inhibitor-controlled protease-degradation of TUBB3. The functional PI3K/Akt signaling is tightly responsive to FOXO3a activation alongside doxorubicin treatment, which directs FOXO3a arginine hypermethylation. In addition, we found that secretome factors from PTX-resistant cancer cells with acquired cross-resistance support a P-gp-dependent association in multidrug resistance (MDR) development, which assisted the FOXO3a-mediated control of TUBB3 feedback. The direct silencing of TUBB3 reverses induced multiple cross-resistance, reduces drug-resistant tumor mass, and suppresses the impaired microtubule stability status of PTX-resistant cells with transient cross-resistance. These findings highlight the control of the TUBB3 response to ABCB1 genetic suppressors as a mechanism to reverse the

  14. The ABCB1, rs9282564, AG and TT Genotypes and the COMT, rs4680, AA Genotype are Less Frequent in Deceased Patients with Opioid Addiction than in Living Patients with Opioid Addiction.

    Science.gov (United States)

    Christoffersen, Dorte J; Damkier, Per; Feddersen, Søren; Möller, Sören; Thomsen, Jørgen L; Brasch-Andersen, Charlotte; Brøsen, Kim

    2016-10-01

    Sudden death due to acute intoxication occurs frequently in patients with opioid addiction (OA). To examine whether certain genotypes were associated with this, we examined the frequencies of 29 SNPs located in candidate genes related to opioid pharmacology: ABCB1, OPRM1, UGT2B7, CYP3A5, CYP2B6, CYP2C19, CYP2D6, COMT, KCNJ6 and SCN9A in 274 deceased patients with OA (DOA), 309 living patients with OA (LOA) and in 394 healthy volunteers (HV). The main hypothesis of the study was that subjects homozygous for the variant 3435T in ABCB1 (rs1045642) occur more frequently in DOA than in LOA and HV because morphine and methadone more readily cross the blood barrier in these subjects due to a lower efflux transporter activity of the ABCB1 (p-glycoprotein) transporter. Our results did not support this hypothesis, because no statistically significant difference (p = 0.506) in the frequency of the TT genotype of rs1045642 was observed between the DOA, LOA and HV cohorts. However, for another ABCB1 variant, rs9282564, we found that the frequencies of the AG and TT genotypes were 13, 21 and 25% in DOA, LOA and HV, respectively, and after correcting for age, sex and multiple testing, the differences between DOA and LOA were statistically significantly different (p = 0.027). The COMT rs4680 AA genotype frequencies were 25%, 35% and 31% in DOA, LOA and HV, respectively, and the difference between DOA and LOA was also statistically significant (p = 0.0028). In conclusion, this study generated two hypotheses suggesting possible associations of a reduced risk of death and carrying, respectively, the ABCB1 rs9282564 AG and TT genotypes and the COMT rs4680 AA genotype among patients with OA. These findings should be confirmed in independent cohorts, and if a causal relationship between these variants and fatal poisoning in OA is confirmed, then it may be possible at least in theory to personalize prevention of sudden death in this patient group.

  15. "Effect of the drug transporters ABCB1, ABCC2, and ABCG2 on the disposition and brain accumulation of the taxane analog BMS-275,183".

    Science.gov (United States)

    Marchetti, Serena; Pluim, Dick; Beijnen, Jos H; Mazzanti, Roberto; van Tellingen, Olaf; Schellens, Jan H M

    2014-12-01

    BMS-275,183 is a novel oral C-4 methyl carbonate analogue of paclitaxel. Recently, a drug-drug interaction between BMS-275,183 and benzimidazole proton pump inhibitors (PPIs) was suggested in clinical trials resulting in elevated drug exposure and toxicity. We explored whether the interaction takes place at the level of P-glycoprotein (Pgp, MDR1, ABCB1), Breast Cancer Resistance Protein (BCRP, ABCG2) and MRP2 (ABCC2) using in vitro and in vivo models. In vitro cell survival, drug accumulation, efflux and transport studies with BMS-275,183 were performed employing MDCKII (wild-type, MDR1, BCRP, MRP2) and LLCPK (wild-type and MDR1) cells. In vivo the pharmacokinetics and tissue distribution of BMS-275,183 after p.o. and i.v. administration were explored in Mdr1a/1b(-/-) and wild-type mice, in presence or absence of the PPI pantoprazole. Results In vitro, BMS-275,183 was found to be a good substrate for MDR1, a moderate substrate for MRP2 and not a substrate for BCRP. In vivo, oral bioavailability, plasma AUC0-6h and brain concentrations were significantly 1.5-, 4-, and 2-fold increased, respectively, in Mdr1a/1b(-/-) compared with wild-type mice (p < 0.001). However, oral co-administration of pantoprazole (40 mg/kg) did not alter the pharmacokinetics of BMS-275,183 in wild-type mice. Conclusions BMS-275,183 is efficiently transported by Pgp and to a lesser extent by MRP2 in vitro. Genetic deletion of Pgp significantly altered the pharmacokinetics and brain distribution of p.o. and i.v. administered BMS-275,183 in Mdr1a/1b-/- compared to wild-type mice. Oral co-administration of BMS-275,183 with pantoprazole did not affect the pharmacokinetics of BMS-275,183 in wild-type mice, suggesting no interaction with PPI at the dose employed.

  16. Acquisition of docetaxel resistance in breast cancer cells reveals upregulation of ABCB1 expression as a key mediator of resistance accompanied by discrete upregulation of other specific genes and pathways

    DEFF Research Database (Denmark)

    Ninel Hansen, Stine; Westergaard, David; Borg Houlberg Thomsen, Mathilde

    2015-01-01

    to be prominent at higher docetaxel concentrations (second-phase response). Additional resistance mechanisms were indicated by gene expression profiling, including genes in the interferon-inducible protein family in MCF7RES and cancer testis antigen family in MDARES. Also, upregulated expression of various ABC...... resistance and thereby identify key molecular mechanisms and predictive molecular characteristics to docetaxel resistance. Two docetaxel-resistant cell lines, MCF7RES and MDARES, were generated from their respective parental cell lines MCF-7 and MDA-MB-231 by stepwise selection in docetaxel dose increments...... analysis singled out ABCB1, which encodes permeability glycoprotein (Pgp), as the top upregulated gene in both MCF7RES and MDARES. Functional validation revealed Pgp as a key resistance mediator at low docetaxel concentrations (first-phase response), whereas additional resistance mechanisms appeared...

  17. Exploring DRD4 and its interaction with SLC6A3 as possible risk factors for adult ADHD: a meta-analysis in four European populations

    NARCIS (Netherlands)

    Sanchez-Mora, C.; Ribases, M.; Casas, M.; Bayes, M.; Bosch, R.; Fernandez-Castillo, N.; Brunso, L.; Jacobsen, K.K.; Landaas, E.T.; Lundervold, A.J.; Gross-Lesch, S.; Kreiker, S.; Jacob, C.P.; Lesch, K.P.; Buitelaar, J.K.; Hoogman, M.; Kiemeney, L.A.L.M.; Kooij, J.J.; Mick, E.; Asherson, P.; Faraone, S.V.; Franke, B.; Reif, A.; Johansson, S.; Haavik, J.; Ramos-Quiroga, J.A.; Cormand, B.

    2011-01-01

    Attention-deficit hyperactivity disorder (ADHD) is a common behavioral disorder affecting about 4-8% of children. ADHD persists into adulthood in around 65% of cases, either as the full condition or in partial remission with persistence of symptoms. Pharmacological, animal and molecular genetic

  18. Dopamine transporter (DAT1/SLC6A3) polymorphism and the association between being born small for gestational age and symptoms of ADHD.

    Science.gov (United States)

    Waldie, K E; Cornforth, C M; Webb, R E; Thompson, J M D; Murphy, R; Moreau, D; Slykerman, R; Morgan, A R; Ferguson, L R; Mitchell, E A

    2017-08-30

    Being small for gestational age (SGA) has been established as a risk factor for Attention Deficit Hyperactivity Disorder (ADHD). Likewise, several molecular genetic studies have found a link between DAT1 and ADHD. This study investigated whether SGA moderates the effect of dopamine transporter gene variants on the risk of ADHD. A total of 546 children of European descent were genotyped at age 11 for seven DAT1 SNPs (rs6347, rs11564774, rs40184, rs1042098, rs2702, rs8179029 and rs3863145). The Strengths and Difficulties Questionnaire was used to measure symptoms of ADHD at ages 3.5, 7 and 11. We found significant gene-environment interactions between birth weight and DAT1 SNPs (rs6347, rs40184, rs1042098, rs3863145) on ADHD symptoms at 3.5 years only. Results suggest that genotypic variation of DAT1 may confer a relative protective effect against ADHD in SGA individuals. This study supports the idea that being born SGA moderates the effect of the DAT1 gene on ADHD symptoms in the preschool years and may help to explain some of the heterogeneity in ADHD outcomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Design and synthesis of human ABCB1 (P-glycoprotein) inhibitors by peptide coupling of diverse chemical scaffolds on carboxyl and amino termini of (S)-valine-derived thiazole amino acid.

    Science.gov (United States)

    Singh, Satyakam; Prasad, Nagarajan Rajendra; Chufan, Eduardo E; Patel, Bhargav A; Wang, Yi-Jun; Chen, Zhe-Sheng; Ambudkar, Suresh V; Talele, Tanaji T

    2014-05-22

    P-glycoprotein (P-gp) serves as a therapeutic target for the development of multidrug resistance reversal agents. In this study, we synthesized 21 novel compounds by peptide coupling at corresponding carboxyl and amino termini of (S)-valine-based bis-thiazole and monothiazole derivatives with diverse chemical scaffolds. Using calcein-AM efflux assay, we identified compound 28 (IC50 = 1.0 μM) carrying 3,4,5-trimethoxybenzoyl and 2-aminobenzophenone groups, respectively, at the amino and carboxyl termini of the monothiazole zwitter-ion. Compound 28 inhibited the photolabeling of P-gp with [(125)I]-iodoarylazidoprazosin with IC50 = 0.75 μM and stimulated the basal ATP hydrolysis of P-gp in a concentration-dependent manner (EC50 ATPase = 0.027 μM). Compound 28 at 3 μM reduced resistance in cytotoxicity assay to paclitaxel in P-gp-expressing SW620/Ad300 and HEK/ABCB1 cell lines. Biochemical and docking studies showed site-1 to be the preferable binding site for 28 within the drug-binding pocket of human P-gp.

  20. Effects of genetic variants in UGT1A1, SLCO1B3, ABCB1, ABCC2, ABCG2, ORM1 on PK/PD of telmisartan in Chinese patients with mild to moderate essential hypertension
.

    Science.gov (United States)

    Pei, Qi; Yang, Liu; Tan, Hong-Yi; Liu, Shi-Kun; Liu, Yang; Huang, Lu; Li, Rong-Hui; Wan, Qian; Huang, Jie; Guo, Cheng-Xian; Zuo, Xiao-Cong; Li, Jingle; Yang, Guo-Ping

    2017-08-01

    This study aimed to understand the effects of single nucleotide polymorphisms (SNPs) in UGT1A1, SLCO1B3, ABCB1, ABCC2, ABCG2, and ORM1 on the pharmacokinetics (PK) (plasma concentration) and pharmacodynamics (PD) (blood pressure) of telmisartan in Chinese patients. 58 Han Chinese patients (aged 45 - 72 years) with mild to moderate essential hypertension were included and received 80 mg/day telmisartan for 4 weeks. The plasma concentration and genetic variants were determined by LC/MS/MS and MALDI-TOF mass spectrometry, respectively. Multivariable linear analysis was used to examine the relationships between PK/PD and genetic variants. Females showed a significantly higher AUClast than males (n = 22, 4,879.48 ± 3,449.33 h×ng/mL vs. n = 36, 2,715.59 ± 2,223.77 h×ng/mL, p = 0.047). Amongst all genetic variants investigated, the patients with UGT1A1 rs4124874 AA (n = 11, 1,730.51 ± 1,325.79 h×ng/mL) had a significantly lower AUClast compared with patients with UGT1A1 rs4124874 CC+AC (n = 19 + 28, 4,177.44 ± 3,222.11 h×ng/mL and 3,810.82 ± 2,960.43 h×ng/mL, p = 0.027). None of the SNPs investigated was associated with the PD responses to telmisartan. Variation of UGT1A1 (rs4124874) affects PK of telmisartan in Chinese patients, highlighting the value of genetic testing in precision medicine as the telmisartan dose could be adjusted based on UGT1A1 genetic variations.
.

  1. Imaging the impact of cyclosporin A and dipyridamole on P-glycoprotein (ABCB1) function at the blood-brain barrier: A [(11)C]-N-desmethyl-loperamide PET study in nonhuman primates.

    Science.gov (United States)

    Damont, Annelaure; Goutal, Sébastien; Auvity, Sylvain; Valette, Héric; Kuhnast, Bertrand; Saba, Wadad; Tournier, Nicolas

    2016-08-25

    Cyclosporin A (CsA) and dipyridamole (DPy) are potent inhibitors of the P-glycoprotein (P-gp; ABCB1) in vitro. Their efficacy at inhibiting P-gp at the blood-brain barrier (BBB) is difficult to predict. Efficient and readily available (i.e. marketed) P-gp inhibitors are needed as probes to investigate the role of P-gp at the human BBB. In this study, the P-gp inhibition potency at the BBB of therapeutic doses of CsA or DPy was evaluated in baboons using Positron Emission Tomography (PET) imaging with [(11)C]-N-desmethyl-loperamide ([(11)C]dLop), a radiolabeled P-gp substrate. The preparation of dLop as authentic standard and [(11)C]dLop as radiotracer were revisited so as to improve their production yields. [(11)C]dLop PET imaging was performed in the absence (n=3, baseline condition) and the presence of CsA (15mg/kg/h i.v., n=3). Three animals were injected with i.v. DPy at either 0.56 or 0.96 or 2mg/kg (n=1), corresponding to the usual, maximal and twice the maximal dose in patients, respectively, administered immediately before PET. [(11)C]dLop brain kinetics as well as [(11)C]dLop kinetics and radiometabolites in arterial plasma were measured to calculate [(11)C]dLop area-under the time-activity curve from 10 to 30min in the brain (AUCbrain) and in plasma (AUCplasma). [(11)C]dLop brain uptake was described by AUCR=AUCbrain/AUCplasma. CsA as well as DPy did not measurably influence [(11)C]dLop plasma kinetics and metabolism. Baseline AUCR (0.85±0.29) was significantly enhanced in the presence of CsA (AUCR=10.8±3.6). Injection of pharmacologic dose of DPy did not enhance [(11)C]dLop brain distribution with AUCR being 1.2, 0.9 and 1.1 after administration of 0.56, 0.96 and 2mg/kg DPy doses, respectively. We used [(11)C]dLop PET imaging in baboons, a relevant in vivo model of P-gp function at the BBB, to show the P-gp inhibition potency of therapeutic dose CsA. Despite in vitro P-gp inhibition potency, usual doses DPy are not likely to inhibit P-gp function at

  2. Genetic variants associated with addictive behavior in Colombian addicted and non-addicted to heroin or cocaine.

    Science.gov (United States)

    Isaza, Carlos; Henao, Julieta; Beltrán, Leonardo; Porras, Liliana; Gonzalez, Martha; Cruz, Raquel; Carracedo, Angel

    2013-01-01

    Determine the prevalence and compare some genetic markers involved in addictive behavior in a group of addicts to derivative of coca (cocaine/crack) or heroin and a control group of non-addicted people matched for gender, age and ethnicity. A 120 addicts and 120 non-addicts Colombian male were surveyed and genotyped for 18 polymorphism of the OPRM1, DRD2, DRD4, SLC6A3, SLC6A4, ABCB1, DβH and CYP2B6 genes. For the identification of alleles markers were used mini-sequencing and fragment multiplex PCR techniques; ethnicity of cases and controls was analyzed with 61 AIMs. The age of onset use of heroin or coca derivatives (cocaine/crack) was 16.5±6 years and 99.2% of them consume several illicit drugs. It showed that controls and addicts belong to the same ethnic group. Significant differences between addicts and controls in relation to schooling, marital status, social security family history of substance abuse (p T ABCB1 gene (p= 0.001) were found. The present results indicate that the VNTR- 6R polymorphism of the gene SLC6A3 and the genotype 3435CC in the ABCB1 gene, are both associated with addictive behavior to heroin or cocaine.

  3. Drug: D10088 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D10088 Drug Amitifadine (USAN) C11H11Cl2N 227.0269 228.1177 D10088.gif Treatment of...8310] Transporters Solute carrier family SLC6 SLC6A2 (noradrenalin transporter) [HSA:6530] [KO:K05035] Amitifadine D100...88 Amitifadine (USAN) SLC6A3 (dopamine transporter) [HSA:6531] [KO:K05036] Amitifadine D10088 Ami...tifadine (USAN) SLC6A4 (serotonin transporter) [HSA:6532] [KO:K05037] Amitifadine D100...88 Amitifadine (USAN) CAS: 410074-73-6 PubChem: 135626807 LigandBox: D10088 ATOM 14 1 C8x C 24.0800 -17

  4. Genetic variants associated with addictive behavior in Colombian addicted and non-addicted to heroin or cocaine

    Directory of Open Access Journals (Sweden)

    Carlos Isaza

    2013-03-01

    Full Text Available Normal 0 21 false false false ES X-NONE X-NONE Introducción: La farmacodependencia está influenciada por factores psico-sociales, fisiológicos, genéticos y farmacológicos. Parte de la investigación se enfoca en la búsqueda de marcadores genéticos que influyan en la vulnerabilidad para la adquisición de la adicción, su persistencia y la propensión a las recaídas, lo que redundará en una mejor fundamentación científica de los programas de prevención y atención de drogadictos. Objetivo: Determinar la prevalencia y comparar marcadores genéticos involucrados en conducta adictiva en un grupo de adictos a cocaína/crack o heroína y en un grupo control de no adictos apareados por género, edad y etnicidad. Metodología: 120 varones adictos y 120 no adictos fueron encuestados y genotipificados para 18 alelos de los genes OPRM1, DβH, DRD2, DRD4, SLC6A3, SLC6A4, ABCB1 y CYP2B6. Para la identificación de los diferentes alelos se utilizaron las técnicas de minisecuenciación y multiplex  PCR. La etnicidad de casos y controles fue analizada con 61 marcadores ancestro-informativos. Resultados: La edad de inicio en el consumo de heroína o derivados de la coca fue de 16,5±6 años y el 99,2% de ellos eran policonsumidores. Los controles y los adictos pertenecen al mismo grupo étnico. Diferencias significativas entre adictos y controles fueron encontradas en relación con escolaridad (pSLC6A3 (p=0,015  y al SNP 3435C>T (rs1045642 del gen ABCB1(p=0,001. Conclusión: Los resultados indican que  el polimorfismo VNTR-6R del gen SLC6A3 y el genotipo 3435CC en el gen ABCB1, están asociados con conducta adictiva a heroína o cocaína.

  5. Revealing the fate of cell surface human P-glycoprotein (ABCB1): The lysosomal degradation pathway.

    Science.gov (United States)

    Katayama, Kazuhiro; Kapoor, Khyati; Ohnuma, Shinobu; Patel, Atish; Swaim, William; Ambudkar, Indu S; Ambudkar, Suresh V

    2015-10-01

    P-glycoprotein (P-gp) transports a variety of chemically dissimilar amphipathic compounds including anticancer drugs. Although mechanisms of P-gp drug transport are widely studied, the pathways involving its internalization are poorly understood. The present study is aimed at elucidating the pathways involved in degradation of cell surface P-gp. The fate of P-gp at the cell surface was determined by biotinylating cell surface proteins followed by flow cytometry and Western blotting. Our data shows that the half-life of endogenously expressed P-gp is 26.7±1.1 h in human colorectal cancer HCT-15 cells. Treatment of cells with Bafilomycin A1 (BafA1) a vacuolar H+ ATPase inhibitor increased the half-life of P-gp at the cell surface to 36.1±0.5 h. Interestingly, treatment with the proteasomal inhibitors MG132, MG115 or lactacystin alone did not alter the half-life of the protein. When cells were treated with both lysosomal and proteasomal inhibitors (BafA1 and MG132), the half-life was further prolonged to 39-50 h. Functional assays done with rhodamine 123 or calcein-AM, fluorescent substrates of P-gp, indicated that the transport function of P-gp was not affected by either biotinylation or treatment with BafA1 or proteasomal inhibitors. Immunofluorescence studies done with the antibody against lysosomal marker LAMP1 and the P-gp-specific antibody UIC2 in permeabilized cells indicated that intracellular P-gp is primarily localized in the lysosomal compartment. Our results suggest that the lysosomal degradation system could be targeted to increase the sensitivity of P-gp- expressing cancer cells towards chemotherapeutic drugs.

  6. Oral and inhaled corticosteroids: Differences in P-glycoprotein (ABCB1) mediated efflux

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, Andrew, E-mail: a.p.crowe@curtin.edu.au; Tan, Ai May

    2012-05-01

    There is concern that P-glycoprotein mediated efflux contributes to steroid resistance. Therefore, this study examined bidirectional corticosteroid transport and induction capabilities for P-glycoprotein (P-gp) to understand which of the systemic and inhaled corticosteroids interacted with P-gp to the greatest extent. Hydrocortisone, prednisolone, prednisone, methylprednisolone, and dexamethasone represented systemically active drugs, while fluticasone propionate, beclomethasone dipropionate, ciclesonide and budesonide represented inhaled corticosteroids. Aldosterone and fludrocortisone represented mineralocorticoids. All drugs were detected using individually optimised HPLC protocols. Transport studies were conducted through Caco-2 monolayers. Hydrocortisone and aldosterone had efflux ratios below 1.5, while prednisone showed a P-gp mediated efflux ratio of only 1.8 compared to its active drug, prednisolone, with an efflux ratio of 4.5. Dexamethasone and beclomethasone had efflux ratios of 2.1 and 3.3 respectively, while this increased to 5.1 for methylprednisolone. Fluticasone showed an efflux ratio of 2.3. Protein expression studies suggested that all of the inhaled corticosteroids were able to induce P-gp expression, from 1.6 to 2 times control levels. Most of the systemic corticosteroids had higher passive permeability (> 20 × 10{sup −6} cm/s) compared to the inhaled corticosteroids (> 5 × 10{sup −6} cm/s), except for budesonide, with permeability similar to the systemic corticosteroids. Inhaled corticosteroids are not transported by P-gp to the same extent as systemic corticosteroids. However, they are able to induce P-gp production. Thus, inhaled corticosteroids may have greater interactions with other P-gp substrates, but P-gp itself is less likely to influence resistance to the drugs. -- Highlights: ► Inhaled corticosteroids are only weak substrates for P-gp, including budesonide. ► Inhaled corticosteroid potent P-gp inducers especially fluticasone and beclomethasone. ► Systemic corticosteroids are weak P-gp inducers. ► Mineralocorticoids not affected by P-gp mediated efflux.

  7. MicroRNA-873 mediates multidrug resistance in ovarian cancer cells by targeting ABCB1.

    Science.gov (United States)

    Wu, Di-di; Li, Xue-Song; Meng, Xiao-Na; Yan, Jing; Zong, Zhi-Hong

    2016-08-01

    Ovarian cancer is commonly treated with cisplatin and paclitaxel combination chemotherapy; however, ovarian cancer cells often develop resistance to these drugs. Increasingly, microRNAs (miRNAs) including miR-873 have been implicated in drug resistance in many cancers, but the role of miR-873 in ovarian cancer remains unknown. MTT cell viability assays revealed that the sensitivities of ovarian cancer lines to cisplatin and paclitaxel increased following transfection with miR-873 (P ovarian cancer in vivo (P ovarian cancer lines OVCAR3 and A2780 to cisplatin and paclitaxel, which can be reversed by miR-873 mimic transfection (P ovarian cancer cells to cisplatin and paclitaxel by targeting MDR1 expression. Our findings suggest that combination therapies with chemotherapy agents and miR-873 may suppress drug resistance in ovarian cancer.

  8. Revealing the fate of cell surface human P-glycoprotein (ABCB1): The Lysosomal Degradation Pathway

    Science.gov (United States)

    Katayama, Kazuhiro; Kapoor, Khyati; Ohnuma, Shinobu; Patel, Atish; Swaim, William; Ambudkar, Indu S.; Ambudkar, Suresh V.

    2015-01-01

    P-glycoprotein (P-gp) transports a variety of chemically dissimilar amphipathic compounds including anticancer drugs. Although mechanisms of P-gp drug transport are widely studied, the pathways involving its internalization are poorly understood. The present study is aimed at elucidating the pathways involved in degradation of cell surface P-gp. The fate of P-gp at the cell surface was determined by biotinylating cell surface proteins followed by flow cytometry and Western blotting. Our data shows that the half-life of endogenously expressed P-gp is 26.7 ± 1.1 h in human colorectal cancer HCT-15 cells. Treatment of cells with Bafilomycin A1 (BafA1) a vacuolar H+ ATPase inhibitor increased the half-life of P-gp at the cell surface to 36.1± 0.5 h. Interestingly, treatment with the proteasomal inhibitors MG132, MG115 or lactacystin alone did not alter the half-life of the protein. When cells were treated with both lysosomal and proteasomal inhibitors (BafA1 and MG132), the half-life was further prolonged to 39-50 h. Functional assays done with rhodamine 123 or calcein-AM, fluorescent substrates of P-gp, indicated that the transport function of P-gp was not affected by either biotinylation or treatment with BafA1 or proteasomal inhibitors. Immunofluorescence studies done with the antibody against lysosomal marker LAMP1 and the P-gp-specific antibody UIC2 in permeabilized cells indicated that intracellular P-gp is primarily localized in the lysosomal compartment. Our results suggest that the lysosomal degradation system could be targeted to increase the sensitivity of P-gp expressing cancer cells towards chemotherapeutic drugs. PMID:26057472

  9. Association study between genetic monoaminergic polymorphisms and OCD response to clomipramine treatment

    Directory of Open Access Journals (Sweden)

    K Miguita

    2011-01-01

    Full Text Available In the present paper, we investigated the 5HTTLPR and STin2 polymorphisms in the promoter region of the serotonin transporter gene (SLC6A4, the G861C polymorphism (rs6296 of the serotonin receptor 1D beta (HTR1B, the T102C (rs6113 and C516T (rs6305 polymorphisms of the serotonin receptor gene subtype 2A (HTR2A, the DAT UTR, DAT intron 8 and DAT intron 14 of the dopamine transporter gene (SLC6A3, the Val-158-Met (rs4680 polymorphism of the COMT and the silent mutation G1287A (rs5569 in the norepinephrine transporter gene (SLC6A2. We genotyped 41 obsessive-compulsive disorder (OCD outpatients, classified as good-responders (n=27 and poor-responders (n=14 to treatment with clomipramine according to the Yale Brown Obsessive-Compulsive Scale (YBOCS. Patients who achieved a reduction in symptoms of 40% or more in YBOCS after 14 weeks of treatment were considered good-responders. Genotypes and alleles distribution of the investigated polymorphisms were compared between both groups. We did not find association between the studied polymorphisms and clomipramine response in our sample.

  10. The function of the ATP-binding cassette (ABC) transporter ABCB1 is not susceptible to actin disruption

    NARCIS (Netherlands)

    Meszaros, Peter; Hummel, Ina; Klappe, Karin; Draghiciu, Oana; Hoekstra, Dick; Kok, Jan W.

    2013-01-01

    Previously we have shown that the activity of the multidrug transporter ABCC1 (multidrug resistance protein 1), and its localization in lipid rafts, depends on cortical actin (Hummel I, Klappe K, Ercan C, Kok JW. Mol. Pharm. 2011 79, 229-40). Here we show that the efflux activity of the ATP-binding

  11. ABCB1, ABCG2, and PTEN determine the response of glioblastoma to temozolomide and ABT-888 therapy

    NARCIS (Netherlands)

    Lin, Fan; de Gooijer, Mark C; Roig, Eloy Moreno; Buil, Levi C M; Christner, Susan M; Beumer, Jan H; Würdinger, Thomas; Beijnen, Jos H; van Tellingen, Olaf

    2014-01-01

    PURPOSE: Little is known about the optimal clinical use of ABT-888 (veliparib) for treatment of glioblastoma. ABT-888 is a PARP inhibitor undergoing extensive clinical evaluation in glioblastoma, because it may synergize with the standard-of-care temozolomide (TMZ). We have elucidated important fact

  12. Increasing BMI is associated with reduced expression of P-glycoprotein (ABCB1 gene) in the human brain with a stronger association in African Americans than Caucasians

    DEFF Research Database (Denmark)

    2016-01-01

    The efflux pump, p-glycoprotein, controls bioavailability and excretion of pharmaceutical compounds. In the blood-brain barrier, p-glycoprotein regulates the delivery of pharmaceutical substances to the brain, influencing efficacy and side effects for some drugs notably antipsychotics. Common sid...... online publication, 29 November 2016; doi:10.1038/tpj.2016.74....

  13. "Effect of the drug transporters ABCB1, ABCC2, and ABCG2 on the disposition and brain accumulation of the taxane analog BMS-275,183"

    NARCIS (Netherlands)

    Marchetti, Serena; Pluim, Dick; Beijnen, Jos H; Mazzanti, Roberto; van Tellingen, Olaf; Schellens, Jan H M

    2014-01-01

    BMS-275,183 is a novel oral C-4 methyl carbonate analogue of paclitaxel. Recently, a drug-drug interaction between BMS-275,183 and benzimidazole proton pump inhibitors (PPIs) was suggested in clinical trials resulting in elevated drug exposure and toxicity. We explored whether the interaction takes

  14. Design, synthesis, and biological evaluation of (S)-valine thiazole-derived cyclic and noncyclic peptidomimetic oligomers as modulators of human P-glycoprotein (ABCB1).

    Science.gov (United States)

    Singh, Satyakam; Prasad, Nagarajan Rajendra; Kapoor, Khyati; Chufan, Eduardo E; Patel, Bhargav A; Ambudkar, Suresh V; Talele, Tanaji T

    2014-01-01

    Multidrug resistance caused by ATP binding cassette transporter P-glycoprotein (P-gp) through extrusion of anticancer drugs from the cells is a major cause of failure in cancer chemotherapy. Previously, selenazole-containing cyclic peptides were reported as P-gp inhibitors and were also used for co-crystallization with mouse P-gp, which has 87 % homology to human P-gp. It has been reported that human P-gp can simultaneously accommodate two to three moderately sized molecules at the drug binding pocket. Our in silico analysis, based on the homology model of human P-gp, spurred our efforts to investigate the optimal size of (S)-valine-derived thiazole units that can be accommodated at the drug binding pocket. Towards this goal, we synthesized varying lengths of linear and cyclic derivatives of (S)-valine-derived thiazole units to investigate the optimal size, lipophilicity, and structural form (linear or cyclic) of valine-derived thiazole peptides that can be accommodated in the P-gp binding pocket and affects its activity, previously an unexplored concept. Among these oligomers, lipophilic linear (13) and cyclic trimer (17) derivatives of QZ59S-SSS were found to be the most and equally potent inhibitors of human P-gp (IC50 =1.5 μM). As the cyclic trimer and linear trimer compounds are equipotent, future studies should focus on noncyclic counterparts of cyclic peptides maintaining linear trimer length. A binding model of the linear trimer 13 within the drug binding site on the homology model of human P-gp represents an opportunity for future optimization, specifically replacing valine and thiazole groups in the noncyclic form.

  15. P-glycoprotein (ABCB1) activity decreases raltegravir disposition in primary CD4+P-gphigh cells and correlates with HIV-1 viral load

    Science.gov (United States)

    Minuesa, Gerard; Arimany-Nardi, Cristina; Erkizia, Itziar; Cedeño, Samandhy; Moltó, José; Clotet, Bonaventura; Pastor-Anglada, Marçal; Martinez-Picado, Javier

    2016-01-01

    Objectives To evaluate the role of P-glycoprotein (P-gp) and multidrug-resistant-protein 1 (MRP1) on raltegravir intracellular drug disposition in CD4+ T cells, investigate the effect of HIV-1 infection on P-gp expression and correlate HIV-1 viraemia with P-gp activity in primary CD4+ T cell subsets. Methods The cellular accumulation ratio of [3H]raltegravir was quantified in CD4+ T cell lines overexpressing either P-gp (CEM-P-gp) or MRP1 (CEM-MRP1) and in primary CD3+CD4+ T cells with high (P-gphigh) and low P-gp activity (P-gplow); inhibition of efflux transporters was confirmed by the intracellular retention of calcein-AM. The correlation of P-gp activity with HIV-1 viraemia was assessed in naive and memory T cell subsets from 21 HIV-1-infected treatment-naive subjects. Results [3H]Raltegravir cellular accumulation ratio decreased in CEM-P-gp cells (P < 0.0001). XR9051 (a P-gp inhibitor) and HIV-1 PIs reversed this phenomenon. Primary CD4+P-gphigh cells accumulated less raltegravir (38.4% ± 9.6%) than P-gplow cells, whereas XR9051 also reversed this effect. In vitro HIV-1 infection of PBMCs and stimulation of CD4+ T cells increased P-gp mRNA and P-gp activity, respectively, while primary CD4+P-gphigh T cells sustained a higher HIV-1 replication than P-gplow cells. A significant correlation between HIV-1 viraemia and P-gp activity was found in different CD4+ T cell subsets, particularly memory CD4+ T cells (r = 0.792, P < 0.0001). Conclusions Raltegravir is a substrate of P-gp in CD4+ T cells. Primary CD4+P-gphigh T cells eliminate intracellular raltegravir more readily than P-gplow cells and HIV-1 viraemia correlates with P-gp overall activity. Specific CD4+P-gphigh T cell subsets could facilitate the persistence of viral replication in vivo and ultimately promote the appearance of drug resistance. PMID:27334660

  16. Inhibition of ABCB1 (MDR1 expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Michiro Susa

    Full Text Available BACKGROUND: The use of neo-adjuvant chemotherapy in treating osteosarcoma has improved patients' average 5 year survival rate from 20% to 70% in the past 30 years. However, for patients who progress after chemotherapy, its effectiveness diminishes due to the emergence of multi-drug resistance (MDR after prolonged therapy. METHODOLOGY/PRINCIPAL FINDINGS: In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure resulting from MDR, we designed and evaluated a novel drug delivery system for MDR1 siRNA delivery. Novel biocompatible, lipid-modified dextran-based polymeric nanoparticles were used as the platform for MDR1 siRNA delivery; and the efficacy of combination therapy with this system was evaluated. In this study, multi-drug resistant osteosarcoma cell lines (KHOS(R2 and U-2OS(R2 were treated with the MDR1 siRNA nanocarriers and MDR1 protein (P-gp expression, drug retention, and immunofluoresence were analyzed. Combination therapy of the MDR1 siRNA loaded nanocarriers with increasing concentrations of doxorubicin was also analyzed. We observed that MDR1 siRNA loaded dextran nanoparticles efficiently suppresses P-gp expression in the drug resistant osteosarcoma cell lines. The results also demonstrated that this approach may be capable of reversing drug resistance by increasing the amount of drug accumulation in MDR cell lines. CONCLUSIONS/SIGNIFICANCE: Lipid-modified dextran-based polymeric nanoparticles are a promising platform for siRNA delivery. Nanocarriers loaded with MDR1 siRNA are a potential treatment strategy for reversing MDR in osteosarcoma.

  17. Variation and evolution of the ABC transporter genes ABCB1, ABCC1, ABCG2, ABCG5 and ABCG8: implication for pharmacogenetics and disease.

    Science.gov (United States)

    Silverton, Latoya; Dean, Michael; Moitra, Karobi

    2011-01-01

    The ATP-binding cassette (ABC) transporter genes are ubiquitous in the genomes of all vertebrates. Some of these transporters play a key role in xenobiotic defense and are endowed with the capacity to efflux harmful toxic substances. A major role in the evolution of the vertebrate ABC genes is played by gene duplication. Multiple gene duplication and deletion events have been identified in ABC genes, resulting in either gene birth or gene death indicating that the process of gene evolution is still ongoing in this group of transporters. Additionally, polymorphisms in these genes are linked to variations in expression, function, drug disposition and drug response. Single nucleotide polymorphisms in the ABC genes may be considered as markers of individual risk for adverse drug reactions or susceptibility to complex diseases as they can uniquely influence the quality and quantity of gene product. As the ABC genes continue to evolve, globalization will yield additional migration and racial admixtures that will have far reaching implications for the pharmacogenetics of this unique family of transporters in the context of human health.

  18. Human-Mouse Chimeras with Normal Expression and Function Reveal That Major Domain Swapping Is Tolerated by P-Glycoprotein (ABCB1).

    Science.gov (United States)

    Pluchino, Kristen M; Hall, Matthew D; Moen, Janna K; Chufan, Eduardo E; Fetsch, Patricia A; Shukla, Suneet; Gill, Deborah R; Hyde, Stephen C; Xia, Di; Ambudkar, Suresh V; Gottesman, Michael M

    2016-02-23

    The efflux transporter P-glycoprotein (P-gp) plays a vital role in the transport of molecules across cell membranes and has been shown to interact with a panoply of functionally and structurally unrelated compounds. How human P-gp interacts with this large number of drugs has not been well understood, although structural flexibility has been implicated. To gain insight into this transporter's broad substrate specificity and to assess its ability to accommodate a variety of molecular and structural changes, we generated human-mouse P-gp chimeras by the exchange of homologous transmembrane and nucleotide-binding domains. High-level expression of these chimeras by BacMam- and baculovirus-mediated transduction in mammalian (HeLa) and insect cells, respectively, was achieved. There were no detectable differences between wild-type and chimeric P-gp in terms of cell surface expression, ability to efflux the P-gp substrates rhodamine 123, calcein-AM, and JC-1, or to be inhibited by the substrate cyclosporine A and the inhibitors tariquidar and elacridar. Additionally, expression of chimeric P-gp was able to confer a paclitaxel-resistant phenotype to HeLa cells characteristic of P-gp-mediated drug resistance. P-gp ATPase assays and photo-cross-linking with [(125)I]iodoarylazidoprazosin confirmed that transport and biochemical properties of P-gp chimeras were similar to those of wild-type P-gp, although differences in drug binding were detected when human and mouse transmembrane domains were combined. Overall, chimeras with one or two mouse P-gp domains were deemed functionally equivalent to human wild-type P-gp, demonstrating the ability of human P-gp to tolerate major structural changes.

  19. RSK1 protects P-glycoprotein/ABCB1 against ubiquitin–proteasomal degradation by downregulating the ubiquitin-conjugating enzyme E2 R1

    Science.gov (United States)

    Katayama, Kazuhiro; Fujiwara, Chiaki; Noguchi, Kohji; Sugimoto, Yoshikazu

    2016-01-01

    P-glycoprotein (P-gp) is a critical determinant of multidrug resistance in cancer. We previously reported that MAPK inhibition downregulates P-gp expression and that P-gp undergoes ubiquitin–proteasomal degradation regulated by UBE2R1 and SCFFbx15. Here, we investigated the crosstalk between MAPK inhibition and the ubiquitin–proteasomal degradation of P-gp. Proteasome inhibitors or knockdown of FBXO15 and/or UBE2R1 cancelled MEK inhibitor-induced P-gp downregulation. RSK1 phosphorylated Thr162 on UBE2R1 but did not phosphorylate FBXO15. MEK and RSK inhibitors increased UBE2R1-WT but not UBE2R1-T162D and -T162A expression. UBE2R1-T162D showed higher self-ubiquitination and destabilisation than UBE2R1-WT and -T162A. Unlike UBE2R1-WT and -T162A, UBE2R1-T162D did not induce P-gp ubiquitination. UBE2R1-WT or -T162A downregulated P-gp expression and upregulated rhodamine 123 level and sensitivity to vincristine and doxorubicin. However, UBE2R1-T162D did not confer any change in P-gp expression, rhodamine 123 accumulation and sensitivity to the drugs. These results suggest that RSK1 protects P-gp against ubiquitination by reducing UBE2R1 stability. PMID:27786305

  20. Animal models of depression in dopamine, serotonin, and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions.

    Science.gov (United States)

    Perona, Maria T G; Waters, Shonna; Hall, Frank Scott; Sora, Ichiro; Lesch, Klaus-Peter; Murphy, Dennis L; Caron, Marc; Uhl, George R

    2008-09-01

    Antidepressant drugs produce therapeutic actions and many of their side effects via blockade of the plasma membrane transporters for serotonin (SERT/SLC6A2), norepinephrine (NET/SLC6A1), and dopamine (DAT/SLC6A3). Many antidepressants block several of these transporters; some are more selective. Mouse gene knockouts of these transporters provide interesting models for possible effects of chronic antidepressant treatments. To examine the role of monoamine transporters in models of depression DAT, NET, and SERT knockout (KO) mice and wild-type littermates were studied in the forced swim test (FST), the tail suspension test, and for sucrose consumption. To dissociate general activity from potential antidepressant effects three types of behavior were assessed in the FST: immobility, climbing, and swimming. In confirmation of earlier reports, both DAT KO and NET KO mice exhibited less immobility than wild-type littermates whereas SERT KO mice did not. Effects of DAT deletion were not simply because of hyperactivity, as decreased immobility was observed in DAT+/- mice that were not hyperactive as well as in DAT-/- mice that displayed profound hyperactivity. Climbing was increased, whereas swimming was almost eliminated in DAT-/- mice, and a modest but similar effect was seen in NET KO mice, which showed a modest decrease in locomotor activity. Combined increases in climbing and decreases in immobility are characteristic of FST results in antidepressant animal models, whereas selective effects on swimming are associated with the effects of stimulant drugs. Therefore, an effect on climbing is thought to more specifically reflect antidepressant effects, as has been observed in several other proposed animal models of reduced depressive phenotypes. A similar profile was observed in the tail suspension test, where DAT, NET, and SERT knockouts were all found to reduce immobility, but much greater effects were observed in DAT KO mice. However, to further determine whether these

  1. Interrogation of multidrug resistance (MDR1) P-glycoprotein (ABCB1) expression in human pancreatic carcinoma cells: correlation of 99mTc-Sestamibi uptake with western blot analysis.

    Science.gov (United States)

    Harpstrite, Scott E; Gu, Hannah; Natarajan, Radhika; Sharma, Vijay

    2014-10-01

    Histopathological studies indicate that ∼63% of pancreatic tumors express multidrug resistance (MDR1) P-glycoprotein (Pgp) and its polymorphic variants. However, Pgp expression detected at the mRNA or protein level does not always correlate with functional transport activity. Because Pgp transport activity is affected by specific mutations and the phosphorylation state of the protein, altered or less active forms of Pgp may also be detected by PCR or immunohistochemistry, which do not accurately reflect the status of tumor cell resistance. To interrogate the status of the functional expression of MDR1 Pgp in MiaPaCa-2 and PANC-1 cells, cellular transport studies using Tc-Sestamibi were performed and correlated with western blot analysis. Biochemical transport assays in human pancreatic carcinoma MiaPaCa-2 and PANC-1 cells, human epidermal carcinoma drug-sensitive KB-3-1 cells, and human breast carcinoma MCF-7 cells (negative controls), and human epidermal carcinoma drug-resistant KB-8-5 cells, human breast carcinoma stably transfected with Pgp MCF-7/MDR1Pgp cells, and liver carcinoma HepG2 cells (positive controls) were performed. Protein levels were determined using a monoclonal antibody C219. Tc-Sestamibi demonstrates accumulation in human pancreatic carcinoma MiaPaCa-2 and PANC-1 cells. Uptake profiles are not affected by treatment with LY335979, a Pgp inhibitor, and correlate with western blot analysis. These cellular transport studies indicate an absence of Pgp at a functional level in MiaPaCa-2 and PANC-1 cells. Because major pancreatic tumors originate from the pancreatic duct and Tc-Sestamibi undergoes a dominant hepatobiliary mode of excretion, it would not be a sensitive probe for imaging pancreatic adenocarcinomas. Following interrogation of the functional status of Pgp in other pancreatic carcinoma cells, chemotherapeutic drugs that are also MDR1 substrates could offer alternative therapeutics for treating pancreatic adenocarcinomas.

  2. Global alteration of the drug-binding pocket of human P-glycoprotein (ABCB1) by substitution of fifteen conserved residues reveals a negative correlation between substrate size and transport efficiency.

    Science.gov (United States)

    Vahedi, Shahrooz; Chufan, Eduardo E; Ambudkar, Suresh V

    2017-11-01

    P-glycoprotein (P-gp), an ATP-dependent efflux pump, is linked to the development of multidrug resistance in cancer cells. However, the drug-binding sites and translocation pathways of this transporter are not yet well-characterized. We recently demonstrated the important role of tyrosine residues in regulating P-gp ATP hydrolysis via hydrogen bond formations with high affinity modulators. Since tyrosine is both a hydrogen bond donor and acceptor, and non-covalent interactions are key in drug transport, in this study we investigated the global effect of enrichment of tyrosine residues in the drug-binding pocket on the drug binding and transport function of P-gp. By employing computational analysis, 15 conserved residues in the drug-binding pocket of human P-gp that interact with substrates were identified and then substituted with tyrosine, including 11 phenylalanine (F72, F303, F314, F336, F732, F759, F770, F938, F942, F983, F994), two leucine (L339, L975), one isoleucine (I306), and one methionine (M949). Characterization of the tyrosine-rich P-gp mutant in HeLa cells demonstrated that this major alteration in the drug-binding pocket by introducing fifteen additional tyrosine residues is well tolerated and has no measurable effect on total or cell surface expression of this mutant. Although the tyrosine-enriched mutant P-gp could transport small to moderate size (1000 Daltons) substrates such as NBD-cyclosporine A, Bodipy-paclitaxel and Bodipy-vinblastine was significantly decreased. This was further supported by the physico-chemical characterization of seventeen tested substrates, which revealed a negative correlation between drug transport and molecular size for the tyrosine-enriched P-gp mutant. Published by Elsevier Inc.

  3. Breast Cancer Resistance Protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1) Restrict Oral Availability and Brain Accumulation of the PARP Inhibitor Rucaparib (AG-014699)

    NARCIS (Netherlands)

    Durmus, Selvi; Sparidans, Rolf W|info:eu-repo/dai/nl/075047144; van Esch, Anita; Wagenaar, Els; Beijnen, Jos H|info:eu-repo/dai/nl/071919570; Schinkel, Alfred H

    2015-01-01

    BACKGROUND: Rucaparib is a potent, orally available, small-molecule inhibitor of poly ADP-ribose polymerase (PARP) 1 and 2. Ongoing clinical trials are assessing the efficacy of rucaparib alone or in combination with other cytotoxic drugs, mainly in breast and ovarian cancer patients with mutations

  4. Drug: D07334 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available ant, tricyclic Tricyclic antidepressants serotonin transporter inhibitor [HSA:6532] [KO:K05037]; noradrenali... classification of drugs [BR:br08310] Transporters Solute carrier family SLC6 SLC6A2 (nora

  5. Drug: D01179 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available reuptake inhibitor (SNRI) serotonin transporter inhibitor [HSA:6532] [KO:K05037]; noradrenalin transporter ...0] Transporters Solute carrier family SLC6 SLC6A2 (noradrenalin transporter) [HSA:6530] [KO:K05035] Duloxeti

  6. Drug: D05663 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 3.gif Stimulant [central], psychoactive Norepinephrine-dopamine reuptake inhibitor (NDRI) noradrenalin trans...ters Solute carrier family SLC6 SLC6A2 (noradrenalin transporter) [HSA:6530] [KO:K05035] Pyrovalerone D05663

  7. Drug: D09341 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 1.gif Treatment of chronic neuropathic pain noradrenalin transporter inhibitor [HSA:6530] [KO:K05035] map072...lute carrier family SLC6 SLC6A2 (noradrenalin transporter) [HSA:6530] [KO:K05035

  8. Drug: D10133 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 10133.gif Antidepressant serotonin transporter inhibitor [HSA:6532] [KO:K05037]; noradrenalin transporter in...lassification of drugs [BR:br08310] Transporters Solute carrier family SLC6 SLC6A2 (noradrenalin transporter

  9. Drug: D07449 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available sant, tricyclic Tricyclic antidepressants serotonin transporter inhibitor [HSA:6532] [KO:K05037]; noradrenal...orters Solute carrier family SLC6 SLC6A2 (noradrenalin transporter) [HSA:6530] [KO:K05035] Amitriptylinoxide

  10. Epigenomic changes associated with impaired norepinephrine transporter function in postural tachycardia syndrome.

    Science.gov (United States)

    Khan, Abdul Waheed; Corcoran, Susan J; Esler, Murray; El-Osta, Assam

    2017-03-01

    The postural tachycardia syndrome (POTS) is characterised clinically by symptoms of light-headedness, palpitations, fatigue and exercise intolerance occurring with standing and relieved by lying down. Symptoms occur in association with an inappropriate rise in heart rate in the absence of a fall in blood pressure with the assumption of standing. The pathophysiology of POTS is complicated and poorly understood. Plasma norepinephrine (NE) is often elevated in patients with POTS, resulting in consideration of dysfunction of the norepinephrine transporter (NET) encoded by SLC6A2 gene. Whilst some studies have implicated a defect in the SLC6A2 gene, the cause of reduced SLC6A2 expression and function remains unclear. The search to explain the molecular mechanism of NET dysfunction has focused on genetic variation in the SLC6A2 gene and remains inconclusive. More recent studies show epigenetic mechanisms implicated in the regulation of SLC6A2 expression. In this article, we discuss the epigenetic mechanisms involved in SLC6A2 repression and highlight the potential therapeutic application of targeting these mechanisms in POTS.

  11. The association study of polymorphisms in DAT, DRD2, and COMT genes and acute extrapyramidal adverse effects in male schizophrenic patients treated with haloperidol.

    Science.gov (United States)

    Zivković, Maja; Mihaljević-Peles, Alma; Bozina, Nada; Sagud, Marina; Nikolac-Perkovic, Matea; Vuksan-Cusa, Bjanka; Muck-Seler, Dorotea

    2013-10-01

    Extrapyramidal symptoms (EPSs) are common adverse effects of antipsychotics. The development of acute EPSs could depend on the activity of dopaminergic system and its gene variants. The aim of this study was to determine the association between dopaminergic type 2 receptor (DRD2) dopamine transporter (SLC6A3) and catechol-O-methyltransferase (COMT) gene polymorphisms and acute EPSs in 240 male schizophrenic patients treated with haloperidol (15-mg/d) over a period of 2 weeks. Acute EPSs were assessed with Simpson-Angus Scale. Three dopaminergic gene polymorphisms, the DRD2 Taq1A, the SLC6A3 VNTR, and the COMT Val158Met, were determined. Extrapyramidal symptoms occurred in 116 (48.3%) of patients. Statistically significant associations were found for SLC6A3 VNTR and COMT Val158Met polymorphisms and EPS susceptibility. Patients with SLC6A3 9/10 genotype had almost twice the odds to develop EPSs compared with those with all other SLC6A3 genotypes (odds ratio, 1.9; 95% confidence interval, 1.13-3.30), and patients with COMT Val/Met genotype had 1.7 times greater odds to develop EPSs than those with all other COMT genotypes (odds ratio, 1.7; 95% confidence interval, 1.01-2.88). There was no statistically significant association between genotype and allele frequencies of DRD2, SLC6A3, or COMT polymorphisms and the development of particular EPSs.In conclusion, the results of the present study showed for the first time the association between acute haloperidol-induced EPSs and SLC6A3 VNTR and COMT Val158Met polymorphisms. Although the precise biological mechanisms underlying these findings are not yet understood, the results suggest that the dopaminergic gene variations could predict the vulnerability to the development of the acute EPSs in haloperidol-treated schizophrenic patients.

  12. Ivermectin Interacts With Human ABCG2

    OpenAIRE

    2011-01-01

    Ivermectin is an antiparasitic drug frequently administered to humans. It has alimited brain exposure that is attributed to the efflux activity of ABCB1/Abcb1. ABCG2/Abcg2 isalso a major transporter present in most pharmacologically important barriers. However,interaction of ivermectin with Abcg2 shows species specificity and in many studies wasconfounded by the masking effect of ABCB1/Abcb1. In this study using cellular and membraneassays we show that ivermectin displays a high-affinity inte...

  13. Identification of rare high-risk copy number variants affecting the dopamine transporter gene in mental disorders

    DEFF Research Database (Denmark)

    Hoeffding, Louise K; Duong, Linh T T; Ingason, Andrés;

    2015-01-01

    BACKGROUND: The dopamine transporter, also known as solute carrier 6A3 (SLC6A3), plays an important role in synaptic transmission by regulating the reuptake of dopamine in the synapses. In line with this, variations in the gene encoding this transporter have been linked to both schizophrenia...... rare high-risk variants of psychiatric disorders. METHODS: We performed a systematic screening for CNVs affecting SLC6A3 in 761 healthy controls, 672 schizophrenia patients, and 194 patients with bipolar disorder in addition to 253 family members from six large pedigrees affected by mental disorders...... sizes and two affected several genes in addition to SLC6A3. CONCLUSION: Our findings suggest that rare high-risk CNVs affecting the gene encoding the dopamine transporter contribute to the pathogenesis of schizophrenia and affective disorders....

  14. The association of the dopamine transporter gene and the dopamine receptor 2 gene with delirium: a meta-analysis.

    NARCIS (Netherlands)

    Munster, B.C. van; Rooij, S.E.J.A. de; Yazdanpanah, M.; Tienari, P.J.; Pitkala, K.H.; Osse, R.J.; Adamis, D.; Smit, O.; Steen, M.S. van der; Houten, M. van; Rahkonen, T.; Sulkava, R.; Laurila, J.V.; Strandberg, T.E.; Tulen, J.H.M.; Zwang, L.; Macdonald, A.J.D.; Treloar, A.; Sijbrands, E.J.G.; Zwinderman, A.H.; Korevaar, J.C.

    2010-01-01

    Delirium is the most common neuropsychiatric syndrome in elderly ill patients. Previously, associations between delirium and the dopamine transporter gene (solute carrier family 6, member 3 (SLC6A3)) and dopamine receptor 2 gene (DRD2) were found. The aim of this study was to validate whether marker

  15. The dopamine transporter haplotype and reward-related striatal responses in adult ADHD

    NARCIS (Netherlands)

    Hoogman, M.; Onnink, M.; Cools, R.; Aarts, E.; Kan, C.C.; Arias Vasquez, A.; Buitelaar, J.; Franke, B.

    2013-01-01

    Attention deficit/hyperactivity disorder (ADHD) is a highly heritable disorder and several genes increasing disease risk have been identified. The dopamine transporter gene, SLC6A3/DAT1, has been studied most extensively in ADHD research. Interestingly, a different haplotype of this gene (formed by

  16. The dopamine transporter haplotype and reward-related striatal responses in adult ADHD

    NARCIS (Netherlands)

    Hoogman, M.; Onnink, M.; Cools, R.; Aarts, E.; Kan, C.C.; Arias Vasquez, A.; Buitelaar, J.; Franke, B.

    2013-01-01

    Attention deficit/hyperactivity disorder (ADHD) is a highly heritable disorder and several genes increasing disease risk have been identified. The dopamine transporter gene, SLC6A3/DAT1, has been studied most extensively in ADHD research. Interestingly, a different haplotype of this gene (formed by

  17. Drug: D02897 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D02897 Drug Amfonelic acid (USAN); Acidum amfonelicum (INN) C18H16N2O3 308.1161 308...onelic acid D02897 Amfonelic acid (USAN); Acidum amfonelicum (INN) CAS: 15180-02-6 PubChem: 1...Transporters Solute carrier family SLC6 SLC6A3 (dopamine transporter) [HSA:6531] [KO:K05036] Amf

  18. Drug: D08130 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available N06BA12 prodrug, active substance: Amphetamine [DR:D07445] noradrenalin transporter inhibitor [HSA:6530] [K...ation of drugs [BR:br08310] Transporters Solute carrier family SLC6 SLC6A2 (noradrenalin transporter) [HSA:6

  19. Drug: D05173 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D05173 Drug Nisoxetine (USAN/INN) C17H21NO2 271.1572 271.3541 D05173.gif Antidepressant Selective nora...drenalin reuptake inhibitor noradrenalin transporter inhibitor [HSA:6530] [KO:K05035] map... Solute carrier family SLC6 SLC6A2 (noradrenalin transporter) [HSA:6530] [KO:K050

  20. Drug: D01107 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available e serotonin norepinephrine reuptake inhibitor (SNRI) serotonin transporter inhibitor [HSA:6532] [KO:K05037]; nora...rugs [BR:br08310] Transporters Solute carrier family SLC6 SLC6A2 (noradrenalin transporter) [HSA:6530] [KO:K

  1. Drug: D05200 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 997 D05200.gif Antidepressant ATC code: N06AX04 noradrenalin transporter inhibitor [HSA:6530] [KO:K05035] ma...08310] Transporters Solute carrier family SLC6 SLC6A2 (noradrenalin transporter) [HSA:6530] [KO:K05035] Nomi

  2. Drug: D08140 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available nt, tricyclic ATC code: N06AA07 Tricyclic antidepressants serotonin transporter inhibitor [HSA:6532] [KO:K05037]; nora...d classification of drugs [BR:br08310] Transporters Solute carrier family SLC6 SLC6A2 (nora

  3. Drug: D09340 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D09340 Drug Esreboxetine (USAN/INN) C19H23NO3 313.1678 313.3908 D09340.gif Treatment of depression nora...ter inhibitors Target-based classification of drugs [BR:br08310] Transporters Solute carrier family SLC6 SLC6A2 (nora

  4. Drug: D10443 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available serotonin transporter inhibitor [HSA:6532] [KO:K05037]; noradrenalin transporter inhibitor [HSA:6530] [KO:K0...5035] Target-based classification of drugs [BR:br08310] Transporters Solute carrier family SLC6 SLC6A2 (nora

  5. Drug: D07445 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D07445.gif Psychostimulant Same as: C07514 ATC code: N06BA01 noradrenalin transporter inhibitor [HSA:6530] [...[BR:br08310] Transporters Solute carrier family SLC6 SLC6A2 (noradrenalin transporter) [HSA:6530] [KO:K05035

  6. Drug: D03740 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D03740.gif Stimulant [central] Same as: C07884 ATC code: N06BA02 Compoment of Biphetamine (TN) noradrenalin ...rier family SLC6 SLC6A2 (noradrenalin transporter) [HSA:6530] [KO:K05035] Dexamfetamine [ATC:N06BA02] D03740

  7. Drug: D04747 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available O. (CH4SO3)2 455.176 455.5898 D04747.gif Treatment of attention deficit hyperactivity disorder (ADHD) ATC code: N06BA12 nora...tamine dimesylate (USAN) Target-based classification of drugs [BR:br08310] Transporters Solute carrier family SLC6 SLC6A2 (nora

  8. Drug: D02074 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available .4909 D02074.gif Stimulant [central] ATC code: N06BA01 noradrenalin transporter inhibitor [HSA:6530] [KO:K05...R:br08310] Transporters Solute carrier family SLC6 SLC6A2 (noradrenalin transporter) [HSA:6530] [KO:K05035

  9. Drug: D01285 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 1579 455.4193 D01285.gif Antidepressant Therapeutic category: 1174 ATC code: N06AA07 serotonin noradrenalin ...reuptake inhibitor Tricyclic antidepressants serotonin transporter inhibitor [HSA:6532] [KO:K05037]; noradre...] Transporters Solute carrier family SLC6 SLC6A2 (noradrenalin transporter) [HSA:6530] [KO:K05035] Lofeprami

  10. Collateral sensitivity to cisplatin in KB-8-5-11 drug-resistant cancer cells.

    LENUS (Irish Health Repository)

    Doherty, Ben

    2014-01-01

    KB-8-5-11 cells are a drug-resistant cervical cell model that overexpresses ABCB1 (P-glycoprotein). KB-8-5-11 has become sensitive to non-ABCB1 substrate cisplatin. Understanding the mechanism of collateral sensitivity to cisplatin may lead to biomarker discovery for platinum sensitivity in patients with cancer.

  11. Factors Governing P-Glycoprotein-Mediated Drug-Drug Interactions at the Blood-Brain Barrier Measured with Positron Emission Tomography.

    Science.gov (United States)

    Wanek, Thomas; Römermann, Kerstin; Mairinger, Severin; Stanek, Johann; Sauberer, Michael; Filip, Thomas; Traxl, Alexander; Kuntner, Claudia; Pahnke, Jens; Bauer, Florian; Erker, Thomas; Löscher, Wolfgang; Müller, Markus; Langer, Oliver

    2015-09-01

    The adenosine triphosphate-binding cassette transporter P-glycoprotein (ABCB1/Abcb1a) restricts at the blood-brain barrier (BBB) brain distribution of many drugs. ABCB1 may be involved in drug-drug interactions (DDIs) at the BBB, which may lead to changes in brain distribution and central nervous system side effects of drugs. Positron emission tomography (PET) with the ABCB1 substrates (R)-[(11)C]verapamil and [(11)C]-N-desmethyl-loperamide and the ABCB1 inhibitor tariquidar has allowed direct comparison of ABCB1-mediated DDIs at the rodent and human BBB. In this work we evaluated different factors which could influence the magnitude of the interaction between tariquidar and (R)-[(11)C]verapamil or [(11)C]-N-desmethyl-loperamide at the BBB and thereby contribute to previously observed species differences between rodents and humans. We performed in vitro transport experiments with [(3)H]verapamil and [(3)H]-N-desmethyl-loperamide in ABCB1 and Abcb1a overexpressing cell lines. Moreover we conducted in vivo PET experiments and biodistribution studies with (R)-[(11)C]verapamil and [(11)C]-N-desmethyl-loperamide in wild-type mice without and with tariquidar pretreatment and in homozygous Abcb1a/1b((-/-)) and heterozygous Abcb1a/1b((+/-)) mice. We found no differences for in vitro transport of [(3)H]verapamil and [(3)H]-N-desmethyl-loperamide by ABCB1 and Abcb1a and its inhibition by tariquidar. [(3)H]-N-Desmethyl-loperamide was transported with a 5 to 9 times higher transport ratio than [(3)H]verapamil in ABCB1- and Abcb1a-transfected cells. In vivo, brain radioactivity concentrations were lower for [(11)C]-N-desmethyl-loperamide than for (R)-[(11)C]verapamil. Both radiotracers showed tariquidar dose dependent increases in brain distribution with tariquidar half-maximum inhibitory concentrations (IC50) of 1052 nM (95% confidence interval CI: 930-1189) for (R)-[(11)C]verapamil and 1329 nM (95% CI: 980-1801) for [(11)C]-N-desmethyl-loperamide. In homozygous Abcb1a/1b

  12. The dopamine transporter haplotype and reward-related striatal responses in adult ADHD

    OpenAIRE

    Hoogman, M.; Onnink, M.; Coolen, R.; Aarts, E.; van Kan, C; Arias Vasquez, A.; Buitelaar, J; Franke, B

    2013-01-01

    Attention deficit/hyperactivity disorder (ADHD) is a highly heritable disorder and several genes increasing disease risk have been identified. The dopamine transporter gene, SLC6A3/DAT1, has been studied most extensively in ADHD research. Interestingly, a different haplotype of this gene (formed by genetic variants in the 3' untranslated region and intron 8) is associated with childhood ADHD (haplotype 10-6) and adult ADHD (haplotype 9-6). The expression of DAT1 is highest in striatal regions...

  13. Meta-analysis of the association between dopamine transporter genotype and response to methylphenidate treatment in ADHD.

    Science.gov (United States)

    Kambeitz, J; Romanos, M; Ettinger, U

    2014-02-01

    Attention-deficit/hyperactivity disorder (ADHD) is a prevalent childhood-onset neuropsychiatric disorder. Treatment with methylphenidate, which blocks dopamine and noradrenaline transporters, is clinically efficacious in reducing the symptoms of ADHD. However, a considerable proportion of patients show no or only insufficient response to methylphenidate. Following a pharmacogenetic approach, a number of studies have suggested that heterogeneity in treatment response across subjects might to some extent be due to genetic factors. In particular, a variable number tandem repeat (VNTR) polymorphism in the 3' untranslated region of the SLC6A3 gene, which codes for the dopamine transporter, has been considered as a predictor of treatment success. However, the literature has so far been inconsistent. Here we present results of a meta-analysis of studies investigating the moderating effect of the SLC6A3 VNTR on response to methylphenidate treatment in subjects with ADHD. Outcome measures from 16 studies including data from 1572 subjects were entered into a random-effects model. There was no significant summary effect for the SLC6A3 VNTR on the response to methylphenidate treatment (P>0.5) and no effect on specific symptom dimensions of hyperactivity/impulsivity and inattention (all P>0.2). However, in a subanalysis of naturalistic trials, we observed a significant effect of d=-0.36 (P=0.03), indicating that 10R homozygotes show less improvement in symptoms following treatment than the non-10/10 carriers. This meta-analysis indicates that SLC6A3 VNTR is not a reliable predictor of methylphenidate treatment success in ADHD. Our study leaves unanswered the question of whether other genetic polymorphisms or nongenetic factors may contribute to the observed heterogeneity in treatment response across ADHD subjects.

  14. Comparative study on gene tags of the neurotransmission system in schizophrenic and suicidal subjects.

    Science.gov (United States)

    Molnar, Sven; Mihanović, Mate; Grah, Majda; Kezić, Slobodanka; Filaković, Pavo; Degmecić, Dunja

    2010-12-01

    Schizophrenia and suicidal behaviour are sever and complex mental disorders, largely determined by factors of inheritance. Both disorders present pathological changes in the catecholamine neurotransmitter system. The study was conducted on three groups; a group of subjects suffering from schizophrenia, a second compounded by individuals who attempted suicide and a third group of phenotypically healthy examinees. The blood samples of schizophrenic patients as of those who attempted suicide were obtained at the Psychiatric Hospital "Sveti Ivan" in Zagreb in the year 2004. Tests were conducted on the statistic relation between a total of 18 SNPs within three candidate-genes of the dopamine and adrenergic system (DRD4, SLC6A3 and ADRA2B) and the manifestation of schzophrenia and suicidal behaviour. Cases were genotyped by use of SNPlex system. Statistically significant differences were determined in the allelic frequency between the mentioned groups. Findings show a significant connection between 4 SNPs (ADRA2B rs749457, SLC6A3 rs464094, DRD4 rs11246226 and rs4331145) and schizophrenia, and 2 SNPs with suicidal attempt (ADRA2B rs1018351 i SLC6A3 rs403636). In addition, this is the first study that highlights the potential role/effect of polymorphisms in ADRA2B on the manifestation of schizophrenia, as on suicidal behaviour.

  15. Genotype and ancestry modulate brain's DAT availability in healthy humans.

    Directory of Open Access Journals (Sweden)

    Elena Shumay

    Full Text Available The dopamine transporter (DAT is a principal regulator of dopaminergic neurotransmission and its gene (the SLC6A3 is a strong biological candidate gene for various behavioral- and neurological disorders. Intense investigation of the link between the SLC6A3 polymorphisms and behavioral phenotypes yielded inconsistent and even contradictory results. Reliance on objective brain phenotype measures, for example, those afforded by brain imaging, might critically improve detection of DAT genotype-phenotype association. Here, we tested the relationship between the DAT brain availability and the SLC6A3 genotypes using an aggregate sample of 95 healthy participants of several imaging studies. These studies employed positron emission tomography (PET with [¹¹C]cocaine wherein the DAT availability was estimated as Bmax/Kd; while the genotype values were obtained on two repeat polymorphisms--3-UTR- and intron 8--VNTRs. The main findings are the following: 1 both polymorphisms analyzed as single genetic markers and in combination (haplotype modulate DAT density in midbrain; 2 ethnic background and age influence the strength of these associations; and 3 age-related changes in DAT availability differ in the 3-UTR and intron 8--genotype groups.

  16. Genotype and ancestry modulate brain's DAT availability in healthy humans

    Energy Technology Data Exchange (ETDEWEB)

    Shumay, E.; Shumay, E.; Chen, J.; Fowler, J.S.; Volkow, N.D.

    2011-08-01

    The dopamine transporter (DAT) is a principal regulator of dopaminergic neurotransmission and its gene (the SLC6A3) is a strong biological candidate gene for various behavioral- and neurological disorders. Intense investigation of the link between the SLC6A3 polymorphisms and behavioral phenotypes yielded inconsistent and even contradictory results. Reliance on objective brain phenotype measures, for example, those afforded by brain imaging, might critically improve detection of DAT genotype-phenotype association. Here, we tested the relationship between the DAT brain availability and the SLC6A3 genotypes using an aggregate sample of 95 healthy participants of several imaging studies. These studies employed positron emission tomography (PET) with [{sup 11}C] cocaine wherein the DAT availability was estimated as Bmax/Kd; while the genotype values were obtained on two repeat polymorphisms - 3-UTR- and intron 8- VNTRs. The main findings are the following: (1) both polymorphisms analyzed as single genetic markers and in combination (haplotype) modulate DAT density in midbrain; (2) ethnic background and age influence the strength of these associations; and (3) age-related changes in DAT availability differ in the 3-UTR and intron8 - genotype groups.

  17. Predicting childhood effortful control from interactions between early parenting quality and children's dopamine transporter gene haplotypes.

    Science.gov (United States)

    Li, Yi; Sulik, Michael J; Eisenberg, Nancy; Spinrad, Tracy L; Lemery-Chalfant, Kathryn; Stover, Daryn A; Verrelli, Brian C

    2016-02-01

    Children's observed effortful control (EC) at 30, 42, and 54 months (n = 145) was predicted from the interaction between mothers' observed parenting with their 30-month-olds and three variants of the solute carrier family C6, member 3 (SLC6A3) dopamine transporter gene (single nucleotide polymorphisms in intron8 and intron13, and a 40 base pair variable number tandem repeat [VNTR] in the 3'-untranslated region [UTR]), as well as haplotypes of these variants. Significant moderating effects were found. Children without the intron8-A/intron13-G, intron8-A/3'-UTR VNTR-10, or intron13-G/3'-UTR VNTR-10 haplotypes (i.e., haplotypes associated with the reduced SLC6A3 gene expression and thus lower dopamine functioning) appeared to demonstrate altered levels of EC as a function of maternal parenting quality, whereas children with these haplotypes demonstrated a similar EC level regardless of the parenting quality. Children with these haplotypes demonstrated a trade-off, such that they showed higher EC, relative to their counterparts without these haplotypes, when exposed to less supportive maternal parenting. The findings revealed a diathesis-stress pattern and suggested that different SLC6A3 haplotypes, but not single variants, might represent different levels of young children's sensitivity/responsivity to early parenting.

  18. A Prospective Study of Serotonin and Norepinephrine Transporter Genes and the Response to Desvenlafaxine Over 8 Weeks in Major Depressive Disorder.

    Science.gov (United States)

    Ng, C H; Bousman, C; Smith, D J; Dowling, N; Byron, K; King, J; Sarris, J

    2016-09-01

    No studies to date have evaluated SLC6A2 and SLC6A4 genetic polymorphisms influencing antidepressant response to desvenlafaxine. We conducted an 8-week, open-label, prospective pilot study in 35 patients with major depressive disorder to assess the effects of genetic variations in SLC6A2 and SLC6A4 on both efficacy and side effect profile of desvenlafaxine. Results revealed that homozygotes for the SLC6A4 HTTLPR S allele showed a 33% HDRS reduction compared to a 58% reduction for L allele carriers (p=0.037). No results survived adjustments for covariates or multiple comparisons. While these results need to be interpreted cautiously, they provide preliminary support for the SLC6A4 HTTLPR polymorphism as potential modifier of desvenlafaxine efficacy. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Possible association of norepinephrine transporter -3081(A/T polymorphism with methylphenidate response in attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Shin Min-Sup

    2010-10-01

    Full Text Available Abstract Background Attention-deficit/hyperactivity disorder (ADHD is a heritable disorder characterized by symptoms of inattention and/or hyperactivity/impulsivity. Methylphenidate (MPH has been shown to block the norepinephrine transporter (NET, and genetic investigations have demonstrated that the norepinephrine transporter gene (SLC6A2 is associated with ADHD. The aims of this study were to examine the association of the SLC6A2 -3081(A/T and G1287A polymorphisms with MPH response in ADHD. Methods This study enrolled 112 children and adolescents with ADHD. A response criterion was defined based on the Clinical Global Impression-Improvement (CGI-I score, and the ADHD Rating Scale-IV (ARS score was also assessed at baseline and 8 weeks after MPH treatment. Results We found that the subjects who had the T allele as one of the alleles (A/T or T/T genotypes at the -3081(A/T polymorphism showed a better response to MPH treatment than those with the A/A genotype as measured by the CGI-I. We also found a trend towards a difference in the change of the total ARS scores and hyperactivity/impulsivity subscores between subjects with and without the T allele. No significant association was found between the genotypes of the SLC6A2 G1287A polymorphism and response to ADHD treatment. Conclusion Our findings provide evidence for the involvement of the -3081(A/T polymorphism of SLC6A2 in the modulation of the effectiveness of MPH treatment in ADHD.

  20. mRNA levels of related Abcb genes change opposite to each other upon histone deacetylase inhibition in drug-resistant rat hepatoma cells.

    Directory of Open Access Journals (Sweden)

    Adám Sike

    Full Text Available The multidrug-resistant phenotype of tumor cells is acquired via an increased capability of drug efflux by ABC transporters and causes serious problems in cancer treatment. With the aim to uncover whether changes induced by epigenetic mechanisms in the expression level of drug transporter genes correlates with changes in the drug resistance phenotypes of resistant cells, we studied the expression of drug transporters in rat hepatoma cell lines. We found that of the three major rat ABC transporter genes Abcb1a, Abcb1b and Abcc1 the activity of only Abcb1b increased significantly in colchicine-selected, drug-resistant cells. Increased transporter expression in drug-resistant cells results primarily from transcriptional activation. A change in histone modification at the regulatory regions of the chromosomally adjacent Abcb1a and Abcb1b genes differentially affects the levels of corresponding mRNAs. Transcriptional up- and down-regulation accompany an increase in acetylation levels of histone H3 lysine 9 at the promoter regions of Abcb1b and Abcb1a, respectively. Drug efflux activity, however, does not follow tightly the transcriptional activity of drug transporter genes in hepatoma cells. Our results point out the need for careful analysis of cause-and-effect relationships between changes in histone modification, drug transporter expression and drug resistance phenotypes.

  1. mRNA levels of related Abcb genes change opposite to each other upon histone deacetylase inhibition in drug-resistant rat hepatoma cells.

    Science.gov (United States)

    Sike, Adám; Nagy, Enikő; Vedelek, Balázs; Pusztai, Dávid; Szerémy, Péter; Venetianer, Anikó; Boros, Imre M

    2014-01-01

    The multidrug-resistant phenotype of tumor cells is acquired via an increased capability of drug efflux by ABC transporters and causes serious problems in cancer treatment. With the aim to uncover whether changes induced by epigenetic mechanisms in the expression level of drug transporter genes correlates with changes in the drug resistance phenotypes of resistant cells, we studied the expression of drug transporters in rat hepatoma cell lines. We found that of the three major rat ABC transporter genes Abcb1a, Abcb1b and Abcc1 the activity of only Abcb1b increased significantly in colchicine-selected, drug-resistant cells. Increased transporter expression in drug-resistant cells results primarily from transcriptional activation. A change in histone modification at the regulatory regions of the chromosomally adjacent Abcb1a and Abcb1b genes differentially affects the levels of corresponding mRNAs. Transcriptional up- and down-regulation accompany an increase in acetylation levels of histone H3 lysine 9 at the promoter regions of Abcb1b and Abcb1a, respectively. Drug efflux activity, however, does not follow tightly the transcriptional activity of drug transporter genes in hepatoma cells. Our results point out the need for careful analysis of cause-and-effect relationships between changes in histone modification, drug transporter expression and drug resistance phenotypes.

  2. Molecular Pathways: Regulation and Therapeutic Implications of Multidrug Resistance

    Science.gov (United States)

    Chen, Kevin G.; Sikic, Branimir I.

    2012-01-01

    Multidrug transporters constitute major mechanisms of multidrug resistance (MDR) in human cancers. The ABCB1 (MDR1) gene encodes a well-characterized transmembrane transporter, termed P-glycoprotein (P-gp), which is expressed in many normal human tissues and cancers. P-gp plays a major role in the distribution and excretion of drugs, and is involved in intrinsic and acquired drug resistance of cancers. The regulation of ABCB1 expression is complex, and has not been well studied in a clinical setting. In this review, we elucidate molecular signaling and epigenetic interactions that govern ABCB1 expression and the development of MDR in cancer. We focus on acquired expression of ABCB1 that is associated with genomic instability of cancer cells, including mutational events that alter chromatin structures, gene rearrangements, and mutations in tumor suppressor proteins (e.g., mutant p53) that guard the integrity of genome. In addition, epigenetic modifications of the ABCB1 proximal and far upstream promoters by either demethylation of DNA or acetylation of histone H3 play a pivotal role in inducing ABCB1 expression. We describe a molecular network that coordinates genetic and epigenetic events leading to the activation of ABCB1. These mechanistic insignts provide additional translational targets and potential strategies to deal with clinical MDR. PMID:22344233

  3. Drug: D07144 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 332 D07144.gif Deep vein thrombosis after surgery, venous thromboembolic events, stroke prevention in atrial...er: ABCB1 [HSA:5243] map07049 Antithrombosis agents Anatomical Therapeutic Chemical (ATC) classification [BR

  4. Ivermectin interacts with human ABCG2.

    Science.gov (United States)

    Jani, Márton; Makai, Ildikó; Kis, Emese; Szabó, Pál; Nagy, Tünde; Krajcsi, Péter; Lespine, Anne

    2011-01-01

    Ivermectin is an antiparasitic drug frequently administered to humans. It has a limited brain exposure that is attributed to the efflux activity of ABCB1/Abcb1. ABCG2/Abcg2 is also a major transporter present in most pharmacologically important barriers. However, interaction of ivermectin with Abcg2 shows species specificity and in many studies was confounded by the masking effect of ABCB1/Abcb1. In this study using cellular and membrane assays we show that ivermectin displays a high-affinity interaction with human ABCG2 with IC(50) values in the 1-1.5  µM range. This interaction may have implications in human ABCG2-mediated drug-drug interactions of ivermectin.

  5. Drug: D08996 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available nhibitor [HSA:1803] [KO:K01278] hsa04974(1803) Protein digestion and absorption Transporter: ABCB1 [HSA:5243] map07051 Antidiabetic...P drug classification [BR:br08302] Blood Glucose Regulators Antidiabetic Agents S

  6. Browse Title Index

    African Journals Online (AJOL)

    2015), Differential response of biochemical parameters to EMS and MMS treatments ... gene and Alzheimer's disease in Egyptian patients, Abstract PDF ... Vol 18, No 3 (2017), Effect of ABCB1 (3435C>T) and CYP3A5 ...

  7. Drug: D00252 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available duction: ABCB1 [HSA:5243] map07033 Anticonvulsants map07231 Sodium channel blocking drugs map00982 Drug meta...mazepine D00252 Carbamazepine (JP16/USP/INN) USP drug classification [BR:br08302] Anticonvulsants

  8. ATP-Binding Cassette Genes Genotype and Expression: A Potential Association with Pancreatic Cancer Development and Chemoresistance?

    Directory of Open Access Journals (Sweden)

    Li Pang

    2014-01-01

    Full Text Available Genetic polymorphisms in ABC (ATP-binding cassette transporter genes are associated with differential responses to chemotherapy in various cancers including pancreatic cancer. In this study, four SNPs in the ABCB1, ABCC1, and ABCG2 genes were investigated in normal and pancreatic cancerous specimens. The expression of the three transporters was also analyzed. The TT genotypes of G2677T and C3435T in ABCB1 gene were associated with lower risk of developing pancreatic cancer (P=0.013, OR = 0.35 and P=0.015, OR = 0.29, resp.. To our knowledge, this is the first report of the common polymorphisms in the ABCB1 gene affecting the genetic risk of developing pancreatic cancer. Moreover, the expression of ABCB1 in 2677TT and 3435TT carriers was lower compared to the wild-type homozygotes and heterozygotes. A cell viability assay, using standard pancreatic cancer cell lines, revealed that the ABCB1 2677TT-3455TT haplotype was more sensitive than the other haplotypes to gemcitabine. Conclusion. Polymorphisms in ABCB1 G2677T and G3435T were associated with differential susceptibility to pancreatic cancer and may predict responses to chemotherapy.

  9. Tissue-specific alterations in expression and function of P-glycoprotein in streptozotocininduced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Lu-lu ZHANG; Guang-ji WANG; Lin XIE; Liang LU; Shi JIN; Xin-yue JING; Dan YAO; Nan HU; Li LIU; Ru DUAN; Xiao-dong LIU

    2011-01-01

    Aim: To investigate the changes of expression and function of P-glycoprotein (P-GP) in cerebral cortex, hippocampus, liver, intestinal mucosa and kidney of streptozocin-induced diabetic rats.Methods: Diabetic rats were prepared via a single dose of streptozocin (65 mg/kg, ip). Abcb1/P-GP mRNA and protein expression levels in tissues were evaluated using quantitative real time polymerase chain reaction (QRT-PCR) analysis and Western blot, respectively.P-GP function was investigated via measuring tissue-to-plasma concentration ratios and body fluid excretion percentages of rhodamine 123.Results: In 5- and 8-week diabetic rats, Abcb1a mRNA levels were significantly decreased in cerebral cortices and intestinal mucosa,but dramatically increased in hippocampus and kidney. In liver, the level was increased in 5-week diabetic rats, and decreased in 8-week diabetic rats. Abcb1b mRNA levels were increased in cerebral cortex, hippocampus and kidney, but reduced in liver and intestinal mucosa in the diabetic rats. Western blot results were in accordance with the alterations of Abcb1a mRNA levels in most tissues examined. P-GP activity was markedly decreased in most tissues of diabetic rats, except kidney tissues.Conclusion: Alterations in the expression and function of Abcb1/P-GP under diabetic conditions are tissue specific, Abcb1 specific and diabetic duration-dependent.

  10. Genetic variations of PIP4K2A confer vulnerability to poor antipsychotic response in severely ill schizophrenia patients.

    Directory of Open Access Journals (Sweden)

    Harpreet Kaur

    Full Text Available Literature suggests that disease severity and neurotransmitter signaling pathway genes can accurately identify antipsychotic response in schizophrenia patients. However, putative role of signaling molecules has not been tested in schizophrenia patients based on severity of illness, despite its biological plausibility. In the present study we investigated the possible association of polymorphisms from five candidate genes RGS4, SLC6A3, PIP4K2A, BDNF, PI4KA with response to antipsychotic in variably ill schizophrenia patients. Thus in present study, a total 53 SNPs on the basis of previous reports and functional grounds were examined for their association with antipsychotic response in 423 schizophrenia patients segregated into low and high severity groups. Additionally, haplotype, diplotype, multivariate logistic regression and multifactor-dimensionality reduction (MDR analyses were performed. Furthermore, observed associations were investigated in atypical monotherapy (n = 355 and risperidone (n = 260 treated subgroups. All associations were estimated as odds ratio (OR and 95% confidence interval (CI and test for multiple corrections was applied. Single locus analysis showed significant association of nine variants from SLC6A3, PIP4K2A and BDNF genes with incomplete antipsychotic response in schizophrenia patients with high severity. We identified significant association of six marker diplotype ATTGCT/ATTGCT (rs746203-rs10828317-rs7094131-rs2296624-rs11013052-rs1409396 of PIP4K2A gene in incomplete responders (corrected p-value = 0.001; adjusted-OR = 3.19, 95%-CI = 1.46-6.98 with high severity. These associations were further observed in atypical monotherapy and risperidone sub-groups. MDR approach identified gene-gene interaction among BDNF_rs7103411-BDNF_rs1491851-SLC6A3_rs40184 in severely ill incomplete responders (OR = 7.91, 95%-CI = 4.08-15.36. While RGS4_rs2842026-SLC6A3_rs2975226 interacted synergistically in

  11. Predicting childhood effortful control from interactions between early parenting quality and children’s dopamine transporter gene haplotypes

    OpenAIRE

    2015-01-01

    Children’s observed effortful control (EC) at 30, 42, and 54 months (n = 145) was predicted from the interaction between mothers’ observed parenting with their 30-month-olds and three variants of the solute carrier family C6, member 3 (SLC6A3) dopamine transporter gene (single nucleotide polymorphisms in intron8 and intron13, and a 40 base pair variable number tandem repeat [VNTR] in the 3′-untranslated region [UTR]), as well as haplotypes of these variants. Significant moderating effects wer...

  12. Possible effect of norepinephrine transporter polymorphisms on methylphenidate-induced changes in neuropsychological function in attention-deficit hyperactivity disorder.

    Science.gov (United States)

    Park, Subin; Kim, Jae-Won; Yang, Young-Hui; Hong, Soon-Beom; Park, Min-Hyeon; Kim, Boong-Nyun; Shin, Min-Sup; Yoo, Hee-Jeong; Cho, Soo-Churl

    2012-05-16

    Dysregulation of noradrenergic system may play important roles in pathophysiology of attention-deficit/hyperactivity disorder (ADHD). We examined the relationship between polymorphisms in the norepinephrine transporter SLC6A2 gene and attentional performance before and after medication in children with ADHD. Fifty-three medication-naïve children with ADHD were genotyped and evaluated using the continuous performance test (CPT). After 8-weeks of methylphenidate treatment, these children were evaluated by CPT again. We compared the baseline CPT measures and the post-treatment changes in the CPT measures based on the G1287A and the A-3081T polymorphisms of SLC6A2. There was no significant difference in the baseline CPT measures associated with the G1287A or A-3081T polymorphisms. After medication, however, ADHD subjects with the G/G genotype at the G1287A polymorphism showed a greater decrease in the mean omission error scores (p = 0.006) than subjects with the G/A or A/A genotypes, and subjects with the T allele at the A-3081T polymorphism (T/T or A/T) showed a greater decrease in the mean commission error scores (p = 0.003) than those with the A/A genotypes. Our results provide evidence for the possible role of the G1287A and A-3081T genotypes of SLC6A2 in methylphenidate-induced improvement in attentional performance and support the noradrenergic hypothesis for the pathophysiology of ADHD.

  13. Drug: D07473 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D07473 Drug Atomoxetine (INN); Tomoxetine C17H21NO 255.1623 255.3547 D07473.gif Ant...TROPICS N06BA Centrally acting sympathomimetics N06BA09 Atomoxetine D07473 Atomoxetine (INN) USP drug classi...ty Disorder Agents, Non- amphetamines Atomoxetine D07473 Atomoxetine (INN) Target-based classification of dr...ugs [BR:br08310] Transporters Solute carrier family SLC6 SLC6A2 (noradrenalin transporter) [HSA:6530] [KO:K05035] Atom...oxetine [ATC:N06BA09] D07473 Atomoxetine (INN) CAS: 83015-26-3 PubChem:

  14. Drug: D10072 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D10072 Drug Levomilnacipran (USAN/INN) C15H22N2O 246.1732 246.348 D10072.gif Antide...ptake Inhibitors) Levomilnacipran D10072 Levomilnacipran (USAN/INN) Target-based classification of drugs [BR...:br08310] Transporters Solute carrier family SLC6 SLC6A2 (noradrenalin transporter) [HSA:6530] [KO:K05035] Levomilnacipran D100...HSA:6532] [KO:K05037] Levomilnacipran D10072 Levomilnacipran (USAN/INN) CAS: 96847-55-1 PubChem: 135626792 LigandBox: D100

  15. Dopamine transporter 3'UTR VNTR genotype is a marker of performance on executive function tasks in children with ADHD

    Directory of Open Access Journals (Sweden)

    Polotskaia Anna

    2008-06-01

    Full Text Available Abstract Background Attention-Deficit/Hyperactivity Disorder (ADHD is a heterogeneous disorder from both clinical and pathogenic viewpoints. Executive function deficits are considered among the most important pathogenic pathways leading to ADHD and may index part of the heterogeneity in this disorder. Methods To investigate the relationship between the dopamine transporter gene (SLC6A3 3'-UTR VNTR genotypes and executive function in children with ADHD, 196 children diagnosed with ADHD were sequentially recruited, genotyped, and tested using a battery of three neuropsychological tests aimed at assessing the different aspects of executive functioning. Results Taking into account a correction for multiple comparisons, the main finding of this study is a significant genotype effect on performances on the Tower of London (F = 6.902, p = 0.009 and on the Wechsler Intelligence Scale for Children, Third Edition (WISC-III Freedom From Distractibility Index (F = 7.125, p = 0.008, as well as strong trends on Self Ordered Pointing Task error scores (F = 4,996 p = 0.026 and WISC-III Digit Span performance (F = 6.28, p = 0.023. Children with the 9/10 genotype exhibited, on average, a poorer performance on all four measures compared to children with the 10/10 genotype. No effect of genotype on Wisconsin Card Sorting Test measures of performance was detected. Conclusion Results are compatible with the view that SLC6A3 genotype may modulate components of executive function performance in children with ADHD.

  16. Reversal of chemoresistance with small interference RNA (siRNA) in etoposide resistant acute myeloid leukemia cells (HL-60).

    Science.gov (United States)

    Kachalaki, Saeed; Baradaran, Behzad; Majidi, Jafar; Yousefi, Mehdi; Shanehbandi, Dariush; Mohammadinejad, Sina; Mansoori, Behzad

    2015-10-01

    Overexpression of ATP-binding cassette (ABC) drug transporters is a major barrier in the success of cancer chemotherapy. One way to overcome overexpression of ABC drug transporter-mediated chemoresistance in acute myeloid leukemia is to suppress ABC drug transporter genes expression by small interference RNA (siRNA). In this study was assessed the involvement of ABCB1 gene in the mechanisms of resistance to etoposide in AML cells. The etoposide-resistant HL-60 cells were generated by stepwise exposure increasing concentrations of etoposide. The etoposide-resistant HL-60 cells were transfected with siRNAs using Transfection Reagent. The ABCB1 mRNA expression were assessed by real-time quantitative PCR. The MDR1/P-gp levels were measured by Western blotting. The sensitivity of resistant HL-60 cells to etoposide after transfection was determined using MTT assay. Apoptosis of resistant HL-60 cells after transfection was detected by flow cytometer. It was found that siRNA effectively inhibited ABCB1 expression at both mRNA and protein levels. Knockdown of the ABCB1 gene correlated with increased sensitivity of the resistant HL-60 cells to etoposide and was observed to lower the cytotoxic index (IC50 etoposide value) after transfection. Our results indicate that product of the ABCB1 gene have effective role in resistance to etoposide in acute myeloid leukemia cells. Copyright © 2015. Published by Elsevier Masson SAS.

  17. The Alterations in the Expression and Function of P-Glycoprotein in Vitamin A-Deficient Rats as well as the Effect of Drug Disposition in Vivo

    Directory of Open Access Journals (Sweden)

    Yubang Wang

    2015-12-01

    Full Text Available This study was aimed to investigate whether vitamin A deficiency could alter P-GP expression and function in tissues of rats and whether such effects affected the drug distribution in vivo of vitamin A-deficient rats. We induced vitamin A-deficient rats by giving them a vitamin A-free diet for 12 weeks. Then, Abcb1/P-GP expression was evaluated by qRT-PCR and Western blot. qRT-PCR analysis revealed that Abcb1a mRNA levels were increased in hippocampus and liver. In kidney, it only showed an upward trend. Abcb1b mRNA levels were increased in hippocampus, but decreased in cerebral cortex, liver and kidney. Western blot results were in good accordance with the alterations of Abcb1b mRNA levels. P-GP function was investigated through tissue distribution and body fluid excretion of rhodamine 123 (Rho123, and the results proclaimed that P-GP activities were also in good accordance with P-GP expression in cerebral cortex, liver and kidney. The change of drug distribution was also investigated through the tissue distribution of vincristine, and the results showed a significantly upward trend in all indicated tissues of vitamin A-deficient rats. In conclusion, vitamin A deficiency may alter Abcb1/P-GP expression and function in rat tissues, and the alterations may increase drug activity/toxicity through the increase of tissue accumulation.

  18. Afatinib reverses multidrug resistance in ovarian cancer via dually inhibiting ATP binding cassette subfamily B member 1.

    Science.gov (United States)

    Wang, Sheng-qi; Liu, Shi-ting; Zhao, Bo-xin; Yang, Fu-heng; Wang, Ya-tian; Liang, Qian-Ying; Sun, Ya-bin; Liu, Yuan; Song, Zhi-hua; Cai, Yun; Li, Guo-feng

    2015-09-22

    ABCB1-mediated multidrug resistance (MDR) remains a major obstacle to successful chemotherapy in ovarian cancer. Herein, afatinib at nontoxic concentrations significantly reversed ABCB1-mediated MDR in ovarian cancer cells in vitro (p afatinib caused tumor regressions and tumor necrosis in A2780T xenografts in vivo. More interestingly, unlike reversible TKIs, afatinib had a distinctive dual-mode action. Afatinib not only inhibited the efflux function of ABCB1, but also attenuated its expression transcriptionally via down-regulation of PI3K/AKT and MAPK/p38-dependent activation of NF-κB. Furthermore, apart from a substrate binding domain, afatinib could also bind to an ATP binding domain of ABCB1 through forming hydrogen bonds with Gly533, Gly534, Lys536 and Ala560 sites. Importantly, mutations in these four binding sites of ABCB1 and the tyrosine kinase domain of EGFR were not correlated with the reversal activity of afatinib on MDR. Given that afatinib is a clinically approved drug, our results suggest combining afatinib with chemotherapeutic drugs in ovarian cancer. This study can facilitate the rediscovery of superior MDR reversal agents from molecular targeted drugs to provide a more effective and safer way of resensitizing MDR.

  19. The Alterations in the Expression and Function of P-Glycoprotein in Vitamin A-Deficient Rats as well as the Effect of Drug Disposition in Vivo.

    Science.gov (United States)

    Wang, Yubang; Qin, Heng; Zhang, Chengxiang; Huan, Fei; Yan, Ting; Zhang, Lulu

    2015-12-29

    This study was aimed to investigate whether vitamin A deficiency could alter P-GP expression and function in tissues of rats and whether such effects affected the drug distribution in vivo of vitamin A-deficient rats. We induced vitamin A-deficient rats by giving them a vitamin A-free diet for 12 weeks. Then, Abcb1/P-GP expression was evaluated by qRT-PCR and Western blot. qRT-PCR analysis revealed that Abcb1a mRNA levels were increased in hippocampus and liver. In kidney, it only showed an upward trend. Abcb1b mRNA levels were increased in hippocampus, but decreased in cerebral cortex, liver and kidney. Western blot results were in good accordance with the alterations of Abcb1b mRNA levels. P-GP function was investigated through tissue distribution and body fluid excretion of rhodamine 123 (Rho123), and the results proclaimed that P-GP activities were also in good accordance with P-GP expression in cerebral cortex, liver and kidney. The change of drug distribution was also investigated through the tissue distribution of vincristine, and the results showed a significantly upward trend in all indicated tissues of vitamin A-deficient rats. In conclusion, vitamin A deficiency may alter Abcb1/P-GP expression and function in rat tissues, and the alterations may increase drug activity/toxicity through the increase of tissue accumulation.

  20. Detection of heterozygous MDR1 nt230(del4 mutation in a mixed-breed dog: case report of possible doxorubicin toxicosis

    Directory of Open Access Journals (Sweden)

    Monobe MM

    2013-10-01

    Full Text Available Marina Mitie Monobe,1 Kari V Lunsford,2 João Pessoa Araújo Jr,3 Camilo Bulla41Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, Sao Paulo State University, Botucatu, Brazil; 2Department of Clinical Sciences and Animal Health Center, College of Veterinary Medicine, Mississippi State University, MS, USA; 3Department of Microbiology and Immunology, Biosciences Institute, Sao Paulo State University, Botucatu, Brazil; 4Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, MS, USAAbstract: P-glycoprotein (ABCB1, the product of the Multidrug Resistance Gene (MDR1 (ABCB1 gene, is the major multidrug transporter contributing to the barrier function of several tissues and organs, including the brain. A four base pair deletion mutation in MDR1 results in the absence of a functional form of ABCB1 and loss of its protective function. Severe intoxication with the ABCB1 substrate, such as with anticancer drugs, has been attributed to genetic lack of functional ABCB1. This mutation has been detected in more than 10 dog breeds as well as in mixed-breed dogs living in different countries. In Brazil, evaluation for this mutation is not as widely available and is rarely used by veterinarians, so drug intoxication may be underdiagnosed. This is the first report from Brazil of doxorubicin neurotoxicity in a mixed-breed dog with the MDR1 nt230(del4 mutation.Keywords: canine, toxicology, cancer, P-glycoprotein

  1. High ABCC2 and Low ABCG2 Gene Expression Are Early Events in the Colorectal Adenoma-Carcinoma Sequence

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Vogel, Lotte K.; Kopp, Tine Iskov

    2015-01-01

    Development of colorectal cancer (CRC) may result from a dysfunctional interplay between diet, gut microbes and the immune system. The ABC transport proteins ABCB1 (P-glycoprotein, Multidrug resistance protein 1, MDR1), ABCC2 (MRP2) and ABCG2 (BCRP) are involved in transport of various compounds...... across the epithelial barrier. Low mRNA level of ABCB1 has previously been identified as an early event in colorectal carcinogenesis (Andersen et al., PLoS One. 2013 Aug 19; 8(8): e72119). ABCC2 and ABCG2 mRNA levels were assessed in intestinal tissue from 122 CRC cases, 106 adenoma cases (12 with severe...... in carcinogenesis suggesting that these ABC transporters are involved in the early steps of carcinogenesis as previously reported for ABCB1. These results suggest that dysfunctional transport across the epithelial barrier may contribute to colorectal carcinogenesis....

  2. Importance of detecting multidrug resistance proteins in acute leukemia prognosis and therapy.

    Science.gov (United States)

    de Moraes, Ana Carolina Rabello; Maranho, Caroline Klein; Rauber, Gabriela Schneider; Santos-Silva, Maria Cláudia

    2013-01-01

    Multidrug resistance (MDR) is a multifactorial phenomenon and the role of these proteins in generating the MDR phenotype is controversial. With this in mind, this review compiled the current data on the role of ABCB1, ABCC1, and LRP proteins in the prognosis of hematologic neoplasms and their influence on the choice of therapy. Literature showed that the detection of these proteins, mainly ABCB1, is important in the AL prognosis. However, there is controversy regarding the methodology used for their detection. In summary, the expression and activity profiles of ABCB1, ABCC1, and LRP, proteins capable of promoting the efflux of a variety of chemotherapeutic agents from the cell cytoplasm represent one of the greatest causes of failure in AL treatment.

  3. Paraoxonase-1 is not a major determinant of stent thrombosis in a Taiwanese population.

    Directory of Open Access Journals (Sweden)

    Dong-Yi Chen

    Full Text Available BACKGROUND: Clopidogrel is a prodrug that undergoes in vivo bioactivation to show its antiplatelet effects. Recent studies have shown that cytochrome P450 (CYP, ATP-binding cassette transporters (ABCB1, and paraoxonase-1 (PON1 play crucial roles in clopidogrel bioactivation. Here, we aim to determine the effects of genetic polymorphisms of CYP (CYP 2C19*2, CYP 2C19*3, and CYP 2C19*17, ABCB1 (ABCB1 3435C>T, ABCB1 129T>C, and ABCB1 2677G>T/A, and PON1 (PON1 Q192R, PON1 L55M, and PON1 108C>T on the development of stent thrombosis (ST in patients receiving clopidogrel after percutaneous coronary intervention (PCI. METHODS AND RESULTS: We evaluated the incidence of ST (0.64% in 4964 patients who were recruited in the CAPTAIN registry (Cardiovascular Atherosclerosis and Percutaneous TrAnsluminal INterventions. The presence of genetic polymorphisms was assessed in 20 subjects who developed ST after aspirin and clopidogrel therapy and in 40 age- and sex-matched control subjects who did not develop ST, which was documented after 9 months of angiographic follow-up. ST was acute in 5 subjects, subacute in 7, late in 7, and very late in 1. The presence of CYP 2C19*2 allele was significantly associated with ST (adjusted odds ratio [ORadj]: 4.20, 95% confidence interval [CI], 1.263-9.544; P = 0.031. However, genetic variations in PON1 and ABCB1 showed no significant association with ST. CONCLUSION: We conclude that in a Taiwanese population, PON1 Q192R genotype is not associated with ST development after PCI. However, the presence of CYP 2C19*2 allele is a risk factor for ST development after PCI.

  4. Regulation of Multidrug Resistance P-Glycoprotein in the Developing Blood-Brain Barrier: Interplay between Glucocorticoids and Cytokines.

    Science.gov (United States)

    Iqbal, M; Baello, S; Javam, M; Audette, M C; Gibb, W; Matthews, S G

    2016-03-01

    P-glycoprotein (P-gp) encoded by Abcb1 provides protection to the developing brain from xenobiotics. P-gp in brain endothelial cells (BECs) derived from the developing brain microvasculature is up-regulated by glucocorticoids and inhibited by pro-inflammatory cytokines in vitro. However, little is known about how prenatal maternal glucocorticoid treatment can affect Abcb1/P-gp function and subsequent cytokine regulation in foetal BECs. We hypothesised that glucocorticoid exposure increases Abcb1/P-gp in the foetal brain microvasculature and enhances the sensitivity of Abcb1/P-gp in BECs to the inhibitory effects of cytokines. BECs isolated from dexamethasone- or vehicle-exposed foetal guinea pigs were cultured and treated with interleukin-1β, interleukin-6 or tumour necrosis factor-α, and Abcb1/P-gp expression and function were assessed. Prenatal dexamethasone exposure significantly increased Abcb1/P-gp expression/activity and cytokine receptor levels in BECs of the foetal brain microvasculature. Foetal dexamethasone exposure in vivo also increased the subsequent responsiveness of BECs to pro-inflammatory cytokines in vitro. In conclusion, maternal treatment with synthetic glucocorticoids appears to prematurely mature P-gp mediated drug resistance at the foetal BBB in vivo and profoundly impact the subsequent responsiveness of P-gp to pro-inflammatory cytokines in the foetal BEC. The significance of these findings to foetal brain protection against xenobiotics and other P-gp substrates in vivo requires further elaboration. However, the results of the present study may have implications for human pregnancy and foetal brain protection, particularly in cases of preterm birth combined with infection.

  5. Dual regulation of P-glycoprotein expression by Trichostatin A in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Balaguer Trinidad

    2012-07-01

    Full Text Available Abstract Background It has been reported that the histone deacetylase inhibitor (iHDAc trichostatin A (TSA induces an increase in MDR1 gene transcription (ABCB1. This result would compromise the use of iHDACs in combination with other cytotoxic agents that are substrates of P-glycoprotein (Pgp. It has also been reported the use of alternative promoters by the ABCB1 gene and the existence of a translational control of Pgp protein. Finally, the ABCB1 gene is located in a genetic locus with the nested gene RUNDC3B in the complementary DNA strand, raising the possibility that RUNDC3B expression could interfere with ABCB1 alternative promoter regulation. Methods A combination of RT-PCR, real time RT-PCR, Western blot and drug accumulation assays by flow cytometry has been used in this study. Results The iHDACs-induced increase in MDR1 mRNA levels is not followed by a subsequent increase in Pgp protein levels or activity in several pancreatic and colon carcinoma cell lines, suggesting a translational control of Pgp in these cell lines. In addition, the MDR1 mRNA produced in these cell lines is shorter in its 5′ end that the Pgp mRNA produced in cell lines expressing Pgp protein. The different size of the Pgp mRNA is due to the use of alternative promoters. We also demonstrate that these promoters are differentially regulated by TSA. The translational blockade of Pgp mRNA in the pancreatic carcinoma cell lines could be related to alterations in the 5′ end of the MDR1 mRNA in the Pgp protein expressing cell lines. In addition, we demonstrate that the ABCB1 nested gene RUNDC3B expression although upregulated by TSA is independent of the ABCB1 alternative promoter used. Conclusions The results show that the increase in MDR1 mRNA expression after iHDACs treatment is clinically irrelevant since this mRNA does not render an active Pgp protein, at least in colon and pancreatic cancer cell lines. Furthermore, we demonstrate that TSA in fact, regulates

  6. Drug: D08618 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 0] [KO:K03163] Transporter: ABCB1 [HSA:5243], ABCG2 [HSA:9429], ABCC4 [HSA:10257] map07042 Antineoplastics -...) USP drug classification [BR:br08302] Antineoplastics Enzyme Inhibitors Topoteca...I [HSA:7150] [KO:K03163] Topotecan [ATC:L01XX17] D08618 Topotecan (BAN) Antineoplastics [BR:br08308] Natural

  7. Environ: E00784 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available E00784 St. John's wort SJW Medicinal herb Hypericin [CPD:C07606], Pseudohypericin [...9 [HSA:1559] Transporter induction: ABCB1 [HSA:5243] Medicinal herbs [BR:br08322] Dicot plants: rosids Hypericaceae (hypericum family) E00784 St. John's wort ...

  8. The multidrug resistance 1 (MDR1) gene polymorphism G-rs3789243-A is not associated with disease susceptibility in Norwegian patients with colorectal adenoma and colorectal cancer; a case control study

    DEFF Research Database (Denmark)

    Andersen, V.; Agerstjerne, L.; Jensen, D.;

    2009-01-01

    Background: Smoking, dietary factors, and alcohol consumption are known life style factors contributing to gastrointestinal carcinogenesis. Genetic variations in carcinogen handling may affect cancer risk. The multidrug resistance 1(MDR1/ABCB1) gene encodes the transport protein P-glycoprotein (a...

  9. Enhanced brain disposition and effects of Δ9-tetrahydrocannabinol in P-glycoprotein and breast cancer resistance protein knockout mice.

    Directory of Open Access Journals (Sweden)

    Adena S Spiro

    Full Text Available The ABC transporters P-glycoprotein (P-gp, Abcb1 and breast cancer resistance protein (Bcrp, Abcg2 regulate the CNS disposition of many drugs. The main psychoactive constituent of cannabis Δ(9-tetrahydrocannabinol (THC has affinity for P-gp and Bcrp, however it is unknown whether these transporters modulate the brain accumulation of THC and its functional effects on the CNS. Here we aim to show that mice devoid of Abcb1 and Abcg2 retain higher brain THC levels and are more sensitive to cannabinoid-induced hypothermia than wild-type (WT mice. Abcb1a/b (-/-, Abcg2 (-/- and wild-type (WT mice were injected with THC before brain and blood were collected and THC concentrations determined. Another cohort of mice was examined for THC-induced hypothermia by measuring rectal body temperature. Brain THC concentrations were higher in both Abcb1a/b (-/- and Abcg2 (-/- mice than WT mice. ABC transporter knockout mice exhibited delayed elimination of THC from the brain with the effect being more prominent in Abcg2 (-/- mice. ABC transporter knockout mice were more sensitive to THC-induced hypothermia compared to WT mice. These results show P-gp and Bcrp prolong the brain disposition and hypothermic effects of THC and offer a novel mechanism for both genetic vulnerability to the psychoactive effects of cannabis and drug interactions between CNS therapies and cannabis.

  10. Metabolic activation and analgesic effect of flupirtine in healthy subjects, influence of the polymorphic NAT2, UGT1A1 and GSTP1

    National Research Council Canada - National Science Library

    Siegmund, Werner; Modess, Christiane; Scheuch, Eberhard; Methling, Karen; Keiser, Markus; Nassif, Ali; Rosskopf, Dieter; Bednarski, Patrick J; Borlak, Jürgen; Terhaag, Bernd

    2015-01-01

    ... by genetic polymorphisms of UGT1A1 , NAT2 and GSTP1 . The analgesic effect appears to be linked to the GSTP1 genotype. Flupirtine is not a substrate in vitro for ABCB1 and ABCC2 . Introduction Flupirtine was launched 1989 in the European market as an alternative to opioids and non‐steroidal anti‐inflammatory drugs (NSAIDs). The drug acts ...

  11. Altered brain concentrations of citalopram and escitalopram in P-glycoprotein deficient mice after acute and chronic treatment.

    Science.gov (United States)

    Karlsson, Louise; Carlsson, Björn; Hiemke, Christoph; Ahlner, Johan; Bengtsson, Finn; Schmitt, Ulrich; Kugelberg, Fredrik C

    2013-11-01

    According to both in vitro and in vivo data P-glycoprotein (P-gp) may restrict the uptake of several antidepressants into the brain, thus contributing to the poor success rate of current antidepressant therapies. The therapeutic activity of citalopram resides in the S-enantiomer, whereas the R-enantiomer is practically devoid of serotonin reuptake potency. To date, no in vivo data are available that address whether the enantiomers of citalopram and its metabolites are substrates of P-gp. P-gp knockout (abcb1ab (-/-)) and wild-type (abcb1ab (+/+)) mice underwent acute (single-dose) and chronic (two daily doses for 10 days) treatment with citalopram (10mg/kg) or escitalopram (5mg/kg) Serum and brain samples were collected 1-6h after the first or last i.p. injection for subsequent drug analysis by an enantioselective HPLC method. In brain, 3-fold higher concentrations of S- and R-citalopram, and its metabolites, were found in abcb1ab (-/-) mice than in abcb1ab (+/+) mice after both acute and chronic citalopram treatments. After escitalopram treatment, the S-citalopram brain concentration was 3-5 times higher in the knockout mice than in controls. The results provide novel evidence that the enantiomers of citalopram are substrates of P-gp. Possible clinical and toxicological implications of this finding need to be further elucidated.

  12. Interaction of BDE-47 and its Hydroxylated Metabolite 6-OH-BDE-47 with the Human ABC Efflux Transporters P-gp and BCRP: Considerations for Human Exposure and Risk Assessment

    Science.gov (United States)

    ATP binding cassette (ABC) transporters, including P-glycoprotein (P-gp; also known as MDR1, ABCB1) and breast cancer resistance protein (BCRP; also known as ABCG2), are membrane-bound proteins that mediate the cellular efflux of xenobiotics as an important defense against chemic...

  13. Drug Transporter Genetic Variants Are Not Associated with TDF-Related Renal Dysfunction in Patients with HIV-1 Infection: A Pharmacogenetic Study.

    Directory of Open Access Journals (Sweden)

    Takeshi Nishijima

    Full Text Available To investigate whether single nucleotide polymorphisms (SNP of drug transporter proteins for TDF is a risk factor for TDF-related renal function decrement.This study investigated the association between 3 SNPs (ABCC2-24, 1249, and ABCB1 2677, which are shown to be associated with TDF-induced tubulopathy, and clinically important renal outcomes (>10ml/min/1.73m2 decrement in eGFR relative to baseline, >25% decrement in eGFR, and eGFR 10ml/min/1.73m2 and those without such decrement (ABCC2: -24, p = 0.53, 1249, p = 0.68; ABCB1: 2677, p = 0.74, nor between those without and with the other two renal outcomes (>25% decrement: ABCC2: -24, p = 0.83, 1249, p = 0.97, ABCB1: 2677, p = 0.40; eGFR <60ml/min/1.73m2: ABCC2: -24, p = 0.51, 1249, p = 0.81, ABCB1: 2677, p = 0.94. Logistic regression analysis showed that the risk genotype of the three SNPs were not associated with any of the three renal outcomes, respectively. Logistic regression model that applied either dominant, recessive, or additive model yielded the same results.SNPs of the drug transporters for TDF are not associated with clinically important renal outcomes in patients who initiated TDF-containing ART.

  14. 76 FR 72713 - Government-Owned Inventions; Availability for Licensing

    Science.gov (United States)

    2011-11-25

    ... be tested in a ``Collie Safety Study'' to determine the degree of CNS toxicity. The toxicity is due... the ABCB1 gene. Ivermectin, a derivative of the avermectin family of heartworm drugs used to treat and... derivative safety studies that are part of the Investigational New Animal Drug (INAD) approval...

  15. Inhibition of multixenobiotic resistance transporters (MXR) by silver nanoparticles and ions in vitro and in Daphnia magna

    NARCIS (Netherlands)

    Georgantzopoulou, Anastasia; Cambier, Sébastien; Serchi, Tommaso; Kruszewski, Marcin; Balachandran, Yekkuni L.; Grysan, Patrick; Audinot, Jean Nicolas; Ziebel, Johanna; Guignard, Cédric; Gutleb, Arno C.; Murk, Tinka

    2016-01-01

    The P-glycoprotein (P-gp, ABCB1) and multidrug resistance associated protein 1 (MRP1), important members of the ABC (ATP-binding cassette) transporters, protect cells and organisms via efflux of xenobiotics and are responsible for the phenomenon of multidrug or multixenobiotic resistance (MXR). I

  16. CD34-related coexpression of MDR1 and BCRP indicates a clinically resistant phenotype in patients with acute myeloid leukemia (AML) of older age

    NARCIS (Netherlands)

    van den Heuvel-Eibrink, Marry M.; van der Holt, Bronno; Burnett, Alan K.; Knauf, Wolfgang U.; Fey, Martin F.; Verhoef, Gregor E. G.; Vellenga, Edo; Ossenkoppele, Gert J.; Lowenberg, Bob; Sonneveld, Pieter

    Clinical resistance to chemotherapy in acute myeloid leukemia (AML) is associated with the expression of the multidrug resistance (MDR) proteins P-glycoprotein, encoded by the MDR1/ABCB1 gene, multidrug resistant-related protein (MRP/ABCC1), the lung resistance-related protein (LRP), or major vault

  17. Drug: D08516 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D08516 Drug Sitagliptin (Prop.INN) C16H15F6N5O 407.1181 407.3136 D08516.gif Antidiabetic...1803) Protein digestion and absorption Transporter: ABCB1 [HSA:5243], SLC22A8 [HSA:9376] map07051 Antidiabetic

  18. Drug: D06645 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 278] hsa04974(1803) Protein digestion and absorption Transporter: ABCB1 [HSA:5243], SLC22A8 [HSA:9376] map07051 Antidiabetic... agents affecting metabolism 396 Antidiabetic agents 3969 Others D06645 Sitaglipt...08302] Blood Glucose Regulators Antidiabetic Agents Sitagliptin D06645 Sitagliptin phosphate hydrate (JAN);

  19. Discovery of novel N-phenyl 1,4-dihydropyridines with a dual mode of antimycobacterial activity.

    Science.gov (United States)

    Lentz, Fabian; Hemmer, Marc; Reiling, Norbert; Hilgeroth, Andreas

    2016-12-15

    There is an urgent need for novel drugs for the treatment of tuberculosis (TB) due to the increasing prevalence of antibiotic resistance among Mycobacterium tuberculosis (Mtb) strains against first-line and second-line therapeutics. We developed novel N-phenyl 1,4-dihydropyridines as potential antituberculotic agents. The observed activity depends on the substitution patterns of the aromatic residues. N-unsubstituted 1,4-dihydropyridines are known inhibitors of the cancer-relevant transmembrane efflux pump ABCB1. Based on the similarity of ABCB1 amino acids sequences relevant to 1,4-dihydropyridine binding and the MTb efflux pump Rv0194, we determined ABCB1-inhibitory properties of our compounds in a cell line model. We identified one compound, which substantially increased the activity of two antituberculotic drugs which are substrates of ABCB1. The data indicate that our N-phenyl 1,4-dihydropyridines represent a novel compound class which improves the efficacy of anti-TB drugs by interfering with transmembrane efflux pumps in Mtb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Drug: D09710 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available mbosis agents Target-based classification of drugs [BR:br08310] Enzymes Hydrolases ...a inhibitor [HSA:2159] [KO:K01314] hsa04610(2159) Complement and coagulation cascades Transporter: ABCB1 [HSA:5243] map07049 Antithro

  1. Clopidogrel metabolism related gene polymorphisms in Chinese patients with acute coronary syndrome

    Institute of Scientific and Technical Information of China (English)

    冯广迅

    2013-01-01

    Objective To detect the single nucleotide polymorphisms of clopidogrel metabolism related genes(CYP2C19,ABCB1 and PON1) in Chinese patients with acute coronary syndrome(ACS) by genotype analysis. Methods Genetic analysis was performed in patients admitted to

  2. Should we keep on? Looking into pharmacogenomics of ADHD in adulthood from a different perspective.

    Science.gov (United States)

    Rovaris, Diego L; Mota, Nina R; da Silva, Bruna Santos; Girardi, Pricila; Victor, Marcelo M; Grevet, Eugenio H; Bau, Claiton Hd; Contini, Verônica

    2014-07-01

    A considerable proportion of adults with attention-deficit/hyperactivity disorder (ADHD) do not respond to the treatment with methylphenidate. This scenario could be due to inherited interindividual differences that may alter pharmacologic treatment response. In this sense, in 2012 we conducted a systematic search on PUBMED-indexed literature for articles containing information about pharmacogenomics of ADHD in adults. Five studies were found on methylphenidate pharmacogenomics and the only significant association was reported by one particular study. However, this single association with the SLC6A3 gene was not replicated in two subsequent reports. In the present review, although we could not find additional pharmacogenomics studies, we discuss these up-to-date findings and suggest new approaches for this field. Additionally, using systeomic-oriented databases, we provide a broad picture of new possible candidate genes as well as potential gene-gene interactions to be investigated in pharmacogenomics of persistent ADHD.

  3. Drug: D10014 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D10014 Drug Ioflupane I 123 (USAN); Datscan (TN) C18H23FINO2 427.0769 431.2836 D10014.gif SPECT imageing agent (diagnosis of Parkinson's ...gents affecting cellular function 43 Radioactive drugs 430 Radioactive drugs 4300 Radioactive drugs D10014 I...ds V09AB03 Iodine ioflupane (123I) D10014 Ioflupane I 123 (USAN) Target-based classification of drugs [BR:br...08310] Transporters Solute carrier family SLC6 SLC6A3 (dopamine transporter) [HSA:6531] [KO:K05036] Ioflupane I 123 D100...14 Ioflupane I 123 (USAN) CAS: 155798-07-5 PubChem: 135626735 LigandBox: D100

  4. Co-cultivation of murine BMDCs with 67NR mouse mammary carcinoma cells give rise to highly drug resistant cells

    Directory of Open Access Journals (Sweden)

    Zänker Kurt S

    2011-06-01

    Full Text Available Abstract Background Tumor tissue resembles chronically inflamed tissue. Since chronic inflammatory conditions are a strong stimulus for bone marrow-derived cells (BMDCs it can be assumed that recruitment of BMDCs into cancer tissue should be a common phenomenon. Several data have outlined that BMDC can influence tumor growth and metastasis, e.g., by inducing a paracrine acting feedback loop in tumor cells. Likewise, cell fusion and horizontal gene transfer are further mechanisms how BMDCs can trigger tumor progression. Results Hygromycin resistant murine 67NR-Hyg mammary carcinoma cells were co-cultivated with puromycin resistant murine BMDCs from Tg(GFPU5Nagy/J mice. Isolation of hygromycin/puromycin resistant mBMDC/67NR-Hyg cell clones was performed by a dual drug selection procedure. PCR analysis revealed an overlap of parental markers in mBMDC/67NR-Hyg cell clones, suggesting that dual resistant cells originated by cell fusion. By contrast, both STR and SNP data analysis indicated that only parental 67NR-Hyg alleles were found in mBMDC/67NR-Hyg cell clones favoring horizontal gene transfer as the mode of origin. RealTime-PCR-array analysis showed a marked up-regulation of Abcb1a and Abcb1b ABC multidrug transporters in mBMDC/67NR-Hyg clones, which was verified by Western Blot analysis. Moreover, the markedly increased Abcb1a/Abcb1b expression was correlated to an efficient Rhodamine 123 efflux, which was completely inhibited by verapamil, a well-known Abcb1a/Abcb1b inhibitor. Likewise, mBMDCs/67NR-Hyg clones revealed a marked resistance towards chemotherapeutic drugs including 17-DMAG, doxorubicin, etoposide and paclitaxel. In accordance to Rhodamine 123 efflux data, chemotherapeutic drug resistance of mBMDC/67NR-Hyg cells was impaired by verapamil mediated blockage of Abc1a/Abcb1b multidrug transporter function. Conclusion Co-cultivation of mBMDCs and mouse 67NR-Hyg mammary carcinoma cells gave rise to highly drug resistant cells. Even

  5. Association of CYP3A polymorphisms with the pharmacokinetics of cyclosporine A in early post-renal transplant recipients in China

    Science.gov (United States)

    Meng, Xiang-guang; Guo, Cheng-xian; Feng, Guo-qing; Zhao, Ying-chun; Zhou, Bo-ting; Han, Jian-le; Chen, Xin; Shi, Yong; Shi, Hong-yao; Yin, Ji-ye; Peng, Xiang-dong; Pei, Qi; Zhang, Wei; Wang, Guo; He, Meng; Liu, Min; Yang, Jing-ke; Zhou, Hong-hao

    2012-01-01

    Aim: To evaluate retrospectively the association of cytochrome P450 3A (CYP3A) and ATP-binding cassette sub-family B member 1 (ABCB1) gene polymorphisms with the pharmacokinetics of cyclosporine A (CsA) in Chinese renal transplant patients. Methods: One hundred and twenty-six renal transplant patients were recruited. Blood samples were collected, and corresponding clinical indices were recorded on the seventh day after the procedure. The patients were genotyped for CYP3A4*1G, CYP3A5*3C, ABCB1 1236 C>T, ABCB1 2677 G>T/A, and ABCB1 3435 C>T polymorphisms. Whole blood trough concentrations of CsA at time zero (C0) were measured before the drug administration. A multiple regression model was developed to analyze the effects of genetic factors on the CsA dose-adjusted C0 (C0/dose) based on several clinical indices. Results: The CYP3A5*3C polymorphism influenced the C0 and C0/dose of CsA, which were significantly higher in patients with the GG genotype than in patients with the AA or GA genotypes. No significant differences were detected for other SNPs (CYP3A4*1G, ABCB1 1236 C>T, ABCB1 2677 G>T/A, and ABCB1 3435 C>T). In a univariate analysis using Pearson's correlation test, age, hemoglobin, blood urea nitrogen and blood creatinine levels were significantly correlated with the log-transformed CsA C0/dose. In the multiple regression model, CYP3A5*3C, age, hemoglobin and blood creatinine level were associated with the log-transformed CsA C0/dose. Conclusion: CYP3A5*3C correlates with the C0/dose of CsA on the seventh day after renal transplantation. The allele is a putative indicator for the optimal CsA dosage in the early phase of renal transplantation in the Chinese population. PMID:23085740

  6. Dopamine and opioid gene variants are associated with increased smoking reward and reinforcement owing to negative mood.

    Science.gov (United States)

    Perkins, Kenneth A; Lerman, Caryn; Grottenthaler, Amy; Ciccocioppo, Melinda M; Milanak, Melissa; Conklin, Cynthia A; Bergen, Andrew W; Benowitz, Neal L

    2008-09-01

    Negative mood increases smoking reinforcement and risk of relapse. We explored associations of gene variants in the dopamine, opioid, and serotonin pathways with smoking reward ('liking') and reinforcement (latency to first puff and total puffs) as a function of negative mood and expected versus actual nicotine content of the cigarette. Smokers of European ancestry (n=72) were randomized to one of four groups in a 2x2 balanced placebo design, corresponding with manipulation of actual (0.6 vs. 0.05 mg) and expected (told nicotine and told denicotinized) nicotine 'dose' in cigarettes during each of two sessions (negative vs. positive mood induction). Following mood induction and expectancy instructions, they sampled and rated the assigned cigarette, and then smoked additional cigarettes ad lib during continued mood induction. The increase in smoking amount owing to negative mood was associated with: dopamine D2 receptor (DRD2) C957T (CC>TT or CT), SLC6A3 (presence of 9 repeat>absence of 9), and among those given a nicotine cigarette, DRD4 (presence of 7 repeat>absence of 7) and DRD2/ANKK1 TaqIA (TT or CT>CC). SLC6A3, and DRD2/ANKK1 TaqIA were also associated with smoking reward and smoking latency. OPRM1 (AA>AG or GG) was associated with smoking reward, but SLC6A4 variable number tandem repeat was unrelated to any of these measures. These results warrant replication but provide the first evidence for genetic associations with the acute increase in smoking reward and reinforcement owing to negative mood.

  7. Positive effects of methylphenidate on hyperactivity are moderated by monoaminergic gene variants in children with autism spectrum disorders.

    Science.gov (United States)

    McCracken, J T; Badashova, K K; Posey, D J; Aman, M G; Scahill, L; Tierney, E; Arnold, L E; Vitiello, B; Whelan, F; Chuang, S Z; Davies, M; Shah, B; McDougle, C J; Nurmi, E L

    2014-06-01

    Methylphenidate (MPH) reduces hyperactive-impulsive symptoms common in children with autism spectrum disorders (ASDs), however, response and tolerability varies widely. We hypothesized monoaminergic gene variants may moderate MPH effects in ASD, as in typically developing children with attention-deficit/hyperactivity disorder. Genotype data were available for 64 children with ASD and hyperactivity who were exposed to MPH during a 1-week safety/tolerability lead-in phase and 58 who went on to be randomized to placebo and three doses of MPH during a 4-week blinded, crossover study. Outcome measures included the Clinical Global Impression-Improvement (CGI-I) scale and the Aberrant Behavior Checklist (ABC-hyperactivity index). A total of 14 subjects discontinued the study because of MPH side effects. Subjects were genotyped for variants in DRD1-DRD5, ADRA2A, SLC6A3, SLC6A4, MAOA and MAOB, and COMT. Forty-nine percent of the sample met positive responder criteria. In this modest but relatively homogeneous sample, significant differences by DRD1 (P=0.006), ADRA2A (P<0.02), COMT (P<0.04), DRD3 (P<0.05), DRD4 (P<0.05), SLC6A3 (P<0.05) and SLC6A4 (P<0.05) genotypes were found for responders versus non-responders. Variants in DRD2 (P<0.001) and DRD3 (P<0.04) were associated with tolerability in the 14 subjects who discontinued the trial. For this first MPH pharmacogenetic study in children with ASD, multiple monoaminergic gene variants may help explain individual differences in MPH's efficacy and tolerability.

  8. Towards trans-diagnostic mechanisms in psychiatry: neurobehavioral profile of rats with a loss-of-function point mutation in the dopamine transporter gene

    Directory of Open Access Journals (Sweden)

    Valentina Vengeliene

    2017-04-01

    Full Text Available The research domain criteria (RDoC matrix has been developed to reorient psychiatric research towards measurable behavioral dimensions and underlying mechanisms. Here, we used a new genetic rat model with a loss-of-function point mutation in the dopamine transporter (DAT gene (Slc6a3_N157K to systematically study the RDoC matrix. First, we examined the impact of the Slc6a3_N157K mutation on monoaminergic signaling. We then performed behavioral tests representing each of the five RDoC domains: negative and positive valence systems, cognitive, social and arousal/regulatory systems. The use of RDoC may be particularly helpful for drug development. We studied the effects of a novel pharmacological approach metabotropic glutamate receptor mGluR2/3 antagonism, in DAT mutants in a comparative way with standard medications. Loss of DAT functionality in mutant rats not only elevated subcortical extracellular dopamine concentration but also altered the balance of monoaminergic transmission. DAT mutant rats showed deficits in all five RDoC domains. Thus, mutant rats failed to show conditioned fear responses, were anhedonic, were unable to learn stimulus-reward associations, showed impaired cognition and social behavior, and were hyperactive. Hyperactivity in mutant rats was reduced by amphetamine and atomoxetine, which are well-established medications to reduce hyperactivity in humans. The mGluR2/3 antagonist LY341495 also normalized hyperactivity in DAT mutant rats without affecting extracellular dopamine levels. We systematically characterized an altered dopamine system within the context of the RDoC matrix and studied mGluR2/3 antagonism as a new pharmacological strategy to treat mental disorders with underlying subcortical dopaminergic hyperactivity.

  9. Personality endophenotypes for bipolar affective disorder: a family-based genetic association analysis.

    Science.gov (United States)

    Savitz, J; van der Merwe, L; Ramesar, R

    2008-11-01

    Genetic analyses of complex conditions such as bipolar disorder (BD) may be facilitated by the use of intermediate phenotypes. Various personality traits are overrepresented in people with BD and their unaffected relatives, and may constitute genetically transmitted risk factors or endophenotypes of the illness. In this study, we administered a battery of seven different personality questionnaires comprising 19 subscales to 31 Caucasian BD families (n = 241). Ten of these personality traits showed significant evidence of heritability and were therefore selected as candidate endophenotypes. In addition, a principal components analysis produced two heritable components (negative affect and appetitive drive), which accounted for a considerable proportion of the variance (29% + 12%) and were also used in the analysis. A family-based quantitative association study was carried out using the orthogonal model from the quantitative transmission disequilibrium tests (QTDT) program. Monte Carlo permutations (M = 500), which allow for non-normal data and provide a global P value, corrected for multiple testing, were used to calculate empirical P values for the within-family component of association. The 3' untranslated region repeat polymorphism of the dopamine transporter gene (SLC6A3) was associated with self-directedness (P personality traits, 'Spirituality' (P = 0.040) and irritable temperament (P = 0.022). Furthermore, the met allele of the brain-derived neurotrophic factor val66met polymorphism was associated with higher hyperthymic temperament scores. We raise the possibility that the 10R allele of the SLC6A3 repeat polymorphism and the short allele of the SLC6A4 promoter variant constitute risk factors for irritable-aggressive and anxious-dysthymic subtypes of BD, respectively.

  10. Genetic polymorphisms in dopamine-related genes and smoking cessation in women: a prospective cohort study

    Directory of Open Access Journals (Sweden)

    Srinouanprachan Sengkeo

    2007-04-01

    Full Text Available Abstract Background Genes involved in dopaminergic neurotransmission have been suggested as candidates for involvement in smoking behavior. We hypothesized that alleles associated with reduced dopaminergic neurotransmission would be more common in continuing smokers than among women who quit smoking. Methods The study included 593 women aged 26–65 years who participated in a twelve month smoking cessation trial conducted in 1993–1994. Participants were contacted three years after the trial to obtain updated smoking history and biological specimens. Seven polymorphisms were assessed in genes involved in dopamine synthesis (tyrosine hydoxylase [TH], receptor activation (dopamine receptors [DRD2, DRD3, DRD4], reuptake (dopamine transporter [SLC6A3], and metabolism (catechol-o-methyltransferase [COMT]. Smoking cessation was assessed as "short-term" quitting (abstinence for the seven days before the conclusion of the trial and "long-term" quitting (abstinence for the six months before a subsequent interview conducted several years later. Results We observed no association of any polymorphism with either short- or long-term quitting. Although some relative risk estimates were consistent with weak associations, either the direction of effect was opposite of that hypothesized, or results of the short- and long-term cessation endpoints differed. However, effect modification on smoking cessation was observed between DRD2 Taq1A and SLC6A3 VNTR polymorphisms, DRD3 Ser/Gly and d,1-fenfluramine, and DRD4 VNTR and d,1-fenfluramine. Conclusion Although these results fail to support prior findings of independent associations of these polymorphisms with smoking status, our exploratory findings suggestive of gene-gene and gene-treatment interactions warrants further investigation.

  11. Genetic variants and early cigarette smoking and nicotine dependence phenotypes in adolescents.

    Science.gov (United States)

    O'Loughlin, Jennifer; Sylvestre, Marie-Pierre; Labbe, Aurélie; Low, Nancy C; Roy-Gagnon, Marie-Hélène; Dugas, Erika N; Karp, Igor; Engert, James C

    2014-01-01

    While the heritability of cigarette smoking and nicotine dependence (ND) is well-documented, the contribution of specific genetic variants to specific phenotypes has not been closely examined. The objectives of this study were to test the associations between 321 tagging single-nucleotide polymorphisms (SNPs) that capture common genetic variation in 24 genes, and early smoking and ND phenotypes in novice adolescent smokers, and to assess if genetic predictors differ across these phenotypes. In a prospective study of 1294 adolescents aged 12-13 years recruited from ten Montreal-area secondary schools, 544 participants who had smoked at least once during the 7-8 year follow-up provided DNA. 321 single-nucleotide polymorphisms (SNPs) in 24 candidate genes were tested for an association with number of cigarettes smoked in the past 3 months, and with five ND phenotypes (a modified version of the Fagerstrom Tolerance Questionnaire, the ICD-10 and three clusters of ND symptoms representing withdrawal symptoms, use of nicotine for self-medication, and a general ND/craving symptom indicator). The pattern of SNP-gene associations differed across phenotypes. Sixteen SNPs in seven genes (ANKK1, CHRNA7, DDC, DRD2, COMT, OPRM1, SLC6A3 (also known as DAT1)) were associated with at least one phenotype with a p-value genetic predictors differ, specific cigarette smoking and ND phenotypes should be distinguished in genetic studies in adolescents. Fifteen of the 16 top-ranked SNPs identified in this study were from loci involved in dopaminergic pathways (ANKK1/DRD2, DDC, COMT, OPRM1, and SLC6A3). Dopaminergic pathways may be salient during early smoking and the development of ND.

  12. Molecular response to imatinib & its correlation with mRNA expression levels of imatinib influx & efflux transporters in patients with chronic myeloid leukaemia in chronic phase

    Directory of Open Access Journals (Sweden)

    Hemant Malhotra

    2015-01-01

    Full Text Available Background & objectives: Imatinib is the standard first-line treatment for chronic myeloid leukaemia (CML patients. About 20 to 30 per cent patients develop resistance to imatinib and fail imatinib treatment. One of the mechanisms proposed is varying expression levels of the drug transporters. This study was aimed to determine the expression levels of imatinib transporter genes (OCT1, ABCB1, ABCG2 in CML patients and to correlate these levels with molecular response. Methods: Sixty three CML chronic phase patients who were on 400 mg/day imatinib for more than two years were considered for gene expression analysis study for OCT1, ABCB1 and ABCG2 genes. These were divided into responders and non-responders. The relative transcript expression levels of the three genes were compared between these two categories. The association between the expression values of these three genes was also determined. Results: No significant difference in the expression levels of OCT1, ABCB1 and ABCG2 was found between the two categories. The median transcript expression levels of OCT1, ABCB1 and ABCG2 genes in responders were 26.54, 10.78 and 0.64 versus 33.48, 7.09 and 0.53 in non-responders, respectively. A positive association was observed between the expression of the ABCB1 and ABCG2 transporter genes (r=0.407, P<0.05 while no association was observed between the expression of either of the ABC transporter genes with the OCT1 gene. Interpretation & conclusions: Our findings demonstrated that the mRNA expression levels of imatinib transporter genes were not correlated with molecular response in CML patients. Further studies need to be done on a large sample of CML patients to confirm these findings.

  13. The lignan, (-)-sesamin reveals cytotoxicity toward cancer cells: pharmacogenomic determination of genes associated with sensitivity or resistance.

    Science.gov (United States)

    Saeed, Mohamed; Khalid, Hassan; Sugimoto, Yoshikazu; Efferth, Thomas

    2014-04-15

    (-)-Sesamin is a lignan present in sesam oil and a number of medicinal plants. It exerts various pharmacological effects, such as prevention of hyperlipidemia, hypertension, and carcinogenesis. Moreover, (-)-sesamin has chemopreventive and anticancer activity in vitro and in vivo. Multidrug resistance (MDR) of tumors leads to fatal treatment outcome in many patients and novel drugs able to kill multidrug-resistant cells are urgently needed. P-glycoprotein (MDR1/ABCB1) is the best known ATP-binding cassette (ABC) drug transporter mediating MDR. ABCB5 is a close relative to ABCB1, which also mediates MDR. We found that the mRNA expressions of ABCB1 and ABCB5 were not related to the 50% inhibition concentrations (IC50) for (-)-sesamin in a panel of 55 cell lines of the National Cancer Institute, USA. Furthermore, (-)-sesamin inhibited ABCB1- or ABCB5-overexpressing cells with similar efficacy than their drug-sensitive parental counterparts. In addition to ABC transporter-mediated MDR, we attempted to identify other molecular determinants of (-)-sesamin resistance. For this reason, we performed COMPARE and hierarchical cluster analyses of the transcriptome-wide microarray-based mRNA expression of the NCI cell panel. Twenty-three genes were identified, whose mRNA expression correlated with the IC50 values for (-)-sesamin. These genes code for proteins of different biological functions, i.e. ribosomal proteins, components of the mitochondrial respiratory chain, proteins involved in RNA metabolism, protein biosynthesis, or glucose and fatty acid metabolism. Subjecting this set of genes to cluster analysis showed that the cell lines were assembled in the resulting dendrogram according to their responsiveness to (-)-sesamin. In conclusion, (-)-sesamin is not involved in MDR mediated by ABCB1 or ABCB5 and may be valuable to bypass chemoresistance of refractory tumors. The microarray expression profile, which predicted sensitivity or resistance of tumor cells to (-)-sesamin

  14. P-glycoprotein in sheep liver and small intestine: gene expression and transport efflux activity.

    Science.gov (United States)

    Ballent, M; Wilkens, M R; Maté, L; Muscher, A S; Virkel, G; Sallovitz, J; Schröder, B; Lanusse, C; Lifschitz, A

    2013-12-01

    The role of the transporter P-glycoprotein (P-gp) in the disposition kinetics of different drugs therapeutically used in veterinary medicine has been demonstrated. Considering the anatomo-physiological features of the ruminant species, the constitutive expression of P-gp (ABCB1) along the sheep gastrointestinal tract was studied. Additionally, the effect of repeated dexamethasone (DEX) administrations on the ABCB1 gene expression in the liver and small intestine was also assessed. The ABCB1 mRNA expression was determined by real-time quantitative PCR. P-gp activity was evaluated in diffusion chambers to determine the efflux of rhodamine 123 (Rho 123) in the ileum from experimental sheep. The constitutive ABCB1 expression was 65-fold higher in the liver than in the intestine (ileum). The highest ABCB1 mRNA expression along the small intestine was observed in the ileum (between 6- and 120-fold higher). The treatment with DEX did not elicit a significant effect on the P-gp gene expression levels in any of the investigated gastrointestinal tissues. Consistently, no significant differences were observed in the intestinal secretion of Rho 123, between untreated control (Peff S-M = 3.99 × 10(-6)  ± 2.07 × 10(-6) ) and DEX-treated animals (Peff S-M = 6.00 × 10(-6)  ± 2.5 × 10(-6) ). The understanding of the efflux transporters expression and activity along the digestive tract may help to elucidate clinical implications emerging from drug interactions in livestock.

  15. An association study between the norepinephrine transporter gene and depression

    DEFF Research Database (Denmark)

    Buttenschøn, Henriette N; Jacobsen, Iben S; Grynderup, Matias B;

    2013-01-01

    A2 for solute carrier 6 family member 2). The gene is responsible for the reuptake of norepinephrine and dopamine into presynaptic nerve terminals and the norepinephrine system appears to play an important role in depression. We therefore analyzed genetic variants within SLC6A2 for association......A potential approach for identification of candidate genes for depression is characterization of chromosomal rearrangements. Through analysis of a chromosome translocation in an individual with recurrent depression, we identified a potential candidate gene: the norepinephrine transporter (NET; SLC6...... with depression in 408 affected and 559 control individuals from Denmark. After quality control of the genotypes, 31 of 45 single nucleotide polymorphisms (SNPs) were left for analyses. One SNP showed a nominal association with depression but did not survive correction for multiple testing. The results from our...

  16. Behavioural consequences of p-glycoprotein deficiency in mice, with special focus on stress-related mechanisms.

    Science.gov (United States)

    Schoenfelder, Y; Hiemke, C; Schmitt, U

    2012-05-01

    P-glycoprotein (P-gp), an efflux transporter localised in the blood-brain barrier, limits the access of multiple xenobiotics to the central nervous system. Whether it is also implemented in the transport of the endogenous glucocorticoid corticosterone is a matter of debate. The P-gp knockout mouse model [abcb1a/b (-/-)] has been shown to differ in the functioning of the hypothalamic-pituitary adrenal (HPA) axis. In the present study, we investigated the behaviour of abcb1a/b (-/-) and wild-type mice with respect to stress-related tests and the effects of corticosterone. Behavioural activities were assessed in the open field (OF) test for 4 days, and in the forced swimming test (FST) and tail suspension test (TST) under naïve and stressed conditions. The FST was also conducted after exogenous corticosterone injection (0.25 and 2.5 mg/kg). Moreover, the elevated plus maze test and the RotaRod test (RotaRod Advanced; TSE Systems, Bad Homburg, Germany) were assessed. Brain corticosterone levels were determined by an immunoassay and expression of glucocorticoid receptors by western blot analysis. Abcb1a/1b (-/-) mice showed significantly decreased brain corticosterone levels and elevated glucocorticoid receptor expression. Behavioural analysis revealed a significantly decreased activity in the OF test on the first 2 days in abcb1a/1b (-/-) mice compared to wild-type mice, although the differences disappeared under habituation. Immobility time in the FST was significantly decreased in abcb1a/1b (-/-) mice under basal and under stressed conditions, whereas immobility in the TST was significantly elevated in these mice under all conditions. Injection of exogenous corticosterone resulted in significant reductions of immobility in the FST in abcb1a/1b (-/-) mice, whereas wild-type mice did not respond to the same doses. There were no differences in the elevated plus maze test and RotaRod test. The results obtained in the present study demonstrate that a P-gp deficiency has

  17. Plant lessons: exploring ABCB functionality through structural modeling

    Directory of Open Access Journals (Sweden)

    Aurélien eBailly

    2012-01-01

    Full Text Available In contrast to mammalian ABCB1 proteins, narrow substrate specificity has been extensively documented for plant orthologs shown to catalyze the transport of the plant hormone, auxin. Using the crystal structures of the multidrug exporters Sav1866 and MmABCB1 as templates, we have developed structural models of plant ABCB proteins with a common architecture. Comparisons of these structures identified kingdom-specific candidate substrate-binding regions within the translocation chamber formed by the transmembrane domains of ABCBs from the model plant Arabidopsis. These results suggest an early evolutionary divergence of plant and mammalian ABCBs. Validation of these models becomes a priority for efforts to elucidate ABCB function and manipulate this class of transporters to enhance plant productivity and quality.

  18. SALL4 as an Epithelial-Mesenchymal Transition and Drug Resistance Inducer through the Regulation of c-Myc in Endometrial Cancer.

    Directory of Open Access Journals (Sweden)

    Lei Liu

    Full Text Available SALL4 plays important roles in the development and progression of many cancers. However, the role and molecular mechanism of SALL4 in endometrial cancer remain elusive. In the present research, we have demonstrated that the expression of SALL4 was upregulated in endometrial cancer and correlated positively with tumor stage, metastases and poor survival of patients. The overexpression of SALL4 promoted the invasiveness in endometrial cancer cells, as indicated by the upregulation of mesenchymal cell marker N-cadherin and downregulation of the epithelial marker E-cadherin, and invasion assays in vitro. Additionally, there was also an increase in drug resistance in these cell models due to the upregulation of ATP-binding cassette multidrug transporter ABCB1 expression. Moreover, we also found that ABCB1 was critical for SALL4-induced drug resistance. In contrast, SALL4 knockdown restored drug sensitivity, reversed EMT, diminished cell metastasis and suppressed the downregulation of E-cadherin and the upregulation of N-cadherin and ABCB1. Furthermore, we showed that SALL4 upregulated c-Myc expression and c-Myc was a direct target for SALL4 by ChIP assay, depletion of c-Myc with siRNA abolished the SALL4-induced downregulation of E-cadherin, upregulation of N-cadherin and ABCB1, suggesting that c-Myc was a downstream target for SALL4 and required for SALL4-induced EMT, invasion and drugs resistance in endometrial cancer cells. These results indicated that SALL4 could induce EMT and resistance to antineoplastic drugs through the regulation of c-Myc. SALL4 and c-Myc may be novel therapeutic targets for endometrial cancer.

  19. Drug: D00642 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 520.572 D00642.gif Cardiac depressant [anti-arrhythmic] ATC code: C01BA01 Class I antiarrhythmic agent volt...A:55244], SCL47A2 [HSA:146802], ABCB1 [HSA:5243] map07025 Quinolines map07037 Antiarrhythmic...n [BR:br08303] C CARDIOVASCULAR SYSTEM C01 CARDIAC THERAPY C01B ANTIARRHYTHMICS, CLASS I AND III C01BA Antiarrhythmic... Cardiovascular Agents Antiarrhythmics Quinidine D00642 Quinidine gluconate (USP)

  20. Drug: D03914 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 593.2174 D03914.gif Antiarrhythmic ATC code: C01BD07 calcium channel L type blocker [HSA:775 776 778 779] [...ransporter inhibition: ABCB1 [HSA:5243] map07037 Antiarrhythmic drugs map07231 Sodium channel blocking drugs...ASS I AND III C01BD Antiarrhythmics, class III C01BD07 Dronedarone D03914 Dronedarone hydrochloride (USAN) U...SP drug classification [BR:br08302] Cardiovascular Agents Antiarrhythmics Droneda

  1. Drug: D02537 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D02537 Drug Dronedarone (INN) C31H44N2O5S 556.2971 556.7565 D02537.gif Antiarrhythmic...[HSA:1576 1577 1551] Transporter inhibition: ABCB1 [HSA:5243] map07037 Antiarrhythmic drugs map07231 Sodium ...1B ANTIARRHYTHMICS, CLASS I AND III C01BD Antiarrhythmics, class III C01BD07 Dronedarone D02537 Dronedarone ...(INN) USP drug classification [BR:br08302] Cardiovascular Agents Antiarrhythmics

  2. Effect of doxycycline and Lactobacillus probiotics on mRNA expression of ABCC2 in small intestines of chickens

    OpenAIRE

    Milanova, A.; Pavlova, I; Yordanova, V.; Danova, S.

    2016-01-01

    Probiotics and antibiotics are widely used in poultry and may alter drug bioavailability by affecting the expression of intestinal ATP-binding cassette (ABC) efflux transporters. Therefore the aim of the present investigation was to evaluate the effect of Lactobacilli probiotics, administered alone or in combination with doxycycline, on the expression of ABCB1 (gene, encoding P-glycoprotein), ABCC2 (gene, encoding multidrug resistance protein 2, MRP2) and ABCG2 (gene, encoding breast cancer r...

  3. Molecular Evolutionary Analysis of ABCB5: The Ancestral Gene Is a Full Transporter with Potentially Deleterious Single Nucleotide Polymorphisms

    OpenAIRE

    Karobi Moitra; Mark Scally; Kate McGee; Germaine Lancaster; Bert Gold; Michael Dean

    2011-01-01

    BACKGROUND: ABCB5 is a member of the ABC protein superfamily, which includes the transporters ABCB1, ABCC1 and ABCG2 responsible for causing drug resistance in cancer patients and also several other transporters that have been linked to human disease. The ABCB5 full transporter (ABCB5.ts) is expressed in human testis and its functional significance is presently unknown. Another variant of this transporter, ABCB5 beta possess a "half-transporter-like" structure and is expressed in melanoma ste...

  4. ATP-binding cassette subfamily B member 1 polymorphisms do not determine cyclosporin exposure, acute rejection or nephrotoxicity after heart transplantation.

    Science.gov (United States)

    Taegtmeyer, Anne B; Breen, Jane B; Smith, John; Burke, Margaret; Leaver, Neil; Pantelidis, Panagiotis; Lyster, Haifa; Yacoub, Magdi H; Barton, Paul J R; Banner, Nicholas R

    2010-01-15

    We hypothesized that genetic variation of ATP-binding cassette subfamily B member 1 (ABCB1) that encodes P-glycoprotein (involved in the uptake of cyclosporin A [CsA]) contributes to trough drug concentrations and thereby to CsA's immunosuppressive and toxic effects. Three hundred thirty-seven adult heart transplant recipients were studied retrospectively. White recipients receiving CsA at month 3 and years 1 to 5 after transplantation (n=192, 168, 156, 130, 95, and 74, respectively) were then studied with respect to ABCB1 genotype or haplotype and CsA disposition. Genotyping was performed using a gel-based polymerase chain reaction method. Dose- and weight-adjusted CsA trough concentrations ([microg/L]/[mg/kg]), time to first endomyocardial biopsy-proven acute rejection episode (grade>or=3A), weaning from steroids at 1 year, and renal function at 1 year posttransplant were measured. An association between dose- and weight-adjusted CsA trough concentrations and ABCB1 haplotypes was found, with 12/1236, 21/2677, 26/3435 CC/GG/CC individuals having significantly higher concentrations than TT/TT/TT individuals at years 1 and 5 (68.9+/-26.9 vs. 54.9+/-19.5 and 70.6+/-35 vs. 50.0+/-12.2 [microg/L]/[mg/kg] Prenal impairment between the genotype or haplotype groups. The association of ABCB1 12/1236, 21/2677, and 26/3435 CC/GG/CC haplotype with increased CsA dose- and weight-adjusted CsA trough concentrations in this group of adult white heart transplant recipients was not consistent over time and had no effect on the incidence of acute rejection or on the development of renal impairment.

  5. Effect of drug efflux transporters on placental transport of antiretroviral agent abacavir.

    Science.gov (United States)

    Neumanova, Zuzana; Cerveny, Lukas; Greenwood, Susan L; Ceckova, Martina; Staud, Frantisek

    2015-11-01

    Abacavir is as a frequent part of combination antiretroviral therapy used in pregnant women. The aim of this study was to investigate, using in vitro, in situ and ex vivo experimental approaches, whether the transplacental pharmacokinetics of abacavir is affected by ATP-binding cassette (ABC) efflux transporters functionally expressed in the placenta: P-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2), multidrug resistance-associated protein 2 (ABCC2) and multidrug resistance-associated protein 5 (ABCC5). In vitro transport assays revealed that abacavir is a substrate of human ABCB1 and ABCG2 transporters but not of ABCC2 or ABCC5. In addition, in situ experiments using dually perfused rat term placenta confirmed interactions of abacavir with placental Abcb1/Abcg2. In contrast, uptake studies in human placental villous fragments did not reveal any interaction of abacavir with efflux transporters suggesting a large contribution of passive diffusion and/or influx mechanisms to net transplacental abacavir transfer.

  6. Persistence of side population cells with high drug efflux capacity in pancreatic cancer

    Science.gov (United States)

    Zhou, Jing; Wang, Chun-You; Liu, Tao; Wu, Bin; Zhou, Feng; Xiong, Jiong-Xin; Wu, He-Shui; Tao, Jing; Zhao, Gang; Yang, Ming; Gou, Shan-Miao

    2008-01-01

    AIM: To investigate the persistence of side population (SP) cells in pancreatic cancer and their role and mechanism in the drug resistance. METHODS: The presentation of side population cells in pancreatic cancer cell line PANC-1 and its proportion change when cultured with Gemcitabine, was detected by Hoechst 33342 staining and FACS analysis. The expression of ABCB1 and ABCG2 was detected by real-time PCR in either SP cells or non-SP cells. RESULTS: SP cells do exist in PANC-1, with a median of 3.3% and a range of 2.1-8.7%. After cultured with Gemcitabine for 3 d, the proportion of SP cells increased significantly (3.8% ± 1.9%, 10.7% ± 3.7%, t = 4.616, P = 0.001 < 0.05). ABCB1 and ABCG2 expressed at higher concentrations in SP as compared with non-SP cells (ABCB1: 1.15 ± 0.72, 5.82 ± 1.16, t = 10.839, P = 0.000 < 0.05; ABCG2: 1.16 ± 0.75, 5.48 ± 0.94, t = 11.305, P = 0.000 < 0.05), which may contribute to the efflux of fluorescent staining and drug resistance. CONCLUSION: SP cells with inherently high resistance to chemotherapeutic agents do exist in pancreatic cancers, which may be candidate cancer stem cells contributing to the relapse of the tumor. PMID:18240351

  7. Genotyping Test with Clinical Factors: Better Management of Acute Postoperative Pain?

    Directory of Open Access Journals (Sweden)

    Aline Hajj

    2015-03-01

    Full Text Available Individualization of acute postoperative pain treatment on an evidence-based decision process is a major health concern. The aim of this study is to investigate the influence of genetic and non-genetic factors on the variability of response to morphine in acute postoperative pain. A group of nighty-five patients undergoing major surgery were included prospectively. At 24 h, a logistic regression model was carried out to determine the factors associated with morphine doses given by a Patient Controlled Analgesia device. The dose of morphine was associated with age (p = 0.011, patient weight (p = 0.025 and the duration of operation (p = 0.030. This dose decreased with patient’s age and duration of operation and increased with patient’s weight. OPRM1 and ABCB1 polymorphisms were significantly associated with administered dose of morphine (p = 0.038 and 0.012 respectively. Patients with at least one G allele for c.118A>G OPRM1 polymorphism (AG/GG needed 4 times the dose of morphine of AA patients. Additionally, patients with ABCB1 CT and CC genotypes for c.3435C>T polymorphism were 5.6 to 7.1 times more prone to receive higher dose of morphine than TT patients. Our preliminary results support the evidence that OPRM1/ABCB1 genotypes along with age, weight and duration of operation have an impact on morphine consumption for acute postoperative pain treatment.

  8. Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis.

    Science.gov (United States)

    Della Torre, Camilla; Balbi, Teresa; Grassi, Giacomo; Frenzilli, Giada; Bernardeschi, Margherita; Smerilli, Arianna; Guidi, Patrizia; Canesi, Laura; Nigro, Marco; Monaci, Fabrizio; Scarcelli, Vittoria; Rocco, Lucia; Focardi, Silvano; Monopoli, Marco; Corsi, Ilaria

    2015-10-30

    We investigated the influence of titanium dioxide nanoparticles (nano-TiO2) on the response to cadmium in the gills of the marine mussel Mytilus galloprovincialis in terms of accumulation and toxicity. Mussels were in vivo exposed to nano-TiO2, CdCl2, alone and in combination. Several cellular biomarkers were investigated in gills: ABC transport proteins and metallothioneins at gene/protein (abcb1, abcc-like and mt-20) and functional level, GST activity, NO production and DNA damage (Comet assay). Accumulation of total Cd and titanium in gills as in whole soft tissue was also investigated. Significant responses to Cd exposure were observed in mussel gills as up-regulation of abcb1 and mt-20 gene transcription, increases in total MT content, P-gp efflux and GST activity, DNA damage and NO production. Nano-TiO2 alone increased P-gp efflux activity and NO production. When combined with Cd, nano-TiO2 reduced the metal-induced effects by significantly lowering abcb1 gene transcription, GST activity, and DNA damage, whereas, additive effects were observed on NO production. A lower concentration of Cd was observed in the gills upon co-exposure, whereas, Ti levels were unaffected. A competitive effect in uptake/accumulation of nano-TiO2 and Cd seems to occur in gills. A confirmation is given by the observed absence of adsorption of Cd onto nano-TiO2 in sea water media.

  9. The Association Between Genetic Variants in the Dopaminergic System and Posttraumatic Stress Disorder: A Meta-Analysis.

    Science.gov (United States)

    Li, Lizhuo; Bao, Yijun; He, Songbai; Wang, Gang; Guan, Yanlei; Ma, Dexuan; Wang, Pengfei; Huang, Xiaolong; Tao, Shanwei; Zhang, Dewei; Liu, Qiwen; Wang, Yunjie; Yang, Jingyun

    2016-03-01

    Posttraumatic stress disorder (PTSD) is a complex mental disorder and can severely interfere with the normal life of the affected people. Previous studies have examined the association of PTSD with genetic variants in multiple dopaminergic genes with inconsistent results. To perform a systematic literature search and conduct meta-analysis to examine whether genetic variants in the dopaminergic system is associated with PTSD. Data Sources: PubMed, Cochrane Library, Embase, Google Scholar, and HuGE. Study eligibility criteria and participants: The studies included subjects who had been screened for the presence of PTSD; the studies provided data for genetic variants of genes involved in the dopaminergic system; the outcomes of interest included diagnosis status of PTSD; and the studies were case-control studies. Study appraisal and synthesis methods: Odds ratio was used as a measure of association. We used random-effects model in all the meta-analyses. Between-study heterogeneity was assessed using I², and publication bias was evaluated using Egger test. Findings from meta-analyses were confirmed using random-effects meta-analyses under the framework of generalized linear model (GLM). A total of 19 studies met the eligibility criteria and were included in our analyses. We found that rs1800497 in DRD2 was significantly associated with PTSD (OR = 1.96, 95% CI: 1.15-3.33; P = 0.014). The 3'-UTR variable number tandem repeat (VNTR) in SLC6A3 also showed significant association with PTSD (OR = 1.62, 95% CI: 1.12-2.35; P = 0.010), but there was no association of rs4680 in COMT with PTSD (P = 0.595). Sample size is limited for some studies; type and severity of traumatic events varied across studies; we could not control for potential confounding factors, such as age at traumatic events and gender; and we could not examine gene-environment interaction due to lack of data. We found that rs1800497 in DRD2 and the VNTR in SLC6A3 showed significant

  10. Genetic variants and early cigarette smoking and nicotine dependence phenotypes in adolescents.

    Directory of Open Access Journals (Sweden)

    Jennifer O'Loughlin

    Full Text Available While the heritability of cigarette smoking and nicotine dependence (ND is well-documented, the contribution of specific genetic variants to specific phenotypes has not been closely examined. The objectives of this study were to test the associations between 321 tagging single-nucleotide polymorphisms (SNPs that capture common genetic variation in 24 genes, and early smoking and ND phenotypes in novice adolescent smokers, and to assess if genetic predictors differ across these phenotypes.In a prospective study of 1294 adolescents aged 12-13 years recruited from ten Montreal-area secondary schools, 544 participants who had smoked at least once during the 7-8 year follow-up provided DNA. 321 single-nucleotide polymorphisms (SNPs in 24 candidate genes were tested for an association with number of cigarettes smoked in the past 3 months, and with five ND phenotypes (a modified version of the Fagerstrom Tolerance Questionnaire, the ICD-10 and three clusters of ND symptoms representing withdrawal symptoms, use of nicotine for self-medication, and a general ND/craving symptom indicator.The pattern of SNP-gene associations differed across phenotypes. Sixteen SNPs in seven genes (ANKK1, CHRNA7, DDC, DRD2, COMT, OPRM1, SLC6A3 (also known as DAT1 were associated with at least one phenotype with a p-value <0.01 using linear mixed models. After permutation and FDR adjustment, none of the associations remained statistically significant, although the p-values for the association between rs557748 in OPRM1 and the ND/craving and self-medication phenotypes were both 0.076.Because the genetic predictors differ, specific cigarette smoking and ND phenotypes should be distinguished in genetic studies in adolescents. Fifteen of the 16 top-ranked SNPs identified in this study were from loci involved in dopaminergic pathways (ANKK1/DRD2, DDC, COMT, OPRM1, and SLC6A3.Dopaminergic pathways may be salient during early smoking and the development of ND.

  11. The expression of efflux and uptake transporters are regulated by statins in Caco-2 and hepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Alice Cristina RODRIGUES; Rui CURI; Fabiana Dalla Vecchia GENVIGIR; Mario Hiroyuki HIRATA; Rosario Dominguez Crespo HIRATA

    2009-01-01

    Aim:Statin disposition and response are greatly determined by the activities of drug metabolizing enzymes and effiux/uptake transporters.There is little information on the regulation of these proteins in human ceils after statin therapy.In this study,the effects of atorvastatin and simvastatin on mRNA expression of efflux (ABCB1,ABCG2 and ABCC2) and uptake (SLCO1B1,SLCO2B1 and SLC22A1) drug transporters in Caco-2 and HepG2 cells were investigated.Methods:Quantitative real-time PCR was used to measure mRNA levels after exposure of HepG2 and Caco-2 cells to statins Results:Differences in mRNA basal levels of the transporters were as follows:ABCC2>ABCG2>ABCB1>SLCOIB1>>>SLC22A1>SLC 02B1 for HepG2 cells,and SLCO2B1>>ABCC2>ABCB1>ABCG2>>>SLC22A1 for Caco-2 cells.While for HepG2 cells,ABCC2,ABCG2 and SLCO2B1 mRNA levels were significantly up-regulated at 1,10 and 20 μmol/L after 12 or 24 h treatment,in Caco-2 cells,only the efflux transporter ABCB1 was significantly down-regulated by two-fold following a 12 h treatment with atorvastatin.Interestingly,whereas treatment with simvastatin had no effect on mRNA levels of the transporters in HepG2 cells,in Caco-2 cells the statin signifi cantly down-regulated ABCB1,ABCC2,SLC22A1,and SLCO2B1 mRNA levels after 12 or 24 h treatment.Conclusion:These findings reveal that statins exhibits differential effects on mRNA expression of drug transporters,and this effect depends on the cell type.Furthermore,alterations in the expression levels of drug transporters in the liver and/or intestine may contribute to the variability in oral disposition of statins.

  12. GeneAnalytics Pathway Analysis and Genetic Overlap among Autism Spectrum Disorder, Bipolar Disorder and Schizophrenia

    Directory of Open Access Journals (Sweden)

    Naveen S. Khanzada

    2017-02-01

    Full Text Available Bipolar disorder (BPD and schizophrenia (SCH show similar neuropsychiatric behavioral disturbances, including impaired social interaction and communication, seen in autism spectrum disorder (ASD with multiple overlapping genetic and environmental influences implicated in risk and course of illness. GeneAnalytics software was used for pathway analysis and genetic profiling to characterize common susceptibility genes obtained from published lists for ASD (792 genes, BPD (290 genes and SCH (560 genes. Rank scores were derived from the number and nature of overlapping genes, gene-disease association, tissue specificity and gene functions subdivided into categories (e.g., diseases, tissues or functional pathways. Twenty-three genes were common to all three disorders and mapped to nine biological Superpathways including Circadian entrainment (10 genes, score = 37.0, Amphetamine addiction (five genes, score = 24.2, and Sudden infant death syndrome (six genes, score = 24.1. Brain tissues included the medulla oblongata (11 genes, score = 2.1, thalamus (10 genes, score = 2.0 and hypothalamus (nine genes, score = 2.0 with six common genes (BDNF, DRD2, CHRNA7, HTR2A, SLC6A3, and TPH2. Overlapping genes impacted dopamine and serotonin homeostasis and signal transduction pathways, impacting mood, behavior and physical activity level. Converging effects on pathways governing circadian rhythms support a core etiological relationship between neuropsychiatric illnesses and sleep disruption with hypoxia and central brain stem dysfunction.

  13. Correlation of a set of gene variants, life events and personality features on adult ADHD severity.

    Science.gov (United States)

    Müller, Daniel J; Chiesa, Alberto; Mandelli, Laura; De Luca, Vincenzo; De Ronchi, Diana; Jain, Umesh; Serretti, Alessandro; Kennedy, James L

    2010-07-01

    Increasing evidence suggests that symptoms of attention deficit hyperactivity disorder (ADHD) could persist into adult life in a substantial proportion of cases. The aim of the present study was to investigate the impact of (1) adverse events, (2) personality traits and (3) genetic variants chosen on the basis of previous findings and (4) their possible interactions on adult ADHD severity. One hundred and ten individuals diagnosed with adult ADHD were evaluated for occurrence of adverse events in childhood and adulthood, and personality traits by the Temperament and Character Inventory (TCI). Common polymorphisms within a set of nine important candidate genes (SLC6A3, DBH, DRD4, DRD5, HTR2A, CHRNA7, BDNF, PRKG1 and TAAR9) were genotyped for each subject. Life events, personality traits and genetic variations were analyzed in relationship to severity of current symptoms, according to the Brown Attention Deficit Disorder Scale (BADDS). Genetic variations were not significantly associated with severity of ADHD symptoms. Life stressors displayed only a minor effect as compared to personality traits. Indeed, symptoms' severity was significantly correlated with the temperamental trait of Harm avoidance and the character trait of Self directedness. The results of the present work are in line with previous evidence of a significant correlation between some personality traits and adult ADHD. However, several limitations such as the small sample size and the exclusion of patients with other severe comorbid psychiatric disorders could have influenced the significance of present findings.

  14. Genetic mapping and exome sequencing identify variants associated with five novel diseases.

    Directory of Open Access Journals (Sweden)

    Erik G Puffenberger

    Full Text Available The Clinic for Special Children (CSC has integrated biochemical and molecular methods into a rural pediatric practice serving Old Order Amish and Mennonite (Plain children. Among the Plain people, we have used single nucleotide polymorphism (SNP microarrays to genetically map recessive disorders to large autozygous haplotype blocks (mean = 4.4 Mb that contain many genes (mean = 79. For some, uninformative mapping or large gene lists preclude disease-gene identification by Sanger sequencing. Seven such conditions were selected for exome sequencing at the Broad Institute; all had been previously mapped at the CSC using low density SNP microarrays coupled with autozygosity and linkage analyses. Using between 1 and 5 patient samples per disorder, we identified sequence variants in the known disease-causing genes SLC6A3 and FLVCR1, and present evidence to strongly support the pathogenicity of variants identified in TUBGCP6, BRAT1, SNIP1, CRADD, and HARS. Our results reveal the power of coupling new genotyping technologies to population-specific genetic knowledge and robust clinical data.

  15. Tissue Specific Expression of Cre in Rat Tyrosine Hydroxylase and Dopamine Active Transporter-Positive Neurons.

    Directory of Open Access Journals (Sweden)

    Zhenyi Liu

    Full Text Available The rat is a preferred model system over the mouse for neurological studies, and cell type-specific Cre expression in the rat enables precise ablation of gene function in neurons of interest, which is especially valuable for neurodegenerative disease modeling and optogenetics. Yet, few such Cre rats are available. Here we report the characterization of two Cre rats, tyrosine hydroxylase (TH-Cre and dopamine active transporter (DAT or Slc6a3-Cre, by using a combination of immunohistochemistry (IHC and mRNA fluorescence in situ hybridization (FISH as well as a fluorescent reporter for Cre activity. We detected Cre expression in expected neurons in both Cre lines. Interestingly, we also found that in Th-Cre rats, but not DAT-Cre rats, Cre is expressed in female germ cells, allowing germline excision of the floxed allele and hence the generation of whole-body knockout rats. In summary, our data demonstrate that targeted integration of Cre cassette lead to faithful recapitulation of expression pattern of the endogenous promoter, and mRNA FISH, in addition to IHC, is an effective method for the analysis of the spatiotemporal gene expression patterns in the rat brain, alleviating the dependence on high quality antibodies that are often not available against rat proteins. The Th-Cre and the DAT-Cre rat lines express Cre in selective subsets of dopaminergic neurons and should be particularly useful for researches on Parkinson's disease.

  16. Association study of promoter polymorphisms at the dopamine transporter gene in Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Huang Yu-Shu

    2009-02-01

    Full Text Available Abstract Background Attention deficit hyperactivity disorder (ADHD is a complex neurobehavioral disorder. The dopamine transporter gene (DAT1/SLC6A3 has been considered a good candidate for ADHD. Most association studies with ADHD have investigated the 40-base-pair variable number of tandem repeat (VNTR polymorphism in the 3'-untranslated region of DAT1. Only few studies have reported association between promoter polymorphisms of the gene and ADHD. Methods To investigate the association between the polymorphisms -67A/T (rs2975226 and -839C/T (rs2652511 in promoter region of DAT1 in ADHD, two samples of ADHD patients from the UK (n = 197 and Taiwan (n = 212 were genotyped, and analysed using within-family transmission disequilibrium test (TDT. Results A significant association was found between the T allele of promoter polymorphism -67A/T and ADHD in the Taiwanese population (P = 0.001. There was also evidence of preferential transmission of the T allele of -67A/T polymorphism in combined samples from the UK and Taiwan (P = 0.003. No association was detected between the -839C/T polymorphism and ADHD in either of the two populations. Conclusion The finding suggests that genetic variation in the promoter region of DAT1 may be a risk factor in the development of ADHD.

  17. MAOA Influences the Trajectory of Attentional Development

    Science.gov (United States)

    Lundwall, Rebecca A.; Rasmussen, Claudia G.

    2016-01-01

    Attention is vital to success in all aspects of life (Meck and Benson, 2002; Erickson et al., 2015), hence it is important to identify biomarkers of later attentional problems early enough to intervene. Our objective was to determine if any of 11 genes (APOE, BDNF, HTR4, CHRNA4, COMT, DRD4, IGF2, MAOA, SLC5A7, SLC6A3, and SNAP25) predicted the trajectory of attentional development within the same group of children between infancy and childhood. We recruited follow up participants from children who participated as infants in visual attention studies and used a similar task at both time points. Using multilevel modeling, we associated changes in the participant’s position in the distribution of scores in infancy to his/her position in childhood with genetic markers on each of 11 genes. While all 11 genes predicted reaction time (RT) residual scores, only Monoamine oxidase A (MAOA) had a significant interaction including time point. We conclude that the MAOA single nucleotide polymorphism (SNP) rs1137070 is useful in predicting which girls are likely to develop slower RTs on an attention task between infancy and childhood. This early identification is likely to be helpful in early intervention. PMID:27610078

  18. Genetic variation in the dopamine pathway and smoking cessation.

    Science.gov (United States)

    David, Sean P; Munafò, Marcus R

    2008-09-01

    Twin and family studies have established that genetic factors account for much of the variation in tobacco dependence. Therefore, identification of genetic variants predictive of successful smoking cessation has implications for the future prospect of personalized smoking cessation therapies. Converging data implicate the dopamine pathway as an important neural substrate for tobacco dependence. Several candidate genes within the dopamine pathway (e.g., DRD2 and COMT) have been reported to be associated with the efficacy of bupropion and nicotine replacement therapy, and others (e.g., SLC6A3 and DRD4) have been reported to be associated with smoking cessation independent of pharmacotherapy. However, few of these candidate genes are present within regions of suggestive or significant linkage or overlap with genome-wide linkage or association studies of tobacco dependence or smoking cessation. Future studies should seek to replicate genome-wide association analyses with individual-level genotyping, and use better-defined smoking cessation phenotypes. Once robust evidence for association is established, which may take several more years, further research into the likely cost-effectiveness, feasibility and acceptability of personalized medicine for smoking cessation will be necessary before it can be translated into practice.

  19. Polymorphisms in the dopamine receptor 2 gene region influence improvements during working memory training in children and adolescents.

    Science.gov (United States)

    Söderqvist, Stina; Matsson, Hans; Peyrard-Janvid, Myriam; Kere, Juha; Klingberg, Torkel

    2014-01-01

    Studying the effects of cognitive training can lead to finding better treatments, but it can also be a tool for investigating factors important for brain plasticity and acquisition of cognitive skills. In this study, we investigated how single-nucleotide polymorphisms (SNPs) and ratings of intrinsic motivation were associated to interindividual differences in improvement during working memory training. The study included 256 children aged 7-19 years who were genotyped for 13 SNPs within or near eight candidate genes previously implicated in learning: COMT, SLC6A3 (DAT1), DRD4, DRD2, PPP1R1B (DARPP32), MAOA, LMX1A, and BDNF. Ratings on the intrinsic motivation inventory were also available for 156 of these children. All participants performed at least 20 sessions of working memory training, and performance during the training was logged and used as the outcome variable. We found that two SNPs, rs1800497 and rs2283265, located near and within the dopamine receptor 2 (DRD2) gene, respectively, were significantly associated with improvements during training (p results suggest that genetic variation is accounting for some interindividual differences in how children acquire cognitive skills and that part of this effect is also seen on intrinsic motivation. Moreover, they suggest that dopamine D2 transmission in the BG is a key factor for cognitive plasticity.

  20. Striatal dopamine mediates the interface between motivational and cognitive control in humans: evidence from genetic imaging.

    Science.gov (United States)

    Aarts, Esther; Roelofs, Ardi; Franke, Barbara; Rijpkema, Mark; Fernández, Guillén; Helmich, Rick C; Cools, Roshan

    2010-08-01

    Dopamine has been hypothesized to provide the basis for the interaction between motivational and cognitive control. However, there is no evidence for this hypothesis in humans. We fill this gap by using fMRI, a novel behavioral paradigm and a common polymorphism in the DAT1 gene (SLC6A3). Carriers of the 9-repeat (9R) allele of a 40 base pair repeat polymorphism in the 3' untranslated region of DAT1, associated with high striatal dopamine, showed greater activity in the ventromedial striatum during reward anticipation than homozygotes for the 10-repeat allele, replicating previous genetic imaging studies. The crucial novel finding is that 9R carriers also exhibited a greater influence of anticipated reward on switch costs, as well as greater activity in the dorsomedial striatum during task switching in anticipation of high reward relative to low reward. These data establish a crucial role for human striatal dopamine in the modulation of cognitive flexibility by reward anticipation, thus, elucidating the neurochemical mechanism of the interaction between motivation and cognitive control.

  1. Two-stage case-control association study of dopamine-related genes and migraine

    Directory of Open Access Journals (Sweden)

    Pardo Julio

    2009-09-01

    Full Text Available Abstract Background We previously reported risk haplotypes for two genes related with serotonin and dopamine metabolism: MAOA in migraine without aura and DDC in migraine with aura. Herein we investigate the contribution to migraine susceptibility of eight additional genes involved in dopamine neurotransmission. Methods We performed a two-stage case-control association study of 50 tag single nucleotide polymorphisms (SNPs, selected according to genetic coverage parameters. The first analysis consisted of 263 patients and 274 controls and the replication study was composed by 259 cases and 287 controls. All cases were diagnosed according to ICHD-II criteria, were Spanish Caucasian, and were sex-matched with control subjects. Results Single-marker analysis of the first population identified nominal associations of five genes with migraine. After applying a false discovery rate correction of 10%, the differences remained significant only for DRD2 (rs2283265 and TH (rs2070762. Multiple-marker analysis identified a five-marker T-C-G-C-G (rs12363125-rs2283265-rs2242592-rs1554929-rs2234689 risk haplotype in DRD2 and a two-marker A-C (rs6356-rs2070762 risk haplotype in TH that remained significant after correction by permutations. These results, however, were not replicated in the second independent cohort. Conclusion The present study does not support the involvement of the DRD1, DRD2, DRD3, DRD5, DBH, COMT, SLC6A3 and TH genes in the genetic predisposition to migraine in the Spanish population.

  2. Atomoxetine treatment may decrease striatal dopaminergic transporter availability after 8 weeks: pilot SPECT report of three cases

    Directory of Open Access Journals (Sweden)

    Akay AP

    2015-11-01

    Full Text Available Aynur Pekcanlar Akay,1 Gamze Capa Kaya,2,3 Burak Baykara,1 Yusuf Demir,2,3 Handan Özek,1 Sevay Alsen,1 Mine Sencan Eren,2,3 Neslihan Inal Emiroglu,1 Turkan Ertay,2,3 Yesim Ozturk,4 Suha Miral,1 Hatice Durak,2,3 Evren Tufan4 1Department of Child and Adolescent Psychiatry, 2Department of Nuclear Medicine, 3Department of Pediatrics, Dokuz Eylul University Medical Faculty, Izmir, 4Department of Child and Adolescent Psychiatry, Abant İzzet Baysal University, Bolu, Turkey Abstract: Attention deficit/hyperactivity disorder is one of the most common neurodevelopmental disorders. The pathophysiology is thought to involve noradrenaline and dopamine. The role of dopamine transporter (DAT was evaluated in imaging studies using mostly dopamine reuptake inhibitors. Atomoxetine is a selective noradrenaline reuptake inhibitor. Here we report the results of a pilot study conducted to evaluate changes in striatal DAT after 8 weeks of atomoxetine treatment. Our results suggest that 8 weeks of atomoxetine treatment may change striatal DAT bioavailability as measured via SPECT but that change was not correlated with genotype or clinical improvement. Keywords: neuroimaging, dopamine, noradrenaline, SLC6A3 protein, human, pragmatic clinical trial, pilot study

  3. Association of VMAT2 gene polymorphisms with alcohol dependence.

    Science.gov (United States)

    Fehr, Christoph; Sommerlad, Daniel; Sander, Thomas; Anghelescu, Ion; Dahmen, Norbert; Szegedi, Armin; Mueller, Christiana; Zill, Peter; Soyka, Michael; Preuss, Ulrich W

    2013-08-01

    Alcohol-related diseases cause significant harm in the western world. Up to 65 % of the phenotypic variance is genetically determined. Few candidate genes have been identified, comprising ADH4, ALDH2, COMT, CRHR1, DAT (SLC6A3), GABRA2 and MAOA. While abnormalities in the dopaminergic mesolimbic reward system are considered important mediators of alcoholism, studies analyzing variants of dopamine receptors showed conflicting results. Other modulators of the reward system are synaptosomal genes. Among candidate genes, polygenic variants of the Vesicular Monamine Transporter 2 (VMAT2) gene locus associated with alterations of drinking behavior were published. These variants comprise single nucleotide polymorphisms (SNPs) within the promoter region and the open reading frame. In this study, we confirm the association of VMAT2 SNP rs363387 (allelic association: p = 0.015) with alcohol dependence. This SNP defines several haplotypes including up to four SNPs (minimal p = 0.0045). In addition, numeric effects in the subgroups of males and patients with positive family history were found. We suggest that several rs363387 T-allele containing haplotypes increase the risk of alcohol dependence (OR 1.53), whereas G-allele containing haplotypes confer protection against alcohol dependence. Taken together, there is supporting evidence for a contribution of VMAT2 gene variants to phenotypes of alcohol dependence.

  4. Tissue Specific Expression of Cre in Rat Tyrosine Hydroxylase and Dopamine Active Transporter-Positive Neurons.

    Science.gov (United States)

    Liu, Zhenyi; Brown, Andrew; Fisher, Dan; Wu, Yumei; Warren, Joe; Cui, Xiaoxia

    2016-01-01

    The rat is a preferred model system over the mouse for neurological studies, and cell type-specific Cre expression in the rat enables precise ablation of gene function in neurons of interest, which is especially valuable for neurodegenerative disease modeling and optogenetics. Yet, few such Cre rats are available. Here we report the characterization of two Cre rats, tyrosine hydroxylase (TH)-Cre and dopamine active transporter (DAT or Slc6a3)-Cre, by using a combination of immunohistochemistry (IHC) and mRNA fluorescence in situ hybridization (FISH) as well as a fluorescent reporter for Cre activity. We detected Cre expression in expected neurons in both Cre lines. Interestingly, we also found that in Th-Cre rats, but not DAT-Cre rats, Cre is expressed in female germ cells, allowing germline excision of the floxed allele and hence the generation of whole-body knockout rats. In summary, our data demonstrate that targeted integration of Cre cassette lead to faithful recapitulation of expression pattern of the endogenous promoter, and mRNA FISH, in addition to IHC, is an effective method for the analysis of the spatiotemporal gene expression patterns in the rat brain, alleviating the dependence on high quality antibodies that are often not available against rat proteins. The Th-Cre and the DAT-Cre rat lines express Cre in selective subsets of dopaminergic neurons and should be particularly useful for researches on Parkinson's disease.

  5. Development of a predictor for human brain tumors based on gene expression values obtained from two types of microarray technologies.

    Science.gov (United States)

    Castells, Xavier; Acebes, Juan José; Boluda, Susana; Moreno-Torres, Angel; Pujol, Jesús; Julià-Sapé, Margarida; Candiota, Ana Paula; Ariño, Joaquín; Barceló, Anna; Arús, Carles

    2010-04-01

    Development of molecular diagnostics that can reliably differentiate amongst different subtypes of brain tumors is an important unmet clinical need in postgenomics medicine and clinical oncology. A simple linear formula derived from gene expression values of four genes (GFAP, PTPRZ1, GPM6B, and PRELP) measured from cDNA microarrays (n = 35) have distinguished glioblastoma and meningioma cases in a previous study. We herein extend this work further and report that the above predictor formula showed its robustness when applied to Affymetrix microarray data acquired prospectively in our laboratory (n = 80) as well as publicly available data (n = 98). Importantly, GFAP and GPM6B were both retained as being significant in the predictive model upon using the Affymetrix data obtained in our laboratory, whereas the other two predictor genes were SFRP2 and SLC6A2. These results collectively indicate the importance of the expression values of GFAP and GPM6B genes sampled from the two types of microarray technologies tested. The high prediction accuracy obtained in these instances demonstrates the robustness of the predictors across microarray platforms used. This result would require further validation with a larger population of meningioma and glioblastoma cases. At any rate, this study paves the way for further application of gene signatures to more stringent biopsy discrimination challenges.

  6. ATP-Binding Cassette Transporters Modulate Both Coelenterazine- and D-Luciferin-Based Bioluminescence Imaging

    Directory of Open Access Journals (Sweden)

    Ruimin Huang

    2011-05-01

    Full Text Available Bioluminescence imaging (BLI of luciferase reporters provides a cost-effective and sensitive means to image biological processes. However, transport of luciferase substrates across the cell membrane does affect BLI readout intensity from intact living cells. To investigate the effect of ATP-binding cassette (ABC transporters on BLI readout, we generated click beetle (cLuc, firefly (fLuc, Renilla (rLuc, and Gaussia (gLuc luciferase HEK-293 reporter cells that overexpressed different ABC transporters (ABCB1, ABCC1, and ABCG2. In vitro studies showed a significant BLI intensity decrease in intact cells compared to cell lysates, when ABCG2 was overexpressed in HEK-293/cLuc, fLuc, and rLuc cells. Selective ABC transporter inhibitors were also applied. Inhibition of ABCG2 activity increased the BLI intensity more than two-fold in HEK-293/cLuc, fLuc, and rLuc cells; inhibition of ABCB1 elevated the BLI intensity two-fold only in HEK-293/rLuc cells. BLI of xenografts derived from HEK-293/ABC transporter/luciferase reporter cells confirmed the results of inhibitor treatment in vivo. These findings demonstrate that coelenterazine-based rLuc-BLI intensity can be modulated by ABCB1 and ABCG2. ABCG2 modulates d-luciferin-based BLI in a luciferase type–independent manner. Little ABC transporter effect on gLuc-BLI intensity is observed because a large fraction of gLuc is secreted. The expression level of ABC transporters is one key factor affecting BLI intensity, and this may be particularly important in luciferase-based applications in stem cell research.

  7. Corpora amylacea deposition in the hippocampus of patients with mesial temporal lobe epilepsy: A new role for an old gene?

    Directory of Open Access Journals (Sweden)

    Abhijit Das

    2011-01-01

    Full Text Available Background: Mesial temporal lobe epilepsy (MTLE is the most common medically refractory epilepsy syndrome in adults, and hippocampal sclerosis (HS is the most frequently encountered lesion in patients with MTLE. Premature accumulation of corpora amylacea (CoA, which plays an important role in the sequestration of toxic cellular metabolites, is found in the hippocampus of 50-60% of the patients who undergo surgery for medically refractory MTLE-HS. However, the etiopathogenesis and clinical importance of this phenomenon are still uncertain. The ABCB1 gene product P-glycoprotein (P-gp plays a prominent role as an antiapoptotic factor in addition to its efflux transporter function. ABCB1 polymorphism has been found to be associated with downregulation of P-gp expression. We hypothesized that a similar polymorphism will be found in patients with CoA deposition, as the polymorphism predisposes the hippocampal neuronal and glial cells to seizure-induced excitotoxic damage and CoA formation ensues as a buffer response. Materials and Methods: We compared five single nucleotide polymorphisms in the ABCB1 gene Ex06+139C/T (rs1202168, Ex 12 C1236T (rs1128503, Ex 17-76T/A (rs1922242, Ex 21 G2677T/A (rs2032582, Ex26 C3435T (rs1045642 among 46 MTLE-HS patients of south Indian ancestry with and without CoA accumulation. Results: We found that subjects carrying the Ex-76T/A polymorphism (TA genotype had a five-times higher risk of developing CoA accumulation than subjects without this genotype (Odds ratio 5.0, 95% confidence intervals 1.34-18.55; P = 0.016. Conclusion: We speculate that rs1922242 polymorphism results in the downregulation of P-gp function, which predisposes the hippocampal cells to seizure-induced apoptosis, and CoA gets accumulated as a buffer response.

  8. Maternal distress associates with placental genes regulating fetal glucocorticoid exposure and IGF2: Role of obesity and sex.

    Science.gov (United States)

    Mina, Theresia H; Räikkönen, Katri; Riley, Simon C; Norman, Jane E; Reynolds, Rebecca M

    2015-09-01

    Maternal emotional distress symptoms, including life satisfaction, anxiety and depressed mood, are worse in Severely Obese (SO) than lean pregnancy and may alter placental genes regulating fetal glucocorticoid exposure and placental growth. We hypothesised that the associations between increased maternal distress symptoms and changes in placental gene expression including IGF2 and genes regulating fetal glucocorticoid exposure are more pronounced in SO pregnancy. We also considered whether there were sex-specific effects. Placental mRNA levels of 11β-HSDs, NR3C1-α, NR3C2, ABC transporters, mTOR and the IGF2 family were measured in term placental samples from 43 lean (BMI≤25kg/m(2)) and 50 SO (BMI≥40kg/m(2)) women, in whom distress symptoms were prospectively evaluated during pregnancy. The mRNA levels of genes with a similar role in regulating fetal glucocorticoid exposure were strongly inter-correlated. Increased maternal distress symptoms associated with increased NR3C2 and IGF2 isoform 1(IGF2-1) in both lean and SO group (p≤0.05). Increased distress was associated with higher ABCB1 and ABCG2 mRNA levels in SO but lower ABCB1 and higher 11β-HSD1 mRNA levels in lean (p≤0.05) suggesting a protective adaptive response in SO placentas. Increased maternal distress associated with reduced mRNA levels of ABCB1, ABCG2, 11β-HSD2, NR3C1-α and IGF2-1 in placentas of female but not male offspring. The observed sex differences in placental responses suggest greater vulnerability of female fetuses to maternal distress with potentially greater fetal glucocorticoid exposure and excess IGF2. Further studies are needed to replicate these findings and to test whether this translates to potentially greater negative outcomes of maternal distress in female offspring in early childhood.

  9. Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters.

    Science.gov (United States)

    Němcová-Fürstová, Vlasta; Kopperová, Dana; Balušíková, Kamila; Ehrlichová, Marie; Brynychová, Veronika; Václavíková, Radka; Daniel, Petr; Souček, Pavel; Kovář, Jan

    2016-11-01

    Development of taxane resistance has become clinically very important issue. The molecular mechanisms underlying the resistance are still unclear. To address this issue, we established paclitaxel-resistant sublines of the SK-BR-3 and MCF-7 breast cancer cell lines that are capable of long-term proliferation in 100nM and 300nM paclitaxel, respectively. Application of these concentrations leads to cell death in the original counterpart cells. Both sublines are cross-resistant to doxorubicin, indicating the presence of the MDR phenotype. Interestingly, resistance in both paclitaxel-resistant sublines is circumvented by the second-generation taxane SB-T-1216. Moreover, we demonstrated that it was not possible to establish sublines of SK-BR-3 and MCF-7 cells resistant to this taxane. It means that at least the tested breast cancer cells are unable to develop resistance to some taxanes. Employing mRNA expression profiling of all known human ABC transporters and subsequent Western blot analysis of the expression of selected transporters, we demonstrated that only the ABCB1/PgP and ABCC3/MRP3 proteins were up-regulated in both paclitaxel-resistant sublines. We found up-regulation of ABCG2/BCRP and ABCC4 proteins only in paclitaxel-resistant SK-BR-3 cells. In paclitaxel-resistant MCF-7 cells, ABCB4/MDR3 and ABCC2/MRP2 proteins were up-regulated. Silencing of ABCB1 expression using specific siRNA increased significantly, but did not completely restore full sensitivity to both paclitaxel and doxorubicin. Thus we showed a key, but not exclusive, role for ABCB1 in mechanisms of paclitaxel resistance. It suggests the involvement of multiple mechanisms in paclitaxel resistance in tested breast cancer cells.

  10. ABCC10/MRP7 is associated with vinorelbine resistance in non-small cell lung cancer.

    Science.gov (United States)

    Bessho, Yuji; Oguri, Tetsuya; Ozasa, Hiroaki; Uemura, Takehiro; Sakamoto, Hideo; Miyazaki, Mikinori; Maeno, Ken; Sato, Shigeki; Ueda, Ryuzo

    2009-01-01

    The non-small cell lung cancer (NSCLC) cells SK-LC6 and NCI-H23 were continuously exposed to vinorelbine (VNB), and the VNB-resistant clones, SK-LC6/VNB and H23/VNB were selected. Since SK-LS6/VNB and H23/VNB cells showed cross-resistance to certain anticancer drugs, such as paclitaxel and docetaxel, we examined the gene expression levels of drug efflux transporters of the ATP-binding cassette (ABC) family. We found that the gene expression of ABCB1/MDR1 and ABCC10/MRP7 in SK-LC6/VNB and H23/VNB cells was increased compared with that in SK-LS6 and NCI-H23 cells, whereas the expression of ABCC1/MRP1, ABCC2/MRP2, ABCC3/MRP3 and ABCG2/BCRP did not change among these cells. Treatment with ABCB1/MDR1 inhibitor verapamil and ABCC10/MRP7 inhibitor sulfin-pyrazone altered the sensitivity of SK-LC6/VNB cells to vinorelbine. To confirm the ABCC10/MRP7 activity, we transfected small interfering RNA against ABCC10/MRP7 to ABCC10/MRP7-expressing RERF-LC-AI cells resulting in the decrease of ABCC10/MRP7 expression concomitant with the alteration of VNB cytotoxicity. Moreover, we detected the expression of ABCC10/MRP7 in 12 of 17 NSCLC cells, whereas ABCB1/MDR1 was detected in only 3 of 17 NSCLC cells. These results indicate that ABCC10/MRP7 may confer VNB resistance in NSCLC.

  11. A double blinded, placebo-controlled pilot study to examine reduction of CD34+/CD117+/CD133+ lymphoma progenitor cells and duration of remission induced by neoadjuvant valspodar in dogs with large B-cell lymphoma [version 3; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Daisuke Ito

    2017-04-01

    Full Text Available We previously described a population of lymphoid progenitor cells (LPCs in canine B-cell lymphoma defined by retention of the early progenitor markers CD34 and CD117 and “slow proliferation” molecular signatures that persist in the xenotransplantation setting. We examined whether valspodar, a selective inhibitor of the ATP binding cassette B1 transporter (ABCB1, a.k.a., p-glycoprotein/multidrug resistance protein-1 used in the neoadjuvant setting would sensitize LPCs to doxorubicin and extend the length of remission in dogs with therapy naïve large B-cell lymphoma. Twenty dogs were enrolled into a double-blinded, placebo controlled study where experimental and control groups received oral valspodar (7.5 mg/kg or placebo, respectively, twice daily for five days followed by five treatments with doxorubicin 21 days apart with a reduction in the first dose to mitigate the potential side effects of ABCB1 inhibition. Lymph node and blood LPCs were quantified at diagnosis, on the fourth day of neoadjuvant period, and 1-week after the first chemotherapy dose. Valspodar therapy was well tolerated. There were no differences between groups in total LPCs in lymph nodes or peripheral blood, nor in event-free survival or overall survival. Overall, we conclude that valspodar can be administered safely in the neoadjuvant setting for canine B-cell lymphoma; however, its use to attenuate ABCB1+ cells does not alter the composition of lymph node or blood LPCs, and it does not appear to be sufficient to prolong doxorubicin-dependent remissions in this setting.

  12. Oral Morphine Pharmacokinetic in Obesity: The Role of P-Glycoprotein, MRP2, MRP3, UGT2B7, and CYP3A4 Jejunal Contents and Obesity-Associated Biomarkers.

    Science.gov (United States)

    Lloret-Linares, Célia; Miyauchi, Eisuke; Luo, Huilong; Labat, Laurence; Bouillot, Jean-Luc; Poitou, Christine; Oppert, Jean-Michel; Laplanche, Jean-Louis; Mouly, Stéphane; Scherrmann, Jean-Michel; Uchida, Yasuo; Tachikawa, Masanori; Terasaki, Tetsuya; Bergmann, Jean-François; Declèves, Xavier

    2016-03-07

    The objective of our work was to study the association between the jejunal expression levels of P-gp, MRP2, MRP3, UGT2B7, CYP3A4, the ABCB1 c.3435C > T polymorphism, and several obesity-associated biomarkers, as well as oral morphine and glucuronides pharmacokinetics in a population of morbidly obese subjects. The pharmacokinetics of oral morphine (30 mg) and its glucuronides was performed in obese patients candidate to bariatric surgery. A fragment of jejunal mucosa was preserved during surgery. Subjects were genotyped for the ABCB1 single nucleotide polymorphism (SNP) c.3435C > T. The subjects were 6 males and 23 females, with a mean body mass index of 44.8 (35.4-61.9) kg/m(2). The metabolic ratios AUC0-inf M3G/morphine and AUC0-inf M6G/morphine were highly correlated (rs = 0.8, p morphine and its glucuronides were not associated with the jejunal contents of P-gp, CYP3A4, MRP2, and MRP3. The jejunal content of UGT2B7 was positively associated with morphine AUC0-inf (rs = 0.4, p = 0.03). Adiponectin was inversely correlated with morphine Cmax (rs = -0.44, p = 0.03). None of the factors studied was associated with morphine metabolic ratios. The interindividual variability in the jejunal content of drug transporters and metabolizing enzymes, the ABCB1 gene polymorphism, and the low-grade inflammation did not explain the variability in morphine and glucuronide exposure. High morphine metabolic ratio argued for an increased morphine glucuronidation in morbidly obese patients.

  13. Pharmacogenetic determinants of outcomes on triplet hepatic artery infusion and intravenous cetuximab for liver metastases from colorectal cancer (European trial OPTILIV, NCT00852228).

    Science.gov (United States)

    Lévi, Francis; Karaboué, Abdoulaye; Saffroy, Raphaël; Desterke, Christophe; Boige, Valerie; Smith, Denis; Hebbar, Mohamed; Innominato, Pasquale; Taieb, Julien; Carvalho, Carlos; Guimbaud, Rosine; Focan, Christian; Bouchahda, Mohamed; Adam, René; Ducreux, Michel; Milano, Gérard; Lemoine, Antoinette

    2017-08-17

    The hepatic artery infusion (HAI) of irinotecan, oxaliplatin and 5-fluorouracil with intravenous cetuximab achieved outstanding efficacy in previously treated patients with initially unresectable liver metastases from colorectal cancer. This planned study aimed at the identification of pharmacogenetic predictors of outcomes. Circulating mononuclear cells were analysed for 207 single-nucleotide polymorphisms (SNPs) from 34 pharmacology genes. Single-nucleotide polymorphisms passing stringent Hardy-Weinberg equilibrium test were tested for their association with outcomes in 52 patients (male/female, 36/16; WHO PS, 0-1). VKORC1 SNPs (rs9923231 and rs9934438) were associated with early and objective responses, and survival. For rs9923231, T/T achieved more early responses than C/T (50% vs 5%, P=0.029) and greatest 4-year survival (46% vs 0%, P=0.006). N-acetyltransferase-2 (rs1041983 and rs1801280) were associated with up to seven-fold more macroscopically complete hepatectomies. Progression-free survival was largest in ABCB1 rs1045642 T/T (P=0.026) and rs2032582 T/T (P=0.035). Associations were found between toxicities and gene variants (P<0.05), including neutropenia with ABCB1 (rs1045642) and SLC0B3 (rs4149117 and rs7311358); and diarrhoea with CYP2C9 (rs1057910), CYP2C19 (rs3758581), UGT1A6 (rs4124874) and SLC22A1 (rs72552763). VKORC1, NAT2 and ABCB1 variants predicted for HAI efficacy. Pharmacogenetics could guide the personalisation of liver-targeted medico-surgical therapies.British Journal of Cancer advance online publication, 17 August 2017; doi:10.1038/bjc.2017.278 www.bjcancer.com.

  14. A model predicting fluindione dose requirement in elderly inpatients including genotypes, body weight, and amiodarone.

    Science.gov (United States)

    Moreau, Caroline; Pautas, Eric; Duverlie, Charlotte; Berndt, Celia; Andro, Marion; Mahé, Isabelle; Emmerich, Joseph; Lacut, Karine; Le Gal, Grégoire; Peyron, Isabelle; Gouin-Thibault, Isabelle; Golmard, Jean-Louis; Loriot, Marie-Anne; Siguret, Virginie

    2014-04-01

    Indandione VKAs have been widely used for decades, especially in Eastern Europe and France. Contrary to coumarin VKAs, the relative contribution of individual factors to the indandione-VKA response is poorly known. In the present multicentre study, we sought to develop and validate a model including genetic and non-genetic factors to predict the daily fluindione dose requirement in elderly patients in whom VKA dosing is challenging. We prospectively recorded clinical and therapeutic data in 230 Caucasian inpatients mean aged 85 ± 6 years, who had reached international normalized ratio stabilisation (range 2.0-3.0) on fluindione. In the derivation cohort (n=156), we analysed 13 polymorphisms in seven genes potentially involved in the pharmacological effect or vitamin-K cycle (VKORC1, CYP4F2, EPHX1) and fluindione metabolism/transport (CYP2C9, CYP2C19, CYP3A5, ABCB1). We built a regression model incorporating non-genetic and genetic data and evaluated the model performances in a separate cohort (n=74).Body-weight, amiodarone intake, VKORC1, CYP4F2, ABCB1 genotypes were retained in the final model, accounting for 31.5% of dose variability. None influence of CYP2C9 was observed. Our final model showed good performances: in 83.3% of the validation cohort patients, the dose was accurately predicted within 5 mg, i.e.the usual step used for adjusting fluindione dosage. In conclusion, in addition to body-weight and amiodarone-intake, pharmacogenetic factors (VKORC1, CYP4F2, ABCB1) related to the pharmacodynamic effect and transport of fluindione significantly influenced the dose requirement in elderly patients while CYP2C9 did not. Studies are required to know whether fluindione could be an alternative VKA in carriers of polymorphic CYP2C9 alleles, hypersensitive to coumarins.

  15. Progesterone-adenine hybrids as bivalent inhibitors of P-glycoprotein-mediated multidrug efflux: design, synthesis, characterization and biological evaluation.

    Science.gov (United States)

    Zeinyeh, Waël; Mahiout, Zahia; Radix, Sylvie; Lomberget, Thierry; Dumoulin, Axel; Barret, Roland; Grenot, Catherine; Rocheblave, Luc; Matera, Eva-Laure; Dumontet, Charles; Walchshofer, Nadia

    2012-10-01

    Bivalent ligands were designed on the basis of the described close proximity of the ATP-site and the putative steroid-binding site of P-glycoprotein (ABCB1). The syntheses of 19 progesterone-adenine hybrids are described. Their abilities to inhibit P-glycoprotein-mediated daunorubicin efflux in K562/R7 human leukemic cells overexpressing P-glycoprotein were evaluated versus progesterone. The hybrid with a hexamethylene linker chain showed the best inhibitory potency. The efficiency of these progesterone-adenine hybrids depends on two main factors: (i) the nature of the linker and (ii) its attachment point on the steroid skeleton.

  16. Impact of CYP2C8*3 on paclitaxel clearance

    DEFF Research Database (Denmark)

    Bergmann, T K; Brasch-Andersen, C; Gréen, H

    2011-01-01

    The primary purpose of this study was to evaluate the effect of CYP2C8*3 and three genetic ABCB1 variants on the elimination of paclitaxel. We studied 93 Caucasian women with ovarian cancer treated with paclitaxel and carboplatin. Using sparse sampling and nonlinear mixed effects modeling, the in...... associations found for CYP2C8*4 (P=0.04) and ABCC1 g.7356253C>G (P=0.04).The Pharmacogenomics Journal advance online publication, 6 April 2010; doi:10.1038/tpj.2010.19....

  17. Functional analysis of candidate ABC transporter proteins for sitosterol transport

    DEFF Research Database (Denmark)

    Albrecht, C; Elliott, J I; Sardini, A;

    2002-01-01

    implicated in lipid movement and expressed in tissues with a role in sterol synthesis and absorption, might also be involved in sitosterol transport. Transport by the multidrug resistance P-glycoprotein (P-gp; Abcb1), the multidrug resistance-associated protein (Mrp1; Abcc1), the breast cancer resistance...... the absorption of sitosterol and related molecules in the intestine by pumping them back into the lumen. Although mutations altering ABCG5 and ABCG8 are found in affected patients, no functional demonstration of sitosterol transport has been achieved. In this study, we investigated whether other ABC transporters...

  18. Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Della Torre, Camilla [Department of Physical, Earth and Environmental Sciences, University of Siena (Italy); Balbi, Teresa [Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa (Italy); Grassi, Giacomo [Department of Physical, Earth and Environmental Sciences, University of Siena (Italy); Frenzilli, Giada; Bernardeschi, Margherita [Department of Clinical and Experimental Medicine, University of Pisa (Italy); Smerilli, Arianna [Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Seconda Università di Napoli, Caserta (Italy); Guidi, Patrizia [Department of Clinical and Experimental Medicine, University of Pisa (Italy); Canesi, Laura [Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa (Italy); Nigro, Marco [Department of Clinical and Experimental Medicine, University of Pisa (Italy); Monaci, Fabrizio [Department of Physical, Earth and Environmental Sciences, University of Siena (Italy); Scarcelli, Vittoria [Department of Clinical and Experimental Medicine, University of Pisa (Italy); Rocco, Lucia [Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Seconda Università di Napoli, Caserta (Italy); Focardi, Silvano [Department of Physical, Earth and Environmental Sciences, University of Siena (Italy); Monopoli, Marco [Centre for BioNanoInteractions, School of Chemistry and Chemical Biology, University College Dublin (Ireland); Corsi, Ilaria, E-mail: ilaria.corsi@unisi.it [Department of Physical, Earth and Environmental Sciences, University of Siena (Italy)

    2015-10-30

    Highlights: • Nano-TiO{sub 2} modulate CdCl{sub 2} cellular responses in gills of marine mussel. • Nano-TiO{sub 2} reduced CdCl{sub 2}-induced effects by lowering abcb1 m-RNA and GST activity. • Nano-TiO{sub 2} reduced Cd accumulation in mussel’s gills but not in whole soft tissue. • Higher accumulation of Ti in the presence of CdCl{sub 2} was observed in gills. - Abstract: We investigated the influence of titanium dioxide nanoparticles (nano-TiO{sub 2}) on the response to cadmium in the gills of the marine mussel Mytilus galloprovincialis in terms of accumulation and toxicity. Mussels were in vivo exposed to nano-TiO{sub 2}, CdCl{sub 2}, alone and in combination. Several cellular biomarkers were investigated in gills: ABC transport proteins and metallothioneins at gene/protein (abcb1, abcc-like and mt-20) and functional level, GST activity, NO production and DNA damage (Comet assay). Accumulation of total Cd and titanium in gills as in whole soft tissue was also investigated. Significant responses to Cd exposure were observed in mussel gills as up-regulation of abcb1 and mt-20 gene transcription, increases in total MT content, P-gp efflux and GST activity, DNA damage and NO production. Nano-TiO{sub 2} alone increased P-gp efflux activity and NO production. When combined with Cd, nano-TiO{sub 2} reduced the metal-induced effects by significantly lowering abcb1 gene transcription, GST activity, and DNA damage, whereas, additive effects were observed on NO production. A lower concentration of Cd was observed in the gills upon co-exposure, whereas, Ti levels were unaffected. A competitive effect in uptake/accumulation of nano-TiO{sub 2} and Cd seems to occur in gills. A confirmation is given by the observed absence of adsorption of Cd onto nano-TiO{sub 2} in sea water media.

  19. Pharmacogenetics May Influence Tacrolimus Daily Dose, But Not Urinary Tubular Damage Markers In The Long-Term Period After Renal Transplantation

    Directory of Open Access Journals (Sweden)

    Stefanović Nikola Z.

    2015-10-01

    Full Text Available Background: The primary goal of this study was to evaluate the influence of cytochrome P450 (CYP 3A5 (6986A>G and ABCB1 (3435C>T polymorphisms on tacrolimus (TAC dosage regimen and exposure. Second, we evaluated the influence of TAC dosage regimen and the tested polymorphisms on renal oxidative injury, as well as the urinary activities of tubular ectoenzymes in a long-term period after transplantation. Also, we aimed to determine the association between renal oxidative stress and tubular damage markers in the renal transplant patients.

  20. Drug: D08458 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available inchona calisaya [TAX:153742], Cinchona succirubra, Cinchona calisaya Antiarrhythmic; Antiprotozoal, Antimal...arial Same as: C06527 ATC code: C01BA01 Class I antiarrhythmic agent (Ia) voltage-gated sodium channel (SCN1...5244], SCL47A2 [HSA:146802], ABCB1 [HSA:5243] map07025 Quinolines map07037 Antiarrhythmic drugs map07231 Sod...br08303] C CARDIOVASCULAR SYSTEM C01 CARDIAC THERAPY C01B ANTIARRHYTHMICS, CLASS I AND III C01BA Antiarrhythmic...BR:br08302] Cardiovascular Agents Antiarrhythmics Quinidine D08458 Quinidine (BAN) Target-based classificati

  1. Drug: D00619 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available (TN); Verelan (TN) C27H38N2O4. HCl 490.2598 491.0626 D00619.gif Anti-anginal; Cardiac depressant [anti-arrhythmic...] Therapeutic category: 2129 2171 ATC code: C08DA01 Class IV antiarrhythmic agent calcium channel L ty...on: ABCB1 [HSA:5243], ABCB4 [HSA:5244], SLC22A3 [HSA:6581] map07036 Calcium channel blocking drugs map07037 Antiarrhythmic...n [BR:br08301] 2 Agents affecting individual organs 21 Cardiovascular agents 212 Antiarrhythmic agents 2129

  2. Drug: D00643 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D00643 Drug Quinidine polygalacturonate; Cardioquin (TN) C20H24N2O2. (C6H10O7)mon D00643.gif Antiarrhythmic...1B ANTIARRHYTHMICS, CLASS I AND III C01BA Antiarrhythmics, class Ia C01BA01 Quinidine D00643 Quinidine polyg...alacturonate USP drug classification [BR:br08302] Cardiovascular Agents Antiarrhythmics Quinidine D00643 Qui...nolines map07037 Antiarrhythmic drugs map07231 Sodium channel blocking drugs Anat...2A2 [HSA:6582], SLC22A1 [HSA:6580], SLC47A1 [HSA:55244], SCL47A2 [HSA:146802], ABCB1 [HSA:5243] map07025 Qui

  3. Drug: D08435 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D08435 Drug Propafenone (INN); Propafenon hexal (TN) C21H27NO3 341.1991 341.444 D08435.gif Antiarrhythmic... Same as: C07381 ATC code: C01BC03 Class I antiarrhythmic agent (Ic) voltage-gated sod...P1A2 [HSA:1544], CYP2D6 [HSA:1565] Transporter inhibition: ABCB1 [HSA:5243] map07037 Antiarrhythmic...fication [BR:br08303] C CARDIOVASCULAR SYSTEM C01 CARDIAC THERAPY C01B ANTIARRHYTHMICS, CLASS I AND III C01BC Antiarrhythmic...] Cardiovascular Agents Antiarrhythmics Propafenone D08435 Propafenone (INN) Targ

  4. Drug: D00640 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 758 377.9049 D00640.gif Cardiac depressant [anti-arrhythmic] Therapeutic category: 2129 ATC code: C01BC03 Class I antiarrhythmic...5] Transporter inhibition: ABCB1 [HSA:5243] map07037 Antiarrhythmic drugs map07231 Sodium channel blocking d...RDIAC THERAPY C01B ANTIARRHYTHMICS, CLASS I AND III C01BC Antiarrhythmics, class Ic C01BC03 Propafenone D006...40 Propafenone hydrochloride (JP16/USP) USP drug classification [BR:br08302] Cardiovascular Agents Antiarrhythmic...rugs Therapeutic category of drugs in Japan [BR:br08301] 2 Agents affecting individual organs 21 Cardiovascular agents 212 Antiarrhyt

  5. Drug: D08459 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available e; Natisedine (TN) C20H24N2O2. C12H12N2O3 556.2686 556.652 D08459.gif Antiarrhythmic; Antiprotozoal, antimal...:55244], SCL47A2 [HSA:146802], ABCB1 [HSA:5243] map07025 Quinolines map07037 Antiarrhythmic drugs map07231 S...LAR SYSTEM C01 CARDIAC THERAPY C01B ANTIARRHYTHMICS, CLASS I AND III C01BA Antiarrhythmics, class Ia C01BA01...08302] Cardiovascular Agents Antiarrhythmics Quinidine D08459 Quinidine phenylethylbarbiturate Target-based

  6. Gene expression profiling in chemoresistant variants of three cell lines of different origin

    DEFF Research Database (Denmark)

    Johnsson, Anders; Vallon-Christensson, Johan; Strand, Carina

    2005-01-01

    BACKGROUND: Drug resistance is a major problem in clinical cancer chemotherapy. Several mechanisms of resistance have been identified, but the underlying genomic changes are still poorly understood. MATERIALS AND METHODS: Gene expression profiling, using cDNA microarray, was performed in eight cell....... Several genes encoding ABC transporters were highly up-regulated, most notably ABCB1 (MDR1) and ABCB4 in several cell lines and ABCG2 (MXR) specifically in MX-resistant cell lines. A pronounced down-regulation of several histones was noted in the MCF-7-derived resistant sublines. Altered expression...

  7. The putative P-gp inhibitor telmisartan does not affect the transcellular permeability and cellular uptake of the calcium channel antagonist verapamil in the P-glycoprotein expressing cell line MDCK II MDR1

    DEFF Research Database (Denmark)

    Saaby, Lasse; Tfelt-Hansen, Peer; Brodin, Birger

    2015-01-01

    Verapamil is used in high doses for the treatment of cluster headache. Verapamil has been described as a P-glycoprotein (P-gp, ABCB1) substrate. We wished to evaluate in vitro whether co administration of a P-gp inhibitor with verapamil could be a feasible strategy for increasing CNS uptake...... of verapamil. Fluxes of radiolabelled verapamil across MDCK II MDR1 monolayers were measured in the absence and presence of the putative P-gp inhibitor telmisartan (a clinically approved drug compound). Verapamil displayed a vectorial basolateral-to-apical transepithelial efflux across the MDCK II MDR1...

  8. Genetic polymorphisms of enzyme proteins and transporters related to methotrexate response and pharmacokinetics in a Japanese population.

    Science.gov (United States)

    Hashiguchi, Masayuki; Shimizu, Mikiko; Hakamata, Jun; Tsuru, Tomomi; Tanaka, Takanori; Suzaki, Midori; Miyawaki, Kumika; Chiyoda, Takeshi; Takeuchi, Osamu; Hiratsuka, Jiro; Irie, Shin; Maruyama, Junya; Mochizuki, Mayumi

    2016-01-01

    Methotrexate (MTX) is currently the anchor drug widely used worldwide in the treatment of rheumatoid arthritis (RA). However, the therapeutic response to MTX has been shown to vary widely among individuals, genders and ethnic groups. The reason for this has been not clarified but it is considered to be partially due to several mechanisms in the cellular pathway of MTX including single-nucleotide polymorphisms (SNPs). The purpose of this study was to investigate the allelic frequencies in different ethnic and/or population groups in the 10 polymorphisms of enzyme proteins and transporters related to the MTX response and pharmacokinetics including MTHFR, TYMS, RFC1, FPGS, GGH, ABCB1, ABCC2 and ABCG2 in unrelated healthy Japanese adults and patients with RA. Ten polymorphisms, methylenetetrahydrofolate reductase (MTHFR) 1298, thymidylate synthase (TYMS) 3'-UTR, reduced folate carrier 1 (RFC1) 80 and-43, folypolyglutamyl synthase (FPGS) 1994, γ-glutamyl hydrolase (GGH) 452 and-401, the ABC transporters (ABCB1 3435, ABCC2 IVS23 + 56, ABCG2 914) of enzyme proteins and transporters related to MTX response and pharmacokinetics in 299 unrelated healthy Japanese adults and 159 Japanese patients with RA were investigated to clarify their contributions to individual variations in response and safety to MTX and establish personalized MTX therapy. SNPs were evaluated using real-time polymerase chain reaction (PCR). Comparison of allelic frequencies in our study with other ethnic/population groups of healthy adults and RA patients showed significant differences in 10 polymorphisms among healthy adults and 7 among RA patients. Allelic frequencies of MTHFR 1298 C, FPGS 1994A and ABCB1 3435 T were lower in Japanese than in Caucasian populations and those of ABCC2 IVS23 + 56 C and ABCG2 914A were higher in Japanese than in Caucasian/European populations in both healthy adults and RA patients. Allelic frequencies of MTHFR 1298 C, GGH-401 T, ABCB1 3435 T, and ABCG2 914A

  9. Multi-drug resistance gene (MDR1) and opioid analgesia in horses

    OpenAIRE

    Natalini Cláudio Corrêa; Cunha Anderson Fávaro da; Linardi Renata Lehn

    2006-01-01

    Opioid absorption in the intestinal tract as well as its effects in the central nervous system is modulated by the P-glycoprotein (P-gp) encoded in the Multi-drug Resistance gene (MDR1) also named ATP-binding cassete, subfamily B, member 1 (ABCB1). This MDR1 gene acts as a selective pump. The expression of this protein in humans and rodents inhibits cellular uptake of substrate opioids. The presence of the intestinal iso-enzyme CYP3A4 associated with MDR1 gene decreases the opioid analgesic a...

  10. Genetic risk factors for glucocorticoid-induced osteonecrosis: a meta-analysis.

    Science.gov (United States)

    Gong, Li-Li; Fang, Lian-Hua; Wang, He-Yao; Peng, Jian-Hao; Si, Kun; Zhu, Jin; Han, Fei-Fei; Wang, Yue-Hua; Du, Guan-Hua; Pei, Li-Xia; Liu, Li-Hong

    2013-04-01

    Glucocorticoid-induced osteonecrosis is a common and severe adverse event. We conducted a meta-analysis to investigate whether polymorphisms in target genes were associated with the risk of corticosteroid-induced osteonecrosis. Published literature from PubMed and EMBASE were searched for eligible publications. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using a fixed- or random-effects model. There were 23 articles with 35 genes described the relationship between polymorphisms and glucocorticoid-induced osteonecrosis. Meta-analyses were carried out for those SNPs with three or more eligible studies, which included four SNPs located in three genes (PAI-1, MTHFR, ABCB1). The meta-analysis revealed that the PAI-1 4G allele was associated with an increased risk of osteonecrosis compared with the 5G allele (combined studies: OR=1.932, 95% CI=1.145-3.261). The OR for the 4G/4G vs. 5G/5G genotype of PAI-1 was 3.217 (95% CI 1.667-6.209 with combined studies), The relative risk of osteonecrosis was increased in the 4G allele vs. 5G/5G and 4G/4G genotype vs. 5G allele, with odds ratios of 2.304 (95% CI=1.235-4.299) and 2.307 (95% CI=1.527-3.485) in combined studies, respectively. The ABCB1 C3435T genotype distributions available confirmed that the C allele increased osteonecrosis risk compared with the T allele (OR 1.668, 95% CI=1.214-2.293) and TT genotype (OR 2.946, 95% CI=1.422-6.101). There was no evidence for significant association between MTHFR C677T and ABCB1 G2677T/A polymorphisms and risk of osteonecrosis. Results of this meta-analysis indicate that the PAI-1 4G/5G and ABCB1 C3435T polymorphisms may be risk factors for osteonecrosis.

  11. Docetaxel-induced neuropathy

    DEFF Research Database (Denmark)

    Eckhoff, Lise; Feddersen, Søren; Knoop, Ann

    2015-01-01

    Background. Docetaxel is a highly effective treatment of a wide range of malignancies but is often associated with peripheral neuropathy. The genetic variability of genes involved in the transportation or metabolism of docetaxel may be responsible for the variation in docetaxel-induced peripheral...... neuropathy (DIPN). The main purpose of this study was to investigate the impact of genetic variants in GSTP1 and ABCB1 on DIPN. Material and methods. DNA was extracted from whole blood from 150 patients with early-stage breast cancer who had received adjuvant docetaxel from February 2011 to May 2012. Two...

  12. Impact of genetic variants of ATP binding cassette B1, AICAR transformylase/IMP cyclohydrolase, folyl-polyglutamatesynthetase, and methylenetetrahydrofolatereductase on methotrexate toxicity.

    Science.gov (United States)

    Sala-Icardo, Luis; Lamana, Amalia; Ortiz, Ana María; García Lorenzo, Elena; Moreno Fresneda, Pablo; García-Vicuña, Rosario; González-Álvaro, Isidoro

    2016-10-14

    To analyze the effect of single nucleotide polymorphisms (SNPs) with well-known functional impact of methylenetetrahydrofolatereductase (MTHFR; rs1801131 and rs1801133), the membrane transporter ABCB1 (rs1045642), the AICAR transformylase/IMP cyclohydrolase (ATIC; rs2372536) and folyl-polyglutamatesynthetase (FPGS; rs1544105), on liver and bone marrow toxicity of methotrexate (MTX). We analyzed 1415 visits from 350 patients of the PEARL (Princesa Early Arthritis Register Longitudinal) study: (732 with MTX, 683 without MTX). The different SNPs were genotyped using specific TaqMan probes (Applied Biosystems). Multivariate analyzes were performed using generalized linear models in which the dependent variables were the levels of serum alanine aminotransferase (liver toxicity), leukocytes, platelets or hemoglobin (hematologic toxicity) and adjusted for clinical variables (disease activity, etc.), analytical (renal function, etc.), sociodemographic (age, sex, etc.) and genetic variants of MTHFR, ABCB1, ATIC and FPGS. The effect of these variables on the MTX doses prescribed throughout follow-up was also analyzed through multivariate analysis nested by visit and patient. When taking MTX, those patients carrying the CC genotype of rs1045642 in ABCB1 showed significantly higher GPT levels (7.1±2.0 U/L; P<.001). Carrying at least one G allele of rs1544105 in FPGS was associated with lower leukocyte (-0.67±0.32; 0.038), hemoglobin (-0.34±0.11g/dL; P=.002), and platelet (-11.8±4.7; P=.012) levels. The presence of the G allele of rs1544105 in FPGS, and the T allele of rs1801133 in MTHFR, was significantly associated with the use of lower doses of MTX. Our data suggest that genotyping functional variants in FGPS and MTHFR enzymes and the transporter ABCB1 could help to identify patients with increased risk of MTX toxicity. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  13. Integrative transcriptomics-based identification of cryptic drivers of taxol-resistance genes in ovarian carcinoma cells: Analysis of the androgen receptor.

    Science.gov (United States)

    Sun, Nian-Kang; Huang, Shang-Lang; Lu, Hsing-Pang; Chang, Ting-Chang; Chao, Chuck C-K

    2015-09-29

    A systematic analysis of the genes involved in taxol resistance (txr) has never been performed. In the present study, we created txr ovarian carcinoma cell lines to identify the genes involved in chemoresistance. Transcriptome analysis revealed 1,194 overexpressed genes in txr cells. Among the upregulated genes, more than 12 cryptic transcription factors were identified using MetaCore analysis (including AR, C/EBPβ, ERα, HNF4α, c-Jun/AP-1, c-Myc, and SP-1). Notably, individual silencing of these transcription factors (except HNF4`)sensitized txr cells to taxol. The androgen receptor (AR) and its target genes were selected for further analysis. Silencing AR using RNA interference produced a 3-fold sensitization to taxol in txr cells, a response similar to that produced by silencing abcb1. AR silencing also downregulated the expression of prominent txr gene candidates (including abcb1, abcb6, abcg2, bmp5, fat3, fgfr2, h1f0, srcrb4d, and tmprss15). In contrast, AR activation using the agonist DHT upregulated expression of the target genes. Individually silencing seven out of nine (78%) AR-regulated txr genes sensitized txr cells to taxol. Inhibition of AKT and JNK cellular kinases using chemical inhibitors caused a dramatic suppression of AR expression. These results indicate that the AR represents a critical driver of gene expression involved in txr.

  14. Impact of Single Nucleotide Polymorphisms (SNPs) on Immunosuppressive Therapy in Lung Transplantation

    Science.gov (United States)

    Ruiz, Jesus; Herrero, María José; Bosó, Virginia; Megías, Juan Eduardo; Hervás, David; Poveda, Jose Luis; Escrivá, Juan; Pastor, Amparo; Solé, Amparo; Aliño, Salvador Francisco

    2015-01-01

    Lung transplant patients present important variability in immunosuppressant blood concentrations during the first months after transplantation. Pharmacogenetics could explain part of this interindividual variability. We evaluated SNPs in genes that have previously shown correlations in other kinds of solid organ transplantation, namely ABCB1 and CYP3A5 genes with tacrolimus (Tac) and ABCC2, UGT1A9 and SLCO1B1 genes with mycophenolic acid (MPA), during the first six months after lung transplantation (51 patients). The genotype was correlated to the trough blood drug concentrations corrected for dose and body weight (C0/Dc). The ABCB1 variant in rs1045642 was associated with significantly higher Tac concentration, at six months post-transplantation (CT vs. CC). In the MPA analysis, CT patients in ABCC2 rs3740066 presented significantly lower blood concentrations than CC or TT, three months after transplantation. Other tendencies, confirming previously expected results, were found associated with the rest of studied SNPs. An interesting trend was recorded for the incidence of acute rejection according to NOD2/CARD15 rs2066844 (CT: 27.9%; CC: 12.5%). Relevant SNPs related to Tac and MPA in other solid organ transplants also seem to be related to the efficacy and safety of treatment in the complex setting of lung transplantation. PMID:26307985

  15. Effect of bisphenol A on P-glycoprotein-mediated efflux and ultrastructure of the sea urchin embryo

    Energy Technology Data Exchange (ETDEWEB)

    Bošnjak, Ivana [Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb (Croatia); Borra, Marco [Molecular Biology Service, Stazione Zoologica Anton Dohrn, Villa Comunale 80121, Napoli (Italy); Iamunno, Franco; Benvenuto, Giovanna [Electron Microscopy Service, Stazione Zoologica Anton Dohrn, Villa Comunale 80121, Napoli (Italy); Ujević, Ivana [Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Setaliste Ivana Mestrovica 63, 21000 Split (Croatia); Bušelić, Ivana [Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Setaliste Ivana Mestrovica 63, 21000 Split (Croatia); Roje-Busatto, Romana [Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Setaliste Ivana Mestrovica 63, 21000 Split (Croatia); Mladineo, Ivona, E-mail: mladineo@izor.hr [Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Setaliste Ivana Mestrovica 63, 21000 Split (Croatia); Assemble Marine Laboratory, Stazione Zoological Anton Dohrn, Villa Comunale, Naples (Italy)

    2014-11-15

    Highlights: • Effects of BPA on embryonic development of Paracentrotus lividus were determined. • Transport assay, intracellular BPA measurements and gene expression surveys were made. • Multidrug efflux transporter P-gp/ABCB1 is involved in BPA elimination. • Endocrine disruption is inferred by orphan steroid hormone receptor (shr2) upregulation. • BPA delayed mitosis, inducing aberrant karyokinesis and dysfunctional microfilaments. - Abstract: Usage of bisphenol A (BPA) in production of polycarbonate plastics has resulted in global distribution of BPA in the environment. These high concentrations cause numerous negative effects to the aquatic biota, among which the most known is the induction of endocrine disruption. The focus of this research was to determine the effects of two experimentally determined concentrations of BPA (100 nM and 4 μM) on cellular detoxification mechanisms during the embryonic development (2-cell, pluteus) of the rocky sea urchin (Paracentrotus lividus), primarily the potential involvement of multidrug efflux transport in the BPA intercellular efflux. The results of transport assay, measurements of the intracellular BPA and gene expression surveys, for the first time indicate the importance of P-glycoprotein (P-gp/ABCB1) in defense against BPA. Cytotoxic effects of BPA, validated by the immunohistochemistry (IHC) and the transmission electron microscopy (TEM), induced the aberrant karyokinesis, and consequently, the impairment of embryo development through the first cell division and retardation.

  16. Impact of Single Nucleotide Polymorphisms (SNPs on Immunosuppressive Therapy in Lung Transplantation

    Directory of Open Access Journals (Sweden)

    Jesus Ruiz

    2015-08-01

    Full Text Available Lung transplant patients present important variability in immunosuppressant blood concentrations during the first months after transplantation. Pharmacogenetics could explain part of this interindividual variability. We evaluated SNPs in genes that have previously shown correlations in other kinds of solid organ transplantation, namely ABCB1 and CYP3A5 genes with tacrolimus (Tac and ABCC2, UGT1A9 and SLCO1B1 genes with mycophenolic acid (MPA, during the first six months after lung transplantation (51 patients. The genotype was correlated to the trough blood drug concentrations corrected for dose and body weight (C0/Dc. The ABCB1 variant in rs1045642 was associated with significantly higher Tac concentration, at six months post-transplantation (CT vs. CC. In the MPA analysis, CT patients in ABCC2 rs3740066 presented significantly lower blood concentrations than CC or TT, three months after transplantation. Other tendencies, confirming previously expected results, were found associated with the rest of studied SNPs. An interesting trend was recorded for the incidence of acute rejection according to NOD2/CARD15 rs2066844 (CT: 27.9%; CC: 12.5%. Relevant SNPs related to Tac and MPA in other solid organ transplants also seem to be related to the efficacy and safety of treatment in the complex setting of lung transplantation.

  17. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaojing [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Xu, Yonghong [Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, 430060 Wuhan (China); Meng, Xiangning [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Watari, Fumio [Department of Biomedical, Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Liu, Hudan, E-mail: hudanliu@hust.edu.cn [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Chen, Xiao, E-mail: mornsmile@yahoo.com [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China)

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  18. Moving toward Personalized Medicine in the Methadone Maintenance Treatment Program: A Pilot Study on the Evaluation of Treatment Responses in Taiwan

    Directory of Open Access Journals (Sweden)

    Hsin-Ya Lee

    2013-01-01

    Full Text Available This pilot study simultaneously evaluated the effects of various factors, including genetic variations of CYP2B6, CYP2C19, and ABCB1, demographic characteristics, disease states, methadone-drug interactions (MDIs, and poly-substance use, on the treatment responses among non-HIV patients in the methadone maintenance treatment program (MMTP in Taiwan. A total of 178 patients were recruited from two major hospitals that provided MMTP services in southern Taiwan, and information regarding concomitant medications and diseases was acquired from the National Health Insurance (NHI program. The results demonstrated that the methadone maintenance dose, CYP2B6 785G allele, and ABCB1 2677T allele have positive effects on the methadone plasma concentration. In contrast, patients with HCV coinfection, alcohol problems, and psychiatric diseases may have a negative response to treatment. Thus, a comprehensive evaluation of treatment responses in the MMTP should include not only genetic polymorphisms in methadone metabolism and transporter proteins, but also concomitant diseases, MDIs, and poly-substance use. The results also suggest that personalized medicine may be indispensable for a better outcome of the MMTP.

  19. Antisense lncRNA FOXC2-AS1 promotes doxorubicin resistance in osteosarcoma by increasing the expression of FOXC2.

    Science.gov (United States)

    Zhang, Chun-Lin; Zhu, Kun-Peng; Ma, Xiao-Long

    2017-06-28

    Recent efforts have revealed that numerous natural antisense lncRNAs play a crucial role in the regulation of cancer biology. Here, based on our previous study, we further identified that the lncRNA FOXC2-AS1 and its antisense transcript FOXC2 are positively up-regulated in doxorubicin-resistant osteosarcoma cell lines and tissues, correlate with poor prognosis and promote doxorubicin resistance in osteosarcoma cells in vitro and in vivo. In addition, FOXC2-AS1 and FOXC2 are mainly located in the cytoplasm and form an RNA-RNA double-stranded structure in the overlapping region, which is necessary for FOXC2-AS1 to regulate the expression of FOXC2 at both the transcription and post-transcription levels. In addition, transcription factor FOXC2 also contributes to doxorubicin resistance through inducing the expression of the classical multi-drug resistance-related ABCB1 gene similar to FOXC2-AS1. Thus, we concluded that the lncRNA FOXC2-AS1 may promote doxorubicin resistance in OS by increasing the expression of transcription factor FOXC2, further facilitating ABCB1 expression. These findings demonstrate the potential underlying mechanism of FOXC2-AS1 in the regulation of doxorubicin resistance in OS and possibly provide a novel reversing target. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Discovery of gene-gene interactions across multiple independent data sets of late onset Alzheimer disease from the Alzheimer Disease Genetics Consortium.

    Science.gov (United States)

    Hohman, Timothy J; Bush, William S; Jiang, Lan; Brown-Gentry, Kristin D; Torstenson, Eric S; Dudek, Scott M; Mukherjee, Shubhabrata; Naj, Adam; Kunkle, Brian W; Ritchie, Marylyn D; Martin, Eden R; Schellenberg, Gerard D; Mayeux, Richard; Farrer, Lindsay A; Pericak-Vance, Margaret A; Haines, Jonathan L; Thornton-Wells, Tricia A

    2016-02-01

    Late-onset Alzheimer disease (AD) has a complex genetic etiology, involving locus heterogeneity, polygenic inheritance, and gene-gene interactions; however, the investigation of interactions in recent genome-wide association studies has been limited. We used a biological knowledge-driven approach to evaluate gene-gene interactions for consistency across 13 data sets from the Alzheimer Disease Genetics Consortium. Fifteen single nucleotide polymorphism (SNP)-SNP pairs within 3 gene-gene combinations were identified: SIRT1 × ABCB1, PSAP × PEBP4, and GRIN2B × ADRA1A. In addition, we extend a previously identified interaction from an endophenotype analysis between RYR3 × CACNA1C. Finally, post hoc gene expression analyses of the implicated SNPs further implicate SIRT1 and ABCB1, and implicate CDH23 which was most recently identified as an AD risk locus in an epigenetic analysis of AD. The observed interactions in this article highlight ways in which genotypic variation related to disease may depend on the genetic context in which it occurs. Further, our results highlight the utility of evaluating genetic interactions to explain additional variance in AD risk and identify novel molecular mechanisms of AD pathogenesis.

  1. Glycolysis inhibition inactivates ABC transporters to restore drug sensitivity in malignant cells.

    Directory of Open Access Journals (Sweden)

    Ayako Nakano

    Full Text Available Cancer cells eventually acquire drug resistance largely via the aberrant expression of ATP-binding cassette (ABC transporters, ATP-dependent efflux pumps. Because cancer cells produce ATP mostly through glycolysis, in the present study we explored the effects of inhibiting glycolysis on the ABC transporter function and drug sensitivity of malignant cells. Inhibition of glycolysis by 3-bromopyruvate (3BrPA suppressed ATP production in malignant cells, and restored the retention of daunorubicin or mitoxantrone in ABC transporter-expressing, RPMI8226 (ABCG2, KG-1 (ABCB1 and HepG2 cells (ABCB1 and ABCG2. Interestingly, although side population (SP cells isolated from RPMI8226 cells exhibited higher levels of glycolysis with an increased expression of genes involved in the glycolytic pathway, 3BrPA abolished Hoechst 33342 exclusion in SP cells. 3BrPA also disrupted clonogenic capacity in malignant cell lines including RPMI8226, KG-1, and HepG2. Furthermore, 3BrPA restored cytotoxic effects of daunorubicin and doxorubicin on KG-1 and RPMI8226 cells, and markedly suppressed subcutaneous tumor growth in combination with doxorubicin in RPMI8226-implanted mice. These results collectively suggest that the inhibition of glycolysis is able to overcome drug resistance in ABC transporter-expressing malignant cells through the inactivation of ABC transporters and impairment of SP cells with enhanced glycolysis as well as clonogenic cells.

  2. Protein abundance of clinically relevant multidrug transporters along the entire length of the human intestine.

    Science.gov (United States)

    Drozdzik, Marek; Gröer, Christian; Penski, Jette; Lapczuk, Joanna; Ostrowski, Marek; Lai, Yurong; Prasad, Bhagwat; Unadkat, Jashvant D; Siegmund, Werner; Oswald, Stefan

    2014-10-01

    Intestinal transporters are crucial determinants in the oral absorption of many drugs. We therefore studied the mRNA expression (N = 33) and absolute protein content (N = 10) of clinically relevant transporters in healthy epithelium of the duodenum, the proximal and distal jejunum and ileum, and the ascending, transversal, descending, and sigmoidal colon of six organ donors (24-54 years). In the small intestine, the abundance of nearly all studied proteins ranged between 0.2 and 1.6 pmol/mg with the exception of those of OCT3 (intestinal segment. ABCB1, ABCG2, PEPT1, and ASBT were significantly more abundant in jejunum and ileum than in colon. In contrast to this, the level of expression of ABCC2, ABCC3, and OCT3 was found to be highest in colon. Site-dependent differences in the levels of gene and protein expression were observed for ABCB1 and ASBT. Significant correlations between mRNA and protein levels have been found for ABCG2, ASBT, OCT3, and PEPT1 in the small intestine. Our data provide further physiological pieces of the puzzle required to predict intestinal drug absorption in humans.

  3. Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances.

    Science.gov (United States)

    Tahiri, Abdelghani; Delporte, Fabienne; Muhovski, Yordan; Ongena, Marc; Thonart, Philippe; Druart, Philippe

    2016-01-01

    Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on plant growth and development by improving soil structure and fertility. They have long been recognized as plant growth-promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. The biochemical and molecular mechanisms through which HS influence plant physiology are not well understood. This study evaluated the bioactivity of landfill leachate and leonardite HS on alder (Alnus glutinosa L. Gaertn) and birch (Betula pendula Roth) during root elongation in vitro. Changes in root development were studied in relation to auxin, carbon and nitrogen metabolisms, as well as to the stress adaptive response. The cDNA fragments of putative genes encoding two ATP-binding cassette (ABC) transporters (ABCB1 and ABCB19) belonging to the B subfamily of plant ABC auxin transporters were cloned and sequenced. Molecular data indicate that HS and their humic acid (HA) fractions induce root growth by influencing polar auxin transport (PAT), as illustrated by the modulation of the ABCB transporter transcript levels (ABCB1 and ABCB19). There were also changes in alcohol dehydrogenase (ADH) and glutamine synthetase (GS) gene transcript levels in response to HS exposure. These findings confirmed that humic matter affects plant growth and development through various metabolic pathways, including hormonal, carbon and nitrogen metabolisms and stress response or signalization.

  4. Association of CYP1B1 with hypersensitivity induced by taxane therapy in breast cancer patients.

    Science.gov (United States)

    Rizzo, Roberta; Spaggiari, Federica; Indelli, Monica; Lelli, Giorgio; Baricordi, Olavio R; Rimessi, Paola; Ferlini, Alessandra

    2010-11-01

    Taxanes represent a group of anticancer drugs with a wide range of activity against breast cancer. Therapy side effects include haematologic toxicity (neutropenia, leucopenia), peripheral neuropathy and hypersensitivity, and demonstrate inter-individual variations. Since it is known that three genes are implicated in taxane turnover, namely ABCB1 in the transport, CYP2C8 in the metabolism and CYP1B1 in the activity, we explored the association among polymorphisms (single nucleotide polymorphisms, SNPs) in these three genes and the occurrence of taxane-induced toxicity. We studied 95 patients affected by breast cancer and under treatment with taxanes as adjuvant, metastatic or neo-adjuvant therapy. We genotyped them for SNPs in the CYP2C8 (alleles *1, *2, *3 and *4), CYP1B1 (alleles *1 and *3) and ABCB1 (1236 C>T; 2677 G>T/A; 3435 C>T) genes by real-time PCR assay. We observed a significant association between the CYP1B1*3 allele and a lower occurrence of hypersensitivity reactions to taxane treatment. We speculate that the highest production of 4-hydroxyestradiol (4-OHE2) metabolite by CYP1B1*3 allele could increase the formation of the 4-OHE2-taxane adduct and possibly inhibit taxane toxicity. We suggest that CYP1B1 might affect taxane hypersensitivity therefore representing, if confirmed in a large cohort of patients, an exploratory hypersensitivity predictive biomarker.

  5. P-gp expression levels in the erythrocytes of brown trout: a new tool for aquatic sentinel biomarker development.

    Science.gov (United States)

    Valton, Emeline; Wawrzyniak, Ivan; Amblard, Christian; Combourieu, Bruno; Bayle, Marie-Laure; Desmolles, François; Kwiatkowski, Fabrice; Penault-Llorca, Frédérique; Bamdad, Mahchid

    2017-09-01

    P-glycoprotein (P-gp) is a ubiquitous membrane detoxification pump involved in cellular defence against xenobiotics. Blood is a hub for the trade and transport of physiological molecules and xenobiotics. Our recent studies have highlighted the expression of a 140-kDa P-gp in brown trout erythrocytes in primary cell culture and its dose-dependent response to Benzo[a]pyrene pollutant. The purpose of this study was focused on using P-gp expression in brown trout erythrocytes as a biomarker for detecting the degree of river pollution. abcb1 gene and P-gp expression level were analysed by reverse transcriptase-PCR and Western blot, in the erythrocytes of brown trouts. The latter were collected in upstream and downstream of four rivers in which 17 polycyclic aromatic hydrocarbons and 348 varieties of pesticides micro-residues were analysed by liquid chromatography and mass spectrometry. The abcb1 gene and the 140-kDa P-gp were not expressed in trout erythrocytes from uncontaminated river. In contrast, they are clearly expressed in contaminated rivers, in correlation with the river pollution degree and the nature of the pollutants. This biological tool may offer considerable advantages since it provides an effective response to the increasing need for an early biomarker.

  6. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells.

    Science.gov (United States)

    Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning; Watari, Fumio; Liu, Hudan; Chen, Xiao

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  7. 氯吡格雷抵抗与基因多态性%Clopidogrel resistance and genetic polymorphism

    Institute of Scientific and Technical Information of China (English)

    孙文珊; 李永坤; 徐格林

    2011-01-01

    Clopidogrel is an antiplatelet drug widely used in clinical practice now.It has been used as the secondary prevention medication for myocardial infarction,ischemic stroke,and peripheral vascular disease.However,the anti-platelet aggregation effect of clopidogrel has significant individual differences.A large part of patients have clopidogrel resistance phenomenon.The mechanism of clopidogrel resistance is not fully understood.The genetic polymorphism is an important cause of clopidogrel resistance,including ABCB1,CYP2C19,CYP3A4,CYP3A5,P2Y12,and ITGB3.%氯吡格雷是目前广泛应用于临床的一种抗血小板药,已作为心肌梗死、缺血性卒中和周围血管病的二级预防用药.然而,氯吡格雷的抗血小板聚集效果存在显著的个体差异,很大一部分患者存在抵抗现象.氯吡格雷抵抗的机制尚不完全清楚,基因多态性是氯吡格雷抵抗的一个重要原因,包括ABCB1、CYP2C19、CYP3 A4、CYP3A5、P2Y12和ITGB3等.

  8. Farnesoid X receptor directly regulates xenobiotic detoxification genes in the long-lived Little mice.

    Science.gov (United States)

    Jiang, Yanjun; Jin, Jingling; Iakova, Polina; Hernandez, Julio Cesar; Jawanmardi, Nicole; Sullivan, Emily; Guo, Grace L; Timchenko, Nikolai A; Darlington, Gretchen J

    2013-09-01

    Activation of xenobiotic metabolism pathways has been linked to lifespan extension in different models of aging. However, the mechanisms underlying activation of xenobiotic genes remain largely unknown. Here we showed that although farnesoid X receptor (FXR, Nr1h4) mRNA levels do not change significantly, FXR protein levels are elevated in the livers of the long-lived Little mice, leading to increased DNA binding activity of FXR. Hepatic FXR expression is sex-dependent in wild-type mice but not in Little mice, implying that up-regulation of FXR might be dependent on the reduction of growth hormone in Little mice. Growth hormone treatment decreased hepatic expression of FXR and xenobiotic genes Abcb1a, Fmo3 and Gsta2 in both wild-type and Little mice, suggesting an association between FXR and xenobiotic gene expression. We found that Abcb1a is transactivated by FXR via direct binding of FXR/retinoid X receptor α (RXRα) heterodimer to a response element at the proximal promoter. FXR also positively controls Fmo3 and Gsta2 expression through direct interaction with the response elements in these genes. Our study demonstrates that xenobiotic genes are direct transcriptional targets of FXR and suggests that FXR signaling may play a critical role in the lifespan extension observed in Little mice.

  9. A variable number of tandem repeats in the 3'-untranslated region of the dopamine transporter modulates striatal function during working memory updating across the adult age span.

    Science.gov (United States)

    Sambataro, Fabio; Podell, Jamie E; Murty, Vishnu P; Das, Saumitra; Kolachana, Bhaskar; Goldberg, Terry E; Weinberger, Daniel R; Mattay, Venkata S

    2015-08-01

    Dopamine modulation of striatal function is critical for executive functions such as working memory (WM) updating. The dopamine transporter (DAT) regulates striatal dopamine signaling via synaptic reuptake. A variable number of tandem repeats in the 3'-untranslated region of SLC6A3 (DAT1-3'-UTR-VNTR) is associated with DAT expression, such that 9-repeat allele carriers tend to express lower levels (associated with higher extracellular dopamine concentrations) than 10-repeat homozygotes. Aging is also associated with decline of the dopamine system. The goal of the present study was to investigate the effects of aging and DAT1-3'-UTR-VNTR on the neural activity and functional connectivity of the striatum during WM updating. Our results showed both an age-related decrease in striatal activity and an effect of DAT1-3'-UTR-VNTR. Ten-repeat homozygotes showed reduced striatal activity and increased striatal-hippocampal connectivity during WM updating relative to the 9-repeat carriers. There was no age by DAT1-3'-UTR-VNTR interaction. These results suggest that, whereas striatal function during WM updating is modulated by both age and genetically determined DAT levels, the rate of the age-related decline in striatal function is similar across both DAT1-3'-UTR-VNTR genotype groups. They further suggest that, because of the baseline difference in striatal function based on DAT1-3'-UTR-VNTR polymorphism, 10-repeat homozygotes, who have lower levels of striatal function throughout the adult life span, may reach a threshold of decreased striatal function and manifest impairments in cognitive processes mediated by the striatum earlier in life than the 9-repeat carriers. Our data suggest that age and DAT1-3'-UTR-VNTR polymorphism independently modulate striatal function. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  10. Intra-individual response variability assessed by ex-gaussian analysis may be a new endophenotype for Attention Deficit / Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Marcela Patricia Henríquez-Henríquez

    2015-01-01

    Full Text Available Intra-individual variability of Response Times (RTisv is considered as potential endophenotype for Attentional Deficit/Hyperactivity Disorder (ADHD. Traditional methods for estimating RTisv lose information regarding Response Times (RTs distribution along the task, with eventual effects on statistical power. Ex-Gaussian analysis captures the dynamic nature of RTisv, estimating normal and exponential components for RT distribution, with specific phenomenological correlates. Here, we applied ex-Gaussian analysis to explore whether intra-individual variability of RTs agrees with criteria proposed by Gottesman and Gould for endophenotypes. Specifically, we evaluated if Normal and/or exponential components of RTs may a Present the stair-like distribution expected for endophenotypes (ADHD>Siblings>Typically Developing children (TD without familiar history of ADHD and b Represent a phenotypic correlate for previously described genetic risk variants. This is a pilot study including 55 subjects (20 ADHD-discordant sibling-pairs and 15 TD children, all aged between 8 and 13 years. Participants resolved a visual Go/Nogo with 10% Nogo probability. Ex-Gaussian distributions were fitted to individual RT data and compared among the three samples. In order to test whether intra-individual variability may represent a correlate for previously described genetic risk variants, VNTRs at DRD4 and SLC6A3 were identified in all sibling pairs following standard protocols. Groups were compared adjusting independent general linear models for the exponential and normal components from the ex-gaussian analysis. Identified trends were confirmed by the non-parametric Jonckheere-Terpstra test. Stair-like distributions were observed for μ (p=0.036 and σ (p=0.009. An additional DRD4-genotype X clinical status interaction was present for τ (p=0,014 reflecting a possible severity factor. Thus, Normal and exponential RTisv components are suitable as ADHD endophenotypes.

  11. The dopamine transporter haplotype and reward-related striatal responses in adult ADHD.

    Science.gov (United States)

    Hoogman, Martine; Onnink, Marten; Cools, Roshan; Aarts, Esther; Kan, Cornelis; Arias Vasquez, Alejandro; Buitelaar, Jan; Franke, Barbara

    2013-06-01

    Attention deficit/hyperactivity disorder (ADHD) is a highly heritable disorder and several genes increasing disease risk have been identified. The dopamine transporter gene, SLC6A3/DAT1, has been studied most extensively in ADHD research. Interestingly, a different haplotype of this gene (formed by genetic variants in the 3' untranslated region and intron 8) is associated with childhood ADHD (haplotype 10-6) and adult ADHD (haplotype 9-6). The expression of DAT1 is highest in striatal regions in the brain. This part of the brain is of interest to ADHD because of its role in reward processing is altered in ADHD patients; ADHD patients display decreased striatal activation during reward processing. To better understand how the DAT1 gene exerts effects on ADHD, we studied the effect of this gene on reward-related brain functioning in the area of its highest expression in the brain, the striatum, using functional magnetic resonance imaging. In doing so, we tried to resolve inconsistencies observed in previous studies of healthy individuals and ADHD-affected children. In a sample of 87 adult ADHD patients and 77 healthy comparison subjects, we confirmed the association of the 9-6 haplotype with adult ADHD. Striatal hypoactivation during the reward anticipation phase of a monetary incentive delay task in ADHD patients was again shown, but no significant effects of DAT1 on striatal activity were found. Although the importance of the DAT1 haplotype as a risk factor for adult ADHD was again demonstrated in this study, the mechanism by which this gene increases disease risk remains largely unknown. Copyright © 2012 Elsevier B.V. and ECNP. All rights reserved.

  12. A genetic marker of risk in HIV-infected individuals with a history of hazardous drinking.

    Science.gov (United States)

    Barker, David H; Nugent, Nicole R; Delgado, Jeanne R; Knopik, Valerie S; Brown, Larry K; Lally, Michelle A; McGeary, John E

    2017-02-21

    Impulsivity and sensation seeking have been linked to hazardous drinking, increased sexual risk behaviors, and lower treatment adherence among persons living with HIV (PLH). The dopamine active transporter1 (DAT1or SLC6A3) gene has been linked to impulsivity and sensation seeking in several populations but has not been investigated among populations of PLH. This study used data from 201 PLH who report a recent history of heavy episodic drinking. Results indicate that DAT1*10R vs DAT1*9R genotype was related to higher propensity for risk taking (standardized difference score (d) = 0.30 [95% CI: 0.02;0.59]), more hazardous drinking (d = 0.35 [0.05;0.64]), and more condomless sex (rate ratio (RR)= 2.35[1.94; 2.85]), but were counter-intuitively associated with fewer sexual partners (RR = 0.65[0.43;0.91]) and possibly better treatment adherence (d = 0.32 [-0.01;0.65]). Results are consistent with the suggested associations between DAT1 and risk-taking behavior. The counter-intuitive finding for partner selection and treatment adherence may be evidence of additional factors that place PLH at risk for engaging in hazardous drinking as well as relationship difficulties and problems with treatment adherence (e.g., depressive symptoms, avoidant coping, trauma history). Caution is required when using a single gene variant as a marker of complex behaviors and these findings need to be replicated using larger samples and additional variants.

  13. Influence of a dopamine pathway additive genetic efficacy score on smoking cessation: results from two randomized clinical trials of bupropion.

    Science.gov (United States)

    David, Sean P; Strong, David R; Leventhal, Adam M; Lancaster, Molly A; McGeary, John E; Munafò, Marcus R; Bergen, Andrew W; Swan, Gary E; Benowitz, Neal L; Tyndale, Rachel F; Conti, David V; Brown, Richard A; Lerman, Caryn; Niaura, Raymond

    2013-12-01

    To evaluate the associations of treatment and an additive genetic efficacy score (AGES) based on dopamine functional polymorphisms with time to first smoking lapse and point prevalence abstinence at end of treatment among participants enrolled into two randomized clinical trials of smoking cessation therapies. Double-blind pharmacogenetic efficacy trials randomizing participants to active or placebo bupropion. Study 1 also randomized participants to cognitive-behavioral smoking cessation treatment (CBT) or this treatment with CBT for depression. Study 2 provided standardized behavioural support. Two hospital-affiliated clinics (study 1), and two university-affiliated clinics (study 2). A total of 792 self-identified white treatment-seeking smokers aged ≥18 years smoking ≥10 cigarettes per day over the last year. Age, gender, Fagerström Test for Nicotine Dependence, dopamine pathway genotypes (rs1800497 [ANKK1 E713K], rs4680 [COMT V158M], DRD4 exon 3 variable number of tandem repeats polymorphism [DRD4 VNTR], SLC6A3,3' VNTR) analyzed both separately and as part of an AGES, time to first lapse and point prevalence abstinence at end of treatment. Significant associations of the AGES (hazard ratio [HR] = 1.10, 95% confidence interval [CI] = 1.06-1.14, P = 0.009) and of the DRD4 VNTR (HR = 1.29, 95% CI = 1.17-1.41, P = 0.0073) were observed with time to first lapse. A significant AGES by pharmacotherapy interaction was observed (β standard error = -0.18 [0.07], P = 0.016), such that AGES predicted risk for time to first lapse only for individuals randomized to placebo. A score based on functional polymorphisms relating to dopamine pathways appears to predict lapse to smoking following a quit attempt, and the association is mitigated in smokers using bupropion. © 2013 Society for the Study of Addiction.

  14. Mechanism of chloride interaction with neurotransmitter:sodium symporters.

    Science.gov (United States)

    Zomot, Elia; Bendahan, Annie; Quick, Matthias; Zhao, Yongfang; Javitch, Jonathan A; Kanner, Baruch I

    2007-10-11

    Neurotransmitter:sodium symporters (NSS) have a critical role in regulating neurotransmission and are targets for psychostimulants, anti-depressants and other drugs. Whereas the non-homologous glutamate transporters mediate chloride conductance, in the eukaryotic NSS chloride is transported together with the neurotransmitter. In contrast, transport by the bacterial NSS family members LeuT, Tyt1 and TnaT is chloride independent. The crystal structure of LeuT reveals an occluded binding pocket containing leucine and two sodium ions, and is highly relevant for the neurotransmitter transporters. However, the precise role of chloride in neurotransmitter transport and the location of its binding site remain elusive. Here we show that introduction of a negatively charged amino acid at or near one of the two putative sodium-binding sites of the GABA (gamma-aminobutyric acid) transporter GAT-1 from rat brain (also called SLC6A1) renders both net flux and exchange of GABA largely chloride independent. In contrast to wild-type GAT-1, a marked stimulation of the rate of net flux, but not of exchange, was observed when the internal pH was lowered. Equivalent mutations introduced in the mouse GABA transporter GAT4 (SLC6A11) and the human dopamine transporter DAT (SLC6A3) also result in chloride-independent transport, whereas the reciprocal mutations in LeuT and Tyt1 render substrate binding and/or uptake by these bacterial NSS chloride dependent. Our data indicate that the negative charge, provided either by chloride or by the transporter itself, is required during binding and translocation of the neurotransmitter, probably to counterbalance the charge of the co-transported sodium ions.

  15. Intra-Individual Response Variability Assessed by Ex-Gaussian Analysis may be a New Endophenotype for Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Henríquez-Henríquez, Marcela Patricia; Billeke, Pablo; Henríquez, Hugo; Zamorano, Francisco Javier; Rothhammer, Francisco; Aboitiz, Francisco

    2014-01-01

    Intra-individual variability of response times (RTisv) is considered as potential endophenotype for attentional deficit/hyperactivity disorder (ADHD). Traditional methods for estimating RTisv lose information regarding response times (RTs) distribution along the task, with eventual effects on statistical power. Ex-Gaussian analysis captures the dynamic nature of RTisv, estimating normal and exponential components for RT distribution, with specific phenomenological correlates. Here, we applied ex-Gaussian analysis to explore whether intra-individual variability of RTs agrees with criteria proposed by Gottesman and Gould for endophenotypes. Specifically, we evaluated if normal and/or exponential components of RTs may (a) present the stair-like distribution expected for endophenotypes (ADHD > siblings > typically developing children (TD) without familiar history of ADHD) and (b) represent a phenotypic correlate for previously described genetic risk variants. This is a pilot study including 55 subjects (20 ADHD-discordant sibling-pairs and 15 TD children), all aged between 8 and 13 years. Participants resolved a visual Go/Nogo with 10% Nogo probability. Ex-Gaussian distributions were fitted to individual RT data and compared among the three samples. In order to test whether intra-individual variability may represent a correlate for previously described genetic risk variants, VNTRs at DRD4 and SLC6A3 were identified in all sibling-pairs following standard protocols. Groups were compared adjusting independent general linear models for the exponential and normal components from the ex-Gaussian analysis. Identified trends were confirmed by the non-parametric Jonckheere–Terpstra test. Stair-like distributions were observed for μ (p = 0.036) and σ (p = 0.009). An additional “DRD4-genotype” × “clinical status” interaction was present for τ (p = 0.014) reflecting a possible severity factor. Thus, normal and exponential RTisv components

  16. Norepinephrine transporter variant A457P knock-in mice display key features of human postural orthostatic tachycardia syndrome

    Directory of Open Access Journals (Sweden)

    Jana K. Shirey-Rice

    2013-07-01

    Postural orthostatic tachycardia syndrome (POTS is a common autonomic disorder of largely unknown etiology that presents with sustained tachycardia on standing, syncope and elevated norepinephrine spillover. Some individuals with POTS experience anxiety, depression and cognitive dysfunction. Previously, we identified a mutation, A457P, in the norepinephrine (NE; also known as noradrenaline transporter (NET; encoded by SLC6A2 in POTS patients. NET is expressed at presynaptic sites in NE neurons and plays a crucial role in regulating NE signaling and homeostasis through NE reuptake into noradrenergic nerve terminals. Our in vitro studies demonstrate that A457P reduces both NET surface trafficking and NE transport and exerts a dominant-negative impact on wild-type NET proteins. Here we report the generation and characterization of NET A457P mice, demonstrating the ability of A457P to drive the POTS phenotype and behaviors that are consistent with reported comorbidities. Mice carrying one A457P allele (NET+/P exhibited reduced brain and sympathetic NE transport levels compared with wild-type (NET+/+ mice, whereas transport activity in mice carrying two A457P alleles (NETP/P was nearly abolished. NET+/P and NETP/P mice exhibited elevations in plasma and urine NE levels, reduced 3,4-dihydroxyphenylglycol (DHPG, and reduced DHPG:NE ratios, consistent with a decrease in sympathetic nerve terminal NE reuptake. Radiotelemetry in unanesthetized mice revealed tachycardia in NET+/P mice without a change in blood pressure or baroreceptor sensitivity, consistent with studies of human NET A457P carriers. NET+/P mice also demonstrated behavioral changes consistent with CNS NET dysfunction. Our findings support that NET dysfunction is sufficient to produce a POTS phenotype and introduces the first genetic model suitable for more detailed mechanistic studies of the disorder and its comorbidities.

  17. Norepinephrine transporter variant A457P knock-in mice display key features of human postural orthostatic tachycardia syndrome.

    Science.gov (United States)

    Shirey-Rice, Jana K; Klar, Rebecca; Fentress, Hugh M; Redmon, Sarah N; Sabb, Tiffany R; Krueger, Jessica J; Wallace, Nathan M; Appalsamy, Martin; Finney, Charlene; Lonce, Suzanna; Diedrich, André; Hahn, Maureen K

    2013-07-01

    Postural orthostatic tachycardia syndrome (POTS) is a common autonomic disorder of largely unknown etiology that presents with sustained tachycardia on standing, syncope and elevated norepinephrine spillover. Some individuals with POTS experience anxiety, depression and cognitive dysfunction. Previously, we identified a mutation, A457P, in the norepinephrine (NE; also known as noradrenaline) transporter (NET; encoded by SLC6A2) in POTS patients. NET is expressed at presynaptic sites in NE neurons and plays a crucial role in regulating NE signaling and homeostasis through NE reuptake into noradrenergic nerve terminals. Our in vitro studies demonstrate that A457P reduces both NET surface trafficking and NE transport and exerts a dominant-negative impact on wild-type NET proteins. Here we report the generation and characterization of NET A457P mice, demonstrating the ability of A457P to drive the POTS phenotype and behaviors that are consistent with reported comorbidities. Mice carrying one A457P allele (NET(+/P)) exhibited reduced brain and sympathetic NE transport levels compared with wild-type (NET(+/+)) mice, whereas transport activity in mice carrying two A457P alleles (NET(P/P)) was nearly abolished. NET(+/P) and NET(P/P) mice exhibited elevations in plasma and urine NE levels, reduced 3,4-dihydroxyphenylglycol (DHPG), and reduced DHPG:NE ratios, consistent with a decrease in sympathetic nerve terminal NE reuptake. Radiotelemetry in unanesthetized mice revealed tachycardia in NET(+/P) mice without a change in blood pressure or baroreceptor sensitivity, consistent with studies of human NET A457P carriers. NET(+/P) mice also demonstrated behavioral changes consistent with CNS NET dysfunction. Our findings support that NET dysfunction is sufficient to produce a POTS phenotype and introduces the first genetic model suitable for more detailed mechanistic studies of the disorder and its comorbidities.

  18. Contribution of Pharmacogenetic Testing to Modeled Medication Change Recommendations in a Long-Term Care Population with Polypharmacy.

    Science.gov (United States)

    Sugarman, Elaine A; Cullors, Ali; Centeno, Joel; Taylor, David

    2016-12-01

    Among long-term care facility residents, polypharmacy is common, and often appropriate, given the need to treat multiple, complex, chronic conditions. Polypharmacy has, however, been associated with increased healthcare costs, adverse drug events, and drug interactions. The current study evaluates the potential medication cost savings of adding personalized pharmacogenetic information to traditional medication management strategies. One hundred and twelve long-term care residents completed pharmacogenetic testing for targeted variants in the following genes: CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4/CYP3A5, HTR2A, HTR2C, SLC6A4, SLC6A2 COMT, OPRM1, SLCO1B1, VKORC1 and MTHFR. Following reporting of the IDgenetix Polypharmacy(®) test results, an internal medication management assessment was performed by a licensed clinical pharmacist to identify potential opportunities for regimen optimization through medication changes or discontinuations. The medication cost differences before and after the pharmacogenetic-guided review were assessed. Medication review following pharmacogenetic result reporting identified 54 patients (48.2%) with a total of 132 drug change recommendations (45 reductions; 87 replacements) and an average of 2.4 proposed medication changes (range 1-6) per patient. Medication cost savings related to the identified reduction and replacement opportunities exceeded the cost of testing and are estimated to be US$ 1300 (year 2016 cost) per patient annually assuming full implementation. Compared with traditional medication review, pharmacogenetic testing resulted in a 38% increase in the number of patients with current medication change opportunities and also offered valuable genetic information that could be referenced to personalize future prescribing decisions for all patients.

  19. Combination effects of nano-TiO2 and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on biotransformation gene expression in the liver of European sea bass Dicentrarchus labrax.

    Science.gov (United States)

    Vannuccini, Maria Luisa; Grassi, Giacomo; Leaver, Michael J; Corsi, Ilaria

    2015-01-01

    The aim of present study was to investigate the influence of titanium dioxide nanoparticles (nano-TiO2, Aeroxide® P25) on 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) dependent biotransformation gene expression in liver of juvenile European sea bass Dicentrarchus labrax. An in vivo 7day waterborne exposure was performed with nano-TiO2 (1mg/L) and 2,3,7,8-TCDD (46pg/L), singly and in combination. The mRNA expression of aryl hydrocarbon receptor repressor (Ahrr), estrogen receptor (erβ2), ABC transport proteins as Abcb1, Abcc1-c2-g2, cytochrome P450 (cyp1a), glutathione-s-transferase (gsta), glutathione reductase (gr) and engulfment and motility (ELMO) domain-containing protein 2 (elmod2) was investigated. Ahrr, erβ2, abcc1 and abcg2 resulted down-regulated with respect to controls in all experimental groups. Co-exposure to nano-TiO2 and 2,3,7,8-TCDD caused a further significant down regulation of ahrr, erβ2, Abcb1 and Abcc2 compared to single chemical exposure (nano-TiO2 or 2,3,7,8-TCDD alone). No effects were observed for 2,3,7,8-TCDD and nano-TiO2 alone in abcb1 gene, while abcc2 was down-regulated by nano-TiO2 alone. Cyp1a, gst and elmod2 genes were up-regulated by 2,3,7,8-TCDD and to a similar extent after co-exposure. Overall the results indicate that nano-TiO2 is unlikely to interfere with 2,3,7,8-TCDD-dependent biotransformation gene expression in the liver of European sea bass, although the effects of co-exposure observed in ABC transport mRNAs might suggest an impact on xenobiotic metabolite disposition and transport in European sea bass liver.

  20. Clinical and genetic factors predicting response to therapy in patients with Crohn’s disease

    Science.gov (United States)

    Ferreira, Paula; Sousa, Patricia; Moura-Santos, Paula; Velho, Sonia; Tavares, Lurdes; Deus, João Ramos; Ministro, Paula; da Silva, João Pereira; Correia, Luis; Velosa, Jose; Maio, Rui; Brito, Miguel

    2014-01-01

    Aim To identify clinical and/or genetic predictors of response to several therapies in Crohn’s disease (CD) patients. Methods We included 242 patients with CD (133 females) aged (mean ± standard deviation) 39 ± 12 years and a disease duration of 12 ± 8 years. The single-nucleotide polymorphisms (SNPs) studied were ABCB1 C3435T and G2677T/A, IL23R G1142A, C2370A, and G9T, CASP9 C93T, Fas G670A and LgC844T, and ATG16L1 A898G. Genotyping was performed with real-time PCR with Taqman probes. Results Older patients responded better to 5-aminosalicylic acid (5-ASA) and to azathioprine (OR 1.07, p = 0.003 and OR 1.03, p = 0.01, respectively) while younger ones responded better to biologicals (OR 0.95, p = 0.06). Previous surgery negatively influenced response to 5-ASA compounds (OR 0.25, p = 0.05), but favoured response to azathioprine (OR 2.1, p = 0.04). In respect to genetic predictors, we observed that heterozygotes for ATGL16L1 SNP had a significantly higher chance of responding to corticosteroids (OR 2.51, p = 0.04), while homozygotes for Casp9 C93T SNP had a lower chance of responding both to corticosteroids and to azathioprine (OR 0.23, p = 0.03 and OR 0.08, p = 0.02,). TT carriers of ABCB1 C3435T SNP had a higher chance of responding to azathioprine (OR 2.38, p = 0.01), while carriers of ABCB1 G2677T/A SNP, as well as responding better to azathioprine (OR 1.89, p = 0.07), had a lower chance of responding to biologicals (OR 0.31, p = 0.07), which became significant after adjusting for gender (OR 0.75, p = 0.005). Conclusions In the present study, we were able to identify a number of clinical and genetic predictors of response to several therapies which may become of potential utility in clinical practice. These are preliminary results that need to be replicated in future pharmacogenomic studies. PMID:24918007

  1. Prenatal endotoxemia and placental drug transport in the mouse: placental size-specific effects.

    Directory of Open Access Journals (Sweden)

    Enrrico Bloise

    Full Text Available Lipopolysaccharide (LPS in high doses inhibits placental multidrug resistance P-glycoprotein (P-gp--Abcb1a/b and breast cancer resistance protein (BCRP--Abcg2. This potentially impairs fetal protection against harmful factors in the maternal circulation. However, it is unknown whether LPS exposure, at doses that mimic sub-lethal clinical infection, alters placental multidrug resistance. We hypothesized that sub-lethal (fetal LPS exposure reduces placental P-gp activity. Acute LPS (n = 19;150 µg/kg; ip or vehicle (n = 19 were given to C57BL/6 mice at E15.5 and E17.5. Placentas and fetal-units were collected 4 and 24 h following injection. Chronic LPS (n = 6; 5 µg/kg/day; ip or vehicle (n = 5 were administered from E11.5-15.5 and tissues were collected 4 h after final treatment. P-gp activity was assessed by [³H]digoxin accumulation. Placental Abcb1a/b, Abcg2, interleukin-6 (Il-6, Tnf-α, Il-10 and toll-like receptor-4 (Tlr-4 mRNA were measured by qPCR. Maternal plasma IL-6 was determined. At E15.5, maternal IL-6 was elevated 4 h after single (p<0.001 and chronic (p<0.05 LPS, but levels had returned to baseline by 24 h. Placental Il-6 mRNA was also increased after acute and chronic LPS treatments (p<0.05, whereas Abcb1a/b and Abcg2 mRNA were unaffected. However, fetal [³H]digoxin accumulation was increased (p<0.05 4 h after acute LPS, and maternal [³H]digoxin myocardial accumulation was increased (p<0.05 in mice exposed to chronic LPS treatments. There was a negative correlation between fetal [³H]digoxin accumulation and placental size (p<0.0001. Acute and chronic sub-lethal LPS exposure resulted in a robust inflammatory response in the maternal systemic circulation and placenta. Acute infection decreased placental P-gp activity in a time- and gestational age-dependent manner. Chronic LPS decreased P-gp activity in the maternal myocardium and there was a trend for fetuses with smaller placentas to accumulate more P

  2. Genetic Polymorphisms Associated to Folate Transport as Predictors of Increased Risk for Acute Lymphoblastic Leukemia in Mexican Children

    Science.gov (United States)

    Zaruma-Torres, Fausto; Lares-Asseff, Ismael; Lima, Aurea; Reyes-Espinoza, Aarón; Loera-Castañeda, Verónica; Sosa-Macías, Martha; Galaviz-Hernández, Carlos; Arias-Peláez, María C.; Reyes-López, Miguel A.; Quiñones, Luis A.

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a frequent neoplasia occurring in children. The most commonly used drug for the treatment of ALL is methotrexate (MTX), an anti-folate agent. Previous studies suggest that folate transporters play a role in ALL prognosis and that genetic polymorphism of genes encoding folate transporters may increase the risk of ALL. Therefore, the main goal of this study was to determine the associations among six genetic polymorphisms in four genes related with the folate transporter pathway to determine a relationship with the occurrence of ALL in Mexican children. A case-control study was performed in 73 ALL children and 133 healthy children from Northern and Northwestern Mexico. COL18A1 (rs2274808), SLC19A1 (rs2838956), ABCB1 (rs1045642 and rs1128503), and ABCC5 (rs9838667 and rs3792585). Polymorphisms were assayed through qPCR. Our results showed an increased ALL risk in children carrying CT genotype (OR = 2.55, CI 95% 1.11–5.83, p = 0.0001) and TT genotype (OR = 21.05, CI 95% 5.62–78.87, p < 0.0001) of COL18A1 rs2274808; in SLC19A1 rs2838956 AG carriers (OR = 44.69, CI 95% 10.42–191.63, p = 0.0001); in ABCB1 rs1045642 TT carriers (OR = 13.76, CI 95% 5.94–31.88, p = 0.0001); in ABCC5 rs9838667 AC carriers (OR = 2.61, CI 95% 1.05–6.48, p < 0.05); and in ABCC5 rs3792585 CC carriers (OR = 9.99, CI 95% 3.19–31.28, p = 0.004). Moreover, several combinations of genetic polymorphisms were found to be significantly associated with a risk for ALL. Finally, two combinations of ABCC5 polymorphisms resulted in protection from this neoplasia. In conclusion, certain genetic polymorphisms related to the folate transport pathway, particularly COL18A1 rs2274808, SLC19A1 rs2838956, ABCB1 rs1045642, and ABCC5 rs3792585, were associated with an increased risk for ALL in Mexican children. PMID:27547186

  3. Optimization of irinotecan chronotherapy with P-glycoprotein inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Filipski, Elisabeth; Berland, Elodie [INSERM, U776 “Rythmes biologiques et cancers”, CAMPUS CNRS, 7 rue Guy Môquet, F-94801 Villejuif (France); Univ Paris-Sud, UMR-S0776, Orsay F-91405 (France); Ozturk, Narin [INSERM, U776 “Rythmes biologiques et cancers”, CAMPUS CNRS, 7 rue Guy Môquet, F-94801 Villejuif (France); Univ Paris-Sud, UMR-S0776, Orsay F-91405 (France); Istanbul University Faculty of Pharmacy, Department of Pharmacology, Beyazit TR-34116, Istanbul (Turkey); Guettier, Catherine [Assistance Publique-Hôpitaux de Paris, Unité de Chronothérapie, Département de Cancérologie, Hôpital Paul Brousse, Villejuif F-94807 (France); Horst, Gijsbertus T.J. van der [Department of Genetics, Erasmus University Medical Center, 3000 CA Rotterdam (Netherlands); Lévi, Francis [INSERM, U776 “Rythmes biologiques et cancers”, CAMPUS CNRS, 7 rue Guy Môquet, F-94801 Villejuif (France); Univ Paris-Sud, UMR-S0776, Orsay F-91405 (France); Assistance Publique-Hôpitaux de Paris, Unité de Chronothérapie, Département de Cancérologie, Hôpital Paul Brousse, Villejuif F-94807 (France); and others

    2014-02-01

    The relevance of P-glycoprotein (P-gp) for irinotecan chronopharmacology was investigated in female B6D2F{sub 1} mice. A three-fold 24 h change in the mRNA expression of Abcb1b was demonstrated in ileum mucosa, with a maximum at Zeitgeber Time (ZT) 15 (p < 0.001). No rhythm was found for abcb1a in ileum mucosa, or for Abcb1a/b in Glasgow osteosarcoma (GOS), a mouse tumor cell line moderately sensitive to irinotecan. Non-tumor-bearing mice received irinotecan (50 mg/kg/day i.v. × 4 days) as a single agent or combined with P-gp inhibitor PSC833 (6.25 mg/kg/day i.p. × 4 days) at ZT3 or ZT15, respectively corresponding to the worst or the best irinotecan tolerability. Endpoints involved survival, body weight change and hematologic toxicity. Antitumor efficacy was studied in GOS-bearing mice receiving irinotecan (25, 30 or 40 mg/kg/day × 4 days) and +/− PSC833 at ZT3 or ZT15, with survival, body weight change, and tumor growth inhibition as endpoints. Non-tumor bearing mice lost an average of 17% or 9% of their body weight according to irinotecan administration at ZT3 or ZT15 respectively (p < 0.001). Dosing at ZT15 rather than ZT3 reduced mean leucopenia (9% vs 53%; p < 0.001). PSC833 aggravated irinotecan lethal toxicity from 4 to ∼ 60%. In tumor-bearing mice, body weight loss was ∼ halved in the mice on irinotecan or irinotecan–PSC833 combination at ZT15 as compared to ZT3 (p < 0.001). PSC833–irinotecan at ZT15 increased tumor inhibition by ∼ 40% as compared to irinotecan only at ZT15. In conclusion, P-gp was an important determinant of the circadian balance between toxicity and efficacy of irinotecan. - Highlights: • Irinotecan chronotolerance and chronoefficacy change as drug was applied with PSC833. • P-glycoprotein is an important player of the toxicity and efficacy of irinotecan. • Timing should be considered if chemotherapy is performed with a MDR1 inhibitor.

  4. Genetic polymorphisms associated to folate transport as predictors of increased risk for acute lymphoblastic leukemia in Mexican children

    Directory of Open Access Journals (Sweden)

    Fausto Zaruma-Torres

    2016-08-01

    Full Text Available Acute lymphoblastic leukemia (ALL is a frequent neoplasia occurring in children. The most commonly used drug for the treatment of ALL is methotrexate (MTX, an anti-folate agent. Previous studies suggest that folate transporters play a role in ALL prognosis and that genetic polymorphism of genes encoding folate transporters may increase the risk of ALL. Therefore, the main goal of this study was to determine the associations among six genetic polymorphisms in four genes related with the folate transporter pathway to determine a relationship with the occurrence of ALL in Mexican children.A case-control study was performed in 73 ALL children and 133 healthy children from Northern and Northwestern Mexico. COL18A1 (rs2274808, SLC19A1 (rs2838956, ABCB1 (rs1045642 and rs1128503 and ABCC5 (rs9838667 and rs3792585. polymorphisms were assayed through qPCR.Our results showed an increased ALL risk in children carrying CT genotype (OR=2.55, CI 95% 1.11-5.83, p=0.0001 and TT genotype (OR=21.05, CI 95% 5.62-78.87, p<0.0001 of COL18A1 rs2274808; in SLC19A1 rs2838956 AG carriers (OR=44.69, CI 95% 10.42-191.63, p=0.0001; in ABCB1 rs1045642 TT carriers (OR=13.76, CI 95% 5.94-31.88, p=0.0001; in ABCC5 rs9838667 AC carriers (OR=2.61, CI 95% 1.05-6.48, p<0.05; and in ABCC5 rs3792585 CC carriers (OR=9.99, CI 95% 3.19-31.28, p=0.004. Moreover, several combinations of genetic polymorphisms were found to be significantly associated with a risk for ALL. Finally, two combinations of ABCC5 polymorphisms resulted in protection from this neoplasia.In conclusion, certain genetic polymorphisms related to the folate transport pathway, particularly COL18A1 rs2274808, SLC19A1 rs2838956, ABCB1 rs1045642 and ABCC5 rs3792585, were associated with an increased risk for ALL in Mexican children.

  5. Estudio de la implicación de polimorfismos genéticos del citocromo P450 y la glicoproteína-p en la terapéutica del trasplante renal

    OpenAIRE

    García Cerrada, Montserrat

    2016-01-01

    Hay una gran controversia en relación con el impacto clínico de las variantes genéticas en pacientes que reciben inmunosupresores anticalcineurínicos (ICN). Los EETs juegan un papel protector contra los procesos dañinos en el riñón. En el presente trabajo se ha evaluado, de forma retrospectiva, el efecto de los polimorfismos en los genes de enzimas implicadas en la biodisposición de ICN (CYP3A4, CYP3A5 y ABCB1) y en genes de enzimas productoras de EETs (CYP2C8 y CYP2J2) en la farmacocinética ...

  6. Transporter assays and assay ontologies: useful tools for drug discovery.

    Science.gov (United States)

    Zdrazil, Barbara; Chichester, Christine; Zander Balderud, Linda; Engkvist, Ola; Gaulton, Anna; Overington, John P

    2014-06-01

    Transport proteins represent an eminent class of drug targets and ADMET (absorption, distribution, metabolism, excretion, toxicity) associated genes. There exists a large number of distinct activity assays for transport proteins, depending on not only the measurement needed (e.g. transport activity, strength of ligand–protein interaction), but also due to heterogeneous assay setups used by different research groups. Efforts to systematically organize this (divergent) bioassay data have large potential impact in Public-Private partnership and conventional commercial drug discovery. In this short review, we highlight some of the frequently used high-throughput assays for transport proteins, and we discuss emerging assay ontologies and their application to this field. Focusing on human P-glycoprotein (Multidrug resistance protein 1; gene name: ABCB1, MDR1), we exemplify how annotation of bioassay data per target class could improve and add to existing ontologies, and we propose to include an additional layer of metadata supporting data fusion across different bioassays.

  7. Current Status on Marine Products with Reversal Effect on Cancer Multidrug Resistance

    Directory of Open Access Journals (Sweden)

    Huiqin Guo

    2012-10-01

    Full Text Available The resistance of tumor cells to a broad range of anticancer agents continues to be a problem for the success of cancer chemotherapy. Multidrug resistance (MDR is due in part to three drug transporter proteins: ABCB1/P-glycoprotein (P-gp, ABCC1/multidrug resistance protein 1 (MRP1 and ABCG2/breast cancer resistance protein (BCRP. These transporters are part of the ATP-binding cassette (ABC superfamily, whose members function as ATP-dependent drug-efflux pumps. Their activity can be blocked by various drugs such as verapamil (calcium channel blocker and cyclosporin A (immunosuppressive agent, etc. These compounds are called MDR modulators or reversals. This review highlights several marine natural products with reversal effect on multidrug resistance in cancer, including agosterol A, ecteinascidin 743, sipholane triterpenoids, bryostatin 1, and welwitindolinones.

  8. An Electrically Tight In Vitro Blood-Brain Barrier Model Displays Net Brain-to-Blood Efflux of Substrates for the ABC Transporters, P-gp, Bcrp and Mrp-1

    DEFF Research Database (Denmark)

    Helms, Hans Christian; Hersom, Maria; Kuhlmann, Louise Borella;

    2014-01-01

    Efflux transporters of the ATP-binding cassette superfamily including breast cancer resistance protein (Bcrp/Abcg2), P-glycoprotein (P-gp/Abcb1) and multidrug resistance-associated proteins (Mrp's/Abcc's) are expressed in the blood-brain barrier (BBB). The aim of this study was to investigate......, zosuquidar, reversan and MK 571 alone or in combinations. Digoxin was mainly transported via P-gp, estrone-3-sulphate via Bcrp and Mrp's and etoposide via P-gp and Mrp's. The expression of P-gp, Bcrp and Mrp-1 was confirmed using immunocytochemistry. The findings indicate that P-gp, Bcrp and at least one...... isoform of Mrp are functionally expressed in our bovine/rat co-culture model and that the model is suitable for investigations of small molecule transport....

  9. Acryloylphenylcarboxamides: A New Class of Breast Cancer Resistance Protein (ABCG2) Modulators.

    Science.gov (United States)

    Kraege, Stefanie; Köhler, Sebastian C; Wiese, Michael

    2016-10-13

    Chalcones are easily synthesized natural precursors of secondary plant metabolites, and their derivatives show various biological activities including inhibition of ABC transporters. Especially, their role as inhibitors of ABCG2, the most recently discovered ABC transporter involved in multidrug resistance, inspired the synthesis of new structurally diverse derivatives. Therefore, we combined the typical chalcone moiety with several acid chlorides by using an amide linker at position 2', 3', or 4' on ring A of the chalcone. The resulting 35 compounds covered a wide spectrum of substitution patterns, which allowed development of structure-activity relationships and to find the optimal structural features for further investigations. Synthesized acryloylphenylcarboxamides were investigated for their inhibitory activity against ABCG2 and their behavior toward ABCB1 and ABCC1. Furthermore, for the most promising compounds, their intrinsic cytotoxicity and their ability to reverse ABCG2-mediated multidrug resistance were determined. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Drug: D00636 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 29I2NO3. HCl 681.0004 681.7725 D00636.gif Antiarrhythmic [DS:H00293] Therapeutic category: 2129 ATC code: C01BD01 Class III antiarrhy...], CYP2D6 [HSA:1565], CYP3A4 [HSA:1576], CYP1A2 [HSA:1544] Transporter inhibition: ABCB1 [HSA:5243] map07037 Antiarrhythmic... [BR:br08301] 2 Agents affecting individual organs 21 Cardiovascular agents 212 Antiarrhythmic agents 2129 O... drug classification [BR:br08302] Cardiovascular Agents Antiarrhythmics Amiodarone D00636 Amiodarone hydroch...r08303] C CARDIOVASCULAR SYSTEM C01 CARDIAC THERAPY C01B ANTIARRHYTHMICS, CLASS I AND III C01BD Antiarrhyt

  11. Drug: D02910 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available ic, ventricular] [DS:H00293] Same as: C06823 ATC code: C01BD01 Class III antiarrhythmic...A4 [HSA:1576], CYP1A2 [HSA:1544] Transporter inhibition: ABCB1 [HSA:5243] map07037 Antiarrhythmic drugs map0...C THERAPY C01B ANTIARRHYTHMICS, CLASS I AND III C01BD Antiarrhythmics, class III C01BD01 Amiodarone D02910 A...miodarone (USAN/INN) USP drug classification [BR:br08302] Cardiovascular Agents Antiarrhythmics Amiodarone D...D02910 Drug Amiodarone (USAN/INN) C25H29I2NO3 645.0237 645.3116 D02910.gif Cardiac depressant [anti-arrhythm

  12. Drug: D02272 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available ) (C20H24N2O2)2. H2SO4. 2H2O 782.3561 782.9426 D02272.gif Cardiac depressant [anti-arrhythmic] Therapeutic c...ategory: 2122 ATC code: C01BA01 Class I antiarrhythmic agent (Ia) voltage-gated sodium channel (SCN1A) block...CL47A2 [HSA:146802], ABCB1 [HSA:5243] map07025 Quinolines map07037 Antiarrhythmic drugs map07231 Sodium chan...21 Cardiovascular agents 212 Antiarrhythmic agents 2122 Quinidines D02272 Quinidine sulfate hydrate (JP16); ...br08303] C CARDIOVASCULAR SYSTEM C01 CARDIAC THERAPY C01B ANTIARRHYTHMICS, CLASS I AND III C01BA Antiarrhythmic

  13. ABC Transporters and the Alzheimer's Disease Enigma.

    Science.gov (United States)

    Wolf, Andrea; Bauer, Björn; Hartz, Anika M S

    2012-01-01

    Alzheimer's disease (AD) is considered the "disease of the twenty-first century." With a 10-fold increase in global incidence over the past 100 years, AD is now reaching epidemic proportions and by all projections, AD patient numbers will continue to rise. Despite intense research efforts, AD remains a mystery and effective therapies are still unavailable. This represents an unmet need resulting in clinical, social, and economic problems. Over the last decade, a new AD research focus has emerged: ATP-binding cassette (ABC) transporters. In this article, we provide an overview of the ABC transporters ABCA1, ABCA2, P-glycoprotein (ABCB1), MRP1 (ABCC1), and BCRP (ABCG2), all of which are expressed in the brain and have been implicated in AD. We summarize recent findings on the role of these five transporters in AD, and discuss their potential to serve as therapeutic targets.

  14. ABC Transporters and the Alzheimer’s Disease Enigma

    Directory of Open Access Journals (Sweden)

    Andrea eWolf

    2012-06-01

    Full Text Available Alzheimer’s disease (AD is considered the disease of the 21st century. With a 10-fold increase in global incidence over the past 100 years, AD is now reaching epidemic proportions and by all projections, AD patient numbers will continue to rise. Despite intense research efforts, AD remains a mystery and effective therapies are still unavailable. This represents an unmet need resulting in clinical, social, and economic problems.Over the last decade, a new AD research focus has emerged: ATP-binding cassette (ABC transporters. In this article, we provide an overview of the ABC transporters ABCA1, ABCA2, P-glycoprotein (ABCB1, Mrp1 (ABCC1 and BCRP (ABCG2, all of which are expressed in the brain and have been implicated in AD. We summarize recent findings on the role of these five transporters in AD, and discuss their potential to serve as therapeutic targets.

  15. Transfer and effects of 1,2,3,5,7-pentachloronaphthalene in an experimental food chain

    DEFF Research Database (Denmark)

    Slootweg, Tineke; Segner, Helmut; Mayer, Philipp

    2015-01-01

    CN52-induced expression of the phase I biotransformation enzyme gene cyp1a1 and the ABC transporter gene abcb1a. At the end of the 28-day study, biomagnification factors were similar for all dietary intake levels with values between 0.5 and 0.7kglipidfish/kg lipidworm. The average uptake efficiency...... of 60% indicated that a high amount of PeCN52 was transferred from the worms to the fish. Internal concentrations of up to 175mg/kg fish lipid in the highest treatment level did not result in effects on survival, behavior, or growth of the juvenile trout, but were associated with the induction of phase...

  16. Differential Roles for Interleukin-23 and Interleukin-17 in Intestinal Immunoregulation.

    Science.gov (United States)

    Maxwell, Joseph R; Zhang, Yu; Brown, William A; Smith, Carole L; Byrne, Fergus R; Fiorino, Mike; Stevens, Erin; Bigler, Jeannette; Davis, John A; Rottman, James B; Budelsky, Alison L; Symons, Antony; Towne, Jennifer E

    2015-10-20

    Interleukin-23 (IL-23) and IL-17 are cytokines currently being targeted in clinical trials. Although inhibition of both of these cytokines is effective for treating psoriasis, IL-12 and IL-23 p40 inhibition attenuates Crohn's disease, whereas IL-17A or IL-17 receptor A (IL-17RA) inhibition exacerbates Crohn's disease. This dichotomy between IL-23 and IL-17 was effectively modeled in the multidrug resistance-1a-ablated (Abcb1a(-/-)) mouse model of colitis. IL-23 inhibition attenuated disease by decreasing colonic inflammation while enhancing regulatory T (Treg) cell accumulation. Exacerbation of colitis by IL-17A or IL-17RA inhibition was associated with severe weakening of the intestinal epithelial barrier, culminating in increased colonic inflammation and accelerated mortality. These data show that IL-17A acts on intestinal epithelium to promote barrier function and provide insight into mechanisms underlying exacerbation of Crohn's disease when IL-17A or IL-17RA is inhibited.

  17. A Chemical Probe that Labels Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Nao Hirata

    2014-03-01

    Full Text Available A small-molecule fluorescent probe specific for human pluripotent stem cells would serve as a useful tool for basic cell biology research and stem cell therapy. Screening of fluorescent chemical libraries with human induced pluripotent stem cells (iPSCs and subsequent evaluation of hit molecules identified a fluorescent compound (Kyoto probe 1 [KP-1] that selectively labels human pluripotent stem cells. Our analyses indicated that the selectivity results primarily from a distinct expression pattern of ABC transporters in human pluripotent stem cells and from the transporter selectivity of KP-1. Expression of ABCB1 (MDR1 and ABCG2 (BCRP, both of which cause the efflux of KP-1, is repressed in human pluripotent stem cells. Although KP-1, like other pluripotent markers, is not absolutely specific for pluripotent stem cells, the identified chemical probe may be used in conjunction with other reagents.

  18. Telaprevir is a substrate and moderate inhibitor of P-glycoprotein, a strong inductor of ABCG2, but not an activator of PXR in vitro.

    Science.gov (United States)

    Weiss, Johanna; Becker, Jonas Philipp; Haefeli, Walter Emil

    2014-02-01

    Triple therapy combining the protease inhibitor telaprevir with interferon-α and ribavirin is a promising new option for long-term treatment of hepatitis C. The interaction potential of telaprevir has not yet been fully elucidated. The in vitro potency of telaprevir to inhibit P-glycoprotein (P-gp, ABCB1) and breast cancer resistance protein (BCRP, ABCG2) was assessed and its substrate characteristics for P-gp, BCRP and the multidrug resistance-associated proteins (MRPs, ABCCs) 1-3 were evaluated. The inducing properties of telaprevir on important drug-metabolising enzymes and transporters were also assessed and its ability to activate the pregnane X receptor (PXR) was investigated. Using growth inhibition assays, it was confirmed that telaprevir is a substrate of P-gp and it was demonstrated for the first time that it is not transported by BCRP and MRPs. Telaprevir only moderately inhibited P-gp in the calcein assay and did not inhibit BCRP in the pheophorbide A assay. In LS180 cells, telaprevir strongly induced mRNA expression of ABCG2 (4.3-fold at 30 μmol/L) and weakly induced ABCB11, CYP2C19 and UGT1A3. In contrast, telaprevir had no significant influence on mRNA expression of CYP3A4, UGT1A9, ABCB1, ABCC2 and SLCO1B1. In a reporter gene assay, telaprevir did not activate PXR. Thus, it appears unlikely that telaprevir induces CYP3A4 and P-gp in vivo in such a way as to provoke clinically relevant drug interactions. From the numerous perpetrator characteristics, telaprevir's inhibitor properties, especially of CYP3A4 and P-gp, appear to be the most relevant mechanism for drug interactions. The clinical relevance of the strong inducing effects on ABCG2 requires proper assessment.

  19. Lipid raft involved in drug resistance: relationship between multidrug resistance ATP-binding cassette transporters and lipid raft%脂筏参与耐药: 多药耐药相关ABC转运蛋白与脂筏的关系

    Institute of Scientific and Technical Information of China (English)

    王琳; 贾宇; 姜远英

    2011-01-01

    Lipid rafts have been implicated in many cellular functions, including protein and lipid transport and signal transduction. Recently ATP-binding cassette (ABC) transporters, which are associated with multidrug resistance, have been found in lipid rafts; therefore they might be related to drug resistance. Here we introduce the relationship between the localization and functions of three multi-drug related ABC transporters, including two relevant to multidrug resistance in tumor cells(Pgp/ABCB1 and MRP1/ABCC1) and one relevant to multidrug resistance in Candida albicans (Cdrlp). We also discuss the influence of sphingolipids and cholesterol, two major components of lipid rafts, on the localization and function of the above three ABC transporters.%脂筏(lipid raft)和细胞的许多功能,如信号转导、蛋白质和脂类的转运等都相关.近来有研究发现,与多药耐药密切相关的ABC转运蛋白(ATP-binding cassette transporter)定位于脂筏中,因此推测脂筏可能与耐药性有一定关系.本文综述了3种和耐药相关的ABC转运蛋白的定位与其功能之间的联系,分别是和肿瘤细胞多药耐药相关的ABC转运蛋白Pgp/ABCB1、MRP1/ABCC1以及与白假丝酵母菌(白念珠菌)多药耐药相关的ABC转运蛋白Cdr1p;并进一步讨论了脂筏的重要组成成分胆固醇和鞘脂对上述3种ABC转运蛋白的定位和功能的影响.

  20. Structure and function of ABCG2-rich extracellular vesicles mediating multidrug resistance.

    Directory of Open Access Journals (Sweden)

    Vicky Goler-Baron

    Full Text Available Multidrug resistance (MDR is a major impediment to curative cancer chemotherapy. The ATP-Binding Cassette transporters ABCG2, ABCB1 and ABCC2 form a unique defense network against multiple structurally and functionally distinct chemotherapeutics, thereby resulting in MDR. Thus, deciphering novel mechanisms of MDR and their overcoming is a major goal of cancer research. Recently we have shown that overexpression of ABCG2 in the membrane of novel extracellular vesicles (EVs in breast cancer cells results in mitoxantrone resistance due to its dramatic sequestration in EVs. However, nothing is known about EVs structure, biogenesis and their ability to concentrate multiple antitumor agents. To this end, we here found that EVs are structural and functional homologues of bile canaliculi, are apically localized, sealed structures reinforced by an actin-based cytoskeleton and secluded from the extracellular milieu by the tight junction proteins occludin and ZO-1. Apart from ABCG2, ABCB1 and ABCC2 were also selectively targeted to the membrane of EVs. Moreover, Ezrin-Radixin-Moesin protein complex selectively localized to the border of the EVs membrane, suggesting a key role for the tethering of MDR pumps to the actin cytoskeleton. The ability of EVs to concentrate and sequester different antitumor drugs was also explored. Taking advantage of the endogenous fluorescence of anticancer drugs, we found that EVs-forming breast cancer cells display high level resistance to topotecan, imidazoacridinones and methotrexate via efficient intravesicular drug concentration hence sequestering them away from their cellular targets. Thus, we identified a new modality of anticancer drug compartmentalization and resistance in which multiple chemotherapeutics are actively pumped from the cytoplasm and highly concentrated within the lumen of EVs via a network of MDR transporters differentially targeted to the EVs membrane. We propose a composite model for the structure and

  1. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice

    Directory of Open Access Journals (Sweden)

    Natalia Brzozowska

    2016-05-01

    Full Text Available Cannabidiol (CBD is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp and breast cancer resistance protein (Bcrp mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b−∕−, Bcrp knockout (Abcg2−∕−, combined P-gp/Bcrp knockout (Abcb1a/b−∕−Abcg2−∕− and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders.

  2. Association of drug transporter expression with mortality and progression-free survival in stage IV head and neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Rolf Warta

    Full Text Available Drug transporters such as P-glycoprotein (ABCB1 have been associated with chemotherapy resistance and are considered unfavorable prognostic factors for survival of cancer patients. Analyzing mRNA expression levels of a subset of drug transporters by quantitative reverse transcription polymerase chain reaction (qRT-PCR or protein expression by tissue microarray (TMA in tumor samples of therapy naïve stage IV head and neck squamous cell carcinoma (HNSCC (qRT-PCR, n = 40; TMA, n = 61, this in situ study re-examined the significance of transporter expression for progression-free survival (PFS and overall survival (OS. Data from The Cancer Genome Atlas database was used to externally validate the respective findings (n = 317. In general, HNSCC tended to lower expression of drug transporters compared to normal epithelium. High ABCB1 mRNA tumor expression was associated with both favorable progression-free survival (PFS, p = 0.0357 and overall survival (OS, p = 0.0535. Similar results were obtained for the mRNA of ABCC1 (MRP1, multidrug resistance-associated protein 1; PFS, p = 0.0183; OS, p = 0.038. In contrast, protein expression of ATP7b (copper transporter ATP7b, mRNA expression of ABCG2 (BCRP, breast cancer resistance protein, ABCC2 (MRP2, and SLC31A1 (hCTR1, human copper transporter 1 did not correlate with survival. Cluster analysis however revealed that simultaneous high expression of SLC31A1, ABCC2, and ABCG2 indicates poor survival of HNSCC patients. In conclusion, this study militates against the intuitive dogma where high expression of drug efflux transporters indicates poor survival, but demonstrates that expression of single drug transporters might indicate even improved survival. Prospectively, combined analysis of the 'transportome' should rather be performed as it likely unravels meaningful data on the impact of drug transporters on survival of patients with HNSCC.

  3. Molecular evolutionary analysis of ABCB5: the ancestral gene is a full transporter with potentially deleterious single nucleotide polymorphisms.

    Directory of Open Access Journals (Sweden)

    Karobi Moitra

    Full Text Available BACKGROUND: ABCB5 is a member of the ABC protein superfamily, which includes the transporters ABCB1, ABCC1 and ABCG2 responsible for causing drug resistance in cancer patients and also several other transporters that have been linked to human disease. The ABCB5 full transporter (ABCB5.ts is expressed in human testis and its functional significance is presently unknown. Another variant of this transporter, ABCB5 beta possess a "half-transporter-like" structure and is expressed in melanoma stem cells, normal melanocytes, and other types of pigment cells. ABCB5 beta has important clinical implications, as it may be involved with multidrug resistance in melanoma stem cells, allowing these stem cells to survive chemotherapeutic regimes. METHODOLOGY/PRINCIPAL FINDINGS: We constructed and examined in detail topological structures of the human ABCB5 protein and determined in-silico the cSNPs (coding single nucleotide polymorphisms that may affect its function. Evolutionary analysis of ABCB5 indicated that ABCB5, ABCB1, ABCB4, and ABCB11 share a common ancestor, which began duplicating early in the evolutionary history of chordates. This suggests that ABCB5 has evolved as a full transporter throughout its evolutionary history. CONCLUSIONS/SIGNIFICANCE: From our in-silco analysis of cSNPs we found that a large number of non-synonymous cSNPs map to important functional regions of the protein suggesting that these SNPs if present in human populations may play a role in diseases associated with ABCB5. From phylogenetic analyses, we have shown that ABCB5 evolved as a full transporter throughout its evolutionary history with an absence of any major shifts in selection between the various lineages suggesting that the function of ABCB5 has been maintained during mammalian evolution. This finding would suggest that ABCB5 beta may have evolved to play a specific role in human pigment cells and/or melanoma cells where it is predominantly expressed.

  4. E. coli infection modulates the pharmacokinetics of oral enrofloxacin by targeting P-glycoprotein in small intestine and CYP450 3A in liver and kidney of broilers.

    Science.gov (United States)

    Guo, Mengjie; Sun, Yong; Zhang, Yu; Bughio, Shamsuddin; Dai, Xiaohua; Ren, Weilong; Wang, Liping

    2014-01-01

    P-glycoprotein (P-gp) expression determines the absorption, distribution, metabolism and excretion of many drugs in the body. Also, up-regulation of P-gp acts as a defense mechanism against acute inflammation. This study examined expression levels of abcb1 mRNA and localization of P-gp protein in the liver, kidney, duodenum, jejunum and ileum in healthy and E. coli infected broilers by real time RT-PCR and immunohistochemistry. Meanwhile, pharmacokinetics of orally administered enrofloxacin was also investigated in healthy and infected broilers by HPLC. The results indicated that E. coli infection up-regulated expression of abcb1 mRNA levels significantly in the kidney, jejunum and ileum (P0.05). However, the expression level of CYP 3A37 mRNA were observed significantly decreased only in liver and kidney of E. coli infected broilers (Pabsorption of orally administered enrofloxacin, significantly decreased Cmax (0.34 vs 0.98 µg mL(-1), P = 0.000) and AUC0-12h (4.37 vs 8.88 µg mL(-1) h, P = 0.042) of enrofloxacin, but increased Tmax (8.32 vs 3.28 h, P = 0.040), T1/2a(2.66 vs 1.64 h(-1), P = 0.050) and V/F (26.7 vs 5.2 L, P = 0.040). Treatment with verapamil, an inhibitor of P-gp, significantly improved the absorption of enrofloxacin in both healthy and infected broilers. The results suggest that the E. coli infection induces intestine P-gp expression, altering the absorption of orally administered enrofloxacin in broilers.

  5. E. coli infection modulates the pharmacokinetics of oral enrofloxacin by targeting P-glycoprotein in small intestine and CYP450 3A in liver and kidney of broilers.

    Directory of Open Access Journals (Sweden)

    Mengjie Guo

    Full Text Available P-glycoprotein (P-gp expression determines the absorption, distribution, metabolism and excretion of many drugs in the body. Also, up-regulation of P-gp acts as a defense mechanism against acute inflammation. This study examined expression levels of abcb1 mRNA and localization of P-gp protein in the liver, kidney, duodenum, jejunum and ileum in healthy and E. coli infected broilers by real time RT-PCR and immunohistochemistry. Meanwhile, pharmacokinetics of orally administered enrofloxacin was also investigated in healthy and infected broilers by HPLC. The results indicated that E. coli infection up-regulated expression of abcb1 mRNA levels significantly in the kidney, jejunum and ileum (P0.05. However, the expression level of CYP 3A37 mRNA were observed significantly decreased only in liver and kidney of E. coli infected broilers (P<0.05 compared with healthy birds. Furthermore, the infection reduced absorption of orally administered enrofloxacin, significantly decreased Cmax (0.34 vs 0.98 µg mL(-1, P = 0.000 and AUC0-12h (4.37 vs 8.88 µg mL(-1 h, P = 0.042 of enrofloxacin, but increased Tmax (8.32 vs 3.28 h, P = 0.040, T1/2a(2.66 vs 1.64 h(-1, P = 0.050 and V/F (26.7 vs 5.2 L, P = 0.040. Treatment with verapamil, an inhibitor of P-gp, significantly improved the absorption of enrofloxacin in both healthy and infected broilers. The results suggest that the E. coli infection induces intestine P-gp expression, altering the absorption of orally administered enrofloxacin in broilers.

  6. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice.

    Science.gov (United States)

    Brzozowska, Natalia; Li, Kong M; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S; Arnold, Jonathon C

    2016-01-01

    Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b (-∕-)), Bcrp knockout (Abcg2 (-∕-)), combined P-gp/Bcrp knockout (Abcb1a/b (-∕-) Abcg2 (-∕-)) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders.

  7. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice

    Science.gov (United States)

    Brzozowska, Natalia; Li, Kong M.; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S.

    2016-01-01

    Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b−∕−), Bcrp knockout (Abcg2−∕−), combined P-gp/Bcrp knockout (Abcb1a/b−∕−Abcg2−∕−) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders. PMID:27257556

  8. Mechanisms of Resistance to Cabazitaxel

    Science.gov (United States)

    Duran, George E.; Wang, Yan C.; Francisco, E. Brian; Rose, John C.; Martinez, Francisco J.; Coller, John; Brassard, Diana; Vrignaud, Patricia; Sikic, Branimir I.

    2015-01-01

    We studied mechanisms of resistance to the novel taxane cabazitaxel in established cellular models of taxane resistance. We also developed cabazitaxel-resistant variants from MCF-7 breast cancer cells by stepwise selection in drug alone (MCF-7/CTAX) or drug plus the transport inhibitor PSC-833 (MCF-7/CTAX-P). Among multidrug resistant (MDR) variants, cabazitaxel was relatively less cross-resistant than paclitaxel and docetaxel (15 vs. 200-fold in MES-SA/Dx5 and 9 vs. 60-fold in MCF-7/TxT50, respectively). MCF-7/TxTP50 cells that were negative for MDR but had 9-fold resistance to paclitaxel were also 9-fold resistant to cabazitaxel. Selection with cabazitaxel alone (MCF-7/CTAX) yielded 33-fold resistance to cabazitaxel, 52-fold resistance to paclitaxel, activation of ABCB1, and 3-fold residual resistance to cabazitaxel with MDR inhibition. The MCF-7/CTAX-P variant did not express ABCB1, nor did it efflux rhodamine-123, BODIPY-labeled paclitaxel, and [3H]-docetaxel. These cells are hypersensitive to depolymerizing agents (vinca alkaloids and colchicine), have reduced baseline levels of stabilized microtubules, and impaired tubulin polymerization in response to taxanes (cabazitaxel or docetaxel) relative to MCF-7 parental cells. Class III β-tubulin (TUBB3) RNA and protein were elevated in both MCF-7/CTAX and MCF-7/CTAX-P. Decreased BRCA1 and altered epithelial-mesenchymal transition (EMT) markers are also associated with cabazitaxel resistance in these MCF-7 variants, and may serve as predictive biomarkers for its activity in the clinical setting. In summary, cabazitaxel resistance mechanisms include MDR (although at a lower level than paclitaxel and docetaxel), and alterations in microtubule dynamicity, as manifested by higher expression of TUBB3, decreased BRCA1, and by the induction of EMT. PMID:25416788

  9. Monitoring the Intracellular Tacrolimus Concentration in Kidney Transplant Recipients with Stable Graft Function.

    Science.gov (United States)

    Han, Seung Seok; Yang, Seung Hee; Kim, Min Chang; Cho, Joo-Youn; Min, Sang-Il; Lee, Jung Pyo; Kim, Dong Ki; Ha, Jongwon; Kim, Yon Su

    2016-01-01

    Although monitoring the intracellular concentration of immunosuppressive agents may be a promising approach to individualizing the therapy after organ transplantation, additional studies on this issue are needed prior to its clinical approval. We investigated the relationship between intracellular and whole blood concentrations of tacrolimus (IC-TAC and WB-TAC, respectively), the factors affecting this relationship, and the risk of rejection based upon IC-TAC in stable kidney recipients. Both IC-TAC and WB-TAC were measured simultaneously in 213 kidney recipients with stable graft function using LC-MS/MS. The tacrolimus ratio was defined as IC-TAC per WB-TAC. The genetic polymorphism of ABCB1 gene and flow cytometric analyses were conducted to probe the correlation between tacrolimus concentrations and the immunoreactivity status as a potential risk of rejection, respectively. The correlation between IC-TAC and WB-TAC was relatively linear (r = 0.67; P<0.001). The factors affecting the tacrolimus ratio were sex, hematocrit, and the transplant duration, as follows: a high tacrolimus ratio was noted in female patients, patients with a low hematocrit, and patients with a short transplant period. However, the tacrolimus ratio did not reflect the prior clinical outcomes (e.g., rejection) or the genetic polymorphism of ABCB1. After stimulation with phorbol-12-myristate 13-acetate and ionomycin, the proportion of T cells producing interferon-gamma or interleukin-2 was higher in the low-IC-TAC group than in the high-IC-TAC group. Further studies are required to evaluate the value of the intracellular tacrolimus concentrations in several clinical settings, such as rejection, infection, and drug toxicity.

  10. ABCC1 confers tissue-specific sensitivity to cortisol versus corticosterone: A rationale for safer glucocorticoid replacement therapy.

    Science.gov (United States)

    Nixon, Mark; Mackenzie, Scott D; Taylor, Ashley I; Homer, Natalie Z M; Livingstone, Dawn E; Mouras, Rabah; Morgan, Ruth A; Mole, Damian J; Stimson, Roland H; Reynolds, Rebecca M; Elfick, Alistair P D; Andrew, Ruth; Walker, Brian R

    2016-08-17

    The aim of treatment in congenital adrenal hyperplasia is to suppress excess adrenal androgens while achieving physiological glucocorticoid replacement. However, current glucocorticoid replacement regimes are inadequate because doses sufficient to suppress excess androgens almost invariably induce adverse metabolic effects. Although both cortisol and corticosterone are glucocorticoids that circulate in human plasma, any physiological role for corticosterone has been neglected. In the brain, the adenosine 5'-triphosphate-binding cassette transporter ABCB1 exports cortisol but not corticosterone. Conversely, ABCC1 exports corticosterone but not cortisol. We show that ABCC1, but not ABCB1, is expressed in human adipose and that ABCC1 inhibition increases intracellular corticosterone, but not cortisol, and induces glucocorticoid-responsive gene transcription in human adipocytes. Both C57Bl/6 mice treated with the ABCC1 inhibitor probenecid and FVB mice with deletion of Abcc1 accumulated more corticosterone than cortisol in adipose after adrenalectomy and corticosteroid infusion. This accumulation was sufficient to increase glucocorticoid-responsive adipose transcript expression. In human adipose tissue, tissue corticosterone concentrations were consistently low, and ABCC1 mRNA was up-regulated in obesity. To test the hypothesis that corticosterone effectively suppresses adrenocorticotropic hormone (ACTH) without the metabolic adverse effects of cortisol, we infused cortisol or corticosterone in patients with Addison's disease. ACTH suppression was similar, but subcutaneous adipose transcripts of glucocorticoid-responsive genes were higher after infusion with cortisol rather than with corticosterone. These data indicate that corticosterone may be a metabolically favorable alternative to cortisol for glucocorticoid replacement therapy when ACTH suppression is desirable, as in congenital adrenal hyperplasia, and justify development of a pharmaceutical preparation

  11. In Vivo Imaging of Human MDR1 Transcription in the Brain and Spine of MDR1-Luciferase Reporter Mice.

    Science.gov (United States)

    Yasuda, Kazuto; Cline, Cynthia; Lin, Yvonne S; Scheib, Rachel; Ganguly, Samit; Thirumaran, Ranjit K; Chaudhry, Amarjit; Kim, Richard B; Schuetz, Erin G

    2015-11-01

    P-glycoprotein (Pgp) [the product of the MDR1 (ABCB1) gene] at the blood-brain barrier (BBB) limits central nervous system (CNS) entry of many prescribed drugs, contributing to the poor success rate of CNS drug candidates. Modulating Pgp expression could improve drug delivery into the brain; however, assays to predict regulation of human BBB Pgp are lacking. We developed a transgenic mouse model to monitor human MDR1 transcription in the brain and spinal cord in vivo. A reporter construct consisting of ∼10 kb of the human MDR1 promoter controlling the firefly luciferase gene was used to generate a transgenic mouse line (MDR1-luc). Fluorescence in situ hybridization localized the MDR1-luciferase transgene on chromosome 3. Reporter gene expression was monitored with an in vivo imaging system following D-luciferin injection. Basal expression was detectable in the brain, and treatment with activators of the constitutive androstane, pregnane X, and glucocorticoid receptors induced brain and spinal MDR1-luc transcription. Since D-luciferin is a substrate of ABCG2, the feasibility of improving D-luciferin brain accumulation (and luciferase signal) was tested by coadministering the dual ABCB1/ABCG2 inhibitor elacridar. The brain and spine MDR1-luc signal intensity was increased by elacridar treatment, suggesting enhanced D-luciferin brain bioavailability. There was regional heterogeneity in MDR1 transcription (cortex > cerebellum) that coincided with higher mouse Pgp protein expression. We confirmed luciferase expression in brain vessel endothelial cells by ex vivo analysis of tissue luciferase protein expression. We conclude that the MDR1-luc mouse provides a unique in vivo system to visualize MDR1 CNS expression and regulation.

  12. The impact of P-glycoprotein and breast cancer resistance protein on the brain pharmacokinetics and pharmacodynamics of a panel of MEK inhibitors.

    Science.gov (United States)

    de Gooijer, Mark C; Zhang, Ping; Weijer, Ruud; Buil, Levi C M; Beijnen, Jos H; van Tellingen, Olaf

    2017-09-16

    Mitogen/extracellular signal-regulated kinase (MEK) inhibitors have been tested in clinical trials for treatment of intracranial neoplasms, including glioblastoma (GBM), but efficacy of these drugs has not yet been demonstrated. The blood-brain barrier (BBB) is a major impediment to adequate delivery of drugs into the brain and may thereby also limit the successful implementation of MEK inhibitors against intracranial malignancies. The BBB is equipped with a range of ATP-dependent efflux transport proteins, of which P-gp (ABCB1) and BCRP (ABCG2) are the two most dominant for drug efflux from the brain. We investigated their impact on the pharmacokinetics and target engagement of a panel of clinically applied MEK inhibitors, in order to select the most promising candidate for brain cancers in the context of clinical pharmacokinetics and inhibitor characteristics. To this end, we used in vitro drug transport assays and conducted pharmacokinetic and pharmacodynamic studies in wildtype and ABC-transporter knockout mice. PD0325901 displayed more promising characteristics than trametinib (GSK1120212), binimetinib (MEK162), selumetinib (AZD6244), and pimasertib (AS703026): PD0325901 was the weakest substrate of P-gp and BCRP in vitro, its brain penetration was only marginally higher in Abcb1a/b;Abcg2(-/-) mice, and efficient target inhibition in the brain could be achieved at clinically relevant plasma levels. Notably, target inhibition could also be demonstrated for selumetinib, but only at plasma levels far above levels in patients receiving the maximum tolerated dose. In summary, our study recommends further development of PD0325901 for the treatment of intracranial neoplasms. © 2017 UICC.

  13. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus.

    Science.gov (United States)

    Della Torre, C; Bergami, E; Salvati, A; Faleri, C; Cirino, P; Dawson, K A; Corsi, I

    2014-10-21

    Nanoplastic debris, resulted from runoff and weathering breakdown of macro- and microplastics, represents an emerging concern for marine ecosystems. The aim of the present study was to investigate disposition and toxicity of polystyrene nanoparticles (NPs) in early development of sea urchin embryos (Paracentrotus lividus). NPs with two different surface charges where chosen, carboxylated (PS-COOH) and amine (PS-NH2) polystyrene, the latter being a less common variant, known to induce cell death in several in vitro cell systems. NPs stability in natural seawater (NSW) was measured while disposition and embryotoxicity were monitored within 48 h of postfertilization (hpf). Modulation of genes involved in cellular stress response (cas8, 14-3-3ε, p-38 MAPK, Abcb1, Abcc5) was investigated. PS-COOH forms microaggregates (PDI > 0.4) in NSW, whereas PS-NH2 results are better dispersed (89 ± 2 nm) initially, though they also aggregated partially with time. Their respectively anionic and cationic nature was confirmed by ζ-potential measurements. No embryotoxicity was observed for PS-COOH up to 50 μg mL(-1) whereas PS-NH2 caused severe developmental defects (EC50 3.85 μg mL(-1) 24 hpf and EC50 2.61 μg mL(-1) 48 hpf). PS-COOH accumulated inside embryo's digestive tract while PS-NH2 were more dispersed. Abcb1 gene resulted up-regulated at 48 hpf by PS-COOH whereas PS-NH2 induced cas8 gene at 24 hpf, suggesting an apoptotic pathway. In line with the results obtained with the same PS NPs in several human cell lines, also in sea urchin embryos, differences in surface charges and aggregation in seawater strongly affect their embryotoxicity.

  14. 氯吡格雷反应性差异的分子机制研究进展%Progress in Molecular Mechanisms of Clopidogrel Response Variability

    Institute of Scientific and Technical Information of China (English)

    陈劲松

    2011-01-01

    Clinical observation shows that some patients cannot benefit from clopidogrel. Researches on such reaponse variability of clopidogrel highlight gene polymorphisms and drug interaction with clopidogrel,including gene polymorphisms associated with the process of metabolism and action of clopidogrel. ABCB1 is associated with the absorption of clopidogrel, CYP2C19 , CYP3A4 , and CYP3A5 are associated with the biological transformation of clopidogrel, and P2Y12 is mainly associated with the function site of clopidogrel. In thia article we summarize some recent studies and views to reflect the progress of study in these gene polymorphisms.%临床观察到有一部分患者不能从氯吡格雷治疗中获益,从而提出氯吡格雷反应性差异的问题.目前研究主要集中在基因多态性和药物的相互作用上,关于氯吡格雷反应差异的基因多态性研究可根据氯吡格雷在人体内代谢、作用过程分为吸收环节(ABCB1)、转化环节(CYP2C19、CYP3A4、CYP3A5)、作用位点环节(P2Y12)等.现就以上几个环节的最新的研究成果予以综述,力求反映相关研究的趋势与方向.

  15. Sufentanil and midazolam dosing and pharmacogenetic factors in pediatric analgosedation and withdrawal syndrome.

    Science.gov (United States)

    Hronová, K; Pokorná, P; Posch, L; Slanař, O

    2016-12-21

    Our aim was to describe the effect of dosing and genetic factors on sufentanil- and midazolam-induced analgosedation and withdrawal syndrome (WS) in pediatric population. Analgosedation and withdrawal syndrome development were monitored using COMFORT-neo/-B scores and SOS score. Length of therapy, dosing of sufentanil and midazolam were recorded. Genotypes of selected candidate polymorphisms in CYP3A5, COMT, ABCB1, OPRM1 and PXR were analysed. In the group of 30 neonates and 18 children, longer treatment duration with midazolam of 141 h (2 - 625) vs. 88 h (7 - 232) and sufentanil of 326.5 h (136 - 885) vs. 92 h (22 - 211) (median; range) was found in the patients suffering from WS vs. non-WS group, respectively. Median midazolam cumulative doses were in the respective values of 18.22 mg/kg (6.93 - 51.25) vs. 9.94 mg/kg (2.12 - 49.83); P=0.03, and the respective values for sufentanil were 88.60 microg/kg (20.21 - 918.52) vs. 21.71 microg/kg (4.5 - 162.29); P<0.01. Cut off value of 177 hours for sufentanil treatment duration represented predictive factor for WS development with 81 % sensitivity and 94 % specificity. SNPs in the candidate genes COMT, PXR and ABCB1 affected the dosing of analgosedative drugs, but were not associated with depth of analgosedation or WS. Cumulative dose and length of analgosedative therapy with sufentanil significantly increases the risk of WS in critically ill neonates and children.

  16. CYP3A5 polymorphism effect on cyclosporine pharmacokinetics in living donor renal transplant recipients: analysis by population pharmacokinetics.

    Science.gov (United States)

    Song, Joohan; Kim, Myeong Gyu; Choi, Boyoon; Han, Na Young; Yun, Hwi-Yeol; Yoon, Jeong-Hyun; Oh, Jung Mi

    2012-09-01

    Cyclosporine is often used to prevent allograft rejection in renal transplant recipients. However, cyclosporine has a narrow therapeutic window and large variability in its pharmacokinetics. Individual characteristics and genetic polymorphisms can cause the variation. Hence, it is important to determine the cause(s) of the variation in cyclosporine pharmacokinetics. To our knowledge, this is the first reported population pharmacokinetic study of cyclosporine in living donor renal transplant recipients that considered the genetic polymorphism as a covariate. To build a population pharmacokinetic model of cyclosporine in living donor renal transplant recipients and identify covariates including CYP3A5*3, ABCB1 genetic polymorphisms that affect cyclosporine pharmacokinetic parameters. Clinical characteristics and cyclosporine concentration data for 69 patients who received cyclosporine-based immunosuppressive therapy after living donor renal transplantation were collected retrospectively for up to 400 postoperative days. CYP3A5*1/*3 and ABCB1C1236T, G2677T/A, C3435T geno-typing was performed. A population pharmacokinetic analysis was conducted using a NONMEM program. After building the final model, 1000 bootstrappings were performed to validate the final model. In total, 2034 blood samples were collected. A 1-compartment open model with first-order absorption and elimination was chosen to describe the pharmacokinetics of cyclosporine. A population pharmacokinetic analysis showed that postoperative days, sex, and CYP3A5 genotype significantly affected the pharmacokinetics of cyclosporine. The final estimate of mean clearance was 56 L/h, and the mean volume of distribution was 4650 L. The interindividual variability for these parameters was 22.98% and 51.48%, respectively. Using the present model to calculate the dose of cyclosporine with CYP3A5 genotyping can be possible for the patients whose cyclosporine concentration is not within the therapeutic range even with

  17. Persistence of side population cells with high drug efflux capacity in pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM:To investigate the persistence of side population (SP) cells in pancreatic cancer and their role and mechanism in the drug resistance.METHODS:The presentation of side population cells in pancreatic cancer cell line PANC-1 and its proportion change when cultured with Gemcitabine,was detected by Hoechst 33342 staining and FACS analysis.The expression of ABCB1 and ABCG2 was detected by realtime PCR in either SP cells or non-SP cells.RESULTS:SP cells do exist in PANC-1,with a median of 3.3% and a range of 2.1-8.7%.After cultured with Gemcitabine for 3 d,the proportion of SP cells increased significantly(3.8% ± 1.9%,10.7% ± 3.7%, t = 4.616,P = 0.001 < 0.05).ABCB1 and ABCG2 expressed at higher concentrations in SP as compared with non-SP cells (ABCBI: 1.15 ± 0.72, 5.82 ± 1.16, t = 10.839,P = 0.000 < 0.05; ABCG2:1.16 ± 0.75,5.48 ± 0.94,t = 11.305,P = 0.000 < 0.05),which may contribute to the efflux of fluorescent staining and drug resistance.CONCLUSION:SP cells with inherently high resistance to chemotherapeutic agents do exist in pancreatic cancers,which may be candidate cancer stem cells contributing to the relapse of the tumor.

  18. Cadmium induces Wnt signaling to upregulate proliferation and survival genes in sub-confluent kidney proximal tubule cells

    Directory of Open Access Journals (Sweden)

    Wolff Natascha A

    2010-05-01

    Full Text Available Abstract Background The class 1 carcinogen cadmium (Cd2+ disrupts the E-cadherin/β-catenin complex of epithelial adherens junctions (AJs and causes renal cancer. Deregulation of E-cadherin adhesion and changes in Wnt/β-catenin signaling are known to contribute to carcinogenesis. Results We investigated Wnt signaling after Cd2+-induced E-cadherin disruption in sub-confluent cultured kidney proximal tubule cells (PTC. Cd2+ (25 μM, 3-9 h caused nuclear translocation of β-catenin and triggered a Wnt response measured by TOPflash reporter assays. Cd2+ reduced the interaction of β-catenin with AJ components (E-cadherin, α-catenin and increased binding to the transcription factor TCF4 of the Wnt pathway, which was upregulated and translocated to the nucleus. While Wnt target genes (c-Myc, cyclin D1 and ABCB1 were up-regulated by Cd2+, electromobility shift assays showed increased TCF4 binding to cyclin D1 and ABCB1 promoter sequences with Cd2+. Overexpression of wild-type and mutant TCF4 confirmed Cd2+-induced Wnt signaling. Wnt signaling elicited by Cd2+ was not observed in confluent non-proliferating cells, which showed increased E-cadherin expression. Overexpression of E-cadherin reduced Wnt signaling, PTC proliferation and Cd2+ toxicity. Cd2+ also induced reactive oxygen species dependent expression of the pro-apoptotic ER stress marker and Wnt suppressor CHOP/GADD153 which, however, did not abolish Wnt response and cell viability. Conclusions Cd2+ induces Wnt signaling in PTC. Hence, Cd2+ may facilitate carcinogenesis of PTC by promoting Wnt pathway-mediated proliferation and survival of pre-neoplastic cells.

  19. Custom genotyping for substance addiction susceptibility genes in Jordanians of Arab descent

    Directory of Open Access Journals (Sweden)

    AL-Eitan Laith N

    2012-09-01

    Full Text Available Abstract Background Both environmental and genetic factors contribute to individual susceptibility to initiation of substance use and vulnerability to addiction. Determining genetic risk factors can make an important contribution to understanding the processes leading to addiction. In order to identify gene(s and mechanisms associated with substance addiction, a custom platform array search for a genetic association in a case/control of homogenous Jordanian Arab population was undertaken. Patients meeting the DSM-VI criteria for substance dependence (n = 220 and entering eight week treatment program at two Jordanian Drug Rehabilitation Centres were genotyped. In addition, 240 healthy controls were also genotyped. The sequenom MassARRAY system (iPLEX GOLD was used to genotype 49 single nucleotide polymorphisms (SNPs within 8 genes (DRD1, DRD2, DRD3, DRD4, DRD5, BDNF, SLC6A3 and COMT. Results This study revealed six new associations involving SNPs within DRD2 gene on chromosome 11. These six SNPs within the DRD2 were found to be most strongly associated with substance addiction in the Jordanian Arabic sample. The strongest statistical evidence for these new association signals were from rs1799732 in the C/−C promoter and rs1125394 in A/G intron 1 regions of DRD2, with the overall estimate of effects returning an odds ratio of 3.37 (χ2 (2, N = 460 = 21, p-value = 0.000026 and 1.78 (χ2 (2, N = 460 = 8, p-value = 0.001, respectively. It has been suggested that DRD2, dopamine receptor D2, plays an important role in dopamine secretion and the signal pathways of dopaminergic reward and drug addiction. Conclusion This study is the first to show a genetic link to substance addiction in a Jordanian population of Arab descent. These findings may contribute to our understanding of drug addiction mechanisms in Middle Eastern populations and how to manage or dictate therapy for individuals. Comparative analysis with different

  20. Genetically-Driven Enhancement of Dopaminergic Transmission Affects Moral Acceptability in Females but Not in Males: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Silvia Pellegrini

    2017-08-01

    Full Text Available Moral behavior has been a key topic of debate for philosophy and psychology for a long time. In recent years, thanks to the development of novel methodologies in cognitive sciences, the question of how we make moral choices has expanded to the study of neurobiological correlates that subtend the mental processes involved in moral behavior. For instance, in vivo brain imaging studies have shown that distinct patterns of brain neural activity, associated with emotional response and cognitive processes, are involved in moral judgment. Moreover, while it is well-known that responses to the same moral dilemmas differ across individuals, to what extent this variability may be rooted in genetics still remains to be understood. As dopamine is a key modulator of neural processes underlying executive functions, we questioned whether genetic polymorphisms associated with decision-making and dopaminergic neurotransmission modulation would contribute to the observed variability in moral judgment. To this aim, we genotyped five genetic variants of the dopaminergic pathway [rs1800955 in the dopamine receptor D4 (DRD4 gene, DRD4 48 bp variable number of tandem repeat (VNTR, solute carrier family 6 member 3 (SLC6A3 40 bp VNTR, rs4680 in the catechol-O-methyl transferase (COMT gene, and rs1800497 in the ankyrin repeat and kinase domain containing 1 (ANKK1 gene] in 200 subjects, who were requested to answer 56 moral dilemmas. As these variants are all located in genes belonging to the dopaminergic pathway, they were combined in multilocus genetic profiles for the association analysis. While no individual variant showed any significant effects on moral dilemma responses, the multilocus genetic profile analysis revealed a significant gender-specific influence on human moral acceptability. Specifically, those genotype combinations that improve dopaminergic signaling selectively increased moral acceptability in females, by making their responses to moral dilemmas more

  1. The influence of serotonin- and other genes on impulsive behavioral aggression and cognitive impulsivity in children with attention-deficit/hyperactivity disorder (ADHD: Findings from a family-based association test (FBAT analysis

    Directory of Open Access Journals (Sweden)

    Gill Michael

    2008-10-01

    Full Text Available Abstract Background Low serotonergic (5-HT activity correlates with increased impulsive-aggressive behavior, while the opposite association may apply to cognitive impulsiveness. Both types of impulsivity are associated with attention-deficit/hyperactivity disorder (ADHD, and genes of functional significance for the 5-HT system are implicated in this disorder. Here we demonstrate the separation of aggressive and cognitive components of impulsivity from symptom ratings and test their association with 5-HT and functionally related genes using a family-based association test (FBAT-PC. Methods Our sample consisted of 1180 offspring from 607 families from the International Multicenter ADHD Genetics (IMAGE study. Impulsive symptoms were assessed using the long forms of the Conners and the Strengths and Difficulties parent and teacher questionnaires. Factor analysis showed that the symptoms aggregated into parent- and teacher-rated behavioral and cognitive impulsivity. We then selected 582 single nucleotide polymorphisms (SNPs from 14 genes directly or indirectly related to 5-HT function. Associations between these SNPs and the behavioral/cognitive groupings of impulsive symptoms were evaluated using the FBAT-PC approach. Results In the FBAT-PC analysis for cognitive impulsivity 2 SNPs from the gene encoding phenylethanolamine N-methyltransferase (PNMT, the rate-limiting enzyme for adrenalin synthesis attained corrected gene-wide significance. Nominal significance was shown for 12 SNPs from BDNF, DRD1, HTR1E, HTR2A, HTR3B, DAT1/SLC6A3, and TPH2 genes replicating reported associations with ADHD. For overt aggressive impulsivity nominal significance was shown for 6 SNPs from BDNF, DRD4, HTR1E, PNMT, and TPH2 genes that have also been reported to be associated with ADHD. Associations for cognitive impulsivity with a SERT/SLC6A4 variant (STin2: 12 repeats and aggressive behavioral impulsivity with a DRD4 variant (exon 3: 3 repeats are also described

  2. Genetic Risk Determinants for Cigarette Smoking Dependence in Mexican Mestizo Families.

    Science.gov (United States)

    Svyryd, Yevgeniya; Ramírez-Venegas, Alejandra; Sánchez-Hernández, Beatriz; Aguayo-Gómez, Adolfo; Luna-Muñoz, Leonora; Arteaga-Vázquez, Jazmín; Regalado-Pineda, Justino; Mutchinick, Osvaldo M

    2016-05-01

    Tobacco smoking is a leading cause of mortality in developed and developing countries. Despite antitobacco and smoke-free policies, the prevalence of active smokers in Mexican urban populations has remained stable. Mexican smokers differ from Caucasian and other ethnic groups, probably due to sociocultural and genetic background characteristics. This study explored the effect of known genetic variants on smoking behavior in Mexico City residents. Three hundred sixty-four Mexican Mestizo Mexico City residents from 87 families with at least one smoker were assessed for association of 12 gene variants of six candidate genes (CHRNA4, CHRNB2, DRD2, ANKK1, SLC6A3, and CYP2A6) with cigarette consumption, age of initiation and smoking duration. The Family Based Association Test, an extension of the Transmission Disequilibrium Test, was used to perform family-based association analysis. The Family Based Association Test showed statistically significant association between the rs2072658 polymorphism of the CHRNB2 gene and smoking-related phenotypes such as: smoking status (SS), age of onset (AO), years of smoking, and psychological dependence (PD) evaluated by the Glover-Nilsson Smoking Behavior Questionnaire. After Bonferroni correction, only the association with AO remained significant (P = .003). Statistically significant association was also observed for the CYP2A6 rs28399433 T allele with SS (P = .003) and PD (P = .003). Our results indicate effects of the rs2072658 CHRNB2 and rs28399433 CYP2A6 gene variants on AO, SS and PD in Mexican Mestizo smokers. A mild effect of other analyzed gene variants, which may contribute to a putative polygenic predisposition for smoking, is suggested. The understanding of genetic and environmental determinants in the Mexican population is important for other Latin American populations as well, living in their own countries or moving to other ones, particular due to the current migration characteristics and particular genetic background

  3. 卵巢癌肿瘤干细胞对顺铂和盐霉素的药物敏感性%DRUG SENSITIVITY OF HUMAN OVARIAN CANCER STEM CELLS TO CISPLATIN AND SALINOMYCIN

    Institute of Scientific and Technical Information of China (English)

    刘静; 纪新强; 赵乐; 张文卿

    2012-01-01

    Objective To detect drug sensitivity of human ovarian tumor stem cells to cisplatin and salinomycin and compare the effect of the two drugs on ovarian cancer stem cells ( OCSCs). Methods Isolating and identifying tumor stem cells from SKOV-3 strains of OCSCs, the marker factor CD44 was measured by flow cytometry. After 48 hours of treatment with salinomycin and cisplatin, the cell survival rate and median lethal dose (MLD 50) were determined by cell counting kit-S (CCK-8). ABCB1 and ABCBG2 mRNA were tested by RT-PCR in the experimental group and control group at 48-hour time point. Results CD44 antigen expression was high in OCSCs. The MLD 50 of salinomycin and cisplatin to ovarian cancer cell SKOV-3 was (62. 50± 2. 53) and (3. 62±0.38) μmol/L, and that to OCSCs was (48. 81±2.83) and (3. 80±0. 22) μmol/L, respectively. The drug resistance index (RI) of OCSCs to cisplatin was higher than that to salinomycin; being 2.12±0. 41 versus 0. 78±0.08 (t=6.22,P< 0. 05). The expressions of ABCB1 and ABCBG2 in OCSCs salinomycin group was obviously lower than that in cisplatin group (t= 7. 49,9. 75;P<0. 05). Conclusion The sensitivity of OCSCs to salinomycin is higher than to cisplatin. The lethal effect of salinomycin on OCSCs is stronger than cisplatin. This contrast between the two drugs is probably associated with the high expressions of both ABCB1 and ABCG2 genes in cancer stem cells.%目的 检测卵巢癌干细胞对盐霉素、顺铂的药物敏感性,并比较两者对卵巢癌干细胞的杀伤作用.方法 采用无血清悬浮培养法从人卵巢癌细胞株SKOV-3中分离肿瘤干细胞,并采用流式细胞技术检测干细胞标志性因子CD44.人卵巢癌SKOV-3细胞及人卵巢癌干细胞经盐霉素、顺铂作用48 h后,采用CCK-8比色法检测细胞存活率,计算半数致死量(IC50).取第48小时时间点的半数抑制浓度作用于悬浮培养的第5代悬浮细胞48 h后,收集药物生存细胞(DSC),采用RT-PCR技术检测DSC的三

  4. Differential Gene Expression across Breed and Sex in Commercial Pigs Administered Fenbendazole and Flunixin Meglumine

    Science.gov (United States)

    Howard, Jeremy T.; O’Nan, Audrey T.; Maltecca, Christian; Baynes, Ronald E.; Ashwell, Melissa S.

    2015-01-01

    Characterizing the variability in transcript levels across breeds and sex in swine for genes that play a role in drug metabolism may shed light on breed and sex differences in drug metabolism. The objective of the study is to determine if there is heterogeneity between swine breeds and sex in transcript levels for genes previously shown to play a role in drug metabolism for animals administered flunixin meglumine or fenbendazole. Crossbred nursery female and castrated male pigs (n = 169) spread across 5 groups were utilized. Sires (n = 15) of the pigs were purebred Duroc, Landrace, Yorkshire or Hampshire boars mated to a common sow population. Animals were randomly placed into the following treatments: no drug (control), flunixin meglumine, or fenbendazole. One hour after the second dosing, animals were sacrificed and liver samples collected. Quantitative Real-Time PCR was used to measure liver gene expression of the following genes: SULT1A1, ABCB1, CYP1A2, CYP2E1, CYP3A22 and CYP3A29. The control animals were used to investigate baseline transcript level differences across breed and sex. Post drug administration transcript differences across breed and sex were investigated by comparing animals administered the drug to the controls. Contrasts to determine fold change were constructed from a model that included fixed and random effects within each drug. Significant (P-value <0.007) basal transcript differences were found across breeds for SULT1A1, CYP3A29 and CYP3A22. Across drugs, significant (P-value <0.0038) transcript differences existed between animals given a drug and controls across breeds and sex for ABCB1, PS and CYP1A2. Significant (P <0.0038) transcript differences across breeds were found for CYP2E1 and SULT1A1 for flunixin meglumine and fenbendazole, respectively. The current analysis found transcript level differences across swine breeds and sex for multiple genes, which provides greater insight into the relationship between flunixin meglumine and

  5. Differential Gene Expression across Breed and Sex in Commercial Pigs Administered Fenbendazole and Flunixin Meglumine.

    Directory of Open Access Journals (Sweden)

    Jeremy T Howard

    Full Text Available Characterizing the variability in transcript levels across breeds and sex in swine for genes that play a role in drug metabolism may shed light on breed and sex differences in drug metabolism. The objective of the study is to determine if there is heterogeneity between swine breeds and sex in transcript levels for genes previously shown to play a role in drug metabolism for animals administered flunixin meglumine or fenbendazole. Crossbred nursery female and castrated male pigs (n = 169 spread across 5 groups were utilized. Sires (n = 15 of the pigs were purebred Duroc, Landrace, Yorkshire or Hampshire boars mated to a common sow population. Animals were randomly placed into the following treatments: no drug (control, flunixin meglumine, or fenbendazole. One hour after the second dosing, animals were sacrificed and liver samples collected. Quantitative Real-Time PCR was used to measure liver gene expression of the following genes: SULT1A1, ABCB1, CYP1A2, CYP2E1, CYP3A22 and CYP3A29. The control animals were used to investigate baseline transcript level differences across breed and sex. Post drug administration transcript differences across breed and sex were investigated by comparing animals administered the drug to the controls. Contrasts to determine fold change were constructed from a model that included fixed and random effects within each drug. Significant (P-value <0.007 basal transcript differences were found across breeds for SULT1A1, CYP3A29 and CYP3A22. Across drugs, significant (P-value <0.0038 transcript differences existed between animals given a drug and controls across breeds and sex for ABCB1, PS and CYP1A2. Significant (P <0.0038 transcript differences across breeds were found for CYP2E1 and SULT1A1 for flunixin meglumine and fenbendazole, respectively. The current analysis found transcript level differences across swine breeds and sex for multiple genes, which provides greater insight into the relationship between flunixin

  6. Pharmacogenetics-guided analgesics in major abdominal surgery: Further benefits within an enhanced recovery protocol.

    Science.gov (United States)

    Senagore, Anthony J; Champagne, Bradley J; Dosokey, Eslam; Brady, Justin; Steele, Scott R; Reynolds, Harry L; Stein, Sharon L; Delaney, Conor P

    2017-03-01

    Effective, narcotic sparing analgesia is a major component of Enhanced Recovery Protocols (ERP), however the risk of poor analgesia and opioid related side effects (ORADE) remains an issue related to poor outcomes and satisfaction, and is strongly related to the risk of narcotic dependence after surgery. A variety of genes can impact narcotic and non-steroidal (NSAID) drug efficacy including: the CYP family (drug metabolism-narcotics and NSAID), or COMT/ABCB1/OPRM1 (functional receptor and transport activity for analgesia vs side effects). The purpose of this study was to perform the first assessment of the impact of a pharmacogenetics (PGx) guided selection of analgesics following major abdominal surgery within an ERP. A consecutive series of open and laparoscopic colorectal resections or major ventral hernia repair (PGx group) had a guided analgesic protocol based upon assessment of CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4, CYP3A5, COMT, OPRM1, and ABCB1 genes. Study patients were compared to a recent historical series of patients (H group) managed using our well validated ERP. The primary outcome measure was the Overall Benefit of Analgesia Score (OBAS). Pain scores were also assessed. The data demonstrated a similar mix of procedures and gender between groups and more than half of the PGx group had revised analgesia from the standard ERP. The PGx group demonstrated significantly lower OBAS scores (p = 0.0.1) from POD1 (3.8 vs 5.4) through POD 5 (3.0 vs 4.5) Analgesia was also superior for the PGx group from POD1 through POD 5 (p = 0.04). Pharmacogenetics guidance resulted in frequent modifications of the analgesic program, resulting in excellent analgesia with a 50% reduction in narcotic consumption, and a reduced incidence of analgesic related side effects compared to our standard ERP. These data suggest further improvement in ERP resulting from a patient centric analgesic, reduced narcotic regimen which provides early and durable pain control with fewer

  7. Interaction of ABC transport proteins with toxic metals at the level of gene and transport activity in the PLHC-1 fish cell line.

    Science.gov (United States)

    Della Torre, Camilla; Zaja, Roko; Loncar, Jovica; Smital, Tvrtko; Focardi, Silvano; Corsi, Ilaria

    2012-06-25

    The aim of this study was to investigate the interaction of four toxic metals with ABC transport proteins in piscine cell line PLHC-1. Cells were exposed for 24 h to 0.01-1 μM of CdCl(2), HgCl(2), As(2)O(3), or K(2)Cr(2)O(7) and the expression of a series of ABC genes (abcb1, abcc1-4) was determined using qRT-PCR. Using the fluorescent model substrates calcein-AM and monochlorbimane we measured interaction of metals with the transport activity of ABC transporters. P-glycoprotein (P-gp) activity was measured in PLHC-1/dox (P-gp overexpressing cells) while activity and interactions of metals with MRPs was measured in PLHC-1/wt cells. After 24 h exposure, abcc2-4 genes were dose-dependently up-regulated by all metals, while abcb1 and abcc1 were less affected. Up-regulation of abcc2 was more pronounced, with up to 8-fold increase in expression. Abcc3 and abcc4 were moderately inducible by HgCl(2) with 3.3-fold and 2.2-fold, respectively. All metals caused a significant inhibition of both P-gp (2.9- to 4-fold vs. controls) and MRP (1.3- to 1.8-fold) transport activities. Modulation of ABC genes and transport activities was further investigated in PLHC-1/wt cells exposed to 1 μM HgCl(2) for 72 h and in Hg resistant cells selected by long term cultivation of PLHC-1/wt cells in increasing concentrations of HgCl(2). Exposure to HgCl(2) for 72 h induced MRP genes expression and efflux activity. The long term cultivation of PLHC-1/wt cells in HgCl(2), did not cause prolonged up-regulation of the tested abc genes but resulted in higher MRP transport activities as determined by the increased sensitivity of these cells to MK571 (MRP specific inhibitor). Results of the present study indicated specific interaction of metals with selected ABC transport proteins. Modulation of ABC transporters takes place at both transcriptional and functional level. An active involvement of efflux pumps in Hg clearance in fish is suggested. Copyright © 2012 Elsevier Ireland Ltd. All rights

  8. Absence of P-glycoprotein transport in the pharmacokinetics and toxicity of the herbicide paraquat.

    Science.gov (United States)

    Lacher, Sarah E; Gremaud, Julia N; Skagen, Kasse; Steed, Emily; Dalton, Rachel; Sugden, Kent D; Cardozo-Pelaez, Fernando; Sherwin, Catherine M T; Woodahl, Erica L

    2014-02-01

    Genetic variation in the multidrug resistance gene ABCB1, which encodes the efflux transporter P-glycoprotein (P-gp), has been associated with Parkinson disease. Our goal was to investigate P-gp transport of paraquat, a Parkinson-associated neurotoxicant. We used in vitro transport models of ATPase activity, xenobiotic-induced cytotoxicity, transepithelial permeability, and rhodamine-123 inhibition. We also measured paraquat pharmacokinetics and brain distribution in Friend leukemia virus B-type (FVB) wild-type and P-gp-deficient (mdr1a(-/-)/mdr1b(-/-)) mice following 10, 25, 50, and 100 mg/kg oral doses. In vitro data showed that: 1) paraquat failed to stimulate ATPase activity; 2) resistance to paraquat-induced cytotoxicity was unchanged in P-gp-expressing cells in the absence or presence of P-gp inhibitors GF120918 [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide] and verapamil-37.0 [95% confidence interval (CI): 33.2-41.4], 46.2 (42.5-50.2), and 34.1 µM (31.2-37.2)-respectively; 3) transepithelial permeability ratios of paraquat were the same in P-gp-expressing and nonexpressing cells (1.55 ± 0.39 and 1.39 ± 0.43, respectively); and 4) paraquat did not inhibit rhodamine-123 transport. Population pharmacokinetic modeling revealed minor differences between FVB wild-type and mdr1a(-/-)/mdr1b(-/-) mice: clearances of 0.47 [95% confidence interval (CI): 0.42-0.52] and 0.78 l/h (0.58-0.98), respectively, and volume of distributions of 1.77 (95% CI: 1.50-2.04) and 3.36 liters (2.39-4.33), respectively; however, the change in clearance was in the opposite direction of what would be expected. It is noteworthy that paraquat brain-to-plasma partitioning ratios and total brain accumulation were the same across doses between FVB wild-type and mdr1a(-/-)/mdr1b(-/-) mice. These studies indicate that paraquat is not a P-gp substrate. Therefore, the association between ABCB1 pharmacogenomics and

  9. Associations of polymorphisms in DNA repair genes and MDR1 gene with chemotherapy response and survival of non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Yan Du

    Full Text Available OBJECTIVES: We aimed to determine the associations of genetic polymorphisms of excision repair cross-complementation group 1 (ERCC1 rs11615, xeroderma pigmentosum group D (XPD/ERCC2 rs13181, X-ray repair cross complementing group 1 (XRCC1 rs25487, XRCC3 rs1799794, and breast cancer susceptibility gene 1 (BRCA1 rs1799966 from the DNA repair pathway and multiple drug resistance 1 (MDR1/ABCB1 rs1045642 with response to chemotherapy and survival of non-small cell lung cancer (NSCLC in a Chinese population. MATERIALS AND METHODS: A total of 352 NSCLC patients were enrolled to evaluate the associations of the six SNPs with response to chemotherapy and overall survival. Logistic regressions were applied to test the associations of genetic polymorphisms with response to chemotherapy in 161 advanced NSCLC patients. Overall survival was analyzed in 161 advanced and 156 early stage NSCLC patients using the Kaplan-Meier method with log-rank test, respectively. Multivariate Cox proportional hazards model was performed to determine the factors independently associated with NSCLC prognosis. RESULTS: BRCA1 rs1799966 minor allele C (TC+CC vs. TT, OR = 0.402, 95% CI = 0.204-0.794, p = 0.008 and MDR1/ABCB1 rs1045642 minor allele A (GA +AA vs. GG, OR = 0.478, 95% CI = 0.244-0.934, p = 0.030 were associated with a better response to chemotherapy in advanced NSCLC patients. Survival analyses indicated that BRCA1 rs1799966 TC+CC genotypes were associated with a decreased risk of death (HR = 0.617, 95% CI = 0.402-0.948, p = 0.028 in advanced NSCLC patients, and the association was still significant after the adjustment for covariates. Multivariate Cox regression analysis showed that ERCC1 rs11615 AA genotype (P = 0.020 and smoking (p = 0.037 were associated with increased risks of death in early stage NSCLC patients after surgery. CONCLUSIONS: Polymorphisms of genes in DNA repair pathway and MDR1 could contribute to chemotherapy response and survival of patients with

  10. Pharmacokinetics and Pulmonary Distribution of Clarithromycin and Rifampicin after Concomitant and Consecutive Administration in Foals.

    Science.gov (United States)

    Berlin, Sarah; Spieckermann, Lena; Oswald, Stefan; Keiser, Markus; Lumpe, Stefan; Ullrich, Anett; Grube, Markus; Hasan, Mahmoud; Venner, Monica; Siegmund, Werner

    2016-03-07

    Drug interactions often result from multiple pharmacokinetic changes, such as after rifampicin (RIF) and clarithromycin (CLA) in the treatment of abscessing lung diseases. Comedication of RIF may interact with CLA disposition by either induction of presystemic elimination processes and/or inhibition of uptake mechanisms because it regulates gene transcription and modulates function of various CYP enzymes, multidrug efflux and uptake transporters for which CLA is a substrate. To distinguish the transcriptional changes from the modulating interaction components upon CLA absorption and pulmonary distribution, we initiated a repeated-dose study in 12 healthy foals with CLA (7.5 mg/kg, p.o., b.i.d.) in comedication with RIF (10 mg/kg, p.o., b.i.d.) given either concomitantly with CLA or consecutively 4 h after CLA. Affinity of CLA to human P-gp, MRP2, and MRP3 and to OCT1, OCT3, and PEPT1 was measured using Sf9-derived inside-out membrane vesicles and transfected HEK293 cells, respectively. ABCB1 (P-gp) induction by RIF and affinity of CLA to equine P-gp were studied using primary equine hepatocytes. Absolute bioavailability of CLA was reduced from ∼40% to below 5% after comedication of RIF in both schedules of administration, and Tmax occurred ∼2-3 h earlier. The loss of bioavailability was not associated with increased 14-hydroxyclarithromycin (14-OH-CLA) exposure. After consecutive dosing, absolute bioavailability and pulmonary penetration of CLA increased ∼2-fold compared to concomitant use. In vitro, CLA showed affinity to human and equine P-gp. Expression of ABCB1 mRNA was upregulated by RIF in 7 of 8 duodenal biopsy specimens and in primary equine hepatocytes. In conclusion, the major undesired influence of RIF on oral absorption and pulmonary distribution of CLA is associated with induction of intestinal P-gp. Consecutive administration to avoid competition with its intestinal uptake transport results in significantly, although not clinically relevant

  11. Effects of polymorphisms in CYP2D6 and ABC transporters and side effects induced by gefitinib on the pharmacokinetics of the gefitinib metabolite, O-desmethyl gefitinib.

    Science.gov (United States)

    Kobayashi, Hiroyuki; Sato, Kazuhiro; Niioka, Takenori; Takeda, Masahide; Okuda, Yuji; Asano, Mariko; Ito, Hiroshi; Miura, Masatomo

    2016-06-01

    We investigated the effects of polymorphisms in CYP2D6, ABCB1, and ABCG2 and the side effects induced by gefitinib on the pharmacokinetics of O-desmethyl gefitinib, the active metabolite of gefitinib. On day 14 after beginning therapy with gefitinib, plasma concentrations of gefitinib and O-desmethyl gefitinib were measured. Patients were grouped into three groups according to their combination of CYP2D6 alleles: homozygous extensive metabolisers (EMs; *1/*1, *1/*2, and *2/*2; n = 13), heterozygous EMs (*1/*5, *2/*5, *1/*10, and *2/*10; n = 18), and intermediate metabolisers (IMs; *5/*10 and *10/*10; n = 5). The median AUC0-24 of O-desmethyl gefitinib in CYP2D6 IMs was 1460 ng h/mL, whereas that in homozygous EMs was 12,523 ng h/mL (P = 0.021 in univariate analysis). The median AUC ratio of O-desmethyl gefitinib to gefitinib differed among homozygous EMs, heterozygous EMs, and IMs at a ratio of 1.41:0.86:0.24 (P = 0.030). On the other hand, there were no significant differences in the AUC0-24 of O-desmethyl gefitinib between ABCB1 and ABCG2 genotypes. In a multivariate analysis, CYP2D6 homozygous EMs (P = 0.012) were predictive for a higher AUC0-24 of O-desmethyl gefitinib. The side effects of diarrhoea, skin rash, and hepatotoxicity induced by gefitinib were unrelated to the AUC0-24 of O-desmethyl gefitinib. CYP2D6 polymorphisms were associated with the formation of O-desmethyl gefitinib from gefitinib. In CYP2D6 homozygous EMs, the plasma concentrations of O-desmethyl gefitinib were higher over 24 h after taking gefitinib than those of the parent compound; however, side effects induced by gefitinib were unrelated to O-desmethyl gefitinib exposure.

  12. Polymorphism of ORM1 Is Associated with the Pharmacokinetics of Telmisartan

    Science.gov (United States)

    Chen, Wang-Qing; Shu, Yan; Li, Qing; Xu, Lin-Yong; Roederer, Mary W.; Fan, Lan; Wu, Lan-Xiang; He, Fa-Zhong; Luo, Jian-Quan; Tan, Zhi-Rong; He, Yi-Jing; Zhou, Hong-Hao; Chen, Xiang; Zhang, Wei

    2013-01-01

    Background The pharmacokinetics (PKs) and pharmacodynamics (PDs) of telmisartan varies among the individuals, and the main causes remain unknown. The aim of this study was to evaluate the impact of ORM1, as well as ABCC2, ABCB1, ABCG2 and SLCO1B3 polymorphisms, on the disposition of the drug and BP change after taking 40 mg telmisartan in 48 healthy Chinese males. Method A total of 48 healthy males were included in this trial. Every volunteer ingested a single dose of 40 mg telmisartan, and the plasma drug concentration and blood pressure (BP) were measured up to 48 h. Result In this study, the area under the plasma concentration-time curve (AUC) in the heterozygotes of ORM1 113AG was higher than that in the wild-type homozygotes, AUC(0–48) (113AA vs. 113AG, 1,549.18±859.84 ng·h/ml vs. 2,313.54±1,257.71 ng·h/ml, P = 0.033), AUC(0–∞) (113AA vs. 113AG, 1,753.13±1,060.60 ng·h/ml vs. 2,686.90±1,401.87 ng·h/ml, P = 0.016), and the change(%) of the diastolic blood pressure (DBP) from the baseline BP value also showed a significant difference between the ORM1 113AG and 113AA genotypes at 5 h after taking telmisartan (P = 0.026). This study also showed that the allele of ABCC2 C3972T would affected the disposition of telmsiartan and the DBP change significantly after taking the drug. However, the common SNPs of ABCG2 C421, ABCB1 C3435T, and SLCO1B3 T334G showed no impacts on the PKs of telmisartan or BP change(%) in our trial. Conclusion The ORM1 A113G polymorphism was associated with the PKs variability after taking telmsiartan, as well as ABCC2 C3972T. The heterozygotes of ORM1 113AG showed a larger AUC and a notable BP change(%) from the baseline compared with the wild-type. Trial Registration Chinese Clinical Trial Registry ChiCTR-TNC-10000898 PMID:23940561

  13. Polymorphism of ORM1 is associated with the pharmacokinetics of telmisartan.

    Directory of Open Access Journals (Sweden)

    Wang-Qing Chen

    Full Text Available BACKGROUND: The pharmacokinetics (PKs and pharmacodynamics (PDs of telmisartan varies among the individuals, and the main causes remain unknown. The aim of this study was to evaluate the impact of ORM1, as well as ABCC2, ABCB1, ABCG2 and SLCO1B3 polymorphisms, on the disposition of the drug and BP change after taking 40 mg telmisartan in 48 healthy Chinese males. METHOD: A total of 48 healthy males were included in this trial. Every volunteer ingested a single dose of 40 mg telmisartan, and the plasma drug concentration and blood pressure (BP were measured up to 48 h. RESULT: In this study, the area under the plasma concentration-time curve (AUC in the heterozygotes of ORM1 113AG was higher than that in the wild-type homozygotes, AUC(0-48 (113AA vs. 113AG, 1,549.18±859.84 ng·h/ml vs. 2,313.54±1,257.71 ng·h/ml, P = 0.033, AUC(0-∞ (113AA vs. 113AG, 1,753.13±1,060.60 ng·h/ml vs. 2,686.90±1,401.87 ng·h/ml, P = 0.016, and the change(% of the diastolic blood pressure (DBP from the baseline BP value also showed a significant difference between the ORM1 113AG and 113AA genotypes at 5 h after taking telmisartan (P = 0.026. This study also showed that the allele of ABCC2 C3972T would affected the disposition of telmsiartan and the DBP change significantly after taking the drug. However, the common SNPs of ABCG2 C421, ABCB1 C3435T, and SLCO1B3 T334G showed no impacts on the PKs of telmisartan or BP change(% in our trial. CONCLUSION: The ORM1 A113G polymorphism was associated with the PKs variability after taking telmsiartan, as well as ABCC2 C3972T. The heterozygotes of ORM1 113AG showed a larger AUC and a notable BP change(% from the baseline compared with the wild-type. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR-TNC-10000898.

  14. ERCC2 2251A>C genetic polymorphism was highly correlated with early relapse in high-risk stage II and stage III colorectal cancer patients: A preliminary study

    Directory of Open Access Journals (Sweden)

    Lee Su-Chen

    2008-02-01

    Full Text Available Abstract Background Early relapse in colorectal cancer (CRC patients is attributed mainly to the higher malignant entity (such as an unfavorable genotype, deeper tumor invasion, lymph node metastasis and advance cancer stage and poor response to chemotherapy. Several investigations have demonstrated that genetic polymorphisms in drug-targeted genes, metabolizing enzymes, and DNA-repairing enzymes are all strongly correlated with inter-individual differences in the efficacy and toxicity of many treatment regimens. This preliminary study attempts to identify the correlation between genetic polymorphisms and clinicopathological features of CRC, and evaluates the relationship between genetic polymorphisms and chemotherapeutic susceptibility of Taiwanese CRC patients. To our knowledge, this study discusses, for the first time, early cancer relapse and its indication by multiple genes. Methods Six gene polymorphisms functional in drug-metabolism – GSTP1 Ile105Val, ABCB1 Ile1145Ile, MTHFR Ala222Val, TYMS double (2R or triple (3R tandem repeat – and DNA-repair genes – ERCC2 Lys751Gln and XRCC1 Arg399Gln – were assessed in 201 CRC patients using a polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP technique and DNA sequencing. Patients were diagnosed as either high-risk stage II (T2 and 3 N0 M0 or III (any T N1 and 2 M0 and were administered adjuvant chemotherapy regimens that included 5-fluorouracil (5FU and leucovorin (LV. The correlations between genetic polymorphisms and patient clinicopathological features and relapses were investigated. Results In this study, the distributions of GSTP1 (P = 0.003, ABCB1 (P = 0.001, TYMS (P ERCC2 (P XRCC1 (P = 0.006 genotypes in the Asian population, with the exception of MTHFR (P = 0.081, differed significantly from their distributions in a Caucasian population. However, the unfavorable genotype ERCC2 2251A>C (P = 0.006, tumor invasion depth (P = 0.025, lymph node metastasis (P = 0

  15. Characterization of a pituitary-tumor-derived cell line, TtT/GF, that expresses Hoechst efflux ABC transporter subfamily G2 and stem cell antigen 1.

    Science.gov (United States)

    Mitsuishi, Hideo; Kato, Takako; Chen, Mo; Cai, Li-Yi; Yako, Hideji; Higuchi, Masashi; Yoshida, Saishu; Kanno, Naoko; Ueharu, Hiroki; Kato, Yukio

    2013-11-01

    The anterior lobe of the pituitary gland is composed of five types of endocrine cells and of non-endocrine folliculo-stellate cells that produce various local signaling molecules. The TtT/GF cell line is derived from pituitary tumors, produces no hormones and has folliculo-stellate cell-like characteristics. The biological function of TtT/GF cells remains elusive but several properties have been postulated (support of endocrine cells, control of cell proliferation, scavenger function). Recently, we observed that TtT/GF cells have high resistance to the antibiotic G418 and low influx for Hoechst 33342, indicating the presence of ATP-binding cassette (ABC) transporters that efflux multiple drugs, i.e., a property similar to that of stem/progenitor cells. Therefore, we examine TtT/GF cells for the presence of ABC transporters, for the efflux ability of Hoechst 33342 and for those genes characteristic of TtT/GF cells. Real-time polymerase chain reaction (PCR) for ABC transporters demonstrated that Abcb1a, Abcb1b and Abcg2, regarded as stem cell markers, were characteristically expressed in TtT/GF cells but not in Tpit/F1 and LβT2 cells. Furthermore, the remarkable low-efflux ability of Hoechst 33342 from TtT/GF cells was confirmed by using inhibitors and contrasted with the abilities of Tpit/F1 and LβT2 cells. The high and specific expression of stem cell antigen 1 (Sca1) in TtT/GF cells was confirmed by real-time PCR. We also demonstrated those genes that are expressed abundantly and characteristically in TtT/GF, suggesting that TtT/GF cells have unique characteristics similar to those of stem/progenitor cells of endothelial or mesenchymal origin. Thus, the present study has revealed an intriguing property of TtT/GF cells, providing a new clue for an understanding of the function of this cell line.

  16. Warfarin Anticoagulation Therapy in Caribbean Hispanics of Puerto Rico: A Candidate Gene Association Study

    Directory of Open Access Journals (Sweden)

    Karla Claudio-Campos

    2017-06-01

    Full Text Available Existing algorithms account for ~50% of observed variance in warfarin dose requirements after including common polymorphisms. However, they do not perform as well in populations other than Caucasians, in part because some ethno-specific genetic variants are overlooked. The objective of the present study was to identify genetic polymorphisms that can explain variability in warfarin dose requirements among Caribbean Hispanics of Puerto Rico. Next-Generation Sequencing of candidate genes CYP2C9 and VKORC1 and genotyping by DMET® Plus Assay of cardiovascular patients were performed. We also aimed at characterizing the genomic structure and admixture pattern of this study cohort. Our study used the Extreme Discordant Phenotype approach to perform a case-control association analysis. The CYP2C9 variant rs2860905, which was found in all the major haplotypes occurring in the Puerto Rican population, showed stronger association with warfarin sensitivity (<4 mg/day than common variants CYP2C9*2 and CYP2C9*3. Although, CYP2C9*2 and CYP2C9*3 are separately contained within two of the haplotypes, 10 subjects with the sensitive phenotype were carriers of only the CYP2C9 rs2860905 variant. Other polymorphisms in CES2 and ABCB1 were found to be associated with warfarin resistance. Incorporation of rs2860905 in a regression model (R2 = 0.63, MSE = 0.37 that also includes additional genetics (i.e., VKORC1-1639 G>A; CYP2C9 rs1856908; ABCB1 c.IVS9-44A>G/ rs10276036; CES2 c.269-965A>G/ rs4783745 and non-genetic factors (i.e., hypertension, diabetes and age showed better prediction of warfarin dose requirements than CYP2C9*2 and CYP2C9*3 combined (partial R2 = 0.132 vs. 0.023 and 0.007, respectively, p < 0.001. The genetic background of Puerto Ricans in the study cohort showed a tri-hybrid admixture pattern, with a slightly higher than expected contribution of Native American ancestry (25%. The genomic diversity of Puerto Ricans is highlighted by the presence of

  17. Predicting Outcomes of Hormone and Chemotherapy in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) Study by Biochemically-inspired Machine Learning.

    Science.gov (United States)

    Mucaki, Eliseos J; Baranova, Katherina; Pham, Huy Q; Rezaeian, Iman; Angelov, Dimo; Ngom, Alioune; Rueda, Luis; Rogan, Peter K

    2016-01-01

    Genomic aberrations and gene expression-defined subtypes in the large METABRIC patient cohort have been used to stratify and predict survival. The present study used normalized gene expression signatures of paclitaxel drug response to predict outcome for different survival times in METABRIC patients receiving hormone (HT) and, in some cases, chemotherapy (CT) agents. This machine learning method, which distinguishes sensitivity vs. resistance in breast cancer cell lines and validates predictions in patients; was also used to derive gene signatures of other HT  (tamoxifen) and CT agents (methotrexate, epirubicin, doxorubicin, and 5-fluorouracil) used in METABRIC. Paclitaxel gene signatures exhibited the best performance, however the other agents also predicted survival with acceptable accuracies. A support vector machine (SVM) model of paclitaxel response containing genes  ABCB1, ABCB11, ABCC1, ABCC10, BAD, BBC3, BCL2, BCL2L1, BMF, CYP2C8, CYP3A4, MAP2, MAP4, MAPT, NR1I2, SLCO1B3, TUBB1, TUBB4A, and TUBB4B was 78.6% accurate in predicting survival of 84 patients treated with both HT and CT (median survival ≥ 4.4 yr). Accuracy was lower (73.4%) in 304 untreated patients. The performance of other machine learning approaches was also evaluated at different survival thresholds. Minimum redundancy maximum relevance feature selection of a paclitaxel-based SVM classifier based on expression of genes  BCL2L1, BBC3, FGF2, FN1, and  TWIST1 was 81.1% accurate in 53 CT patients. In addition, a random forest (RF) classifier using a gene signature ( ABCB1, ABCB11, ABCC1, ABCC10, BAD, BBC3, BCL2, BCL2L1, BMF, CYP2C8, CYP3A4, MAP2, MAP4, MAPT, NR1I2,SLCO1B3, TUBB1, TUBB4A, and TUBB4B) predicted >3-year survival with 85.5% accuracy in 420 HT patients. A similar RF gene signature showed 82.7% accuracy in 504 patients treated with CT and/or HT. These results suggest that tumor gene expression signatures refined by machine learning techniques can be useful for predicting

  18. Pro-inflammatory cytokine regulation of P-glycoprotein in the developing blood-brain barrier.

    Directory of Open Access Journals (Sweden)

    Majid Iqbal

    Full Text Available Placental P-glycoprotein (P-gp acts to protect the developing fetus from exogenous compounds. This protection declines with advancing gestation leaving the fetus and fetal brain vulnerable to these compounds and potential teratogens in maternal circulation. This vulnerability may be more pronounced in pregnancies complicated by infection, which is common during pregnancy. Pro-inflammatory cytokines (released during infection have been shown to be potent inhibitors of P-gp, but nothing is known regarding their effects at the developing blood-brain barrier (BBB. We hypothesized that P-gp function and expression in endothelial cells of the developing BBB will be inhibited by pro-inflammatory cytokines. We have derived brain endothelial cell (BEC cultures from various stages of development of the guinea pig: gestational day (GD 50, 65 (term ~68 days and postnatal day (PND 14. Once these cultures reached confluence, BECs were treated with various doses (10(0-10(4 pg/mL of pro-inflammatory cytokines: interleukin-1β (IL-1β, interleukin-6 (IL-6 or tumor necrosis factor- α (TNF-α. P-gp function or abcb1 mRNA (encodes P-gp expression was assessed following treatment. Incubation of GD50 BECs with IL-1β, IL-6 or TNF-α resulted in no change in P-gp function. GD65 BECs displayed a dose-dependent decrease in function with all cytokines tested; maximal effects at 42%, 65% and 34% with IL-1β, IL-6 and TNF-α treatment, respectively (P<0.01. Inhibition of P-gp function by IL-1β, IL-6 and TNF-α was even greater in PND14 BECs; maximal effects at 36% (P<0.01, 84% (P<0.05 and 55% (P<0.01, respectively. Cytokine-induced reductions in P-gp function were associated with decreased abcb1 mRNA expression. These data suggest that BBB P-gp function is increasingly responsive to the inhibitory effects of pro-inflammatory cytokines, with increasing developmental age. Thus, women who experience infection and take prescription medication during pregnancy may expose the

  19. Improving the prediction of the brain disposition for orally administered drugs using BDDCS

    DEFF Research Database (Denmark)

    Broccatelli, Fabio; Larregieu, Caroline A.; Cruciani, Gabriele;

    2012-01-01

    In modeling blood–brain barrier (BBB) passage, in silico models have yielded ~80% prediction accuracy, and are currently used in early drug discovery. Being derived from molecular structural information only, these models do not take into account the biological factors responsible for the in vivo...... were found to markedly distribute throughout the brain; this includes a number of BDDCS class 1 drugs shown to be Pgp substrates. This new perspective provides a further interpretation of how Pgp influences the sedative effects of H1-histamine receptor antagonists.......In modeling blood–brain barrier (BBB) passage, in silico models have yielded ~80% prediction accuracy, and are currently used in early drug discovery. Being derived from molecular structural information only, these models do not take into account the biological factors responsible for the in vivo...... outcome. Passive permeability and P-glycoprotein (Pgp, ABCB1) efflux have been successfully recognized to impact xenobiotic extrusion from the brain, as Pgp is known to play a role in limiting the BBB penetration of oral drugs in humans. However, these two properties alone fail to explain the BBB...

  20. In vitro effect of quercetin on human gastric carcinoma: targeting cancer cells death and MDR.

    Science.gov (United States)

    Borska, Sylwia; Chmielewska, Magdalena; Wysocka, Teresa; Drag-Zalesinska, Malgorzata; Zabel, Maciej; Dziegiel, Piotr

    2012-09-01

    The benefits of plant polyphenols as chemotherapeutic agents are of great interest due to their possible anti-cancerogenic activities. Results available up to now suggest that flavonoid quercetin induces lethal effect in many types of tumours and may sensitize resistant cells to drugs. The aim of our study was to examine the effect of quercetin on human gastric carcinoma cells and to determine mode of its action. Parental EPG85-257P cell line and its daunorubicin-resistant variant EPG85-257RDB were used as cell models. Our data revealed that quercetin exerted antiproliferative impact on studied cells (with IC(50) value of 12 μM after 72 h), mainly through induction of apoptosis. In sensitive cells cytostatic drug and flavonoid had synergistic effects, in EPG85-257RDB cells quercetin acted as a chemosensitizer. Its impact on resistance mechanism involved decrease of P-glycoprotein expression, inhibition of drug transport and downregulation of ABCB1 gene expression. The results demonstrate that quercetin may be considered as a prospective drug to overcome classical resistance in gastric cancer cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Pharmacogenomics of methadone maintenance treatment.

    Science.gov (United States)

    Somogyi, Andrew A; Barratt, Daniel T; Ali, Robert L; Coller, Janet K

    2014-05-01

    Methadone is the major opioid substitution therapy for opioid dependence. Dosage is highly variable and is often controlled by the patient and prescriber according to local and national policy and guidelines. Nevertheless many genetic factors have been investigated including those affecting its metabolism (CYP2B6-consistent results), efflux transport (P-gp-inconsistent results), target μ-opioid receptor (μ-opioid receptor-inconsistent results) and a host of other receptors (DRD2) and signaling elements (GIRK2 and ARRB2; not replicated). None by themselves have been able to substantially explain dosage variation (the major but not sole end point). When multiple genes have been combined such as ABCB1, CYP2B6, OPRM1 and DRD2 a greater contribution to dosage variation was found but not as yet replicated. As stabilization of dosage needs to be made rapidly, it is imperative that larger internationally based studies be instigated so that genetic contribution to dosage can be properly assessed, which may or may not tailor to different ethnic groups and each country's policy towards an outcome that benefits all.

  2. Pharmacogenetics of second-generation antipsychotics.

    Science.gov (United States)

    Brennan, Mark D

    2014-04-01

    This review considers pharmacogenetics of the so called 'second-generation' antipsychotics. Findings for polymorphisms replicating in more than one study are emphasized and compared and contrasted with larger-scale candidate gene studies and genome-wide association study analyses. Variants in three types of genes are discussed: pharmacokinetic genes associated with drug metabolism and disposition, pharmacodynamic genes encoding drug targets, and pharmacotypic genes impacting disease presentation and subtype. Among pharmacokinetic markers, CYP2D6 metabolizer phenotype has clear clinical significance, as it impacts dosing considerations for aripiprazole, iloperidone and risperidone, and variants of the ABCB1 gene hold promise as biomarkers for dosing for olanzapine and clozapine. Among pharmacodynamic variants, the TaqIA1 allele of the DRD2 gene, the DRD3 (Ser9Gly) polymorphism, and the HTR2C -759C/T polymorphism have emerged as potential biomarkers for response and/or side effects. However, large-scale candidate gene studies and genome-wide association studies indicate that pharmacotypic genes may ultimately prove to be the richest source of biomarkers for response and side effect profiles for second-generation antipsychotics.

  3. Solid phase synthesis of tariquidar-related modulators of ABC transporters preferring breast cancer resistance protein (ABCG2).

    Science.gov (United States)

    Puentes, Cristian Ochoa; Höcherl, Peter; Kühnle, Matthias; Bauer, Stefanie; Bürger, Kira; Bernhardt, Günther; Buschauer, Armin; König, Burkhard

    2011-06-15

    Aiming at structural optimization of potent and selective ABCG2 inhibitors, such as UR-ME22-1, from our laboratory, an efficient solid phase synthesis was developed to get convenient access to this class of compounds. 7-Carboxyisatoic anhydride was attached to Wang resin to give resin bound 2-aminoterephthalic acid. Acylation with quinoline-2- or -6-carbonyl chlorides, coupling with tetrahydroisoquinolinylethylphenylamine derivatives, cleavage of the carboxylic acids from solid support and treatment with trimethylsilydiazomethane gave the corresponding methyl esters. Among these esters highly potent and selective ABCG2 modulators were identified (inhibition of ABCB1 and ABCG2 determined in the calcein-AM and the Hoechst 33342 microplate assay, respectively). Interestingly, compounds bearing triethyleneglycol ether groups at the tetrahydroisoquinoline moiety (UR-COP77, UR-COP78) were comparable to UR-ME22-1 in potency but considerably more efficient (max inhibition 83% and 88% vs 60%, rel. to fumitremorgin c, 100%) These results support the hypothesis that solubility of the new ABCG2 modulators and of the reference compounds tariquidar and elacridar in aqueous media is the efficacy-limiting factor.

  4. Development of multidrug resistance due to multiple factors including P-glycoprotein overexpression under K-selection after MYC and HRAS oncogene activation.

    Science.gov (United States)

    Nakamura, Yukari; Sato, Hiroyuki; Motokura, Toru

    2006-05-15

    Multistep tumorigenesis is a form of microevolution consisting of mutation and selection. To clarify the role of selection modalities in tumor development, we examined two alternative evolutionary conditions, r-selection in sparse culture, which allows cells to proliferate rapidly, and K-selection in confluent culture, in which overcrowding constrains cell proliferation. Using MYC- and EJ-RAS-transformed rat embryo fibroblasts, we found that K-selected cells acquired and stably maintained multidrug resistance (MDR) to DOX, VCR, MTX and Ara-C. Then, we examined the involvement of a number of factors potentially causal of the development of MDR, that is, ploidy, Tp53 mutation, doubling time and the expression levels of genes related to drug resistance. Although ploidy status and Tp53 mutations did not correlate with MDR, we found that Abcb1/Mdr1, encoding P-glycoprotein (Pgp), was significantly upregulated after K-selection. Cyclosporin A, a competitive inhibitor of Pgp, increased the intracellular accumulation of DOX and reduced the resistance to it. Indeed, the population of Pgp-transfected cells significantly expanded under K-, but not under r-selection. In addition to Pgp upregulation, altered expression of other genes such as Cda/cytidine deaminase and Slc29a1/equilibrative nucleoside transporter 1 and prolonged doubling times were associated with MDR. This system reproduces events associated with MDR in vivo and would be useful for analysis of MDR development.

  5. Growth Hormone Receptor Knockdown Sensitizes Human Melanoma Cells to Chemotherapy by Attenuating Expression of ABC Drug Efflux Pumps.

    Science.gov (United States)

    Basu, Reetobrata; Baumgaertel, Nicholas; Wu, Shiyong; Kopchick, John J

    2017-03-14

    Melanoma remains one of the most therapy-resistant forms of human cancer despite recent introductions of highly efficacious targeted therapies. The intrinsic therapy resistance of human melanoma is largely due to abundant expression of a repertoire of xenobiotic efflux pumps of the ATP-binding cassette (ABC) transporter family. Here, we report that GH action is a key mediator of chemotherapeutic resistance in human melanoma cells. We investigated multiple ABC efflux pumps (ABCB1, ABCB5, ABCB8, ABCC1, ABCC2, ABCG1, and ABCG2) reportedly associated with melanoma drug resistance in different human melanoma cells and tested the efficacy of five different anti-cancer compounds (cisplatin, doxorubicin, oridonin, paclitaxel, vemurafenib) with decreased GH action. We found that GH treatment of human melanoma cells upregulates expression of multiple ABC transporters and increases the EC50 of melanoma drug vemurafenib. Also, vemurafenib-resistant melanoma cells had upregulated levels of GH receptor (GHR) expression as well as ABC efflux pumps. GHR knockdown (KD) using siRNA in human melanoma cells treated with sub-EC50 doses of anti-tumor compounds resulted in significantly increased drug retention, decreased cell proliferation and increased drug efficacy, compared to mock-transfected controls. Our set of findings identify an unknown mechanism of GH regulation in mediating melanoma drug resistance and validates GHR as a unique therapeutic target for sensitizing highly therapy-resistant human melanoma cells to lower doses of anti-cancer drugs.

  6. MicroRNA profiling of cisplatin-resistant oral squamous cell carcinoma cell lines enriched with cancer-stem-cell-like and epithelial-mesenchymal transition-type features

    Science.gov (United States)

    Ghosh, Ruma Dey; Ghuwalewala, Sangeeta; Das, Pijush; Mandloi, Sapan; Alam, Sk Kayum; Chakraborty, Jayanta; Sarkar, Sajal; Chakrabarti, Saikat; Panda, Chinmoy Kumar; Roychoudhury, Susanta

    2016-01-01

    Oral cancer is of major public health problem in India. Current investigation was aimed to identify the specific deregulated miRNAs which are responsible for development of resistance phenotype through regulating their resistance related target gene expression in oral squamous cell carcinoma (OSCC). Cisplatin-resistant OSCC cell lines were developed from their parental human OSCC cell lines and subsequently characterised. The resistant cells exhibited enhanced proliferative, clonogenic capacity with significant up-regulation of P-glycoprotein (ABCB1), c-Myc, survivin, β-catenin and a putative cancer-stem-like signature with increased expression of CD44, whereas the loss of E-cadherin signifies induced EMT phenotype. A comparative analysis of miRNA expression profiling in parental and cisplatin-resistant OSCC cell lines for a selected sets (deregulated miRNAs in head and neck cancer) revealed resistance specific signature. Moreover, we observed similar expression pattern for these resistance specific signature miRNAs in neoadjuvant chemotherapy treated and recurrent tumours compared to those with newly diagnosed primary tumours in patients with OSCC. All these results revealed that these miRNAs play an important role in the development of cisplatin-resistance mainly through modulating cancer stem-cell-like and EMT-type properties in OSCC. PMID:27045798

  7. ABC multidrug transporters in schistosomes and other parasitic flatworms.

    Science.gov (United States)

    Greenberg, Robert M

    2013-12-01

    Schistosomiasis, a neglected tropical disease affecting hundreds of millions, is caused by parasitic flatworms of the genus Schistosoma. Treatment and control of schistosomiasis relies almost exclusively on a single drug, praziquantel (PZQ), a dangerous situation for a disease of this magnitude. Though PZQ is highly effective overall, it has drawbacks, and reports of worms showing PZQ resistance, either induced in the laboratory or isolated from the field, are disconcerting. Multidrug transporters underlie multidrug resistance (MDR), a phenomenon in which resistance to a single drug is accompanied by unexpected cross-resistance to several structurally unrelated compounds. Some of the best studied multidrug transporters are members of the ancient and very large ATP-binding cassette (ABC) superfamily of efflux transporters. ABC multidrug transporters such as P-glycoprotein (Pgp; ABCB1) are also associated with drug resistance in parasites, including helminths such as schistosomes. In addition to their association with drug resistance, however, ABC transporters also function in a wide variety of physiological processes in metazoans. In this review, we examine recent studies that help define the role of schistosome ABC transporters in regulating drug susceptibility, and in normal schistosome physiology, including reproduction and excretory activity. We postulate that schistosome ABC transporters could be useful targets for compounds that enhance the effectiveness of current therapeutics as well as for agents that act as antischistosomals on their own.

  8. bba, a synthetic derivative of 23-hydroxybutulinic acid, reverses multidrug resistance by inhibiting the efflux activity of MRP7 (ABCC10.

    Directory of Open Access Journals (Sweden)

    Jun-Jiang Chen

    Full Text Available Natural products are frequently used for adjuvant chemotherapy in cancer treatment. 23-O-(1,4'-bipiperidine-1-carbonyl betulinic acid (BBA is a synthetic derivative of 23-hydroxybutulinic acid (23-HBA, which is a natural pentacyclic triterpene and the major active constituent of the root of Pulsatillachinensis. We previously reported that BBA could reverse P-glycoprotein (P-gp/ABCB1-mediated multidrug resistance (MDR. In the present study, we investigated whether BBA has the potential to reverse multidrug resistance protein 7 (MRP7/ABCC10-mediated MDR. We found that BBA concentration-dependently enhanced the sensitivity of MRP7-transfected HEK293 cells to paclitaxel, docetaxel and vinblastine. Accumulation and efflux experiments demonstrated that BBA increased the intracellular accumulation of [(3H]-paclitaxel by inhibiting the efflux of [(3H]-paclitaxel from HEK293/MRP7 cells. In addition, immunoblotting and immunofluorescence analyses indicated no significant alteration of MRP7 protein expression and localization in plasma membranes after treatment with BBA. These results demonstrate that BBA reverses MRP7-mediated MDR through blocking the drug efflux function of MRP7 without affecting the intracellular ATP levels. Our findings suggest that BBA has the potential to be used in combination with conventional chemotherapeutic agents to augment the response to chemotherapy.

  9. A role for multidrug resistance protein 4 (MRP4; ABCC4) in human dendritic cell migration.

    Science.gov (United States)

    van de Ven, Rieneke; Scheffer, George L; Reurs, Anneke W; Lindenberg, Jelle J; Oerlemans, Ruud; Jansen, Gerrit; Gillet, Jean-Pierre; Glasgow, Joel N; Pereboev, Alexander; Curiel, David T; Scheper, Rik J; de Gruijl, Tanja D

    2008-09-15

    The capacity of dendritic cells (DCs) to migrate from peripheral organs to lymph nodes (LNs) is important in the initiation of a T cell-mediated immune response. The ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp; ABCB1) and the multidrug resistance protein 1 (MRP1; ABCC1) have been shown to play a role in both human and murine DC migration. Here we show that a more recently discovered family member, MRP4 (ABCC4), is expressed on both epidermal and dermal human skin DCs and contributes to the migratory capacity of DCs. Pharmacological inhibition of MRP4 activity or down-regulation through RNAi in DCs resulted in reduced migration of DCs from human skin explants and of in vitro generated Langerhans cells. The responsible MRP4 substrate remains to be identified as exogenous addition of MRP4's known substrates prostaglandin E(2), leukotriene B(4) and D(4), or cyclic nucleotides (all previously implicated in DC migration) could not restore migration. This notwithstanding, our data show that MRP4 is an important protein, significantly contributing to human DC migration toward the draining lymph nodes, and therefore relevant for the initiation of an immune response and a possible target for immunotherapy.

  10. Validation of genetic polymorphisms associated to the toxicity of chemotherapy in colorectal cancer patients

    Directory of Open Access Journals (Sweden)

    L. Cortejoso

    2014-07-01

    Full Text Available Objective: To validate the associations previously found in three cohorts of patients from the General University Hospital Gregorio Marañón, between the polymorphisms rs1128503, rs2032582 and rs1045642 of the ABCB1 gene and the hand-foot syndrome and diarrhea in colorectal cancer patients treated with chemotherapy regimes containing Capecitabine and 5-Fluorouracil, respectively, and between the polymorphisms rs2297595 of the DPYD gene and nausea/vomiting, rs11615 of ERCC1 and neutropenia, and rs28399433 CYP2A6 and neutropenia, in colorectal cancer patients treated with FOLFOX or XELOX as adjuvant therapy. Method: Colorectal cancer patients treated with chemotherapy regimes, containing Capecitabine (n = 157, 5-Fluorouracil (n = 99 were included in the study, as well as patients treated with XELOX or FOLFOX (n = 83 as adjuvant therapy. The patients included were recruited from the Doce de Octubre University Hospital and from the Gregorio Marañón General University Hospital, and signed the informed consent form. DNA was obtained from blood samples. Genotyping was carried out with SNaPshot. Contingency tables were created for analyzing the associations between the genotypes and the adverse reactions. Results: None of the associations previously identified was replicated in the validation cohort. Conclusions: Pharmacogenetic studies with a limited sample size must be validated with bigger cohorts, if possible by means of multicentre studies, reducing the variables to the maximum and should never be used in clinical practice without validation.

  11. [Validation of genetic polymorphisms associated to the toxicity of chemotherapy in colorectal cancer patients].

    Science.gov (United States)

    Cortejoso, L; García, M I; García-Alfonso, P; Grávalos, C; Robles, L; González-Haba, E; Sanjurjo, M; López-Fernández, L A

    2014-07-01

    To validate the associations previously found in three cohorts of patients from the General University Hospital Gregorio Marañón, between the polymorphisms rs1128503, rs2032582 and rs1045642 of the ABCB1 gene and the hand-foot syndrome and diarrhea in colorectal cancer patients treated with chemotherapy regimes containing Capecitabine and 5-Fluorouracil, respectively, and between the polymorphisms rs2297595 of the DPYD gene and nausea/vomiting, rs11615 of ERCC1 and neutropenia, and rs28399433 CYP2A6 and neutropenia, in colorectal cancer patients treated with FOLFOX or XELOX as adjuvant therapy. Colorectal cancer patients treated with chemotherapy regimes, containing Capecitabine (n = 157), 5-Fluorouracil (n = 99) were included in the study, as well as patients treated with XELOX or FOLFOX (n = 83) as adjuvant therapy. The patients included were recruited from the Doce de Octubre University Hospital and from the Gregorio Marañón General University Hospital, and signed the informed consent form. DNA was obtained from blood samples. Genotyping was carried out with SNaPshot. Contingency tables were created for analyzing the associations between the genotypes and the adverse reactions. None of the associations previously identified was replicated in the validation cohort. Pharmacogenetic studies with a limited sample size must be validated with bigger cohorts, if possible by means of multicentre studies, reducing the variables to the maximum and should never be used in clinical practice without validation. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  12. Multiple Antenatal Dexamethasone Treatment Alters Brain Vessel Differentiation in Newborn Mouse Pups.

    Directory of Open Access Journals (Sweden)

    Winfried Neuhaus

    Full Text Available Antenatal steroid treatment decreases morbidity and mortality in premature infants through the maturation of lung tissue, which enables sufficient breathing performance. However, clinical and animal studies have shown that repeated doses of glucocorticoids such as dexamethasone and betamethasone lead to long-term adverse effects on brain development. Therefore, we established a mouse model for antenatal dexamethasone treatment to investigate the effects of dexamethasone on brain vessel differentiation towards the blood-brain barrier (BBB phenotype, focusing on molecular marker analysis. The major findings were that in total brains on postnatal day (PN 4 triple antenatal dexamethasone treatment significantly downregulated the tight junction protein claudin-5, the endothelial marker Pecam-1/CD31, the glucocorticoid receptor, the NR1 subunit of the N-methyl-D-aspartate receptor, and Abc transporters (Abcb1a, Abcg2 Abcc4. Less pronounced effects were found after single antenatal dexamethasone treatment and in PN10 samples. Comparisons of total brain samples with isolated brain endothelial cells together with the stainings for Pecam-1/CD31 and claudin-5 led to the assumption that the morphology of brain vessels is affected by antenatal dexamethasone treatment at PN4. On the mRNA level markers for angiogenesis, the sonic hedgehog and the Wnt pathway were downregulated in PN4 samples, suggesting fundamental changes in brain vascularization and/or differentiation. In conclusion, we provided a first comprehensive molecular basis for the adverse effects of multiple antenatal dexamethasone treatment on brain vessel differentiation.

  13. A Rare Class of New Dimeric Naphtoquiones from Diospyros lotus have Multidrug Reversal and Antiproliferative Effects

    Directory of Open Access Journals (Sweden)

    Dr. Abdur eRauf

    2015-12-01

    Full Text Available Three new dimeric naphthoquinones, 5,4′-dihydroxy-1′-methoxy-6,6′-dimethyl-7,3′-binaphthyl-1,4,5′,8′-tetraone (1, 5′,8′-dihydroxy-5-methoxy-6,6′-dimethyl-7,3′-binaphthyl-1,4,1′,4′-tetraone (2 and 8,5′,8′-trihydroxy-6,6′-dimethyl-7,3′-binaphthyl-1,4,1′,4′-tetraone (3, were isolated from the roots of Diospyros lotus. Their structures were elucidated by spectroscopic techniques, including 1D and 2D NMR, such as HSQC, HMBS, NOESY and J resolved. Compounds 1-3 were evaluated for their effects on the reversion of multidrug resistance (MDR mediated by P-glycoprotein through use of the rhodamine-123 exclusion screening test on human ABCB1 gene transfected L5178Y mouse T-cell lymphoma. Compounds 1-3 were also assessed for their antiproliferative and cytotoxic effects on L5178 and L5178Y mouse T-cell lymphoma lines. Both 1 and 2 exhibited promising antiproliferative and MDR-reversing effects in a dose dependent manner. The effects of the tested compounds on the activity of doxorubicin were observed to vary from slight antagonism to antagonism.

  14. Molecular Mechanisms for Biliary Phospholipid and Drug Efflux Mediated by ABCB4 and Bile Salts

    Directory of Open Access Journals (Sweden)

    Shin-ya Morita

    2014-01-01

    Full Text Available On the canalicular membranes of hepatocytes, several ABC transporters are responsible for the secretion of bile lipids. Among them, ABCB4, also called MDR3, is essential for the secretion of phospholipids from hepatocytes into bile. The biliary phospholipids are associated with bile salts and cholesterol in mixed micelles, thereby reducing the detergent activity and cytotoxicity of bile salts and preventing cholesterol crystallization. Mutations in the ABCB4 gene result in progressive familial intrahepatic cholestasis type 3, intrahepatic cholestasis of pregnancy, low-phospholipid-associated cholelithiasis, primary biliary cirrhosis, and cholangiocarcinoma. In vivo and cell culture studies have demonstrated that the secretion of biliary phospholipids depends on both ABCB4 expression and bile salts. In the presence of bile salts, ABCB4 located in nonraft membranes mediates the efflux of phospholipids, preferentially phosphatidylcholine. Despite high homology with ABCB1, ABCB4 expression cannot confer multidrug resistance. This review summarizes our current understanding of ABCB4 functions and physiological relevance, and discusses the molecular mechanism for the ABCB4-mediated efflux of phospholipids.

  15. Multidrug resistance: Physiological principles and nanomedical solutions.

    Science.gov (United States)

    Kunjachan, Sijumon; Rychlik, Błażej; Storm, Gert; Kiessling, Fabian; Lammers, Twan

    2013-11-01

    Multidrug resistance (MDR) is a pathophysiological phenomenon employed by cancer cells which limits the prolonged and effective use of chemotherapeutic agents. MDR is primarily based on the over-expression of drug efflux pumps in the cellular membrane. Prominent examples of such efflux pumps, which belong to the ATP-binding cassette (ABC) superfamily of proteins, are Pgp (P-glycoprotein) and MRP (multidrug resistance-associated protein), nowadays officially known as ABCB1 and ABCC1. Over the years, several strategies have been evaluated to overcome MDR, based not only on the use of low-molecular-weight MDR modulators, but also on the implementation of 1-100(0) nm-sized drug delivery systems. In the present manuscript, after introducing the most important physiological principles of MDR, we summarize prototypic nanomedical strategies to overcome multidrug resistance, including the use of carrier materials with intrinsic anti-MDR properties, the use of nanomedicines to modify the mode of cellular uptake, and the co-formulation of chemotherapeutic drugs together with low- and high-molecular-weight MDR inhibitors within a single drug delivery system. While certain challenges still need to be overcome before such constructs and concepts can be widely applied in the clinic, the insights obtained and the progress made strongly suggest that nanomedicine formulations hold significant potential for improving the treatment of multidrug-resistant malignancies.

  16. Decellularized matrices as in vitro models of extracellular matrix in tumor tissues at different malignant levels: Mechanism of 5-fluorouracil resistance in colorectal tumor cells.

    Science.gov (United States)

    Hoshiba, Takashi; Tanaka, Masaru

    2016-11-01

    Chemoresistance is a major barrier for tumor chemotherapy. It is well-known that chemoresistance increases with tumor progression. Chemoresistance is altered by both genetic mutations and the alteration of extracellular microenvironment. Particularly, the extracellular matrix (ECM) is remodeled during tumor progression. Therefore, ECM remodeling is expected to cause the acquisition of chemoresistance in highly malignant tumor tissue. Here, we prepared cultured cell-derived decellularized matrices that mimic native ECM in tumor tissues at different stages of malignancy, and 5-fluorouracil (5-FU) resistance was compared among these matrices. 5-FU resistance of colorectal tumor cells increased on the matrices derived from highly malignant tumor HT-29 cells, although the resistance did not increase on the matrices derived from low malignant tumor SW480 cells and normal CCD-841-CoN cells. The resistance on HT-29 cell-derived matrices increased through the activation of Akt and the upregulation of ABCB1 and ABCC1 without cell growth promotion, suggesting that ECM remodeling plays important roles in the acquisition of chemoresistance during tumor progression. It is expected that our decellularized matrices, or "staged tumorigenesis-mimicking matrices", will become preferred cell culture substrates for in vitro analysis of comprehensive ECM roles in chemoresistance and the screening and pharmacokinetic analysis of anti-cancer drugs.

  17. Phenyltetrazolyl-phenylamides: Substituent impact on modulation capability and selectivity toward the efflux protein ABCG2 and investigation of interaction with the transporter.

    Science.gov (United States)

    Köhler, Sebastian C; Silbermann, Katja; Wiese, Michael

    2016-11-29

    We recently presented a novel class of ABCG2 modulators based on the third-generation ABCB1 inhibitor tariquidar bearing a 2,5-linked tetrazole instead of an amid linker. We investigated the modulating potential of the compound class by enlarging the substitution pattern on the outer phenyl rings of the scaffold. To identify the structural conditions for achieving a high response, we decided to determine the individual influence of substituents on the scaffold using monosubstituted derivatives. While electron withdrawing groups (with a few exceptions) and bulky moieties decreased the modulating potency, small electron donating groups ensured a high activity level. Interestingly, the unsubstituted derivative 32 reached a similar inhibitory potential as the best derivatives in the previous study. Enzyme kinetic assays indicated that our derivatives have the same binding site as reference inhibitor Ko143. They were found to interact competitively and non-competitively with the substrates Hoechst 33342 and pheophorbide A, respectively. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Expression and splicing of ABC and SLC transporters in the human blood-brain barrier measured with RNAseq.

    Science.gov (United States)

    Suhy, Adam M; Webb, Amy; Papp, Audrey C; Geier, Ethan G; Sadee, Wolfgang

    2017-05-30

    The blood-brain barrier (BBB) expresses numerous membrane transporters that supply needed nutrients to the central nervous system (CNS), consisting mostly of solute carriers (SLC transporters), or remove unwanted substrates via extrusion pumps through the action of ATP binding cassette (ABC) transporters. Previous work has identified many BBB transporters using hybridization arrays or qRT-PCR, using targeted probes. Here we have performed next-generation sequencing of the transcriptome (RNAseq) extracted from cerebral cortex tissues and brain microvessel endothelial cells (BMEC) obtained from two donors. The same RNA samples had previously been measured for transporter expression using qRT-PCR (Geier et al., 2013), yielding similar expression levels for overlapping mRNAs (R=0.66, pRNAseq confirms a number of transporters highly enriched in BMECs (e.g., ABCB1, ABCG2, SLCO2B1, and SLC47A1), but also detects novel BMEC transporters. Multiple splice isoforms detected by RNAseq are either robustly enriched or depleted in BMECs, indicating differential RNA processing in the BBB. The Complete RNAseq data are publically available (GSE94064). Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Esters of the Marine-Derived Triterpene Sipholenol A Reverse P-GP-Mediated Drug Resistance

    Directory of Open Access Journals (Sweden)

    Yongchao Zhang

    2015-04-01

    Full Text Available Our previous studies showed that several sipholane triterpenes, sipholenol A, sipholenone E, sipholenol L and siphonellinol D, have potent reversal effect for multidrug resistance (MDR in cancer cells that overexpressed P-glycoprotein (P-gp/ABCB1. Through comparison of cytotoxicity towards sensitive and multi-drug resistant cell lines, we identified that the semisynthetic esters sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate potently reversed P-gp-mediated MDR but had no effect on MRP1/ABCC1 and BCRP/ABCG2-mediated MDR. The results from [3H]-paclitaxel accumulation and efflux studies suggested that these two triterpenoids were able to increase the intracellular accumulation of paclitaxel by inhibiting its active efflux. In addition, western blot analysis revealed that these two compounds did not alter the expression levels of P-gp when treated up to 72 h. These sipholenol derivatives also stimulated the ATPase activity of P-gp membranes, which suggested that they might be substrates of P-gp. Moreover, in silico molecular docking studies revealed the virtual binding modes of these two compounds into human homology model of P-gp. In conclusion, sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate efficiently inhibit the P-gp and may represent potential reversal agents for the treatment of multidrug resistant cancers.

  20. The study protocol for a non-randomized controlled clinical trial using a genotype-guided strategy in a dataset of patients who undergone percutaneous coronary intervention with stent

    Directory of Open Access Journals (Sweden)

    Cristina Lucía Dávila-Fajardo

    2017-02-01

    Full Text Available This article contains data related to the research article entitled “Results of genotype–guided antiplatelet therapy in patients undergone percutaneous coronary intervention with stent” (J. Sánchez-Ramos, C.L. Dávila-Fajardo, P. Toledo Frías, X. Díaz Villamarín, L.J. Martínez-González, S. Martínez Huertas, F. Burillo Gómez, J. Caballero Borrego, A. Bautista Pavés, M.C. Marín Guzmán, J.A. Ramirez Hernández, C. Correa Vilches, J. Cabeza Barrera, 2016 (1. This data article reports, for the first time, about the non-randomized clinical trial protocol that check if CYP2C19/ABCB1 genotype–guided strategy in which the choice of antiplatelet therapy is based on the genetic test, reduces the rates of cardiovascular events and bleeding compared to a non-tailored strategy in patients undergone percutaneous coronary intervention (PCI with stent. The data included in this article are: design and setting of the study, study population, inclusion and exclusion criteria, definition of the intervention, objectives, variables (baseline characteristics and during the follow-up, study procedures, collection and treatment of the biological sample, genotyping, withdrawal criteria, sample size, statistic analysis, ethical aspects, information sheet and consent form. The authors confirm that this study has been registered in Eudra CT (Eudra CT: 2016-001294-33.

  1. The putative P-gp inhibitor telmisartan does not affect the transcellular permeability and cellular uptake of the calcium channel antagonist verapamil in the P-glycoprotein expressing cell line MDCK II MDR1.

    Science.gov (United States)

    Saaby, Lasse; Tfelt-Hansen, Peer; Brodin, Birger

    2015-08-01

    Verapamil is used in high doses for the treatment of cluster headache. Verapamil has been described as a P-glycoprotein (P-gp, ABCB1) substrate. We wished to evaluate in vitro whether co administration of a P-gp inhibitor with verapamil could be a feasible strategy for increasing CNS uptake of verapamil. Fluxes of radiolabelled verapamil across MDCK II MDR1 monolayers were measured in the absence and presence of the putative P-gp inhibitor telmisartan (a clinically approved drug compound). Verapamil displayed a vectorial basolateral-to-apical transepithelial efflux across the MDCK II MDR1 monolayers with a permeability of 5.7 × 10(-5) cm sec(-1) compared to an apical to basolateral permeability of 1.3 × 10(-5) cm sec(-1). The efflux could be inhibited with the P-gp inhibitor zosuquidar. Zosuquidar (0.4 μmol/L) reduced the efflux ratio (PB-A/PA-B) for verapamil 4.6-1.6. The presence of telmisartan, however, only caused a slight reduction in P-gp-mediated verapamil transport to an efflux ratio of 3.4. Overall, the results of the present in vitro approach indicate, that clinical use of telmisartan as a P-gp inhibitor may not be an effective strategy for increasing brain uptake of verapamil by co-administration with telmisartan.

  2. Comparative study of bisphenol A and its analogue bisphenol S on human hepatic cells: a focus on their potential involvement in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Peyre, Ludovic; Rouimi, Patrick; de Sousa, Georges; Héliès-Toussaint, Cécile; Carré, Benjamin; Barcellini, Sylvie; Chagnon, Marie-Christine; Rahmani, Roger

    2014-08-01

    For several decades, people have been in contact with bisphenol A (BPA) primarily through their diet. Nowadays it is gradually replaced by an analogue, bisphenol S (BPS). In this study, we compared the effects of these two bisphenols in parallel with the positive control diethylstilbestrol (DES) on different hepatocyte cell lines. Using a cellular impedance system we have shown that BPS is less cytotoxic than BPA in acute and chronic conditions. We have also demonstrated that, contrary to BPA, BPS is not able to induce an increase in intracellular lipid and does not activate the PXR receptor which is known to be involved in part, in this process. In parallel, it failed to modulate the expression of CYP3A4 and CYP2B6, the drug transporter ABCB1 and other lipid metabolism genes (FASN, PLIN). However, it appears to have a weak effect on GSTA4 protein expression and on the Erk1/2 pathway. In conclusion, in contrast to BPA, BPS does not appear to induce the metabolic syndrome that may lead to non-alcoholic fatty liver disease (NAFLD), in vitro. Although we have to pay special attention to BPS, its use could be less dangerous concerning this toxicological endpoint for human health.

  3. Inhibition of Viability, Proliferation, Cytokines Secretion, Surface Antigen Expression, and Adipogenic and Osteogenic Differentiation of Adipose-Derived Stem Cells by Seven-Day Exposure to 0.5 T Static Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-01-01

    Full Text Available After seven-day exposure to 0.5-Tesla Static Magnetic Field (SMF, Adipose-derived Stem Cells (ASCs and those labeled by superparamagnetic iron oxide (SPIO nanoparticles were examined for viability by methyl thiazol tetrazolium (MTT assay, proliferation by cell counting and bromodeoxyuridine (BrdU incorporation, DNA integrity by single cell gel electrophoresis, surface antigen by flow cytometry analysis, and the expression of cytokines and genetic markers by reverse transcription-PCR and underwent adipogenic and osteogenic differentiation assessed by quantifying related specific genes expression. The SMF slightly reduced cell viability and proliferation and inhibited the expression of CD49d, CD54, and CD73 but did not damage DNA integrity. The SMF slightly downregulated the expression of cytokines including Vascular Endothelial Growth Factor (VEGF, Insulin-like Growth Factor-1 (IGF-1, Transforming Growth Factor Beta 1 (TGF-β1, genetic markers comprising Stem Cell Antigen-1 (Sca1, Octamer-4 (Oct-4, ATP-binding Cassette Subfamily B Member 1 (ABCB1, adipogenic marker genes containing Lipoprotein Lipase (LPL, Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ, and osteogenic marker genes including Secreted Phosphor-protein 1 (SPP1 and Osterix (OSX. Exposure to 0.5 T SMF for seven days inhibited viability, proliferation, surface antigen expression, cytokine secretion, stem cell genetic marker expression, and adipogenic and osteogenic differentiation but did not affect the DNA integrity in ASCs with or without SPIO labeling.

  4. The Role of the Actin Cytoskeleton and Lipid Rafts in the Localization and Function of the ABCC1 Transporter

    Directory of Open Access Journals (Sweden)

    Jan Willem Kok

    2014-01-01

    Full Text Available ATP-binding cassette (ABC transporters are known to be important factors in multidrug resistance of tumor cells. Lipid rafts have been implicated in their localization in the plasma membrane, where they function as drug efflux pumps. This specific localization in rafts may support the activity of ABC/Abc transporters. This raises questions regarding the nature and composition of the lipid rafts that harbor ABC/Abc transporters and the dependence of ABC/Abc transporters—concerning their localization and activity—on lipid raft constituents. Here we review our work of the past 10 years aimed at evaluating whether ABC/Abc transporters are dependent on a particular membrane environment for their function. What is the nature of this membrane environment and which of the lipid raft constituents are important for this dependency? It turns out that cortical actin is of major importance for stabilizing the localization and function of the ABC/Abc transporter, provided it is localized in an actin-dependent subtype of lipid rafts, as is the case for human ABCC1/multidrug resistance-related protein 1 (MRP1 and rodent Abcc1/Mrp1 but not human ABCB1/P-glycoprotein (PGP. On the other hand, sphingolipids do not appear to be modulators of ABCC1/MRP1 (or Abcc1/Mrp1, even though they are coregulated during drug resistance development.

  5. Ovarian cancer stem cell like side populations are enriched following chemotherapy and overexpress EZH2

    Science.gov (United States)

    Rizzo, Siân; Hersey, Jenny M.; Mellor, Paul; Dai, Wei; Santos-Silva, Alessandra; Liber, Daniel; Luk, Louisa; Titley, Ian; Carden, Craig P; Box, Garry; Hudson, David L.; Kaye, Stanley B.; Brown, Robert

    2010-01-01

    Platinum-based chemotherapy, with cytoreductive surgery, is the cornerstone of treatment of advanced ovarian cancer, however acquired drug resistance is a major clinical obstacle. It has been proposed that subpopulations of tumour cells with stem-cell like properties, such as so-called side populations (SP) which over-express ABC drug-transporters, can sustain the growth of drug resistant tumour cells, leading to tumour recurrence following chemotherapy. The histone methyltransferase EZH2 is a key component of the Polycomb Repressive Complex 2 (PRC2) required for maintenance of a stem cell state and overexpression has been implicated in drug resistance and shorter survival of ovarian cancer patients. We observe higher percentage SP in ascites from patients that have relapsed following chemotherapy compared to chemonaive patients, consistent with selection for this subpopulation during platinum-based chemotherapy. Furthermore, ABCB1 (P-glycoprotein) and EZH2 are consistently over-expressed in SP compared to non-SP from patients’ tumour cells. SiRNA knockdown of EZH2 leads to loss of SP in ovarian tumour models, reduced anchorage-independent growth and reduced tumour growth in vivo. Together these data support a key role for EZH2 in the maintenance of a drug-resistant tumour-sustaining subpopulation of cells in ovarian cancers undergoing chemotherapy. As such, EZH2 is an important target for anticancer drug development. PMID:21216927

  6. Effect of doxycycline and Lactobacillus probiotics on mRNA expression of ABCC2 in small intestines of chickens.

    Science.gov (United States)

    Milanova, A; Pavlova, I; Yordanova, V; Danova, S

    2016-01-01

    Probiotics and antibiotics are widely used in poultry and may alter drug bioavailability by affecting the expression of intestinal ATP-binding cassette (ABC) efflux transporters. Therefore the aim of the present investigation was to evaluate the effect of Lactobacilli probiotics, administered alone or in combination with doxycycline, on the expression of ABCB1 (gene, encoding P-glycoprotein), ABCC2 (gene, encoding multidrug resistance protein 2, MRP2) and ABCG2 (gene, encoding breast cancer resistance protein) mRNAs in chicken using RT-PCR. Duc one-day-old chicks (n=24) were divided equally in four groups: untreated control, probiotics supplemented group, probiotics plus doxycycline treated chickens and antibiotic administered group. Expression of ABCC2 mRNA was affected by doxycycline or by combination of Lactobacillus plantarum, L. brevis and L. bulgaricus and the antibiotic in the intestines. These results can be used as a basis for further functional studies to prove the beneficial effect on limitation of the absorption of toxins and improvement of efflux of endogenous substances and xenobiotics when the combination of doxycycline and Lactobacillus spp. probiotics are administered to poultry.

  7. Hepatic drug transporters and nuclear receptors: Regulation by therapeutic agents

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The canalicular membrane represents the excretory pole of hepatocytes. Bile is an important route of elimina-tion of potentially toxic endo- and xenobiotics (including drugs and toxins), mediated by the major canalicular transporters: multidrug resistance protein 1 (MDR1, ABCB1), also known as P-glycoprotein, multidrug re-sistance-associated protein 2 (MRP2, ABCC2), and the breast cancer resistance protein (BCRP, ABCG2). Their activities depend on regulation of expression and proper localization at the canalicular membrane, as regulated by transcriptional and post-transcriptional events, re-spectively. At transcriptional level, specific nuclear re-ceptors (NR)s modulated by ligands, co-activators and co-repressors, mediate the physiological requirements of these transporters. This complex system is also re-sponsible for alterations occurring in specific liver pa-thologies. We briefly describe the major Class Ⅱ NRs, pregnane X receptor (PXR) and constitutive androstane receptor (CAR), and their role in regulating expression of multidrug resistance proteins. Several therapeutic agents regulate the expression of relevant drug trans-porters through activation/inactivation of these NRs. We provide some representative examples of the action of therapeutic agents modulating liver drug transporters, which in addition, involve CAR or PXR as mediators.

  8. In-channel printing-device opening assay for micropatterning multiple cells and gene analysis.

    Science.gov (United States)

    Zhou, Hao; Zhao, Liang; Zhang, Xueji

    2015-02-17

    Herein we report an easy but versatile method for patterning different cells on a single substrate by using a microfluidic approach that allows not only spatial and temporal control of multiple microenvironments but also retrieval of specific treated cells to profile their expressed genetic information at around 10-cell resolution. By taking advantages of increased surface area of gold nanoparticles on a poly(dimethylsiloxane) (PDMS) coated substrate, cell adhesive-promotive protein, human fibronectin (hFN) can be significantly accumulated on designed regions where cells can recognize the protein and spread out. Moreover, the whole device can be easily opened by hand without any loss of patterned cells which could be retrieved by mouth-pipet. Consequently, we demonstrate the possibility of analyzing the difference of gene expression patterns between wild type MCF-7 cell and MCF/Adr (drug-resistant cell line) from less than 400 cells in total for a single comprehensive assay, including parallel experiments, controls, and multiple dose treatments. Certain genes, especially the P-glycoprotein coding gene (ABCB1), show high expression level in resistant cells compared with the wild type, suggesting a possible pathway that may contribute to the antidrug mechanism.

  9. Droimnin Nursing Home, Brockley Park, Stradbally, Laois.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Renal cell carcinoma patients respond poorly to conventional chemotherapy, this unresponsiveness may be attributable to multidrug resistance (MDR). The mechanisms of MDR in renal cancer are not fully understood and the specific contribution of ABC transporter proteins which have been implicated in the chemoresistance of various cancers has not been fully defined in this disease. METHODS: In this retrospective study the expression of two of these transporter efflux pumps, namely MDR-1 P-gp (ABCB1) and MRP-1 (ABCC1) were studied by immunohistochemistry in archival material from 95 renal cell carcinoma patients. RESULTS: In the first study investigating MDR-1 P-gp and MRP-1 protein expression patterns in renal cell carcinoma patients, high levels of expression of both efflux pumps are observed with 100% of tumours studied showing MDR-1 P-gp and MRP-1 positivity. CONCLUSION: Although these findings do not prove a causal role, the high frequency of tumours expressing these efflux pumps suggests that they may be important contributors to the chemoresistance of this tumour type.

  10. 环孢菌素A抑制大鼠胰岛素分泌的体外实验研究%Cyclosporine A inhibits insulin secretion of rat islets in vitro

    Institute of Scientific and Technical Information of China (English)

    孟树优; 刘倩; 孙富军; 汤云昭; 丁群; 孙茜; 张达; 李代清

    2013-01-01

    Objective To explore the underlying mechanisms of inhibiting insulin secretion of rat islets by cyclosporine A in vitro.Methods Rat islets were isolated from pancreas by collagenase digestion.The islets were stained by acridine orange/propidium iodide and evaluated under fluorescence microscope after cyclosporine A were inoculated (0.5,1.0,2.5,5.0,and 10.0 μg/ml) over different periods (6,24,and 48 hours).The islets treated only with the vehicle were served as control.After inoculation of 1 μg/ml cyclosporine A or the vehicle for 24 hours,insulin secretion of the islets was determined by radioimmunol assay(RIA).The expressions of abcb1 b,pdx1,ins1,ins2,glucagon,casp3,and Bcl-2 were evaluated by realtime fluorescence quantitative PCR after inoculations of cyclosporine A for 24 hours.A rhodamine 123 uptake measurement was used to analyze P-glycoprotein efflux pump function.Results Inoculation of 1.0 μg/ml cyclosporine A for 24 hours did not affect islet survival significantly.Only the second phase of insulin secretion was inhibited by the cyclosporine A inoculation (P<0.01),but not the first phase.Compared to the control group,the expressions of abcb1b,ins1,ins2,pdx1,glucagon,casp3 did not show any difference in the cyclosporine A inoculated group.But the expression of Bcl-2 was down-regulated significantly in the cyclosporine A inoculated group (P<0.01).The efflux pump function of P-glycoprotein was inhibited by the cyclosporine A inoculation (P<0.01).Conclusions Inhibitory effects of cyclosporine A on the second phase of insulin secretion may be through apoptosis pathway.Cyclosporine A did not influence biogenesis of insulin or glucagon.Even though cyclosporine A did not reduce the expression of P-glycoprotein,its specific inhibitory effect on P-glycoprotein in impairing insulin secretion could not be excluded.The underlying mechanism needs to be further investigated.%目的 探索环孢菌素A抑制胰岛素分泌的分子机制 方法 经胆管不离体

  11. Acquisition of cancer stem cell-like properties in non-small cell lung cancer with acquired resistance to afatinib.

    Science.gov (United States)

    Hashida, Shinsuke; Yamamoto, Hiromasa; Shien, Kazuhiko; Miyoshi, Yuichiro; Ohtsuka, Tomoaki; Suzawa, Ken; Watanabe, Mototsugu; Maki, Yuho; Soh, Junichi; Asano, Hiroaki; Tsukuda, Kazunori; Miyoshi, Shinichiro; Toyooka, Shinichi

    2015-10-01

    Afatinib is an irreversible epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) that is known to be effective against the EGFR T790M variant, which accounts for half of the mechanisms of acquired resistance to reversible EGFR-TKIs. However, acquired resistance to afatinib was also observed in clinical use. Thus, elucidating and overcoming the mechanisms of resistance are important issues in the treatment of non-small cell lung cancer. In this study, we established various afatinib-resistant cell lines and investigated the resistance mechanisms. EGFR T790M mutations were not detected using direct sequencing in established resistant cells. Several afatinib-resistant cell lines displayed MET amplification, and these cells were sensitive to the combination of afatinib plus crizotinib. As a further investigation, a cell line that acquired resistance to afatinib plus crizotinib, HCC827-ACR, was established from one of the MET amplified-cell lines. Several afatinib-resistant cell lines including HCC827-ACR displayed epithelial-to-mesenchymal transition (EMT) features and epigenetic silencing of miR-200c, which is a suppresser of EMT. In addition, these cell lines also exhibited overexpression of ALDH1A1 and ABCB1, which are putative stem cell markers, and resistance to docetaxel. In conclusion, we established afatinib-resistant cells and found that MET amplification, EMT, and stem cell-like features are observed in cells with acquired resistance to EGFR-TKIs. This finding may provide clues to overcoming resistance to EGFR-TKIs.

  12. Mefloquine improved progressive multifocal leukoencephalopathy in a patient with immunoglobulin A nephropathy.

    Science.gov (United States)

    Shin, Jung-Won; Jung, Keun-Hwa; Lee, Soon-Tae; Moon, Jangsup; Lim, Jung-Ah; Byun, Jung-Ick; Park, Kyung-Il; Lee, Sang Kun; Chu, Kon

    2014-10-01

    We describe a patient with immunoglobulin A nephropathy who was diagnosed with progressive multifocal leukoencephalopathy (PML) and successfully treated with mefloquine, an antimalarial medication. A 67-year-old man with immunoglobulin A nephropathy presented to the hospital emergency room with fever and generalized tonic-clonic seizure. Cerebrospinal fluid (CSF) nested polymerase chain reaction (PCR) was positive for John Cunningham virus and brain MRI displayed high signal intensity in the white matter in the right parietal lobe without gadolinium enhancement. Tapering of prednisone did not arrest the disease progression and a new lesion was detected on the cerebellum. Administration of mefloquine stopped lesion progression and resulted in dramatic clinical improvement. The CSF nested PCR for the John Cunningham virus also became negative. In reviewing the literature, mefloquine has had a heterogeneous effect in PML patients, and P-glycoprotein polymorphism and proper dosage could contribute to the various effects seen. Mefloquine may be a favorable treatment option in some patients with PML, and P-glycoprotein polymorphism may play an important role in its efficacy. More large studies in other ethnic groups including polymorphism studies for the gene encoding P-glycoprotein (ABCB1/MDR1) and taking into account various underlying conditions with secondary immunosuppression should be carried out to investigate whether mefloquine is effective for treating PML.

  13. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system.

    Science.gov (United States)

    Sarkadi, Balázs; Homolya, László; Szakács, Gergely; Váradi, András

    2006-10-01

    In this review we give an overview of the physiological functions of a group of ATP binding cassette (ABC) transporter proteins, which were discovered, and still referred to, as multidrug resistance (MDR) transporters. Although they indeed play an important role in cancer drug resistance, their major physiological function is to provide general protection against hydrophobic xenobiotics. With a highly conserved structure, membrane topology, and mechanism of action, these essential transporters are preserved throughout all living systems, from bacteria to human. We describe the general structural and mechanistic features of the human MDR-ABC transporters and introduce some of the basic methods that can be applied for the analysis of their expression, function, regulation, and modulation. We treat in detail the biochemistry, cell biology, and physiology of the ABCB1 (MDR1/P-glycoprotein) and the ABCG2 (MXR/BCRP) proteins and describe emerging information related to additional ABCB- and ABCG-type transporters with a potential role in drug and xenobiotic resistance. Throughout this review we demonstrate and emphasize the general network characteristics of the MDR-ABC transporters, functioning at the cellular and physiological tissue barriers. In addition, we suggest that multidrug transporters are essential parts of an innate defense system, the "chemoimmunity" network, which has a number of features reminiscent of classical immunology.

  14. Development and validation of an ultra-high performance LC-MS/MS assay for intracellular SN-38 in human solid tumour cell lines: comparison with a validated HPLC-fluorescence method.

    Science.gov (United States)

    Ghazaly, Essam; Perry, Jackie; Kitromilidou, Christiana; Powles, Thomas; Joel, Simon

    2014-10-15

    A simple and rapid ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UPLC-MS/MS) method has been developed for measuring intracellular concentrations of the anticancer agent 7-ethyl-10-hydroxycamptothecin (SN-38) in tumour cells using camptothecin (CPT) as internal standard. SN-38 extraction was carried out using acidified acetonitrile. SN-38 and CPT were separated on a PFP column using gradient elution with acidified water and acetonitrile. SN-38 and CPT were quantified using a triple quadrupole mass spectrometry system. Least square regression calibration lines were obtained with average correlation coefficients of R(2)=0.9993±0.0016. The lower limit of detection (LOD) and lower limit of quantification (LOQ) for SN-38 were 0.1 and 0.3ng/ml, respectively. CPT recovery was 98.5±13% and SN-38 recoveries at low quality control (LQC, 5ng/ml) and high quality control (HQC, 500ng/ml) were 89±6% and 95±8%, respectively. The intra- and inter-day imprecision for LQC was 5.8 and 8.5%, and for HQC was 6.3 and 4.4%, respectively. The method was compared to a validated high performance liquid chromatography-fluorescent method. In addition, the method has been successfully applied to determine the intracellular accumulation of SN-38 investigating the transport through ABCB1 (P-gp) and ABCG2 (BCRP) efflux pumps in colorectal cancer cell lines.

  15. Laurus nobilis L. Seed Extract Reveals Collateral Sensitivity in Multidrug-Resistant P-Glycoprotein-Expressing Tumor Cells.

    Science.gov (United States)

    Saab, Antoine M; Guerrini, Alessandra; Zeino, Maen; Wiench, Benjamin; Rossi, Damiano; Gambari, Roberto; Sacchetti, Gianni; Greten, Henry Johannes; Efferth, Thomas

    2015-01-01

    The frequent failure of standard cancer chemotherapy requires the development of novel drugs capable of killing otherwise drug-resistant tumors. Here, we have investigated a chloroform extract of Laurus nobilis seeds. Fatty acids and 23 constituents of the volatile fraction were identified by gas chromotography/flame ionization detection (GC/FID) and gas chromatography/mass spectrometry (GC/MS), in good agreement with (1)H NMR (nuclear magnetic resonance) spectrum. Multidrug-resistant P-glycoprotein-expressing CEM/ADR5000 leukemia cells were hypersensitive (collaterally sensitive) toward this extract compared to drug-sensitive CCRF-CEM cells, whereas CEM/ADR5000 cells were 2586-fold resistant to doxorubicin as control drug. Collateral sensitivity was verified by measurement of apoptotic cells by flow cytometry. The log10IC50 values of 3 compounds in the extract (limonene, eucalyptol, oleic acid) did not correlate with mRNA expression of the P-glycoprotein-coding ABCB1/MDR1 gene and accumulation of the P-glycoprotein substrate rhodamine in the NCI panel of tumor cell lines. A microarray-based profile of 20 genes predicted resistance to doxorubicin and 7 other anticancer drugs involved in the multidrug resistance phenotype but not to limonene, eucalyptol and oleic acid. In conclusion, our results show that Laurus nobilis seed extract is suitable to kill multidrug-resistant P-glycoprotein expressing tumor cells.

  16. The human P-glycoprotein transporter enhances the type I interferon response to Listeria monocytogenes infection.

    Science.gov (United States)

    Sigal, Nadejda; Kaplan Zeevi, Millie; Weinstein, Shiri; Peer, Dan; Herskovits, Anat A

    2015-06-01

    Human multidrug efflux transporters are known for their ability to extrude antibiotics and toxic compounds out of cells, yet accumulating data indicate they have additional functions in diverse physiological processes not related to drug efflux. Here, we show that the human multidrug transporter P-glycoprotein (P-gp) (also named MDR1 and ABCB1) is transcriptionally induced in the monocytic cell line THP-1 upon infection with the human intracellular bacterial pathogen Listeria monocytogenes. Notably, we found that P-gp is important for full activation of the type I interferon response elicited against L. monocytogenes bacteria. Both inhibition of P-gp function by verapamil and inhibition of its transcription using mRNA silencing led to a reduction in the magnitude of the type I response in infected cells. This function of P-gp was specific to type I interferon cytokines elicited against cytosolic replicating bacteria and was not observed in response to cyclic di-AMP (c-di-AMP), a molecule that was shown to be secreted by L. monocytogenes during infection and to trigger type I interferons. Moreover, P-gp was not involved in activation of other proinflammatory cytokines, such as those triggered by vacuolar-restricted L. monocytogenes or lipopolysaccharide (LPS). Taken together, these findings demonstrate a role for P-gp in proper development of an innate immune response against intracellular pathogens, highlighting the complexity in employing therapeutic strategies that involve inhibition of multidrug resistance (MDR) efflux pumps.

  17. The effect of polar auxin transport on adventitious branches formation in Gracilaria lichenoides in vitro.

    Science.gov (United States)

    Wang, Wenlei; Li, Huanqin; Lin, Xiangzhi; Zhang, Fang; Fang, Baishan; Wang, Zhaokai

    2016-11-01

    Seaweed tissue culture (STC) is an important micropropagation tool that has been applied for strain improvement, micropropagation and genetic engineering. Because the mechanisms associated with STC are poorly understood, its application to these organisms lags far behind that of tissue culture propagation of higher plants. Auxin, calcium (Ca(2+) ) and hydrogen peroxide (H2 O2 ) fluxes all play key roles during plant growth and development. In this study, we therefore measured indole-3-acetic acid, Ca(2+) and H2 O2 fluxes of Gracilaria lichenoides explants during adventitious branches (ABs) formation for the first time using noninvasive micro-test technology. We confirmed that polar auxin transport (PAT) also occurs in the marine red alga G. lichenoides. We additionally found that N-1-naphthylphthalamic acid may suppress auxin efflux via ABCB1 transporters and then inhibit ABs formation from the apical region of G. lichenoides segments. The involvement of Ca(2+) and H2 O2 fluxes in PAT-mediated AB formation in G. lichenoides was also investigated. We propose that complex feedback among Ca(2+) , H2 O2 and auxin signaling and response systems may occur during ABs polar formation in G. lichenoides explants, similar to that in higher plants. Our results provide innovative insights that should aid future elucidation of mechanisms operative during STC.

  18. Characterization of 107 genomic DNA reference materials for CYP2D6, CYP2C19, CYP2C9, VKORC1, and UGT1A1: a GeT-RM and Association for Molecular Pathology collaborative project.

    Science.gov (United States)

    Pratt, Victoria M; Zehnbauer, Barbara; Wilson, Jean Amos; Baak, Ruth; Babic, Nikolina; Bettinotti, Maria; Buller, Arlene; Butz, Ken; Campbell, Matthew; Civalier, Chris; El-Badry, Abdalla; Farkas, Daniel H; Lyon, Elaine; Mandal, Saptarshi; McKinney, Jason; Muralidharan, Kasinathan; Noll, LeAnne; Sander, Tara; Shabbeer, Junaid; Smith, Chingying; Telatar, Milhan; Toji, Lorraine; Vairavan, Anand; Vance, Carlos; Weck, Karen E; Wu, Alan H B; Yeo, Kiang-Teck J; Zeller, Markus; Kalman, Lisa

    2010-11-01

    Pharmacogenetic testing is becoming more common; however, very few quality control and other reference materials that cover alleles commonly included in such assays are currently available. To address these needs, the Centers for Disease Control and Prevention's Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing community and the Coriell Cell Repositories, have characterized a panel of 107 genomic DNA reference materials for five loci (CYP2D6, CYP2C19, CYP2C9, VKORC1, and UGT1A1) that are commonly included in pharmacogenetic testing panels and proficiency testing surveys. Genomic DNA from publicly available cell lines was sent to volunteer laboratories for genotyping. Each sample was tested in three to six laboratories using a variety of commercially available or laboratory-developed platforms. The results were consistent among laboratories, with differences in allele assignments largely related to the manufacturer's assay design and variable nomenclature, especially for CYP2D6. The alleles included in the assay platforms varied, but most were identified in the set of 107 DNA samples. Nine additional pharmacogenetic loci (CYP4F2, EPHX1, ABCB1, HLAB, KIF6, CYP3A4, CYP3A5, TPMT, and DPD) were also tested. These samples are publicly available from Coriell and will be useful for quality assurance, proficiency testing, test development, and research.

  19. Hepatitis C virus NS3 protease inhibitors: large, flexible molecules of peptide origin show satisfactory permeability across Caco-2 cells.

    Science.gov (United States)

    Bergström, Christel A S; Bolin, Sara; Artursson, Per; Rönn, Robert; Sandström, Anja

    2009-12-08

    The purpose of this study was to investigate the intestinal absorption of tripeptide-based compounds intended for treatment of hepatitis C virus (HCV) infection. The intestinal permeability of 11 HCV NS3 protease inhibitors (Mw 687-841, ClogD(pH 7.4) 1.2-7.3 and 10-13 hydrogen bond donors/acceptors) was measured using Caco-2 cells. Each compound was investigated in the apical to basolateral (a-b) and basolateral to apical (b-a) direction at pH 7.4. For compounds displaying efflux the experiment was repeated in the presence of 1 microM GF120918 to investigate possible involvement of P-glycoprotein (Pgp; ABCB1). All compounds displayed intermediate to high permeability. Seven of them showed extensive efflux, with 31-114-fold higher permeability in the b-a direction than the a-b direction. Addition of the Pgp inhibitor GF120918 reduced the b-a transport rate for the effluxed compounds. However, for inhibitors with a C-terminal carboxylic acid and the acidic bioisosteres thereof the efflux was still significant. Hence, the negative charge resulted in efflux by other ABC-transporters than Pgp. From this study it can be concluded that small changes in the overall structure can lead to a large variation in permeability and efflux as shown by the inhibitors herein, properties that also may influence the resulting inhibition potency of the compounds when performing cell-based pharmacological assays.

  20. Transcriptional response of stress-regulated genes to cadmium exposure in the cockle Cerastoderma glaucum from the gulf of Gabès area (Tunisia).

    Science.gov (United States)

    Karray, Sahar; Marchand, Justine; Moreau, Brigitte; Tastard, Emmanuelle; Thiriet-Rupert, Stanislas; Geffard, Alain; Delahaut, Laurence; Denis, Françoise; Hamza-Chaffai, Amel; Chénais, Benoît

    2015-11-01

    This study investigates cadmium effects on key messenger RNA (mRNA) expression (MT, MnSOD, CuZnSOD, CAT, ABCB1, HSP70, and CO1) by qPCR in the cockle Cerastoderma glaucum after chronic exposure to two high but environmentally relevant concentrations of CdCl2 (50 μg/L and 5 mg/L) for 12 h to 18 days. Cd accumulation measured in cockles' tissues is significantly higher in both treatment conditions compared to controls and in a dose-dependent manner. Stress on stress tests performed at different times of the experiment clearly demonstrated that exposure to both concentrations of Cd significantly affects cockle survival time in air. Important changes in gene transcription were also highlighted. In particular, MT, HSP70, CAT, and CuZnSOD seem to be relevant biomarkers of Cd exposure because (1) their mRNA levels increase upon exposure and (2) they are highly correlated to Cd accumulation in tissues. Results may be useful for control strategies and for the use of cockles as sentinel organisms.

  1. Sunitinib-ibuprofen drug interaction affects the pharmacokinetics and tissue distribution of sunitinib to brain, liver, and kidney in male and female mice differently.

    Science.gov (United States)

    Lau, Christine Li Ling; Chan, Sook Tyng; Selvaratanam, Manimegahlai; Khoo, Hui Wen; Lim, Adeline Yi Ling; Modamio, Pilar; Mariño, Eduardo L; Segarra, Ignacio

    2015-08-01

    Tyrosine kinase inhibitor sunitinib (used in GIST, advanced RCC, and pancreatic neuroendocrine tumors) undergoes CYP3A4 metabolism and is an ABCB1B and ABCG2 efflux transporters substrate. We assessed the pharmacokinetic interaction with ibuprofen (an NSAID used by patients with cancer) in Balb/c male and female mice. Mice (study group) were coadministered (30 min apart) 30 mg/kg of ibuprofen and 60 mg/kg of sunitinib PO and compared with the control groups, which received sunitinib alone (60 mg/kg, PO). Sunitinib concentration in plasma, brain, kidney, and liver was measured by HPLC as scheduled and noncompartmental pharmacokinetic parameters estimated. In female control mice, sunitinib AUC0→∞ decreased in plasma (P brain (P brain, liver, and kidney (all P brain (all P brain (P drug tissue targeting index, and the tissue-plasma hysteresis-like plots also showed sex-based ibuprofen-sunitinib drug interaction differences. The results illustrate the relevance of this DDI on sunitinib pharmacokinetics and tissue uptake. These may be due to gender-based P450 and efflux/transporters differences.

  2. Slingshot: a PiggyBac based transposon system for tamoxifen-inducible 'self-inactivating' insertional mutagenesis.

    Science.gov (United States)

    Kong, Jun; Wang, Feng; Brenton, James D; Adams, David J

    2010-10-01

    We have developed a self-inactivating PiggyBac transposon system for tamoxifen inducible insertional mutagenesis from a stably integrated chromosomal donor. This system, which we have named 'Slingshot', utilizes a transposon carrying elements for both gain- and loss-of-function screens in vitro. We show that the Slingshot transposon can be efficiently mobilized from a range of chromosomal loci with high inducibility and low background generating insertions that are randomly dispersed throughout the genome. Furthermore, we show that once the Slingshot transposon has been mobilized it is not remobilized producing stable clonal integrants in all daughter cells. To illustrate the efficacy of Slingshot as a screening tool we set out to identify mediators of resistance to puromycin and the chemotherapeutic drug vincristine by performing genetrap screens in mouse embryonic stem cells. From these genome-wide screens we identified multiple independent insertions in the multidrug resistance transporter genes Abcb1a/b and Abcg2 conferring resistance to drug treatment. Importantly, we also show that the Slingshot transposon system is functional in other mammalian cell lines such as human HEK293, OVCAR-3 and PE01 cells suggesting that it may be used in a range of cell culture systems. Slingshot represents a flexible and potent system for genome-wide transposon-mediated mutagenesis with many potential applications.

  3. Retrograde cholesterol transport in the human Caco-2/TC7 cell line: a model to study trans-intestinal cholesterol excretion in atherogenic and diabetic dyslipidemia.

    Science.gov (United States)

    Dugardin, Camille; Briand, Olivier; Touche, Véronique; Schonewille, Marleen; Moreau, François; Le May, Cédric; Groen, Albert K; Staels, Bart; Lestavel, Sophie

    2017-02-01

    The dyslipidemia associated with type 2 diabetes is a major risk factor for the development of atherosclerosis. Trans-intestinal cholesterol excretion (TICE) has recently been shown to contribute, together with the classical hepatobiliary route, to fecal cholesterol excretion and cholesterol homeostasis. The aim of this study was to develop an in vitro cell model to investigate enterocyte-related processes of TICE. Differentiated Caco-2/TC7 cells were grown on transwells and incubated basolaterally (blood side) with human plasma and apically (luminal side) with lipid micelles. Radioactive and fluorescent cholesterol tracers were used to investigate cholesterol uptake at the basolateral membrane, intracellular distribution and apical excretion. Our results show that cholesterol is taken up at the basolateral membrane, accumulates intracellularly as lipid droplets and undergoes a cholesterol acceptor-facilitated and progressive excretion through the apical membrane of enterocytes. The overall process is abolished at 4 °C, suggesting a biologically active phenomenon. Moreover, this trans-enterocytic retrograde cholesterol transport displays some TICE features like modulation by PCSK9 and an ABCB1 inhibitor. Finally, we highlight the involvement of microtubules in the transport of plasma cholesterol from basolateral to apical pole of enterocytes. The human Caco-2/TC7 cell line appears a good in vitro model to investigate the enterocytic molecular mechanisms of TICE, which may help to identify intestinal molecular targets to enhance reverse cholesterol transport and fight against dyslipidemia.

  4. Ailesbury Private Nursing Home, 58 Park Avenue, Sandymount, Dublin 4.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Renal cell carcinoma patients respond poorly to conventional chemotherapy, this unresponsiveness may be attributable to multidrug resistance (MDR). The mechanisms of MDR in renal cancer are not fully understood and the specific contribution of ABC transporter proteins which have been implicated in the chemoresistance of various cancers has not been fully defined in this disease. METHODS: In this retrospective study the expression of two of these transporter efflux pumps, namely MDR-1 P-gp (ABCB1) and MRP-1 (ABCC1) were studied by immunohistochemistry in archival material from 95 renal cell carcinoma patients. RESULTS: In the first study investigating MDR-1 P-gp and MRP-1 protein expression patterns in renal cell carcinoma patients, high levels of expression of both efflux pumps are observed with 100% of tumours studied showing MDR-1 P-gp and MRP-1 positivity. CONCLUSION: Although these findings do not prove a causal role, the high frequency of tumours expressing these efflux pumps suggests that they may be important contributors to the chemoresistance of this tumour type.

  5. A Critical View on In Vitro Analysis of P-glycoprotein (P-gp) Transport Kinetics.

    Science.gov (United States)

    Saaby, Lasse; Brodin, Birger

    2017-09-01

    Transport proteins expressed in the different barriers of the human body can have great implications on absorption, distribution, and excretion of drug compounds. Inhibition or saturation of a transporter can potentially alter these absorbtion, distribution, metabolism and elimination properties and thereby also the pharmacokinetic profile and bioavailability of drug compounds. P-glycoprotein (P-gp, ABCB1) is an efflux transporter which is present in most of the barriers of the body, including the small intestine, the blood-brain barrier, the liver, and the kidney. In all these tissues, P-gp may mediate efflux of drug compounds and may also be a potential site for drug-drug interactions. Consequently, there is a need to be able to predict the saturation and inhibition of P-gp and other transporters in vivo. For this purpose, Michaelis-Menten steady-state analysis has been applied to estimate kinetic parameters, such as Km and Vmax, for carrier-mediated transport, whereas half-maximal inhibitor concentration (IC50) and the disassociation constant for an inhibitor/P-gp complex (Ki) have been determined to estimate P-gp inhibition. This review addresses in vitro methods commonly used to study P-gp transport kinetics and aims at providing a critical evaluation of the application of steady-state Michaelis-Menten analysis of kinetic parameters for substrate/P-gp interactions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Molecular Genetics of Drug-resistance in Epilepsies

    Directory of Open Access Journals (Sweden)

    Kurupath Radhakrishnan

    2015-06-01

    Full Text Available Nearly one-third of newly diagnosed patients with epilepsy remain unresponsive to antiepileptic drugs (AEDs, etiopathogenesis of which is poorly understood. The genes encoding the proteins that regulate the pharmacokinetics such as P-glycoprotein [ABCBI], major vault protein [MVP gene] and drug metabolizing enzymes [ABCB1, ABCG2, MVP, CYP2C9, CYP2C19, CYP3A4, CYP3A5, EPHX1, UGT1A1, UGT2B7], and pharmacodynamics such as sodium channels [SCN1A, SCN2A] and GABA receptors [GABRA1, GABRA6, GABRB2, GABRG2] of AEDs are under intense investigation to unravel the mysteries of AED-resistance. However, till today, a consistent and reliable result that could help the clinician either to predict drug resistance or to overcome it has not been forthcoming. The discrepant results may be related to variations in the definition of drug-resistance, heterogeneous patient populations, ethnic variations in the frequency distribution of single nucleotide polymorphisms (SNPs and the selection of SNPs. Understanding of these limitations of existing studies, hopefully, will help in designing better studies. Nearly one-third of newly diagnosed patients with epilepsy remain unresponsive toantiepileptic drugs (AEDs, etiopathogenesis of which is poorly understood. The genesencoding the proteins that regulate the pharmacokinetics such as P-glycoprotein[ABCBI], major vault protein [MVP gene] and drug metabolizing enzymes [ABCB1,ABCG2, MVP, CYP2C9, CYP2C19, CYP3A4, CYP3A5, EPHX1, UGT1A1, UGT2B7],and pharmacodynamics such as sodium channels [SCN1A, SCN2A] and GABAreceptors [GABRA1, GABRA6, GABRB2, GABRG2] of AEDs are under intenseinvestigation to unravel the mysteries of AED-resistance. However, till today, aconsistent and reliable result that could help the clinician either to predict drugresistanceor to overcome it has not been forthcoming. The discrepant results may berelated to variations in the definition of drug-resistance, heterogeneous patientpopulations, ethnic

  7. Pegylated liposomal formulation of doxorubicin overcomes drug resistance in a genetically engineered mouse model of breast cancer.

    Science.gov (United States)

    Füredi, András; Szebényi, Kornélia; Tóth, Szilárd; Cserepes, Mihály; Hámori, Lilla; Nagy, Veronika; Karai, Edina; Vajdovich, Péter; Imre, Tímea; Szabó, Pál; Szüts, Dávid; Tóvári, József; Szakács, Gergely

    2017-09-10

    Success of cancer treatment is often hampered by the emergence of multidrug resistance (MDR) mediated by P-glycoprotein (ABCB1/Pgp). Doxorubicin (DOX) is recognized by Pgp and therefore it can induce therapy resistance in breast cancer patients. In this study our aim was to evaluate the susceptibility of the pegylated liposomal formulation of doxorubicin (PLD/Doxil®/Caelyx®) to MDR. We show that cells selected to be resistant to DOX are cross-resistant to PLD and PLD is also ineffective in an allograft model of doxorubicin-resistant mouse B-cell leukemia. In contrast, PLD was far more efficient than DOX as reflected by a significant increase of both relapse-free and overall survival of Brca1(-/-);p53(-/-) mammary tumor bearing mice. Increased survival could be explained by the delayed onset of drug resistance. Consistent with the higher Pgp levels needed to confer resistance, PLD administration was able to overcome doxorubicin insensitivity of the mouse mammary tumors. Our results indicate that the favorable pharmacokinetics achieved with PLD can effectively overcome Pgp-mediated resistance, suggesting that PLD therapy could be a promising strategy for the treatment of therapy-resistant breast cancer patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Authentication and characterisation of a new oesophageal adenocarcinoma cell line: MFD-1

    Science.gov (United States)

    Garcia, Edwin; Hayden, Annette; Birts, Charles; Britton, Edward; Cowie, Andrew; Pickard, Karen; Mellone, Massimiliano; Choh, Clarisa; Derouet, Mathieu; Duriez, Patrick; Noble, Fergus; White, Michael J.; Primrose, John N.; Strefford, Jonathan C.; Rose-Zerilli, Matthew; Thomas, Gareth J.; Ang, Yeng; Sharrocks, Andrew D.; Fitzgerald, Rebecca C.; Underwood, Timothy J.; MacRae, Shona; Grehan, Nicola; Abdullahi, Zarah; de la Rue, Rachel; Noorani, Ayesha; Elliott, Rachael Fels; de Silva, Nadeera; Bornschein, Jan; O’Donovan, Maria; Contino, Gianmarco; Yang, Tsun-Po; Chettouh, Hamza; Crawte, Jason; Nutzinger, Barbara; Edwards, Paul A. W.; Smith, Laura; Miremadi, Ahmad; Malhotra, Shalini; Cluroe, Alison; Hardwick, Richard; Davies, Jim; Ford, Hugo; Gilligan, David; Safranek, Peter; Hindmarsh, Andy; Sujendran, Vijayendran; Carroll, Nick; Turkington, Richard; Hayes, Stephen J.; Ang, Yeng; Preston, Shaun R.; Oakes, Sarah; Bagwan, Izhar; Save, Vicki; Skipworth, Richard J. E.; Hupp, Ted R.; O’Neill, J. Robert; Tucker, Olga; Taniere, Philippe; Owsley, Jack; Crichton, Charles; Schusterreiter, Christian; Barr, Hugh; Shepherd, Neil; Old, Oliver; Lagergren, Jesper; Gossage, James; Davies, Andrew; Chang, Fuju; Zylstra, Janine; Sanders, Grant; Berrisford, Richard; Harden, Catherine; Bunting, David; Lewis, Mike; Cheong, Ed; Kumar, Bhaskar; Parsons, Simon L.; Soomro, Irshad; Kaye, Philip; Saunders, John; Lovat, Laurence; Haidry, Rehan; Eneh, Victor; Igali, Laszlo; Welch, Ian; Scott, Michael; Sothi, Shamila; Suortamo, Sari; Lishman, Suzy; Beardsmore, Duncan; Anderson, Charlotte; Smith, Mike L.; Secrier, Maria; Eldridge, Matthew D.; Bower, Lawrence; Achilleos, Achilleas; Lynch, Andy G.; Tavare, Simon

    2016-01-01

    New biological tools are required to understand the functional significance of genetic events revealed by whole genome sequencing (WGS) studies in oesophageal adenocarcinoma (OAC). The MFD-1 cell line was isolated from a 55-year-old male with OAC without recombinant-DNA transformation. Somatic genetic variations from MFD-1, tumour, normal oesophagus, and leucocytes were analysed with SNP6. WGS was performed in tumour and leucocytes. RNAseq was performed in MFD-1, and two classic OAC cell lines FLO1 and OE33. Transposase-accessible chromatin sequencing (ATAC-seq) was performed in MFD-1, OE33, and non-neoplastic HET1A cells. Functional studies were performed. MFD-1 had a high SNP genotype concordance with matched germline/tumour. Parental tumour and MFD-1 carried four somatically acquired mutations in three recurrent mutated genes in OAC: TP53, ABCB1 and SEMA5A, not present in FLO-1 or OE33. MFD-1 displayed high expression of epithelial and glandular markers and a unique fingerprint of open chromatin. MFD-1 was tumorigenic in SCID mouse and proliferative and invasive in 3D cultures. The clinical utility of whole genome sequencing projects will be delivered using accurate model systems to develop molecular-phenotype therapeutics. We have described the first such system to arise from the oesophageal International Cancer Genome Consortium project. PMID:27600491

  9. Investigating the compatibility of the biocontrol agent Clonostachys rosea IK726 with prodigiosin-producing Serratia rubidaea S55 and phenazine-producing Pseudomonas chlororaphis ToZa7.

    Science.gov (United States)

    Kamou, Nathalie N; Dubey, Mukesh; Tzelepis, Georgios; Menexes, Georgios; Papadakis, Emmanouil N; Karlsson, Magnus; Lagopodi, Anastasia L; Jensen, Dan Funck

    2016-05-01

    This study was carried out to assess the compatibility of the biocontrol fungus Clonostachys rosea IK726 with the phenazine-producing Pseudomonas chlororaphis ToZa7 or with the prodigiosin-producing Serratia rubidaea S55 against Fusarium oxysporum f. sp. radicis-lycopersici. The pathogen was inhibited by both strains in vitro, whereas C. rosea displayed high tolerance to S. rubidaea but not to P. chlororaphis. We hypothesized that this could be attributed to the ATP-binding cassette (ABC) proteins. The results of the reverse transcription quantitative PCR showed an induction of seven genes (abcB1, abcB20, abcB26, abcC12, abcC12, abcG8 and abcG25) from subfamilies B, C and G. In planta experiments showed a significant reduction in foot and root rot on tomato plants inoculated with C. rosea and P. chlororaphis. This study demonstrates the potential for combining different biocontrol agents and suggests an involvement of ABC transporters in secondary metabolite tolerance in C. rosea.

  10. Pharmacogenomics of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Vandana Sharma

    2017-01-01

    Full Text Available Variation in pain sensitivity and analgesic drug response is well recognized among individuals. Pharmacogenomics hypothesis dictates that a patient′s response to a drug or development of adverse drug effects may depend on variation in genetic profile, in particular, the different alleles for the same gene that an individual carries. A review of the role of genetic variations in determining the receptor sensitivity and modulation of pain, response to analgesics drugs and their interactions are presented in this article. It is already known that genomic variations affect the pharmacokinetic and pharmacodynamic properties of various analgesic drugs. Genes related to the expression of mu-opioid receptor, ATP-binding cassette B1 (ABCB1, catechol-O-Methyl Transferase (COMT, Cytochrome P450 enzymes have been widely studied and show some promise in determining the drug response in individuals. Some recent studies on sodium channel mutations (SCN9A, SCN11A have been implicated in congenital insensitivity to pain. Voltage gated ion channels such as sodium, calcium and potassium channels are being targeted for development of novel analgesics. Based on the available research, the clinical implementation of pharmacogenomics for personalized pain medicine is still in its infancy, but is promising. These are opening further opportunities for development of newer analgesics targeting pain receptors and ion channels.

  11. Effect of bisphenol A on P-glycoprotein-mediated efflux and ultrastructure of the sea urchin embryo.

    Science.gov (United States)

    Bošnjak, Ivana; Borra, Marco; Iamunno, Franco; Benvenuto, Giovanna; Ujević, Ivana; Bušelić, Ivana; Roje-Busatto, Romana; Mladineo, Ivona

    2014-11-01

    Usage of bisphenol A (BPA) in production of polycarbonate plastics has resulted in global distribution of BPA in the environment. These high concentrations cause numerous negative effects to the aquatic biota, among which the most known is the induction of endocrine disruption. The focus of this research was to determine the effects of two experimentally determined concentrations of BPA (100nM and 4μM) on cellular detoxification mechanisms during the embryonic development (2-cell, pluteus) of the rocky sea urchin (Paracentrotus lividus), primarily the potential involvement of multidrug efflux transport in the BPA intercellular efflux. The results of transport assay, measurements of the intracellular BPA and gene expression surveys, for the first time indicate the importance of P-glycoprotein (P-gp/ABCB1) in defense against BPA. Cytotoxic effects of BPA, validated by the immunohistochemistry (IHC) and the transmission electron microscopy (TEM), induced the aberrant karyokinesis, and consequently, the impairment of embryo development through the first cell division and retardation.

  12. A critical role of a carboxylate in proton conduction by the ATP-binding cassette multidrug transporter LmrA.

    Science.gov (United States)

    Shilling, Richard; Federici, Luca; Walas, Fabien; Venter, Henrietta; Velamakanni, Saroj; Woebking, Barbara; Balakrishnan, Lekshmy; Luisi, Ben; van Veen, Hendrik W

    2005-10-01

    The ATP binding cassette (ABC) transporter LmrA from the bacterium Lactococcus lactis is a homolog of the human multidrug resistance P-glycoprotein (ABCB1), the activity of which impairs the efficacy of chemotherapy. In a previous study, LmrA was shown to mediate ethidium efflux by an ATP-dependent proton-ethidium symport reaction in which the carboxylate E314 is critical. The functional importance of this key residue for ABC proteins was suggested by its conservation in a wider family of related transporters; however, the structural basis of its role was not apparent. Here, we have used homology modeling to define the structural environment of E314. The residue is nested in a hydrophobic environment that probably elevates its pKa, accounting for the pH dependency of drug efflux that we report in this work. Functional analyses of wild-type and mutant proteins in cells and proteoliposomes support our proposal for the mechanistic role of E314 in proton-coupled ethidium transport. As the carboxylate is known to participate in proton translocation by secondary-active transporters, our observations suggest that this substituent can play a similar role in the activity of ABC transporters.

  13. Sorghum Dw2 Encodes a Protein Kinase Regulator of Stem Internode Length.

    Science.gov (United States)

    Hilley, Josie L; Weers, Brock D; Truong, Sandra K; McCormick, Ryan F; Mattison, Ashley J; McKinley, Brian A; Morishige, Daryl T; Mullet, John E

    2017-07-04

    Sorghum is an important C4 grass crop grown for grain, forage, sugar, and bioenergy production. While tall, late flowering landraces are commonly grown in Africa, short early flowering varieties were selected in US grain sorghum breeding programs to reduce lodging and to facilitate machine harvesting. Four loci have been identified that affect stem length (Dw1-Dw4). Subsequent research showed that Dw3 encodes an ABCB1 auxin transporter and Dw1 encodes a highly conserved protein involved in the regulation of cell proliferation. In this study, Dw2 was identified by fine-mapping and further confirmed by sequencing the Dw2 alleles in Dwarf Yellow Milo and Double Dwarf Yellow Milo, the progenitor genotypes where the recessive allele of dw2 originated. The Dw2 locus was determined to correspond to Sobic.006G067700, a gene that encodes a protein kinase that is homologous to KIPK, a member of the AGCVIII subgroup of the AGC protein kinase family in Arabidopsis.

  14. Pharmacogenetics and antipsychotic treatment response.

    Science.gov (United States)

    Naumovska, Z; Nestorovska, A K; Filipce, A; Sterjev, Z; Brezovska, K; Dimovski, A; Suturkova, L J

    2015-01-01

    Antipsychotic drugs are widely used in the treatment of schizophrenia and psychotic disorder. The lack of antipsychotic response and treatment-induced side-effects, such as neuroleptic syndrome, polydipsia, metabolic syndrome, weight gain, extrapyramidal symptoms, tardive dyskinesia or prolactin increase, are the two main reasons for non-compliance and increased morbidity in schizophrenic patients. During the past decades intensive research has been done in order to determine the influence of genetic variations on antipsychotics dosage, treatment efficacy and safety. The present work reviews the molecular basis of treatment response of schizophrenia. It highlights the most important findings about the impact of functional polymorphisms in genes coding the CYP450 metabolizing enzymes, ABCB1 transporter gene, dopaminergic and serotonergic drug targets (DRD2, DRD3, DRD4, 5-HT1, 5HT-2A, 5HT-2C, 5HT6) as well as genes responsible for metabolism of neurotransmitters and G signalling pathways (5-HTTLPR, BDNF, COMT, RGS4) and points their role as potential biomarkers in everyday clinical practice. Pharmacogenetic testing has predictive power in the selection of antipsychotic drugs and doses tailored according to the patient's genetic profile. In this perception pharmacogenetics could help in the improvement of treatment response by using different medicinal approaches that would avoid potential adverse effects, reduce stabilization time and will advance the prognosis of schizophrenic patients.

  15. Measurement of multiple drug resistance transporter activity in putative cancer stem/progenitor cells.

    Science.gov (United States)

    Donnenberg, Vera S; Meyer, E Michael; Donnenberg, Albert D

    2009-01-01

    Multiple drug resistance, mediated by the expression and activity of ABC-transporters, is a major obstacle to antineoplastic therapy. Normal tissue stem cells and their malignant counterparts share MDR transporter activity as a major mechanism of self-protection. Although MDR activity is upregulated in response to substrate chemotherapeutic agents, it is also constitutively expressed on both normal tissue stem cells and a subset of tumor cells prior to the initiation of therapy, representing a built-in obstacle to therapeutic ratio. Constitutive and induced MDR activity can be detected in cellular subsets of disaggregated tissues, using the fluorescent substrates Rhodamine 123 and Hoechst 33342 for ABCB1 (also known as P-gp and MDR1) and ABCG2 (BCRP1). In this chapter, we will describe the complete procedure for the detection of MDR activity, including: (1) Preparing single-cell suspensions from tumor and normal tissue specimens; (2) An efficient method to perform cell surface marker staining on large numbers of cells; (3) Flow cytometer setup and controls; (4) Simultaneous measurement of Hoechst 33342 and Rhodamine123 transport; and (5) Data acquisition and analysis.

  16. St. John's Wort reduces beta-amyloid accumulation in a double transgenic Alzheimer's disease mouse model-role of P-glycoprotein.

    Science.gov (United States)

    Brenn, Anja; Grube, Markus; Jedlitschky, Gabriele; Fischer, Andrea; Strohmeier, Barbara; Eiden, Martin; Keller, Markus; Groschup, Martin H; Vogelgesang, Silke

    2014-01-01

    The adenosine triphosphate-binding cassette transport protein P-glycoprotein (ABCB1) is involved in the export of beta-amyloid from the brain into the blood, and there is evidence that age-associated deficits in cerebral P-glycoprotein content may be involved in Alzheimer's disease pathogenesis. P-glycoprotein function and expression can be pharmacologically induced by a variety of compounds including extracts of Hypericum perforatum (St. John's Wort). To clarify the effect of St. John's Wort on the accumulation of beta-amyloid and P-glycoprotein expression in the brain, St. John's Wort extract (final hyperforin concentration 5%) was fed to 30-day-old male C57BL/6J-APP/PS1(+/-) mice over a period of 60 or 120 days, respectively. Age-matched male C57BL/6J-APP/PS1(+/-) mice receiving a St. John's Wort-free diet served as controls. Mice receiving St. John's Wort extract showed (i) significant reductions of parenchymal beta-amyloid 1-40 and 1-42 accumulation; and (ii) moderate, but statistically significant increases in cerebrovascular P-glycoprotein expression. Thus, the induction of cerebrovascular P-glycoprotein may be a novel therapeutic strategy to protect the brain from beta-amyloid accumulation, and thereby impede the progression of Alzheimer's disease.

  17. MUC1 induces drug resistance in pancreatic cancer cells via upregulation of multidrug resistance genes.

    Science.gov (United States)

    Nath, S; Daneshvar, K; Roy, L D; Grover, P; Kidiyoor, A; Mosley, L; Sahraei, M; Mukherjee, P

    2013-06-17

    MUC1 (CD227), a membrane tethered mucin glycoprotein, is overexpressed in >60% of human pancreatic cancers (PCs), and is associated with poor prognosis, enhanced metastasis and chemoresistance. The objective of this study was to delineate the mechanism by which MUC1 induces drug resistance in human (BxPC3 and Capan-1) and mouse (KCKO, KCM) PC cells. We report that PC cells that express high levels of MUC1 exhibit increased resistance to chemotherapeutic drugs (gemcitabine and etoposide) in comparison with cells that express low levels of MUC1. This chemo resistance was attributed to the enhanced expression of multidrug resistance (MDR) genes including ABCC1, ABCC3, ABCC5 and ABCB1. In particular, levels of MRP1 protein encoded by the ABCC1 gene were significantly higher in the MUC1-high PC cells. In BxPC3 and Capan-1 cells MUC1 upregulates MRP1 via an Akt-dependent pathway, whereas in KCM cells MUC1-mediated MRP1 upregulation is via an Akt-independent mechanism. In KCM, BxPC3 and Capan-1 cells, the cytoplasmic tail motif of MUC1 associates directly with the promoter region of the Abcc1/ABCC1 gene, indicating a possible role of MUC1 acting as a transcriptional regulator of this gene. This is the first report to show that MUC1 can directly regulate the expression of MDR genes in PC cells, and thus confer drug resistance.

  18. Risk stratification of intermediate-risk acute myeloid leukemia: integrative analysis of a multitude of gene mutation and gene expression markers.

    Science.gov (United States)

    Rockova, Veronika; Abbas, Saman; Wouters, Bas J; Erpelinck, Claudia A J; Beverloo, H Berna; Delwel, Ruud; van Putten, Wim L J; Löwenberg, Bob; Valk, Peter J M

    2011-07-28

    Numerous molecular markers have been recently discovered as potential prognostic factors in acute myeloid leukemia (AML). It has become of critical importance to thoroughly evaluate their interrelationships and relative prognostic importance. Gene expression profiling was conducted in a well-characterized cohort of 439 AML patients (age < 60 years) to determine expression levels of EVI1, WT1, BCL2, ABCB1, BAALC, FLT3, CD34, INDO, ERG and MN1. A variety of AML-specific mutations were evaluated, that is, FLT3, NPM1, N-RAS, K-RAS, IDH1, IDH2, and CEBPA(DM/SM) (double/single). Univariable survival analysis shows that (1) patients with FLT3(ITD) mutations have inferior overall survival (OS) and event-free survival (EFS), whereas CEBPA(DM) and NPM1 mutations indicate favorable OS and EFS in intermediate-risk AML, and (2) high transcript levels of BAALC, CD34, MN1, EVl1, and ERG predict inferior OS and EFS. In multivariable survival analysis, CD34, ERG, and CEBPA(DM) remain significant. Using survival tree and regression methodologies, we show that CEBPA(DM), CD34, and IDH2 mutations are capable of separating the intermediate group into 2 AML subgroups with highly distinctive survival characteristics (OS at 60 months: 51.9% vs 14.9%). The integrated statistical approach demonstrates that from the multitude of biomarkers a greatly condensed subset can be selected for improved stratification of intermediate-risk AML.

  19. MDR1 Gene Polymorphisms and Clinical Relevance%MDR1基因多态性及其临床相关性研究进展

    Institute of Scientific and Technical Information of China (English)

    李艳红; 王永华; 李燕; 杨凌

    2006-01-01

    体内外研究证明,人体中P-gp在药物的吸收、分布、代谢和排泄(ADME)过程中发挥了非常重要的作用.多药耐药基因MDR1(ABCB1)是P-gp的编码基因.药物基因组学和遗传药理学研究发现在不同个体中MDR1基因多态性与P-gp表达和功能的改变密切相关,而且这些多态位点存在基因型分布和等位基因频率的种族差异性.近几年,已陆续发现在MDR1基因中有50处单核苷酸多态性(SNPs)和3处插入与缺失多态性.随后,大量文献报道某些位点的SNPs如C3435T会使个体患病的易感性增加.因此人们相信,深入研究MDR1基因多态性与P-gp的生理和生化方面的相关性将对个体医疗有着非常深远的意义.文章总结了国外最新的研究进展并结合本实验室的工作着重讨论了4个方面:1)P-gp对药代动力学性质的影响;2)MDR1基因多态性及其对遗传药理学性质的影响;3)MDR1C3435T的单核苷酸多态性与P-gp表达和功能之间的相关性;4)MDR1基因多态性与人类某些疾病之间的相关性.%In vivo and in vitro studies have demonstrated that P-glycoprotein (P-gp) plays a very significant role in the ADME processes (absorption, distribution, metabolism, excretion) and drug-drug interaction (DDI) of drugs in humans. P-gp is the product of multidrug resistance gene (MDR1/ABCB1). Pharmacogenomics and pharmacogenetics studies have revealed that genetic polymorphisms of MDR1 are associated with alteration in P-gp expression and function in different ethnicities and subjects. By now, 50single nucleotide polymorphisms (SNPs) and 3 insertion/deletion polymorphisms have been found in the MDR1 gene. Some of them, such as C3435T, have been identified to be a risk factor for numerous diseases. It is believed that further understanding of the physiology and biochemistry of P-gp with respect to its genetic variations may be important for individualized pharmacotherapy.Therefore, based on the latest public information

  20. Multi-drug resistance gene (MDR1 and opioid analgesia in horses Gene de resistência múltipla aos fármacos e analgesia opióide em eqüinos

    Directory of Open Access Journals (Sweden)

    Cláudio Corrêa Natalini

    2006-02-01

    Full Text Available Opioid absorption in the intestinal tract as well as its effects in the central nervous system is modulated by the P-glycoprotein (P-gp encoded in the Multi-drug Resistance gene (MDR1 also named ATP-binding cassete, subfamily B, member 1 (ABCB1. This MDR1 gene acts as a selective pump. The expression of this protein in humans and rodents inhibits cellular uptake of substrate opioids. The presence of the intestinal iso-enzyme CYP3A4 associated with MDR1 gene decreases the opioid analgesic activity due to an increase in intestinal metabolism, with a predicted intestinal first pass extraction around 20% which significantly influences the oral availability of opioids. In the central nervous system, P-gp expression decreases opioid neuronal uptake diminishing the analgesic effects. It is unknown if horses have the MDR1 gene and P-gp and what are the effects on opioid absorption, metabolism, and analgesia. Identifying the MDR1 gene and P-gp status in horses is of great importance in order to better understand opioid pharmacologic effects in horses.A absorção de opióides no trato intestinal, assim como seus efeitos no sistema nervoso central, são modulados pela P-glicoproteína (P-gp, uma proteína de membrana celular codificada pelo gene MDR1, também chamado ATP-binding cassete, subfamília B, membro 1 (ABCB1 e que atua como bomba seletiva. A expressão desta proteína em roedores e seres humanos inibe a absorção celular de opióides e sua presença no intestino associada à isoenzima CYP3A4 reduz a atividade analgésica dos opióides por ativação do metabolismo intestinal do fármaco. A redução na extração intestinal de fármacos opióides susceptíveis a esta proteína chega a 20%, o que reduz significativamente a biodisponibilidade de opióides administrados por via oral. No sistema nervoso central, a P-gp diminui a captação neuronal dos opióides e seus efeitos analgésicos. Ainda é desconhecido se o gene MDR1 e a P-gp est

  1. Differential Gene Expression across Breed and Sex in Commercial Pigs Administered Fenbendazole and Flunixin Meglumine.

    Science.gov (United States)

    Howard, Jeremy T; O'Nan, Audrey T; Maltecca, Christian; Baynes, Ronald E; Ashwell, Melissa S

    2015-01-01

    Characterizing the variability in transcript levels across breeds and sex in swine for genes that play a role in drug metabolism may shed light on breed and sex differences in drug metabolism. The objective of the study is to determine if there is heterogeneity between swine breeds and sex in transcript levels for genes previously shown to play a role in drug metabolism for animals administered flunixin meglumine or fenbendazole. Crossbred nursery female and castrated male pigs (n = 169) spread across 5 groups were utilized. Sires (n = 15) of the pigs were purebred Duroc, Landrace, Yorkshire or Hampshire boars mated to a common sow population. Animals were randomly placed into the following treatments: no drug (control), flunixin meglumine, or fenbendazole. One hour after the second dosing, animals were sacrificed and liver samples collected. Quantitative Real-Time PCR was used to measure liver gene expression of the following genes: SULT1A1, ABCB1, CYP1A2, CYP2E1, CYP3A22 and CYP3A29. The control animals were used to investigate baseline transcript level differences across breed and sex. Post drug administration transcript differences across breed and sex were investigated by comparing animals administered the drug to the controls. Contrasts to determine fold change were constructed from a model that included fixed and random effects within each drug. Significant (P-value fenbendazole, respectively. The current analysis found transcript level differences across swine breeds and sex for multiple genes, which provides greater insight into the relationship between flunixin meglumine and fenbendazole and known drug metabolizing genes.

  2. Testing of candidate single nucleotide variants associated with paclitaxel neuropathy in the trial NCCTG N08C1 (Alliance).

    Science.gov (United States)

    Boora, Ganesh K; Kanwar, Rahul; Kulkarni, Amit A; Abyzov, Alexej; Sloan, Jeff; Ruddy, Kathryn J; Banck, Michaela S; Loprinzi, Charles L; Beutler, Andreas S

    2016-04-01

    Paclitaxel-induced peripheral neuropathy (PIPN) cannot be predicted from clinical parameters and might have a pharmacogenomic basis. Previous studies identified single nucleotide variants (SNV) associated with PIPN. However, only a subset of findings has been confirmed to date in more than one study, suggesting a need for further re-testing and validation in additional clinical cohorts. Candidate PIPN-associated SNVs were identified from the literature. SNVs were retested in 119 patients selected by extreme phenotyping from 269 in NCCTG N08C1 (Alliance) as previously reported. SNV genotyping was performed by a combination of short-read sequencing analysis and Taqman PCR. These 22 candidate PIPN SNVs were genotyped. Two of these, rs7349683 in the EPHA5 and rs3213619 in ABCB1 were found to be significantly associated with PIPN with an Odds ratios OR = 2.07 (P = 0.02) and OR = 0.12 (P = 0.03), respectively. In addition, three SNVs showed a trend toward a risk- or protective effect that was consistent with previous reports. The rs10509681 and rs11572080 in the gene CYP2C8*3 showed risk effect with an OR = 1.49 and rs1056836 in CYP1B1 showed a protective effect with an OR = 0.66. None of the other results supported the previously reported associations, including some SNVs displaying an opposite direction of effect from previous reports, including rs1058930 in CYP2C8, rs17222723 and rs8187710 in ABCC2, rs10771973 in FGD4, rs16916932 in CACNB2 and rs16948748 in PITPNA. Alliance N08C1 validated or supported a minority of previously reported SNV-PIPN associations. Associations previously reported by multiple studies appeared to have a higher likelihood to be validated by Alliance N08C1.

  3. The maize PIN gene family of auxin transporters

    Directory of Open Access Journals (Sweden)

    Cristian eForestan

    2012-02-01

    Full Text Available Auxin is a key regulator of plant development and its differential distribution in plant tissues, established by a polar cell-to-cell transport, can trigger a wide range of developmental processes. A few members of the two families of auxin efflux transport proteins, PIN-formed (PIN and P-glycoprotein (ABCB/PGP, have so far been characterized in maize. Nine new Zea mays auxin efflux carriers PIN family members and two maize PIN-like genes have now been identified. Four members of PIN1 (named ZmPIN1a–d cluster, one gene homologous to AtPIN2 (ZmPIN2, three orthologs of PIN5 (ZmPIN5a–c, one gene paired with AtPIN8 (ZmPIN8, and three monocot-specific PINs (ZmPIN9, ZmPIN10a and b were cloned and the phylogenetic relationships between early land plants, monocots and eudicots PIN proteins investigated, including the new maize PIN proteins. Tissue-specific expression patterns of the twelve maize PIN genes, two PIN-like genes and ZmABCB1, an ABCB auxin efflux carrier, were analyzed using semi-quantitative RT–PCR. ZmPIN gene transcripts have overlapping expression domains in the root apex, during male and female inflorescence differentiation and kernel development. However, some PIN family members have specific tissue localization: ZmPIN1d transcript marks the L1 layer of the SAM and IM during the flowering transition and the monocot-specific ZmPIN9 is expressed in the root endodermis and pericycle. The phylogenetic and gene structure analyses together with the expression pattern of the ZmPIN gene family indicate that subfunctionalization of some maize PINs can be associated to the differentiation and development of monocot-specific organs and tissues and might have occurred after the divergence between dicots and monocots.

  4. Pharmacogenomic diversity among Brazilians: Influence of ancestry, self-reported Color and geographical origin

    Directory of Open Access Journals (Sweden)

    Guilherme eSuarez-Kurtz

    2012-11-01

    Full Text Available By virtue of being the product of the genetic admixture of three ancestral roots: Europeans, Africans and Amerindians, the present day Brazilian population displays very high levels of genomic diversity, which have important pharmacogenetic/-genomic (PGx implications. Recognition of this fact has prompted the creation of the Brazilian Pharmacogenomics Network (Refargen, a nationwide consortium of research groups, with the mission to provide leadership in PGx research and education in Brazil, with a population heath impact. Here, we present original data and review published results from a Refargen comprehensive study of the distribution of PGx polymorphisms in a representative cohort of the Brazilian people, comprising 1,034 healthy, unrelated adults, self-identified as white, brown or black, according to the Color categories adopted by the Brazilian Census. Multinomial log-linear regression analysis was applied to infer the statistical association between allele, genotype and haplotype distributions among Brazilians (response variables and self-reported Color, geographical region and biogeographical ancestry (explanatory variables, whereas Wright´s FST statistics was used to assess the extent of PGx divergence among different strata of the Brazilian population. Major PGx implications of these findings are: first, extrapolation of data from relatively well-defined ethnic groups is clearly not applicable to the majority of Brazilians; second, the frequency distribution of polymorphisms in several pharmacogenes of clinical relevance (e.g. ABCB1, CYP3A5, CYP2C9, VKORC varies continuously among Brazilians and is not captured by race/Color self-identification; third, the intrinsic heterogeneity of the Brazilian population must be acknowledged in the design and interpretation of PGx studies in order to avoid spurious conclusions based on improper matching of study cohorts.

  5. Interaction of the P-Glycoprotein Multidrug Transporter with Sterols.

    Science.gov (United States)

    Clay, Adam T; Lu, Peihua; Sharom, Frances J

    2015-11-01

    The ABC transporter P-glycoprotein (Pgp, ABCB1) actively exports structurally diverse substrates from within the lipid bilayer, leading to multidrug resistance. Many aspects of Pgp function are altered by the phospholipid environment, but its interactions with sterols remain enigmatic. In this work, the functional interaction between purified Pgp and various sterols was investigated in detergent solution and proteoliposomes. Fluorescence studies showed that dehydroergosterol, cholestatrienol, and NBD-cholesterol interact intimately with Pgp, resulting in both quenching of protein Trp fluorescence and enhancement of sterol fluorescence. Kd values indicated binding affinities in the range of 3-9 μM. Collisional quenching experiments showed that Pgp-bound NBD-cholesterol was protected from the external milieu, resonance energy transfer was observ