WorldWideScience

Sample records for abcb1 drug transporters

  1. Double-transduced MDCKII cells to study human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) interplay in drug transport across the blood-brain barrier.

    Science.gov (United States)

    Poller, Birk; Wagenaar, Els; Tang, Seng Chuan; Schinkel, Alfred H

    2011-04-04

    P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) combination knockout mice display disproportionately increased brain penetration of shared substrates, including topotecan and several tyrosine kinase inhibitors, compared to mice deficient for only one transporter. To better study the interplay of both transporters also in vitro, we generated a transduced polarized MDCKII cell line stably coexpressing substantial levels of human ABCB1 and ABCG2 (MDCKII-ABCB1/ABCG2). Next, we measured concentration-dependent transepithelial transport of topotecan, sorafenib and sunitinib. By blocking either one or both of the transporters simultaneously, using specific inhibitors, we aimed to mimic the ABCB1-ABCG2 interplay at the blood-brain barrier in wild-type, single or combination knockout mice. ABCB1 and ABCG2 contributed to similar extents to topotecan transport, which was only partly saturable. For sorafenib transport, ABCG2 was the major determinant at low concentrations. However, saturation of ABCG2-mediated transport occurred at higher sorafenib concentrations, where ABCB1 was still fully active. Furthermore, sunitinib was transported equally by ABCB1 and ABCG2 at low concentrations, but ABCG2-mediated transport became saturated at lower concentrations than ABCB1-mediated transport. The relative impact of these transporters can thus be affected by the applied drug concentrations. A comparison of the in vitro observed (inverse) transport ratios and cellular accumulation of the drugs at low concentrations with in vivo brain penetration data from corresponding Abcb1a/1b⁻/⁻, Abcg2⁻/⁻ and Abcb1a/1b;Abcg2⁻/⁻ mouse strains revealed very similar qualitative patterns for each of the tested drugs. MDCKII-ABCB1/ABCG2 cells thus present a useful in vitro model to study the interplay of ABCB1 and ABCG2.

  2. ABCB1 gene polymorphisms is not associated with drug-resistant epilepsy in Romanian children

    Directory of Open Access Journals (Sweden)

    Butila Anamaria Todoran

    2015-12-01

    Full Text Available Background: P-glycoprotein (P-gp, a drug efflux transporter, encoded by the gene MDR1 ABCB1 multidrug resistant, reduces the penetration through the brain by the AEDs. Overexpression of Pgp in blood-brain barrier in epileptic patients play an important rol in pharmacoresistance. The aim of this study was to evaluate a possible association between C1236T and G2677T ABCB1 gene polymorphisms and drug-resistant epilepsy in Romanian children.

  3. Purvalanol A, olomoucine II and roscovitine inhibit ABCB1 transporter and synergistically potentiate cytotoxic effects of daunorubicin in vitro.

    Directory of Open Access Journals (Sweden)

    Daniela Cihalova

    Full Text Available Cyclin-dependent kinase inhibitors (CDKi have high potential applicability in anticancer therapy, but various aspects of their pharmacokinetics, especially their interactions with drug efflux transporters, have not yet been evaluated in detail. Thus, we investigated interactions of five CDKi (purvalanol A, olomoucine II, roscovitine, flavopiridol and SNS-032 with the ABCB1 transporter. Four of the compounds inhibited efflux of two ABCB1 substrates, Hoechst 33342 and daunorubicin, in MDCKII-ABCB1 cells: Olomoucine II most strongly, followed by roscovitine, purvalanol A, and flavopiridol. SNS-032 inhibited ABCB1-mediated efflux of Hoechst 33342 but not daunorubicin. In addition, purvalanol A, SNS-032 and flavopiridol lowered the stimulated ATPase activity in ABCB1 membrane preparations, while olomoucine II and roscovitine not only inhibited the stimulated ATPase but also significantly activated the basal ABCB1 ATPase, suggesting that these two CDKi are ABCB1 substrates. We further revealed that the strongest ABCB1 inhibitors (purvalanol A, olomoucine II and roscovitine synergistically potentiate the antiproliferative effect of daunorubicin, a commonly used anticancer drug and ABCB1 substrate, in MDCKII-ABCB1 cells as well as in human carcinoma HCT-8 and HepG2 cells. We suggest that this pronounced synergism is at least partly caused by (i CDKi-mediated inhibition of ABCB1 transporter leading to increased intracellular retention of daunorubicin and (ii native cytotoxic activity of the CDKi. Our results indicate that co-administration of the tested CDKi with anticancer drugs that are ABCB1 substrates may allow significant dose reduction in the treatment of ABCB1-expressing tumors.

  4. Purvalanol A, olomoucine II and roscovitine inhibit ABCB1 transporter and synergistically potentiate cytotoxic effects of daunorubicin in vitro.

    Science.gov (United States)

    Cihalova, Daniela; Hofman, Jakub; Ceckova, Martina; Staud, Frantisek

    2013-01-01

    Cyclin-dependent kinase inhibitors (CDKi) have high potential applicability in anticancer therapy, but various aspects of their pharmacokinetics, especially their interactions with drug efflux transporters, have not yet been evaluated in detail. Thus, we investigated interactions of five CDKi (purvalanol A, olomoucine II, roscovitine, flavopiridol and SNS-032) with the ABCB1 transporter. Four of the compounds inhibited efflux of two ABCB1 substrates, Hoechst 33342 and daunorubicin, in MDCKII-ABCB1 cells: Olomoucine II most strongly, followed by roscovitine, purvalanol A, and flavopiridol. SNS-032 inhibited ABCB1-mediated efflux of Hoechst 33342 but not daunorubicin. In addition, purvalanol A, SNS-032 and flavopiridol lowered the stimulated ATPase activity in ABCB1 membrane preparations, while olomoucine II and roscovitine not only inhibited the stimulated ATPase but also significantly activated the basal ABCB1 ATPase, suggesting that these two CDKi are ABCB1 substrates. We further revealed that the strongest ABCB1 inhibitors (purvalanol A, olomoucine II and roscovitine) synergistically potentiate the antiproliferative effect of daunorubicin, a commonly used anticancer drug and ABCB1 substrate, in MDCKII-ABCB1 cells as well as in human carcinoma HCT-8 and HepG2 cells. We suggest that this pronounced synergism is at least partly caused by (i) CDKi-mediated inhibition of ABCB1 transporter leading to increased intracellular retention of daunorubicin and (ii) native cytotoxic activity of the CDKi. Our results indicate that co-administration of the tested CDKi with anticancer drugs that are ABCB1 substrates may allow significant dose reduction in the treatment of ABCB1-expressing tumors.

  5. "Effect of the drug transporters ABCB1, ABCC2, and ABCG2 on the disposition and brain accumulation of the taxane analog BMS-275,183".

    Science.gov (United States)

    Marchetti, Serena; Pluim, Dick; Beijnen, Jos H; Mazzanti, Roberto; van Tellingen, Olaf; Schellens, Jan H M

    2014-12-01

    BMS-275,183 is a novel oral C-4 methyl carbonate analogue of paclitaxel. Recently, a drug-drug interaction between BMS-275,183 and benzimidazole proton pump inhibitors (PPIs) was suggested in clinical trials resulting in elevated drug exposure and toxicity. We explored whether the interaction takes place at the level of P-glycoprotein (Pgp, MDR1, ABCB1), Breast Cancer Resistance Protein (BCRP, ABCG2) and MRP2 (ABCC2) using in vitro and in vivo models. In vitro cell survival, drug accumulation, efflux and transport studies with BMS-275,183 were performed employing MDCKII (wild-type, MDR1, BCRP, MRP2) and LLCPK (wild-type and MDR1) cells. In vivo the pharmacokinetics and tissue distribution of BMS-275,183 after p.o. and i.v. administration were explored in Mdr1a/1b(-/-) and wild-type mice, in presence or absence of the PPI pantoprazole. Results In vitro, BMS-275,183 was found to be a good substrate for MDR1, a moderate substrate for MRP2 and not a substrate for BCRP. In vivo, oral bioavailability, plasma AUC0-6h and brain concentrations were significantly 1.5-, 4-, and 2-fold increased, respectively, in Mdr1a/1b(-/-) compared with wild-type mice (p < 0.001). However, oral co-administration of pantoprazole (40 mg/kg) did not alter the pharmacokinetics of BMS-275,183 in wild-type mice. Conclusions BMS-275,183 is efficiently transported by Pgp and to a lesser extent by MRP2 in vitro. Genetic deletion of Pgp significantly altered the pharmacokinetics and brain distribution of p.o. and i.v. administered BMS-275,183 in Mdr1a/1b-/- compared to wild-type mice. Oral co-administration of BMS-275,183 with pantoprazole did not affect the pharmacokinetics of BMS-275,183 in wild-type mice, suggesting no interaction with PPI at the dose employed.

  6. Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation

    DEFF Research Database (Denmark)

    Henrichs, Sina; Wang, Bangjun; Fukao, Yoichiro

    2012-01-01

    Polar transport of the plant hormone auxin is controlled by PIN-and ABCB/PGP-efflux catalysts. PIN polarity is regulated by the AGC protein kinase, PINOID (PID), while ABCB activity was shown to be dependent on interaction with the FKBP42, TWISTED DWARF1 (TWD1). Using co-immunoprecipitation (co...... target of PID phosphorylation that determines both transporter drug binding and activity. In summary, we provide evidence that PID phosphorylation has a dual, counter-active impact on ABCB1 activity that is coordinated by TWD1-PID interaction....

  7. "Effect of the drug transporters ABCB1, ABCC2, and ABCG2 on the disposition and brain accumulation of the taxane analog BMS-275,183"

    NARCIS (Netherlands)

    Marchetti, Serena; Pluim, Dick; Beijnen, Jos H; Mazzanti, Roberto; van Tellingen, Olaf; Schellens, Jan H M

    2014-01-01

    BMS-275,183 is a novel oral C-4 methyl carbonate analogue of paclitaxel. Recently, a drug-drug interaction between BMS-275,183 and benzimidazole proton pump inhibitors (PPIs) was suggested in clinical trials resulting in elevated drug exposure and toxicity. We explored whether the interaction takes

  8. Impact of Genetic Polymorphisms of ABCB1 (MDR1, P-Glycoprotein) on Drug Disposition and Potential Clinical Implications: Update of the Literature.

    Science.gov (United States)

    Wolking, Stefan; Schaeffeler, Elke; Lerche, Holger; Schwab, Matthias; Nies, Anne T

    2015-07-01

    ATP-binding cassette transporter B1 (ABCB1; P-glycoprotein; multidrug resistance protein 1) is an adenosine triphosphate (ATP)-dependent efflux transporter located in the plasma membrane of many different cell types. Numerous structurally unrelated compounds, including drugs and environmental toxins, have been identified as substrates. ABCB1 limits the absorption of xenobiotics from the gut lumen, protects sensitive tissues (e.g. the brain, fetus and testes) from xenobiotics and is involved in biliary and renal secretion of its substrates. In recent years, a large number of polymorphisms of the ABCB1 [ATP-binding cassette, sub-family B (MDR/TAP), member 1] gene have been described. The variants 1236C>T (rs1128503, p.G412G), 2677G>T/A (rs2032582, p.A893S/T) and 3435C>T (rs1045642, p.I1145I) occur at high allele frequencies and create a common haplotype; therefore, they have been most widely studied. This review provides an overview of clinical studies published between 2002 and March 2015. In summary, the effect of ABCB1 variation on P-glycoprotein expression (messenger RNA and protein expression) and/or activity in various tissues (e.g. the liver, gut and heart) appears to be small. Although polymorphisms and haplotypes of ABCB1 have been associated with alterations in drug disposition and drug response, including adverse events with various ABCB1 substrates in different ethnic populations, the results have been majorly conflicting, with limited clinical relevance. Future research activities are warranted, considering a deep-sequencing approach, as well as well-designed clinical studies with appropriate sample sizes to elucidate the impact of rare ABCB1 variants and their potential consequences for effect sizes.

  9. Interactions between antiparkinsonian drugs and ABCB1/P-glycoprotein at the blood-brain barrier in a rat brain endothelial cell model.

    Science.gov (United States)

    Vautier, Sarah; Milane, Aline; Fernandez, Christine; Buyse, Marion; Chacun, Helene; Farinotti, Robert

    2008-09-05

    Parkinson's disease is a neurodegenerative disorder that requires treatment by dopaminergic agonists, which may be responsible for central side effects. We hypothesized that the efflux transporter ABCB1/P-glycoprotein played a role in brain disposition of antiparkinsonian drugs and could control central toxicity. We aimed to evaluate antiparkinsonian drugs as ABCB1 substrates and/or inhibitors in rat brain endothelial cells GPNT, in order to predict potential clinical drug-drug interactions. Among the antiparkinsonian drugs tested, levodopa, bromocriptine, pergolide and pramipexole were ABCB1 substrates. However, only bromocriptine could inhibit ABCB1 functionality with an IC(50) of 6.71 microM on Rhodamine 123 uptake and an IC(50) of 1.71 microM on digoxine uptake. Thus, bromocriptine at 100 microM is responsible for an increase of levodopa intracellular transport of about 2.05-fold versus control. Therefore, we can conclude that bromocriptine is a potent drug for medicinal interactions in vitro. Hence, in patients with Parkinson's disease, these results may be considered to optimise treatments individually.

  10. Associations between the functional polymorphisms in the ABCB1 transporter gene and colorectal cancer risk: a case-control study in Turkish population.

    Science.gov (United States)

    Özhan, Gül; Kara, Mehtap; Sari, Fatih M; Yanar, Hakan T; Ercan, Gulcin; Alpertunga, Buket

    2013-05-01

    Colorectal cancer is among the most common cancer types in the world and its etiology involves the interaction of genetic and environmental factors. ABCB1 is highly expressed in the apical surface of colonic epithelial cells and acts as an efflux pump by transporting toxic endogenous substances, drugs and xenobiotics out of cells. ABCB1 polymorphisms may either change its protein expression or alter its function. Several studies have reported a possible association between ABCB1 variants and colorectal cancer, but no consistent conclusion has been arrived at. Therefore, we aimed to investigate the relationship between colorectal cancer and the functional common variants of ABCB1 (1236C > T; 2677G > T/A; 3435C > T). The distributions of the variants were determined in 103 patients with colorectal cancer and 150 healthy volunteers using polymerase chain reaction-restriction fragment length polymorphism methods. ABCB1 1236C > T was statistically significantly associated with colorectal cancer risk (OR, odd ratio = 1.91; 95% CI, confidence interval = 1.09-3.35; p = 0.034). In haplotype-based analysis, the proportion of individuals with the ABCB1 haplotype C1236-G2677-T3435 was significantly more common in patients than in controls (OR = 11.96; 95% CI = 2.59-55.32; p = 0.0004). We believe that the findings may be beneficial to the development of efficacious preventive strategies and therapies for colorectal cancer.

  11. Genetic association analysis of ATP binding cassette protein family reveals a novel association of ABCB1 genetic variants with epilepsy risk, but not with drug-resistance.

    Science.gov (United States)

    Balan, Shabeesh; Bharathan, Sumitha Prameela; Vellichiramal, Neetha Nanoth; Sathyan, Sanish; Joseph, Vijai; Radhakrishnan, Kurupath; Banerjee, Moinak

    2014-01-01

    Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED)-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype for AED-resistant epilepsy); juvenile myoclonic epilepsy (JME) (prototype for AED-responsive epilepsy); and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T) rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004). This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004) and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05) cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency for MTLE

  12. Genetic association analysis of ATP binding cassette protein family reveals a novel association of ABCB1 genetic variants with epilepsy risk, but not with drug-resistance.

    Directory of Open Access Journals (Sweden)

    Shabeesh Balan

    Full Text Available Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS (prototype for AED-resistant epilepsy; juvenile myoclonic epilepsy (JME (prototype for AED-responsive epilepsy; and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004. This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004 and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05 cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency

  13. Association of polymorphisms of CYP2C9, CYP2C19, and ABCB1, and activity of P-glycoprotein with response to anti-epileptic drugs

    Directory of Open Access Journals (Sweden)

    S R Taur

    2014-01-01

    Full Text Available Background and Objective: Epilepsy, the most common neurological disorder, has treatment failure rate of 20 to 25%. Inter-individual variability in drug response can be attributed to genetic polymorphism in genes encoding different drug metabolizing enzymes, drug transporters (P-gp, and enzymes involved in sodium channel biosynthesis. The present study attempted to evaluate association of polymorphisms of CYP2C9, CYP2C19, and ABCB1, and P-gp activity with treatment response in patients with epilepsy. Materials and Methods: Patients with epilepsy on phenytoin and/or phenobarbital and/or carbamazepine were categorized into responders and non-responders as per the International League Against Epilepsy. Plasma drug concentration was estimated by high-performance liquid chromatography. P-gp activity was measured by flow cytometry using rhodamine efflux. The polymerase chain reaction (PCR-RFLP was used to study polymorphisms of ABCB1 (C3435T, CYP2C9 (416 C > T, and 1061 A > T, and CYP2C19 (681 G > A and 636 G > A. Results: Of total 117 patients enrolled in this study, genotype data was available for 115 patients. P-gp activity was higher in non-responders (n = 68 compared to responders (n = 47 (P T and 1061 A > T in CYP2C9 or 681 G > A and 636 G > A in CYP2C19 was observed with response phenotype in genotypic analysis. Significant genotypic (odds ratio, OR = 4.5; 95% CI, 1.04 to 20.99 and allelic association (OR = 1.73; 95% CI, 1.02 to 2.95 was observed with ABCB1 C3435T and response phenotype. Conclusions: The response to antiepileptics seems to be modulated by C3435T in ABCB1 or P-gp activity. At present, role of other genetic factors in treatment responsiveness in epilepsy appears limited, warranting analysis in a larger cohort.

  14. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Svenningsen, Katrine; Knudsen, Lina Almind

    2015-01-01

    and which may additionally affect ABC transporter function through nuclear receptors and transcriptional regulation. Another critical role of ABCB1 was suggested by the finding that ABCB1 expression identifies a subpopulation of pro-inflammatory Th17 cells which were resistant to treatment...

  15. PET-CT imaging with [18F]-gefitinib to measure Abcb1a/1b (P-gp) and Abcg2 (Bcrp1) mediated drug-drug interactions at the murine blood-brain barrier

    NARCIS (Netherlands)

    Vlaming, M.L.H.; Läppchen, T.; Jansen, H.T.; Kivits, S.; Driel, A. van; Steeg, E. van der; Hoorn, J.W. van der; Sio, C.F.; Steinbach, O.C.; Groot, J. de

    2015-01-01

    Introduction: The efflux transporters P-glycoprotein (P-gp, ABCB1) and breast cancer resistance protein (BCRP, ABCG2) are expressed at the blood-brain barrier (BBB), and can limit the access of a wide range of drugs to the brain. In this study we developed a PET-CT imaging method for non-invasive, q

  16. P-glycoprotein (ABCB1) inhibited network of mitochondrion transport along microtubule and BMP signal-induced cell shape in chimpanzee left cerebrum by systems-theoretical analysis.

    Science.gov (United States)

    Lin, Hong; Wang, Lin; Jiang, Minghu; Huang, Juxiang; Qi, Lianxiu

    2012-10-01

    We constructed the significant low-expression P-glycoprotein (ABCB1) inhibited transport and signal network in chimpanzee compared with high-expression (fold change ≥2) the human left cerebrum in GEO data set, by using integration of gene regulatory activated and inhibited network inference method with gene ontology (GO) analysis. Our result showed that ABCB1 transport and signal upstream network RAB2A inhibited ABCB1, and downstream ABCB1-inhibited SMAD1_2, NCK2, SLC25A46, GDF10, RASGRP1, EGFR, LRPPRC, RASSF2, RASA4, CA2, CBLB, UBR5, SLC25A16, ITGB3BP, DDIT4, PDPN, RAB2A in chimpanzee left cerebrum. We obtained that the different biological processes of ABCB1 inhibited transport and signal network repressed carbon dioxide transport, ER to Golgi vesicle-mediated transport, folic acid transport, mitochondrion transport along microtubule, water transport, BMP signaling pathway, Ras protein signal transduction, transforming growth factor beta receptor signaling pathway in chimpanzee compared with the inhibited network of the human left cerebrum, as a result of inducing inhibition of mitochondrion transport along microtubule and BMP signal-induced cell shape in chimpanzee left cerebrum. Our hypothesis was verified by the same and different biological processes of ABCB1 inhibited transport and signal network of chimpanzee compared with the corresponding activated network of chimpanzee and the human left cerebrum, respectively. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Global alteration of the drug-binding pocket of human P-glycoprotein (ABCB1) by substitution of fifteen conserved residues reveals a negative correlation between substrate size and transport efficiency.

    Science.gov (United States)

    Vahedi, Shahrooz; Chufan, Eduardo E; Ambudkar, Suresh V

    2017-11-01

    P-glycoprotein (P-gp), an ATP-dependent efflux pump, is linked to the development of multidrug resistance in cancer cells. However, the drug-binding sites and translocation pathways of this transporter are not yet well-characterized. We recently demonstrated the important role of tyrosine residues in regulating P-gp ATP hydrolysis via hydrogen bond formations with high affinity modulators. Since tyrosine is both a hydrogen bond donor and acceptor, and non-covalent interactions are key in drug transport, in this study we investigated the global effect of enrichment of tyrosine residues in the drug-binding pocket on the drug binding and transport function of P-gp. By employing computational analysis, 15 conserved residues in the drug-binding pocket of human P-gp that interact with substrates were identified and then substituted with tyrosine, including 11 phenylalanine (F72, F303, F314, F336, F732, F759, F770, F938, F942, F983, F994), two leucine (L339, L975), one isoleucine (I306), and one methionine (M949). Characterization of the tyrosine-rich P-gp mutant in HeLa cells demonstrated that this major alteration in the drug-binding pocket by introducing fifteen additional tyrosine residues is well tolerated and has no measurable effect on total or cell surface expression of this mutant. Although the tyrosine-enriched mutant P-gp could transport small to moderate size (1000 Daltons) substrates such as NBD-cyclosporine A, Bodipy-paclitaxel and Bodipy-vinblastine was significantly decreased. This was further supported by the physico-chemical characterization of seventeen tested substrates, which revealed a negative correlation between drug transport and molecular size for the tyrosine-enriched P-gp mutant. Published by Elsevier Inc.

  18. Breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-gp/ABCB1) transport afatinib and restrict its oral availability and brain accumulation.

    Science.gov (United States)

    van Hoppe, Stéphanie; Sparidans, Rolf W; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H

    2017-03-10

    Afatinib is a highly selective, irreversible inhibitor of EGFR and (HER)-2. It is orally administered for the treatment of patients with EGFR mutation-positive types of metastatic NSCLC. We investigated whether afatinib is a substrate for the multidrug efflux transporters ABCB1 and ABCG2 and whether these transporters influence oral availability and brain and other tissue accumulation of afatinib. We used in vitro transport assays to assess human (h)ABCB1-, hABCG2- or murine (m)Abcg2-mediated transport of afatinib. To study the single and combined roles of Abcg2 and Abcb1a/1b in oral afatinib disposition, we used appropriate knockout mouse strains. Afatinib was transported well by hABCB1, hABCG2 and mAbcg2 in vitro. Upon oral administration of afatinib, Abcg2(-/-), Abcb1a/1b(-/-) and Abcb1a/1b(-/-);Abcg2(-/-) mice displayed a 4.2-, 2.4- and 7-fold increased afatinib plasma AUC0-24 compared with wild-type mice. Abcg2-deficient strains also displayed decreased afatinib plasma clearance. At 2h, relative brain accumulation of afatinib was not significantly altered in the single knockout strains, but 23.8-fold increased in Abcb1a/1b(-/-);Abcg2(-/-) mice compared to wild-type mice. Abcg2 and Abcb1a/1b restrict oral availability and brain accumulation of afatinib. Inhibition of these transporters may therefore be of clinical importance for patients with brain (micro)metastases positioned behind an intact blood-brain barrier.

  19. Fentanyl Enhances Hepatotoxicity of Paclitaxel via Inhibition of CYP3A4 and ABCB1 Transport Activity in Mice.

    Directory of Open Access Journals (Sweden)

    Jing-Dun Xie

    Full Text Available Fentanyl, a potent opioid analgesic that is used to treat cancer pain, is commonly administered with paclitaxel in advanced tumors. However, the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanism of action is not well studied. The purpose of this study was to investigate the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanisms of action. Pharmacokinetic parameters of paclitaxel were tested using reversed phase high-performance liquid chromatography (RP-HPLC. Aspartate transaminase (AST, alanine aminotransferase (ALT, and mouse liver histopathology were examined. Moreover, the cytotoxicity of anti-carcinogens was examined using 1-(4, 5-dimethylthiazol-2-yl-3,5-diphenylformazan (MTT, and the intracellular accumulation of doxorubicin and rhodamine 123 was detected by flow cytometry. Furthermore, the expression of ABCB1 and the activity of ABCB1 ATPase and CYP3A4 were also examined. In this study, the co-administration of fentanyl and paclitaxel prolonged the half-life (t1/2 of paclitaxel from 1.455 hours to 2.344 hours and decreased the clearance (CL from 10.997 ml/h to 7.014 ml/h in mice. Fentanyl significantly increased the levels of ALT in mice to 88.2 U/L, which is more than 2-fold higher than the level detected in the control group, and it increased the histological damage in mouse livers. Furthermore, fentanyl enhanced the cytotoxicity of anti-carcinogens that are ABCB1 substrates and increased the accumulation of doxorubicin and rhodamine 123. Additionally, fentanyl stimulated ABCB1 ATPase activity and inhibited CYP3A4 activity in the liver microsomes of mice. Our study indicates that the obvious hepatotoxicity during this co-administration was due to the inhibition of CYP3A4 activity and ABCB1 transport activity. These findings suggested that the accumulation-induced hepatotoxicity of paclitaxel when it is combined with fentanyl should be avoided.

  20. Quinidine as an ABCB1 probe for testing drug interactions at the blood-brain barrier: an in vitro in vivo correlation study.

    Science.gov (United States)

    Sziráki, István; Erdo, Franciska; Beéry, Erzsébet; Molnár, Petra Magdolna; Fazakas, Csilla; Wilhelm, Imola; Makai, Ildikó; Kis, Emese; Herédi-Szabó, Krisztina; Abonyi, Tibor; Krizbai, István; Tóth, Gábor K; Krajcsi, Péter

    2011-09-01

    This study provides evidence that quinidine can be used as a probe substrate for ABCB1 in multiple experimental systems both in vitro and in vivo relevant to the blood-brain barrier (BBB). The combination of quinidine and PSC-833 (valspodar) is an effective tool to assess investigational drugs for interactions on ABCB1. Effects of quinidine and substrate-inhibitor interactions were tested in a membrane assay and in monolayer assays. The authors compared quinidine and digoxin as ABCB1 probes in the in vitro assays and found that quinidine was more potent and at least as specific as digoxin in ATPase and monolayer efflux assays employing MDCKII-MDR1 and the rat brain microcapillary endothelial cell system. Brain exposure to quinidine was tested in dual-/triple-probe microdialysis experiments in rats by assessing levels of quinidine in blood and brain. Comparing quinidine levels in dialysate samples from valspodar-treated and control animals, it is evident that systemic/local administration of the inhibitor diminishes the pumping function of ABCB1 at the BBB, resulting in an increased brain penetration of quinidine. In sum, quinidine is a good probe to study ABCB1 function at the BBB. Moreover, quinidine/PSC-833 is an ABCB1-specific substrate/inhibitor combination applicable to many assay systems both in vitro and in vivo.

  1. IPEC-J2 MDR1, a Novel High-Resistance Cell Line with Functional Expression of Human P-glycoprotein (ABCB1) for Drug Screening Studies

    DEFF Research Database (Denmark)

    Saaby, Lasse; Helms, Hans Christian Cederberg; Brodin, Birger

    2016-01-01

    The P-glycoprotein (P-gp) efflux pump has been shown to affect drug distribution and absorption in various organs and to cause drug resistance in cancer therapy. The aim of this work was to develop a cell line to serve as a screening system for potential substrates of P-gp. This requires a cell...... line with high paracellular tightness, low expression of nonhuman ABC transporters, and high expression of functional human P-gp (ABCB1). The porcine intestinal epithelial cell line, IPEC-J2, was selected as a transfection host, due to its ability to form extremely high-resistance monolayers (>10,000 Ω...... for the efflux transport by substrate profiling, combined with application of P-gp and BCRP inhibitors. Furthermore, the compounds atenolol, citalopram, and mitoxantrone were identified as P-gp substrates. Functional P-gp expression was shown to be stable through at least 10 cell passages. In conclusion...

  2. Pharmacogenetic evaluation of ABCB1, Cyp2C9, Cyp2C19 and methylene tetrahydrofolate reductase polymorphisms in teratogenicity of anti-epileptic drugs in women with epilepsy

    Directory of Open Access Journals (Sweden)

    Manna Jose

    2014-01-01

    Full Text Available Aim: Pregnancy in women with epilepsy (WWE who are on anti-epileptic drugs (AEDs has two- to three-fold increased risk of fetal malformations. AEDs are mostly metabolized by Cyp2C9, Cyp2C19 and Cyp3A4 and transported by ABCB1. Patients on AED therapy can have folate deficiency. We hypothesize that the polymorphisms in ABCB1, Cyp2C9, Cyp2C19 and methylene tetrahydrofolate reductase (MTHFR might result in differential expression resulting in differential drug transport, drug metabolism and folate metabolism, which in turn may contribute to the teratogenic impact of AEDs. Materials and Methods: The ABCB1, Cyp2C9, Cyp2C19 and MTHFR polymorphisms were genotyped for their role in teratogenic potential and the nature of teratogenecity in response to AED treatment in WWE. The allelic, genotypic associations were tested in 266 WWE comprising of 143 WWE who had given birth to babies with WWE-malformation (WWE-M and 123 WWE who had normal offsprings (WWE-N. Results: In WWE-M, CC genotype of Ex07 + 139C/T was overrepresented (P = 0.0032 whereas the poor metabolizer allele FNx012 and FNx012 FNx012 genotype of CYP2C219 was significantly higher in comparison to WWE-N group (P = 0.007 and P = 0.005, respectively. All these observations were independent of the nature of malformation (cardiac vs. non cardiac malformations. Conclusion: Our study indicates the possibility that ABCB1 and Cyp2C19 may play a pivotal role in the AED induced teratogenesis, which is independent of nature of malformation. This is one of the first reports indicating the pharmacogenetic role of Cyp2C19 and ABCB1 in teratogenesis of AED in pregnant WWE.

  3. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Svenningsen, Katrine; Almind Knudsen, Lina;

    2015-01-01

    transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1....../Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes...... translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters...

  4. Selected ABCB1, ABCB4 and ABCC2 Polymorphisms Do Not Enhance the Risk of Drug-Induced Hepatotoxicity in a Spanish Cohort

    Science.gov (United States)

    Ulzurrun, Eugenia; Stephens, Camilla; Ruiz-Cabello, Francisco; Robles-Diaz, Mercedes; Saenz-López, Pablo; Hallal, Hacibe; Soriano, German; Roman, Eva; Fernandez, M. Carmen; Lucena, M. Isabel; Andrade, Raúl J.

    2014-01-01

    Background and Aims Flawed ABC transporter functions may contribute to increased risk of drug-induced liver injury (DILI). We aimed to analyse the influence of genetic variations in ABC transporters on the risk of DILI development and clinical presentations in a large Spanish DILI cohort. Methods A total of ten polymorphisms in ABCB1 (1236T>C, 2677G>T,A, 3435T>C), ABCB4 (1954A>G) and ABCC2 (−1774G>del, −1549A>G, −24C>T, 1249G>A, 3972C>T and 4544G>A) were genotyped using Taqman 5′ allelic discrimination assays or sequencing in 141 Spanish DILI patients and 161 controls. The influence of specific genotypes, alleles and haplotypes on the risk of DILI development and clinical presentations was analysed. Results None of the individual polymorphisms or haplotypes was found to be associated with DILI development. Carriers homozygous for the ABCC2 −1774del allele were however only found in DILI patients. Hence, this genotype could potentially be associated with increased risk, though its low frequency in our Spanish cohort prevented a final conclusion. Furthermore, carriers homozygous for the ABCC2 −1774G/−1549A/−24T/1249G/3972T/4544G haplotype were found to have a higher propensity for total bilirubin elevations when developing DILI. Conclusions Our findings do not support a role for the analysed polymorphisms in the ABCB1, ABCB4 and ABCC2 transporter genes in DILI development in Spanish patients. The ABCC2 −1774deldel genotype was however restricted to DILI cases and could potentially contribute to enhanced DILI susceptibility. PMID:24732756

  5. Polymorphisms in the ABCB1 gene and effect on outcome and toxicity in childhood acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Gregers, J; Gréen, H; Christensen, I J

    2015-01-01

    The membrane transporter P-glycoprotein, encoded by the ABCB1 gene, influences the pharmacokinetics of anti-cancer drugs. We hypothesized that variants of ABCB1 affect outcome and toxicity in childhood acute lymphoblastic leukemia (ALL). We studied 522 Danish children with ALL, 93% of all those...

  6. The antinociceptive effect and adverse drug reactions of oxycodone in human experimental pain in relation to genetic variations in the OPRM1 and ABCB1 genes

    DEFF Research Database (Denmark)

    Zwisler, Stine T; Enggaard, Thomas P; Noehr-Jensen, Lene

    2010-01-01

    The aim of this study was to search for a possible association between the variant allele of the single nucleotide polymorphisms A118G in the OPRM1 gene and C3435T and G2677T/A in the ABCB1 gene and altered antinociceptive effect and adverse drug reactions of oxycodone. Thirty-three healthy subje...

  7. Conformational analysis of human ATP-binding cassette transporter ABCB1 in lipid nanodiscs and inhibition by the antibodies MRK16 and UIC2.

    Science.gov (United States)

    Ritchie, Tasha K; Kwon, Hyewon; Atkins, William M

    2011-11-11

    The human ATP-binding cassette (ABC) transporter, P-glycoprotein (P-gp; ABCB1), mediates the ATP-dependent efflux of a variety of drugs. As a result, P-gp plays a critical role in tumor cell drug resistance and the pharmacokinetic properties of most drugs. P-gp exhibits extraordinary substrate and inhibitor promiscuity, resulting in a wide range of possible drug-drug interactions. Inhibitory antibodies have long been considered as a possible strategy to modulate P-gp-dependent cancer cell drug resistance, and it is widely suggested that the antibodies MRK16 and UIC2 inhibit P-gp by capturing a single isoform and preventing flux through the catalytic cycle. Although the crystal structures of many bacterial whole transporters, as well as isolated nucleotide-binding domains, have been solved, high resolution structural data for mammalian ABC transporters are currently lacking. It has been extremely difficult to determine the detailed mechanism of transport of P-gp, in part because it is difficult to obtain purified protein in well defined lipid systems. Here we exploit surface plasmon resonance (SPR) to probe conformational changes associated with these intermediate states for P-gp in lipid bilayer nanodiscs. The results indicate that P-gp in nanodiscs undergoes functionally relevant ligand-dependent conformational changes and that previously described inhibitory antibodies bind to multiple nucleotide-bound states but not the ADP-VO(4)-trapped state, which mimics the post-hydrolysis state. The results also suggest that the substrate drug vinblastine is released at stages that precede or follow the post-hydrolysis ADP-PO(4)·P-gp complex.

  8. Cetuximab enhanced the efficacy of chemotherapeutic agent in ABCB1/P-glycoprotein-overexpressing cancer cells.

    Science.gov (United States)

    Wang, Fang; Chen, Yifan; Huang, Lihua; Liu, Tao; Huang, Yue; Zhao, Jianming; Wang, Xiaokun; Yang, Ke; Ma, Shaolin; Huang, Liyan; To, Kenneth Kin Wah; Gu, Yong; Fu, Liwu

    2015-12-01

    The overexpression of ATP-binding cassette (ABC) transporters is closely associated with the development of multidrug resistance (MDR) in certain types of cancer, which represents a formidable obstacle to the successful cancer chemotherapy. Here, we investigated that cetuximab, an EGFR monoclonal antibody, reversed the chemoresistance mediated by ABCB1, ABCG2 or ABCC1. Our results showed that cetuximab significantly enhanced the cytotoxicity of ABCB1 substrate agent in ABCB1-overexpressing MDR cells but had no effect in their parental drug sensitive cells and ABCC1, ABCG2 overexpressing cells. Furthermore, cetuximab markedly increased intracellular accumulation of doxorubicin (DOX) and rhodamine 123 (Rho 123) in ABCB1-overexpressing MDR cancer cells in a concentration-dependent manner. Cetuximab stimulated the ATPase activity but did not alter the expression level of ABCB1 or block phosphorylation of AKT and ERK. Interestingly, cetuximab decreased the cell membrane fluidity which was known to decrease the function of ABCB1. Our findings advocate further clinical investigation of combination chemotherapy of cetuximab and conventional chemotherapeutic drugs in ABCB1 overexpressing cancer patients.

  9. The multidrug resistance 1 gene Abcb1 in brain and placenta: comparative analysis in human and guinea pig.

    Science.gov (United States)

    Pappas, Jane J; Petropoulos, Sophie; Suderman, Matthew; Iqbal, Majid; Moisiadis, Vasilis; Turecki, Gustavo; Matthews, Stephen G; Szyf, Moshe

    2014-01-01

    The Multidrug Resistance 1 (MDR1; alternatively ABCB1) gene product P-glycoprotein (P-gp), an ATP binding cassette transporter, extrudes multiple endogenous and exogenous substrates from the cell, playing an important role in normal physiology and xenobiotic distribution and bioavailability. To date, the predominant animal models used to investigate the role of P-gp have been the mouse and rat, which have two distinct genes, Abcb1a and Abcb1b. In contrast, the human has a single gene, ABCB1, for which only a single isoform has been validated. We and others have previously shown important differences between Abcb1a and Abcb1b, limiting the extrapolation from rodent findings to the human. Since the guinea pig has a relatively long gestation, hemomonochorial placentation and neuroanatomically mature offspring, it is more similar to the human, and may provide a more comparable model for investigating the regulation of P-gp in the brain and placenta, however, to date, the Abcb1 gene in the guinea pig remains to be characterized. The placenta and fetal brain are barrier sites that express P-gp and that play a critical role of protection of the fetus and the fetal brain from maternally administered drugs and other xenobiotics. Using RNA sequencing (RNA-seq), reverse transcription-polymerase chain reaction (RT-PCR) and quantitative PCR (QPCR) to sequence the expressed isoforms of guinea pig Abcb1, we demonstrate that like the human, the guinea pig genome contains one gene for Abcb1 but that it is expressed as at least three different isoforms via alternative splicing and alternate exon usage. Further, we demonstrate that these isoforms are more closely related to human than to rat or mouse isoforms. This striking, overall similarity and evolutionary relatedness between guinea pig Abcb1 and human ABCB1 indicate that the guinea pig represents a relevant animal model for investigating the function and regulation of P-gp in the placenta and brain.

  10. Thiazole-valine peptidomimetic (TTT-28) antagonizes multidrug resistance in vitro and in vivo by selectively inhibiting the efflux activity of ABCB1

    Science.gov (United States)

    Wang, Yi-Jun; Patel, Bhargav A.; Anreddy, Nagaraju; Zhang, Yun-Kai; Zhang, Guan-Nan; Alqahtani, Saeed; Singh, Satyakam; Shukla, Suneet; Kaddoumi, Amal; Ambudkar, Suresh V.; Talele, Tanaji T.; Chen, Zhe-Sheng

    2017-01-01

    Multidrug resistance (MDR) attenuates the chemotherapy efficacy and increases the probability of cancer recurrence. The accelerated drug efflux mediated by ATP-binding cassette (ABC) transporters is one of the major MDR mechanisms. This study investigated if TTT-28, a newly synthesized thiazole-valine peptidomimetic, could reverse ABCB1-mediated MDR in vitro and in vivo. TTT-28 reversed the ABCB1-mediated MDR and increased the accumulation of [3H]-paclitaxel in ABCB1 overexpressing cells by selectively blocking the efflux function of ABCB1, but not interfering with the expression level and localization of ABCB1. Animal study revealed that TTT-28 enhanced the intratumoral concentration of paclitaxel and promoted apoptosis, thereby potently inhibiting the growth of ABCB1 overexpressing tumors. But TTT-28 did not induce the toxicity (cardiotoxicity/myelosuppression) of paclitaxel in mice. In this study, we synthesized and evaluated a novel selective inhibitor of ABCB1 (TTT-28) with high efficacy and low toxicity. The identification and characterization of this new thiazole-valine peptidomimetic will facilitate design and synthesis of a new generation of ABCB1 inhibitors, leading to further research on multidrug resistance and combination chemotherapy. Furthermore, the strategy that co-administer MDR-ABCB1 inhibitor to overcome the resistance of one FDA approved, widely used chemotherapeutic paclitaxel, may be promising direction for the field of adjuvant chemotherapy. PMID:28181548

  11. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Svenningsen, Katrine; Almind Knudsen, Lina;

    2015-01-01

    AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development. METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette....../Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes...... translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters...

  12. ABCB1, ABCC2, SCN1A, SCN2A, GABRA1 gene polymorphisms and drug resistant epilepsy in the Chinese Han population.

    Science.gov (United States)

    Zhou, Luo; Cao, Yuze; Long, Hongyu; Long, Lili; Xu, Lin; Liu, Zhaoqian; Zhang, Ying; Xiao, Bo

    2015-06-01

    Drug resistance is common in epilepsy despite multiple available medications. Single nucleotide polymorphisms (SNP) may influence drug efficacy in epilepsy. We therefore aimed to clarify the association between polymorphisms of several controversial SNP loci and drug resistance in Chinese Han epilepsy patients from central China. Among all the 391 recruited subjects, 235 and 156 patients were classified into a drug responsive and resistant group, respectively, according to the definition of drug resistance proposed by the International League Against Epilepsy. The candidate SNP loci, including ATP-binding cassette (ABC) subfamily gene ABCB1 rs2032582 and rs1045642; ABC subfamily gene ABCC2 rs717620 and rs2273697; sodium channel subunit gene SCN1A rs3812718, SCN2A rs2304016; γ-amino butyric acid type A (GABAA) receptor subunit subtype gene GABRA1 rs2279020 were genotyped following the Illumina protocols. There were no significant differences in allelic or genotypic frequencies between the drug responsive and resistant patients. The polymorphisms of the above SNP loci may not be associated with drug resistance of epilepsy in the Chinese Han population.

  13. Complete Knockout of Endogenous Mdr1 (Abcb1) in MDCK Cells by CRISPR-Cas9.

    Science.gov (United States)

    Simoff, Ivailo; Karlgren, Maria; Backlund, Maria; Lindström, Anne-Christine; Gaugaz, Fabienne Z; Matsson, Pär; Artursson, Per

    2016-02-01

    Madin-Darby canine kidney II cells transfected with one or several transport proteins are commonly used models to study drug transport. In these cells, however, endogenous transporters such as canine Mdr1/P-glycoprotein (Abcb1) complicate the interpretation of transport studies. The aim of this investigation was to establish a Madin-Darby canine kidney II cell line using CRISPR-Cas9 gene-editing technology to knock out endogenous canine Mdr1 (cMdr1) expression. CRISPR-Cas9-mediated Abcb1 homozygous disruption occurred at frequencies of around 20% and resulted in several genotypes. We selected 1 clonal cell line, cMdr1 KO Cl2, for further examination. Consistent with an on-target effect of CRISPR-Cas9 in specific regions of the endogenous canine Abcb1 gene, we obtained a cell clone with Abcb1 gene alterations and without any cMdr1 expression, as confirmed by genome sequencing and quantitative protein analysis. Functional studies of these cells, using digoxin and other prototypic MDR1 substrates, showed close to identical transport in the apical-to-basolateral and basolateral-to-apical directions, resulting in efflux ratios indistinguishable from unity.

  14. ABCB1 haplotype and OPRM1 118A > G genotype interaction in methadone maintenance treatment pharmacogenetics

    Directory of Open Access Journals (Sweden)

    Barratt DT

    2012-04-01

    Full Text Available Daniel T Barratt1, Janet K Coller1, Richard Hallinan2, Andrew Byrne2, Jason M White1, David JR Foster3, Andrew A Somogyi1,41Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia; 2The Byrne Surgery, Specialist Drug and Alcohol Practice, Redfern, New South Wales; 3Division of Health Sciences, Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia; 4Department of Clinical Pharmacology, Royal Adelaide Hospital, Adelaide, South Australia, AustraliaBackground: Genetic variability in ABCB1, encoding the P-glycoprotein efflux transporter, has been linked to altered methadone maintenance treatment dose requirements. However, subsequent studies have indicated that additional environmental or genetic factors may confound ABCB1 pharmacogenetics in different methadone maintenance treatment settings. There is evidence that genetic variability in OPRM1, encoding the mu opioid receptor, and ABCB1 may interact to affect morphine response in opposite ways. This study aimed to examine whether a similar gene-gene interaction occurs for methadone in methadone maintenance treatment.Methods: Opioid-dependent subjects (n = 119 maintained on methadone (15–300 mg/day were genotyped for five single nucleotide polymorphisms of ABCB1 (61A > G; 1199G > A; 1236C > T; 2677G > T; 3435C > T, as well as for the OPRM1 18A > G single nucleotide polymorphism. Subjects’ methadone doses and trough plasma (R-methadone concentrations (Ctrough were compared between ABCB1 haplotypes (with and without controlling for OPRM1 genotype, and between OPRM1 genotypes (with and without controlling for ABCB1 haplotype.Results: Among wild-type OPRM1 subjects, an ABCB1 variant haplotype group (subjects with a wild-type and 61A:1199G:1236C:2677T:3435T haplotype combination, or homozygous for the 61A:1199G:1236C:2677T:3435T haplotype had significantly lower doses (median ± standard

  15. Association of ABCB1 C3435T polymorphism with phenobarbital resistance in Thai patients with epilepsy.

    Science.gov (United States)

    Keangpraphun, T; Towanabut, S; Chinvarun, Y; Kijsanayotin, P

    2015-06-01

    One-third of patients with epilepsy are resistant to anti-epileptic drugs (AEDs). Drug-resistant epilepsy is believed to be multifactorial involving both genetic and non-genetic factors. Genetic variations in the ABCB1 gene encoding the drug efflux transporter, p-glycoprotein (p-gp), may influence the interindividual variability in AED response by limiting drugs from reaching their target. Phenobarbital (PB), one of the most cost-effective and widely used AEDs in developing countries, has been reported to be transported by p-gp. This study aimed to investigate the association of a genetic variant, ABCB1 3435C>T, and non-genetic factors with phenobarbital response in Thai patients with epilepsy. One hundred and ten Thai patients with epilepsy who were treated with PB maintenance doses were enrolled in this study. Two phenotypic groups, PB-responsive epilepsy and PB-resistant epilepsy, were defined according to the International League Against Epilepsy (ILAE) criteria. Subjects were genotyped for ABCB1 3435C>T (rs1045642). Multiple logistic regression analysis was tested for the association of ABCB1 3435C>T polymorphism and non-genetic factors with PB response. Sixty-two PB-responsive epilepsy subjects and 48 PB-resistant epilepsy subjects were identified. All genotype frequencies of the ABCB1 3435C>T SNP were consistent with the Hardy-Weinberg equilibrium (P > 0·05). The ABCB1 3435C>T polymorphism and type of epilepsy were associated with response to PB. Patients with PB-resistant epilepsy had a significantly higher frequency of ABCB1 3435CC genotype and had focal epilepsy more often than patients with PB-responsive epilepsy (adjusted OR = 3·962, 95% CI = 1·075-14·610, P-value = 0·039; adjusted OR = 5·936, 95% CI = 2·272-15·513, P-value phenobarbital. © 2015 John Wiley & Sons Ltd.

  16. Human ABCB1 confers cells resistance to cytotoxic guanidine alkaloids from Pterogyne nitens.

    Science.gov (United States)

    Satake, Kazuhiro; Tsukamoto, Megumi; Mitani, Yuji; Regasini, Luis Octavio; da Silva Bolzani, Vanderlan; Efferth, Thomas; Nakagawa, Hiroshi

    2015-01-01

    Multidrug resistance (MDR) caused by human ABCB1 (P-glycoprotein/MDR1) is one of the major obstacles in chemotherapy. To understand the mechanism of MDR by ABCB1 and circumvent the MDR, in the present study, we established human ABCB1-expressing cells (Flp-In-293/ABCB1 cells) and examined the cytotoxic effects of four guanidine alkaloids from Pterogyne nitens (galegine, nitensidine A, pterogynidine and pterogynine) using Flp-In-293/Mock and Flp-In-293/ABCB1 cells. The activity of ABCB1 in Flp-In-293/ABCB1 cells were confirmed by typical substrates for ABCB1 (taxol and vinblastine) in MTT assay. Flp-In-293/ABCB1 cells were also resistant to the four guanidine alkaloids as well as taxol and vinblastine compared to Flp-In-293/Mock cells although the four guanidine alkaloids exhibited cytotoxicity against the two Flp-In-293 cells. Furthermore, the four guanidine alkaloids were also found to stimulate the ATPase activity of ABCB1 in ATPase assays. These results suggest that ABCB1 can confer the resistance to the cytotoxic guanidine alkaloids by transporting them.

  17. ABCB1基因位点(C3435T)多态性与癫痫耐药关联性的Meta分析%Meta analysis of relationship between polymorphism of gene site (C3435T) of ABCB1 and antiepileptic drug resistant

    Institute of Scientific and Technical Information of China (English)

    彭锐; 张洪; 张英; 魏丹芸

    2015-01-01

    目的:探讨ABCB1的基因位点(C3435T)多态性与癫痫耐药关联性。方法计算机检索Pubmed、Science direct、Wiley online library、Web of Science、中国知网、万方数据库和维普中文科技期刊数据库,纳入抗癫痫药耐药与抗癫痫药敏感的随机对照试验,同时查阅检索结果中所附相似文献及参考文献,检索文献均为建库至2014年6月15日。由两名评价员单独进行文献筛选及资料提取,采用RevMan 5.0软件进行Meta分析及其他统计学分析。结果共纳入文献10篇,癫痫患者中耐药815例,敏感976例。Meta分析结果显示,C3435T位点多态性在等位基因模型、显性模型、隐性模型、共显性模型(CC/TT组)下整体效应差异有统计学意义(P0.05);而印度地区ABCB1 C3435T位点基因多态性与癫痫耐药在等位基因模型和隐性基因模型下整体效应差异有统计学意义(P0.05). In the allele gene model, OR=0.70, 95%CI (0.54, 0.93);recessive gene model, OR=0.72, 95%CI (0.49, 1.07). Conclusion ABCB1 C3435T loci polymor-phism dose not relate to the antiepileptic drug resistant among Chinese; but ABCB1 C3435T loci polymorphism relates to the antiepileptic drug resistant among Indian.

  18. P-gp/ABCB1 exerts differential impacts on brain and fetal exposure to norbuprenorphine.

    Science.gov (United States)

    Liao, Michael Z; Gao, Chunying; Shireman, Laura M; Phillips, Brian; Risler, Linda J; Neradugomma, Naveen K; Choudhari, Prachi; Prasad, Bhagwat; Shen, Danny D; Mao, Qingcheng

    2017-01-19

    Norbuprenorphine is the major active metabolite of buprenorphine which is commonly used to treat opiate addiction during pregnancy. Norbuprenorphine produces marked respiratory depression and was 10 times more potent than buprenorphine. Therefore, it is important to understand the mechanism that controls fetal exposure to norbuprenorphine, as exposure to this compound may pose a significant risk to the developing fetus. P-gp/ABCB1 and BCRP/ABCG2 are two major efflux transporters regulating tissue distribution of drugs. Previous studies have shown that norbuprenorphine, but not buprenorphine, is a P-gp substrate. In this study, we systematically examined and compared the roles of P-gp and BCRP in determining maternal brain and fetal distribution of norbuprenorphine using transporter knockout mouse models. We administered 1mg/kg norbuprenorphine by retro-orbital injection to pregnant FVB wild-type, Abcb1a(-/-)/1b(-/-), and Abcb1a(-/-)/1b(-/-)/Abcg2(-/-) mice on gestation day 15. The fetal AUC of norbuprenorphine was ∼64% of the maternal plasma AUC in wild-type mice, suggesting substantial fetal exposure to norbuprenorphine. The maternal plasma AUCs of norbuprenorphine in Abcb1a(-/-)/1b(-/-) and Abcb1a(-/-)/1b(-/-)/Abcg2(-/-) mice were ∼2 times greater than that in wild-type mice. Fetal AUCs in Abcb1a(-/-)/1b(-/-) and Abcb1a(-/-)/1b(-/-)/Abcg2(-/-) mice were also increased compared to wild-type mice; however, the fetal-to-maternal plasma AUC ratio remained relatively unchanged by the knockout of Abcb1a/1b or Abcb1a/1b/Abcg2. In contrast, the maternal brain-to-maternal plasma AUC ratio in Abcb1a(-/-)/1b(-/-) or Abcb1a(-/-)/1b(-/-)/Abcg2(-/-) mice was increased ∼30-fold compared to wild-type mice. Protein quantification by LC-MS/MS proteomics revealed significantly higher amounts of P-gp protein in the wild-type mice brain than that in the placenta. These results indicate that fetal exposure to norbuprenorphine is substantial and that P-gp has a minor impact on

  19. The function of the ATP-binding cassette (ABC) transporter ABCB1 is not susceptible to actin disruption

    NARCIS (Netherlands)

    Meszaros, Peter; Hummel, Ina; Klappe, Karin; Draghiciu, Oana; Hoekstra, Dick; Kok, Jan W.

    2013-01-01

    Previously we have shown that the activity of the multidrug transporter ABCC1 (multidrug resistance protein 1), and its localization in lipid rafts, depends on cortical actin (Hummel I, Klappe K, Ercan C, Kok JW. Mol. Pharm. 2011 79, 229-40). Here we show that the efflux activity of the ATP-binding

  20. Targeting ABCB1-mediated tumor multidrug resistance by CRISPR/Cas9-based genome editing

    Science.gov (United States)

    Yang, Yang; Qiu, Jian-Ge; Li, Yong; Di, Jin-Ming; Zhang, Wen-Ji; Jiang, Qi-Wei; Zheng, Di-Wei; Chen, Yao; Wei, Meng-Ning; Huang, Jia-Rong; Wang, Kun; Shi, Zhi

    2016-01-01

    The RNA-guided clustered regularly interspaced short palindromic (CRISPR) in combination with a CRISPR-associated nuclease 9 (Cas9) nuclease system is a new rapid and precise technology for genome editing. In the present study, we applied the CRISPR/Cas9 system to target ABCB1 (also named MDR1) gene which encodes a 170 kDa transmembrane glycoprotein (P-glycoprotein/P-gp) transporting multiple types of chemotherapeutic drugs including taxanes, epipodophyllotoxins, vinca alkaloids and anthracyclines out of cells to contribute multidrug resistance (MDR) in cancer cells. Our data showed that knockout of ABCB1 by CRISPR/Cas9 system was succesfully archieved with two target sgRNAs in two MDR cancer cells due to the alteration of genome sequences. Knockout of ABCB1 by CRISPR/Cas9 system significantly enhances the sensitivity of ABCB1 substrate chemotherapeutic agents and the intracellular accumulation of rhodamine 123 and doxorubicin in MDR cancer cells. Although now there are lots of limitations to the application of CRISPR/Cas9 for editing cancer genes in human patients, our study provides valuable clues for the use of the CRISPR/Cas9 technology in the investigation and conquest of cancer MDR. PMID:27725879

  1. Arabidopsis TWISTED DWARF1 functionally interacts with Auxin Exporter ABCB1 on the root plasma membrane

    DEFF Research Database (Denmark)

    Wang, Bangjun; Bailly, Aurélien; Zwiewka, Marta

    2013-01-01

    Plant architecture is influenced by the polar, cell-to-cell transport of auxin that is primarily provided and regulated by plasma membrane efflux catalysts of the PIN-FORMED and B family of ABC transporter (ABCB) classes. The latter were shown to require the functionality of the FK506 binding...... assays, we demonstrate a predominant lateral, mainly outward-facing, plasma membrane location for TWD1 in the root epidermis characterized by the lateral marker ABC transporter G36/PLEIOTROPIC DRUG-RESISTANCE8/PENETRATION3. At these epidermal plasma membrane domains, TWD1 colocalizes with nonpolar ABCB1....... In planta bioluminescence resonance energy transfer analysis was used to verify specific ABC transporter B1 (ABCB1)-TWD1 interaction. Our data support a model in which TWD1 promotes lateral ABCB-mediated auxin efflux via protein-protein interaction at the plasma membrane, minimizing reflux from the root...

  2. Differential effects of c-myc and ABCB1 silencing on reversing drug resistance in HepG2/Dox cells.

    Science.gov (United States)

    Yahya, Shaymaa M M; Hamed, Ahmed R; Emara, Mohamed; Soltan, Maha M; Abd-Ellatef, Gamal Eldein F; Abdelnasser, Salma M

    2016-05-01

    Multidrug resistance (MDR) in various kinds of cancers represents a true obstacle which hinders the successes of most of current available chemotherapies. ATP-binding cassette (ABC) trasporter proteins have been shown to contribute to the majority of MDR in various types of malignancies. c-myc has recently been reported to participate, at least partly, in MDR to some types of cancers. This study aimed to test whether c-myc could play a role, solely or with coordination with other ABCs, in the resistance of HepG2 cells to doxorubicin (Dox). MDR has been induced in wild-type HepG2 and has been verified both on gene and protein levels. Various assays including efflux assays as well as siRNA targeting ABCB1 and c-myc have been employed to explore the role of both candidate molecules in MDR in HepG2. Results obtained, with regard to ABCB1 silencing on HepG2/Dox cells, have shown that ABCB1-deficient cells exhibited a significant reduction in ABCC1 expression as compared to ABCB1-sufficient cells. However, these cells did not show a significant reduction in other tested ABCs (ABCC5 and ABCC10) while c-myc silencing had no significant effect on any of the studied ABCs. Moreover, silencing of ABCB1 on HepG2 significantly increased fluorescent calcein retention in HepG2 cells as compared to the control cells while downregulation of c-myc did not have any effect on fluorescent calcein retention. Altogether, this work clearly demonstrates that c-myc has no role in MDR of HepG2 to Dox which has been shown to be ABCB1-mediated in a mechanism which might involve ABCC1.

  3. ABCB1 genetic variants in leukemias: current insights into treatment outcomes

    Directory of Open Access Journals (Sweden)

    Ankathil R

    2017-05-01

    Full Text Available Ravindran Ankathil Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia Abstract: Despite improvements in treatment of different types of leukemia, not all patients respond optimally for a particular treatment. Some treatments will work better for some, while being harmful or ineffective for others. This is due to genetic variation in the form of single-nucleotide polymorphisms (SNPs that affect gene expression or function and cause inherited interindividual differences in the metabolism and disposition of drugs. Drug transporters are one of the determinants governing the pharmacokinetic profile of chemotherapeutic drugs. The ABCB1 transporter gene transports a wide range of drugs, including drugs used in leukemia treatment. Polymorphisms in the ABCB1 gene do affect intrinsic resistance and pharmacokinetics of several drugs used in leukemia treatment protocols and thereby affect the efficacy of treatment and event-free survival. This review focuses on the impact of three commonly occurring SNPs (1236C>T, 2677G>T/A, and 3435C>T of ABCB1 on treatment response of various types of leukemia. From the literature available, some of the genotypes and haplotypes of these SNPs have been found to be potential determinants of interindividual variability in drug disposition and pharmacologic response in different types of leukemia. However, due to inconsistencies in the results observed across the studies, additional studies, considering novel genomic methodologies, comprehensive definition of clinical phenotypes, adequate sample size, and uniformity in all the confounding factors, are warranted. Keywords: leukemia, ABCB1 polymorphisms, chemotherapy response, survival

  4. Sex differences in cyclosporine pharmacokinetics and ABCB1 gene expression in mononuclear blood cells in African American and Caucasian renal transplant recipients.

    Science.gov (United States)

    Tornatore, Kathleen M; Brazeau, Daniel; Dole, Kiran; Danison, Ryan; Wilding, Gregory; Leca, Nicolae; Gundroo, Aijaz; Gillis, Kathryn; Zack, Julia; DiFrancesco, Robin; Venuto, Rocco C

    2013-10-01

    Cyclosporine exhibits pharmacokinetic and pharmacodynamic variability in renal transplant recipients (RTR) attributed to P-glycoprotein (P-gp), an ABCB1 efflux transporter that influences bioavailability and intracellular distribution. Data on race and sex influences on P-gp in RTR are lacking. We investigated sex and race influences on cyclosporine pharmacokinetics and ABCB1 gene expression in peripheral blood mononuclear cells (PBMC). Fifty-four female and male African American and Caucasian stable RTR receiving cyclosporine and mycophenolic acid completed a 12-hour study. ABCB1 gene expression was assessed in PBMCs pre-dose and 4 hours after cyclosporine. Statistical analysis used mixed effects models on transformed, normalized ABCB1 expression and cyclosporine pharmacokinetics. Sex and race differences were observed for the dose-normalized area under the concentration curve (AUC0-12 /Dose) [P = .0004], apparent clearance [P = .0004] and clearance/body mass index (CL/BMI) [P = .027] with slowest clearance and greatest drug exposure in females. Sex and race differences were found pre-dose and 4 hours for ABCB1 [P cyclosporine clearance and lower ABCB1 gene expression in PBMC suggesting reduced efflux activity and greater intracellular drug exposure. © The Author(s) 2013.

  5. ATP-binding cassette subfamily B member 1 (ABCB1) and subfamily C member 10 (ABCC10) are not primary resistance factors for cabazitaxel

    Institute of Scientific and Technical Information of China (English)

    Rishil J Kathawala; Yi-Jun Wang; Suneet Shukla; Yun-Kai Zhang; Saeed Alqahtani; Amal Kaddoumi; Suresh V Ambudkar; Charles R Ashby Jr; Zhe-Sheng Chen

    2015-01-01

    Introduction:ATP-binding cassette subfamily B member 1 (ABCB1) and subfamily C member 10 (ABCC10) proteins are efflux transporters that couple the energy derived from ATP hydrolysis to the translocation of toxic substances and chemotherapeutic drugs out of cells. Cabazitaxel is a novel taxane that differs from paclitaxel by its lower affinity for ATP-binding cassette (ABC) transporters. Methods:We determined the effects of cabazitaxel, a novel tubulin-binding taxane, and paclitaxel on paclitaxel-resistant, ABCB1-overexpressing KB-C2 and LLC-MDR1-WT cells and paclitaxel-resistant, ABCC10-overexpressing HEK293/ABCC10 cells by calculating the degree of drug resistance and measuring ATPase activity of the ABCB1 transporter. Results:Decreased resistance to cabazitaxel compared with paclitaxel was observed in KB-C2, LLC-MDR1-WT, and HEK293/ABCC10 cells. Moreover, cabazitaxel had low efficacy, whereas paclitaxel had high efficacy in stimulating the ATPase activity of ABCB1, indicating a direct interaction of both drugs with the transporter. Conclusion:ABCB1 and ABCC10 are not primary resistance factors for cabazitaxel compared with paclitaxel, suggesting that cabazitaxel may have a low affinity for these efflux transporters.

  6. Breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1) restrict oral availability and brain accumulation of the PARP inhibitor rucaparib (AG-014699).

    Science.gov (United States)

    Durmus, Selvi; Sparidans, Rolf W; van Esch, Anita; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H

    2015-01-01

    Rucaparib is a potent, orally available, small-molecule inhibitor of poly ADP-ribose polymerase (PARP) 1 and 2. Ongoing clinical trials are assessing the efficacy of rucaparib alone or in combination with other cytotoxic drugs, mainly in breast and ovarian cancer patients with mutations in the breast cancer associated (BRCA) genes. We aimed to establish whether the multidrug efflux transporters ABCG2 (BCRP) and ABCB1 (P-gp, MDR1) affect the oral availability and brain penetration of rucaparib in mice. In vitro, rucaparib was efficiently transported by both human ABCB1 and ABCG2, and very efficiently by mouse Abcg2. Transport could be inhibited by the small-molecule ABCB1 and ABCG2 inhibitors zosuquidar and Ko143, respectively. In vivo, oral availability (plasma AUC0-1 and AUC0-24) and brain levels of rucaparib at 1 and 24 h were increased by the absence of both Abcg2 and Abcb1a/1b after oral administration of rucaparib at 10 mg/kg. Our data show to our knowledge for the first time that oral availability and brain accumulation of a PARP inhibitor are markedly and additively restricted by Abcg2 and Abcb1a/1b. This may have clinical relevance for improvement of rucaparib therapy in PARP inhibitor-resistant tumors with ABCB1 and/or ABCG2 expression and in patients with brain (micro)metastases positioned behind a functional blood-brain barrier.

  7. Carfilzomib resistance due to ABCB1/MDR1 overexpression is overcome by nelfinavir and lopinavir in multiple myeloma.

    Science.gov (United States)

    Besse, A; Stolze, S C; Rasche, L; Weinhold, N; Morgan, G J; Kraus, M; Bader, J; Overkleeft, H S; Besse, L; Driessen, C

    2017-07-05

    Proteasome inhibitor (PI) carfilzomib (CFZ) has activity superior to bortezomib (BTZ) and is increasingly incorporated in multiple myeloma (MM) frontline therapy and relapsed settings. Most MM patients ultimately experience PI-refractory disease, an unmet medical need with poorly understood biology and dismal outcome. Pharmacologic targeting of ABCB1 improved patient outcomes, including MM, but suffered from adverse drug effects and insufficient plasma concentrations. Proteomics analysis identified ABCB1 overexpression as the most significant change in CFZ-resistant MM cells. We addressed the functional role of ABCB1 overexpression in MM and observed significantly upregulated ABCB1 in peripheral blood malignant plasma cells (PCs) vs untreated patients' bone marrow PC. ABCB1 overexpression reduces the proteasome-inhibiting activity of CFZ due to drug efflux, in contrast to BTZ. Likewise, the cytotoxicity of established anti-MM drugs was significantly reduced in ABCB1-expressing MM cells. In search for potential drugs targeting ABCB1 in clinical trials, we identified the HIV protease inhibitors nelfinavir (NFV) and lopinavir (LPV) as potent functional modulators of ABCB1-mediated drug export, most likely via modulation of mitochondria permeability transition pore. NFV and LPV restored CFZ activity at therapeutically relevant drug levels and thus represent ready-to-use drugs to be tested in clinical trials to target ABCB1 and to re-sensitize PC to established myeloma drugs, in particular CFZ.Leukemia advance online publication, 28 July 2017; doi:10.1038/leu.2017.212.

  8. Experimental coccidiosis influences the expression of the ABCB1 gene, a physiological important functional marker of intestinal integrity in chickens.

    Science.gov (United States)

    Haritova, Aneliya; Koinarski, Vencislav; Stanilova, Spaska

    2013-01-01

    Efflux transporters belonging to the family of ABC transporters have an important functional role in the maintenance of the intestinal barrier. As efflux transporters they prevent the absorption of toxic substances from feed, while at the same time facilitating the excretion of metabolic waste products as well as drugs from the circulation into the intestinal lumen. As Eimeria tenella infection significantly affects the integrity of caecum, the effects of experimental E. tenella infection on the levels of expression of ABCB1 mRNAs in the intestines and livers of broilers were evaluated. ABCB1 mRNA expression was quantified by qRT-PCR. Its expression levels were significantly down-regulated in the caecum of infected animals. The levels of ABCB1 mRNA were not changed in the duodenum and the liver. After treatment of the animals with sulfapyrazine for three days, not only a significant improvement of the clinical appearance but also a normalization of the P-gp expression was noticed. Although the current study cannot distinguish between the direct effect of the drug on the host and the drug action on the parasite, these results suggest that the treatment of coccidiosis with sulfachlorpyrazine also restored the expression of the investigated efflux transporter in the caecum. This is of clinical significance as P-glycoproteins contribute to the integrity of intestines and their function as important biological barriers, protecting poultry from pathogens and toxic compounds in animal feeds.

  9. P-gp substrate-induced neurotoxicity in an Abcb1a knock-in/Abcb1b knock-out mouse model with a mutated canine ABCB1 targeted insertion.

    Science.gov (United States)

    Swain, M D; Orzechowski, K L; Swaim, H L; Jones, Y L; Robl, M G; Tinaza, C A; Myers, M J; Jhingory, M V; Buckely, L E; Lancaster, V A; Yancy, H F

    2013-06-01

    Certain dog breeds, especially Collies, are observed to exhibit neurotoxicity to avermectin drugs, which are P-glycoprotein (P-gp) substrates. This neurotoxicity is due to an ABCB1 gene mutation (ABCB1-1Δ) that results in non-functional P-gp expression. A developed Abcb1a knock-in/Abcb1b knock-out mouse model expressing the ABCB1-1Δ canine gene was previously reported and mice exhibited sensitivity upon ivermectin administration. Here, model and wild-type mice were administered P-gp substrates doramectin, moxidectin, and digoxin. While knock-in/knock-out mice exhibited ataxia, lethargy and tremor, wild-type mice remained unaffected. In addition, no neurotoxic clinical signs were observed in either mouse type administered domperidone, a P-gp substrate with no reported neurotoxicity in ABCB1-1Δ Collies. Overall, neurotoxic signs displayed by model mice closely paralleled those observed in ivermectin-sensitive Collies. This model can be used to identify toxic P-gp substrates with altered safety in dog populations and may reduce dog use in safety studies that are part of the drug approval process.

  10. Variation and evolution of the ABC transporter genes ABCB1, ABCC1, ABCG2, ABCG5 and ABCG8: implication for pharmacogenetics and disease.

    Science.gov (United States)

    Silverton, Latoya; Dean, Michael; Moitra, Karobi

    2011-01-01

    The ATP-binding cassette (ABC) transporter genes are ubiquitous in the genomes of all vertebrates. Some of these transporters play a key role in xenobiotic defense and are endowed with the capacity to efflux harmful toxic substances. A major role in the evolution of the vertebrate ABC genes is played by gene duplication. Multiple gene duplication and deletion events have been identified in ABC genes, resulting in either gene birth or gene death indicating that the process of gene evolution is still ongoing in this group of transporters. Additionally, polymorphisms in these genes are linked to variations in expression, function, drug disposition and drug response. Single nucleotide polymorphisms in the ABC genes may be considered as markers of individual risk for adverse drug reactions or susceptibility to complex diseases as they can uniquely influence the quality and quantity of gene product. As the ABC genes continue to evolve, globalization will yield additional migration and racial admixtures that will have far reaching implications for the pharmacogenetics of this unique family of transporters in the context of human health.

  11. ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells.

    Science.gov (United States)

    Vaidyanathan, Aparajitha; Sawers, Lynne; Gannon, Anne-Louise; Chakravarty, Probir; Scott, Alison L; Bray, Susan E; Ferguson, Michelle J; Smith, Gillian

    2016-08-09

    Clinical response to chemotherapy for ovarian cancer is frequently compromised by the development of drug-resistant disease. The underlying molecular mechanisms and implications for prescription of routinely prescribed chemotherapy drugs are poorly understood. We created novel A2780-derived ovarian cancer cell lines resistant to paclitaxel and olaparib following continuous incremental drug selection. MTT assays were used to assess chemosensitivity to paclitaxel and olaparib in drug-sensitive and drug-resistant cells±the ABCB1 inhibitors verapamil and elacridar and cross-resistance to cisplatin, carboplatin, doxorubicin, rucaparib, veliparib and AZD2461. ABCB1 expression was assessed by qRT-PCR, copy number, western blotting and immunohistochemical analysis and ABCB1 activity assessed by the Vybrant and P-glycoprotein-Glo assays. Paclitaxel-resistant cells were cross-resistant to olaparib, doxorubicin and rucaparib but not to veliparib or AZD2461. Resistance correlated with increased ABCB1 expression and was reversible following treatment with the ABCB1 inhibitors verapamil and elacridar. Active efflux of paclitaxel, olaparib, doxorubicin and rucaparib was confirmed in drug-resistant cells and in ABCB1-expressing bacterial membranes. We describe a common ABCB1-mediated mechanism of paclitaxel and olaparib resistance in ovarian cancer cells. Optimal choice of PARP inhibitor may therefore limit the progression of drug-resistant disease, while routine prescription of first-line paclitaxel may significantly limit subsequent chemotherapy options in ovarian cancer patients.

  12. ABCB1 (MDR1) polymorphisms and ovarian cancer progression and survival

    DEFF Research Database (Denmark)

    Johnatty, Sharon E; Beesley, Jonathan; Gao, Bo;

    2013-01-01

    ABCB1 encodes the multi-drug efflux pump P-glycoprotein (P-gp) and has been implicated in multi-drug resistance. We comprehensively evaluated this gene and flanking regions for an association with clinical outcome in epithelial ovarian cancer (EOC).......ABCB1 encodes the multi-drug efflux pump P-glycoprotein (P-gp) and has been implicated in multi-drug resistance. We comprehensively evaluated this gene and flanking regions for an association with clinical outcome in epithelial ovarian cancer (EOC)....

  13. Brain Accumulation of Ponatinib and Its Active Metabolite, N-Desmethyl Ponatinib, Is Limited by P-Glycoprotein (P-GP/ABCB1) and Breast Cancer Resistance Protein (BCRP/ABCG2).

    Science.gov (United States)

    Kort, Anita; van Hoppe, Stéphanie; Sparidans, Rolf W; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H

    2017-10-02

    Ponatinib is an oral BCR-ABL1 inhibitor for treatment of advanced leukemic diseases that carry the Philadelphia chromosome, specifically containing the T315I mutation yielding resistance to previously approved BCR-ABL1 inhibitors. Using in vitro transport assays and knockout mouse models, we investigated whether the multidrug efflux transporters ABCB1 and ABCG2 transport ponatinib and whether they, or the drug-metabolizing enzyme CYP3A, affect the oral availability and brain accumulation of ponatinib and its active N-desmethyl metabolite (DMP). In vitro, mouse Abcg2 and human ABCB1 modestly transported ponatinib. In mice, both Abcb1 and Abcg2 markedly restricted brain accumulation of ponatinib and DMP, but not ponatinib oral availability. Abcg2 deficiency increased DMP plasma levels ∼3-fold. Cyp3a deficiency increased the ponatinib plasma AUC 1.4-fold. Our results suggest that pharmacological inhibition of ABCG2 and ABCB1 during ponatinib therapy might benefit patients with brain (micro)metastases positioned behind an intact blood-brain barrier, or with substantial expression of these transporters in the malignant cells. CYP3A inhibitors might increase ponatinib oral availability, enhancing efficacy but possibly also toxicity of this drug.

  14. The distribution of genetic polymorphism of CYP3A5, CYP3A4 and ABCB1 in patients subjected to renal transplantation

    OpenAIRE

    Vavić Neven; Rančić Nemanja; Cikota-Aleksić Bojana; Magić Zvonko; Cimeša Jelena; Obrenčević Katarina; Radojević Milorad; Mikov Momir; Dragojević-Simić Viktorija

    2016-01-01

    Background/Aim. Polymorphisms of genes which encode transporter P-glycoprotein and most important enzymes for tacrolimus pharmacokinetics can have significant influence reflecting on blood concentrations of this drug. The aim of this study was to examine the distribution of polymorphisms of CYP3A5, CYP3A4 and ABCB1 genes in patients subjected to renal transplantation, for the first time in our transplantation center. Methods. The research was designed as a prospective cross-sectional study wh...

  15. Inhibition of ABCB1 (MDR1 expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Michiro Susa

    Full Text Available BACKGROUND: The use of neo-adjuvant chemotherapy in treating osteosarcoma has improved patients' average 5 year survival rate from 20% to 70% in the past 30 years. However, for patients who progress after chemotherapy, its effectiveness diminishes due to the emergence of multi-drug resistance (MDR after prolonged therapy. METHODOLOGY/PRINCIPAL FINDINGS: In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure resulting from MDR, we designed and evaluated a novel drug delivery system for MDR1 siRNA delivery. Novel biocompatible, lipid-modified dextran-based polymeric nanoparticles were used as the platform for MDR1 siRNA delivery; and the efficacy of combination therapy with this system was evaluated. In this study, multi-drug resistant osteosarcoma cell lines (KHOS(R2 and U-2OS(R2 were treated with the MDR1 siRNA nanocarriers and MDR1 protein (P-gp expression, drug retention, and immunofluoresence were analyzed. Combination therapy of the MDR1 siRNA loaded nanocarriers with increasing concentrations of doxorubicin was also analyzed. We observed that MDR1 siRNA loaded dextran nanoparticles efficiently suppresses P-gp expression in the drug resistant osteosarcoma cell lines. The results also demonstrated that this approach may be capable of reversing drug resistance by increasing the amount of drug accumulation in MDR cell lines. CONCLUSIONS/SIGNIFICANCE: Lipid-modified dextran-based polymeric nanoparticles are a promising platform for siRNA delivery. Nanocarriers loaded with MDR1 siRNA are a potential treatment strategy for reversing MDR in osteosarcoma.

  16. Gut bitter taste receptor signalling induces ABCB1 through a mechanism involving CCK.

    Science.gov (United States)

    Jeon, Tae-Il; Seo, Young-Kyo; Osborne, Timothy F

    2011-08-15

    T2Rs (bitter taste-sensing type 2 receptors) are expressed in the oral cavity to prevent ingestion of dietary toxins through taste avoidance. They are also expressed in other cell types, including gut enteroendocrine cells, where their physiological role is enigmatic. Previously, we proposed that T2R-dependent CCK (cholecystokinin) secretion from enteroendocrine cells limits absorption of dietary toxins, but an active mechanism was lacking. In the present study we show that T2R signalling activates ABCB1 (ATP-binding cassette B1) in intestinal cells through a CCK signalling mechanism. PTC (phenylthiocarbamide), an agonist for the T2R38 bitter receptor, increased ABCB1 expression in both intestinal cells and mouse intestine. PTC induction of ABCB1 was decreased by either T2R38 siRNA (small interfering RNA) or treatment with YM022, a gastrin receptor antagonist. Thus gut ABCB1 is regulated through signalling by CCK/gastrin released in response to PTC stimulation of T2R38 on enteroendocrine cells. We also show that PTC increases the efflux activity of ABCB1, suggesting that T2R signalling limits the absorption of bitter tasting/toxic substances through modulation of gut efflux membrane transporters.

  17. ABCB1 polymorphism predicts escitalopram dose needed for remission in major depression

    Science.gov (United States)

    Singh, A B; Bousman, C A; Ng, C H; Byron, K; Berk, M

    2012-01-01

    The ATP-binding cassette family of transporter proteins, subfamily B (MDR/TAP), member 1 (ABCB1) (P-glycoprotein) transporter is a key component of the blood–brain barrier. Many antidepressants are subject to ABCB1 efflux. Functional polymorphisms of ABCB1 may influence central nervous system bioavailability of antidepressants subject to efflux. Single-nucleotide polymorphisms (SNPs) at rs1045642 (C3435T) of ABCB1 have been associated with efflux pump efficiency. This may explain part of the interindividual variation in antidepressant dose needed to remit. Individuals (N=113) with DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) major depressive disorder (MDD) were treated with escitalopram (ESC) or venlafaxine (VEN) over 8 weeks. The17-item Hamilton Depression Rating Scale was assessed serially, blind to genotype. SNP rs1045642 of ABCB1 along with two SNPs previously reported to be in linkage disequilibrium with it (rs2032582 and rs1128503) were genotyped. Demographic features, clinical features, P450 metabolizer status and 5-HTTLPR (serotonin-transporter-linked promoter region) genotype were controlled for. Carriers of rs1045642 TT needed on average 11 mg of ESC to remit, whereas TC and CC carriers required 24 and 19 mg, respectively (P=0.0001). This equates to a 2.0- (95% confidence interval=1.5–3.4; P<0.001) fold greater ESC dose needed to remit for C carriers compared with TT carriers at rs1045642. Of VEN-treated subjects carrying TT genotype at rs1045642, 73.3% remitted compared with 12.5% for CC genotype (odds ratio=6.69; 95% confidence interval=1.72–25.9, P=0.006). These data suggest that antidepressant dose needed to remit can be predicted by an ABCB1 SNP. This has the potential clinical translation implications for dose selection and remission from MDD. PMID:23188198

  18. Drug: D08996 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available nhibitor [HSA:1803] [KO:K01278] hsa04974(1803) Protein digestion and absorption Transporter: ABCB1 [HSA:5243] map07051 Antidiabetic...P drug classification [BR:br08302] Blood Glucose Regulators Antidiabetic Agents S

  19. Effects of rifampicin, dexamethasone, St. John's Wort and Thyroxine on maternal and foetal expression of Abcb1 and organ distribution of talinolol in pregnant rats.

    Science.gov (United States)

    Saljé, Karen; Lederer, Kirstin; Oswald, Stefan; Dazert, Eike; Warzok, Rolf; Siegmund, Werner

    2012-08-01

    It is well accepted that ABCB1 plays a critical role in absorption, distribution and elimination of many xenobiotics and drugs. Only little is known about the regulation and function of ABCB1 during pregnancy. Thus, the aim of this study is to investigate maternal, placental and foetal Abcb1 expression and function in pregnant rats after induction with rifampicin, dexamethasone, St. John's wort (SJW) or thyroxine. Wistar rats were orally treated with rifampicin (250 mg/kg), SJW (1.0 g/kg), thyroxine (9 μg/kg), dexamethasone (1 mg/kg) or 0.5% methylcellulose suspension (control) for 9 days during late pregnancy (each N = 5). Afterwards, organ mRNA expression and protein content of Abcb1a were determined. Tissue concentrations of the ABCB1 probe drug talinolol were measured after repeated administration of the drug (100 mg/kg, 9 days) and after induction with oral rifampicin (250 mg/kg, 9 days, N = 5). Abcb1 expression was substantially lower in foetal than in maternal organs. Abcb1 was significantly induced by SJW in the maternal jejunum and placenta, by dexamethasone in foetal brain and liver and by thyroxine in the placenta and maternal and foetal brain. Rifampicin induced Abcb1 in all maternal and foetal organs. However, organ distribution of talinolol was not influenced by comedication of rifampicin. In conclusion, maternal and foetal Abcb1 organ expression in pregnant rats is inducible by nuclear receptor agonists. Although rifampicin regulates maternal and foetal Abcb1 expression, organ distribution of talinolol remains unchanged most likely caused by the known inhibitory effect of rifampicin on Abcb1 function.

  20. mRNA levels of related Abcb genes change opposite to each other upon histone deacetylase inhibition in drug-resistant rat hepatoma cells.

    Directory of Open Access Journals (Sweden)

    Adám Sike

    Full Text Available The multidrug-resistant phenotype of tumor cells is acquired via an increased capability of drug efflux by ABC transporters and causes serious problems in cancer treatment. With the aim to uncover whether changes induced by epigenetic mechanisms in the expression level of drug transporter genes correlates with changes in the drug resistance phenotypes of resistant cells, we studied the expression of drug transporters in rat hepatoma cell lines. We found that of the three major rat ABC transporter genes Abcb1a, Abcb1b and Abcc1 the activity of only Abcb1b increased significantly in colchicine-selected, drug-resistant cells. Increased transporter expression in drug-resistant cells results primarily from transcriptional activation. A change in histone modification at the regulatory regions of the chromosomally adjacent Abcb1a and Abcb1b genes differentially affects the levels of corresponding mRNAs. Transcriptional up- and down-regulation accompany an increase in acetylation levels of histone H3 lysine 9 at the promoter regions of Abcb1b and Abcb1a, respectively. Drug efflux activity, however, does not follow tightly the transcriptional activity of drug transporter genes in hepatoma cells. Our results point out the need for careful analysis of cause-and-effect relationships between changes in histone modification, drug transporter expression and drug resistance phenotypes.

  1. mRNA levels of related Abcb genes change opposite to each other upon histone deacetylase inhibition in drug-resistant rat hepatoma cells.

    Science.gov (United States)

    Sike, Adám; Nagy, Enikő; Vedelek, Balázs; Pusztai, Dávid; Szerémy, Péter; Venetianer, Anikó; Boros, Imre M

    2014-01-01

    The multidrug-resistant phenotype of tumor cells is acquired via an increased capability of drug efflux by ABC transporters and causes serious problems in cancer treatment. With the aim to uncover whether changes induced by epigenetic mechanisms in the expression level of drug transporter genes correlates with changes in the drug resistance phenotypes of resistant cells, we studied the expression of drug transporters in rat hepatoma cell lines. We found that of the three major rat ABC transporter genes Abcb1a, Abcb1b and Abcc1 the activity of only Abcb1b increased significantly in colchicine-selected, drug-resistant cells. Increased transporter expression in drug-resistant cells results primarily from transcriptional activation. A change in histone modification at the regulatory regions of the chromosomally adjacent Abcb1a and Abcb1b genes differentially affects the levels of corresponding mRNAs. Transcriptional up- and down-regulation accompany an increase in acetylation levels of histone H3 lysine 9 at the promoter regions of Abcb1b and Abcb1a, respectively. Drug efflux activity, however, does not follow tightly the transcriptional activity of drug transporter genes in hepatoma cells. Our results point out the need for careful analysis of cause-and-effect relationships between changes in histone modification, drug transporter expression and drug resistance phenotypes.

  2. ABCB1 genotypes and haplotypes in patients with dementia and age-matched non-demented control patients

    Directory of Open Access Journals (Sweden)

    Frankfort Suzanne V

    2006-09-01

    Full Text Available Abstract Amyloid β is an in vitro substrate for P-glycoprotein (P-gp, an efflux pump at the blood brain barrier (BBB. The Multi Drug Resistance (ABCB1 gene, encoding for P-gp, is highly polymorphic and this may result in a changed function of P-gp and may possibly interfere with the pathogenesis of Alzheimer's disease. This study investigates to what extent ABCB1 Single Nucleotide Polymorphisms (SNPs; C1236T in exon 12, G2677T/A in exon 21 and C3435T in exon 26 and inferred haplotypes exist in an elderly population and if these SNPs and haplotypes differ between patients with dementia and age-matched non-demented control patients. ABCB1 genotype, allele and haplotype frequencies were neither significantly different between patients with dementia and age-matched controls, nor between subgroups of different types of dementia nor age-matched controls. This study shows ABCB1 genotype frequencies to be comparable with described younger populations. To our knowledge this is the first study on ABCB1 genotypes in dementia. ABCB1 genotypes are presently not useful as a biomarker for dementia, as they were not significantly different between demented patients and age-matched control subjects.

  3. Molecular model of the outward facing state of the human P-glycoprotein (ABCB1, and comparison to a model of the human MRP5 (ABCC5

    Directory of Open Access Journals (Sweden)

    Sager Georg

    2007-09-01

    Full Text Available Abstract Background Multidrug resistance is a particular limitation to cancer chemotherapy, antibiotic treatment and HIV medication. The ABC (ATP binding cassette transporters human P-glycoprotein (ABCB1 and the human MRP5 (ABCC5 are involved in multidrug resistance. Results In order to elucidate structural and molecular concepts of multidrug resistance, we have constructed a molecular model of the ATP-bound outward facing conformation of the human multidrug resistance protein ABCB1 using the Sav1866 crystal structure as a template, and compared the ABCB1 model with a previous ABCC5 model. The electrostatic potential surface (EPS of the ABCB1 substrate translocation chamber, which transports cationic amphiphilic and lipophilic substrates, was neutral with negative and weakly positive areas. In contrast, EPS of the ABCC5 substrate translocation chamber, which transports organic anions, was generally positive. Positive-negative ratios of amino acids in the TMDs of ABCB1 and ABCC5 were also analyzed, and the positive-negative ratio of charged amino acids was higher in the ABCC5 TMDs than in the ABCB1 TMDs. In the ABCB1 model residues Leu65 (transmembrane helix 1 (TMH1, Ile306 (TMH5, Ile340 (TMH6 and Phe343 (TMH6 may form a binding site, and this is in accordance with previous site directed mutagenesis studies. Conclusion The Sav1866 X-ray structure may serve as a suitable template for the ABCB1 model, as it did with ABCC5. The EPS in the substrate translocation chambers and the positive-negative ratio of charged amino acids were in accordance with the transport of cationic amphiphilic and lipophilic substrates by ABCB1, and the transport of organic anions by ABCC5.

  4. Factors Governing P-Glycoprotein-Mediated Drug-Drug Interactions at the Blood-Brain Barrier Measured with Positron Emission Tomography.

    Science.gov (United States)

    Wanek, Thomas; Römermann, Kerstin; Mairinger, Severin; Stanek, Johann; Sauberer, Michael; Filip, Thomas; Traxl, Alexander; Kuntner, Claudia; Pahnke, Jens; Bauer, Florian; Erker, Thomas; Löscher, Wolfgang; Müller, Markus; Langer, Oliver

    2015-09-01

    The adenosine triphosphate-binding cassette transporter P-glycoprotein (ABCB1/Abcb1a) restricts at the blood-brain barrier (BBB) brain distribution of many drugs. ABCB1 may be involved in drug-drug interactions (DDIs) at the BBB, which may lead to changes in brain distribution and central nervous system side effects of drugs. Positron emission tomography (PET) with the ABCB1 substrates (R)-[(11)C]verapamil and [(11)C]-N-desmethyl-loperamide and the ABCB1 inhibitor tariquidar has allowed direct comparison of ABCB1-mediated DDIs at the rodent and human BBB. In this work we evaluated different factors which could influence the magnitude of the interaction between tariquidar and (R)-[(11)C]verapamil or [(11)C]-N-desmethyl-loperamide at the BBB and thereby contribute to previously observed species differences between rodents and humans. We performed in vitro transport experiments with [(3)H]verapamil and [(3)H]-N-desmethyl-loperamide in ABCB1 and Abcb1a overexpressing cell lines. Moreover we conducted in vivo PET experiments and biodistribution studies with (R)-[(11)C]verapamil and [(11)C]-N-desmethyl-loperamide in wild-type mice without and with tariquidar pretreatment and in homozygous Abcb1a/1b((-/-)) and heterozygous Abcb1a/1b((+/-)) mice. We found no differences for in vitro transport of [(3)H]verapamil and [(3)H]-N-desmethyl-loperamide by ABCB1 and Abcb1a and its inhibition by tariquidar. [(3)H]-N-Desmethyl-loperamide was transported with a 5 to 9 times higher transport ratio than [(3)H]verapamil in ABCB1- and Abcb1a-transfected cells. In vivo, brain radioactivity concentrations were lower for [(11)C]-N-desmethyl-loperamide than for (R)-[(11)C]verapamil. Both radiotracers showed tariquidar dose dependent increases in brain distribution with tariquidar half-maximum inhibitory concentrations (IC50) of 1052 nM (95% confidence interval CI: 930-1189) for (R)-[(11)C]verapamil and 1329 nM (95% CI: 980-1801) for [(11)C]-N-desmethyl-loperamide. In homozygous Abcb1a/1b

  5. ABCB1 and ABCC2 and the risk of distant metastasis in Thai breast cancer patients treated with tamoxifen

    Directory of Open Access Journals (Sweden)

    Sensorn I

    2016-04-01

    Full Text Available Insee Sensorn,1,* Chonlaphat Sukasem,2,* Ekaphop Sirachainan,3 Montri Chamnanphon,2 Ekawat Pasomsub,4 Narumol Trachu,5 Porntip Supavilai,1 Darawan Pinthong,1 Sansanee Wongwaisayawan6 1Department of Pharmacology, Faculty of Science, Mahidol University, 2Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 3Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 4Division of Virology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 5Research Center, Faculty of Medicine, Ramathibodi Hospital, 6Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand *These authors contributed equally to this work Background: Genetic polymorphisms of drug-metabolizing enzymes and transporters have been extensively studied with regard to tamoxifen treatment outcomes. However, the results are inconclusive. Analysis of organ-specific metastasis may reveal the association of these pharmacogenetic factors. The aim of this study is to investigate the impact of CYP3A5, CYP2D6, ABCB1, and ABCC2 polymorphisms on the risk of all distant and organ-specific metastases in Thai patients who received tamoxifen adjuvant therapy. Methods: Genomic DNA was extracted from blood samples of 73 patients with breast cancer who received tamoxifen adjuvant therapy. CYP3A5 (6986A>G, CYP2D6 (100C>T, ABCB1 (3435C>T, and ABCC2 (-24C>T were genotyped using allelic discrimination real-time polymerase chain reaction assays. The impacts of prognostic clinical factors and genetic variants on disease-free survival were analyzed using the Kaplan–Meier method and Cox regression analysis. Results: In the univariate analysis, primary tumor size >5 cm was significantly associated with increased risk of distant metastasis (P=0

  6. Comparative analysis of ABCB1 reveals novel structural and functional conservation between monocots and dicots

    Directory of Open Access Journals (Sweden)

    Amandeep Kaur Dhaliwal

    2014-11-01

    Full Text Available Phytohormone auxin plays a critical role in modulating plant architecture by creating a gradient regulated via its transporters such as ATP-binding cassette (ABC B1. Except for Arabidopsis and maize, where it was shown to interrupt auxin transport, ABCB1’s presence, structure and function in crop species is not known. Here we describe the structural and putative functional organization of ABCB1 among monocots relative to that of dicots. Identified from various plant species following specific and stringent criteria, ZmABCB1’s ‘true’ orthologs sequence identity ranged from 56-90% at the DNA and 75-91% at the predicted amino acid (aa level. Relative to ZmABCB1, the size of genomic copies ranged from -27 to +1.5% and aa from -7.7 to +0.6%. With the average gene size being similar (5.8 kb in monocots and 5.7 kb in dicots, dicots have about triple the number of introns with an average size of 194 bp (total 1743 bp compared to 556 bp (total 1667 bp in monocots. The intron-exon junctions across species were however conserved. N-termini of the predicted proteins were highly variable: in monocots due to mismatches and small deletions of 1-13 aa compared to large, species-specific deletions of up to 77 aa in dicots. The species- family-, and group- specific conserved motifs were identified in the N-terminus and linker regions of protein, possibly responsible for the specific functions. The near-identical conserved motifs of Nucleotide Binding Domains (NBDs in two halves of the protein showed subtle aa changes possibly favoring ATP binding to the N-terminus. Predicted 3-D protein structures showed remarkable similarity with each other and for the residues involved in auxin binding.

  7. Transporter assays and assay ontologies: useful tools for drug discovery.

    Science.gov (United States)

    Zdrazil, Barbara; Chichester, Christine; Zander Balderud, Linda; Engkvist, Ola; Gaulton, Anna; Overington, John P

    2014-06-01

    Transport proteins represent an eminent class of drug targets and ADMET (absorption, distribution, metabolism, excretion, toxicity) associated genes. There exists a large number of distinct activity assays for transport proteins, depending on not only the measurement needed (e.g. transport activity, strength of ligand–protein interaction), but also due to heterogeneous assay setups used by different research groups. Efforts to systematically organize this (divergent) bioassay data have large potential impact in Public-Private partnership and conventional commercial drug discovery. In this short review, we highlight some of the frequently used high-throughput assays for transport proteins, and we discuss emerging assay ontologies and their application to this field. Focusing on human P-glycoprotein (Multidrug resistance protein 1; gene name: ABCB1, MDR1), we exemplify how annotation of bioassay data per target class could improve and add to existing ontologies, and we propose to include an additional layer of metadata supporting data fusion across different bioassays.

  8. Vincristine-induced central neurotoxicity in a collie homozygous for the ABCB1Δ mutation.

    Science.gov (United States)

    Krugman, L; Bryan, J N; Mealey, K L; Chen, A

    2012-03-01

    A six-year-old, neutered, female collie was presented to an oncology specialty service after developing tetraparesis and self-mutilation that progressively worsened while receiving chemotherapy for lymphoma. Neurologic examination revealed ataxia, paresis and diminished conscious proprioception in all limbs with entire spinal reflexes. Magnetic resonance imaging of the brain and spinal cord was normal. Electromyography of the limbs ruled out a vincristine-induced peripheral neuropathy. Cerebrospinal fluid analysis and cerebrospinal fluid and serum testing for Neospora and Toxoplasma were normal. Results of MDR1 genotyping revealed that the dog was homozygous for the ABCB1-1Δ (MDR1) mutation. This clinical presentation strongly resembled the effects seen from inadvertent intrathecal administration of vincristine in humans. Dogs that are homozygous for the ABCB1-1Δ (MDR1) mutation should not receive standard dosages of chemotherapy drugs known to be eliminated by P-glycoprotein, the gene product of ABCB1. Testing for this mutation is strongly recommended before chemotherapy initiation for at-risk breeds.

  9. Lobular Distribution and Variability in Hepatic ATP Binding Cassette Protein B1 (ABCB1, P-gp): Ontogenetic Differences and Potential for Toxicity

    Science.gov (United States)

    Abanda, Ngu Njei; Riches, Zoe; Collier, Abby C.

    2017-01-01

    The ATP Binding Cassette B1 (ABCB1) transporter has critical roles in endo- and xenobiotic efficacy and toxicity. To understand population variability in hepatic transport we determined ABCB1 mRNA and protein levels in total liver lysates sampled from 8 pre-defined sites (n = 24, 18–69 years), and in S9 from randomly acquired samples (n = 87, 7 days–87 years). ABCB1 levels did not differ significantly throughout individual livers and showed 4.4-fold protein variation between subjects. Neither mRNA nor protein levels varied with sex, ethnicity, obesity or triglycerides in lysates or S9 (that showed the same relationships), but protein levels were lower in pediatric S9 (p < 0.0001), with 76% of adult ABCB1 present at birth and predicted to mature in 5 years. Pediatric total liver lysates were not available. In summary, opportunistic collection for studying human hepatic ABCB1 is acceptable. Additionally, ABCB1 may be lower in children, indicating differential potential for toxicity and response to therapy in this special population. PMID:28218636

  10. Low ABCB1 gene expression is an early event in colorectal carcinogenesis

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Vogel, Ulla Birgitte; Godiksen, Sine

    2013-01-01

    The ABCB1/MDR1 gene product ABCB1/P-glycoprotein is implicated in the development of colorectal cancer (CRC). NFKB1 encodes transcription factors regulating expression of a number of genes including ABCB1. We have previously found association between the ABCB1 C-rs3789243-T polymorphism and CRC...... risk and interactions between the ABCB1 C-rs3789243-T and C3435T polymorphisms and meat intake in relation to CRC risk (Andersen, BMC Cancer, 2009, 9, 407). ABCB1 and NFKB1 mRNA levels were assessed in intestinal tissue from 122 CRC cases, 101 adenoma cases (12 with severe dysplasia, 89 with mild......-moderate dysplasia) and from 18 healthy individuals, together with gene polymorphisms in ABCB1 and NFKB1. ABCB1 mRNA levels were highest in the healthy individuals and significantly lower in mild/moderate and severe dysplasia tissue (P...

  11. Drug Transporter Genetic Variants Are Not Associated with TDF-Related Renal Dysfunction in Patients with HIV-1 Infection: A Pharmacogenetic Study.

    Directory of Open Access Journals (Sweden)

    Takeshi Nishijima

    Full Text Available To investigate whether single nucleotide polymorphisms (SNP of drug transporter proteins for TDF is a risk factor for TDF-related renal function decrement.This study investigated the association between 3 SNPs (ABCC2-24, 1249, and ABCB1 2677, which are shown to be associated with TDF-induced tubulopathy, and clinically important renal outcomes (>10ml/min/1.73m2 decrement in eGFR relative to baseline, >25% decrement in eGFR, and eGFR 10ml/min/1.73m2 and those without such decrement (ABCC2: -24, p = 0.53, 1249, p = 0.68; ABCB1: 2677, p = 0.74, nor between those without and with the other two renal outcomes (>25% decrement: ABCC2: -24, p = 0.83, 1249, p = 0.97, ABCB1: 2677, p = 0.40; eGFR <60ml/min/1.73m2: ABCC2: -24, p = 0.51, 1249, p = 0.81, ABCB1: 2677, p = 0.94. Logistic regression analysis showed that the risk genotype of the three SNPs were not associated with any of the three renal outcomes, respectively. Logistic regression model that applied either dominant, recessive, or additive model yielded the same results.SNPs of the drug transporters for TDF are not associated with clinically important renal outcomes in patients who initiated TDF-containing ART.

  12. Effect of ABCB1 and ABCC3 polymorphisms on osteosarcoma survival after chemotherapy: a pharmacogenetic study.

    Directory of Open Access Journals (Sweden)

    Daniela Caronia

    Full Text Available BACKGROUND: Standard treatment for osteosarcoma patients consists of a combination of cisplatin, adriamycin, and methotrexate before surgical resection of the primary tumour, followed by postoperative chemotherapy including vincristine and cyclophosphamide. Unfortunately, many patients still relapse or suffer adverse events. We examined whether common germline polymorphisms in chemotherapeutic transporter and metabolic pathway genes of the drugs used in standard osteosarcoma treatment may predict treatment response. METHODOLOGY/PRINCIPAL FINDINGS: In this study we screened 102 osteosarcoma patients for 346 Single Nucleotide Polymorphisms (SNPs and 2 Copy Number Variants (CNVs in 24 genes involved in the metabolism or transport of cisplatin, adriamycin, methotrexate, vincristine, and cyclophosphamide. We studied the association of the genotypes with tumour response and overall survival. We found that four SNPs in two ATP-binding cassette genes were significantly associated with overall survival: rs4148416 in ABCC3 (per-allele HR = 8.14, 95%CI = 2.73-20.2, p-value = 5.1×10⁻⁵, and three SNPs in ABCB1, rs4148737 (per-allele HR = 3.66, 95%CI = 1.85-6.11, p-value = 6.9×10⁻⁵, rs1128503 and rs10276036 (r² = 1, per-allele HR = 0.24, 95%CI = 0.11-0.47 p-value = 7.9×10⁻⁵. Associations with these SNPs remained statistically significant after correction for multiple testing (all corrected p-values [permutation test] ≤ 0.03. CONCLUSIONS: Our findings suggest that these polymorphisms may affect osteosarcoma treatment efficacy. If these associations are independently validated, these variants could be used as genetic predictors of clinical outcome in the treatment of osteosarcoma, helping in the design of individualized therapy.

  13. Functional G1199A ABCB1 polymorphism may have an effect on cyclosporine blood concentration in renal transplanted patients.

    Science.gov (United States)

    Mostafa-Hedeab, Gomaa; Saber-Ayad, Maha M; Latif, Inas A; Elkashab, Sahier O; Elshaboney, Tarek H; Mostafa, Magdy Ibrahim; El-Shafy, Sanaa Abd; Zaki, Magda M

    2013-08-01

    Cyclosporine A (CsA) shows significant inter-individual variability in its pharmacokinetics, which may be due to polymorphisms in ABCB-1 genes coding for P-glycoprotein. The aim of this study was to explore the role of genetic polymorphisms of ABCB-1 in affecting the CsA blood concentrations in renal transplanted patients over the first 3 months after transplantation. Renal transplanted patients receiving CsA (n = 40) were genotyped for ABCB -1 C3435T (I1145I) and G1199A (S400N) polymorphisms. CsA blood concentrations were measured on Day 7, 30, and 90 after transplantation. G1199A variant showed higher CsA blood concentrations in stable patients, that was significant for trough levels (198 vs. 136 ng/mL on Day 7, P = .004, 196 vs. 125 ng/mL on Day 30, P = .007, 194 vs. 121 ng/mL on Day 90, P = .005 for stable vs. unstable groups). Polymorphisms of ABCB-1 have only a minor effect on CsA blood concentrations. The functional G1199A polymorphism can affect the drug levels more than non-functional C3435T. This polymorphism might be of a potential prognostic value in renal transplanted patients. © The Author(s) 2013.

  14. Clopidogrel Resistance with ABCB 1%ABCB1与氯吡格雷抵抗的研究进展

    Institute of Scientific and Technical Information of China (English)

    路英杰; 王立峰; 张旭昌; 王晓云

    2012-01-01

    氯吡格雷和阿司匹林双联抗血小板已是急性冠状动脉综合征和经皮冠脉介入术后的标准治疗,因此氯吡格雷抵抗越来越受到人们的关注,但焦点更多的集中在氧吡格雷氧化代谢基因(P2Y12、CYP3A4等)多态性方面,而对氯吡格雷吸收方面基因多态性的关注相对较少,本文就调控氯吡格雷在肠道吸收的基因(ABCB1)进行综述,并探讨其多态性与氯吡格雷抵抗的关系.%Clopidogrel and aspirin thermodynamie antiplatelet is a postoperative standard treatment of acute coronary syndrome and percutaneous coronary intervention (pci). People pay more and more attention to clopidogrel resistance, but more focus is concentrated on clopidogrel oxidative metabolism of genes (P2Y12 CYP3A4 etc.)polymorphism, gene polymorphism on absorption is few concerned.The gene (ABCB1) which regulates clopidogrel in intestinal absorption will be reviewed in this article,and discuss the relationship between the polymorphism of ABCB1 and clopidogrel resistance.

  15. Genotype variability and haplotype profile of ABCB1 (MDR1) gene polymorphisms in Macedonian population.

    Science.gov (United States)

    Naumovska, Zorica; Nestorovska, Aleksandra K; Sterjev, Zoran; Filipce, Ana; Dimovski, Aleksandar; Suturkova, Ljubica

    2014-01-01

    The aim of this study was to evaluate the most common ABCB1 (MDR1, P-glycoprotein) polymorphisms in the population of R. Macedonia and compare the allele and haplotype frequencies with the global geographic data reported from different ethnic populations. The total of 107 healthy Macedonian individuals from the general population was included. Genotypes for the ABCB1 for three polymorphisms C1236T [rs1128503], G2677A/T [rs2032582] and C3435T [rs1045642] were analyzed by Real-Time PCR. Obtained allele frequencies for these three SNPs were similar to those observed in other European Caucasians. The detected genotype frequencies were 33.6% for 1236CC, 44.9% for 1236CT and 21.5% for 1236TT in exon 12; 32.7%, 44.9% and 22.4% for 2677GG, 2677GT and 2677GT consecutively in exon 21; and 25.2% for 3435CC, 52.3% for 3435CT and 22.5% for 3435TT in exon 26.Strong LD was observed in our study among all three SNPs with the highest association confirmed for C1236T and G2677T ((D'=0.859, r2=0.711). Eight different haplotypes were identified and the most prominent was the CGC haplotype (45.3%). Our study was the first to have documented the distribution of ABCB1 alleles, genotypes and haplotypes in the population of R. Macedonia. The obtained results can help in the prediction of different response to the drugs that are P-glycoprotein substrates. Additionally, in the era of individualized medicine the determination of the P-glycoprotein genotype might be a good predictive marker for determination of the subpopulations with higher risk to certain diseases.

  16. Imatinib Reverses Doxorubicin Resistance by Affecting Activation of STAT3-Dependent NF-κB and HSP27/p38/AKT Pathways and by Inhibiting ABCB1

    Science.gov (United States)

    Sims, Jonathan T.; Ganguly, Sourik S.; Bennett, Holly; Friend, J. Woodrow; Tepe, Jessica; Plattner, Rina

    2013-01-01

    Despite advances in cancer detection and prevention, a diagnosis of metastatic disease remains a death sentence due to the fact that many cancers are either resistant to chemotherapy (conventional or targeted) or develop resistance during treatment, and residual chemoresistant cells are highly metastatic. Metastatic cancer cells resist the effects of chemotherapeutic agents by upregulating drug transporters, which efflux the drugs, and by activating proliferation and survival signaling pathways. Previously, we found that c-Abl and Arg non-receptor tyrosine kinases are activated in breast cancer, melanoma, and glioblastoma cells, and promote cancer progression. In this report, we demonstrate that the c-Abl/Arg inhibitor, imatinib (imatinib mesylate, STI571, Gleevec), reverses intrinsic and acquired resistance to the anthracycline, doxorubicin, by inducing G2/M arrest and promoting apoptosis in cancer cells expressing highly active c-Abl and Arg. Significantly, imatinib prevents intrinsic resistance by promoting doxorubicin-mediated NF-κB/p65 nuclear localization and repression of NF-κB targets in a STAT3-dependent manner, and by preventing activation of a novel STAT3/HSP27/p38/Akt survival pathway. In contrast, imatinib prevents acquired resistance by inhibiting upregulation of the ABC drug transporter, ABCB1, directly inhibiting ABCB1 function, and abrogating survival signaling. Thus, imatinib inhibits multiple novel chemoresistance pathways, which indicates that it may be effective in reversing intrinsic and acquired resistance in cancers containing highly active c-Abl and Arg, a critical step in effectively treating metastatic disease. Furthermore, since imatinib converts a master survival regulator, NF-κB, from a pro-survival into a pro-apoptotic factor, our data suggest that NF-κB inhibitors may be ineffective in sensitizing tumors containing activated c-Abl/Arg to anthracyclines, and instead might antagonize anthracycline-induced apoptosis. PMID:23383209

  17. Glycolysis inhibition inactivates ABC transporters to restore drug sensitivity in malignant cells.

    Directory of Open Access Journals (Sweden)

    Ayako Nakano

    Full Text Available Cancer cells eventually acquire drug resistance largely via the aberrant expression of ATP-binding cassette (ABC transporters, ATP-dependent efflux pumps. Because cancer cells produce ATP mostly through glycolysis, in the present study we explored the effects of inhibiting glycolysis on the ABC transporter function and drug sensitivity of malignant cells. Inhibition of glycolysis by 3-bromopyruvate (3BrPA suppressed ATP production in malignant cells, and restored the retention of daunorubicin or mitoxantrone in ABC transporter-expressing, RPMI8226 (ABCG2, KG-1 (ABCB1 and HepG2 cells (ABCB1 and ABCG2. Interestingly, although side population (SP cells isolated from RPMI8226 cells exhibited higher levels of glycolysis with an increased expression of genes involved in the glycolytic pathway, 3BrPA abolished Hoechst 33342 exclusion in SP cells. 3BrPA also disrupted clonogenic capacity in malignant cell lines including RPMI8226, KG-1, and HepG2. Furthermore, 3BrPA restored cytotoxic effects of daunorubicin and doxorubicin on KG-1 and RPMI8226 cells, and markedly suppressed subcutaneous tumor growth in combination with doxorubicin in RPMI8226-implanted mice. These results collectively suggest that the inhibition of glycolysis is able to overcome drug resistance in ABC transporter-expressing malignant cells through the inactivation of ABC transporters and impairment of SP cells with enhanced glycolysis as well as clonogenic cells.

  18. Association between ABCB1 (MDR1) gene 3435 C>T polymorphism and colchicine unresponsiveness of FMF patients.

    Science.gov (United States)

    Ozen, Filiz; Silan, Coskun; Uludag, Ahmet; Candan, Ferhan; Silan, Fatma; Ozdemir, Semra; Atik, Sinem; Ozdemir, Ozturk

    2011-01-01

    The multidrug resistance gene-1 (MDR1, adenosine triphosphate-binding cassette transporter: ABCB1, P-glycoprotein) encodes membrane proteins that play a crucial role in protecting cells from xenobiotics, chemicals, and drugs. The TT genotype of 3435 codon in exon 26 of MDR1 gene causes overexpression of gene activity and effluxes many chemically diverse compounds across the plasma membrane. We studied the association between C3435T polymorphisms (single nucleotide polymorphism) of MDR1 gene and colchicine-resistant familial Mediterranean fever (FMF) patients. Total genomic DNA samples from 52 FMF patients of colchicine unresponsiveness were used for FMF (MEFV) and MDR1 genes profile analyses. Target genes were genotyped by multiplex PCR-based reverse-hybridization Strip Assay method. The preliminary current results showed increased T allele frequency (0.596) in colchicine unresponsiveness of FMF patients. The distributions of the CC, CT, and TT genotypes in colchicine nonresponder FMF patients were 17%, 46%, and 37%, respectively. Our results indicate that C3435T polymorphism in exon 26 of MDR1 gene is associated with colchicine resistance in nonresponder FMF patients during the common therapy protocol.

  19. ABCB1 C1236T, G2677T/A and C3435T polymorphisms in systemic lupus erythematosus patients

    Directory of Open Access Journals (Sweden)

    T.P. Gonzalez

    2008-09-01

    Full Text Available P-glycoprotein (Pgp, the ABCB1 gene product, acts as an efflux pump that transports a large variety of substrates and is a mechanism of cell protection against xenobiotics. An increasing number of studies have shown that some ABCB1 polymorphisms may affect Pgp expression and activity, as well as affecting the development and susceptibility to diseases and pharmacological response. High activity of Pgp has been detected in systemic lupus erythematosus (SLE patients. The C1236T, G2677T/A, and C3435T are the most commonly studied single nucleotide polymorphisms in the ABCB1 gene. Therefore, their frequencies were determined in Brazilian individuals with European ancestry (N = 143 and in SLE patients (N = 137. Genotyping was performed by PCR-RFLP analysis using specific primers followed by incubation with the appropriate restriction enzymes. The resulting DNA fragments were visualized on agarose or polyacrylamide gels. No statistically significant differences were observed in allelic and genotypic frequencies between SLE and healthy subjects (Fisher exact test. Nevertheless, the 2677A allelic frequency was lower in SLE patients with malar rash (0.007 compared with patients without this feature (0.04; P = 0.0054, while the frequency of this variant was higher in SLE patients with pleuritis (0.07 compared with patients without this feature (0.01; P = 0.0156. We suggest that although the ABCB1 polymorphisms do not directly interfere in SLE susceptibility, their evaluation, especially the 2677A allele, in other immunological processes may be interesting since they can interfere in clinical features of this disease.

  20. Blood-brain barrier P-glycoprotein function in healthy subjects and Alzheimer's disease patients : Effect of polymorphisms in the ABCB1 gene

    NARCIS (Netherlands)

    D.M.E. van Assema (Daniëlle); M. Lubberink (Mark); P. Rizzu (Patrizia); J.C. van Swieten (John); R.C. Schuit (Robert); J. Eriksson (Joel); P. Scheltens (Philip); M. Koepp (Matthias); A.A. Lammertsma (Adriaan); B.N.M. van Berckel (Bart )

    2012-01-01

    textabstractBackground: P-glycoprotein is a blood-brain barrier efflux transporter involved in the clearance of amyloid-beta from the brain and, as such, might be involved in the pathogenesis of Alzheimer's disease. P-glycoprotein is encoded by the highly polymorphic ABCB1 gene. Single-nucleotide po

  1. Low ABCB1 gene expression is an early event in colorectal carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Vibeke Andersen

    Full Text Available The ABCB1/MDR1 gene product ABCB1/P-glycoprotein is implicated in the development of colorectal cancer (CRC. NFKB1 encodes transcription factors regulating expression of a number of genes including ABCB1. We have previously found association between the ABCB1 C-rs3789243-T polymorphism and CRC risk and interactions between the ABCB1 C-rs3789243-T and C3435T polymorphisms and meat intake in relation to CRC risk (Andersen, BMC Cancer, 2009, 9, 407. ABCB1 and NFKB1 mRNA levels were assessed in intestinal tissue from 122 CRC cases, 101 adenoma cases (12 with severe dysplasia, 89 with mild-moderate dysplasia and from 18 healthy individuals, together with gene polymorphisms in ABCB1 and NFKB1. ABCB1 mRNA levels were highest in the healthy individuals and significantly lower in mild/moderate and severe dysplasia tissue (P<0.05 for both, morphologically normal tissues close to the tumour (P<0.05, morphologically normal tissue at a distance from the tumour (P<0.05 and CRC tissue (P<0.001. Furthermore, ABCB1 mRNA levels were lower in adenomas and carcinomas compared to morphologically normal tissue from the same individuals (P<0.01. The ABCB1 C-rs3789243-T and NFKB1 -94ins/del homozygous variant genotypes were associated with low ABCB1 mRNA levels in morphologically normal sigmoid tissue from adenoma cases (P<0.05 for both. NFKB1 mRNA levels were lower in both tumour and normal tissue from cancer patients (P<0.001 as compared to healthy individuals but we were unable to show association between NFKB1 -94ins/del genotype and NFKB1 mRNA levels. This study suggests that low ABCB1 mRNA levels are an early event in CRC development and that the two polymorphisms affect ABCB1 mRNA levels whereas low NFKB1 mRNA levels occur later in carcinogenesis. Low ABCB1 protein levels may promote colorectal carcinogenesis through increasing intracellular exposure to carcinogenic ABCB1 substrates.

  2. Pulmonary expression of CYP2A13 and ABCB1 is regulated by FOXA2, and their genetic interaction is associated with lung cancer.

    Science.gov (United States)

    Xiang, Chan; Wang, Jiucun; Kou, Xiaochen; Chen, Xiabin; Qin, Zhaoyu; Jiang, Yan; Sun, Chang; Xu, Jibin; Tan, Wen; Jin, Li; Lin, Dongxin; He, Fuchu; Wang, Haijian

    2015-05-01

    Inhaled xenobiotics such as tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone are mainly metabolized by phase I oxidase cytochrome P450, family 2, subfamily A, polypeptide 13 (CYP2A13), phase II conjugate UDP glucuronosyltransferase 2 family, polypeptide B17 (UGT2B17), and phase III transporter ATP-binding cassette, subfamily B (MDR/TAP), member 1 (ABCB1), with genetic polymorphisms implicated in lung cancer. Their genetic interaction and pulmonary expression regulation are largely unknown. We analyzed joint association for CYP2A13 and ABCB1 polymorphisms in 2 independent lung cancer case populations (669 and 566 patients) and 1 common control population (749 subjects), and characterized the trans-acting function of the lung development-related transcription factor forkhead box A2 (FOXA2). We undertook FOXA2 overexpression and down-regulation in lung epithelial cell lines, analyzed functional impact on the transactivation of CYP2A13, UGT2B17, and ABCB1, and measured correlation for their expressions in lung tissues. We found a substantial reduction in cancer risk (OR 0.39; 95% CI 0.25-0.61; Pinteraction = 0.029) associated with combined genotypes for CYP2A13 R257C and a functionary regulatory variant in the cis element of ABCB1 synergistically targeted by GATA binding protein 6 and FOXA2. Genetic manipulation of FOXA2 consistently influenced its binding to and transactivation of the promoters of CYP2A13, UGT2B17, and ABCB1, whose mRNA and protein expressions were all consistently correlated with those of FOXA2 in both tumorous and normal lung tissues. We therefore establish FOXA2 as a core transcriptional modulator for pulmonary xenobiotic metabolic pathways and uncover an etiologically relevant interaction between CYP2A13 and ABCB1, furthering our understanding of expression and function of the xenobiotic metabolism system.

  3. Impact of ABCB1 variants on neutrophil depression: a prospective study

    DEFF Research Database (Denmark)

    Bergmann, Troels Korshøj; Andersen, Charlotte Brasch; Gréen, Henrik

    2010-01-01

    toxicity was registered. Patients carrying one or two variant alleles of ABCB1 C3435T had progressively more pronounced neutrophil decrease at nadir (P-value 0.03). The same association was found for ABCB1 C1236T and G2677T/A with P-values of 0.06 and 0.02. No statistically significant correlations were...

  4. Hepatic drug transporters and nuclear receptors: Regulation by therapeutic agents

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The canalicular membrane represents the excretory pole of hepatocytes. Bile is an important route of elimina-tion of potentially toxic endo- and xenobiotics (including drugs and toxins), mediated by the major canalicular transporters: multidrug resistance protein 1 (MDR1, ABCB1), also known as P-glycoprotein, multidrug re-sistance-associated protein 2 (MRP2, ABCC2), and the breast cancer resistance protein (BCRP, ABCG2). Their activities depend on regulation of expression and proper localization at the canalicular membrane, as regulated by transcriptional and post-transcriptional events, re-spectively. At transcriptional level, specific nuclear re-ceptors (NR)s modulated by ligands, co-activators and co-repressors, mediate the physiological requirements of these transporters. This complex system is also re-sponsible for alterations occurring in specific liver pa-thologies. We briefly describe the major Class Ⅱ NRs, pregnane X receptor (PXR) and constitutive androstane receptor (CAR), and their role in regulating expression of multidrug resistance proteins. Several therapeutic agents regulate the expression of relevant drug trans-porters through activation/inactivation of these NRs. We provide some representative examples of the action of therapeutic agents modulating liver drug transporters, which in addition, involve CAR or PXR as mediators.

  5. Drug: D08618 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 0] [KO:K03163] Transporter: ABCB1 [HSA:5243], ABCG2 [HSA:9429], ABCC4 [HSA:10257] map07042 Antineoplastics -...) USP drug classification [BR:br08302] Antineoplastics Enzyme Inhibitors Topoteca...I [HSA:7150] [KO:K03163] Topotecan [ATC:L01XX17] D08618 Topotecan (BAN) Antineoplastics [BR:br08308] Natural

  6. Drug: D08516 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D08516 Drug Sitagliptin (Prop.INN) C16H15F6N5O 407.1181 407.3136 D08516.gif Antidiabetic...1803) Protein digestion and absorption Transporter: ABCB1 [HSA:5243], SLC22A8 [HSA:9376] map07051 Antidiabetic

  7. Drug: D09710 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available mbosis agents Target-based classification of drugs [BR:br08310] Enzymes Hydrolases ...a inhibitor [HSA:2159] [KO:K01314] hsa04610(2159) Complement and coagulation cascades Transporter: ABCB1 [HSA:5243] map07049 Antithro

  8. Triterpenoids from Momordica balsamina: Reversal of ABCB1-mediated multidrug resistance.

    Science.gov (United States)

    Ramalhete, Cátia; Mulhovo, Silva; Molnar, Joseph; Ferreira, Maria-José U

    2016-11-01

    The ability as P-glycoprotein (P-gp, ABCB1) modulators of thirty (1-30) triterpenoids of the cucurbitane-type was evaluated on human L5178 mouse T-lymphoma cell line transfected with the human MDR1 gene, through the rhodamine-123 exclusion assay. Compounds (1-26, and 29, 30) were previously obtained from the African medicinal plant Momordica balsamina, through both isolation (1-15) and molecular derivatization (16-26 and 29, 30). Compounds 27-28 are two new karavilagenin C (34) derivatives having succinic acid moieties. Apart from 4, 6, 8, 10 and 11, most of the isolated compounds (1-15) displayed strong MDR reversing activity in a dose-dependent mode, exhibiting a many-fold activity when compared with verapamil, used as positive control. At the lowest concentration tested, compounds 2 and 7 were the most active. However, a decrease of activity was found for the acyl derivatives (16-30). In a chemosensitivity assay, the MDR reversing activity of some of the most active compounds (1-3, 5, 7, 12-15) was further assessed on the same cell model. All the tested compounds, excepting 15, corroborated the results of the transport assay, revealing to synergistically interact with doxorubicin. Structure-activity relationship studies, taking into account previous results, showed that different substitution patterns, at both the tetracyclic nucleus and the side chain, play important role in ABCB1 reversal activity. An optimal lipophilicity was also recognized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. One-Year Follow-up of Children and Adolescents with Major Depressive Disorder: Relationship between Clinical Variables and Abcb1 Gene Polymorphisms.

    Science.gov (United States)

    Blázquez, A; Gassó, P; Mas, S; Plana, M T; Lafuente, A; Lázaro, L

    2016-11-01

    Introduction: Differences in response to fluoxetine (FLX) may be influenced by certain genes that are involved in FLX transportation (ABCB1). We examined remission and recovery from the index episode in a cohort of patients treated with FLX, and also investigated associations between genetic variants in ABCB1 and remission, recovery, and suicide risk. Methods: This was a naturalistic 1-year follow-up study of 46 adolescents diagnosed with major depressive disorder (MDD). At 12 months they underwent a diagnostic interview with the K-SADS-PL. Results: It was found that remission was around 69.5% and recovery 56.5%. Remission and recovery were associated with lower scores on the CDI at baseline, with fewer readmissions and suicide attempts, and with lower scores on the CGI and higher scores on the GAF scale. No relationship was found between ABCB1 and remission or recovery. However, a significant association was observed between the G2677T ABCB1 polymorphism and suicide attempts. Conclusion: Other factors such as stressful events, family support, and other genetic factors are likely to be involved in MDD outcome.

  10. Associations of ABCB1, NFKB1, CYP3A, and NR1I2 polymorphisms with cyclosporine trough concentrations in Chinese renal transplant recipients.

    Science.gov (United States)

    Zhang, Yu; Li, Jia-li; Fu, Qian; Wang, Xue-ding; Liu, Long-shan; Wang, Chang-xi; Xie, Wen; Chen, Zhuo-jia; Shu, Wen-ying; Huang, Min

    2013-04-01

    Cyclosporine requires close therapeutic drug monitoring because of its narrow therapeutic index and marked inter-individual pharmacokinetic variation. In this study, we investigated the associations of CYP3A4, CYP3A5, ABCB1, NFKB1, and NR1I2 polymorphisms with cyclosporine concentrations in Chinese renal transplant recipients in the early period after renal transplantation. A total of 101 renal transplant recipients receiving cyclosporine were genotyped for CYP3A4(*)1G, CYP3A5(*)3, ABCB1 C1236T, G2677T/A, C3435T, NFKB1 -94 ins/del ATTG, and NR1I2 polymorphisms. Cyclosporine whole blood levels were measured by a fluorescence polarization immunoassay. Trough concentrations of cyclosporine were determined for days 7-18 following transplantation. The dose-adjusted trough concentration (C0) of cyclosporine in ABCB1 2677 TT carriers was significantly higher than that in GG carriers together with GT carriers [90.4±24.5 vs 67.8±26.8 (ng/mL)/(mg/kg), P=0.001]. ABCB1 3435 TT carriers had a significantly higher dose-adjusted C0 of cyclosporine than CC carriers together with CT carriers [92.0±24.0 vs 68.4±26.5 (ng/mL)/(mg/kg), P=0.002]. Carriers of the ABCB1 1236TT-2677TT-3435TT haplotype had a considerably higher CsA C0/D than carriers of other genotypes [97.2±21.8 vs 68.7±26.9 (ng/mL)/(mg/kg), P=0.001]. Among non-carriers of the ABCB1 2677 TT and 3435 TT genotypes, patients with the NFKB1 -94 ATTG ins/ins genotype had a significantly higher dose-adjusted C0 than those with the -94 ATTG del/del genotype [75.9±32.9 vs 55.1±15.1 (ng/mL)/(mg/kg), P=0.026]. These results illustrate that the ABCB1 and NFKB1 genotypes are closely correlated with cyclosporine trough concentrations, suggesting that these SNPs are useful for determining the appropriate dose of cyclosporine.

  11. Multiple Drug Transport Pathways through Human P-Glycoprotein.

    Science.gov (United States)

    McCormick, James W; Vogel, Pia D; Wise, John G

    2015-07-21

    P-Glycoprotein (P-gp) is a plasma membrane efflux pump that is commonly associated with therapy resistances in cancers and infectious diseases. P-gp can lower the intracellular concentrations of many drugs to subtherapeutic levels by translocating them out of the cell. Because of the broad range of substrates transported by P-gp, overexpression of P-gp causes multidrug resistance. We reported previously on dynamic transitions of P-gp as it moved through conformations based on crystal structures of homologous ABCB1 proteins using in silico targeted molecular dynamics techniques. We expanded these studies here by docking transport substrates to drug binding sites of P-gp in conformations open to the cytoplasm, followed by cycling the pump through conformations that opened to the extracellular space. We observed reproducible transport of two substrates, daunorubicin and verapamil, by an average of 11-12 Å through the plane of the membrane as P-gp progressed through a catalytic cycle. Methylpyrophosphate, a ligand that should not be transported by P-gp, did not show this movement through P-gp. Drug binding to either of two subsites on P-gp appeared to determine the initial pathway used for drug movement through the membrane. The specific side-chain interactions with drugs within each pathway seemed to be, at least in part, stochastic. The docking and transport properties of a P-gp inhibitor, tariquidar, were also studied. A mechanism of inhibition by tariquidar that involves stabilization of an outward open conformation with tariquidar bound in intracellular loops or at the drug binding domain of P-gp is presented.

  12. The ABCB1, rs9282564, AG and TT Genotypes and the COMT, rs4680, AA Genotype are Less Frequent in Deceased Patients with Opioid Addiction than in Living Patients with Opioid Addiction

    DEFF Research Database (Denmark)

    Christoffersen, Dorte J; Damkier, Per; Feddersen, Søren

    2016-01-01

    because morphine and methadone more readily cross the blood-barrier in these subjects due to a lower efflux transporter activity of the ABCB1 (p-glycoprotein) transporter. Our results did not support this hypothesis, since no statistically significant difference (p=0.506) in the frequency of the TT...

  13. Drug: D02537 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D02537 Drug Dronedarone (INN) C31H44N2O5S 556.2971 556.7565 D02537.gif Antiarrhythmic...[HSA:1576 1577 1551] Transporter inhibition: ABCB1 [HSA:5243] map07037 Antiarrhythmic drugs map07231 Sodium ...1B ANTIARRHYTHMICS, CLASS I AND III C01BD Antiarrhythmics, class III C01BD07 Dronedarone D02537 Dronedarone ...(INN) USP drug classification [BR:br08302] Cardiovascular Agents Antiarrhythmics

  14. Association of ABCB1 genetic variants with renal function in Africans and in Caucasians

    Directory of Open Access Journals (Sweden)

    Elston Robert C

    2008-06-01

    Full Text Available Abstract Background The P-glycoprotein, encoded by the ABCB1 gene, is expressed in human endothelial and mesangial cells, which contribute to control renal plasma flow and glomerular filtration rate. We investigated the association of ABCB1 variants with renal function in African and Caucasian subjects. Methods In Africans (290 subjects from 62 pedigrees, we genotyped the 2677G>T and 3435 C>T ABCB1 polymorphisms. Glomerular filtration rate (GFR was measured using inulin clearance and effective renal plasma flow (ERPF using para-aminohippurate clearance. In Caucasians (5382 unrelated subjects, we analyzed 30 SNPs located within and around ABCB1, using data from the Affymetrix 500 K chip. GFR was estimated using the simplified Modification of the Diet in Renal Disease (MDRD and Cockcroft-Gault equations. Results In Africans, compared to the reference genotype (GG or CC, each copy of the 2677T and 3435T allele was associated, respectively, with: GFR higher by 10.6 ± 2.9 (P P = 0.06 mL/min; ERPF higher by 47.5 ± 11.6 (P P = 0.007 mL/min; and renal resistances lower by 0.016 ± 0.004 (P P = 0.004 mm Hg/mL/min. In Caucasians, we identified 3 polymorphisms in the ABCB1 gene that were strongly associated with all estimates of GFR (smallest P value = 0.0006, overall P = 0.014 after multiple testing correction. Conclusion Variants of the ABCB1 gene were associated with renal function in both Africans and Caucasians and may therefore confer susceptibility to nephropathy in humans. If confirmed in other studies, these results point toward a new candidate gene for nephropathy in humans.

  15. Effect of drug efflux transporters on placental transport of antiretroviral agent abacavir.

    Science.gov (United States)

    Neumanova, Zuzana; Cerveny, Lukas; Greenwood, Susan L; Ceckova, Martina; Staud, Frantisek

    2015-11-01

    Abacavir is as a frequent part of combination antiretroviral therapy used in pregnant women. The aim of this study was to investigate, using in vitro, in situ and ex vivo experimental approaches, whether the transplacental pharmacokinetics of abacavir is affected by ATP-binding cassette (ABC) efflux transporters functionally expressed in the placenta: P-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2), multidrug resistance-associated protein 2 (ABCC2) and multidrug resistance-associated protein 5 (ABCC5). In vitro transport assays revealed that abacavir is a substrate of human ABCB1 and ABCG2 transporters but not of ABCC2 or ABCC5. In addition, in situ experiments using dually perfused rat term placenta confirmed interactions of abacavir with placental Abcb1/Abcg2. In contrast, uptake studies in human placental villous fragments did not reveal any interaction of abacavir with efflux transporters suggesting a large contribution of passive diffusion and/or influx mechanisms to net transplacental abacavir transfer.

  16. Brain accumulation of the EML4-ALK inhibitor ceritinib is restricted by P-glycoprotein (P-GP/ABCB1) and breast cancer resistance protein (BCRP/ABCG2)

    NARCIS (Netherlands)

    Kort, Anita; Sparidans, Rolf; Wagenaar, Els; Beijnen, Jacob; Schinkel, Alfred H.

    2015-01-01

    We aimed to clarify the roles of the multidrug transporters ABCB1 and ABCG2 in oral availability and brain accumulation of ceritinib, an oral anaplastic lymphoma kinase (ALK) inhibitor used to treat metastatic non-small cell lung cancer (NSCLC) after progression on crizotinib. Importantly, NSCLC is

  17. Association of drug transporter expression with mortality and progression-free survival in stage IV head and neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Rolf Warta

    Full Text Available Drug transporters such as P-glycoprotein (ABCB1 have been associated with chemotherapy resistance and are considered unfavorable prognostic factors for survival of cancer patients. Analyzing mRNA expression levels of a subset of drug transporters by quantitative reverse transcription polymerase chain reaction (qRT-PCR or protein expression by tissue microarray (TMA in tumor samples of therapy naïve stage IV head and neck squamous cell carcinoma (HNSCC (qRT-PCR, n = 40; TMA, n = 61, this in situ study re-examined the significance of transporter expression for progression-free survival (PFS and overall survival (OS. Data from The Cancer Genome Atlas database was used to externally validate the respective findings (n = 317. In general, HNSCC tended to lower expression of drug transporters compared to normal epithelium. High ABCB1 mRNA tumor expression was associated with both favorable progression-free survival (PFS, p = 0.0357 and overall survival (OS, p = 0.0535. Similar results were obtained for the mRNA of ABCC1 (MRP1, multidrug resistance-associated protein 1; PFS, p = 0.0183; OS, p = 0.038. In contrast, protein expression of ATP7b (copper transporter ATP7b, mRNA expression of ABCG2 (BCRP, breast cancer resistance protein, ABCC2 (MRP2, and SLC31A1 (hCTR1, human copper transporter 1 did not correlate with survival. Cluster analysis however revealed that simultaneous high expression of SLC31A1, ABCC2, and ABCG2 indicates poor survival of HNSCC patients. In conclusion, this study militates against the intuitive dogma where high expression of drug efflux transporters indicates poor survival, but demonstrates that expression of single drug transporters might indicate even improved survival. Prospectively, combined analysis of the 'transportome' should rather be performed as it likely unravels meaningful data on the impact of drug transporters on survival of patients with HNSCC.

  18. Molecular Evolutionary Analysis of ABCB5: The Ancestral Gene Is a Full Transporter with Potentially Deleterious Single Nucleotide Polymorphisms

    OpenAIRE

    Karobi Moitra; Mark Scally; Kate McGee; Germaine Lancaster; Bert Gold; Michael Dean

    2011-01-01

    BACKGROUND: ABCB5 is a member of the ABC protein superfamily, which includes the transporters ABCB1, ABCC1 and ABCG2 responsible for causing drug resistance in cancer patients and also several other transporters that have been linked to human disease. The ABCB5 full transporter (ABCB5.ts) is expressed in human testis and its functional significance is presently unknown. Another variant of this transporter, ABCB5 beta possess a "half-transporter-like" structure and is expressed in melanoma ste...

  19. Transport of diclofenac by breast cancer resistance protein (ABCG2) and stimulation of multidrug resistance protein 2 (ABCC2)-mediated drug transport by diclofenac and benzbromarone.

    Science.gov (United States)

    Lagas, Jurjen S; van der Kruijssen, Cornelia M M; van de Wetering, Koen; Beijnen, Jos H; Schinkel, Alfred H

    2009-01-01

    Diclofenac is an important analgesic and anti-inflammatory drug, widely used for treatment of postoperative pain, rheumatoid arthritis, and chronic pain associated with cancer. Consequently, diclofenac is often used in combination regimens and undesirable drug-drug interactions may occur. Because many drug-drug interactions may occur at the level of drug transporting proteins, we studied interactions of diclofenac with apical ATP-binding cassette (ABC) multidrug efflux transporters. Using Madin-Darby canine kidney (MDCK)-II cells transfected with human P-glycoprotein (P-gp; MDR1/ABCB1), multidrug resistance protein 2 (MRP2/ABCC2), and breast cancer resistance protein (BCRP/ABCG2) and murine Bcrp1, we found that diclofenac was efficiently transported by murine Bcrp1 and moderately by human BCRP but not by P-gp or MRP2. Furthermore, in Sf9-BCRP membrane vesicles diclofenac inhibited transport of methotrexate in a concentration-dependent manner. We next used MDCK-II-MRP2 cells to study interactions of diclofenac with MRP2-mediated drug transport. Diclofenac stimulated paclitaxel, docetaxel, and saquinavir transport at only 50 microM. We further found that the uricosuric drug benzbromarone stimulated MRP2 at an even lower concentration, having maximal stimulatory activity at only 2 microM. Diclofenac and benzbromarone stimulated MRP2-mediated transport of amphipathic lipophilic drugs at 10- and 250-fold lower concentrations, respectively, than reported for other MRP2 stimulators. Because these concentrations are readily achieved in patients, adverse drug-drug interactions may occur, for example, during cancer therapy, in which drug concentrations are often critical and stimulation of elimination via MRP2 may result in suboptimal chemotherapeutic drug concentrations. Moreover, stimulation of MRP2 activity in tumors may lead to increased efflux of chemotherapeutic drugs and thereby drug resistance.

  20. Single nucleotide polymorphisms of ABCB1 gene and response to etanercept treatment in patients with ankylosing spondylitis in a Chinese Han population

    Science.gov (United States)

    Yan, Rui-Jian; Lou, Ting-Ting; Wu, Yi-Fang; Chen, Wei-Shan

    2017-01-01

    Abstract Background: Etanercept was highly recommended for patients with ankylosing spondylitis (AS), as its efficacy has been confirmed in AS, while genetic polymorphisms, by affecting drug metabolism or drug receptor, lead to interindividual variability in drug disposition and efficacy. Therefore, this study aims to investigate whether ABCB1 gene polymorphisms can predict therapeutic response to etanercept in patients with AS. Methods: A total of 185 patients with AS in our hospital were recruited into our study from December 2012 to May 2015. The frequency distributions of genotype and allele of rs2032582, rs1128503, and rs1045642 were detected by polymerase chain reaction (PCR) and electrophoresis verification enzyme products method. AS patients received etanercept treatment for 12 weeks, followed by this would be evaluated by the bath AS disease activity index (BASDAI) score improvement and the assessment of spondyloArthritis international society 20/50/70 (ASAS20/50/70) score improvements to explore the relationship between genotype of ABCB1 gene polymorphisms and therapeutic response to etanercept in patients with AS. Results: After 12 weeks, the BASDAI score mean improvement value of rs2032582 A/A genotype was 2.87 ± 0.52. The ratios of patients with rs2032582 A/A genotype reaching the BASDAI50 and ASAS20 evaluation criteria were 64.29% and 92.86%, respectively. The results indicated that efficacy of etanercept was promoted in rs2032582 A/A genotype. The BASDAI score mean improvement value of rs1128503 C/C genotype was 2.79 ± 0.54 after 12 weeks. The ratios of patients with rs1128503 C/C genotype reaching the BASDAI50 and ASAS20 evaluation criteria were 66.67% and 93.94%, respectively. The results indicated that efficacy of etanercept was promoted in rs1128503 C/C genotype. However, no significant associations were observed between rs1045642 and therapeutic response to etanercept in AS patients. Conclusion: ABCB1 gene rs2032582 and rs1128503

  1. Interaction Potential of the Multitargeted Receptor Tyrosine Kinase Inhibitor Dovitinib with Drug Transporters and Drug Metabolising Enzymes Assessed in Vitro

    Directory of Open Access Journals (Sweden)

    Johanna Weiss

    2014-12-01

    Full Text Available Dovitinib (TKI-258 is under development for the treatment of diverse cancer entities. No published information on its pharmacokinetic drug interaction potential is available. Thus, we assessed its interaction with important drug metabolising enzymes and drug transporters and its efficacy in multidrug resistant cells in vitro. P-glycoprotein (P-gp, MDR1, ABCB1 inhibition was evaluated by calcein assay, inhibition of breast cancer resistance protein (BCRP, ABCG2 by pheophorbide A efflux, and inhibition of organic anion transporting polypeptides (OATPs by 8-fluorescein-cAMP uptake. Inhibition of cytochrome P450 3A4, 2C19, and 2D6 was assessed by using commercial kits. Induction of transporters and enzymes was quantified by real-time RT-PCR. Possible aryl hydrocarbon receptor (AhR activating properties were assessed by a reporter gene assay. Substrate characteristics were evaluated by growth inhibition assays in cells over-expressing P-gp or BCRP. Dovitinib weakly inhibited CYP2C19, CYP3A4, P-gp and OATPs. The strongest inhibition was observed for BCRP (IC50 = 10.3 ± 4.5 μM. Among the genes investigated, dovitinib only induced mRNA expression of CYP1A1, CYP1A2, ABCC3 (coding for multidrug resistance-associated protein 3, and ABCG2 and suppressed mRNA expression of some transporters and drug metabolising enzymes. AhR reporter gene assay demonstrated that dovitinib is an activator of this nuclear receptor. Dovitinib retained its efficacy in cell lines over-expressing P-gp or BCRP. Our analysis indicates that dovitinib will most likely retain its efficacy in tumours over-expressing P-gp or BCRP and gives first evidence that dovitinib might act as a perpetrator drug in pharmacokinetic drug–drug interactions.

  2. Pilot PET Study to Assess the Functional Interplay Between ABCB1 and ABCG2 at the Human Blood–Brain Barrier

    Science.gov (United States)

    Bauer, M; Römermann, K; Karch, R; Wulkersdorfer, B; Stanek, J; Philippe, C; Maier‐Salamon, A; Haslacher, H; Jungbauer, C; Wadsak, W; Jäger, W; Löscher, W; Hacker, M; Zeitlinger, M

    2016-01-01

    ABCB1 and ABCG2 work together at the blood–brain barrier (BBB) to limit brain distribution of dual ABCB1/ABCG2 substrates. In this pilot study we used positron emission tomography (PET) to assess brain distribution of two model ABCB1/ABCG2 substrates ([11C]elacridar and [11C]tariquidar) in healthy subjects without (c.421CC) or with (c.421CA) the ABCG2 single‐nucleotide polymorphism (SNP) c.421C>A. Subjects underwent PET scans under conditions when ABCB1 and ABCG2 were functional and during ABCB1 inhibition with high‐dose tariquidar. In contrast to the ABCB1‐selective substrate (R)‐[11C]verapamil, [11C]elacridar and [11C]tariquidar showed only moderate increases in brain distribution during ABCB1 inhibition. This provides evidence for a functional interplay between ABCB1 and ABCG2 at the human BBB and suggests that both ABCB1 and ABCG2 need to be inhibited to achieve substantial increases in brain distribution of dual ABCB1/ABCG2 substrates. During ABCB1 inhibition c.421CA subjects had significantly higher increases in [11C]tariquidar brain distribution than c.421CC subjects, pointing to impaired cerebral ABCG2 function. PMID:26940368

  3. Evaluation of P-glycoprotein (abcb1a/b) modulation of [(18)F]fallypride in MicroPET imaging studies.

    Science.gov (United States)

    Piel, Markus; Schmitt, Ulrich; Bausbacher, Nicole; Buchholz, Hans-Georg; Gründer, Gerhard; Hiemke, Christoph; Rösch, Frank

    2014-09-01

    [(18)F]Fallypride ([(18)F]FP) is an important and routinely used D2/D3 antagonist for quantitative imaging of dopaminergic neurotransmission in vivo. Recently it was shown that the brain uptake of the structurally related [(11)C]raclopride is modulated by P-glycoprotein (P-gp), an important efflux transporter at the blood-brain barrier. The purpose of this study was to determine whether the brain uptake of [(18)F]FP is influenced by P-gp. For examination of this possible modulation microPET studies were performed in a rat and a mouse model. Hence, [(18)F]FP was applied to Sprague Dawley rats, half of them being treated with the P-gp inhibitor cyclosporine A (CsA). In a second experimental series the tracer was applied to three different groups of FVB/N mice: wild type, P-gp double knockout (abcb1a/1b (-/-)) and CsA-treated mice. In CsA-treated Sprague Dawley rats [(18)F]FP showed an elevated standard uptake value in the striatum compared to the control animals. In FVB/N mice a similar effect was observed, showing an increasing uptake from wild type to CsA-treated and double knockout mice. Since genetically or pharmacologically induced reduction of P-gp activity increased the uptake of [(18)F]FP markedly, we conclude that [(18)F]FP is indeed a substrate of P-gp and that the efflux pump modulates its brain uptake. This effect - if true for humans - may have particular impact on clinical studies using [(18)F]FP for assessment of D2/3 receptor occupancy by antipsychotic drugs. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.

  4. Beta-Amyloid Downregulates MDR1-P-Glycoprotein (Abcb1 Expression at the Blood-Brain Barrier in Mice

    Directory of Open Access Journals (Sweden)

    Anja Brenn

    2011-01-01

    Full Text Available Neurovascular dysfunction is an important component of Alzheimer's disease, leading to reduced clearance across the blood-brain barrier and accumulation of neurotoxic β-amyloid (Aβ peptides in the brain. It has been shown that the ABC transport protein P-glycoprotein (P-gp, ABCB1 is involved in the export of Aβ from the brain into the blood. To determine whether Aβ influences the expression of key Aβ transporters, we studied the effects of 1-day subcutaneous Aβ1-40 and Aβ1-42 administration via Alzet mini-osmotic pumps on P-gp, BCRP, LRP1, and RAGE expression in the brain of 90-day-old male FVB mice. Our results demonstrate significantly reduced P-gp, LRP1, and RAGE mRNA expression in mice treated with Aβ1-42 compared to controls, while BCRP expression was not affected. The expression of the four proteins was unchanged in mice treated with Aβ1-40 or reverse-sequence peptides. These findings indicate that, in addition to the age-related decrease of P-gp expression, Aβ1-42 itself downregulates the expression of P-gp and other Aβ-transporters, which could exacerbate the intracerebral accumulation of Aβ and thereby accelerate neurodegeneration in Alzheimer's disease and cerebral β-amyloid angiopathy.

  5. 药物基因组学相关P450和ABCB1多态性及SNP检测技术%Pharmacogenomics-related P450 and ABCB1 Polymorphisms and SNP Detection Technology

    Institute of Scientific and Technical Information of China (English)

    眭维国; 张若菡; 陈洁晶; 戴勇

    2011-01-01

    药物基因组学(phamacogenomics)是临床检测遗传差异引起药物应答个体性差异的学科,它涉及药物代谢和有害的药物反应的预测等方面的内容.个性化药物和个性化治疗发展的关键条件是能够快速简便的检测出病人的遗传多态性.文章综述了药物基因相关问题,细胞色素酶P450和ABCB1转运蛋白的遗传多态性以及检测遗传多态性的相关技术.%Pharmacogenomics is the study of the influence of genetic factors on drug action. It is increasingly important for predicting metabolism and adverse reaction to drugs. A key requirement for the development of individualized medicine or personalized therapy is the ability to rapidly and conveniently test the genetic polymorphisms and mutations in patients. This review addresses the social issues in Pharmacogenomics testing, the cytochrome P450, human ACBC1 genetic polymorphismand some new methods for single nucleotide polymorphism ( SNP ) detection.

  6. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice

    Directory of Open Access Journals (Sweden)

    Natalia Brzozowska

    2016-05-01

    Full Text Available Cannabidiol (CBD is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp and breast cancer resistance protein (Bcrp mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b−∕−, Bcrp knockout (Abcg2−∕−, combined P-gp/Bcrp knockout (Abcb1a/b−∕−Abcg2−∕− and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders.

  7. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice.

    Science.gov (United States)

    Brzozowska, Natalia; Li, Kong M; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S; Arnold, Jonathon C

    2016-01-01

    Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b (-∕-)), Bcrp knockout (Abcg2 (-∕-)), combined P-gp/Bcrp knockout (Abcb1a/b (-∕-) Abcg2 (-∕-)) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders.

  8. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice

    Science.gov (United States)

    Brzozowska, Natalia; Li, Kong M.; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S.

    2016-01-01

    Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b−∕−), Bcrp knockout (Abcg2−∕−), combined P-gp/Bcrp knockout (Abcb1a/b−∕−Abcg2−∕−) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders. PMID:27257556

  9. Measurement of multiple drug resistance transporter activity in putative cancer stem/progenitor cells.

    Science.gov (United States)

    Donnenberg, Vera S; Meyer, E Michael; Donnenberg, Albert D

    2009-01-01

    Multiple drug resistance, mediated by the expression and activity of ABC-transporters, is a major obstacle to antineoplastic therapy. Normal tissue stem cells and their malignant counterparts share MDR transporter activity as a major mechanism of self-protection. Although MDR activity is upregulated in response to substrate chemotherapeutic agents, it is also constitutively expressed on both normal tissue stem cells and a subset of tumor cells prior to the initiation of therapy, representing a built-in obstacle to therapeutic ratio. Constitutive and induced MDR activity can be detected in cellular subsets of disaggregated tissues, using the fluorescent substrates Rhodamine 123 and Hoechst 33342 for ABCB1 (also known as P-gp and MDR1) and ABCG2 (BCRP1). In this chapter, we will describe the complete procedure for the detection of MDR activity, including: (1) Preparing single-cell suspensions from tumor and normal tissue specimens; (2) An efficient method to perform cell surface marker staining on large numbers of cells; (3) Flow cytometer setup and controls; (4) Simultaneous measurement of Hoechst 33342 and Rhodamine123 transport; and (5) Data acquisition and analysis.

  10. Characterization of rhodamine-123 as a tracer dye for use in in vitro drug transport assays.

    Directory of Open Access Journals (Sweden)

    Samantha Forster

    Full Text Available Fluorescent tracer dyes represent an important class of sub-cellular probes and allow the examination of cellular processes in real-time with minimal impact upon these processes. Such tracer dyes are becoming increasingly used for the examination of membrane transport processes, as they are easy-to-use, cost effective probe substrates for a number of membrane protein transporters. Rhodamine 123, a member of the rhodamine family of flurone dyes, has been used to examine membrane transport by the ABCB1 gene product, MDR1. MDR1 is viewed as the archetypal drug transport protein, and is able to efflux a large number of clinically relevant drugs. In addition, ectopic activity of MDR1 has been associated with the development of multiple drug resistance phenotype, which results in a poor patient response to therapeutic intervention. It is thus important to be able to examine the potential for novel compounds to be MDR1 substrates. Given the increasing use rhodamine 123 as a tracer dye for MDR1, a full characterisation of its spectral properties in a range of in vitro assay-relevant media is warranted. Herein, we determine λmax for excitation and emission or rhodamine 123 and its metabolite rhodamine 110 in commonly used solvents and extraction buffers, demonstrating that fluorescence is highly dependent on the chemical environment: Optimal parameters are 1% (v/v methanol in HBSS, with λex = 505 nm, λem = 525 nm. We characterise the uptake of rhodamine 123 into cells, via both passive and active processes, and demonstrate that this occurs primarily through OATP1A2-mediated facilitated transport at concentrations below 2 µM, and via micelle-mediated passive diffusion above this. Finally, we quantify the intracellular sequestration and metabolism of rhodamine 123, demonstrating that these are both cell line-dependent factors that may influence the interpretation of transport assays.

  11. Genomewide analysis of ABCBs with a focus on ABCB1 and ABCB19 in Malus domestica

    Indian Academy of Sciences (India)

    Juan Juan Ma; Mingyu Han

    2016-03-01

    The B subfamily of ATP-binding cassette (ABC) proteins (ABCB) plays a vital role in auxin efflux. However, no systematic study has been done in apple. In this study, we performed genomewide identification and expression analyses of the ABCB family in Malus domestica for the first time. We identified a total of 25 apple ABCBs that were divided into three clusters based on the phylogenetic analysis. Most ABCBs within the same cluster demonstrated a similar exon–intron organization. Additionally, the digital expression profiles of ABCB genes shed light on their functional divergence. ABCB1 and ABCB19 are two well-studied auxin efflux carrier genes, and we found that their expression levels are higher in young shoots of M106 than in young shoots of M9. Since young shoots are the main source of auxin synthesis and auxin efflux involves in tree height control. This suggests that ABCB1 and ABCB19 may also take a part in the auxin efflux and tree height control in apple.

  12. Co-cultivation of murine BMDCs with 67NR mouse mammary carcinoma cells give rise to highly drug resistant cells

    Directory of Open Access Journals (Sweden)

    Zänker Kurt S

    2011-06-01

    Full Text Available Abstract Background Tumor tissue resembles chronically inflamed tissue. Since chronic inflammatory conditions are a strong stimulus for bone marrow-derived cells (BMDCs it can be assumed that recruitment of BMDCs into cancer tissue should be a common phenomenon. Several data have outlined that BMDC can influence tumor growth and metastasis, e.g., by inducing a paracrine acting feedback loop in tumor cells. Likewise, cell fusion and horizontal gene transfer are further mechanisms how BMDCs can trigger tumor progression. Results Hygromycin resistant murine 67NR-Hyg mammary carcinoma cells were co-cultivated with puromycin resistant murine BMDCs from Tg(GFPU5Nagy/J mice. Isolation of hygromycin/puromycin resistant mBMDC/67NR-Hyg cell clones was performed by a dual drug selection procedure. PCR analysis revealed an overlap of parental markers in mBMDC/67NR-Hyg cell clones, suggesting that dual resistant cells originated by cell fusion. By contrast, both STR and SNP data analysis indicated that only parental 67NR-Hyg alleles were found in mBMDC/67NR-Hyg cell clones favoring horizontal gene transfer as the mode of origin. RealTime-PCR-array analysis showed a marked up-regulation of Abcb1a and Abcb1b ABC multidrug transporters in mBMDC/67NR-Hyg clones, which was verified by Western Blot analysis. Moreover, the markedly increased Abcb1a/Abcb1b expression was correlated to an efficient Rhodamine 123 efflux, which was completely inhibited by verapamil, a well-known Abcb1a/Abcb1b inhibitor. Likewise, mBMDCs/67NR-Hyg clones revealed a marked resistance towards chemotherapeutic drugs including 17-DMAG, doxorubicin, etoposide and paclitaxel. In accordance to Rhodamine 123 efflux data, chemotherapeutic drug resistance of mBMDC/67NR-Hyg cells was impaired by verapamil mediated blockage of Abc1a/Abcb1b multidrug transporter function. Conclusion Co-cultivation of mBMDCs and mouse 67NR-Hyg mammary carcinoma cells gave rise to highly drug resistant cells. Even

  13. Rifampin Regulation of Drug Transporters Gene Expression and the Association of MicroRNAs in Human Hepatocytes

    Directory of Open Access Journals (Sweden)

    Eric A Benson

    2016-04-01

    Full Text Available Membrane drug transporters contribute to the disposition of many drugs. In human liver, drug transport is controlled by two main superfamilies of transporters, the solute carrier transporters (SLC and the ATP Binding Cassette transporters (ABC. Altered expression of these transporters due to drug-drug interactions can contribute to differences in drug exposure and possibly effect. In this study, we determined the effect of rifampin on gene expression of hundreds of membrane transporters along with all clinically relevant drug transporters. Methods: In this study, primary human hepatocytes (n=7 donors were cultured and treated for 24 hours with rifampin and vehicle control. RNA was isolated from the hepatocytes, mRNA expression was measured by RNA-seq, and miRNA expression was analyzed by Taqman OpenArray. The effect of rifampin on the expression of selected transporters was also tested in kidney cell lines. The impact of rifampin on the expression of 410 transporter genes from 19 different transporter gene families was compared with vehicle control. Results: Expression patterns of 12 clinically relevant drug transporter genes were changed by rifampin (FDR<0.05. For example, the expressions of ABCC2, ABCB1, and ABCC3 were increased 1.9-, 1.7-, and 1.2- fold, respectively. The effects of rifampin on four uptake drug transporters (SLCO1B3, SLC47A1, SLC29A1, SLC22A9 were negatively correlated with the rifampin effects on specific microRNA expression (SLCO1B3/miR-92a, SLC47A1/miR-95, SLC29A1/miR-30d#, and SLC22A9/miR-20; r<-0.79; p<0.05. Seven hepatic drug transporter genes (SLC22A1, SLC22A5, SLC15A1, SLC29A1, SLCO4C1, ABCC2, and ABCC4, whose expression was altered by rifampin in hepatocytes, were also present in a renal proximal tubular cell line, but in renal cells rifampin did not alter their gene expression. PXR expression was very low in the kidney cells; this may explain why rifampin induces gene expression in a tissue-specific manner

  14. P-glycoprotein in sheep liver and small intestine: gene expression and transport efflux activity.

    Science.gov (United States)

    Ballent, M; Wilkens, M R; Maté, L; Muscher, A S; Virkel, G; Sallovitz, J; Schröder, B; Lanusse, C; Lifschitz, A

    2013-12-01

    The role of the transporter P-glycoprotein (P-gp) in the disposition kinetics of different drugs therapeutically used in veterinary medicine has been demonstrated. Considering the anatomo-physiological features of the ruminant species, the constitutive expression of P-gp (ABCB1) along the sheep gastrointestinal tract was studied. Additionally, the effect of repeated dexamethasone (DEX) administrations on the ABCB1 gene expression in the liver and small intestine was also assessed. The ABCB1 mRNA expression was determined by real-time quantitative PCR. P-gp activity was evaluated in diffusion chambers to determine the efflux of rhodamine 123 (Rho 123) in the ileum from experimental sheep. The constitutive ABCB1 expression was 65-fold higher in the liver than in the intestine (ileum). The highest ABCB1 mRNA expression along the small intestine was observed in the ileum (between 6- and 120-fold higher). The treatment with DEX did not elicit a significant effect on the P-gp gene expression levels in any of the investigated gastrointestinal tissues. Consistently, no significant differences were observed in the intestinal secretion of Rho 123, between untreated control (Peff S-M = 3.99 × 10(-6)  ± 2.07 × 10(-6) ) and DEX-treated animals (Peff S-M = 6.00 × 10(-6)  ± 2.5 × 10(-6) ). The understanding of the efflux transporters expression and activity along the digestive tract may help to elucidate clinical implications emerging from drug interactions in livestock.

  15. Association of single nucleotide polymorphisms of ABCB1, OPRM1 and COMT with pain perception in cancer patients.

    Science.gov (United States)

    Wang, Xu-shi; Song, Hai-bin; Chen, Si; Zhang, Wei; Liu, Jia-qi; Huang, Chao; Wang, Hao-ran; Chen, Yuan; Chu, Qian

    2015-10-01

    Pain perception is influenced by multiple factors. The single nucleotide polymorphisms (SNPs) of some genes were found associated with pain perception. This study aimed to examine the association of the genotypes of ABCB1 C3435T, OPRM1 A118G and COMT V108/158M (valine 108/158 methionine) with pain perception in cancer patients. We genotyped 146 cancer pain patients and 139 cancer patients without pain for ABCB1 C3435T (rs1045642), OPRM1 A118G (rs1799971) and COMT V108/158M (rs4680) by the fluorescent dye-terminator cycle sequencing method, and compared the genotype distribution between groups with different pain intensities by chi-square test and pain scores between groups with different genotypes by non-parametric test. The results showed that in these cancer patients, the frequency of variant T allele of ABCB1 C3435T was 40.5%; that of G allele of OPRM1 A118G was 38.5% and that of A allele of COMT V108/158M was 23.3%. No significant difference in the genotype distribution of ABCB1 C3435T (rs1045642) and OPRM1 A118G (rs1799971) was observed between cancer pain group and control group (P=0.364 and 0.578); however, significant difference occurred in the genotype distribution of COMT V108/158M (rs4680) between the two groups (P=0.001). And the difference could not be explained by any other confounding factors. Moreover, we found that the genotypes of COMT V108/158M and ABCB1 C3435T were associated with the intensities of pain in cancer patients. In conclusion, our results indicate that the SNPs of COMT V108/158M and ABCB1 C3435T significantly influence the pain perception in Chinese cancer patients.

  16. ABCB1 genetic variant and its associated tacrolimus pharmacokinetics affect renal function in patients with rheumatoid arthritis.

    Science.gov (United States)

    Naito, Takafumi; Mino, Yasuaki; Aoki, Yuki; Hirano, Kumi; Shimoyama, Kumiko; Ogawa, Noriyoshi; Kagawa, Yoshiyuki; Kawakami, Junichi

    2015-05-20

    This study aimed to evaluate the blood exposure of and clinical responses to tacrolimus based on genetic variants of CYP3A5 and ABCB1 in patients with rheumatoid arthritis. Seventy rheumatoid arthritis patients treated with oral tacrolimus once daily were enrolled. Blood concentrations of tacrolimus and its major metabolite 13-O-demethylate at 12h after dosing were determined. The relationships between the tacrolimus pharmacokinetics and efficacy, renal function, and CYP3A5 and ABCB1 genotypes were evaluated. Dose-normalized blood concentration of tacrolimus was significantly higher in the CYP3A5*3/*3 group than in the *1 allele carrier group. A lower metabolic ratio of 13-O-demethylate to tacrolimus was observed in the CYP3A5*3/*3 group. The ABCB1 3435TT group had higher dose-normalized blood concentrations of tacrolimus and 13-O-demethylate. The blood tacrolimus concentration was inversely correlated with the estimated glomerular filtration rate (eGFR). ABCB1 C3435T but not CYP3A5 genotype had decreased eGFR. Patients lacking the CYP3A5*3 allele had a higher incidence of tacrolimus withdrawal. CYP3A5*3 increased the blood exposure of tacrolimus through its metabolic reduction. ABCB1 C3435T led to a higher blood exposure of tacrolimus and its major metabolite. The ABCB1 genetic variant and its associated tacrolimus pharmacokinetics affected renal function in rheumatoid arthritis patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Multiplicity of acquired cross-resistance in paclitaxel-resistant cancer cells is associated with feedback control of TUBB3 via FOXO3a-mediated ABCB1 regulation

    Science.gov (United States)

    Aldonza, Mark Borris D.; Hong, Ji-Young; Alinsug, Malona V.; Song, Jayoung; Lee, Sang Kook

    2016-01-01

    Acquired drug resistance is a primary obstacle for effective cancer therapy. The correlation of point mutations in class III β-tubulin (TUBB3) and the prominent overexpression of ATP-binding cassette P-glycoprotein (ABCB1), a multidrug resistance gene, have been protruding mechanisms of resistance to microtubule disruptors such as paclitaxel (PTX) for many cancers. However, the precise underlying mechanism of the rapid onset of cross-resistance to an array of structurally and functionally unrelated drugs in PTX-resistant cancers has been poorly understood. We determined that our established PTX-resistant cancer cells display ABCB1/ABCC1-associated cross-resistance to chemically different drugs such as 5-fluorouracil, docetaxel, and cisplatin. We found that feedback activation of TUBB3 can be triggered through the FOXO3a-dependent regulation of ABCB1, which resulted in the accentuation of induced PTX resistance and encouraged multiplicity in acquired cross-resistance. FOXO3a-directed regulation of P-glycoprotein (P-gp) function suggests that control of ABCB1 involves methylation-dependent activation. Consistently, transcriptional overexpression or downregulation of FOXO3a directs inhibitor-controlled protease-degradation of TUBB3. The functional PI3K/Akt signaling is tightly responsive to FOXO3a activation alongside doxorubicin treatment, which directs FOXO3a arginine hypermethylation. In addition, we found that secretome factors from PTX-resistant cancer cells with acquired cross-resistance support a P-gp-dependent association in multidrug resistance (MDR) development, which assisted the FOXO3a-mediated control of TUBB3 feedback. The direct silencing of TUBB3 reverses induced multiple cross-resistance, reduces drug-resistant tumor mass, and suppresses the impaired microtubule stability status of PTX-resistant cells with transient cross-resistance. These findings highlight the control of the TUBB3 response to ABCB1 genetic suppressors as a mechanism to reverse the

  18. Drug: D00252 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available duction: ABCB1 [HSA:5243] map07033 Anticonvulsants map07231 Sodium channel blocking drugs map00982 Drug meta...mazepine D00252 Carbamazepine (JP16/USP/INN) USP drug classification [BR:br08302] Anticonvulsants

  19. Drug: D00640 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 758 377.9049 D00640.gif Cardiac depressant [anti-arrhythmic] Therapeutic category: 2129 ATC code: C01BC03 Class I antiarrhythmic...5] Transporter inhibition: ABCB1 [HSA:5243] map07037 Antiarrhythmic drugs map07231 Sodium channel blocking d...RDIAC THERAPY C01B ANTIARRHYTHMICS, CLASS I AND III C01BC Antiarrhythmics, class Ic C01BC03 Propafenone D006...40 Propafenone hydrochloride (JP16/USP) USP drug classification [BR:br08302] Cardiovascular Agents Antiarrhythmic...rugs Therapeutic category of drugs in Japan [BR:br08301] 2 Agents affecting individual organs 21 Cardiovascular agents 212 Antiarrhyt

  20. Molecular response to imatinib & its correlation with mRNA expression levels of imatinib influx & efflux transporters in patients with chronic myeloid leukaemia in chronic phase

    Directory of Open Access Journals (Sweden)

    Hemant Malhotra

    2015-01-01

    Full Text Available Background & objectives: Imatinib is the standard first-line treatment for chronic myeloid leukaemia (CML patients. About 20 to 30 per cent patients develop resistance to imatinib and fail imatinib treatment. One of the mechanisms proposed is varying expression levels of the drug transporters. This study was aimed to determine the expression levels of imatinib transporter genes (OCT1, ABCB1, ABCG2 in CML patients and to correlate these levels with molecular response. Methods: Sixty three CML chronic phase patients who were on 400 mg/day imatinib for more than two years were considered for gene expression analysis study for OCT1, ABCB1 and ABCG2 genes. These were divided into responders and non-responders. The relative transcript expression levels of the three genes were compared between these two categories. The association between the expression values of these three genes was also determined. Results: No significant difference in the expression levels of OCT1, ABCB1 and ABCG2 was found between the two categories. The median transcript expression levels of OCT1, ABCB1 and ABCG2 genes in responders were 26.54, 10.78 and 0.64 versus 33.48, 7.09 and 0.53 in non-responders, respectively. A positive association was observed between the expression of the ABCB1 and ABCG2 transporter genes (r=0.407, P<0.05 while no association was observed between the expression of either of the ABC transporter genes with the OCT1 gene. Interpretation & conclusions: Our findings demonstrated that the mRNA expression levels of imatinib transporter genes were not correlated with molecular response in CML patients. Further studies need to be done on a large sample of CML patients to confirm these findings.

  1. The ABCB1, rs9282564, AG and TT Genotypes and the COMT, rs4680, AA Genotype are Less Frequent in Deceased Patients with Opioid Addiction than in Living Patients with Opioid Addiction.

    Science.gov (United States)

    Christoffersen, Dorte J; Damkier, Per; Feddersen, Søren; Möller, Sören; Thomsen, Jørgen L; Brasch-Andersen, Charlotte; Brøsen, Kim

    2016-10-01

    Sudden death due to acute intoxication occurs frequently in patients with opioid addiction (OA). To examine whether certain genotypes were associated with this, we examined the frequencies of 29 SNPs located in candidate genes related to opioid pharmacology: ABCB1, OPRM1, UGT2B7, CYP3A5, CYP2B6, CYP2C19, CYP2D6, COMT, KCNJ6 and SCN9A in 274 deceased patients with OA (DOA), 309 living patients with OA (LOA) and in 394 healthy volunteers (HV). The main hypothesis of the study was that subjects homozygous for the variant 3435T in ABCB1 (rs1045642) occur more frequently in DOA than in LOA and HV because morphine and methadone more readily cross the blood barrier in these subjects due to a lower efflux transporter activity of the ABCB1 (p-glycoprotein) transporter. Our results did not support this hypothesis, because no statistically significant difference (p = 0.506) in the frequency of the TT genotype of rs1045642 was observed between the DOA, LOA and HV cohorts. However, for another ABCB1 variant, rs9282564, we found that the frequencies of the AG and TT genotypes were 13, 21 and 25% in DOA, LOA and HV, respectively, and after correcting for age, sex and multiple testing, the differences between DOA and LOA were statistically significantly different (p = 0.027). The COMT rs4680 AA genotype frequencies were 25%, 35% and 31% in DOA, LOA and HV, respectively, and the difference between DOA and LOA was also statistically significant (p = 0.0028). In conclusion, this study generated two hypotheses suggesting possible associations of a reduced risk of death and carrying, respectively, the ABCB1 rs9282564 AG and TT genotypes and the COMT rs4680 AA genotype among patients with OA. These findings should be confirmed in independent cohorts, and if a causal relationship between these variants and fatal poisoning in OA is confirmed, then it may be possible at least in theory to personalize prevention of sudden death in this patient group.

  2. Impact of ABCB1 Variants on Neutrophil Depression: A Pharmacogenomic Study of Paclitaxel in 92 Women with Ovarian Cancer

    DEFF Research Database (Denmark)

    Bergmann, Troels K; Andersen, Charlotte Brasch; Gréen, Henrik

    2012-01-01

    prospectively recruited Scandinavian Caucasian women with primary ovarian cancer who were treated with paclitaxel and carboplatin. A single investigator assessed the clinical toxicity in 97% of the patients. Patients carrying variant alleles of ABCB1 C3435T experienced more pronounced neutrophil decrease (63...

  3. The risk of clopidogrel resistance is associated with ABCB1 polymorphisms but not promoter methylation in a Chinese Han population

    Science.gov (United States)

    Su, Jia; Yu, Qinglin; Zhu, Hao; Li, Xiaojing; Cui, Hanbin; Du, Weiping; Ji, Lindan; Tong, Maoqing; Zheng, Yibo; Xu, Hongyu; Zhang, Jianjiang; Zhu, Yunyun; Xia, Yezi; Liu, Ting; Yao, Qi; Yang, Jun; Chen, Xiaomin; Yu, Jingbo

    2017-01-01

    The goal of our study was to investigate the contribution of ABCB1 expression to the risk of clopidogrel resistance (CR). Platelets functions were measured using the Verify-Now P2Y12 assay. Applying Polymerase Chain Reaction–Restriction Fragment Length Polymorphism (PCR-RFLP), the single-nucleotide polymorphisms (SNPs) was tested. Using bisulphite pyrosequencing assay, we investigated the association of the ABCB1 DNA methylation levels and CR. It was shown that female, hypertension, and lower albumin levels increased the risk of CR (P<0.05). If patients did not have hypoproteinaemia or had hypertension, the SNP in rs1045642 was associated with CR (CC vs. TT: albumin ≥35, P = 0.042; hypertension, P = 0.045; C vs. T: albumin ≥35, P = 0.033; hypertension, P = 0.040). Additionally, the platelet inhibition of the CT+TT genotype in rs1128503 was larger than that of the CC genotype (P = 0.021). Multivariate logistic regression analysis showed that male, higher albumin and hsCRP decreased the risk of CR, and the stent size maybe positively correlated with CR. The SNP in rs1045642 was related to all-cause mortality (P = 0.024). We did not find any relationship between the methylation levels of the ABCB1 promoter and CR. In conclusions, our study indicated that ABCB1 polymorphisms might be useful in further evaluating the pathogenesis of CR. PMID:28358842

  4. Variants in CDA and ABCB1 are predictors of capecitabine-related adverse reactions in colorectal cancer

    Science.gov (United States)

    García, María I.; García-Alfonso, Pilar; Robles, Luis; Grávalos, Cristina; González-Haba, Eva; Marta, Pellicer; Sanjurjo, María; López-Fernández, Luis A.

    2015-01-01

    Adverse reactions to capecitabine-based chemotherapy limit full administration of cytotoxic agents. Likewise, genetic variations associated with capecitabine-related adverse reactions are associated with controversial results and a low predictive value. Thus, more evidence on the role of these variations is needed. We evaluated the association between nine polymorphisms in MTHFR, CDA, TYMS, ABCB1, and ENOSF1 and adverse reactions, dose reductions, treatment delays, and overall toxicity in 239 colorectal cancer patients treated with capecitabine-based regimens. The ABCB1*1 haplotype was associated with a high risk of delay in administration or reduction in the dose of capecitabine, diarrhea, and overall toxicity. CDA rs2072671 A was associated with a high risk of overall toxicity. TYMS rs45445694 was associated with a high risk of delay in administration or reduction in the dose of capecitabine, HFS >1 and HFS >2. Finally, ENOSF1 rs2612091 was associated with HFS >1, but was a poorer predictor than TYMS rs45445694. A score based on ABCB1-CDA polymorphisms efficiently predicts patients at high risk of severe overall toxicity (PPV, 54%; sensitivity, 43%) in colorectal cancer patients treated with regimens containing capecitabine. Polymorphisms in ABCB1, CDA, ENOSF1,and TYMS could help to predict specific and overall severe adverse reactions to capecitabine. PMID:25691056

  5. Bullatacin Triggered ABCB1-Overexpressing Cell Apoptosis via the Mitochondrial-Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Yong-Ju Liang

    2009-01-01

    Full Text Available This paper was to explore bullatacin-mediated multidrug-resistant cell apoptosis at extremely low concentration. To investigate its precise mechanisms, the pathway of cell apoptosis induced by bullatacin was examined. Bullatacin causes an upregulation of ROS and a downregulation of ΔΨm in a concentration-dependent manner in ABCB1-overexpressing KBv200 cells. In addition, cleavers of caspase-9, caspase-3, and PARP were observed following the release of cytochrome c from mitochondria after bullatacin treatment. However, neither cleavage of caspase-8 nor change of expression level of bcl-2, bax and Fas was observed by the same treatment. Pretreating KBv200 cells with N-acetylcysteine, an antioxidant modulator, resulted in a significant reduction of ROS generation and cell apoptosis induced by bullatacin. Bullatacin-induced apoptosis was antagonized by z-LEHD-fmk, a caspase-9 inhibitor, but not by z-IETD-fmk, a caspase-8 inhibitor. These implied that apoptosis of KBv200 cells induced by bullatacin was associated with the mitochondria-dependent pathway that was limited to activation of apical caspase-9.

  6. Drug transporters in breast cancer

    DEFF Research Database (Denmark)

    Kümler, Iben; Stenvang, Jan; Moreira, José

    2015-01-01

    Despite the advances that have taken place in the past decade, including the development of novel molecular targeted agents, cytotoxic chemotherapy remains the mainstay of cancer treatment. In breast cancer, anthracyclines and taxanes are the two main chemotherapeutic options used on a routine...... basis. Although effective, their usefulness is limited by the inevitable development of resistance, a lack of response to drug-induced cancer cell death. A large body of research has resulted in the characterization of a plethora of mechanisms involved in resistance; ATP-binding cassette transporter...

  7. Lack of Association of OPRM1 and ABCB1 Single-Nucleotide Polymorphisms to Oxycodone Response in Postoperative Pain

    DEFF Research Database (Denmark)

    Zwisler, Stine T; Enggaard, Thomas P; Mikkelsen, Soeren

    2011-01-01

    Purpose: The aim of the study was to search for an association between the single-nucleotide polymorphisms A118G in OPRM1 and C3435T and G2677T/A in ABCB1 and the analgesic effect of intravenous oxycodone in postoperative pain. Methods: There were 268 patients with postoperative pain after......, primarily, thyroidectomy. At given times during the first 24 hours postoperatively, their pain was rated at rest and during activity according to a numeric rating scale (0 = no pain, 10 = worst possible pain) and calculated as pain time area under the curve(0-24 hours). A negative answer in a final...... the tested single-nucleotide polymorphisms in OPRM1 and ABCB1 and changes in the analgesic effect of oxycodone....

  8. Lack of genetic association between OCT1, ABCB1, and UGT2B7 variants and morphine pharmacokinetics

    DEFF Research Database (Denmark)

    Nielsen, L M; Sverrisdóttir, E; Bjerregaard Stage, T

    2017-01-01

    (CL), and volume of distribution (VD). The area under the plasma concentration-time curve (AUC0-150min) and the maximum plasma concentration (Cmax) were also calculated. Pharmacodynamic data were measured as pain tolerance thresholds to mechanical stimulation of the rectum and muscle, as well as tonic...... cold pain stimulation ("the cold pressor test" where hand was immersed in cold water). Six different single nucleotide polymorphisms in three different genes (OCT1 (n=22), ABCB1 (n=37), and UGT2B (n=22)) were examined. RESULTS: Neither AUC0-150min, ktr, CL, nor VD were associated with genetic variants...... in OCT1, ABCB1, and UGT2B7 (all P>0.05). Similarly, the antinociceptive effects of morphine on rectal, muscle, and cold pressor tests were not associated with these genetic variants (all P>0.05). CONCLUSIONS: In this experimental study in healthy volunteers, we found no association between different...

  9. Recent advances in understanding hepatic drug transport

    Science.gov (United States)

    Stieger, Bruno; Hagenbuch, Bruno

    2016-01-01

    Cells need to strictly control their internal milieu, a function which is performed by the plasma membrane. Selective passage of molecules across the plasma membrane is controlled by transport proteins. As the liver is the central organ for drug metabolism, hepatocytes are equipped with numerous drug transporters expressed at the plasma membrane. Drug disposition includes absorption, distribution, metabolism, and elimination of a drug and hence multiple passages of drugs and their metabolites across membranes. Consequently, understanding the exact mechanisms of drug transporters is essential both in drug development and in drug therapy. While many drug transporters are expressed in hepatocytes, and some of them are well characterized, several transporters have only recently been identified as new drug transporters. Novel powerful tools to deorphanize (drug) transporters are being applied and show promising results. Although a large set of tools are available for studying transport in vitro and in isolated cells, tools for studying transport in living organisms, including humans, are evolving now and rely predominantly on imaging techniques, e.g. positron emission tomography. Imaging is an area which, certainly in the near future, will provide important insights into "transporters at work" in vivo. PMID:27781095

  10. Association of ABCB1 gene polymorphisms and haplotypes with therapeutic efficacy of glucocorticoids in Chinese patients with immune thrombocytopenia.

    Science.gov (United States)

    Xuan, Min; Li, Huiyuan; Fu, Rongfeng; Yang, Yanhui; Zhang, Donglei; Zhang, Xian; Yang, Renchi

    2014-04-01

    Resistance to glucocorticoids (GCs) remains a tricky problem complicating the therapy of ITP. Recently, ATP binding cassette gene B1 gene (ABCB1) was reported to be correlated with susceptibility and therapeutic efficacy of autoimmune diseases through P-glycoprotein (Pgp). We investigated three single nucleotide polymorphisms (SNPs) of ABCB1 and their haplotypes by PCR-RFLP (restriction fragment length polymorphism) method in 471 ITP patients and 383 healthy controls, patients were further assigned into GCs-responsive and -non-responsive group according to the therapeutic effects of GCs. We observed a remarkable difference in genotypes of G2677T/A between GCs-responsive and non-responsive group, but not between patients and controls. A frequently expression of T/A allele within G2677T/A was recorded in GCs-responsive group. Furthermore, we found that some haplotypes (CGC, CTC/CAC, CTT/CAT, TGC, TGT, TTC/TAC and TTT/TAT, in the order of position 1236-2677-3435) were presented significantly differences between non-responsive and responsive group. No difference of C1236T and C3435T polymorphisms was observed between ITP and controls, and between the GCs-responsive and -non-responsive group. Our findings suggest that ABCB1 polymorphisms, as well as haplotypes derived from C1235T, G2677T/A and C3435T, are associated with inter-individual differences of GCs treatment in ITP.

  11. Drug: D08435 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D08435 Drug Propafenone (INN); Propafenon hexal (TN) C21H27NO3 341.1991 341.444 D08435.gif Antiarrhythmic... Same as: C07381 ATC code: C01BC03 Class I antiarrhythmic agent (Ic) voltage-gated sod...P1A2 [HSA:1544], CYP2D6 [HSA:1565] Transporter inhibition: ABCB1 [HSA:5243] map07037 Antiarrhythmic...fication [BR:br08303] C CARDIOVASCULAR SYSTEM C01 CARDIAC THERAPY C01B ANTIARRHYTHMICS, CLASS I AND III C01BC Antiarrhythmic...] Cardiovascular Agents Antiarrhythmics Propafenone D08435 Propafenone (INN) Targ

  12. Revealing the fate of cell surface human P-glycoprotein (ABCB1): The lysosomal degradation pathway.

    Science.gov (United States)

    Katayama, Kazuhiro; Kapoor, Khyati; Ohnuma, Shinobu; Patel, Atish; Swaim, William; Ambudkar, Indu S; Ambudkar, Suresh V

    2015-10-01

    P-glycoprotein (P-gp) transports a variety of chemically dissimilar amphipathic compounds including anticancer drugs. Although mechanisms of P-gp drug transport are widely studied, the pathways involving its internalization are poorly understood. The present study is aimed at elucidating the pathways involved in degradation of cell surface P-gp. The fate of P-gp at the cell surface was determined by biotinylating cell surface proteins followed by flow cytometry and Western blotting. Our data shows that the half-life of endogenously expressed P-gp is 26.7±1.1 h in human colorectal cancer HCT-15 cells. Treatment of cells with Bafilomycin A1 (BafA1) a vacuolar H+ ATPase inhibitor increased the half-life of P-gp at the cell surface to 36.1±0.5 h. Interestingly, treatment with the proteasomal inhibitors MG132, MG115 or lactacystin alone did not alter the half-life of the protein. When cells were treated with both lysosomal and proteasomal inhibitors (BafA1 and MG132), the half-life was further prolonged to 39-50 h. Functional assays done with rhodamine 123 or calcein-AM, fluorescent substrates of P-gp, indicated that the transport function of P-gp was not affected by either biotinylation or treatment with BafA1 or proteasomal inhibitors. Immunofluorescence studies done with the antibody against lysosomal marker LAMP1 and the P-gp-specific antibody UIC2 in permeabilized cells indicated that intracellular P-gp is primarily localized in the lysosomal compartment. Our results suggest that the lysosomal degradation system could be targeted to increase the sensitivity of P-gp- expressing cancer cells towards chemotherapeutic drugs.

  13. Revealing the fate of cell surface human P-glycoprotein (ABCB1): The Lysosomal Degradation Pathway

    Science.gov (United States)

    Katayama, Kazuhiro; Kapoor, Khyati; Ohnuma, Shinobu; Patel, Atish; Swaim, William; Ambudkar, Indu S.; Ambudkar, Suresh V.

    2015-01-01

    P-glycoprotein (P-gp) transports a variety of chemically dissimilar amphipathic compounds including anticancer drugs. Although mechanisms of P-gp drug transport are widely studied, the pathways involving its internalization are poorly understood. The present study is aimed at elucidating the pathways involved in degradation of cell surface P-gp. The fate of P-gp at the cell surface was determined by biotinylating cell surface proteins followed by flow cytometry and Western blotting. Our data shows that the half-life of endogenously expressed P-gp is 26.7 ± 1.1 h in human colorectal cancer HCT-15 cells. Treatment of cells with Bafilomycin A1 (BafA1) a vacuolar H+ ATPase inhibitor increased the half-life of P-gp at the cell surface to 36.1± 0.5 h. Interestingly, treatment with the proteasomal inhibitors MG132, MG115 or lactacystin alone did not alter the half-life of the protein. When cells were treated with both lysosomal and proteasomal inhibitors (BafA1 and MG132), the half-life was further prolonged to 39-50 h. Functional assays done with rhodamine 123 or calcein-AM, fluorescent substrates of P-gp, indicated that the transport function of P-gp was not affected by either biotinylation or treatment with BafA1 or proteasomal inhibitors. Immunofluorescence studies done with the antibody against lysosomal marker LAMP1 and the P-gp-specific antibody UIC2 in permeabilized cells indicated that intracellular P-gp is primarily localized in the lysosomal compartment. Our results suggest that the lysosomal degradation system could be targeted to increase the sensitivity of P-gp expressing cancer cells towards chemotherapeutic drugs. PMID:26057472

  14. The expression of efflux and uptake transporters are regulated by statins in Caco-2 and hepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Alice Cristina RODRIGUES; Rui CURI; Fabiana Dalla Vecchia GENVIGIR; Mario Hiroyuki HIRATA; Rosario Dominguez Crespo HIRATA

    2009-01-01

    Aim:Statin disposition and response are greatly determined by the activities of drug metabolizing enzymes and effiux/uptake transporters.There is little information on the regulation of these proteins in human ceils after statin therapy.In this study,the effects of atorvastatin and simvastatin on mRNA expression of efflux (ABCB1,ABCG2 and ABCC2) and uptake (SLCO1B1,SLCO2B1 and SLC22A1) drug transporters in Caco-2 and HepG2 cells were investigated.Methods:Quantitative real-time PCR was used to measure mRNA levels after exposure of HepG2 and Caco-2 cells to statins Results:Differences in mRNA basal levels of the transporters were as follows:ABCC2>ABCG2>ABCB1>SLCOIB1>>>SLC22A1>SLC 02B1 for HepG2 cells,and SLCO2B1>>ABCC2>ABCB1>ABCG2>>>SLC22A1 for Caco-2 cells.While for HepG2 cells,ABCC2,ABCG2 and SLCO2B1 mRNA levels were significantly up-regulated at 1,10 and 20 μmol/L after 12 or 24 h treatment,in Caco-2 cells,only the efflux transporter ABCB1 was significantly down-regulated by two-fold following a 12 h treatment with atorvastatin.Interestingly,whereas treatment with simvastatin had no effect on mRNA levels of the transporters in HepG2 cells,in Caco-2 cells the statin signifi cantly down-regulated ABCB1,ABCC2,SLC22A1,and SLCO2B1 mRNA levels after 12 or 24 h treatment.Conclusion:These findings reveal that statins exhibits differential effects on mRNA expression of drug transporters,and this effect depends on the cell type.Furthermore,alterations in the expression levels of drug transporters in the liver and/or intestine may contribute to the variability in oral disposition of statins.

  15. Expression of multidrug resistance markers ABCB1 (MDR-1/P-gp) and ABCC1 (MRP-1) in renal cell carcinoma.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Renal cell carcinoma patients respond poorly to conventional chemotherapy, this unresponsiveness may be attributable to multidrug resistance (MDR). The mechanisms of MDR in renal cancer are not fully understood and the specific contribution of ABC transporter proteins which have been implicated in the chemoresistance of various cancers has not been fully defined in this disease. METHODS: In this retrospective study the expression of two of these transporter efflux pumps, namely MDR-1 P-gp (ABCB1) and MRP-1 (ABCC1) were studied by immunohistochemistry in archival material from 95 renal cell carcinoma patients. RESULTS: In the first study investigating MDR-1 P-gp and MRP-1 protein expression patterns in renal cell carcinoma patients, high levels of expression of both efflux pumps are observed with 100% of tumours studied showing MDR-1 P-gp and MRP-1 positivity. CONCLUSION: Although these findings do not prove a causal role, the high frequency of tumours expressing these efflux pumps suggests that they may be important contributors to the chemoresistance of this tumour type.

  16. Membrane transporters and new drug development

    Institute of Scientific and Technical Information of China (English)

    EndoH

    2002-01-01

    Molecular biology has made it possible to identify membrane transporter molecules that transport hydrophilic endogenous and exogenous compounds across cellular membranes.Ther are two possibilities on transporters relevant to new drug development,drug targets and pharmacokinetics.Human genome database predicts that more than 10% of common diseases may be tightly related with membrane transporter dysfunction.Thus,membrane transporters would be possible molecular targets for new drug development.As an example,I will talk on our discovery of L-type amino acid transporter 1(LAT1) being oncofetal and upregulated in cancers for their rapid growth and metastasis.We provide evidence that inhibition of LAT1 functions may become novel types of anticancer tools.As another example in human pharmacokinetics,application of stable expressing cell lines of human drug transporters will be proposed including organic anion and cation transporters which are distributed in various organs including the liver and kidney.These transporters are multispecific in their substrate recognition,and better molecules to anticipate drug-drug interactions in human bodies before new drug candidates are given in clinical trials.This in vitro technique may contribute to decide suitable compounds in particular by high throughout screening strategy.

  17. Oral and inhaled corticosteroids: Differences in P-glycoprotein (ABCB1) mediated efflux

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, Andrew, E-mail: a.p.crowe@curtin.edu.au; Tan, Ai May

    2012-05-01

    There is concern that P-glycoprotein mediated efflux contributes to steroid resistance. Therefore, this study examined bidirectional corticosteroid transport and induction capabilities for P-glycoprotein (P-gp) to understand which of the systemic and inhaled corticosteroids interacted with P-gp to the greatest extent. Hydrocortisone, prednisolone, prednisone, methylprednisolone, and dexamethasone represented systemically active drugs, while fluticasone propionate, beclomethasone dipropionate, ciclesonide and budesonide represented inhaled corticosteroids. Aldosterone and fludrocortisone represented mineralocorticoids. All drugs were detected using individually optimised HPLC protocols. Transport studies were conducted through Caco-2 monolayers. Hydrocortisone and aldosterone had efflux ratios below 1.5, while prednisone showed a P-gp mediated efflux ratio of only 1.8 compared to its active drug, prednisolone, with an efflux ratio of 4.5. Dexamethasone and beclomethasone had efflux ratios of 2.1 and 3.3 respectively, while this increased to 5.1 for methylprednisolone. Fluticasone showed an efflux ratio of 2.3. Protein expression studies suggested that all of the inhaled corticosteroids were able to induce P-gp expression, from 1.6 to 2 times control levels. Most of the systemic corticosteroids had higher passive permeability (> 20 × 10{sup −6} cm/s) compared to the inhaled corticosteroids (> 5 × 10{sup −6} cm/s), except for budesonide, with permeability similar to the systemic corticosteroids. Inhaled corticosteroids are not transported by P-gp to the same extent as systemic corticosteroids. However, they are able to induce P-gp production. Thus, inhaled corticosteroids may have greater interactions with other P-gp substrates, but P-gp itself is less likely to influence resistance to the drugs. -- Highlights: ► Inhaled corticosteroids are only weak substrates for P-gp, including budesonide. ► Inhaled corticosteroid potent P-gp inducers especially

  18. Collateral sensitivity to cisplatin in KB-8-5-11 drug-resistant cancer cells.

    LENUS (Irish Health Repository)

    Doherty, Ben

    2014-01-01

    KB-8-5-11 cells are a drug-resistant cervical cell model that overexpresses ABCB1 (P-glycoprotein). KB-8-5-11 has become sensitive to non-ABCB1 substrate cisplatin. Understanding the mechanism of collateral sensitivity to cisplatin may lead to biomarker discovery for platinum sensitivity in patients with cancer.

  19. SALL4 as an Epithelial-Mesenchymal Transition and Drug Resistance Inducer through the Regulation of c-Myc in Endometrial Cancer.

    Directory of Open Access Journals (Sweden)

    Lei Liu

    Full Text Available SALL4 plays important roles in the development and progression of many cancers. However, the role and molecular mechanism of SALL4 in endometrial cancer remain elusive. In the present research, we have demonstrated that the expression of SALL4 was upregulated in endometrial cancer and correlated positively with tumor stage, metastases and poor survival of patients. The overexpression of SALL4 promoted the invasiveness in endometrial cancer cells, as indicated by the upregulation of mesenchymal cell marker N-cadherin and downregulation of the epithelial marker E-cadherin, and invasion assays in vitro. Additionally, there was also an increase in drug resistance in these cell models due to the upregulation of ATP-binding cassette multidrug transporter ABCB1 expression. Moreover, we also found that ABCB1 was critical for SALL4-induced drug resistance. In contrast, SALL4 knockdown restored drug sensitivity, reversed EMT, diminished cell metastasis and suppressed the downregulation of E-cadherin and the upregulation of N-cadherin and ABCB1. Furthermore, we showed that SALL4 upregulated c-Myc expression and c-Myc was a direct target for SALL4 by ChIP assay, depletion of c-Myc with siRNA abolished the SALL4-induced downregulation of E-cadherin, upregulation of N-cadherin and ABCB1, suggesting that c-Myc was a downstream target for SALL4 and required for SALL4-induced EMT, invasion and drugs resistance in endometrial cancer cells. These results indicated that SALL4 could induce EMT and resistance to antineoplastic drugs through the regulation of c-Myc. SALL4 and c-Myc may be novel therapeutic targets for endometrial cancer.

  20. Influence of CYP2C19 and ABCB1 polymorphisms on plasma concentrations of lansoprazole enantiomers after enteral administration.

    Science.gov (United States)

    Miura, Masatomo; Motoyama, Satoru; Hinai, Yudai; Niioka, Takenori; Endo, Masahiro; Hayakari, Makoto; Ogawa, Jun-ichi

    2010-09-01

    An intraoral annihilation enteric-coated preparation of lansoprazole is often administered via intestinal fistula. The purpose of this study was to determine the plasma concentrations of lansoprazole enantiomers after enteral administration in subjects with cytochrome P4502C19 (CYP2C19) and ABCB1 C3435T genotypes. Fifty-one patients who underwent a curative oesophagectomy for oesophageal cancer were enrolled in this study. After a single enteral dose of racemic lansoprazole (30 mg), plasma concentrations of lansoprazole enantiomers were measured 4 h post-dose (C(4h)). There were significant differences in the C(4h) of (R)- and (S)-lansoprazole and the R/S-enantiomer ratio for three CYP2C19 genotype groups (*1/*1, *1/*2 ± *1/*3, and *2/*2 ± *2/*3 ± *3/*3 (poor metabolizers (PMs)), but not the ABCB1 C3435T genotypes. In a stepwise forward selection multiple regression analysis, the C(4h) of (R)- and (S)-lansoprazole were associated with CYP2C19 PMs (p = 0.0005 and lansoprazole R/S enantiomer index at C(4h) could be possible.

  1. Possible association of ABCB1:c.3435T>C polymorphism with high-density-lipoprotein-cholesterol response to statin treatment - a pilot study.

    Directory of Open Access Journals (Sweden)

    Anna Sałacka

    2014-08-01

    Full Text Available The gene product ABCB1 (formerly MDR1 or P-glycoprotein is hypothesized to be involved in cholesterol cellular trafficking, redistribution and intestinal re-absorption. Carriers of the ABCB1:3435T allele have previously been associated with decreases in ABCB1 mRNA and protein concentrations and have been correlated with changes in serum lipid concentrations. The aim of this study was to investigate possible association between the ABCB1:3435T>C polymorphism and changes in lipids in patients following statin treatment. Outpatients (n=130 were examined: 43 men (33%, 87 women (67%: treated with atorvastatin or simvastatin (all patients with equivalent dose of 20 or 40 mg/d simvastatin. Blood was taken for ABCB1:3435T>C genotyping, and before and after statin treatment for lipid concentration determination (total cholesterol, high-density-lipoprotein-cholesterol (HDL-C, triglycerides. Change (Δ in lipid parameters, calculated as differences between measurements before and after treatment, were analyzed with multiple regression adjustments: gender, diabetes, age, body mass index, equivalent statin dose, length of treatment. Univariate and multivariate analyses showed significant differences in ΔHDL-C (univariate p=0.029; multivariate p=0.036 and %ΔHDL-C (univariate p=0.021; multivariate p=0.023 between patients with TT (-0.05 ± 0.13 g/l; -6.8% ± 20%; respectively and CC+CT genotypes (0.004 ± 0.15 g/l; 4.1 ± 26%; respectively. Reduction of HDL-C in homozygous ABCB1:3435TT patients suggests this genotype could be associated with a reduction in the benefits of statin treatment.

  2. Drug Transport and Pharmacokinetics for Chemical Engineers

    Science.gov (United States)

    Simon, Laurent; Kanneganti, Kumud; Kim, Kwang Seok

    2010-01-01

    Experiments in continuous-stirred vessels were proposed to introduce methods in pharmacokinetics and drug transport to chemical engineering students. The activities can be incorporated into the curriculum to illustrate fundamentals learned in the classroom. An appreciation for the role of pharmacokinetics in drug discovery will also be gained…

  3. Clopidogrel Resistance and ABCB1 (3435C > T) Gene Polymorphism: A Meta Analysis%氯吡格雷抵抗与ABCB1 3435C>T基因位点多态性的Meta分析

    Institute of Scientific and Technical Information of China (English)

    彭锐; 张洪; 张英; 魏丹芸

    2015-01-01

    目的 探讨氯吡格雷抵抗与ABCB1 3435C >T基因住点多态性关联性.方法 计算机检索Pubmed、Science direct、Wiley online library、Web of Science、中国知网、万方数据库和维普中文科技期刊数据库,纳入氯吡格雷抵抗与氯吡格雷有效的随机对照试验,同时查阅检索结果中所附相似文献及参考文献,检索文献均为建库至2014年6月25日,采用RevMan5.0软件进行Meta分析及其他统计学分析.结果 共纳入文献6篇;患者中氯吡格雷抵抗2 619例、氯吡格雷有效2 799例.Meta分析结果显示,3435C>T位点多态性在等位基因模型、显性基因模型、共显性基因模型(CC/CT)和超显性基因模型下整体效应有统计学意义(P<0.05):等位基因模型OR=1.27,95% CI(1.13,1.42),显性基因模型OR=1.42,95% CI(1.22,1.65),共显性基因模型(CC/CT) OR=1.43,95% CI(1.20,1.69),超显性基因模型OR=1.30,95%CI(1.11,1.52).人种亚组分析表明,欧洲地区ABCB1 3435C>T位点基因多态性与氯吡格雷抵抗均无统计学意义(P>0.05);而亚洲地区ABCB1 3435C>T位点基因多态性与氯吡格雷抵抗在等位基因模型、显性基因模型、共显性基因模型(CC/CT)和超显性基因模型下整体效应有统计学意义(P<0.05):等位基因模型OR=1.57,95%CI(1.34,1.84),显性基因模型OR =2.11,95%CI(1.71,2.60)、共显性基因模型(CC/CT) OR=2.15,95% CI(1.72,2.69),超显性基因模型OR=1.82,95% CI(1.48,2.24).结论 亚洲地区,ABCB1 3435C>T位点基因多态性与氯吡格雷抵抗有相关性,而在欧洲地区则无相关性.

  4. Transporter protein and drug resistance of Trypanosoma.

    Science.gov (United States)

    Medina, Noraine P; Mingala, Claro N

    2016-01-01

    Trypanosoma infection is one of the most important infections in livestock and humans. One of the main problems of its therapeutic control and treatment is the resurgence of drug resistance. One of the most studied causes of such resistance is the function of its adenosine transporter gene. A trypanosomal gene TbAT1 from Trypanosoma brucei has been cloned in yeast to demonstrate its function in the transport of adenosine and trypanocidal agents. Drug resistant trypanosomes showed a defective TbAT1 variant; furthermore, deletion of the gene and set point mutations in the transporter gene has been demonstrated from isolates from relapse patients. The molecular understanding of the mechanism of action trypanocidal agents and function of transporter gene can lead to control of drug resistance of Trypanosomes.

  5. Drug Transporters in the Intestine

    DEFF Research Database (Denmark)

    Steffansen, Bente

    2016-01-01

    The enterocyte monolayer in the intestinal membrane impacts on the bioavailability (BA) of many orally administered active pharmaceutical ingredients (APIs). The monolayer expresses a multitude of membrane transporters belonging to the solute carrier (SLC) and ATP-binding cassette (ABC) families ...

  6. Lipid raft involved in drug resistance: relationship between multidrug resistance ATP-binding cassette transporters and lipid raft%脂筏参与耐药: 多药耐药相关ABC转运蛋白与脂筏的关系

    Institute of Scientific and Technical Information of China (English)

    王琳; 贾宇; 姜远英

    2011-01-01

    Lipid rafts have been implicated in many cellular functions, including protein and lipid transport and signal transduction. Recently ATP-binding cassette (ABC) transporters, which are associated with multidrug resistance, have been found in lipid rafts; therefore they might be related to drug resistance. Here we introduce the relationship between the localization and functions of three multi-drug related ABC transporters, including two relevant to multidrug resistance in tumor cells(Pgp/ABCB1 and MRP1/ABCC1) and one relevant to multidrug resistance in Candida albicans (Cdrlp). We also discuss the influence of sphingolipids and cholesterol, two major components of lipid rafts, on the localization and function of the above three ABC transporters.%脂筏(lipid raft)和细胞的许多功能,如信号转导、蛋白质和脂类的转运等都相关.近来有研究发现,与多药耐药密切相关的ABC转运蛋白(ATP-binding cassette transporter)定位于脂筏中,因此推测脂筏可能与耐药性有一定关系.本文综述了3种和耐药相关的ABC转运蛋白的定位与其功能之间的联系,分别是和肿瘤细胞多药耐药相关的ABC转运蛋白Pgp/ABCB1、MRP1/ABCC1以及与白假丝酵母菌(白念珠菌)多药耐药相关的ABC转运蛋白Cdr1p;并进一步讨论了脂筏的重要组成成分胆固醇和鞘脂对上述3种ABC转运蛋白的定位和功能的影响.

  7. Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance

    Directory of Open Access Journals (Sweden)

    Veitch Zachary

    2008-11-01

    Full Text Available Abstract Background Anthracyclines and taxanes are commonly used in the treatment of breast cancer. However, tumor resistance to these drugs often develops, possibly due to overexpression of drug transporters. It remains unclear whether drug resistance in vitro occurs at clinically relevant doses of chemotherapy drugs and whether both the onset and magnitude of drug resistance can be temporally and causally correlated with the enhanced expression and activity of specific drug transporters. To address these issues, MCF-7 cells were selected for survival in increasing concentrations of doxorubicin (MCF-7DOX-2, epirubicin (MCF-7EPI, paclitaxel (MCF-7TAX-2, or docetaxel (MCF-7TXT. During selection cells were assessed for drug sensitivity, drug uptake, and the expression of various drug transporters. Results In all cases, resistance was only achieved when selection reached a specific threshold dose, which was well within the clinical range. A reduction in drug uptake was temporally correlated with the acquisition of drug resistance for all cell lines, but further increases in drug resistance at doses above threshold were unrelated to changes in cellular drug uptake. Elevated expression of one or more drug transporters was seen at or above the threshold dose, but the identity, number, and temporal pattern of drug transporter induction varied with the drug used as selection agent. The pan drug transporter inhibitor cyclosporin A was able to partially or completely restore drug accumulation in the drug-resistant cell lines, but had only partial to no effect on drug sensitivity. The inability of cyclosporin A to restore drug sensitivity suggests the presence of additional mechanisms of drug resistance. Conclusion This study indicates that drug resistance is achieved in breast tumour cells only upon exposure to concentrations of drug at or above a specific selection dose. While changes in drug accumulation and the expression of drug transporters does

  8. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells.

    Science.gov (United States)

    Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning; Watari, Fumio; Liu, Hudan; Chen, Xiao

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  9. MicroRNA-873 mediates multidrug resistance in ovarian cancer cells by targeting ABCB1.

    Science.gov (United States)

    Wu, Di-di; Li, Xue-Song; Meng, Xiao-Na; Yan, Jing; Zong, Zhi-Hong

    2016-08-01

    Ovarian cancer is commonly treated with cisplatin and paclitaxel combination chemotherapy; however, ovarian cancer cells often develop resistance to these drugs. Increasingly, microRNAs (miRNAs) including miR-873 have been implicated in drug resistance in many cancers, but the role of miR-873 in ovarian cancer remains unknown. MTT cell viability assays revealed that the sensitivities of ovarian cancer lines to cisplatin and paclitaxel increased following transfection with miR-873 (P ovarian cancer in vivo (P ovarian cancer lines OVCAR3 and A2780 to cisplatin and paclitaxel, which can be reversed by miR-873 mimic transfection (P ovarian cancer cells to cisplatin and paclitaxel by targeting MDR1 expression. Our findings suggest that combination therapies with chemotherapy agents and miR-873 may suppress drug resistance in ovarian cancer.

  10. Drug: D02910 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available ic, ventricular] [DS:H00293] Same as: C06823 ATC code: C01BD01 Class III antiarrhythmic...A4 [HSA:1576], CYP1A2 [HSA:1544] Transporter inhibition: ABCB1 [HSA:5243] map07037 Antiarrhythmic drugs map0...C THERAPY C01B ANTIARRHYTHMICS, CLASS I AND III C01BD Antiarrhythmics, class III C01BD01 Amiodarone D02910 A...miodarone (USAN/INN) USP drug classification [BR:br08302] Cardiovascular Agents Antiarrhythmics Amiodarone D...D02910 Drug Amiodarone (USAN/INN) C25H29I2NO3 645.0237 645.3116 D02910.gif Cardiac depressant [anti-arrhythm

  11. Drug transport in HEMA conjunctival inserts containing precipitated drug particles.

    Science.gov (United States)

    Gupta, Chhavi; Chauhan, Anuj

    2010-07-01

    This paper focuses on exploring the mechanism of cyclosporine A transport in hydroxyethyl methacrylate (HEMA) rods to develop conjunctival inserts for extended ocular delivery. Cylindrical conjunctival HEMA inserts were prepared by thermal polymerization in presence of drug at high loadings to create rods containing particles of drug dispersed in the matrix. The drug release rates were measured to explore the effect of length, drug loading, crosslinking, and mixing in the release medium. Also microstructure of the inserts was characterized by SEM imaging. The inserts release the drug for a period of about a month at therapeutic rates. The rates of drug release are zero order and independent of drug loading and crosslinking for certain period of time. These effects were shown to arise due to a mass-transfer boundary layer in the fluid and a mathematical model was developed by coupling mass transfer in the insert with that in the boundary layer in the surrounding fluid. The model with diffusivity in the insert and boundary layer thickness as parameters fits the experimental data and explains all trends in release kinetics. The fitted diffusivity is about twice that obtained by direct measurements, which agreed well with the value obtained by using the Brinkman's equation but only after accounting for drug binding to the polymer.

  12. Polymorphisms in CYP3A5, CYP3A4, and ABCB1 are not associated with cyclosporine pharmacokinetics nor with cyclosporine clinical end points after renal transplantation.

    Science.gov (United States)

    Bouamar, Rachida; Hesselink, Dennis A; van Schaik, Ron H N; Weimar, Willem; Macphee, Iain A M; de Fijter, Johan W; van Gelder, Teun

    2011-04-01

    The association of CYP3A5, CYP3A4, and ABCB1 single nucleotide polymorphisms (SNPs) with cyclosporine (CsA) pharmacokinetics is controversial. The authors studied the influence of these SNPs on CsA pharmacokinetics as well as on the incidence of biopsy-proven acute rejection (BPAR) and renal function after kidney transplantation. One hundred seventy-one patients participating in an international, randomized controlled trial were genotyped for CYP3A5*3, CYP3A4*1B and the ABCB1 1236 C>T, 2677 G>T/A, and 3435 C>T SNPs. The patients were treated with CsA, mycophenolate mofetil, and glucocorticoids. CsA was dosed to reach predose concentrations (C0) or two hours postdose concentrations (C2). Pharmacokinetic parameters were measured on Days 3 and 10 and Months 1, 3, 6, and 12 after transplantation. Renal function was assessed by measuring serum creatinine and calculating the creatinine clearance. The incidence of BPAR and delayed-graft function was recorded. CYP3A5, CYP3A4, and ABCB1 genotype were not associated with dose-adjusted CsA C0 or C2. The incidence of BPAR in this cohort was 16% and was comparable between the different ABCB1 genotype groups. No significant difference in the incidence of BPAR was found between CYP3A5 expressers (10%) and nonexpressers (18%) (P = 0.24) nor was there a difference in the incidence of BPAR between CYP3A4*1 homozygotes (5%) versus CYP3A4*1B carriers (18%) (P = 0.13). There were no differences with regard to creatinine clearance between the different CYP3A and ABCB1 genotype groups. According to the results, determination of CYP3A and ABCB1 SNPs pretransplantation is not helpful in determining the CsA starting dose and does not aid in predicting the risk of BPAR or worse renal function in an individual patient.

  13. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaojing [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Xu, Yonghong [Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, 430060 Wuhan (China); Meng, Xiangning [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Watari, Fumio [Department of Biomedical, Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Liu, Hudan, E-mail: hudanliu@hust.edu.cn [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Chen, Xiao, E-mail: mornsmile@yahoo.com [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China)

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  14. Distribution of ABCB1, CYP3A5, CYP2C19, and P2RY12 gene polymorphisms in a Mexican Mestizos population.

    Science.gov (United States)

    Vargas-Alarcón, Gilberto; Ramírez-Bello, Julián; de la Peña, Aurora; Calderón-Cruz, Beatriz; Peña-Duque, Marco Antonio; Martínez-Ríos, Marco Antonio; Ramírez-Fuentes, Silvestre; Pérez-Méndez, Oscar; Fragoso, José Manuel

    2014-10-01

    The aim of the present study was to establish the gene frequency of six polymorphisms of the ABCB1, CYP3A5, CYP2C19, and P2RY12 genes in a population resident of Mexico City. The proteins encoded by these genes have been associated with the absorption, and biotransformation of clopidogrel. The ABCB1 T3435C, CYP3A5 V3 A6986G, P2RY12 G52T, P2RY12 C34T, CYP2C19 V2 and V3 (positions G681A and G636A, respectively), polymorphisms were analyzed by 5' exonuclease TaqMan genotyping assays in a group of 269 healthy unrelated Mexican Mestizo individuals. The CYP2C19 V3 G636A polymorphism was not detected in the Mexican Mestizos population. However, the studied population presented significant differences (P Mestizos population from other ethnic groups.

  15. Effects of genetic polymorphisms of OPRM1, ABCB1, CYP3A4/5 on postoperative fentanyl consumption in Korean gynecologic patients.

    Science.gov (United States)

    Kim, Kye-Min; Kim, Ho-Sook; Lim, Se Hun; Cheong, Soon Ho; Choi, Eun-Jung; Kang, Hyun; Choi, Hey-Ran; Jeon, Jin-Woo; Yon, Jun Heum; Oh, Minkyung; Shin, Jae-Gook

    2013-05-01

    Fentanyl, a μ-opioid receptor agonist, is a substrate of P-glycoprotein. Its metabolism is catalyzed by CYP3A4 and CYP3A5. The aim of this study was to investigate the association between postoperative fentanyl consumption and genetic polymorphisms of μ-opioid receptor (OPRM1), ABCB1 (gene encoding P-glycoprotein), CYP3A4 and CYP3A5 in Korean patients. 196 female patients scheduled to undergo total abdominal hysterectomy or laparoscopic assisted vaginal hysterectomy under general anesthesia were enrolled in this study. Intravenous patient-controlled analgesia with fentanyl was provided postoperatively. Cumulative fentanyl consumption was measured during the first 48 hours postoperatively. The severity of pain at rest was assessed with the visual analogue scale. OPRM1 118A>G, ABCB1 2677G>A/T, ABCB1 3435C>T, CYP3A4*18 and CYP3A5*3 variant alleles were genotyped. The effects of genetic and non-genetic factors on fentanyl requirements were evaluated with multiple linear regression analysis. The 24-hour cumulative fentanyl doses were significantly associated with pain core, weight and type of surgery (p pain score, type of surgery and history of PONV or motion sickness (p Korean gynecologic patients, no association was found between genetic factors and postoperative fentanyl consumption.

  16. The functional influences of common ABCB1 genetic variants on the inhibition of P-glycoprotein by Antrodia cinnamomea extracts.

    Directory of Open Access Journals (Sweden)

    Ming-Jyh Sheu

    Full Text Available Antrodia cinnamomea is a traditional healthy food that has been demonstrated to possess anti-inflammatory, antioxidative, and anticacer effects. The purpose of this study was to evaluate whether the ethanolic extract of A. cinnamomea (EEAC can affect the efflux function of P-glycoprotein (P-gp and the effect of ABCB1 genetic variants on the interaction between EEAC and P-gp. To investigate the mechanism of this interaction, Flp-In™-293 cells stably transfected with various genotypes of human P-gp were established and the expression of P-gp was confirmed by Western blot. The results of the rhodamine 123 efflux assay demonstrated that EEAC efficiently inhibited wild-type P-gp function at an IC50 concentration of 1.51 ± 0.08 µg/mL through non-competitive inhibition. The IC50 concentrations for variant-type 1236T-2677T-3435T P-gp and variant-type 1236T-2677A-3435T P-gp were 5.56 ± 0.49 µg/mL and 3.33±0.67 µg/mL, respectively. In addition, the inhibition kinetics of EEAC also changed to uncompetitive inhibition in variant-type 1236T-2677A-3435T P-gp. The ATPase assay revealed that EEAC was an ATPase stimulator and was capable of reducing verapamil-induced ATPase levels. These results indicate that EEAC may be a potent P-gp inhibitor and higher dosages may be required in subjects carrying variant-types P-gp. Further studies are required to translate this basic knowledge into clinical applications.

  17. Interplay of drug metabolizing enzymes with cellular transporters.

    Science.gov (United States)

    Böhmdorfer, Michaela; Maier-Salamon, Alexandra; Riha, Juliane; Brenner, Stefan; Höferl, Martina; Jäger, Walter

    2014-11-01

    Many endogenous and xenobiotic substances and their metabolites are substrates for drug metabolizing enzymes and cellular transporters. These proteins may not only contribute to bioavailability of molecules but also to uptake into organs and, consequently, to overall elimination. The coordinated action of uptake transporters, metabolizing enzymes, and efflux pumps, therefore, is a precondition for detoxification and elimination of drugs. As the understanding of the underlying mechanisms is important to predict alterations in drug disposal, adverse drug reactions and, finally, drug-drug interactions, this review illustrates the interplay between selected uptake/efflux transporters and phase I/II metabolizing enzymes.

  18. Transporter-Mediated Drug–Drug Interactions with Oral Antidiabetic Drugs

    Directory of Open Access Journals (Sweden)

    Jörg König

    2011-10-01

    Full Text Available Uptake transporters (e.g., members of the SLC superfamily of solute carriers and export proteins (e.g., members of the ABC transporter superfamily are important determinants for the pharmacokinetics of drugs. Alterations of drug transport due to concomitantly administered drugs that interfere with drug transport may alter the kinetics of drug substrates. In vitro and in vivo studies indicate that many drugs used for the treatment of metabolic disorders and cardiovascular diseases (e.g., oral antidiabetic drugs, statins are substrates for uptake transporters and export proteins expressed in the intestine, the liver and the kidney. Since most patients with type 2 diabetes receive more than one drug, transporter-mediated drug-drug interactions are important molecular mechanisms leading to alterations in oral antidiabetic drug pharmacokinetics with the risk of adverse drug reactions. This review focuses on uptake transporters of the SLCO/SLC21 (OATP and SLC22 (OCT/OAT family of solute carriers and export pumps of the ABC (ATP-binding cassette transporter superfamily (especially P-glycoprotein as well as the export proteins of the SLC47 (MATE family and their role for transporter-mediated drug-drug interactions with oral antidiabetic drugs.

  19. Investigating the enteroenteric recirculation of apixaban, a factor Xa inhibitor: administration of activated charcoal to bile duct-cannulated rats and dogs receiving an intravenous dose and use of drug transporter knockout rats.

    Science.gov (United States)

    Zhang, Donglu; Frost, Charles E; He, Kan; Rodrigues, A David; Wang, Xiaoli; Wang, Lifei; Goosen, Theunis C; Humphreys, W Griffith

    2013-04-01

    The study described here investigated the impact of intestinal excretion (IE; excretion of drug directly from circulation to intestinal lumen), enteroenteric recirculation (EER), and renal tubule recirculation (RTR) on apixaban pharmacokinetics and disposition. The experimental approaches involve integrating apixaban elimination pathways with pharmacokinetic profiles obtained from bile duct-cannulated (BDC) rats and dogs receiving i.v. doses together with oral administration of activated charcoal (AC). Additionally, the role of P-gp (P-glycoprotein; abcb1) and BCRP (breast cancer resistance protein; abcg2) in apixaban disposition was evaluated in experiments using transporter inhibitors and transporter knockout (KO) rats. Approximately 20-50% of an apixaban i.v. dose was found in feces of BDC rats and dogs, suggesting IE leading to fecal elimination and intestinal clearance (IC). The fecal elimination, IC, and systemic clearance of apixaban were increased upon AC administration in both BDC rats and dogs and were decreased in BDC rats dosed with GF-120918, a dual BCRP and P-gp inhibitor). BCRP appeared to play a more important role for absorption and intestinal and renal elimination of apixaban than P-gp in transporter-KO rats after oral and i.v. dosing, which led to a higher level of active renal excretion in rat than other species. These data demonstrate that apixaban undergoes IE, EER, and RTR that are facilitated by efflux transporters. Intestinal reabsorption of apixaban could be interrupted by AC even at 3 hours post-drug dose in dogs (late charcoal effect). This study demonstrates that the intestine is an organ for direct clearance and redistribution of apixaban. The IE, EER, and RTR contribute to overall pharmacokinetic profiles of apixaban. IE as a clearance pathway, balanced with metabolism and renal excretion, helps decrease the impacts of intrinsic (renal or hepatic impairment) and extrinsic (drug-drug interactions) factors on apixaban disposition.

  20. Drug: D00636 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 29I2NO3. HCl 681.0004 681.7725 D00636.gif Antiarrhythmic [DS:H00293] Therapeutic category: 2129 ATC code: C01BD01 Class III antiarrhy...], CYP2D6 [HSA:1565], CYP3A4 [HSA:1576], CYP1A2 [HSA:1544] Transporter inhibition: ABCB1 [HSA:5243] map07037 Antiarrhythmic... [BR:br08301] 2 Agents affecting individual organs 21 Cardiovascular agents 212 Antiarrhythmic agents 2129 O... drug classification [BR:br08302] Cardiovascular Agents Antiarrhythmics Amiodarone D00636 Amiodarone hydroch...r08303] C CARDIOVASCULAR SYSTEM C01 CARDIAC THERAPY C01B ANTIARRHYTHMICS, CLASS I AND III C01BD Antiarrhyt

  1. Common variants of HMGCR, CETP, APOAI, ABCB1, CYP3A4, and CYP7A1 genes as predictors of lipid-lowering response to atorvastatin therapy.

    Science.gov (United States)

    Poduri, Aruna; Khullar, Madhu; Bahl, Ajay; Sehrawat, B S; Sharma, Yashpaul; Talwar, Kewal K

    2010-10-01

    There is interindividual variation in lipid-lowering response to statins. The objective of this study was to investigate whether common variation in genes involved in lipid and statin metabolism modify the effect of statins on serum total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), and high-density lipoprotein-cholesterol concentration in coronary artery disease (CAD) patients. We studied the association between 18 single-nucleotide polymorphisms (SNPs) in six genes (HMGCR, CETP, APOAI, ABCB1, CYP3A4, CYP7A1) in response to atorvastatin therapy (20 mg/day) in 265 newly diagnosed CAD patients using multivariable adjusted general linear regression. Variant alleles of ABCB1 (-41A/G), HMGCR SNP29 G/T, rs5908A/G, rs12916C/T, and CYP7A1-204A/C polymorphisms were significantly associated with attenuated LDL-C reduction and variant alleles of CETP TaqI, -629C/A, and APOAI PstI polymorphisms were associated with higher increase in high-density lipoprotein-cholesterol. A three-loci interaction model consisting of CYP7A1rs892871AA/APOAIPstIP1P1/HMGCR rs12916CT was a better predictor for LDL-C lowering, when compared with single polymorphisms analysis on statin response. Variant genotypes of APOAI -2500C/T, CETP 405I/V, and ABCB1 3435C/T showed higher risk of myocardial infarction events (p < 0.05) in a 1-year follow-up of CAD patients. These results suggest that SNPs in lipid and statin pathway genes are associated with reduced LDL-C lowering by statins and identify individuals who may be resistant to maximal LDL-C lowering by statins.

  2. Combination analysis of NOS3, ABCB1 and IL23R polymorphisms with alcohol-induced osteonecrosis of the femoral head risk in Chinese males.

    Science.gov (United States)

    Wang, Yuan; Yang, Xuejun; Shi, Jianping; Zhao, Yan; Pan, Linlin; Zhou, Jinqiu; Wang, Guoqiang; Wang, Jianzhong

    2017-05-16

    Common variants of multiple genes played a crucial role in osteonecrosis of the femoral head (ONFH) onset which was proved by many previous reports. We hypothesized that polymorphisms in NOS3, ABCB1 and IL23R were related to individual differences in alcohol sensitivity and the development of alcohol-induced ONFH. In this case-control study, we evaluated 8 SNPs in three genes in the Chinese Han population including 355 male cases and 355 healthy male controls. These SNPs were genotyped by Sequenom MassARRAY RS1000. To identify their relationship with alcohol-induced ONFH susceptibility using χ2 test and genetic model analysis. We found an association with alcohol-induced ONFH susceptibility for 4 SNPs (rs743506, rs3918184, rs13233308 and rs6693831) in three genes after adjusted by age. The genotype "G/A" of rs743506 in NOS3 gene acts as a risk factor in genotype (P = 0.003), dominant (P = 0.048), recessive (P = 0.005) and additive model(P = 0.006); The genotype "T/C" of rs3918184 in NOS3 gene acts as a risk factor in genotype (P = 0.012) and recessive model (P = 0.009); The genotype "T/C" of rs13233308 in ABCB1 gene acts as a risk factor in genotype (P = 0.038) and additive model(P = 0.041); The genotype "T/C" of rs6693831 in IL23R gene acts as a protective factor in genotype model (P = 0.046). This study provides evidence for three alcohol-induced ONFH susceptibility genes (NOS3, ABCB1 and IL23R) in Chinese males and polymorphisms of them may be associated with alcohol-induced ONFH risk.

  3. Polymorphism of CYP3A4 and ABCB1 genes increase the risk of neuropathy in breast cancer patients treated with paclitaxel and docetaxel

    Directory of Open Access Journals (Sweden)

    Kus T

    2016-08-01

    Full Text Available Tulay Kus,1 Gokmen Aktas,1 Mehmet Emin Kalender,1 Abdullah Tuncay Demiryurek,2 Mustafa Ulasli,1 Serdar Oztuzcu,3 Alper Sevinc,1 Seval Kul,4 Celaletdin Camci1 1Department of Internal Medicine, Division of Medical Oncology, University of Gaziantep, Gaziantep Oncology Hospital, Gaziantep, Turkey; 2Department of Medical Pharmacology, 3Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey; 4Department of Biostatistics, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey Background: Interindividual variability of pharmacogenetics may account for unpredictable neurotoxicities of taxanes. Methods: From March 2011 to June 2015, female patients with operable breast cancer who had received docetaxel- or paclitaxel-containing adjuvant chemotherapy were included in this study. All patients were treated with single-agent paclitaxel intravenously (IV 175 mg/m2 every 3 weeks for four cycles, or IV 80 mg/m2 weekly for 12 cycles, and IV 100 mg/m2 docetaxel for four cycles as adjuvant treatment. We evaluated the relationship between neurotoxicity of taxanes and single-nucleotide polymorphisms of ABCB1, CYP3A4, ERCC1, ERCC2, FGFR4, TP53, ERBB2, and CYP2C8 genes. Taxane-induced neurotoxicity during the treatment was evaluated according to the National Cancer Institute Common Toxicity Criteria version 4.03 prior to each cycle. Chi-squared tests were used to compare the two groups, and multivariate binary logistic regression models were used for determining possible risk factors of neuropathy. Results: Pharmacogenetic analysis was performed in 219 females. ABCB1 3435 TT genotype had significantly higher risk for grade ≥2 neurotoxicity (odds ratio [OR]: 2.759, 95% confidence interval [CI]: 1.172–6.493, P: 0.017 compared to TC and CC genotype, and also CYP3A4 392 AA and AG genotype had significantly higher risk for grade ≥2 neurotoxicity (OR: 2.259, 95% CI: 1.033–4.941, P: 0.038 compared to GG genotype. For

  4. Biophysics of Cell Membrane Lipids in Cancer Drug Resistance: Implications for Drug Transport and Drug Delivery with Nanoparticles

    Science.gov (United States)

    Peetla, Chiranjeevi; Vijayaraghavalu, Sivakumar; Labhasetwar, Vinod

    2013-01-01

    In this review, we focus on the biophysics of cell membrane lipids, particularly when cancers develop acquired drug resistance, and how biophysical changes in resistant cell membrane influence drug transport and nanoparticle-mediated drug delivery. Recent advances in membrane lipid research show the varied roles of lipids in regulating membrane P-glycoprotein function, membrane trafficking, apoptotic pathways, drug transport, and endocytic functions, particularly endocytosis, the primary mechanism of cellular uptake of nanoparticle-based drug delivery systems. Since acquired drug resistance alters lipid biosynthesis, understanding the role of lipids in cell membrane biophysics and its effect on drug transport is critical for developing effective therapeutic and drug delivery approaches to overcoming drug resistance. Here we discuss novel strategies for (a) modulating the biophysical properties of membrane lipids of resistant cells to facilitate drug transport and regain endocytic function and (b) developing effective nanoparticles based on their biophysical interactions with membrane lipids to enhance drug delivery and overcome drug resistance. PMID:24055719

  5. Protein abundance of clinically relevant multidrug transporters along the entire length of the human intestine.

    Science.gov (United States)

    Drozdzik, Marek; Gröer, Christian; Penski, Jette; Lapczuk, Joanna; Ostrowski, Marek; Lai, Yurong; Prasad, Bhagwat; Unadkat, Jashvant D; Siegmund, Werner; Oswald, Stefan

    2014-10-01

    Intestinal transporters are crucial determinants in the oral absorption of many drugs. We therefore studied the mRNA expression (N = 33) and absolute protein content (N = 10) of clinically relevant transporters in healthy epithelium of the duodenum, the proximal and distal jejunum and ileum, and the ascending, transversal, descending, and sigmoidal colon of six organ donors (24-54 years). In the small intestine, the abundance of nearly all studied proteins ranged between 0.2 and 1.6 pmol/mg with the exception of those of OCT3 (intestinal segment. ABCB1, ABCG2, PEPT1, and ASBT were significantly more abundant in jejunum and ileum than in colon. In contrast to this, the level of expression of ABCC2, ABCC3, and OCT3 was found to be highest in colon. Site-dependent differences in the levels of gene and protein expression were observed for ABCB1 and ASBT. Significant correlations between mRNA and protein levels have been found for ABCG2, ASBT, OCT3, and PEPT1 in the small intestine. Our data provide further physiological pieces of the puzzle required to predict intestinal drug absorption in humans.

  6. Design and synthesis of human ABCB1 (P-glycoprotein) inhibitors by peptide coupling of diverse chemical scaffolds on carboxyl and amino termini of (S)-valine-derived thiazole amino acid.

    Science.gov (United States)

    Singh, Satyakam; Prasad, Nagarajan Rajendra; Chufan, Eduardo E; Patel, Bhargav A; Wang, Yi-Jun; Chen, Zhe-Sheng; Ambudkar, Suresh V; Talele, Tanaji T

    2014-05-22

    P-glycoprotein (P-gp) serves as a therapeutic target for the development of multidrug resistance reversal agents. In this study, we synthesized 21 novel compounds by peptide coupling at corresponding carboxyl and amino termini of (S)-valine-based bis-thiazole and monothiazole derivatives with diverse chemical scaffolds. Using calcein-AM efflux assay, we identified compound 28 (IC50 = 1.0 μM) carrying 3,4,5-trimethoxybenzoyl and 2-aminobenzophenone groups, respectively, at the amino and carboxyl termini of the monothiazole zwitter-ion. Compound 28 inhibited the photolabeling of P-gp with [(125)I]-iodoarylazidoprazosin with IC50 = 0.75 μM and stimulated the basal ATP hydrolysis of P-gp in a concentration-dependent manner (EC50 ATPase = 0.027 μM). Compound 28 at 3 μM reduced resistance in cytotoxicity assay to paclitaxel in P-gp-expressing SW620/Ad300 and HEK/ABCB1 cell lines. Biochemical and docking studies showed site-1 to be the preferable binding site for 28 within the drug-binding pocket of human P-gp.

  7. The Role of Drug Transporters in the Pharmacokinetics of Antibiotics.

    Science.gov (United States)

    Hua, Wen Jin; Hua, Wei Xiao; Jian, Zhou; Wei, Peng Hong; Ni, Lu Yan; Hua, Li Yu; Wen, Cao Duan; Ying, Zhou; Li, Cao

    2016-01-01

    Various transporters, including efflux transporters and uptake transporters, play an important role in the pharmacokinetics of drugs. Currently, studies suggest that several antibiotics also serve as substrates for transporters. In addition, these antibiotics are usually combined with other drugs to treat diseases, more effectively. Therefore, it is necessary to focus on the role of transporters in pharmacokinetics and drug-drug interactions of antibiotics. This review summarizes the findings of recent studies as well as information retrieved from several databases (until June 2015): ISI Web of KnowledgeSM (ISI WoK), SciFinder (Caplus, Medline, Registry, Casreact, Chrmlist, and Chemcasts) and PubMed (indexed for Medline). The present review provides useful information for the study of transporters in the pharmacokinetics and drug-drug interactions of antibiotics, and should assist researchers investigating these topics. The drug transporters mediate intestinal absorption, hepatic uptake, and kidney or biliary excretion. It is necessary to focus on drug-drug interactions when these antibiotics are combined with other chemical substances that are also the substrates for transporters.

  8. Development of Human Membrane Transporters: Drug Disposition and Pharmacogenetics.

    Science.gov (United States)

    Mooij, Miriam G; Nies, Anne T; Knibbe, Catherijne A J; Schaeffeler, Elke; Tibboel, Dick; Schwab, Matthias; de Wildt, Saskia N

    2016-05-01

    Membrane transporters play an essential role in the transport of endogenous and exogenous compounds, and consequently they mediate the uptake, distribution, and excretion of many drugs. The clinical relevance of transporters in drug disposition and their effect in adults have been shown in drug-drug interaction and pharmacogenomic studies. Little is known, however, about the ontogeny of human membrane transporters and their roles in pediatric pharmacotherapy. As they are involved in the transport of endogenous substrates, growth and development may be important determinants of their expression and activity. This review presents an overview of our current knowledge on human membrane transporters in pediatric drug disposition and effect. Existing pharmacokinetic and pharmacogenetic data on membrane substrate drugs frequently used in children are presented and related, where possible, to existing ex vivo data, providing a basis for developmental patterns for individual human membrane transporters. As data for individual transporters are currently still scarce, there is a striking information gap regarding the role of human membrane transporters in drug therapy in children.

  9. Transportation and retention in outpatient drug abuse treatment programs.

    Science.gov (United States)

    Friedmann, P D; Lemon, S C; Stein, M D

    2001-09-01

    To determine whether certain types of transportation assistance improve outpatient treatment retention beyond thresholds shown to have therapeutic benefits, we analyzed data from 1,144 clients in 22 outpatient methadone maintenance (OMM) programs and 2,031 clients in 22 outpatient drug-free (ODF) programs in the Drug Abuse Treatment Outcomes Study (DATOS), a national, 12-month, longitudinal study of drug abuse treatment programs. Directors' surveys provided information about provision of car, van, or contracted transportation services or individual vouchers/payment for public transportation. Chart-abstracted treatment retention was dichotomized at 365 days for OMM and 90 days for ODF. Separate multivariate hierarchical linear models revealed that provision of car, van, or contracted transportation services improved treatment retention beyond these thresholds for both OMM and ODF, but individual vouchers or payment for public transportation did not. Future research should validate whether car, van, or contracted transportation services improve retention and other treatment outcomes in outpatient drug abuse treatment.

  10. Stereoselectivity of chiral drug transport: a focus on enantiomer-transporter interaction.

    Science.gov (United States)

    Zhou, Quan; Yu, Lu-Shan; Zeng, Su

    2014-08-01

    Drug transporters and drug metabolism enzymes govern drug absorption, distribution, metabolism and elimination. Many literature works presenting important aspects related to stereochemistry of drug metabolism are available. However, there is very little literature on stereoselectivity of chiral drug transport and enantiomer-transporter interaction. In recent years, the experimental research within this field showed good momentum. Herein, an up-to-date review on this topic was presented. Breast Cancer Resistance Protein (BCRP), Multidrug Resistance Proteins (MRP), P-glycoprotein (P-gp), Organic Anion Transporters (OATs), Organic Anion Transporting Polypeptides (OATPs), Organic Cation Transporters (OCTs), Peptide Transport Proteins (PepTs), Human Proton-Coupled Folate Transporter (PCFT) and Multidrug and Toxic Extrusion Proteins (MATEs), have been reported to exhibit either positive or negative enantio-selective substrate recognition. The approaches utilized to study chirality in enantiomer-transporter interaction include inhibition experiments of specific transporters in cell models (e.g. Caco-2 cells), transport study using drug resistance cell lines or transgenic cell lines expressing transporters in wild type or variant, the use of transporter knockout mice, pharmacokinetics association of single nucleotide polymorphism in transporters, pharmacokinetic interaction study of racemate in the presence of specific transporter inhibitor or inducer, molecule cellular membrane affinity chromatography and pharmacophore modeling. Enantiomer-enantiomer interactions exist in chiral transport. The strength and/or enantiomeric preference of stereoselectivity may be species or tissue-specific, concentration-dependent and transporter family member-dependent. Modulation of specific drug transporter by pure enantiomers might exhibit opposite stereoselectivity. Further studies with integrated approaches will open up new horizons in stereochemistry of pharmacokinetics.

  11. Pharmacophore modeling of nilotinib as an inhibitor of ATP-binding cassette drug transporters and BCR-ABL kinase using a three-dimensional quantitative structure-activity relationship approach.

    Science.gov (United States)

    Shukla, Suneet; Kouanda, Abdul; Silverton, Latoya; Talele, Tanaji T; Ambudkar, Suresh V

    2014-07-07

    Nilotinib (Tasigna) is a tyrosine kinase inhibitor approved by the FDA to treat chronic phase chronic myeloid leukemia patients. It is also a transport substrate of the ATP-binding cassette (ABC) drug efflux transporters ABCB1 (P-glycoprotein, P-gp) and ABCG2 (BCRP), which may have an effect on the pharmacokinetics and toxicity of this drug. The goal of this study was to identify pharmacophoric features of nilotinib in order to potentially develop specific inhibitors of BCR-ABL kinase with minimal interactions with ABC drug transporters. Three-dimensional pharmacophore modeling and quantitative structure-activity relationship (QSAR) studies were carried out on a series of nilotinib analogues to identify chemical features that contribute to inhibitory activity of nilotinib against BCR-ABL kinase activity, P-gp, and ABCG2. Twenty-five derivatives of nilotinib were synthesized and were then tested to measure their activity to inhibit BCR-ABL kinase and to inhibit the function of ABC drug transporters. A set of in vitro experiments including kinase activity and cell-based transport assays and photolabeling of P-gp and ABCG2 with a transport substrate, [(125)I]-iodoarylazido-prazosin (IAAP), were carried out in isolated membranes to evaluate the potency of the derivatives to inhibit the function of ABC drug transporters and BCR-ABL kinase. Sixteen, fourteen, and ten compounds were selected as QSAR data sets, respectively, to generate PHASE v3.1 pharmacophore models for BCR-ABL kinase, ABCG2, and P-gp inhibitors. The IC50 values of these derivatives against P-gp, ABCG2, or BCR-ABL kinase were used to generate pharmacophore features required for optimal interactions with these targets. A seven-point pharmacophore (AADDRRR) for BCR-ABL kinase inhibitory activity, a six-point pharmacophore (ADHRRR) for ABCG2 inhibitory activity, and a seven-point pharmacophore (AADDRRR) for P-gp inhibitory activity were generated. The derived models clearly demonstrate high predictive power

  12. Drug: D06645 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 278] hsa04974(1803) Protein digestion and absorption Transporter: ABCB1 [HSA:5243], SLC22A8 [HSA:9376] map07051 Antidiabetic... agents affecting metabolism 396 Antidiabetic agents 3969 Others D06645 Sitaglipt...08302] Blood Glucose Regulators Antidiabetic Agents Sitagliptin D06645 Sitagliptin phosphate hydrate (JAN);

  13. Role of monocarboxylate transporters in drug delivery to the brain.

    Science.gov (United States)

    Vijay, Nisha; Morris, Marilyn E

    2014-01-01

    Monocarboxylate transporters (MCTs) are known to mediate the transport of short chain monocarboxylates such as lactate, pyruvate and butyrate. Currently, fourteen members of this transporter family have been identified by sequence homology, of which only the first four members (MCT1- MCT4) have been shown to mediate the proton-linked transport of monocarboxylates. Another transporter family involved in the transport of endogenous monocarboxylates is the sodium coupled MCTs (SMCTs). These act as a symporter and are dependent on a sodium gradient for their functional activity. MCT1 is the predominant transporter among the MCT isoforms and is present in almost all tissues including kidney, intestine, liver, heart, skeletal muscle and brain. The various isoforms differ in terms of their substrate specificity and tissue localization. Due to the expression of these transporters in the kidney, intestine, and brain, they may play an important role in influencing drug disposition. Apart from endogenous short chain monocarboxylates, they also mediate the transport of exogenous drugs such as salicylic acid, valproic acid, and simvastatin acid. The influence of MCTs on drug pharmacokinetics has been extensively studied for γ-hydroxybutyrate (GHB) including distribution of this drug of abuse into the brain and the results will be summarized in this review. The physiological role of these transporters in the brain and their specific cellular localization within the brain will also be discussed. This review will also focus on utilization of MCTs as potential targets for drug delivery into the brain including their role in the treatment of malignant brain tumors.

  14. Genetic polymorphisms of enzyme proteins and transporters related to methotrexate response and pharmacokinetics in a Japanese population.

    Science.gov (United States)

    Hashiguchi, Masayuki; Shimizu, Mikiko; Hakamata, Jun; Tsuru, Tomomi; Tanaka, Takanori; Suzaki, Midori; Miyawaki, Kumika; Chiyoda, Takeshi; Takeuchi, Osamu; Hiratsuka, Jiro; Irie, Shin; Maruyama, Junya; Mochizuki, Mayumi

    2016-01-01

    Methotrexate (MTX) is currently the anchor drug widely used worldwide in the treatment of rheumatoid arthritis (RA). However, the therapeutic response to MTX has been shown to vary widely among individuals, genders and ethnic groups. The reason for this has been not clarified but it is considered to be partially due to several mechanisms in the cellular pathway of MTX including single-nucleotide polymorphisms (SNPs). The purpose of this study was to investigate the allelic frequencies in different ethnic and/or population groups in the 10 polymorphisms of enzyme proteins and transporters related to the MTX response and pharmacokinetics including MTHFR, TYMS, RFC1, FPGS, GGH, ABCB1, ABCC2 and ABCG2 in unrelated healthy Japanese adults and patients with RA. Ten polymorphisms, methylenetetrahydrofolate reductase (MTHFR) 1298, thymidylate synthase (TYMS) 3'-UTR, reduced folate carrier 1 (RFC1) 80 and-43, folypolyglutamyl synthase (FPGS) 1994, γ-glutamyl hydrolase (GGH) 452 and-401, the ABC transporters (ABCB1 3435, ABCC2 IVS23 + 56, ABCG2 914) of enzyme proteins and transporters related to MTX response and pharmacokinetics in 299 unrelated healthy Japanese adults and 159 Japanese patients with RA were investigated to clarify their contributions to individual variations in response and safety to MTX and establish personalized MTX therapy. SNPs were evaluated using real-time polymerase chain reaction (PCR). Comparison of allelic frequencies in our study with other ethnic/population groups of healthy adults and RA patients showed significant differences in 10 polymorphisms among healthy adults and 7 among RA patients. Allelic frequencies of MTHFR 1298 C, FPGS 1994A and ABCB1 3435 T were lower in Japanese than in Caucasian populations and those of ABCC2 IVS23 + 56 C and ABCG2 914A were higher in Japanese than in Caucasian/European populations in both healthy adults and RA patients. Allelic frequencies of MTHFR 1298 C, GGH-401 T, ABCB1 3435 T, and ABCG2 914A

  15. Polymorphism of CYP3A4 and ABCB1 genes increase the risk of neuropathy in breast cancer patients treated with paclitaxel and docetaxel

    Science.gov (United States)

    Kus, Tulay; Aktas, Gokmen; Kalender, Mehmet Emin; Demiryurek, Abdullah Tuncay; Ulasli, Mustafa; Oztuzcu, Serdar; Sevinc, Alper; Kul, Seval; Camci, Celaletdin

    2016-01-01

    Background Interindividual variability of pharmacogenetics may account for unpredictable neurotoxicities of taxanes. Methods From March 2011 to June 2015, female patients with operable breast cancer who had received docetaxel- or paclitaxel-containing adjuvant chemotherapy were included in this study. All patients were treated with single-agent paclitaxel intravenously (IV) 175 mg/m2 every 3 weeks for four cycles, or IV 80 mg/m2 weekly for 12 cycles, and IV 100 mg/m2 docetaxel for four cycles as adjuvant treatment. We evaluated the relationship between neurotoxicity of taxanes and single-nucleotide polymorphisms of ABCB1, CYP3A4, ERCC1, ERCC2, FGFR4, TP53, ERBB2, and CYP2C8 genes. Taxane-induced neurotoxicity during the treatment was evaluated according to the National Cancer Institute Common Toxicity Criteria version 4.03 prior to each cycle. Chi-squared tests were used to compare the two groups, and multivariate binary logistic regression models were used for determining possible risk factors of neuropathy. Results Pharmacogenetic analysis was performed in 219 females. ABCB1 3435 TT genotype had significantly higher risk for grade ≥2 neurotoxicity (odds ratio [OR]: 2.759, 95% confidence interval [CI]: 1.172–6.493, P: 0.017) compared to TC and CC genotype, and also CYP3A4 392 AA and AG genotype had significantly higher risk for grade ≥2 neurotoxicity (OR: 2.259, 95% CI: 1.033–4.941, P: 0.038) compared to GG genotype. For FDGF4 gene with AG and GG genotype, OR was 1.879 (95% CI: 1.001–3.525, P: 0.048) compared to AA genotype with regard to any grade of neuropathy risk. We could not find any other association of other genotypes with neurotoxicity grades. Conclusion ABCB1 3435 TT genotype and CYP3A4 392 AA/AG genotypes may be used as predictors of neurotoxicity during taxane chemotherapy. PMID:27574448

  16. ABCB1-Gen-Polymorphismus in einer polnischen Kohorte ist mit Risiko für bullöses Pemphigoid assoziiert.

    Science.gov (United States)

    Rychlik-Sych, Mariola; Barańska, Małgorzata; Dudarewicz, Michał; Skrętkowicz, Jadwiga; Żebrowska, Agnieszka; Owczarek, Jacek; Waszczykowska, Elżbieta

    2017-05-01

    Polymorphismen im ABCB1-Gen, das für das P-Glykoprotein kodiert, können die intrazelluläre Konzentration von Xenobiotika beeinflussen und so zur Entwicklung von Autoimmunerkrankungen, einschließlich des bullösen Pemphigoids (BP), beitragen. In der vorliegenden Studie sollte untersucht werden, ob in einer polnischen Kohorte die C3435T- und G2677T/A-Polymorphismen im ABCB1-Gen mit dem Risiko für ein BP assoziiert sind. Die Studie umfasste 71 Patienten mit BP und 156 gesunde Probanden. Der C3435T-Polymorphismus wurde mittels PCR-RFLP bestimmt und der G2677T/A-Polymorphismus mittels Allel-spezifischer PCR. Es gab zwar keine Korrelation zwischen dem C3435-Polymorphismus und dem BP-Risiko, aber wir konnten eine derartige Assoziation hinsichtlich des G2677T/A-Polymorphismus nachweisen. Das relative Risiko eines BP war bei Personen mit dem 2677TA-Genotyp um mehr als den Faktor fünf erhöht (OR = 5,52; p = 0,0063) und bei Trägern des 2677TT-Genotyps mehr als verdoppelt (OR = 2,40; p = 0,0076). Mit 2,40 (p = 0,000018) war die OR bei Trägern des 2677T-Allels ebenfalls erhöht. Die höhere Prävalenz des 2677GG-Genotyps und des 2677G-Allels bei der Kontrollgruppe sowie eine OR < 1,0 (0,22 beziehungsweise 0,33) legen eine Schutzfunktion des 2677G-Allels hinsichtlich der Ausbildung eines BP nahe. Die Ergebnisse der vorliegenden Studie zeigen, dass der G2677T/A-Polymorphismus im ABCB1-Gen das Risiko für die Entstehung eines BP beeinflussen könnte. © 2017 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  17. ABC multidrug transporters in schistosomes and other parasitic flatworms.

    Science.gov (United States)

    Greenberg, Robert M

    2013-12-01

    Schistosomiasis, a neglected tropical disease affecting hundreds of millions, is caused by parasitic flatworms of the genus Schistosoma. Treatment and control of schistosomiasis relies almost exclusively on a single drug, praziquantel (PZQ), a dangerous situation for a disease of this magnitude. Though PZQ is highly effective overall, it has drawbacks, and reports of worms showing PZQ resistance, either induced in the laboratory or isolated from the field, are disconcerting. Multidrug transporters underlie multidrug resistance (MDR), a phenomenon in which resistance to a single drug is accompanied by unexpected cross-resistance to several structurally unrelated compounds. Some of the best studied multidrug transporters are members of the ancient and very large ATP-binding cassette (ABC) superfamily of efflux transporters. ABC multidrug transporters such as P-glycoprotein (Pgp; ABCB1) are also associated with drug resistance in parasites, including helminths such as schistosomes. In addition to their association with drug resistance, however, ABC transporters also function in a wide variety of physiological processes in metazoans. In this review, we examine recent studies that help define the role of schistosome ABC transporters in regulating drug susceptibility, and in normal schistosome physiology, including reproduction and excretory activity. We postulate that schistosome ABC transporters could be useful targets for compounds that enhance the effectiveness of current therapeutics as well as for agents that act as antischistosomals on their own.

  18. ABC transporters in anticancer drug transport – Less ons for Therapy, Drug Development and Delivery Systems

    Directory of Open Access Journals (Sweden)

    Suresh P.K

    2015-03-01

    Full Text Available The structural aspects as well as the classification of the ABC superfamily (the largest group of transmembrane proteins has been highlighted. Over-expression of one or more of these transporters, barring exceptions, can correlate with an increased drug resistance (the multidrug resistance phenotype. Hence, studying these proteins, using experimental and in silico approaches, has tremendous benefit for patient selection as well as stratification into “good” and “poor” drug responders. Further, the need to obtain a better insight into “intrinsic” and “extrinsic” mechanisms of resistance were reiterated upon, based on the relative recruitment of the different signal transduction molecules. The concept of the reversal of the MDR phenotype, has been discussed and extended in the context of combination therapy. This form of therapy involves the use of a cocktail of synthetic and biopharmaceutical drugs as well as nanotechnology-based approaches, for improvements in their pharmacokinetic (PK and pharmacodynamic (PD profile. Such strategies have targeted the heterogeneous cancer and cancer stem cells, signaling molecules, marker enzymes as well as the microenvironment for improved efficacy and safety as well as to minimize the chance of relapse

  19. Protein phosphatase complex PP5/PPP2R3C dephosphorylates P-glycoprotein/ABCB1 and down-regulates the expression and function.

    Science.gov (United States)

    Katayama, Kazuhiro; Yamaguchi, Miho; Noguchi, Kohji; Sugimoto, Yoshikazu

    2014-04-01

    P-glycoprotein (P-gp)/ABCB1 is a key molecule of multidrug resistance in cancer. Protein phosphatase (PP) 2A, regulatory subunit B, gamma (PPP2R3C), which is a regulatory subunit of PP2A and PP5, was identified as a binding candidate to P-gp. Immunoprecipitation-western blotting revealed that PP5 and PPP2R3C were coprecipitated with P-gp, while PP2A was not. PP5/PPP2R3C dephosphorylated protein kinase A/protein kinase C-phosphorylation of P-gp. Knockdown of PP5 and/or PPP2R3C increased P-gp expression and lowered the sensitivity to vincristine and doxorubicin. Consequently, our results indicate that PP5/PPP2R3C negatively regulates P-gp expression and function.

  20. Transport of peptidomimetic drugs by the intestinal Di/tri-peptide transporter, PepT1

    DEFF Research Database (Denmark)

    Brodin, Birger; Nielsen, Carsten Uhd; Steffansen, Bente;

    2002-01-01

    peptide transport mechanism and enter the systemic circulation. As the number of new peptide and peptidomimetic drugs are rapidly increasing, the peptide transport system has gained increasing attention as a possible drug delivery system for small peptides and peptide-like compounds. In this paper we give...... capable of transporting a number of orally administered peptidomimetic drugs. Absorbed peptides may be hydrolysed in the cells due to the high peptidase activity present in the cytosol. Peptidomimetic drugs may, if resistant to the cellular enzyme activity, pass the basolateral membrane via a basolateral...

  1. Divide and conquer: processive transport enables multidrug transporters to tackle challenging drugs.

    Science.gov (United States)

    Fluman, Nir; Bibi, Eitan

    2014-09-23

    Multidrug transporters are membrane proteins that catalyze efflux of antibiotics and other toxic compounds from cells, thereby conferring drug resistance on various organisms. Unlike most solute transporters that transport a single type of compound or similar analogues, multidrug transporters are extremely promiscuous. They transport a broad spectrum of dissimilar drugs and represent a serious obstacle to antimicrobial or anticancer chemotherapy. Many challenging aspects of multidrug transporters, which are unique, have been studied in detail, including their ability to interact with chemically unrelated drugs, and how they utilize energy to drive efflux of compounds that are not only structurally but electrically different. A new and surprising dimension of the promiscuous nature of multidrug transporters has been described recently: they can move long molecules through the membrane in a processive manner.

  2. Divide and conquer: processive transport enables multidrug transporters to tackle challenging drugs

    Directory of Open Access Journals (Sweden)

    Nir Fluman

    2014-09-01

    Full Text Available Multidrug transporters are membrane proteins that catalyze efflux of antibiotics and other toxic compounds from cells, thereby conferring drug resistance on various organisms. Unlike most solute transporters that transport a single type of compound or similar analogues, multidrug transporters are extremely promiscuous. They transport a broad spectrum of dissimilar drugs and represent a serious obstacle to antimicrobial or anticancer chemotherapy. Many challenging aspects of multidrug transporters, which are unique, have been studied in detail, including their ability to interact with chemically unrelated drugs, and how they utilize energy to drive efflux of compounds that are not only structurally but electrically different. A new and surprising dimension of the promiscuous nature of multidrug transporters has been described recently: they can move long molecules through the membrane in a processive manner.

  3. Gene expression profiling of cytochromes P450, ABC transporters and their principal transcription factors in the amygdala and prefrontal cortex of alcoholics, smokers and drug-free controls by qRT-PCR.

    Science.gov (United States)

    Toselli, Francesca; de Waziers, Isabelle; Dutheil, Mary; Vincent, Marc; Wilce, Peter A; Dodd, Peter R; Beaune, Philippe; Loriot, Marie-Anne; Gillam, Elizabeth M J

    2015-01-01

    1. Ethanol consumption and smoking alter the expression of certain drug-metabolizing enzymes and transporters, potentially influencing the tissue-specific effects of xenobiotics. 2. Amygdala (AMG) and prefrontal cortex (PFC) are brain regions that modulate the effects of alcohol and smoking, yet little is known about the expression of cytochrome P450 enzymes (P450s) and ATP-binding cassette (ABC) transporters in these tissues. 3. Here, we describe the first study on the expression of 19 P450s, their redox partners, three ABC transporters and four related transcription factors in the AMG and PFC of smokers and alcoholics by quantitative RT-PCR. 4. CYP1A1, CYP1B1, CYP2B6, CYP2C8, CYP2C18, CYP2D6, CYP2E1, CYP2J2, CYP2S1, CYP2U1, CYP4X1, CYP46, adrenodoxin and NADPH-P450 reductase, ABCB1, ABCG2, ABCA1, and transcription factors aryl hydrocarbon receptor AhR and proliferator-activated receptor α were quantified in both areas. CYP2A6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, adrenodoxin reductase and the nuclear receptors pregnane X receptor and constitutive androstane receptor were detected but below the limit of quantification. CYP1A2 and CYP2W1 were not detected. 5. Adrenodoxin expression was elevated in all case groups over controls, and smokers showed a trend toward higher CYP1A1 and CYP1B1 expression. 6. Our study shows that most xenobiotic-metabolizing P450s and associated redox partners, transporters and transcription factors are expressed in human AMG and PFC.

  4. Aryl hydrocarbon receptor regulates CYP1B1 but not ABCB1 and ABCG2 in hCMEC/D3 human cerebral microvascular endothelial cells after TCDD exposure.

    Science.gov (United States)

    Jacob, Aude; Potin, Sophie; Chapy, Hélène; Crete, Dominique; Glacial, Fabienne; Ganeshamoorthy, Kayathiri; Couraud, Pierre-Olivier; Scherrmann, Jean-Michel; Declèves, Xavier

    2015-07-10

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor activated by a variety of widespread persistent environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). It can transactivate the expression of several target genes. Recently AhR transcripts were detected in isolated human brain microvessels and in the hCMEC/D3 human cerebral microvascular endothelial cell line, an in vitro model of the human cerebral endothelium. To date AhR implication in the co-regulation of ABCB1, ABCG2 and CYP1B1 at human cerebral endothelium has not been addressed. Here we investigated whether AhR could co-regulate ABCB1, ABCG2 and CYP1B1 expressions in the hCMEC/D3 cell line. Exposure to TCDD induced a concentration-dependent increase in CYP1B1 expression. We demonstrated AhR involvement in the TCDD-mediated increase in CYP1B1 expression by using small interfering RNA against AhR. Western blotting analysis also revealed an increase in CYP1B1 protein expression following TCDD exposure in hCMEC/D3. Regarding ABCB1 and ABCG2, exposure to TCDD had no effect on their protein expressions and functional activities. In conclusion our data indicated a differential modulation of CYP1B1 and ABCB1/ABCG2 expressions in hCMEC/D3 cells following TCDD exposure.

  5. Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar.

    NARCIS (Netherlands)

    Tang, S.C.; Nguyen, L.N.; Sparidans, R.W.; Wagenaar, E.; Beijnen, J.H.; Schinkel, A.H.

    2014-01-01

    Crizotinib is an oral tyrosine kinase inhibitor approved for treating patients with non-small cell lung cancer (NSCLC) containing an anaplastic lymphoma kinase (ALK) rearrangement. We used knockout mice to study the roles of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) in

  6. Effect of selected ABC-drug transporters and anticancer drug disposition in vitro and in vivo

    NARCIS (Netherlands)

    Marchetti, S.

    2013-01-01

    Studies described in the thesis that is lying in front of you aim to address the possible implications of selected ABC-drug transporters on the disposition of a number of important anticancer drugs. Although variability in drug disposition has been known for as long as pharmacological studies

  7. Transportation of drug-gold nanocomposites by actinomyosin motor system

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Harsimran, E-mail: microsimbac@gmail.com; Chaudhary, Archana; Kaur, Inderpreet [Council of Scientific and Industrial Research (CSIR), Biomolecular Electronics and Nanotechnology Division (BEND), Central Scientific Instruments Organization - CSIO (India); Singh, Kashmir [Panjab University, Department of Biotechnology (India); Bharadwaj, Lalit M. [Council of Scientific and Industrial Research (CSIR), Biomolecular Electronics and Nanotechnology Division (BEND), Central Scientific Instruments Organization - CSIO (India)

    2011-06-15

    Nanotechnology is playing an important role in drug delivery to overcome limitations of conventional drug delivery systems in terms of solubility, in vivo stability, pharmacokinetics, and bio-distribution. The controlled transportation of drug into the cell and within the cell is a major challenge to be addressed. Cellular molecular motors have been exploited for their cargo carrying capacity for various applications including engineering and health care. Combination of nanotechnology and biomolecular motors can address some of the challenges in drug delivery. In the present study, transportation of drug nanocomposites has been demonstrated. Nanocomposites of 6-mercaptopurine and levodopa drugs (cancer and Parkinson's disease, respectively) were prepared with gold nanoparticles (GNPs) by covalent attachment and these nanocomposites were attached to actin filaments. These nanocomposites were in-turn transported by actin filaments on myosin tracks. Characterization of drug nanocomposites formation was done by UV-Vis spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy. GNP composites of 6-mercaptopurine and levodopa were formed by sulfide and amide bond formation, respectively. Average velocity of actin filament attached to nanocomposites was found to be 3.17 and 3.89 {mu}m/s for levodopa and 6-mercaptopurine, respectively, as compared to actin filaments with velocity of 4.0-6.0 {mu}m/s. Three concepts have been proposed for the study of drug transportation into the cell based on polycationic complex formation, interaction of actin with cellular myosin and Biomolecular Adaptor for Retrograde Transport (BART) technology. The aspects of this study heads toward the development of an approach to utilize molecular motors for nanoscale transportation endogenously.

  8. Ivermectin Interacts With Human ABCG2

    OpenAIRE

    2011-01-01

    Ivermectin is an antiparasitic drug frequently administered to humans. It has alimited brain exposure that is attributed to the efflux activity of ABCB1/Abcb1. ABCG2/Abcg2 isalso a major transporter present in most pharmacologically important barriers. However,interaction of ivermectin with Abcg2 shows species specificity and in many studies wasconfounded by the masking effect of ABCB1/Abcb1. In this study using cellular and membraneassays we show that ivermectin displays a high-affinity inte...

  9. Human membrane transporter database: a Web-accessible relational database for drug transport studies and pharmacogenomics.

    Science.gov (United States)

    Yan, Q; Sadée, W

    2000-01-01

    The human genome contains numerous genes that encode membrane transporters and related proteins. For drug discovery, development, and targeting, one needs to know which transporters play a role in drug disposition and effects. Moreover, genetic polymorphisms in human membrane transporters may contribute to interindividual differences in the response to drugs. Pharmacogenetics, and, on a genome-wide basis, pharmacogenomics, address the effect of genetic variants on an individual's response to drugs and xenobiotics. However, our knowledge of the relevant transporters is limited at present. To facilitate the study of drug transporters on a broad scale, including the use of microarray technology, we have constructed a human membrane transporter database (HMTD). Even though it is still largely incomplete, the database contains information on more than 250 human membrane transporters, such as sequence, gene family, structure, function, substrate, tissue distribution, and genetic disorders associated with transporter polymorphisms. Readers are invited to submit additional data. Implemented as a relational database, HMTD supports complex biological queries. Accessible through a Web browser user interface via Common Gateway Interface (CGI) and Java Database Connection (JDBC), HMTD also provides useful links and references, allowing interactive searching and downloading of data. Taking advantage of the features of an electronic journal, this paper serves as an interactive tutorial for using the database, which we expect to develop into a research tool.

  10. Drug: D03914 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 593.2174 D03914.gif Antiarrhythmic ATC code: C01BD07 calcium channel L type blocker [HSA:775 776 778 779] [...ransporter inhibition: ABCB1 [HSA:5243] map07037 Antiarrhythmic drugs map07231 Sodium channel blocking drugs...ASS I AND III C01BD Antiarrhythmics, class III C01BD07 Dronedarone D03914 Dronedarone hydrochloride (USAN) U...SP drug classification [BR:br08302] Cardiovascular Agents Antiarrhythmics Droneda

  11. Impact of fungal drug transporters on fungicide sensitivity, multidrug resistance and virulence

    NARCIS (Netherlands)

    Waard, de M.A.; Andrade, A.C.; Hayashi, K.; Schoonbeek, H.; Stergiopoulos, I.; Zwiers, L.H.

    2006-01-01

    Drug transporters are membrane proteins that provide protection for organisms against natural toxic products and fungicides. In plant pathogens, drug transporters function in baseline sensitivity to fungicides, multidrug resistance (MDR) and virulence on host plants. This paper describes drug transp

  12. Pharmacokinetic interactions between herbal medicines and prescribed drugs: focus on drug metabolic enzymes and transporters.

    Science.gov (United States)

    Meng, Qiang; Liu, Kexin

    2014-01-01

    Herbal medicines have been widely used for thousands of years, and now are gaining continued popularity worldwide as a complementary or alternative treatment for a variety of diseases, rehabilitation and health care. Since herbal medicines contain more than one pharmacologically active ingredient and are commonly used with many prescribed drugs, there are potential herb-drug interactions. A variety of reported herb-drug interactions are of pharmacokinetic origin, arising from the effects of herbal medicines on metabolic enzymes and/or transporters. Such an alteration in metabolism or transport can result in changes in absorption, distribution, metabolism, and excretion (e.g., induction or inhibition of metabolic enzymes, and modulation of uptake and efflux transporters), leading to changed pharmacokinetics of the concomitantly prescribed drugs. Pharmacokinetic herb-drug interactions have more clinical significance as pharmacokinetic parameters such as the area under the plasma concentration-time curve (AUC), the maximum plasma concentration (Cmax) or the elimination half-life (t1/2) of the concomitant drug alter. This review summarizes the mechanism underlying herb-drug interactions and the approaches to identify the interactions, and discusses pharmacokinetic interactions of eight widely used herbal medicines (Ginkgo biloba, ginseng, garlic, black cohosh, Echinacea, milk thistle, kava, and St. John's wort) with conventional drugs, using various in vitro, animal in vivo, and clinical studies. The increasing understanding of pharmacokinetic herb-drug interactions will make health care professionals and patients pay more attention to the potential interactions.

  13. Molecular evolutionary analysis of ABCB5: the ancestral gene is a full transporter with potentially deleterious single nucleotide polymorphisms.

    Directory of Open Access Journals (Sweden)

    Karobi Moitra

    Full Text Available BACKGROUND: ABCB5 is a member of the ABC protein superfamily, which includes the transporters ABCB1, ABCC1 and ABCG2 responsible for causing drug resistance in cancer patients and also several other transporters that have been linked to human disease. The ABCB5 full transporter (ABCB5.ts is expressed in human testis and its functional significance is presently unknown. Another variant of this transporter, ABCB5 beta possess a "half-transporter-like" structure and is expressed in melanoma stem cells, normal melanocytes, and other types of pigment cells. ABCB5 beta has important clinical implications, as it may be involved with multidrug resistance in melanoma stem cells, allowing these stem cells to survive chemotherapeutic regimes. METHODOLOGY/PRINCIPAL FINDINGS: We constructed and examined in detail topological structures of the human ABCB5 protein and determined in-silico the cSNPs (coding single nucleotide polymorphisms that may affect its function. Evolutionary analysis of ABCB5 indicated that ABCB5, ABCB1, ABCB4, and ABCB11 share a common ancestor, which began duplicating early in the evolutionary history of chordates. This suggests that ABCB5 has evolved as a full transporter throughout its evolutionary history. CONCLUSIONS/SIGNIFICANCE: From our in-silco analysis of cSNPs we found that a large number of non-synonymous cSNPs map to important functional regions of the protein suggesting that these SNPs if present in human populations may play a role in diseases associated with ABCB5. From phylogenetic analyses, we have shown that ABCB5 evolved as a full transporter throughout its evolutionary history with an absence of any major shifts in selection between the various lineages suggesting that the function of ABCB5 has been maintained during mammalian evolution. This finding would suggest that ABCB5 beta may have evolved to play a specific role in human pigment cells and/or melanoma cells where it is predominantly expressed.

  14. Copper transport systems are involved in multidrug resistance and drug transport.

    Science.gov (United States)

    Furukawa, Tatsuhiko; Komatsu, Masaharu; Ikeda, Ryuji; Tsujikawa, Kazutake; Akiyama, Shin-ichi

    2008-01-01

    Copper is an essential trace element and several copper containing proteins are indispensable for such processes as oxidative respiration, neural development and collagen remodeling. Copper metabolism is precisely regulated by several transporters and chaperone proteins. Copper Transport Protein 1 (CTR1) selectively uptakes copper into cells. Subsequently three chaperone proteins, HAH1 (human atx1 homologue 1), Cox17p and CCS (copper chaperone for superoxide dismutase) transport copper to the Golgi apparatus, mitochondria and copper/zinc superoxide dismutase respectively. Defects in the copper transporters ATP7A and ATP7B are responsible for Menkes disease and Wilson's disease respectively. These proteins transport copper via HAH1 to the Golgi apparatus to deliver copper to cuproenzymes. They also prevent cellular damage from an excess accumulation of copper by mediating the efflux of copper from the cell. There is increasing evidence that copper transport mechanisms may play a role in drug resistance. We, and others, found that ATP7A and ATP7B are involved in drug resistance against the anti-tumor drug cis-diamminedichloroplatinum (II) (CDDP). A relationship between the expression of ATP7A or ATP7B in tumors and CDDP resistance is supported by clinical studies. In addition, the copper uptake transporter CTR1 has also been reported to play a role in CDDP sensitivity. Furthermore, we have recently found that the effect of ATP7A on drug resistance is not limited to CDDP. Using an ex vivo drug sensitivity assay, the histoculture drug response assay (HDRA), the expression of ATP7A in human surgically resected colon cancer cells correlated with sensitivity to 7-ethyl-10-hydroxy-camptothecin (SN-38). ATP7A-overexpressing cells are resistant to many anticancer drugs including SN-38, 7-ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxycamptothecin (CPT-11), vincristine, paclitaxel, etoposide, doxorubicin (Dox), and mitoxantron. The mechanism by which ATP7A and copper

  15. Enhanced cellular transport and drug targeting using dendritic nanostructures

    Science.gov (United States)

    Kannan, R. M.; Kolhe, Parag; Kannan, Sujatha; Lieh-Lai, Mary

    2003-03-01

    Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorable, peripheral' functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug delivery. The large density of end groups can also be tailored to create enhanced affinity to targeted cells, and can also encapsulate drugs and deliver them in a controlled manner. We are developing tailor-modified dendritic systems for drug delivery. Synthesis, drug/ligand conjugation, in vitro cellular and in vivo drug delivery, and the targeting efficiency to the cell are being studied systematically using a wide variety of experimental tools. Results on PAMAM dendrimers and polyol hyperbranched polymers suggest that: (1) These materials complex/encapsulate a large number of drug molecules and release them at tailorable rates; (2) The drug-dendrimer complex is transported very rapidly through a A549 lung epithelial cancel cell line, compared to free drug, perhaps by endocytosis. The ability of the drug-dendrimer-ligand complexes to target specific asthma and cancer cells is currently being explored using in vitro and in vivo animal models.

  16. Transport of dicationic drugs pentamidine and furamidine by human organic cation transporters.

    Science.gov (United States)

    Ming, Xin; Ju, Wujian; Wu, Huali; Tidwell, Richard R; Hall, James E; Thakker, Dhiren R

    2009-02-01

    The antiparasitic activity of aromatic diamidine drugs, pentamidine and furamidine, depends on their entry into the pathogenic protozoa via membrane transporters. However, no such diamidine transporter has been identified in mammalian cells. The goal of this study is to investigate whether these dicationic drugs are substrates for human organic cation transporters (hOCTs, solute carrier family 22A1-3) and whether hOCTs play a role in their tissue distribution, elimination, and toxicity. Inhibitory and substrate activities of pentamidine and furamidine were studied in stably transfected Chinese hamster ovary (CHO) cells. The results of [(3)H]1-methyl-4-phenylpyridinium uptake study showed that pentamidine is a potent inhibitor for all three OCT isoforms (IC50 pentamidine and furamidine was 4.4- and 9.3-fold greater, respectively, in CHO-hOCT1 cells compared with the mock cells. Ranitidine, an hOCT1 inhibitor, reversed this hOCT1-mediated potentiation of cytotoxicity. This is the first finding that dicationic drugs, such as pentamidine and furamidine, are substrates for hOCT1. In humans, aromatic diamidines are primarily eliminated in the bile but are distributed and cause toxicity in both liver and kidney. These transporters may play important roles in the disposition of aromatic diamidines in humans, as well as resultant drug-drug interactions and toxicity involving diamidine drugs.

  17. Amphetamines, new psychoactive drugs and the monoamine transporter cycle.

    Science.gov (United States)

    Sitte, Harald H; Freissmuth, Michael

    2015-01-01

    In monoaminergic neurons, the vesicular transporters and the plasma membrane transporters operate in a relay. Amphetamine and its congeners target this relay to elicit their actions: most amphetamines are substrates, which pervert the relay to elicit efflux of monoamines into the synaptic cleft. However, some amphetamines act as transporter inhibitors. Both compound classes elicit profound psychostimulant effects, which render them liable to recreational abuse. Currently, a surge of new psychoactive substances occurs on a global scale. Chemists bypass drug bans by ingenuous structural variations, resulting in a rich pharmacology. A credible transport model must account for their distinct mode of action and link this to subtle differences in activity and undesired, potentially deleterious effects.

  18. Amphetamines, new psychoactive drugs and the monoamine transporter cycle

    Science.gov (United States)

    Sitte, Harald H.; Freissmuth, Michael

    2015-01-01

    In monoaminergic neurons, the vesicular transporters and the plasma membrane transporters operate in a relay. Amphetamine and its congeners target this relay to elicit their actions: most amphetamines are substrates, which pervert the relay to elicit efflux of monoamines into the synaptic cleft. However, some amphetamines act as transporter inhibitors. Both compound classes elicit profound psychostimulant effects, which render them liable to recreational abuse. Currently, a surge of new psychoactive substances occurs on a global scale. Chemists bypass drug bans by ingenuous structural variations, resulting in a rich pharmacology. A credible transport model must account for their distinct mode of action and link this to subtle differences in activity and undesired, potentially deleterious effects. PMID:25542076

  19. Triallelic single nucleotide polymorphisms and genotyping error in genetic epidemiology studies: MDR1 (ABCB1) G2677/T/A as an example.

    Science.gov (United States)

    Hüebner, Claudia; Petermann, Ivonne; Browning, Brian L; Shelling, Andrew N; Ferguson, Lynnette R

    2007-06-01

    Accurate measurement of allele frequencies between population groups with differing sensitivities to disease is fundamental to genetic epidemiology. Genotyping errors can markedly influence the biological conclusions of a study. This issue may be especially important now there is increasing recognition of triallelic single nucleotide polymorphisms (SNPs) in the genome and their possible role in diseases like inflammatory bowel disease. For example, the MDR1 (ABCB1) SNP G2677/T/A was, like many other triallelic SNPs, originally described as diallelic. Here, we report a comprehensive analyses of estimated allele frequencies of this SNP in a set of 73 human DNA samples, comparing six commonly used genotyping methods (Applied Biosystems Taqman, Roche LightCycler melting analysis, allelic discrimination PCR, DNA sequencing, Sequenom, and RFLP) from the angle of their error potential. Only Sequenom and DNA sequencing provided accurate measurements, if we had not had prior knowledge of the triallelic nature of this SNP. The other tested methods (with the exception of LightCycler) failed to show any indication of the presence of the rare third A- allele in a diallelic assay. Although most of the errors were due to the inability to detect the third allele, all methods except Sequenom and sequencing produced errors for the detection of the two common alleles G and T (LightCycler, 6 errors; PCR, 4 errors; RFLP, 2 errors; Taqman, 1 error). There is considerable variability in the reported frequencies of the different alleles of the MDR1 G2677/T/A SNP, and the role of this SNP in the etiology of inflammatory bowel disease has been controversial. Our data emphasize the importance of choosing the appropriate method for SNP detection and lead us to suggest that part of the previously reported variation may reflect artifacts associated with the different genotyping methodologies used. The failure to recognize the triallic nature of a SNP may lead to underestimations of real genetic

  20. Designing Novel Nanoformulations Targeting Glutamate Transporter Excitatory Amino Acid Transporter 2: Implications in Treating Drug Addiction.

    Science.gov (United States)

    Rao, Pss; Yallapu, Murali M; Sari, Youssef; Fisher, Paul B; Kumar, Santosh

    Chronic drug abuse is associated with elevated extracellular glutamate concentration in the brain reward regions. Deficit of glutamate clearance has been identified as a contributing factor that leads to enhanced glutamate concentration following extended drug abuse. Importantly, normalization of glutamate level through induction of glutamate transporter 1 (GLT1)/ excitatory amino acid transporter 2 (EAAT2) expression has been described in several in vivo studies. GLT1 upregulators including ceftriaxone, a beta-lactam antibiotic, have been effective in attenuating drug-seeking and drug-consumption behavior in rodent models. However, potential obstacles toward clinical translation of GLT1 (EAAT2) upregulators as treatment for drug addiction might include poor gastrointestinal absorption, serious peripheral adverse effects, and/or suboptimal CNS concentrations. Given the growing success of nanotechnology in targeting CNS ailments, nanoformulating known GLT1 (EAAT2) upregulators for selective uptake across the blood brain barrier presents an ideal therapeutic approach for treating drug addiction. In this review, we summarize the results obtained with promising GLT1 (EAAT2) inducing compounds in animal models recapitulating drug addiction. Additionally, the various nanoformulations that can be employed for selectively increasing the CNS bioavailability of GLT1 (EAAT2) upregulators are discussed. Finally, the applicability of GLT1 (EAAT2) induction via central delivery of drug-loaded nanoformulations is described.

  1. Human-Mouse Chimeras with Normal Expression and Function Reveal That Major Domain Swapping Is Tolerated by P-Glycoprotein (ABCB1).

    Science.gov (United States)

    Pluchino, Kristen M; Hall, Matthew D; Moen, Janna K; Chufan, Eduardo E; Fetsch, Patricia A; Shukla, Suneet; Gill, Deborah R; Hyde, Stephen C; Xia, Di; Ambudkar, Suresh V; Gottesman, Michael M

    2016-02-23

    The efflux transporter P-glycoprotein (P-gp) plays a vital role in the transport of molecules across cell membranes and has been shown to interact with a panoply of functionally and structurally unrelated compounds. How human P-gp interacts with this large number of drugs has not been well understood, although structural flexibility has been implicated. To gain insight into this transporter's broad substrate specificity and to assess its ability to accommodate a variety of molecular and structural changes, we generated human-mouse P-gp chimeras by the exchange of homologous transmembrane and nucleotide-binding domains. High-level expression of these chimeras by BacMam- and baculovirus-mediated transduction in mammalian (HeLa) and insect cells, respectively, was achieved. There were no detectable differences between wild-type and chimeric P-gp in terms of cell surface expression, ability to efflux the P-gp substrates rhodamine 123, calcein-AM, and JC-1, or to be inhibited by the substrate cyclosporine A and the inhibitors tariquidar and elacridar. Additionally, expression of chimeric P-gp was able to confer a paclitaxel-resistant phenotype to HeLa cells characteristic of P-gp-mediated drug resistance. P-gp ATPase assays and photo-cross-linking with [(125)I]iodoarylazidoprazosin confirmed that transport and biochemical properties of P-gp chimeras were similar to those of wild-type P-gp, although differences in drug binding were detected when human and mouse transmembrane domains were combined. Overall, chimeras with one or two mouse P-gp domains were deemed functionally equivalent to human wild-type P-gp, demonstrating the ability of human P-gp to tolerate major structural changes.

  2. Structure and localisation of drug binding sites on neurotransmitter transporters.

    Science.gov (United States)

    Ravna, Aina W; Sylte, Ingebrigt; Dahl, Svein G

    2009-10-01

    The dopamine (DAT), serotontin (SERT) and noradrenalin (NET) transporters are molecular targets for different classes of psychotropic drugs. The crystal structure of Aquifex aeolicus LeuT(Aa) was used as a template for molecular modeling of DAT, SERT and NET, and two putative drug binding sites (pocket 1 and 2) in each transporter were identified. Cocaine was docked into binding pocket 1 of DAT, corresponding to the leucine binding site in LeuT(Aa), which involved transmembrane helices (TMHs) 1, 3, 6 and 8. Clomipramine was docked into binding pocket 2 of DAT, involving TMHs 1, 3, 6, 10 and 11, and extracellular loops 4 and 6, corresponding to the clomipramine binding site in a crystal structure of a LeuT(Aa)-clomipramine complex. The structures of the proposed cocaine- and tricyclic antidepressant-binding sites may be of particular interest for the design of novel DAT interacting ligands.

  3. A Critical View on In Vitro Analysis of P-glycoprotein (P-gp) Transport Kinetics.

    Science.gov (United States)

    Saaby, Lasse; Brodin, Birger

    2017-09-01

    Transport proteins expressed in the different barriers of the human body can have great implications on absorption, distribution, and excretion of drug compounds. Inhibition or saturation of a transporter can potentially alter these absorbtion, distribution, metabolism and elimination properties and thereby also the pharmacokinetic profile and bioavailability of drug compounds. P-glycoprotein (P-gp, ABCB1) is an efflux transporter which is present in most of the barriers of the body, including the small intestine, the blood-brain barrier, the liver, and the kidney. In all these tissues, P-gp may mediate efflux of drug compounds and may also be a potential site for drug-drug interactions. Consequently, there is a need to be able to predict the saturation and inhibition of P-gp and other transporters in vivo. For this purpose, Michaelis-Menten steady-state analysis has been applied to estimate kinetic parameters, such as Km and Vmax, for carrier-mediated transport, whereas half-maximal inhibitor concentration (IC50) and the disassociation constant for an inhibitor/P-gp complex (Ki) have been determined to estimate P-gp inhibition. This review addresses in vitro methods commonly used to study P-gp transport kinetics and aims at providing a critical evaluation of the application of steady-state Michaelis-Menten analysis of kinetic parameters for substrate/P-gp interactions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. The Role of Transporters in the Toxicity of Chemotherapeutic Drugs: Focus on Transporters for Organic Cations.

    Science.gov (United States)

    Hucke, Anna; Ciarimboli, Giuliano

    2016-07-01

    The introduction of chemotherapy in the treatment of cancer is one of the most important achievements of modern medicine, even allowing the cure of some lethal diseases such as testicular cancer and other malignant neoplasms. The number and type of chemotherapeutic agents available have steadily increased and have developed until the introduction of targeted tumor therapy. It is now evident that transporters play an important role for determining toxicity of chemotherapeutic drugs not only against target but also against nontarget cells. This is of special importance for intracellularly active hydrophilic drugs, which cannot freely penetrate the plasma membrane. Because many important chemotherapeutic agents are substrates of transporters for organic cations, this review discusses the known interaction of these substances with these transporters. A particular focus is given to the role of transporters for organic cations in the development of side effects of chemotherapy with platinum derivatives and in the efficacy of recently developed tyrosine kinase inhibitors to specifically target cancer cells. It is evident that specific inhibition of uptake transporters may be a possible strategy to protect against undesired side effects of platinum derivatives without compromising their antitumor efficacy. These transporters are also important for efficient targeting of tyrosine kinase inhibitors to cancer cells. However, in order to achieve the aims of protecting from undesired toxicities and improving the specificity of uptake by tumor cells, an exact knowledge of transporter expression, function, regulation under normal and pathologic conditions, and of genetically and epigenetically regulation is mandatory.

  5. Genetic Polymorphisms Associated to Folate Transport as Predictors of Increased Risk for Acute Lymphoblastic Leukemia in Mexican Children

    Science.gov (United States)

    Zaruma-Torres, Fausto; Lares-Asseff, Ismael; Lima, Aurea; Reyes-Espinoza, Aarón; Loera-Castañeda, Verónica; Sosa-Macías, Martha; Galaviz-Hernández, Carlos; Arias-Peláez, María C.; Reyes-López, Miguel A.; Quiñones, Luis A.

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a frequent neoplasia occurring in children. The most commonly used drug for the treatment of ALL is methotrexate (MTX), an anti-folate agent. Previous studies suggest that folate transporters play a role in ALL prognosis and that genetic polymorphism of genes encoding folate transporters may increase the risk of ALL. Therefore, the main goal of this study was to determine the associations among six genetic polymorphisms in four genes related with the folate transporter pathway to determine a relationship with the occurrence of ALL in Mexican children. A case-control study was performed in 73 ALL children and 133 healthy children from Northern and Northwestern Mexico. COL18A1 (rs2274808), SLC19A1 (rs2838956), ABCB1 (rs1045642 and rs1128503), and ABCC5 (rs9838667 and rs3792585). Polymorphisms were assayed through qPCR. Our results showed an increased ALL risk in children carrying CT genotype (OR = 2.55, CI 95% 1.11–5.83, p = 0.0001) and TT genotype (OR = 21.05, CI 95% 5.62–78.87, p < 0.0001) of COL18A1 rs2274808; in SLC19A1 rs2838956 AG carriers (OR = 44.69, CI 95% 10.42–191.63, p = 0.0001); in ABCB1 rs1045642 TT carriers (OR = 13.76, CI 95% 5.94–31.88, p = 0.0001); in ABCC5 rs9838667 AC carriers (OR = 2.61, CI 95% 1.05–6.48, p < 0.05); and in ABCC5 rs3792585 CC carriers (OR = 9.99, CI 95% 3.19–31.28, p = 0.004). Moreover, several combinations of genetic polymorphisms were found to be significantly associated with a risk for ALL. Finally, two combinations of ABCC5 polymorphisms resulted in protection from this neoplasia. In conclusion, certain genetic polymorphisms related to the folate transport pathway, particularly COL18A1 rs2274808, SLC19A1 rs2838956, ABCB1 rs1045642, and ABCC5 rs3792585, were associated with an increased risk for ALL in Mexican children. PMID:27547186

  6. Genetic polymorphisms associated to folate transport as predictors of increased risk for acute lymphoblastic leukemia in Mexican children

    Directory of Open Access Journals (Sweden)

    Fausto Zaruma-Torres

    2016-08-01

    Full Text Available Acute lymphoblastic leukemia (ALL is a frequent neoplasia occurring in children. The most commonly used drug for the treatment of ALL is methotrexate (MTX, an anti-folate agent. Previous studies suggest that folate transporters play a role in ALL prognosis and that genetic polymorphism of genes encoding folate transporters may increase the risk of ALL. Therefore, the main goal of this study was to determine the associations among six genetic polymorphisms in four genes related with the folate transporter pathway to determine a relationship with the occurrence of ALL in Mexican children.A case-control study was performed in 73 ALL children and 133 healthy children from Northern and Northwestern Mexico. COL18A1 (rs2274808, SLC19A1 (rs2838956, ABCB1 (rs1045642 and rs1128503 and ABCC5 (rs9838667 and rs3792585. polymorphisms were assayed through qPCR.Our results showed an increased ALL risk in children carrying CT genotype (OR=2.55, CI 95% 1.11-5.83, p=0.0001 and TT genotype (OR=21.05, CI 95% 5.62-78.87, p<0.0001 of COL18A1 rs2274808; in SLC19A1 rs2838956 AG carriers (OR=44.69, CI 95% 10.42-191.63, p=0.0001; in ABCB1 rs1045642 TT carriers (OR=13.76, CI 95% 5.94-31.88, p=0.0001; in ABCC5 rs9838667 AC carriers (OR=2.61, CI 95% 1.05-6.48, p<0.05; and in ABCC5 rs3792585 CC carriers (OR=9.99, CI 95% 3.19-31.28, p=0.004. Moreover, several combinations of genetic polymorphisms were found to be significantly associated with a risk for ALL. Finally, two combinations of ABCC5 polymorphisms resulted in protection from this neoplasia.In conclusion, certain genetic polymorphisms related to the folate transport pathway, particularly COL18A1 rs2274808, SLC19A1 rs2838956, ABCB1 rs1045642 and ABCC5 rs3792585, were associated with an increased risk for ALL in Mexican children.

  7. The Alterations in the Expression and Function of P-Glycoprotein in Vitamin A-Deficient Rats as well as the Effect of Drug Disposition in Vivo

    Directory of Open Access Journals (Sweden)

    Yubang Wang

    2015-12-01

    Full Text Available This study was aimed to investigate whether vitamin A deficiency could alter P-GP expression and function in tissues of rats and whether such effects affected the drug distribution in vivo of vitamin A-deficient rats. We induced vitamin A-deficient rats by giving them a vitamin A-free diet for 12 weeks. Then, Abcb1/P-GP expression was evaluated by qRT-PCR and Western blot. qRT-PCR analysis revealed that Abcb1a mRNA levels were increased in hippocampus and liver. In kidney, it only showed an upward trend. Abcb1b mRNA levels were increased in hippocampus, but decreased in cerebral cortex, liver and kidney. Western blot results were in good accordance with the alterations of Abcb1b mRNA levels. P-GP function was investigated through tissue distribution and body fluid excretion of rhodamine 123 (Rho123, and the results proclaimed that P-GP activities were also in good accordance with P-GP expression in cerebral cortex, liver and kidney. The change of drug distribution was also investigated through the tissue distribution of vincristine, and the results showed a significantly upward trend in all indicated tissues of vitamin A-deficient rats. In conclusion, vitamin A deficiency may alter Abcb1/P-GP expression and function in rat tissues, and the alterations may increase drug activity/toxicity through the increase of tissue accumulation.

  8. The Alterations in the Expression and Function of P-Glycoprotein in Vitamin A-Deficient Rats as well as the Effect of Drug Disposition in Vivo.

    Science.gov (United States)

    Wang, Yubang; Qin, Heng; Zhang, Chengxiang; Huan, Fei; Yan, Ting; Zhang, Lulu

    2015-12-29

    This study was aimed to investigate whether vitamin A deficiency could alter P-GP expression and function in tissues of rats and whether such effects affected the drug distribution in vivo of vitamin A-deficient rats. We induced vitamin A-deficient rats by giving them a vitamin A-free diet for 12 weeks. Then, Abcb1/P-GP expression was evaluated by qRT-PCR and Western blot. qRT-PCR analysis revealed that Abcb1a mRNA levels were increased in hippocampus and liver. In kidney, it only showed an upward trend. Abcb1b mRNA levels were increased in hippocampus, but decreased in cerebral cortex, liver and kidney. Western blot results were in good accordance with the alterations of Abcb1b mRNA levels. P-GP function was investigated through tissue distribution and body fluid excretion of rhodamine 123 (Rho123), and the results proclaimed that P-GP activities were also in good accordance with P-GP expression in cerebral cortex, liver and kidney. The change of drug distribution was also investigated through the tissue distribution of vincristine, and the results showed a significantly upward trend in all indicated tissues of vitamin A-deficient rats. In conclusion, vitamin A deficiency may alter Abcb1/P-GP expression and function in rat tissues, and the alterations may increase drug activity/toxicity through the increase of tissue accumulation.

  9. Intriguing possibilities and beneficial aspects of transporter-conscious drug design.

    Science.gov (United States)

    Tashima, Toshihiko

    2015-08-01

    It has been revealed that many types of drugs interact with transporter proteins within an organism. Transporter proteins absorb or excrete materials, including drugs and nutrients, across the cell membrane. Some hydrophobic drugs are excreted from the cell as xenobiotics by ATP-binding cassette (ABC) transporters. However, solute carrier (SLC) transporters are tissue-specifically expressed and have substrate specificities. Thus, transporter-conscious drug design is an excellent method of delivering drugs to pharmaceutical target organs and provides advantages in absorption, distribution, excretion, and toxicity of drugs (ADMET) due to transport systems. In fact, based on this strategy, the bioavailability of prodrugs designed as peptide transporter 1 (PEPT1) substrates was better than that of the corresponding parent compounds due to the transport system in the small intestine. Furthermore, in central nervous system (CNS) drug developing, drug delivery into brain across the blood-brain barrier (BBB) is a serious problem. However, this problem can be also solved by the use of the transport systems at the BBB. Therefore, transporter-consciously designed drugs not only may effectively elicit activity but also may control adverse side effects caused by off-targets and drug-drug interactions and, consequently, may show good performance in clinical trials. In this review, I introduce possibilities and advantages of transporter-conscious drug designs.

  10. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system.

    Science.gov (United States)

    Sarkadi, Balázs; Homolya, László; Szakács, Gergely; Váradi, András

    2006-10-01

    In this review we give an overview of the physiological functions of a group of ATP binding cassette (ABC) transporter proteins, which were discovered, and still referred to, as multidrug resistance (MDR) transporters. Although they indeed play an important role in cancer drug resistance, their major physiological function is to provide general protection against hydrophobic xenobiotics. With a highly conserved structure, membrane topology, and mechanism of action, these essential transporters are preserved throughout all living systems, from bacteria to human. We describe the general structural and mechanistic features of the human MDR-ABC transporters and introduce some of the basic methods that can be applied for the analysis of their expression, function, regulation, and modulation. We treat in detail the biochemistry, cell biology, and physiology of the ABCB1 (MDR1/P-glycoprotein) and the ABCG2 (MXR/BCRP) proteins and describe emerging information related to additional ABCB- and ABCG-type transporters with a potential role in drug and xenobiotic resistance. Throughout this review we demonstrate and emphasize the general network characteristics of the MDR-ABC transporters, functioning at the cellular and physiological tissue barriers. In addition, we suggest that multidrug transporters are essential parts of an innate defense system, the "chemoimmunity" network, which has a number of features reminiscent of classical immunology.

  11. Maritime Transportation of Illegal Drugs from South America

    Science.gov (United States)

    2017-01-01

    18, 2002. J. Kandel , Traffickers using submarines to transport drugs, NBC Los Angeles. September 14, 2012. B. Kennedy, More than $110...CBS-Miami (2012) Go-fast 2 ONDCP (2013,2014), CBS-Miami (2011) SPSS 5—10 UNODC (2012) SPSS 6 Kandel (2012) Fishing vessel 2.4 Kennedy (2014) Panga...Hodgson (2002) Go-fast 50 Selsky (2005) Go-fast 25 ONDCP (2014) SPSS 10 United States Coast Guard (2008) SPSS 13 Kandel (2012) Table A.7

  12. Design, synthesis, and biological evaluation of (S)-valine thiazole-derived cyclic and noncyclic peptidomimetic oligomers as modulators of human P-glycoprotein (ABCB1).

    Science.gov (United States)

    Singh, Satyakam; Prasad, Nagarajan Rajendra; Kapoor, Khyati; Chufan, Eduardo E; Patel, Bhargav A; Ambudkar, Suresh V; Talele, Tanaji T

    2014-01-01

    Multidrug resistance caused by ATP binding cassette transporter P-glycoprotein (P-gp) through extrusion of anticancer drugs from the cells is a major cause of failure in cancer chemotherapy. Previously, selenazole-containing cyclic peptides were reported as P-gp inhibitors and were also used for co-crystallization with mouse P-gp, which has 87 % homology to human P-gp. It has been reported that human P-gp can simultaneously accommodate two to three moderately sized molecules at the drug binding pocket. Our in silico analysis, based on the homology model of human P-gp, spurred our efforts to investigate the optimal size of (S)-valine-derived thiazole units that can be accommodated at the drug binding pocket. Towards this goal, we synthesized varying lengths of linear and cyclic derivatives of (S)-valine-derived thiazole units to investigate the optimal size, lipophilicity, and structural form (linear or cyclic) of valine-derived thiazole peptides that can be accommodated in the P-gp binding pocket and affects its activity, previously an unexplored concept. Among these oligomers, lipophilic linear (13) and cyclic trimer (17) derivatives of QZ59S-SSS were found to be the most and equally potent inhibitors of human P-gp (IC50 =1.5 μM). As the cyclic trimer and linear trimer compounds are equipotent, future studies should focus on noncyclic counterparts of cyclic peptides maintaining linear trimer length. A binding model of the linear trimer 13 within the drug binding site on the homology model of human P-gp represents an opportunity for future optimization, specifically replacing valine and thiazole groups in the noncyclic form.

  13. Drug Transport by the Blood-Aqueous Humor Barrier of the Eye.

    Science.gov (United States)

    Lee, Jonghwa; Pelis, Ryan M

    2016-10-01

    The ocular barriers (cornea, blood-retinal barrier, and blood-aqueous humor barrier) make treating eye diseases with therapeutic drugs challenging. The tight capillary endothelium of the iris and the ciliary body epithelium form the blood-aqueous humor barrier. The iris and ciliary body (iris-ciliary body) express a variety of drug transporters in the ATP-binding cassette and solute carrier (SLC) families. ATP-binding cassette family drug transporters that are present in the iris-ciliary body include P-glycoprotein, breast cancer resistance protein, and several multidrug resistance-associated proteins. SLC family drug transporters that are present in the iris-ciliary body include organic anion transporters, organic anion transporting polypeptides, bile acid transporters (apical sodium-dependent bile salt transporter and sodium taurocholate cotransporter), organic cation transporters (novel organic cation transporter and multidrug and toxin extrusion transporter) and peptide transporters. Freshly dissected iris-ciliary body preparations actively accumulate a variety of substrates of SLC drug transporters that are expressed in the tissue. The ciliary body in vitro supports active transport in the aqueous humor-to-blood direction of several substrates of organic anion transporters and multidrug resistance-associated proteins, consistent with the subcellular localization of these transporters in the ciliary body epithelium. In vivo data suggest that drug transporters in the iris-ciliary body reduce the permeation of drugs in the direction of blood-to-aqueous humor, thereby reducing ocular drug bioavailability, and are also involved in active drug elimination from the aqueous humor. An understanding of the influence on pharmacokinetics of drug transporters in the blood-aqueous humor barrier should help improve drug delivery and efficacy in the eye. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Functional analysis of candidate ABC transporter proteins for sitosterol transport

    DEFF Research Database (Denmark)

    Albrecht, C; Elliott, J I; Sardini, A;

    2002-01-01

    implicated in lipid movement and expressed in tissues with a role in sterol synthesis and absorption, might also be involved in sitosterol transport. Transport by the multidrug resistance P-glycoprotein (P-gp; Abcb1), the multidrug resistance-associated protein (Mrp1; Abcc1), the breast cancer resistance...... the absorption of sitosterol and related molecules in the intestine by pumping them back into the lumen. Although mutations altering ABCG5 and ABCG8 are found in affected patients, no functional demonstration of sitosterol transport has been achieved. In this study, we investigated whether other ABC transporters...

  15. Expression of Genes for Drug Transporters in the Human Female Genital Tract and Modulatory Effect of Antiretroviral Drugs.

    Directory of Open Access Journals (Sweden)

    Karolin Hijazi

    Full Text Available Anti-retroviral (ARV -based microbicides are one of the strategies pursued to prevent HIV-1 transmission. Delivery of ARV drugs to subepithelial CD4+ T cells at concentrations for protection is likely determined by drug transporters expressed in the cervicovaginal epithelium. To define the role of drug transporters in mucosal disposition of topically applied ARV-based microbicides, these must be tested in epithelial cell line-based biopharmaceutical assays factoring the effect of relevant drug transporters. We have characterised gene expression of influx and efflux drug transporters in a panel of cervicovaginal cell lines and compared this to expression in cervicovaginal tissue. We also investigated the effect of dapivirine, darunavir and tenofovir, currently at advanced stages of microbicides development, on expression of drug transporters in cell lines. Expression of efflux ABC transporters in cervical tissue was best represented in HeLa, Ect1/E6E7 and End1/E6E7 cell lines. Expression of influx OCT and ENT transporters in ectocervix matched expression in Hela while expression of influx SLCO transporters in vagina was best reflected in VK2/E6E7 cell line. Stimulation with darunavir and dapivirine upregulated MRP transporters, including MRP5 involved in transport of tenofovir. Dapivirine also significantly downregulated tenofovir substrate MRP4 in cervical cell lines. Treatment with darunavir and dapivirine showed no significant effect on expression of BCRP, MRP2 and P-glycoprotein implicated in efflux of different ARV drugs. Darunavir strongly induced expression in most cell lines of CNT3 involved in cell uptake of nucleotide/nucleoside analogue reverse transcriptase inhibitors and SLCO drug transporters involved in cell uptake of protease inhibitors. This study provides insight into the suitability of cervicovaginal cell lines for assessment of ARV drugs in transport kinetics studies. The modulatory effect of darunavir and dapivirine on

  16. From nose to brain: understanding transport capacity and transport rate of drugs.

    Science.gov (United States)

    Wu, Hongbing; Hu, Kaili; Jiang, Xinguo

    2008-10-01

    The unique relationship between nasal cavity and cranial cavity tissues in anatomy and physiology makes intranasal delivery to the brain feasible. An intranasal delivery provides some drugs with short channels to bypass the blood-brain barrier (BBB), especially for those with fairly low brain concentrations after a routine delivery, thus greatly enhancing the therapeutic effect on brain diseases. In the past two decades, a good number of encouraging outcomes have been reported in the treatment of diseases of the brain or central nervous system (CNS) through nasal administration. In spite of the significant merit of bypassing the BBB, direct nose-to-brain delivery still bears the problems of low efficiency and volume for capacity due to the limited volume of the nasal cavity, the small area ratio of olfactory mucosa to nasal mucosa and the limitations of low dose and short retention time of drug absorption. It is crucial that selective distribution and retention time of drugs or preparations on olfactory mucosa should be enhanced so as to increase the direct delivery efficiency. In this article, we first briefly review the nose-to-brain transport pathways, before detailing the impacts on them, followed by a comprehensive summary of effective methods, including formulation modification, agglutinant-mediated transport and a brain-homing, peptide-mediated delivery based on phage display screening technique, with a view to providing a theoretic reference for elevating the therapeutic effects on brain diseases.

  17. Drug: D00643 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D00643 Drug Quinidine polygalacturonate; Cardioquin (TN) C20H24N2O2. (C6H10O7)mon D00643.gif Antiarrhythmic...1B ANTIARRHYTHMICS, CLASS I AND III C01BA Antiarrhythmics, class Ia C01BA01 Quinidine D00643 Quinidine polyg...alacturonate USP drug classification [BR:br08302] Cardiovascular Agents Antiarrhythmics Quinidine D00643 Qui...nolines map07037 Antiarrhythmic drugs map07231 Sodium channel blocking drugs Anat...2A2 [HSA:6582], SLC22A1 [HSA:6580], SLC47A1 [HSA:55244], SCL47A2 [HSA:146802], ABCB1 [HSA:5243] map07025 Qui

  18. Enhancements and limits in drug membrane transport using supersaturated solutions of poorly water soluble drugs.

    Science.gov (United States)

    Raina, Shweta A; Zhang, Geoff G Z; Alonzo, David E; Wu, Jianwei; Zhu, Donghua; Catron, Nathaniel D; Gao, Yi; Taylor, Lynne S

    2014-09-01

    Amorphous solid dispersions (ASDs) give rise to supersaturated solutions (solution concentration greater than equilibrium crystalline solubility). We have recently found that supersaturating dosage forms can exhibit the phenomenon of liquid-liquid phase separation (LLPS). Thus, the high supersaturation generated by dissolving ASDs can lead to a two-phase system wherein one phase is an initially nanodimensioned and drug-rich phase and the other is a drug-lean continuous aqueous phase. Herein, the membrane transport of supersaturated solutions, at concentrations above and below the LLPS concentration has been evaluated using a side-by-side diffusion cell. Measurements of solution concentration with time in the receiver cell yield the flux, which reflects the solute thermodynamic activity in the donor cell. As the nominal concentration of solute in the donor cell increases, a linear increase in flux was observed up to the concentration where LLPS occurred. Thereafter, the flux remained essentially constant. Both nifedipine and felodipine solutions exhibit such behavior as long as crystallization is absent. This suggests that there is an upper limit in passive membrane transport that is dictated by the LLPS concentration. These results have several important implications for drug delivery, especially for poorly soluble compounds requiring enabling formulation technologies.

  19. Export of a single drug molecule in two transport cycles by a multidrug efflux pump.

    Science.gov (United States)

    Fluman, Nir; Adler, Julia; Rotenberg, Susan A; Brown, Melissa H; Bibi, Eitan

    2014-08-08

    Secondary multidrug transporters use ion concentration gradients to energize the removal from cells of various antibiotics. The Escherichia coli multidrug transporter MdfA exchanges a single proton with a single monovalent cationic drug molecule. This stoichiometry renders the efflux of divalent cationic drugs energetically unfavourable, as it requires exchange with at least two protons. Here we show that surprisingly, MdfA catalyses efflux of divalent cations, provided that they have a unique architecture: the two charged moieties must be separated by a long linker. These drugs are exchanged for two protons despite the apparent inability of MdfA to exchange two protons for a single drug molecule. Our results suggest that these drugs are transported in two consecutive transport cycles, where each cationic moiety is transported as if it were a separate substrate. We propose that secondary transport can adopt a processive-like mode of action, thus expanding the substrate spectrum of multidrug transporters.

  20. Modeling the transport of drugs eluted from stents: physical phenomena driving drug distribution in the arterial wall.

    Science.gov (United States)

    Bozsak, Franz; Chomaz, Jean-Marc; Barakat, Abdul I

    2014-04-01

    Despite recent data that suggest that the overall performance of drug-eluting stents (DES) is superior to that of bare-metal stents, the long-term safety and efficacy of DES remain controversial. The risk of late stent thrombosis associated with the use of DES has also motivated the development of a new and promising treatment option in recent years, namely drug-coated balloons (DCB). Contrary to DES where the drug of choice is typically sirolimus and its derivatives, DCB use paclitaxel since the use of sirolimus does not appear to lead to satisfactory results. Since both sirolimus and paclitaxel are highly lipophilic drugs with similar transport properties, the reason for the success of paclitaxel but not sirolimus in DCB remains unclear. Computational models of the transport of drugs eluted from DES or DCB within the arterial wall promise to enhance our understanding of the performance of these devices. The present study develops a computational model of the transport of the two drugs paclitaxel and sirolimus eluted from DES in the arterial wall. The model takes into account the multilayered structure of the arterial wall and incorporates a reversible binding model to describe drug interactions with the constituents of the arterial wall. The present results demonstrate that the transport of paclitaxel in the arterial wall is dominated by convection while the transport of sirolimus is dominated by the binding process. These marked differences suggest that drug release kinetics of DES should be tailored to the type of drug used.

  1. Contribution of Organic Anion-Transporting Polypeptides 1A/1B to Doxorubicin Uptake and Clearance.

    Science.gov (United States)

    Lee, Hannah H; Leake, Brenda F; Kim, Richard B; Ho, Richard H

    2017-01-01

    The organic anion-transporting polypeptides represent an important family of drug uptake transporters that mediate the cellular uptake of a broad range of substrates including numerous drugs. Doxorubicin is a highly efficacious and well-established anthracycline chemotherapeutic agent commonly used in the treatment of a wide range of cancers. Although doxorubicin is a known substrate for efflux transporters such as P-glycoprotein (P-gp; MDR1, ABCB1), significantly less is known regarding its interactions with drug uptake transporters. Here, we investigated the role of organic anion transporting polypeptide (OATP) transporters to the disposition of doxorubicin. A recombinant vaccinia-based method for expressing uptake transporters in HeLa cells revealed that OATP1A2, but not OATP1B1 or OATP1B3, and the rat ortholog Oatp1a4 were capable of significant doxorubicin uptake. Interestingly, transwell assays using Madin-Darby canine kidney II cell line cells stably expressing specific uptake and/or efflux transporters revealed that OATP1B1, OATP1B3, and OATP1A2, either alone or in combination with MDR1, significantly transported doxorubicin. An assessment of polymorphisms in SLCO1A2 revealed that four variants were associated with significantly impaired doxorubicin transport in vitro. In vivo doxorubicin disposition studies revealed that doxorubicin plasma area under the curve was significantly higher (1.7-fold) in Slco1a/1b(-/-) versus wild-type mice. The liver-to-plasma ratio of doxorubicin was significantly decreased (2.3-fold) in Slco1a/1b2(-/-) mice and clearance was reduced by 40% compared with wild-type mice, suggesting Oatp1b transporters are important for doxorubicin hepatic uptake. In conclusion, we demonstrate important roles for OATP1A/1B in transporter-mediated uptake and disposition of doxorubicin. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Inhibition of multixenobiotic resistance transporters (MXR) by silver nanoparticles and ions in vitro and in Daphnia magna

    NARCIS (Netherlands)

    Georgantzopoulou, Anastasia; Cambier, Sébastien; Serchi, Tommaso; Kruszewski, Marcin; Balachandran, Yekkuni L.; Grysan, Patrick; Audinot, Jean Nicolas; Ziebel, Johanna; Guignard, Cédric; Gutleb, Arno C.; Murk, Tinka

    2016-01-01

    The P-glycoprotein (P-gp, ABCB1) and multidrug resistance associated protein 1 (MRP1), important members of the ABC (ATP-binding cassette) transporters, protect cells and organisms via efflux of xenobiotics and are responsible for the phenomenon of multidrug or multixenobiotic resistance (MXR). I

  3. Growth Hormone Receptor Knockdown Sensitizes Human Melanoma Cells to Chemotherapy by Attenuating Expression of ABC Drug Efflux Pumps.

    Science.gov (United States)

    Basu, Reetobrata; Baumgaertel, Nicholas; Wu, Shiyong; Kopchick, John J

    2017-03-14

    Melanoma remains one of the most therapy-resistant forms of human cancer despite recent introductions of highly efficacious targeted therapies. The intrinsic therapy resistance of human melanoma is largely due to abundant expression of a repertoire of xenobiotic efflux pumps of the ATP-binding cassette (ABC) transporter family. Here, we report that GH action is a key mediator of chemotherapeutic resistance in human melanoma cells. We investigated multiple ABC efflux pumps (ABCB1, ABCB5, ABCB8, ABCC1, ABCC2, ABCG1, and ABCG2) reportedly associated with melanoma drug resistance in different human melanoma cells and tested the efficacy of five different anti-cancer compounds (cisplatin, doxorubicin, oridonin, paclitaxel, vemurafenib) with decreased GH action. We found that GH treatment of human melanoma cells upregulates expression of multiple ABC transporters and increases the EC50 of melanoma drug vemurafenib. Also, vemurafenib-resistant melanoma cells had upregulated levels of GH receptor (GHR) expression as well as ABC efflux pumps. GHR knockdown (KD) using siRNA in human melanoma cells treated with sub-EC50 doses of anti-tumor compounds resulted in significantly increased drug retention, decreased cell proliferation and increased drug efficacy, compared to mock-transfected controls. Our set of findings identify an unknown mechanism of GH regulation in mediating melanoma drug resistance and validates GHR as a unique therapeutic target for sensitizing highly therapy-resistant human melanoma cells to lower doses of anti-cancer drugs.

  4. Delineation on Therapeutic Significance of Transporters as Molecular Targets of Drugs

    Institute of Scientific and Technical Information of China (English)

    KANAI Yoshikat; HE Xin; LIU Chang-xiao

    2011-01-01

    Transporters are membrane proteins mediating permeation of organic and inorganic solutes through the plasma membrane and membranes of intracellular organella.They play essential roles in the epithelial absorption and cellular uptake of nutrients as well as absorption,distribution,metabolism,and excretion of drugs.Because transporters contribute to determining the distribution of compounds in the body in concert with metabolic/synthetic enzymes,the drugs that affect the functions of transporters are expected to alter the distribution of compounds in the body and to ameliorate disrupted homeostasis.In this context,drugs targeting transporters have been used clinically.Such drugs include antidepressants targeting monoamine transporters,diuretics targeting inorganic ion transporters of renal tubules,and uricosuric agents targeting renal urate transporters.Now new transporter-targeting drugs designed based on post-genome drug development strategy have been in the process of clinical trials or basic/clinical researches.For example,the inhibitors of renal Na/glucose cotransporter SGLT2 have been proved for their efficacy in the treatment of diabetes mellitus.The cancer L-type amino acid transporter 1(LAT1)has been considered as a target of cancer diagnosis and therapeutics.The transporter-targeting drugs are expected to provide new rationale in the therapeutics of various diseases.

  5. P-glycoprotein (ABCB1) activity decreases raltegravir disposition in primary CD4+P-gphigh cells and correlates with HIV-1 viral load

    Science.gov (United States)

    Minuesa, Gerard; Arimany-Nardi, Cristina; Erkizia, Itziar; Cedeño, Samandhy; Moltó, José; Clotet, Bonaventura; Pastor-Anglada, Marçal; Martinez-Picado, Javier

    2016-01-01

    Objectives To evaluate the role of P-glycoprotein (P-gp) and multidrug-resistant-protein 1 (MRP1) on raltegravir intracellular drug disposition in CD4+ T cells, investigate the effect of HIV-1 infection on P-gp expression and correlate HIV-1 viraemia with P-gp activity in primary CD4+ T cell subsets. Methods The cellular accumulation ratio of [3H]raltegravir was quantified in CD4+ T cell lines overexpressing either P-gp (CEM-P-gp) or MRP1 (CEM-MRP1) and in primary CD3+CD4+ T cells with high (P-gphigh) and low P-gp activity (P-gplow); inhibition of efflux transporters was confirmed by the intracellular retention of calcein-AM. The correlation of P-gp activity with HIV-1 viraemia was assessed in naive and memory T cell subsets from 21 HIV-1-infected treatment-naive subjects. Results [3H]Raltegravir cellular accumulation ratio decreased in CEM-P-gp cells (P < 0.0001). XR9051 (a P-gp inhibitor) and HIV-1 PIs reversed this phenomenon. Primary CD4+P-gphigh cells accumulated less raltegravir (38.4% ± 9.6%) than P-gplow cells, whereas XR9051 also reversed this effect. In vitro HIV-1 infection of PBMCs and stimulation of CD4+ T cells increased P-gp mRNA and P-gp activity, respectively, while primary CD4+P-gphigh T cells sustained a higher HIV-1 replication than P-gplow cells. A significant correlation between HIV-1 viraemia and P-gp activity was found in different CD4+ T cell subsets, particularly memory CD4+ T cells (r = 0.792, P < 0.0001). Conclusions Raltegravir is a substrate of P-gp in CD4+ T cells. Primary CD4+P-gphigh T cells eliminate intracellular raltegravir more readily than P-gplow cells and HIV-1 viraemia correlates with P-gp overall activity. Specific CD4+P-gphigh T cell subsets could facilitate the persistence of viral replication in vivo and ultimately promote the appearance of drug resistance. PMID:27334660

  6. Acquisition of docetaxel resistance in breast cancer cells reveals upregulation of ABCB1 expression as a key mediator of resistance accompanied by discrete upregulation of other specific genes and pathways

    DEFF Research Database (Denmark)

    Ninel Hansen, Stine; Westergaard, David; Borg Houlberg Thomsen, Mathilde

    2015-01-01

    to be prominent at higher docetaxel concentrations (second-phase response). Additional resistance mechanisms were indicated by gene expression profiling, including genes in the interferon-inducible protein family in MCF7RES and cancer testis antigen family in MDARES. Also, upregulated expression of various ABC...... resistance and thereby identify key molecular mechanisms and predictive molecular characteristics to docetaxel resistance. Two docetaxel-resistant cell lines, MCF7RES and MDARES, were generated from their respective parental cell lines MCF-7 and MDA-MB-231 by stepwise selection in docetaxel dose increments...... analysis singled out ABCB1, which encodes permeability glycoprotein (Pgp), as the top upregulated gene in both MCF7RES and MDARES. Functional validation revealed Pgp as a key resistance mediator at low docetaxel concentrations (first-phase response), whereas additional resistance mechanisms appeared...

  7. [Carboxyl nanodiamond as intracellular transporters of anticancer drug--podophyllotoxin].

    Science.gov (United States)

    Sun, Tao-Li; Wang, Bin; Peng, Yan; Ni, Jing-Man

    2013-01-01

    The purpose of this study is to investigate the intracellular transporters effect and the cytotoxicity of carboxyl nanodiamond (CND) - podophyllotoxin (PPT). Nanodiamond (ND) was treated with mixed carboxylic acid and finally got 64 nm CND by centrifugation, and then it was reacted with PPT to form CND-PPT. UV spectrophotometry was used to calculate the content of PPT in CND-PPT, the particle size distribution and zeta potential were measured by Dynamic laser scattering instrument. CND, PPT, CND-PPT and CND + PPT (physical mixture of CND and PPT) were characterized by Fourier transform infrared spectroscopy, at the same time, thermal analysis and element analysis were used to estimate the content of the PPT in CND-PPT. The affect of CND, PPT, CND-PPT on HeLa cell was measured with MTT assay. The results showed that content of PPT combined with CND accounted for about 10%. MTT assay showed that CND has low cytotoxicity and CND-PPT can increase the water soluble of PPT. As a conclusion, CND as a hydrophilic pharmaceutical carrier combined with PPT is able to increase the water solubility of PPT, at low concentration, CND-PPT can enhance the antitumor activity in comparison with PPT, so CND can be used as a potential anticancer drug carrier.

  8. The Role of the Actin Cytoskeleton and Lipid Rafts in the Localization and Function of the ABCC1 Transporter

    Directory of Open Access Journals (Sweden)

    Jan Willem Kok

    2014-01-01

    Full Text Available ATP-binding cassette (ABC transporters are known to be important factors in multidrug resistance of tumor cells. Lipid rafts have been implicated in their localization in the plasma membrane, where they function as drug efflux pumps. This specific localization in rafts may support the activity of ABC/Abc transporters. This raises questions regarding the nature and composition of the lipid rafts that harbor ABC/Abc transporters and the dependence of ABC/Abc transporters—concerning their localization and activity—on lipid raft constituents. Here we review our work of the past 10 years aimed at evaluating whether ABC/Abc transporters are dependent on a particular membrane environment for their function. What is the nature of this membrane environment and which of the lipid raft constituents are important for this dependency? It turns out that cortical actin is of major importance for stabilizing the localization and function of the ABC/Abc transporter, provided it is localized in an actin-dependent subtype of lipid rafts, as is the case for human ABCC1/multidrug resistance-related protein 1 (MRP1 and rodent Abcc1/Mrp1 but not human ABCB1/P-glycoprotein (PGP. On the other hand, sphingolipids do not appear to be modulators of ABCC1/MRP1 (or Abcc1/Mrp1, even though they are coregulated during drug resistance development.

  9. Exploiting Specific Interactions toward Next-Generation Polymeric Drug Transporters

    NARCIS (Netherlands)

    Wieczorek, Sebastian; Krause, Eberhard; Hackbarth, Steffen; Roeder, Beate; Hirsch, Anna K. H.; Boerner, Hans G.

    2013-01-01

    A generic method describes advanced tailoring of polymer drug carriers based on polymer-block-peptides. Combinatorial means are used to select suitable peptide segments to specifically complex small-molecule drugs. The resulting specific drug formulation agents render insoluble drugs water-soluble a

  10. A useful tool for drug interaction evaluation: The University of Washington Metabolism and Transport Drug Interaction Database

    Directory of Open Access Journals (Sweden)

    Hachad Houda

    2010-10-01

    Full Text Available Abstract The Metabolism and Transport Drug Interaction Database (http://www.druginteractioninfo.org is a web-based research and analysis tool developed in the Department of Pharmaceutics at the University of Washington. The database has the largest manually curated collection of data related to drug interactions in humans. The tool integrates information from the literature, public repositories, reference textbooks, guideline documents, product prescribing labels and clinical review sections of new drug approval (NDA packages. The database's easy-to-use web portal offers tools for visualisation, reporting and filtering of information. The database helps scientists to mine kinetics information for drug-metabolising enzymes and transporters, to assess the extent of in vivo drug interaction studies, as well as case reports for drugs, therapeutic proteins, food products and herbal derivatives. This review provides a brief description of the database organisation, its search functionalities and examples of use.

  11. Role of copper transporters in the uptake and efflux of platinum containing drugs.

    Science.gov (United States)

    Safaei, Roohangiz

    2006-03-08

    Cellular mechanisms for the uptake, intracellular distribution and efflux of the platinum (Pt) containing compounds cisplatin (DDP), carboplatin (CBDCA) and oxaliplatin (LOHP) are unknown. Current data suggest that specialized transporters/carriers mediate the transport of Pt drugs across the cellular membranes. Specific roles for the copper (Cu) transporters CTR1, ATP7A and ATP7B have been demonstrated during recent years. The finding that in cultured cells and tumor samples a correlation can be found between the expression of Cu transporters and the degree of the acquired resistance to Pt drug suggests that the Cu transporters are important constituents of the program that regulates sensitivity to Pt drugs. A model is presented that describes the function of Cu transporters in the regulation of Pt drug uptake and efflux.

  12. Quantitative Prediction of Human Renal Clearance and Drug-Drug Interactions of Organic Anion Transporter Substrates Using In Vitro Transport Data: A Relative Activity Factor Approach.

    Science.gov (United States)

    Mathialagan, Sumathy; Piotrowski, Mary A; Tess, David A; Feng, Bo; Litchfield, John; Varma, Manthena V

    2017-04-01

    Organic anion transporters (OATs) are important in the renal secretion, and thus, the clearance, of many drugs; and their functional change can result in pharmacokinetic variability. In this study, we applied transport rates measured in vitro using OAT-transfected human embryonic kidney cells to predict human renal secretory and total renal clearance of 31 diverse drugs. Selective substrates to OAT1 (tenofovir), OAT2 (acyclovir and ganciclovir), and OAT3 (benzylpenicillin, oseltamivir acid) were used to obtain relative activity factors (RAFs) for these individual transporters by relating in vitro transport clearance (after physiologic scaling) to in vivo secretory clearance. Using the estimated RAFs (0.64, 7.3, and 4.1, respectively, for OAT1, OAT2, and OAT3, respectively) and the in vitro active clearances, renal secretory clearance and total renal clearance were predicted with average fold errors (AFEs) of 1.89 and 1.40, respectively. The results show that OAT3-mediated transport play a predominant role in renal secretion for 22 of the 31 drugs evaluated. This mechanistic static approach was further applied to quantitatively predict renal drug-drug interactions (AFE ∼1.6) of the substrate drugs with probenecid, a clinical probe OAT inhibitor. In conclusion, the proposed in vitro-in vivo extrapolation approach is the first comprehensive attempt toward mechanistic modeling of renal secretory clearance based on routinely employed in vitro cell models.

  13. Targeting Receptors, Transporters and Site of Absorption to Improve Oral Drug Delivery

    Directory of Open Access Journals (Sweden)

    J.H. Hamman

    2007-01-01

    Full Text Available Although the oral route of drug administration is the most acceptable way of self-medication with a high degree of patient compliance, the intestinal absorption of many drugs is severely hampered by different biological barriers. These barriers comprise of biochemical and physical components. The biochemical barrier includes enzymatic degradation in the gastrointestinal lumen, brush border and in the cytoplasm of the epithelial cells as well as efflux transporters that pump drug molecules from inside the epithelial cell back to the gastrointestinal lumen. The physical barrier consists of the epithelial cell membranes, tight junctions and mucus layer. Different strategies have been applied to improve the absorption of drugs after oral administration, which range from chemical modification of drug molecules and formulation technologies to the targeting of receptors, transporters and specialized cells such as the gut-associated lymphoid tissues. This review focuses specifically on the targeting of receptor-mediated endocytosis, transporters and the absorption-site as methods of optimizing intestinal drug absorption. Intestinal epithelial cells express several nutrient transporters that can be targeted by modifying the drug molecule in such a way that it is recognized as a substrate. Receptor-mediated endocytosis is a transport mechanism that can be targeted for instance by linking a receptor substrate to the drug molecule of interest. Many formulation strategies exist for enhancing drug absorption of which one is to deliver drugs at a specific site in the gastrointestinal tract where optimum drug absorption takes place.

  14. Targeting receptors, transporters and site of absorption to improve oral drug delivery.

    Science.gov (United States)

    Hamman, J H; Demana, P H; Olivier, E I

    2007-01-01

    Although the oral route of drug administration is the most acceptable way of self-medication with a high degree of patient compliance, the intestinal absorption of many drugs is severely hampered by different biological barriers. These barriers comprise of biochemical and physical components. The biochemical barrier includes enzymatic degradation in the gastrointestinal lumen, brush border and in the cytoplasm of the epithelial cells as well as efflux transporters that pump drug molecules from inside the epithelial cell back to the gastrointestinal lumen. The physical barrier consists of the epithelial cell membranes, tight junctions and mucus layer. Different strategies have been applied to improve the absorption of drugs after oral administration, which range from chemical modification of drug molecules and formulation technologies to the targeting of receptors, transporters and specialized cells such as the gut-associated lymphoid tissues. This review focuses specifically on the targeting of receptor-mediated endocytosis, transporters and the absorption-site as methods of optimizing intestinal drug absorption. Intestinal epithelial cells express several nutrient transporters that can be targeted by modifying the drug molecule in such a way that it is recognized as a substrate. Receptor-mediated endocytosis is a transport mechanism that can be targeted for instance by linking a receptor substrate to the drug molecule of interest. Many formulation strategies exist for enhancing drug absorption of which one is to deliver drugs at a specific site in the gastrointestinal tract where optimum drug absorption takes place.

  15. Drug Transporter Expression and Activity in Human Hepatoma HuH-7 Cells

    Directory of Open Access Journals (Sweden)

    Elodie Jouan

    2016-12-01

    Full Text Available Human hepatoma cells may represent a valuable alternative to the use of human hepatocytes for studying hepatic drug transporters, which is now a regulatory issue during drug development. In the present work, we have characterized hepatic drug transporter expression, activity and regulation in human hepatoma HuH-7 cells, in order to determine the potential relevance of these cells for drug transport assays. HuH-7 cells displayed notable multidrug resistance-associated protein (MRP activity, presumed to reflect expression of various hepatic MRPs, including MRP2. By contrast, they failed to display functional activities of the uptake transporters sodium taurocholate co-transporting polypeptide (NTCP, organic anion-transporting polypeptides (OATPs and organic cation transporter 1 (OCT1, and of the canalicular transporters P-glycoprotein and breast cancer resistance protein (BCRP. Concomitantly, mRNA expressions of various sinusoidal and canalicular hepatic drug transporters were not detected (NTCP, OATP1B1, organic anion transporter 2 (OAT2, OCT1 and bile salt export pump or were found to be lower (OATP1B3, OATP2B1, multidrug and toxin extrusion protein 1, BCRP and MRP3 in hepatoma HuH-7 cells than those found in human hepatocytes, whereas other transporters such as OAT7, MRP4 and MRP5 were up-regulated. HuH-7 cells additionally exhibited farnesoid X receptor (FXR- and nuclear factor erythroid 2-related factor 2 (Nrf2-related up-regulation of some transporters. Such data indicate that HuH-7 cells, although expressing rather poorly some main hepatic drug transporters, may be useful for investigating interactions of drugs with MRPs, notably MRP2, and for studying FXR- or Nrf2-mediated gene regulation.

  16. Transporter-Enzyme Interplay: Deconvoluting Effects of Hepatic Transporters and Enzymes on Drug Disposition Using Static and Dynamic Mechanistic Models.

    Science.gov (United States)

    Varma, Manthena V; El-Kattan, Ayman F

    2016-07-01

    A large body of evidence suggests hepatic uptake transporters, organic anion-transporting polypeptides (OATPs), are of high clinical relevance in determining the pharmacokinetics of substrate drugs, based on which recent regulatory guidances to industry recommend appropriate assessment of investigational drugs for the potential drug interactions. We recently proposed an extended clearance classification system (ECCS) framework in which the systemic clearance of class 1B and 3B drugs is likely determined by hepatic uptake. The ECCS framework therefore predicts the possibility of drug-drug interactions (DDIs) involving OATPs and the effects of genetic variants of SLCO1B1 early in the discovery and facilitates decision making in the candidate selection and progression. Although OATP-mediated uptake is often the rate-determining process in the hepatic clearance of substrate drugs, metabolic and/or biliary components also contribute to the overall hepatic disposition and, more importantly, to liver exposure. Clinical evidence suggests that alteration in biliary efflux transport or metabolic enzymes associated with genetic polymorphism leads to change in the pharmacodynamic response of statins, for which the pharmacological target resides in the liver. Perpetrator drugs may show inhibitory and/or induction effects on transporters and enzymes simultaneously. It is therefore important to adopt models that frame these multiple processes in a mechanistic sense for quantitative DDI predictions and to deconvolute the effects of individual processes on the plasma and hepatic exposure. In vitro data-informed mechanistic static and physiologically based pharmacokinetic models are proven useful in rationalizing and predicting transporter-mediated DDIs and the complex DDIs involving transporter-enzyme interplay.

  17. Structural specificity of mucosal-cell transport and metabolism of peptide drugs: implication for oral peptide drug delivery

    Science.gov (United States)

    Bai, J. P.; Amidon, G. L.

    1992-01-01

    The brush border membrane of intestinal mucosal cells contains a peptide carrier system with rather broad substrate specificity and various endo- and exopeptidase activities. Small peptide (di-/tripeptide)-type drugs with or without an N-terminal alpha-amino group, including beta-lactam antibiotics and angiotensin-converting enzyme (ACE) inhibitors, are transported by the peptide transporter. Polypeptide drugs are hydrolyzed by brush border membrane proteolytic enzymes to di-/tripeptides and amino acids. Therefore, while the intestinal brush border membrane has a carrier system facilitating the absorption of di-/tripeptide drugs, it is a major barrier limiting oral availability of polypeptide drugs. In this paper, the specificity of peptide transport and metabolism in the intestinal brush border membrane is reviewed.

  18. Structural specificity of mucosal-cell transport and metabolism of peptide drugs: implication for oral peptide drug delivery

    Science.gov (United States)

    Bai, J. P.; Amidon, G. L.

    1992-01-01

    The brush border membrane of intestinal mucosal cells contains a peptide carrier system with rather broad substrate specificity and various endo- and exopeptidase activities. Small peptide (di-/tripeptide)-type drugs with or without an N-terminal alpha-amino group, including beta-lactam antibiotics and angiotensin-converting enzyme (ACE) inhibitors, are transported by the peptide transporter. Polypeptide drugs are hydrolyzed by brush border membrane proteolytic enzymes to di-/tripeptides and amino acids. Therefore, while the intestinal brush border membrane has a carrier system facilitating the absorption of di-/tripeptide drugs, it is a major barrier limiting oral availability of polypeptide drugs. In this paper, the specificity of peptide transport and metabolism in the intestinal brush border membrane is reviewed.

  19. Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design

    Science.gov (United States)

    Ishikawa, Toshihisa; Tamura, Ai; Saito, Hikaru; Wakabayashi, Kanako; Nakagawa, Hiroshi

    2005-10-01

    In the post-genome-sequencing era, emerging genomic technologies are shifting the paradigm for drug discovery and development. Nevertheless, drug discovery and development still remain high-risk and high-stakes ventures with long and costly timelines. Indeed, the attrition of drug candidates in preclinical and development stages is a major problem in drug design. For at least 30% of the candidates, this attrition is due to poor pharmacokinetics and toxicity. Thus, pharmaceutical companies have begun to seriously re-evaluate their current strategies of drug discovery and development. In that light, we propose that a transport mechanism-based design might help to create new, pharmacokinetically advantageous drugs, and as such should be considered an important component of drug design strategy. Performing enzyme- and/or cell-based drug transporter, interaction tests may greatly facilitate drug development and allow the prediction of drug-drug interactions. We recently developed methods for high-speed functional screening and quantitative structure-activity relationship analysis to study the substrate specificity of ABC transporters and to evaluate the effect of genetic polymorphisms on their function. These methods would provide a practical tool to screen synthetic and natural compounds, and these data can be applied to the molecular design of new drugs. In this review article, we present an overview on the genetic polymorphisms of human ABC transporter ABCG2 and new camptothecin analogues that can circumvent AGCG2-associated multidrug resistance of cancer.

  20. Pharmacogenetics of drug-induced birth defects : the role of polymorphisms of placental transporter proteins

    NARCIS (Netherlands)

    Daud, Aizati N. A.; Bergman, Jorieke E. H.; Bakker, Marian K.; Wang, Hao; de Walle, Hermien E. K.; Plosch, Torsten; Wilffert, Bob

    2014-01-01

    One of the ongoing issues in perinatal medicine is the risk of birth defects associated with maternal drug use. The teratogenic effect of a drug depends, apart from other factors, on the exposition of the fetus to the drug. Transporter proteins are known to be involved in the pharmacokinetics of dru

  1. Biochemical interaction of anti-HCV telaprevir with the ABC transporters P-glycoprotein and breast cancer resistance protein.

    Science.gov (United States)

    Fujita, Yuria; Noguchi, Kohji; Suzuki, Tomonori; Katayama, Kazuhiro; Sugimoto, Yoshikazu

    2013-11-06

    The ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp)/ABCB1 and breast cancer resistance protein (BCRP)/ABCG2 are involved in the intestinal absorption and renal excretion of various substrate drugs. Their activities affect sub-therapeutic drug concentrations and excretion of natural transporter substrates. The new oral anti-HCV drug telaprevir has dramatically improved the efficacy of hepatitis-C virus (HCV) treatment, and recent studies have suggested a possible pharmacological interaction between telaprevir and P-gp. We studied the kinetics of in vitro interactions between telaprevir and P-gp and BCRP to understand the molecular basis of that interaction. The effect of telaprevir on P-gp- and BCRP-mediated transport was evaluated by an in vitro vesicle transporter assay using different transport substrates, and the kinetics of transporter inhibition was determined. The results showed that telaprevir could inhibit P-gp- and BCRP-mediated transport in the in vitro vesicle transport assay, with each IC50 values of ≈ 7 μmol/L and ≈ 30 μmol/L, respectively. Analyses of Lineweaver-Burk plots showed that telaprevir was likely to be a competitive inhibitor against P-gp and BCRP. Photoaffinity labeling experiments were employed to observe competitive inhibition by telaprevir using iodoarylazidoprazosin (IAAP) as a binding substrate for P-gp and BCRP. These experiments revealed that telaprevir inhibited [125I]-IAAP-binding with P-gp and BCRP. Telaprevir competitively inhibited P-gp and BCRP, and P-gp-mediated transport was more sensitive to telaprevir compared with BCRP-mediated transport. These data suggest that telaprevir represses the transporter functions of P-gp and BCRP via direct inhibition.

  2. Assessment of drug metabolism enzyme and transporter pharmacogenetics in drug discovery and early development: perspectives of the I-PWG.

    Science.gov (United States)

    Brian, William; Tremaine, Larry M; Arefayene, Million; de Kanter, Ruben; Evers, Raymond; Guo, Yingying; Kalabus, James; Lin, Wen; Loi, Cho-Ming; Xiao, Guangqing

    2016-04-01

    Genetic variants of drug metabolism enzymes and transporters can result in high pharmacokinetic and pharmacodynamic variability, unwanted characteristics of efficacious and safe drugs. Ideally, the contributions of these enzymes and transporters to drug disposition can be predicted from in vitro experiments and in silico modeling in discovery or early development, and then be utilized during clinical development. Recently, regulatory agencies have provided guidance on the preclinical investigation of pharmacogenetics, for application to clinical drug development. This white paper summarizes the results of an industry survey conducted by the Industry Pharmacogenomics Working Group on current practice and challenges with using in vitro systems and in silico models to understand pharmacogenetic causes of variability in drug disposition.

  3. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls

    KAUST Repository

    Hossain, Shaolie S.

    2011-08-20

    The majority of heart attacks occur when there is a sudden rupture of atherosclerotic plaque, exposing prothrombotic emboli to coronary blood flow, forming clots that can cause blockages of the arterial lumen. Diseased arteries can be treated with drugs delivered locally to vulnerable plaques. The objective of this work was to develop a computational tool-set to support the design and analysis of a catheter-based nanoparticulate drug delivery system to treat vulnerable plaques and diffuse atherosclerosis. A threedimensional mathematical model of coupled mass transport of drug and drug-encapsulated nanoparticles was developed and solved numerically utilizing isogeometric finite element analysis. Simulations were run on a patient-specific multilayered coronary artery wall segment with a vulnerable plaque and the effect of artery and plaque inhomogeneity was analyzed. The method captured trends observed in local drug delivery and demonstrated potential for optimizing drug design parameters, including delivery location, nanoparticle surface properties, and drug release rate. © Springer-Verlag 2011.

  4. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls

    Science.gov (United States)

    Hossain, Shaolie S.; Hossainy, Syed F. A.; Bazilevs, Yuri; Calo, Victor M.; Hughes, Thomas J. R.

    2012-02-01

    The majority of heart attacks occur when there is a sudden rupture of atherosclerotic plaque, exposing prothrombotic emboli to coronary blood flow, forming clots that can cause blockages of the arterial lumen. Diseased arteries can be treated with drugs delivered locally to vulnerable plaques. The objective of this work was to develop a computational tool-set to support the design and analysis of a catheter-based nanoparticulate drug delivery system to treat vulnerable plaques and diffuse atherosclerosis. A three-dimensional mathematical model of coupled mass transport of drug and drug-encapsulated nanoparticles was developed and solved numerically utilizing isogeometric finite element analysis. Simulations were run on a patient-specific multilayered coronary artery wall segment with a vulnerable plaque and the effect of artery and plaque inhomogeneity was analyzed. The method captured trends observed in local drug delivery and demonstrated potential for optimizing drug design parameters, including delivery location, nanoparticle surface properties, and drug release rate.

  5. Induction of Drug Transporters Alters Disposition of Risperidone - A Study in Mice

    Directory of Open Access Journals (Sweden)

    David Holthoewer

    2010-06-01

    Full Text Available Pharmacokinetic interactions, e.g. modulation of drug transporters like P-glycoprotein at the blood-brain barrier, can be a reason for treatment non-response. This study focuses on the influence of induction of drug transporters on the disposition of the antipsychotic drugs risperidone and 9-hydroxyrisperidone. Brain and serum concentrations of risperidone and its active metabolite 9-hydroxyrisperidone, which are known P-glycoprotein substrates, were measured after drug transporter induction with rifampicin, dexamethasone or 5-pregnene-3beta-ol-20-on-16alpha-carbonitrile using high performance liquid chromatography. Disposition of risperidone and 9-hydroxyrisperidone was dramatically decreased in mouse brain and serum after drug transporter induction. The metabolism of risperidone was also affected.

  6. Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs.

    Science.gov (United States)

    Safaei, Roohangiz; Howell, Stephen B

    2005-01-01

    Recent studies have demonstrated that the major Cu influx transporter CTR1 regulates tumor cell uptake of cisplatin (DDP), carboplatin (CBDCA) and oxaliplatin (L-OHP), and that the two Cu efflux transporters ATP7A and ATP7B regulate the efflux of these drugs. Evidence for the concept that these platinum (Pt) drugs enter cells and are distributed to various subcellular compartments via transporters that have evolved to manage Cu homeostasis includes the demonstration of: (1) bidirectional cross-resistance between cells selected for resistance to either the Pt drugs or Cu; (2) parallel changes in the transport of Pt and Cu drugs in resistant cells; (3) altered cytotoxic sensitivity and Pt drug accumulation in cells transfected with Cu transporters; and (4) altered expression of Cu transporters in Pt drug-resistant tumors. Appreciation of the role of the Cu transporters in the development of resistance to DDP, CBDCA, and L-OHP offers novel insights into strategies for preventing or reversing resistance to this very important family of anticancer drugs.

  7. Di/tri-peptide transporters as drug delivery targets

    DEFF Research Database (Denmark)

    Nielsen, C U; Brodin, Birger

    2003-01-01

    . PepT1-mediated transport is up-regulated by short-term exposure to receptor agonists such as EGF, insulin, leptin, and clonidine, and down-regulated by VIP. Overall, the regulation of di/tri-peptide transport may be contributed to 1) changes in apical proton-motive force 2) recruitment of di...

  8. Interaction of BDE-47 and its Hydroxylated Metabolite 6-OH-BDE-47 with the Human ABC Efflux Transporters P-gp and BCRP: Considerations for Human Exposure and Risk Assessment

    Science.gov (United States)

    ATP binding cassette (ABC) transporters, including P-glycoprotein (P-gp; also known as MDR1, ABCB1) and breast cancer resistance protein (BCRP; also known as ABCG2), are membrane-bound proteins that mediate the cellular efflux of xenobiotics as an important defense against chemic...

  9. A critical role of a carboxylate in proton conduction by the ATP-binding cassette multidrug transporter LmrA.

    Science.gov (United States)

    Shilling, Richard; Federici, Luca; Walas, Fabien; Venter, Henrietta; Velamakanni, Saroj; Woebking, Barbara; Balakrishnan, Lekshmy; Luisi, Ben; van Veen, Hendrik W

    2005-10-01

    The ATP binding cassette (ABC) transporter LmrA from the bacterium Lactococcus lactis is a homolog of the human multidrug resistance P-glycoprotein (ABCB1), the activity of which impairs the efficacy of chemotherapy. In a previous study, LmrA was shown to mediate ethidium efflux by an ATP-dependent proton-ethidium symport reaction in which the carboxylate E314 is critical. The functional importance of this key residue for ABC proteins was suggested by its conservation in a wider family of related transporters; however, the structural basis of its role was not apparent. Here, we have used homology modeling to define the structural environment of E314. The residue is nested in a hydrophobic environment that probably elevates its pKa, accounting for the pH dependency of drug efflux that we report in this work. Functional analyses of wild-type and mutant proteins in cells and proteoliposomes support our proposal for the mechanistic role of E314 in proton-coupled ethidium transport. As the carboxylate is known to participate in proton translocation by secondary-active transporters, our observations suggest that this substituent can play a similar role in the activity of ABC transporters.

  10. Prenatal endotoxemia and placental drug transport in the mouse: placental size-specific effects.

    Directory of Open Access Journals (Sweden)

    Enrrico Bloise

    Full Text Available Lipopolysaccharide (LPS in high doses inhibits placental multidrug resistance P-glycoprotein (P-gp--Abcb1a/b and breast cancer resistance protein (BCRP--Abcg2. This potentially impairs fetal protection against harmful factors in the maternal circulation. However, it is unknown whether LPS exposure, at doses that mimic sub-lethal clinical infection, alters placental multidrug resistance. We hypothesized that sub-lethal (fetal LPS exposure reduces placental P-gp activity. Acute LPS (n = 19;150 µg/kg; ip or vehicle (n = 19 were given to C57BL/6 mice at E15.5 and E17.5. Placentas and fetal-units were collected 4 and 24 h following injection. Chronic LPS (n = 6; 5 µg/kg/day; ip or vehicle (n = 5 were administered from E11.5-15.5 and tissues were collected 4 h after final treatment. P-gp activity was assessed by [³H]digoxin accumulation. Placental Abcb1a/b, Abcg2, interleukin-6 (Il-6, Tnf-α, Il-10 and toll-like receptor-4 (Tlr-4 mRNA were measured by qPCR. Maternal plasma IL-6 was determined. At E15.5, maternal IL-6 was elevated 4 h after single (p<0.001 and chronic (p<0.05 LPS, but levels had returned to baseline by 24 h. Placental Il-6 mRNA was also increased after acute and chronic LPS treatments (p<0.05, whereas Abcb1a/b and Abcg2 mRNA were unaffected. However, fetal [³H]digoxin accumulation was increased (p<0.05 4 h after acute LPS, and maternal [³H]digoxin myocardial accumulation was increased (p<0.05 in mice exposed to chronic LPS treatments. There was a negative correlation between fetal [³H]digoxin accumulation and placental size (p<0.0001. Acute and chronic sub-lethal LPS exposure resulted in a robust inflammatory response in the maternal systemic circulation and placenta. Acute infection decreased placental P-gp activity in a time- and gestational age-dependent manner. Chronic LPS decreased P-gp activity in the maternal myocardium and there was a trend for fetuses with smaller placentas to accumulate more P

  11. 76 FR 59574 - Procedures for Transportation Workplace Drug and Alcohol Testing Programs: Federal Drug Testing...

    Science.gov (United States)

    2011-09-27

    ... Alcohol Testing Programs: Federal Drug Testing Custody and Control Form; Technical Amendment AGENCY... of a new Federal Drug Testing Custody and Control Form (CCF) in its drug testing program. Use of the... amendment to its drug testing procedures by amending a provision of the rule which was inadvertently omitted...

  12. Polyester-Based, Biodegradable Core-Multishell Nanocarriers for the Transport of Hydrophobic Drugs

    Directory of Open Access Journals (Sweden)

    Karolina A. Walker

    2016-05-01

    Full Text Available A water-soluble, core-multishell (CMS nanocarrier based on a new hyperbranched polyester core building block was synthesized and characterized towards drug transport and degradation of the nanocarrier. The hydrophobic drug dexamethasone was encapsulated and the enzyme-mediated biodegradability was investigated by NMR spectroscopy. The new CMS nanocarrier can transport one molecule of dexamethasone and degrades within five days at a skin temperature of 32 °C to biocompatible fragments.

  13. Increasing BMI is associated with reduced expression of P-glycoprotein (ABCB1 gene) in the human brain with a stronger association in African Americans than Caucasians

    DEFF Research Database (Denmark)

    2016-01-01

    The efflux pump, p-glycoprotein, controls bioavailability and excretion of pharmaceutical compounds. In the blood-brain barrier, p-glycoprotein regulates the delivery of pharmaceutical substances to the brain, influencing efficacy and side effects for some drugs notably antipsychotics. Common sid...... online publication, 29 November 2016; doi:10.1038/tpj.2016.74....

  14. Excitatory amino acid transporters as potential drug targets

    DEFF Research Database (Denmark)

    Bunch, Lennart; Erichsen, Mette Navy; Jensen, Anders Asbjørn

    2009-01-01

    BACKGROUND: Excitatory amino acid transporters (EAATs) are transmembrane proteins responsible for the uptake of (S)-glutamate (Glu) from the synaptic cleft, thereby terminating the glutamatergic neurotransmitter signal. Today five subtypes have been identified. Except for EAAT2, their individual...

  15. Elucidation of common pharmacophores from analysis of targeted metabolites transported by the multispecific drug transporter-Organic anion transporter1 (Oat1).

    Science.gov (United States)

    Kouznetsova, Valentina L; Tsigelny, Igor F; Nagle, Megha A; Nigam, Sanjay K

    2011-06-01

    Organic anion transporter 1 (Oat1), first identified as NKT, is a multispecific transporter responsible for the handling of drugs and toxins in the kidney and choroid plexus, but its normal physiological role appears to be in small molecule metabolite regulation. Metabolites transported by Oat1 and which are altered in the blood and urine of the murine Oat1 knockout, may serve as templates for further drug design. This may lead to better tissue targeting of drugs or design of Oat1 inhibitors that prolong the half-life of current drugs. Due to the multispecificity of the transporter, 19 of known targeted metabolites have different chemical structures and properties that make constructing a common pharmacophore model difficult. Here we propose an approach that clustered the metabolites into four distinct groups which allowed for the construction of a consensus pharmacophore for each cluster. The screening of commercial molecular databases determined the top candidates whose interaction with Oat1 was confirmed in an experimental model of organic anion transport. Thus, these candidate selections represent potential molecules for further drug design.

  16. Assembly & Transport Mechanism of Tripartite Drug Efflux Systems

    OpenAIRE

    Misra, Rajeev; Bavro, Vassiliy N.

    2009-01-01

    Multidrug efflux (MDR) pumps remove a variety of compounds from the cell into the external environment. There are five different classes of MDR pumps in bacteria, and quite often a single bacterial species expresses multiple classes of pumps. Although under normal circumstances MDR pumps confer low-level intrinsic resistance to drugs, the presence of drugs and mutations in regulatory genes lead to high level expression of MDR pumps that can pose problems with therapeutic treatments. This revi...

  17. Metabolism of ATP-binding cassette drug transporter inhibitors: complicating factor for multidrug resistance.

    NARCIS (Netherlands)

    Cnubben, N.H.; Wortelboer, H.M.; Zanden, J.J. van; Rietjens, I.M.; Bladeren, P.J. van

    2005-01-01

    Membrane transport proteins belonging to the ATP-binding cassette (ABC) family of transport proteins play a central role in the defence of organisms against toxic compounds, including anticancer drugs. However, for compounds that are designed to display a toxic effect, this defence system diminishes

  18. Drug trafficking in mice: In vivo functions of OATP uptake and ABC efflux transporters

    NARCIS (Netherlands)

    Iusuf, D.

    2013-01-01

    In recent years, there has been increasing attention for drug uptake transporters of the Organic Anion-Transporting Polypeptide (human OATP, mouse Oatp, gene names SLCO, Slco) superfamily. Especially the OATP1A and OATP1B subfamilies turn out to have important physiological and pharmacological

  19. Drugs, ionophoric peptides, and steroids as substrates of the yeast multidrug transporter Pdr5p

    NARCIS (Netherlands)

    Kolaczkowski, M; vanderRest, M; CybularzKolaczkowska, A; Soumillion, JP; Konings, WN; Goffeau, A

    1996-01-01

    Pdr5p is the yeast Saccharomyces cerevisiae ATP-binding cassette transporter conferring resistance to several unrelated drugs. Its high overproduction in Pdr1p transcription factor mutants allows us to study the molecular mechanism of multidrug transport and substrate specificity. We have developed

  20. Ex vivo preparations of human tissue for drug metabolism, toxicity and transport

    NARCIS (Netherlands)

    Groothuis, Genoveva

    2012-01-01

    Before new drugs are allowed on the market, their safety and metabolite profile should be extensively tested, as often reactive metabolites are the ultimate toxicant. The exposure of the target cell to the drug and its metabolites is determined by the expression levels of the transporters and the me

  1. Beauvericin counteracted multi-drug resistant Candida albicans by blocking ABC transporters

    DEFF Research Database (Denmark)

    Tong, Yaojun; Liu, Mei; Zhang, Yu

    2016-01-01

    screening and whole-cell based mechanism study, identified a natural product, beauvericin (BEA) as a drug efflux pump modulator, which can reverse the multi-drug resistant phenotype of Candida albicans by specifically blocking the ATP-binding cassette (ABC) transporters; meantime, BEA alone has fungicidal...

  2. Pharmacogenetics of drug-induced birth defects: the role of polymorphisms of placental transporter proteins.

    Science.gov (United States)

    Daud, Aizati N A; Bergman, Jorieke E H; Bakker, Marian K; Wang, Hao; de Walle, Hermien E K; Plösch, Torsten; Wilffert, Bob

    2014-05-01

    One of the ongoing issues in perinatal medicine is the risk of birth defects associated with maternal drug use. The teratogenic effect of a drug depends, apart from other factors, on the exposition of the fetus to the drug. Transporter proteins are known to be involved in the pharmacokinetics of drugs and have an effect on drug level and fetal drug exposure. This condition may subsequently alter the risk of teratogenicity, which occurs in a dose-dependent manner. This review focuses on the clinically important polymorphisms of transporter proteins and their effects on the mRNA and protein expression in placental tissue. We also propose a novel approach on how the different genotypes of the polymorphism can be translated into phenotypes to facilitate genetic association studies. The last section looks into the recent studies exploring the association between P-glycoprotein polymorphisms and the risk of fetal birth defects associated with medication use during pregnancy.

  3. Multiple Drug Transporters Are Involved in Renal Secretion of Entecavir.

    Science.gov (United States)

    Yang, Xi; Ma, Zhiyuan; Zhou, Sisi; Weng, Yayun; Lei, Hongmei; Zeng, Su; Li, Liping; Jiang, Huidi

    2016-10-01

    Entecavir (ETV) is a first-line antiviral agent for the treatment of chronic hepatitis B virus infection. Renal excretion is the major elimination path of ETV, in which tubular secretion plays the key role. However, the secretion mechanism has not been clarified. We speculated that renal transporters mediated the secretion of ETV. Therefore, the aim of our study was to elucidate which transporters contribute to the renal disposition of ETV. Our results revealed that ETV (50 μM) remarkably reduced the accumulation of probe substrates in MDCK cells stably expressing human multidrug and toxin efflux extrusion proteins (hMATE1/2-K), organic cation transporter 2 (hOCT2), and carnitine/organic cation transporters (hOCTNs) and increased the substrate accumulation in cells transfected with multidrug resistance-associated protein 2 (hMRP2) or multidrug resistance protein 1 (hMDR1). Moreover, ETV was proved to be a substrate of the above-described transporters. In transwell studies, the transport of ETV in MDCK-hOCT2-hMATE1 showed a distinct directionality from BL (hOCT2) to AP (hMATE1), and the cellular accumulation of ETV in cells expressing hMATE1 was dramatically lower than that of the mock-treated cells. The accumulation of ETV in mouse primary renal tubular cells was obviously affected by inhibitors of organic anion transporter 1/3 (Oat1/3), Oct2, Octn1/2, and Mrp2. Therefore, the renal uptake of ETV is likely mediated by OAT1/3 and OCT2 while the efflux is mediated by MATEs, MDR1, and MRP2, and OCTN1/2 may participate in both renal secretion and reabsorption. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Protonation of a Glutamate Residue Modulates the Dynamics of the Drug Transporter EmrE

    OpenAIRE

    Gayen, Anindita; Leninger, Maureen; Traaseth, Nathaniel J.

    2016-01-01

    Secondary active transport proteins play a central role in conferring bacterial multidrug resistance. In this work, we investigated the proton-coupled transport mechanism for the Escherichia coli drug efflux pump EmrE using nuclear magnetic resonance (NMR) spectroscopy. Our results show that the global conformational motions necessary for transport are modulated in an allosteric fashion by the protonation state of a membrane-embedded glutamate residue. These observations directly correlate wi...

  5. Protonation of a Glutamate Residue Modulates the Dynamics of the Drug Transporter EmrE

    OpenAIRE

    Gayen, Anindita; Leninger, Maureen; Traaseth, Nathaniel J.

    2016-01-01

    Secondary active transport proteins play a central role in conferring bacterial multidrug resistance. In this work, we investigated the proton-coupled transport mechanism for the Escherichia coli drug efflux pump EmrE using nuclear magnetic resonance (NMR) spectroscopy. Our results show that the global conformational motions necessary for transport are modulated in an allosteric fashion by the protonation state of a membrane-embedded glutamate residue. These observations directly correlate wi...

  6. Binding and inhibition of drug transport proteins by heparin: a potential drug transporter modulator capable of reducing multidrug resistance in human cancer cells.

    Science.gov (United States)

    Chen, Yunliang; Scully, Michael; Petralia, Gloria; Kakkar, Ajay

    2014-01-01

    A major problem in cancer treatment is the development of resistance to chemotherapeutic agents, multidrug resistance (MDR), associated with increased activity of transmembrane drug transporter proteins which impair cytotoxic treatment by rapidly removing the drugs from the targeted cells. Previously, it has been shown that heparin treatment of cancer patients undergoing chemotherapy increases survival. In order to determine whether heparin is capable reducing MDR and increasing the potency of chemotherapeutic drugs, the cytoxicity of a number of agents toward four cancer cell lines (a human enriched breast cancer stem cell line, two human breast cancer cell lines, MCF-7 and MDA-MB-231, and a human lung cancer cell line A549) was tested in the presence or absence of heparin. Results demonstrated that heparin increased the cytotoxicity of a range of chemotherapeutic agents. This effect was associated with the ability of heparin to bind to several of the drug transport proteins of the ABC and non ABC transporter systems. Among the ABC system, heparin treatment caused significant inhibition of the ATPase activity of ABCG2 and ABCC1, and of the efflux function observed as enhanced intracellular accumulation of specific substrates. Doxorubicin cytoxicity, which was enhanced by heparin treatment of MCF-7 cells, was found to be under the control of one of the major non-ABC transporter proteins, lung resistance protein (LRP). LRP was also shown to be a heparin-binding protein. These findings indicate that heparin has a potential role in the clinic as a drug transporter modulator to reduce multidrug resistance in cancer patients.

  7. Inhibition or knockdown of ABC transporters enhances susceptibility of adult and juvenile schistosomes to Praziquantel.

    Directory of Open Access Journals (Sweden)

    Ravi S Kasinathan

    2014-10-01

    Full Text Available Parasitic flatworms of the genus Schistosoma cause schistosomiasis, a neglected tropical disease that affects hundreds of millions. Treatment of schistosomiasis depends almost entirely on the drug praziquantel (PZQ. Though essential to treating and controlling schistosomiasis, a major limitation of PZQ is that it is not active against immature mammalian-stage schistosomes. Furthermore, there are reports of field isolates with heritable reductions in PZQ susceptibility, and researchers have selected for PZQ-resistant schistosomes in the laboratory. P-glycoprotein (Pgp; ABCB1 and other ATP binding cassette (ABC transporters remove a wide variety of toxins and xenobiotics from cells, and have been implicated in multidrug resistance (MDR. Changes in ABC transporter structure or expression levels are also associated with reduced drug susceptibility in parasitic helminths, including schistosomes. Here, we show that the activity of PZQ against schistosome adults and juveniles ex vivo is potentiated by co-administration of either the highly potent Pgp inhibitor tariquidar or combinations of inhibitors targeting multiple ABC multidrug transporters. Adult worms exposed to sublethal PZQ concentrations remain active, but co-administration of ABC transporter inhibitors results in complete loss of motility and disruption of the tegument. Notably, juvenile schistosomes (3-4 weeks post infection, normally refractory to 2 µM PZQ, become paralyzed when transporter inhibitors are added in combination with the PZQ. Experiments using the fluorescent PZQ derivative (R-PZQ-BODIPY are consistent with the transporter inhibitors increasing effective intraworm concentrations of PZQ. Adult worms in which expression of ABC transporters has been suppressed by RNA interference show increased responsiveness to PZQ and increased retention of (R-PZQ-BODIPY consistent with an important role for these proteins in setting levels of PZQ susceptibility. These results indicate that

  8. Schisandra chinensis regulates drug metabolizing enzymes and drug transporters via activation of Nrf2-mediated signaling pathway

    Directory of Open Access Journals (Sweden)

    He JL

    2014-12-01

    Full Text Available Jin-Lian He,1 Zhi-Wei Zhou,2,3 Juan-Juan Yin,2 Chang-Qiang He,1 Shu-Feng Zhou,2,3 Yang Yu1 1College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China Abstract: Drug metabolizing enzymes (DMEs and drug transporters are regulated via epigenetic, transcriptional, posttranscriptional, and translational and posttranslational modifications. Phase I and II DMEs and drug transporters play an important role in the disposition and detoxification of a large number of endogenous and exogenous compounds. The nuclear factor (erythroid-derived 2-like 2 (Nrf2 is a critical regulator of a variety of important cytoprotective genes that are involved in disposition and detoxification of xenobiotics. Schisandra chinensis (SC is a commonly used traditional Chinese herbal medicine that has been primarily used to protect the liver because of its potent antioxidative and anti-inflammatory activities. SC can modulate some DMEs and drug transporters, but the underlying mechanisms are unclear. In this study, we aimed to explore the role of Nrf2 in the regulatory effect of SC extract (SCE on selected DMEs and drug transporters in human hepatocellular liver carcinoma cell line (HepG2 cells. The results showed that SCE, schisandrin A, and schisandrin B significantly increased the expression of NAD(PH: Nicotinamide Adenine Dinucleotide Phosphate-oxidase or:quinone oxidoreductase 1, heme oxygenase-1, glutamate–cysteine ligase, and glutathione S-transferase A4 at both transcriptional and posttranscriptional levels. Incubation of HepG2 cells with SCE resulted in a significant

  9. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies.

    Science.gov (United States)

    Li, Wen; Zhang, Han; Assaraf, Yehuda G; Zhao, Kun; Xu, Xiaojun; Xie, Jinbing; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-07-01

    Multidrug resistance is a key determinant of cancer chemotherapy failure. One of the major causes of multidrug resistance is the enhanced efflux of drugs by membrane ABC transporters. Targeting ABC transporters projects a promising approach to eliminating or suppressing drug resistance in cancer treatment. To reveal the functional mechanisms of ABC transporters in drug resistance, extensive studies have been conducted from identifying drug binding sites to elucidating structural dynamics. In this review article, we examined the recent crystal structures of ABC proteins to depict the functionally important structural elements, such as domains, conserved motifs, and critical amino acids that are involved in ATP-binding and drug efflux. We inspected the drug-binding sites on ABC proteins and the molecular mechanisms of various substrate interactions with the drug binding pocket. While our continuous battle against drug resistance is far from over, new approaches and technologies have emerged to push forward our frontier. Most recent developments in anti-MDR strategies include P-gp inhibitors, RNA-interference, nano-medicines, and delivering combination strategies. With the advent of the 'Omics' era - genomics, epigenomics, transcriptomics, proteomics, and metabolomics - these disciplines play an important role in fighting the battle against chemoresistance by further unraveling the molecular mechanisms of drug resistance and shed light on medical therapies that specifically target MDR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Drug: D08458 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available inchona calisaya [TAX:153742], Cinchona succirubra, Cinchona calisaya Antiarrhythmic; Antiprotozoal, Antimal...arial Same as: C06527 ATC code: C01BA01 Class I antiarrhythmic agent (Ia) voltage-gated sodium channel (SCN1...5244], SCL47A2 [HSA:146802], ABCB1 [HSA:5243] map07025 Quinolines map07037 Antiarrhythmic drugs map07231 Sod...br08303] C CARDIOVASCULAR SYSTEM C01 CARDIAC THERAPY C01B ANTIARRHYTHMICS, CLASS I AND III C01BA Antiarrhythmic...BR:br08302] Cardiovascular Agents Antiarrhythmics Quinidine D08458 Quinidine (BAN) Target-based classificati

  11. Drug: D00619 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available (TN); Verelan (TN) C27H38N2O4. HCl 490.2598 491.0626 D00619.gif Anti-anginal; Cardiac depressant [anti-arrhythmic...] Therapeutic category: 2129 2171 ATC code: C08DA01 Class IV antiarrhythmic agent calcium channel L ty...on: ABCB1 [HSA:5243], ABCB4 [HSA:5244], SLC22A3 [HSA:6581] map07036 Calcium channel blocking drugs map07037 Antiarrhythmic...n [BR:br08301] 2 Agents affecting individual organs 21 Cardiovascular agents 212 Antiarrhythmic agents 2129

  12. Drug: D08459 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available e; Natisedine (TN) C20H24N2O2. C12H12N2O3 556.2686 556.652 D08459.gif Antiarrhythmic; Antiprotozoal, antimal...:55244], SCL47A2 [HSA:146802], ABCB1 [HSA:5243] map07025 Quinolines map07037 Antiarrhythmic drugs map07231 S...LAR SYSTEM C01 CARDIAC THERAPY C01B ANTIARRHYTHMICS, CLASS I AND III C01BA Antiarrhythmics, class Ia C01BA01...08302] Cardiovascular Agents Antiarrhythmics Quinidine D08459 Quinidine phenylethylbarbiturate Target-based

  13. Photoactivatable Drug-Caged Fluorophore Conjugate Allows Direct Quantification of Intracellular Drug Transport

    Science.gov (United States)

    Kohler, Rainer H.; Weissleder, Ralph

    2013-01-01

    We report here a method that utilizes photoactivatable drug-caged fluorophore conjugate to quantify intracellular drug trafficking processes at single cell resolution. Photoactivation is performed in labeled cellular compartments to visualize intracellular drug exchange at physiologic conditions, without the need for washing, facilitating its translation to in vivo cancer models. PMID:24135896

  14. In vitro drug-drug interactions of budesonide: inhibition and induction of transporters and cytochrome P450 enzymes.

    Science.gov (United States)

    Chen, Nancy; Cui, Donghui; Wang, Qing; Wen, Zhiming; Finkelman, Richard D; Welty, Devin

    2017-07-21

    1. Budesonide is a glucocorticoid used in the treatment of several respiratory and gastrointestinal inflammatory diseases. Glucocorticoids have been demonstrated to induce cytochrome P450 (CYP) 3A and the efflux transporter P-glycoprotein (P-gp). This study aimed to evaluate the potential of budesonide to act as a perpetrator or a victim of transporter- or CYP-mediated drug-drug interactions (DDIs). 2. In vitro studies were conducted for P-gp, breast cancer resistance protein and organic anion and cation transporters (OATP1B1, OATP1B3, OAT1, OAT3, OCT2) in transporter-transfected cells. Changes in mRNA expression in human hepatocytes and enzyme activity in human liver microsomes by budesonide were determined for CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A. 3. The data indicated that budesonide is a substrate of P-gp but is not a substrate or an inhibitor of the other transporters investigated. Budesonide is neither an inducer nor an inhibitor of major CYP enzymes. The effect of P-gp on budesonide disposition is anticipated to be low owing to CYP3A-mediated clearance. 4. Collectively, our data indicate there is a low risk of budesonide perpetrating clinical DDIs mediated by the transporters or CYPs studied.

  15. Nano carriers for drug transport across the blood-brain barrier.

    Science.gov (United States)

    Li, Xinming; Tsibouklis, John; Weng, Tingting; Zhang, Buning; Yin, Guoqiang; Feng, Guangzhu; Cui, Yingde; Savina, Irina N; Mikhalovska, Lyuba I; Sandeman, Susan R; Howel, Carol A; Mikhalovsky, Sergey V

    2017-01-01

    Effective therapy lies in achieving a therapeutic amount of drug to the proper site in the body and then maintaining the desired drug concentration for a sufficient time interval to be clinically effective for treatment. The blood-brain barrier (BBB) hinders most drugs from entering the central nervous system (CNS) from the blood stream, leading to the difficulty of delivering drugs to the brain via the circulatory system for the treatment, diagnosis and prevention of brain diseases. Several brain drug delivery approaches have been developed, such as intracerebral and intracerebroventricular administration, intranasal delivery and blood-to-brain delivery, as a result of transient BBB disruption induced by biological, chemical or physical stimuli such as zonula occludens toxin, mannitol, magnetic heating and ultrasound, but these approaches showed disadvantages of being dangerous, high cost and unsuitability for most brain diseases and drugs. The strategy of vector-mediated blood-to-brain delivery, which involves improving BBB permeability of the drug-carrier conjugate, can minimize side effects, such as being submicrometre objects that behave as a whole unit in terms of their transport and properties, nanomaterials, are promising carrier vehicles for direct drug transport across the intact BBB as a result of their potential to enter the brain capillary endothelial cells by means of normal endocytosis and transcytosis due to their small size, as well as their possibility of being functionalized with multiple copies of the drug molecule of interest. This review provids a concise discussion of nano carriers for drug transport across the intact BBB, various forms of nanomaterials including inorganic/solid lipid/polymeric nanoparticles, nanoemulsions, quantum dots, nanogels, liposomes, micelles, dendrimers, polymersomes and exosomes are critically evaluated, their mechanisms for drug transport across the BBB are reviewed, and the future directions of this area are fully

  16. Influence of excipients on drug absorption via modulation of intestinal transporters activity

    Directory of Open Access Journals (Sweden)

    Hetal P Thakkar

    2015-01-01

    Full Text Available One of the major factors affecting oral drug bioavailability is the activity of intestinal transport proteins, particularly for the drugs that undergo absorption by active transport mechanism. Many of the active pharmacological agents and the excipients used in their formulation are reported to modulate the activity of these transporters thereby either enhancing or decreasing the drug absorption and its systemic availability. These excipients are considered pharmacologically "inert" and have been used since years in pharmaceutical formulations. Appreciable interest is developing on the data demonstrating the role of excipients in altering the drug absorption across the intestine. Careful selection of the excipients thus is very important. A correctly chosen excipient can enhance the drug bioavailability and thus its therapeutic efficacy without increasing its dose. For locally acting drugs having systemic side effects, a proper excipient could lead to a decrease in its systemic absorption, thus reducing its side effects. This review focuses on the current findings of the excipients identified to modulate the activity of transporters, their mechanism of modulating the transporter′s activity and various formulation strategies using these excipients to enhance drug absorption.

  17. Tri-partite complex for axonal transport drug delivery achieves pharmacological effect

    Directory of Open Access Journals (Sweden)

    Frederickson Martyn

    2010-01-01

    Full Text Available Abstract Background Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior. Results We developed chemical synthesis methodologies for assembling these tripartite complexes using a variety of axonal transport facilitators including nerve growth factor, wheat germ agglutinin, and synthetic facilitators derived from phage display work. Loading of up to 100 drug molecules per complex was achieved. Conjugation methods were used that allowed the drugs to be released in active form inside the cell body after transport. Intramuscular and intradermal injection proved effective for introducing pharmacologically effective doses into selected populations of CNS neurons. Pharmacological efficacy with gabapentin in a paw withdrawal latency model revealed a ten fold increase in half life and a 300 fold decrease in necessary dose relative to systemic administration for gabapentin when the drug was delivered by axonal transport using the tripartite vehicle. Conclusion Specific targeting of selected subpopulations of CNS neurons for drug delivery by axonal

  18. The role of the erythrocyte in antitumour drug transport

    NARCIS (Netherlands)

    Dumez, Herlinde

    2005-01-01

    The area of research on the substance-carrier capacity of the erythrocyte is rather limited and it remains difficult to estimate the impact of erythrocyte drug level monitoring in the clinic. Although equilibrium between blood and tissues based on the dissolution of compounds in the plasma water

  19. Drug release from hydrogel: a new understanding of transport phenomena.

    Science.gov (United States)

    Perale, G; Rossi, F; Santoro, M; Marchetti, P; Mele, A; Castiglione, F; Raffa, E; Masi, M

    2011-06-01

    In tissue engineering, i.e., in combined advanced technologies to replace damaged or missing parts of living tissues, emerging strategies strongly point toward the use of hydrogels also for their ability of being vehicles for local controlled drug delivery. The investigation of drug release mechanisms in such matrices thus plays a key role in the design of smart system but literature is still very controversial on theoretical interpretations and understanding of available data. In this framework we used the new HRMAS-NMR DOSY technique to study the diffusive motions of sodium fluorescein, a drug mimetic small chromophoric molecule, loaded in a promising hydrogel developed for tissue engineering. While fluorescein behavior in water was as expected, also showing aggregation from mid concentrations, data collected within hydrogel samples surprisingly showed no aggregation and diffusion coefficients were always higher with respect to aqueous solution. Furthermore, the promotion of diffusion increased along with fluorescein concentration. The proportion of this effect was directly linked to hydrogel mesh size, thus carrying intrinsic novelty, but also complexity, and suggesting that not only strictly hydrodynamic effects should be considered but also electrostatic interactions between polymer chains and drug molecules might be key players in avoiding fluorescein aggregation and also affecting diffusivity.

  20. Several hPepT1-transported drugs are substrates of the Escherichia coli proton-coupled oligopeptide transporter YdgR

    DEFF Research Database (Denmark)

    Prabhala, Bala K; Aduri, Nanda G; Iqbal, Mazhar

    2017-01-01

    transported by hPepT1. The transport of these drugs was evaluated using the prototypical POT YdgR from E. coli. The transport studies were pursued through combining cell-based assays with liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis. These investigations revealed that YdgR from E. coli...... is able to transport five (sulpiride, bestatin, valacyclovir, ampicillin and oseltamivir) drugs. Furthermore, cells not overexpressing YdgR were also able to transport these drugs in a POT-like manner. Orthologues of YdgR are found in several species in the gut microbiome; hence, our findings could have...

  1. In silico methods for predicting drug-drug interactions with cytochrome P-450s, transporters and beyond.

    Science.gov (United States)

    Ai, Ni; Fan, Xiaohui; Ekins, Sean

    2015-06-23

    Drug-drug interactions (DDIs) are associated with severe adverse effects that may lead to the patient requiring alternative therapeutics and could ultimately lead to drug withdrawal from the market if they are severe. To prevent the occurrence of DDI in the clinic, experimental systems to evaluate drug interaction have been integrated into the various stages of the drug discovery and development process. A large body of knowledge about DDI has also accumulated through these studies and pharmacovigillence systems. Much of this work to date has focused on the drug metabolizing enzymes such as cytochrome P-450s as well as drug transporters, ion channels and occasionally other proteins. This combined knowledge provides a foundation for a hypothesis-driven in silico approach, using either cheminformatics or physiologically based pharmacokinetics (PK) modeling methods to assess DDI potential. Here we review recent advances in these approaches with emphasis on hypothesis-driven mechanistic models for important protein targets involved in PK-based DDI. Recent efforts with other informatics approaches to detect DDI are highlighted. Besides DDI, we also briefly introduce drug interactions with other substances, such as Traditional Chinese Medicines to illustrate how in silico modeling can be useful in this domain. We also summarize valuable data sources and web-based tools that are available for DDI prediction. We finally explore the challenges we see faced by in silico approaches for predicting DDI and propose future directions to make these computational models more reliable, accurate, and publically accessible.

  2. Transport of peptidomimetic drugs by the intestinal Di/tri-peptide transporter, PepT1

    DEFF Research Database (Denmark)

    Brodin, Birger; Nielsen, Carsten Uhd; Steffansen, Bente

    2002-01-01

    The apical membrane of small intestinal enterocytes possess an uptake system for di- and tripeptides. The physiological function of the system is to transport small peptides resulting from digestion of dietary protein. Moreover, due to the broad substrate specificity of the system, it is also cap...... an updated introduction to the transport system and discuss the substrate characteristics of the di/tri-peptide transporter system with special emphasis on chemically modified substrates and prodrugs....

  3. Inhibition of Human Drug Transporter Activities by the Pyrethroid Pesticides Allethrin and Tetramethrin.

    Science.gov (United States)

    Chedik, Lisa; Bruyere, Arnaud; Le Vee, Marc; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Potin, Sophie; Fardel, Olivier

    2017-01-01

    Pyrethroids are widely-used chemical insecticides, to which humans are commonly exposed, and known to alter functional expression of drug metabolizing enzymes. Limited data have additionally suggested that drug transporters, that constitute key-actors of the drug detoxification system, may also be targeted by pyrethroids. The present study was therefore designed to analyze the potential regulatory effects of these pesticides towards activities of main ATP-binding cassette (ABC) and solute carrier (SLC) drug transporters, using transporter-overexpressing cells. The pyrethroids allethrin and tetramethrin were found to inhibit various ABC and SLC drug transporters, including multidrug resistance-associated protein (MRP) 2, breast cancer resistance protein (BCRP), organic anion transporter polypeptide (OATP) 1B1, organic anion transporter (OAT) 3, multidrug and toxin extrusion transporter (MATE) 1, organic cation transporter (OCT) 1 and OCT2, with IC50 values however ranging from 2.6 μM (OCT1 inhibition by allethrin) to 77.6 μM (OAT3 inhibition by tetramethrin) and thus much higher than pyrethroid concentrations (in the nM range) reached in environmentally pyrethroid-exposed humans. By contrast, allethrin and tetramethrin cis-stimulated OATP2B1 activity and failed to alter activities of OATP1B3, OAT1 and MATE2-K, whereas P-glycoprotein activity was additionally moderately inhibited. Twelve other pyrethoids used at 100 μM did not block activities of the various investigated transporters, or only moderately inhibited some of them (inhibition by less than 50%). In silico analysis of structure-activity relationships next revealed that molecular parameters, including molecular weight and lipophilicity, are associated with transporter inhibition by allethrin/tetramethrin and successfully predicted transporter inhibition by the pyrethroids imiprothrin and prallethrin. Taken together, these data fully demonstrated that two pyrethoids, i.e., allethrin and tetramethrin, can

  4. Inhibition of Human Drug Transporter Activities by the Pyrethroid Pesticides Allethrin and Tetramethrin

    Science.gov (United States)

    Chedik, Lisa; Bruyere, Arnaud; Le Vee, Marc; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Potin, Sophie; Fardel, Olivier

    2017-01-01

    Pyrethroids are widely-used chemical insecticides, to which humans are commonly exposed, and known to alter functional expression of drug metabolizing enzymes. Limited data have additionally suggested that drug transporters, that constitute key-actors of the drug detoxification system, may also be targeted by pyrethroids. The present study was therefore designed to analyze the potential regulatory effects of these pesticides towards activities of main ATP-binding cassette (ABC) and solute carrier (SLC) drug transporters, using transporter-overexpressing cells. The pyrethroids allethrin and tetramethrin were found to inhibit various ABC and SLC drug transporters, including multidrug resistance-associated protein (MRP) 2, breast cancer resistance protein (BCRP), organic anion transporter polypeptide (OATP) 1B1, organic anion transporter (OAT) 3, multidrug and toxin extrusion transporter (MATE) 1, organic cation transporter (OCT) 1 and OCT2, with IC50 values however ranging from 2.6 μM (OCT1 inhibition by allethrin) to 77.6 μM (OAT3 inhibition by tetramethrin) and thus much higher than pyrethroid concentrations (in the nM range) reached in environmentally pyrethroid-exposed humans. By contrast, allethrin and tetramethrin cis-stimulated OATP2B1 activity and failed to alter activities of OATP1B3, OAT1 and MATE2-K, whereas P-glycoprotein activity was additionally moderately inhibited. Twelve other pyrethoids used at 100 μM did not block activities of the various investigated transporters, or only moderately inhibited some of them (inhibition by less than 50%). In silico analysis of structure-activity relationships next revealed that molecular parameters, including molecular weight and lipophilicity, are associated with transporter inhibition by allethrin/tetramethrin and successfully predicted transporter inhibition by the pyrethroids imiprothrin and prallethrin. Taken together, these data fully demonstrated that two pyrethoids, i.e., allethrin and tetramethrin, can

  5. The Role of Folate Transport in Antifolate Drug Action in Trypanosoma brucei*

    Science.gov (United States)

    Dewar, Simon; Sienkiewicz, Natasha; Ong, Han B.; Wall, Richard J.; Horn, David

    2016-01-01

    The aim of this study was to identify and characterize mechanisms of resistance to antifolate drugs in African trypanosomes. Genome-wide RNAi library screens were undertaken in bloodstream form Trypanosoma brucei exposed to the antifolates methotrexate and raltitrexed. In conjunction with drug susceptibility and folate transport studies, RNAi knockdown was used to validate the functions of the putative folate transporters. The transport kinetics of folate and methotrexate were further characterized in whole cells. RNA interference target sequencing experiments identified a tandem array of genes encoding a folate transporter family, TbFT1–3, as major contributors to antifolate drug uptake. RNAi knockdown of TbFT1–3 substantially reduced folate transport into trypanosomes and reduced the parasite's susceptibly to the classical antifolates methotrexate and raltitrexed. In contrast, knockdown of TbFT1–3 increased susceptibly to the non-classical antifolates pyrimethamine and nolatrexed. Both folate and methotrexate transport were inhibited by classical antifolates but not by non-classical antifolates or biopterin. Thus, TbFT1–3 mediates the uptake of folate and classical antifolates in trypanosomes, and TbFT1–3 loss-of-function is a mechanism of antifolate drug resistance. PMID:27703008

  6. RSK1 protects P-glycoprotein/ABCB1 against ubiquitin–proteasomal degradation by downregulating the ubiquitin-conjugating enzyme E2 R1

    Science.gov (United States)

    Katayama, Kazuhiro; Fujiwara, Chiaki; Noguchi, Kohji; Sugimoto, Yoshikazu

    2016-01-01

    P-glycoprotein (P-gp) is a critical determinant of multidrug resistance in cancer. We previously reported that MAPK inhibition downregulates P-gp expression and that P-gp undergoes ubiquitin–proteasomal degradation regulated by UBE2R1 and SCFFbx15. Here, we investigated the crosstalk between MAPK inhibition and the ubiquitin–proteasomal degradation of P-gp. Proteasome inhibitors or knockdown of FBXO15 and/or UBE2R1 cancelled MEK inhibitor-induced P-gp downregulation. RSK1 phosphorylated Thr162 on UBE2R1 but did not phosphorylate FBXO15. MEK and RSK inhibitors increased UBE2R1-WT but not UBE2R1-T162D and -T162A expression. UBE2R1-T162D showed higher self-ubiquitination and destabilisation than UBE2R1-WT and -T162A. Unlike UBE2R1-WT and -T162A, UBE2R1-T162D did not induce P-gp ubiquitination. UBE2R1-WT or -T162A downregulated P-gp expression and upregulated rhodamine 123 level and sensitivity to vincristine and doxorubicin. However, UBE2R1-T162D did not confer any change in P-gp expression, rhodamine 123 accumulation and sensitivity to the drugs. These results suggest that RSK1 protects P-gp against ubiquitination by reducing UBE2R1 stability. PMID:27786305

  7. Norepinephrine transporter function and desipramine: residual drug effects versus short-term regulation.

    Science.gov (United States)

    Ordway, Gregory A; Jia, Weihong; Li, Jing; Zhu, Meng-Yang; Mandela, Prashant; Pan, Jun

    2005-04-30

    Previous research has shown that exposure of norepinephrine transporter (NET)-expressing cells to desipramine (DMI) downregulates the norepinephrine transporter, although changes in the several transporter parameters do not demonstrate the same time course. Exposures to desipramine for effects of residual desipramine on norepinephrine transporter binding and uptake were re-evaluated following exposures of PC12 cells to desipramine using different methods to remove residual drug. Using a method that minimizes residual drug, exposure of intact PC12 cells to desipramine for 4h had no effect on uptake capacity or [(3)H]nisoxetine binding to the norepinephrine transporter, while exposures for > or =16 h reduced uptake capacity. Desipramine-induced reductions in binding to the transporter required >24 h or greater periods of desipramine exposure. This study confirms that uptake capacity of the norepinephrine transporter is reduced earlier than changes in radioligand binding, but with a different time course than originally shown. Special pre-incubation procedures are required to abolish effects of residual transporter inhibitor when studying inhibitor-induced transporter regulation.

  8. Regulation of human hepatic drug transporter activity and expression by diesel exhaust particle extract.

    Directory of Open Access Journals (Sweden)

    Marc Le Vee

    Full Text Available Diesel exhaust particles (DEPs are common environmental air pollutants primarily affecting the lung. DEPs or chemicals adsorbed on DEPs also exert extra-pulmonary effects, including alteration of hepatic drug detoxifying enzyme expression. The present study was designed to determine whether organic DEP extract (DEPe may target hepatic drug transporters that contribute in a major way to drug detoxification. Using primary human hepatocytes and transporter-overexpressing cells, DEPe was first shown to strongly inhibit activities of the sinusoidal solute carrier (SLC uptake transporters organic anion-transporting polypeptides (OATP 1B1, 1B3 and 2B1 and of the canalicular ATP-binding cassette (ABC efflux pump multidrug resistance-associated protein 2, with IC50 values ranging from approximately 1 to 20 μg/mL and relevant to environmental exposure situations. By contrast, 25 μg/mL DEPe failed to alter activities of the SLC transporter organic cation transporter (OCT 1 and of the ABC efflux pumps P-glycoprotein and bile salt export pump (BSEP, whereas it only moderately inhibited those of sodium taurocholate co-transporting polypeptide and of breast cancer resistance protein (BCRP. Treatment by 25 μg/mL DEPe was next demonstrated to induce expression of BCRP at both mRNA and protein level in cultured human hepatic cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B3, OATP2B1, OCT1 and BSEP. Such changes in transporter expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a reference activator of the aryl hydrocarbon receptor (AhR pathway. This suggests that DEPe, which is enriched in known ligands of AhR like polycyclic aromatic hydrocarbons, alters drug transporter expression via activation of the AhR cascade. Taken together, these data established human hepatic transporters as targets of organic chemicals containing in DEPs, which may contribute

  9. Mechanism of coupling drug transport reactions located in two different membranes

    Directory of Open Access Journals (Sweden)

    Helen I. Zgurskaya

    2015-02-01

    Full Text Available Gram- negative bacteria utilize a diverse array of multidrug transporters to pump toxic compounds out of cells. Some transporters together with periplasmic membrane fusion proteins (MFPs and outer membrane channels assemble trans-envelope complexes that expel multiple antibiotics across outer membranes of Gram-negative bacteria and into the external medium. Others further potentiate this efflux by pumping drugs across the inner membrane into the periplasm. Together these transporters create a powerful network of efflux that protect bacteria against a broad range of antimicrobial agents. This review is focused on the mechanism of coupling transport reactions located in two different membranes of Gram-negative bacteria. Using a combination of biochemical, genetic and biophysical approaches we have reconstructed the sequence of events leading to the assembly of trans-envelope drug efflux complexes and characterized the roles of periplasmic and outer membrane proteins in this process. Our recent data suggest a critical step in the activation of intermembrane efflux pumps, which is controlled by MFPs. We propose that the reaction cycles of transporters are tightly coupled to the assembly of the trans-envelope complexes. Transporters and MFPs exist in the inner membrane as dormant complexes. The activation of complexes is triggered by MFP binding to the outer membrane channel, which leads to a conformational change in the membrane proximal domain of MFP needed for stimulation of transporters. The activated MFP-transporter complex engages the outer membrane channel to expel substrates across the outer membrane. The recruitment of the channel is likely triggered by binding of effectors (substrates to MFP or MFP-transporter complexes. This model together with recent structural and functional advances in the field of drug efflux provides a fairly detailed understanding of the mechanism of drug efflux across the two membranes.

  10. Pharmacogenomics of Drug Metabolizing Enzymes and Transporters:Relevance to Precision Medicine

    Institute of Scientific and Technical Information of China (English)

    Shabbir Ahmed; Zhan Zhou; Jie Zhou; Shu-Qing Chen

    2016-01-01

    The interindividual genetic variations in drug metabolizing enzymes and transporters influence the efficacy and toxicity of numerous drugs. As a fundamental element in precision med-icine, pharmacogenomics, the study of responses of individuals to medication based on their genomic information, enables the evaluation of some specific genetic variants responsible for an individual’s particular drug response. In this article, we review the contributions of genetic polymorphisms to major individual variations in drug pharmacotherapy, focusing specifically on the pharmacoge-nomics of phase-I drug metabolizing enzymes and transporters. Substantial frequency differences in key variants of drug metabolizing enzymes and transporters, as well as their possible functional consequences, have also been discussed across geographic regions. The current effort illustrates the common presence of variability in drug responses among individuals and across all geographic regions. This information will aid health-care professionals in prescribing the most appropriate treatment aimed at achieving the best possible beneficial outcomes while avoiding unwanted effects for a particular patient.

  11. Interrogation of multidrug resistance (MDR1) P-glycoprotein (ABCB1) expression in human pancreatic carcinoma cells: correlation of 99mTc-Sestamibi uptake with western blot analysis.

    Science.gov (United States)

    Harpstrite, Scott E; Gu, Hannah; Natarajan, Radhika; Sharma, Vijay

    2014-10-01

    Histopathological studies indicate that ∼63% of pancreatic tumors express multidrug resistance (MDR1) P-glycoprotein (Pgp) and its polymorphic variants. However, Pgp expression detected at the mRNA or protein level does not always correlate with functional transport activity. Because Pgp transport activity is affected by specific mutations and the phosphorylation state of the protein, altered or less active forms of Pgp may also be detected by PCR or immunohistochemistry, which do not accurately reflect the status of tumor cell resistance. To interrogate the status of the functional expression of MDR1 Pgp in MiaPaCa-2 and PANC-1 cells, cellular transport studies using Tc-Sestamibi were performed and correlated with western blot analysis. Biochemical transport assays in human pancreatic carcinoma MiaPaCa-2 and PANC-1 cells, human epidermal carcinoma drug-sensitive KB-3-1 cells, and human breast carcinoma MCF-7 cells (negative controls), and human epidermal carcinoma drug-resistant KB-8-5 cells, human breast carcinoma stably transfected with Pgp MCF-7/MDR1Pgp cells, and liver carcinoma HepG2 cells (positive controls) were performed. Protein levels were determined using a monoclonal antibody C219. Tc-Sestamibi demonstrates accumulation in human pancreatic carcinoma MiaPaCa-2 and PANC-1 cells. Uptake profiles are not affected by treatment with LY335979, a Pgp inhibitor, and correlate with western blot analysis. These cellular transport studies indicate an absence of Pgp at a functional level in MiaPaCa-2 and PANC-1 cells. Because major pancreatic tumors originate from the pancreatic duct and Tc-Sestamibi undergoes a dominant hepatobiliary mode of excretion, it would not be a sensitive probe for imaging pancreatic adenocarcinomas. Following interrogation of the functional status of Pgp in other pancreatic carcinoma cells, chemotherapeutic drugs that are also MDR1 substrates could offer alternative therapeutics for treating pancreatic adenocarcinomas.

  12. Manipulating the drug/proton antiport stoichiometry of the secondary multidrug transporter MdfA.

    Science.gov (United States)

    Tirosh, Osnat; Sigal, Nadejda; Gelman, Amir; Sahar, Nadav; Fluman, Nir; Siemion, Shira; Bibi, Eitan

    2012-07-31

    Multidrug transporters are integral membrane proteins that use cellular energy to actively extrude antibiotics and other toxic compounds from cells. The multidrug/proton antiporter MdfA from Escherichia coli exchanges monovalent cationic substrates for protons with a stoichiometry of 1, meaning that it translocates only one proton per antiport cycle. This may explain why transport of divalent cationic drugs by MdfA is energetically unfavorable. Remarkably, however, we show that MdfA can be easily converted into a divalent cationic drug/≥ 2 proton-antiporter, either by random mutagenesis or by rational design. The results suggest that exchange of divalent cationi c drugs with two (or more) protons requires an additional acidic residue in the multidrug recognition pocket of MdfA. This outcome further illustrates the exceptional promiscuous capabilities of multidrug transporters.

  13. Protonation of a glutamate residue modulates the dynamics of the drug transporter EmrE.

    Science.gov (United States)

    Gayen, Anindita; Leninger, Maureen; Traaseth, Nathaniel J

    2016-03-01

    Secondary active transport proteins play a central role in conferring bacterial multidrug resistance. In this work, we investigated the proton-coupled transport mechanism for the Escherichia coli drug efflux pump EmrE using NMR spectroscopy. Our results show that the global conformational motions necessary for transport are modulated in an allosteric fashion by the protonation state of a membrane-embedded glutamate residue. These observations directly correlate with the resistance phenotype for wild-type EmrE and the E14D mutant as a function of pH. Furthermore, our results support a model in which the pH gradient across the inner membrane of E. coli may be used on a mechanistic level to shift the equilibrium of the transporter in favor of an inward-open resting conformation poised for drug binding.

  14. Multifunctional superparamagnetic nanoparticles for enhanced drug transport in cystic fibrosis

    Science.gov (United States)

    Armijo, Leisha M.; Brandt, Yekaterina I.; Rivera, Antonio C.; Cook, Nathaniel C.; Plumley, John B.; Withers, Nathan J.; Kopciuch, Michael; Smolyakov, Gennady A.; Huber, Dale L.; Smyth, Hugh D.; Osinski, Marek

    2012-10-01

    Iron oxide colloidal nanoparticles (ferrofluids) are investigated for application in the treatment of cystic fibrosis lung infections, the leading cause of mortality in cystic fibrosis patients. We investigate the use of iron oxide nanoparticles to increase the effectiveness of administering antibiotics through aerosol inhalation using two mechanisms: directed particle movement in the presence of an inhomogeneous static external magnetic field and magnetic hyperthermia. Magnetic hyperthermia is an effective method for decreasing the viscosity of the mucus and biofilm, thereby enhancing drug, immune cell, and antibody penetration to the affected area. Iron oxide nanoparticles of various sizes and morphologies were synthesized and tested for specific losses (heating power). Nanoparticles in the superparamagnetic to ferromagnetic size range exhibited excellent heating power. Additionally, iron oxide / zinc selenide core/shell nanoparticles were prepared, in order to enable imaging of the iron oxide nanoparticles. We also report on synthesis and characterization of MnSe/ZnSeS alloyed quantum dots.

  15. Stereocomplex micelle from nonlinear enantiomeric copolymers efficiently transports antineoplastic drug

    Science.gov (United States)

    Wang, Jixue; Shen, Kexin; Xu, Weiguo; Ding, Jianxun; Wang, Xiaoqing; Liu, Tongjun; Wang, Chunxi; Chen, Xuesi

    2015-05-01

    Nanoscale polymeric micelles have attracted more and more attention as a promising nanocarrier for controlled delivery of antineoplastic drugs. Herein, the doxorubicin (DOX)-loaded poly(D-lactide)-based micelle (PDM/DOX), poly(L-lactide)-based micelle (PLM/DOX), and stereocomplex micelle (SCM/DOX) from the equimolar mixture of the enantiomeric four-armed poly(ethylene glycol)-polylactide (PEG-PLA) copolymers were successfully fabricated. In phosphate-buffered saline (PBS) at pH 7.4, SCM/DOX exhibited the smallest hydrodynamic diameter ( D h) of 90 ± 4.2 nm and the slowest DOX release compared with PDM/DOX and PLM/DOX. Moreover, PDM/DOX, PLM/DOX, and SCM/DOX exhibited almost stable D hs of around 115, 105, and 90 nm at above normal physiological condition, respectively, which endowed them with great potential in controlled drug delivery. The intracellular DOX fluorescence intensity after the incubation with the laden micelles was different degrees weaker than that incubated with free DOX · HCl within 12 h, probably due to the slow DOX release from micelles. As the incubation time reached to 24 h, all the cells incubated with the laden micelles, especially SCM/DOX, demonstrated a stronger intracellular DOX fluorescence intensity than free DOX · HCl-cultured ones. More importantly, all the DOX-loaded micelles, especially SCM/DOX, exhibited potent antineoplastic efficacy in vitro, excellent serum albumin-tolerance stability, and satisfactory hemocompatibility. These encouraging data indicated that the loading micelles from nonlinear enantiomeric copolymers, especially SCM/DOX, might be promising in clinical systemic chemotherapy through intravenous injection.

  16. Echinacea purpurea and P-glycoprotein drug transport in Caco-2 cells.

    Science.gov (United States)

    Hansen, Torstein Schrøder; Nilsen, Odd Georg

    2009-01-01

    Echinacea is widely used as a medical herbal product, but its interaction potential with the drug efflux transporter P-glycoprotein (P-gp) has not yet been evaluated. The interaction potential of Echinacea purpurea towards P-gp mediated drug transport was studied in human intestinal Caco-2 cells. Digoxin (30 nm) was used as a substrate and verapamil as a control inhibitor. Ethanol, 0.8%, needed for herbal extraction and compatibility with the commercial products, inhibited the net digoxin flux by 18%. E. purpurea influenced to a higher degree the B-A transport of digoxin than the A-B transport. A minor increase in net digoxin flux was observed at low concentrations of E. purpurea, an effect anticipated to be allosteric in nature. At higher concentrations, from 0.4 to 6.36 mg dry weight/mL, a statistically significant linear dose-related decrease was observed in the net digoxin flux, indicating a dose dependent E. purpurea inhibition of P-gp. Both Vmax and Km of the net digoxin flux, calculated to 23.7 nmol/cm2/h and 385 microm, respectively, decreased in the presence of E. purpurea in an uncompetitive fashion. Although the effects of Echinacea purpurea on systemic P-gp mediated drug transport are probably limited, an influence on drug bioavailability can not be excluded. Copyright 2008 John Wiley & Sons, Ltd.

  17. The human P-glycoprotein transporter enhances the type I interferon response to Listeria monocytogenes infection.

    Science.gov (United States)

    Sigal, Nadejda; Kaplan Zeevi, Millie; Weinstein, Shiri; Peer, Dan; Herskovits, Anat A

    2015-06-01

    Human multidrug efflux transporters are known for their ability to extrude antibiotics and toxic compounds out of cells, yet accumulating data indicate they have additional functions in diverse physiological processes not related to drug efflux. Here, we show that the human multidrug transporter P-glycoprotein (P-gp) (also named MDR1 and ABCB1) is transcriptionally induced in the monocytic cell line THP-1 upon infection with the human intracellular bacterial pathogen Listeria monocytogenes. Notably, we found that P-gp is important for full activation of the type I interferon response elicited against L. monocytogenes bacteria. Both inhibition of P-gp function by verapamil and inhibition of its transcription using mRNA silencing led to a reduction in the magnitude of the type I response in infected cells. This function of P-gp was specific to type I interferon cytokines elicited against cytosolic replicating bacteria and was not observed in response to cyclic di-AMP (c-di-AMP), a molecule that was shown to be secreted by L. monocytogenes during infection and to trigger type I interferons. Moreover, P-gp was not involved in activation of other proinflammatory cytokines, such as those triggered by vacuolar-restricted L. monocytogenes or lipopolysaccharide (LPS). Taken together, these findings demonstrate a role for P-gp in proper development of an innate immune response against intracellular pathogens, highlighting the complexity in employing therapeutic strategies that involve inhibition of multidrug resistance (MDR) efflux pumps.

  18. Interaction of the P-Glycoprotein Multidrug Transporter with Sterols.

    Science.gov (United States)

    Clay, Adam T; Lu, Peihua; Sharom, Frances J

    2015-11-01

    The ABC transporter P-glycoprotein (Pgp, ABCB1) actively exports structurally diverse substrates from within the lipid bilayer, leading to multidrug resistance. Many aspects of Pgp function are altered by the phospholipid environment, but its interactions with sterols remain enigmatic. In this work, the functional interaction between purified Pgp and various sterols was investigated in detergent solution and proteoliposomes. Fluorescence studies showed that dehydroergosterol, cholestatrienol, and NBD-cholesterol interact intimately with Pgp, resulting in both quenching of protein Trp fluorescence and enhancement of sterol fluorescence. Kd values indicated binding affinities in the range of 3-9 μM. Collisional quenching experiments showed that Pgp-bound NBD-cholesterol was protected from the external milieu, resonance energy transfer was observed between Pgp Trp residues and the sterol, and the fluorescence emission of bound sterol was enhanced. These observations suggested an intimate interaction of bound sterols with the transporter at a protected nonpolar site. Cholesterol hemisuccinate altered the thermal unfolding of Pgp and greatly stabilized its basal ATPase activity in both a detergent solution and reconstituted proteoliposomes of certain phospholipids. Other sterols, including dehydroergosterol, did not stabilize the basal ATPase activity of detergent-solubilized Pgp, which suggests that this is not a generalized sterol effect. The phospholipid composition and cholesterol hemisuccinate content of Pgp proteoliposomes altered the basal ATPase and drug transport cycles differently. Sterols may interact with Pgp and modulate its structure and function by occupying part of the drug-binding pocket or by binding to putative consensus cholesterol-binding (CRAC/CARC) motifs located within the transmembrane domains.

  19. Effects of genetic variants in UGT1A1, SLCO1B3, ABCB1, ABCC2, ABCG2, ORM1 on PK/PD of telmisartan in Chinese patients with mild to moderate essential hypertension
.

    Science.gov (United States)

    Pei, Qi; Yang, Liu; Tan, Hong-Yi; Liu, Shi-Kun; Liu, Yang; Huang, Lu; Li, Rong-Hui; Wan, Qian; Huang, Jie; Guo, Cheng-Xian; Zuo, Xiao-Cong; Li, Jingle; Yang, Guo-Ping

    2017-08-01

    This study aimed to understand the effects of single nucleotide polymorphisms (SNPs) in UGT1A1, SLCO1B3, ABCB1, ABCC2, ABCG2, and ORM1 on the pharmacokinetics (PK) (plasma concentration) and pharmacodynamics (PD) (blood pressure) of telmisartan in Chinese patients. 58 Han Chinese patients (aged 45 - 72 years) with mild to moderate essential hypertension were included and received 80 mg/day telmisartan for 4 weeks. The plasma concentration and genetic variants were determined by LC/MS/MS and MALDI-TOF mass spectrometry, respectively. Multivariable linear analysis was used to examine the relationships between PK/PD and genetic variants. Females showed a significantly higher AUClast than males (n = 22, 4,879.48 ± 3,449.33 h×ng/mL vs. n = 36, 2,715.59 ± 2,223.77 h×ng/mL, p = 0.047). Amongst all genetic variants investigated, the patients with UGT1A1 rs4124874 AA (n = 11, 1,730.51 ± 1,325.79 h×ng/mL) had a significantly lower AUClast compared with patients with UGT1A1 rs4124874 CC+AC (n = 19 + 28, 4,177.44 ± 3,222.11 h×ng/mL and 3,810.82 ± 2,960.43 h×ng/mL, p = 0.027). None of the SNPs investigated was associated with the PD responses to telmisartan. Variation of UGT1A1 (rs4124874) affects PK of telmisartan in Chinese patients, highlighting the value of genetic testing in precision medicine as the telmisartan dose could be adjusted based on UGT1A1 genetic variations.
.

  20. A hybrid cellular automaton model of solid tumor growth and bioreductive drug transport.

    Science.gov (United States)

    Kazmi, Nabila; Hossain, M A; Phillips, Roger M

    2012-01-01

    Bioreductive drugs are a class of hypoxia selective drugs that are designed to eradicate the hypoxic fraction of solid tumors. Their activity depends upon a number of biological and pharmacological factors and we used a mathematical modeling approach to explore the dynamics of tumor growth, infusion, and penetration of the bioreductive drug Tirapazamine (TPZ). An in-silico model is implemented to calculate the tumor mass considering oxygen and glucose as key microenvironmental parameters. The next stage of the model integrated extra cellular matrix (ECM), cell-cell adhesion, and cell movement parameters as growth constraints. The tumor microenvironments strongly influenced tumor morphology and growth rates. Once the growth model was established, a hybrid model was developed to study drug dynamics inside the hypoxic regions of tumors. The model used 10, 50 and 100 \\mu {\\rm M} as TPZ initial concentrations and determined TPZ pharmacokinetic (PK) (transport) and pharmacodynamics (cytotoxicity) properties inside hypoxic regions of solid tumor. The model results showed that diminished drug transport is a reason for TPZ failure and recommend the optimization of the drug transport properties in the emerging TPZ generations. The modeling approach used in this study is novel and can be a step to explore the behavioral dynamics of TPZ.

  1. Leishmania panamensis infection and antimonial drugs modulate expression of macrophage drug transporters and metabolizing enzymes: impact on intracellular parasite survival

    Science.gov (United States)

    Gómez, Maria Adelaida; Navas, Adriana; Márquez, Ricardo; Rojas, Laura Jimena; Vargas, Deninson Alejandro; Blanco, Victor Manuel; Koren, Roni; Zilberstein, Dan; Saravia, Nancy Gore

    2014-01-01

    Objectives Treatment failure is multifactorial. Despite the importance of host cell drug transporters and metabolizing enzymes in the accumulation, distribution and metabolism of drugs targeting intracellular pathogens, their impact on the efficacy of antileishmanials is unknown. We examined the contribution of pharmacologically relevant determinants in human macrophages in the antimony-mediated killing of intracellular Leishmania panamensis and its relationship with the outcome of treatment with meglumine antimoniate. Methods Patients with cutaneous leishmaniasis who failed (n = 8) or responded (n = 8) to treatment were recruited. Gene expression profiling of pharmacological determinants in primary macrophages was evaluated by quantitative RT–PCR and correlated to the drug-mediated intracellular parasite killing. Functional validation was conducted through short hairpin RNA gene knockdown. Results Survival of L. panamensis after exposure to antimonials was significantly higher in macrophages from patients who failed treatment. Sixteen macrophage drug-response genes were modulated by infection and exposure to meglumine antimoniate. Correlation analyses of gene expression and intracellular parasite survival revealed the involvement of host cell metallothionein-2A and ABCB6 in the survival of Leishmania during exposure to antimonials. ABCB6 was functionally validated as a transporter of antimonial compounds localized in both the cell and phagolysosomal membranes of macrophages, revealing a novel mechanism of host cell-mediated regulation of intracellular drug exposure and parasite survival within phagocytes. Conclusions These results provide insight into host cell mechanisms regulating the intracellular exposure of Leishmania to antimonials and variations among individuals that impact parasite survival. Understanding of host cell determinants of intracellular pharmacokinetics/pharmacodynamics opens new avenues to improved drug efficacy for intracellular

  2. N-glycan alterations are associated with drug resistance in human hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Nakagawa Takahito

    2007-05-01

    Full Text Available Abstract Background Correlations of disease phenotypes with glycosylation changes have been analysed intensively in the tumor biology field. Glycoforms potentially associated with carcinogenesis, tumor progression and cancer metastasis have been identified. In cancer therapy, drug resistance is a severe problem, reducing therapeutic effect of drugs and adding to patient suffering. Although multiple mechanisms likely underlie resistance of cancer cells to anticancer drugs, including overexpression of transporters, the relationship of glycans to drug resistance is not well understood. Results We established epirubicin (EPI – and mitoxantrone (MIT – resistant cell lines (HLE-EPI and HLE-MIT from the human hepatocellular carcinoma cell line (HLE. HLE-EPI and HLE-MIT overexpressed transporters MDR1/ABCB1 and BCRP/ABCG2, respectively. Here we compared the glycomics of HLE-EPI and HLE-MIT cells with the parental HLE line. Core fucosylated triantennary oligosaccharides were increased in the two resistant lines. We investigated mRNA levels of glycosyltransferases synthesizing this oligosaccharide, namely, N-acetylglucosaminyltransferase (GnT-IVa, GnT-IVb and α1,6-fucosyltransferase (α1,6-FucT, and found that α1,6-FucT was particularly overexpressed in HLE-MIT cells. In HLE-EPI cells, GnT-IVa expression was decreased, while GnT-IVb was increased. Both GnT-IVs were downregulated in HLE-MIT cells. HLE-MIT cells also showed decreases in fucosylated tetraantennary oligosaccharide, the product of GnT-V. GnT-V expression was decreased in both lines, but particularly so in HLE-MIT cells. Thus both N-glycan and glycosyltransferase expression was altered as cells acquired tolerance, suggesting novel mechanisms of drug resistance. Conclusion N-glycan and glycosyltransferase expression in HLE-EPI and HLE-MIT were analysed and presented that glycans altered according with acquired tolerance. These results suggested novel mechanisms of drug resistance.

  3. Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs.

    Science.gov (United States)

    Howell, Stephen B; Safaei, Roohangiz; Larson, Christopher A; Sailor, Michael J

    2010-06-01

    Multiple lines of evidence indicate that the platinum-containing cancer drugs enter cells, are distributed to various subcellular compartments, and are exported from cells via transporters that evolved to manage copper homeostasis. The cytotoxicity of the platinum drugs is directly related to how much drug enters the cell, and almost all cells that have acquired resistance to the platinum drugs exhibit reduced drug accumulation. The major copper influx transporter, copper transporter 1 (CTR1), has now been shown to control the tumor cell accumulation and cytotoxic effect of cisplatin, carboplatin, and oxaliplatin. There is a good correlation between change in CTR1 expression and acquired cisplatin resistance among ovarian cancer cell lines, and genetic knockout of CTR1 renders cells resistant to cisplatin in vivo. The expression of CTR1 is regulated at the transcriptional level by copper via Sp1 and at the post-translational level by the proteosome. Copper and cisplatin both trigger the down-regulation of CTR1 via a process that involves ubiquitination and proteosomal degradation and requires the copper chaperone antioxidant protein 1 (ATOX1). The cisplatin-induced degradation of CTR1 can be blocked with the proteosome inhibitor bortezomib, and this increases the cellular uptake and the cytotoxicity of cisplatin in a synergistic manner. Copper and platinum(II) have similar sulfur binding characteristics, and the presence of stacked rings of methionines and cysteines in the CTR1 trimer suggest a mechanism by which CTR1 selectively transports copper and the platinum-containing drugs via sequential transchelation reactions similar to the manner in which copper is passed from ATOX1 to the copper efflux transporters.

  4. ROLE OF TRANSPORTERS IN THE DISTRIBUTION OF PLATINUM-BASED DRUGS

    Directory of Open Access Journals (Sweden)

    Saliha eHarrach

    2015-04-01

    Full Text Available Platinum derivatives used as chemotherapeutic drugs such as cisplatin and oxaliplatin have a potent antitumor activity. However, severe side effects such as nephro-, oto-, and neurotoxicity are associated with their use. Effects and side effects of platinum-based drugs are in part caused by their transporter-mediated uptake in target and non target cells. In this mini review, the transport systems involved in cellular handling of platinum derivatives are illustrated, focusing on transporters for cisplatin. The copper transporter 1 seems to be of particular importance for cisplatin uptake in tumor cells, while the organic cation transporter (OCT 2, due to its specific organ distribution, may play a major role in the development of undesired cisplatin side effects. In polarized cells, e.g. in renal proximal tubule cells, apically expressed transporters, such as multidrug and toxin extrusion protein 1, mediate secretion of cisplatin and in this way contribute to the control of its toxic effects. Specific inhibition of cisplatin uptake transporters such as the OCTs may be an attractive therapeutic option to reduce its toxicity, without impairing its antitumor efficacy.

  5. Drug transport into the mammalian brain: the nasal pathway and its specific metabolic barrier.

    Science.gov (United States)

    Minn, Alain; Leclerc, Séverine; Heydel, Jean-Marie; Minn, Anne-Laure; Denizcot, Claire; Cattarelli, Martine; Netter, Patrick; Gradinaru, Daniela

    2002-06-01

    It is generally accepted that the rate of entry into and distribution of drugs and other xenobiotics within the central nervous system (CNS) depends on the particular anatomy of the brain microvessels forming the blood-brain barrier (BBB), and of the choroid plexus forming the blood-cerebrospinal fluid barrier (CSF), which possess tight junctions preventing the passage of most polar substances. Drug entry to the CNS also depends on the physicochemical properties of the substances, which can be metabolised during this transport to pharmacologically inactive, non-penetrating polar products. Finally, the entry of drugs may be prevented by multiple complex specialized carriers, which are able to catalyse the active transport of numerous drugs and xenobiotics out of the CNS. Nasal delivery is currently considered as an efficient tool for systemic administration of drugs that are poorly absorbed via the oral route, and increasing evidence suggests that numerous drugs and potentially toxic xenobiotics can reach the CNS by this route. This short review summarizes recent knowledge on factors controlling the nasal pathway, focusing on drug metabolising enzymes in olfactory mucosa, olfactory bulb and brain, which should constitute a CNS metabolic barrier.

  6. Predicting Drug Extraction in the Human Gut Wall: Assessing Contributions from Drug Metabolizing Enzymes and Transporter Proteins using Preclinical Models.

    Science.gov (United States)

    Peters, Sheila Annie; Jones, Christopher R; Ungell, Anna-Lena; Hatley, Oliver J D

    2016-06-01

    Intestinal metabolism can limit oral bioavailability of drugs and increase the risk of drug interactions. It is therefore important to be able to predict and quantify it in drug discovery and early development. In recent years, a plethora of models-in vivo, in situ and in vitro-have been discussed in the literature. The primary objective of this review is to summarize the current knowledge in the quantitative prediction of gut-wall metabolism. As well as discussing the successes of current models for intestinal metabolism, the challenges in the establishment of good preclinical models are highlighted, including species differences in the isoforms; regional abundances and activities of drug metabolizing enzymes; the interplay of enzyme-transporter proteins; and lack of knowledge on enzyme abundances and availability of empirical scaling factors. Due to its broad specificity and high abundance in the intestine, CYP3A is the enzyme that is frequently implicated in human gut metabolism and is therefore the major focus of this review. A strategy to assess the impact of gut wall metabolism on oral bioavailability during drug discovery and early development phases is presented. Current gaps in the mechanistic understanding and the prediction of gut metabolism are highlighted, with suggestions on how they can be overcome in the future.

  7. 75 FR 8526 - Procedures for Transportation Workplace Drug and Alcohol Testing Programs

    Science.gov (United States)

    2010-02-25

    ... Office of the Secretary 49 CFR Part 40 RIN 2105-AD64 Procedures for Transportation Workplace Drug and... required method. However, in response to comments requesting additional flexibility in testing methods, the... may increase flexibility and lower costs for employers who choose to use them over more expensive...

  8. 75 FR 26183 - Procedures for Transportation Workplace Drug and Alcohol Testing Programs

    Science.gov (United States)

    2010-05-11

    ... Office of the Secretary 49 CFR Part 40 RIN OST 2105-AE01 Procedures for Transportation Workplace Drug and... economic effect on a substantial number of small entities, for purposes of the Regulatory Flexibility Act... been necessary for the Department to conduct a regulatory evaluation or Regulatory Flexibility Analysis...

  9. 75 FR 8528 - Procedures for Transportation Workplace Drug and Alcohol Testing Programs

    Science.gov (United States)

    2010-02-25

    ... Office of the Secretary 49 CFR Part 40 RIN OST 2105-AD84 Procedures for Transportation Workplace Drug and... Purpose In compliance with the Paperwork Reduction Act of 1995, Public Law 104-13, (44 U.S.C. 3501 et seq... Department published a Federal Register notice [71 FR 49383] to update the MIS form and its...

  10. MFS transporters of Candida species and their role in clinical drug resistance.

    Science.gov (United States)

    K Redhu, Archana; Shah, Abdul H; Prasad, Rajendra

    2016-06-01

    ABC (ATP-binding cassette) and MFS (major facilitator superfamily) exporters, belonging to two different superfamilies, are one of the most prominent contributors of multidrug resistance (MDR) in yeast. While the role of ABC efflux pump proteins in the development of MDR is well documented, the MFS transporters which are also implicated in clinical drug resistance have not received due attention. The MFS superfamily is the largest known family of secondary active membrane carriers, and MFS exporters are capable of transporting a host of substrates ranging from small molecules, including organic and inorganic ions, to complex biomolecules, such as peptide and lipid moieties. A few of the members of the drug/H(+) antiporter family of the MFS superfamily function as multidrug transporters and employ downhill transport of protons to efflux their respective substrates. This review focuses on the recent developments in MFS of Candida and highlights their role in drug transport by using the example of the relatively well characterized promiscuous Mdr1 efflux pump of the pathogenic yeast C. albicans.

  11. Atypical antipsychotic drugs directly impair insulin action in adipocytes: effects on glucose transport, lipogenesis, and antilipolysis.

    Science.gov (United States)

    Vestri, Helliner S; Maianu, Lidia; Moellering, Douglas R; Garvey, W Timothy

    2007-04-01

    Treatment with second-generation antipsychotics (SGAs) has been associated with weight gain and the development of diabetes mellitus, although the mechanisms are unknown. We tested the hypothesis that SGAs exert direct cellular effects on insulin action and substrate metabolism in adipocytes. We utilized two cultured cell models including 3T3-L1 adipocytes and primary cultured rat adipocytes, and tested for effects of SGAs risperidone (RISP), clozapine (CLZ), olanzapine (OLZ), and quetiapine (QUE), together with conventional antipsychotic drugs butyrophenone (BUTY), and trifluoperazine (TFP), over a wide concentration range from 1 to 500 microM. The effects of antipsychotic drugs on basal and insulin-stimulated rates of glucose transport were studied at 3 h, 15 h, and 3 days. Both CLZ and OLZ (but not RISP) at doses as low as 5 microM were able to significantly decrease the maximal insulin-stimulated glucose transport rate by approximately 40% in 3T3-L1 cells, whereas CLZ and RISP reduced insulin-stimulated glucose transport rates in primary cultured rat adipocytes by approximately 50-70%. Conventional drugs (BUTY and TFP) did not affect glucose transport rates. Regarding intracellular glucose metabolism, both SGAs (OLZ, QUE, RISP) and conventional drugs (BUTY and TFP) increased basal and/or insulin-stimulated glucose oxidation rates, whereas rates of lipogenesis were increased by CLZ, OLZ, QUE, and BUTY. Finally, rates of lipolysis in response to isoproterenol were reduced by the SGAs (CLZ, OLZ, QUE, RISP), but not by BUTY or TFP. These experiments demonstrate that antipsychotic drugs can differentially affect insulin action and metabolism through direct cellular effects in adipocytes. However, only SGAs were able to impair the insulin-responsive glucose transport system and to impair lipolysis in adipocytes. Thus, SGAs directly induce insulin resistance and alter lipogenesis and lipolysis in favor of progressive lipid accumulation and adipocyte enlargement. These

  12. Drug Transport Microdevice Mimicking an Idealized Nanoscale Bio-molecular Motor

    Institute of Scientific and Technical Information of China (English)

    Jae Hwan Lee; Ramana M. Pidaparti

    2011-01-01

    Molecular motors are nature's nano-devices and the essential agents of movement that are an integral part of many living organisms.The supramolecular motor,called Nuclear Pore Complex (NPC),controls the transport of all cellular material between the cytoplasm and the nucleus that occurs naturally in biological cells of many organisms.In order to understand the design characteristics of the NPC,we developed a microdevice for drug/fluidic transport mimicking the coarse-grained representation of the NPC geometry through computational fluid dynamic analysis and optimization.Specifically,the role of the central plug in active fluidic/particle transport and passive transport (without central plug) was investigated.Results of flow rate,pressure and velocity profiles obtained from the models indicate that the central plug plays a major role in transport through this biomolecular machine.The results of this investigation show that fluidic transport and flow passages are important factors in designing NPC based nano- and micro-devices for drug delivery.

  13. Transport of carbamazepine and drug interactions at blood-brain barrier

    Institute of Scientific and Technical Information of China (English)

    Jing-jing SUN; Lin XIE; Xiao-dong LIU

    2006-01-01

    Aim: To investigate the characteristics of carbamazepine (CBZ) transport and drug interactions at the blood-brain barrier. Methods: Cultured rat brain microvascular endothelial cells (rBMEC) were used as an in vitro model of the blood-brain barrier (BBB). When cells became confluent, CBZ uptake over time was recorded by incubation of the cells in a medium containing 10 mg/L CBZ at 37 ℃. The steady-state uptake of CBZ by rBMEC was tested for different CBZ concentrations at 37 ℃. The effects of various agents on the steady-state uptake of CBZ and efflux of CBZ from rBMEC were also studied. Results: The uptake of CBZ by rBMEC was time- and concentration-dependent. The steady-state uptake occurred at 30 min for incubation. The steady-state uptake was significantly increased (P<0.01) by treatment with dinitrophenol. The co-administration of cyclosporine A significantly increased the steady-state uptake of CBZ by the rBMEC, whereas co-administration of olanzapine significantly decreased the uptake in a concentration- and temperature-dependent manner. The efflux of CBZ from rBMEC was inhibited by CsA. Conclusion: The transport of CBZ at the BBB is mediated by many transporters. Some specific ABC (ATP-binding cassette,ABC ) efflux transporters may be involved in the transport of CBZ. Drugs influence the transport of CBZ at the BBB in different ways.

  14. Exploring multiple drug and herbicide resistance in plants--spotlight on transporter proteins.

    Science.gov (United States)

    Conte, Sarah S; Lloyd, Alan M

    2011-02-01

    Multiple drug resistance (MDR) has been extensively studied in bacteria, yeast, and mammalian cells due to the great clinical significance of this problem. MDR is not well studied in plant systems, although plant genomes contain large numbers of genes encoding putative MDR transporters (MDRTs). Biochemical pathways in the chloroplast are the targets of many herbicides and antibiotics, yet very little data is available regarding mechanisms of drug transport across the chloroplast membrane. MDRTs typically have broad substrate specificities, and may transport essential compounds and metabolites in addition to toxins. Indeed, plant transporters belonging to MDR families have also been implicated in the transport of a wide variety of compounds including auxins, flavonoids, glutathione conjugates, metal chelators, herbicides and antibiotics, although definitive evidence that a single transporter is capable of moving both toxins and metabolites has not yet been provided. Current understanding of plant MDR can be expanded via the characterization of candidate genes, especially MDRTs predicted to localize to the chloroplast, and also via traditional forward genetic approaches. Novel plant MDRTs have the potential to become endogenous selectable markers, aid in phytoremediation strategies, and help us to understand how plants have evolved to cope with toxins in their environment.

  15. Sunitinib-ibuprofen drug interaction affects the pharmacokinetics and tissue distribution of sunitinib to brain, liver, and kidney in male and female mice differently.

    Science.gov (United States)

    Lau, Christine Li Ling; Chan, Sook Tyng; Selvaratanam, Manimegahlai; Khoo, Hui Wen; Lim, Adeline Yi Ling; Modamio, Pilar; Mariño, Eduardo L; Segarra, Ignacio

    2015-08-01

    Tyrosine kinase inhibitor sunitinib (used in GIST, advanced RCC, and pancreatic neuroendocrine tumors) undergoes CYP3A4 metabolism and is an ABCB1B and ABCG2 efflux transporters substrate. We assessed the pharmacokinetic interaction with ibuprofen (an NSAID used by patients with cancer) in Balb/c male and female mice. Mice (study group) were coadministered (30 min apart) 30 mg/kg of ibuprofen and 60 mg/kg of sunitinib PO and compared with the control groups, which received sunitinib alone (60 mg/kg, PO). Sunitinib concentration in plasma, brain, kidney, and liver was measured by HPLC as scheduled and noncompartmental pharmacokinetic parameters estimated. In female control mice, sunitinib AUC0→∞ decreased in plasma (P brain (P brain, liver, and kidney (all P brain (all P brain (P drug tissue targeting index, and the tissue-plasma hysteresis-like plots also showed sex-based ibuprofen-sunitinib drug interaction differences. The results illustrate the relevance of this DDI on sunitinib pharmacokinetics and tissue uptake. These may be due to gender-based P450 and efflux/transporters differences.

  16. New Approaches to Overcome Transport Related Drug Resistance in Trypanosomatid Parasites

    Science.gov (United States)

    Garcia-Salcedo, Jose A.; Unciti-Broceta, Juan D.; Valverde-Pozo, Javier; Soriano, Miguel

    2016-01-01

    Leishmania and Trypanosoma are members of the Trypanosomatidae family that cause severe human infections such as leishmaniasis, Chagas disease, and sleeping sickness affecting millions of people worldwide. Despite efforts to eradicate them, migrations are expanding these infections to developing countries. There are no vaccines available and current treatments depend only on chemotherapy. Drug resistance is a major obstacle for the treatment of these diseases given that existing drugs are old and limited, with some having severe side effects. Most resistance mechanisms developed by these parasites are related with a decreased uptake or increased efflux of the drug due to mutations or altered expression of membrane transporters. Different new approaches have been elaborated that can overcome these mechanisms of resistance including the use of inhibitors of efflux pumps and drug carriers for both active and passive targeting. Here we review new formulations that have been successfully applied to circumvent resistance related to drug transporters, opening alternative ways to solve drug resistance in protozoan parasitic diseases. PMID:27733833

  17. New approaches to overcome transport related drug resistance in trypanosomatid parasites

    Directory of Open Access Journals (Sweden)

    Jose A Garcia-Salcedo

    2016-09-01

    Full Text Available Leishmania and Trypanosoma are members of the Trypanosomatidae family that cause severe human infections such as leishmaniasis, Chagas disease, and sleeping sickness affecting millions of people worldwide. Despite efforts to eradicate them, migrations are expanding these infections to developing countries. There are no vaccines available and current treatments depend only on chemotherapy. Drug resistance is a major obstacle for the treatment of these diseases given that existing drugs are old and limited, with some having severe side effects. Most resistance mechanisms developed by these parasites are related with a decreased uptake or increased efflux of the drug due to mutations or altered expression of membrane transporters. Different new approaches have been elaborated that can overcome these mechanisms of resistance including the use of inhibitors of efflux pumps and drug carriers for both active and passive targeting. Here we review new formulations that have been successfully applied to circumvent resistance related to drug transporters, opening alternative ways to solve drug resistance in protozoan parasitic diseases.

  18. Influence of Drug Formulation on OATP1B-Mediated Transport of Paclitaxel

    Science.gov (United States)

    Nieuweboer, Annemieke J.M.; Hu, Shuiying; Hagenbuch, Bruno; Moghaddam-Helmantel, Inge Ghobadi; Gibson, Alice A.; de Bruijn, Peter; Mathijssen, Ron H. J.; Sparreboom, Alex

    2014-01-01

    Purpose Taxane antineoplastic agents are extensively taken up into hepatocytes by OATP1B-type transporters prior to metabolism and excretion. Because the biodistributional properties imposed upon these agents by different solubilizers drive clinically-important pharmacodynamic endpoints, we tested the hypothesis that the in vitro and in vivo interaction of taxanes with OATP1B transporters is affected by the choice of drug delivery system. Experimental Design Transport of paclitaxel, docetaxel, and cabazitaxel was studied in vitro using various cell lines transfected with OATP1B1, OATP1B3, or the rodent equivalent Oatp1b2. Pharmacokinetic studies were done in wildtype and Oatp1b2-knockout mice in the presence or absence of polysorbate 80 (PS80) or Kolliphor EL (formerly Cremophor EL; CrEL). Results Paclitaxel and docetaxel, but not cabazitaxel, were transported substrates of OATP1B1, OATP1B3, and Oatp1b2, and these transport processes were strongly reduced in the presence of clinically-relevant concentrations of PS80 and CrEL. In the absence of solubilizers, deficiency of Oatp1b2 in mice was associated with a significantly decreased taxane clearance due to a liver distribution defect (P0.05). Conclusions Our findings confirm the importance of OATP1B-type transporters in the hepatic elimination of taxanes, and that this process can be inhibited by PS80 and CrEL. These results suggest that the likelihood of drug-drug interactions mediated by these transporters is strongly dependent on the selected taxane solubilizer. PMID:24755470

  19. Role of the dopamine transporter in the action of psychostimulants, nicotine, and other drugs of abuse.

    Science.gov (United States)

    Zhu, J; Reith, M E A

    2008-11-01

    A number of studies over the last two decades have demonstrated the critical importance of dopamine (DA) in the behavioral pharmacology and addictive properties of abused drugs. The DA transporter (DAT) is a major target for drugs of abuse in the category of psychostimulants, and for methylphenidate (MPH), a drug used for treating attention deficit hyperactivity disorder (ADHD), which can also be a psychostimulant drug of abuse. Other drugs of abuse such as nicotine, ethanol, heroin and morphine interact with the DAT in more indirect ways. Despite the different ways in which drugs of abuse can affect DAT function, one evolving theme in all cases is regulation of the DAT at the level of surface expression. DAT function is dynamically regulated by multiple intracellular and extracellular signaling pathways and several protein-protein interactions. In addition, DAT expression is regulated through the removal (internalization) and recycling of the protein from the cell surface. Furthermore, recent studies have demonstrated that individual differences in response to novel environments and psychostimulants can be predicted based on individual basal functional DAT expression. Although current knowledge of multiple factors regulating DAT activity has greatly expanded, many aspects of this regulation remain to be elucidated; these data will enable efforts to identify drugs that might be used therapeutically for drug dependence therapeutics.

  20. Coupled gel spreading and diffusive transport models describing microbicidal drug delivery

    Science.gov (United States)

    Funke, Claire; MacMillan, Kelsey; Ham, Anthony S.; Szeri, Andrew J.; Katz, David F.

    2016-11-01

    Gels are a drug delivery platform being evaluated for application of active pharmaceutical ingredients, termed microbicides, that act topically against infection by sexually transmitted HIV. Despite success in one Phase IIb trial of a vaginal gel delivering tenofovir, problems of user adherence to designed gel application regimen compromised results in two other trials. The microbicide field is responding to this issue by simultaneously analyzing behavioral determinants of adherence and pharmacological determinants of drug delivery. Central to both user adherence and mucosal drug delivery are gel properties (e.g. rheology) and applied volume. The specific problem to be solved here is to develop a model for how gel rheology and volume, interacting with loaded drug concentration, govern the transport of the microbicide drug tenofovir into the vaginal mucosa to its stromal layer. The analysis here builds upon our current understanding of vaginal gel deployment and drug delivery, incorporating key features of the gel's environment, fluid production and subsequent gel dilution, and vaginal wall elasticity. We consider the microbicide drug tenofovir as it is the most completely studied drug, in both in vitroand in vivostudies, for use in vaginal gel application. Our goal is to contribute to improved pharmacological understanding of gel functionality, providing a computational tool that can be used in future vaginal microbicide gel design.

  1. MRP3, an organic anion transporter able to transport anti-cancer drugs

    OpenAIRE

    Kool, Marcel; Marcel VAN DER LINDEN; Haas, Marcel; Scheffer, George L.; de Vree, J. Marleen L.; Smith, Alexander J.; Jansen, Gerrit; Peters, Godefridus J.; Ponne, Nico; Scheper, Rik J.; Elferink, Ronald P. J. Oude; Baas, Frank; Borst, Piet

    1999-01-01

    The human multidrug-resistance protein (MRP) gene family contains at least six members: MRP1, encoding the multidrug-resistance protein; MRP2 or cMOAT, encoding the canalicular multispecific organic anion transporter; and four homologs, called MRP3, MRP4, MRP5, and MRP6. In this report, we characterize MRP3, the closest homolog of MRP1. Cell lines were retrovirally transduced with MRP3 cDNA, and new monoclonal antibodies specific for MRP3 were generated. We show that MRP3 is an organic anion ...

  2. Intestinal transporters for endogenic and pharmaceutical organic anions: The challenges of deriving in-vitro kinetic parameters for the prediction of clinically relevant drug-drug interactions

    DEFF Research Database (Denmark)

    Grandvuinet, Anne Sophie; Vestergaard, Henrik Tang; Rapin, Nicolas

    2012-01-01

    Objectives This review provides an overview of intestinal human transporters for organic anions and stresses the need for standardization of the various in-vitro methods presently employed in drug-drug interaction (DDI) investigations. Key findings Current knowledge on the intestinal expression o...... the involvement of other transporters than P-glycoprotein. Moreover, the interplay between various processes that a drug is subject to in-vivo such as translocation by several transporters and dissolution should be considered. © 2012 Royal Pharmaceutical Society....

  3. Directed transport of bacteria-based drug delivery vehicles: bacterial chemotaxis dominates particle shape.

    Science.gov (United States)

    Sahari, Ali; Traore, Mahama A; Scharf, Birgit E; Behkam, Bahareh

    2014-10-01

    Several attenuated and non-pathogenic bacterial species have been demonstrated to actively target diseased sites and successfully deliver plasmid DNA, proteins and other therapeutic agents into mammalian cells. These disease-targeting bacteria can be employed for targeted delivery of therapeutic and imaging cargos in the form of a bio-hybrid system. The bio-hybrid drug delivery system constructed here is comprised of motile Escherichia coli MG1655 bacteria and elliptical disk-shaped polymeric microparticles. The transport direction for these vehicles can be controlled through biased random walk of the attached bacteria in presence of chemoattractant gradients in a process known as chemotaxis. In this work, we utilize a diffusion-based microfluidic platform to establish steady linear concentration gradients of a chemoattractant and investigate the roles of chemotaxis and geometry in transport of bio-hybrid drug delivery vehicles. Our experimental results demonstrate for the first time that bacterial chemotactic response dominates the effect of body shape in extravascular transport; thus, the non-spherical system could be more favorable for drug delivery applications owing to the known benefits of using non-spherical particles for vascular transport (e.g. relatively long circulation time).

  4. Imaging the impact of cyclosporin A and dipyridamole on P-glycoprotein (ABCB1) function at the blood-brain barrier: A [(11)C]-N-desmethyl-loperamide PET study in nonhuman primates.

    Science.gov (United States)

    Damont, Annelaure; Goutal, Sébastien; Auvity, Sylvain; Valette, Héric; Kuhnast, Bertrand; Saba, Wadad; Tournier, Nicolas

    2016-08-25

    Cyclosporin A (CsA) and dipyridamole (DPy) are potent inhibitors of the P-glycoprotein (P-gp; ABCB1) in vitro. Their efficacy at inhibiting P-gp at the blood-brain barrier (BBB) is difficult to predict. Efficient and readily available (i.e. marketed) P-gp inhibitors are needed as probes to investigate the role of P-gp at the human BBB. In this study, the P-gp inhibition potency at the BBB of therapeutic doses of CsA or DPy was evaluated in baboons using Positron Emission Tomography (PET) imaging with [(11)C]-N-desmethyl-loperamide ([(11)C]dLop), a radiolabeled P-gp substrate. The preparation of dLop as authentic standard and [(11)C]dLop as radiotracer were revisited so as to improve their production yields. [(11)C]dLop PET imaging was performed in the absence (n=3, baseline condition) and the presence of CsA (15mg/kg/h i.v., n=3). Three animals were injected with i.v. DPy at either 0.56 or 0.96 or 2mg/kg (n=1), corresponding to the usual, maximal and twice the maximal dose in patients, respectively, administered immediately before PET. [(11)C]dLop brain kinetics as well as [(11)C]dLop kinetics and radiometabolites in arterial plasma were measured to calculate [(11)C]dLop area-under the time-activity curve from 10 to 30min in the brain (AUCbrain) and in plasma (AUCplasma). [(11)C]dLop brain uptake was described by AUCR=AUCbrain/AUCplasma. CsA as well as DPy did not measurably influence [(11)C]dLop plasma kinetics and metabolism. Baseline AUCR (0.85±0.29) was significantly enhanced in the presence of CsA (AUCR=10.8±3.6). Injection of pharmacologic dose of DPy did not enhance [(11)C]dLop brain distribution with AUCR being 1.2, 0.9 and 1.1 after administration of 0.56, 0.96 and 2mg/kg DPy doses, respectively. We used [(11)C]dLop PET imaging in baboons, a relevant in vivo model of P-gp function at the BBB, to show the P-gp inhibition potency of therapeutic dose CsA. Despite in vitro P-gp inhibition potency, usual doses DPy are not likely to inhibit P-gp function at

  5. Specificity of drug transport mediated by CaMDR1: a major facilitator of Candida albicans

    Indian Academy of Sciences (India)

    Avmeet Kohli; Vinita Gupta; Shankarling Krishnamurthy; Seyed E Hasnain; Rajendra Prasad

    2001-09-01

    CaMDR1 encodes a major facilitator superfamily (MFS) protein in Candida albicans whose expression has been linked to azole resistance and which is frequently encountered in this human pathogenic yeast. In this report we have overexpressed CaMdr1p in Sf9 insect cells and demonstrated for the first time that it can mediate methotrexate (MTX) and fluconazole (FLC) transport. MTX appeared to be a better substrate for CaMdr1p among these two tested drugs. Due to severe toxicity of these drugs to insect cells, further characterization of CaMdr1p as a drug transporter could not be done with this system. Therefore, as an alternative, CaMdr1p and Cdr1p, which is an ABC protein (ATP binding cassette) also involved in azole resistance in C. albicans, were independently expressed in a common hypersensitive host JG436 of Saccharomyces cerevisiae. This allowed a better comparison between the functionality of the two export pumps. We observed that while both FLC and MTX are effluxed by CaMdr1p, MTX appeared to be a poor substrate for Cdr1p. JG436 cells expressing Cdr1p thus conferred resistance to other antifungal drugs but remained hypersensitive to MTX. Since MTX is preferentially transported by CaMdr1p, it can be used for studying the function of this MFS protein.

  6. The importance of drug-transporting P-glycoproteins in toxicology.

    Science.gov (United States)

    van Tellingen, O

    2001-03-31

    The importance of specific transport in toxicology is becoming increasingly clear and the work on P-glycoprotein has certainly been a major contribution to these growing insights. P-Glycoproteins were discovered by their ability to confer multidrug resistance in mammalian tumour cells. They are localised in the cell membrane where they actively extrude a wide range of compounds including many anti-cancer drugs from the cell. Besides in tumour cells, drug-transporting P-glycoproteins are also expressed in a polarised fashion in normal tissues that perform an excretory or barrier function, such as the liver, kidneys, intestines, brain endothelial cells. Based on this expression profile, it has been proposed that P-glycoproteins are important in protecting the host by reducing exposure to xenobiotics. Further studies with P-glycoprotein knockout mice have clearly established this protective function. In general, the clearance of substrate drugs is lower in knockout mice due to a diminished hepatobiliary excretion, direct intestinal excretion and/or increased enterohepatic cycling. Moreover, their uptake in sanctuary sites, such as the brain or the foetus, was profoundly higher in P-glycoprotein knockout mice, as was the uptake of drugs from the gastro-intestinal tract into the systemic circulation following oral ingestion. These results clearly highlight the impact that transport proteins can play in toxicology.

  7. The Impact of Blood Rheology on Drug Transport in Stented Arteries: Steady Simulations

    Science.gov (United States)

    Vijayaratnam, Pujith R. S.; O’Brien, Caroline C.; Reizes, John A.; Barber, Tracie J.; Edelman, Elazer R.

    2015-01-01

    Background and Methods It is important to ensure that blood flow is modelled accurately in numerical studies of arteries featuring drug-eluting stents due to the significant proportion of drug transport from the stent into the arterial wall which is flow-mediated. Modelling blood is complicated, however, by variations in blood rheological behaviour between individuals, blood’s complex near-wall behaviour, and the large number of rheological models which have been proposed. In this study, a series of steady-state computational fluid dynamics analyses were performed in which the traditional Newtonian model was compared against a range of non-Newtonian models. The impact of these rheological models was elucidated through comparisons of haemodynamic flow details and drug transport behaviour at various blood flow rates. Results Recirculation lengths were found to reduce by as much as 24% with the inclusion of a non-Newtonian rheological model. Another model possessing the viscosity and density of blood plasma was also implemented to account for near-wall red blood cell losses and yielded recirculation length increases of up to 59%. However, the deviation from the average drug concentration in the tissue obtained with the Newtonian model was observed to be less than 5% in all cases except one. Despite the small sensitivity to the effects of viscosity variations, the spatial distribution of drug matter in the tissue was found to be significantly affected by rheological model selection. Conclusions/Significance These results may be used to guide blood rheological model selection in future numerical studies. The clinical significance of these results is that they convey that the magnitude of drug uptake in stent-based drug delivery is relatively insensitive to individual variations in blood rheology. Furthermore, the finding that flow separation regions formed downstream of the stent struts diminish drug uptake may be of interest to device designers. PMID:26066041

  8. Persistence of side population cells with high drug efflux capacity in pancreatic cancer

    Science.gov (United States)

    Zhou, Jing; Wang, Chun-You; Liu, Tao; Wu, Bin; Zhou, Feng; Xiong, Jiong-Xin; Wu, He-Shui; Tao, Jing; Zhao, Gang; Yang, Ming; Gou, Shan-Miao

    2008-01-01

    AIM: To investigate the persistence of side population (SP) cells in pancreatic cancer and their role and mechanism in the drug resistance. METHODS: The presentation of side population cells in pancreatic cancer cell line PANC-1 and its proportion change when cultured with Gemcitabine, was detected by Hoechst 33342 staining and FACS analysis. The expression of ABCB1 and ABCG2 was detected by real-time PCR in either SP cells or non-SP cells. RESULTS: SP cells do exist in PANC-1, with a median of 3.3% and a range of 2.1-8.7%. After cultured with Gemcitabine for 3 d, the proportion of SP cells increased significantly (3.8% ± 1.9%, 10.7% ± 3.7%, t = 4.616, P = 0.001 < 0.05). ABCB1 and ABCG2 expressed at higher concentrations in SP as compared with non-SP cells (ABCB1: 1.15 ± 0.72, 5.82 ± 1.16, t = 10.839, P = 0.000 < 0.05; ABCG2: 1.16 ± 0.75, 5.48 ± 0.94, t = 11.305, P = 0.000 < 0.05), which may contribute to the efflux of fluorescent staining and drug resistance. CONCLUSION: SP cells with inherently high resistance to chemotherapeutic agents do exist in pancreatic cancers, which may be candidate cancer stem cells contributing to the relapse of the tumor. PMID:18240351

  9. Anti-cancer drug disposition: In vitro and in vivo functions of ABC efflux and OATP uptake transporters

    NARCIS (Netherlands)

    Durmus, S.

    2014-01-01

    ATP-binding cassette (ABC) efflux and Organic Anion-Transporting Polypeptide (OATP) uptake transporters are two major membrane transporter superfamilies that have major roles in the absorption, disposition and toxicity of drugs. They are widely expressed in several pharmacokinetically relevant organ

  10. Down-regulation of intestinal drug transporters in chronic renal failure in rats.

    Science.gov (United States)

    Naud, Judith; Michaud, Josée; Boisvert, Caroline; Desbiens, Karine; Leblond, Francois A; Mitchell, Andrew; Jones, Christine; Bonnardeaux, Alain; Pichette, Vincent

    2007-03-01

    Chronic renal failure (CRF) is associated with an increased bioavailability of drugs by a poorly understood mechanism. One hypothesis is a reduction in the elimination of drugs by the intestine, i.e., drug elimination mediated by protein membrane transporters such as P-glycoprotein (Pgp) and multidrug-resistance-related protein (MRP) 2. The present study aimed to investigate the repercussions of CRF on intestinal transporters involved in drug absorption [organic anion-transportingpolypeptide (Oatp)] and those implicated in drug extrusion (Pgp and MRP2). Pgp, MRP2, MRP3, Oatp2, and Oatp3 protein expression and Pgp, MRP2, and Oatp3 mRNA expression were assessed in the intestine of CRF (induced by five-sixth nephrectomy) and control rats. Pgp and MRP2 activities were measured using the everted gut technique. Rat enterocytes and Caco-2 cells were incubated with sera from control and CRF rats to characterize the mechanism of transporters' down-regulation. Protein expression of Pgp, MRP2, and MRP3 were reduced by more than 40% (p CRF rats, whereas Oatp2 and Oatp3 expression remained unchanged. There was no difference in the mRNA levels assessed by real-time polymerase chain reaction. Pgp and MRP2 activities were decreased by 30 and 25%, respectively, in CRF rats compared with control (p CRF in rats is associated with a decrease in intestinal Pgp and MRP2 protein expression and function secondarily to serum uremic factors. This reduction could explain the increased bioavailability of drugs in CRF.

  11. Is nose-to-brain transport of drugs in man a reality?

    Science.gov (United States)

    Illum, Lisbeth

    2004-01-01

    The blood-brain barrier that segregates the brain interstitial fluid from the circulating blood provides an efficient barrier for the diffusion of most, especially polar, drugs from the blood to receptors in the central nervous system (CNS). Hence limitations are evident in the treatment of CNS diseases, such as Parkinson's and Alzheimer's diseases, especially exploiting neuropeptides and similar polar and large molecular weight drugs. In recent years interest has been expressed in the use of the nasal route for delivery of drugs to the brain, exploiting the olfactory pathway. A wealth of studies has reported proof of nose-to-brain delivery of a range of different drugs in animal models, such as the rat. Studies in man have mostly compared the pharmacological effects (e.g. brain functions) of nasally applied drugs with parenterally applied drugs and have shown a distinct indication of direct nose-to-brain transport. Recent studies in volunteers involving cerebrospinal fluid sampling, blood sampling and pharmacokinetic analysis after nasal, and in some instances parenteral administration of different drugs, have in my opinion confirmed the likely existence of a direct pathway from nose to brain.

  12. Intestinal drug transport via the proton-coupled amino acid transporter PAT1 (SLC36A1) is inhibited by Gly-X(aa) dipeptides

    DEFF Research Database (Denmark)

    Frølund, Sidsel; Langthaler, Louise; Kall, Morten A

    2012-01-01

    The oral absorption of some drug substances is mediated by nutrient transporters. As a consequence, nutrients and drugs may compete for available transporters, and interactions at the level of intestinal absorption are possible. Recently, we have identified δ-aminolevulinic acid, Gly-Gly, and Gly......-Sar as substrates of the amino acid transporter PAT1. The aim of the present study is to investigate if other Gly-containing dipeptides interact with PAT1, and whether they can inhibit PAT1 mediated drug absorption, in vitro and in vivo. The in vitro methods included two-electrode voltage clamp measurements on h......PAT1 expressing Xenopus laevis oocytes, which were used to investigate the PAT1-mediated transport of 17 different Gly-containing dipeptides (Gly-X(aa) or X(aa)-Gly). Also, the transepithelial transport of the PAT1 substrate gaboxadol was investigated across Caco-2 cell monolayers in the presence...

  13. Intestinal transporters for endogenic and pharmaceutical organic anions: the challenges of deriving in-vitro kinetic parameters for the prediction of clinically relevant drug-drug interactions.

    Science.gov (United States)

    Grandvuinet, Anne Sophie; Vestergaard, Henrik Tang; Rapin, Nicolas; Steffansen, Bente

    2012-11-01

    This review provides an overview of intestinal human transporters for organic anions and stresses the need for standardization of the various in-vitro methods presently employed in drug-drug interaction (DDI) investigations. Current knowledge on the intestinal expression of the apical sodium-dependent bile acid transporter (ASBT), the breast cancer resistance protein (BCRP), the monocarboxylate transporters (MCT) 1, MCT3-5, the multidrug resistance associated proteins (MRP) 1-6, the organic anion transporting polypetides (OATP) 2B1, 1A2, 3A1 and 4A1, and the organic solute transporter α/β (OSTα/β) has been covered along with an overview of their substrates and inhibitors. Furthermore, the many challenges in predicting clinically relevant DDIs from in-vitro studies have been discussed with focus on intestinal transporters and the various methods for deducting in-vitro parameters for transporters (K(m) /K(i) /IC50, efflux ratio). The applicability of using a cut-off value (estimated based on the intestinal drug concentration divided by the K(i) or IC50) has also been considered. A re-evaluation of the current approaches for the prediction of DDIs is necessary when considering the involvement of other transporters than P-glycoprotein. Moreover, the interplay between various processes that a drug is subject to in-vivo such as translocation by several transporters and dissolution should be considered. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  14. Electrically enhanced microextraction for highly selective transport of three β-blocker drugs.

    Science.gov (United States)

    Seidi, Shahram; Yamini, Yadollah; Rezazadeh, Maryam

    2011-12-15

    Facilitated transport of three β-blocker drugs including atenolol (ATE), betaxolol (BET) and propranolol (PRO) was investigated under electrical field across a supported liquid membrane (SLM) using phosphoric acid derivatives as selective ion carriers, dissolved in 2-nitro phenyl octyl ether (NPOE). In the presence of di-(2-ethylhexyl) phosphate (DEHP) and tris-(2-ethylhexyl) phosphate (TEHP) in the membrane phase, the three β-blockers showed completely different transport behaviors which enabled highly selective separation of the drugs. Each β-blocker migrated from 3 mL of sample solutions, through a thin layer of specific organic solvent immobilized in the pores of a porous hollow fiber, and into a 15 μL acidic aqueous acceptor solution present inside the lumen of the fiber. The influences of fundamental parameters affecting the transport of target drugs including type of ion carrier for selective separation of each drug and its concentration in the membrane phase, extraction voltage, time of transport, pH of donor and acceptor phases, stirring speed of donor phase and salt effect were studied and optimized. After microextraction process, the extracts were analyzed by high-performance liquid chromatography with ultraviolet detection. Under optimal conditions, ATE was selectively extracted from different saliva samples with recovery of 37%, which corresponded to preconcentration factor of 74. A good linearity was achieved for calibration curve with a coefficient of determination higher than 0.997. Limits of detection and intra-day precision (n=3) were less than 2 μg L(-1) and 8.8%, respectively.

  15. Assessment of Amino Acid/Drug Transporters for Renal Transport of [18F]Fluciclovine (anti-[18F]FACBC in Vitro

    Directory of Open Access Journals (Sweden)

    Masahiro Ono

    2016-10-01

    Full Text Available [18F]Fluciclovine (trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid; anti-[18F]FACBC, a positron emission tomography tracer used for the diagnosis of recurrent prostate cancer, is transported via amino acid transporters (AATs with high affinity (Km: 97–230 μM. However, the mechanism underlying urinary excretion is unknown. In this study, we investigated the involvement of AATs and drug transporters in renal [18F]fluciclovine reuptake. [14C]Fluciclovine (trans-1-amino-3-fluoro[1-14C]cyclobutanecarboxylic acid was used because of its long half-life. The involvement of AATs in [14C]fluciclovine transport was measured by apical-to-basal transport using an LLC-PK1 monolayer as model for renal proximal tubules. The contribution of drug transporters herein was assessed using vesicles/cells expressing the drug transporters P-glycoprotein (P-gp, breast cancer resistance protein (BCRP, multidrug resistance-associated protein 4 (MRP4, organic anion transporter 1 (OAT1, organic anion transporter 3 (OAT3 , organic cation transporter 2 (OCT2, organic anion transporting polypeptide 1B1 (OATP1B1, and organic anion transporting polypeptide 1B3 (OATP1B3. The apical-to-basal transport of [14C]fluciclovine was attenuated by l-threonine, the substrate for system alanine-serine-cysteine (ASC AATs. [14C]Fluciclovine uptake by drug transporter-expressing vesicles/cells was not significantly different from that of control vesicles/cells. Fluciclovine inhibited P-gp, MRP4, OAT1, OCT2, and OATP1B1 (IC50 > 2.95 mM. Therefore, system ASC AATs may be partly involved in the renal reuptake of [18F]fluciclovine. Further, given that [18F]fluciclovine is recognized as an inhibitor with millimolar affinity for the tested drug transporters, slow urinary excretion of [18F]fluciclovine may be mediated by system ASC AATs, but not by drug transporters.

  16. Coupled gel spreading and diffusive transport models describing microbicidal drug delivery.

    Science.gov (United States)

    Funke, Claire; MacMillan, Kelsey; Ham, Anthony; Szeri, Andrew J; Katz, David F

    2016-10-02

    Gels are a drug delivery platform that is being evaluated for application of active pharmaceutical ingredients, termed microbicides, that act topically against vaginal and rectal mucosal infection by sexually transmitted HIV. Despite success in one Phase IIb trial of a vaginal gel delivering tenofovir, problems of user adherence to designed gel application scheduling have compromised results in two other trials. The microbicides field is responding to this dilemma by expanding behavioral analysis of the determinants of adherence while simultaneously improving the pharmacological, biochemical, and biophysical analyses of the determinants of microbicide drug delivery. The intent is to combine results of these two complementary perspectives on microbicide performance and epidemiological success to create an improved product design paradigm. Central to both user sensory perceptions and preferences, key factors that underlie adherence, and to vaginal gel mucosal drug delivery, that underlies anti-HIV efficacy, are gel properties (e.g. rheology) and volume. The specific engineering problem to be solved here is to develop a model for how gel rheology and volume, interacting with loaded drug concentration, govern the transport of the microbicide drug tenofovir into the vaginal mucosa to its stromal layer. These are factors that can be controlled in microbicide gel design. The analysis here builds upon our current understanding of vaginal gel deployment and drug delivery, incorporating key features of the gel's environment, the vaginal canal, fluid production and subsequent gel dilution, and vaginal wall elasticity. These have not previously been included in the modeling of drug delivery. We consider the microbicide drug tenofovir, which is the drug most completely studied for gels: in vitro, in animal studies in vivo, and in human clinical trials with both vaginal or rectal gel application. Our goal is to contribute to improved biophysical and pharmacological understanding

  17. Fruit juice inhibition of uptake transport: a new type of food–drug interaction

    Science.gov (United States)

    Bailey, David G

    2010-01-01

    A new type of interaction in which fruit juices diminish oral drug bioavailability through inhibition of uptake transport is the focus of this review. The discovery was based on an opposite to anticipated finding when assessing the possibility of grapefruit juice increasing oral fexofenadine bioavailability in humans through inhibition of intestinal MDR1-mediated efflux transport. In follow-up investigations, grapefruit or orange juice at low concentrations potentially and selectively inhibited in vitro OATP1A2-mediated uptake compared with MDR1-caused efflux substrate transport. These juices at high volume dramatically depressed oral fexofenadine bioavailability. Grapefruit was the representative juice to characterize the interaction subsequently. A volume–effect relationship study using a normal juice amount halved average fexofenadine absorption. Individual variability and reproducibility data indicated the clinical interaction involved direct inhibition of intestinal OATP1A2. Naringin was a major causal component suggesting that other flavonoids in fruits and vegetables might also produce the effect. Duration of juice clinical inhibition of fexofenadine absorption lasted more than 2 h but less than 4 h indicating the interaction was avoidable with appropriate interval of time between juice and drug consumption. Grapefruit juice lowered the oral bioavailability of several medications transported by OATP1A2 (acebutolol, celiprolol, fexofenadine, talinolol, L-thyroxine) while orange juice did the same for others (atenolol, celiprolol, ciprofloxacin, fexofenadine). Juice clinical inhibition of OATP2B1 was unresolved while that of OATP1B1 seemed unlikely. The interaction between grapefruit juice and etoposide also seemed relevant. Knowledge of both affected uptake transporter and drug hydrophilicity assisted prediction of the clinical interaction with grapefruit or orange juice. PMID:21039758

  18. Characterization of a pituitary-tumor-derived cell line, TtT/GF, that expresses Hoechst efflux ABC transporter subfamily G2 and stem cell antigen 1.

    Science.gov (United States)

    Mitsuishi, Hideo; Kato, Takako; Chen, Mo; Cai, Li-Yi; Yako, Hideji; Higuchi, Masashi; Yoshida, Saishu; Kanno, Naoko; Ueharu, Hiroki; Kato, Yukio

    2013-11-01

    The anterior lobe of the pituitary gland is composed of five types of endocrine cells and of non-endocrine folliculo-stellate cells that produce various local signaling molecules. The TtT/GF cell line is derived from pituitary tumors, produces no hormones and has folliculo-stellate cell-like characteristics. The biological function of TtT/GF cells remains elusive but several properties have been postulated (support of endocrine cells, control of cell proliferation, scavenger function). Recently, we observed that TtT/GF cells have high resistance to the antibiotic G418 and low influx for Hoechst 33342, indicating the presence of ATP-binding cassette (ABC) transporters that efflux multiple drugs, i.e., a property similar to that of stem/progenitor cells. Therefore, we examine TtT/GF cells for the presence of ABC transporters, for the efflux ability of Hoechst 33342 and for those genes characteristic of TtT/GF cells. Real-time polymerase chain reaction (PCR) for ABC transporters demonstrated that Abcb1a, Abcb1b and Abcg2, regarded as stem cell markers, were characteristically expressed in TtT/GF cells but not in Tpit/F1 and LβT2 cells. Furthermore, the remarkable low-efflux ability of Hoechst 33342 from TtT/GF cells was confirmed by using inhibitors and contrasted with the abilities of Tpit/F1 and LβT2 cells. The high and specific expression of stem cell antigen 1 (Sca1) in TtT/GF cells was confirmed by real-time PCR. We also demonstrated those genes that are expressed abundantly and characteristically in TtT/GF, suggesting that TtT/GF cells have unique characteristics similar to those of stem/progenitor cells of endothelial or mesenchymal origin. Thus, the present study has revealed an intriguing property of TtT/GF cells, providing a new clue for an understanding of the function of this cell line.

  19. Modeling structure-function relationships for diffusive drug transport in inert porous geopolymer matrices.

    Science.gov (United States)

    Jämstorp, Erik; Strømme, Maria; Frenning, Göran

    2011-10-01

    A unique structure-function relationship investigation of mechanically strong geopolymer drug delivery vehicles for sustained release of potent substances is presented. The effect of in-synthesis water content on geopolymer pore structure and diffusive drug transport is investigated. Scanning electron microscopy, N2 gas adsorption, mercury intrusion porosimetry, compression strength test, drug permeation, and release experiments are performed. Effective diffusion coefficients are measured and compared with corresponding theoretical values as derived from pore size distribution and connectivity via pore-network modeling. By solely varying the in-synthesis water content, mesoporous and mechanically strong geopolymers with porosities of 8%-45% are obtained. Effective diffusion coefficients of the model drugs Saccharin and Zolpidem are observed to span two orders of magnitude (∼1.6-120 × 10(-8) cm(2) /s), comparing very well to theoretical estimations. The ability to predict drug permeation and release from geopolymers, and materials alike, allows future formulations to be tailored on a structural and chemical level for specific applications such as controlled drug delivery of highly potent substances.

  20. Transporter protein and drug-conjugated gold nanoparticles capable of bypassing the blood-brain barrier

    Science.gov (United States)

    Zhang, Yanhua; Walker, Janelle Buttry; Minic, Zeljka; Liu, Fangchao; Goshgarian, Harry; Mao, Guangzhao

    2016-05-01

    Drug delivery to the central nervous system (CNS) is challenging due to the inability of many drugs to cross the blood-brain barrier (BBB). Here, we show that wheat germ agglutinin horse radish peroxidase (WGA-HRP) chemically conjugated to gold nanoparticles (AuNPs) can be transported to the spinal cord and brainstem following intramuscular injection into the diaphragm of rats. We synthesized and determined the size and chemical composition of a three-part nanoconjugate consisting of WGA-HRP, AuNPs, and drugs for the treatment of diaphragm paralysis associated with high cervical spinal cord injury (SCI). Upon injection into the diaphragm muscle of rats, we show that the nanoconjugate is capable of delivering the drug at a much lower dose than the unconjugated drug injected systemically to effectively induce respiratory recovery in rats following SCI. This study not only demonstrates a promising strategy to deliver drugs to the CNS bypassing the BBB but also contributes a potential nanotherapy for the treatment of respiratory muscle paralysis resulted from cervical SCI.

  1. Carboxymefloquine, the major metabolite of the antimalarial drug mefloquine, induces drug-metabolizing enzyme and transporter expression by activation of pregnane X receptor.

    Science.gov (United States)

    Piedade, Rita; Traub, Stefanie; Bitter, Andreas; Nüssler, Andreas K; Gil, José P; Schwab, Matthias; Burk, Oliver

    2015-01-01

    Malaria patients are frequently coinfected with HIV and mycobacteria causing tuberculosis, which increases the use of coadministered drugs and thereby enhances the risk of pharmacokinetic drug-drug interactions. Activation of the pregnane X receptor (PXR) by xenobiotics, which include many drugs, induces drug metabolism and transport, thereby resulting in possible attenuation or loss of the therapeutic responses to the drugs being coadministered. While several artemisinin-type antimalarial drugs have been shown to activate PXR, data on nonartemisinin-type antimalarials are still missing. Therefore, this study aimed to elucidate the potential of nonartemisinin antimalarial drugs and drug metabolites to activate PXR. We screened 16 clinically used antimalarial drugs and six major drug metabolites for binding to PXR using the two-hybrid PXR ligand binding domain assembly assay; this identified carboxymefloquine, the major and pharmacologically inactive metabolite of the antimalarial drug mefloquine, as a potential PXR ligand. Two-hybrid PXR-coactivator and -corepressor interaction assays and PXR-dependent promoter reporter gene assays confirmed carboxymefloquine to be a novel PXR agonist which specifically activated the human receptor. In the PXR-expressing intestinal LS174T cells and in primary human hepatocytes, carboxymefloquine induced the expression of drug-metabolizing enzymes and transporters on the mRNA and protein levels. The crucial role of PXR for the carboxymefloquine-dependent induction of gene expression was confirmed by small interfering RNA (siRNA)-mediated knockdown of the receptor. Thus, the clinical use of mefloquine may result in pharmacokinetic drug-drug interactions by means of its metabolite carboxymefloquine. Whether these in vitro findings are of in vivo relevance has to be addressed in future clinical drug-drug interaction studies.

  2. A Prediction Algorithm for Drug Response in Patients with Mesial Temporal Lobe Epilepsy Based on Clinical and Genetic Information.

    Science.gov (United States)

    Silva-Alves, Mariana S; Secolin, Rodrigo; Carvalho, Benilton S; Yasuda, Clarissa L; Bilevicius, Elizabeth; Alvim, Marina K M; Santos, Renato O; Maurer-Morelli, Claudia V; Cendes, Fernando; Lopes-Cendes, Iscia

    2017-01-01

    Mesial temporal lobe epilepsy is the most common form of adult epilepsy in surgical series. Currently, the only characteristic used to predict poor response to clinical treatment in this syndrome is the presence of hippocampal sclerosis. Single nucleotide polymorphisms (SNPs) located in genes encoding drug transporter and metabolism proteins could influence response to therapy. Therefore, we aimed to evaluate whether combining information from clinical variables as well as SNPs in candidate genes could improve the accuracy of predicting response to drug therapy in patients with mesial temporal lobe epilepsy. For this, we divided 237 patients into two groups: 75 responsive and 162 refractory to antiepileptic drug therapy. We genotyped 119 SNPs in ABCB1, ABCC2, CYP1A1, CYP1A2, CYP1B1, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3A5 genes. We used 98 additional SNPs to evaluate population stratification. We assessed a first scenario using only clinical variables and a second one including SNP information. The random forests algorithm combined with leave-one-out cross-validation was used to identify the best predictive model in each scenario and compared their accuracies using the area under the curve statistic. Additionally, we built a variable importance plot to present the set of most relevant predictors on the best model. The selected best model included the presence of hippocampal sclerosis and 56 SNPs. Furthermore, including SNPs in the model improved accuracy from 0.4568 to 0.8177. Our findings suggest that adding genetic information provided by SNPs, located on drug transport and metabolism genes, can improve the accuracy for predicting which patients with mesial temporal lobe epilepsy are likely to be refractory to drug treatment, making it possible to identify patients who may benefit from epilepsy surgery sooner.

  3. A Prediction Algorithm for Drug Response in Patients with Mesial Temporal Lobe Epilepsy Based on Clinical and Genetic Information

    Science.gov (United States)

    Carvalho, Benilton S.; Bilevicius, Elizabeth; Alvim, Marina K. M.; Lopes-Cendes, Iscia

    2017-01-01

    Mesial temporal lobe epilepsy is the most common form of adult epilepsy in surgical series. Currently, the only characteristic used to predict poor response to clinical treatment in this syndrome is the presence of hippocampal sclerosis. Single nucleotide polymorphisms (SNPs) located in genes encoding drug transporter and metabolism proteins could influence response to therapy. Therefore, we aimed to evaluate whether combining information from clinical variables as well as SNPs in candidate genes could improve the accuracy of predicting response to drug therapy in patients with mesial temporal lobe epilepsy. For this, we divided 237 patients into two groups: 75 responsive and 162 refractory to antiepileptic drug therapy. We genotyped 119 SNPs in ABCB1, ABCC2, CYP1A1, CYP1A2, CYP1B1, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3A5 genes. We used 98 additional SNPs to evaluate population stratification. We assessed a first scenario using only clinical variables and a second one including SNP information. The random forests algorithm combined with leave-one-out cross-validation was used to identify the best predictive model in each scenario and compared their accuracies using the area under the curve statistic. Additionally, we built a variable importance plot to present the set of most relevant predictors on the best model. The selected best model included the presence of hippocampal sclerosis and 56 SNPs. Furthermore, including SNPs in the model improved accuracy from 0.4568 to 0.8177. Our findings suggest that adding genetic information provided by SNPs, located on drug transport and metabolism genes, can improve the accuracy for predicting which patients with mesial temporal lobe epilepsy are likely to be refractory to drug treatment, making it possible to identify patients who may benefit from epilepsy surgery sooner. PMID:28052106

  4. Genetically encoded photocrosslinkers locate the high-affinity binding site of antidepressant drugs in the human serotonin transporter

    DEFF Research Database (Denmark)

    Rannversson, Hafsteinn; Andersen, Jacob; Hall, Lena Sørensen;

    2016-01-01

    Despite the well-established role of the human serotonin transporter (hSERT) in the treatment of depression, the molecular details of antidepressant drug binding are still not fully understood. Here we utilize amber codon suppression in a membrane-bound transporter protein to encode photocrosslin......Despite the well-established role of the human serotonin transporter (hSERT) in the treatment of depression, the molecular details of antidepressant drug binding are still not fully understood. Here we utilize amber codon suppression in a membrane-bound transporter protein to encode...

  5. Transport proteins determine drug sensitivity and resistance in a protozoan parasite, Trypanosoma brucei

    Science.gov (United States)

    Munday, Jane C.; Settimo, Luca; de Koning, Harry P.

    2015-01-01

    Drug resistance in pathogenic protozoa is very often caused by changes to the ‘transportome’ of the parasites. In Trypanosoma brucei, several transporters have been implicated in uptake of the main classes of drugs, diamidines and melaminophenyl arsenicals. The resistance mechanism had been thought to be due to loss of a transporter known to carry both types of agents: the aminopurine transporter P2, encoded by the gene TbAT1. However, although loss of P2 activity is well-documented as the cause of resistance to the veterinary diamidine diminazene aceturate (DA; Berenil®), cross-resistance between the human-use arsenical melarsoprol and the diamidine pentamidine (melarsoprol/pentamidine cross resistance, MPXR) is the result of loss of a separate high affinity pentamidine transporter (HAPT1). A genome-wide RNAi library screen for resistance to pentamidine, published in 2012, gave the key to the genetic identity of HAPT1 by linking the phenomenon to a locus that contains the closely related T. brucei aquaglyceroporin genes TbAQP2 and TbAQP3. Further analysis determined that knockdown of only one pore, TbAQP2, produced the MPXR phenotype. TbAQP2 is an unconventional aquaglyceroporin with unique residues in the “selectivity region” of the pore, and it was found that in several MPXR lab strains the WT gene was either absent or replaced by a chimeric protein, recombined with parts of TbAQP3. Importantly, wild-type AQP2 was also absent in field isolates of T. b. gambiense, correlating with the outcome of melarsoprol treatment. Expression of a wild-type copy of TbAQP2 in even the most resistant strain completely reversed MPXR and re-introduced HAPT1 function and transport kinetics. Expression of TbAQP2 in Leishmania mexicana introduced a pentamidine transport activity indistinguishable from HAPT1. Although TbAQP2 has been shown to function as a classical aquaglyceroporin it is now clear that it is also a high affinity drug transporter, HAPT1. We discuss here a

  6. Transport proteins determine drug sensitivity and resistance in a protozoan parasite, Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Jane Claire Munday

    2015-03-01

    Full Text Available Drug resistance in pathogenic protozoa is very often caused by changes to the ‘transportome’ of the parasites. In Trypanosoma brucei, several transporters have been implicated in uptake of the main classes of drugs, diamidines and melaminophenyl arsenicals. The resistance mechanism had been thought to be due to loss of a transporter known to carry both types of agents: the aminopurine transporter P2, encoded by the gene TbAT1. However, although loss of P2 activity is well-documented as the cause of resistance to the veterinary diamidine diminazene aceturate (Berenil®, cross-resistance between the human-use arsenical melarsoprol and the diamidine pentamidine (MPXR is the result of loss of a separate High Affinity Pentamidine Transporter (HAPT1. A genome-wide RNAi library screen for resistance to pentamidine, published in 2012, gave the key to the genetic identity of HAPT1 by linking the phenomenon to a locus that contains the closely related T. brucei aquaglyceroporin genes TbAQP2 and TbAQP3. Further analysis determined that knockdown of only one pore, TbAQP2, produced the MPXR phenotype. TbAQP2 is an unconventional aquaglyceroporin with unique residues in the selectivity region of the pore, and it was found that in several MPXR lab strains the WT gene was either absent or replaced by a chimeric protein, recombined with parts of TbAQP3. Importantly, wild-type AQP2 was also absent in field isolates of T. b. gambiense, correlating with the outcome of melarsoprol treatment. Expression of a wild-type copy of TbAQP2 in even the most resistant strain completely reversed MPXR and re-introduced HAPT1 function and transport kinetics. Expression of TbAQP2 in Leishmania mexicana introduced a pentamidine transport activity indistinguishable from HAPT1. Although TbAQP2 has been shown to function as a classical aquaglyceroporin it is now clear that it is also a high affinity drug transporter, HAPT1. We discuss here a possible structural rationale for this

  7. The Mesenteric Lymph Duct Cannulated Rat Model: Application to the Assessment of Intestinal Lymphatic Drug Transport

    Science.gov (United States)

    Trevaskis, Natalie L.; Hu, Luojuan; Caliph, Suzanne M.; Han, Sifei; Porter, Christopher J.H.

    2015-01-01

    The intestinal lymphatic system plays key roles in fluid transport, lipid absorption and immune function. Lymph flows directly from the small intestine via a series of lymphatic vessels and nodes that converge at the superior mesenteric lymph duct. Cannulation of the mesenteric lymph duct thus enables the collection of mesenteric lymph flowing from the intestine. Mesenteric lymph consists of a cellular fraction of immune cells (99% lymphocytes), aqueous fraction (fluid, peptides and proteins such as cytokines and gut hormones) and lipoprotein fraction (lipids, lipophilic molecules and apo-proteins). The mesenteric lymph duct cannulation model can therefore be used to measure the concentration and rate of transport of a range of factors from the intestine via the lymphatic system. Changes to these factors in response to different challenges (e.g., diets, antigens, drugs) and in disease (e.g., inflammatory bowel disease, HIV, diabetes) can also be determined. An area of expanding interest is the role of lymphatic transport in the absorption of orally administered lipophilic drugs and prodrugs that associate with intestinal lipid absorption pathways. Here we describe, in detail, a mesenteric lymph duct cannulated rat model which enables evaluation of the rate and extent of lipid and drug transport via the lymphatic system for several hours following intestinal delivery. The method is easily adaptable to the measurement of other parameters in lymph. We provide detailed descriptions of the difficulties that may be encountered when establishing this complex surgical method, as well as representative data from failed and successful experiments to provide instruction on how to confirm experimental success and interpret the data obtained. PMID:25866901

  8. Differential regulation of transport proteins in the periinfarct region following reversible middle cerebral artery occlusion in rats.

    Science.gov (United States)

    Dazert, P; Suofu, Y; Grube, M; Popa-Wagner, A; Kroemer, H K; Jedlitschky, G; Kessler, C

    2006-11-03

    Members of various transport protein families including ATP-binding cassette transporters and solute carriers were shown to be expressed in brain capillaries, choroid plexus, astrocytes or neurons, controlling drug and metabolite distribution to and from the brain. However, data are currently very limited on how the expression of these transport systems is affected by damage to the brain such as stroke. Therefore we studied the expression of four selected transporters, P-glycoprotein (Mdr1a/b; Abcb1a/b), Mrp5 (Abcc5), Bcrp (Abcg2), and Oatp2 (Slc21a5) in a rat model for stroke. Transporter expression was analyzed by real-time polymerase chain reaction in the periinfarcted region and protein localization and cellular phenotyping were done by immunohistochemistry and confocal immunofluorescence microscopy. After stroke, P-glycoprotein staining was detected in endothelial cells of disintegrated capillaries and by day 14 in newly generated blood vessels. There was no significant difference, however, in the Mdr1a mRNA amount in the periinfarcted region compared with the contralateral site. For Bcrp, a significant mRNA up-regulation was observed from days 3-14. This up-regulation was followed by the protein as confirmed by quantitative immunohistochemistry. Oatp2, located in the vascular endothelium, was also up-regulated at day 14. For Mrp5, an up-regulation was observed in neurons in the periinfarcted region (day 14). In conclusion, after stroke the transport proteins were up-regulated with a maximum at day 14, a time point that coincides with behavioral recuperation. The study further suggests Bcrp as a pronounced marker for the regenerative process and a possible functional role of Mrp5 in surviving neurons.

  9. Role of organic cation transporter OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2-K for transport and drug interactions of the antiviral lamivudine.

    Science.gov (United States)

    Müller, Fabian; König, Jörg; Hoier, Eva; Mandery, Kathrin; Fromm, Martin F

    2013-09-15

    The antiviral lamivudine is cleared predominantly by the kidney with a relevant contribution of renal tubular secretion. It is not clear which drug transporters mediate lamivudine renal secretion. Our aim was to investigate lamivudine as substrate of the renal drug transporters organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins MATE1 and MATE2-K. Uptake experiments were performed in OCT2, MATE1, or MATE2-K single-transfected human embryonic kidney 293 (HEK) cells. Transcellular transport experiments were performed in OCT2 and/or MATE1 single- or double-transfected Madin-Darby canine kidney II (MDCK) cells grown on transwell filters. Lamivudine uptake was significantly increased in HEK-OCT2, HEK-MATE1, and HEK-MATE2-K cells compared to control cells. In transcellular experiments, OCT2 located in the basolateral membrane had no effect on transcellular lamivudine transport. MATE1 located in the apical membrane decreased intracellular concentrations and increased transcellular transport of lamivudine from the basal to the apical compartment. MATE1- or MATE2-K-mediated transport was increased by an oppositely directed pH gradient. Several simultaneously administered drugs inhibited OCT2- or MATE2-K-mediated lamivudine uptake. The strongest inhibitors were carvedilol for OCT2 and trimethoprim for MATE2-K (inhibition by 96.3 and 83.7% at 15 μM, respectively, ptransport in OCT2-MATE1 double-transfected cells was inhibited by trimethoprim with an IC₅₀ value of 6.9 μM. Lamivudine is a substrate of renal drug transporters OCT2, MATE1, and MATE2-K. Concomitant administration of drugs that inhibit these transporters could decrease renal clearance of lamivudine.

  10. Cyclosporine-inhibitable Blood-Brain Barrier Drug Transport Influences Clinical Morphine Pharmacodynamics

    Science.gov (United States)

    Meissner, Konrad; Avram, Michael J.; Yermolenka, Viktar; Francis, Amber M.; Blood, Jane; Kharasch, Evan D.

    2013-01-01

    Background The blood-brain barrier is richly populated by active influx and efflux transporters influencing brain drug concentrations. Morphine, a drug with delayed clinical onset, is a substrate for the efflux transporter P-glycoprotein in vitro and in animals. This investigation tested whether morphine is a transporter substrate in humans. Methods Fourteen healthy volunteers received morphine (0.1 mg/kg, 1 h intravenous infusion) in a crossover study after nothing (control) or the validated P-glycoprotein inhibitor cyclosporine (5 mg/kg, 2 h infusion). Plasma and urine morphine and morphine glucuronide metabolite concentrations were measured by mass spectrometry. Morphine effects were measured by miosis and analgesia. Results Cyclosporine minimally altered morphine disposition, increasing the area under the plasma morphine concentration versus time curve to 100 ± 21 versus 85 ± 24 ng/ml•hr (p Cyclosporine enhanced (3.2 ± 0.9 vs. 2.5 ± 1.0 mm peak) and prolonged miosis, and increased the area under the miosis-time curve (18 ± 9 vs. 11 ± 5 mm-hr), plasma-effect site transfer rate constant (ke0, median 0.27 vs. 0.17 hr−1), and maximum calculated effect site morphine concentration (11.5 ± 3.7 vs. 7.6 ± 2.9 ng/ml) (all p cyclosporine-related pain. Conclusions Morphine is a transporter substrate at the human blood-brain barrier. Results suggest a role for P-glycoprotein or other efflux transporters in brain morphine access, although the magnitude of the effect is small, and unlikely to be a major determinant of morphine clinical effects. Efflux may explain some variability in clinical morphine effects. PMID:23851346

  11. Cyclosporine-inhibitable Cerebral Drug Transport Does not Influence Clinical Methadone Pharmacodynamics

    Science.gov (United States)

    Meissner, Konrad; Blood, Jane; Francis, Amber M.; Yermolenka, Viktar; Kharasch, Evan D.

    2015-01-01

    Background Interindividual variability and drug interaction studies suggest that blood-brain barrier drug transporters mediate human methadone brain biodistribution. In vitro and animal studies suggest that methadone is a substrate for the efflux transporter P-glycoprotein, and that P-glycoprotein-mediated transport influences brain access and pharmacologic effect. This investigation tested whether methadone is a transporter substrate in humans. Methods Healthy volunteers received oral (N=16) or IV (N=12) methadone in different crossover protocols after nothing (control) or the validated P-glycoprotein inhibitor cyclosporine (4.5 mg/kg orally twice daily for 4 days, or 5 mg/kg IV over 2 hr). Plasma and urine methadone and metabolite concentrations were measured by mass spectrometry. Methadone effects were measured by miosis and thermal analgesia (maximally tolerated temperature and verbal analog scale rating of discreet temperatures). Results Cyclosporine marginally but significantly decreased methadone plasma concentrations and apparent oral clearance, but had no effect on methadone renal clearance or on hepatic N-demethylation. Cyclosporine had no effect on miosis, or on R-methadone concentration-miosis relationships after either oral or IV methadone. Peak miosis was similar in controls and cyclosporine-treated subjects after oral methadone (1.4 ± 0.4 and 1.3 ± 0.5 mm/mg, respectively) and IV methadone (3.1 ± 1.0 and 3.2 ± 0.8 mm respectively). Methadone increased maximally tolerated temperature, but analgesia testing was confounded by cyclosporine-related pain. Conclusions Cyclosporine did not affect methadone pharmacodynamics. This result does not support a role for cyclosporine-inhibitable transporters mediating methadone brain access and biodistribution. PMID:25072223

  12. Targeting the Plasmodium vivax equilibrative nucleoside transporter 1 (PvENT1 for antimalarial drug development

    Directory of Open Access Journals (Sweden)

    Roman Deniskin

    2016-04-01

    Full Text Available Infection with Plasmodium falciparum and vivax cause most cases of malaria. Emerging resistance to current antimalarial medications makes new drug development imperative. Ideally a new antimalarial drug should treat both falciparum and vivax malaria. Because malaria parasites are purine auxotrophic, they rely on purines imported from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs. Thus, the purine import transporters represent a potential target for antimalarial drug development. For falciparum parasites the primary purine transporter is the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1. Recently we identified potent PfENT1 inhibitors with nanomolar IC50 values using a robust, yeast-based high throughput screening assay. In the current work we characterized the Plasmodium vivax ENT1 (PvENT1 homologue and its sensitivity to the PfENT1 inhibitors. We expressed a yeast codon-optimized PvENT1 gene in Saccharomyces cerevisiae. PvENT1-expressing yeast imported both purines ([3H]adenosine and pyrimidines ([3H]uridine, whereas wild type (fui1Δ yeast did not. Based on radiolabel substrate uptake inhibition experiments, inosine had the lowest IC50 (3.8 μM, compared to guanosine (14.9 μM and adenosine (142 μM. For pyrimidines, thymidine had an IC50 of 183 μM (vs. cytidine and uridine; mM range. IC50 values were higher for nucleobases compared to the corresponding nucleosides; hypoxanthine had a 25-fold higher IC50 than inosine. The archetypal human ENT1 inhibitor 4-nitrobenzylthioinosine (NBMPR had no effect on PvENT1, whereas dipyridamole inhibited PvENT1, albeit with a 40 μM IC50, a 1000-fold less sensitive than human ENT1 (hENT1. The PfENT1 inhibitors blocked transport activity of PvENT1 and the five known naturally occurring non-synonymous single nucleotide polymorphisms (SNPs with similar IC50 values. Thus, the PfENT1 inhibitors also target PvENT1. This implies that development of novel

  13. Targeting the Plasmodium vivax equilibrative nucleoside transporter 1 (PvENT1) for antimalarial drug development.

    Science.gov (United States)

    Deniskin, Roman; Frame, I J; Sosa, Yvett; Akabas, Myles H

    2016-04-01

    Infection with Plasmodium falciparum and vivax cause most cases of malaria. Emerging resistance to current antimalarial medications makes new drug development imperative. Ideally a new antimalarial drug should treat both falciparum and vivax malaria. Because malaria parasites are purine auxotrophic, they rely on purines imported from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs). Thus, the purine import transporters represent a potential target for antimalarial drug development. For falciparum parasites the primary purine transporter is the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1). Recently we identified potent PfENT1 inhibitors with nanomolar IC50 values using a robust, yeast-based high throughput screening assay. In the current work we characterized the Plasmodium vivax ENT1 (PvENT1) homologue and its sensitivity to the PfENT1 inhibitors. We expressed a yeast codon-optimized PvENT1 gene in Saccharomyces cerevisiae. PvENT1-expressing yeast imported both purines ([(3)H]adenosine) and pyrimidines ([(3)H]uridine), whereas wild type (fui1Δ) yeast did not. Based on radiolabel substrate uptake inhibition experiments, inosine had the lowest IC50 (3.8 μM), compared to guanosine (14.9 μM) and adenosine (142 μM). For pyrimidines, thymidine had an IC50 of 183 μM (vs. cytidine and uridine; mM range). IC50 values were higher for nucleobases compared to the corresponding nucleosides; hypoxanthine had a 25-fold higher IC50 than inosine. The archetypal human ENT1 inhibitor 4-nitrobenzylthioinosine (NBMPR) had no effect on PvENT1, whereas dipyridamole inhibited PvENT1, albeit with a 40 μM IC50, a 1000-fold less sensitive than human ENT1 (hENT1). The PfENT1 inhibitors blocked transport activity of PvENT1 and the five known naturally occurring non-synonymous single nucleotide polymorphisms (SNPs) with similar IC50 values. Thus, the PfENT1 inhibitors also target PvENT1. This implies that development of novel antimalarial drugs

  14. Functional characterization of liver enhancers that regulate drug-associated transporters.

    Science.gov (United States)

    Kim, M J; Skewes-Cox, P; Fukushima, H; Hesselson, S; Yee, S W; Ramsey, L B; Nguyen, L; Eshragh, J L; Castro, R A; Wen, C C; Stryke, D; Johns, S J; Ferrin, T E; Kwok, P-Y; Relling, M V; Giacomini, K M; Kroetz, D L; Ahituv, N

    2011-04-01

    Little is known about how genetic variations in enhancers influence drug response. In this study, we investigated whether nucleotide variations in enhancers that regulate drug transporters can alter their expression levels. Using comparative genomics and liver-specific transcription factor binding site (TFBS) analyses, we identified evolutionary conserved regions (ECRs) surrounding nine liver membrane transporters that interact with commonly used pharmaceuticals. The top 50 ECRs were screened for enhancer activity in vivo, of which five--located around ABCB11, SLC10A1, SLCO1B1, SLCO1A2, and SLC47A1--exhibited significant enhancer activity. Common variants identified in a large ethnically diverse cohort (n = 272) were assayed for differential enhancer activity, and three variants were found to have significant effects on reporter activity as compared with the reference allele. In addition, one variant was associated with reduced SLCO1A2 mRNA expression levels in human liver tissues, and another was associated with increased methotrexate (MTX) clearance in patients. This work provides a general model for the rapid characterization of liver enhancers and identifies associations between enhancer variants and drug response.

  15. Drug transport mechanism of P-glycoprotein monitored by single molecule fluorescence resonance energy transfer

    Science.gov (United States)

    Ernst, S.; Verhalen, B.; Zarrabi, N.; Wilkens, S.; Börsch, M.

    2011-03-01

    In this work we monitor the catalytic mechanism of P-glycoprotein (Pgp) using single-molecule fluorescence resonance energy transfer (FRET). Pgp, a member of the ATP binding cassette family of transport proteins, is found in the plasma membrane of animal cells where it is involved in the ATP hydrolysis driven export of hydrophobic molecules. When expressed in the plasma membrane of cancer cells, the transport activity of Pgp can lead to the failure of chemotherapy by excluding the mostly hydrophobic drugs from the interior of the cell. Despite ongoing effort, the catalytic mechanism by which Pgp couples MgATP binding and hydrolysis to translocation of drug molecules across the lipid bilayer is poorly understood. Using site directed mutagenesis, we have introduced cysteine residues for fluorescence labeling into different regions of the nucleotide binding domains (NBDs) of Pgp. Double-labeled single Pgp molecules showed fluctuating FRET efficiencies during drug stimulated ATP hydrolysis suggesting that the NBDs undergo significant movements during catalysis. Duty cycle-optimized alternating laser excitation (DCO-ALEX) is applied to minimize FRET artifacts and to select the appropriate molecules. The data show that Pgp is a highly dynamic enzyme that appears to fluctuate between at least two major conformations during steady state turnover.

  16. A water gradient can be used to regulate drug transport across skin.

    Science.gov (United States)

    Björklund, Sebastian; Engblom, Johan; Thuresson, Krister; Sparr, Emma

    2010-04-19

    At normal conditions there is a substantial water gradient over the skin as it separates the water-rich inside of the body from the dry outside. This leads to a variation in the degree of hydration from the inside to the outside of skin and changes in this gradient may affect its structure and function. In this study we raise the question: How do changes in the water gradient across skin affect its permeability? We approach this problem in novel diffusion experiments that permit strict control of the gradient in the chemical potential of water and hence well-defined boundary conditions. The results demonstrate that a water gradient can be used to regulate transport of drugs with different lipophilic characteristics across the skin barrier. It is shown that the transport of metronidazole (log P(o/w)=0.0) and methyl salicylate (log P(o/w)=2.5) across skin increases abruptly at low water gradients, corresponding to high degrees of skin hydration, and that this effect is reversible. This phenomenon is highly relevant to drug delivery applications due to its potential of temporarily open the skin barrier for transdermal drug delivery and subsequently close the barrier after treatment. Further, the results contribute to the understanding of the occlusion effect and indicate the boundary conditions of the water gradient needed to make use of this effect. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Potentiation of Anticancer Drugs: Effects of Pentoxifylline on Neoplastic Cells

    Directory of Open Access Journals (Sweden)

    Miroslav Barancik

    2011-12-01

    Full Text Available The drug efflux activity of P-glycoprotein (P-gp, a product of the mdr1 gene, ABCB1 member of ABC transporter family represents a mechanism by which tumor cells escape death induced by chemotherapeutics. In this study, we investigated the mechanisms involved in the effects of pentoxifylline (PTX on P-gp-mediated multidrug resistance (MDR in mouse leukemia L1210/VCR cells. Parental sensitive mouse leukemia cells L1210, and multidrug-resistant cells, L1210/VCR, which are characterized by the overexpression of P-gp, were used as experimental models. The cells were exposed to 100 μmol/L PTX in the presence or absence of 1.2 μmol/L vincristine (VCR. Western blot analysis indicated a downregulation of P-gp protein expression when multidrug-resistant L1210/VCR cells were exposed to PTX. The effects of PTX on the sensitization of L1210/VCR cells to VCR correlate with the stimulation of apoptosis detected by Annexin V/propidium iodide apoptosis necrosis kit and proteolytic activation of both caspase-3 and caspase-9 monitored by Western blot analysis. Higher release of matrix metalloproteinases (MMPs, especially MMP-2, which could be attenuated by PTX, was found in L1210/VCR than in L1210 cells by gelatin zymography in electrophoretic gel. Exposure of resistant cells to PTX increased the content of phosphorylated Akt kinase. In contrast, the presence of VCR eliminated the effects of PTX on Akt kinase phosphorylation. Taken together, we conclude that PTX induces the sensitization of multidrug-resistant cells to VCR via downregulation of P-gp, stimulation of apoptosis and reduction of MMPs released from drug-resistant L1210/VCR cells. These facts bring new insights into the mechanisms of PTX action on cancer cells.

  18. Repositioning of Tyrosine Kinase Inhibitors as Antagonists of ATP-Binding Cassette Transporters in Anticancer Drug Resistance

    Directory of Open Access Journals (Sweden)

    Yi-Jun Wang

    2014-09-01

    Full Text Available The phenomenon of multidrug resistance (MDR has attenuated the efficacy of anticancer drugs and the possibility of successful cancer chemotherapy. ATP-binding cassette (ABC transporters play an essential role in mediating MDR in cancer cells by increasing efflux of drugs from cancer cells, hence reducing the intracellular accumulation of chemotherapeutic drugs. Interestingly, small-molecule tyrosine kinase inhibitors (TKIs, such as AST1306, lapatinib, linsitinib, masitinib, motesanib, nilotinib, telatinib and WHI-P154, have been found to have the capability to overcome anticancer drug resistance by inhibiting ABC transporters in recent years. This review will focus on some of the latest and clinical developments with ABC transporters, TKIs and anticancer drug resistance.

  19. Differential expression of several drug transporter genes in HepG2 and Huh-7 cell lines.

    Science.gov (United States)

    Louisa, Melva; Suyatna, Frans D; Wanandi, Septelia Inawati; Asih, Puji Budi Setia; Syafruddin, Din

    2016-01-01

    Cell culture techniques have many advantages for investigation of drug transport to target organ like liver. HepG2 and Huh-7 are two cell lines available from hepatoma that can be used as a model for hepatic drug transport. The present study is aimed to analyze the expression level of several drug transporter genes in two hepatoma cell lines, HepG2 and Huh-7 and their response to inhibitors. This is an in vitro study using HepG2 and Huh-7 cells. The expression level of the following drug transporter genes was quantified: P-glycoprotein/multidrug resistance protein 1, Organic Anionic Transporter Protein 1B1 (OATP1B1) and Organic Cationic Transporter-1 (OCT1). Ribonucleic acid was extracted from the cells using Tripure isolation reagent, then gene expression level of the transporters is quantified using Applied Biosystems quantitative reverse transcriptase polymerase chain reaction. Verapamil (P-glycoprotein inhibitor), nelfinavir (OATP1B1 inhibitor), quinidine (OCT1 inhibitor) were used to differentiate the inhibitory properties of these agents to the transporter expressions in HepG2 and Huh-7 cells. Huh-7 shows a higher level of P-glycoprotein, OATP1B1 and OCT1 expressions compared with those of HepG2. Verapamil reduces the expressions of P-glycoprotein in HepG2 and Huh-7; nelfinavir reduces the expression of OATP1B1 in HepG2 and Huh-7; while quinidine reduces the OCT1 gene expressions in HepG2, but not in Huh-7 cells. This study indicates that HepG2 might be a more suitable in vitro model than Huh-7 to study drug transport in hepatocytes involving drug transporters.

  20. Entecavir interacts with influx transporters hOAT1, hCNT2, hCNT3, but not with hOCT2: the potential for renal transporter-mediated cytotoxicity and drug-drug interactions

    Directory of Open Access Journals (Sweden)

    František eTrejtnar

    2016-01-01

    Full Text Available Entecavir (ETV is one of the most potent agents for the treatment of the hepatitis B viral infection. The drug is principally eliminated by the kidney. The goal of this study was to investigate the potential of ETV to interact in vitro with the renal SLC transporters hOAT1, hOCT2, hCNT2 and hCNT3. Potential drug-drug interactions of ETV at the renal transporters with antiviral drugs known to be excreted by the kidney (adefovir, tenofovir, cidofovir as well as transporter-dependent cytotoxicity were also examined. Interactions with the selected transporters along with cytotoxicity were studied in several transiently-transfected cellular models using specific substrates and inhibitors. ETV was found to be both a substrate and inhibitor of hOAT1 (IC50 = 175.3 µM, hCNT2 (IC50 = 241.9 µM and hCNT3 (IC50 = 278.4 µM transporters, although it interacted with the transporters with relatively low affinities. ETV inhibited the cellular uptake of adefovir, tenofovir and cidofovir by hOAT1; however, effective inhibition was shown at ETV concentrations exceeding therapeutic levels. In comparison with adefovir, tenofovir and cidofovir, ETV displayed no transporter-mediated cytotoxicity in cells transfected with hOAT1, hCNT2, and hCNT3. No significant interaction of ETV with hOCT2 was detected. The study demonstrates interactions of ETV with several human renal transporters. For the first time, an interaction of ETV with the hCNTs was proved. We show that the potency of ETV to cause nephrotoxicity and/or clinically significant drug-drug interactions related to the tested transporters is considerably lower than that of adefovir, tenofovir and cidofovir.

  1. ATP-Binding Cassette Transporters Modulate Both Coelenterazine- and D-Luciferin-Based Bioluminescence Imaging

    Directory of Open Access Journals (Sweden)

    Ruimin Huang

    2011-05-01

    Full Text Available Bioluminescence imaging (BLI of luciferase reporters provides a cost-effective and sensitive means to image biological processes. However, transport of luciferase substrates across the cell membrane does affect BLI readout intensity from intact living cells. To investigate the effect of ATP-binding cassette (ABC transporters on BLI readout, we generated click beetle (cLuc, firefly (fLuc, Renilla (rLuc, and Gaussia (gLuc luciferase HEK-293 reporter cells that overexpressed different ABC transporters (ABCB1, ABCC1, and ABCG2. In vitro studies showed a significant BLI intensity decrease in intact cells compared to cell lysates, when ABCG2 was overexpressed in HEK-293/cLuc, fLuc, and rLuc cells. Selective ABC transporter inhibitors were also applied. Inhibition of ABCG2 activity increased the BLI intensity more than two-fold in HEK-293/cLuc, fLuc, and rLuc cells; inhibition of ABCB1 elevated the BLI intensity two-fold only in HEK-293/rLuc cells. BLI of xenografts derived from HEK-293/ABC transporter/luciferase reporter cells confirmed the results of inhibitor treatment in vivo. These findings demonstrate that coelenterazine-based rLuc-BLI intensity can be modulated by ABCB1 and ABCG2. ABCG2 modulates d-luciferin-based BLI in a luciferase type–independent manner. Little ABC transporter effect on gLuc-BLI intensity is observed because a large fraction of gLuc is secreted. The expression level of ABC transporters is one key factor affecting BLI intensity, and this may be particularly important in luciferase-based applications in stem cell research.

  2. Strategies of Drug Transporter Quantitation by LC-MS: Importance of Peptide Selection and Digestion Efficiency.

    Science.gov (United States)

    Chen, Buyun; Liu, Liling; Ho, Hoangdung; Chen, Yuan; Yang, Ze; Liang, Xiaorong; Payandeh, Jian; Dean, Brian; Hop, Cornelis E C A; Deng, Yuzhong

    2017-06-06

    Huge variation of drug transporter abundance was seen in the literature, making PBPK prediction difficult when transporters play a major role. Among multiple factors such as membrane fraction, digestion, and peptide selection that contributed to such variation, peptide selection is the least discussed. Herein, a strategy was established by using a small amount of purified protein standard to select a peptide with near 100% digestion efficiency for quantitation of a transporter protein MDR1. The impact of native membrane protein's tertiary structure on the digestion efficiency of surrogate peptides of MDR1 was investigated. Peptides in more solvent accessible regions are found to be digested much more efficiently than those in large stretches of helical structures. The concentration of peptide EALDESIPPVSFWR(EAL) in the most solvent accessible linker region of MDR1 was found closest to the true protein concentration. When using EAL for MDR1 quantitation, the abundance is over 10 times higher than previously reported, indicating the importance of peptide selection for transporter quantitation. In addition, this study also proposes a screening strategy to select peptides appropriate for relative quantitation for in vitro-in vivo extrapolation in the absence of any protein standard.

  3. Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti-cancer photodynamic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Anatoly A.; Filippov, Victor I.; Alyautdin, Renat N.; Torshina, N.L.; Kuznetsov, O.A. E-mail: oleg@louisiana.edu

    2001-07-01

    Magnetic liposomes containing submicron-sized ferromagnetic particles were prepared encapsulating the muscle relaxant drugs, diadony or diperony, for local anesthesia. Alternatively, metal phthalocyanines (Photosense or Teraphthal), sensitizers for photodynamic or catalytic cancer therapy were loaded into the magnetic liposomes. Animal trials demonstrated successful magnetically guided transport of the drug-loaded liposomes.

  4. Active transmembrane drug transport in microgravity: a validation study using an ABC transporter model [v1; ref status: indexed, http://f1000r.es/41n

    Directory of Open Access Journals (Sweden)

    Sergi Vaquer

    2014-08-01

    Full Text Available Abstract Microgravity has been shown to influence the expression of ABC (ATP-Binding Cassette transporters in bacteria, fungi and mammals, but also to modify the activity of certain cellular components with structural and functional similarities to ABC transporters. Changes in activity of ABC transporters could lead to important metabolic disorders and undesired pharmacological effects during spaceflights. However, no current means exist to study the functionality of these transporters in microgravity. To this end, a Vesicular Transport Assay® (Solvo Biotechnology, Hungary was adapted to evaluate multi-drug resistance-associated protein 2 (MRP2 trans-membrane estradiol-17-β-glucuronide (E17βG transport activity, when activated by adenosine-tri-phosphate (ATP during parabolic flights. Simple diffusion, ATP-independent transport and benzbromarone inhibition were also evaluated. A high accuracy engineering system was designed to perform, monitor and synchronize all procedures. Samples were analysed using a validated high sensitivity drug detection protocol. Experiments were performed in microgravity during parabolic flights, and compared to 1g on ground results using identical equipment and procedures in all cases. Our results revealed that sufficient equipment accuracy and analytical sensitivity were reached to detect transport activity in both gravitational conditions. Additionally, transport activity levels of on ground samples were within commercial transport standards, proving the validity of the methods and equipment used. MRP2 net transport activity was significantly reduced in microgravity, so was signal detected in simple diffusion samples. Ultra-structural changes induced by gravitational stress upon vesicle membranes or transporters could explain the current results, although alternative explanations are possible. Further research is needed to provide a conclusive answer in this regard. Nevertheless, the present validated technology

  5. Iontoforese no transporte ocular de drogas Iontophoresis for ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Sílvia Ligório Fialho

    2004-10-01

    Full Text Available O método mais comum de administração de drogas no olho é por meio de colírios. Entretanto, por este método, não é possível atingir a concentração terapêutica nos fluidos e tecidos posteriores do olho. A administração sistêmica apresenta reduzido acesso ao segmento posterior do olho devido à presença das barreiras oculares. Injeções subconjuntivais e retrobulbares não são capazes de proporcionar níveis adequados da droga, e a injeção intravítrea é método invasivo, inconveniente e que apre-senta riscos de perfuração do bulbo ocular ou descolamento da retina. A iontoforese, no entanto, apresenta-se como alternativa para o transporte de doses terapêuticas de drogas para o segmento posterior do olho. A iontoforese é uma técnica que consiste na administração de drogas para o organismo através dos tecidos, utilizando um campo elétrico. O eletrodo ativo, que se encontra em contato com a droga, é colocado no local a ser tratado, e um segundo eletrodo, com a finalidade de fechar o circuito elétrico, é colocado em outro local do organismo. O campo elétrico facilita o transporte da droga, que deve se encontrar, preferencialmente, na forma ionizada. A iontoforese pode ser considerada como um método seguro e não invasivo de transporte de drogas para locais específicos do olho. Aplicada experimentalmente para o tratamento de doenças oculares, esta técnica tem evoluído muito nos últimos anos e, atualmente, testes clínicos de fase III encontram-se em andamento.The most traditional method of ocular drug delivery is through the use of eyedrops. However, by this method, the therapeutic concentration in deep ocular fluids and tissues can not be efficiently reached. Systemic administration presents poor access to the posterior segment of the eye due to ocular barriers. Subconjuntival and retrobulbar injections are not able to produce adequate levels of the drug, and intravitreal injection is an invasive and problematic

  6. Effect of prostaglandin E2 on multidrug resistance transporters in human placental cells.

    Science.gov (United States)

    Mason, Clifford W; Lee, Gene T; Dong, Yafeng; Zhou, Helen; He, Lily; Weiner, Carl P

    2014-12-01

    Prostaglandin (PG) E2, a major product of cyclooxygenase (COX)-2, acts as an immunomodulator at the maternal-fetal interface during pregnancy. It exerts biologic function through interaction with E-prostanoid (EP) receptors localized to the placenta. The activation of the COX-2/PGE2/EP signal pathway can alter the expression of the ATP-binding cassette (ABC) transporters, multidrug resistance protein 1 [P-glycoprotein (Pgp); gene: ABCB1], and breast cancer resistance protein (BCRP; gene: ABCG2), which function to extrude drugs and xenobiotics from cells. In the placenta, PGE2-mediated changes in ABC transporter expression could impact fetal drug exposure. Furthermore, understanding the signaling cascades involved could lead to strategies for the control of Pgp and BCRP expression levels. We sought to determine the impact of PGE2 signaling mechanisms on Pgp and BCRP in human placental cells. The treatment of placental cells with PGE2 up-regulated BCRP expression and resulted in decreased cellular accumulation of the fluorescent substrate Hoechst 33342. Inhibiting the EP1 and EP3 receptors with specific antagonists attenuated the increase in BCRP. EP receptor signaling results in activation of transcription factors, which can affect BCRP expression. Although PGE2 decreased nuclear factor κ-light chain-enhancer of activated B activation and increased activator protein 1, chemical inhibition of these inflammatory transcription factors did not blunt BCRP up-regulation by PGE2. Though PGE2 decreased Pgp mRNA, Pgp expression and function were not significantly altered. Overall, these findings suggest a possible role for PGE2 in the up-regulation of placental BCRP expression via EP1 and EP3 receptor signaling cascades. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Uptake of NO-releasing drugs by the P2 nucleoside transporter in trypanosomes

    Directory of Open Access Journals (Sweden)

    L. Soulère

    1999-11-01

    Full Text Available Nitric oxide (NO· has been identified as a principal regulatory molecule of the immune system and the major cytotoxic mediator of activated immune cells. NO· can also react rapidly with a variety of biological species, particularly with the superoxide radical anion O2·- at almost diffusion-limited rates to form peroxynitrite anion (ONOO-. ONOO- and its proton-catalyzed decomposition products are capable of oxidizing a great diversity of biomolecules and can act as a source of toxic hydroxyl radicals. As a consequence, a strategy for the development of molecules with potential trypanocidal activities could be developed to increase the concentration of nitric oxide in the parasites through NO·-releasing compounds. In this way, the rate of formation of peroxynitrite from NO· and O2·- would be faster than the rate of dismutation of superoxide radicals by superoxide dismutases which constitute the primary antioxidant enzymatic defense system in trypanosomes. The adenosine transport systems of parasitic protozoa, which are also in certain cases implicated in the selective uptake of active drugs such as melarsoprol or pentamidine, could be exploited to specifically target these NO·-releasing compounds inside the parasites. In this work, we present the synthesis, characterization and biological evaluation of a series of molecules that contain both a group which would specifically target these drugs inside the parasites via the purine transporter, and an NO·-donor group that would exert a specific pharmacological effect by increasing NO level, and thus the peroxynitrite concentration inside the parasite.

  8. Fruit juice, organic anion transporting polypeptides, and drug interactions in psychiatry.

    Science.gov (United States)

    Andrade, Chittaranjan

    2014-11-01

    Organic anion transporting polypeptides (OATPs) are a group of membrane transport proteins that facilitate the influx of endogenous and exogenous substances across biological membranes. OATPs are found in enterocytes and hepatocytes and in brain, kidney, and other tissues. In enterocytes, OATPs facilitate the gastrointestinal absorption of certain orally administered drugs. Fruit juices such as grapefruit juice, orange juice, and apple juice contain substances that are OATP inhibitors. These fruit juices diminish the gastrointestinal absorption of certain antiallergen, antibiotic, antihypertensive, and β-blocker drugs. While there is no evidence, so far, that OATP inhibition affects the absorption of psychotropic medications, there is no room for complacency because the field is still nascent and because the necessary studies have not been conducted. Patients should therefore err on the side of caution, taking their medications at least 4 hours distant from fruit juice intake. Doing so is especially desirable with grapefruit juice, orange juice, and apple juice; with commercial fruit juices in which OATP-inhibiting substances are likely to be present in higher concentrations; with calcium-fortified fruit juices; and with medications such as atenolol and fexofenadine, the absorption of which is substantially diminished by concurrent fruit juice intake.

  9. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus.

    Science.gov (United States)

    Yu, Fang; De Luca, Vincenzo

    2013-09-24

    The Madagascar periwinkle (Catharanthus roseus) is highly specialized for the biosynthesis of many different monoterpenoid indole alkaloids (MIAs), many of which have powerful biological activities. Such MIAs include the commercially important chemotherapy drugs vinblastine, vincristine, and other synthetic derivatives that are derived from the coupling of catharanthine and vindoline. However, previous studies have shown that biosynthesis of these MIAs involves extensive movement of metabolites between specialized internal leaf cells and the leaf epidermis that require the involvement of unknown secretory processes for mobilizing catharanthine to the leaf surface and vindoline to internal leaf cells. Spatial separation of vindoline and catharanthine provides a clear explanation for the low levels of dimers that accumulate in intact plants. The present work describes the molecular cloning and functional identification of a unique catharanthine transporter (CrTPT2) that is expressed predominantly in the epidermis of young leaves. CrTPT2 gene expression is activated by treatment with catharanthine, and its in planta silencing redistributes catharanthine to increase the levels of catharanthine-vindoline drug dimers in the leaves. Phylogenetic analysis shows that CrTPT2 is closely related to a key transporter involved in cuticle assembly in plants and that may be unique to MIA-producing plant species, where it mediates secretion of alkaloids to the plant surface.

  10. Identification of a novel topoisomerase inhibitor effective in cells overexpressing drug efflux transporters.

    Directory of Open Access Journals (Sweden)

    Walid Fayad

    Full Text Available BACKGROUND: Natural product structures have high chemical diversity and are attractive as lead structures for discovery of new drugs. One of the disease areas where natural products are most frequently used as therapeutics is oncology. METHOD AND FINDINGS: A library of natural products (NCI Natural Product set was screened for compounds that induce apoptosis of HCT116 colon carcinoma cells using an assay that measures an endogenous caspase-cleavage product. One of the apoptosis-inducing compounds identified in the screen was thaspine (taspine, an alkaloid from the South American tree Croton lechleri. The cortex of this tree is used for medicinal purposes by tribes in the Amazonas basin. Thaspine was found to induce conformational activation of the pro-apoptotic proteins Bak and Bax, mitochondrial cytochrome c release and mitochondrial membrane permeabilization in HCT116 cells. Analysis of the gene expression signature of thaspine-treated cells suggested that thaspine is a topoisomerase inhibitor. Inhibition of both topoisomerase I and II was observed using in vitro assays, and thaspine was found to have a reduced cytotoxic effect on a cell line with a mutated topoisomerase II enzyme. Interestingly, in contrast to the topoisomerase II inhibitors doxorubicin, etoposide and mitoxantrone, thaspine was cytotoxic to cell lines overexpressing the PgP or MRP drug efflux transporters. We finally show that thaspine induces wide-spread apoptosis in colon carcinoma multicellular spheroids and that apoptosis is induced in two xenograft mouse models in vivo. CONCLUSIONS: The alkaloid thaspine from the cortex of Croton lechleri is a dual topoisomerase inhibitor effective in cells overexpressing drug efflux transporters and induces wide-spread apoptosis in multicellular spheroids.

  11. Molecular Pathways: Regulation and Therapeutic Implications of Multidrug Resistance

    Science.gov (United States)

    Chen, Kevin G.; Sikic, Branimir I.

    2012-01-01

    Multidrug transporters constitute major mechanisms of multidrug resistance (MDR) in human cancers. The ABCB1 (MDR1) gene encodes a well-characterized transmembrane transporter, termed P-glycoprotein (P-gp), which is expressed in many normal human tissues and cancers. P-gp plays a major role in the distribution and excretion of drugs, and is involved in intrinsic and acquired drug resistance of cancers. The regulation of ABCB1 expression is complex, and has not been well studied in a clinical setting. In this review, we elucidate molecular signaling and epigenetic interactions that govern ABCB1 expression and the development of MDR in cancer. We focus on acquired expression of ABCB1 that is associated with genomic instability of cancer cells, including mutational events that alter chromatin structures, gene rearrangements, and mutations in tumor suppressor proteins (e.g., mutant p53) that guard the integrity of genome. In addition, epigenetic modifications of the ABCB1 proximal and far upstream promoters by either demethylation of DNA or acetylation of histone H3 play a pivotal role in inducing ABCB1 expression. We describe a molecular network that coordinates genetic and epigenetic events leading to the activation of ABCB1. These mechanistic insignts provide additional translational targets and potential strategies to deal with clinical MDR. PMID:22344233

  12. Analysis of perfusion, microcirculation and drug transport in tumors. A computational study.

    Science.gov (United States)

    Zunino, Paolo; Cattaneo, Laura

    2013-11-01

    We address blood flow through a network of capillaries surrounded by a porous interstitium. We develop a computational model based on the Immersed Boundary method [C. S. Peskin. Acta Numer. 2002.]. The advantage of such an approach relies in its efficiency, because it does not need a full description of the real geometry allowing for a large economy of memory and CPU time and it facilitates handling fully realistic vascular networks [L. Cattaneo and P. Zunino. Technical report, MOX, Department of Mathematics, Politecnico di Milano, 2013.]. The analysis of perfusion and drug release in vascularized tumors is a relevant application of such techniques. Blood vessels in tumors are substantially leakier than in healthy tissue and they are tortuous. These vascular abnormalities lead to an impaired blood supply and abnormal tumor microenvironment characterized by hypoxia and elevated interstitial fluid pressure that reduces the distribution of drugs through advection [L.T. Baxter and R.K. Jain. Microvascular Research, 1989]. Finally, we discuss the application of the model to deliver nanoparticles. In particular, transport of nanoparticles in the vessels network, their adhesion to the vessel wall and the drug release in the surrounding tissue will be addressed.

  13. ABC Transporters and the Alzheimer's Disease Enigma.

    Science.gov (United States)

    Wolf, Andrea; Bauer, Björn; Hartz, Anika M S

    2012-01-01

    Alzheimer's disease (AD) is considered the "disease of the twenty-first century." With a 10-fold increase in global incidence over the past 100 years, AD is now reaching epidemic proportions and by all projections, AD patient numbers will continue to rise. Despite intense research efforts, AD remains a mystery and effective therapies are still unavailable. This represents an unmet need resulting in clinical, social, and economic problems. Over the last decade, a new AD research focus has emerged: ATP-binding cassette (ABC) transporters. In this article, we provide an overview of the ABC transporters ABCA1, ABCA2, P-glycoprotein (ABCB1), MRP1 (ABCC1), and BCRP (ABCG2), all of which are expressed in the brain and have been implicated in AD. We summarize recent findings on the role of these five transporters in AD, and discuss their potential to serve as therapeutic targets.

  14. Drug transport and transport-metabolism interplay in the human and rat intestine : ex vivo studies with precision-cut intestinal slices

    NARCIS (Netherlands)

    Li, Ming

    2016-01-01

    The intestine plays an important role in uptake and metabolism of physiological, but also xenobiotic compounds, such as medical drugs. This function is supported by specialized transporters and metabolic enzymes. Together these proteins determine the concentration of compounds in intestinal cells an

  15. In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma.

    Directory of Open Access Journals (Sweden)

    Susanna J E Veringa

    Full Text Available Pediatric high-grade gliomas (pHGG, including diffuse intrinsic pontine gliomas (DIPG, are the leading cause of cancer-related death in children. While it is clear that surgery (if possible, and radiotherapy are beneficial for treatment, the role of chemotherapy for these tumors is still unclear. Therefore, we performed an in vitro drug screen on primary glioma cells, including three DIPG cultures, to determine drug sensitivity of these tumours, without the possible confounding effect of insufficient drug delivery. This screen revealed a high in vitro cytotoxicity for melphalan, doxorubicine, mitoxantrone, and BCNU, and for the novel, targeted agents vandetanib and bortezomib in pHGG and DIPG cells. We subsequently determined the expression of the drug efflux transporters P-gp, BCRP1, and MRP1 in glioma cultures and their corresponding tumor tissues. Results indicate the presence of P-gp, MRP1 and BCRP1 in the tumor vasculature, and expression of MRP1 in the glioma cells themselves. Our results show that pediatric glioma and DIPG tumors per se are not resistant to chemotherapy. Treatment failure observed in clinical trials, may rather be contributed to the presence of drug efflux transporters that constitute a first line of drug resistance located at the blood-brain barrier or other resistance mechanism. As such, we suggest that alternative ways of drug delivery may offer new possibilities for the treatment of pediatric high-grade glioma patients, and DIPG in particular.

  16. Fractional derivatives in the transport of drugs across biological materials and human skin

    Science.gov (United States)

    Caputo, Michele; Cametti, Cesare

    2016-11-01

    The diffusion of drugs across a composite structure such as a biological membrane is a rather complex phenomenon, because of its inhomogeneous nature, yielding a diffusion rate and a drug solubility strongly dependent on the local position across the membrane itself. These problems are particularly strengthened in composite structures of a considerable thickness like, for example, the human skin, where the high heterogeneity provokes the transport through different simultaneous pathways. In this note, we propose a generalization of the diffusion model based on Fick's 2nd equation by substituting a diffusion constant by means of the memory formalism approach (diffusion with memory). In particular, we employ two different definitions of the fractional derivative, i.e., the usual Caputo fractional derivative and a new definition recently proposed by Caputo and Fabrizio. The model predictions have been compared to experimental results concerning the permeation of two different compounds through human skin in vivo, such as piroxicam, an anti-inflammatory drug, and 4-cyanophenol, a test chemical model compound. Moreover, we have also considered water penetration across human stratum corneum and the diffusion of an antiviral agent employed as model drugs across the skin of male hairless rats. In all cases, a satisfactory good agreement based on the diffusion with memory has been found. However, the model based on the new definition of fractional derivative gives a better description of the experimental data, on the basis of the residuals analysis. The use of the new definition widens the applicability of the fractional derivative to diffusion processes in highly heterogeneous systems.

  17. Recapitulation of complex transport and action of drugs at the tumor microenvironment using tumor-microenvironment-on-chip.

    Science.gov (United States)

    Han, Bumsoo; Qu, Chunjing; Park, Kinam; Konieczny, Stephen F; Korc, Murray

    2016-09-28

    Targeted delivery aims to selectively distribute drugs to targeted tumor tissues but not to healthy tissues. This can address many clinical challenges by maximizing the efficacy but minimizing the toxicity of anti-cancer drugs. However, a complex tumor microenvironment poses various barriers hindering the transport of drugs and drug delivery systems. New tumor models that allow for the systematic study of these complex environments are highly desired to provide reliable test beds to develop drug delivery systems for targeted delivery. Recently, research efforts have yielded new in vitro tumor models, the so called tumor-microenvironment-on-chip, that recapitulate certain characteristics of the tumor microenvironment. These new models show benefits over other conventional tumor models, and have the potential to accelerate drug discovery and enable precision medicine. However, further research is warranted to overcome their limitations and to properly interpret the data obtained from these models. In this article, key features of the in vivo tumor microenvironment that are relevant to drug transport processes for targeted delivery were discussed, and the current status and challenges for developing in vitro transport model systems were reviewed.

  18. Modeling of drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls to treat vulnerable plaques

    KAUST Repository

    Hossain, Shaolie S.

    2010-01-01

    The main objective of this work is to develop computational tools to support the design of a catheter-based local drug delivery system that uses nanoparticles as drug carriers in order to treat vulnerable plaques and diffuse atherosclerotic disease.

  19. Drug: D02272 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available ) (C20H24N2O2)2. H2SO4. 2H2O 782.3561 782.9426 D02272.gif Cardiac depressant [anti-arrhythmic] Therapeutic c...ategory: 2122 ATC code: C01BA01 Class I antiarrhythmic agent (Ia) voltage-gated sodium channel (SCN1A) block...CL47A2 [HSA:146802], ABCB1 [HSA:5243] map07025 Quinolines map07037 Antiarrhythmic drugs map07231 Sodium chan...21 Cardiovascular agents 212 Antiarrhythmic agents 2122 Quinidines D02272 Quinidine sulfate hydrate (JP16); ...br08303] C CARDIOVASCULAR SYSTEM C01 CARDIAC THERAPY C01B ANTIARRHYTHMICS, CLASS I AND III C01BA Antiarrhythmic

  20. Role of Transporters in Central Nervous System Drug Delivery and Blood-Brain Barrier Protection: Relevance to Treatment of Stroke

    Directory of Open Access Journals (Sweden)

    Hrvoje Brzica

    2017-03-01

    Full Text Available Ischemic stroke is a leading cause of morbidity and mortality in the United States. The only approved pharmacologic treatment for ischemic stroke is thrombolysis via recombinant tissue plasminogen activator (r-tPA. A short therapeutic window and serious adverse events (ie, hemorrhage, excitotoxicity greatly limit r-tPA therapy, which indicates an essential need to develop novel stroke treatment paradigms. Transporters expressed at the blood-brain barrier (BBB provide a significant opportunity to advance stroke therapy via central nervous system delivery of drugs that have neuroprotective properties. Examples of such transporters include organic anion–transporting polypeptides (Oatps and organic cation transporters (Octs. In addition, multidrug resistance proteins (Mrps are transporter targets in brain microvascular endothelial cells that can be exploited to preserve BBB integrity in the setting of stroke. Here, we review current knowledge on stroke pharmacotherapy and demonstrate how endogenous BBB transporters can be targeted for improvement of ischemic stroke treatment.

  1. Blood-brain barrier transport of drugs for the treatment of brain diseases.

    Science.gov (United States)

    Gabathuler, Reinhard

    2009-06-01

    The central nervous system is a sanctuary protected by barriers that regulate brain homeostasis and control the transport of endogenous compounds into the brain. The blood-brain barrier, formed by endothelial cells of the brain capillaries, restricts access to brain cells allowing entry only to amino acids, glucose and hormones needed for normal brain cell function and metabolism. This very tight regulation of brain cell access is essential for the survival of neurons which do not have a significant capacity to regenerate, but also prevents therapeutic compounds, small and large, from reaching the brain. As a result, various strategies are being developed to enhance access of drugs to the brain parenchyma at therapeutically meaningful concentrations to effectively manage disease.

  2. Effect of cationized gelatins on the paracellular transport of drugs through caco-2 cell monolayers.

    Science.gov (United States)

    Seki, Toshinobu; Kanbayashi, Hiroshi; Nagao, Tomonobu; Chono, Sumio; Tabata, Yasuhiko; Morimoto, Kazuhiro

    2006-06-01

    Cationized gelatins, candidate absorption enhancers, were prepared by addition of ethylenediamine or spermine to gelatin and the effects of the resulting ethylenediaminated gelatin (EG) and sperminated gelatin (SG) on the paracellular transport of 5(6)-carboxyfluorescein (CF), FITC-dextran-4 (FD4), and insulin through caco-2 cell monolayers were examined. The Renkin function was used for characterization of the paracellular pathway and changes in the pore radius (R) and pore occupancy/length ratio (epsilon/L) calculated from the apparent permeability coefficients (P(app)) of CF and FD4 are discussed. Ethylenediaminetetraacetic acid (EDTA) increased the R of the caco-2 cell monolayer and the P(app) of all compounds examined was markedly increased by the addition of EDTA. On the other hand, EG and SG did not increase R and their enhancing effects were not as strong as those of EDTA. The increase in epsilon/L could be the enhancing mechanism for the cationized gelatins. The number of pathways for water-soluble drugs, such as CF and FD4, in the caco-2 monolayers could be increased by the addition of the cationized gelatins. The ratios of the permeability coefficients of insulin (observed/calculated based on the Renkin function) suggest that insulin undergoes enzymatic degradation during transport which is not inhibited by enhancers.

  3. Flavonoid-mediated inhibition of intestinal ABC transporters may affect the oral bioavailability of drugs, food-borne toxic compounds and bioactive ingredients

    NARCIS (Netherlands)

    Brand, W.; Schutte, M.E.; Bladeren, van P.J.; Rietjens, I.M.C.M.

    2006-01-01

    The transcellular transport of ingested food ingredients across the intestinal epithelial barrier is an important factor determining bioavailability upon oral intake. This transcellular transport of many chemicals, food ingredients, drugs or toxic compounds over the intestinal epithelium can be high

  4. Interaction of immunosuppressive drugs with human organic anion transporter (OAT) 1 and OAT3, and multidrug resistance-associated protein (MRP) 2 and MRP4

    NARCIS (Netherlands)

    El-Sheikh, A.A.K.; Greupink, R.; Wortelboer, H.M.; Heuvel, J.J.M.W. van den; Schreurs, M.; Koenderink, J.B.; Masereeuw, R.; Russel, F.G.M.

    2013-01-01

    Renal proximal tubule transporters can play a key role in excretion, pharmacokinetic interactions, and toxicity of immunosuppressant drugs. Basolateral organic anion transporters (OATs) and apical multidrug resistance-associated proteins (MRPs) contribute to the active tubular uptake and urinary eff

  5. Flavonoid-mediated inhibition of intestinal ABC transporters may affect the oral bioavailability of drugs, food-borne toxic compounds and bioactive ingredients

    NARCIS (Netherlands)

    Brand, W.; Schutte, M.E.; Bladeren, van P.J.; Rietjens, I.M.C.M.

    2006-01-01

    The transcellular transport of ingested food ingredients across the intestinal epithelial barrier is an important factor determining bioavailability upon oral intake. This transcellular transport of many chemicals, food ingredients, drugs or toxic compounds over the intestinal epithelium can be high

  6. A novel two mode-acting inhibitor of ABCG2-mediated multidrug transport and resistance in cancer chemotherapy.

    Directory of Open Access Journals (Sweden)

    Hui Peng

    Full Text Available BACKGROUND: Multidrug resistance (MDR is a major problem in successful treatment of cancers. Human ABCG2, a member of the ATP-binding cassette transporter superfamily, plays a key role in MDR and an important role in protecting cancer stem cells. Knockout of ABCG2 had no apparent adverse effect on the mice. Thus, ABCG2 is an ideal target for development of chemo-sensitizing agents for better treatment of drug resistant cancers and helping eradicate cancer stem cells. METHODS/PRELIMINARY FINDINGS: Using rational screening of representatives from a chemical compound library, we found a novel inhibitor of ABCG2, PZ-39 (N-(4-chlorophenyl-2-[(6-{[4,6-di(4-morpholinyl-1,3,5-triazin-2-yl]amino}-1,3-benzothiazol-2-ylsulfanyl]acetamide, that has two modes of actions by inhibiting ABCG2 activity and by accelerating its lysosome-dependent degradation. PZ-39 has no effect on ABCB1 and ABCC1-mediated drug efflux, resistance, and their expression, indicating that it may be specific to ABCG2. Analyses of its analogue compounds showed that the pharmacophore of PZ-39 is benzothiazole linked to a triazine ring backbone. CONCLUSION/SIGNIFICANCE: Unlike any previously known ABCG2 transporter inhibitors, PZ-39 has a novel two-mode action by inhibiting ABCG2 activity, an acute effect, and by accelerating lysosome-dependent degradation, a chronic effect. PZ-39 is potentially a valuable probe for structure-function studies of ABCG2 and a lead compound for developing therapeutics targeting ABCG2-mediated MDR in combinational cancer chemotherapy.

  7. Dipeptidomimetic ketomethylene isosteres as pro-moieties for drug transport via the human intestinal di-/tripeptide transporter hPEPT1

    DEFF Research Database (Denmark)

    Våbenø, Jon; Nielsen, Carsten Uhd; Ingebrigtsen, Truls

    2004-01-01

    . The stability, the affinity for the di-/tripeptide transporter hPEPT1, and the transepithelial transport properties of the model prodrugs were investigated. ValPsi[COCH(2)]Asp(OBn) was the compound with highest chemical stability in buffers at pH 6.0 and 7.4, with half-lives of 190 and 43 h, respectively. All......Five dipeptidomimetic-based model prodrugs containing ketomethylene amide bond replacements were synthesized from readily available alpha,beta-unsaturated gamma-ketoesters. The model drug (BnOH) was attached to the C-terminus or to one of the side chain positions of the dipeptidomimetic...... five compounds showed high affinity for hPEPT1 (K(i) values transport component was demonstrated for the transepithelial transport of three...

  8. Sodium glucose co-transporter inhibitors – A new class of old drugs

    Science.gov (United States)

    Malhotra, Aneeta; Kudyar, Surbhi; Gupta, Anil K.; Kudyar, Rattan P.; Malhotra, Pavan

    2015-01-01

    Sodium glucose co-transporter (SGLT) inhibitors are a new class of drugs which are used in the pharmacotherapy of Type-II diabetes, which happens to be a major risk factor for developing both micro as well as macro-vascular complications. These drugs inhibit the glucose reabsorption by inhibiting SGLT, which exhibits a novel and promising mechanism of action by promoting the urinary glucose excretion hence providing a basis of therapeutic intervention. Results of SGLT-II inhibitors are very encouraging as there is a significant elevation of GLP-1 level, which forms the basis of relevance in treatment of diabetes. It targets the HbA1C and keeps a check on its levels. It also exerts other positive benefits such as weight loss, reduction in blood glucose levels, reduction in blood pressure and improvement in insulin resistance and β-cell dysfunction: All contributing to effective glycemic control. SGLT inhibition will develop as effective modality as it has the capability of inhibiting reabsorption of greater percentage of filtered glucose load. PMID:26539362

  9. A Combined Approach Using Transporter-Flux Assays and Mass Spectrometry to Examine Psychostimulant Street Drugs of Unknown Content

    OpenAIRE

    Rosenauer, Rudolf; Luf, Anton; Holy, Marion; Freissmuth, Michael; SCHMID, RAINER; Sitte, Harald H

    2012-01-01

    The illicit consumption of psychoactive compounds may cause short and long-term health problems and addiction. This is also true for amphetamines and cocaine, which target monoamine transporters. In the recent past, an increasing number of new compounds with amphetamine-like structure such as mephedrone or 3,4-methylenedioxypyrovalerone (MDPV) entered the market of illicit drugs. Subtle structural changes circumvent legal restrictions placed on the parent compound. These novel drugs are effec...

  10. Antibacterial drug treatment increases intestinal bile acid absorption via elevated levels of ileal apical sodium-dependent bile acid transporter but not organic solute transporter α protein.

    Science.gov (United States)

    Miyata, Masaaki; Hayashi, Kenjiro; Yamakawa, Hiroki; Yamazoe, Yasushi; Yoshinari, Kouichi

    2015-01-01

    Antibacterial drug treatment increases the bile acid pool size and hepatic bile acid concentration through the elevation of hepatic bile acid synthesis. However, the involvement of intestinal bile acid absorption in the increased bile acid pool size remains unclear. To determine whether intestinal bile acid absorption contributes to the increased bile acid pool in mice treated with antibacterial drugs, we evaluated the levels of bile acid transporter proteins and the capacity of intestinal bile acid absorption. Ileal apical sodium-dependent bile acid transporter (ASBT) mRNA and protein levels were significantly increased in ampicillin (ABPC)-treated mice, whereas organic solute transporter α (OSTα) mRNA levels, but not protein levels, significantly decreased in mice. Similar alterations in the expression levels of bile acid transporters were observed in mice treated with bacitracin/neomycin/streptomycin. The capacity for intestinal bile acid absorption was evaluated by an in situ loop method. Increased ileal absorption of taurochenodeoxycholic acid was observed in mice treated with ABPC. These results suggest that intestinal bile acid absorption is elevated in an ASBT-dependent manner in mice treated with antibacterial drugs.

  11. Non-steroidal anti-inflammatory drugs affect the methotrexate transport in IEC-6 cells.

    Science.gov (United States)

    Sosogi, Aiko; Gao, Feng; Tomimatsu, Takashi; Hirata, Koji; Horie, Toshiharu

    2003-06-13

    Methotrexate (MTX) is used not only for the cancer chemotherapy but also for the treatment of rheumatic disease, often together with non-steroidal anti-inflammatory drugs (NSAIDs). MTX is actively cotransported with H(+) in the small intestine, mediated by a reduced folate carrier (RFC). The coadministration of some NSAIDs with MTX to rats caused a decrease of MTX absorption through the small intestine. This may be due to the uncoupling effect of oxidative phosphorylation of the NSAIDs. The present study investigated whether flufenamic acid, diclofenac and indomethacin, NSAIDs, decreased ATP content of rat-derived intestinal epithelial cell line IEC-6 cells and affected the MTX transport in IEC-6 cells. The MTX uptake in IEC-6 cells was dependent on medium pH and maximum around pH 4.5-5.5. The MTX uptake was composed of a transport inhibited by 4, 4'-diisothiocyanostilbene-2, 2'-disulfonic acid (DIDS) and a non-saturable one. The DIDS-sensitive component in the MTX uptake showed a saturation kinetics (Michaelis-Menten constant (Km): 3.91 +/- 0.52 microM, Maximum velocity (Vmax): 94.66 +/- 6.56 pmol/mg protein/5 min). The cellular ATP content in IEC-6 cells decreased significantly at 30 min after the cells were started to incubate with the NSAIDs (250 microM flufenamic acid, 500 microM diclofenac and 500 microM indomethacin). The MTX uptake in IEC-6 cells in the presence of the NSAIDs decreased with the reduction of cellular ATP content and showed a good correlation with the ATP content (correlation coefficient: 0.982). Thus it seems likely that the ATP content in IEC-6 cells with the NSAIDs decreased due to the uncoupling effect of oxidative phosphorylation of the NSAIDs, resulting in the inhibition of the secondary active transport of MTX in IEC-6 cells. The present results also suggest that IEC-6 cells are useful to evaluate the drug interaction relating to this carrier system.

  12. Ivermectin interacts with human ABCG2.

    Science.gov (United States)

    Jani, Márton; Makai, Ildikó; Kis, Emese; Szabó, Pál; Nagy, Tünde; Krajcsi, Péter; Lespine, Anne

    2011-01-01

    Ivermectin is an antiparasitic drug frequently administered to humans. It has a limited brain exposure that is attributed to the efflux activity of ABCB1/Abcb1. ABCG2/Abcg2 is also a major transporter present in most pharmacologically important barriers. However, interaction of ivermectin with Abcg2 shows species specificity and in many studies was confounded by the masking effect of ABCB1/Abcb1. In this study using cellular and membrane assays we show that ivermectin displays a high-affinity interaction with human ABCG2 with IC(50) values in the 1-1.5  µM range. This interaction may have implications in human ABCG2-mediated drug-drug interactions of ivermectin.

  13. The Signature Sequence Region of the Human Drug Transporter Organic Anion Transporting Polypeptide 1B1 Is Important for Protein Surface Expression

    Directory of Open Access Journals (Sweden)

    Jennina Taylor-Wells

    2014-01-01

    Full Text Available The organic anion transporting polypeptides (OATPs encompass a family of membrane transport proteins responsible for the uptake of xenobiotic compounds. Human organic anion transporting polypeptide 1B1 (OATP1B1 mediates the uptake of clinically relevant compounds such as statins and chemotherapeutic agents into hepatocytes, playing an important role in drug delivery and detoxification. The OATPs have a putative 12-transmembrane domain topology and a highly conserved signature sequence (human OATP1B1: DSRWVGAWWLNFL, spanning the extracellular loop 3/TM6 boundary. The presence of three conserved tryptophan residues at the TM interface suggests a structural role for the sequence. This was investigated by site-directed mutagenesis of selected amino acids within the sequence D251E, W254F, W258/259F, and N261A. Transport was measured using the substrate estrone-3-sulfate and surface expression detected by luminometry and confocal microscopy, facilitated by an extracellular FLAG epitope. Uptake of estrone-3-sulfate and the surface expression of D251E, W254F, and W258/259F were both significantly reduced from the wild type OATP1B1-FLAG in transfected HEK293T cells. Confocal microscopy revealed that protein was produced but was retained intracellularly. The uptake and expression of N261A were not significantly different. The reduction in surface expression and intracellular protein retention indicates a structural and/or membrane localization role for these signature sequence residues in the human drug transporter OATP1B1.

  14. The Signature Sequence Region of the Human Drug Transporter Organic Anion Transporting Polypeptide 1B1 Is Important for Protein Surface Expression.

    Science.gov (United States)

    Taylor-Wells, Jennina; Meredith, David

    2014-01-01

    The organic anion transporting polypeptides (OATPs) encompass a family of membrane transport proteins responsible for the uptake of xenobiotic compounds. Human organic anion transporting polypeptide 1B1 (OATP1B1) mediates the uptake of clinically relevant compounds such as statins and chemotherapeutic agents into hepatocytes, playing an important role in drug delivery and detoxification. The OATPs have a putative 12-transmembrane domain topology and a highly conserved signature sequence (human OATP1B1: DSRWVGAWWLNFL), spanning the extracellular loop 3/TM6 boundary. The presence of three conserved tryptophan residues at the TM interface suggests a structural role for the sequence. This was investigated by site-directed mutagenesis of selected amino acids within the sequence D251E, W254F, W258/259F, and N261A. Transport was measured using the substrate estrone-3-sulfate and surface expression detected by luminometry and confocal microscopy, facilitated by an extracellular FLAG epitope. Uptake of estrone-3-sulfate and the surface expression of D251E, W254F, and W258/259F were both significantly reduced from the wild type OATP1B1-FLAG in transfected HEK293T cells. Confocal microscopy revealed that protein was produced but was retained intracellularly. The uptake and expression of N261A were not significantly different. The reduction in surface expression and intracellular protein retention indicates a structural and/or membrane localization role for these signature sequence residues in the human drug transporter OATP1B1.

  15. Raltegravir permeability across blood-tissue barriers and the potential role of drug efflux transporters.

    Science.gov (United States)

    Hoque, M Tozammel; Kis, Olena; De Rosa, María F; Bendayan, Reina

    2015-05-01

    The objectives of this study were to investigate raltegravir transport across several blood-tissue barrier models and the potential interactions with drug efflux transporters. Raltegravir uptake, accumulation, and permeability were evaluated in vitro in (i) P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), multidrug resistance-associated protein 1 (MRP1), or MRP4-overexpressing MDA-MDR1 (P-gp), HEK-ABCG2, HeLa-MRP1, or HEK-MRP4 cells, respectively; (ii) cell culture systems of the human blood-brain (hCMEC/D3), mouse blood-testicular (TM4), and human blood-intestinal (Caco-2) barriers; and (iii) rat jejunum and ileum segments using an in situ single-pass intestinal perfusion model. [(3)H]Raltegravir accumulation by MDA-MDR1 (P-gp) and HEK-ABCG2-overexpressing cells was significantly enhanced in the presence of PSC833 {6-[(2S,4R,6E)-4-methyl-2-(methylamino)-3-oxo-6-octenoic acid]-7-L-valine-cyclosporine}, a P-gp inhibitor, or Ko143 [(3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4-b]indole-3-propanoic acid 1,1-dimethylethyl ester], a BCRP inhibitor, suggesting the inhibition of a P-gp- or BCRP-mediated efflux process, respectively. Furthermore, [(3)H]raltegravir accumulation by human cerebral microvessel endothelial hCMEC/D3 and mouse Sertoli TM4 cells was significantly increased by PSC833 and Ko143. In human intestinal Caco-2 cells grown on Transwell filters, PSC833, but not Ko143, significantly decreased the [(3)H]raltegravir efflux ratios. In rat intestinal segments, [(3)H]raltegravir in situ permeability was significantly enhanced by the concurrent administration of PSC833 and Ko143. In contrast, in the transporter inhibition assays, raltegravir (10 to 500 μM) did not increase the accumulation of substrate for P-gp (rhodamine-6G), BCRP ([(3)H]mitoxantrone), or MRP1 [2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF)] by MDA-MDR1 (P-gp)-, HEK-ABCG2-, or HeLa-MRP1-overexpressing

  16. Highlights From the American Association of Pharmaceutical Scientists/ International Transporter Consortium Joint Workshop on Drug Transporters in Absorption, Distribution, Metabolism, and Excretion: From the Bench to the Bedside - Clinical Pharmacology Considerations.

    Science.gov (United States)

    Ronaldson, P T; Bauer, B; El-Kattan, A F; Shen, H; Salphati, L; Louie, S W

    2016-11-01

    The American Association of Pharmaceutical Scientists/International Transporter Consortium Joint Workshop on Drug Transporters in absorption, distribution, metabolism, and excretion was held with the objective of discussing innovative advances in transporter pharmacology. Specific topics included (i) transporters at the blood-brain barrier (BBB); (ii) emerging transport proteins; (iii) recent advances in achieving hepatoselectivity and optimizing clearance for organic anion-transporting polypeptide (OATP) substrates; (iv) utility of animal models for transporter studies; and (v) clinical correlation of transporter polymorphisms. Here, we present state-of-the-art highlights from this workshop in these key areas of focus.

  17. Ion channels and transporters in the development of drug resistance in cancer cells

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Lambert, Ian Henry

    2014-01-01

    Multi-drug resistance (MDR) to chemotherapy is the major challenge in the treatment of cancer. MDR can develop by numerous mechanisms including decreased drug uptake, increased drug efflux and the failure to undergo drug-induced apoptosis. Evasion of drug-induced apoptosis through modulation of ion...

  18. Quantitative evaluation of the combination between cytotoxic drug and efflux transporter inhibitors based on a tumour growth inhibition model.

    Science.gov (United States)

    Sostelly, Alexandre; Payen, Léa; Guitton, Jérôme; Di Pietro, Attilio; Falson, Pierre; Honorat, Mylène; Boumendjel, Ahcène; Gèze, Annabelle; Freyer, Gilles; Tod, Michel

    2014-04-01

    ATP-Binding Cassette transporters such as ABCG2 confer resistance to various anticancer drugs including irinotecan and its active metabolite, SN38. Early quantitative evaluation of efflux transporter inhibitors-cytotoxic combination requires quantitative drug-disease models. A proof-of-concept study has been carried out for studying the effect of a new ABCG2 transporter inhibitor, MBLI87 combined to irinotecan in mice xenografted with cells overexpressing ABCG2. Mice were treated with irinotecan alone or combined to MBLI87, and tumour size was periodically measured. To model those data, a tumour growth inhibition model was developed. Unperturbed tumour growth was modelled using Simeoni's model. Drug effect kinetics was accounted for by a Kinetic-Pharmacodynamic approach. Effect of inhibitor was described with a pharmacodynamic interaction model where inhibitor enhances activity of cytotoxic. This model correctly predicted tumour growth dynamics from our study. MBLI87 increased irinotecan potency by 20% per μmol of MBLI87. This model retains enough complexity to simultaneously describe tumour growth and effect of this type of drug combination. It can thus be used as a template to early evaluate efflux transporter inhibitors in-vivo.

  19. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse.

    Science.gov (United States)

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2016-08-05

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune-mediated mechanism, are highly associated with potent

  20. A Drosophila model to identify polyamine-drug conjugates that target the polyamine transporter in an intact epithelium.

    Science.gov (United States)

    Tsen, Chung; Iltis, Mark; Kaur, Navneet; Bayer, Cynthia; Delcros, Jean-Guy; von Kalm, Laurence; Phanstiel, Otto

    2008-01-24

    Polyamine transport is elevated in many tumor types, suggesting that toxic polyamine-drug conjugates could be targeted to cancer cells via the polyamine transporter (PAT). We have previously reported the use of Chinese hamster ovary (CHO) cells and its PAT-deficient mutant cell line, CHO-MG, to screen anthracene-polyamine conjugates for their PAT-selective targeting ability. We report here a novel Drosophila-based model for screening anthracene-polyamine conjugates in a developing and intact epithelium ( Drosophila imaginal discs), wherein cell-cell adhesion properties are maintained. Data from the Drosophila assay are consistent with previous results in CHO cells, indicating that the Drosophila epithelium has a PAT with vertebrate-like characteristics. This assay will be of use to medicinal chemists interested in screening drugs that use PAT for cellular entry, and it offers the possibility of genetic dissection of the polyamine transport process, including identification of a Drosophila PAT.

  1. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment.

    Science.gov (United States)

    Jang, Kyung-Jin; Mehr, Ali Poyan; Hamilton, Geraldine A; McPartlin, Lori A; Chung, Seyoon; Suh, Kahp-Yang; Ingber, Donald E

    2013-09-01

    Kidney toxicity is one of the most frequent adverse events reported during drug development. The lack of accurate predictive cell culture models and the unreliability of animal studies have created a need for better approaches to recapitulate kidney function in vitro. Here, we describe a microfluidic device lined by living human kidney epithelial cells exposed to fluidic flow that mimics key functions of the human kidney proximal tubule. Primary kidney epithelial cells isolated from human proximal tubule are cultured on the upper surface of an extracellular matrix-coated, porous, polyester membrane that splits the main channel of the device into two adjacent channels, thereby creating an apical 'luminal' channel and a basal 'interstitial' space. Exposure of the epithelial monolayer to an apical fluid shear stress (0.2 dyne cm(-2)) that mimics that found in living kidney tubules results in enhanced epithelial cell polarization and primary cilia formation compared to traditional Transwell culture systems. The cells also exhibited significantly greater albumin transport, glucose reabsorption, and brush border alkaline phosphatase activity. Importantly, cisplatin toxicity and Pgp efflux transporter activity measured on-chip more closely mimic the in vivo responses than results obtained with cells maintained under conventional culture conditions. While past studies have analyzed kidney tubular cells cultured under flow conditions in vitro, this is the first report of a toxicity study using primary human kidney proximal tubular epithelial cells in a microfluidic 'organ-on-a-chip' microdevice. The in vivo-like pathophysiology observed in this system suggests that it might serve as a useful tool for evaluating human-relevant renal toxicity in preclinical safety studies.

  2. Drug interactions with HMG-CoA reductase inhibitors (statins): the importance of CYP enzymes, transporters and pharmacogenetics.

    Science.gov (United States)

    Neuvonen, Pertti J

    2010-03-01

    HMG-CoA reductase inhibitors (statins) can cause skeletal muscle toxicity; the risk of toxicity is elevated by drug interactions and pharmacogenetic factors that increase the concentration of statins in the plasma. Statins are substrates for several membrane transporters that may mediate drug interactions. Inhibitors of the organic anion transporting polypeptide 1B1 can decrease the hepatic uptake of many statins, as well as the therapeutic index of these agents. Potent inhibitors of cytochrome P450 (CYP)3A4 can significantly increase the plasma concentrations of the active forms of simvastatin, lovastatin and atorvastatin. Fluvastatin, which is metabolized by CYP2C9, is less prone to pharmacokinetic interactions, while pravastatin, rosuvastatin and pitavastatin are not susceptible to any CYP inhibition. An understanding of the mechanisms of statin interactions will help to minimize drug interactions and to develop statins that are less prone to adverse interactions.

  3. High-quality genotyping data from formalin-fixed, paraffin-embedded tissue on the drug metabolizing enzymes and transporters plus array

    NARCIS (Netherlands)

    Vos, H.I.; Straaten, T. van der; Coenen, M.J.H.; Flucke, U.E.; Loo, D.M.W.M. te; Guchelaar, H.J.

    2015-01-01

    The Affymetrix Drug Metabolizing Enzymes and Transporters (DMET) Plus array covers 1936 markers in 231 genes involved in drug metabolism and transport. Blood- and saliva-derived DNA works well on the DMET array, but the utility of DNA from FFPE tissue has not been reported for this array. As the abi

  4. A short update on the structure of drug binding sites on neurotransmitter transporters

    Directory of Open Access Journals (Sweden)

    Gabrielsen Mari

    2011-12-01

    Full Text Available Abstract Background The dopamine (DAT, noradrenalin (NET and serotonin (SERT transporters are molecular targets for different classes of psychotropic drugs. Cocaine and the SSRI (S-citalopram block neurotransmitter reuptake competitively, but while cocaine is a non-selective reuptake inhibitor, (S-citalopram is a selective SERT inhibitor. Findings Here we present comparisons of the binding sites and the electrostatic potential surfaces (EPS of DAT, NET and SERT homology models based on two different LeuTAa templates; with a substrate (leucine in an occluded conformation (PDB id 2a65, and with an inhibitor (tryptophan in an open-to-out conformation (PDB id 3f3a. In the occluded homology models, two conserved aromatic amino acids (tyrosine and phenylalanine formed a gate between the putative binding pockets, and this contact was interrupted in the open to out conformation. The EPS of DAT and NET were generally negative in the vestibular area, whereas the EPS of the vestibular area of SERT was more neutral. Conclusions The findings presented here contribute as an update on the structure of the binding sites of DAT, NET and SERT. The updated models, which have larger ligand binding site areas than models based on other templates, may serve as improved tools for virtual ligand screening.

  5. Multi-drug resistance gene (MDR1) and opioid analgesia in horses

    OpenAIRE

    Natalini Cláudio Corrêa; Cunha Anderson Fávaro da; Linardi Renata Lehn

    2006-01-01

    Opioid absorption in the intestinal tract as well as its effects in the central nervous system is modulated by the P-glycoprotein (P-gp) encoded in the Multi-drug Resistance gene (MDR1) also named ATP-binding cassete, subfamily B, member 1 (ABCB1). This MDR1 gene acts as a selective pump. The expression of this protein in humans and rodents inhibits cellular uptake of substrate opioids. The presence of the intestinal iso-enzyme CYP3A4 associated with MDR1 gene decreases the opioid analgesic a...

  6. Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters.

    Science.gov (United States)

    Němcová-Fürstová, Vlasta; Kopperová, Dana; Balušíková, Kamila; Ehrlichová, Marie; Brynychová, Veronika; Václavíková, Radka; Daniel, Petr; Souček, Pavel; Kovář, Jan

    2016-11-01

    Development of taxane resistance has become clinically very important issue. The molecular mechanisms underlying the resistance are still unclear. To address this issue, we established paclitaxel-resistant sublines of the SK-BR-3 and MCF-7 breast cancer cell lines that are capable of long-term proliferation in 100nM and 300nM paclitaxel, respectively. Application of these concentrations leads to cell death in the original counterpart cells. Both sublines are cross-resistant to doxorubicin, indicating the presence of the MDR phenotype. Interestingly, resistance in both paclitaxel-resistant sublines is circumvented by the second-generation taxane SB-T-1216. Moreover, we demonstrated that it was not possible to establish sublines of SK-BR-3 and MCF-7 cells resistant to this taxane. It means that at least the tested breast cancer cells are unable to develop resistance to some taxanes. Employing mRNA expression profiling of all known human ABC transporters and subsequent Western blot analysis of the expression of selected transporters, we demonstrated that only the ABCB1/PgP and ABCC3/MRP3 proteins were up-regulated in both paclitaxel-resistant sublines. We found up-regulation of ABCG2/BCRP and ABCC4 proteins only in paclitaxel-resistant SK-BR-3 cells. In paclitaxel-resistant MCF-7 cells, ABCB4/MDR3 and ABCC2/MRP2 proteins were up-regulated. Silencing of ABCB1 expression using specific siRNA increased significantly, but did not completely restore full sensitivity to both paclitaxel and doxorubicin. Thus we showed a key, but not exclusive, role for ABCB1 in mechanisms of paclitaxel resistance. It suggests the involvement of multiple mechanisms in paclitaxel resistance in tested breast cancer cells.

  7. Modeling Organic Anion-Transporting Polypeptide 1B1 Inhibition to Elucidate Interaction Risks in Early Drug Design.

    Science.gov (United States)

    Zamora, Ismael; Winiwarter, Susanne

    2016-10-01

    The importance of transporter proteins for the disposition of drugs has become increasingly apparent during the past decade. A noted drug-drug interaction risk is the inhibition of organic anion-transporting polypeptides (OATPs), key transporters for the liver uptake of the widely used statins. We show here the development of a ligand-based in silico model for interaction with OATP1B1, an important representative of the OATP family. The model is based on a structural overlay of 6 known OATP1B1 inhibitors. A data set of about 150 compounds with published OATP1B1 inhibition data was compared to the resulting "transportophor," and a similarity threshold was defined to distinguish between active and inactive molecules. In addition, using a statistical model based on physicochemical properties of the compounds as prefilter was found to enhance the overall predictivity of the model (final accuracy 0.73, specificity 074, and sensitivity 0.71, based on 126 compounds). The combined model was validated using an in-house data set (accuracy, specificity, and sensitivity were 0.63, 0.59, and 0.78, respectively; 62 compounds). The model gives also a structural overlay to the most similar template enabling visualization of where a change in a given structure might reduce the interaction with the transporter.

  8. Combining PET biodistribution and equilibrium dialysis assays to assess the free brain concentration and BBB transport of CNS drugs

    Science.gov (United States)

    Gunn, Roger N; Summerfield, Scott G; Salinas, Cristian A; Read, Kevin D; Guo, Qi; Searle, Graham E; Parker, Christine A; Jeffrey, Phil; Laruelle, Marc

    2012-01-01

    The passage of drugs in and out of the brain is controlled by the blood–brain barrier (BBB), typically, using either passive diffusion across a concentration gradient or active transport via a protein carrier. In-vitro and preclinical measurements of BBB penetration do not always accurately predict the in-vivo situation in humans. Thus, the ability to assay the concentration of novel drug candidates in the human brain in vivo provides valuable information for derisking of candidate molecules early in drug development. Here, positron emission tomography (PET) measurements are combined with in-vitro equilibrium dialysis assays to enable assessment of transport and estimation of the free brain concentration in vivo. The PET and equilibrium dialysis data were obtained for 36 compounds in the pig. Predicted P-glycoprotein (P-gp) status of the compounds was consistent with the PET/equilibrium dialysis results. In particular, Loperamide, a well-known P-gp substrate, exhibited a significant concentration gradient consistent with active efflux and after inhibition of the P-gp process the gradient was removed. The ability to measure the free brain concentration and assess transport of novel compounds in the human brain with combined PET and equilibrium dialysis assays can be a useful tool in central nervous system (CNS) drug development. PMID:22274741

  9. Investigating how the attributes of self-associated drug complexes influence the passive transport of molecules through biological membranes.

    Science.gov (United States)

    Inacio, R; Barlow, D; Kong, X; Keeble, J; Jones, S A

    2016-05-01

    Relatively little is known about how drug self-association influences absorption into the human body. This study presented two hydrophobic membranes with a series of solutions containing different types of tetracaine aggregates with the aim of understanding how the attributes of supramolecular aggregate formation influenced passive membrane transport. The data showed that aqueous solutions of the unprotonated form of tetracaine displayed a significantly higher (ptransport compared to solutions with mixtures of the unprotonated and protonated drug microspecies (e.g. transport through the skin was 0.96±0.31μgcm(-2)min(-1) and 1.59±0.26μgcm(-2)min(-1) respectively). However, despite an enhanced rate of drug transport and a better membrane partitioning the unionised molecules showed a significantly longer (ptransport studies showed that larger tetracaine aggregates with smaller surface charge gave rise to the longer lag times. These large aggregates demonstrated more extensive intermolecular bonding and therefore, it was suggest that it was the enhanced propensity of the unionised species to form tightly bound drug aggregates that caused the delay in the membrane penetration.

  10. Breast Cancer Resistance Protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1) Restrict Oral Availability and Brain Accumulation of the PARP Inhibitor Rucaparib (AG-014699)

    NARCIS (Netherlands)

    Durmus, Selvi; Sparidans, Rolf W|info:eu-repo/dai/nl/075047144; van Esch, Anita; Wagenaar, Els; Beijnen, Jos H|info:eu-repo/dai/nl/071919570; Schinkel, Alfred H

    2015-01-01

    BACKGROUND: Rucaparib is a potent, orally available, small-molecule inhibitor of poly ADP-ribose polymerase (PARP) 1 and 2. Ongoing clinical trials are assessing the efficacy of rucaparib alone or in combination with other cytotoxic drugs, mainly in breast and ovarian cancer patients with mutations

  11. Effect of graded Nrf2 activation on phase-I and -II drug metabolizing enzymes and transporters in mouse liver.

    Directory of Open Access Journals (Sweden)

    Kai Connie Wu

    Full Text Available Nuclear factor erythroid 2-related factor 2 (Nrf2 is a transcription factor that induces a battery of cytoprotective genes in response to oxidative/electrophilic stress. Kelch-like ECH associating protein 1 (Keap1 sequesters Nrf2 in the cytosol. The purpose of this study was to investigate the role of Nrf2 in regulating the mRNA of genes encoding drug metabolizing enzymes and xenobiotic transporters. Microarray analysis was performed in livers of Nrf2-null, wild-type, Keap1-knockdown mice with increased Nrf2 activation, and Keap1-hepatocyte knockout mice with maximum Nrf2 activation. In general, Nrf2 did not have a marked effect on uptake transporters, but the mRNAs of organic anion transporting polypeptide 1a1, sodium taurocholate cotransporting polypeptide, and organic anion transporter 2 were decreased with Nrf2 activation. The effect of Nrf2 on cytochrome P450 (Cyp genes was minimal, with only Cyp2a5, Cyp2c50, Cyp2c54, and Cyp2g1 increased, and Cyp2u1 decreased with enhanced Nrf2 activation. However, Nrf2 increased mRNA of many other phase-I enzymes, such as aldo-keto reductases, carbonyl reductases, and aldehyde dehydrogenase 1. Many genes involved in phase-II drug metabolism were induced by Nrf2, including glutathione S-transferases, UDP- glucuronosyltransferases, and UDP-glucuronic acid synthesis enzymes. Efflux transporters, such as multidrug resistance-associated proteins, breast cancer resistant protein, as well as ATP-binding cassette g5 and g8 were induced by Nrf2. In conclusion, Nrf2 markedly alters hepatic mRNA of a large number of drug metabolizing enzymes and xenobiotic transporters, and thus Nrf2 plays a central role in xenobiotic metabolism and detoxification.

  12. ABC Transporters and the Alzheimer’s Disease Enigma

    Directory of Open Access Journals (Sweden)

    Andrea eWolf

    2012-06-01

    Full Text Available Alzheimer’s disease (AD is considered the disease of the 21st century. With a 10-fold increase in global incidence over the past 100 years, AD is now reaching epidemic proportions and by all projections, AD patient numbers will continue to rise. Despite intense research efforts, AD remains a mystery and effective therapies are still unavailable. This represents an unmet need resulting in clinical, social, and economic problems.Over the last decade, a new AD research focus has emerged: ATP-binding cassette (ABC transporters. In this article, we provide an overview of the ABC transporters ABCA1, ABCA2, P-glycoprotein (ABCB1, Mrp1 (ABCC1 and BCRP (ABCG2, all of which are expressed in the brain and have been implicated in AD. We summarize recent findings on the role of these five transporters in AD, and discuss their potential to serve as therapeutic targets.

  13. Neuronal and non-neuronal GABA transporters as targets for antiepileptic drugs

    DEFF Research Database (Denmark)

    Madsen, Karsten K; White, H Steve; Schousboe, Arne

    2010-01-01

    of such transporters pointing in particular to an interesting role of the transporters located extrasynaptically. It is suggested that the betaine-GABA transporter BGT1 should receive particular interest in this context as the GABA analogue EF 1502 (N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-4-(methylamino)-4...

  14. Recent advances in the understanding of the interaction of antidepressant drugs with serotonin and norepinephrine transporters

    DEFF Research Database (Denmark)

    Andersen, Jacob; Kristensen, Anders Skov; Bang-Andersen, Benny;

    2009-01-01

    and amphetamine. Seminal advances in the understanding of the structure and function of this transporter family have recently been accomplished by structural studies of a bacterial transporter, as well as medicinal chemistry and pharmacological studies of mammalian transporters. This feature article focuses...

  15. Involvement of Nuclear Factor κB, not Pregnane X Receptor, in Inflammation-Mediated Regulation of Hepatic Transporters.

    Science.gov (United States)

    Abualsunun, Walaa A; Piquette-Miller, Micheline

    2017-10-01

    Endotoxin-induced inflammation decreases the hepatic expression of several drug transporters, metabolizing enzymes, and nuclear transcription factors, including pregnane X receptor (PXR). As the nuclear factor κB (NF-κB) is a major mediator of inflammation, and reciprocal repression between NF-κB and PXR signaling has been reported, the objective of this study was to examine whether NF-κB directly regulates the expression of transporters or exerts its effect indirectly via PXR. PXR-deficient (-/-) or wild-type (+/+) male mice were dosed with the selective NF-κB inhibitor PHA408 (40 mg/kg i.p.) or vehicle (n = 5-8/group), followed by endotoxin (5 mg/kg) or saline 30 minutes later. Animals were sacrificed at 6 hours; samples were analyzed using quantitative reverse-transcription polymerase chain reaction and Western blots. Endotoxin induced tumor necrosis factor-α, interleukin (IL)-6, IL-1β, and inducible nitric oxide synthase in PXR (+/+) and (-/-) mice. As compared with saline controls, endotoxin administration imposed 30%-70% significant decreases in the expression of Abcb1a, Abcb11, Abcc2, Abcc3, Abcg2, Slc10a1, Slco2b1, and Slco1a4 in PXR (+/+) and (-/-) mice to a similar extent. Preadministration of PHA408 attenuated endotoxin-mediated changes in both PXR (+/+) and (-/-) mice (P < 0.05). Our findings demonstrate that endotoxin activates NF-κB and imposes a downregulation of numerous ATP-binding cassette and solute carrier transporters through NF-κB in liver and is independent of PXR. Moreover, inhibition of NF-κB attenuates the impact of endotoxin on transporter expression. As NF-κB activation is involved in many acute and chronic disease states, disease-induced changes in transporter function may be an important source of variability in drug response. This information may be useful in predicting potential drug-disease interactions. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  16. 3-Halo Chloroquine Derivatives Overcome Plasmodium falciparum Chloroquine Resistance Transporter-Mediated Drug Resistance in P. falciparum.

    Science.gov (United States)

    Edaye, Sonia; Tazoo, Dagobert; Bohle, D Scott; Georges, Elias

    2015-12-01

    Polymorphism in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) was shown to cause chloroquine resistance. In this report, we examined the antimalarial potential of novel 3-halo chloroquine derivatives (3-chloro, 3-bromo, and 3-iodo) against chloroquine-susceptible and -resistant P. falciparum. All three derivatives inhibited the proliferation of P. falciparum; with 3-iodo chloroquine being most effective. Moreover, 3-iodo chloroquine was highly effective at potentiating and reversing chloroquine toxicity of drug-susceptible and -resistant P. falciparum.

  17. Novel experimental design for steady-state processes: a systematic Bayesian approach for enzymes, drug transport, receptor binding, continuous culture and cell transport kinetics.

    Science.gov (United States)

    Crabbe, M James C; Murphy, Emma F; Gilmour, Steven G

    2005-01-01

    We demonstrate that a Bayesian approach (the use of prior knowledge) to the design of steady-state experiments can produce major gains quantifiable in terms of information, productivity and accuracy of each experiment. Developing the use of Bayesian utility functions, we have used a systematic method to identify the optimum experimental designs for a number of kinetic model data sets. This has enabled the identification of trends between kinetic model types, sets of design rules and the key conclusion that such designs should be based on some prior knowledge of the kinetic model. We suggest an optimal and iterative method for selecting features of the design such as the substrate range, number of measurements and choice of intermediate points. The final design collects data suitable for accurate modelling and analysis and minimises the error in the parameters estimated. It is equally applicable to enzymes, drug transport, receptor binding, microbial culture and cell transport kinetics.

  18. Drug-protein hydrogen bonds govern the inhibition of the ATP hydrolysis of the multidrug transporter P-glycoprotein.

    Science.gov (United States)

    Chufan, Eduardo E; Kapoor, Khyati; Ambudkar, Suresh V

    2016-02-01

    P-glycoprotein (P-gp) is a member of the ATP-binding cassette transporter superfamily. This multidrug transporter utilizes energy from ATP hydrolysis for the efflux of a variety of hydrophobic and amphipathic compounds including anticancer drugs. Most of the substrates and modulators of P-gp stimulate its basal ATPase activity, although some inhibit it. The molecular mechanisms that are in play in either case are unknown. In this report, mutagenesis and molecular modeling studies of P-gp led to the identification of a pair of phenylalanine-tyrosine structural motifs in the transmembrane region that mediate the inhibition of ATP hydrolysis by certain drugs (zosuquidar, elacridar and tariquidar), with high affinity (IC50's ranging from 10 to 30nM). Upon mutation of any of these residues, drugs that inhibit the ATPase activity of P-gp switch to stimulation of the activity. Molecular modeling revealed that the phenylalanine residues F978 and F728 interact with tyrosine residues Y953 and Y310, respectively, in an edge-to-face conformation, which orients the tyrosines in such a way that they establish hydrogen-bond contacts with the inhibitor. Biochemical investigations along with transport studies in intact cells showed that the inhibitors bind at a high affinity site to produce inhibition of ATP hydrolysis and transport function. Upon mutation, they bind at lower affinity sites, stimulating ATP hydrolysis and only poorly inhibiting transport. These results also reveal that screening chemical compounds for their ability to inhibit the basal ATP hydrolysis can be a reliable tool to identify modulators with high affinity for P-gp.

  19. Staphylococcus aureus and Lipopolysaccharide Modulate Gene Expressions of Drug Transporters in Mouse Mammary Epithelial Cells Correlation to Inflammatory Biomarkers

    Science.gov (United States)

    Yagdiran, Yagmur; Tallkvist, Jonas; Artursson, Karin

    2016-01-01

    Inflammation in the mammary gland (mastitis) is the most common disease in dairy herds worldwide, often caused by the pathogens Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Little is known about the effects of mastitis on drug transporters and the impact on transporter-mediated excretion of drugs into milk. We used murine mammary epithelial HC11 cells, after lactogenic differentiation into a secreting phenotype, and studied gene expressions of ABC- and SLC- transporters after treatment of cells with S. aureus and lipopolysaccharide, an endotoxin secreted by E. coli. The studied transporters were Bcrp, Mdr1, Mrp1, Oatp1a5, Octn1 and Oct1. In addition, Csn2, the gene encoding β-casein, was analyzed. As biomarkers of the inflammatory response, gene expressions of the cytokines Il6 and Tnfα and the chemokine Cxcl2 were determined. Our results show that S. aureus and LPS treatment of cells, at non-cytotoxic concentrations, induced an up-regulation of Mdr1 and of the inflammatory biomarkers, except that Tnfα was not affected by lipopolysaccharide. By simple regression analysis we could demonstrate statistically significant positive correlations between each of the transporters with each of the inflammatory biomarkers in cells treated with S. aureus. The coefficients of determination (R2) were 0.7–0.9 for all but one correlation. After treatment of cells with lipopolysaccharide, statistically significant correlations were only found between Mdr1 and the two parameters Cxcl2 and Il6. The expression of Csn2 was up-regulated in cells treated with S. aureus, indicating that the secretory function of the cells was not impaired. The strong correlation in gene expressions between transporters and inflammatory biomarkers may suggest a co-regulation and that the transporters have a role in the transport of cytokines and chemokines. Our results demonstrate that transporters in mammary cells can be affected by infection, which may have an impact on

  20. Antagonistic changes in sensitivity to antifungal drugs by mutations of an important ABC transporter gene in a fungal pathogen.

    Directory of Open Access Journals (Sweden)

    Wenjun Guan

    Full Text Available Fungal pathogens can be lethal, especially among immunocompromised populations, such as patients with AIDS and recipients of tissue transplantation or chemotherapy. Prolonged usage of antifungal reagents can lead to drug resistance and treatment failure. Understanding mechanisms that underlie drug resistance by pathogenic microorganisms is thus vital for dealing with this emerging issue. In this study, we show that dramatic sequence changes in PDR5, an ABC (ATP-binding cassette efflux transporter protein gene in an opportunistic fungal pathogen, caused the organism to become hypersensitive to azole, a widely used antifungal drug. Surprisingly, the same mutations conferred growth advantages to the organism on polyenes, which are also commonly used antimycotics. Our results indicate that Pdr5p might be important for ergosterol homeostasis. The observed remarkable sequence divergence in the PDR5 gene in yeast strain YJM789 may represent an interesting case of adaptive loss of gene function with significant clinical implications.

  1. Comparison of the Ability of Various Imaging Modalities (CT & Plain X- Ray in Detecting Drug Transport in Body Packers

    Directory of Open Access Journals (Sweden)

    Morteza Sanei

    2009-01-01

    Full Text Available "ndrugs within the human body. In our country due to vast common border with Afghanistan which is the biggest Opium producer in the world and has the second place in Heroine production, drug smuggling has potential national threat and besides it has a global impact as using our territory as the major smuggling route to the west. Furthermore, in recent years new generations of African smugglers of new types of drugs are using our country as a transit route to transport drugs to Europe or Africa. In this way handmade or automatically produced packets are swallowed, rectally or vaginally inserted, and then transported. The first choice modality is plain x-ray of the abdomen in upright and supine positions. Recently abdominal and pelvic CT without contrast has shown a great success rate in the detection of body packers with changing window modality to detect different types of drugs. "nMaterials and Methods: Plain x-ray and abdominal and pelvic CT without contrast were performed for 12 cases who confessed to drug packet ingestion. The presence, number and location of the packets were evaluated in different modalities and the density of the packets were also measured in Hounsfield units (HU. "nResults: The mean age of our cases was 28.2±5.9 years (range, 17-35 years. Eleven (91.6 % patients were male and only one case was female. All patients had characteristic findings in plain x-ray and also all packets were visualized in all patients "nConclusion: Plain x-ray has a distinctive position in detecting packets in intestines especially when oral contrast materials are used. It is cheaper and more accessible than CT, but using different Hounsfield units in CT windows can even characterize different types of drugs even before extracting them.  

  2. Transport rankings of non-steroidal antiinflammatory drugs across blood-brain barrier in vitro models.

    Directory of Open Access Journals (Sweden)

    Iveta Novakova

    Full Text Available The aim of this work was to conduct a comprehensive study about the transport properties of NSAIDs across the blood-brain barrier (BBB in vitro. Transport studies with celecoxib, diclofenac, ibuprofen, meloxicam, piroxicam and tenoxicam were accomplished across Transwell models based on cell line PBMEC/C1-2, ECV304 or primary rat brain endothelial cells. Single as well as group substance studies were carried out. In group studies substance group compositions, transport medium and serum content were varied, transport inhibitors verapamil and probenecid were added. Resulted permeability coefficients were compared and normalized to internal standards diazepam and carboxyfluorescein. Transport rankings of NSAIDs across each model were obtained. Single substance studies showed similar rankings as corresponding group studies across PBMEC/C1-2 or ECV304 cell layers. Serum content, glioma conditioned medium and inhibitors probenecid and verapamil influenced resulted permeability significantly. Basic differences of transport properties of the investigated NSAIDs were similar comparing all three in vitro BBB models. Different substance combinations in the group studies and addition of probenecid and verapamil suggested that transporter proteins are involved in the transport of every tested NSAID. Results especially underlined the importance of same experimental conditions (transport medium, serum content, species origin, cell line for proper data comparison.

  3. Fabrication of functional hollow microspheres constructed from MOF shells: Promising drug delivery systems with high loading capacity and targeted transport

    Science.gov (United States)

    Gao, Xuechuan; Hai, Xiao; Baigude, Huricha; Guan, Weihua; Liu, Zhiliang

    2016-11-01

    An advanced multifunctional, hollow metal-organic framework (MOF) drug delivery system with a high drug loading level and targeted delivery was designed and fabricated for the first time and applied to inhibit tumour cell growth. This hollow MOF targeting drug delivery system was prepared via a simple post-synthetic surface modification procedure, starting from hollow ZIF-8 successfully obtained for the first time via a mild phase transformation under solvothermal conditions. As a result, the hollow ZIF-8 exhibits a higher loading capacity for the model anticancer drug 5-fluorouracil (5-FU). Subsequently, 5-FU-loaded ZIF-8 was encapsulated into polymer layers (FA-CHI-5-FAM) with three components: a chitosan (CHI) backbone, the imaging agent 5-carboxyfluorescein (5-FAM), and the targeting reagent folic acid (FA). Thus, an advanced drug delivery system, ZIF-8/5-FU@FA-CHI-5-FAM, was fabricated. A cell imaging assay demonstrated that ZIF-8/5-FU@FA-CHI-5-FAM could target and be taken up by MGC-803 cells. Furthermore, the as-prepared ZIF-8/5-FU@FA-CHI-5-FAM exhibited stronger cell growth inhibitory effects on MGC-803 cells because of the release of 5-FU, as confirmed by a cell viability assay. In addition, a drug release experiment in vitro indicated that ZIF-8/5-FU@FA-CHI-5-FAM exhibited high loading capacity (51%) and a sustained drug release behaviour. Therefore, ZIF-8/5-FU@FA-CHI-5-FAM could provide targeted drug transportation, imaging tracking and localized sustained release.

  4. Interaction of human organic anion transporter 2 (OAT2) and sodium taurocholate cotransporting polypeptide (NTCP) with antineoplastic drugs.

    Science.gov (United States)

    Marada, Venkata V V R; Flörl, Saskia; Kühne, Annett; Müller, Judith; Burckhardt, Gerhard; Hagos, Yohannes

    2015-01-01

    The ability of an antineoplastic drug to exert its cytostatic effect depends largely on the balance between its uptake into and extrusion from the cancer cells. ATP driven efflux transporter proteins drive the export of antineoplastic drugs and play a pivotal role in the development of chemoresistance. As regards uptake transporters, comparably less is known on their impact in drug action. In the current study, we characterized the interactions of two uptake transporter proteins, expressed mainly in the liver; the organic anion transporter 2 (OAT2, encoded by the SLC22A7 gene) and the sodium taurocholate cotransporting polypeptide (NTCP, encoded by the SLC10A1 gene), stably transfected in human embryonic kidney cells, with some antineoplastic agents that are routinely being used in cancer chemotherapy. Whereas NTCP did not show any strong interactions with the cytostatics tested, we observed a very strong inhibition of OAT2 mediated [(3)H] cGMP uptake in the presence of bendamustine, irinotecan and paclitaxel. The Ki values of OAT2 for bendamustine, irinotecan and paclitaxel were determined to be 43.3±4.33μM, 26.4±2.34μM and 10.4±0.45μM, respectively. Incubation of bendamustine with OAT2 expressing cells increased the caspase-3 activity, and this increase was inhibited by simultaneous incubation with bendamustine and probenecid, a well-known inhibitor of OATs, suggesting that bendamustine is a substrate of OAT2. A higher accumulation of irinotecan was observed in OAT2 expressing cells compared to control pcDNA cells by HPLC analysis of cell lysates. The accumulation was diminished in the presence of cGMP, the substrate we used to functionally characterize OAT2, suggesting specificity of this uptake and the fact that OAT2 mediates uptake of irinotecan. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A pleiotropic drug resistance transporter in Nicotiana tabacum is involved in defense against the herbivore Manduca sexta.

    Science.gov (United States)

    Bienert, Manuela D; Siegmund, Stephanie E G; Drozak, Anna; Trombik, Tomasz; Bultreys, Alain; Baldwin, Ian T; Boutry, Marc

    2012-12-01

    Pleiotropic drug resistance (PDR) transporters are a group of membrane proteins belonging to the ABCG sub-family of ATP binding cassette (ABC) transporters. There is clear evidence for the involvement of plant ABC transporters in resistance to fungal and bacterial pathogens, but not in the biotic stress response to insect or herbivore attack. Here, we describe a PDR transporter, ABCG5/PDR5, from Nicotiana tabacum. GFP fusion and subcellular fractionation studies revealed that ABCG5/PDR5 is localized to the plasma membrane. Staining of transgenic plants expressing the GUS reporter gene under the control of the ABCG5/PDR5 transcription promoter and immunoblotting of wild-type plants showed that, under standard growth conditions, ABCG5/PDR5 is highly expressed in roots, stems and flowers, but is only expressed at marginal levels in leaves. Interestingly, ABCG5/PDR5 expression is induced in leaves by methyl jasmonate, wounding, pathogen infiltration, or herbivory by Manduca sexta. To address the physiological role of ABCG5/PDR5, N. tabacum plants silenced for the expression of ABCG5/PDR5 were obtained. No phenotypic modification was observed under standard conditions. However, a small increase in susceptibility to the fungus Fusarium oxysporum was observed. A stronger effect was observed in relation to herbivory: silenced plants allowed better growth and faster development of M. sexta larvae than wild-type plants, indicating an involvement of this PDR transporter in resistance to M. sexta herbivory.

  6. Are lipid rafts involved in ABC transporter-mediated drug resistance of tumor cells?

    NARCIS (Netherlands)

    Kok, Jan Willem; Klappe, Karin; Hummel, Ina; Kroesen, Bart-Jan; Sietsma, Hannie; Meszaros, Peter

    2008-01-01

    Since their discovery, lipid rafts have been implicated in several cellular functions, including protein transport in polarized cells and signal transduction. Also in multidrug resistance lipid rafts may be important with regard to the localization of ATP-binding cassette (ABC) transporters in these

  7. Binding of the Multimodal Antidepressant Drug Vortioxetine to the Human Serotonin Transporter

    DEFF Research Database (Denmark)

    Andersen, Jacob; Ladefoged, Lucy Kate; Wang, Danyang

    2015-01-01

    SERT. X-ray crystal structures of the bacterial amino acid transporter LeuT and the Drosophila melanogaster dopamine transporter were used to build homology models of hSERT. Comparative modeling and ligand docking suggest that vortioxetine can adopt several distinct binding modes within the central...

  8. The secondary multidrug transporter LmrP contains multiple drug interaction sites

    NARCIS (Netherlands)

    Putman, M; Koole, LA; van Veen, HW; Konings, WN

    1999-01-01

    The secondary multidrug transporter LmrP of Lactococcus lactis mediates the efflux of Hoechst 33342 from the cytoplasmic leaflet of the membrane. Kinetic analysis of Hoechst 33342 transport in inside-out membrane vesicles of L. lactis showed that the LmrP-mediated H+/Hoechst 33342 antiport reaction

  9. Latenciação e formas avançadas de transporte de fármacos Latentiation and advanced drug transport forms

    Directory of Open Access Journals (Sweden)

    Man-Chin Chung

    2005-06-01

    Full Text Available O processo de modificação molecular denominado latenciação é revisto, apresentando formas avançadas no transporte de fármacos, utilizando macromoléculas como transportadores e sistemas de liberação sítio-específica como: CDS (Chemical Delivery System, ADEPT (Antibody-Directed Enzyme Prodrug Therapy, GDEPT/VDEPT (Gene-Directed Enzyme Prodrug Therapy/Vírus-Directed Enzyme Prodrug Therapy, ODDS (Osteotropic Drug Delivery System, PDEPT (Polymer-Directed Enzyme Prodrug Therapy, PELT (Polymer-Enzyme Liposome Therapy e LEAPT (Lectin-Directed Enzyme-Activated Prodrug Therapy.This is a review about the molecular modification process, called latentiation, or prodrug design, focusing the progress in the prodrug approach using macromolecules as carriers and drug target systems as: PDEPT ( Polymer-Directed Enzyme Prodrug Therapy; PELT (Polymer-Enzyme Liposome Therapy; CDS (Chemical Delivery System; ADEPT(Antibody-Directed Enzyme Prodrug Therapy; GDEPT/VDEPT (Gene-Directed Enzyme Prodrug Therapy/Virus-Directed Enzyme Prodrug Therapy and ODDS (Osteotropic Drug Delivery System and LEAPT (Lectin-Directed Enzyme-Activated Prodrug Therapy.

  10. Evaluation of drug-drug interaction between henagliflozin, a novel sodium-glucose co-transporter 2 inhibitor, and metformin in healthy Chinese males.

    Science.gov (United States)

    Wang, Liupeng; Wu, Chunyong; Shen, Lu; Liu, Haiyan; Chen, Ying; Liu, Fang; Wang, Youqun; Yang, Jin

    2016-08-01

    1. Henagliflozin is a novel sodium-glucose transporter 2 inhibitor and presents a complementary therapy to metformin for patients with T2DM due to its insulin-independent mechanism of action. This study evaluated the potential pharmacokinetic drug-drug interaction between henagliflozin and metformin in healthy Chinese male subjects. 2. In open-label, single-center, single-arm, two-period, three-treatment self-control study, 12 subjects received 25 mg henagliflozin, 1000 mg metformin or the combination. Lack of PK interaction was defined as the ratio of geometric means and 90% confidence interval (CI) for combination: monotherapy being within the range of 0.80-1.25. 3. Co-administration of henagliflozin with metformin had no effect on henagliflozin area under the plasma concentration-time curve (AUC0-24) (GRM: 1.08; CI: 1.05, 1.10) and peak plasma concentration (Cmax) (GRM: 0.99; CI: 0.92, 1.07). Reciprocally, co-administration of metformin with henagliflozin had no clinically significant on metformin AUC0-24 (GRM: 1.09, CI: 1.02, 1.16) although there was an 11% increase in metformin Cmax (GRM 1.12; CI 1.02, 1.23). All monotherapies and combination therapy were well tolerated. 4. Henagliflozin can be co-administered with metformin without dose adjustment of either drug.

  11. Moving out: from sterol transport to drug resistance - the ABCG subfamily of efflux pumps.

    Science.gov (United States)

    Moitra, Karobi; Silverton, Latoya; Limpert, Katy; Im, Kate; Dean, Michael

    2011-01-01

    The ATP binding cassette (ABC) proteins are typically ATP-driven transmembrane pumps that have been evolutionarily conserved from bacteria to humans. In humans these transporters are subdivided into seven subfamilies, ranging from A to G. The ABCG subfamily of transporters is the primary focus of this review. This subfamily of proteins has been conserved throughout evolution and plays a central role in several cellular processes, such as sterol homeostasis and multidrug resistance. Functional polymorphisms/mutations in some of these G-subfamily transporters have clinical consequences in humans.

  12. Drug: D07144 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available 332 D07144.gif Deep vein thrombosis after surgery, venous thromboembolic events, stroke prevention in atrial...er: ABCB1 [HSA:5243] map07049 Antithrombosis agents Anatomical Therapeutic Chemical (ATC) classification [BR

  13. pHluorin enables insights into the transport mechanism of antiporter Mdr1: R215 is critical for drug/H+ antiport.

    Science.gov (United States)

    Redhu, Archana Kumari; Khandelwal, Nitesh Kumar; Banerjee, Atanu; Moreno, Alexis; Falson, Pierre; Prasad, Rajendra

    2016-10-01

    Multidrug resistance 1 (MDR1) is a member of the major facilitator superfamily that contributes to MDR of Candida albicans This antiporter belongs to the drug/H(+) antiporter 1 family, pairing the downhill gradient of protons to drug extrusion. Hence, drug efflux from cytosol to extracellular space and the parallel import of H(+) towards cytosol are inextricably linked processes. For monitoring the drug/H(+) antiporter activity of Mdr1p, we developed a new system, exploiting a GFP variant pHluorin, which changes its fluorescence properties with pH. This enabled us to measure the cytosolic pH correlated to drug efflux. Since protonation of charged residues is a key step in proton movement, we explored the role of all charged residues of the 12 transmembrane segments (TMSs) of Mdr1p in drug/H(+) transport by mutational analysis. This revealed that the conserved residue R(215), positioned close to the C-terminal end of TMS-4, is critical for drug/H(+) antiport, allowing protonation over a range of pH, in contrast with its H(215) or K(215) variants that failed to transport drugs at basic pH. Mutation of other residues of TMS-4 highlights the role of this TMS in drug transport, as confirmed by in silico modelling of Mdr1p and docking of drugs. The model points to the importance of R(215) in proton transport, suggesting that it may adopt two main conformations, one oriented towards the extracellular face and the other towards the centre of Mdr1p. Together, our results not only establish a new system for monitoring drug/H(+) transport, but also unveil a positively charged residue critical to Mdr1p function.

  14. How to distinguish between the vacuum cleaner and flippase mechanisms of the LmrA multi-drug transporter in Lactococcus lactis

    NARCIS (Netherlands)

    Hofmeyr, JHS; Rohwer, JM; Snoep, JL; Westerhoff, HV; Konings, WN

    2002-01-01

    A numerical model of the LmrA multi-drug transport system of Lactococcus lactis is used to explore the possibility of distinguishing experimentally between two putative transport mechanisms, i.e., the vacuum-cleaner and the flippase mechanisms. This comparative model also serves as an example of num

  15. Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release

    Science.gov (United States)

    Hinde, Elizabeth; Thammasiraphop, Kitiphume; Duong, Hien T. T.; Yeow, Jonathan; Karagoz, Bunyamin; Boyer, Cyrille; Gooding, J. Justin; Gaus, Katharina

    2017-01-01

    Nanoparticle size, surface charge and material composition are known to affect the uptake of nanoparticles by cells. However, whether nanoparticle shape affects transport across various barriers inside the cell remains unclear. Here we used pair correlation microscopy to show that polymeric nanoparticles with different shapes but identical surface chemistries moved across the various cellular barriers at different rates, ultimately defining the site of drug release. We measured how micelles, vesicles, rods and worms entered the cell and whether they escaped from the endosomal system and had access to the nucleus via the nuclear pore complex. Rods and worms, but not micelles and vesicles, entered the nucleus by passive diffusion. Improving nuclear access, for example with a nuclear localization signal, resulted in more doxorubicin release inside the nucleus and correlated with greater cytotoxicity. Our results therefore demonstrate that drug delivery across the major cellular barrier, the nuclear envelope, is important for doxorubicin efficiency and can be achieved with appropriately shaped nanoparticles.

  16. Altered Renal Expression of Relevant Clinical Drug Transporters in Different Models of Acute Uremia in Rats. Role of Urea Levels

    Directory of Open Access Journals (Sweden)

    Anabel Brandoni

    2015-06-01

    Full Text Available Background/Aims: Organic anion transporter 1 (Oat1 and 3 (Oat3 are organic anion transporters that play critical roles in the body disposition of numerous clinically important drugs. We investigated the effects of acute uremia on the renal expression of Oat1 and Oat3 in three in vivo experimental models of acute kidney injury (AKI: induced by ischemia, by ureteral obstruction and by the administration of HgCl2. We also evaluated the influence of urea in the expression of these transporters in proximal tubular cells suspensions. Methods: Membranes were isolated from kidneys of each experimental group and from cell suspensions incubated with different urea concentrations. Oat1 and Oat3 expressions were performed by immunoblotting. Results: A good correlation between uremia and the renal protein expression of Oat1 and Oat3 was observed in vivo. Moreover, the incubation of isolated proximal tubular cells with different concentrations of urea decreases protein expression of Oat1 and Oat3 in plasma membranes in a dose-dependent manner. Conclusion: The more severe the renal failure, the more important is the decrease in protein expression of the transporters in renal membranes where they are functional. The in vitro study demonstrates that urea accounts, at least in part, for the decreased expression of Oat1 and Oat3 in proximal tubule plasma membranes.

  17. MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drags as judged by interference with nucleotide trapping

    NARCIS (Netherlands)

    Smith, A.J.; van Helvoort, A.; van Meer, G.; Szabó, K.; Welker, E.; Szakács, G.; Váradi, A.; Sarkadi, B.; Borst, P.

    2000-01-01

    The human MDR3 gene is a member of the multidrug resistance (MDR) gene family. The MDR3 P-glycoprotein is a transmembrane protein that translocates phosphatidylcholine. The MDR1 P-glycoprotein related transports cytotoxic drugs. Its overexpression can make cells resistant to a variety of drugs. Atte

  18. Photoaffinity labeling under non-energized conditions of a specific drug-binding site of the ABC multidrug transporter LmrA from Lactococcus lactis

    NARCIS (Netherlands)

    Alqwai, O; Poelarends, G; Konings, WN; Georges, E

    2003-01-01

    The Lactococcus lactis multidrug resistance ABC transporter protein LmrA has been shown to confer resistance to structurally and functionally diverse antibiotics and anti-cancer drugs. Using a previously characterized photoreactive drug analogue of Rhodamine 123 (iodo-aryl azido-Rhodamine 123 or

  19. The poorly membrane permeable antipsychotic drugs amisulpride and sulpiride are substrates of the organic cation transporters from the SLC22 family.

    Science.gov (United States)

    Dos Santos Pereira, Joao N; Tadjerpisheh, Sina; Abu Abed, Manar; Saadatmand, Ali R; Weksler, Babette; Romero, Ignacio A; Couraud, Pierre-Olivier; Brockmöller, Jürgen; Tzvetkov, Mladen V

    2014-11-01

    Variations in influx transport at the blood-brain barrier might affect the concentration of psychotropic drugs at their site of action and as a consequence might alter therapy response. Furthermore, influx transporters in organs such as the gut, liver and kidney may influence absorption, distribution, and elimination. Here, we analyzed 30 commonly used psychotropic drugs using a parallel artificial membrane permeability assay. Amisulpride and sulpiride showed the lowest membrane permeability (P e sulpiride by the organic cation transporters of the SLC22 family OCT1, OCT2, OCT3, OCTN1, and OCTN2 Amisulpride was found to be transported by all five transporters studied. In contrast, sulpiride was only transported by OCT1 and OCT2. OCT1 showed the highest transport ability both for amisulpride (CLint = 1.9 ml/min/mg protein) and sulpiride (CLint = 4.2 ml/min/mg protein) and polymorphisms in OCT1 significantly reduced the uptake of both drugs. Furthermore, we observed carrier-mediated uptake that was inhibitable by known OCT inhibitors in the immortalized human brain microvascular endothelial cell line hCMEC/D3. In conclusion, this study demonstrates that amisulpride and sulpiride are substrates of organic cation transporters of the SLC22 family. SLC22 transporters may play an important role in the distribution of amisulpride and sulpiride, including their ability to penetrate the blood-brain barrier.

  20. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter.

    Science.gov (United States)

    Petersen, Ines; Gabryszewski, Stanislaw J; Johnston, Geoffrey L; Dhingra, Satish K; Ecker, Andrea; Lewis, Rebecca E; de Almeida, Mariana Justino; Straimer, Judith; Henrich, Philipp P; Palatulan, Eugene; Johnson, David J; Coburn-Flynn, Olivia; Sanchez, Cecilia; Lehane, Adele M; Lanzer, Michael; Fidock, David A

    2015-07-01

    The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria.

  1. Effects of natural nuclear factor-kappa B inhibitors on anticancer drug efflux transporter human P-glycoprotein.

    Science.gov (United States)

    Nabekura, Tomohiro; Hiroi, Takashi; Kawasaki, Tatsuya; Uwai, Yuichi

    2015-03-01

    Drug efflux transporter P-glycoprotein plays an important role in cancer chemotherapy. The nuclear factor-κB (NF-κB) transcription factors play critical roles in development and progression of cancer. In this study, the effects of natural compounds that can inhibit NF-κB activation on the function of P-glycoprotein were investigated using human MDR1 gene-transfected KB/MDR1 cells. The accumulation of daunorubicin or rhodamine 123, fluorescent substrates of P-glycoprotein, in KB/MDR1 cells increased in the presence of caffeic acid phenetyl ester (CAPE), licochalcone A, anacardic acid, celastrol, xanthohumol, magnolol, and honokiol in a concentration-dependent manner. In contrast, lupeol, zerumbone, thymoquinone, emodin, and anethol had no effects. The ATPase activities of P-glycoprotein were stimulated by CAPE, licochalcone A, anacardic acid, celastrol, xanthohumol, magnolol, and honokiol. Tumor necrosis factor (TNF)-α stimulated NF-κB activation was inhibited by CAPE, licochalcone A, anacardic acid, and xanthohumol. KB/MDR1 cells were sensitized to vinblastine cytotoxicity by CAPE, licochalcone A, anacardic acid, xanthohumol, magnolol, and honokiol, showing that these natural NF-κB inhibitors reverse multidrug resistance. These results suggest that natural compounds, such as CAPE, licochalcone A, and anacardic acid, have dual inhibitory effects on the anticancer drug efflux transporter P-glycoprotein and NF-κB activation, and may become useful to enhance the efficacy of cancer chemotherapy.

  2. Implant-assisted magnetic drug targeting in permeable microvessels: Comparison of two-fluid statistical transport model with experiment

    Science.gov (United States)

    ChiBin, Zhang; XiaoHui, Lin; ZhaoMin, Wang; ChangBao, Wang

    2017-03-01

    In experiments and theoretical analyses, this study examines the capture efficiency (CE) of magnetic drug carrier particles (MDCPs) for implant-assisted magnetic drug targeting (IA-MDT) in microvessels. It also proposes a three-dimensional statistical transport model of MDCPs for IA-MDT in permeable microvessels, which describes blood flow by the two-fluid (Casson and Newtonian) model. The model accounts for the permeable effect of the microvessel wall and the coupling effect between the blood flow and tissue fluid flow. The MDCPs move randomly through the microvessel, and their transport state is described by the Boltzmann equation. The regulated changes and factors affecting the CE of the MDCPs in the assisted magnetic targeting were obtained by solving the theoretical model and by experimental testing. The CE was negatively correlated with the blood flow velocity, and positively correlated with the external magnetic field intensity and microvessel permeability. The predicted CEs of the MDCPs were consistent with the experimental results. Additionally, under the same external magnetic field, the predicted CE was 5-8% higher in the IA-MDT model than in the model ignoring the permeability effect of the microvessel wall.

  3. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite's food vacuole and alter drug sensitivities.

    Science.gov (United States)

    Pulcini, Serena; Staines, Henry M; Lee, Andrew H; Shafik, Sarah H; Bouyer, Guillaume; Moore, Catherine M; Daley, Daniel A; Hoke, Matthew J; Altenhofen, Lindsey M; Painter, Heather J; Mu, Jianbing; Ferguson, David J P; Llinás, Manuel; Martin, Rowena E; Fidock, David A; Cooper, Roland A; Krishna, Sanjeev

    2015-01-01

    Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, are the major determinant of chloroquine resistance in this lethal human malaria parasite. Here, we describe P. falciparum lines subjected to selection by amantadine or blasticidin that carry PfCRT mutations (C101F or L272F), causing the development of enlarged food vacuoles. These parasites also have increased sensitivity to chloroquine and some other quinoline antimalarials, but exhibit no or minimal change in sensitivity to artemisinins, when compared with parental strains. A transgenic parasite line expressing the L272F variant of PfCRT confirmed this increased chloroquine sensitivity and enlarged food vacuole phenotype. Furthermore, the introduction of the C101F or L272F mutation into a chloroquine-resistant variant of PfCRT reduced the ability of this protein to transport chloroquine by approximately 93 and 82%, respectively, when expressed in Xenopus oocytes. These data provide, at least in part, a mechanistic explanation for the increased sensitivity of the mutant parasite lines to chloroquine. Taken together, these findings provide new insights into PfCRT function and PfCRT-mediated drug resistance, as well as the food vacuole, which is an important target of many antimalarial drugs.

  4. 75 FR 8524 - Procedures for Transportation Workplace Drug and Alcohol Testing Programs

    Science.gov (United States)

    2010-02-25

    ... Officers (MROs), Substance Abuse Professionals (SAPs), Breath Alcohol Technicians (BATs), etc. Some of these commenters wanted MROs to be responsible for reporting both drug and alcohol results to States... agencies. MROs often perform services for employers in multiple States and without having any ties...

  5. THE LACTOCOCCAL LMRP GENE ENCODES A PROTON MOTIVE FORCE-DEPENDENT DRUG TRANSPORTER

    NARCIS (Netherlands)

    Bolhuis, H; Poelarends, G.J.; van Veen, H.W.; Poolman, B.; Driessen, A.J.M.; Konings, W.N

    1995-01-01

    To genetically dissect the drug extrusion systems of Lactococcus lactis, a chromosomal. DNA library was made in Escherichia coli and recombinant strains were selected for resistance to high concentrations of ethidium bromide. Recombinant strains were found to be resistant not only to ethidium bromid

  6. Effect of hypouricaemic and hyperuricaemic drugs on the renal urate efflux transporter, multidrug resistance protein 4.

    NARCIS (Netherlands)

    El-Sheikh, A.A.K.; Heuvel, J.J.M.W. van den; Koenderink, J.B.; Russel, F.G.M.

    2008-01-01

    BACKGROUND AND PURPOSE: The xanthine oxidase inhibitors allopurinol and oxypurinol are used to treat hyperuricaemia, whereas loop and thiazide diuretics can cause iatrogenic hyperuricaemia. Some uricosuric drugs and salicylate have a bimodal action on urate renal excretion. The mechanisms of action

  7. Precision-cut intestinal slices : alternative model for drug transport, metabolism, and toxicology research

    NARCIS (Netherlands)

    Li, Ming; de Graaf, Inge A M; Groothuis, Geny M M

    2016-01-01

    INTRODUCTION: The absorption, distribution, metabolism, excretion and toxicity (ADME-tox) processes of drugs are of importance and require preclinical investigation intestine in addition to the liver. Various models have been developed for prediction of ADME-tox in the intestine. In this review, pre

  8. Flozins, inhibitors of type 2 renal sodium-glucose co-transporter – not only antihyperglycemic drugs

    Directory of Open Access Journals (Sweden)

    Mizerski Grzegorz

    2015-09-01

    Full Text Available The kidneys play a crucial role in the regulation of the carbohydrate metabolism. In normal physiological conditions, the glucose that filters through the renal glomeruli is subsequently nearly totally reabsorbed in the proximal renal tubules. Two transporters are engaged in this process: sodium-glucose co-transporter type 1 (SGLT1, and sodium-glucose co-transporter type type 2 (SGLT2 - this being located in the luminal membrane of the renal tubular epithelial cells. It was found that the administration of dapagliflozin, a selective SGLT2 inhibitor, in patients with type 2 diabetes, is associated with the reduction of HbA1c concentration by 0.45-1.11%. Additional benefits from the treatment with dapagliflozin are the reduction of arterial blood pressure and a permanent reduction of body weight. This outcome is related to the effect of osmotic diuresis and to the considerable loss of the glucose load by way of urine excretion. Dapagliflozin may be successfully applied in type 2 diabetes monotherapy, as well as in combined therapy (including insulin, where it is equally effective as other oral anti-diabetic drugs. Of note: serious adverse effects of dapagliflozin administration are rarely observed. What is more, episodes of severe hypoglycaemia related with the treatment occur only sporadically, most often in the course of diabetes polytherapy. The most frequent effects of the SGLT2 inhibitors are inseparably associated with the mechanism of their action (the glucuretic effect, and cover urogenital infections with a mild clinical course. At present, clinical trials are being continued of the administration of several subsequent drugs from this group, the most advanced of these being the use of canagliflozin and empagliflozin.

  9. Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Venturi Vittorio

    2009-09-01

    Full Text Available Abstract Background Burkholderia cenocepacia are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND efflux pumps in the genome of B. cenocepacia J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear. Results To investigate the contribution of efflux pumps to intrinsic drug resistance of B. cenocepacia J2315, we deleted 3 operons encoding the putative RND transporters RND-1, RND-3, and RND-4 containing the genes BCAS0591-BCAS0593, BCAL1674-BCAL1676, and BCAL2822-BCAL2820. Each deletion included the genes encoding the RND transporter itself and those encoding predicted periplasmic proteins and outer membrane pores. In addition, the deletion of rnd-3 also included BCAL1672, encoding a putative TetR regulator. The B. cenocepacia rnd-3 and rnd-4 mutants demonstrated increased sensitivity to inhibitory compounds, suggesting an involvement of these proteins in drug resistance. Moreover, the rnd-3 and rnd-4 mutants demonstrated reduced accumulation of N-acyl homoserine lactones in the growth medium. In contrast, deletion of the rnd-1 operon had no detectable phenotypes under the conditions assayed. Conclusion Two of the three inactivated RND efflux pumps in B. cenocepacia J2315 contribute to the high level of intrinsic resistance of this strain to some antibiotics and other inhibitory compounds. Furthermore, these efflux systems also mediate accumulation in the growth medium of quorum sensing molecules that have been shown to contribute to infection. A systematic study of RND efflux systems in B. cenocepacia is required to provide a full picture of intrinsic antibiotic resistance in this opportunistic

  10. Single Nucleotide Polymorphisms in Cellular Drug Transporters Are Associated with Intolerance to Antiretroviral Therapy in Brazilian HIV-1 Positive Individuals

    Science.gov (United States)

    Arruda, Mônica Barcellos; Campagnari, Francine; de Almeida, Tailah Bernardo; Couto-Fernandez, José Carlos; Tanuri, Amilcar; Cardoso, Cynthia Chester

    2016-01-01

    Adverse reactions are the main cause of treatment discontinuation among HIV+ individuals. Genes related to drug absorption, distribution, metabolism and excretion (ADME) influence drug bioavailability and treatment response. We have investigated the association between single nucleotide polymorphisms (SNPs) in 29 ADME genes and intolerance to therapy in a case-control study including 764 individuals. Results showed that 15 SNPs were associated with intolerance to nucleoside and 11 to non-nucleoside reverse transcriptase inhibitors (NRTIs and NNRTIs), and 8 to protease inhibitors (PIs) containing regimens under alpha = 0.05. After Bonferroni adjustment, two associations remained statistically significant. SNP rs2712816, at SLCO2B1 was associated to intolerance to NRTIs (ORGA/AA = 2.37; p = 0.0001), while rs4148396, at ABCC2, conferred risk of intolerance to PIs containing regimens (ORCT/TT = 2.64; p = 0.00009). Accordingly, haplotypes carrying rs2712816A and rs4148396T alleles were also associated to risk of intolerance to NRTIs and PIs, respectively. Our data reinforce the role of drug transporters in response to HIV therapy and may contribute to a future development of personalized therapies. PMID:27648838

  11. Reversal of chemoresistance with small interference RNA (siRNA) in etoposide resistant acute myeloid leukemia cells (HL-60).

    Science.gov (United States)

    Kachalaki, Saeed; Baradaran, Behzad; Majidi, Jafar; Yousefi, Mehdi; Shanehbandi, Dariush; Mohammadinejad, Sina; Mansoori, Behzad

    2015-10-01

    Overexpression of ATP-binding cassette (ABC) drug transporters is a major barrier in the success of cancer chemotherapy. One way to overcome overexpression of ABC drug transporter-mediated chemoresistance in acute myeloid leukemia is to suppress ABC drug transporter genes expression by small interference RNA (siRNA). In this study was assessed the involvement of ABCB1 gene in the mechanisms of resistance to etoposide in AML cells. The etoposide-resistant HL-60 cells were generated by stepwise exposure increasing concentrations of etoposide. The etoposide-resistant HL-60 cells were transfected with siRNAs using Transfection Reagent. The ABCB1 mRNA expression were assessed by real-time quantitative PCR. The MDR1/P-gp levels were measured by Western blotting. The sensitivity of resistant HL-60 cells to etoposide after transfection was determined using MTT assay. Apoptosis of resistant HL-60 cells after transfection was detected by flow cytometer. It was found that siRNA effectively inhibited ABCB1 expression at both mRNA and protein levels. Knockdown of the ABCB1 gene correlated with increased sensitivity of the resistant HL-60 cells to etoposide and was observed to lower the cytotoxic index (IC50 etoposide value) after transfection. Our results indicate that product of the ABCB1 gene have effective role in resistance to etoposide in acute myeloid leukemia cells. Copyright © 2015. Published by Elsevier Masson SAS.

  12. Effects of Complementary and Alternative Medicines (CAM) on the Metabolism and Transport of Anticancer Drugs

    OpenAIRE

    Mooiman, K.D.

    2013-01-01

    The use of complementary and alternative medicines (CAM), such as herbs and dietary supplements, has become more popular among cancer patients. Cancer patients use these supplements for different reasons such as reduction of side effects and improvement of their quality of life. In general, the use of CAM is considered as safe. However, concomitant use of CAM and anticancer drugs could result in serious safety issues since CAM have the potential to cause pharmacokinetic interactions with conv...

  13. Noninvasive technique for monitoring drug transport through the murine cochlea using micro-computed tomography.

    Science.gov (United States)

    Haghpanahi, Masoumeh; Gladstone, Miriam B; Zhu, Xiaoxia; Frisina, Robert D; Borkholder, David A

    2013-10-01

    Local delivery of drugs to the inner ear has the potential to treat inner ear disorders including permanent hearing loss or deafness. Current mathematical models describing the pharmacokinetics of