WorldWideScience

Sample records for abca4 microarray screening

  1. ABCA4 gene analysis in patients with autosomal recessive cone and cone rod dystrophies.

    Science.gov (United States)

    Kitiratschky, Veronique B D; Grau, Tanja; Bernd, Antje; Zrenner, Eberhart; Jägle, Herbert; Renner, Agnes B; Kellner, Ulrich; Rudolph, Günther; Jacobson, Samuel G; Cideciyan, Artur V; Schaich, Simone; Kohl, Susanne; Wissinger, Bernd

    2008-07-01

    The ATP-binding cassette (ABC) transporters constitute a family of large membrane proteins, which transport a variety of substrates across membranes. The ABCA4 protein is expressed in photoreceptors and possibly functions as a transporter for N-retinylidene-phosphatidylethanolamine (N-retinylidene-PE), the Schiff base adduct of all-trans-retinal with PE. Mutations in the ABCA4 gene have been initially associated with autosomal recessive Stargardt disease. Subsequent studies have shown that mutations in ABCA4 can also cause a variety of other retinal dystrophies including cone rod dystrophy and retinitis pigmentosa. To determine the prevalence and mutation spectrum of ABCA4 gene mutations in non-Stargardt phenotypes, we have screened 64 unrelated patients with autosomal recessive cone (arCD) and cone rod dystrophy (arCRD) applying the Asper Ophthalmics ABCR400 microarray followed by DNA sequencing of all coding exons of the ABCA4 gene in subjects with single heterozygous mutations. Disease-associated ABCA4 alleles were identified in 20 of 64 patients with arCD or arCRD. In four of 64 patients (6%) only one mutant ABCA4 allele was detected and in 16 patients (25%), mutations on both ABCA4 alleles were identified. Based on these data we estimate a prevalence of 31% for ABCA4 mutations in arCD and arCRD, supporting the concept that the ABCA4 gene is a major locus for various types of degenerative retinal diseases with abnormalities in cone or both cone and rod function.

  2. Subretinal Fibrosis in Stargardt’s Disease with Fundus Flavimaculatus and ABCA4 Gene Mutation

    Directory of Open Access Journals (Sweden)

    Settimio Rossi

    2012-12-01

    Full Text Available Purpose: To report on 4 patients affected by Stargardt’s disease (STGD with fundus flavimaculatus (FFM and ABCA4 gene mutation associated with subretinal fibrosis. Methods: Four patients with a diagnosis of STGD were clinically examined. All 4 cases underwent a full ophthalmologic evaluation, including best-corrected visual acuity measured by the Snellen visual chart, biomicroscopic examination, fundus examination, fundus photography, electroretinogram, microperimetry, optical coherence tomography and fundus autofluorescence. All patients were subsequently screened for ABCA4 gene mutations, identified by microarray genotyping and confirmed by conventional DNA sequencing of the relevant exons. Results: In all 4 patients, ophthalmologic exam showed areas of subretinal fibrosis in different retinal sectors. In only 1 case, these lesions were correlated to an ocular trauma as confirmed by biomicroscopic examination of the anterior segment that showed a nuclear cataract dislocated to the superior site and vitreous opacities along the lens capsule. The other patients reported a lifestyle characterized by competitive sport activities. The performed instrumental diagnostic investigations confirmed the diagnosis of STGD with FFM in all patients. Moreover, in all 4 affected individuals, mutations in the ABCA4 gene were found. Conclusions: Patients with the diagnosis of STGD associated with FFM can show atypical fundus findings. We report on 4 patients affected by STGD with ABCA4 gene mutation associated with subretinal fibrosis. Our findings suggest that this phenomenon can be accelerated by ocular trauma and also by ocular microtrauma caused by sport activities, highlighting that lifestyle can play a role in the onset of these lesions.

  3. Analysis of the ABCA4 genomic locus in Stargardt disease

    DEFF Research Database (Denmark)

    Zernant, Jana; Xie, Yajing Angela; Ayuso, Carmen

    2014-01-01

    Autosomal recessive Stargardt disease (STGD1, MIM 248200) is caused by mutations in the ABCA4 gene. Complete sequencing of ABCA4 in STGD patients identifies compound heterozygous or homozygous disease-associated alleles in 65-70% of patients and only one mutation in 15-20% of patients. This study...... patients of European-American descent. Defining disease-associated alleles in the ABCA4 locus requires exceptionally well characterized large cohorts and extensive analyses by a combination of various approaches....

  4. 目标区域捕获测序检测到一视网膜色素变性家系ABCA4基因新突变%Targeted next-generation sequencing identifies a novel ABCA4 gene mutation in a Chinese family with retinitis pigmentosa

    Institute of Scientific and Technical Information of China (English)

    丁思加; 陈雪; 赵堪兴; 盛迅伦; 赵晨

    2016-01-01

    Objective To identify the pathogenic mutation in a Chinese family with autosomal recessive retinitis pigmentosa (RP) and to analyze its genotype-phenotype correlations.Methods Seven participants from one family were recruited for this experimental study,including 2 patients and 5 asymptomatic siblings.All participants underwent comprehensive ophthalmic examinations including best-corrected visual acuity,visual field testing,fundus photography,optical coherence tomography,and full-field flash electroretinography.Targeted next-generation sequencing (NGS) was selectively performed on the proband to reveal the RP causative mutation in this family using a microarray targeting 180 reported inherited retinal dystrophies (IRDs) causative genes and 9 potential IRDs relevant genes.All variants initially detected by NGS were then screened and filtered with optimized bioinformatics analyses and validated by intra-familial cosegregation analyses using Sanger sequencing.Genotype-phenotype correlation was also analyzed.Results Ophthalmic examination suggested the clinical diagnosis of typical RP for both patients from this family.Genetic analysis indicated ABCA4 c.419G>A as the RP causative mutation for this family.This mutation induced the amino acid change from arginine to glutamine at residue 140 of the protein encoded by the ABCA4 gene (p.Argl40Gln).Conservational analysis revealed the high conservation of the mutational spot among all tested species,and the online predictive software,PolyPhen-2,suggested the pathogenicity of this mutation.Conclusion By means of a targeted NGS approach,this study identifies a novel mutation,ABCA4 p.Arg140Gln,as the disease causative mutation for a Chinese autosomal recessive RP family,which extends both the genotypic and phenotypic spectrums for the ABCA4 gene.%目的 研究我国一个常染色体隐性遗传的视网膜色素变性(RP)家系患者的临床表型及致病基因突变,并分析表型与基因型间的关系.方法 实验

  5. Complex inheritance of ABCA4 disease: four mutations in a family with multiple macular phenotypes.

    Science.gov (United States)

    Lee, Winston; Xie, Yajing; Zernant, Jana; Yuan, Bo; Bearelly, Srilaxmi; Tsang, Stephen H; Lupski, James R; Allikmets, Rando

    2016-01-01

    Over 800 mutations in the ABCA4 gene cause autosomal recessive Stargardt disease. Due to extensive genetic heterogeneity, observed variant-associated phenotypes can manifest tremendous variability of expression. Furthermore, the high carrier frequency of pathogenic ABCA4 alleles in the general population (~1:20) often results in pseudo-dominant inheritance patterns further complicating the diagnosis and characterization of affected individuals. This study describes a genotype/phenotype analysis of an unusual family with multiple macular disease phenotypes spanning across two generations and segregating four distinct ABCA4 mutant alleles. Complete sequencing of ABCA4 discovered two known missense mutations, p.C54Y and p.G1961E. Array comparative genomic hybridization revealed a large novel deletion combined with a small insertion, c.6148-698_c.6670del/insTGTGCACCTCCCTAG, and complete sequencing of the entire ABCA4 genomic locus uncovered a new deep intronic variant, c.302+68C>T. Patients with the p.G1961E mutation had the mildest, confined maculopathy phenotype with peripheral flecks while those with all other mutant allele combinations exhibited a more advanced stage of generalized retinal and choriocapillaris atrophy. This family epitomizes the clinical and genetic complexity of ABCA4-associated diseases. It contained variants from all classes of mutations, in the coding region, deep intronic, both single nucleotide variants and copy number variants that accounted for varying phenotypes segregating in an apparent dominant fashion. Unequivocally defining disease-associated alleles in the ABCA4 locus requires a multifaceted approach that includes advanced mutation detection methods and a thorough analysis of clinical phenotypes.

  6. See what you eat--broad GMO screening with microarrays.

    Science.gov (United States)

    von Götz, Franz

    2010-03-01

    Despite the controversy of whether genetically modified organisms (GMOs) are beneficial or harmful for humans, animals, and/or ecosystems, the number of cultivated GMOs is increasing every year. Many countries and federations have implemented safety and surveillance systems for GMOs. Potent testing technologies need to be developed and implemented to monitor the increasing number of GMOs. First, these GMO tests need to be comprehensive, i.e., should detect all, or at least the most important, GMOs on the market. This type of GMO screening requires a high degree of parallel tests or multiplexing. To date, DNA microarrays have the highest number of multiplexing capabilities when nucleic acids are analyzed. This trend article focuses on the evolution of DNA microarrays for GMO testing. Over the last 7 years, combinations of multiplex PCR detection and microarray detection have been developed to qualitatively assess the presence of GMOs. One example is the commercially available DualChip GMO (Eppendorf, Germany; http://www.eppendorf-biochip.com), which is the only GMO screening system successfully validated in a multicenter study. With use of innovative amplification techniques, promising steps have recently been taken to make GMO detection with microarrays quantitative.

  7. Macular Pigment and Lutein Supplementation in ABCA4-associated Retinal Degenerations

    Science.gov (United States)

    Aleman, Tomas S.; Cideciyan, Artur V.; Windsor, Elizabeth A. M.; Schwartz, Sharon B.; Swider, Malgorzata; Chico, John D.; Sumaroka, Alexander; Pantelyat, Alexander Y.; Duncan, Keith G.; Gardner, Leigh M.; Emmons, Jessica M.; Steinberg, Janet D.; Stone, Edwin M.; Jacobson, Samuel G.

    2008-01-01

    PURPOSE To determine macular pigment (MP) optical density (OD) in patients with ABCA4-associated retinal degenerations (ABCA4-RD) and the response of MP and vision to supplementation with lutein. METHODS Stargardt disease or cone-rod dystrophy patients with foveal fixation and with known or suspected disease-causing mutations in the ABCA4 gene were included. MPOD profiles were measured with heterochromatic flicker photometry. Serum carotenoids, visual acuity, foveal sensitivity and retinal thickness were quantified. Changes in MPOD and central vision were determined in a subset of patients receiving oral supplementation with lutein for 6 months. RESULTS MPOD in patients ranged from normal to markedly abnormal. As a group, ABCA4-RD patients had reduced foveal MPOD and there was strong correlation with retinal thickness. Average foveal tissue concentration of MP, estimated by dividing MPOD by retinal thickness, was normal in patients whereas serum concentration of lutein and zeaxanthin was significantly lower than normal. After oral lutein supplementation for 6 months, 91% of the patients showed significant increases in serum lutein and 63% of the patient eyes showed a significant augmentation in MPOD. The retinal responders tended to be female, and have lower serum lutein and zeaxanthin, lower MPOD and greater retinal thickness at baseline. Responding eyes had significantly lower baseline MP concentration compared to non-responding eyes. Central vision was unchanged after the period of supplementation. CONCLUSIONS MP is strongly affected by the stage of ABCA4 disease leading to abnormal foveal architecture. MP could be augmented by supplemental lutein in some patients. There was no change in central vision after 6 months of lutein supplementation. Long-term influences on the natural history of this supplement on macular degenerations require further study. PMID:17325179

  8. ABCA4 is an N-retinylidene-phosphatidylethanolamine and phosphatidylethanolamine importer.

    Science.gov (United States)

    Quazi, Faraz; Lenevich, Stepan; Molday, Robert S

    2012-06-26

    ATP-binding cassette (ABC) transporters comprise a superfamily of proteins, which actively transport a variety of compounds across cell membranes. Mammalian and most eukaryotic ABC transporters function as exporters, flipping or extruding substrates from the cytoplasmic to the extracellular or lumen side of cell membranes. Prokaryotic ABC transporters function either as exporters or importers. Here we show that ABCA4, an ABC transporter found in retinal photoreceptor cells and associated with Stargardt macular degeneration, is a novel importer that actively flips N-retinylidene-phosphatidylethanolamine from the lumen to the cytoplasmic leaflet of disc membranes, thereby facilitating the removal of potentially toxic retinoid compounds from photoreceptors. ABCA4 also actively transports phosphatidylethanolamine in the same direction. Mutations known to cause Stargardt disease decrease N-retinylidene-phosphatidylethanolamine and phosphatidylethanolamine transport activity of ABCA4. These studies provide the first direct evidence for a mammalian ABC transporter that functions as an importer and provide insight into mechanisms underlying substrate transport and the molecular basis of Stargardt disease.

  9. High throughput screening of starch structures using carbohydrate microarrays

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated...... maltooligosaccharides, pure starch samples including a variety of different structures with variations in the amylopectin branching pattern, amylose content and phosphate content, enzymatically modified starches and glycogen were included. Using this technique, different important structures, including amylose content...... and branching degrees could be differentiated in a high throughput fashion. The screening method was validated using transgenic barley grain analysed during development and subjected to germination. Typically, extreme branching or linearity were detected less than normal starch structures. The method offers...

  10. SNPs analysis of ABCA4 gene in Han Chinese in Beijing%中国北京汉族人群 ABCA4基因的 SNPs 研究

    Institute of Scientific and Technical Information of China (English)

    张小龙; 王红

    2015-01-01

    Objective:To provide the basis of single nucleotide polymorphism(SNPs)for identification and analysis of ABCA4 gene related etiologic studies in Han Chinese in Beijing(CHB).Methods:SNPs of ABCA4 gene were analyzed for minor allele frequencies (MAFs),haplotype frequencies,linkage disequilibrium patterns,and tag SNPs by Haploview program using the HapMap data.Re-sults:129(37.6%)of 343 SNPs were monotonic.95 tagging SNPs were identified in 214 eligible SNPs with 3 haplotype blocks identi-fied.The frequencies of the top 2 haplotypes among each of the 3 haplotype blocks were between 91.1% and 94.0%.Conclusion:SNPs in ABCA4 gene were analyzed by Haploview program.The analysis provides clues for future studies involving this gene.%目的:研究北京汉族人群中 ABCA4基因单核苷酸多态性,为病因学研究提供依据。方法:选取国际人类基因组单体型图计划(HapMap)公布的北京汉族人群(Han Chinese in Beijing,China,CHB)ABCA4基因 SNPs 基因型数据,利用 Haploview 4.2软件对其进行分析。结果:Hapmap 提供的343个 ABCA4基因的 SNPs 中,有129个(37.6%)纯合基因型 SNPs 和214个(62.39%)合格 SNPs。本研究共确定95个标签 SNPs,构建了 3个单体域,各单体域均以前2种单体型为主,累计频率在91.1%~94.0%之间。结论:通过分析北京汉族人群 ABCA4基因 SNPs 数据,得到了标签 SNPs、单体域和主要单体型,为进一步的病因学研究打下了基础。

  11. 全外显子组测序检测到一视网膜色素变性家系ABCA4基因致病剪切新突变%Whole exome sequencing reveals a novel splicing mutation in the ABCA4 gene in a Chinese family with retinitis pigmentosa

    Institute of Scientific and Technical Information of China (English)

    周玉; 朱雄; 黄璐琳; 张琳; 蒋志林; 陈辉; 朱献军

    2016-01-01

    Objective To investigate the genetic mutation in a Chinese family with retinitis pigmentosa disease.Methods In this experimental study,clinical features were evaluated by medical history,visual acuity measurement and multifocal electroretinogram (mfERG).Genomic DNA from peripheral blood samples of the family members was extracted.The DNA sample of the proband patient was subjected to whole exome sequencing (WES) and data analysis.Results Two affected persons were found among the five family members.Symptoms of the disease initially presented during childhood with night blindness and progressively impaired peripheral vision.Fundus examination showed retinal perivascular black bone-spicules.An electroretinogram showed a severely depressed peripheral waveform and significant loss of the paracentral retinal response.The hereditary characteristic in this family presented in two children but both of the parents were normal,suggesting an autosomal recessive pattern.Exome sequencing,mutation detection and Sanger variants validation revealed a novel homozygous splicing mutation c.1761-2A>G in the ABCA4 gene.Meanwhile,this homozygous splicing mutation was absent in 500 ethnically matched control samples screened by direct Sanger sequencing.Conclusion Our study revealed a novel homozygous splicing mutation c.1761-2A>G in the ABCA4 gene,expanding the ABCA4 mutation spectrums and may provide a new target locus for RP diagnosis and treatment.%目的 探讨一个中国视网膜色素变性(RP)家系的致病基因及其位点.方法 实验研究.对一个RP家系的成员进行病史采集、视力检查、眼底检查及多焦视网膜电图(mfERG)检查.绘制家系图,对家系成员采血,进行DNA提取、全外显子组测序、数据分析和Sanger测序验证,并在500例健康对照者中进行测序验证.结果 共纳入该家系成员5例,含2例患者.患者表现为青少年期发病,夜盲,进行性周边视力受损,逐渐累及中央区.眼底检查显示视

  12. Large-scale plasmonic microarrays for label-free high-throughput screening.

    Science.gov (United States)

    Chang, Tsung-Yao; Huang, Min; Yanik, Ahmet Ali; Tsai, Hsin-Yu; Shi, Peng; Aksu, Serap; Yanik, Mehmet Fatih; Altug, Hatice

    2011-11-07

    Microarrays allowing simultaneous analysis of thousands of parameters can significantly accelerate screening of large libraries of pharmaceutical compounds and biomolecular interactions. For large-scale studies on diverse biomedical samples, reliable, label-free, and high-content microarrays are needed. In this work, using large-area plasmonic nanohole arrays, we demonstrate for the first time a large-scale label-free microarray technology with over one million sensors on a single microscope slide. A dual-color filter imaging method is introduced to dramatically increase the accuracy, reliability, and signal-to-noise ratio of the sensors in a highly multiplexed manner. We used our technology to quantitatively measure protein-protein interactions. Our platform, which is highly compatible with the current microarray scanning systems can enable a powerful screening technology and facilitate diagnosis and treatment of diseases.

  13. Characteristics of ABCA4 genotype in Chinese patients with Stargardt disease%国人Stargardt病患者ABCA4基因突变分析与表型特征

    Institute of Scientific and Technical Information of China (English)

    田露; 蒋凤; 许可; 张晓慧; 孙腾洋; 卢宁; 彭晓燕; 李杨

    2016-01-01

    目的通过对眼底黄色斑点症患者ABCA4基因突变分析,分析国人Stargardt病(STGDI)患者中ABCA4基因突变特点及其表型特征.设计回顾性病例系列.研究对象北京同仁医院可疑Stargardt病患者119例,其中17例家族史明确,102例为散发.方法利用PCR扩增DNA直接测序方法检测患者ABCA4基因50个编码外显子及外显子与内含子交界区,并记录患者的表型特征.主要指标ABCA4基因测序结果、家族史、眼底像、相干光断层扫描(OCT)、眼底自发荧光(AF)、视网膜电图(ERG)、视力.结果119例STGDI患者中110例(92.4%)检测到2个及以上ABCA4基因致病突变,9例(7.6%)检测到1个致病突变.本研究共检出136种突变,其中新发现突变16种.基因突变中55.1%(75/136)为错义突变,15.4%(21/136)为缺失或插入,17.6%(24/136)为剪接位点突变,11.8%(16/136)为无义突变.最常见突变为无义突变p.YS08X,其等位基因频率最高为17次(7.1%).STGDI 患者平均发病年龄(12.85±9.01)岁,平均最佳矫正视力(0.11±0.12).结论本研究结果拓展了ABCA4基因突变谱.中国人STGDI患者发病年龄早、视力损伤重,且ABCA4基因特点与其他种族明显不同.%Objective To report the results of mutation analysis of the ABCA4 gene in a cohort of patients with Stargardt disease (STGDI) and describe their associated phenotype.Design Retrospective case series.Participants 119 suspected STGDI probands including 17 patients with family history and 102 sporadic cases were recruited.Methods All the exons including intron-exon boundary of the ABCA4 gene,were amplified by PCR and the products were analyzed by direct sequencing in all the patients.The clinical features of STGDI patients were recorded.Main Outcome Measures Mutations of ABCA4 gene,family history,fundus photography,optical coherence tomography (OCT),fundus autofluorescence (AF),electroretinogram (ERG) and visual acuity.Results 119 A BCA4 pathogenic mutations were

  14. Chemical microarray: a new tool for drug screening and discovery.

    Science.gov (United States)

    Ma, Haiching; Horiuchi, Kurumi Y

    2006-07-01

    HTS with microtiter plates has been the major tool used in the pharmaceutical industry to explore chemical diversity space and to identify active compounds and pharmacophores for specific biological targets. However, HTS faces a daunting challenge regarding the fast-growing numbers of drug targets arising from genomic and proteomic research, and large chemical libraries generated from high-throughput synthesis. There is an urgent need to find new ways to profile the activity of large numbers of chemicals against hundreds of biological targets in a fast, low-cost fashion. Chemical microarray can rise to this challenge because it has the capability of identifying and evaluating small molecules as potential therapeutic reagents. During the past few years, chemical microarray technology, with different surface chemistries and activation strategies, has generated many successes in the evaluation of chemical-protein interactions, enzyme activity inhibition, target identification, signal pathway elucidation and cell-based functional analysis. The success of chemical microarray technology will provide unprecedented possibilities and capabilities for parallel functional analysis of tremendous amounts of chemical compounds.

  15. Discovery of a quorum sensing modulator pharmacophore by 3D small-molecule microarray screening

    DEFF Research Database (Denmark)

    Marsden, David M; Nicholson, Rebecca L; Skindersoe, Mette E

    2010-01-01

    ligand-binding domains of the LuxR homolog CarR from Erwinia carotovora subsp. carotovora. The 3D microarray platform was used to discover the biologically active chloro-pyridine pharmacophore, which was validated using a fluorometric ligand binding assay and ITC. Analogs containing the chloro......The screening of large arrays of drug-like small-molecules was traditionally a time consuming and resource intensive task. New methodology developed within our laboratories provides an attractive low cost, 3D microarray-assisted screening platform that could be used to rapidly assay thousands...... of compounds. As a proof-of-principle the platform was exploited to screen a number of quorum sensing analogs. Quorum sensing is used by bacterium to initiate and spread infection; in this context its modulation may have significant clinical value. 3D microarray slides were probed with fluorescently labeled...

  16. Genetic and epigenetic factors at COL2A1 and ABCA4 influence clinical outcome in congenital toxoplasmosis.

    Directory of Open Access Journals (Sweden)

    Sarra E Jamieson

    Full Text Available BACKGROUND: Primary Toxoplasma gondii infection during pregnancy can be transmitted to the fetus. At birth, infected infants may have intracranial calcification, hydrocephalus, and retinochoroiditis, and new ocular lesions can occur at any age after birth. Not all children who acquire infection in utero develop these clinical signs of disease. Whilst severity of disease is influenced by trimester in which infection is acquired by the mother, other factors including genetic predisposition may contribute. METHODS AND FINDINGS: In 457 mother-child pairs from Europe, and 149 child/parent trios from North America, we show that ocular and brain disease in congenital toxoplasmosis associate with polymorphisms in ABCA4 encoding ATP-binding cassette transporter, subfamily A, member 4. Polymorphisms at COL2A1 encoding type II collagen associate only with ocular disease. Both loci showed unusual inheritance patterns for the disease allele when comparing outcomes in heterozygous affected children with outcomes in affected children of heterozygous mothers. Modeling suggested either an effect of mother's genotype, or parent-of-origin effects. Experimental studies showed that both ABCA4 and COL2A1 show isoform-specific epigenetic modifications consistent with imprinting. CONCLUSIONS: These associations between clinical outcomes of congenital toxoplasmosis and polymorphisms at ABCA4 and COL2A1 provide novel insight into the molecular pathways that can be affected by congenital infection with this parasite.

  17. Tumour auto-antibody screening: performance of protein microarrays using SEREX derived antigens

    Directory of Open Access Journals (Sweden)

    Ludwig Nicole

    2010-11-01

    Full Text Available Abstract Background The simplicity and potential of minimal invasive testing using serum from patients make auto-antibody based biomarkers a very promising tool for use in diagnostics of cancer and auto-immune disease. Although several methods exist for elucidating candidate-protein markers, immobilizing these onto membranes and generating so called macroarrays is of limited use for marker validation. Especially when several hundred samples have to be analysed, microarrays could serve as a good alternative since processing macro membranes is cumbersome and reproducibility of results is moderate. Methods Candidate markers identified by SEREX (serological identification of antigens by recombinant expression cloning screenings of brain and lung tumour were used for macroarray and microarray production. For microarray production recombinant proteins were expressed in E. coli by autoinduction and purified His-tag (histidine-tagged proteins were then used for the production of protein microarrays. Protein arrays were hybridized with the serum samples from brain and lung tumour patients. Result Methods for the generation of microarrays were successfully established when using antigens derived from membrane-based selection. Signal patterns obtained by microarrays analysis of brain and lung tumour patients' sera were highly reproducible (R = 0.92-0.96. This provides the technical foundation for diagnostic applications on the basis of auto-antibody patterns. In this limited test set, the assay provided high reproducibility and a broad dynamic range to classify all brain and lung samples correctly. Conclusion Protein microarray is an efficient means for auto-antibody-based detection when using SEREX-derived clones expressing antigenic proteins. Protein microarrays are preferred to macroarrays due to the easier handling and the high reproducibility of auto-antibody testing. Especially when using only a few microliters of patient samples protein microarrays

  18. A photoclickable peptide microarray platform for facile and rapid screening of 3-D tissue microenvironments.

    Science.gov (United States)

    Sharma, Sadhana; Floren, Michael; Ding, Yonghui; Stenmark, Kurt R; Tan, Wei; Bryant, Stephanie J

    2017-10-01

    Microarrays are powerful experimental tools for high-throughput screening of cellular behavior in multivariate microenvironments. Here, we present a new, facile and rapid screening method for probing cellular behavior in 3D tissue microenvironments. This method utilizes a photoclickable peptide microarray platform developed using electrospun fibrous poly(ethylene glycol) hydrogels and microarray contact printing. We investigated the utility of this platform with five different peptide motifs and ten cell types including stem, terminally differentiated, cancer or immune cells that were from either primary origin or cell lines and from different species. We validated the capabilities of this platform to screen arrays consisting of multiple peptide motifs and concentrations for selectivity to cellular adhesion and morphology. Moreover, this platform is amenable to controlled spatial presentation of peptides. We show that by leveraging the differential attachment affinities for two cell types to two different peptides, this platform can also be used to investigate cell-cell interactions through miniature co-culture peptide arrays. Our fibrous peptide microarray platform enables high-throughput screening of 3D tissue microenvironments in a facile and rapid manner to investigate cell-matrix interactions and cell-cell signaling and to identify optimal tissue microenvironments for cell-based therapies. Copyright © 2017. Published by Elsevier Ltd.

  19. Tissue microarray analysis as a screening tool for neuroendocrine carcinoma of the breast

    DEFF Research Database (Denmark)

    Brask, Julie Benedicte; Talman, Maj-Lis Møller; Wielenga, Vera Timmermans

    2014-01-01

    by investigating the usefulness of tissue microarray (TMA) analysis as a screening tool. We present our findings with regard to sensitivity and specificity compared with whole-mount sections. The material consists of 240 cases of breast cancer divided into 20 TMA blocks that were all immunohistochemically stained...

  20. Validation of the performance of a GMO multiplex screening assay based on microarray detection

    NARCIS (Netherlands)

    Leimanis, S.; Hamels, S.; Naze, F.; Mbongolo, G.; Sneyers, M.; Hochegger, R.; Broll, H.; Roth, L.; Dallmann, K.; Micsinai, A.; Dijk, van J.P.; Kok, E.J.

    2008-01-01

    A new screening method for the detection and identification of GMO, based on the use of multiplex PCR followed by microarray, has been developed and is presented. The technology is based on the identification of quite ubiquitous GMO genetic target elements first amplified by PCR, followed by direct

  1. Validation of the performance of a GMO multiplex screening assay based on microarray detection

    NARCIS (Netherlands)

    Leimanis, S.; Hamels, S.; Naze, F.; Mbongolo, G.; Sneyers, M.; Hochegger, R.; Broll, H.; Roth, L.; Dallmann, K.; Micsinai, A.; Dijk, van J.P.; Kok, E.J.

    2008-01-01

    A new screening method for the detection and identification of GMO, based on the use of multiplex PCR followed by microarray, has been developed and is presented. The technology is based on the identification of quite ubiquitous GMO genetic target elements first amplified by PCR, followed by direct

  2. Study on Wusan Granule Anti-tumor Related Target Gene Screened by Cdna Microarray

    Institute of Scientific and Technical Information of China (English)

    YOU Zi-li; SHI Jin-ping; CHEN Hai-hong

    2006-01-01

    To screen Wusan Granule anti-tumor related target gene using cDNA microarray technique, both mRNA from Lewis lung carcinoma tissues treated by Wusan Granule and untreated control are reversibly transcribed to prepare cDNA probes which are labeled by Cy5 and Cy3. Then, the probes are hybridized to the mice cDNA microarray type MGEC-20S. After hybridization, the cDNA microarray is scanned by ScanArray 3 000 scanner and the data is analyzed by ImaGene 3 software to screen the differentially expressed genes. There are 45 differentially expressed genes including 18 known genes and 27 unknown genes between the two groups, and among them, 20 elevated genes and 25 reduced genes are identified. Additionally, the genes related to invasion and metastasis of malignant carcinomas are down-regulated and the genes related to apoptosis are up-regulated. The cDNA microarray technique is a high-throughput approach to screen the Wusan Granule anti-tumor related target genes, which allow us to explore the molecular biological mechanism on a genomic scale.

  3. Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays

    Directory of Open Access Journals (Sweden)

    Kei Kanie

    2016-11-01

    Full Text Available The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of mass production with the aim of identifying those that are medically useful, such as cell-selective peptides. In this work, we focused on the screening of tripeptides that selectively accumulate collagen type IV (Col IV, an ECM protein that accelerates the re-endothelialization of medical implants. A SPOT peptide microarray was selected for screening owing to its unique cellulose membrane platform, which can mimic fibrous scaffolds used in regenerative medicine. However, since the library size on the SPOT microarray was limited, physicochemical clustering was used to provide broader variation than that of random peptide selection. Using the custom focused microarray of 500 selected peptides, we assayed the relative binding rates of tripeptides to Col IV, collagen type I (Col I, and albumin. We discovered a cluster of Col IV-selective adhesion peptides that exhibit bio-safety with endothelial cells. The results from this study can be used to improve the screening of regeneration-enhancing peptides.

  4. A sandwiched microarray platform for benchtop cell-based high throughput screening

    Science.gov (United States)

    Wu, Jinhui; Wheeldon, Ian; Guo, Yuqi; Lu, Tingli; Du, Yanan; Wang, Ben; He, Jiankang; Hu, Yiqiao; Khademhosseini, Ali

    2010-01-01

    The emergence of combinatorial chemistries and the increased discovery of natural compounds have led to the production of expansive libraries of drug candidates and vast numbers of compounds with potentially interesting biological activities. Despite broad interest in high throughput screening (HTS) across varied fields of biological research, there has not been an increase in accessible HTS technologies. Here, we present a simple microarray sandwich system suitable for screening chemical libraries in cell-based assays at the benchtop. The microarray platform delivers chemical compounds to isolated cell cultures by ‘sandwiching’ chemical-laden arrayed posts with cell-seeded microwells. In this way, an array of sealed cell-based assays was generated without cross-contamination between neighboring assays. After chemical exposure, cell viability was analyzed by fluorescence detection of cell viability indicator assays on a per microwell basis in a standard microarray scanner. We demonstrate the efficacy of the system by generating four hits from toxicology screens towards MCF-7 human breast cancer cells. Three of the hits were identified in a combinatorial screen of a library of natural compounds in combination with verapamil, a P-glycoprotein inhibitor. A fourth hit, 9-methoxy-camptothecin, was identified by screening the natural compound library in the absence of verapamil. The method developed here miniaturizes existing HTS systems and enables the screening of a wide array of individual or combinatorial libraries in a reproducible and scalable manner. We anticipate broad application of such a system as it is amenable to combinatorial drug screening in a simple, robust and portable platform. PMID:20965560

  5. Multicriteria Gene Screening for Analysis of Differential Expression with DNA Microarrays

    Directory of Open Access Journals (Sweden)

    Alfred O. Hero

    2004-01-01

    Full Text Available This paper introduces a statistical methodology for the identification of differentially expressed genes in DNA microarray experiments based on multiple criteria. These criteria are false discovery rate (FDR, variance-normalized differential expression levels (paired t statistics, and minimum acceptable difference (MAD. The methodology also provides a set of simultaneous FDR confidence intervals on the true expression differences. The analysis can be implemented as a two-stage algorithm in which there is an initial screen that controls only FDR, which is then followed by a second screen which controls both FDR and MAD. It can also be implemented by computing and thresholding the set of FDR P values for each gene that satisfies the MAD criterion. We illustrate the procedure to identify differentially expressed genes from a wild type versus knockout comparison of microarray data.

  6. miRNAs modified by dietary lipids in Caco-2 cells. A microarray screening

    Directory of Open Access Journals (Sweden)

    Lidia Daimiel

    2015-09-01

    Full Text Available We performed a screening of miRNAs regulated by dietary lipids in a cellular model of enterocytes, Caco-2 cells. Our aim was to describe new lipid-modified miRNAs with an implication in lipid homeostasis and cardiovascular disease [1,2]. For that purpose, we treated differentiated Caco-2 cells with micelles containing the assayed lipids (cholesterol, conjugated linoleic acid and docosahexaenoic acid and the screening of miRNAs was carried out by microarray using the μParaflo®Microfluidic Biochip Technology of LC Sciences (Huston, TX, USA. Experimental design, microarray description and raw data have been made available in the GEO database with the reference number of GSE59153. Here we described in detail the experimental design and methods used to obtain the relative expression data.

  7. Nanoliter homogenous ultra-high throughput screening microarray for lead discoveries and IC50 profiling.

    Science.gov (United States)

    Ma, Haiching; Horiuchi, Kurumi Y; Wang, Yuan; Kucharewicz, Stefan A; Diamond, Scott L

    2005-04-01

    Microfluidic technologies offer the potential for highly productive and low-cost ultra-high throughput screening and high throughput selectivity profiling. Such technologies need to provide the flexibility of plate-based assays as well as be less expensive to operate. Presented here is a unique microarray system (the Reaction Biology [Malvern, PA] DiscoveryDot), which runs over 6,000 homogeneous reactions per 1" x 3" microarray using chemical libraries or compound dilutions printed in 1-nl volumes. A simple and rapid piezo-activation method delivers from 30 to 300 pl of biochemical targets and detector chemistries to each reaction. The fluorescent signals are detected and analyzed with conventional microarray scanners and software. The DiscoveryDot platform is highly customizable, and reduces consumption of targets and reaction chemistries by >40-fold and the consumption of compounds by >10,000-fold, compared to 384-well plate assay. We demonstrate here that the DiscoveryDot platform is compatible with conventional large-volume well-based reactions, with a Z' factor of >0.6 for many enzymes, such as the caspase family enzymes, matrix metalloproteinase, serine proteases, kinases, and histone deacetylases. The platform is well equipped for 50% inhibitory concentration (IC50) profiling studies of enzyme inhibitors, with up to 10 dilution conditions of each test compound printed in duplicate, and each microarray chip can generate over 300 IC50 measurements against a given target.

  8. NMD Microarray Analysis for Rapid Genome-Wide Screen of Mutated Genes in Cancer

    Directory of Open Access Journals (Sweden)

    Maija Wolf

    2005-01-01

    Full Text Available Gene mutations play a critical role in cancer development and progression, and their identification offers possibilities for accurate diagnostics and therapeutic targeting. Finding genes undergoing mutations is challenging and slow, even in the post-genomic era. A new approach was recently developed by Noensie and Dietz to prioritize and focus the search, making use of nonsense-mediated mRNA decay (NMD inhibition and microarray analysis (NMD microarrays in the identification of transcripts containing nonsense mutations. We combined NMD microarrays with array-based CGH (comparative genomic hybridization in order to identify inactivation of tumor suppressor genes in cancer. Such a “mutatomics” screening of prostate cancer cell lines led to the identification of inactivating mutations in the EPHB2 gene. Up to 8% of metastatic uncultured prostate cancers also showed mutations of this gene whose loss of function may confer loss of tissue architecture. NMD microarray analysis could turn out to be a powerful research method to identify novel mutated genes in cancer cell lines, providing targets that could then be further investigated for their clinical relevance and therapeutic potential.

  9. The ABCA4 2588G > C Stargardt mutation : Single origin and increasing frequency from South-West to North-East Europe

    NARCIS (Netherlands)

    Maugeri, A; Flothmann, K; Hemmrich, N; Ingvast, S; Jorge, P; Paloma, E; Patel, R; Rozet, JM; Tammur, J; Testa, F; Balcells, S; Bird, AC; Brunner, HG; Hoyng, CB; Metspalu, A; Simonelli, F; Allikmets, R; Bhattacharya, SS; D'Urso, M; Gonzalez-Duarte, R; Kaplan, J; Meerman, GJT; Santoss, R; Schwartz, M; Van Camp, G; Wadelius, C; Weber, BHF; Cremers, FPM

    2002-01-01

    Inherited retinal dystrophies represent the most important cause of vision impairment in adolescence, affecting approximately 1 out of 3000 individuals. Mutations of the photoreceptor-specific gene ABCA4 (ABCR) are a common cause of retinal dystrophy. A number of mutations have been repeatedly repor

  10. Screening genetically modified organisms using multiplex-PCR coupled with oligonucleotide microarray.

    Science.gov (United States)

    Xu, Jia; Miao, Haizhen; Wu, Houfei; Huang, Wensheng; Tang, Rong; Qiu, Minyan; Wen, Jianguo; Zhu, Shuifang; Li, Yao

    2006-07-15

    In this research, we developed a multiplex polymerase chain reaction (multiplex-PCR) coupled with a DNA microarray system simultaneously aiming at many targets in a consecutive reaction to detect a genetically modified organism (GMO). There are a total of 20 probes for detecting a GMO in a DNA microarray which can be classified into three categories according to their purpose: the first for screening GMO from un-transgenic plants based on the common elements such as promoter, reporter and terminator genes; the second for specific gene confirmation based on the target gene sequences such as herbicide-resistance or insect-resistance genes; the third for species-specific genes which the sequences are unique for different plant species. To ensure the reliability of this method, different kinds of positive and negative controls were used in DNA microarray. Commercial GM soybean, maize, rapeseed and cotton were identified by means of this method and further confirmed by PCR analysis and sequencing. The results indicate that this method discriminates between the GMOs very quickly and in a cost-saving and more time efficient way. It can detect more than 95% of currently commercial GMO plants and the limits of detection are 0.5% for soybean and 1% for maize. This method is proved to be a new method for routine analysis of GMOs.

  11. A Photo-immobilized Allergen Microarray for Screening of Allergen-specific IgE

    Directory of Open Access Journals (Sweden)

    Kunio Ohyama

    2005-01-01

    Full Text Available We developed an in vitro system to diagnose allergy using an allergen microarray and photo-immobilization technique. Photo-immobilization is useful for preparing the allergen microarray because it does not require specific functional groups of the allergen and because any organic material can be immobilized by a radical reaction induced by photo-irradiation. To prepare the plates, allergen solutions were mixed with polymer and a bis- azidophenyl derivative, a photo-reactive cross-linker, the mixtures were micro-spotted on the plate, and the droplets were dried. The plate was irradiated with an ultraviolet lamp for immobilization. For the assay, human serum was added to the microarray plate. Allergen-specific immunoglobulin E (IgE adsorbed on the micro- spotted allergen was detected by peroxidase-conjugated anti-IgE antibody. The chemiluminescence intensities of the substrate decomposed by the peroxidase were detected with a sensitive CCD camera. All allergens were immobilized by this method and used to screen allergen-specific IgE.

  12. Screening of Small Molecule Microarrays for Ligands Targeted to the Extracellular Epitopes of Living Cells

    Directory of Open Access Journals (Sweden)

    Jeong Heon Lee

    2015-02-01

    Full Text Available The screening of living cells using high-throughput microarrays is technically challenging. Great care must be taken in the chemical presentation of potential ligands and the number of collisions that cells make with them. To overcome these issues, we have developed a glass slide-based microarray system to discover small molecule ligands that preferentially bind to one cell type over another, including when the cells differ by only a single receptor. Chemical spots of 300 ± 10 µm in diameter are conjugated covalently to glass slides using an arraying robot, and novel near-infrared fluorophores with peak emission at 700 nm and 800 nm are used to label two different cell types. By carefully optimizing incubation conditions, including cell density, motion, kinetics, detection, etc. we demonstrate that cell-ligand binding occurs, and that the number of cells bound per chemical spot correlates with ligand affinity and specificity. This screening system lays the foundation for high-throughput discovery of novel ligands to the cell surface.

  13. Towards the development of lipid multilayer microarrays for dose dependent in vitro delivery and screening

    Science.gov (United States)

    Kusi-Appiah, Aubrey Emmanuel

    Screening for effects of small molecules on cells grown in culture is a well-established method for drug discovery and testing, and faster throughput at lower cost is needed especially for lipophilic materials. Small-molecule arrays present a promising approach. However, it has been a challenge to use them to obtain quantitative surface based dose-response curves in vitro, especially for lipophilic compounds. This thesis first introduces a simple novel method of surface-mediated delivery of drugs to cells from a microarray of phospholipid multilayers (layers thicker than a bilayer) encapsulating small molecules. The capability of controlling the dosage of the lipophilic molecules delivered to cells using the lipid multilayer microarray assay is further demonstrated using the nanointaglio printing method. This control enabled the variation of the volumes of surface supported lipid micro- and nanostructure arrays fabricated with nanointaglio. The volumes of the lipophilic drug-containing nanostructures were determined using a fluorescence microscope calibrated by atomic-force microscopy. The surface supported lipid volume information was used to obtain EC-50 values for the response of HeLa cells to treatment with three FDA-approved lipophilic anticancer drugs, docetaxel, imiquimod and triethylenemelamine, which were found to be significantly different from neat lipid controls. Features with sub-cellular lateral dimensions were found to be necessary to obtain normal cell adhesion with HeLa cells. Comparison of the microarray data to dose-response curves for the same drugs delivered liposomally from solution revealed quantitative differences in the efficacy values, which may be explained in terms of cell-adhesion playing a more important role in the surface-based assay. Finally, solution encapsulation was done for a library of hydrophilic silicon nanocrystals in order to set a solution standard for comparison with future surface supported delivery of the library. The

  14. Generation of Antigen Microarrays to Screen for Autoantibodies in Heart Failure and Heart Transplantation.

    Directory of Open Access Journals (Sweden)

    Andrzej Chruscinski

    Full Text Available Autoantibodies directed against endogenous proteins including contractile proteins and endothelial antigens are frequently detected in patients with heart failure and after heart transplantation. There is evidence that these autoantibodies contribute to cardiac dysfunction and correlate with clinical outcomes. Currently, autoantibodies are detected in patient sera using individual ELISA assays (one for each antigen. Thus, screening for many individual autoantibodies is laborious and consumes a large amount of patient sample. To better capture the broad-scale antibody reactivities that occur in heart failure and post-transplant, we developed a custom antigen microarray technique that can simultaneously measure IgM and IgG reactivities against 64 unique antigens using just five microliters of patient serum. We first demonstrated that our antigen microarray technique displayed enhanced sensitivity to detect autoantibodies compared to the traditional ELISA method. We then piloted this technique using two sets of samples that were obtained at our institution. In the first retrospective study, we profiled pre-transplant sera from 24 heart failure patients who subsequently received heart transplants. We identified 8 antibody reactivities that were higher in patients who developed cellular rejection (2 or more episodes of grade 2R rejection in first year after transplant as defined by revised criteria from the International Society for Heart and Lung Transplantation compared with those who did have not have rejection episodes. In a second retrospective study with 31 patients, we identified 7 IgM reactivities that were higher in heart transplant recipients who developed antibody-mediated rejection (AMR compared with control recipients, and in time course studies, these reactivities appeared prior to overt graft dysfunction. In conclusion, we demonstrated that the autoantibody microarray technique outperforms traditional ELISAs as it uses less patient

  15. Screening of differentially expressed genes in pathological scar tissues using expression microarray.

    Science.gov (United States)

    Huang, L P; Mao, Z; Zhang, L; Liu, X X; Huang, C; Jia, Z S

    2015-09-09

    Pathological scar tissues and normal skin tissues were differentiated by screening for differentially expressed genes in pathologic scar tissues via gene expression microarray. The differentially expressed gene data was analyzed by gene ontology and pathway analyses. There were 5001 up- or down-regulated genes in 2-fold differentially expressed genes, 956 up- or down-regulated genes in 5-fold differentially expressed genes, and 114 up- or down-regulated genes in 20-fold differentially expressed genes. Therefore, significant differences were observed in the gene expression in pathological scar tissues and normal foreskin tissues. The development of pathological scar tissues has been correlated to changes in multiple genes and pathways, which are believed to form a dynamic network connection.

  16. A new versatile microarray-based method for high throughput screening of carbohydrate-active enzymes.

    Science.gov (United States)

    Vidal-Melgosa, Silvia; Pedersen, Henriette L; Schückel, Julia; Arnal, Grégory; Dumon, Claire; Amby, Daniel B; Monrad, Rune Nygaard; Westereng, Bjørge; Willats, William G T

    2015-04-03

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing together with associated bioinformatics tools have identified vast numbers of putative carbohydrate-degrading and -modifying enzymes including glycoside hydrolases and lytic polysaccharide monooxygenases. However, there is a paucity of methods for rapidly screening the activities of these enzymes. By combining the multiplexing capacity of carbohydrate microarrays with the specificity of molecular probes, we have developed a sensitive, high throughput, and versatile semiquantitative enzyme screening technique that requires low amounts of enzyme and substrate. The method can be used to assess the activities of single enzymes, enzyme mixtures, and crude culture broths against single substrates, substrate mixtures, and biomass samples. Moreover, we show that the technique can be used to analyze both endo-acting and exo-acting glycoside hydrolases, polysaccharide lyases, carbohydrate esterases, and lytic polysaccharide monooxygenases. We demonstrate the potential of the technique by identifying the substrate specificities of purified uncharacterized enzymes and by screening enzyme activities from fungal culture broths.

  17. Microarray-based method for screening of immunogenic proteins from bacteria

    Directory of Open Access Journals (Sweden)

    Hoppe Sebastian

    2012-03-01

    Full Text Available Abstract Background Detection of immunogenic proteins remains an important task for life sciences as it nourishes the understanding of pathogenicity, illuminates new potential vaccine candidates and broadens the spectrum of biomarkers applicable in diagnostic tools. Traditionally, immunoscreenings of expression libraries via polyclonal sera on nitrocellulose membranes or screenings of whole proteome lysates in 2-D gel electrophoresis are performed. However, these methods feature some rather inconvenient disadvantages. Screening of expression libraries to expose novel antigens from bacteria often lead to an abundance of false positive signals owing to the high cross reactivity of polyclonal antibodies towards the proteins of the expression host. A method is presented that overcomes many disadvantages of the old procedures. Results Four proteins that have previously been described as immunogenic have successfully been assessed immunogenic abilities with our method. One protein with no known immunogenic behaviour before suggested potential immunogenicity. We incorporated a fusion tag prior to our genes of interest and attached the expressed fusion proteins covalently on microarrays. This enhances the specific binding of the proteins compared to nitrocellulose. Thus, it helps to reduce the number of false positives significantly. It enables us to screen for immunogenic proteins in a shorter time, with more samples and statistical reliability. We validated our method by employing several known genes from Campylobacter jejuni NCTC 11168. Conclusions The method presented offers a new approach for screening of bacterial expression libraries to illuminate novel proteins with immunogenic features. It could provide a powerful and attractive alternative to existing methods and help to detect and identify vaccine candidates, biomarkers and potential virulence-associated factors with immunogenic behaviour furthering the knowledge of virulence and

  18. Expanding the Diversity of Imaging-Based RNAi Screen Applications Using Cell Spot Microarrays.

    Science.gov (United States)

    Rantala, Juha K; Kwon, Sunjong; Korkola, James; Gray, Joe W

    2013-04-11

    Over the past decade, great strides have been made in identifying gene aberrations and deregulated pathways that are associated with specific disease states. These association studies guide experimental studies aimed at identifying the aberrant genes and networks that cause the disease states. This requires functional manipulation of these genes and networks in laboratory models of normal and diseased cells. One approach is to assess molecular and biological responses to high-throughput RNA interference (RNAi)-induced gene knockdown. These responses can be revealed by immunofluorescent staining for a molecular or cellular process of interest and quantified using fluorescence image analysis. These applications are typically performed in multiwell format, but are limited by high reagent costs and long plate processing times. These limitations can be mitigated by analyzing cells grown in cell spot microarray (CSMA) format. CSMAs are produced by growing cells on small (~200 mm diameter) spots with each spot carrying an siRNA with transfection reagent. The spacing between spots is only a few hundred micrometers, thus thousands of cell spots can be arranged on a single cell culture surface. These high-density cell cultures can be immunofluorescently stained with minimal reagent consumption and analyzed quickly using automated fluorescence microscopy platforms. This review covers basic aspects of imaging-based CSMA technology, describes a wide range of immunofluorescence assays that have already been implemented successfully for CSMA screening and suggests future directions for advanced RNAi screening experiments.

  19. Nonsynonymous variants in MYH9 and ABCA4 are the most frequent risk loci associated with nonsyndromic orofacial cleft in Taiwanese population.

    Science.gov (United States)

    Peng, Hsiu-Huei; Chang, Nai-Chung; Chen, Kuo-Ting; Lu, Jang-Jih; Chang, Pi-Yueh; Chang, Shih-Cheng; Wu-Chou, Yah-Huei; Chou, Yi-Ting; Phang, Wanni; Cheng, Po-Jen

    2016-08-15

    Nonsyndromic orofacial cleft is a common birth defect with a complex etiology, including multiple genetic and environmental risk factors. Recent whole genome analyses suggested associations between nonsyndromic orofacial cleft and up to 18 genetic risk loci (ABCA4, BMP4, CRISPLD2, GSTT1, FGF8, FGFR2, FOXE1, IRF6, MAFB, MSX1, MTHFR, MYH9, PDGFC, PVRL1, SUMO1, TGFA, TGFB3, and VAX1), each of which confers a different relative risk in different populations. We evaluate the nonsynonymous variants in these 18 genetic risk loci in nonsyndromic orofacial clefts and normal controls to clarify the specific variants in Taiwanese population. We evaluated these 18 genetic risk loci in 103 cases of nonsyndromic orofacial clefts and 100 normal controls using a next-generation sequencing (NGS) customized panel and manipulated a whole-exon targeted-sequencing study based on the NGS system of an Ion Torrent Personal Genome Machine (IT-PGM). IT-PGM data processing, including alignment with the human genome build 19 reference genome (hg19), base calling, trimming of barcoded adapter sequences, and filtering of poor signal reads, was performed using the IT platform-specific pipeline software Torrent Suite, version 4.2, with the plug-in "variant caller" program. Further advanced annotation was facilitated by uploading the exported VCF file from Variant Caller to the commercial software package Ion Reporter; the free online annotation software Vanno and Mutation Taster. Benign or tolerated amino acid changes were excluded after analysis using sorting intolerant from tolerant and polymorphism phenotyping. Sanger sequencing was used to validate the significant variants identified by NGS. Furthermore, each variant was confirmed in asymptomatic controls using the Sequenom MassARRAY (San Diego, CA, USA). We identified totally 22 types of nonsynonymous variants specific in nonsyndromic orofacial clefts, including 19 single nucleotide variants, 2 deletions, and 1 duplication in 10 studied

  20. A microarray screen for novel candidate genes in coeliac disease pathogenesis

    NARCIS (Netherlands)

    Diosdado, B; Wapenaar, MC; Franke, L; Duran, KJ; Goerres, MJ; Hadithi, M; Crusius, JBA; Meijer, JWR; Duggan, DJ; Mulder, CJJ; Holstege, FCP; Wijmenga, C

    Background and aims: The causative molecular pathways underlying the pathogenesis of coeliac disease are poorly understood. To unravel novel aspects of disease pathogenesis, we used microarrays to determine changes in gene expression of duodenal biopsies. Methods: cDNA microarrays representing 19

  1. A protein microarray for the rapid screening of patients suspected of infection with various food-borne helminthiases.

    Directory of Open Access Journals (Sweden)

    Jia-Xu Chen

    Full Text Available BACKGROUND: Food-borne helminthiases (FBHs have become increasingly important due to frequent occurrence and worldwide distribution. There is increasing demand for developing more sensitive, high-throughput techniques for the simultaneous detection of multiple parasitic diseases due to limitations in differential clinical diagnosis of FBHs with similar symptoms. These infections are difficult to diagnose correctly by conventional diagnostic approaches including serological approaches. METHODOLOGY/PRINCIPAL FINDINGS: In this study, antigens obtained from 5 parasite species, namely Cysticercus cellulosae, Angiostrongylus cantonensis, Paragonimus westermani, Trichinella spiralis and Spirometra sp., were semi-purified after immunoblotting. Sera from 365 human cases of helminthiasis and 80 healthy individuals were assayed with semi-purified antigens by both a protein microarray and the enzyme-linked immunosorbent assay (ELISA. The sensitivity, specificity and simplicity of each test for the end-user were evaluated. The specificity of the tests ranged from 97.0% (95% confidence interval (CI: 95.3-98.7% to 100.0% (95% CI: 100.0% in the protein microarray and from 97.7% (95% CI: 96.2-99.2% to 100.0% (95% CI: 100.0% in ELISA. The sensitivity varied from 85.7% (95% CI: 75.1-96.3% to 92.1% (95% CI: 83.5-100.0% in the protein microarray, while the corresponding values for ELISA were 82.0% (95% CI: 71.4-92.6% to 92.1% (95% CI: 83.5-100.0%. Furthermore, the Youden index spanned from 0.83 to 0.92 in the protein microarray and from 0.80 to 0.92 in ELISA. For each parasite, the Youden index from the protein microarray was often slightly higher than the one from ELISA even though the same antigen was used. CONCLUSIONS/SIGNIFICANCE: The protein microarray platform is a convenient, versatile, high-throughput method that can easily be adapted to massive FBH screening.

  2. Screening of the binding of small molecules to proteins by desorption electrospray ionization mass spectrometry combined with protein microarray.

    Science.gov (United States)

    Yao, Chenxi; Wang, Tao; Zhang, Buqing; He, Dacheng; Na, Na; Ouyang, Jin

    2015-11-01

    The interaction between bioactive small molecule ligands and proteins is one of the important research areas in proteomics. Herein, a simple and rapid method is established to screen small ligands that bind to proteins. We designed an agarose slide to immobilize different proteins. The protein microarrays were allowed to interact with different small ligands, and after washing, the microarrays were screened by desorption electrospray ionization mass spectrometry (DESI MS). This method can be applied to screen specific protein binding ligands and was shown for seven proteins and 34 known ligands for these proteins. In addition, a high-throughput screening was achieved, with the analysis requiring approximately 4 s for one sample spot. We then applied this method to determine the binding between the important protein matrix metalloproteinase-9 (MMP-9) and 88 small compounds. The molecular docking results confirmed the MS results, demonstrating that this method is suitable for the rapid and accurate screening of ligands binding to proteins. Graphical Abstract ᅟ.

  3. A microarray-based genetic screen for yeast chronological aging factors.

    Directory of Open Access Journals (Sweden)

    Mirela Matecic

    2010-04-01

    Full Text Available Model organisms have played an important role in the elucidation of multiple genes and cellular processes that regulate aging. In this study we utilized the budding yeast, Saccharomyces cerevisiae, in a large-scale screen for genes that function in the regulation of chronological lifespan, which is defined by the number of days that non-dividing cells remain viable. A pooled collection of viable haploid gene deletion mutants, each tagged with unique identifying DNA "bar-code" sequences was chronologically aged in liquid culture. Viable mutants in the aging population were selected at several time points and then detected using a microarray DNA hybridization technique that quantifies abundance of the barcode tags. Multiple short- and long-lived mutants were identified using this approach. Among the confirmed short-lived mutants were those defective for autophagy, indicating a key requirement for the recycling of cellular organelles in longevity. Defects in autophagy also prevented lifespan extension induced by limitation of amino acids in the growth media. Among the confirmed long-lived mutants were those defective in the highly conserved de novo purine biosynthesis pathway (the ADE genes, which ultimately produces IMP and AMP. Blocking this pathway extended lifespan to the same degree as calorie (glucose restriction. A recently discovered cell-extrinsic mechanism of chronological aging involving acetic acid secretion and toxicity was suppressed in a long-lived ade4Delta mutant and exacerbated by a short-lived atg16Delta autophagy mutant. The identification of multiple novel effectors of yeast chronological lifespan will greatly aid in the elucidation of mechanisms that cells and organisms utilize in slowing down the aging process.

  4. Microarray screening of Guillain-Barré syndrome sera for antibodies to glycolipid complexes

    OpenAIRE

    Halstead, Susan K.; Kalna, Gabriela; Islam, Mohammad B.; Jahan, Israt; Mohammad, Quazi D.; Bart C Jacobs; Endtz, Hubert P.; Islam, Zhahirul; Willison, Hugh J.

    2016-01-01

    Objective: To characterize the patterns of autoantibodies to glycolipid complexes in a large cohort of Guillain-Barré syndrome (GBS) and control samples collected in Bangladesh using a newly developed microarray technique.\\ud \\ud Methods: Twelve commonly studied glycolipids and lipids, plus their 66 possible heteromeric complexes, totaling 78 antigens, were applied to polyvinylidene fluoride–coated slides using a microarray printer. Arrays were probed with 266 GBS and 579 control sera (2 μL p...

  5. Microarray screening of Guillain-Barré syndrome sera for antibodies to glycolipid complexes

    OpenAIRE

    Halstead, Susan K.; Kalna, Gabriela; Islam, Mohammad B.; Jahan, Israt; Mohammad, Quazi D.; Bart C Jacobs; Endtz, Hubert P.; Islam, Zhahirul; Willison, Hugh J.

    2016-01-01

    Objective: To characterize the patterns of autoantibodies to glycolipid complexes in a large cohort of Guillain-Barré syndrome (GBS) and control samples collected in Bangladesh using a newly developed microarray technique. Methods: Twelve commonly studied glycolipids and lipids, plus their 66 possible heteromeric complexes, totaling 78 antigens, were applied to polyvinylidene fluoride–coated slides using a microarray printer. Arrays were probed with 266 GBS and 579 control sera (2 μL per seru...

  6. A Pipeline with Multiplex Reverse Transcription Polymerase Chain Reaction and Microarray for Screening of Chromosomal Translocations in Leukemia

    Directory of Open Access Journals (Sweden)

    Fei-Fei Xiong

    2013-01-01

    Full Text Available Chromosome rearrangements and fusion genes present major portion of leukemogenesis and contribute to leukemic subtypes. It is practical and helpful to detect the fusion genes in clinic diagnosis of leukemia. Present application of reverse transcription polymerase chain reaction (RT-PCR method to detect the fusion gene transcripts is effective, but time- and labor-consuming. To set up a simple and rapid system, we established a method that combined multiplex RT-PCR and microarray. We selected 15 clinically most frequently observed chromosomal rearrangements generating more than 50 fusion gene variants. Chimeric reverse primers and chimeric PCR primers containing both gene-specific and universal sequences were applied in the procedure of multiplex RT-PCR, and then the PCR products hybridized with a designed microarray. With this approach, among 200 clinic samples, 63 samples were detected to have gene rearrangements. All the detected fusion genes positive and negative were validated with RT-PCR and Sanger sequencing. Our data suggested that the RT-PCR-microarray pipeline could screen 15 partner gene pairs simultaneously at the same accuracy of the fusion gene detection with regular RT-PCR. The pipeline showed effectiveness in multiple fusion genes screening in clinic samples.

  7. Applicability of DNA pools on 500 K SNP microarrays for cost-effective initial screens in genomewide association studies

    Directory of Open Access Journals (Sweden)

    Schalkwyk Leonard C

    2007-07-01

    Full Text Available Abstract Background Genetic influences underpinning complex traits are thought to involve multiple quantitative trait loci (QTLs of small effect size. Detection of such QTL associations requires systematic screening of large numbers of DNA markers within large sample populations. Using pooled DNA on SNP microarrays to screen for allelic frequency differences between groups such as cases and controls (called SNP Microarray and Pooling, or SNP-MaP has been validated as an efficient solution on both 10 k and 100 k platforms. We demonstrate that this approach can be effectively applied to the truly genomewide Affymetrix GeneChip® Mapping 500 K Array. Results In comparisons between five independent DNA pools (N ~200 per pool on separate Affymetrix GeneChip® Mapping 500 K Array sets, we show that, for SNPs with minor allele frequencies > 0.05, the reliability of the rank order of estimated allele frequencies, assessed as the average correlation between allele frequency estimates across the DNA pools, was 0.948 (average mean difference across the five pools = 0.069. Similarly, validity of the SNP-MaP approach was demonstrated by a rank-order correlation of 0.937 (average mean difference = 0.095 between the average DNA pool allele frequency estimates and the allele frequencies of an independent (CEPH sample of 60 unrelated individually genotyped subjects. Conclusion We conclude that SNP-MaP can be extended for use on the Affymetrix GeneChip® Mapping 500 K Array, providing a cost-effective, reliable and valid initial screen of 500 K SNP microarrays in genomewide association scans.

  8. Development of a biosensor microarray towards food screening using imaging surface plasmon resonance

    NARCIS (Netherlands)

    Rebe, S.; Bremer, M.G.E.G.; Giesbers, M.; Norde, W.

    2008-01-01

    In this study we examined the possibilities of implementing direct and competitive immunoassay formats for small and large molecule detection on a microarray, using IBIS imaging surface plasmon resonance (iSPR) system. First, IBIS iSPR optics performance was evaluated. Using a glycerol calibration c

  9. Development of a biosensor microarray towards food screening, using imaging surface plasmon resonance

    NARCIS (Netherlands)

    Raz, Sabina Rebe; Bremer, Maria G. E. G.; Giesbers, Marcel; Norde, Willem

    2008-01-01

    In this study we examined the possibilities of implementing direct and competitive immunoassay formats for small and large molecule detection on a microarray, using IBIS imaging surface plasmon resonance (iSPR) system. First, IBIS iSPR optics performance was evaluated. Using a glycerol calibration c

  10. Development of gene microarray in screening differently expressed genes in keloid and normal-control skin

    Institute of Scientific and Technical Information of China (English)

    陈伟; 付小兵; 葛世丽; 孙晓庆; 周岗; 赵志力; 盛志勇

    2004-01-01

    Background Keloid is an intricate lesion that is probably regulated by many genes. In this study, the authors used the technique of complementary DNA (cDNA) microarray to analyse abnormal gene expression in keloids and normal control skins. Methods The polymerase chain reaction (PCR) products of 8400 genes were spotted in an array on chemical-material-coated-glass plates. The DNAs were fixed on the glass plates. The total RNAs were isolated from freshly excised human keloid and normal control skins, and the mRNAs were then purified. The mRNA from both keloid and normal control skins were reversely transcribed to cDNAs, with the incorporation of fluorescent dUTP, for preparing the hybridisation probes. The mixed probes were then hybridised to the cDNA microarray. After thorough washing, the cDNA microarray was scanned for differing fluorescent signals from two types of tissues. Gene expression of tissue growth factor-β1 (TGF-β1) and of c-myc was detected with both RT-PCR and Northern blot hybridisation to confirm the effectiveness of cDNA microarray. Results Among the 8400 human genes, 402 were detected with different expression levels between keloid and normal control skins. Two hundred and fifty genes, including TGF-β1 and c-myc, were up-regulated and 152 genes were down-regulated. Higher expressions of TGF-β1 and c-myc in keloid were also revealed using RT-PCR and Northern blot methods. Conclusion cDNA microarray analysis provides a powerful tool for investigating differential gene expression in keloid and normal control skins. Keloid is a complicated lesion with many genes involved.

  11. A new versatile microarray-based method for high-throughput screening of carbohydrate-active enzymes

    DEFF Research Database (Denmark)

    Vidal Melgosa, Silvia; Pedersen, Henriette Lodberg; Schückel, Julia;

    2015-01-01

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing, together with associated bioinformatic tools have identified vast numbers of putative carbohydrate degrading and modifying enzymes including glycoside hydrolases...... and lytic polysaccharide monooxygenases. However, there is a paucity of methods for rapidly screening the activities of these enzymes. By combining the multiplexing capacity of carbohydrate microarrays with the specificity of molecular probes, we have developed a sensitive, high-throughput and versatile...... semi-quantitative enzyme-screening technique which requires low amounts of enzyme and substrate. The method can be used to assess the activities of single enzymes, enzyme cocktails and crude culture broths against single substrates, substrate mixtures and biomass samples. Moreover, we show...

  12. A new chromosome x exon-specific microarray platform for screening of patients with X-linked disorders.

    Science.gov (United States)

    Bashiardes, Stavros; Kousoulidou, Ludmila; van Bokhoven, Hans; Ropers, Hans-Hilger; Chelly, Jamel; Moraine, Claude; de Brouwer, Arjan P M; Van Esch, Hilde; Froyen, Guy; Patsalis, Philippos C

    2009-11-01

    Recent studies and advances in high-density oligonucleotide arrays have shown that microdeletions and microduplications occur at a high frequency in the human genome, causing various genetic conditions including mental retardation. Thus far little is known about the pathways leading to this disease, and implementation of microarrays is hampered by their increasing cost and complexity, underlining the need for new diagnostic tools. The aim of this study was to introduce a new targeted platform called "chromosome X exon-specific array" and to apply this new platform to screening of 20 families (including one blind positive control) with suspected X-linked mental retardation, to identify new causative X-linked mental retardation genes. The new microarray contains of 21,939 oligonucleotides covering 92.9% of all exons of all genes on chromosome X. Patient screening resulted in successful identification of the blind positive control included in the sample of 20 families, and one of the remaining 19 families was found to carry a 1.78-kilobase deletion involving all exons of pseudogene BRAF2. The BRAF2 deletion segregated in the family and was not found in 200 normal male samples, and no copy number variations are reported in this region. Further studies and focused investigation of X-linked disorders have the potential to reveal the molecular basis of human genetic pathological conditions that are caused by copy-number changes in chromosome X genes.

  13. Population Screening for Hemoglobinopathy Profiling: Is the Development of a Microarray Worthwhile?

    Science.gov (United States)

    Kambouris, Manousos E

    2016-08-01

    In order to perform affordable and expedient whole population scans for the single nucleotide polymorphisms (SNPs) involved in hemoglobinopathies, microarrays based on single nucleotide extension (SNE) might prove advantageous to whole genome/exome sequencing in terms of cost, speed, interpretation and discretion as they focus on a very small part of the tested genome. The development of a microarray assay entails most of the cost, to be deferred by the massive use of the end product. A microarray assay development project, involving multiplex polymerase chain reaction (PCR), labeling, hybridization and scanning/scoring steps is presented as a paradigm of objective bug ratios expected to such procedures and of ways to cope with them. Qualification of the microarray genotypes needs a reference method, which may still be restriction digestion or other, as sequencing remains an expensive commodity. Optimization of wet steps should also be followed by careful and perhaps individualized dye excitation and in silico scoring rules, taking into consideration decay and bleaching effects that perplex development. The strategy of successive elimination of problems, a top-bottom procedure, which had been used and is usually preferred by developing agencies, might have been erroneous; a bottom-up course to delineate issues in different levels, although more laborious, might be the correct choice, especially as software and robotic hardware, high throughput tools become more mature and available. The testing for interlocus compatibility, specificity and robustness is demanding and warranted only in the case of steady, high volume use of an assay for territorial, national or international use.

  14. Screening for candidate genes related to breast cancer with cDNA microarray analysis

    Institute of Scientific and Technical Information of China (English)

    Yu-Juan Xiang; Zhi-Gang Yu; Ming-Ming Guo; Qin-Ye Fu; Zhong-Bing Ma; De-Zong Gao; Qiang Zhang; Yu-Yang Li; Liang Li; Lu Liu; Chun-Miao Ye

    2015-01-01

    Objective: The aim of this study was to reveal the exact changes during the occurrence of breast cancer to explore significant new and promising genes or factors related to this disease. Methods: We compared the gene expression profiles of breast cancer tissues with its uninvolved normal breast tissues as controls using the cDNA microarray analysis in seven breast cancer patients. Further, one representative gene, named IFI30, was quanti-tatively analyzed by real-time PCR to confirm the result of the cDNA microarray analysis. Results: A total of 427 genes were identified with significantly differential expression, 221 genes were up-regulated and 206 genes were down-regulated. And the result of cDNA microarray analysis was validated by detection of IFI30 mRNA level changes by real-time PCR. Genes for cell proliferation, cell cycle, cell division, mitosis, apoptosis, and immune response were enriched in the up-regulated genes, while genes for cell adhesion, proteolysis, and transport were significantly enriched in the down-regulated genes in breast cancer tissues compared with normal breast tissues by a gene ontology analysis. Conclusion: Our present study revealed a range of differentially expressed genes between breast cancer tissues and normal breast tissues, and provide candidate genes for further study focusing on the pathogenesis and new biomarkers for breast cancer. Copyright © 2015, Chinese Medical Association Production. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

  15. Rapid screening of peptide probes through in situ single-bead sequencing microarray.

    Science.gov (United States)

    Wang, Weizhi; Wei, Zewen; Zhang, Di; Ma, Huailei; Wang, Zihua; Bu, Xiangli; Li, Menglin; Geng, Lingling; Lausted, Christopher; Hood, Leroy; Fang, Qiaojun; Wang, Hao; Hu, Zhiyuan

    2014-12-02

    Peptide ligands as targeting probes for in vivo imaging and drug delivery have attracted great interest in the biomedical community. However, high affinity and specificity screening of large peptide libraries remains a tedious process. Here, we report a continuous-flow microfluidic method for one-bead-one-compound (OBOC) combinatorial peptide library screening. We screened a library with 2 × 10(5) peptide beads within 4 h and discovered 140 noncanonical peptide hits targeting the tumor marker, aminopeptidase N (APN). Using the Clustal algorithm, we identified the conserved sequence Tyr-XX-Tyr in the N terminal. We demonstrated that the novel sequence YVEYHLC peptides have both nanomolar affinity and high specificity for APN in ex vivo and in vivo models. We envision that the successful demonstration of this integrated novel nanotechnology for peptide screening and identification open a new avenue for rapid discovery of new peptide-based reagents for disease diagnostics and therapeutics.

  16. High-throughput screening of Erwinia chrysanthemi pectin methylesterase variants using carbohydrate microarrays

    DEFF Research Database (Denmark)

    Øbro, Jens; Sørensen, Iben; Derkx, Patrick;

    2009-01-01

    Pectin methylesterases (PMEs) catalyse the removal of methyl esters from the homogalacturonan (HG) backbone domain of pectin, a ubiquitous polysaccharide in plant cell walls. The degree of methyl esterification (DE) impacts upon the functional properties of HG within cell walls and plants produce...... numerous PMEs that act upon HG in muro. Many microbial plant pathogens also produce PMEs, the activity of which renders HG more susceptible to cleavage by pectin lyase and polygalacturonase enzymes and hence aids cell wall degradation. We have developed a novel microarray-based approach to investigate...... the activity of a series of variant enzymes based on the PME from the important pathogen Erwinia chrysanthemi. A library of 99 E. chrysanthemi PME mutants was created in which seven amino acids were altered by various different substitutions. Each mutant PME was incubated with a highly methyl esterified lime...

  17. An antibody microarray, in multiwell plate format, for multiplex screening of foodborne pathogenic bacteria and biomolecules

    Science.gov (United States)

    Intoxication and infection caused by foodborne pathogens are important problems in the United States, and screening tests for multiple pathogen detection have been developed because food producers are known reservoirs of multiple pathogens. We developed a 96-well microplate, multiplex antibody micr...

  18. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation.

    Science.gov (United States)

    Zubakov, Dmitry; Boersma, Anton W M; Choi, Ying; van Kuijk, Patricia F; Wiemer, Erik A C; Kayser, Manfred

    2010-05-01

    MicroRNAs (miRNAs) are non-protein coding molecules with important regulatory functions; many have tissue-specific expression patterns. Their very small size in principle makes them less prone to degradation processes, unlike messenger RNAs (mRNAs), which were previously proposed as molecular tools for forensic body fluid identification. To identify suitable miRNA markers for forensic body fluid identification, we first screened total RNA samples derived from saliva, semen, vaginal secretion, and venous and menstrual blood for the expression of 718 human miRNAs using a microarray platform. All body fluids could be easily distinguished from each other on the basis of complete array-based miRNA expression profiles. Results from quantitative reverse transcription PCR (RT-PCR; TaqMan) assays for microarray candidate markers confirmed strong over-expression in the targeting body fluid of several miRNAs for venous blood and several others for semen. However, no candidate markers from array experiments for other body fluids such as saliva, vaginal secretion, or menstrual blood could be confirmed by RT-PCR. Time-wise degradation of venous blood and semen stains for at least 1 year under lab conditions did not significantly affect the detection sensitivity of the identified miRNA markers. The detection limit of the TaqMan assays tested for selected venous blood and semen miRNA markers required only subpicogram amounts of total RNA per single RT-PCR test, which is considerably less than usually needed for reliable mRNA RT-PCR detection. We therefore propose the application of several stable miRNA markers for the forensic identification of blood stains and several others for semen stain identification, using commercially available TaqMan assays. Additional work remains necessary in search for suitable miRNA markers for other forensically relevant body fluids.

  19. A novel plasmid-based microarray screen identifies suppressors of rrp6Delta in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jensen, Torben Heick

    2007-01-01

    RNP protein Nab6p and the tRNA transporter Los1p, which could not have been identified in a traditional plate screen; both genes are toxic when overexpressed in rrp6Δ strains at 37°C. Nab6p binds poly(A)+ RNA, and the functions of Nab6p and Los1p suggest that mRNA metabolism and/or protein synthesis...

  20. Microarray screening for target genes of the proto-oncogene PLAG1.

    Science.gov (United States)

    Voz, Marianne L; Mathys, Janick; Hensen, Karen; Pendeville, Hélène; Van Valckenborgh, Isabelle; Van Huffel, Christophe; Chavez, Marcela; Van Damme, Boudewijn; De Moor, Bart; Moreau, Yves; Van de Ven, Wim J M

    2004-01-08

    PLAG1 is a proto-oncogene whose ectopic expression can trigger the development of pleomorphic adenomas of the salivary glands and of lipoblastomas. As PLAG1 is a transcription factor, able to activate transcription through the binding to the consensus sequence GRGGC(N)(6-8)GGG, its ectopic expression presumably results in the deregulation of target genes, leading to uncontrolled cell proliferation. The identification of PLAG1 target genes is therefore a crucial step in understanding the molecular mechanisms involved in PLAG1-induced tumorigenesis. To this end, we analysed the changes in gene expression caused by the conditional induction of PLAG1 expression in fetal kidney 293 cell lines. Using oligonucleotide microarray analyses of about 12 000 genes, we consistently identified 47 genes induced and 12 genes repressed by PLAG1. One of the largest classes identified as upregulated PLAG1 targets consists of growth factors such as the insulin-like growth factor II and the cytokine-like factor 1. The in silico search for PLAG1 consensus sequences in the promoter of the upregulated genes reveals that a large proportion of them harbor several copies of the PLAG1-binding motif, suggesting that they represent direct PLAG1 targets. Our approach was complemented by the comparison of the expression profiles of pleomorphic adenomas induced by PLAG1 versus normal salivary glands. Concordance between these two sets of experiments pinpointed 12 genes that were significantly and consistently upregulated in pleomorphic adenomas and in PLAG1-expressing cells, identifying them as putative PLAG1 targets in these tumors.

  1. [Screening of common deafness gene mutations in 17 000 Chinese newborns from Chengdu based on microarray analysis].

    Science.gov (United States)

    Lyu, Kangmo; Xiong, Yehua; Yu, Hao; Zou, Ling; Ran, Longrong; Liu, Deshun; Yin, Qin; Xu, Yingwen; Fang, Xue; Song, Zuling; Huang, Lijia; Tan, Dayong; Zhang, Zhiwei

    2014-10-01

    To achieve early diagnosis for inheritable hearing loss and determine carrier rate of deafness causing gene mutations in order to provide information for premarital, prenatal and postnatal genetic counseling. A total of 17 000 dried heel blood spots of normal newborns in Chengdu were collected with informed consent obtained from their parents. Genomic DNA was extracted from dried blood spots using Qiagen DNA extraction kits. Microarrays with 9 common mutation loci of 4 deafness-associated genes in Chinese population were used. Nine hot mutations including GJB2 (35delG, 176del16, 235delC and 299delAT), GJB3 (538C> T), SLC26A4 (IVS 7-2A> G, 2168A> G), and mitochondrial DNA 12S rRNA (1555A> G, 1494C> T) were detected by PCR amplification and microarray hybridization. Mutations detected by microarray were verified by Sanger DNA sequencing. Of the 17 000 new-borns, 542 neonates had mutations of the 4 genes. Heterozygous mutations of GJB2, at 235delC, 299delAT, and 176del16 were identified in 254, 55, and 15 newborns, respectively. Two newborns had homozygous mutation of GJB2, 235delC. Heterozygous mutations at 538C> T of GJB3, 2168A> G and IVS 7-2A> G of SLC26A4 were found in 23, 17 and 128 newborns, respectively. For mutation analysis of mitochondrial DNA 12S rRNA, 1494C> T and 1555A> G were homogeneous mutations in 4 and 42 neonates, respectively. In addition, 6 complexity mutations were detected, which demonstrated that one newborn had heterozygous mutations at GJB2 235delC and SLC26A4, IVS7-2A> G, one had heterozygous mutation GJB2 235delC and 12S rRNA homogeneous mutation, 1555 A> G, one heterozygous mutations at GJB2, 299delAT, and GJB3, 538C> T, one at GJB2, 299delAT and 12S rRNA, 1555 A> G, two at GJB2, 299delAT, and SLC26A4, IVS7-2A> G. All mutations as above were confirmed by DNA sequencing. The total mutation carrier rate of the 4 deafness genes is 3.19% in healthy newborns at Chengdu. Mutations of GJB2 and SLAC26A4 are major ones (86.5% of total). The

  2. DNA Microarray Technique

    Directory of Open Access Journals (Sweden)

    Thakare SP

    2012-11-01

    Full Text Available DNA Microarray is the emerging technique in Biotechnology. The many varieties of DNA microarray or DNA chip devices and systems are described along with their methods for fabrication and their use. It also includes screening and diagnostic applications. The DNA microarray hybridization applications include the important areas of gene expression analysis and genotyping for point mutations, single nucleotide polymorphisms (SNPs, and short tandem repeats (STRs. In addition to the many molecular biological and genomic research uses, this review covers applications of microarray devices and systems for pharmacogenomic research and drug discovery, infectious and genetic disease and cancer diagnostics, and forensic and genetic identification purposes.

  3. Application of microarray and functional-based screening methods for the detection of antimicrobial resistance genes in the microbiomes of healthy humans.

    Directory of Open Access Journals (Sweden)

    Roderick M Card

    Full Text Available The aim of this study was to screen for the presence of antimicrobial resistance genes within the saliva and faecal microbiomes of healthy adult human volunteers from five European countries. Two non-culture based approaches were employed to obviate potential bias associated with difficult to culture members of the microbiota. In a gene target-based approach, a microarray was employed to screen for the presence of over 70 clinically important resistance genes in the saliva and faecal microbiomes. A total of 14 different resistance genes were detected encoding resistances to six antibiotic classes (aminoglycosides, β-lactams, macrolides, sulphonamides, tetracyclines and trimethoprim. The most commonly detected genes were erm(B, blaTEM, and sul2. In a functional-based approach, DNA prepared from pooled saliva samples was cloned into Escherichia coli and screened for expression of resistance to ampicillin or sulphonamide, two of the most common resistances found by array. The functional ampicillin resistance screen recovered genes encoding components of a predicted AcrRAB efflux pump. In the functional sulphonamide resistance screen, folP genes were recovered encoding mutant dihydropteroate synthase, the target of sulphonamide action. The genes recovered from the functional screens were from the chromosomes of commensal species that are opportunistically pathogenic and capable of exchanging DNA with related pathogenic species. Genes identified by microarray were not recovered in the activity-based screen, indicating that these two methods can be complementary in facilitating the identification of a range of resistance mechanisms present within the human microbiome. It also provides further evidence of the diverse reservoir of resistance mechanisms present in bacterial populations in the human gut and saliva. In future the methods described in this study can be used to monitor changes in the resistome in response to antibiotic therapy.

  4. Screening for copy-number alterations and loss of heterozygosity in chronic lymphocytic leukemia--a comparative study of four differently designed, high resolution microarray platforms

    DEFF Research Database (Denmark)

    2008-01-01

    Screening for gene copy-number alterations (CNAs) has improved by applying genome-wide microarrays, where SNP arrays also allow analysis of loss of heterozygozity (LOH). We here analyzed 10 chronic lymphocytic leukemia (CLL) samples using four different high-resolution platforms: BAC arrays (32K...... of 32 additional regions present in 2-3 platforms illustrated a discrepancy in detection of small CNAs, which often involved reported copy-number variations. LOH analysis using dChip revealed concordance of mainly large regions, but showed numerous, small nonoverlapping regions and LOH escaping...

  5. Screening for copy-number alterations and loss of heterozygosity in chronic lymphocytic leukemia--a comparative study of four differently designed, high resolution microarray platforms

    DEFF Research Database (Denmark)

    Gunnarsson, R.; Staaf, J.; Jansson, M.;

    2008-01-01

    Screening for gene copy-number alterations (CNAs) has improved by applying genome-wide microarrays, where SNP arrays also allow analysis of loss of heterozygozity (LOH). We here analyzed 10 chronic lymphocytic leukemia (CLL) samples using four different high-resolution platforms: BAC arrays (32K...... detection. Evaluation of baseline variation and copy-number ratio response showed the best performance for the Agilent platform and confirmed the robustness of BAC arrays. Accordingly, these platforms demonstrated a higher degree of platform-specific CNAs. The SNP arrays displayed higher technical variation...

  6. Carbohydrate microarrays

    DEFF Research Database (Denmark)

    Park, Sungjin; Gildersleeve, Jeffrey C; Blixt, Klas Ola;

    2012-01-01

    In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray-based technol...

  7. Microarray-based identification and RT-PCR test screening for epithelial-specific mRNAs in peripheral blood of patients with colon cancer

    Directory of Open Access Journals (Sweden)

    Coppola Domenico

    2006-10-01

    Full Text Available Abstract Background The efficacy of screening for colorectal cancer using a simple blood-based assay for the detection of tumor cells disseminated in the circulation at an early stage of the disease is gaining positive feedback from several lines of research. This method seems able to reduce colorectal cancer mortality and may replace colonoscopy as the most effective means of detecting colonic lesions. Methods In this work, we present a new microarray-based high-throughput screening method to identifying candidate marker mRNAs for the early detection of epithelial cells diluted in peripheral blood cells. This method includes 1. direct comparison of different samples of colonic mucosa and of blood cells to identify consistent epithelial-specific mRNAs from among 20,000 cDNA assayed by microarray slides; 2. identification of candidate marker mRNAs by data analysis, which allowed selection of only 10 putative differentially expressed genes; 3. Selection of some of the most suitable mRNAs (TMEM69, RANBP3 and PRSS22 that were assayed in blood samples from normal subjects and patients with colon cancer as possible markers for the presence of epithelial cells in the blood, using reverse transcription – polymerase chain reaction (RT-PCR. Results Our present results seem to provide an indication, for the first time obtained by genome-scale screening, that a suitable and consistent colon epithelium mRNA marker may be difficult to identify. Conclusion The design of new approaches to identify such markers is warranted.

  8. Construction of the Seed-Coat cDNA Microarray and Screening of Differentially Expressed Genes in Barley

    Institute of Scientific and Technical Information of China (English)

    Jin-Song PANG; Meng-Yuan HE; Bao LIU

    2004-01-01

    Some barley mutants can synthesize neither anthocyanins nor proanthocyanidins in the seed coat, which is related to several genes in locus Ant13, but the exact model of action remains unknown. We used the cDNA microarray technology with barley transcription-deficient mutant (ant13-152) that does not synthesize proanthocyanidins as the tester, and its wild type genotype (Triumph) as the driver, to study this question. Six-thousand and forty-eight clones from the wild type Morex testa+pericarp cDNA library were amplified using PCR, and the DNA fragments were spotted on commercial amino-modified glass slide as microarray. The mRNAs from the developing seed coat (8-15 days) of both the mutant and the wild-type barley plants were isolated, and labeled respectively with Cy3-dUTP and Cy5-dUTP when reversely transcribed to cDNAs. The labeled cDNAs were used as probes, mixed at the same molar concentration, and hybridized with the DNA fragments on the slide. Seventy clones exhibiting marked differential expression (ratio>4) were identified from the microarray. All the 25 cDNA clones that showed an over-expression in wild type in comparison to the mutant ant13-152 were sequenced. It was found that most of these overexpressing clones were transcription/translation and hordein-associated genes. These results have laid a solid material basis for further elucidation of the metabolic pathway in proanthocyanidin synthesis in barley and likely other plants.

  9. Screening significantly hypermethylated genes in fetal tissues compared with maternal blood using a methylated-CpG island recovery assay-based microarray.

    Science.gov (United States)

    Yin, Aihua; Zhang, Xiangzhong; Wu, Jing; Du, Li; He, Tianwen; Zhang, Xiaozhuang

    2012-06-18

    The noninvasive prenatal diagnosis procedures that are currently used to detect genetic diseases do not achieve desirable levels of sensitivity and specificity. Recently, fetal methylated DNA biomarkers in maternal peripheral blood have been explored for the noninvasive prenatal detection of genetic disorders. However, such efforts have covered only chromosomal aneuploidy, and fetal methylated DNA biomarkers in maternal whole blood for detecting single-gene diseases remain to be discovered. To address this issue, we systematically screened significantly hypermethylated genes in fetal tissues and compared them with maternal peripheral blood potential in an attempt to detect fetal genes in maternal peripheral blood. First, the methylated-CpG island recovery assay combined with a CpG island array was performed for four fetus-toward placental tissues and the corresponding maternal peripheral bloods. Subsequently, direct bisulfite sequencing and combined bisulfite restriction analysis (COBRA) were carried out to validate the methylation status of the hypermethylated genes that were identified by the microarray analysis. Three hundred and ten significantly hypermethylated genes in the placental tissues were detected by microarray. From the top 15 hypermethylated genes detected by microarray, two were selected for sequencing validation in placental tissue and chorionic villus samples and four were selected for COBRA validation in four placental tissues, ten amniotic fluids and five chorionic villus samples. The six selected genes were confirmed to be hypermethylated in placental tissue and chorionic villus samples, but methylation of the genes could not be detected in the amniotic fluids. Of the many hypermethylated genes and methylation sites that were found in the fetal tissues, some have great potential to be developed into molecular markers for noninvasive prenatal diagnosis of monogenic disorders. Further clinical studies are warranted to confirm these findings.

  10. Screening of genes related to sulfide metabolism in Urechis unicinctus (Echiura, Urechidae) using suppression subtractive hybridization and cDNA microarray analysis.

    Science.gov (United States)

    Shi, Xiaoli; Shao, Mingyu; Zhang, Litao; Ma, Yubin; Zhang, Zhifeng

    2012-09-01

    Exogenous sulfide can generally induce metabolic injuries in most organisms and even cause death. However, organisms inhabiting intertidal zones, hydrothermal vents, and cold seeps, can tolerate, metabolize, and utilize sulfide. In this study, both suppression subtractive hybridization and cDNA microarray analysis were employed to screen sulfide metabolism-related genes from the body wall in echiuran worm Urechis unicinctus, a marine sediment species. A total of 3456 monoclones were isolated and 82 were identified as differentially expressed genes in worms exposed to 50 μM sulfide for 24 h, compared to controls. The identified genes encoded proteins with multiple processes, including metabolism, cellular process, biological regulation, response to stimulus, multicellular organismal process, localization, development, and cellular component organization. Eight genes, serase, vacuolar protein, src tyrosine kinase, sulfide oxidase-like oxidoreductase, aprataxin, SN-RNP, aminopeptidase, and predicted protein, were selected to verify expression in the worm using qRT-PCR. The agreement of gene expression evaluation was 62.5% between the results of microarray analysis and qRT-PCR. These new data will provide clues for further probing of the molecular mechanism of sulfide metabolism.

  11. Carbohydrate microarrays

    DEFF Research Database (Denmark)

    Park, Sungjin; Gildersleeve, Jeffrey C; Blixt, Klas Ola

    2012-01-01

    -based technology has been widely employed for rapid analysis of the glycan binding properties of lectins and antibodies, the quantitative measurements of glycan-protein interactions, detection of cells and pathogens, identification of disease-related anti-glycan antibodies for diagnosis, and fast assessment...... of substrate specificities of glycosyltransferases. This review covers the construction of carbohydrate microarrays, detection methods of carbohydrate microarrays and their applications in biological and biomedical research.......In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray...

  12. Establishment of a prediction model of changing trends in cardiac hypertrophy disease based on microarray data screening.

    Science.gov (United States)

    Ma, Caiyan; Ying, Yongjun; Zhang, Tianjie; Zhang, Wei; Peng, Hui; Cheng, Xufeng; Xu, Lin; Tong, Hong

    2016-05-01

    The aim of the present study was to construct a mathematical model to predict the changing trends of cardiac hypertrophy at gene level. Microarray data were downloaded from Gene Expression Omnibus database (accession, GSE21600), which included 35 samples harvested from the heart of Wistar rats on postoperative days 1 (D1 group), 6 (D6 group) and 42 (D42 group) following aorta ligation and sham operated Wistar rats, respectively. Each group contained six samples, with the exception of the samples harvested from the aorta ligated group after 6 days, where n=5. Differentially expressed genes (DEGs) were identified using a Limma package in R. Hierarchical clustering analysis was performed on common DEGs in order to construct a linear equation between the D1 and D42 groups, using linear discriminant analysis. Subsequent verification was performed using receiver operating characteristic (ROC) curve and the measurement data at day 42. A total of 319, 44 and 57 DEGs were detected in D1, D6 and D42 sample groups, respectively. AKIP1, ANKRD23, LTBP2, TGF-β2 and TNFRSF12A were identified as common DEGs in all groups. The predicted linear equation between D1 and D42 group was calculated to be y=1.526×-186.671. Assessment of the ROC curve demonstrated that the area under the curve was 0.831, with a specificity and sensitivity of 0.8. As compared with the predictive and measurement data at day 42, the consistency of the two sets of data was 76.5%. In conclusion, the present model may contribute to the early prediction of changing trends in cardiac hypertrophy disease at gene level.

  13. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix.

    Science.gov (United States)

    Ma, Yufei; Ji, Yuan; Huang, Guoyou; Ling, Kai; Zhang, Xiaohui; Xu, Feng

    2015-12-22

    Periodontitis is an inflammatory disease negatively affecting up to 15% of adults worldwide. Periodontal ligament stem cells (PDLSCs) hold great promises for periodontal tissue regeneration, where it is necessary to find proper extracellular matrix (ECM) materials (e.g., composition, concentration). In this study, we proposed a bioprinting-based approach to generate nano-liter sized three-dimensional (3D) cell-laden hydrogel array with gradient of ECM components, through controlling the volume ratio of two hydrogels, such as gelatin methacrylate (GelMA) and poly(ethylene glycol) (PEG) dimethacrylate. The resulting cell-laden array with a gradient of GelMA/PEG composition was used to screen human PDLSC response to ECM. The behavior (e.g., cell viability, spreading) of human PDLSCs in GelMA/PEG array were found to be depended on the volume ratios of GelMA/PEG, with cell viability and spreading area decreased along with increasing the ratio of PEG. The developed approach would be useful for screening cell-biomaterial interaction in 3D and promoting regeneration of functional tissue.

  14. Development and Application of a New Microarray- Based Method for High-Throughput Screening of Carbohydrate Active Enzymes

    DEFF Research Database (Denmark)

    Vidal Melgosa, Silvia

    biological roles in plants and in addition to biofuel production they are extensively used in other industrial processes including in detergents, textiles, paper and the food industry. A vast repertoire of CAZymes exists in nature but there is a growing disparity between our ability to putatively identify....... The applicability of the method to identify the substrate specificities of purified uncharacterised enzymes as well as for screening CAZyme activities in complex enzyme mixtures, such as crude culture broths and plant extracts, is shown by examples presented in this thesis. We envisage that the method......The effective and sustainable use of plant biomass for second generation biofuels is of vital importance for reducing dependence on fossil fuels. Carbohydrate-active enzymes (CAZymes) that degrade lignocellulosic plant cell wall material are an important part of this effort. CAZymes have multiple...

  15. Carbohydrate Microarrays in Plant Science

    DEFF Research Database (Denmark)

    Fangel, Jonatan Ulrik; Pedersen, H.L.; Vidal-Melgosa, S.

    2012-01-01

    industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high......-throughput analysis of nucleotides, proteins, and increasingly carbohydrates. Using microarrays, the abundance of and interactions between hundreds and thousands of molecules can be assessed simultaneously using very small amounts of analytes. Here we show that carbohydrate microarrays are multifunctional tools...... for plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities....

  16. Living Cell Microarrays: An Overview of Concepts

    Directory of Open Access Journals (Sweden)

    Rebecca Jonczyk

    2016-05-01

    Full Text Available Living cell microarrays are a highly efficient cellular screening system. Due to the low number of cells required per spot, cell microarrays enable the use of primary and stem cells and provide resolution close to the single-cell level. Apart from a variety of conventional static designs, microfluidic microarray systems have also been established. An alternative format is a microarray consisting of three-dimensional cell constructs ranging from cell spheroids to cells encapsulated in hydrogel. These systems provide an in vivo-like microenvironment and are preferably used for the investigation of cellular physiology, cytotoxicity, and drug screening. Thus, many different high-tech microarray platforms are currently available. Disadvantages of many systems include their high cost, the requirement of specialized equipment for their manufacture, and the poor comparability of results between different platforms. In this article, we provide an overview of static, microfluidic, and 3D cell microarrays. In addition, we describe a simple method for the printing of living cell microarrays on modified microscope glass slides using standard DNA microarray equipment available in most laboratories. Applications in research and diagnostics are discussed, e.g., the selective and sensitive detection of biomarkers. Finally, we highlight current limitations and the future prospects of living cell microarrays.

  17. Microarray detection and qPCR screening of potential biomarkers of Folsomia candida (Collembola: Isotomidae) exposed to Bt proteins (Cry1Ab and Cry1Ac)

    DEFF Research Database (Denmark)

    Yuan, Yiyang; Krogh, Paul Henning; Bai, Xue

    2014-01-01

    . A customized microarray was used to study gene expression in F. candida specimens that were exposed to Cry1Ab and Cry1Ac. All selected transcripts were subsequently confirmed by qPCR. Eleven transcripts were finally verified, and three of them were annotated. The responses of all eleven transcripts were...

  18. Visualization of high-throughput and label-free antibody-polypeptide binding for drug screening based on microarrays and surface plasmon resonance imaging

    Science.gov (United States)

    Chen, Shengyi; Deng, Tao; Wang, Tongzhou; Wang, Jia; Li, Xin; Li, Qiang; Huang, Guoliang

    2012-01-01

    This work presents a visualization method for the high-throughput monitoring of antibody-polypeptide binding by integrating a microarray chip with surface plasmon resonance imaging (SPRi). A prism-coupled SPRi system with smart images processing software and a 5×5 polypeptide microarray was developed. The modeling analysis was performed to optimize the system and the materials of prism and chip, looking for the optimal incident wavelength and angle of incidence for dynamic SPRi detection in solution. The system can dynamically monitor 25 tunnels of biomolecule interactions in solution without secondary tag reactants. In addition, this system can determine the specific profile of antibody-polypeptide binding in each tunnel and yield a visual three-dimensional histogram of dynamic combinations in all microarray tunnels. Furthermore, the detection limit of the label-free antibody-polypeptide binding reached 1 pg/μL in a one-step binding test, and an ultrasensitive detection of 10 fg/μL was obtained using three-step cascade binding. Using the peptide microarray, the amount of sample and reagents used was reduced to 80 nL per tunnel, and 20×20 tunnels of biomolecule interactions could be analyzed in parallel in a 7 mm×7 mm microreaction cells. This device and method offer a potential platform for high-throughput and label-free dynamic monitoring multiple biomolecule interactions for drug discovery and basic biomedical research.

  19. Carbohydrate microarrays in plant science.

    Science.gov (United States)

    Fangel, Jonatan U; Pedersen, Henriette L; Vidal-Melgosa, Silvia; Ahl, Louise I; Salmean, Armando Asuncion; Egelund, Jack; Rydahl, Maja Gro; Clausen, Mads H; Willats, William G T

    2012-01-01

    Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also important industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high-throughput analysis of nucleotides, proteins, and increasingly carbohydrates. Using microarrays, the abundance of and interactions between hundreds and thousands of molecules can be assessed simultaneously using very small amounts of analytes. Here we show that carbohydrate microarrays are multifunctional tools for plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities.

  20. Genome-Wide Screening of Genes Showing Altered Expression in Liver Metastases of Human Colorectal Cancers by cDNA Microarray

    Directory of Open Access Journals (Sweden)

    Rempei Yanagawa

    2001-01-01

    Full Text Available In spite of intensive and increasingly successful attempts to determine the multiple steps involved in colorectal carcinogenesis, the mechanisms responsible for metastasis of colorectal tumors to the liver remain to be clarified. To identify genes that are candidates for involvement in the metastatic process, we analyzed genome-wide expression profiles of 10 primary colorectal cancers and their corresponding metastatic lesions by means of a cDNA microarray consisting of 9121 human genes. This analysis identified 40 genes whose expression was commonly upregulated in metastatic lesions, and 7 that were commonly downregulated. The upregulated genes encoded proteins involved in cell adhesion, or remodeling of the actin cytoskeleton. Investigation of the functions of more of the altered genes should improve our understanding of metastasis and may identify diagnostic markers and/or novel molecular targets for prevention or therapy of metastatic lesions.

  1. A novel plasmid-based microarray screen identifies suppressors of ∆rrp6 in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jensen, Torben Heick

    enhancers at high temperature.  They encoded a novel mRNP protein Nab6p and the tRNA transporter Los1p, suggesting that mRNA metabolism or protein synthesis is growth-rate limiting in the ∆rrp6 strain.  Conventional microarray assays, which compare the RNA populations of ∆rrp6 strains containing...... in numerous RNA reactions.  These include the processing and degradation of rRNA, snoRNA, snRNA and tRNA as well as surveillance and degradation of aberrant mRNAs.  Two bona fide suppressors were found that were not identified using a conventional overexpression/suppression strategy at 37ºC, because they were...

  2. Microarrays, Integrated Analytical Systems

    Science.gov (United States)

    Combinatorial chemistry is used to find materials that form sensor microarrays. This book discusses the fundamentals, and then proceeds to the many applications of microarrays, from measuring gene expression (DNA microarrays) to protein-protein interactions, peptide chemistry, carbodhydrate chemistry, electrochemical detection, and microfluidics.

  3. Microarray detection and qPCR screening of potential biomarkers of Folsomia candida (Collembola: Isotomidae) exposed to Bt proteins (Cry1Ab and Cry1Ac).

    Science.gov (United States)

    Yuan, Yiyang; Krogh, Paul Henning; Bai, Xue; Roelofs, Dick; Chen, Fajun; Zhu-Salzman, Keyan; Liang, Yuyong; Sun, Yucheng; Ge, Feng

    2014-01-01

    The impact of Bt proteins on non-target arthropods is less understood than their effects on target organisms where the mechanism of toxic action is known. Here, we report the effects of two Bt proteins, Cry1Ab and Cry1Ac, on gene expression in the non-target collembolan, Folsomia candida. A customized microarray was used to study gene expression in F. candida specimens that were exposed to Cry1Ab and Cry1Ac. All selected transcripts were subsequently confirmed by qPCR. Eleven transcripts were finally verified, and three of them were annotated. The responses of all eleven transcripts were tested in specimens for both Cry1Ab and Cry1Ac at a series of concentrations. These transcripts were separated into two and three groups for Cry1Ab and Cry1Ac, respectively, depend on their expression levels. However, those eleven transcripts did not respond to the Bt proteins in Bt-rice residues.

  4. Genomic response to Wnt signalling is highly context-dependent - Evidence from DNA microarray and chromatin immunoprecipitation screens of Wnt/TCF targets

    Energy Technology Data Exchange (ETDEWEB)

    Railo, Antti [Oulu Centre for Cell Matrix Research, Biocenter Oulu, Laboratory of Developmental Biology and Department of Medical Biochemistry and Molecular Biology, FIN-90014, University of Oulu, P. O. Box 5000 (Finland); Pajunen, Antti [Department of Biochemistry, University of Oulu (Finland); Itaeranta, Petri; Naillat, Florence; Vuoristo, Jussi; Kilpelaeinen, Pekka [Oulu Centre for Cell Matrix Research, Biocenter Oulu, Laboratory of Developmental Biology and Department of Medical Biochemistry and Molecular Biology, FIN-90014, University of Oulu, P. O. Box 5000 (Finland); Vainio, Seppo, E-mail: Seppo.Vainio@oulu.fi [Oulu Centre for Cell Matrix Research, Biocenter Oulu, Laboratory of Developmental Biology and Department of Medical Biochemistry and Molecular Biology, FIN-90014, University of Oulu, P. O. Box 5000 (Finland)

    2009-10-01

    Wnt proteins are important regulators of embryonic development, and dysregulated Wnt signalling is involved in the oncogenesis of several human cancers. Our knowledge of the downstream target genes is limited, however. We used a chromatin immunoprecipitation-based assay to isolate and characterize the actual gene segments through which Wnt-activatable transcription factors, TCFs, regulate transcription and an Affymetrix microarray analysis to study the global transcriptional response to the Wnt3a ligand. The anti-{beta}-catenin immunoprecipitation of DNA-protein complexes from mouse NIH3T3 fibroblasts expressing a fusion protein of {beta}-catenin and TCF7 resulted in the identification of 92 genes as putative TCF targets. GeneChip assays of gene expression performed on NIH3T3 cells and the rat pheochromocytoma cell line PC12 revealed 355 genes in NIH3T3 and 129 genes in the PC12 cells with marked changes in expression after Wnt3a stimulus. Only 2 Wnt-regulated genes were shared by both cell lines. Surprisingly, Disabled-2 was the only gene identified by the chromatin immunoprecipitation approach that displayed a marked change in expression in the GeneChip assay. Taken together, our approaches give an insight into the complex context-dependent nature of Wnt pathway transcriptional responses and identify Disabled-2 as a potential new direct target for Wnt signalling.

  5. Identification of candidate genes in osteoporosis by integrated microarray analysis

    OpenAIRE

    Li, J J; Wang, B. Q.; Fei, Q.; Yang, Y; Li, D.

    2017-01-01

    Objectives In order to screen the altered gene expression profile in peripheral blood mononuclear cells of patients with osteoporosis, we performed an integrated analysis of the online microarray studies of osteoporosis. Methods We searched the Gene Expression Omnibus (GEO) database for microarray studies of peripheral blood mononuclear cells in patients with osteoporosis. Subsequently, we integrated gene expression data sets from multiple microarray studies to obtain differentially expressed...

  6. Introduction to microarray technology.

    Science.gov (United States)

    Dufva, Martin

    2009-01-01

    DNA microarrays can be used for large number of application where high-throughput is needed. The ability to probe a sample for hundred to million different molecules at once has made DNA microarray one of the fastest growing techniques since its introduction about 15 years ago. Microarray technology can be used for large scale genotyping, gene expression profiling, comparative genomic hybridization and resequencing among other applications. Microarray technology is a complex mixture of numerous technology and research fields such as mechanics, microfabrication, chemistry, DNA behaviour, microfluidics, enzymology, optics and bioinformatics. This chapter will give an introduction to each five basic steps in microarray technology that includes fabrication, target preparation, hybridization, detection and data analysis. Basic concepts and nomenclature used in the field of microarray technology and their relationships will also be explained.

  7. HPV prevalence and genotype distribution in a population-based split-sample study of well-screened women using CLART HPV2 Human Papillomavirus genotype microarray system

    DEFF Research Database (Denmark)

    Bonde, Jesper; Rebolj, Matejka; Ejegod, Ditte Møller;

    2014-01-01

    , Denmark, an area with a high background risk of cervical cancer where women aged 23-65 years are targeted for organized screening. METHODS: Material from 5,068 SurePath samples of women participating in routine screening and clinical follow-up of cervical abnormalities was tested using liquid based...... cytology, CLART HPV2 and Hybrid Capture 2 (HC2). RESULTS: At least one of the 35 defined genotypes was detected by CLART in 1,896 (37%) samples. The most frequent high-risk genotypes were HPV 16 (7%), HPV 52 (5%), and HPV 31 (4%). The most frequent low-risk genotypes were HPV 53 (5%), HPV 61 (4%), and HPV...... CLART showed a higher analytical sensitivity for 13 high-risk HPV genotypes than HC2, and this was found in all age-groups and in women normal cytology. CONCLUSIONS: CLART performed well with a positive reproducibility for high-risk genotypes of 86%, and a negative reproducibility of 97%. This report...

  8. [Screening differential expression of docetaxel-resistance related genes of human lung adenocarcinoma cell line SPC-A1 by cDNA microarray].

    Science.gov (United States)

    Sun, Hai; Geng, Jian; Chen, Longbang

    2007-10-20

    Docetaxel is one of effective chemotherapeutics in the last few years, however, it is interfered by drug resistance in its further application. The aim of this study is to screen differentially expressed genes of docetaxel resistant cell line SPC-A1/Docetaxel and its parent cell line SPC-A1 with gene chip technique. The cDNA retro-transcribed from equal quantity mRNA derived from SPC-A1/Docetaxel and SPC-A1 cell lines. The mixed probes were hybridized with Affymetrix GeneChip HG-U133A2.0. The acquired image was analyzed by Affymetrix GeneChip Operating Software Version 1.0. Then, part of these results were verified by RT-PCR. A total of 934 differentially expressed genes were screened out, in which up-and down-regulated genes were 428 and 506 respectively. These genes involved in ABC transporter, apoptosis regulator, tubulin, signal transducer, enzyme and so on. These differentially expressed genes may be related to the mechanisms of docetaxel resistance in SPC-A1/Docetaxel cell line.

  9. A concentration gradient generator on a paper-based microfluidic chip coupled with cell culture microarray for high-throughput drug screening.

    Science.gov (United States)

    Hong, Bo; Xue, Peng; Wu, Yafeng; Bao, Jingnan; Chuah, Yon Jin; Kang, Yuejun

    2016-02-01

    Inspired by the paper platforms for 3-D cell culture, a paper-based microfluidic device containing drug concentration gradient was designed and constructed for investigating cell response to drugs based on high throughput analysis. This drug gradient generator was applied to generate concentration gradients of doxorubicin (DOX) as the model drug. HeLa cells encapsulated in collagen hydrogel were incubated in the device reservoirs to evaluate the cell viability based on the controlled release of DOX spatially. It was demonstrated that drug diffusion through the paper fibers created a gradient of drug concentration, which influenced cell viability. This drug screening platform has a great opportunity to be applied for drug discovery and diagnostic studies with simultaneous and parallel tests of drugs under various gradient concentrations.

  10. Chromosomal microarray versus karyotyping for prenatal diagnosis.

    Science.gov (United States)

    Wapner, Ronald J; Martin, Christa Lese; Levy, Brynn; Ballif, Blake C; Eng, Christine M; Zachary, Julia M; Savage, Melissa; Platt, Lawrence D; Saltzman, Daniel; Grobman, William A; Klugman, Susan; Scholl, Thomas; Simpson, Joe Leigh; McCall, Kimberly; Aggarwal, Vimla S; Bunke, Brian; Nahum, Odelia; Patel, Ankita; Lamb, Allen N; Thom, Elizabeth A; Beaudet, Arthur L; Ledbetter, David H; Shaffer, Lisa G; Jackson, Laird

    2012-12-06

    Chromosomal microarray analysis has emerged as a primary diagnostic tool for the evaluation of developmental delay and structural malformations in children. We aimed to evaluate the accuracy, efficacy, and incremental yield of chromosomal microarray analysis as compared with karyotyping for routine prenatal diagnosis. Samples from women undergoing prenatal diagnosis at 29 centers were sent to a central karyotyping laboratory. Each sample was split in two; standard karyotyping was performed on one portion and the other was sent to one of four laboratories for chromosomal microarray. We enrolled a total of 4406 women. Indications for prenatal diagnosis were advanced maternal age (46.6%), abnormal result on Down's syndrome screening (18.8%), structural anomalies on ultrasonography (25.2%), and other indications (9.4%). In 4340 (98.8%) of the fetal samples, microarray analysis was successful; 87.9% of samples could be used without tissue culture. Microarray analysis of the 4282 nonmosaic samples identified all the aneuploidies and unbalanced rearrangements identified on karyotyping but did not identify balanced translocations and fetal triploidy. In samples with a normal karyotype, microarray analysis revealed clinically relevant deletions or duplications in 6.0% with a structural anomaly and in 1.7% of those whose indications were advanced maternal age or positive screening results. In the context of prenatal diagnostic testing, chromosomal microarray analysis identified additional, clinically significant cytogenetic information as compared with karyotyping and was equally efficacious in identifying aneuploidies and unbalanced rearrangements but did not identify balanced translocations and triploidies. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT01279733.).

  11. "Harshlighting" small blemishes on microarrays

    Directory of Open Access Journals (Sweden)

    Wittkowski Knut M

    2005-03-01

    Full Text Available Abstract Background Microscopists are familiar with many blemishes that fluorescence images can have due to dust and debris, glass flaws, uneven distribution of fluids or surface coatings, etc. Microarray scans show similar artefacts, which affect the analysis, particularly when one tries to detect subtle changes. However, most blemishes are hard to find by the unaided eye, particularly in high-density oligonucleotide arrays (HDONAs. Results We present a method that harnesses the statistical power provided by having several HDONAs available, which are obtained under similar conditions except for the experimental factor. This method "harshlights" blemishes and renders them evident. We find empirically that about 25% of our chips are blemished, and we analyze the impact of masking them on screening for differentially expressed genes. Conclusion Experiments attempting to assess subtle expression changes should be carefully screened for blemishes on the chips. The proposed method provides investigators with a novel robust approach to improve the sensitivity of microarray analyses. By utilizing topological information to identify and mask blemishes prior to model based analyses, the method prevents artefacts from confounding the process of background correction, normalization, and summarization.

  12. Prenatal screening and diagnosis of genetic deafness by microarray%芯片检测结合测序技术在遗传性耳聋产前基因筛查与诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    孙莲花; 李磊; 王晓雯; 朱亚忠; 柴永川; 李晓华; 吴皓; 杨涛

    2012-01-01

    Objective To evaluate a microarray-based mutation screening method for genetic deafness and its application in prenatal diagnosis.Methods Mutation screening of common deafness genes was performed in pregnant women and volunteers spouses.Nine common mutations in four major deafness genes,GJB2,GJB3,SLC26A4 and mitochondrial 12S rRNA,were detected simultaneously by a microarray-based method.Genetic counseling was given based on their testing results.Results 5.11% of pregnant women carried at least one mutation.Among them,seven carried mutation in the mitochondria 12S rRNA gene and were offered aminoglycoside-induced ototoxicity warning.For other mutation carriers of GJB2 or SLC26A4 genes,additional mutation screening was performed in their husbands by direct sequencing.A total of 20 couples were at risk of giving birth to children with genetic deafness.Of five couples who selected to undergo prenatal diagnostic testing of the fetus,four were diagnosed as wild type or heterozygous for the tested genes and one as p.V37I/c.235delC compound heterozygous for GJB2.Conclusions DNA microarray is a quick,easy and reliable method to screen mutations in genetic deafness genes.Application of this method in prenatal screening and diagnosis might effectively reduce the occurrence of genetic deafness.%目的 探讨遗传性耳聋基因检测芯片在中国孕妇人群常见遗传性耳聋基因突变位点检测中的作用,并评估其在遗传性耳聋产前诊断中的应用.方法 对3056例孕妇采集外周血并抽提DNA,采用遗传性耳聋基因芯片检测GJB2、SLC26A4、线粒体12S rRNA、GJB3等4个中国人群常见遗传性耳聋基因共9个突变热点.根据检测结果对有耳聋生育风险的夫妇提供遗传咨询与生育指导.结果 3056例孕妇中,共检测到156例携带至少一种基因突变,占总抽查人数的5.11%.其中7例为线粒体12S rRNA突变,预测后代亦为此突变携带者,需终生避免使用氨基糖苷类抗生素.149例

  13. Microarray Analysis in Glioblastomas

    Science.gov (United States)

    Bhawe, Kaumudi M.; Aghi, Manish K.

    2016-01-01

    Microarray analysis in glioblastomas is done using either cell lines or patient samples as starting material. A survey of the current literature points to transcript-based microarrays and immunohistochemistry (IHC)-based tissue microarrays as being the preferred methods of choice in cancers of neurological origin. Microarray analysis may be carried out for various purposes including the following: To correlate gene expression signatures of glioblastoma cell lines or tumors with response to chemotherapy (DeLay et al., Clin Cancer Res 18(10):2930–2942, 2012)To correlate gene expression patterns with biological features like proliferation or invasiveness of the glioblastoma cells (Jiang et al., PLoS One 8(6):e66008, 2013)To discover new tumor classificatory systems based on gene expression signature, and to correlate therapeutic response and prognosis with these signatures (Huse et al., Annu Rev Med 64(1):59–70, 2013; Verhaak et al., Cancer Cell 17(1):98–110, 2010) While investigators can sometimes use archived tumor gene expression data available from repositories such as the NCBI Gene Expression Omnibus to answer their questions, new arrays must often be run to adequately answer specific questions. Here, we provide a detailed description of microarray methodologies, how to select the appropriate methodology for a given question, and analytical strategies that can be used. Experimental methodology for protein microarrays is outside the scope of this chapter, but basic sample preparation techniques for transcript-based microarrays are included here. PMID:26113463

  14. Preimplantation genetic screening for all 24 chromosomes by microarray comparative genomic hybridization significantly increases implantation rates and clinical pregnancy rates in patients undergoing in vitro fertilization with poor prognosis

    Directory of Open Access Journals (Sweden)

    Gaurav Majumdar

    2016-01-01

    Full Text Available CONTEXT: A majority of human embryos produced in vitro are aneuploid, especially in couples undergoing in vitro fertilization (IVF with poor prognosis. Preimplantation genetic screening (PGS for all 24 chromosomes has the potential to select the most euploid embryos for transfer in such cases. AIM: To study the efficacy of PGS for all 24 chromosomes by microarray comparative genomic hybridization (array CGH in Indian couples undergoing IVF cycles with poor prognosis. SETTINGS AND DESIGN: A retrospective, case–control study was undertaken in an institution-based tertiary care IVF center to compare the clinical outcomes of twenty patients, who underwent 21 PGS cycles with poor prognosis, with 128 non-PGS patients in the control group, with the same inclusion criterion as for the PGS group. MATERIALS AND METHODS: Single cells were obtained by laser-assisted embryo biopsy from day 3 embryos and subsequently analyzed by array CGH for all 24 chromosomes. Once the array CGH results were available on the morning of day 5, only chromosomally normal embryos that had progressed to blastocyst stage were transferred. RESULTS: The implantation rate and clinical pregnancy rate (PR per transfer were found to be significantly higher in the PGS group than in the control group (63.2% vs. 26.2%, P = 0.001 and 73.3% vs. 36.7%, P = 0.006, respectively, while the multiple PRs sharply declined from 31.9% to 9.1% in the PGS group. CONCLUSIONS: In this pilot study, we have shown that PGS by array CGH can improve the clinical outcome in patients undergoing IVF with poor prognosis.

  15. Maize microarray annotation database

    Directory of Open Access Journals (Sweden)

    Berger Dave K

    2011-10-01

    Full Text Available Abstract Background Microarray technology has matured over the past fifteen years into a cost-effective solution with established data analysis protocols for global gene expression profiling. The Agilent-016047 maize 44 K microarray was custom-designed from EST sequences, but only reporter sequences with EST accession numbers are publicly available. The following information is lacking: (a reporter - gene model match, (b number of reporters per gene model, (c potential for cross hybridization, (d sense/antisense orientation of reporters, (e position of reporter on B73 genome sequence (for eQTL studies, and (f functional annotations of genes represented by reporters. To address this, we developed a strategy to annotate the Agilent-016047 maize microarray, and built a publicly accessible annotation database. Description Genomic annotation of the 42,034 reporters on the Agilent-016047 maize microarray was based on BLASTN results of the 60-mer reporter sequences and their corresponding ESTs against the maize B73 RefGen v2 "Working Gene Set" (WGS predicted transcripts and the genome sequence. The agreement between the EST, WGS transcript and gDNA BLASTN results were used to assign the reporters into six genomic annotation groups. These annotation groups were: (i "annotation by sense gene model" (23,668 reporters, (ii "annotation by antisense gene model" (4,330; (iii "annotation by gDNA" without a WGS transcript hit (1,549; (iv "annotation by EST", in which case the EST from which the reporter was designed, but not the reporter itself, has a WGS transcript hit (3,390; (v "ambiguous annotation" (2,608; and (vi "inconclusive annotation" (6,489. Functional annotations of reporters were obtained by BLASTX and Blast2GO analysis of corresponding WGS transcripts against GenBank. The annotations are available in the Maize Microarray Annotation Database http://MaizeArrayAnnot.bi.up.ac.za/, as well as through a GBrowse annotation file that can be uploaded to

  16. Protein microarrays for systems biology

    Institute of Scientific and Technical Information of China (English)

    Lina Yang; Shujuan Guo; Yang Li; Shumin Zhou; Shengce Tao

    2011-01-01

    Systems biology holds the key for understanding biological systems on a system level. It eventually holds the key for the treatment and cure of complex diseases such as cancer,diabetes, obesity, mental disorders, and many others. The '-omics' technologies, such as genomics, transcriptomics,proteomics, and metabonomics, are among the major driving forces of systems biology. Featured as highthroughput, miniaturized, and capable of parallel analysis,protein microarrays have already become an important technology platform for systems biology, In this review, we will focus on the system level or global analysis of biological systems using protein microarrays. Four major types of protein microarrays will be discussed: proteome microarrays, antibody microarrays, reverse-phase protein arrays,and lectin microarrays. We will also discuss the challenges and future directions of protein microarray technologies and their applications for systems biology. We strongly believe that protein microarrays will soon become an indispensable and invaluable tool for systems biology.

  17. Microarray Applications in Cancer Research

    Science.gov (United States)

    Kim, Il-Jin; Kang, Hio Chung

    2004-01-01

    DNA microarray technology permits simultaneous analysis of thousands of DNA sequences for genomic research and diagnostics applications. Microarray technology represents the most recent and exciting advance in the application of hybridization-based technology for biological sciences analysis. This review focuses on the classification (oligonucleotide vs. cDNA) and application (mutation-genotyping vs. gene expression) of microarrays. Oligonucleotide microarrays can be used both in mutation-genotyping and gene expression analysis, while cDNA microarrays can only be used in gene expression analysis. We review microarray mutation analysis, including examining the use of three oligonucleotide microarrays developed in our laboratory to determine mutations in RET, β-catenin and K-ras genes. We also discuss the use of the Affymetrix GeneChip in mutation analysis. We review microarray gene expression analysis, including the classifying of such studies into four categories: class comparison, class prediction, class discovery and identification of biomarkers. PMID:20368836

  18. High throughput genetic analysis of congenital myasthenic syndromes using resequencing microarrays.

    Directory of Open Access Journals (Sweden)

    Lisa Denning

    Full Text Available BACKGROUND: The use of resequencing microarrays for screening multiple, candidate disease loci is a promising alternative to conventional capillary sequencing. We describe the performance of a custom resequencing microarray for mutational analysis of Congenital Myasthenic Syndromes (CMSs, a group of disorders in which the normal process of neuromuscular transmission is impaired. METHODOLOGY/PRINCIPAL FINDINGS: Our microarray was designed to assay the exons and flanking intronic regions of 8 genes linked to CMSs. A total of 31 microarrays were hybridized with genomic DNA from either individuals with known CMS mutations or from healthy controls. We estimated an overall microarray call rate of 93.61%, and we found the percentage agreement between the microarray and capillary sequencing techniques to be 99.95%. In addition, our microarray exhibited 100% specificity and 99.99% reproducibility. Finally, the microarray detected 22 out of the 23 known missense mutations, but it failed to detect all 7 known insertion and deletion (indels mutations, indicating an overall sensitivity of 73.33% and a sensitivity with respect to missense mutations of 95.65%. CONCLUSIONS/SIGNIFICANCE: Overall, our microarray prototype exhibited strong performance and proved highly efficient for screening genes associated with CMSs. Until indels can be efficiently assayed with this technology, however, we recommend using resequencing microarrays for screening CMS mutations after common indels have been first assayed by capillary sequencing.

  19. APPLICATION OF CDNA MICROARRAY TECHNOLOGY TO IN VITRO TOXICOLOGY AND THE SELECTION OF GENES FOR A REAL TIME RT-PCR-BASED SCREEN FOR OXIDATIVE STRESS IN HEP-G2 CELLS

    Science.gov (United States)

    Large-scale analysis of gene expression using cDNA microarrays promises therapid detection of the mode of toxicity for drugs and other chemicals. cDNAmicroarrays were used to examine chemically-induced alterations of geneexpression in HepG2 cells exposed to oxidative ...

  20. 17000名新生儿遗传性耳聋基因突变筛查%Screening of common deafness gene mutations in 17 000 Chinese newborns from Chengdu based on microarray analysis

    Institute of Scientific and Technical Information of China (English)

    吕康模; 熊业华; 俞皓; 邹玲; 冉隆荣; 刘德顺; 殷勤; 徐应文; 方雪

    2014-01-01

    Objective To achieve early diagnosis for inheritable hearing loss and determine carrier rate of deafness causing gene mutations in order to provide information for premarital,prenatal and postnatal genetic counseling.Methods A total of 17 000 dried heel blood spots of normal newborns in Chengdu were collected with informed consent obtained from their parents.Genomic DNA was extracted from dried blood spots using Qiagen DNA extraction kits.Microarrays with 9 common mutation loci of 4 deafness-associated genes in Chinese population were used.Nine hot mutations including GJB2 (35delG,176del16,235delC and 299delAT),GJB3 (538C > T),SLC26A4 (IVS 7-2 A> G,2168 A > G),and mitochondrial DNA 12S rRNA(1555 A>G,1494 C>T) were detected by PCR amplification and microarray hybridization.Mutations detected by microarray were verified by Sanger DNA sequencing.Results Of the 17 000 newborns,542 neonates had mutations of the 4 genes.Heterozygous mutations of GJB2,at 235delC,299delAT,and 176del16 were identified in 254,55,and 15 newborns,respectively.Two newborns had homozygous mutation of GJB2,235delC.Heterozygous mutations at 538C>T of GJB3,2168A>G and IVS 7-2A>G of SLC26A4 were found in 23,17 and 128 newborns,respectively.For mutation analysis of mitochondrial DNA 12S rRNA,1494C > T and 1555A > G were homogeneous mutations in 4 and 42 neonates,respectively.In addition,6 complexity mutations were detected,which demonstrated that one newborn had heterozygous mutations at GJB2 235delC and SLC26A4,IVS7 2A> G,one had heterozygous mutation GJB2 235delC and 12S rRNA homogeneous mutation,1555 A>G,one heterozygous mutations at GJB2,299delAT,and GJB3,538C>T,one at GJB2,299delAT and 12S rRNA,1555 A> G,two at GJB2,299delAT,and SLC26A4,IVS7-2A> G.All mutations as above were confirmed by DNA sequencing.Conelusion The total mutation carrier rate of the 4 deafness genes is 3.19% in healthy newborns at Chengdu.Mutations of GJB2 and SLAC26A4 are major ones (86.5% of

  1. Biolog phenotype microarrays.

    Science.gov (United States)

    Shea, April; Wolcott, Mark; Daefler, Simon; Rozak, David A

    2012-01-01

    Phenotype microarrays nicely complement traditional genomic, transcriptomic, and proteomic analysis by offering opportunities for researchers to ground microbial systems analysis and modeling in a broad yet quantitative assessment of the organism's physiological response to different metabolites and environments. Biolog phenotype assays achieve this by coupling tetrazolium dyes with minimally defined nutrients to measure the impact of hundreds of carbon, nitrogen, phosphorous, and sulfur sources on redox reactions that result from compound-induced effects on the electron transport chain. Over the years, we have used Biolog's reproducible and highly sensitive assays to distinguish closely related bacterial isolates, to understand their metabolic differences, and to model their metabolic behavior using flux balance analysis. This chapter describes Biolog phenotype microarray system components, reagents, and methods, particularly as they apply to bacterial identification, characterization, and metabolic analysis.

  2. Analyzing Microarray Data.

    Science.gov (United States)

    Hung, Jui-Hung; Weng, Zhiping

    2017-03-01

    Because there is no widely used software for analyzing RNA-seq data that has a graphical user interface, this protocol provides an example of analyzing microarray data using Babelomics. This analysis entails performing quantile normalization and then detecting differentially expressed genes associated with the transgenesis of a human oncogene c-Myc in mice. Finally, hierarchical clustering is performed on the differentially expressed genes using the Cluster program, and the results are visualized using TreeView.

  3. 应用基因芯片筛选前列腺癌差异表达基因的研究%Screening of differentially expressed genes of prostate cancer with DNA microarray

    Institute of Scientific and Technical Information of China (English)

    王建明; 史本康; 杨典东; 张鹏

    2012-01-01

    Objective To construct regulation networks using differentially expressed genes in prostate cancer screened by DNA microarray.Methods We downloaded the gene expression profile of prostate cancer from Gene Expression Omnibus database which includes 13 individual benign prostate,primary and metastatic prostate cancer samples and 6 pooled samples from benign,primary or metastatic prostate cancer tissues.We identified the differentially expressed genes (DEGs) between prostate cancer and benign prostate tissue with the threshold of P < 0.05 and fold change value > 2 or < - 2.We calculated the Pearson Correlation Coefficient (PCC) between the DEGs and their target genes to construct regulation networks with the cut off criterion of | PCC | > 0.75.GO enrichment method was used to analyze the function of genes in regulation networks.Results Total 5847 genes were identified as DEGs between primary prostate cancer and benign prostate tissue,and total 2026 genes were identified as DEGs between metastatic prostate cancer and benign prostate tissue.There were a total of 977 overlapping DEGs.Oncogene homolog ( MYC),E2F transcription factor 1 ( E2F1 ),tumor protein 53 ( TP53 ) and estrogen receptor 1 ( ESR1 )were shown as hub nodes in the regulation networks,suggesting these genes may play important roles in the progression of prostate cancer.Conclusion We identified the DEGs associated with progression of prostate cancer.Results from our study will provide the ground work for the further study on the molecular mechanism of prostate cancer.%目的 筛选前列腺癌发生发展过程中的差异表达基因,构建差异调控网络.方法 从基因表达数据库(GEO)中下载编号为GSE3325的基因芯片(13例正常、原发性前列腺癌和转移性前列腺癌的独立样本与6例三者的混合样本),筛选前列腺癌和正常前列腺组织的差异基因(P<0.05及差异值>2或<-2);计算差异基因与靶基因间的皮尔森相关系数(| PCC |>0

  4. Identification of Novel Epithelial Ovarian Cancer Biomarkers by Cross-laboratory Microarray Analysis

    Institute of Scientific and Technical Information of China (English)

    蒋学锋; 朱涛; 杨洁; 李双; 叶双梅; 廖书杰; 孟力; 卢运萍; 马丁

    2010-01-01

    The purpose of this study was to pool information in epithelial ovarian cancer by combining studies using Affymetrix expression microarray datasets made at different laboratories to identify novel biomarkers.Epithelial microarray expression information across laboratories was screened and combined after preprocessing raw microarray data,then ANOVA and unpaired T test statistical analysis was performed for identifying differentially expressed genes(DEGs),followed by clustering and pathway analysis for these ...

  5. A cell spot microarray method for production of high density siRNA transfection microarrays

    Directory of Open Access Journals (Sweden)

    Mpindi John-Patrick

    2011-03-01

    Full Text Available Abstract Background High-throughput RNAi screening is widely applied in biological research, but remains expensive, infrastructure-intensive and conversion of many assays to HTS applications in microplate format is not feasible. Results Here, we describe the optimization of a miniaturized cell spot microarray (CSMA method, which facilitates utilization of the transfection microarray technique for disparate RNAi analyses. To promote rapid adaptation of the method, the concept has been tested with a panel of 92 adherent cell types, including primary human cells. We demonstrate the method in the systematic screening of 492 GPCR coding genes for impact on growth and survival of cultured human prostate cancer cells. Conclusions The CSMA method facilitates reproducible preparation of highly parallel cell microarrays for large-scale gene knockdown analyses. This will be critical towards expanding the cell based functional genetic screens to include more RNAi constructs, allow combinatorial RNAi analyses, multi-parametric phenotypic readouts or comparative analysis of many different cell types.

  6. The application of phenotypic microarray analysis to anti-fungal drug development.

    Science.gov (United States)

    Greetham, Darren; Lappin, David F; Rajendran, Ranjith; O'Donnell, Lindsay; Sherry, Leighann; Ramage, Gordon; Nile, Christopher

    2017-03-01

    Candida albicans metabolic activity in the presence and absence of acetylcholine was measured using phenotypic microarray analysis. Acetylcholine inhibited C. albicans biofilm formation by slowing metabolism independent of biofilm forming capabilities. Phenotypic microarray analysis can therefore be used for screening compound libraries for novel anti-fungal drugs and measuring antifungal resistance.

  7. Compressive Sensing DNA Microarrays

    Directory of Open Access Journals (Sweden)

    Richard G. Baraniuk

    2009-01-01

    Full Text Available Compressive sensing microarrays (CSMs are DNA-based sensors that operate using group testing and compressive sensing (CS principles. In contrast to conventional DNA microarrays, in which each genetic sensor is designed to respond to a single target, in a CSM, each sensor responds to a set of targets. We study the problem of designing CSMs that simultaneously account for both the constraints from CS theory and the biochemistry of probe-target DNA hybridization. An appropriate cross-hybridization model is proposed for CSMs, and several methods are developed for probe design and CS signal recovery based on the new model. Lab experiments suggest that in order to achieve accurate hybridization profiling, consensus probe sequences are required to have sequence homology of at least 80% with all targets to be detected. Furthermore, out-of-equilibrium datasets are usually as accurate as those obtained from equilibrium conditions. Consequently, one can use CSMs in applications in which only short hybridization times are allowed.

  8. Microarray for serotyping of Bartonella species

    Directory of Open Access Journals (Sweden)

    Raoult Didier

    2007-06-01

    Full Text Available Abstract Background Bacteria of the genus Bartonella are responsible for a large variety of human and animal diseases. Serological typing of Bartonella is a method that can be used for differentiation and identification of Bartonella subspecies. Results We have developed a novel multiple antigenic microarray to serotype Bartonella strains and to select poly and monoclonal antibodies. It was validated using mouse polyclonal antibodies against 29 Bartonella strains. We then tested the microarray for serotyping of Bartonella strains and defining the profile of monoclonal antibodies. Bartonella strains gave a strong positive signal and all were correctly identified. Screening of monoclonal antibodies towards the Gro EL protein of B. clarridgeiae identified 3 groups of antibodies, which were observed with variable affinities against Bartonella strains. Conclusion We demonstrated that microarray of spotted bacteria can be a practical tool for serotyping of unidentified strains or species (and also for affinity determination by polyclonal and monoclonal antibodies. This could be used in research and for identification of bacterial strains.

  9. DNA Microarray-Based Diagnostics.

    Science.gov (United States)

    Marzancola, Mahsa Gharibi; Sedighi, Abootaleb; Li, Paul C H

    2016-01-01

    The DNA microarray technology is currently a useful biomedical tool which has been developed for a variety of diagnostic applications. However, the development pathway has not been smooth and the technology has faced some challenges. The reliability of the microarray data and also the clinical utility of the results in the early days were criticized. These criticisms added to the severe competition from other techniques, such as next-generation sequencing (NGS), impacting the growth of microarray-based tests in the molecular diagnostic market.Thanks to the advances in the underlying technologies as well as the tremendous effort offered by the research community and commercial vendors, these challenges have mostly been addressed. Nowadays, the microarray platform has achieved sufficient standardization and method validation as well as efficient probe printing, liquid handling and signal visualization. Integration of various steps of the microarray assay into a harmonized and miniaturized handheld lab-on-a-chip (LOC) device has been a goal for the microarray community. In this respect, notable progress has been achieved in coupling the DNA microarray with the liquid manipulation microsystem as well as the supporting subsystem that will generate the stand-alone LOC device.In this chapter, we discuss the major challenges that microarray technology has faced in its almost two decades of development and also describe the solutions to overcome the challenges. In addition, we review the advancements of the technology, especially the progress toward developing the LOC devices for DNA diagnostic applications.

  10. A comparative analysis of DNA barcode microarray feature size

    Directory of Open Access Journals (Sweden)

    Smith Andrew M

    2009-10-01

    Full Text Available Abstract Background Microarrays are an invaluable tool in many modern genomic studies. It is generally perceived that decreasing the size of microarray features leads to arrays with higher resolution (due to greater feature density, but this increase in resolution can compromise sensitivity. Results We demonstrate that barcode microarrays with smaller features are equally capable of detecting variation in DNA barcode intensity when compared to larger feature sizes within a specific microarray platform. The barcodes used in this study are the well-characterized set derived from the Yeast KnockOut (YKO collection used for screens of pooled yeast (Saccharomyces cerevisiae deletion mutants. We treated these pools with the glycosylation inhibitor tunicamycin as a test compound. Three generations of barcode microarrays at 30, 8 and 5 μm features sizes independently identified the primary target of tunicamycin to be ALG7. Conclusion We show that the data obtained with 5 μm feature size is of comparable quality to the 30 μm size and propose that further shrinking of features could yield barcode microarrays with equal or greater resolving power and, more importantly, higher density.

  11. Assessing Bacterial Interactions Using Carbohydrate-Based Microarrays

    Directory of Open Access Journals (Sweden)

    Andrea Flannery

    2015-12-01

    Full Text Available Carbohydrates play a crucial role in host-microorganism interactions and many host glycoconjugates are receptors or co-receptors for microbial binding. Host glycosylation varies with species and location in the body, and this contributes to species specificity and tropism of commensal and pathogenic bacteria. Additionally, bacterial glycosylation is often the first bacterial molecular species encountered and responded to by the host system. Accordingly, characterising and identifying the exact structures involved in these critical interactions is an important priority in deciphering microbial pathogenesis. Carbohydrate-based microarray platforms have been an underused tool for screening bacterial interactions with specific carbohydrate structures, but they are growing in popularity in recent years. In this review, we discuss carbohydrate-based microarrays that have been profiled with whole bacteria, recombinantly expressed adhesins or serum antibodies. Three main types of carbohydrate-based microarray platform are considered; (i conventional carbohydrate or glycan microarrays; (ii whole mucin microarrays; and (iii microarrays constructed from bacterial polysaccharides or their components. Determining the nature of the interactions between bacteria and host can help clarify the molecular mechanisms of carbohydrate-mediated interactions in microbial pathogenesis, infectious disease and host immune response and may lead to new strategies to boost therapeutic treatments.

  12. DNA microarray for simultaneous screening and detection of seven rickettsia%7种立克次体甄别检测基因芯片方法的建立

    Institute of Scientific and Technical Information of China (English)

    李灵云; 张英杰; 王升启; 刘琪琦

    2015-01-01

    目的:建立一种能同时检测7种立克次体的化学发光基因芯片法。方法根据NCBI公开发表的7种立克次体的序列设计引物和探针,制备立克次体甄别检测基因芯片。利用多重不对称PCR法扩增立克次体靶基因片段,标记的产物与基因芯片上的探针杂交,经清洗、化学发光显色后进行结果分析。在优化的多重PCR体系、杂交反应和化学发光检测条件下,评价芯片的特异性、灵敏度、重复性。用实时荧光PCR法与芯片法分别检测莫氏立克次体梯度稀释的核酸,比较两种方法的灵敏度。制备双盲模拟样本,进一步评价芯片方法的准确性。结果该研究共筛选出1对通用引物、4对特异性引物和1条立克次体属通用探针、9条特异性检测探针。该芯片检测质粒DNA的灵敏度为1.5×102~3×103拷贝/反应,检测模拟样本的灵敏度为103~104拷贝/μl。实时荧光PCR法与芯片法检测结果一致,实时荧光PCR法比芯片法灵敏度高10倍。双盲模拟样本检测符合率为100%。结论成功建立了可同时检测7种立克次体的化学发光基因芯片检测方法,为立克次体病的临床诊断和流行病学调查提供了一种新的高通量检测手段。%Objective To develop a chemiluminescence ( CL ) imaging DNA microarray method for simultaneous detection of seven rickettsiae.Methods Primers and probes were designed based on the specific sequence of seven rickettsia genomes.The probes were immobilized on the aldehyde modified glass surface to prepare DNA microarray for rickettsiae.The nucleic acids of the selected rickettsiae were amplified and labelled by multiplex PCR method, and then hybridized with microarray that was scanned after washing and chemiluminescence coloration, before the results were analyzed.Facilitated by the optimization of the multiplex PCR system, hybridization, and chemiluminescence imagination, we evaluated the

  13. Transfection microarray and the applications.

    Science.gov (United States)

    Miyake, Masato; Yoshikawa, Tomohiro; Fujita, Satoshi; Miyake, Jun

    2009-05-01

    Microarray transfection has been extensively studied for high-throughput functional analysis of mammalian cells. However, control of efficiency and reproducibility are the critical issues for practical use. By using solid-phase transfection accelerators and nano-scaffold, we provide a highly efficient and reproducible microarray-transfection device, "transfection microarray". The device would be applied to the limited number of available primary cells and stem cells not only for large-scale functional analysis but also reporter-based time-lapse cellular event analysis.

  14. Biological networks to the analysis of microarray data

    Institute of Scientific and Technical Information of China (English)

    FANG Zhuo; LUO Qingming; ZHANG Guoqing; LI Yixue

    2006-01-01

    Microarray technology, which permits rapid and large-scale screening for patterns of gene expressions, usually generates a large amount of data. How to mine the biological meanings under these data is one of the main challenges in bioinformatics. Compared to the pure mathematical techniques, those methods incorporated with some prior biological knowledge generally bring better interpretations.Recently, a new analysis, in which the knowledge of biological networks such as metabolic network and protein interaction network is introduced, is widely applied to microarray data analysis. The microarray data analysis based on biological networks contains two main research aspects: identification of active components in biological networks and assessment of gene sets significance. In this paper, we briefly review the progress of these two categories of analyses, especially some representative methods.

  15. Microarray Scanner for Fluorescence Detection

    Institute of Scientific and Technical Information of China (English)

    Wang Liqiang; Lu zukang; Li Yingsheng; Zheng Xufeng

    2003-01-01

    A novel pseudo confocal microarray scanner is introduced, in which one dimension scanning is performed by a galvanometer optical scanner and a telecentric objective, another dimension scanning is performed by a stepping motor.

  16. A fisheye viewer for microarray-based gene expression data

    Directory of Open Access Journals (Sweden)

    Munson Ethan V

    2006-10-01

    Full Text Available Abstract Background Microarray has been widely used to measure the relative amounts of every mRNA transcript from the genome in a single scan. Biologists have been accustomed to reading their experimental data directly from tables. However, microarray data are quite large and are stored in a series of files in a machine-readable format, so direct reading of the full data set is not feasible. The challenge is to design a user interface that allows biologists to usefully view large tables of raw microarray-based gene expression data. This paper presents one such interface – an electronic table (E-table that uses fisheye distortion technology. Results The Fisheye Viewer for microarray-based gene expression data has been successfully developed to view MIAME data stored in the MAGE-ML format. The viewer can be downloaded from the project web site http://polaris.imt.uwm.edu:7777/fisheye/. The fisheye viewer was implemented in Java so that it could run on multiple platforms. We implemented the E-table by adapting JTable, a default table implementation in the Java Swing user interface library. Fisheye views use variable magnification to balance magnification for easy viewing and compression for maximizing the amount of data on the screen. Conclusion This Fisheye Viewer is a lightweight but useful tool for biologists to quickly overview the raw microarray-based gene expression data in an E-table.

  17. Development of a DNA-based microarray for the detection of zoonotic pathogens in rodent species.

    Science.gov (United States)

    Giles, Timothy; Yon, Lisa; Hannant, Duncan; Barrow, Paul; Abu-Median, Abu-Bakr

    2015-12-01

    The demand for diagnostic tools that allow simultaneous screening of samples for multiple pathogens is increasing because they overcome the limitations of other methods, which can only screen for a single or a few pathogens at a time. Microarrays offer the advantages of being capable to test a large number of samples simultaneously, screening for multiple pathogen types per sample and having comparable sensitivity to existing methods such as PCR. Array design is often considered the most important process in any microarray experiment and can be the deciding factor in the success of a study. There are currently no microarrays for simultaneous detection of rodent-borne pathogens. The aim of this report is to explicate the design, development and evaluation of a microarray platform for use as a screening tool that combines ease of use and rapid identification of a number of rodent-borne pathogens of zoonotic importance. Nucleic acid was amplified by multiplex biotinylation PCR prior to hybridisation onto microarrays. The array sensitivity was comparable to standard PCR, though less sensitive than real-time PCR. The array presented here is a prototype microarray identification system for zoonotic pathogens that can infect rodent species.

  18. Microarray Technologies in Fungal Diagnostics.

    Science.gov (United States)

    Rupp, Steffen

    2017-01-01

    Microarray technologies have been a major research tool in the last decades. In addition they have been introduced into several fields of diagnostics including diagnostics of infectious diseases. Microarrays are highly parallelized assay systems that initially were developed for multiparametric nucleic acid detection. From there on they rapidly developed towards a tool for the detection of all kind of biological compounds (DNA, RNA, proteins, cells, nucleic acids, carbohydrates, etc.) or their modifications (methylation, phosphorylation, etc.). The combination of closed-tube systems and lab on chip devices with microarrays further enabled a higher automation degree with a reduced contamination risk. Microarray-based diagnostic applications currently complement and may in the future replace classical methods in clinical microbiology like blood cultures, resistance determination, microscopic and metabolic analyses as well as biochemical or immunohistochemical assays. In addition, novel diagnostic markers appear, like noncoding RNAs and miRNAs providing additional room for novel nucleic acid based biomarkers. Here I focus an microarray technologies in diagnostics and as research tools, based on nucleic acid-based arrays.

  19. Glass slides to DNA microarrays

    Directory of Open Access Journals (Sweden)

    Samuel D Conzone

    2004-03-01

    Full Text Available A tremendous interest in deoxyribonucleic acid (DNA characterization tools was spurred by the mapping and sequencing of the human genome. New tools were needed, beginning in the early 1990s, to cope with the unprecedented amount of genomic information that was being discovered. Such needs led to the development of DNA microarrays; tiny gene-based sensors traditionally prepared on coated glass microscope slides. The following review is intended to provide historical insight into the advent of the DNA microarray, followed by a description of the technology from both the application and fabrication points of view. Finally, the unmet challenges and needs associated with DNA microarrays will be described to define areas of potential future developments for the materials researcher.

  20. Phenotypic MicroRNA Microarrays

    OpenAIRE

    2013-01-01

    Microarray technology has become a very popular approach in cases where multiple experiments need to be conducted repeatedly or done with a variety of samples. In our lab, we are applying our high density spots microarray approach to microscopy visualization of the effects of transiently introduced siRNA or cDNA on cellular morphology or phenotype. In this publication, we are discussing the possibility of using this micro-scale high throughput process to study the role of microRNAs in the bio...

  1. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    OpenAIRE

    Alvaro Díaz-Badillo; María de Lourdes Muñoz; Gerardo Perez-Ramirez; Victor Altuzar; Juan Burgueño; Mendoza-Alvarez, Julio G.; Martínez-Muñoz, Jorge P.; Alejandro Cisneros; Joel Navarrete-Espinosa; Feliciano Sanchez-Sinencio

    2014-01-01

    Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybrid...

  2. Identification of chromosomal errors in human preimplantation embryos with oligonucleotide DNA microarray.

    Directory of Open Access Journals (Sweden)

    Lifeng Liang

    Full Text Available A previous study comparing the performance of different platforms for DNA microarray found that the oligonucleotide (oligo microarray platform containing 385K isothermal probes had the best performance when evaluating dosage sensitivity, precision, specificity, sensitivity and copy number variations border definition. Although oligo microarray platform has been used in some research fields and clinics, it has not been used for aneuploidy screening in human embryos. The present study was designed to use this new microarray platform for preimplantation genetic screening in the human. A total of 383 blastocysts from 72 infertility patients with either advanced maternal age or with previous miscarriage were analyzed after biopsy and microarray. Euploid blastocysts were transferred to patients and clinical pregnancy and implantation rates were measured. Chromosomes in some aneuploid blastocysts were further analyzed by fluorescence in-situ hybridization (FISH to evaluate accuracy of the results. We found that most (58.1% of the blastocysts had chromosomal abnormalities that included single or multiple gains and/or losses of chromosome(s, partial chromosome deletions and/or duplications in both euploid and aneuploid embryos. Transfer of normal euploid blastocysts in 34 cycles resulted in 58.8% clinical pregnancy and 54.4% implantation rates. Examination of abnormal blastocysts by FISH showed that all embryos had matching results comparing microarray and FISH analysis. The present study indicates that oligo microarray conducted with a higher resolution and a greater number of probes is able to detect not only aneuploidy, but also minor chromosomal abnormalities, such as partial chromosome deletion and/or duplication in human embryos. Preimplantation genetic screening of the aneuploidy by DNA microarray is an advanced technology used to select embryos for transfer and improved embryo implantation can be obtained after transfer of the screened normal

  3. Combining microarrays and genetic analysis

    NARCIS (Netherlands)

    Alberts, Rudi; Fu, Jingyuan; Swertz, Morris A.; Lubbers, L. Alrik; Albers, Casper J.; Jansen, Ritsert C.

    2005-01-01

    Gene expression can be studied at a genome-wide scale with the aid of modern microarray technologies. Expression profiling of tens to hundreds of individuals in a genetic population can reveal the consequences of genetic variation. In this paper it is argued that the design and analysis of such a

  4. Combining microarrays and genetic analysis

    NARCIS (Netherlands)

    Alberts, Rudi; Fu, Jingyuan; Swertz, Morris A.; Lubbers, L. Alrik; Albers, Casper J.; Jansen, Ritsert C.

    2005-01-01

    Gene expression can be studied at a genome-wide scale with the aid of modern microarray technologies. Expression profiling of tens to hundreds of individuals in a genetic population can reveal the consequences of genetic variation. In this paper it is argued that the design and analysis of such a st

  5. Picky: oligo microarray design for large genomes

    National Research Council Canada - National Science Library

    Chou, Hui-Hsien; Hsia, An-Ping; Mooney, Denise L; Schnable, Patrick S

    2004-01-01

    Many large genomes are getting sequenced nowadays. Biologists are eager to start microarray analysis taking advantage of all known genes of a species, but existing microarray design tools were very inefficient for large genomes...

  6. High quality protein microarray using in situ protein purification

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2009-08-01

    Full Text Available Abstract Background In the postgenomic era, high throughput protein expression and protein microarray technologies have progressed markedly permitting screening of therapeutic reagents and discovery of novel protein functions. Hexa-histidine is one of the most commonly used fusion tags for protein expression due to its small size and convenient purification via immobilized metal ion affinity chromatography (IMAC. This purification process has been adapted to the protein microarray format, but the quality of in situ His-tagged protein purification on slides has not been systematically evaluated. We established methods to determine the level of purification of such proteins on metal chelate-modified slide surfaces. Optimized in situ purification of His-tagged recombinant proteins has the potential to become the new gold standard for cost-effective generation of high-quality and high-density protein microarrays. Results Two slide surfaces were examined, chelated Cu2+ slides suspended on a polyethylene glycol (PEG coating and chelated Ni2+ slides immobilized on a support without PEG coating. Using PEG-coated chelated Cu2+ slides, consistently higher purities of recombinant proteins were measured. An optimized wash buffer (PBST composed of 10 mM phosphate buffer, 2.7 mM KCl, 140 mM NaCl and 0.05% Tween 20, pH 7.4, further improved protein purity levels. Using Escherichia coli cell lysates expressing 90 recombinant Streptococcus pneumoniae proteins, 73 proteins were successfully immobilized, and 66 proteins were in situ purified with greater than 90% purity. We identified several antigens among the in situ-purified proteins via assays with anti-S. pneumoniae rabbit antibodies and a human patient antiserum, as a demonstration project of large scale microarray-based immunoproteomics profiling. The methodology is compatible with higher throughput formats of in vivo protein expression, eliminates the need for resin-based purification and circumvents

  7. Electrostatic readout of DNA microarrays with charged microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Clack, Nathan G. [Univ. of California, Berkeley, CA (United States). Biophysics Graduate Group; Salaita, Khalid [Univ. of California, Berkeley, CA (United States). Department of Chemistry; Groves, Jay T. [Univ. of California, Berkeley, CA (United States). Biophysics Graduate Group and Department of Chemistry

    2008-06-29

    DNA microarrays are used for gene-expression profiling, single-nucleotide polymorphism detection and disease diagnosis. A persistent challenge in this area is the lack of microarray screening technology suitable for integration into routine clinical care. In this paper, we describe a method for sensitive and label-free electrostatic readout of DNA or RNA hybridization on microarrays. The electrostatic properties of the microarray are measured from the position and motion of charged microspheres randomly dispersed over the surface. We demonstrate nondestructive electrostatic imaging with 10-μm lateral resolution over centimeter-length scales, which is four-orders of magnitude larger than that achievable with conventional scanning electrostatic force microscopy. Changes in surface charge density as a result of specific hybridization can be detected and quantified with 50-pM sensitivity, single base-pair mismatch selectivity and in the presence of complex background. Lastly, because the naked eye is sufficient to read out hybridization, this approach may facilitate broad application of multiplexed assays.

  8. Tissue microarray profiling in human heart failure.

    Science.gov (United States)

    Lal, Sean; Nguyen, Lisa; Tezone, Rhenan; Ponten, Fredrik; Odeberg, Jacob; Li, Amy; Dos Remedios, Cristobal

    2016-09-01

    Tissue MicroArrays (TMAs) are a versatile tool for high-throughput protein screening, allowing qualitative analysis of a large number of samples on a single slide. We have developed a customizable TMA system that uniquely utilizes cryopreserved human cardiac samples from both heart failure and donor patients to produce formalin-fixed paraffin-embedded sections. Confirmatory upstream or downstream molecular studies can then be performed on the same (biobanked) cryopreserved tissue. In a pilot study, we applied our TMAs to screen for the expression of four-and-a-half LIM-domain 2 (FHL2), a member of the four-and-a-half LIM family. This protein has been implicated in the pathogenesis of heart failure in a variety of animal models. While FHL2 is abundant in the heart, not much is known about its expression in human heart failure. For this purpose, we generated an affinity-purified rabbit polyclonal anti-human FHL2 antibody. Our TMAs allowed high-throughput profiling of FHL2 protein using qualitative and semiquantitative immunohistochemistry that proved complementary to Western blot analysis. We demonstrated a significant relative reduction in FHL2 protein expression across different forms of human heart failure. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Direct calibration of PICKY-designed microarrays

    Directory of Open Access Journals (Sweden)

    Ronald Pamela C

    2009-10-01

    Full Text Available Abstract Background Few microarrays have been quantitatively calibrated to identify optimal hybridization conditions because it is difficult to precisely determine the hybridization characteristics of a microarray using biologically variable cDNA samples. Results Using synthesized samples with known concentrations of specific oligonucleotides, a series of microarray experiments was conducted to evaluate microarrays designed by PICKY, an oligo microarray design software tool, and to test a direct microarray calibration method based on the PICKY-predicted, thermodynamically closest nontarget information. The complete set of microarray experiment results is archived in the GEO database with series accession number GSE14717. Additional data files and Perl programs described in this paper can be obtained from the website http://www.complex.iastate.edu under the PICKY Download area. Conclusion PICKY-designed microarray probes are highly reliable over a wide range of hybridization temperatures and sample concentrations. The microarray calibration method reported here allows researchers to experimentally optimize their hybridization conditions. Because this method is straightforward, uses existing microarrays and relatively inexpensive synthesized samples, it can be used by any lab that uses microarrays designed by PICKY. In addition, other microarrays can be reanalyzed by PICKY to obtain the thermodynamically closest nontarget information for calibration.

  10. Biclustering of time series microarray data.

    Science.gov (United States)

    Meng, Jia; Huang, Yufei

    2012-01-01

    Clustering is a popular data exploration technique widely used in microarray data analysis. In this chapter, we review ideas and algorithms of bicluster and its applications in time series microarray analysis. We introduce first the concept and importance of biclustering and its different variations. We then focus our discussion on the popular iterative signature algorithm (ISA) for searching biclusters in microarray dataset. Next, we discuss in detail the enrichment constraint time-dependent ISA (ECTDISA) for identifying biologically meaningful temporal transcription modules from time series microarray dataset. In the end, we provide an example of ECTDISA application to time series microarray data of Kaposi's Sarcoma-associated Herpesvirus (KSHV) infection.

  11. The Current Status of DNA Microarrays

    Science.gov (United States)

    Shi, Leming; Perkins, Roger G.; Tong, Weida

    DNA microarray technology that allows simultaneous assay of thousands of genes in a single experiment has steadily advanced to become a mainstream method used in research, and has reached a stage that envisions its use in medical applications and personalized medicine. Many different strategies have been developed for manufacturing DNA microarrays. In this chapter, we discuss the manufacturing characteristics of seven microarray platforms that were used in a recently completed large study by the MicroArray Quality Control (MAQC) consortium, which evaluated the concordance of results across these platforms. The platforms can be grouped into three categories: (1) in situ synthesis of oligonucleotide probes on microarrays (Affymetrix GeneChip® arrays based on photolithography synthesis and Agilent's arrays based on inkjet synthesis); (2) spotting of presynthesized oligonucleotide probes on microarrays (GE Healthcare's CodeLink system, Applied Biosystems' Genome Survey Microarrays, and the custom microarrays printed with Operon's oligonucleotide set); and (3) deposition of presynthesized oligonucleotide probes on bead-based microarrays (Illumina's BeadChip microarrays). We conclude this chapter with our views on the challenges and opportunities toward acceptance of DNA microarray data in clinical and regulatory settings.

  12. Microarray Inspector: tissue cross contamination detection tool for microarray data.

    Science.gov (United States)

    Stępniak, Piotr; Maycock, Matthew; Wojdan, Konrad; Markowska, Monika; Perun, Serhiy; Srivastava, Aashish; Wyrwicz, Lucjan S; Świrski, Konrad

    2013-01-01

    Microarray technology changed the landscape of contemporary life sciences by providing vast amounts of expression data. Researchers are building up repositories of experiment results with various conditions and samples which serve the scientific community as a precious resource. Ensuring that the sample is of high quality is of utmost importance to this effort. The task is complicated by the fact that in many cases datasets lack information concerning pre-experimental quality assessment. Transcription profiling of tissue samples may be invalidated by an error caused by heterogeneity of the material. The risk of tissue cross contamination is especially high in oncological studies, where it is often difficult to extract the sample. Therefore, there is a need of developing a method detecting tissue contamination in a post-experimental phase. We propose Microarray Inspector: customizable, user-friendly software that enables easy detection of samples containing mixed tissue types. The advantage of the tool is that it uses raw expression data files and analyses each array independently. In addition, the system allows the user to adjust the criteria of the analysis to conform to individual needs and research requirements. The final output of the program contains comfortable to read reports about tissue contamination assessment with detailed information about the test parameters and results. Microarray Inspector provides a list of contaminant biomarkers needed in the analysis of adipose tissue contamination. Using real data (datasets from public repositories) and our tool, we confirmed high specificity of the software in detecting contamination. The results indicated the presence of adipose tissue admixture in a range from approximately 4% to 13% in several tested surgical samples.

  13. Surface characterization of carbohydrate microarrays.

    Science.gov (United States)

    Scurr, David J; Horlacher, Tim; Oberli, Matthias A; Werz, Daniel B; Kroeck, Lenz; Bufali, Simone; Seeberger, Peter H; Shard, Alexander G; Alexander, Morgan R

    2010-11-16

    Carbohydrate microarrays are essential tools to determine the biological function of glycans. Here, we analyze a glycan array by time-of-flight secondary ion mass spectrometry (ToF-SIMS) to gain a better understanding of the physicochemical properties of the individual spots and to improve carbohydrate microarray quality. The carbohydrate microarray is prepared by piezo printing of thiol-terminated sugars onto a maleimide functionalized glass slide. The hyperspectral ToF-SIMS imaging data are analyzed by multivariate curve resolution (MCR) to discern secondary ions from regions of the array containing saccharide, linker, salts from the printing buffer, and the background linker chemistry. Analysis of secondary ions from the linker common to all of the sugar molecules employed reveals a relatively uniform distribution of the sugars within the spots formed from solutions with saccharide concentration of 0.4 mM and less, whereas a doughnut shape is often formed at higher-concentration solutions. A detailed analysis of individual spots reveals that in the larger spots the phosphate buffered saline (PBS) salts are heterogeneously distributed, apparently resulting in saccharide concentrated at the rim of the spots. A model of spot formation from the evaporating sessile drop is proposed to explain these observations. Saccharide spot diameters increase with saccharide concentration due to a reduction in surface tension of the saccharide solution compared to PBS. The multivariate analytical partial least squares (PLS) technique identifies ions from the sugars that in the complex ToF-SIMS spectra correlate with the binding of galectin proteins.

  14. Biocompatible Hydrogels for Microarray Cell Printing and Encapsulation

    Directory of Open Access Journals (Sweden)

    Akshata Datar

    2015-10-01

    Full Text Available Conventional drug screening processes are a time-consuming and expensive endeavor, but highly rewarding when they are successful. To identify promising lead compounds, millions of compounds are traditionally screened against therapeutic targets on human cells grown on the surface of 96-wells. These two-dimensional (2D cell monolayers are physiologically irrelevant, thus, often providing false-positive or false-negative results, when compared to cells grown in three-dimensional (3D structures such as hydrogel droplets. However, 3D cell culture systems are not easily amenable to high-throughput screening (HTS, thus inherently low throughput, and requiring relatively large volume for cell-based assays. In addition, it is difficult to control cellular microenvironments and hard to obtain reliable cell images due to focus position and transparency issues. To overcome these problems, miniaturized 3D cell cultures in hydrogels were developed via cell printing techniques where cell spots in hydrogels can be arrayed on the surface of glass slides or plastic chips by microarray spotters and cultured in growth media to form cells encapsulated 3D droplets for various cell-based assays. These approaches can dramatically reduce assay volume, provide accurate control over cellular microenvironments, and allow us to obtain clear 3D cell images for high-content imaging (HCI. In this review, several hydrogels that are compatible to microarray printing robots are discussed for miniaturized 3D cell cultures.

  15. Evaluation of a commercial microarray as a confirmation test for the presence of extended-spectrum beta-lactamases in isolates from the routine clinical setting.

    NARCIS (Netherlands)

    Platteel, T.N.; Stuart, J.W.; Voets, G.M.; Scharringa, J.; Sande, N. van de; Fluit, A.C.; Leverstein-van Hall, M.A.; Sturm, P.D.J.

    2011-01-01

    Since the diagnostic characteristics of the Check-KPC ESBL microarray as a confirmation test on isolates obtained in a routine clinical setting have not been determined, we evaluated the microarray in a random selection of 346 clinical isolates with a positive ESBL screen test (MIC >1 mg/L for

  16. Integrated Amplification Microarrays for Infectious Disease Diagnostics

    Directory of Open Access Journals (Sweden)

    Darrell P. Chandler

    2012-11-01

    Full Text Available This overview describes microarray-based tests that combine solution-phase amplification chemistry and microarray hybridization within a single microfluidic chamber. The integrated biochemical approach improves microarray workflow for diagnostic applications by reducing the number of steps and minimizing the potential for sample or amplicon cross-contamination. Examples described herein illustrate a basic, integrated approach for DNA and RNA genomes, and a simple consumable architecture for incorporating wash steps while retaining an entirely closed system. It is anticipated that integrated microarray biochemistry will provide an opportunity to significantly reduce the complexity and cost of microarray consumables, equipment, and workflow, which in turn will enable a broader spectrum of users to exploit the intrinsic multiplexing power of microarrays for infectious disease diagnostics.

  17. Spotting effect in microarray experiments

    Directory of Open Access Journals (Sweden)

    Mary-Huard Tristan

    2004-05-01

    Full Text Available Abstract Background Microarray data must be normalized because they suffer from multiple biases. We have identified a source of spatial experimental variability that significantly affects data obtained with Cy3/Cy5 spotted glass arrays. It yields a periodic pattern altering both signal (Cy3/Cy5 ratio and intensity across the array. Results Using the variogram, a geostatistical tool, we characterized the observed variability, called here the spotting effect because it most probably arises during steps in the array printing procedure. Conclusions The spotting effect is not appropriately corrected by current normalization methods, even by those addressing spatial variability. Importantly, the spotting effect may alter differential and clustering analysis.

  18. Fluidic and air-stable supported lipid bilayer and cell-mimicking microarrays.

    Science.gov (United States)

    Deng, Yang; Wang, Yini; Holtz, Bryan; Li, Jingyi; Traaseth, Nathan; Veglia, Gianluigi; Stottrup, Benjamin J; Elde, Robert; Pei, Duanqing; Guo, Athena; Zhu, X-Y

    2008-05-14

    As drug delivery, therapy, and medical imaging are becoming increasingly cell-specific, there is a critical need for high fidelity and high-throughput screening methods for cell surface interactions. Cell membrane-mimicking surfaces, i.e., supported lipid bilayers (SLBs), are currently not sufficiently robust to meet this need. Here we describe a method of forming fluidic and air-stable SLBs through tethered and dispersed cholesterol groups incorporated into the bottom leaflet. Achieving air stability allows us to easily fabricate SLB microarrays from direct robotic spotting of vesicle solutions. We demonstrate their application as cell membrane-mimicking microarrays by reconstituting peripheral as well as integral membrane components that can be recognized by their respective targets. These demonstrations establish the viability of the fluidic and air-stable SLB platform for generating content microarrays in high throughput studies, e.g., the screening of drugs and nanomedicine targeting cell surface receptors.

  19. NAPPA as a Real New Method for Protein Microarray Generation.

    Science.gov (United States)

    Díez, Paula; González-González, María; Lourido, Lucía; Dégano, Rosa M; Ibarrola, Nieves; Casado-Vela, Juan; LaBaer, Joshua; Fuentes, Manuel

    2015-04-24

    Nucleic Acid Programmable Protein Arrays (NAPPA) have emerged as a powerful and innovative technology for the screening of biomarkers and the study of protein-protein interactions, among others possible applications. The principal advantages are the high specificity and sensitivity that this platform offers. Moreover, compared to conventional protein microarrays, NAPPA technology avoids the necessity of protein purification, which is expensive and time-consuming, by substituting expression in situ with an in vitro transcription/translation kit. In summary, NAPPA arrays have been broadly employed in different studies improving knowledge about diseases and responses to treatments. Here, we review the principal advances and applications performed using this platform during the last years.

  20. High throughput production of mouse monoclonal antibodies using antigen microarrays

    DEFF Research Database (Denmark)

    De Masi, Federico; Chiarella, P.; Wilhelm, H.;

    2005-01-01

    Recent advances in proteomics research underscore the increasing need for high-affinity monoclonal antibodies, which are still generated with lengthy, low-throughput antibody production techniques. Here we present a semi-automated, high-throughput method of hybridoma generation and identification....... Monoclonal antibodies were raised to different targets in single batch runs of 6-10 wk using multiplexed immunisations, automated fusion and cell-culture, and a novel antigen-coated microarray-screening assay. In a large-scale experiment, where eight mice were immunized with ten antigens each, we generated...

  1. Microarray Expression Profiles of 20.000 Genes across 23 Healthy Porcine Tissues

    DEFF Research Database (Denmark)

    Hornshøj, Henrik; Conley, Lene Nagstrup; Hedegaard, Jakob

    2007-01-01

    Gene expression microarrays have been intensively applied to screen for genes involved in specific biological processes of interest such as diseases or responses to environmental stimuli. For mammalian species, cataloging of the global gene expression profiles in large tissue collections under...

  2. DNA microarray technique for detecting food-borne pathogens

    Directory of Open Access Journals (Sweden)

    Xing GAO

    2012-08-01

    Full Text Available Objective To study the application of DNA microarray technique for screening and identifying multiple food-borne pathogens. Methods The oligonucleotide probes were designed by Clustal X and Oligo 6.0 at the conserved regions of specific genes of multiple food-borne pathogens, and then were validated by bioinformatic analyses. The 5' end of each probe was modified by amino-group and 10 Poly-T, and the optimized probes were synthesized and spotted on aldehyde-coated slides. The bacteria DNA template incubated with Klenow enzyme was amplified by arbitrarily primed PCR, and PCR products incorporated into Aminoallyl-dUTP were coupled with fluorescent dye. After hybridization of the purified PCR products with DNA microarray, the hybridization image and fluorescence intensity analysis was acquired by ScanArray and GenePix Pro 5.1 software. A series of detection conditions such as arbitrarily primed PCR and microarray hybridization were optimized. The specificity of this approach was evaluated by 16 different bacteria DNA, and the sensitivity and reproducibility were verified by 4 food-borne pathogens DNA. The samples of multiple bacteria DNA and simulated water samples of Shigella dysenteriae were detected. Results Nine different food-borne bacteria were successfully discriminated under the same condition. The sensitivity of genomic DNA was 102 -103pg/ μl, and the coefficient of variation (CV of the reproducibility of assay was less than 15%. The corresponding specific hybridization maps of the multiple bacteria DNA samples were obtained, and the detection limit of simulated water sample of Shigella dysenteriae was 3.54×105cfu/ml. Conclusions The DNA microarray detection system based on arbitrarily primed PCR can be employed for effective detection of multiple food-borne pathogens, and this assay may offer a new method for high-throughput platform for detecting bacteria.

  3. Pineal function: impact of microarray analysis

    DEFF Research Database (Denmark)

    Klein, David C; Bailey, Michael J; Carter, David A

    2009-01-01

    Microarray analysis has provided a new understanding of pineal function by identifying genes that are highly expressed in this tissue relative to other tissues and also by identifying over 600 genes that are expressed on a 24-h schedule. This effort has highlighted surprising similarity...... foundation that microarray analysis has provided will broadly support future research on pineal function....

  4. The EADGENE Microarray Data Analysis Workshop

    NARCIS (Netherlands)

    Koning, de D.J.; Jaffrezic, F.; Lund, M.S.; Watson, M.; Channing, C.; Hulsegge, B.; Pool, M.H.; Buitenhuis, B.; Hedegaard, J.; Hornshoj, H.; Sorensen, P.; Marot, G.; Delmas, C.; Lê Cao, K.A.; San Cristobal, M.; Baron, M.D.; Malinverni, R.; Stella, A.; Brunner, R.M.; Seyfert, H.M.; Jensen, K.; Mouzaki, D.; Waddington, D.; Jiménez-Marín, A.; Perez-Alegre, M.; Perez-Reinado, E.; Closset, R.; Detilleux, J.C.; Dovc, P.; Lavric, M.; Nie, H.; Janss, L.

    2007-01-01

    Microarray analyses have become an important tool in animal genomics. While their use is becoming widespread, there is still a lot of ongoing research regarding the analysis of microarray data. In the context of a European Network of Excellence, 31 researchers representing 14 research groups from 10

  5. Assessing the Detection Capacity of Microarrays as Bio/Nanosensing Platforms

    Directory of Open Access Journals (Sweden)

    Ju Seok Lee

    2013-01-01

    Full Text Available Microarray is one of the most powerful detection systems with multiplexing and high throughput capability. It has significant potential as a versatile biosensing platform for environmental monitoring, pathogen detection, medical therapeutics, and drug screening to name a few. To date, however, microarray applications are still limited to preliminary screening of genome-scale transcription profiling or gene ontology analysis. Expanding the utility of microarrays as a detection tool for various biological and biomedical applications requires information about performance such as the limits of detection and quantification, which are considered as an essential information to decide the detection sensitivity of sensing devices. Here we present a calibration design that integrates detection limit theory and linear dynamic range to obtain a performance index of microarray detection platform using oligonucleotide arrays as a model system. Two different types of limits of detection and quantification are proposed by the prediction or tolerance interval for two common cyanine fluorescence dyes, Cy3 and Cy5. Besides oligonucleotide, the proposed method can be generalized to other microarray formats with various biomolecules such as complementary DNA, protein, peptide, carbohydrate, tissue, or other small biomolecules. Also, it can be easily applied to other fluorescence dyes for further dye chemistry improvement.

  6. SNP Microarray in FISH Negative Clinically Suspected 22q11.2 Microdeletion Syndrome

    Directory of Open Access Journals (Sweden)

    Ashutosh Halder

    2016-01-01

    Full Text Available The present study evaluated the role of SNP microarray in 101 cases of clinically suspected FISH negative (noninformative/normal 22q11.2 microdeletion syndrome. SNP microarray was carried out using 300 K HumanCytoSNP-12 BeadChip array or CytoScan 750 K array. SNP microarray identified 8 cases of 22q11.2 microdeletions and/or microduplications in addition to cases of chromosomal abnormalities and other pathogenic/likely pathogenic CNVs. Clinically suspected specific deletions (22q11.2 were detectable in approximately 8% of cases by SNP microarray, mostly from FISH noninformative cases. This study also identified several LOH/AOH loci with known and well-defined UPD (uniparental disomy disorders. In conclusion, this study suggests more strict clinical criteria for FISH analysis. However, if clinical criteria are few or doubtful, in particular newborn/neonate in intensive care, SNP microarray should be the first screening test to be ordered. FISH is ideal test for detecting mosaicism, screening family members, and prenatal diagnosis in proven families.

  7. Use of non-amplified RNA samples for microarray analysis of gene expression.

    Directory of Open Access Journals (Sweden)

    Hiroko Sudo

    Full Text Available Demand for high quality gene expression data has driven the development of revolutionary microarray technologies. The quality of the data is affected by the performance of the microarray platform as well as how the nucleic acid targets are prepared. The most common method for target nucleic acid preparation includes in vitro transcription amplification of the sample RNA. Although this method requires a small amount of starting material and is reported to have high reproducibility, there are also technical disadvantages such as amplification bias and the long, laborious protocol. Using RNA derived from human brain, breast and colon, we demonstrate that a non-amplification method, which was previously shown to be inferior, could be transformed to a highly quantitative method with a dynamic range of five orders of magnitude. Furthermore, the correlation coefficient calculated by comparing microarray assays using non-amplified samples with qRT-PCR assays was approximately 0.9, a value much higher than when samples were prepared using amplification methods. Our results were also compared with data from various microarray platforms studied in the MicroArray Quality Control (MAQC project. In combination with micro-columnar 3D-Gene™ microarray, this non-amplification method is applicable to a variety of genetic analyses, including biomarker screening and diagnostic tests for cancer.

  8. A versatile protein microarray platform enabling antibody profiling against denatured proteins.

    Science.gov (United States)

    Wang, Jie; Barker, Kristi; Steel, Jason; Park, Jin; Saul, Justin; Festa, Fernanda; Wallstrom, Garrick; Yu, Xiaobo; Bian, Xiaofang; Anderson, Karen S; Figueroa, Jonine D; LaBaer, Joshua; Qiu, Ji

    2013-06-01

    We aim to develop a protein microarray platform capable of presenting both natural and denatured forms of proteins for antibody biomarker discovery. We will further optimize plasma screening protocols to improve detection. We developed a new covalent capture protein microarray chemistry using HaloTag fusion proteins and ligand. To enhance protein yield, we used HeLa cell lysate as an in vitro transcription translation (IVTT) system. Escherichia coli lysates were added to the plasma blocking buffer to reduce nonspecific background. These protein microarrays were probed with plasma samples and autoantibody responses were quantified and compared with or without denaturing buffer treatment. We demonstrated that protein microarrays using the covalent attachment chemistry endured denaturing conditions. Blocking with E. coli lysates greatly reduced the background signals and expression with IVTT based on HeLa cell lysates significantly improved the antibody signals on protein microarrays probed with plasma samples. Plasma samples probed on denatured protein arrays produced autoantibody profiles distinct from those probed on natively displayed proteins. This versatile protein microarray platform allows the display of both natural and denatured proteins, offers a new dimension to search for disease-specific antibodies, broadens the repertoire of potential biomarkers, and will potentially yield clinical diagnostics with greater performance. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. In control: systematic assessment of microarray performance.

    Science.gov (United States)

    van Bakel, Harm; Holstege, Frank C P

    2004-10-01

    Expression profiling using DNA microarrays is a powerful technique that is widely used in the life sciences. How reliable are microarray-derived measurements? The assessment of performance is challenging because of the complicated nature of microarray experiments and the many different technology platforms. There is a mounting call for standards to be introduced, and this review addresses some of the issues that are involved. Two important characteristics of performance are accuracy and precision. The assessment of these factors can be either for the purpose of technology optimization or for the evaluation of individual microarray hybridizations. Microarray performance has been evaluated by at least four approaches in the past. Here, we argue that external RNA controls offer the most versatile system for determining performance and describe how such standards could be implemented. Other uses of external controls are discussed, along with the importance of probe sequence availability and the quantification of labelled material.

  10. The EADGENE Microarray Data Analysis Workshop

    DEFF Research Database (Denmark)

    de Koning, Dirk-Jan; Jaffrézic, Florence; Lund, Mogens Sandø

    2007-01-01

    Microarray analyses have become an important tool in animal genomics. While their use is becoming widespread, there is still a lot of ongoing research regarding the analysis of microarray data. In the context of a European Network of Excellence, 31 researchers representing 14 research groups from...... 10 countries performed and discussed the statistical analyses of real and simulated 2-colour microarray data that were distributed among participants. The real data consisted of 48 microarrays from a disease challenge experiment in dairy cattle, while the simulated data consisted of 10 microarrays...... statistical weights, to omitting a large number of spots or omitting entire slides. Surprisingly, these very different approaches gave quite similar results when applied to the simulated data, although not all participating groups analysed both real and simulated data. The workshop was very successful...

  11. Chaotic mixer improves microarray hybridization.

    Science.gov (United States)

    McQuain, Mark K; Seale, Kevin; Peek, Joel; Fisher, Timothy S; Levy, Shawn; Stremler, Mark A; Haselton, Frederick R

    2004-02-15

    Hybridization is an important aspect of microarray experimental design which influences array signal levels and the repeatability of data within an array and across different arrays. Current methods typically require 24h and use target inefficiently. In these studies, we compare hybridization signals obtained in conventional static hybridization, which depends on diffusional target delivery, with signals obtained in a dynamic hybridization chamber, which employs a fluid mixer based on chaotic advection theory to deliver targets across a conventional glass slide array. Microarrays were printed with a pattern of 102 identical probe spots containing a 65-mer oligonucleotide capture probe. Hybridization of a 725-bp fluorescently labeled target was used to measure average target hybridization levels, local signal-to-noise ratios, and array hybridization uniformity. Dynamic hybridization for 1h with 1 or 10ng of target DNA increased hybridization signal intensities approximately threefold over a 24-h static hybridization. Similarly, a 10- or 60-min dynamic hybridization of 10ng of target DNA increased hybridization signal intensities fourfold over a 24h static hybridization. In time course studies, static hybridization reached a maximum within 8 to 12h using either 1 or 10ng of target. In time course studies using the dynamic hybridization chamber, hybridization using 1ng of target increased to a maximum at 4h and that using 10ng of target did not vary over the time points tested. In comparison to static hybridization, dynamic hybridization reduced the signal-to-noise ratios threefold and reduced spot-to-spot variation twofold. Therefore, we conclude that dynamic hybridization based on a chaotic mixer design improves both the speed of hybridization and the maximum level of hybridization while increasing signal-to-noise ratios and reducing spot-to-spot variation.

  12. Development of a genotyping microarray for Usher syndrome

    Science.gov (United States)

    Cremers, Frans P M; Kimberling, William J; Külm, Maigi; de Brouwer, Arjan P; van Wijk, Erwin; te Brinke, Heleen; Cremers, Cor W R J; Hoefsloot, Lies H; Banfi, Sandro; Simonelli, Francesca; Fleischhauer, Johannes C; Berger, Wolfgang; Kelley, Phil M; Haralambous, Elene; Bitner‐Glindzicz, Maria; Webster, Andrew R; Saihan, Zubin; De Baere, Elfride; Leroy, Bart P; Silvestri, Giuliana; McKay, Gareth J; Koenekoop, Robert K; Millan, Jose M; Rosenberg, Thomas; Joensuu, Tarja; Sankila, Eeva‐Marja; Weil, Dominique; Weston, Mike D; Wissinger, Bernd; Kremer, Hannie

    2007-01-01

    Background Usher syndrome, a combination of retinitis pigmentosa (RP) and sensorineural hearing loss with or without vestibular dysfunction, displays a high degree of clinical and genetic heterogeneity. Three clinical subtypes can be distinguished, based on the age of onset and severity of the hearing impairment, and the presence or absence of vestibular abnormalities. Thus far, eight genes have been implicated in the syndrome, together comprising 347 protein‐coding exons. Methods: To improve DNA diagnostics for patients with Usher syndrome, we developed a genotyping microarray based on the arrayed primer extension (APEX) method. Allele‐specific oligonucleotides corresponding to all 298 Usher syndrome‐associated sequence variants known to date, 76 of which are novel, were arrayed. Results Approximately half of these variants were validated using original patient DNAs, which yielded an accuracy of >98%. The efficiency of the Usher genotyping microarray was tested using DNAs from 370 unrelated European and American patients with Usher syndrome. Sequence variants were identified in 64/140 (46%) patients with Usher syndrome type I, 45/189 (24%) patients with Usher syndrome type II, 6/21 (29%) patients with Usher syndrome type III and 6/20 (30%) patients with atypical Usher syndrome. The chip also identified two novel sequence variants, c.400C>T (p.R134X) in PCDH15 and c.1606T>C (p.C536S) in USH2A. Conclusion The Usher genotyping microarray is a versatile and affordable screening tool for Usher syndrome. Its efficiency will improve with the addition of novel sequence variants with minimal extra costs, making it a very useful first‐pass screening tool. PMID:16963483

  13. Microelectroporation device for genomic screening

    Energy Technology Data Exchange (ETDEWEB)

    Perroud, Thomas D.; Renzi, Ronald F.; Negrete, Oscar; Claudnic, Mark R.

    2014-09-09

    We have developed an microelectroporation device that combines microarrays of oligonucleotides, microfluidic channels, and electroporation for cell transfection and high-throughput screening applications (e.g. RNA interference screens). Microarrays allow the deposition of thousands of different oligonucleotides in microscopic spots. Microfluidic channels and microwells enable efficient loading of cells into the device and prevent cross-contamination between different oligonucleotides spots. Electroporation allows optimal transfection of nucleic acids into cells (especially hard-to-transfect cells such as primary cells) by minimizing cell death while maximizing transfection efficiency. This invention has the advantage of a higher throughput and lower cost, while preventing cross-contamination compared to conventional screening technologies. Moreover, this device does not require bulky robotic liquid handling equipment and is inherently safer given that it is a closed system.

  14. Single-Round Patterned DNA Library Microarray Aptamer Lead Identification

    Directory of Open Access Journals (Sweden)

    Jennifer A. Martin

    2015-01-01

    Full Text Available A method for identifying an aptamer in a single round was developed using custom DNA microarrays containing computationally derived patterned libraries incorporating no information on the sequences of previously reported thrombin binding aptamers. The DNA library was specifically designed to increase the probability of binding by enhancing structural complexity in a sequence-space confined environment, much like generating lead compounds in a combinatorial drug screening library. The sequence demonstrating the highest fluorescence intensity upon target addition was confirmed to bind the target molecule thrombin with specificity by surface plasmon resonance, and a novel imino proton NMR/2D NOESY combination was used to screen the structure for G-quartet formation. We propose that the lack of G-quartet structure in microarray-derived aptamers may highlight differences in binding mechanisms between surface-immobilized and solution based strategies. This proof-of-principle study highlights the use of a computational driven methodology to create a DNA library rather than a SELEX based approach. This work is beneficial to the biosensor field where aptamers selected by solution based evolution have proven challenging to retain binding function when immobilized on a surface.

  15. MARS: Microarray analysis, retrieval, and storage system

    Directory of Open Access Journals (Sweden)

    Scheideler Marcel

    2005-04-01

    Full Text Available Abstract Background Microarray analysis has become a widely used technique for the study of gene-expression patterns on a genomic scale. As more and more laboratories are adopting microarray technology, there is a need for powerful and easy to use microarray databases facilitating array fabrication, labeling, hybridization, and data analysis. The wealth of data generated by this high throughput approach renders adequate database and analysis tools crucial for the pursuit of insights into the transcriptomic behavior of cells. Results MARS (Microarray Analysis and Retrieval System provides a comprehensive MIAME supportive suite for storing, retrieving, and analyzing multi color microarray data. The system comprises a laboratory information management system (LIMS, a quality control management, as well as a sophisticated user management system. MARS is fully integrated into an analytical pipeline of microarray image analysis, normalization, gene expression clustering, and mapping of gene expression data onto biological pathways. The incorporation of ontologies and the use of MAGE-ML enables an export of studies stored in MARS to public repositories and other databases accepting these documents. Conclusion We have developed an integrated system tailored to serve the specific needs of microarray based research projects using a unique fusion of Web based and standalone applications connected to the latest J2EE application server technology. The presented system is freely available for academic and non-profit institutions. More information can be found at http://genome.tugraz.at.

  16. Review: DNA microarray technology and drug development

    Directory of Open Access Journals (Sweden)

    Sana Khan

    2010-01-01

    Full Text Available On the contrary to slow and non specific traditional drug discovery methods, DNA microarray technology could accelerate the identification of potential drugs for treating diseases like cancer, AIDS and provide fruitful results in the drug discovery. The technique provides efficient automation and maximum flexibility to the researchers and can test thousand compounds at a time. Scientists find DNA microarray useful in disease diagnosis, monitoring desired and adverse outcomes of therapeutic interventions, as well as, in the selection, assessment and quality con-trol of the potential drugs. In the current scenario, where new pathogens are expected every year, DNA microarray promises as an efficient technology to detect new organisms in a short time. Classification of carcinomas at the molecular level and prediction of how various types of tumor respond to different therapeutic agents can be made possible with the use of microarray analysis. Also, microarray technique can prove instrumental in personalized medicines development by providing microarray data of a patient which could be used for identifying diseases, treatment specific to individual and trailing disease prognosis. Microarray analysis could be beneficial in the area of molecular medicines for analysis of genetic variations and functions of genes in normal individuals and diseased conditions. The technique can give satisfactory results in single nucleotide polymorphism (SNP analysis and pharmacogenomics studies. The challenges that arise with the technology are high degree of variability with data obtained, frequent up gradation of methods and machines and lack of trained manpower. Despite this, DNA micro-array promises to be the next generation sequencer which could explain how organisms evolve and adapt looking at the whole genome. In a nutshell, Microarray technology makes it possible for molecular biologists to analyze simultaneously thousands of DNA samples and monitor their

  17. Diagnostic and analytical applications of protein microarrays

    DEFF Research Database (Denmark)

    Dufva, Hans Martin; Christensen, C.B.V.

    2005-01-01

    years. A genome-scale protein microarray has been demonstrated for identifying protein-protein interactions as well as for rapid identification of protein binding to a particular drug. Furthermore, protein microarrays have been shown as an efficient tool in cancer profiling, detection of bacteria...... and toxins, identification of allergen reactivity and autoantibodies. They have also demonstrated the ability to measure the absolute concentration of small molecules. Besides their capacity for parallel diagnostics, microarrays can be more sensitive than traditional methods such as enzyme...... and be amenable to automation or integrated into easy-to-use systems, such as micrototal analysis systems or point-of-care devices....

  18. Microarrays--analysis of signaling pathways.

    Science.gov (United States)

    Ramachandran, Anassuya; Black, Michael A; Shelling, Andrew N; Love, Donald R

    2008-01-01

    Microarrays provide a powerful means of analyzing the expression level of multiple transcripts in two sample populations. In this study, we have used microarray technology to identify genes that are differentially regulated in response to activin-treated ovarian cancer cells. We find a number of biologically relevant genes that are involved in regulating activin signaling and genes potentially contributing to activin-mediated growth arrest appear to be differentially regulated. Thus, microarrays are an important tool for dissecting gene expression changes in normal physiological processes and disease.

  19. DNA Microarrays in Herbal Drug Research

    Directory of Open Access Journals (Sweden)

    Preeti Chavan

    2006-01-01

    Full Text Available Natural products are gaining increased applications in drug discovery and development. Being chemically diverse they are able to modulate several targets simultaneously in a complex system. Analysis of gene expression becomes necessary for better understanding of molecular mechanisms. Conventional strategies for expression profiling are optimized for single gene analysis. DNA microarrays serve as suitable high throughput tool for simultaneous analysis of multiple genes. Major practical applicability of DNA microarrays remains in DNA mutation and polymorphism analysis. This review highlights applications of DNA microarrays in pharmacodynamics, pharmacogenomics, toxicogenomics and quality control of herbal drugs and extracts.

  20. Identification of candidate genes in osteoporosis by integrated microarray analysis

    Science.gov (United States)

    Li, J. J.; Wang, B. Q.; Yang, Y.; Li, D.

    2016-01-01

    Objectives In order to screen the altered gene expression profile in peripheral blood mononuclear cells of patients with osteoporosis, we performed an integrated analysis of the online microarray studies of osteoporosis. Methods We searched the Gene Expression Omnibus (GEO) database for microarray studies of peripheral blood mononuclear cells in patients with osteoporosis. Subsequently, we integrated gene expression data sets from multiple microarray studies to obtain differentially expressed genes (DEGs) between patients with osteoporosis and normal controls. Gene function analysis was performed to uncover the functions of identified DEGs. Results A total of three microarray studies were selected for integrated analysis. In all, 1125 genes were found to be significantly differentially expressed between osteoporosis patients and normal controls, with 373 upregulated and 752 downregulated genes. Positive regulation of the cellular amino metabolic process (gene ontology (GO): 0033240, false discovery rate (FDR) = 1.00E + 00) was significantly enriched under the GO category for biological processes, while for molecular functions, flavin adenine dinucleotide binding (GO: 0050660, FDR = 3.66E-01) and androgen receptor binding (GO: 0050681, FDR = 6.35E-01) were significantly enriched. DEGs were enriched in many osteoporosis-related signalling pathways, including those of mitogen-activated protein kinase (MAPK) and calcium. Protein-protein interaction (PPI) network analysis showed that the significant hub proteins contained ubiquitin specific peptidase 9, X-linked (Degree = 99), ubiquitin specific peptidase 19 (Degree = 57) and ubiquitin conjugating enzyme E2 B (Degree = 57). Conclusion Analysis of gene function of identified differentially expressed genes may expand our understanding of fundamental mechanisms leading to osteoporosis. Moreover, significantly enriched pathways, such as MAPK and calcium, may involve in osteoporosis through osteoblastic differentiation and

  1. Improved statistical analysis of budding yeast TAG microarrays revealed by defined spike-in pools.

    Science.gov (United States)

    Peyser, Brian D; Irizarry, Rafael A; Tiffany, Carol W; Chen, Ou; Yuan, Daniel S; Boeke, Jef D; Spencer, Forrest A

    2005-09-15

    Saccharomyces cerevisiae knockout collection TAG microarrays are an emergent platform for rapid, genome-wide functional characterization of yeast genes. TAG arrays report abundance of unique oligonucleotide 'TAG' sequences incorporated into each deletion mutation of the yeast knockout collection, allowing measurement of relative strain representation across experimental conditions for all knockout mutants simultaneously. One application of TAG arrays is to perform genome-wide synthetic lethality screens, known as synthetic lethality analyzed by microarray (SLAM). We designed a fully defined spike-in pool to resemble typical SLAM experiments and performed TAG microarray hybridizations. We describe a method for analyzing two-color array data to efficiently measure the differential knockout strain representation across two experimental conditions, and use the spike-in pool to show that the sensitivity and specificity of this method exceed typical current approaches.

  2. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    Directory of Open Access Journals (Sweden)

    Alvaro Díaz-Badillo

    2014-04-01

    Full Text Available Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples.

  3. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    Science.gov (United States)

    Díaz-Badillo, Alvaro; de Lourdes Muñoz, María; Perez-Ramirez, Gerardo; Altuzar, Victor; Burgueño, Juan; Mendoza-Alvarez, Julio G.; Martínez-Muñoz, Jorge P.; Cisneros, Alejandro; Navarrete-Espinosa, Joel; Sanchez-Sinencio, Feliciano

    2014-01-01

    Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples. PMID:24776933

  4. Empirical Bayes ranking and selection methods via semiparametric hierarchical mixture models in microarray studies.

    Science.gov (United States)

    Noma, Hisashi; Matsui, Shigeyuki

    2013-05-20

    The main purpose of microarray studies is screening of differentially expressed genes as candidates for further investigation. Because of limited resources in this stage, prioritizing genes are relevant statistical tasks in microarray studies. For effective gene selections, parametric empirical Bayes methods for ranking and selection of genes with largest effect sizes have been proposed (Noma et al., 2010; Biostatistics 11: 281-289). The hierarchical mixture model incorporates the differential and non-differential components and allows information borrowing across differential genes with separation from nuisance, non-differential genes. In this article, we develop empirical Bayes ranking methods via a semiparametric hierarchical mixture model. A nonparametric prior distribution, rather than parametric prior distributions, for effect sizes is specified and estimated using the "smoothing by roughening" approach of Laird and Louis (1991; Computational statistics and data analysis 12: 27-37). We present applications to childhood and infant leukemia clinical studies with microarrays for exploring genes related to prognosis or disease progression.

  5. 3D Biomaterial Microarrays for Regenerative Medicine

    DEFF Research Database (Denmark)

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars;

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...

  6. Quality Visualization of Microarray Datasets Using Circos

    Directory of Open Access Journals (Sweden)

    Martin Koch

    2012-08-01

    Full Text Available Quality control and normalization is considered the most important step in the analysis of microarray data. At present there are various methods available for quality assessments of microarray datasets. However there seems to be no standard visualization routine, which also depicts individual microarray quality. Here we present a convenient method for visualizing the results of standard quality control tests using Circos plots. In these plots various quality measurements are drawn in a circular fashion, thus allowing for visualization of the quality and all outliers of each distinct array within a microarray dataset. The proposed method is intended for use with the Affymetrix Human Genome platform (i.e., GPL 96, GPL570 and GPL571. Circos quality measurement plots are a convenient way for the initial quality estimate of Affymetrix datasets that are stored in publicly available databases.

  7. Empirical study of supervised gene screening

    Directory of Open Access Journals (Sweden)

    Ma Shuangge

    2006-12-01

    Full Text Available Abstract Background Microarray studies provide a way of linking variations of phenotypes with their genetic causations. Constructing predictive models using high dimensional microarray measurements usually consists of three steps: (1 unsupervised gene screening; (2 supervised gene screening; and (3 statistical model building. Supervised gene screening based on marginal gene ranking is commonly used to reduce the number of genes in the model building. Various simple statistics, such as t-statistic or signal to noise ratio, have been used to rank genes in the supervised screening. Despite of its extensive usage, statistical study of supervised gene screening remains scarce. Our study is partly motivated by the differences in gene discovery results caused by using different supervised gene screening methods. Results We investigate concordance and reproducibility of supervised gene screening based on eight commonly used marginal statistics. Concordance is assessed by the relative fractions of overlaps between top ranked genes screened using different marginal statistics. We propose a Bootstrap Reproducibility Index, which measures reproducibility of individual genes under the supervised screening. Empirical studies are based on four public microarray data. We consider the cases where the top 20%, 40% and 60% genes are screened. Conclusion From a gene discovery point of view, the effect of supervised gene screening based on different marginal statistics cannot be ignored. Empirical studies show that (1 genes passed different supervised screenings may be considerably different; (2 concordance may vary, depending on the underlying data structure and percentage of selected genes; (3 evaluated with the Bootstrap Reproducibility Index, genes passed supervised screenings are only moderately reproducible; and (4 concordance cannot be improved by supervised screening based on reproducibility.

  8. PATMA: parser of archival tissue microarray

    Directory of Open Access Journals (Sweden)

    Lukasz Roszkowiak

    2016-12-01

    Full Text Available Tissue microarrays are commonly used in modern pathology for cancer tissue evaluation, as it is a very potent technique. Tissue microarray slides are often scanned to perform computer-aided histopathological analysis of the tissue cores. For processing the image, splitting the whole virtual slide into images of individual cores is required. The only way to distinguish cores corresponding to specimens in the tissue microarray is through their arrangement. Unfortunately, distinguishing the correct order of cores is not a trivial task as they are not labelled directly on the slide. The main aim of this study was to create a procedure capable of automatically finding and extracting cores from archival images of the tissue microarrays. This software supports the work of scientists who want to perform further image processing on single cores. The proposed method is an efficient and fast procedure, working in fully automatic or semi-automatic mode. A total of 89% of punches were correctly extracted with automatic selection. With an addition of manual correction, it is possible to fully prepare the whole slide image for extraction in 2 min per tissue microarray. The proposed technique requires minimum skill and time to parse big array of cores from tissue microarray whole slide image into individual core images.

  9. PATMA: parser of archival tissue microarray.

    Science.gov (United States)

    Roszkowiak, Lukasz; Lopez, Carlos

    2016-01-01

    Tissue microarrays are commonly used in modern pathology for cancer tissue evaluation, as it is a very potent technique. Tissue microarray slides are often scanned to perform computer-aided histopathological analysis of the tissue cores. For processing the image, splitting the whole virtual slide into images of individual cores is required. The only way to distinguish cores corresponding to specimens in the tissue microarray is through their arrangement. Unfortunately, distinguishing the correct order of cores is not a trivial task as they are not labelled directly on the slide. The main aim of this study was to create a procedure capable of automatically finding and extracting cores from archival images of the tissue microarrays. This software supports the work of scientists who want to perform further image processing on single cores. The proposed method is an efficient and fast procedure, working in fully automatic or semi-automatic mode. A total of 89% of punches were correctly extracted with automatic selection. With an addition of manual correction, it is possible to fully prepare the whole slide image for extraction in 2 min per tissue microarray. The proposed technique requires minimum skill and time to parse big array of cores from tissue microarray whole slide image into individual core images.

  10. The Impact of Photobleaching on Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Marcel von der Haar

    2015-09-01

    Full Text Available DNA-Microarrays have become a potent technology for high-throughput analysis of genetic regulation. However, the wide dynamic range of signal intensities of fluorophore-based microarrays exceeds the dynamic range of a single array scan by far, thus limiting the key benefit of microarray technology: parallelization. The implementation of multi-scan techniques represents a promising approach to overcome these limitations. These techniques are, in turn, limited by the fluorophores’ susceptibility to photobleaching when exposed to the scanner’s laser light. In this paper the photobleaching characteristics of cyanine-3 and cyanine-5 as part of solid state DNA microarrays are studied. The effects of initial fluorophore intensity as well as laser scanner dependent variables such as the photomultiplier tube’s voltage on bleaching and imaging are investigated. The resulting data is used to develop a model capable of simulating the expected degree of signal intensity reduction caused by photobleaching for each fluorophore individually, allowing for the removal of photobleaching-induced, systematic bias in multi-scan procedures. Single-scan applications also benefit as they rely on pre-scans to determine the optimal scanner settings. These findings constitute a step towards standardization of microarray experiments and analysis and may help to increase the lab-to-lab comparability of microarray experiment results.

  11. Mapping the affinity landscape of Thrombin-binding aptamers on 2'F-ANA/DNA chimeric G-Quadruplex microarrays.

    Science.gov (United States)

    Lietard, Jory; Abou Assi, Hala; Gómez-Pinto, Irene; González, Carlos; Somoza, Mark M; Damha, Masad J

    2017-01-18

    In situ fabricated nucleic acids microarrays are versatile and very high-throughput platforms for aptamer optimization and discovery, but the chemical space that can be probed against a given target has largely been confined to DNA, while RNA and non-natural nucleic acid microarrays are still an essentially uncharted territory. 2'-Fluoroarabinonucleic acid (2'F-ANA) is a prime candidate for such use in microarrays. Indeed, 2'F-ANA chemistry is readily amenable to photolithographic microarray synthesis and its potential in high affinity aptamers has been recently discovered. We thus synthesized the first microarrays containing 2'F-ANA and 2'F-ANA/DNA chimeric sequences to fully map the binding affinity landscape of the TBA1 thrombin-binding G-quadruplex aptamer containing all 32 768 possible DNA-to-2'F-ANA mutations. The resulting microarray was screened against thrombin to identify a series of promising 2'F-ANA-modified aptamer candidates with Kds significantly lower than that of the unmodified control and which were found to adopt highly stable, antiparallel-folded G-quadruplex structures. The solution structure of the TBA1 aptamer modified with 2'F-ANA at position T3 shows that fluorine substitution preorganizes the dinucleotide loop into the proper conformation for interaction with thrombin. Overall, our work strengthens the potential of 2'F-ANA in aptamer research and further expands non-genomic applications of nucleic acids microarrays.

  12. cDNA芯片技术筛选斑马鱼皮肤免疫相关差异表达基因%Differential expression of immune-related genes in the skin of zebrafish screened by cDNA microarray

    Institute of Scientific and Technical Information of China (English)

    吕爱军; 胡秀彩; 薛军; 王艺; 李槿年

    2011-01-01

    The objective of this study is to screen the differential gene expression in response to a pathogenic infection in the skin of fish, and to provide a basis for understanding the fish skin immune mechanism at the molecular level. The immune response in the skin was analyzed by using Staphylococcus-induced zebrafish as a model, and applying the affymetrix zebrafish cDNA microarray hybridized to the skin tissues. Total RNAs were isolated from the skin tissues of adult fish, labeled with biotin, and hybridized to zebrafish cDNA gene chips. The expression profiles from the hybridization to 15 617 genes in the zebrafish cDNA array were analyzed by the Ge-neChip Operating Software (GCOS1.4). Out of 15 617 genes in zebrafish cDNA chips, a total of 175 was identified to be significantly expressed in the skin tissues, of which 150 were up-regulated and 25 were down-regulated. Among the 150 up-regulated genes, the functions of 91 genes were known and 59 were unknown. Furthermore, by using the Gene Ontology (GO) method the differential expression genes could be categorized into 13 functional groups, and some of them are considered as potential candidates in the fish skin immune response. Thus, several genes related to immune response in the skin were identified, including major histocompatibility complex class I genes (UEA, UFA), complement component (Clq, C7-1), lectin (HBL3, LGALS1L3), early growth response 1 (EGR-1), tumor necrosis factor superfamily (TNFSF10L4), coagulation factor V(F5), transferrin-a (TF-a), and several proteases. The Affymetrix zebrafish cDNA microarray is useful for identifying the functional genes involved in the skin immune defense of fish: that is, MHC I, complement, lectin, and proteases. However, future analysis of the function of these genes may contribute to an understanding of the mechanisms of Staphylococcus pathogenesis and mucosal bacterial interactions.%研究旨在筛选与鱼类皮肤免疫相关的功能基因,试图解释鱼类皮肤局

  13. EMAAS: An extensible grid-based Rich Internet Application for microarray data analysis and management

    Directory of Open Access Journals (Sweden)

    Aitman T

    2008-11-01

    Full Text Available Abstract Background Microarray experimentation requires the application of complex analysis methods as well as the use of non-trivial computer technologies to manage the resultant large data sets. This, together with the proliferation of tools and techniques for microarray data analysis, makes it very challenging for a laboratory scientist to keep up-to-date with the latest developments in this field. Our aim was to develop a distributed e-support system for microarray data analysis and management. Results EMAAS (Extensible MicroArray Analysis System is a multi-user rich internet application (RIA providing simple, robust access to up-to-date resources for microarray data storage and analysis, combined with integrated tools to optimise real time user support and training. The system leverages the power of distributed computing to perform microarray analyses, and provides seamless access to resources located at various remote facilities. The EMAAS framework allows users to import microarray data from several sources to an underlying database, to pre-process, quality assess and analyse the data, to perform functional analyses, and to track data analysis steps, all through a single easy to use web portal. This interface offers distance support to users both in the form of video tutorials and via live screen feeds using the web conferencing tool EVO. A number of analysis packages, including R-Bioconductor and Affymetrix Power Tools have been integrated on the server side and are available programmatically through the Postgres-PLR library or on grid compute clusters. Integrated distributed resources include the functional annotation tool DAVID, GeneCards and the microarray data repositories GEO, CELSIUS and MiMiR. EMAAS currently supports analysis of Affymetrix 3' and Exon expression arrays, and the system is extensible to cater for other microarray and transcriptomic platforms. Conclusion EMAAS enables users to track and perform microarray data

  14. Microarray analysis of potential genes in the pathogenesis of recurrent oral ulcer.

    Science.gov (United States)

    Han, Jingying; He, Zhiwei; Li, Kun; Hou, Lu

    2015-01-01

    Recurrent oral ulcer seriously threatens patients' daily life and health. This study investigated potential genes and pathways that participate in the pathogenesis of recurrent oral ulcer by high throughput bioinformatic analysis. RT-PCR and Western blot were applied to further verify screened interleukins effect. Recurrent oral ulcer related genes were collected from websites and papers, and further found out from Human Genome 280 6.0 microarray data. Each pathway of recurrent oral ulcer related genes were got through chip hybridization. RT-PCR was applied to test four recurrent oral ulcer related genes to verify the microarray data. Data transformation, scatter plot, clustering analysis, and expression pattern analysis were used to analyze recurrent oral ulcer related gene expression changes. Recurrent oral ulcer gene microarray was successfully established. Microarray showed that 551 genes involved in recurrent oral ulcer activity and 196 genes were recurrent oral ulcer related genes. Of them, 76 genes up-regulated, 62 genes down-regulated, and 58 genes up-/down-regulated. Total expression level up-regulated 752 times (60%) and down-regulated 485 times (40%). IL-2 plays an important role in the occurrence, development and recurrence of recurrent oral ulcer on the mRNA and protein levels. Gene microarray can be used to analyze potential genes and pathways in recurrent oral ulcer. IL-2 may be involved in the pathogenesis of recurrent oral ulcer.

  15. An event-specific DNA microarray to identify genetically modified organisms in processed foods.

    Science.gov (United States)

    Kim, Jae-Hwan; Kim, Su-Youn; Lee, Hyungjae; Kim, Young-Rok; Kim, Hae-Yeong

    2010-05-26

    We developed an event-specific DNA microarray system to identify 19 genetically modified organisms (GMOs), including two GM soybeans (GTS-40-3-2 and A2704-12), thirteen GM maizes (Bt176, Bt11, MON810, MON863, NK603, GA21, T25, TC1507, Bt10, DAS59122-7, TC6275, MIR604, and LY038), three GM canolas (GT73, MS8xRF3, and T45), and one GM cotton (LLcotton25). The microarray included 27 oligonucleotide probes optimized to identify endogenous reference targets, event-specific targets, screening targets (35S promoter and nos terminator), and an internal target (18S rRNA gene). Thirty-seven maize-containing food products purchased from South Korean and US markets were tested for the presence of GM maize using this microarray system. Thirteen GM maize events were simultaneously detected using multiplex PCR coupled with microarray on a single chip, at a limit of detection of approximately 0.5%. Using the system described here, we detected GM maize in 11 of the 37 food samples tested. These results suggest that an event-specific DNA microarray system can reliably detect GMOs in processed foods.

  16. Microarray-based genomic profiling as a diagnostic tool in acute lymphoblastic leukemia.

    Science.gov (United States)

    Simons, Annet; Stevens-Kroef, Marian; El Idrissi-Zaynoun, Najat; van Gessel, Sabine; Weghuis, Daniel Olde; van den Berg, Eva; Waanders, Esmé; Hoogerbrugge, Peter; Kuiper, Roland; van Kessel, Ad Geurts

    2011-12-01

    In acute lymphoblastic leukemia (ALL) specific genomic abnormalities provide important clinical information. In most routine clinical diagnostic laboratories conventional karyotyping, in conjunction with targeted screens using e.g., fluorescence in situ hybridization (FISH), is currently considered as the gold standard to detect such aberrations. Conventional karyotyping, however, is limited in its resolution and yield, thus hampering the genetic diagnosis of ALL. We explored whether microarray-based genomic profiling would be feasible as an alternative strategy in a routine clinical diagnostic setting. To this end, we compared conventional karyotypes with microarray-deduced copy number aberration (CNA) karyotypes in 60 ALL cases. Microarray-based genomic profiling resulted in a CNA detection rate of 90%, whereas for conventional karyotyping this was 61%. In addition, many small (< 5 Mb) genetic lesions were encountered, frequently harboring clinically relevant ALL-related genes such as CDKN2A/B, ETV6, PAX5, and IKZF1. From our data we conclude that microarray-based genomic profiling serves as a robust tool in the genetic diagnosis of ALL, outreaching conventional karyotyping in CNA detection both in terms of sensitivity and specificity. We also propose a practical workflow for a comprehensive and objective interpretation of CNAs obtained through microarray-based genomic profiling, thereby facilitating its application in a routine clinical diagnostic setting.

  17. Visualization methods for statistical analysis of microarray clusters

    Directory of Open Access Journals (Sweden)

    Li Kai

    2005-05-01

    Full Text Available Abstract Background The most common method of identifying groups of functionally related genes in microarray data is to apply a clustering algorithm. However, it is impossible to determine which clustering algorithm is most appropriate to apply, and it is difficult to verify the results of any algorithm due to the lack of a gold-standard. Appropriate data visualization tools can aid this analysis process, but existing visualization methods do not specifically address this issue. Results We present several visualization techniques that incorporate meaningful statistics that are noise-robust for the purpose of analyzing the results of clustering algorithms on microarray data. This includes a rank-based visualization method that is more robust to noise, a difference display method to aid assessments of cluster quality and detection of outliers, and a projection of high dimensional data into a three dimensional space in order to examine relationships between clusters. Our methods are interactive and are dynamically linked together for comprehensive analysis. Further, our approach applies to both protein and gene expression microarrays, and our architecture is scalable for use on both desktop/laptop screens and large-scale display devices. This methodology is implemented in GeneVAnD (Genomic Visual ANalysis of Datasets and is available at http://function.princeton.edu/GeneVAnD. Conclusion Incorporating relevant statistical information into data visualizations is key for analysis of large biological datasets, particularly because of high levels of noise and the lack of a gold-standard for comparisons. We developed several new visualization techniques and demonstrated their effectiveness for evaluating cluster quality and relationships between clusters.

  18. Quantitative Dose-Response Curves from Subcellular Lipid Multilayer Microarrays

    Science.gov (United States)

    Kusi-Appiah, A. E.; Lowry, T. W.; Darrow, E. M.; Wilson, K.; Chadwick, B. P.; Davidson, M. W.; Lenhert, S.

    2015-01-01

    The dose-dependent bioactivity of small molecules on cells is a crucial factor in drug discovery and personalized medicine. Although small-molecule microarrays are a promising platform for miniaturized screening, it has been a challenge to use them to obtain quantitative dose-response curves in vitro, especially for lipophilic compounds. Here we establish a small-molecule microarray assay capable of controlling the dosage of small lipophilic molecules delivered to cells by varying the sub-cellular volumes of surface supported lipid micro- and nanostructure arrays fabricated with nanointaglio. Features with sub-cellular lateral dimensions were found necessary to obtain normal cell adhesion with HeLa cells. The volumes of the lipophilic drug-containing nanostructures were determined using a fluorescence microscope calibrated by atomic-force microscopy. We used the surface supported lipid volume information to obtain EC-50 values for the response of HeLa cells to three FDA-approved lipophilic anticancer drugs, docetaxel, imiquimod and triethylenemelamine, which were found to be significantly different from neat lipid controls. No significant toxicity was observed on the control cells surrounding the drug/lipid patterns, indicating lack of interference or leakage from the arrays. Comparison of the microarray data to dose-response curves for the same drugs delivered liposomally from solution revealed quantitative differences in the efficacy values, which we explain in terms of cell-adhesion playing a more important role in the surface-based assay. The assay should be scalable to a density of at least 10,000 dose response curves on the area of a standard microtiter plate. PMID:26167949

  19. Phenotype microarray profiling of the antibacterial activity of red cabbage

    Directory of Open Access Journals (Sweden)

    Hafidh RR

    2012-06-01

    Full Text Available Background: Functional food can be a potent source of wide array of biocomonents with antimicrobial activity. We investigated the antibacterial activity of red cabbage (RC extract on Gram negative and positive ATCC strains. Most intersting, we, for the first time, explored and analysed the complete phenotypic profile of RC-treated bacteria using Omnilog Phenotype Microarray. Results: This study revealed that the phenotype microarray (PM screen was a valuable tool in the search for compounds and their antibacterial mechanisms that can inhibit bacterial growth by affecting certain metabolic pathways. It was shown that RC exerted remarkable antibacterial effect on S. aureus and E. coli bacteria, and PM showed a wide range phenotypic profile of the exerted RC antibacterial activity. RC targeted the peptide, carbon, nutriontional assembly, and sulfur metbolic pathways altogether. The peptidoglycan synthesis pathway was inferred to be targeted by RC extract at a metabolic point different from other available cell wall-targeting drugs; these could be hot targets for the discovery of new therapy for many problematic microbes.Conclusions: Taken together, the phenotype microarray for functional food and medicinal plants can be a very useful tool for profiling their antimicrobial activity. Moreover, extracts of functional food can exert antibacterial activity by hitting a wide range of metabolic pathways, at the same time leading to very difficult condition for bacteria to rapidly develop resistance. Therefore, using functional foods or medicinal plants as such, or as extracts, can be superior on mono-targeting antibiotics if the optimal concentrations and conditions of these functional foods were sought.

  20. A Method of Microarray Data Storage Using Array Data Type

    OpenAIRE

    Tsoi, Lam C.; Zheng, W Jim

    2007-01-01

    A well-designed microarray database can provide valuable information on gene expression levels. However, designing an efficient microarray database with minimum space usage is not an easy task since designers need to integrate the microarray data with the information of genes, probe annotation, and the descriptions of each microarray experiment. Developing better methods to store microarray data can greatly improve the efficiency and usefulness of such data. A new schema is proposed to store ...

  1. Development of a sandwiched microarray platform for studying the interactions of antibiotics with Staphylococcus aureus.

    Science.gov (United States)

    Liu, Xia; Lei, Zhen; Liu, Dianjun; Wang, Zhenxin

    2016-04-21

    It still confronts an outstanding challenge to screen efficient antibacterial drugs from millions of potential antibiotic candidates. In this regard, a sandwiched microarray platform has been developed to culture live bacteria and carry out high-throughput screening antibacterial drugs. The optimized lectin-hydrogel microarray can be used as an efficient bacterial capturing and culturing platform, which is beneficial to identify spots and collect data. At the same time, a matching drug-laden polyacrylamide microarray with Luria-Bertani (LB) culture medium can be generated automatically and accurately by using a standard non-contacting procedure. A large number of microscale culture chambers (more than 100 individual samples) between two microarrays can be formed by linking two aligned hydrogel spots using LB culture medium, where live bacteria can be co-cultured with drug candidates. Using Staphylococcus aureus (S. aureus) and four well-known antibiotics (amoxicillin, vancomycin, streptomycin and chloramphenicol) as model system, the MIC (minimum inhibitory concentration) values of the antibiotics can be determined by the drug induced change of bacterial growth, and the results demonstrate that the MIC values of amoxicillin, vancomycin and streptomycin are 1.7 μg mL(-1), 3.3 μg mL(-1) and 10.3 μg mL(-1), respectively.

  2. Discovery and analysis of pancreatic adenocarcinoma genes using cDNA microarrays

    Institute of Scientific and Technical Information of China (English)

    Gang Jin; Xian-Gui Hu; Kang Ying; Yan Tang; Rui Liu; Yi-Jie Zhang; Zai-Ping Jing; Yi Xie; Yu-Min Mao

    2005-01-01

    AIM: To study the pathogenetic processes and the role of gene expression by microarray analyses in expediting our understanding of the molecular pathophysiology of pancreatic adenocarcinoma, and to identify the novel cancer-associated genes.METHODS: Nine histologically defined pancreatic head adenocarcinoma specimens associated with clinical data were studied. Total RNA and mRNA were isolated and labeled by reverse transcription reaction with Cy5 and Cy3 for cDNA probe. The cDNA microarrays that represent a set of 4 096 human genes were hybridized with labeled cDNA probe and screened for molecular profiling analyses.RESULTS: Using this methodology, 184 genes were screened out for differences in gene expression level after nine couples of hybridizations. Of the 184 genes,87 were upregulated and 97 downregulated, including 11 novel human genes. In pancreatic adenocarcinoma tissue, several invasion and metastasis related genes showed their high expression levels, suggesting that poor prognosis of pancreatic adenocarcinoma might have a solid molecular biological basis.CONCLUSION: The application of cDNA microarray technique for analysis of gene expression patterns is a powerful strategy to identify novel cancer-associated genes, and to rapidly explore their role in clinical pancreatic adenocarcinoma. Microarray profiles provide us new insights into the carcinogenesis and invasive process of pancreatic adenocarcinoma. Our results suggest that a highly organized and structured process of tumor invasion exists in the pancreas.

  3. Microarray Dot Electrodes Utilizing Dielectrophoresis for Cell Characterization

    Directory of Open Access Journals (Sweden)

    Fatimah Ibrahim

    2013-07-01

    Full Text Available During the last three decades; dielectrophoresis (DEP has become a vital tool for cell manipulation and characterization due to its non-invasiveness. It is very useful in the trend towards point-of-care systems. Currently, most efforts are focused on using DEP in biomedical applications, such as the spatial manipulation of cells, the selective separation or enrichment of target cells, high-throughput molecular screening, biosensors and immunoassays. A significant amount of research on DEP has produced a wide range of microelectrode configurations. In this paper; we describe the microarray dot electrode, a promising electrode geometry to characterize and manipulate cells via DEP. The advantages offered by this type of microelectrode are also reviewed. The protocol for fabricating planar microelectrodes using photolithography is documented to demonstrate the fast and cost-effective fabrication process. Additionally; different state-of-the-art Lab-on-a-Chip (LOC devices that have been proposed for DEP applications in the literature are reviewed. We also present our recently designed LOC device, which uses an improved microarray dot electrode configuration to address the challenges facing other devices. This type of LOC system has the capability to boost the implementation of DEP technology in practical settings such as clinical cell sorting, infection diagnosis, and enrichment of particle populations for drug development.

  4. Microbial forensics: fiber optic microarray subtyping of Bacillus anthracis

    Science.gov (United States)

    Shepard, Jason R. E.

    2009-05-01

    The past decade has seen increased development and subsequent adoption of rapid molecular techniques involving DNA analysis for detection of pathogenic microorganisms, also termed microbial forensics. The continued accumulation of microbial sequence information in genomic databases now better positions the field of high-throughput DNA analysis to proceed in a more manageable fashion. The potential to build off of these databases exists as technology continues to develop, which will enable more rapid, cost effective analyses. This wealth of genetic information, along with new technologies, has the potential to better address some of the current problems and solve the key issues involved in DNA analysis of pathogenic microorganisms. To this end, a high density fiber optic microarray has been employed, housing numerous DNA sequences simultaneously for detection of various pathogenic microorganisms, including Bacillus anthracis, among others. Each organism is analyzed with multiple sequences and can be sub-typed against other closely related organisms. For public health labs, real-time PCR methods have been developed as an initial preliminary screen, but culture and growth are still considered the gold standard. Technologies employing higher throughput than these standard methods are better suited to capitalize on the limitless potential garnered from the sequence information. Microarray analyses are one such format positioned to exploit this potential, and our array platform is reusable, allowing repetitive tests on a single array, providing an increase in throughput and decrease in cost, along with a certainty of detection, down to the individual strain level.

  5. Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays

    Directory of Open Access Journals (Sweden)

    Chan Frances

    2006-03-01

    -wise tissues as well as in gene expression profiles determined across all tissues; (3 Sensitivity and accuracy in detection of differential expression. Conclusion Our study provides one of the largest "reference" data set of gene expression measurements using TaqMan® Gene Expression Assay based real-time PCR technology. This data set allowed us to use an alternative gene expression technology to evaluate the performance of different microarray platforms. We conclude that microarrays are indeed invaluable discovery tools with acceptable reliability for genome-wide gene expression screening, though validation of putative changes in gene expression remains advisable. Our study also characterizes the limitations of microarrays; understanding these limitations will enable researchers to more effectively evaluate microarray results in a more cautious and appropriate manner.

  6. Review: DNA Microarray Technology and Drug Development

    Directory of Open Access Journals (Sweden)

    Sushma Drabu

    2010-01-01

    Full Text Available

    On the contrary to slow and non specific traditional drug discovery methods, DNA microarray technology could
    accelerate the identification of potential drugs for treating diseases like cancer, AIDS and provide fruitful results in
    the drug discovery. The technique provides efficient automation and maximum flexibility to the researchers and
    can test thousand compounds at a time. Scientists find DNA microarray useful in disease diagnosis, monitoring
    desired and adverse outcomes of therapeutic interventions, as well as, in the selection, assessment and quality control
    of the potential drugs. In the current scenario, where new pathogens are expected every year, DNA microarray
    promises as an efficient technology to detect new organisms in a short time. Classification of carcinomas at the
    molecular level and prediction of how various types of tumor respond to different therapeutic agents can be made
    possible with the use of microarray analysis. Also, microarray technique can prove instrumental in personalized
    medicines development by providing microarray data of a patient which could be used for identifying diseases,
    treatment specific to individual and trailing disease prognosis. Microarray analysis could be beneficial in the area
    of molecular medicines for analysis of genetic variations and functions of genes in normal individuals and diseased
    conditions. The technique can give satisfactory results in single nucleotide polymorphism (SNP analysis and
    pharmacogenomics studies. The challenges that arise with the technology are high degree of variability with data
    obtained, frequent up gradation of methods and machines and lack of trained manpower. Despite this, DNA microarray
    promises to be the next generation sequencer which could explain how organisms evolve and adapt looking
    at the whole

  7. NAPPA as a Real New Method for Protein Microarray Generation

    Directory of Open Access Journals (Sweden)

    Paula Díez

    2015-04-01

    Full Text Available Nucleic Acid Programmable Protein Arrays (NAPPA have emerged as a powerful and innovative technology for the screening of biomarkers and the study of protein-protein interactions, among others possible applications. The principal advantages are the high specificity and sensitivity that this platform offers. Moreover, compared to conventional protein microarrays, NAPPA technology avoids the necessity of protein purification, which is expensive and time-consuming, by substituting expression in situ with an in vitro transcription/translation kit. In summary, NAPPA arrays have been broadly employed in different studies improving knowledge about diseases and responses to treatments. Here, we review the principal advances and applications performed using this platform during the last years.

  8. A preliminary investigation:screening of serum protein markers by protein microarray technology in acute myeloid leukemia%蛋白芯片用于筛选急性髓系白血病患者血清标志物的初步研究

    Institute of Scientific and Technical Information of China (English)

    朱丽丹; 孔佩艳; 张曦; 彭贤贵; 李杰平; 曾东风; 墙星; 邓小娟

    2013-01-01

    Objective To screen serum biomarkers in patients with acute myeloid leukemia (AML) using biotin label-based antibody array,that can be applied to AML in its early diagnosis,conditions and prognosis. Methods Biotin label-based antibody array were used to detect 16 serum,including 11 AML of different cytogenetic and molecular biology,and 5 healthy controls. Using microarray analysis software to extract the data, the results obtained were analyzed by AAH-BLG-1 data analysis software. Results Compared with the control group,growth factor including MFC-E8, osteoactivin, Hepasso-cin, M-CSF, M-CSF R, Insulin R,and interleukin including IL-20, IL-3, IL-1 F8, IL-2 R alpha, IL-2 R beta, IL-1 R6, apoptosis including Fas, adhesis including ICAM-3, chemokine including CCL21, atherosclerosis including Iipocalin-1, Transmembrane protein TMEFF1, matrix metalloproteinase including MMP-3, TNFRSF including GFR alpha-4, TNF-al-pha, TNFRF18, TNFRSF21 were all increased significantly (P < 0. 05). Poor prognosis group compared with the good prognosis group,interleukin including IL-17RD, growth factor including VEGF-D, IGFBP1, matrix metalloproteinase including TIMP-2, angiogensis including Endostatin, Proteolytic enzymes uPA, chemokine MIP-2, FGF-19, binding protein including LBP, adhesis including L-selectin, atherosclerosis SAA(P<0. 05) were all increased significantly. Conclusion A total of 33 serum biomarkers in patients with AML were screened using biotin label-based antibody array . Confirmed their participation in the AML cell chemotaxis, adhesion, migration, degradation of the matrix, and malignant proliferation, anti-apoptotic process,can be helpful to a better judgment of the patients'prognosis as well as guiding individual.%目的 利用生物素标记蛋白芯片筛选急性髓系白血病(AML)患者血清中可用于AML早期诊断、预后判断的血清标志物.方法 采用生物素标记抗体芯片技术,对11名不同细胞遗传学和分子生物学特征

  9. Evaluation of a field-portable DNA microarray platform and nucleic acid amplification strategies for the detection of arboviruses, arthropods, and bloodmeals.

    Science.gov (United States)

    Grubaugh, Nathan D; Petz, Lawrence N; Melanson, Vanessa R; McMenamy, Scott S; Turell, Michael J; Long, Lewis S; Pisarcik, Sarah E; Kengluecha, Ampornpan; Jaichapor, Boonsong; O'Guinn, Monica L; Lee, John S

    2013-02-01

    Highly multiplexed assays, such as microarrays, can benefit arbovirus surveillance by allowing researchers to screen for hundreds of targets at once. We evaluated amplification strategies and the practicality of a portable DNA microarray platform to analyze virus-infected mosquitoes. The prototype microarray design used here targeted the non-structural protein 5, ribosomal RNA, and cytochrome b genes for the detection of flaviviruses, mosquitoes, and bloodmeals, respectively. We identified 13 of 14 flaviviruses from virus inoculated mosquitoes and cultured cells. Additionally, we differentiated between four mosquito genera and eight whole blood samples. The microarray platform was field evaluated in Thailand and successfully identified flaviviruses (Culex flavivirus, dengue-3, and Japanese encephalitis viruses), differentiated between mosquito genera (Aedes, Armigeres, Culex, and Mansonia), and detected mammalian bloodmeals (human and dog). We showed that the microarray platform and amplification strategies described here can be used to discern specific information on a wide variety of viruses and their vectors.

  10. High-density polymer microarrays: identifying synthetic polymers that control human embryonic stem cell growth.

    Science.gov (United States)

    Hansen, Anne; Mjoseng, Heidi K; Zhang, Rong; Kalloudis, Michail; Koutsos, Vasileios; de Sousa, Paul A; Bradley, Mark

    2014-06-01

    The fabrication of high-density polymer microarray is described, allowing the simultaneous and efficient evaluation of more than 7000 different polymers in a single-cellular-based screen. These high-density polymer arrays are applied in the search for synthetic substrates for hESCs culture. Up-scaling of the identified hit polymers enables long-term cellular cultivation and promoted successful stem-cell maintenance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A universal oligonucleotide microarray with a minimal number of probes for the detection and identification of viroids at the genus level.

    Directory of Open Access Journals (Sweden)

    Yongjiang Zhang

    Full Text Available A major challenge in the agricultural industry is the development of techniques that can screen plant samples for viroid infection. Microarrays are promising in this regard, as their high throughput nature can potentially allow for the detection of a range of viroids in a single test. In this paper we present a microarray that can detect a wide spectrum of all 8 reported viroid genera including 37 known plant viroid species. The array was constructed using an automated probe design protocol which generated a minimal number of probes to detect viroids at the genus level. The designed microarray showed a high specificity and sensitivity when tested with a set of standard virus samples. Finally, the microarray was applied to screen infected field samples, with Hop stunt viroid infection identified as the major disease causing pathogen for an infected citrus sample.

  12. Posttranslational Modification Assays on Functional Protein Microarrays.

    Science.gov (United States)

    Neiswinger, Johnathan; Uzoma, Ijeoma; Cox, Eric; Rho, HeeSool; Jeong, Jun Seop; Zhu, Heng

    2016-10-03

    Protein microarray technology provides a straightforward yet powerful strategy for identifying substrates of posttranslational modifications (PTMs) and studying the specificity of the enzymes that catalyze these reactions. Protein microarray assays can be designed for individual enzymes or a mixture to establish connections between enzymes and substrates. Assays for four well-known PTMs-phosphorylation, acetylation, ubiquitylation, and SUMOylation-have been developed and are described here for use on functional protein microarrays. Phosphorylation and acetylation require a single enzyme and are easily adapted for use on an array. The ubiquitylation and SUMOylation cascades are very similar, and the combination of the E1, E2, and E3 enzymes plus ubiquitin or SUMO protein and ATP is sufficient for in vitro modification of many substrates.

  13. Common synonymous variants in ABCA4 are protective for chloroquine induced maculopathy (toxic maculopathy)

    OpenAIRE

    Weber, Bernhard H. F.; Bergholz, Richard; Mändl, Julia; Jägle, Herbert; Ruether, Klaus; Grassmann, Felix

    2015-01-01

    Background Chloroquine (CQ) and hydroxychloroquine (HCQ) are used to treat auto-immune related diseases such as rheumatoid arthritis (RA) or systemic lupus erythematosus. Both drugs however can cause retinal toxicity eventually leading to irreversible maculopathy and retinopathy. Established risk factors are duration and dosage of treatment while the involvement of genetic factors contributing to toxic maculopathy is largely unclear. To address the latter issue, this study aimed to expand on ...

  14. Microarray analysis of adipose tissue gene expression profiles between two chicken breeds

    Indian Academy of Sciences (India)

    Hongbao Wang; Hui Li; Qigui Wang; Yuxiang Wang; Huabin Han; Hui Shi

    2006-12-01

    The chicken is an important model organism that bridges the evolutionary gap between mammals and other vertebrates and provides a major protein source from meat and eggs throughout the world. Excessive accumulation of lipids in the adipose tissue is one of the main problems faced by the broiler industry nowadays. In order to visualize the mechanisms involved in the gene expression and regulation of lipid metabolism in adipose tissue, cDNA microarray containing 9 024 cDNA was used to construct gene expression profile and screen differentially expressed genes in adipose tissue between broilers and layers of 10 wk of age. Sixty-seven differentially expressed sequences were screened out, and 42 genes were found when blasted with the GenBank database. These genes are mainly related to lipid metabolism, energy metabolism, transcription and splicing factor, protein synthesis and degradation. The remained 25 sequences had no annotation available in the GenBank database. Furthermore, Northern blot and semi-quantitative RT-PCR were developed to confirm 4 differentially expressed genes screened by cDNA microarray, and it showed great consistency between the microarray data and Northern blot results or semi-quantitative RT-PCR results. The present study will be helpful for clarifying the molecular mechanism of obesity in chickens.

  15. Superhydrophilic-Superhydrophobic Patterned Surfaces as High-Density Cell Microarrays: Optimization of Reverse Transfection.

    Science.gov (United States)

    Ueda, Erica; Feng, Wenqian; Levkin, Pavel A

    2016-10-01

    High-density microarrays can screen thousands of genetic and chemical probes at once in a miniaturized and parallelized manner, and thus are a cost-effective alternative to microwell plates. Here, high-density cell microarrays are fabricated by creating superhydrophilic-superhydrophobic micropatterns in thin, nanoporous polymer substrates such that the superhydrophobic barriers confine both aqueous solutions and adherent cells within each superhydrophilic microspot. The superhydrophobic barriers confine and prevent the mixing of larger droplet volumes, and also control the spreading of droplets independent of the volume, minimizing the variability that arises due to different liquid and surface properties. Using a novel liposomal transfection reagent, ScreenFect A, the method of reverse cell transfection is optimized on the patterned substrates and several factors that affect transfection efficiency and cytotoxicity are identified. Higher levels of transfection are achieved on HOOC- versus NH2 -functionalized superhydrophilic spots, as well as when gelatin and fibronectin are added to the transfection mixture, while minimizing the amount of transfection reagent improves cell viability. Almost no diffusion of the printed transfection mixtures to the neighboring microspots is detected. Thus, superhydrophilic-superhydrophobic patterned surfaces can be used as cell microarrays and for optimizing reverse cell transfection conditions before performing further cell screenings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Discovering biological progression underlying microarray samples.

    Directory of Open Access Journals (Sweden)

    Peng Qiu

    2011-04-01

    Full Text Available In biological systems that undergo processes such as differentiation, a clear concept of progression exists. We present a novel computational approach, called Sample Progression Discovery (SPD, to discover patterns of biological progression underlying microarray gene expression data. SPD assumes that individual samples of a microarray dataset are related by an unknown biological process (i.e., differentiation, development, cell cycle, disease progression, and that each sample represents one unknown point along the progression of that process. SPD aims to organize the samples in a manner that reveals the underlying progression and to simultaneously identify subsets of genes that are responsible for that progression. We demonstrate the performance of SPD on a variety of microarray datasets that were generated by sampling a biological process at different points along its progression, without providing SPD any information of the underlying process. When applied to a cell cycle time series microarray dataset, SPD was not provided any prior knowledge of samples' time order or of which genes are cell-cycle regulated, yet SPD recovered the correct time order and identified many genes that have been associated with the cell cycle. When applied to B-cell differentiation data, SPD recovered the correct order of stages of normal B-cell differentiation and the linkage between preB-ALL tumor cells with their cell origin preB. When applied to mouse embryonic stem cell differentiation data, SPD uncovered a landscape of ESC differentiation into various lineages and genes that represent both generic and lineage specific processes. When applied to a prostate cancer microarray dataset, SPD identified gene modules that reflect a progression consistent with disease stages. SPD may be best viewed as a novel tool for synthesizing biological hypotheses because it provides a likely biological progression underlying a microarray dataset and, perhaps more importantly, the

  17. Hybridization and Selective Release of DNA Microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Beer, N R; Baker, B; Piggott, T; Maberry, S; Hara, C M; DeOtte, J; Benett, W; Mukerjee, E; Dzenitis, J; Wheeler, E K

    2011-11-29

    DNA microarrays contain sequence specific probes arrayed in distinct spots numbering from 10,000 to over 1,000,000, depending on the platform. This tremendous degree of multiplexing gives microarrays great potential for environmental background sampling, broad-spectrum clinical monitoring, and continuous biological threat detection. In practice, their use in these applications is not common due to limited information content, long processing times, and high cost. The work focused on characterizing the phenomena of microarray hybridization and selective release that will allow these limitations to be addressed. This will revolutionize the ways that microarrays can be used for LLNL's Global Security missions. The goals of this project were two-fold: automated faster hybridizations and selective release of hybridized features. The first study area involves hybridization kinetics and mass-transfer effects. the standard hybridization protocol uses an overnight incubation to achieve the best possible signal for any sample type, as well as for convenience in manual processing. There is potential to significantly shorten this time based on better understanding and control of the rate-limiting processes and knowledge of the progress of the hybridization. In the hybridization work, a custom microarray flow cell was used to manipulate the chemical and thermal environment of the array and autonomously image the changes over time during hybridization. The second study area is selective release. Microarrays easily generate hybridization patterns and signatures, but there is still an unmet need for methodologies enabling rapid and selective analysis of these patterns and signatures. Detailed analysis of individual spots by subsequent sequencing could potentially yield significant information for rapidly mutating and emerging (or deliberately engineered) pathogens. In the selective release work, optical energy deposition with coherent light quickly provides the thermal energy

  18. The use of microarrays in microbial ecology

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, G.L.; He, Z.; DeSantis, T.Z.; Brodie, E.L.; Zhou, J.

    2009-09-15

    Microarrays have proven to be a useful and high-throughput method to provide targeted DNA sequence information for up to many thousands of specific genetic regions in a single test. A microarray consists of multiple DNA oligonucleotide probes that, under high stringency conditions, hybridize only to specific complementary nucleic acid sequences (targets). A fluorescent signal indicates the presence and, in many cases, the abundance of genetic regions of interest. In this chapter we will look at how microarrays are used in microbial ecology, especially with the recent increase in microbial community DNA sequence data. Of particular interest to microbial ecologists, phylogenetic microarrays are used for the analysis of phylotypes in a community and functional gene arrays are used for the analysis of functional genes, and, by inference, phylotypes in environmental samples. A phylogenetic microarray that has been developed by the Andersen laboratory, the PhyloChip, will be discussed as an example of a microarray that targets the known diversity within the 16S rRNA gene to determine microbial community composition. Using multiple, confirmatory probes to increase the confidence of detection and a mismatch probe for every perfect match probe to minimize the effect of cross-hybridization by non-target regions, the PhyloChip is able to simultaneously identify any of thousands of taxa present in an environmental sample. The PhyloChip is shown to reveal greater diversity within a community than rRNA gene sequencing due to the placement of the entire gene product on the microarray compared with the analysis of up to thousands of individual molecules by traditional sequencing methods. A functional gene array that has been developed by the Zhou laboratory, the GeoChip, will be discussed as an example of a microarray that dynamically identifies functional activities of multiple members within a community. The recent version of GeoChip contains more than 24,000 50mer

  19. Prominent feature selection of microarray data

    Institute of Scientific and Technical Information of China (English)

    Yihui Liu

    2009-01-01

    For wavelet transform, a set of orthogonal wavelet basis aims to detect the localized changing features contained in microarray data. In this research, we investigate the performance of the selected wavelet features based on wavelet detail coefficients at the second level and the third level. The genetic algorithm is performed to optimize wavelet detail coefficients to select the best discriminant features. Exper-iments are carried out on four microarray datasets to evaluate the performance of classification. Experimental results prove that wavelet features optimized from detail coefficients efficiently characterize the differences between normal tissues and cancer tissues.

  20. Diagnostic and analytical applications of protein microarrays

    DEFF Research Database (Denmark)

    Dufva, Hans Martin; Christensen, C.B.V.

    2005-01-01

    -linked immunosorbent assay, mass spectrometry or high-performance liquid chromatography-based assays. However, for protein and antibody arrays to be successfully introduced into diagnostics, the biochemistry of immunomicroarrays must be better characterized and simplified, they must be validated in a clinical setting...... years. A genome-scale protein microarray has been demonstrated for identifying protein-protein interactions as well as for rapid identification of protein binding to a particular drug. Furthermore, protein microarrays have been shown as an efficient tool in cancer profiling, detection of bacteria...

  1. Microarrays - A Key Technology for Glycobiology

    Science.gov (United States)

    Liu, Yan; Feizi, Ten

    Carbohydrate chains of glycoproteins , glycolipids , and proteoglycans can mediate processes of biological and medical importance through their interactions with complementary proteins. The unraveling of these interactions is a priority therefore in biomedical sciences. Carbohydrate microarray technology is a new development at the frontiers of glycomics that has revolutionized the study of carbohydrate-protein interactions and the elucidation of their specificities in endogenous biological processes, immune defense mechanisms, and microbe-host interactions. In this chapter we briefly touch upon the principles of numerous platforms since the introduction of carbohydrate microarrays in 2002, and we highlight platforms that are beyond proof-of-concept, and have provided new biological information.

  2. Development and application of a microarray meter tool to optimize microarray experiments

    Directory of Open Access Journals (Sweden)

    Rouse Richard JD

    2008-07-01

    Full Text Available Abstract Background Successful microarray experimentation requires a complex interplay between the slide chemistry, the printing pins, the nucleic acid probes and targets, and the hybridization milieu. Optimization of these parameters and a careful evaluation of emerging slide chemistries are a prerequisite to any large scale array fabrication effort. We have developed a 'microarray meter' tool which assesses the inherent variations associated with microarray measurement prior to embarking on large scale projects. Findings The microarray meter consists of nucleic acid targets (reference and dynamic range control and probe components. Different plate designs containing identical probe material were formulated to accommodate different robotic and pin designs. We examined the variability in probe quality and quantity (as judged by the amount of DNA printed and remaining post-hybridization using three robots equipped with capillary printing pins. Discussion The generation of microarray data with minimal variation requires consistent quality control of the (DNA microarray manufacturing and experimental processes. Spot reproducibility is a measure primarily of the variations associated with printing. The microarray meter assesses array quality by measuring the DNA content for every feature. It provides a post-hybridization analysis of array quality by scoring probe performance using three metrics, a a measure of variability in the signal intensities, b a measure of the signal dynamic range and c a measure of variability of the spot morphologies.

  3. Microarray Я US: a user-friendly graphical interface to Bioconductor tools that enables accurate microarray data analysis and expedites comprehensive functional analysis of microarray results

    Directory of Open Access Journals (Sweden)

    Dai Yilin

    2012-06-01

    Full Text Available Abstract Background Microarray data analysis presents a significant challenge to researchers who are unable to use the powerful Bioconductor and its numerous tools due to their lack of knowledge of R language. Among the few existing software programs that offer a graphic user interface to Bioconductor packages, none have implemented a comprehensive strategy to address the accuracy and reliability issue of microarray data analysis due to the well known probe design problems associated with many widely used microarray chips. There is also a lack of tools that would expedite the functional analysis of microarray results. Findings We present Microarray Я US, an R-based graphical user interface that implements over a dozen popular Bioconductor packages to offer researchers a streamlined workflow for routine differential microarray expression data analysis without the need to learn R language. In order to enable a more accurate analysis and interpretation of microarray data, we incorporated the latest custom probe re-definition and re-annotation for Affymetrix and Illumina chips. A versatile microarray results output utility tool was also implemented for easy and fast generation of input files for over 20 of the most widely used functional analysis software programs. Conclusion Coupled with a well-designed user interface, Microarray Я US leverages cutting edge Bioconductor packages for researchers with no knowledge in R language. It also enables a more reliable and accurate microarray data analysis and expedites downstream functional analysis of microarray results.

  4. Microarray analysis of E-box binding-related gene expression in young and replicatively senescent human fibroblasts.

    Science.gov (United States)

    Semov, Alexandre; Marcotte, Richard; Semova, Natalie; Ye, Xiangyun; Wang, Eugenia

    2002-03-01

    An E-box (CACGTG) designer microarray was developed to monitor a group of genes whose expressions share a particular regulatory mode. Sensitivity and specificity of microarray hybridization, as well as variability of microarray data, were evaluated. This designer microarray was used to generate expression profiles of E-box binding-related genes in WI-38 fibroblast cultures at three different growth states: low-passage replicating, low-passage contact-inhibited quiescent, and replicatively senescent. Microarray gene screening reveals that quiescent and senescent cells, in comparison with replicating ones, are characterized by downregulation of Pam, a protein associated with c-Myc, and upregulation of Mad family genes, Max dimerization proteins. Moreover, quiescence and senescence can be distinguished by increased expression of Irlb, c-Myc transcription factor, and Miz-1, c-Myc-interacting Zn finger protein 1, only in the former state. Senescence is characterized by downregulation of Id4, inhibitor of DNA binding 4, and Mitf, microphthalmia-associated transcription factor, in comparison with young replicating and quiescent states. Differential expression of genes detected by microarray hybridization was independently confirmed by reverse transcription polymerase chain reaction technique. Alterations in the expression of E-box-binding transcription factors and c-Myc-binding proteins demonstrate the importance of these genes in establishing the contact-inhibited quiescent or senescent phenotypes.

  5. 基因芯片技术筛选人不同发育阶段表皮干细胞差异表达基因的研究%Screening of differential expression genes of human skin epidermal stem cells at different development stages by cDNA microarray technique

    Institute of Scientific and Technical Information of China (English)

    蓝蔚; 刘德伍; 李国辉; 毛远桂; 陈桦; 易先锋; 王联群; 彭燕; 钟清玲

    2011-01-01

    ,with 10 cases in each group. Epidermis were separated using trypsin digestion and EDTA, and human epidermal stem cells were isolated and purified with type Ⅳ collagen attachment method. The monoclonal antibody of integrin β1 and keratin 19 were used for detection and identification of epidermal stem cells by immunohistochemical staining. Total RNA was extracted from above cells by Trizol one-step method, and were detected by formaldehyde denaturing agarose gel electrophoresis. Probes were prepared and hybridized into cDNA microarray for scanning fluorescent signals and analysis of images, with two-fold differential expression value for screening. Significantly up/down-regulated genes were selected for verification by real time RT-PCR. Results By comparing expression profile between A and C groups, a total of 1808 genes with differential expression were detected, including 1089 up-regulated genes and 719 down-regulated genes, and they were classified into 128 categories. Among them, 1462 genes were known (found in GeneBank), 346 genes were unknown. A total of 4534 genes with differential expression were detected between C and F groups, in which 1783 genes were up-regulated and 2751 genes were down-regulated, and they were classified into 216 categories. Among them, 3577 genes were known (found in GeneBank), and 957 genes were unknown. There were 1104 genes with differential expression consistently detected in F, C and A groups,which were classified into 32 categories according to gene function. Among them, 94 genes were consistently up-regulated and 75 genes consistently down-regulated. Test results of real time RT-PCR were in accordance with above-mentioned results. Conclusions Gene expression profiles of epidermal stem cells cultured in vitro, harvested from fetuses, children, and adult, exhibit obvious difference. This may be closely related to different stages of proliferation and differentiation of human epidermal stem cell and self-repair ability of wound at

  6. Single-species microarrays and comparative transcriptomics.

    Directory of Open Access Journals (Sweden)

    Frédéric J J Chain

    Full Text Available BACKGROUND: Prefabricated expression microarrays are currently available for only a few species but methods have been proposed to extend their application to comparisons between divergent genomes. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that the hybridization intensity of genomic DNA is a poor basis on which to select unbiased probes on Affymetrix expression arrays for studies of comparative transcriptomics, and that doing so produces spurious results. We used the Affymetrix Xenopus laevis microarray to evaluate expression divergence between X. laevis, X. borealis, and their F1 hybrids. When data are analyzed with probes that interrogate only sequences with confirmed identity in both species, we recover results that differ substantially analyses that use genomic DNA hybridizations to select probes. CONCLUSIONS/SIGNIFICANCE: Our findings have implications for the experimental design of comparative expression studies that use single-species microarrays, and for our understanding of divergent expression in hybrid clawed frogs. These findings also highlight important limitations of single-species microarrays for studies of comparative transcriptomics of polyploid species.

  7. Microarray Assisted Gene Discovery in Ulcerative Colitis

    DEFF Research Database (Denmark)

    Brusgaard, Klaus

    ), and microarray based expression studies. In IBD the increased production of chemo attractants from the inflamed microenvironment results in recruitment of activated CD4+ T lymphocytes which results in tissue damage. Where Th1 cell-derived cytokines has been reported to be essential mediators in CD with high (IFN...

  8. Shrinkage covariance matrix approach for microarray data

    Science.gov (United States)

    Karjanto, Suryaefiza; Aripin, Rasimah

    2013-04-01

    Microarray technology was developed for the purpose of monitoring the expression levels of thousands of genes. A microarray data set typically consists of tens of thousands of genes (variables) from just dozens of samples due to various constraints including the high cost of producing microarray chips. As a result, the widely used standard covariance estimator is not appropriate for this purpose. One such technique is the Hotelling's T2 statistic which is a multivariate test statistic for comparing means between two groups. It requires that the number of observations (n) exceeds the number of genes (p) in the set but in microarray studies it is common that n Hotelling's T2 statistic with the shrinkage approach is proposed to estimate the covariance matrix for testing differential gene expression. The performance of this approach is then compared with other commonly used multivariate tests using a widely analysed diabetes data set as illustrations. The results across the methods are consistent, implying that this approach provides an alternative to existing techniques.

  9. Pineal function : Impact of microarray analysis

    NARCIS (Netherlands)

    Klein, David C.; Bailey, Michael J.; Carter, David A.; Kim, Jong-so; Shi, Qiong; Ho, Anthony K.; Chik, Constance L.; Gaildrat, Pascaline; Morin, Fabrice; Ganguly, Surajit; Rath, Martin F.; Moller, Morten; Sugden, David; Rangel, Zoila G.; Munson, Peter J.; Weller, Joan L.; Coon, Steven L.

    2010-01-01

    Microarray analysis has provided a new understanding of pineal function by identifying genes that are highly expressed in this tissue relative to other tissues and also by identifying over 600 genes that are expressed on a 24-h schedule. This effort has highlighted surprising similarity to the retin

  10. Design of a covalently bonded glycosphingolipid microarray

    DEFF Research Database (Denmark)

    Arigi, Emma; Blixt, Klas Ola; Buschard, Karsten

    2012-01-01

    -mercaptoethylamine, was also tested. Underivatized or linker-derivatized lyso-GSL were then immobilized on N-hydroxysuccinimide- or epoxide-activated glass microarray slides and probed with carbohydrate binding proteins of known or partially known specificities (i.e., cholera toxin B-chain; peanut agglutinin...

  11. A Method of Microarray Data Storage Using Array Data Type

    Science.gov (United States)

    Tsoi, Lam C.; Zheng, W. Jim

    2009-01-01

    A well-designed microarray database can provide valuable information on gene expression levels. However, designing an efficient microarray database with minimum space usage is not an easy task since designers need to integrate the microarray data with the information of genes, probe annotation, and the descriptions of each microarray experiment. Developing better methods to store microarray data can greatly improve the efficiency and usefulness of such data. A new schema is proposed to store microarray data by using array data type in an object-relational database management system – PostgreSQL. The implemented database can store all the microarray data from the same chip in an array data structure. The variable length array data type in PostgreSQL can store microarray data from same chip. The implementation of our schema can help to increase the data retrieval and space efficiency. PMID:17392028

  12. Examining microarray slide quality for the EPA using SNL's hyperspectral microarray scanner.

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, Rachel M.; Timlin, Jerilyn Ann

    2005-11-01

    This report summarizes research performed at Sandia National Laboratories (SNL) in collaboration with the Environmental Protection Agency (EPA) to assess microarray quality on arrays from two platforms of interest to the EPA. Custom microarrays from two novel, commercially produced array platforms were imaged with SNL's unique hyperspectral imaging technology and multivariate data analysis was performed to investigate sources of emission on the arrays. No extraneous sources of emission were evident in any of the array areas scanned. This led to the conclusions that either of these array platforms could produce high quality, reliable microarray data for the EPA toxicology programs. Hyperspectral imaging results are presented and recommendations for microarray analyses using these platforms are detailed within the report.

  13. Facilitating functional annotation of chicken microarray data

    Directory of Open Access Journals (Sweden)

    Gresham Cathy R

    2009-10-01

    Full Text Available Abstract Background Modeling results from chicken microarray studies is challenging for researchers due to little functional annotation associated with these arrays. The Affymetrix GenChip chicken genome array, one of the biggest arrays that serve as a key research tool for the study of chicken functional genomics, is among the few arrays that link gene products to Gene Ontology (GO. However the GO annotation data presented by Affymetrix is incomplete, for example, they do not show references linked to manually annotated functions. In addition, there is no tool that facilitates microarray researchers to directly retrieve functional annotations for their datasets from the annotated arrays. This costs researchers amount of time in searching multiple GO databases for functional information. Results We have improved the breadth of functional annotations of the gene products associated with probesets on the Affymetrix chicken genome array by 45% and the quality of annotation by 14%. We have also identified the most significant diseases and disorders, different types of genes, and known drug targets represented on Affymetrix chicken genome array. To facilitate functional annotation of other arrays and microarray experimental datasets we developed an Array GO Mapper (AGOM tool to help researchers to quickly retrieve corresponding functional information for their dataset. Conclusion Results from this study will directly facilitate annotation of other chicken arrays and microarray experimental datasets. Researchers will be able to quickly model their microarray dataset into more reliable biological functional information by using AGOM tool. The disease, disorders, gene types and drug targets revealed in the study will allow researchers to learn more about how genes function in complex biological systems and may lead to new drug discovery and development of therapies. The GO annotation data generated will be available for public use via AgBase website and

  14. Design of a covalently bonded glycosphingolipid microarray.

    Science.gov (United States)

    Arigi, Emma; Blixt, Ola; Buschard, Karsten; Clausen, Henrik; Levery, Steven B

    2012-01-01

    Glycosphingolipids (GSLs) are well known ubiquitous constituents of all eukaryotic cell membranes, yet their normal biological functions are not fully understood. As with other glycoconjugates and saccharides, solid phase display on microarrays potentially provides an effective platform for in vitro study of their functional interactions. However, with few exceptions, the most widely used microarray platforms display only the glycan moiety of GSLs, which not only ignores potential modulating effects of the lipid aglycone, but inherently limits the scope of application, excluding, for example, the major classes of plant and fungal GSLs. In this work, a prototype "universal" GSL-based covalent microarray has been designed, and preliminary evaluation of its potential utility in assaying protein-GSL binding interactions investigated. An essential step in development involved the enzymatic release of the fatty acyl moiety of the ceramide aglycone of selected mammalian GSLs with sphingolipid N-deacylase (SCDase). Derivatization of the free amino group of a typical lyso-GSL, lyso-G(M1), with a prototype linker assembled from succinimidyl-[(N-maleimidopropionamido)-diethyleneglycol] ester and 2-mercaptoethylamine, was also tested. Underivatized or linker-derivatized lyso-GSL were then immobilized on N-hydroxysuccinimide- or epoxide-activated glass microarray slides and probed with carbohydrate binding proteins of known or partially known specificities (i.e., cholera toxin B-chain; peanut agglutinin, a monoclonal antibody to sulfatide, Sulph 1; and a polyclonal antiserum reactive to asialo-G(M2)). Preliminary evaluation of the method indicated successful immobilization of the GSLs, and selective binding of test probes. The potential utility of this methodology for designing covalent microarrays that incorporate GSLs for serodiagnosis is discussed.

  15. Fabrication of protein microarrays for alpha fetoprotein detection by using a rapid photo-immobilization process

    Directory of Open Access Journals (Sweden)

    Sirasa Yodmongkol

    2016-03-01

    Full Text Available In this study, protein microarrays based on sandwich immunoassays are generated to quantify the amount of alpha fetoprotein (AFP in blood serum. For chip generation a mixture of capture antibody and a photoactive copolymer consisting of N,N-dimethylacrylamide (DMAA, methacryloyloxy benzophenone (MaBP, and Na-4-styrenesulfonate (SSNa was spotted onto unmodified polymethyl methacrylate (PMMA substrates. Subsequently to printing of the microarray, the polymer and protein were photochemically cross-linked and the forming, biofunctionalized hydrogels simultaneously bound to the chip surface by short UV- irradiation. The obtained biochip was incubated with AFP antigen, followed by biotinylated AFP antibody and streptavidin-Cy5 and the fluorescence signal read-out. The developed microarray biochip covers the range of AFP in serum samples such as maternal serum in the range of 5 and 100 ng/ml. The chip production process is based on a fast and simple immobilization process, which can be applied to conventional plastic surfaces. Therefore, this protein microarray production process is a promising method to fabricate biochips for AFP screening processes.

  16. Assessment of fusion gene status in sarcomas using a custom made fusion gene microarray.

    Directory of Open Access Journals (Sweden)

    Marthe Løvf

    Full Text Available Sarcomas are relatively rare malignancies and include a large number of histological subgroups. Based on morphology alone, the differential diagnoses of sarcoma subtypes can be challenging, but the identification of specific fusion genes aids correct diagnostication. The presence of individual fusion products are routinely investigated in Pathology labs. However, the methods used are time-consuming and based on prior knowledge about the expected fusion gene and often the most likely break-point. In this study, 16 sarcoma samples, representing seven different sarcoma subtypes with known fusion gene status from a diagnostic setting, were investigated using a fusion gene microarray. The microarray was designed to detect all possible exon-exon breakpoints between all known fusion genes in a single analysis. An automated scoring of the microarray data from the 38 known sarcoma-related fusion genes identified the correct fusion gene among the top-three hits in 11 of the samples. The analytical sensitivity may be further optimised, but we conclude that a sarcoma-fusion gene microarray is suitable as a time-saving screening tool to identify the majority of the correct fusion genes.

  17. Microarray BASICA: Background Adjustment, Segmentation, Image Compression and Analysis of Microarray Images

    Directory of Open Access Journals (Sweden)

    Jianping Hua

    2004-01-01

    Full Text Available This paper presents microarray BASICA: an integrated image processing tool for background adjustment, segmentation, image compression, and analysis of cDNA microarray images. BASICA uses a fast Mann-Whitney test-based algorithm to segment cDNA microarray images, and performs postprocessing to eliminate the segmentation irregularities. The segmentation results, along with the foreground and background intensities obtained with the background adjustment, are then used for independent compression of the foreground and background. We introduce a new distortion measurement for cDNA microarray image compression and devise a coding scheme by modifying the embedded block coding with optimized truncation (EBCOT algorithm (Taubman, 2000 to achieve optimal rate-distortion performance in lossy coding while still maintaining outstanding lossless compression performance. Experimental results show that the bit rate required to ensure sufficiently accurate gene expression measurement varies and depends on the quality of cDNA microarray images. For homogeneously hybridized cDNA microarray images, BASICA is able to provide from a bit rate as low as 5 bpp the gene expression data that are 99% in agreement with those of the original 32 bpp images.

  18. A microarray-based gastric carcinoma prewarning system

    Institute of Scientific and Technical Information of China (English)

    Da-Xiang Cui; Jin-Rong Zhao; Fen-Chan Han; Ju Zhang; Jia-Le Hu; Dai-Ming Fan; Hua-Jian Gao; Li Zhang; Xiao-Jun Yan; Ling-Xia Zhang; Jun-Rong Xu; Yan-Hai Guo; Gui-Qiu Jin; Giovani Gomez; Ding Li

    2005-01-01

    AIM: To develop a microarray-based prewarning system consisting of gastric cancer chip, prewarning data and analysissoftware for early detection of gastric cancer and pre-cancerous lesions.METHODS: Two high-density chips with 8 464 human cDNA sites were used to primarily identify potential genes specific for normal gastric mucosa, pre-cancerous lesion and gastric cancer. The low-density chips, composed of selected genes associated with normal gastric mucosa,precancerous lesion and gastric cancer, were fabricated and used to screen 150 specimens including 60 specimens of gastric cancer, 60 of pre-cancerous tissues and 30 of normal gastric mucosa. CAD software was used to screen out the relevant genes and their critical threshold values of expression levels distinguishing normal mucosa from pre-cancerous lesion and cancer. All data were stored in a computer database to establish a prewarning data library for gastric cancer. Two potential markers brcaa1 and ndr1were identified by Western blot and immunohistochemistry.RESULTS: A total of 412 genes associated with three stages of gastric cancer development were identified.There were 216 genes displaying higher expression in gastric cancer, 85 genes displaying higher expression in pre-cancerous lesion and 88 genes displaying higher expression in normal gastric mucosa. Also 15 genes associated with metastasis of gastric cancer and 8 genes associated with risk factors were screened out for target genes of diagnosis chip of early gastric cancer. The threshold values of 412 selected genes to distinguish gastric cancer, pre-cancerous lesion from normal gastric mucosa were defined as 6.01±2.40, 4.86±1.94 and 5.42±2.17, respectively. These selected 412 genes and critical threshold values were compiled into an analysis software, which can automatically provide reports by analyzing the results of 412 genes obtained by examining gastric tissues. All data were compiled into a prewarning database for gastric cancer by CGO

  19. Post-normalization quality assessment visualization of microarray data

    NARCIS (Netherlands)

    McClure, John; Wit, Ernst

    2003-01-01

    Post-normalization checking of microarrays rarely occurs, despite the problems that using unreliable data for inference can cause. This paper considers a number of different ways to check microarrays after normalization for a variety of potential problems. Four types of problem with microarray data

  20. SIMAGE : simulation of DNA-microarray gene expression data

    NARCIS (Netherlands)

    Albers, Casper J.; Jansen, Ritsert C.; Kok, Jan; Kuipers, Oscar P.; Hijum, Sacha A.F.T. van

    2006-01-01

    Simulation of DNA-microarray data serves at least three purposes: (i) optimizing the design of an intended DNA microarray experiment, (ii) comparing existing pre-processing and processing methods for best analysis of a given DNA microarray experiment, (iii) educating students, lab-workers and other

  1. Further evidence for an association of ABCR alleles with age-related macular degeneration. The International ABCR Screening Consortium.

    Science.gov (United States)

    Allikmets, R

    2000-08-01

    Age-related macular degeneration (AMD) accounts for >50% of the registered visual disability among North American and Western European populations and has been associated both with environmental factors, such as smoking, and with genetic factors. Previously we have reported disease-associated variants in the ABCR (also called ABCA4) gene in a subset of patients affected with this complex disorder. We have now tested our original hypothesis, that ABCR is a dominant susceptibility locus for AMD, by screening 1,218 unrelated AMD patients of North American and Western European origin and 1,258 comparison individuals from 15 centers in North America and Europe for the two most frequent AMD-associated variants found in ABCR. These two sequence changes, G1961E and D2177N, were found in one allele of ABCR in 40 patients ( approximately 3.4%), and in 13 control subjects ( approximately 0.95%). Fisher's two-sided exact test confirmed that these two variants are associated with AMD at a statistically significant level (PAMD is elevated approximately threefold in D2177N carriers and approximately fivefold in G1961E carriers. The identification of a gene that confers risk of AMD is an important step in unraveling this complex disorder.

  2. Gene Expression Profiling of Colorectal Tumors and Normal Mucosa by Microarrays Meta-Analysis Using Prediction Analysis of Microarray, Artificial Neural Network, Classification, and Regression Trees

    Directory of Open Access Journals (Sweden)

    Chi-Ming Chu

    2014-01-01

    Full Text Available Background. Microarray technology shows great potential but previous studies were limited by small number of samples in the colorectal cancer (CRC research. The aims of this study are to investigate gene expression profile of CRCs by pooling cDNA microarrays using PAM, ANN, and decision trees (CART and C5.0. Methods. Pooled 16 datasets contained 88 normal mucosal tissues and 1186 CRCs. PAM was performed to identify significant expressed genes in CRCs and models of PAM, ANN, CART, and C5.0 were constructed for screening candidate genes via ranking gene order of significances. Results. The first screening identified 55 genes. The test accuracy of each model was over 0.97 averagely. Less than eight genes achieve excellent classification accuracy. Combining the results of four models, we found the top eight differential genes in CRCs; suppressor genes, CA7, SPIB, GUCA2B, AQP8, IL6R and CWH43; oncogenes, SPP1 and TCN1. Genes of higher significances showed lower variation in rank ordering by different methods. Conclusion. We adopted a two-tier genetic screen, which not only reduced the number of candidate genes but also yielded good accuracy (nearly 100%. This method can be applied to future studies. Among the top eight genes, CA7, TCN1, and CWH43 have not been reported to be related to CRC.

  3. Vision Screening

    Science.gov (United States)

    ... of Prematurity Strabismus Stye (defined) Vision Screening Vision Screening Recommendations Loading... Most Common Searches Adult Strabismus Amblyopia Cataract Conjunctivitis Corneal Abrasions Dilating Eye ...

  4. Whole genome microarray analysis, from neonatal blood cards

    Directory of Open Access Journals (Sweden)

    Hogan Michael E

    2009-07-01

    Full Text Available Abstract Background Neonatal blood, obtained from a heel stick and stored dry on paper cards, has been the standard for birth defects screening for 50 years. Such dried blood samples are used, primarily, for analysis of small-molecule analytes. More recently, the DNA complement of such dried blood cards has been used for targeted genetic testing, such as for single nucleotide polymorphism in cystic fibrosis. Expansion of such testing to include polygenic traits, and perhaps whole genome scanning, has been discussed as a formal possibility. However, until now the amount of DNA that might be obtained from such dried blood cards has been limiting, due to inefficient DNA recovery technology. Results A new technology is employed for efficient DNA release from a standard neonatal blood card. Using standard Guthrie cards, stored an average of ten years post-collection, about 1/40th of the air-dried neonatal blood specimen (two 3 mm punches was processed to obtain DNA that was sufficient in mass and quality for direct use in microarray-based whole genome scanning. Using that same DNA release technology, it is also shown that approximately 1/250th of the original purified DNA (about 1 ng could be subjected to whole genome amplification, thus yielding an additional microgram of amplified DNA product. That amplified DNA product was then used in microarray analysis and yielded statistical concordance of 99% or greater to the primary, unamplified DNA sample. Conclusion Together, these data suggest that DNA obtained from less than 10% of a standard neonatal blood specimen, stored dry for several years on a Guthrie card, can support a program of genome-wide neonatal genetic testing.

  5. An antibody microarray analysis of serum cytokines in neurodegenerative Parkinsonian syndromes

    Directory of Open Access Journals (Sweden)

    Mahlknecht Philipp

    2012-11-01

    Full Text Available Abstract Background Microarray technology may offer a new opportunity to gain insight into disease-specific global protein expression profiles. The present study was performed to apply a serum antibody microarray to screen for differentially regulated cytokines in Parkinson's disease (PD, multiple system atrophy (MSA, progressive supranuclear palsy (PSP and corticobasal syndrome (CBS. Results Serum samples were obtained from patients with clinical diagnoses of PD (n = 117, MSA (n = 31 and PSP/CBS (n = 38 and 99 controls. Cytokine profiles of sera from patients and controls were analyzed with a semiquantitative human antibody array for 174 cytokines and the expression of 12 cytokines was found to be significantly altered. In a next step, results from the microarray experiment were individually validated by different immunoassays. Immunoassay validation confirmed a significant increase of median PDGF-BB levels in patients with PSP/CBS, MSA and PD and a decrease of median prolactin levels in PD. However, neither PDGF-BB nor prolactin were specific biomarkers to discriminate PSP/CBS, MSA, PD and controls. Conclusions In our unbiased cytokine array based screening approach and validation by a different immunoassay only two of 174 cytokines were significantly altered between patients and controls.

  6. Single-Nucleotide Polymorphism-Microarray Ploidy Analysis of Paraffin-Embedded Products of Conception in Recurrent Pregnancy Loss Evaluations.

    Science.gov (United States)

    Maslow, Bat-Sheva L; Budinetz, Tara; Sueldo, Carolina; Anspach, Erica; Engmann, Lawrence; Benadiva, Claudio; Nulsen, John C

    2015-07-01

    To compare the analysis of chromosome number from paraffin-embedded products of conception using single-nucleotide polymorphism (SNP) microarray with the recommended screening for the evaluation of couples presenting with recurrent pregnancy loss who do not have previous fetal cytogenetic data. We performed a retrospective cohort study including all women who presented for a new evaluation of recurrent pregnancy loss over a 2-year period (January 1, 2012, to December 31, 2013). All participants had at least two documented first-trimester losses and both the recommended screening tests and SNP microarray performed on at least one paraffin-embedded products of conception sample. Single-nucleotide polymorphism microarray identifies all 24 chromosomes (22 autosomes, X, and Y). Forty-two women with a total of 178 losses were included in the study. Paraffin-embedded products of conception from 62 losses were sent for SNP microarray. Single-nucleotide polymorphism microarray successfully diagnosed fetal chromosome number in 71% (44/62) of samples, of which 43% (19/44) were euploid and 57% (25/44) were noneuploid. Seven of 42 (17%) participants had abnormalities on recurrent pregnancy loss screening. The per-person detection rate for a cause of pregnancy loss was significantly higher in the SNP microarray (0.50; 95% confidence interval [CI] 0.36-0.64) compared with recurrent pregnancy loss evaluation (0.17; 95% CI 0.08-0.31) (P=.002). Participants with one or more euploid loss identified on paraffin-embedded products of conception were significantly more likely to have an abnormality on recurrent pregnancy loss screening than those with only noneuploid results (P=.028). The significance remained when controlling for age, number of losses, number of samples, and total pregnancies. These results suggest that SNP microarray testing of paraffin-embedded products of conception is a valuable tool for the evaluation of recurrent pregnancy loss in patients without prior fetal

  7. Viral diagnosis in Indian livestock using customized microarray chips.

    Science.gov (United States)

    Yadav, Brijesh S; Pokhriyal, Mayank; Ratta, Barkha; Kumar, Ajay; Saxena, Meeta; Sharma, Bhaskar

    2015-01-01

    Viral diagnosis in Indian livestock using customized microarray chips is gaining momentum in recent years. Hence, it is possible to design customized microarray chip for viruses infecting livestock in India. Customized microarray chips identified Bovine herpes virus-1 (BHV-1), Canine Adeno Virus-1 (CAV-1), and Canine Parvo Virus-2 (CPV-2) in clinical samples. Microarray identified specific probes were further confirmed using RT-PCR in all clinical and known samples. Therefore, the application of microarray chips during viral disease outbreaks in Indian livestock is possible where conventional methods are unsuitable. It should be noted that customized application requires a detailed cost efficiency calculation.

  8. Immobilization Techniques for Microarray: Challenges and Applications

    Directory of Open Access Journals (Sweden)

    Satish Balasaheb Nimse

    2014-11-01

    Full Text Available The highly programmable positioning of molecules (biomolecules, nanoparticles, nanobeads, nanocomposites materials on surfaces has potential applications in the fields of biosensors, biomolecular electronics, and nanodevices. However, the conventional techniques including self-assembled monolayers fail to position the molecules on the nanometer scale to produce highly organized monolayers on the surface. The present article elaborates different techniques for the immobilization of the biomolecules on the surface to produce microarrays and their diagnostic applications. The advantages and the drawbacks of various methods are compared. This article also sheds light on the applications of the different technologies for the detection and discrimination of viral/bacterial genotypes and the detection of the biomarkers. A brief survey with 115 references covering the last 10 years on the biological applications of microarrays in various fields is also provided.

  9. Protein microarrays: applications and future challenges.

    Science.gov (United States)

    Stoll, Dieter; Templin, Markus F; Bachmann, Jutta; Joos, Thomas O

    2005-03-01

    Within the last decade protein microarray technology has been successfully applied for the simultaneous identification, quantification and functional analysis of proteins in basic and applied proteome research. These miniaturized and parallelized assay systems have the potential to replace state-of-the-art singleplex analysis systems. However, prior to their general application in robust, reliable, routine and high-throughput applications it is mandatory that they demonstrate robustness, sensitivity, automation and appropriate pricing. In this review, the current state of protein microarray technology will be summarized. Recent applications for the simultaneous determination of a variety of parameters using only minute amounts of sample will be described and future challenges of this cutting-edge technology will be discussed.

  10. Plasmonically amplified fluorescence bioassay with microarray format

    Science.gov (United States)

    Gogalic, S.; Hageneder, S.; Ctortecka, C.; Bauch, M.; Khan, I.; Preininger, Claudia; Sauer, U.; Dostalek, J.

    2015-05-01

    Plasmonic amplification of fluorescence signal in bioassays with microarray detection format is reported. A crossed relief diffraction grating was designed to couple an excitation laser beam to surface plasmons at the wavelength overlapping with the absorption and emission bands of fluorophore Dy647 that was used as a label. The surface of periodically corrugated sensor chip was coated with surface plasmon-supporting gold layer and a thin SU8 polymer film carrying epoxy groups. These groups were employed for the covalent immobilization of capture antibodies at arrays of spots. The plasmonic amplification of fluorescence signal on the developed microarray chip was tested by using interleukin 8 sandwich immunoassay. The readout was performed ex situ after drying the chip by using a commercial scanner with high numerical aperture collecting lens. Obtained results reveal the enhancement of fluorescence signal by a factor of 5 when compared to a regular glass chip.

  11. PMD: A Resource for Archiving and Analyzing Protein Microarray data.

    Science.gov (United States)

    Xu, Zhaowei; Huang, Likun; Zhang, Hainan; Li, Yang; Guo, Shujuan; Wang, Nan; Wang, Shi-Hua; Chen, Ziqing; Wang, Jingfang; Tao, Sheng-Ce

    2016-01-27

    Protein microarray is a powerful technology for both basic research and clinical study. However, because there is no database specifically tailored for protein microarray, the majority of the valuable original protein microarray data is still not publically accessible. To address this issue, we constructed Protein Microarray Database (PMD), which is specifically designed for archiving and analyzing protein microarray data. In PMD, users can easily browse and search the entire database by experimental name, protein microarray type, and sample information. Additionally, PMD integrates several data analysis tools and provides an automated data analysis pipeline for users. With just one click, users can obtain a comprehensive analysis report for their protein microarray data. The report includes preliminary data analysis, such as data normalization, candidate identification, and an in-depth bioinformatics analysis of the candidates, which include functional annotation, pathway analysis, and protein-protein interaction network analysis. PMD is now freely available at www.proteinmicroarray.cn.

  12. Microarray for serotyping of Bartonella species

    OpenAIRE

    Raoult Didier; Nappez Claude; Bonhomme Cyrille J

    2007-01-01

    Abstract Background Bacteria of the genus Bartonella are responsible for a large variety of human and animal diseases. Serological typing of Bartonella is a method that can be used for differentiation and identification of Bartonella subspecies. Results We have developed a novel multiple antigenic microarray to serotype Bartonella strains and to select poly and monoclonal antibodies. It was validated using mouse polyclonal antibodies against 29 Bartonella strains. We then tested the microarra...

  13. Undetected sex chromosome aneuploidy by chromosomal microarray.

    Science.gov (United States)

    Markus-Bustani, Keren; Yaron, Yuval; Goldstein, Myriam; Orr-Urtreger, Avi; Ben-Shachar, Shay

    2012-11-01

    We report on a case of a female fetus found to be mosaic for Turner syndrome (45,X) and trisomy X (47,XXX). Chromosomal microarray analysis (CMA) failed to detect the aneuploidy because of a normal average dosage of the X chromosome. This case represents an unusual instance in which CMA may not detect chromosomal aberrations. Such a possibility should be taken into consideration in similar cases where CMA is used in a clinical setting.

  14. Hybridization thermodynamics of NimbleGen Microarrays

    Directory of Open Access Journals (Sweden)

    Posekany Alexandra

    2010-01-01

    Full Text Available Abstract Background While microarrays are the predominant method for gene expression profiling, probe signal variation is still an area of active research. Probe signal is sequence dependent and affected by probe-target binding strength and the competing formation of probe-probe dimers and secondary structures in probes and targets. Results We demonstrate the benefits of an improved model for microarray hybridization and assess the relative contributions of the probe-target binding strength and the different competing structures. Remarkably, specific and unspecific hybridization were apparently driven by different energetic contributions: For unspecific hybridization, the melting temperature Tm was the best predictor of signal variation. For specific hybridization, however, the effective interaction energy that fully considered competing structures was twice as powerful a predictor of probe signal variation. We show that this was largely due to the effects of secondary structures in the probe and target molecules. The predictive power of the strength of these intramolecular structures was already comparable to that of the melting temperature or the free energy of the probe-target duplex. Conclusions This analysis illustrates the importance of considering both the effects of probe-target binding strength and the different competing structures. For specific hybridization, the secondary structures of probe and target molecules turn out to be at least as important as the probe-target binding strength for an understanding of the observed microarray signal intensities. Besides their relevance for the design of new arrays, our results demonstrate the value of improving thermodynamic models for the read-out and interpretation of microarray signals.

  15. Weighted analysis of general microarray experiments

    Directory of Open Access Journals (Sweden)

    Kristiansson Erik

    2007-10-01

    Full Text Available Abstract Background In DNA microarray experiments, measurements from different biological samples are often assumed to be independent and to have identical variance. For many datasets these assumptions have been shown to be invalid and typically lead to too optimistic p-values. A method called WAME has been proposed where a variance is estimated for each sample and a covariance is estimated for each pair of samples. The current version of WAME is, however, limited to experiments with paired design, e.g. two-channel microarrays. Results The WAME procedure is extended to general microarray experiments, making it capable of handling both one- and two-channel datasets. Two public one-channel datasets are analysed and WAME detects both unequal variances and correlations. WAME is compared to other common methods: fold-change ranking, ordinary linear model with t-tests, LIMMA and weighted LIMMA. The p-value distributions are shown to differ greatly between the examined methods. In a resampling-based simulation study, the p-values generated by WAME are found to be substantially more correct than the alternatives when a relatively small proportion of the genes is regulated. WAME is also shown to have higher power than the other methods. WAME is available as an R-package. Conclusion The WAME procedure is generalized and the limitation to paired-design microarray datasets is removed. The examined other methods produce invalid p-values in many cases, while WAME is shown to produce essentially valid p-values when a relatively small proportion of genes is regulated. WAME is also shown to have higher power than the examined alternative methods.

  16. Linking microarray reporters with protein functions

    Directory of Open Access Journals (Sweden)

    Gaj Stan

    2007-09-01

    Full Text Available Abstract Background The analysis of microarray experiments requires accurate and up-to-date functional annotation of the microarray reporters to optimize the interpretation of the biological processes involved. Pathway visualization tools are used to connect gene expression data with existing biological pathways by using specific database identifiers that link reporters with elements in the pathways. Results This paper proposes a novel method that aims to improve microarray reporter annotation by BLASTing the original reporter sequences against a species-specific EMBL subset, that was derived from and crosslinked back to the highly curated UniProt database. The resulting alignments were filtered using high quality alignment criteria and further compared with the outcome of a more traditional approach, where reporter sequences were BLASTed against EnsEMBL followed by locating the corresponding protein (UniProt entry for the high quality hits. Combining the results of both methods resulted in successful annotation of > 58% of all reporter sequences with UniProt IDs on two commercial array platforms, increasing the amount of Incyte reporters that could be coupled to Gene Ontology terms from 32.7% to 58.3% and to a local GenMAPP pathway from 9.6% to 16.7%. For Agilent, 35.3% of the total reporters are now linked towards GO nodes and 7.1% on local pathways. Conclusion Our methods increased the annotation quality of microarray reporter sequences and allowed us to visualize more reporters using pathway visualization tools. Even in cases where the original reporter annotation showed the correct description the new identifiers often allowed improved pathway and Gene Ontology linking. These methods are freely available at http://www.bigcat.unimaas.nl/public/publications/Gaj_Annotation/.

  17. Image microarrays derived from tissue microarrays (IMA-TMA: New resource for computer-aided diagnostic algorithm development

    Directory of Open Access Journals (Sweden)

    Jennifer A Hipp

    2012-01-01

    Full Text Available Background: Conventional tissue microarrays (TMAs consist of cores of tissue inserted into a recipient paraffin block such that a tissue section on a single glass slide can contain numerous patient samples in a spatially structured pattern. Scanning TMAs into digital slides for subsequent analysis by computer-aided diagnostic (CAD algorithms all offers the possibility of evaluating candidate algorithms against a near-complete repertoire of variable disease morphologies. This parallel interrogation approach simplifies the evaluation, validation, and comparison of such candidate algorithms. A recently developed digital tool, digital core (dCORE, and image microarray maker (iMAM enables the capture of uniformly sized and resolution-matched images, with these representing key morphologic features and fields of view, aggregated into a single monolithic digital image file in an array format, which we define as an image microarray (IMA. We further define the TMA-IMA construct as IMA-based images derived from whole slide images of TMAs themselves. Methods: Here we describe the first combined use of the previously described dCORE and iMAM tools, toward the goal of generating a higher-order image construct, with multiple TMA cores from multiple distinct conventional TMAs assembled as a single digital image montage. This image construct served as the basis of the carrying out of a massively parallel image analysis exercise, based on the use of the previously described spatially invariant vector quantization (SIVQ algorithm. Results: Multicase, multifield TMA-IMAs of follicular lymphoma and follicular hyperplasia were separately rendered, using the aforementioned tools. Each of these two IMAs contained a distinct spectrum of morphologic heterogeneity with respect to both tingible body macrophage (TBM appearance and apoptotic body morphology. SIVQ-based pattern matching, with ring vectors selected to screen for either tingible body macrophages or apoptotic

  18. Image microarrays derived from tissue microarrays (IMA-TMA): New resource for computer-aided diagnostic algorithm development.

    Science.gov (United States)

    Hipp, Jennifer A; Hipp, Jason D; Lim, Megan; Sharma, Gaurav; Smith, Lauren B; Hewitt, Stephen M; Balis, Ulysses G J

    2012-01-01

    Conventional tissue microarrays (TMAs) consist of cores of tissue inserted into a recipient paraffin block such that a tissue section on a single glass slide can contain numerous patient samples in a spatially structured pattern. Scanning TMAs into digital slides for subsequent analysis by computer-aided diagnostic (CAD) algorithms all offers the possibility of evaluating candidate algorithms against a near-complete repertoire of variable disease morphologies. This parallel interrogation approach simplifies the evaluation, validation, and comparison of such candidate algorithms. A recently developed digital tool, digital core (dCORE), and image microarray maker (iMAM) enables the capture of uniformly sized and resolution-matched images, with these representing key morphologic features and fields of view, aggregated into a single monolithic digital image file in an array format, which we define as an image microarray (IMA). We further define the TMA-IMA construct as IMA-based images derived from whole slide images of TMAs themselves. Here we describe the first combined use of the previously described dCORE and iMAM tools, toward the goal of generating a higher-order image construct, with multiple TMA cores from multiple distinct conventional TMAs assembled as a single digital image montage. This image construct served as the basis of the carrying out of a massively parallel image analysis exercise, based on the use of the previously described spatially invariant vector quantization (SIVQ) algorithm. Multicase, multifield TMA-IMAs of follicular lymphoma and follicular hyperplasia were separately rendered, using the aforementioned tools. Each of these two IMAs contained a distinct spectrum of morphologic heterogeneity with respect to both tingible body macrophage (TBM) appearance and apoptotic body morphology. SIVQ-based pattern matching, with ring vectors selected to screen for either tingible body macrophages or apoptotic bodies, was subsequently carried out on the

  19. Analysis Method of Citrus Genome Microarray%浅谈柑橘基因组芯片分析方法

    Institute of Scientific and Technical Information of China (English)

    杨雪莲; 贝学军; 朱友娟

    2012-01-01

    cDNA microarray and oligonucleotide microarray are currently used for analysing citrus gene expression profile.The data analysis of genome microarray include data preprocessing,screening differential expression genes,and further analysing the differential expression genes.Through data analysis and integration of biological information,this paper studies the plant physiological changes.%指出了cDNA芯片和寡核苷酸芯片是目前用于柑橘基因表达谱分析的方法,基因组芯片数据分析主要包括数据预处理,筛选差异基因,差异基因再进一步分析。通过数据分析及整合样点的生物学信息,研究了植物生理变化。

  20. Chicken sperm transcriptome profiling by microarray analysis.

    Science.gov (United States)

    Singh, R P; Shafeeque, C M; Sharma, S K; Singh, R; Mohan, J; Sastry, K V H; Saxena, V K; Azeez, P A

    2016-03-01

    It has been confirmed that mammalian sperm contain thousands of functional RNAs, and some of them have vital roles in fertilization and early embryonic development. Therefore, we attempted to characterize transcriptome of the sperm of fertile chickens using microarray analysis. Spermatozoal RNA was pooled from 10 fertile males and used for RNA preparation. Prior to performing the microarray, RNA quality was assessed using a bioanalyzer, and gDNA and somatic cell RNA contamination was assessed by CD4 and PTPRC gene amplification. The chicken sperm transcriptome was cross-examined by analysing sperm and testes RNA on a 4 × 44K chicken array, and results were verified by RT-PCR. Microarray analysis identified 21,639 predominantly nuclear-encoded transcripts in chicken sperm. The majority (66.55%) of the sperm transcripts were shared with the testes, while surprisingly, 33.45% transcripts were detected (raw signal intensity greater than 50) only in the sperm and not in the testes. The greatest proportion of up-regulated transcripts were responsible for signal transduction (63.20%) followed by embryonic development (56.76%) and cell structure (56.25%). Of the 20 most abundant transcripts, 18 remain uncharacterized, whereas the least abundant genes were mostly associated with the ribosome. These findings lay a foundation for more detailed investigations on sperm RNAs in chickens to identify sperm-based biomarkers for fertility.

  1. Microarrays for rapid identification of plant viruses.

    Science.gov (United States)

    Boonham, Neil; Tomlinson, Jenny; Mumford, Rick

    2007-01-01

    Many factors affect the development and application of diagnostic techniques. Plant viruses are an inherently diverse group that, unlike cellular pathogens, possess no nucleotide sequence type (e.g., ribosomal RNA sequences) in common. Detection of plant viruses is becoming more challenging as globalization of trade, particularly in ornamentals, and the potential effects of climate change enhance the movement of viruses and their vectors, transforming the diagnostic landscape. Techniques for assessing seed, other propagation materials and field samples for the presence of specific viruses include biological indexing, electron microscopy, antibody-based detection, including enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and microarray detection. Of these, microarray detection provides the greatest capability for parallel yet specific testing, and can be used to detect individual, or combinations of viruses and, using current approaches, to do so with a sensitivity comparable to ELISA. Methods based on PCR provide the greatest sensitivity among the listed techniques but are limited in parallel detection capability even in "multiplexed" applications. Various aspects of microarray technology, including probe development, array fabrication, assay target preparation, hybridization, washing, scanning, and interpretation are presented and discussed, for both current and developing technology.

  2. An imputation approach for oligonucleotide microarrays.

    Directory of Open Access Journals (Sweden)

    Ming Li

    Full Text Available Oligonucleotide microarrays are commonly adopted for detecting and qualifying the abundance of molecules in biological samples. Analysis of microarray data starts with recording and interpreting hybridization signals from CEL images. However, many CEL images may be blemished by noises from various sources, observed as "bright spots", "dark clouds", and "shadowy circles", etc. It is crucial that these image defects are correctly identified and properly processed. Existing approaches mainly focus on detecting defect areas and removing affected intensities. In this article, we propose to use a mixed effect model for imputing the affected intensities. The proposed imputation procedure is a single-array-based approach which does not require any biological replicate or between-array normalization. We further examine its performance by using Affymetrix high-density SNP arrays. The results show that this imputation procedure significantly reduces genotyping error rates. We also discuss the necessary adjustments for its potential extension to other oligonucleotide microarrays, such as gene expression profiling. The R source code for the implementation of approach is freely available upon request.

  3. A New Distribution Family for Microarray Data

    Directory of Open Access Journals (Sweden)

    Diana Mabel Kelmansky

    2017-02-01

    Full Text Available The traditional approach with microarray data has been to apply transformations that approximately normalize them, with the drawback of losing the original scale. The alternative stand point taken here is to search for models that fit the data, characterized by the presence of negative values, preserving their scale; one advantage of this strategy is that it facilitates a direct interpretation of the results. A new family of distributions named gpower-normal indexed by p∈R is introduced and it is proven that these variables become normal or truncated normal when a suitable gpower transformation is applied. Expressions are given for moments and quantiles, in terms of the truncated normal density. This new family can be used to model asymmetric data that include non-positive values, as required for microarray analysis. Moreover, it has been proven that the gpower-normal family is a special case of pseudo-dispersion models, inheriting all the good properties of these models, such as asymptotic normality for small variances. A combined maximum likelihood method is proposed to estimate the model parameters, and it is applied to microarray and contamination data. Rcodes are available from the authors upon request.

  4. Profiling gene expression patterns of nasopharyngeal carcinoma and normal nasopharynx tissues with cDNA microarray

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    5 μg of total RNAs from normal nasopharynx and nasopharyngeal carcinoma tissue have been labeled with α-32P-dCTP during reverse transcription. The synthesized cDNA probes have been hybridized to high-density cDNA microarray containing 5184 genes or expression sequence tags (ESTs). Then image analysis software has been applied to comparing their expression profiles. Results show that 187 ESTs were of density value above 200 in nasopharyngeal carcinoma tissue while there were 307 such ESTs in normal nasopharynx tissue; 38 ESTs were strongly expressed in nasopharynx, but weakly expressed in nasopharyngeal carcinoma; 48 ESTs were strongly expressed in nasopharyngeal carcinoma, but weakly expressed in normal nasopharynx. These results suggest that there may exist some new differentially expressed genes involved in nasopharyngeal carcinoma development. Furthermore, the results strongly indicate that high-density cDNA microarray is a powerful and efficient tool for large-scale screening differentially expressed genes.

  5. MicroarrayDesigner: an online search tool and repository for near-optimal microarray experimental designs

    Directory of Open Access Journals (Sweden)

    Ferhatosmanoglu Nilgun

    2009-09-01

    Full Text Available Abstract Background Dual-channel microarray experiments are commonly employed for inference of differential gene expressions across varying organisms and experimental conditions. The design of dual-channel microarray experiments that can help minimize the errors in the resulting inferences has recently received increasing attention. However, a general and scalable search tool and a corresponding database of optimal designs were still missing. Description An efficient and scalable search method for finding near-optimal dual-channel microarray designs, based on a greedy hill-climbing optimization strategy, has been developed. It is empirically shown that this method can successfully and efficiently find near-optimal designs. Additionally, an improved interwoven loop design construction algorithm has been developed to provide an easily computable general class of near-optimal designs. Finally, in order to make the best results readily available to biologists, a continuously evolving catalog of near-optimal designs is provided. Conclusion A new search algorithm and database for near-optimal microarray designs have been developed. The search tool and the database are accessible via the World Wide Web at http://db.cse.ohio-state.edu/MicroarrayDesigner. Source code and binary distributions are available for academic use upon request.

  6. Microarray-based detection of Salmonella enterica serovar Typhimurium transposon mutants that cannot survive in macrophages and mice.

    Science.gov (United States)

    Chan, Kaman; Kim, Charles C; Falkow, Stanley

    2005-09-01

    DNA microarrays provide an opportunity to combine the principles of signature-tagged mutagenesis (STM) with microarray technology to identify potentially important bacterial virulence genes. The scope of DNA microarrays allows for less laborious screening on a much larger scale than possible by STM alone. We have adapted a microarray-based transposon tracking strategy for use with a Salmonella enterica serovar Typhimurium cDNA microarray in order to identify genes important for survival and replication in RAW 264.7 mouse macrophage-like cells or in the spleens of BALB/cJ mice. A 50,000-CFU transposon library of S. enterica serovar Typhimurium strain SL1344 was serially passaged in cultured macrophages or intraperitoneally inoculated into BALB/cJ mice. The bacterial genomic DNA was isolated and processed for analysis on the microarray. The novel application of this approach to identify mutants unable to survive in cultured cells resulted in the identification of components of Salmonella pathogenicity island 2 (SPI2), which is known to be critical for intracellular survival and replication. In addition, array results indicated that a number of SPI1-associated genes, currently not associated with intracellular survival, are negatively selected. However, of the SPI1-associated mutants individually tested for intracellular survival, only a sirA mutant exhibited reduced numbers relative to those of wild-type bacteria. Of the mutants unable to survive in mice, significant proportions are either components of the SPI2 pathogenicity island or involved in lipopolysaccharide synthesis. This observation is in agreement with results obtained in the original S. enterica serovar Typhimurium STM screen, illustrating the utility of this approach for the high-throughput identification of virulence factors important for survival in the host.

  7. The Sterolgene v0 cDNA microarray: a systemic approach to studies of cholesterol homeostasis and drug metabolism

    Directory of Open Access Journals (Sweden)

    Aggerbeck Lawrence P

    2008-02-01

    Full Text Available Abstract Background Cholesterol homeostasis and xenobiotic metabolism are complex biological processes, which are difficult to study with traditional methods. Deciphering complex regulation and response of these two processes to different factors is crucial also for understanding of disease development. Systems biology tools as are microarrays can importantly contribute to this knowledge and can also discover novel interactions between the two processes. Results We have developed a low density Sterolgene v0 cDNA microarray dedicated to studies of cholesterol homeostasis and drug metabolism in the mouse. To illustrate its performance, we have analyzed mouse liver samples from studies focused on regulation of cholesterol homeostasis and drug metabolism by diet, drugs and inflammation. We observed down-regulation of cholesterol biosynthesis during fasting and high-cholesterol diet and subsequent up-regulation by inflammation. Drug metabolism was down-regulated by fasting and inflammation, but up-regulated by phenobarbital treatment and high-cholesterol diet. Additionally, the performance of the Sterolgene v0 was compared to the two commercial high density microarray platforms: the Agilent cDNA (G4104A and the Affymetrix MOE430A GeneChip. We hybridized identical RNA samples to the commercial microarrays and showed that the performance of Sterolgene is comparable to commercial arrays in terms of detection of changes in cholesterol homeostasis and drug metabolism. Conclusion Using the Sterolgene v0 microarray we were able to detect important changes in cholesterol homeostasis and drug metabolism caused by diet, drugs and inflammation. Together with its next generations the Sterolgene microarrays represent original and dedicated tools enabling focused and cost effective studies of cholesterol homeostasis and drug metabolism. These microarrays have the potential of being further developed into screening or diagnostic tools.

  8. Evaluation of toxicity of the mycotoxin citrinin using yeast ORF DNA microarray and Oligo DNA microarray

    Directory of Open Access Journals (Sweden)

    Nobumasa Hitoshi

    2007-04-01

    Full Text Available Abstract Background Mycotoxins are fungal secondary metabolites commonly present in feed and food, and are widely regarded as hazardous contaminants. Citrinin, one of the very well known mycotoxins that was first isolated from Penicillium citrinum, is produced by more than 10 kinds of fungi, and is possibly spread all over the world. However, the information on the action mechanism of the toxin is limited. Thus, we investigated the citrinin-induced genomic response for evaluating its toxicity. Results Citrinin inhibited growth of yeast cells at a concentration higher than 100 ppm. We monitored the citrinin-induced mRNA expression profiles in yeast using the ORF DNA microarray and Oligo DNA microarray, and the expression profiles were compared with those of the other stress-inducing agents. Results obtained from both microarray experiments clustered together, but were different from those of the mycotoxin patulin. The oxidative stress response genes – AADs, FLR1, OYE3, GRE2, and MET17 – were significantly induced. In the functional category, expression of genes involved in "metabolism", "cell rescue, defense and virulence", and "energy" were significantly activated. In the category of "metabolism", genes involved in the glutathione synthesis pathway were activated, and in the category of "cell rescue, defense and virulence", the ABC transporter genes were induced. To alleviate the induced stress, these cells might pump out the citrinin after modification with glutathione. While, the citrinin treatment did not induce the genes involved in the DNA repair. Conclusion Results from both microarray studies suggest that citrinin treatment induced oxidative stress in yeast cells. The genotoxicity was less severe than the patulin, suggesting that citrinin is less toxic than patulin. The reproducibility of the expression profiles was much better with the Oligo DNA microarray. However, the Oligo DNA microarray did not completely overcome cross

  9. Tissue-based microarray expression of genes predictive of metastasis in uveal melanoma and differentially expressed in metastatic uveal melanoma.

    Science.gov (United States)

    Demirci, Hakan; Reed, David; Elner, Victor M

    2013-10-01

    To screen the microarray expression of CDH1, ECM1, EIF1B, FXR1, HTR2B, ID2, LMCD1, LTA4H, MTUS1, RAB31, ROBO1, and SATB1 genes which are predictive of primary uveal melanoma metastasis, and NFKB2, PTPN18, MTSS1, GADD45B, SNCG, HHIP, IL12B, CDK4, RPLP0, RPS17, RPS12 genes that are differentially expressed in metastatic uveal melanoma in normal whole human blood and tissues prone to metastatic involvement by uveal melanoma. We screened the GeneNote and GNF BioGPS databases for microarray analysis of genes predictive of primary uveal melanoma metastasis and those differentially expressed in metastatic uveal melanoma in normal whole blood, liver, lung and skin. Microarray analysis showed expression of all 22 genes in normal whole blood, liver, lung and skin, which are the most common sites of metastases. In the GNF BioGPS database, data for expression of the HHIP gene in normal whole blood and skin was not complete. Microarray analysis of genes predicting systemic metastasis of uveal melanoma and genes differentially expressed in metastatic uveal melanoma may not be used as a biomarker for metastasis in whole blood, liver, lung, and skin. Their expression in tissues prone to metastasis may suggest that they play a role in tropism of uveal melanoma metastasis to these tissues.

  10. Tissue-Based Microarray Expression of Genes Predictive of Metastasis in Uveal Melanoma and Differentially Expressed in Metastatic Uveal Melanoma

    Directory of Open Access Journals (Sweden)

    Hakan Demirci

    2013-01-01

    Full Text Available Purpose: To screen the microarray expression of CDH1, ECM1, EIF1B, FXR1, HTR2B, ID2, LMCD1, LTA4H, MTUS1, RAB31, ROBO1, and SATB1 genes which are predictive of primary uveal melanoma metastasis, and NFKB2, PTPN18, MTSS1, GADD45B, SNCG, HHIP, IL12B, CDK4, RPLP0, RPS17, RPS12 genes that are differentially expressed in metastatic uveal melanoma in normal whole human blood and tissues prone to metastatic involvement by uveal melanoma. Methods: We screened the GeneNote and GNF BioGPS databases for microarray analysis of genes predictive of primary uveal melanoma metastasis and those differentially expressed in metastatic uveal melanoma in normal whole blood, liver, lung and skin. Results: Microarray analysis showed expression of all 22 genes in normal whole blood, liver, lung and skin, which are the most common sites of metastases. In the GNF BioGPS database, data for expression of the HHIP gene in normal whole blood and skin was not complete. Conclusions: Microarray analysis of genes predicting systemic metastasis of uveal melanoma and genes differentially expressed in metastatic uveal melanoma may not be used as a biomarker for metastasis in whole blood, liver, lung, and skin. Their expression in tissues prone to metastasis may suggest that they play a role in tropism of uveal melanoma metastasis to these tissues.

  11. Normalization for triple-target microarray experiments

    Directory of Open Access Journals (Sweden)

    Magniette Frederic

    2008-04-01

    Full Text Available Abstract Background Most microarray studies are made using labelling with one or two dyes which allows the hybridization of one or two samples on the same slide. In such experiments, the most frequently used dyes are Cy3 and Cy5. Recent improvements in the technology (dye-labelling, scanner and, image analysis allow hybridization up to four samples simultaneously. The two additional dyes are Alexa488 and Alexa494. The triple-target or four-target technology is very promising, since it allows more flexibility in the design of experiments, an increase in the statistical power when comparing gene expressions induced by different conditions and a scaled down number of slides. However, there have been few methods proposed for statistical analysis of such data. Moreover the lowess correction of the global dye effect is available for only two-color experiments, and even if its application can be derived, it does not allow simultaneous correction of the raw data. Results We propose a two-step normalization procedure for triple-target experiments. First the dye bleeding is evaluated and corrected if necessary. Then the signal in each channel is normalized using a generalized lowess procedure to correct a global dye bias. The normalization procedure is validated using triple-self experiments and by comparing the results of triple-target and two-color experiments. Although the focus is on triple-target microarrays, the proposed method can be used to normalize p differently labelled targets co-hybridized on a same array, for any value of p greater than 2. Conclusion The proposed normalization procedure is effective: the technical biases are reduced, the number of false positives is under control in the analysis of differentially expressed genes, and the triple-target experiments are more powerful than the corresponding two-color experiments. There is room for improving the microarray experiments by simultaneously hybridizing more than two samples.

  12. A Low Density Microarray Method for the Identification of Human Papillomavirus Type 18 Variants

    Directory of Open Access Journals (Sweden)

    Aracely López-Monteon

    2013-09-01

    Full Text Available We describe a novel microarray based-method for the screening of oncogenic human papillomavirus 18 (HPV-18 molecular variants. Due to the fact that sequencing methodology may underestimate samples containing more than one variant we designed a specific and sensitive stacking DNA hybridization assay. This technology can be used to discriminate between three possible phylogenetic branches of HPV-18. Probes were attached covalently on glass slides and hybridized with single-stranded DNA targets. Prior to hybridization with the probes, the target strands were pre-annealed with the three auxiliary contiguous oligonucleotides flanking the target sequences. Screening HPV-18 positive cell lines and cervical samples were used to evaluate the performance of this HPV DNA microarray. Our results demonstrate that the HPV-18’s variants hybridized specifically to probes, with no detection of unspecific signals. Specific probes successfully reveal detectable point mutations in these variants. The present DNA oligoarray system can be used as a reliable, sensitive and specific method for HPV-18 variant screening. Furthermore, this simple assay allows the use of inexpensive equipment, making it accessible in resource-poor settings.

  13. Depression Screening

    Science.gov (United States)

    ... Centers Diseases + Condition Centers Mental Health Medical Library Depression Screening (PHQ-9) - Instructions The following questions are ... this tool, there is also text-only version . Depression Screening - Manual Instructions The following questions are a ...

  14. Extended -Regular Sequence for Automated Analysis of Microarray Images

    Directory of Open Access Journals (Sweden)

    Jin Hee-Jeong

    2006-01-01

    Full Text Available Microarray study enables us to obtain hundreds of thousands of expressions of genes or genotypes at once, and it is an indispensable technology for genome research. The first step is the analysis of scanned microarray images. This is the most important procedure for obtaining biologically reliable data. Currently most microarray image processing systems require burdensome manual block/spot indexing work. Since the amount of experimental data is increasing very quickly, automated microarray image analysis software becomes important. In this paper, we propose two automated methods for analyzing microarray images. First, we propose the extended -regular sequence to index blocks and spots, which enables a novel automatic gridding procedure. Second, we provide a methodology, hierarchical metagrid alignment, to allow reliable and efficient batch processing for a set of microarray images. Experimental results show that the proposed methods are more reliable and convenient than the commercial tools.

  15. Formation and characterization of DNA microarrays at silicon nitride substrates.

    Science.gov (United States)

    Manning, Mary; Redmond, Gareth

    2005-01-01

    A versatile method for direct, covalent attachment of DNA microarrays at silicon nitride layers, previously deposited by chemical vapor deposition at silicon wafer substrates, is reported. Each microarray fabrication process step, from silicon nitride substrate deposition, surface cleaning, amino-silanation, and attachment of a homobifunctional cross-linking molecule to covalent immobilization of probe oligonucleotides, is defined, characterized, and optimized to yield consistent probe microarray quality, homogeneity, and probe-target hybridization performance. The developed microarray fabrication methodology provides excellent (high signal-to-background ratio) and reproducible responsivity to target oligonucleotide hybridization with a rugged chemical stability that permits exposure of arrays to stringent pre- and posthybridization wash conditions through many sustained cycles of reuse. Overall, the achieved performance features compare very favorably with those of more mature glass based microarrays. It is proposed that this DNA microarray fabrication strategy has the potential to provide a viable route toward the successful realization of future integrated DNA biochips.

  16. Human brain evolution: insights from microarrays.

    Science.gov (United States)

    Preuss, Todd M; Cáceres, Mario; Oldham, Michael C; Geschwind, Daniel H

    2004-11-01

    Several recent microarray studies have compared gene-expression patterns n humans, chimpanzees and other non-human primates to identify evolutionary changes that contribute to the distinctive cognitive and behavioural characteristics of humans. These studies support the surprising conclusion that the evolution of the human brain involved an upregulation of gene expression relative to non-human primates, a finding that could be relevant to understanding human cerebral physiology and function. These results show how genetic and genomic methods can shed light on the basis of human neural and cognitive specializations, and have important implications for neuroscience, anthropology and medicine.

  17. Cancer Screening

    Directory of Open Access Journals (Sweden)

    Krishna Prasad

    2004-10-01

    Full Text Available Cancer screening is a means to detect cancer early with the goal of decreasing morbidity and mortality. At present, there is a reasonable consensus regarding screening for breast, cervical and colorectal cances and the role of screening is under trial in case of cancers of the lung,  ovaries and prostate. On the other hand, good screening tests are not available for some of the commonest cancers in India like the oral, pharyngeal, esophageal and stomach cancers.

  18. Cancer Screening

    OpenAIRE

    Krishna Prasad

    2004-01-01

    Cancer screening is a means to detect cancer early with the goal of decreasing morbidity and mortality. At present, there is a reasonable consensus regarding screening for breast, cervical and colorectal cances and the role of screening is under trial in case of cancers of the lung,  ovaries and prostate. On the other hand, good screening tests are not available for some of the commonest cancers in India like the oral, pharyngeal, esophageal and stomach cancers.

  19. Autoantigen Microarray for High-throughput Autoantibody Profiling in Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Honglin Zhu

    2015-08-01

    Full Text Available Systemic lupus erythematosus (SLE is a complex autoimmune disease characterized by the production of autoantibodies to a broad range of self-antigens. Profiling the autoantibody repertoire using array-based technology has emerged as a powerful tool for the identification of biomarkers in SLE and other autoimmune diseases. Proteomic microarray has the capacity to hold large number of self-antigens on a solid surface and serve as a high-throughput screening method for the determination of autoantibody specificities. The autoantigen arrays carrying a wide variety of self-antigens, such as cell nuclear components (nucleic acids and associated proteins, cytoplasmic proteins, phospholipid proteins, cell matrix proteins, mucosal/secreted proteins, glomeruli, and other tissue-specific proteins, have been used for screening of autoantibody specificities associated with different manifestations of SLE. Arrays containing synthetic peptides and molecular modified proteins are also being utilized for identification of autoantibodies targeting to special antigenic epitopes. Different isotypes of autoantibodies, including IgG, IgM, IgA, and IgE, as well as other Ig subtypes, can be detected simultaneously with multi-color labeled secondary antibodies. Serum and plasma are the most common biologic materials for autoantibody detection, but other body fluids such as cerebrospinal fluid, synovial fluid, and saliva can also be a source of autoantibody detection. Proteomic microarray as a multiplexed high-throughput screening platform is playing an increasingly-important role in autoantibody diagnostics. In this article, we highlight the use of autoantigen microarrays for autoantibody exploration in SLE.

  20. Autoantigen Microarray for High-throughput Autoantibody Profiling in Systemic Lupus Erythematosus.

    Science.gov (United States)

    Zhu, Honglin; Luo, Hui; Yan, Mei; Zuo, Xiaoxia; Li, Quan-Zhen

    2015-08-01

    Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by the production of autoantibodies to a broad range of self-antigens. Profiling the autoantibody repertoire using array-based technology has emerged as a powerful tool for the identification of biomarkers in SLE and other autoimmune diseases. Proteomic microarray has the capacity to hold large number of self-antigens on a solid surface and serve as a high-throughput screening method for the determination of autoantibody specificities. The autoantigen arrays carrying a wide variety of self-antigens, such as cell nuclear components (nucleic acids and associated proteins), cytoplasmic proteins, phospholipid proteins, cell matrix proteins, mucosal/secreted proteins, glomeruli, and other tissue-specific proteins, have been used for screening of autoantibody specificities associated with different manifestations of SLE. Arrays containing synthetic peptides and molecular modified proteins are also being utilized for identification of autoantibodies targeting to special antigenic epitopes. Different isotypes of autoantibodies, including IgG, IgM, IgA, and IgE, as well as other Ig subtypes, can be detected simultaneously with multi-color labeled secondary antibodies. Serum and plasma are the most common biologic materials for autoantibody detection, but other body fluids such as cerebrospinal fluid, synovial fluid, and saliva can also be a source of autoantibody detection. Proteomic microarray as a multiplexed high-throughput screening platform is playing an increasingly-important role in autoantibody diagnostics. In this article, we highlight the use of autoantigen microarrays for autoantibody exploration in SLE.

  1. Application of Phenotype Microarray technology to soil microbiology

    Science.gov (United States)

    Mocali, Stefano

    2016-04-01

    It is well established that soil microorganisms are extremely diverse and only a small fraction has been successfully cultured in the laboratory. Furthermore, addressing the functionality of genomes is one of the most important and challenging tasks of today's biology. In particular the ability to link genotypes to corresponding phenotypes is of interest in the reconstruction and biotechnological manipulation of metabolic pathways. High-throughput culture in micro wells provides a method for rapid screening of a wide variety of growth conditions and commercially available plates contain a large number of substrates, nutrient sources, and inhibitors, which can provide an assessment of the phenotype of an organism. Thus, over the last years, Phenotype Microarray (PM) technology has been used to address many specific issues related to the metabolic functionality of microorganisms. However, computational tools that could directly link PM data with the gene(s) of interest followed by the extraction of information on gene-phenotype correlation are still missing. Here potential applications of phenotype arrays to soil microorganisms, use of the plates in stress response studies and for assessment of phenotype of environmental communities are described. Considerations and challenges in data interpretation and visualization, including data normalization, statistics, and curve fitting are also discussed. In particular, here we present DuctApe, a suite that allows the analysis of both genomic sequences and PM data, to find metabolic differences among PM experiments and to correlate them with KEGG pathways and gene presence/absence patterns.

  2. Miniaturised Spotter-Compatible Multicapillary Stamping Tool for Microarray Printing

    OpenAIRE

    Drobyshev, Alexei L.; Verkhodanov, Nikolai N; Zasedatelev, Alexander S.

    2007-01-01

    Novel microstamping tool for microarray printing is proposed. The tool is capable to spot up to 127 droplets of different solutions in single touch. It is easily compatible with commercially available microarray spotters. The tool is based on multichannel funnel with polypropylene capillaries inserted into its channels. Superior flexibility is achieved by ability to replace any printing capillary of the tool. As a practical implementation, hydrogel-based microarrays were stamped and successfu...

  3. Miniaturised Spotter-Compatible Multicapillary Stamping Tool for Microarray Printing

    CERN Document Server

    Drobyshev, A L; Zasedatelev, A S; Drobyshev, Alexei L; Verkhodanov, Nikolai N; Zasedatelev, Alexander S

    2007-01-01

    Novel microstamping tool for microarray printing is proposed. The tool is capable to spot up to 127 droplets of different solutions in single touch. It is easily compatible with commercially available microarray spotters. The tool is based on multichannel funnel with polypropylene capillaries inserted into its channels. Superior flexibility is achieved by ability to replace any printing capillary of the tool. As a practical implementation, hydrogel-based microarrays were stamped and successfully applied to identify the Mycobacterium tuberculosis drug resistance.

  4. Novel R Pipeline for Analyzing Biolog Phenotypic Microarray Data

    OpenAIRE

    Vehkala, Minna; Shubin, Mikhail; Connor, Thomas Richard; Thomson, Nicholas R.; Corander, Jukka

    2015-01-01

    Data produced by Biolog Phenotype MicroArrays are longitudinal measurements of cells' respiration on distinct substrates. We introduce a three-step pipeline to analyze phenotypic microarray data with novel procedures for grouping, normalization and effect identification. Grouping and normalization are standard problems in the analysis of phenotype microarrays defined as categorizing bacterial responses into active and non-active, and removing systematic errors from the experimental data, resp...

  5. Combination of Small Molecule Microarray and Confocal Microscopy Techniques for Live Cell Staining Fluorescent Dye Discovery

    Directory of Open Access Journals (Sweden)

    Attila Bokros

    2013-08-01

    Full Text Available Discovering new fluorochromes is significantly advanced by high-throughput screening (HTS methods. In the present study a combination of small molecule microarray (SMM prescreening and confocal laser scanning microscopy (CLSM was developed in order to discover novel cell staining fluorescent dyes. Compounds with high native fluorescence were selected from a 14,585-member library and further tested on living cells under the microscope. Eleven compartment-specific, cell-permeable (or plasma membrane-targeted fluorochromes were identified. Their cytotoxicity was tested and found that between 1–10 micromolar range, they were non-toxic even during long-term incubations.

  6. Design of an Enterobacteriaceae Pan-genome Microarray Chip

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Ussery, David

    2010-01-01

    -density microarray chip has been designed, using 116 Enterobacteriaceae genome sequences, taking into account the enteric pan-genome. Probes for the microarray were checked in silico and performance of the chip, based on experimental strains from four different genera, demonstrate a relatively high ability...... to distinguish those strains on genus, species, and pathotype/serovar levels. Additionally, the microarray performed well when investigating which genes were found in a given strain of interest. The Enterobacteriaceae pan-genome microarray, based on 116 genomes, provides a valuable tool for determination...

  7. Chemiluminescence microarrays in analytical chemistry: a critical review.

    Science.gov (United States)

    Seidel, Michael; Niessner, Reinhard

    2014-09-01

    Multi-analyte immunoassays on microarrays and on multiplex DNA microarrays have been described for quantitative analysis of small organic molecules (e.g., antibiotics, drugs of abuse, small molecule toxins), proteins (e.g., antibodies or protein toxins), and microorganisms, viruses, and eukaryotic cells. In analytical chemistry, multi-analyte detection by use of analytical microarrays has become an innovative research topic because of the possibility of generating several sets of quantitative data for different analyte classes in a short time. Chemiluminescence (CL) microarrays are powerful tools for rapid multiplex analysis of complex matrices. A wide range of applications for CL microarrays is described in the literature dealing with analytical microarrays. The motivation for this review is to summarize the current state of CL-based analytical microarrays. Combining analysis of different compound classes on CL microarrays reduces analysis time, cost of reagents, and use of laboratory space. Applications are discussed, with examples from food safety, water safety, environmental monitoring, diagnostics, forensics, toxicology, and biosecurity. The potential and limitations of research on multiplex analysis by use of CL microarrays are discussed in this review.

  8. Pooled shRNA screenings: computational analysis.

    Science.gov (United States)

    Yu, Jiyang; Putcha, Preeti; Califano, Andrea; Silva, Jose M

    2013-01-01

    Genome-wide RNA interference screening has emerged as a powerful tool for functional genomic studies of disease-related phenotypes and the discovery of molecular therapeutic targets for human diseases. Commercial short hairpin RNA (shRNA) libraries are commonly used in this area, and state-of-the-art technologies including microarray and next-generation sequencing have emerged as powerful methods to analyze shRNA-triggered phenotypes. However, computational analysis of this complex data remains challenging due to noise and small sample size from such large-scaled experiments. In this chapter we discuss the pipelines and statistical methods of processing, quality assessment, and post-analysis for both microarray- and sequencing-based screening data.

  9. Tissue microarrays: Potential in the Indian subcontinent

    Directory of Open Access Journals (Sweden)

    Venkataraman Girish

    2005-01-01

    Full Text Available Tissue microarrays (TMAs are a means of combining hundreds of specimens of tissue on to a single slide for analysis simultaneously. The evolution of this technology to validate the results of cDNA microarrays has impacted tremendously in accurately identifying prognostic indicators significant in determining survival demographics for patients. TMAs can be generated from archival paraffin blocks, combined with sophisticated image analysis software for reading TMA immunohistochemistry, and a staggering amount of useful information can be generated in terms of the biomarkers useful in predicting patient outcome. There is a wide range of uses for the TMA technology including profiling of specific proteins in cancerous tissues and non-cancerous tissues. Given the wide variety of tissue resources available in India, investment in a dedicated TMA facility will be of immense use in the research arena in India. This review article discusses the basics of TMA construction, design, the software available for the analysis of this technology and its relevance to Indian scientists. A potential workflow structure for setting up a TMA facility is also included.

  10. Microarray analysis of the developing cortex.

    Science.gov (United States)

    Semeralul, Mawahib O; Boutros, Paul C; Likhodi, Olga; Okey, Allan B; Van Tol, Hubert H M; Wong, Albert H C

    2006-12-01

    Abnormal development of the prefrontal cortex (PFC) is associated with a number of neuropsychiatric disorders that have an onset in childhood or adolescence. Although the basic laminar structure of the PFC is established in utero, extensive remodeling continues into adolescence. To map the overall pattern of changes in cortical gene transcripts during postnatal development, we made serial measurements of mRNA levels in mouse PFC using oligonucleotide microarrays. We observed changes in mRNA transcripts consistent with known postnatal morphological and biochemical events. Overall, most transcripts that changed significantly showed a progressive decrease in abundance after birth, with the majority of change between postnatal weeks 2 and 4. Genes with cell proliferative, cytoskeletal, extracellular matrix, plasma membrane lipid/transport, protein folding, and regulatory functions had decreases in mRNA levels. Quantitative PCR verified the microarray results for six selected genes: DNA methyltransferase 3A (Dnmt3a), procollagen, type III, alpha 1 (Col3a1), solute carrier family 16 (monocarboxylic acid transporters), member 1 (Slc16a1), MARCKS-like 1 (Marcksl1), nidogen 1 (Nid1) and 3-hydroxybutyrate dehydrogenase (heart, mitochondrial) (Bdh).

  11. A New Way to Introduce Microarray Technology in a Lecture/Laboratory Setting by Studying the Evolution of This Modern Technology

    Science.gov (United States)

    Rowland-Goldsmith, Melissa

    2009-01-01

    DNA microarray is an ordered grid containing known sequences of DNA, which represent many of the genes in a particular organism. Each DNA sequence is unique to a specific gene. This technology enables the researcher to screen many genes from cells or tissue grown in different conditions. We developed an undergraduate lecture and laboratory…

  12. Double screening

    Energy Technology Data Exchange (ETDEWEB)

    Gratia, Pierre [Department of Physics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Hu, Wayne [Department of Astronomy and Astrophysics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Enrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Joyce, Austin [Enrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Ribeiro, Raquel H. [School of Physics and Astronomy, Queen Mary University of London,Mile End Road, London, E1 4NS (United Kingdom)

    2016-06-15

    Attempts to modify gravity in the infrared typically require a screening mechanism to ensure consistency with local tests of gravity. These screening mechanisms fit into three broad classes; we investigate theories which are capable of exhibiting more than one type of screening. Specifically, we focus on a simple model which exhibits both Vainshtein and kinetic screening. We point out that due to the two characteristic length scales in the problem, the type of screening that dominates depends on the mass of the sourcing object, allowing for different phenomenology at different scales. We consider embedding this double screening phenomenology in a broader cosmological scenario and show that the simplest examples that exhibit double screening are radiatively stable.

  13. Study with microarrays of the differential gene expression profiles of glioblastoma

    Institute of Scientific and Technical Information of China (English)

    YANG Zhi-lin; XU Ru-xiang; JIANG Xiao-dan; KE Yi-quan; LUO Cheng-yi; JIN Ying; HU Gen-xi

    2001-01-01

    Objective: This study aims to screen the differentially expressed genes of glioblastoma using microarray technique. Methods: Specimens of glioblastoma and normal brain tissue were obtained from pathologically confirmed patients.A cDNA microarray comprising 14 000 clones covering the whole sets of the retro-transcriptional products of the mRNAs of various gliomas and those of normal brain tissues was established, with which the differences in gene expression between glioblastoma and normal brain tissues were investigated. Results: It was found that 94 genes were more than 3-fold differentially expressed with 298 more than doubled in the glioblastoma in comparison with the normal brain tissue. Some over-expressed genes in the glioblastoma were scarcely expressed in normal brain tissues, and several novel genes that may have biological relevance in the process ofglioma genesis were identified. Conclusion: Microarray technique combined with relevant cDNA repository can facilitate rapid large-scale identification of potential target genes for diagnosis and.therapy of glioma.

  14. Evaporative edge lithography of a liposomal drug microarray for cell migration assays

    Science.gov (United States)

    Vafai, Nicholas; Lowry, Troy W.; Wilson, Korey A.; Davidson, Michael W.; Lenhert, Steven

    2016-01-01

    Lipid multilayer microarrays are a promising approach to miniaturize laboratory procedures by taking advantage of the microscopic compartmentalization capabilities of lipids. Here, we demonstrate a new method to pattern lipid multilayers on surfaces based on solvent evaporation along the edge where a stencil contacts a surface called evaporative edge lithography (EEL). As an example of an application of this process, we use EEL to make microarrays suitable for a cell-based migration assay. Currently existing cell migration assays require a separate compartment for each drug which is dissolved at a single concentration in solution. An advantage of the lipid multilayer microarray assay is that multiple compounds can be tested on the same surface. We demonstrate this by testing the effect of two different lipophilic drugs, Taxol and Brefeldin A, on collective cell migration into an unpopulated area. This particular assay should be scalable to test of 2000 different lipophilic compounds or dosages on a standard microtiter plate area, or if adapted for individual cell migration, it would allow for high-throughput screening of more than 50,000 compounds per plate. PMID:27617264

  15. The diagnosis of inherited metabolic diseases by microarray gene expression profiling

    Directory of Open Access Journals (Sweden)

    Taanman Jan-Willem

    2010-12-01

    Full Text Available Abstract Background Inherited metabolic diseases (IMDs comprise a diverse group of generally progressive genetic metabolic disorders of variable clinical presentations and severity. We have undertaken a study using microarray gene expression profiling of cultured fibroblasts to investigate 68 patients with a broad range of suspected metabolic disorders, including defects of lysosomal, mitochondrial, peroxisomal, fatty acid, carbohydrate, amino acid, molybdenum cofactor, and purine and pyrimidine metabolism. We aimed to define gene expression signatures characteristic of defective metabolic pathways. Methods Total mRNA extracted from cultured fibroblast cell lines was hybridized to Affymetrix U133 Plus 2.0 arrays. Expression data was analyzed for the presence of a gene expression signature characteristic of an inherited metabolic disorder and for genes expressing significantly decreased levels of mRNA. Results No characteristic signatures were found. However, in 16% of cases, disease-associated nonsense and frameshift mutations generating premature termination codons resulted in significantly decreased mRNA expression of the defective gene. The microarray assay detected these changes with high sensitivity and specificity. Conclusion In patients with a suspected familial metabolic disorder where initial screening tests have proven uninformative, microarray gene expression profiling may contribute significantly to the identification of the genetic defect, shortcutting the diagnostic cascade.

  16. Screening of key genes and inflammatory signalling pathway involved in the pathogenesis of HLA-B27-associated acute anterior uveitis by gene expression microarray%人类白细胞抗原-B27相关性前葡萄膜炎患者差异基因的表达特征

    Institute of Scientific and Technical Information of China (English)

    胡小凤; 卢弘; 王婧; 张孝生; 张晓龙; 刘旭辉; 许卓再; 胡俊敏; 卢清君

    2013-01-01

    Objective To investigate the genes and signalling pathways located upstream of the inflammatory processes in human leukocyte antigen (HLA)-B27-associated acute anterior uveitis by gene expression microarray.Methods Experimental study.HLA-B27-positive and-negative monocytes isolated from human peripheral blood were stimulated with Vibrio cholera lipopolysaccharide (LPS).Gene expression microarrays were used to identify the differentially expressed genes.Differentially expressed (DE) genes were testified by real-time PCR and analyzed by a series of bioinformatics-based techniques such as Gene Ontology,Kyoto Encyclopedia of Genes and Genomes.Results Gene expression microarray analysis revealed marked differences between HLA-B27-positive acute anterior uveitis(AAU) and HLA-B27-negative healthy control peripheral monocytes in the genes that were upregulated in response to LPS stimulation with 1105 genes and 25 genes respectively.Gene Ontology enrichment and pathway analysis indicated that genes participating in protein transport and folding were essential to the inflammatory process.The LPS receptorToll-like receptor(TLR)4 induced TLR signalling pathway and pathway related to Vibrio cholerae infection were located upstream of the network and contribute to the overall response.Among the DE genes,PIK3 CA,PIK3CB,AKT3,and MAPK1 might play critical roles in inflammation.Conclusions Equivalent LPS stimulation induces a different response in HLA-B27-positive peripheral monocytes compared to normal control,suggesting that the TLR pathway is involved in the pathogenesis of HLA-B27-associated AAU.%目的 研究人类白细胞抗原(HLA)-B27相关性前葡萄膜炎患者外周血单核细胞炎症通路差异基因的表达特征.方法 实验研究.抽取3例HLA-B27阳性前葡萄膜炎患者及2例健康对照者外周血,分离后获得的单核细胞经含霍乱弧菌的脂多糖刺激后提取RNA,使用基因表达谱芯片进行检测,实时荧光定

  17. Colon cancer screening

    Science.gov (United States)

    Screening for colon cancer; Colonoscopy - screening; Sigmoidoscopy - screening; Virtual colonoscopy - screening; Fecal immunochemical test; Stool DNA test; sDNA test; Colorectal cancer - screening; Rectal ...

  18. On the Statics for Micro-Array Data Analysis

    Science.gov (United States)

    Urushibara, Tomoko; Akasaka, Shizu; Ito, Makiko; Suzuki, Tomonori; Miyazaki, Satoru

    2010-01-01

    data, we might get a different result because the distinct definition for micro array data has not been set yet. It means that from the same data we will get different results depending on researchers. We are afraid that this problem will have a big effect on developing new medicines and to progress the next step, like a 2nd screening. So, we suggest that we should have certain guidelines to analyze Micro-Array data validly with statistic method and it will surely be helpful for Micro-Array analysis for medical studies in the future.

  19. Microarray-based identification of antigenic variants of foot-and-mouth disease virus: a bioinformatics quality assessment

    Directory of Open Access Journals (Sweden)

    Domingo Esteban

    2006-05-01

    Full Text Available Abstract Background The evolution of viral quasispecies can influence viral pathogenesis and the response to antiviral treatments. Mutant clouds in infected organisms represent the first stage in the genetic and antigenic diversification of RNA viruses, such as foot and mouth disease virus (FMDV, an important animal pathogen. Antigenic variants of FMDV have been classically diagnosed by immunological or RT-PCR-based methods. DNA microarrays are becoming increasingly useful for the analysis of gene expression and single nucleotide polymorphisms (SNPs. Recently, a FMDV microarray was described to detect simultaneously the seven FMDV serotypes. These results encourage the development of new oligonucleotide microarrays to probe the fine genetic and antigenic composition of FMDV for diagnosis, vaccine design, and to gain insight into the molecular epidemiology of this pathogen. Results A FMDV microarray was designed and optimized to detect SNPs at a major antigenic site of the virus. A screening of point mutants of the genomic region encoding antigenic site A of FMDV C-S8c1 was achieved. The hybridization pattern of a mutant includes specific positive and negative signals as well as crosshybridization signals, which are of different intensity depending on the thermodynamic stability of each probe-target pair. Moreover, an array bioinformatic classification method was developed to evaluate the hybridization signals. This statistical analysis shows that the procedure allows a very accurate classification per variant genome. Conclusion A specific approach based on a microarray platform aimed at distinguishing point mutants within an important determinant of antigenicity and host cell tropism, namely the G-H loop of capsid protein VP1, was developed. The procedure is of general applicability as a test for specificity and discriminatory power of microarray-based diagnostic procedures using multiple oligonucleotide probes.

  20. Analysis of differences of gene expressions in keloid and normal skin with the aid of cDNA microarray

    Institute of Scientific and Technical Information of China (English)

    Chen Wei; Fu Xiaobing; Sun Xiaoqing; Sun Tongzhu; Zhao Zhili; Yang Yinhui; Sheng Zhiyong

    2003-01-01

    Background: Microarray analysis is a popular tool to investigate the function of genes that are responsible for the phenotype of the disease. Keloid is a intricate lesion which is probably modulated by interplay of many genes. We ventured to study the differences of gene expressions between keloids and normal skins with the aid of cDNA microarray in order to explore the molecular mechanism underlying keloid formation. Methods: The PCR products of 8400 human genes were spotted on a chip in array. The DNAs were then fixed on the glass plate by a series of treatments. Total RNAs was isolated from freshly excised human keloids and normal skin, and then was purified to mRNA by Oligotex. Both the mRNA from keloids and normal skin was reversely transcribed to cDNAs with the incorporations of fluorescent dUTP, for preparing the hybridization probes. The mixed probes were then hybridized to the cDNA microarray. After highly stringent washing, the cDNA microarray was scanned for the fluorescent signals to display the differences between two kinds of tissues. Results: Among 8400 human genes, there were 402 genes (4.79%) with different expression levels between the keloids and normal skins in all cases, 250were up-regulated (2.98%) and 152 down-regulated (1.81%). Analyses of collagen, fibronectin, proteoglycan,growth factors and apoptosis related molecule gene expression confirmed that our molecular data obtained by cDNA microarray were consistent with published biochemical and clinical observations of keloids. Conclusions: DNA microarray technology is an effective technique in screening for differences in gene expression between keloid and normal skin. Many genes are involved in the formation of keloids. Further analysis of the obtained genes will help understand the molecular mechanism of keloid formation.

  1. Sample phenotype clusters in high-density oligonucleotide microarray data sets are revealed using Isomap, a nonlinear algorithm

    Directory of Open Access Journals (Sweden)

    Malyj Wasyl

    2005-08-01

    Full Text Available Abstract Background Life processes are determined by the organism's genetic profile and multiple environmental variables. However the interaction between these factors is inherently non-linear 1. Microarray data is one representation of the nonlinear interactions among genes and genes and environmental factors. Still most microarray studies use linear methods for the interpretation of nonlinear data. In this study, we apply Isomap, a nonlinear method of dimensionality reduction, to analyze three independent large Affymetrix high-density oligonucleotide microarray data sets. Results Isomap discovered low-dimensional structures embedded in the Affymetrix microarray data sets. These structures correspond to and help to interpret biological phenomena present in the data. This analysis provides examples of temporal, spatial, and functional processes revealed by the Isomap algorithm. In a spinal cord injury data set, Isomap discovers the three main modalities of the experiment – location and severity of the injury and the time elapsed after the injury. In a multiple tissue data set, Isomap discovers a low-dimensional structure that corresponds to anatomical locations of the source tissues. This model is capable of describing low- and high-resolution differences in the same model, such as kidney-vs.-brain and differences between the nuclei of the amygdala, respectively. In a high-throughput drug screening data set, Isomap discovers the monocytic and granulocytic differentiation of myeloid cells and maps several chemical compounds on the two-dimensional model. Conclusion Visualization of Isomap models provides useful tools for exploratory analysis of microarray data sets. In most instances, Isomap models explain more of the variance present in the microarray data than PCA or MDS. Finally, Isomap is a promising new algorithm for class discovery and class prediction in high-density oligonucleotide data sets.

  2. Massively multiplexed microbial identification using resequencing DNA microarrays for outbreak investigation

    Science.gov (United States)

    Leski, T. A.; Ansumana, R.; Jimmy, D. H.; Bangura, U.; Malanoski, A. P.; Lin, B.; Stenger, D. A.

    2011-06-01

    Multiplexed microbial diagnostic assays are a promising method for detection and identification of pathogens causing syndromes characterized by nonspecific symptoms in which traditional differential diagnosis is difficult. Also such assays can play an important role in outbreak investigations and environmental screening for intentional or accidental release of biothreat agents, which requires simultaneous testing for hundreds of potential pathogens. The resequencing pathogen microarray (RPM) is an emerging technological platform, relying on a combination of massively multiplex PCR and high-density DNA microarrays for rapid detection and high-resolution identification of hundreds of infectious agents simultaneously. The RPM diagnostic system was deployed in Sierra Leone, West Africa in collaboration with Njala University and Mercy Hospital Research Laboratory located in Bo. We used the RPM-Flu microarray designed for broad-range detection of human respiratory pathogens, to investigate a suspected outbreak of avian influenza in a number of poultry farms in which significant mortality of chickens was observed. The microarray results were additionally confirmed by influenza specific real-time PCR. The results of the study excluded the possibility that the outbreak was caused by influenza, but implicated Klebsiella pneumoniae as a possible pathogen. The outcome of this feasibility study confirms that application of broad-spectrum detection platforms for outbreak investigation in low-resource locations is possible and allows for rapid discovery of the responsible agents, even in cases when different agents are suspected. This strategy enables quick and cost effective detection of low probability events such as outbreak of a rare disease or intentional release of a biothreat agent.

  3. The Importance of Normalization on Large and Heterogeneous Microarray Datasets

    Science.gov (United States)

    DNA microarray technology is a powerful functional genomics tool increasingly used for investigating global gene expression in environmental studies. Microarrays can also be used in identifying biological networks, as they give insight on the complex gene-to-gene interactions, ne...

  4. Experimental Approaches to Microarray Analysis of Tumor Samples

    Science.gov (United States)

    Furge, Laura Lowe; Winter, Michael B.; Meyers, Jacob I.; Furge, Kyle A.

    2008-01-01

    Comprehensive measurement of gene expression using high-density nucleic acid arrays (i.e. microarrays) has become an important tool for investigating the molecular differences in clinical and research samples. Consequently, inclusion of discussion in biochemistry, molecular biology, or other appropriate courses of microarray technologies has…

  5. Defining best practice for microarray analyses in nutrigenomic studies

    NARCIS (Netherlands)

    Garosi, P.; Filippo, C. de; Erk, M. van; Rocca-Serra, P.; Sansone, S.A.; Elliott, R.

    2005-01-01

    Microarrays represent a powerful tool for studies of diet-gene interactions. Their use is, however, associated with a number of technical challenges and potential pitfalls. The cost of microarrays continues to drop but is still comparatively high. This, coupled with the complex logistical issues

  6. Mathematical design of prokaryotic clone-based microarrays

    NARCIS (Netherlands)

    Pieterse, B.; Quirijns, E.J.; Schuren, F.H.J.; Werf, van der M.J.

    2005-01-01

    Background - Clone-based microarrays, on which each spot represents a random genomic fragment, are a good alternative to open reading frame-based microarrays, especially for microorganisms for which the complete genome sequence is not available. Since the generation of a genomic DNA library is a ran

  7. Mathematical design of prokaryotic clone-based microarrays

    NARCIS (Netherlands)

    Pieterse, B.; Quirijns, E.J.; Schuren, F.H.J.; Werf, M.J. van der

    2005-01-01

    Background: Clone-based microarrays, on which each spot represents a random genomic fragment, are a good alternative to open reading frame-based microarrays, especially for microorganisms for which the complete genome sequence is not available. Since the generation of a genomic DNA library is a rand

  8. Automatic Spot Identification for High Throughput Microarray Analysis

    Science.gov (United States)

    Wu, Eunice; Su, Yan A.; Billings, Eric; Brooks, Bernard R.; Wu, Xiongwu

    2013-01-01

    High throughput microarray analysis has great potential in scientific research, disease diagnosis, and drug discovery. A major hurdle toward high throughput microarray analysis is the time and effort needed to accurately locate gene spots in microarray images. An automatic microarray image processor will allow accurate and efficient determination of spot locations and sizes so that gene expression information can be reliably extracted in a high throughput manner. Current microarray image processing tools require intensive manual operations in addition to the input of grid parameters to correctly and accurately identify gene spots. This work developed a method, herein called auto-spot, to automate the spot identification process. Through a series of correlation and convolution operations, as well as pixel manipulations, this method makes spot identification an automatic and accurate process. Testing with real microarray images has demonstrated that this method is capable of automatically extracting subgrids from microarray images and determining spot locations and sizes within each subgrid, regardless of variations in array patterns and background noises. With this method, we are one step closer to the goal of high throughput microarray analysis. PMID:24298393

  9. Uses of Dendrimers for DNA Microarrays

    Science.gov (United States)

    Caminade, Anne-Marie; Padié, Clément; Laurent, Régis; Maraval, Alexandrine; Majoral, Jean-Pierre

    2006-01-01

    Biosensors such as DNA microarrays and microchips are gaining an increasing importance in medicinal, forensic, and environmental analyses. Such devices are based on the detection of supramolecular interactions called hybridizations that occur between complementary oligonucleotides, one linked to a solid surface (the probe), and the other one to be analyzed (the target). This paper focuses on the improvements that hyperbranched and perfectly defined nanomolecules called dendrimers can provide to this methodology. Two main uses of dendrimers for such purpose have been described up to now; either the dendrimer is used as linker between the solid surface and the probe oligonucleotide, or the dendrimer is used as a multilabeled entity linked to the target oligonucleotide. In the first case the dendrimer generally induces a higher loading of probes and an easier hybridization, due to moving away the solid phase. In the second case the high number of localized labels (generally fluorescent) induces an increased sensitivity, allowing the detection of small quantities of biological entities.

  10. Uses of Dendrimers for DNA Microarrays

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Majoral

    2006-08-01

    Full Text Available Biosensors such as DNA microarrays and microchips are gaining an increasingimportance in medicinal, forensic, and environmental analyses. Such devices are based onthe detection of supramolecular interactions called hybridizations that occur betweencomplementary oligonucleotides, one linked to a solid surface (the probe, and the other oneto be analyzed (the target. This paper focuses on the improvements that hyperbranched andperfectly defined nanomolecules called dendrimers can provide to this methodology. Twomain uses of dendrimers for such purpose have been described up to now; either thedendrimer is used as linker between the solid surface and the probe oligonucleotide, or thedendrimer is used as a multilabeled entity linked to the target oligonucleotide. In the firstcase the dendrimer generally induces a higher loading of probes and an easier hybridization,due to moving away the solid phase. In the second case the high number of localized labels(generally fluorescent induces an increased sensitivity, allowing the detection of smallquantities of biological entities.

  11. Normalization strategy of microarray gene expression data

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To discuss strategies and methods of normalization on how to deal with and analyze data for different chips with the combination of statistics, mathematics and bioinformatics in order to find significant difference genes. Methods: With Excel and SPSS software, high or low density chips were analyzed through total intensity normalization (TIN) and locally weighted linear regression normalization (LWLRN). Results: These methods effectively reduced systemic errors and made data more comparable and reliable. Conclusion: These methods can search the genes of significant difference, although normalization methods are being developed and need to be improved further. Great breakthrough will be obtained in microarray data normalization analysis and transformation with the development of non-linear technology, software and hardware of computer.

  12. Digital microarray analysis for digital artifact genomics

    Science.gov (United States)

    Jaenisch, Holger; Handley, James; Williams, Deborah

    2013-06-01

    We implement a Spatial Voting (SV) based analogy of microarray analysis for digital gene marker identification in malware code sections. We examine a famous set of malware formally analyzed by Mandiant and code named Advanced Persistent Threat (APT1). APT1 is a Chinese organization formed with specific intent to infiltrate and exploit US resources. Manidant provided a detailed behavior and sting analysis report for the 288 malware samples available. We performed an independent analysis using a new alternative to the traditional dynamic analysis and static analysis we call Spatial Analysis (SA). We perform unsupervised SA on the APT1 originating malware code sections and report our findings. We also show the results of SA performed on some members of the families associated by Manidant. We conclude that SV based SA is a practical fast alternative to dynamics analysis and static analysis.

  13. Protein microarray applications: Autoantibody detection and posttranslational modification.

    Science.gov (United States)

    Atak, Apurva; Mukherjee, Shuvolina; Jain, Rekha; Gupta, Shabarni; Singh, Vedita Anand; Gahoi, Nikita; K P, Manubhai; Srivastava, Sanjeeva

    2016-10-01

    The discovery of DNA microarrays was a major milestone in genomics; however, it could not adequately predict the structure or dynamics of underlying protein entities, which are the ultimate effector molecules in a cell. Protein microarrays allow simultaneous study of thousands of proteins/peptides, and various advancements in array technologies have made this platform suitable for several diagnostic and functional studies. Antibody arrays enable researchers to quantify the abundance of target proteins in biological fluids and assess PTMs by using the antibodies. Protein microarrays have been used to assess protein-protein interactions, protein-ligand interactions, and autoantibody profiling in various disease conditions. Here, we summarize different microarray platforms with focus on its biological and clinical applications in autoantibody profiling and PTM studies. We also enumerate the potential of tissue microarrays to validate findings from protein arrays as well as other approaches, highlighting their significance in proteomics.

  14. DNA microarray-based mutation discovery and genotyping.

    Science.gov (United States)

    Gresham, David

    2011-01-01

    DNA microarrays provide an efficient means of identifying single-nucleotide polymorphisms (SNPs) in DNA samples and characterizing their frequencies in individual and mixed samples. We have studied the parameters that determine the sensitivity of DNA probes to SNPs and found that the melting temperature (T (m)) of the probe is the primary determinant of probe sensitivity. An isothermal-melting temperature DNA microarray design, in which the T (m) of all probes is tightly distributed, can be implemented by varying the length of DNA probes within a single DNA microarray. I describe guidelines for designing isothermal-melting temperature DNA microarrays and protocols for labeling and hybridizing DNA samples to DNA microarrays for SNP discovery, genotyping, and quantitative determination of allele frequencies in mixed samples.

  15. Differential splicing using whole-transcript microarrays

    Directory of Open Access Journals (Sweden)

    Robinson Mark D

    2009-05-01

    Full Text Available Abstract Background The latest generation of Affymetrix microarrays are designed to interrogate expression over the entire length of every locus, thus giving the opportunity to study alternative splicing genome-wide. The Exon 1.0 ST (sense target platform, with versions for Human, Mouse and Rat, is designed primarily to probe every known or predicted exon. The smaller Gene 1.0 ST array is designed as an expression microarray but still interrogates expression with probes along the full length of each well-characterized transcript. We explore the possibility of using the Gene 1.0 ST platform to identify differential splicing events. Results We propose a strategy to score differential splicing by using the auxiliary information from fitting the statistical model, RMA (robust multichip analysis. RMA partitions the probe-level data into probe effects and expression levels, operating robustly so that if a small number of probes behave differently than the rest, they are downweighted in the fitting step. We argue that adjacent poorly fitting probes for a given sample can be evidence of differential splicing and have designed a statistic to search for this behaviour. Using a public tissue panel dataset, we show many examples of tissue-specific alternative splicing. Furthermore, we show that evidence for putative alternative splicing has a strong correspondence between the Gene 1.0 ST and Exon 1.0 ST platforms. Conclusion We propose a new approach, FIRMAGene, to search for differentially spliced genes using the Gene 1.0 ST platform. Such an analysis complements the search for differential expression. We validate the method by illustrating several known examples and we note some of the challenges in interpreting the probe-level data. Software implementing our methods is freely available as an R package.

  16. Lipid Microarray Biosensor for Biotoxin Detection.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anup K.; Throckmorton, Daniel J.; Moran-Mirabal, Jose C.; Edel, Joshua B.; Meyer, Grant D.; Craighead, Harold G.

    2006-05-01

    We present the use of micron-sized lipid domains, patterned onto planar substrates and within microfluidic channels, to assay the binding of bacterial toxins via total internal reflection fluorescence microscopy (TIRFM). The lipid domains were patterned using a polymer lift-off technique and consisted of ganglioside-populated DSPC:cholesterol supported lipid bilayers (SLBs). Lipid patterns were formed on the substrates by vesicle fusion followed by polymer lift-off, which revealed micron-sized SLBs containing either ganglioside GT1b or GM1. The ganglioside-populated SLB arrays were then exposed to either Cholera toxin subunit B (CTB) or Tetanus toxin fragment C (TTC). Binding was assayed on planar substrates by TIRFM down to 1 nM concentration for CTB and 100 nM for TTC. Apparent binding constants extracted from three different models applied to the binding curves suggest that binding of a protein to a lipid-based receptor is strongly affected by the lipid composition of the SLB and by the substrate on which the bilayer is formed. Patterning of SLBs inside microfluidic channels also allowed the preparation of lipid domains with different compositions on a single device. Arrays within microfluidic channels were used to achieve segregation and selective binding from a binary mixture of the toxin fragments in one device. The binding and segregation within the microfluidic channels was assayed with epifluorescence as proof of concept. We propose that the method used for patterning the lipid microarrays on planar substrates and within microfluidic channels can be easily adapted to proteins or nucleic acids and can be used for biosensor applications and cell stimulation assays under different flow conditions. KEYWORDS. Microarray, ganglioside, polymer lift-off, cholera toxin, tetanus toxin, TIRFM, binding constant.4

  17. Polymer microarray technology for stem cell engineering.

    Science.gov (United States)

    Coyle, Robert; Jia, Jia; Mei, Ying

    2016-04-01

    Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. During the past decade, significant progress has been made in developing soluble factors (e.g., small molecules and growth factors) to direct stem cells into a desired phenotype. However, the current lack of suitable synthetic materials to regulate stem cell activity has limited the realization of the enormous potential of stem cells. This can be attributed to a large number of materials properties (e.g., chemical structures and physical properties of materials) that can affect stem cell fate. This makes it challenging to design biomaterials to direct stem cell behavior. To address this, polymer microarray technology has been developed to rapidly identify materials for a variety of stem cell applications. In this article, we summarize recent developments in polymer array technology and their applications in stem cell engineering. Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. In the last decade, significant progress has been made in developing chemically defined media to direct stem cells into a desired phenotype. However, the current lack of the suitable synthetic materials to regulate stem cell activities has been limiting the realization of the potential of stem cells. This can be attributed to the number of variables in material properties (e.g., chemical structures and physical properties) that can affect stem cells. Polymer microarray technology has shown to be a powerful tool to rapidly identify materials for a variety of stem cell applications. Here we summarize recent developments in polymer array technology and their applications in stem cell engineering. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Visual genome-wide RNAi screening to identify human host factors required for Trypanosoma cruzi infection

    CSIR Research Space (South Africa)

    Genovesio, A

    2011-05-01

    Full Text Available cellular microarray-based RNAi screening over glass slides method was first described by Erfle and collaborators in 2004 [29] and was further developed for high-throughput scale in genome-wide screens investigating mitosis, cell cycle progression...

  19. Oligonucleotide microarray identifies genes differentially expressed during tumorigenesis of DMBA-induced pancreatic cancer in rats.

    Directory of Open Access Journals (Sweden)

    Jun-Chao Guo

    Full Text Available The extremely dismal prognosis of pancreatic cancer (PC is attributed, at least in part, to lack of early diagnosis. Therefore, identifying differentially expressed genes in multiple steps of tumorigenesis of PC is of great interest. In the present study, a 7,12-dimethylbenzanthraene (DMBA-induced PC model was established in male Sprague-Dawley rats. The gene expression profile was screened using an oligonucleotide microarray, followed by real-time quantitative polymerase chain reaction (qRT-PCR and immunohistochemical staining validation. A total of 661 differentially expressed genes were identified in stages of pancreatic carcinogenesis. According to GO classification, these genes were involved in multiple molecular pathways. Using two-way hierarchical clustering analysis, normal pancreas, acute and chronic pancreatitis, PanIN, early and advanced pancreatic cancer were completely discriminated. Furthermore, 11 upregulated and 142 downregulated genes (probes were found by Mann-Kendall trend Monotone test, indicating homologous genes of rat and human. The qRT-PCR and immunohistochemistry analysis of CXCR7 and UBe2c, two of the identified genes, confirmed the microarray results. In human PC cell lines, knockdown of CXCR7 resulted in decreased migration and invasion. Collectively, our data identified several promising markers and therapeutic targets of PC based on a comprehensive screening and systemic validation.

  20. Oligonucleotide microarray identifies genes differentially expressed during tumorigenesis of DMBA-induced pancreatic cancer in rats.

    Science.gov (United States)

    Guo, Jun-Chao; Li, Jian; Yang, Ying-Chi; Zhou, Li; Zhang, Tai-Ping; Zhao, Yu-Pei

    2013-01-01

    The extremely dismal prognosis of pancreatic cancer (PC) is attributed, at least in part, to lack of early diagnosis. Therefore, identifying differentially expressed genes in multiple steps of tumorigenesis of PC is of great interest. In the present study, a 7,12-dimethylbenzanthraene (DMBA)-induced PC model was established in male Sprague-Dawley rats. The gene expression profile was screened using an oligonucleotide microarray, followed by real-time quantitative polymerase chain reaction (qRT-PCR) and immunohistochemical staining validation. A total of 661 differentially expressed genes were identified in stages of pancreatic carcinogenesis. According to GO classification, these genes were involved in multiple molecular pathways. Using two-way hierarchical clustering analysis, normal pancreas, acute and chronic pancreatitis, PanIN, early and advanced pancreatic cancer were completely discriminated. Furthermore, 11 upregulated and 142 downregulated genes (probes) were found by Mann-Kendall trend Monotone test, indicating homologous genes of rat and human. The qRT-PCR and immunohistochemistry analysis of CXCR7 and UBe2c, two of the identified genes, confirmed the microarray results. In human PC cell lines, knockdown of CXCR7 resulted in decreased migration and invasion. Collectively, our data identified several promising markers and therapeutic targets of PC based on a comprehensive screening and systemic validation.

  1. Detection and isolation of selected genes of interest from metagenomic libraries by a DNA microarray approach.

    Science.gov (United States)

    Pathak, Gopal P; Gärtner, Wolfgang

    2010-01-01

    A DNA microarray-based approach is described for screening metagenomic libraries for the presence of selected genes. The protocol is exemplified for the identification of flavin-binding, blue-light-sensitive biological photoreceptors (BL), based on a homology search in already sequenced, annotated genomes. The microarray carried 149 different 54-mer oligonucleotides, derived from consensus sequences of BL photoreceptors. The array could readily identify targets carrying 4% sequence mismatch, and allowed unambiguous identification of a positive cosmid clone of as little as 10 ng against a background of 25 μg of cosmid DNA. The protocol allows screening up to 1,200 library clones in concentrations as low as ca. 20 ng, each with a ca. 40 kb insert size readily in a single batch. Calibration and control conditions are outlined. This protocol, when applied to the thermophilic fraction of a soil sample, yielded the identification and functional characterization of a novel, BL-encoding gene that showed a 58% similarity to a known, BL-encoding gene from Kineococcus radiotolerans SRS30216 (similarity values refer to the respective LOV domains).

  2. A High Throughput Protein Microarray Approach to Classify HIV Monoclonal Antibodies and Variant Antigens.

    Directory of Open Access Journals (Sweden)

    Emmanuel Y Dotsey

    Full Text Available In recent years, high throughput discovery of human recombinant monoclonal antibodies (mAbs has been applied to greatly advance our understanding of the specificity, and functional activity of antibodies against HIV. Thousands of antibodies have been generated and screened in functional neutralization assays, and antibodies associated with cross-strain neutralization and passive protection in primates, have been identified. To facilitate this type of discovery, a high throughput-screening tool is needed to accurately classify mAbs, and their antigen targets. In this study, we analyzed and evaluated a prototype microarray chip comprised of the HIV-1 recombinant proteins gp140, gp120, gp41, and several membrane proximal external region peptides. The protein microarray analysis of 11 HIV-1 envelope-specific mAbs revealed diverse binding affinities and specificities across clades. Half maximal effective concentrations, generated by our chip analysis, correlated significantly (P<0.0001 with concentrations from ELISA binding measurements. Polyclonal immune responses in plasma samples from HIV-1 infected subjects exhibited different binding patterns, and reactivity against printed proteins. Examining the totality of the specificity of the humoral response in this way reveals the exquisite diversity, and specificity of the humoral response to HIV.

  3. High-content single-cell analysis on-chip using a laser microarray scanner.

    Science.gov (United States)

    Zhou, Jing; Wu, Yu; Lee, Sang-Kwon; Fan, Rong

    2012-12-07

    High-content cellomic analysis is a powerful tool for rapid screening of cellular responses to extracellular cues and examination of intracellular signal transduction pathways at the single-cell level. In conjunction with microfluidics technology that provides unique advantages in sample processing and precise control of fluid delivery, it holds great potential to transform lab-on-a-chip systems for high-throughput cellular analysis. However, high-content imaging instruments are expensive, sophisticated, and not readily accessible. Herein, we report on a laser scanning cytometry approach that exploits a bench-top microarray scanner as an end-point reader to perform rapid and automated fluorescence imaging of cells cultured on a chip. Using high-content imaging analysis algorithms, we demonstrated multiplexed measurements of morphometric and proteomic parameters from all single cells. Our approach shows the improvement of both sensitivity and dynamic range by two orders of magnitude as compared to conventional epifluorescence microscopy. We applied this technology to high-throughput analysis of mesenchymal stem cells on an extracellular matrix protein array and characterization of heterotypic cell populations. This work demonstrates the feasibility of a laser microarray scanner for high-content cellomic analysis and opens up new opportunities to conduct informative cellular analysis and cell-based screening in the lab-on-a-chip systems.

  4. Screening CO

    NARCIS (Netherlands)

    Ramírez, A.; Hagedoorn, S.; Kramers, L.; Wildenborg, T.; Hendriks, C.

    2010-01-01

    This paper describes the development and application of a methodology to screen and rank Dutch reservoirs suitable for long-term large scale CO2 storage. The screening focuses on off- and on-shore individual aquifers, gas and oil fields. In total 176 storage reservoirs have been taken int

  5. Screening for genes associated with ovarian cancer prognosis

    Institute of Scientific and Technical Information of China (English)

    CHANG Xiao-hong; ZHANG Li; YANG Rong; FENG Jie; CHENG Ye-xia; CHENG Hong-yan; YE Xue; FU Tian-yun; CUI Heng

    2009-01-01

    Background Human epithelial ovarian cancer cell line SKOV3.ipl is more invasive and metastatic compared with its parental line SKOV3. A total of 17 000 human genome complementary DNA microarrays were used to compare the gene expression patterns of the two cell lines. Based on this, the gene expression profiles of 22 patients with ovarian cancer were analyzed by cDNA microarray, and screened the 2-fold differentially expressed genes compared with the normal ones. We screened genes relevant to clinical prognosis of serous ovarian cancer by determining the expression profiles of ovarian cancer genes to investigate cell receptor and immunity-associated genes, and as groundwork, identify ovarian cancer-associated antigens at the gene level.Methods Total RNA was extracted from 22 patients with ovarian cancer and DNA microarrays were prepared. After scanning, hybridization signals were collected and the genes that were differentially expressed twice as compared with the normal ones were screened.Results We screened 236 genes relevant to the prognosis of ovarian cancer from the 17 000 human genome cDNA microarrays. According to gene classification, 48 of the 236 genes were cell receptor or immunity-associatad genes,including 2 genes related to the International Federation of Gynecology and Obstetrics (FIGO) stage, 4 genes to histological grade, 18 genes to lymph node metastasis, 11 genes to residual disease, and 13 genes to the reactivity to chemotherapy. Several functionally important genes including fibronectin 1, pericentriolar material 1, beta-2-microglobulin,PPAR binding protein were identified through review of the literature.Conclusions The cDNA microarray of ovarian cancer genes developed in this study was effective and high throughput in screening the ovarian cancer-associated genes differentially expressed. Through the studies of the cell receptor and immunity-associated genes we expect to identify the molecular biology index of ovarian cancer-associated antigens.

  6. Expanding the substantial interactome of NEMO using protein microarrays.

    LENUS (Irish Health Repository)

    Fenner, Beau J

    2010-01-01

    Signal transduction by the NF-kappaB pathway is a key regulator of a host of cellular responses to extracellular and intracellular messages. The NEMO adaptor protein lies at the top of this pathway and serves as a molecular conduit, connecting signals transmitted from upstream sensors to the downstream NF-kappaB transcription factor and subsequent gene activation. The position of NEMO within this pathway makes it an attractive target from which to search for new proteins that link NF-kappaB signaling to additional pathways and upstream effectors. In this work, we have used protein microarrays to identify novel NEMO interactors. A total of 112 protein interactors were identified, with the most statistically significant hit being the canonical NEMO interactor IKKbeta, with IKKalpha also being identified. Of the novel interactors, more than 30% were kinases, while at least 25% were involved in signal transduction. Binding of NEMO to several interactors, including CALB1, CDK2, SAG, SENP2 and SYT1, was confirmed using GST pulldown assays and coimmunoprecipitation, validating the initial screening approach. Overexpression of CALB1, CDK2 and SAG was found to stimulate transcriptional activation by NF-kappaB, while SYT1 overexpression repressed TNFalpha-dependent NF-kappaB transcriptional activation in human embryonic kidney cells. Corresponding with this finding, RNA silencing of CDK2, SAG and SENP2 reduced NF-kappaB transcriptional activation, supporting a positive role for these proteins in the NF-kappaB pathway. The identification of a host of new NEMO interactors opens up new research opportunities to improve understanding of this essential cell signaling pathway.

  7. Microintaglio Printing for Soft Lithography-Based in Situ Microarrays

    Directory of Open Access Journals (Sweden)

    Manish Biyani

    2015-07-01

    Full Text Available Advances in lithographic approaches to fabricating bio-microarrays have been extensively explored over the last two decades. However, the need for pattern flexibility, a high density, a high resolution, affordability and on-demand fabrication is promoting the development of unconventional routes for microarray fabrication. This review highlights the development and uses of a new molecular lithography approach, called “microintaglio printing technology”, for large-scale bio-microarray fabrication using a microreactor array (µRA-based chip consisting of uniformly-arranged, femtoliter-size µRA molds. In this method, a single-molecule-amplified DNA microarray pattern is self-assembled onto a µRA mold and subsequently converted into a messenger RNA or protein microarray pattern by simultaneously producing and transferring (immobilizing a messenger RNA or a protein from a µRA mold to a glass surface. Microintaglio printing allows the self-assembly and patterning of in situ-synthesized biomolecules into high-density (kilo-giga-density, ordered arrays on a chip surface with µm-order precision. This holistic aim, which is difficult to achieve using conventional printing and microarray approaches, is expected to revolutionize and reshape proteomics. This review is not written comprehensively, but rather substantively, highlighting the versatility of microintaglio printing for developing a prerequisite platform for microarray technology for the postgenomic era.

  8. Rapid and quantitative quality control of microarrays using cationic nanoparticles.

    Science.gov (United States)

    Sun, Ye; Fan, Wenhua; McCann, Michael P; Golovlev, Val

    2009-02-15

    The fabrication quality of microarrays significantly influences the accuracy and reproducibility of microarray experiments. In this report, we present a simple and fast quality control (QC) method for spotted oligonucleotide and cDNA microarrays. It employs a nonspecific electrostatic interaction of colloidal gold nanoparticles with the chemical groups of DNA molecules and other biomolecules immobilized on the microarray surface that bear positive or negative charges. An inexpensive flatbed scanner is used to visualize and quantify the binding of cationic gold particles to the anionic DNA probes on the microarray surface. An image analysis software was designed to assess the various parameters of the array spots including spot intensity, shape and array homogeneity, calculate the overall array quality score, and save the detailed array quality report in an Excel file. The gold staining technique is fast and sensitive. It can be completed in 10 min and detect less than 1% of the probe amount commonly recommended for microarrays. Compared to the current microarray QC method that utilizes the hybridization of probes with short random sequence oligonucleotides labeled with fluorophore, our gold staining method requires less time for the analysis, reduces the reagent cost, and eliminates the need for the expensive laser scanner.

  9. Microintaglio Printing for Soft Lithography-Based in Situ Microarrays.

    Science.gov (United States)

    Biyani, Manish; Ichiki, Takanori

    2015-07-14

    Advances in lithographic approaches to fabricating bio-microarrays have been extensively explored over the last two decades. However, the need for pattern flexibility, a high density, a high resolution, affordability and on-demand fabrication is promoting the development of unconventional routes for microarray fabrication. This review highlights the development and uses of a new molecular lithography approach, called "microintaglio printing technology", for large-scale bio-microarray fabrication using a microreactor array (µRA)-based chip consisting of uniformly-arranged, femtoliter-size µRA molds. In this method, a single-molecule-amplified DNA microarray pattern is self-assembled onto a µRA mold and subsequently converted into a messenger RNA or protein microarray pattern by simultaneously producing and transferring (immobilizing) a messenger RNA or a protein from a µRA mold to a glass surface. Microintaglio printing allows the self-assembly and patterning of in situ-synthesized biomolecules into high-density (kilo-giga-density), ordered arrays on a chip surface with µm-order precision. This holistic aim, which is difficult to achieve using conventional printing and microarray approaches, is expected to revolutionize and reshape proteomics. This review is not written comprehensively, but rather substantively, highlighting the versatility of microintaglio printing for developing a prerequisite platform for microarray technology for the postgenomic era.

  10. The EADGENE Microarray Data Analysis Workshop (Open Access publication

    Directory of Open Access Journals (Sweden)

    Jiménez-Marín Ángeles

    2007-11-01

    Full Text Available Abstract Microarray analyses have become an important tool in animal genomics. While their use is becoming widespread, there is still a lot of ongoing research regarding the analysis of microarray data. In the context of a European Network of Excellence, 31 researchers representing 14 research groups from 10 countries performed and discussed the statistical analyses of real and simulated 2-colour microarray data that were distributed among participants. The real data consisted of 48 microarrays from a disease challenge experiment in dairy cattle, while the simulated data consisted of 10 microarrays from a direct comparison of two treatments (dye-balanced. While there was broader agreement with regards to methods of microarray normalisation and significance testing, there were major differences with regards to quality control. The quality control approaches varied from none, through using statistical weights, to omitting a large number of spots or omitting entire slides. Surprisingly, these very different approaches gave quite similar results when applied to the simulated data, although not all participating groups analysed both real and simulated data. The workshop was very successful in facilitating interaction between scientists with a diverse background but a common interest in microarray analyses.

  11. The application of protein microarray assays in psychoneuroimmunology.

    Science.gov (United States)

    Ayling, K; Bowden, T; Tighe, P; Todd, I; Dilnot, E M; Negm, O H; Fairclough, L; Vedhara, K

    2017-01-01

    Protein microarrays are miniaturized multiplex assays that exhibit many advantages over the commonly used enzyme-linked immunosorbent assay (ELISA). This article aims to introduce protein microarrays to readers of Brain, Behavior, and Immunity and demonstrate its utility and validity for use in psychoneuroimmunological research. As part of an ongoing investigation of psychological and behavioral influences on influenza vaccination responses, we optimized a novel protein microarray to quantify influenza-specific antibody levels in human sera. Reproducibility was assessed by calculating intra- and inter-assay coefficients of variance on serially diluted human IgG concentrations. A random selection of samples was analyzed by microarray and ELISA to establish validity of the assay. For IgG concentrations, intra-assay and inter-assay precision profiles demonstrated a mean coefficient of variance of 6.7% and 11.5% respectively. Significant correlations were observed between microarray and ELISA for all antigens, demonstrating the microarray is a valid alternative to ELISA. Protein microarrays are a highly robust, novel assay method that could be of significant benefit for researchers working in psychoneuroimmunology. They offer high throughput, fewer resources per analyte and can examine concurrent neuro-immune-endocrine mechanisms.

  12. SAMMD: Staphylococcus aureus Microarray Meta-Database

    Directory of Open Access Journals (Sweden)

    Elasri Mohamed O

    2007-10-01

    Full Text Available Abstract Background Staphylococcus aureus is an important human pathogen, causing a wide variety of diseases ranging from superficial skin infections to severe life threatening infections. S. aureus is one of the leading causes of nosocomial infections. Its ability to resist multiple antibiotics poses a growing public health problem. In order to understand the mechanism of pathogenesis of S. aureus, several global expression profiles have been developed. These transcriptional profiles included regulatory mutants of S. aureus and growth of wild type under different growth conditions. The abundance of these profiles has generated a large amount of data without a uniform annotation system to comprehensively examine them. We report the development of the Staphylococcus aureus Microarray meta-database (SAMMD which includes data from all the published transcriptional profiles. SAMMD is a web-accessible database that helps users to perform a variety of analysis against and within the existing transcriptional profiles. Description SAMMD is a relational database that uses MySQL as the back end and PHP/JavaScript/DHTML as the front end. The database is normalized and consists of five tables, which holds information about gene annotations, regulated gene lists, experimental details, references, and other details. SAMMD data is collected from the peer-reviewed published articles. Data extraction and conversion was done using perl scripts while data entry was done through phpMyAdmin tool. The database is accessible via a web interface that contains several features such as a simple search by ORF ID, gene name, gene product name, advanced search using gene lists, comparing among datasets, browsing, downloading, statistics, and help. The database is licensed under General Public License (GPL. Conclusion SAMMD is hosted and available at http://www.bioinformatics.org/sammd/. Currently there are over 9500 entries for regulated genes, from 67 microarray

  13. Imaging combined autoimmune and infectious disease microarrays

    Science.gov (United States)

    Ewart, Tom; Raha, Sandeep; Kus, Dorothy; Tarnopolsky, Mark

    2006-09-01

    Bacterial and viral pathogens are implicated in many severe autoimmune diseases, acting through such mechanisms as molecular mimicry, and superantigen activation of T-cells. For example, Helicobacter pylori, well known cause of stomach ulcers and cancers, is also identified in ischaemic heart disease (mimicry of heat shock protein 65), autoimmune pancreatitis, systemic sclerosis, autoimmune thyroiditis (HLA DRB1*0301 allele susceptibility), and Crohn's disease. Successful antibiotic eradication of H.pylori often accompanies their remission. Yet current diagnostic devices, and test-limiting cost containment, impede recognition of the linkage, delaying both diagnosis and therapeutic intervention until the chronic debilitating stage. We designed a 15 minute low cost 39 antigen microarray assay, combining autoimmune, viral and bacterial antigens1. This enables point-of-care serodiagnosis and cost-effective narrowly targeted concurrent antibiotic and monoclonal anti-T-cell and anti-cytokine immunotherapy. Arrays of 26 pathogen and 13 autoimmune antigens with IgG and IgM dilution series were printed in triplicate on epoxysilane covalent binding slides with Teflon well masks. Sera diluted 1:20 were incubated 10 minutes, washed off, anti-IgG-Cy3 (green) and anti-IgM-Dy647 (red) were incubated for 5 minutes, washed off and the slide was read in an ArrayWoRx(e) scanning CCD imager (Applied Precision, Issaquah, WA). As a preliminary model for the combined infectious disease-autoimmune diagnostic microarray we surveyed 98 unidentified, outdated sera that were discarded after Hepatitis B antibody testing. In these, significant IgG or IgM autoantibody levels were found: dsDNA 5, ssDNA 11, Ro 2, RNP 7, SSB 4, gliadin 2, thyroglobulin 13 cases. Since control sera showed no autoantibodies, the high frequency of anti-DNA and anti-thyroglobulin antibodies found in infected sera lend increased support for linkage of infection to subsequent autoimmune disease. Expansion of the antigen

  14. Triple-target microarray experiments: a novel experimental strategy

    Directory of Open Access Journals (Sweden)

    Cooke Howard J

    2004-02-01

    Full Text Available Abstract Background High-throughput, parallel gene expression analysis by means of microarray technology has become a widely used technique in recent years. There are currently two main dye-labelling strategies for microarray studies based on custom-spotted cDNA or oligonucleotides arrays: (I Dye-labelling of a single target sample with a particular dye, followed by subsequent hybridisation to a single microarray slide, (II Dye-labelling of two different target samples with two different dyes, followed by subsequent co-hybridisation to a single microarray slide. The two dyes most frequently used for either method are Cy3 and Cy5. We propose and evaluate a novel experiment set-up utilising three differently labelled targets co-hybridised to one microarray slide. In addition to Cy3 and Cy5, this incorporates Alexa 594 as a third dye-label. We evaluate this approach in line with current data processing and analysis techniques for microarrays, and run separate analyses on Alexa 594 used in single-target, dual-target and the intended triple-target experiment set-ups (a total of 18 microarray slides. We follow this by pointing out practical applications and suitable analysis methods, and conclude that triple-target microarray experiments can add value to microarray research by reducing material costs for arrays and related processes, and by increasing the number of options for pragmatic experiment design. Results The addition of Alexa 594 as a dye-label for an additional – third – target sample works within the framework of more commonplace Cy5/Cy3 labelled target sample combinations. Standard normalisation methods are still applicable, and the resulting data can be expected to allow identification of expression differences in a biological experiment, given sufficient levels of biological replication (as is necessary for most microarray experiments. Conclusion The use of three dye-labelled target samples can be a valuable addition to the standard

  15. Optimality criteria for the design of 2-color microarray studies.

    Science.gov (United States)

    Kerr, Kathleen F

    2012-01-13

    We discuss the definition and application of design criteria for evaluating the efficiency of 2-color microarray designs. First, we point out that design optimality criteria are defined differently for the regression and block design settings. This has caused some confusion in the literature and warrants clarification. Linear models for microarray data analysis have equivalent formulations as ANOVA or regression models. However, this equivalence does not extend to design criteria. We discuss optimality criterion, and argue against applying regression-style D-optimality to the microarray design problem. We further disfavor E- and D-optimality (as defined in block design) because they are not attuned to scientific questions of interest.

  16. Towards standardization of microarray-based genotyping of Salmonella

    DEFF Research Database (Denmark)

    Löfström, Charlotta; Grønlund, Hugo Ahlm; Riber, Leise

    2010-01-01

    Genotyping is becoming an increasingly important tool to improve risk assessments of Salmonella. DNA microarray technology is a promising diagnostic tool that can provide high resolution genomic profile of many genes simultaneously. However, standardization of DNA microarray analysis is needed...... of Salmonella at two different laboratories. The low-density array contained 281 of 57-60-mer oligonucleotide probes for detecting a wide range of specific genomic markers associated with antibiotic resistance, cell envelope structures, mobile genetic elements and pathogenicity. Several test parameters...... for a decentralized and simple-to-implement DNA microarray as part of a pan-European source-attribution model for risk assessment of Salmonella....

  17. Identification of novel endogenous antisense transcripts by DNA microarray analysis targeting complementary strand of annotated genes

    Directory of Open Access Journals (Sweden)

    Kohama Chihiro

    2009-08-01

    Full Text Available Abstract Background Recent transcriptomic analyses in mammals have uncovered the widespread occurrence of endogenous antisense transcripts, termed natural antisense transcripts (NATs. NATs are transcribed from the opposite strand of the gene locus and are thought to control sense gene expression, but the mechanism of such regulation is as yet unknown. Although several thousand potential sense-antisense pairs have been identified in mammals, examples of functionally characterized NATs remain limited. To identify NAT candidates suitable for further functional analyses, we performed DNA microarray-based NAT screening using mouse adult normal tissues and mammary tumors to target not only the sense orientation but also the complementary strand of the annotated genes. Results First, we designed microarray probes to target the complementary strand of genes for which an antisense counterpart had been identified only in human public cDNA sources, but not in the mouse. We observed a prominent expression signal from 66.1% of 635 target genes, and 58 genes of these showed tissue-specific expression. Expression analyses of selected examples (Acaa1b and Aard confirmed their dynamic transcription in vivo. Although interspecies conservation of NAT expression was previously investigated by the presence of cDNA sources in both species, our results suggest that there are more examples of human-mouse conserved NATs that could not be identified by cDNA sources. We also designed probes to target the complementary strand of well-characterized genes, including oncogenes, and compared the expression of these genes between mammary cancerous tissues and non-pathological tissues. We found that antisense expression of 95 genes of 404 well-annotated genes was markedly altered in tumor tissue compared with that in normal tissue and that 19 of these genes also exhibited changes in sense gene expression. These results highlight the importance of NAT expression in the regulation

  18. Transcriptome analysis of zebrafish embryogenesis using microarrays.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Zebrafish (Danio rerio is a well-recognized model for the study of vertebrate developmental genetics, yet at the same time little is known about the transcriptional events that underlie zebrafish embryogenesis. Here we have employed microarray analysis to study the temporal activity of developmentally regulated genes during zebrafish embryogenesis. Transcriptome analysis at 12 different embryonic time points covering five different developmental stages (maternal, blastula, gastrula, segmentation, and pharyngula revealed a highly dynamic transcriptional profile. Hierarchical clustering, stage-specific clustering, and algorithms to detect onset and peak of gene expression revealed clearly demarcated transcript clusters with maximum gene activity at distinct developmental stages as well as co-regulated expression of gene groups involved in dedicated functions such as organogenesis. Our study also revealed a previously unidentified cohort of genes that are transcribed prior to the mid-blastula transition, a time point earlier than when the zygotic genome was traditionally thought to become active. Here we provide, for the first time to our knowledge, a comprehensive list of developmentally regulated zebrafish genes and their expression profiles during embryogenesis, including novel information on the temporal expression of several thousand previously uncharacterized genes. The expression data generated from this study are accessible to all interested scientists from our institute resource database (http://giscompute.gis.a-star.edu.sg/~govind/zebrafish/data_download.html.

  19. Ontology-Based Analysis of Microarray Data.

    Science.gov (United States)

    Giuseppe, Agapito; Milano, Marianna

    2016-01-01

    The importance of semantic-based methods and algorithms for the analysis and management of biological data is growing for two main reasons. From a biological side, knowledge contained in ontologies is more and more accurate and complete, from a computational side, recent algorithms are using in a valuable way such knowledge. Here we focus on semantic-based management and analysis of protein interaction networks referring to all the approaches of analysis of protein-protein interaction data that uses knowledge encoded into biological ontologies. Semantic approaches for studying high-throughput data have been largely used in the past to mine genomic and expression data. Recently, the emergence of network approaches for investigating molecular machineries has stimulated in a parallel way the introduction of semantic-based techniques for analysis and management of network data. The application of these computational approaches to the study of microarray data can broad the application scenario of them and simultaneously can help the understanding of disease development and progress.

  20. The use of microarray technology for cytogenetics.

    Science.gov (United States)

    Bejjani, Bassem A; Shaffer, Lisa G; Ballif, Blake C

    2010-01-01

    The use of microarray technology is revolutionizing the field of clinical cytogenetics. This new technology has transformed the cytogenetics laboratory by adapting techniques that have heretofore been the province of molecular geneticists. Intimate knowledge and comfortable familiarity with these techniques are now a must for the modern cytogeneticist, rather than a stimulating but discretionary intellectual exercise or an elective luxury. The cytogenetic laboratory of the future will likely have more scanners than microscopes, more software packages than darkrooms, and more technologists, supervisors, and directors with molecular training than ever before. This technical convergence between molecular diagnostics and clinical cytogenetics is exciting and has already resulted in many stimulating discoveries. However, the traditional skills of the cytogeneticist are needed now more than ever before. As our ability to inspect the genome increases, so does the variety of abnormalities that we uncover. Understanding the mechanisms of these aberrations to guide additional testing of the parents and genetic counseling of the patients and their families requires the expertise of individuals who are well-versed in meiotic mechanisms and chromosomal structures that may lead to these abnormalities. Cytogeneticists are uniquely positioned to understand these mechanisms and assist genetic counselors and clinicians in their daily interactions with patients and families.

  1. Transcriptome analysis of zebrafish embryogenesis using microarrays.

    Directory of Open Access Journals (Sweden)

    Sinnakaruppan Mathavan

    2005-08-01

    Full Text Available Zebrafish (Danio rerio is a well-recognized model for the study of vertebrate developmental genetics, yet at the same time little is known about the transcriptional events that underlie zebrafish embryogenesis. Here we have employed microarray analysis to study the temporal activity of developmentally regulated genes during zebrafish embryogenesis. Transcriptome analysis at 12 different embryonic time points covering five different developmental stages (maternal, blastula, gastrula, segmentation, and pharyngula revealed a highly dynamic transcriptional profile. Hierarchical clustering, stage-specific clustering, and algorithms to detect onset and peak of gene expression revealed clearly demarcated transcript clusters with maximum gene activity at distinct developmental stages as well as co-regulated expression of gene groups involved in dedicated functions such as organogenesis. Our study also revealed a previously unidentified cohort of genes that are transcribed prior to the mid-blastula transition, a time point earlier than when the zygotic genome was traditionally thought to become active. Here we provide, for the first time to our knowledge, a comprehensive list of developmentally regulated zebrafish genes and their expression profiles during embryogenesis, including novel information on the temporal expression of several thousand previously uncharacterized genes. The expression data generated from this study are accessible to all interested scientists from our institute resource database (http://giscompute.gis.a-star.edu.sg/~govind/zebrafish/data_download.html.

  2. Antibody microarrays for native toxin detection.

    Science.gov (United States)

    Rucker, Victor C; Havenstrite, Karen L; Herr, Amy E

    2005-04-15

    We have developed antibody-based microarray techniques for the multiplexed detection of cholera toxin beta-subunit, diphtheria toxin, anthrax lethal factor and protective antigen, Staphylococcus aureus enterotoxin B, and tetanus toxin C fragment in spiked samples. Two detection schemes were investigated: (i) a direct assay in which fluorescently labeled toxins were captured directly by the antibody array and (ii) a competition assay that employed unlabeled toxins as reporters for the quantification of native toxin in solution. In the direct assay, fluorescence measured at each array element is correlated with labeled toxin concentration to yield baseline binding information (Langmuir isotherms and affinity constants). Extending from the direct assay, the competition assay yields information on the presence, identity, and concentration of toxins. A significant advantage of the competition assay over reported profiling assays is the minimal sample preparation required prior to analysis because the competition assay obviates the need to fluorescently label native proteins in the sample of interest. Sigmoidal calibration curves and detection limits were established for both assay formats. Although the sensitivity of the direct assay is superior to that of the competition assay, detection limits for unmodified toxins in the competition assay are comparable to values reported previously for sandwich-format immunoassays of antibodies arrayed on planar substrates. As a demonstration of the potential of the competition assay for unlabeled toxin detection, we conclude with a straightforward multiplexed assay for the differentiation and identification of both native S. aureus enterotoxin B and tetanus toxin C fragment in spiked dilute serum samples.

  3. Quadruple screen test

    Science.gov (United States)

    Quad screen; Multiple marker screening; AFP plus; Triple screen test; AFP maternal; MSAFP; 4-marker screen; Down syndrome - quadruple; Trisomy 21 - quadruple; Turner syndrome - quadruple; Spina bifida - ...

  4. Toxicology screen

    Science.gov (United States)

    Toxicology screening is most often done using a blood or urine sample. However, it may be done soon after the person swallowed the medication, using stomach contents taken through gastric lavage (stomach pumping) or after vomiting.

  5. Hypertension screening

    Science.gov (United States)

    Foulke, J. M.

    1975-01-01

    An attempt was made to measure the response to an announcement of hypertension screening at the Goddard Space Center, to compare the results to those of previous statistics. Education and patient awareness of the problem were stressed.

  6. Hypertension screening

    Science.gov (United States)

    Foulke, J. M.

    1975-01-01

    An attempt was made to measure the response to an announcement of hypertension screening at the Goddard Space Center, to compare the results to those of previous statistics. Education and patient awareness of the problem were stressed.

  7. Cell-Based Microarrays for In Vitro Toxicology.

    Science.gov (United States)

    Wegener, Joachim

    2015-01-01

    DNA/RNA and protein microarrays have proven their outstanding bioanalytical performance throughout the past decades, given the unprecedented level of parallelization by which molecular recognition assays can be performed and analyzed. Cell microarrays (CMAs) make use of similar construction principles. They are applied to profile a given cell population with respect to the expression of specific molecular markers and also to measure functional cell responses to drugs and chemicals. This review focuses on the use of cell-based microarrays for assessing the cytotoxicity of drugs, toxins, or chemicals in general. It also summarizes CMA construction principles with respect to the cell types that are used for such microarrays, the readout parameters to assess toxicity, and the various formats that have been established and applied. The review ends with a critical comparison of CMAs and well-established microtiter plate (MTP) approaches.

  8. Design, construction, characterization, and application of a hyperspectral microarray scanner.

    Science.gov (United States)

    Sinclair, Michael B; Timlin, Jerilyn A; Haaland, David M; Werner-Washburne, Margaret

    2004-04-01

    We describe the design, construction, and operation of a hyperspectral microarray scanner for functional genomic research. The hyperspectral instrument operates with spatial resolutions ranging from 3 to 30 microm and records the emission spectrum between 490 and 900 nm with a spectral resolution of 3 nm for each pixel of the microarray. This spectral information, when coupled with multivariate data analysis techniques, allows for identification and elimination of unwanted artifacts and greatly improves the accuracy of microarray experiments. Microarray results presented in this study clearly demonstrate the separation of fluorescent label emission from the spectrally overlapping emission due to the underlying glass substrate. We also demonstrate separation of the emission due to green fluorescent protein expressed by yeast cells from the spectrally overlapping autofluorescence of the yeast cells and the growth media.

  9. Glycan microarray analysis of Candida glabrata adhesin ligand specificity

    National Research Council Canada - National Science Library

    Zupancic, Margaret L; Frieman, Matthew; Smith, David; Alvarez, Richard A; Cummings, Richard D; Cormack, Brendan P

    2008-01-01

    ...) family responsible for mediating adherence to host cells. To better understand the mechanism by which the Epa proteins contribute to pathogenesis, we have used glycan microarray analysis to characterize their carbohydrate...

  10. Microarray of DNA probes on carboxylate functional beads surface

    Institute of Scientific and Technical Information of China (English)

    黄承志; 李原芳; 黄新华; 范美坤

    2000-01-01

    The microarray of DNA probes with 5’ -NH2 and 5’ -Tex/3’ -NH2 modified terminus on 10 um carboxylate functional beads surface in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) is characterized in the preseni paper. it was found that the microarray capacity of DNA probes on the beads surface depends on the pH of the aqueous solution, the concentra-tion of DNA probe and the total surface area of the beads. On optimal conditions, the minimum distance of 20 mer single-stranded DNA probe microarrayed on beads surface is about 14 nm, while that of 20 mer double-stranded DNA probes is about 27 nm. If the probe length increases from 20 mer to 35 mer, its microarray density decreases correspondingly. Mechanism study shows that the binding mode of DNA probes on the beads surface is nearly parallel to the beads surface.

  11. Microarray of DNA probes on carboxylate functional beads surface

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The microarray of DNA probes with 5′-NH2 and 5′-Tex/3′-NH2 modified terminus on 10 m m carboxylate functional beads surface in the presence of 1-ethyl-3-(3-dimethylaminopropyl)- carbodiimide (EDC) is characterized in the present paper. It was found that the microarray capacity of DNA probes on the beads surface depends on the pH of the aqueous solution, the concentration of DNA probe and the total surface area of the beads. On optimal conditions, the minimum distance of 20 mer single-stranded DNA probe microarrayed on beads surface is about 14 nm, while that of 20 mer double-stranded DNA probes is about 27 nm. If the probe length increases from 20 mer to 35 mer, its microarray density decreases correspondingly. Mechanism study shows that the binding mode of DNA probes on the beads surface is nearly parallel to the beads surface.

  12. Cell-Based Microarrays for In Vitro Toxicology

    Science.gov (United States)

    Wegener, Joachim

    2015-07-01

    DNA/RNA and protein microarrays have proven their outstanding bioanalytical performance throughout the past decades, given the unprecedented level of parallelization by which molecular recognition assays can be performed and analyzed. Cell microarrays (CMAs) make use of similar construction principles. They are applied to profile a given cell population with respect to the expression of specific molecular markers and also to measure functional cell responses to drugs and chemicals. This review focuses on the use of cell-based microarrays for assessing the cytotoxicity of drugs, toxins, or chemicals in general. It also summarizes CMA construction principles with respect to the cell types that are used for such microarrays, the readout parameters to assess toxicity, and the various formats that have been established and applied. The review ends with a critical comparison of CMAs and well-established microtiter plate (MTP) approaches.

  13. Development of a spot reliability evaluation score for DNA microarrays.

    Science.gov (United States)

    Matsumura, Yonehiro; Shimokawa, Kazuro; Hayashizaki, Yoshihide; Ikeo, Kazuho; Tateno, Yoshio; Kawai, Jun

    2005-05-09

    We developed a reliability index named SRED (Spot Reliability Evaluation Score for DNA microarrays) that represents the probability that the calibrated gene expression level from a DNA microarray would be less than a factor of 2 different from that of quantitative real-time polymerase chain reaction assays whose dynamic quantification range is treated statistically to be similar to that of the DNA microarray. To define the SRED score, two parameters, the reproducibility of measurement value and the relative expression value were selected from nine candidate parameters. The SRED score supplies the probability that the expression level in each spot of a microarray is less than a certain-fold different compared to other expression profiling data, such as QRT-PCR. This score was applied to approximately 1,500,000 points of the expression profile in the RIKEN Expression Array Database.

  14. Rapid Diagnosis of Bacterial Meningitis Using a Microarray

    Directory of Open Access Journals (Sweden)

    Ren-Jy Ben

    2008-06-01

    Conclusion: The microarray method provides a more accurate and rapid diagnostic tool for bacterial meningitis compared to traditional culture methods. Clinical application of this new technique may reduce the potential risk of delay in treatment.

  15. Identification of mycotoxigenic fungi using an oligonucleotide microarray

    CSIR Research Space (South Africa)

    Barros, E

    2013-01-01

    Full Text Available , numerous detection tools have been developed for the detection and analysis of various mycotoxigenic fungi. These include PCR-based assays and microarrays targeting different areas of the fungal genome depending on its application. This chapter describes...

  16. Empirical evaluation of oligonucleotide probe selection for DNA microarrays.

    Directory of Open Access Journals (Sweden)

    Jennifer G Mulle

    Full Text Available DNA-based microarrays are increasingly central to biomedical research. Selecting oligonucleotide sequences that will behave consistently across experiments is essential to the design, production and performance of DNA microarrays. Here our aim was to improve on probe design parameters by empirically and systematically evaluating probe performance in a multivariate context. We used experimental data from 19 array CGH hybridizations to assess the probe performance of 385,474 probes tiled in the Duchenne muscular dystrophy (DMD region of the X chromosome. Our results demonstrate that probe melting temperature, single nucleotide polymorphisms (SNPs, and homocytosine motifs all have a strong effect on probe behavior. These findings, when incorporated into future microarray probe selection algorithms, may improve microarray performance for a wide variety of applications.

  17. Empirical evaluation of oligonucleotide probe selection for DNA microarrays.

    Science.gov (United States)

    Mulle, Jennifer G; Patel, Viren C; Warren, Stephen T; Hegde, Madhuri R; Cutler, David J; Zwick, Michael E

    2010-03-29

    DNA-based microarrays are increasingly central to biomedical research. Selecting oligonucleotide sequences that will behave consistently across experiments is essential to the design, production and performance of DNA microarrays. Here our aim was to improve on probe design parameters by empirically and systematically evaluating probe performance in a multivariate context. We used experimental data from 19 array CGH hybridizations to assess the probe performance of 385,474 probes tiled in the Duchenne muscular dystrophy (DMD) region of the X chromosome. Our results demonstrate that probe melting temperature, single nucleotide polymorphisms (SNPs), and homocytosine motifs all have a strong effect on probe behavior. These findings, when incorporated into future microarray probe selection algorithms, may improve microarray performance for a wide variety of applications.

  18. Normalization of one-channel microarrays for identification of organisms

    Directory of Open Access Journals (Sweden)

    Zierer, Astrid

    2007-03-01

    Full Text Available Microarrays are widely used in gene expression analysis, but there are further areas they can be applied to, like e.g. the identification of organisms. To interpret and compare the results of microarray experiments it is necessary to standardize the data. In this context standardization is referred to as normalization. We present data derived from a microarray experiment aiming to identify different subtypes of the hepatitis C virus. Most of the methods developed to normalize microarray data are focused on gene expression analysis. Their use for the identification of organisms is restricted and needs adaption for the special requirements. Based on our data setting, we present several possibilities how to modify the existing methods and deal with the specific conditions.

  19. Deubiquitylase, deSUMOylase, and deISGylase activity microarrays for assay of substrate preference and functional modifiers.

    Science.gov (United States)

    Loch, Christian M; Cuccherini, Charles L; Leach, Craig A; Strickler, James E

    2011-01-01

    Microarray-based proteomics expanded the information potential of DNA arrays to the level of protein translation and interaction, but so far, not much beyond. Although enzymatic activity from immobilized proteins has been reliably studied using surface plasmon resonance, a microarray of catalytically competent enzymes would facilitate high throughput, parallel study of their function. The ability to localize activity from soluble substrates has frustrated development of such an array. Here, we report the novel use of previously developed, highly specific suicide substrates for three families of enzymes: deubiquitylases, deSUMOylases, and deISGylases. We show specificity of each family to its cognate substrate, and demonstrate utility of the array in a secondary screen of small molecule inhibitors.

  20. An alternative method to amplify RNA without loss of signal conservation for expression analysis with a proteinase DNA microarray in the ArrayTube® format

    Directory of Open Access Journals (Sweden)

    Wiederanders B

    2006-06-01

    Full Text Available Abstract Background Recent developments in DNA microarray technology led to a variety of open and closed devices and systems including high and low density microarrays for high-throughput screening applications as well as microarrays of lower density for specific diagnostic purposes. Beside predefined microarrays for specific applications manufacturers offer the production of custom-designed microarrays adapted to customers' wishes. Array based assays demand complex procedures including several steps for sample preparation (RNA extraction, amplification and sample labelling, hybridization and detection, thus leading to a high variability between several approaches and resulting in the necessity of extensive standardization and normalization procedures. Results In the present work a custom designed human proteinase DNA microarray of lower density in ArrayTube® format was established. This highly economic open platform only requires standard laboratory equipment and allows the study of the molecular regulation of cell behaviour by proteinases. We established a procedure for sample preparation and hybridization and verified the array based gene expression profile by quantitative real-time PCR (QRT-PCR. Moreover, we compared the results with the well established Affymetrix microarray. By application of standard labelling procedures with e.g. Klenow fragment exo-, single primer amplification (SPA or In Vitro Transcription (IVT we noticed a loss of signal conservation for some genes. To overcome this problem we developed a protocol in accordance with the SPA protocol, in which we included target specific primers designed individually for each spotted oligomer. Here we present a complete array based assay in which only the specific transcripts of interest are amplified in parallel and in a linear manner. The array represents a proof of principle which can be adapted to other species as well. Conclusion As the designed protocol for amplifying m

  1. A comprehensive platform for highly multiplexed mammalian functional genetic screens

    Directory of Open Access Journals (Sweden)

    Cheung-Ong Kahlin

    2011-05-01

    Full Text Available Abstract Background Genome-wide screening in human and mouse cells using RNA interference and open reading frame over-expression libraries is rapidly becoming a viable experimental approach for many research labs. There are a variety of gene expression modulation libraries commercially available, however, detailed and validated protocols as well as the reagents necessary for deconvolving genome-scale gene screens using these libraries are lacking. As a solution, we designed a comprehensive platform for highly multiplexed functional genetic screens in human, mouse and yeast cells using popular, commercially available gene modulation libraries. The Gene Modulation Array Platform (GMAP is a single microarray-based detection solution for deconvolution of loss and gain-of-function pooled screens. Results Experiments with specially constructed lentiviral-based plasmid pools containing ~78,000 shRNAs demonstrated that the GMAP is capable of deconvolving genome-wide shRNA "dropout" screens. Further experiments with a larger, ~90,000 shRNA pool demonstrate that equivalent results are obtained from plasmid pools and from genomic DNA derived from lentivirus infected cells. Parallel testing of large shRNA pools using GMAP and next-generation sequencing methods revealed that the two methods provide valid and complementary approaches to deconvolution of genome-wide shRNA screens. Additional experiments demonstrated that GMAP is equivalent to similar microarray-based products when used for deconvolution of open reading frame over-expression screens. Conclusion Herein, we demonstrate four major applications for the GMAP resource, including deconvolution of pooled RNAi screens in cells with at least 90,000 distinct shRNAs. We also provide detailed methodologies for pooled shRNA screen readout using GMAP and compare next-generation sequencing to GMAP (i.e. microarray based deconvolution methods.

  2. Gene expression profiling of mouse embryos with microarrays

    OpenAIRE

    Sharov, Alexei A; Piao, Yulan; Minoru S.H. Ko

    2010-01-01

    Global expression profiling by DNA microarrays provides a snapshot of cell and tissue status and becomes an essential tool in biological and medical sciences. Typical questions that can be addressed by microarray analysis in developmental biology include: (1) to find a set of genes expressed in a specific cell type; (2) to identify genes expressed commonly in multiple cell types; (3) to follow the time-course changes of gene expression patterns; (4) to demonstrate cell’s identity by showing s...

  3. Plant-pathogen interactions: what microarray tells about it?

    Science.gov (United States)

    Lodha, T D; Basak, J

    2012-01-01

    Plant defense responses are mediated by elementary regulatory proteins that affect expression of thousands of genes. Over the last decade, microarray technology has played a key role in deciphering the underlying networks of gene regulation in plants that lead to a wide variety of defence responses. Microarray is an important tool to quantify and profile the expression of thousands of genes simultaneously, with two main aims: (1) gene discovery and (2) global expression profiling. Several microarray technologies are currently in use; most include a glass slide platform with spotted cDNA or oligonucleotides. Till date, microarray technology has been used in the identification of regulatory genes, end-point defence genes, to understand the signal transduction processes underlying disease resistance and its intimate links to other physiological pathways. Microarray technology can be used for in-depth, simultaneous profiling of host/pathogen genes as the disease progresses from infection to resistance/susceptibility at different developmental stages of the host, which can be done in different environments, for clearer understanding of the processes involved. A thorough knowledge of plant disease resistance using successful combination of microarray and other high throughput techniques, as well as biochemical, genetic, and cell biological experiments is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to microarray technology, followed by the basics of plant-pathogen interaction, the use of DNA microarrays over the last decade to unravel the mysteries of plant-pathogen interaction, and ends with the future prospects of this technology.

  4. Cluster stability scores for microarray data in cancer studies

    OpenAIRE

    Ghosh Debashis; Smolkin Mark

    2003-01-01

    Abstract Background A potential benefit of profiling of tissue samples using microarrays is the generation of molecular fingerprints that will define subtypes of disease. Hierarchical clustering has been the primary analytical tool used to define disease subtypes from microarray experiments in cancer settings. Assessing cluster reliability poses a major complication in analyzing output from clustering procedures. While most work has focused on estimating the number of clusters in a dataset, t...

  5. Design and analysis of mismatch probes for long oligonucleotide microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong

    2008-08-15

    Nonspecific hybridization is currently a major concern with microarray technology. One of most effective approaches to estimating nonspecific hybridizations in oligonucleotide microarrays is the utilization of mismatch probes; however, this approach has not been used for longer oligonucleotide probes. Here, an oligonucleotide microarray was constructed to evaluate and optimize parameters for 50-mer mismatch probe design. A perfect match (PM) and 28 mismatch (MM) probes were designed for each of ten target genes selected from three microorganisms. The microarrays were hybridized with synthesized complementary oligonucleotide targets at different temperatures (e.g., 42, 45 and 50 C). In general, the probes with evenly distributed mismatches were more distinguishable than those with randomly distributed mismatches. MM probes with 3, 4 and 5 mismatched nucleotides were differentiated for 50-mer oligonucleotide probes hybridized at 50, 45 and 42 C, respectively. Based on the experimental data generated from this study, a modified positional dependent nearest neighbor (MPDNN) model was constructed to adjust the thermodynamic parameters of matched and mismatched dimer nucleotides in the microarray environment. The MM probes with four flexible positional mismatches were designed using the newly established MPDNN model and the experimental results demonstrated that the redesigned MM probes could yield more consistent hybridizations. Conclusions: This study provides guidance on the design of MM probes for long oligonucleotides (e.g., 50 mers). The novel MPDNN model has improved the consistency for long MM probes, and this modeling method can potentially be used for the prediction of oligonucleotide microarray hybridizations.

  6. DNA Microarray Characterization of Pathogens Associated with Sexually Transmitted Diseases.

    Science.gov (United States)

    Cao, Boyang; Wang, Suwei; Tian, Zhenyang; Hu, Pinliang; Feng, Lu; Wang, Lei

    2015-01-01

    This study established a multiplex PCR-based microarray to detect simultaneously a diverse panel of 17 sexually transmitted diseases (STDs)-associated pathogens including Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma, Herpes simplex virus (HSV) types 1 and 2, and Human papillomavirus (HPV) types 6, 11, 16, 18, 31, 33, 35, 39, 54 and 58. The target genes are 16S rRNA gene for N. gonorrhoeae, M. genitalium, M. hominism, and Ureaplasma, the major outer membrane protein gene (ompA) for C. trachomatis, the glycoprotein B gene (gB) for HSV; and the L1 gene for HPV. A total of 34 probes were selected for the microarray including 31 specific probes, one as positive control, one as negative control, and one as positional control probe for printing reference. The microarray is specific as the commensal and pathogenic microbes (and closely related organisms) in the genitourinary tract did not cross-react with the microarray probes. The microarray is 10 times more sensitive than that of the multiplex PCR. Among the 158 suspected HPV specimens examined, the microarray showed that 49 samples contained HPV, 21 samples contained Ureaplasma, 15 contained M. hominis, four contained C. trachomatis, and one contained N. gonorrhoeae. This work reports the development of the first high through-put detection system that identifies common pathogens associated with STDs from clinical samples, and paves the way for establishing a time-saving, accurate and high-throughput diagnostic tool for STDs.

  7. SIMAGE: simulation of DNA-microarray gene expression data

    Directory of Open Access Journals (Sweden)

    Kuipers Oscar P

    2006-04-01

    Full Text Available Abstract Background Simulation of DNA-microarray data serves at least three purposes: (i optimizing the design of an intended DNA microarray experiment, (ii comparing existing pre-processing and processing methods for best analysis of a given DNA microarray experiment, (iii educating students, lab-workers and other researchers by making them aware of the many factors influencing DNA microarray experiments. Results Our model has multiple layers of factors influencing the experiment. The relative influence of such factors can differ significantly between labs, experiments within labs, etc. Therefore, we have added a module to roughly estimate their parameters from a given data set. This guarantees that our simulated data mimics real data as closely as possible. Conclusion We introduce a model for the simulation of dual-dye cDNA-microarray data closely resembling real data and coin the model and its software implementation "SIMAGE" which stands for simulation of microarray gene expression data. The software is freely accessible at: http://bioinformatics.biol.rug.nl/websoftware/simage.

  8. Challenges for MicroRNA Microarray Data Analysisf

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2013-03-01

    Full Text Available Microarray is a high throughput discovery tool that has been broadly used for genomic research. Probe-target hybridization is the central concept of this technology to determine the relative abundance of nucleic acid sequences through fluorescence-based detection. In microarray experiments, variations of expression measurements can be attributed to many different sources that influence the stability and reproducibility of microarray platforms. Normalization is an essential step to reduce non-biological errors and to convert raw image data from multiple arrays (channels to quality data for further analysis. In general, for the traditional microarray analysis, most established normalization methods are based on two assumptions: (1 the total number of target genes is large enough (>10,000; and (2 the expression level of the majority of genes is kept constant. However, microRNA (miRNA arrays are usually spotted in low density, due to the fact that the total number of miRNAs is less than 2,000 and the majority of miRNAs are weakly or not expressed. As a result, normalization methods based on the above two assumptions are not applicable to miRNA profiling studies. In this review, we discuss a few representative microarray platforms on the market for miRNA profiling and compare the traditional methods with a few novel strategies specific for miRNA microarrays.

  9. Optimized light-directed synthesis of aptamer microarrays.

    Science.gov (United States)

    Franssen-van Hal, Nicole L W; van der Putte, Pepijn; Hellmuth, Klaus; Matysiak, Stefan; Kretschy, Nicole; Somoza, Mark M

    2013-06-18

    Aptamer microarrays are a promising high-throughput method for ultrasensitive detection of multiple analytes, but although much is known about the optimal synthesis of oligonucleotide microarrays used in hybridization-based genomics applications, the bioaffinity interactions between aptamers and their targets is qualitatively different and requires significant changes to synthesis parameters. Focusing on streptavidin-binding DNA aptamers, we employed light-directed in situ synthesis of microarrays to analyze the effects of sequence fidelity, linker length, surface probe density, and substrate functionalization on detection sensitivity. Direct comparison with oligonucleotide hybridization experiments indicates that aptamer microarrays are significantly more sensitive to sequence fidelity and substrate functionalization and have different optimal linker length and surface probe density requirements. Whereas microarray hybridization probes generate maximum signal with multiple deletions, aptamer sequences with the same deletion rate result in a 3-fold binding signal reduction compared with the same sequences synthesized for maximized sequence fidelity. The highest hybridization signal was obtained with dT 5mer linkers, and the highest aptamer signal was obtained with dT 11mers, with shorter aptamer linkers significantly reducing the binding signal. The probe hybridization signal was found to be more sensitive to molecular crowding, whereas the aptamer probe signal does not appear to be constrained within the density of functional surface groups commonly used to synthesize microarrays.

  10. A brief introduction to tiling microarrays: principles, concepts, and applications.

    Science.gov (United States)

    Lemetre, Christophe; Zhang, Zhengdong D

    2013-01-01

    Technological achievements have always contributed to the advancement of biomedical research. It has never been more so than in recent times, when the development and application of innovative cutting-edge technologies have transformed biology into a data-rich quantitative science. This stunning revolution in biology primarily ensued from the emergence of microarrays over two decades ago. The completion of whole-genome sequencing projects and the advance in microarray manufacturing technologies enabled the development of tiling microarrays, which gave unprecedented genomic coverage. Since their first description, several types of application of tiling arrays have emerged, each aiming to tackle a different biological problem. Although numerous algorithms have already been developed to analyze microarray data, new method development is still needed not only for better performance but also for integration of available microarray data sets, which without doubt constitute one of the largest collections of biological data ever generated. In this chapter we first introduce the principles behind the emergence and the development of tiling microarrays, and then discuss with some examples how they are used to investigate different biological problems.

  11. Design and analysis of mismatch probes for long oligonucleotide microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong

    2008-08-15

    Nonspecific hybridization is currently a major concern with microarray technology. One of most effective approaches to estimating nonspecific hybridizations in oligonucleotide microarrays is the utilization of mismatch probes; however, this approach has not been used for longer oligonucleotide probes. Here, an oligonucleotide microarray was constructed to evaluate and optimize parameters for 50-mer mismatch probe design. A perfect match (PM) and 28 mismatch (MM) probes were designed for each of ten target genes selected from three microorganisms. The microarrays were hybridized with synthesized complementary oligonucleotide targets at different temperatures (e.g., 42, 45 and 50 C). In general, the probes with evenly distributed mismatches were more distinguishable than those with randomly distributed mismatches. MM probes with 3, 4 and 5 mismatched nucleotides were differentiated for 50-mer oligonucleotide probes hybridized at 50, 45 and 42 C, respectively. Based on the experimental data generated from this study, a modified positional dependent nearest neighbor (MPDNN) model was constructed to adjust the thermodynamic parameters of matched and mismatched dimer nucleotides in the microarray environment. The MM probes with four flexible positional mismatches were designed using the newly established MPDNN model and the experimental results demonstrated that the redesigned MM probes could yield more consistent hybridizations. Conclusions: This study provides guidance on the design of MM probes for long oligonucleotides (e.g., 50 mers). The novel MPDNN model has improved the consistency for long MM probes, and this modeling method can potentially be used for the prediction of oligonucleotide microarray hybridizations.

  12. HCC screening; HCC-Screening

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, T. [Charite-Unversitaetsmedizin,Freie Universitaet und Humboldt-Universitaet zu Berlin, Klinik und Hochschulambulanz fuer Radiologie und Nuklearmedizin,Campus Benjamin Franklin, Berlin (Germany)

    2008-01-15

    Hepatocellular carcinoma (HCC) is one of the most frequently diagnosed tumour diseases throughout the world. In the vast majority of cases those affected are high-risk patients with chronic viral hepatitis and/or liver cirrhosis, which means there is a clearly identifiable target group for HCC screening. With resection, transplantation, and interventional procedures for local ablation, following early diagnosis curative treatment options are available with which 5-year survival rates of over 60% can be reached. Such early diagnosis is a reality only in a minority of patients, however, and in the majority of cases the disease is already in an advanced stage at diagnosis. One of the objects of HCC screening is diagnosis in an early stage when curative treatment is still possible. Precisely this is achieved by screening, so that the proportion of patients treated with curative intent is decisively higher. There is not yet any clear evidence as to whether this leads to a lowering of the mortality of HCC. As lower mortality is the decisive indicator of success for a screening programme the benefit of HCC screening has so far been neither documented nor refuted. Nonetheless, in large regions of the world it is the practice for high-risk patients to undergo HCC screening in the form of twice-yearly ultrasound examination and determination of AFP. (orig.) [German] Das hepatozellulaere Karzinom (HCC) ist eine der weltweit haeufigsten Tumorerkrankungen. Es tritt in der grossen Mehrzahl der Faelle bei Hochrisikopatienten mit chronischer Virushepatitis bzw. Leberzirrhose auf, woraus sich eine klar identifizierbare Zielgruppe fuer das HCC-Screening ergibt. Mit der Resektion, der Transplantation und interventionellen lokal ablativen Verfahren stehen bei rechtzeitiger Diagnosestellung kurative Therapieoptionen zur Verfuegung, die 5-Jahres-Ueberlebensraten von >60% erreichen. Diese rechtzeitige Diagnosestellung erfolgt jedoch nur bei einer Minderzahl der Patienten, waehrend die

  13. Pipeline for macro- and microarray analyses

    Directory of Open Access Journals (Sweden)

    R. Vicentini

    2007-05-01

    Full Text Available The pipeline for macro- and microarray analyses (PMmA is a set of scripts with a web interface developed to analyze DNA array data generated by array image quantification software. PMmA is designed for use with single- or double-color array data and to work as a pipeline in five classes (data format, normalization, data analysis, clustering, and array maps. It can also be used as a plugin in the BioArray Software Environment, an open-source database for array analysis, or used in a local version of the web service. All scripts in PMmA were developed in the PERL programming language and statistical analysis functions were implemented in the R statistical language. Consequently, our package is a platform-independent software. Our algorithms can correctly select almost 90% of the differentially expressed genes, showing a superior performance compared to other methods of analysis. The pipeline software has been applied to 1536 expressed sequence tags macroarray public data of sugarcane exposed to cold for 3 to 48 h. PMmA identified thirty cold-responsive genes previously unidentified in this public dataset. Fourteen genes were up-regulated, two had a variable expression and the other fourteen were down-regulated in the treatments. These new findings certainly were a consequence of using a superior statistical analysis approach, since the original study did not take into account the dependence of data variability on the average signal intensity of each gene. The web interface, supplementary information, and the package source code are available, free, to non-commercial users at http://ipe.cbmeg.unicamp.br/pub/PMmA.

  14. Photopatterning of Hydrogel Microarrays in Closed Microchips.

    Science.gov (United States)

    Gumuscu, Burcu; Bomer, Johan G; van den Berg, Albert; Eijkel, Jan C T

    2015-12-14

    To date, optical lithography has been extensively used for in situ patterning of hydrogel structures in a scale range from hundreds of microns to a few millimeters. The two main limitations which prevent smaller feature sizes of hydrogel structures are (1) the upper glass layer of a microchip maintains a large spacing (typically 525 μm) between the photomask and hydrogel precursor, leading to diffraction of UV light at the edges of mask patterns, (2) diffusion of free radicals and monomers results in irregular polymerization near the illumination interface. In this work, we present a simple approach to enable the use of optical lithography to fabricate hydrogel arrays with a minimum feature size of 4 μm inside closed microchips. To achieve this, we combined two different techniques. First, the upper glass layer of the microchip was thinned by mechanical polishing to reduce the spacing between the photomask and hydrogel precursor, and thereby the diffraction of UV light at the edges of mask patterns. The polishing process reduces the upper layer thickness from ∼525 to ∼100 μm, and the mean surface roughness from 20 to 3 nm. Second, we developed an intermittent illumination technique consisting of short illumination periods followed by relatively longer dark periods, which decrease the diffusion of monomers. Combination of these two methods allows for fabrication of 0.4 × 10(6) sub-10 μm sized hydrogel patterns over large areas (cm(2)) with high reproducibility (∼98.5% patterning success). The patterning method is tested with two different types of photopolymerizing hydrogels: polyacrylamide and polyethylene glycol diacrylate. This method enables in situ fabrication of well-defined hydrogel patterns and presents a simple approach to fabricate 3-D hydrogel matrices for biomolecule separation, biosensing, tissue engineering, and immobilized protein microarray applications.

  15. Microintaglio Printing of In situ Synthesized Proteins Enables Rapid Printing of High-Density Protein Microarrays Directly from DNA Microarrays

    Science.gov (United States)

    Biyani, Manish; Moriyasu, Junpei; Tanaka, Yoko; Sato, Shusuke; Ueno, Shingo; Ichiki, Takanori

    2013-08-01

    A simple and versatile approach to the simultaneous on-chip synthesis and printing of proteins has been studied for high-density protein microarray applications. The method used is based on the principle of intaglio printing using microengraved plates. Unlike conventional approaches that require multistep reactions for synthesizing proteins off the chip followed by printing using a robotic spotter, our approach demonstrates the following: (i) parallel and spotter-free printing of high-density protein microarrays directly from a type of DNA microarray and (ii) microcompartmentalization of cell-free coupled transcription/translation reaction and direct transferring of picoliter protein solution per spot to pattern microarrays of 25-100 µm features.

  16. Esophageal Cancer Screening

    Science.gov (United States)

    ... Esophageal Cancer Prevention Esophageal Cancer Screening Research Esophageal Cancer Screening (PDQ®)–Patient Version What is screening? Go to ... the esophagus and the stomach). Being overweight . Esophageal Cancer Screening Key Points Tests are used to screen for ...

  17. Advanced spot quality analysis in two-colour microarray experiments

    Directory of Open Access Journals (Sweden)

    Vetter Guillaume

    2008-09-01

    Full Text Available Abstract Background Image analysis of microarrays and, in particular, spot quantification and spot quality control, is one of the most important steps in statistical analysis of microarray data. Recent methods of spot quality control are still in early age of development, often leading to underestimation of true positive microarray features and, consequently, to loss of important biological information. Therefore, improving and standardizing the statistical approaches of spot quality control are essential to facilitate the overall analysis of microarray data and subsequent extraction of biological information. Findings We evaluated the performance of two image analysis packages MAIA and GenePix (GP using two complementary experimental approaches with a focus on the statistical analysis of spot quality factors. First, we developed control microarrays with a priori known fluorescence ratios to verify the accuracy and precision of the ratio estimation of signal intensities. Next, we developed advanced semi-automatic protocols of spot quality evaluation in MAIA and GP and compared their performance with available facilities of spot quantitative filtering in GP. We evaluated these algorithms for standardised spot quality analysis in a whole-genome microarray experiment assessing well-characterised transcriptional modifications induced by the transcription regulator SNAI1. Using a set of RT-PCR or qRT-PCR validated microarray data, we found that the semi-automatic protocol of spot quality control we developed with MAIA allowed recovering approximately 13% more spots and 38% more differentially expressed genes (at FDR = 5% than GP with default spot filtering conditions. Conclusion Careful control of spot quality characteristics with advanced spot quality evaluation can significantly increase the amount of confident and accurate data resulting in more meaningful biological conclusions.

  18. MICROARRAY ANALYSIS OF DIFFERENT GENE EXPRESSION OF HUMAN CERVICAL CANCER SUBCLONE CELL LINES

    Institute of Scientific and Technical Information of China (English)

    Chen Wei; Li Xu; Wang Xiang

    2006-01-01

    Objective To examine the differentially expressed invasion-related genes in two anchorage-independent uterine cervical carcinoma cell lines derived from the same patient using a cDNA array. Methods Two human uterine cervical carcinoma subclonal cell lines CS03 and CS07 derived from a single donor line CS1213 were established by limited dilution procedure. The two cDNA samples retro-transcribed from total RNA derived from CS03 and CS07 cells were screened by a cDNA microarray carrying 234 human cell-cycle related genes and 1011 human signal transduction and membrane receptor -associated genes, scanned with a ScanArray 3000 laser scanner. Results The cDNA microarray analysis showed that 12 genes in CS03 were up-regulated compared to CS07, and 24 genes in CS07 were up-regulated. The function of a number of differentially expressed genes was consistently associated with cell-cycle, cell proliferation, migration, apoptosis, signal transduction and tumor metastasis, including p34cdc2, TSC22, plasminogen activator inhibitor I (PAI-1)and desmosome associated protein(Pinin). Conclusion Multiple genes are differentially expressed in uterine cervical carcinoma cell lines even came from the same patient. It is suggested that these genes are involved in the different phenotypic characteristics and development of cervical carcinoma.

  19. Density based pruning for identification of differentially expressed genes from microarray data

    Directory of Open Access Journals (Sweden)

    Xu Jia

    2010-11-01

    Full Text Available Abstract Motivation Identification of differentially expressed genes from microarray datasets is one of the most important analyses for microarray data mining. Popular algorithms such as statistical t-test rank genes based on a single statistics. The false positive rate of these methods can be improved by considering other features of differentially expressed genes. Results We proposed a pattern recognition strategy for identifying differentially expressed genes. Genes are mapped to a two dimension feature space composed of average difference of gene expression and average expression levels. A density based pruning algorithm (DB Pruning is developed to screen out potential differentially expressed genes usually located in the sparse boundary region. Biases of popular algorithms for identifying differentially expressed genes are visually characterized. Experiments on 17 datasets from Gene Omnibus Database (GEO with experimentally verified differentially expressed genes showed that DB pruning can significantly improve the prediction accuracy of popular identification algorithms such as t-test, rank product, and fold change. Conclusions Density based pruning of non-differentially expressed genes is an effective method for enhancing statistical testing based algorithms for identifying differentially expressed genes. It improves t-test, rank product, and fold change by 11% to 50% in the numbers of identified true differentially expressed genes. The source code of DB pruning is freely available on our website http://mleg.cse.sc.edu/degprune

  20. Programmable and automated bead-based microfluidics for versatile DNA microarrays under isothermal conditions.

    Science.gov (United States)

    Penchovsky, Robert

    2013-06-21

    Advances in modern genomic research depend heavily on applications of various devices for automated high- or ultra-throughput arrays. Micro- and nanofluidics offer possibilities for miniaturization and integration of many different arrays onto a single device. Therefore, such devices are becoming a platform of choice for developing analytical instruments for modern biotechnology. This paper presents an implementation of a bead-based microfluidic platform for fully automated and programmable DNA microarrays. The devices are designed to work under isothermal conditions as DNA immobilization and hybridization transfer are performed under steady temperature using reversible pH alterations of reaction solutions. This offers the possibility for integration of more selection modules onto a single chip compared to maintaining a temperature gradient. This novel technology allows integration of many modules on a single reusable chip reducing the application cost. The method takes advantage of demonstrated high-speed DNA hybridization kinetics and denaturation on beads under flow conditions, high-fidelity of DNA hybridization, and small sample volumes are needed. The microfluidic devices are applied for a single nucleotide polymorphism analysis and DNA sequencing by synthesis without the need for fluorescent removal step. Apart from that, the microfluidic platform presented is applicable to many areas of modern biotechnology, including biosensor devices, DNA hybridization microarrays, molecular computation, on-chip nucleic acid selection, high-throughput screening of chemical libraries for drug discovery.

  1. Differential phosphoprotein mapping in cancer cells using protein microarrays produced from 2-D liquid fractionation.

    Science.gov (United States)

    Pal, Manoj; Moffa, Allison; Sreekumar, Arun; Ethier, Stephen P; Barder, Timothy J; Chinnaiyan, Arul; Lubman, David M

    2006-02-01

    A combination of protein microarrays and two-dimensional liquid-phase separation of proteins has been used for global profiling of the phosphoproteome in human breast cancer cells. This method has been applied to study changes in phosphorylation profile resulting from treatment of the cancer cells with PD173074, a known receptor tyrosine kinase inhibitor. The proteins separated by 2-D liquid-phase separation were arrayed on epoxy-coated glass slides and first screened for phosphorylation using fluorescent Pro-Q Diamond stain. The candidate proteins were then identified using MALDI/ESI MS/MS analysis. Further, validation was achieved by immunoblot analysis using anti-phosphotyrosine antibodies. A dynamic range of approximately 100 was achieved on the microarray when beta-casein was used as a standard protein for obtaining quantitative data. Importantly, the power of this method lies in its ability to identify a large group of proteins in a single experiment that are coregulated in their posttranslational modifications, upon treatment with the inhibitor. Since proteins are known to form interacting circuits that eventually lead to various signaling events, detection of such global phosphorylation profiles might enable delineation of functional pathways that play an important role during cancer initiation and progression.

  2. Observation of microarray DNA hybridization using surface plasmon resonance phase-shift interferometry

    Science.gov (United States)

    Chen, Shean-Jen; Tsou, C.-Y.; Chen, Y.-K.; Su, Y.-T.

    2004-06-01

    Surface plasmon resonance phase-shift interferometry (SPR-PSI) is a novel technique which combines SPR and modified Mach-Zehnder phase-shifting interferometry to measure the spatial phase variation caused by biomolecular interactions upon a sensing chip. The SPR-PSI imaging system offers high resolution and high-throughout screening capabilities for microarray DNA hybridization without the need for additional labeling, and provides valuable real-time quantitative information. Current SPR-PSI imaging systems measure the spatial phase variation caused by tiny biomolecular changes on the sensing interface by means of a five-step phase reconstruction algorithm and a novel multichannel least mean squares (MLMS) phase unwrapping algorithm. The SPR-PSI imaging system has an enhanced detection limit of 2.5 × 10-7 refraction index change, a long-term phase stability of π/100 in 30 minutes, and a spatial phase resolution of π/500 with a lateral resolution of 10μm. This study successfully demonstrates the kinetic and label-free observation of 5-mer DNA microarray hybridization.

  3. Carbohydrate Microarrays Identify Blood Group Precursor Cryptic Epitopes as Potential Immunological Targets of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Denong Wang

    2015-01-01

    Full Text Available Using carbohydrate microarrays, we explored potential natural ligands of antitumor monoclonal antibody HAE3. This antibody was raised against a murine mammary tumor antigen but was found to cross-react with a number of human epithelial tumors in tissues. Our carbohydrate microarray analysis reveals that HAE3 is specific for an O-glycan cryptic epitope that is normally hidden in the cores of blood group substances. Using HAE3 to screen tumor cell surface markers by flow cytometry, we found that the HAE3 glycoepitope, gpHAE3, was highly expressed by a number of human breast cancer cell lines, including some triple-negative cancers that lack the estrogen, progesterone, and Her2/neu receptors. Taken together, we demonstrate that HAE3 recognizes a conserved cryptic glycoepitope of blood group precursors, which is nevertheless selectively expressed and surface-exposed in certain breast tumor cells. The potential of this class of O-glycan cryptic antigens in breast cancer subtyping and targeted immunotherapy warrants further investigation.

  4. A universal assay for detection of oncogenic fusion transcripts by oligo microarray analysis

    Directory of Open Access Journals (Sweden)

    Ribeiro Franclim R

    2009-01-01

    Full Text Available Abstract Background The ability to detect neoplasia-specific fusion genes is important not only in cancer research, but also increasingly in clinical settings to ensure that correct diagnosis is made and the optimal treatment is chosen. However, the available methodologies to detect such fusions all have their distinct short-comings. Results We describe a novel oligonucleotide microarray strategy whereby one can screen for all known oncogenic fusion transcripts in a single experiment. To accomplish this, we combine measurements of chimeric transcript junctions with exon-wise measurements of individual fusion partners. To demonstrate the usefulness of the approach, we designed a DNA microarray containing 68,861 oligonucleotide probes that includes oligos covering all combinations of chimeric exon-exon junctions from 275 pairs of fusion genes, as well as sets of oligos internal to all the exons of the fusion partners. Using this array, proof of principle was demonstrated by detection of known fusion genes (such as TCF3:PBX1, ETV6:RUNX1, and TMPRSS2:ERG from all six positive controls consisting of leukemia cell lines and prostate cancer biopsies. Conclusion This new method bears promise of an important complement to currently used diagnostic and research tools for the detection of fusion genes in neoplastic diseases.

  5. SCREEN CUISINE

    National Research Council Canada - National Science Library

    Heather Baysa

    2010-01-01

    ... from the legendary restaurant; the World's First FoodTruck Drive-In Movie on Saturday, where the city's finest food-truck vendors park for the screenings; and the Brooklyn Burger W Beer Garden on Sunday, serving up hearty burgers and brews while you watch Anat Baron's Beer Wars. Tonight at 7, Water Taxi Beach, South Street Seaport.fest...

  6. Airport Screening

    Science.gov (United States)

    ... must be limited to a safe level. An American National Standards Institute/Health Physics Society industry standard states that the maxi- mum ... that does not directly damage DNA. 2 References American National ... Physics Society. Radiation safety for personnel security screening systems ...

  7. A handcrafted tissue microarray for a matrix arrangement of tissue samples.

    Science.gov (United States)

    Sampaio, João P A; Cavalcante, José R; Furtado, Francisco N N; Lima-Júnior, Roberto C P; Ribeiro, Ronaldo A; Almeida, Paulo R C

    2014-01-01

    Tissue microarray (TMA) was first designed to enable more efficient immunohistochemical screening of antibodies and tissues. However, due to the high cost of commercial TMA builder instrument, such method is not affordable for many pathology laboratories. Then, methodological adaptations have been proposed in order to reduce TMA-associated cost. A manual leather puncher with an inner diameter of 2mm was used to collect a tissue sample from the donor paraffin block. The conventional TMA method was adopted as a control group. Empty paraffin recipient blocks were prepared and a standard 2-mm crochet needle was used to create 24 equidistant holes in the recipient block. Tissue cores obtained from the donor blocks were transferred to the holes in the recipient blocks and routine histopathological techniques were then performed. In this study we proposed a new approach to produce TMA recipient blocks as an alternative to the conventional TMA. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Usefulness of the SNP microarray technology to identify rare mutations in the case of perinatal death

    DEFF Research Database (Denmark)

    Hoeffding, L. K.; Kock, K. F.; Johnsen, Iben Birgit Gade

    2015-01-01

    The single nucleotide polymorphism (SNP) microarray technology has emerged as a powerful tool to screen the whole genome for sub-microscopic duplications and deletions that are not detectable by traditional cytogenetic analysis. Case: We report a case of a female twin born at 27th week of gestation...... CNV in relation to the clinical phenotype (pulmonary immaturity) was a disruption in the gene ST6GALNAC3 (1p31.1) that is involved in the biosynthesis of gangliosides. Conclusions: It is unknown from this case report whether the CNV at 1p31.1 contributes to a genetic predisposition that is related...... to maturation of the lungs or the perinatal death of one of the twins. However, disruptions in the biosynthesis of gangliosides have been previously associated with premature death in mice....

  9. Development and validation of a resistance and virulence gene microarray targeting Escherichia coli and Salmonella enterica

    Science.gov (United States)

    Davis, Margaret A.; Lim, Ji Youn; Soyer, Yesim; Harbottle, Heather; Chang, Yung-Fu; New, Daniel; Orfe, Lisa H.; Besser, Thomas E.; Call, Douglas R.

    2010-01-01

    A microarray was developed to simultaneously screen Escherichia coli and Salmonella enterica for multiple genetic traits. The final array included 203 60-mer oligonucleotide probes, including 117 for resistance genes, 16 for virulence genes, 25 for replicon markers, and 45 other markers. Validity of the array was tested by assessing interlaboratory agreement among four collaborating groups using a blinded study design. Internal validation indicated that the assay was reliable (area under the receiver-operator characteristic curve=0.97). Inter-laboratory agreement, however, was poor when estimated using the intraclass correlation coefficient, which ranged from 0.27 (95% confidence interval 0.24, 0.29) to 0.29 (0.23, 0.34). These findings suggest that extensive testing and procedure standardization will be needed before bacterial genotyping arrays can be readily shared between laboratories. PMID:20362014

  10. Microarray Glycan Profiling Reveals Algal Fucoidan Epitopes in Diverse Marine Metazoans

    Directory of Open Access Journals (Sweden)

    Armando A. Salmeán

    2017-09-01

    Full Text Available Despite the biological importance and pharmacological potential of glycans from marine organisms, there are many unanswered questions regarding their distribution, function, and evolution. Here we describe microarray-based glycan profiling of a diverse selection of marine animals using antibodies raised against fucoidan isolated from a brown alga. We demonstrate the presence of two fucoidan epitopes in six animals belonging to three phyla including Porifera, Molusca, and Chordata. We studied the spatial distribution of these epitopes in Cliona celata (“boring sponge” and identified their restricted localization on the surface of internal chambers. Our results show the potential of high-throughput screening and probes commonly used in plant and algal cell wall biology to study the diversity and distribution of glycan structures in metazoans.

  11. High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays

    DEFF Research Database (Denmark)

    Buus, Søren; Rockberg, Johan; Forsström, Björn

    2012-01-01

    -resolution mapping of linear antibody epitopes, we have used ultrahigh-density peptide microarrays generating several hundred thousand different peptides per array. Using exhaustive length and substitution analysis, we have successfully examined the specificity of a panel of polyclonal antibodies raised against......Antibodies empower numerous important scientific, clinical, diagnostic, and industrial applications. Ideally, the epitope(s) targeted by an antibody should be identified and characterized, thereby establishing antibody reactivity, highlighting possible cross-reactivities, and perhaps even warning...... against unwanted (e.g. autoimmune) reactivities. Antibodies target proteins as either conformational or linear epitopes. The latter are typically probed with peptides, but the cost of peptide screening programs tends to prohibit comprehensive specificity analysis. To perform high-throughput, high...

  12. Statistical implications of pooling RNA samples for microarray experiments

    Directory of Open Access Journals (Sweden)

    Landfield Philip W

    2003-06-01

    Full Text Available Abstract Background Microarray technology has become a very important tool for studying gene expression profiles under various conditions. Biologists often pool RNA samples extracted from different subjects onto a single microarray chip to help defray the cost of microarray experiments as well as to correct for the technical difficulty in getting sufficient RNA from a single subject. However, the statistical, technical and financial implications of pooling have not been explicitly investigated. Results Modeling the resulting gene expression from sample pooling as a mixture of individual responses, we derived expressions for the experimental error and provided both upper and lower bounds for its value in terms of the variability among individuals and the number of RNA samples pooled. Using "virtual" pooling of data from real experiments and computer simulations, we investigated the statistical properties of RNA sample pooling. Our study reveals that pooling biological samples appropriately is statistically valid and efficient for microarray experiments. Furthermore, optimal pooling design(s can be found to meet statistical requirements while minimizing total cost. Conclusions Appropriate RNA pooling can provide equivalent power and improve efficiency and cost-effectiveness for microarray experiments with a modest increase in total number of subjects. Pooling schemes in terms of replicates of subjects and arrays can be compared before experiments are conducted.

  13. AN IMPROVED FUZZY CLUSTERING ALGORITHM FOR MICROARRAY IMAGE SPOTS SEGMENTATION

    Directory of Open Access Journals (Sweden)

    V.G. Biju

    2015-11-01

    Full Text Available An automatic cDNA microarray image processing using an improved fuzzy clustering algorithm is presented in this paper. The spot segmentation algorithm proposed uses the gridding technique developed by the authors earlier, for finding the co-ordinates of each spot in an image. Automatic cropping of spots from microarray image is done using these co-ordinates. The present paper proposes an improved fuzzy clustering algorithm Possibility fuzzy local information c means (PFLICM to segment the spot foreground (FG from background (BG. The PFLICM improves fuzzy local information c means (FLICM algorithm by incorporating typicality of a pixel along with gray level information and local spatial information. The performance of the algorithm is validated using a set of simulated cDNA microarray images added with different levels of AWGN noise. The strength of the algorithm is tested by computing the parameters such as the Segmentation matching factor (SMF, Probability of error (pe, Discrepancy distance (D and Normal mean square error (NMSE. SMF value obtained for PFLICM algorithm shows an improvement of 0.9 % and 0.7 % for high noise and low noise microarray images respectively compared to FLICM algorithm. The PFLICM algorithm is also applied on real microarray images and gene expression values are computed.

  14. Significance analysis of lexical bias in microarray data

    Directory of Open Access Journals (Sweden)

    Falkow Stanley

    2003-04-01

    Full Text Available Abstract Background Genes that are determined to be significantly differentially regulated in microarray analyses often appear to have functional commonalities, such as being components of the same biochemical pathway. This results in certain words being under- or overrepresented in the list of genes. Distinguishing between biologically meaningful trends and artifacts of annotation and analysis procedures is of the utmost importance, as only true biological trends are of interest for further experimentation. A number of sophisticated methods for identification of significant lexical trends are currently available, but these methods are generally too cumbersome for practical use by most microarray users. Results We have developed a tool, LACK, for calculating the statistical significance of apparent lexical bias in microarray datasets. The frequency of a user-specified list of search terms in a list of genes which are differentially regulated is assessed for statistical significance by comparison to randomly generated datasets. The simplicity of the input files and user interface targets the average microarray user who wishes to have a statistical measure of apparent lexical trends in analyzed datasets without the need for bioinformatics skills. The software is available as Perl source or a Windows executable. Conclusion We have used LACK in our laboratory to generate biological hypotheses based on our microarray data. We demonstrate the program's utility using an example in which we confirm significant upregulation of SPI-2 pathogenicity island of Salmonella enterica serovar Typhimurium by the cation chelator dipyridyl.

  15. Microarray chip based identification of a mixed infection of bovine herpesvirus 1 and bovine viral diarrhea 2 from Indian cattle.

    Science.gov (United States)

    Ratta, Barkha; Yadav, Brijesh Singh; Pokhriyal, Mayank; Saxena, Meeta; Sharma, Bhaskar

    2014-01-01

    Bovine herpesvirus 1 (BHV1) and bovine viral diarrhea virus 2 (BVD2) are endemic in India although no mixed infection with these viruses has been reported from India. We report first mixed infection of these viruses in cattle during routine screening with a microarray chip. 62 of the 69 probes of BHV1 and 42 of the 57 BVD2 probes in the chip gave positive signals for the virus. The virus infections were subsequently confirmed by RT-PCR. We also discuss the implications of these findings.

  16. 糖芯片最新研究进展%Recent Advances of Carbohydrate Microarrays

    Institute of Scientific and Technical Information of China (English)

    郭佳效; 侯信

    2011-01-01

    Carbohydrate microarrays, also referred to as glycan arrays, are new kinds of biological detection technology, providing a rapid, efficient, and high-throughput approach to examining carbohydrate-macromolecule interactions. This technology has had a significant impact on glyeobiology in the post-genomic era. This article focuses on recent advances in immobilization techniques which include covalently immobilizations of diverse unmodified glycans and natural glycan libraries, synthesis and immobilizations of oligosaccharides, strategies for varying carbohydrate density, and the insertion of spacer. These methods have advantages of maintaining the reducing sugar groups in their cyclic forms and expanding the complexity and the utility of glycan microarrays, which further enhance the detection efficiency of this technology. Moreover, the future potential of virtual screening in glycan array technology and practical applications of carbohydrate microarrays in clinical diagnostics are provided. Finally, limitations and the future trend of carbohydrate microarrays are also discussed.%糖芯片是一种快速、高效、高通量获取糖一生物大分子相互作用信息的生物检测技术,对后基因组时代糖生物学的发展具有重大影响。本文主要论述了糖芯片固定化技术的最新进展,包括未经化学修饰的糖的化学固定,天然糖库及其固定,复杂寡糖的合成及其固定,糖基的密度差异固定化技术以及间隔基的引入技术。这些新的固定化技术保持了糖的化学结构,扩大了糖芯片的来源和应用范围,进一步提高了糖芯片的检测效率。此外,本文还介绍了虚拟筛选技术在这一领域的应用潜力以及糖芯片在医疗诊断等方面的应用,最后对糖芯片技术遇到的挑战和发展做了展望。

  17. Microarray applications to understand the impact of exposure to environmental contaminants in wild dolphins (Tursiops truncatus).

    Science.gov (United States)

    Mancia, Annalaura; Abelli, Luigi; Kucklick, John R; Rowles, Teresa K; Wells, Randall S; Balmer, Brian C; Hohn, Aleta A; Baatz, John E; Ryan, James C

    2015-02-01

    be heavily contaminated by Aroclor 1268, an uncommon polychlorinated (PCB) mixture. The microarray was able to distinguish dolphins by sex, geographic location, and corroborate previously published health irregularities for the Georgia dolphins. Genes involved in xenobiotic metabolism, development/differentiation and oncogenic pathways were found to be differentially expressed in GA dolphins. The report bridges the advancements in dolphin genome sequencing to the first step towards providing a cost-effective means to screen for indicators of chemical toxin exposure as well as disease status in top level predators.

  18. Kinetic identification of protein ligands in a 51,200 small-molecule library using microarrays and a label-free ellipsometric scanner

    Science.gov (United States)

    Landry, James P.; Proudian, Andrew P.; Malovichko, Galina; Zhu, Xiangdong

    2013-02-01

    Drug discovery begins by identifying protein-small molecule binding pairs. Afterwards, binding kinetics and biofunctional assays are performed, to reduce candidates for further development. High-throughput screening, typically employing fluorescence, is widely used to find protein ligands in small-molecule libraries, but is rarely used for binding kinetics measurement because: (1) attaching fluorophores to proteins can alter kinetics and (2) most label-free technologies for kinetics measurement are inherently low-throughput and consume expensive sensing surfaces. We addressed this need with polarization-modulated ellipsometric scanning microscopes, called oblique-incidence reflectivity difference (OI-RD). Label-free ligand screening and kinetics measurement are performed simultaneously on small-molecule microarrays printed on relatively inexpensive isocyanate-functionalized glass slides. As a microarray is reacted, an OI-RD microscope tracks the change in surface-bound macromolecule density in real-time at every spot. We report progress applying OI-RD to screen purified proteins and virus particles against a 51,200-compound library from the National Cancer Institute. Four microarrays, each containing 12,800 library compounds, are installed in four flow cells in an automated OI-RD microscope. The slides are reacted serially, each giving 12,800 binding curves with ~30 sec time resolution. The entire library is kinetically screened against a single probe in ~14 hours and multiple probes can be reacted sequentially under automation. Real-time binding detection identifies both high-affinity and low-affinity (transient binding) interactions; fluorescence endpoint images miss the latter. OI-RD and microarrays together is a powerful high-throughput tool for early stage drug discovery and development. The platform also has great potential for downstream steps such as in vitro inhibition assays.

  19. Three dimensional cellular microarray platform for human neural stem cell differentiation and toxicology

    Directory of Open Access Journals (Sweden)

    Luciana Meli

    2014-07-01

    Full Text Available We developed a three-dimensional (3D cellular microarray platform for the high-throughput (HT analysis of human neural stem cell (hNSC growth and differentiation. The growth of an immortalized hNSC line, ReNcell VM, was evaluated on a miniaturized cell culture chip consisting of 60 nl spots of cells encapsulated in alginate, and compared to standard 2D well plate culture conditions. Using a live/dead cell viability assay, we demonstrated that the hNSCs are able to expand on-chip, albeit with lower proliferation rates and viabilities than in conventional 2D culture platforms. Using an in-cell, on-chip immunofluorescence assay, which provides quantitative information on cellular levels of proteins involved in neural fate, we demonstrated that ReNcell VM can preserve its multipotent state during on-chip expansion. Moreover, differentiation of the hNSCs into glial progeny was achieved both off- and on-chip six days after growth factor removal, accompanied by a decrease in the neural progenitor markers. The versatility of the platform was further demonstrated by complementing the cell culture chip with a chamber system that allowed us to screen for differential toxicity of small molecules to hNSCs. Using this approach, we showed differential toxicity when evaluating three neurotoxic compounds and one antiproliferative compound, and the null effect of a non-toxic compound at relevant concentrations. Thus, our 3D high-throughput microarray platform may help predict, in vitro, which compounds pose an increased threat to neural development and should therefore be prioritized for further screening and evaluation.

  20. Analysis of gene expression profile of aspermia using cDNA microarray

    Institute of Scientific and Technical Information of China (English)

    杨波; 高晓康; 王禾; 刘贺亮; 陈宝琦; 秦荣良; 康福霞; 邵国兴; 邵晨

    2003-01-01

    Objective: To identify the differential gene expression profiles between the normal and aspermia human testes utilizing cDNA microarray. Methods: cDNA probes were prepared by labeling mRNA of aspermia testes tissues with Cy5-dUTP and mRNA of normal testes tissues with Cy3-dUTP respectively through reverse transcription. The mixed cDNA probes were then hybridized with 4096 cDNA arrays (4096 unique human cDNA sequences), and the fluorescent signals were scanned by ScanArray 3000 scanner (General Scanning, Inc.). The values of Cy5-dUTP and Cy3-dUTP on each spot were analyzed and calculated by ImaGene 3.0 software (BioDiscovery, Inc.). Differentially expressed genes were screened according to the criterion that the absolute value of natural logarithm of the ratio of Cy5-dUTP to Cy3-dUTP was greater-than 2.0 or less-than 0.5. A randomly chosen gene RAP1A was studied by in situ hybridization to evaluate the accuracy of the results. Results: 623 differential expressed genes related to aspermia were found. There were 303 up-expressed genes and 320 down-expressed genes. A distinct up-expressed gene RAP1A was confirmed by in situ hybridization. Conclusions: Screening the differential gene expression profiles between the normal and aspermia human testis by cDNA microarray can be used in the study of aspermia-related genes and the further research due to its properties, RAP1A may play some roles in the development and progression of aspermia.

  1. A general framework for optimization of probes for gene expression microarray and its application to the fungus Podospora anserina

    Directory of Open Access Journals (Sweden)

    Bidard Frédérique

    2010-06-01

    Full Text Available Abstract Background The development of new microarray technologies makes custom long oligonucleotide arrays affordable for many experimental applications, notably gene expression analyses. Reliable results depend on probe design quality and selection. Probe design strategy should cope with the limited accuracy of de novo gene prediction programs, and annotation up-dating. We present a novel in silico procedure which addresses these issues and includes experimental screening, as an empirical approach is the best strategy to identify optimal probes in the in silico outcome. Findings We used four criteria for in silico probe selection: cross-hybridization, hairpin stability, probe location relative to coding sequence end and intron position. This latter criterion is critical when exon-intron gene structure predictions for intron-rich genes are inaccurate. For each coding sequence (CDS, we selected a sub-set of four probes. These probes were included in a test microarray, which was used to evaluate the hybridization behavior of each probe. The best probe for each CDS was selected according to three experimental criteria: signal-to-noise ratio, signal reproducibility, and representative signal intensities. This procedure was applied for the development of a gene expression Agilent platform for the filamentous fungus Podospora anserina and the selection of a single 60-mer probe for each of the 10,556 P. anserina CDS. Conclusions A reliable gene expression microarray version based on the Agilent 44K platform was developed with four spot replicates of each probe to increase statistical significance of analysis.

  2. Microarray-based Identification of Novel Biomarkers in Asthma

    Directory of Open Access Journals (Sweden)

    Kenji Izuhara

    2006-01-01

    Full Text Available Bronchial asthma is a complicated and diverse disorder affected by genetic and environmental factors. It is widely accepted that it is a Th2-type inflammation originating in lung and caused by inhalation of ubiquitous allergens. The complicated and diverse pathogenesis of this disease yet to be clarified. Functional genomics is the analysis of whole gene expression profiling under given condition, and microarray technology is now the most powerful tool for functional genomics. Several attempts to clarify the pathogenesis of bronchial asthma have been carried out using microarray technology, providing us some novel biomarkers for diagnosis, therapeutic targets or understanding pathogenic mechanisms of bronchial asthma. In this article, we review the outcomes of these analyses by the microarray approach as applied to this disease by focusing on the identification of novel biomarkers.

  3. Probe Selection for DNA Microarrays using OligoWiz

    DEFF Research Database (Denmark)

    Wernersson, Rasmus; Juncker, Agnieszka; Nielsen, Henrik Bjørn

    2007-01-01

    Nucleotide abundance measurements using DNA microarray technology are possible only if appropriate probes complementary to the target nucleotides can be identified. Here we present a protocol for selecting DNA probes for microarrays using the OligoWiz application. OligoWiz is a client......-server application that offers a detailed graphical interface and real-time user interaction on the client side, and massive computer power and a large collection of species databases (400, summer 2007) on the server side. Probes are selected according to five weighted scores: cross-hybridization, deltaT(m), folding...... computer skills and can be executed from any Internet-connected computer. The probe selection procedure for a standard microarray design targeting all yeast transcripts can be completed in 1 h....

  4. An effective method for network module extraction from microarray data

    Directory of Open Access Journals (Sweden)

    Mahanta Priyakshi

    2012-08-01

    Full Text Available Abstract Background The development of high-throughput Microarray technologies has provided various opportunities to systematically characterize diverse types of computational biological networks. Co-expression network have become popular in the analysis of microarray data, such as for detecting functional gene modules. Results This paper presents a method to build a co-expression network (CEN and to detect network modules from the built network. We use an effective gene expression similarity measure called NMRS (Normalized mean residue similarity to construct the CEN. We have tested our method on five publicly available benchmark microarray datasets. The network modules extracted by our algorithm have been biologically validated in terms of Q value and p value. Conclusions Our results show that the technique is capable of detecting biologically significant network modules from the co-expression network. Biologist can use this technique to find groups of genes with similar functionality based on their expression information.

  5. Performance comparison of SLFN training algorithms for DNA microarray classification.

    Science.gov (United States)

    Huynh, Hieu Trung; Kim, Jung-Ja; Won, Yonggwan

    2011-01-01

    The classification of biological samples measured by DNA microarrays has been a major topic of interest in the last decade, and several approaches to this topic have been investigated. However, till now, classifying the high-dimensional data of microarrays still presents a challenge to researchers. In this chapter, we focus on evaluating the performance of the training algorithms of the single hidden layer feedforward neural networks (SLFNs) to classify DNA microarrays. The training algorithms consist of backpropagation (BP), extreme learning machine (ELM) and regularized least squares ELM (RLS-ELM), and an effective algorithm called neural-SVD has recently been proposed. We also compare the performance of the neural network approaches with popular classifiers such as support vector machine (SVM), principle component analysis (PCA) and fisher discriminant analysis (FDA).

  6. Statistical approaches for the analysis of DNA methylation microarray data.

    Science.gov (United States)

    Siegmund, Kimberly D

    2011-06-01

    Following the rapid development and adoption in DNA methylation microarray assays, we are now experiencing a growth in the number of statistical tools to analyze the resulting large-scale data sets. As is the case for other microarray applications, biases caused by technical issues are of concern. Some of these issues are old (e.g., two-color dye bias and probe- and array-specific effects), while others are new (e.g., fragment length bias and bisulfite conversion efficiency). Here, I highlight characteristics of DNA methylation that suggest standard statistical tools developed for other data types may not be directly suitable. I then describe the microarray technologies most commonly in use, along with the methods used for preprocessing and obtaining a summary measure. I finish with a section describing downstream analyses of the data, focusing on methods that model percentage DNA methylation as the outcome, and methods for integrating DNA methylation with gene expression or genotype data.

  7. Comparative analysis of genomic signal processing for microarray data clustering.

    Science.gov (United States)

    Istepanian, Robert S H; Sungoor, Ala; Nebel, Jean-Christophe

    2011-12-01

    Genomic signal processing is a new area of research that combines advanced digital signal processing methodologies for enhanced genetic data analysis. It has many promising applications in bioinformatics and next generation of healthcare systems, in particular, in the field of microarray data clustering. In this paper we present a comparative performance analysis of enhanced digital spectral analysis methods for robust clustering of gene expression across multiple microarray data samples. Three digital signal processing methods: linear predictive coding, wavelet decomposition, and fractal dimension are studied to provide a comparative evaluation of the clustering performance of these methods on several microarray datasets. The results of this study show that the fractal approach provides the best clustering accuracy compared to other digital signal processing and well known statistical methods.

  8. Surface manipulation of biomolecules for cell microarray applications.

    Science.gov (United States)

    Hook, Andrew L; Thissen, Helmut; Voelcker, Nicolas H

    2006-10-01

    Many biological events, such as cellular communication, antigen recognition, tissue repair and DNA linear transfer, are intimately associated with biomolecule interactions at the solid-liquid interface. To facilitate the study and use of these biological events for biodevice and biomaterial applications, a sound understanding of how biomolecules behave at interfaces and a concomitant ability to manipulate biomolecules spatially and temporally at surfaces is required. This is particularly true for cell microarray applications, where a range of biological processes must be duly controlled to maximize the efficiency and throughput of these devices. Of particular interest are transfected-cell microarrays (TCMs), which significantly widen the scope of microarray genomic analysis by enabling the high-throughput analysis of gene function within living cells. This article reviews this current research focus, discussing fundamental and applied research into the spatial and temporal surface manipulation of DNA, proteins and other biomolecules and the implications of this work for TCMs.

  9. D-MaPs - DNA-microarray projects: web-based software for multi-platform microarray analysis

    Directory of Open Access Journals (Sweden)

    Marcelo F. Carazzolle

    2009-01-01

    Full Text Available The web application D-Maps provides a user-friendly interface to researchers performing studies based on microarrays. The program was developed to manage and process one- or two-color microarray data obtained from several platforms (currently, GeneTAC, ScanArray, CodeLink, NimbleGen and Affymetrix. Despite the availability of many algorithms and many software programs designed to perform microarray analysis on the internet, these usually require sophisticated knowledge of mathematics, statistics and computation. D-maps was developed to overcome the requirement of high performance computers or programming experience. D-Maps performs raw data processing, normalization and statistical analysis, allowing access to the analyzed data in text or graphical format. An original feature presented by D-Maps is GEO (Gene Expression Omnibus submission format service. The D-MaPs application was already used for analysis of oligonucleotide microarrays and PCR-spotted arrays (one- and two-color, laser and light scanner. In conclusion, D-Maps is a valuable tool for microarray research community, especially in the case of groups without a bioinformatic core.

  10. Karyotype versus microarray testing for genetic abnormalities after stillbirth.

    Science.gov (United States)

    Reddy, Uma M; Page, Grier P; Saade, George R; Silver, Robert M; Thorsten, Vanessa R; Parker, Corette B; Pinar, Halit; Willinger, Marian; Stoll, Barbara J; Heim-Hall, Josefine; Varner, Michael W; Goldenberg, Robert L; Bukowski, Radek; Wapner, Ronald J; Drews-Botsch, Carolyn D; O'Brien, Barbara M; Dudley, Donald J; Levy, Brynn

    2012-12-06

    Genetic abnormalities have been associated with 6 to 13% of stillbirths, but the true prevalence may be higher. Unlike karyotype analysis, microarray analysis does not require live cells, and it detects small deletions and duplications called copy-number variants. The Stillbirth Collaborative Research Network conducted a population-based study of stillbirth in five geographic catchment areas. Standardized postmortem examinations and karyotype analyses were performed. A single-nucleotide polymorphism array was used to detect copy-number variants of at least 500 kb in placental or fetal tissue. Variants that were not identified in any of three databases of apparently unaffected persons were then classified into three groups: probably benign, clinical significance unknown, or pathogenic. We compared the results of karyotype and microarray analyses of samples obtained after delivery. In our analysis of samples from 532 stillbirths, microarray analysis yielded results more often than did karyotype analysis (87.4% vs. 70.5%, P<0.001) and provided better detection of genetic abnormalities (aneuploidy or pathogenic copy-number variants, 8.3% vs. 5.8%; P=0.007). Microarray analysis also identified more genetic abnormalities among 443 antepartum stillbirths (8.8% vs. 6.5%, P=0.02) and 67 stillbirths with congenital anomalies (29.9% vs. 19.4%, P=0.008). As compared with karyotype analysis, microarray analysis provided a relative increase in the diagnosis of genetic abnormalities of 41.9% in all stillbirths, 34.5% in antepartum stillbirths, and 53.8% in stillbirths with anomalies. Microarray analysis is more likely than karyotype analysis to provide a genetic diagnosis, primarily because of its success with nonviable tissue, and is especially valuable in analyses of stillbirths with congenital anomalies or in cases in which karyotype results cannot be obtained. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.).

  11. The bioinformatics of microarrays to study cancer: Advantages and disadvantages

    Science.gov (United States)

    Rodríguez-Segura, M. A.; Godina-Nava, J. J.; Villa-Treviño, S.

    2012-10-01

    Microarrays are devices designed to analyze simultaneous expression of thousands of genes. However, the process will adds noise into the information at each stage of the study. To analyze these thousands of data is necessary to use bioinformatics tools. The traditional analysis begins by normalizing data, but the obtained results are highly dependent on how it is conducted the study. It is shown the need to develop new strategies to analyze microarray. Liver tissue taken from an animal model in which is chemically induced cancer is used as an example.

  12. A fisheye viewer for microarray-based gene expression data

    OpenAIRE

    2006-01-01

    Abstract Background Microarray has been widely used to measure the relative amounts of every mRNA transcript from the genome in a single scan. Biologists have been accustomed to reading their experimental data directly from tables. However, microarray data are quite large and are stored in a series of files in a machine-readable format, so direct reading of the full data set is not feasible. The challenge is to design a user interface that allows biologists to usefully view large tables of ra...

  13. Fluorescence Lifetime Imaging of Quantum Dot Labeled DNA Microarrays

    Directory of Open Access Journals (Sweden)

    Jonathan G. Terry

    2009-04-01

    Full Text Available Quantum dot (QD labeling combined with fluorescence lifetime imaging microscopy is proposed as a powerful transduction technique for the detection of DNA hybridization events. Fluorescence lifetime analysis of DNA microarray spots of hybridized QD labeled target indicated a characteristic lifetime value of 18.8 ns, compared to 13.3 ns obtained for spots of free QD solution, revealing that QD labels are sensitive to the spot microenvironment. Additionally, time gated detection was shown to improve the microarray image contrast ratio by 1.8, achieving femtomolar target sensitivity. Finally, lifetime multiplexing based on Qdot525 and Alexa430 was demonstrated using a single excitation-detection readout channel.

  14. Hand-held portable microarray reader for biodetection

    Science.gov (United States)

    Thompson, Deanna Lynn; Coleman, Matthew A; Lane, Stephen M; Matthews, Dennis L; Albala, Joanna; Wachsmann-Hogiu, Sebastian

    2013-04-23

    A hand-held portable microarray reader for biodetection includes a microarray reader engineered to be small enough for portable applications. The invention includes a high-powered light-emitting diode that emits excitation light, an excitation filter positioned to receive the excitation light, a slide, a slide holder assembly for positioning the slide to receive the excitation light from the excitation filter, an emission filter positioned to receive the excitation light from the slide, a lens positioned to receive the excitation light from the emission filter, and a CCD camera positioned to receive the excitation light from the lens.

  15. ArrayPitope: Automated Analysis of Amino Acid Substitutions for Peptide Microarray-Based Antibody Epitope Mapping

    Science.gov (United States)

    Hansen, Christian Skjødt; Østerbye, Thomas; Marcatili, Paolo; Lund, Ole; Buus, Søren

    2017-01-01

    Identification of epitopes targeted by antibodies (B cell epitopes) is of critical importance for the development of many diagnostic and therapeutic tools. For clinical usage, such epitopes must be extensively characterized in order to validate specificity and to document potential cross-reactivity. B cell epitopes are typically classified as either linear epitopes, i.e. short consecutive segments from the protein sequence or conformational epitopes adapted through native protein folding. Recent advances in high-density peptide microarrays enable high-throughput, high-resolution identification and characterization of linear B cell epitopes. Using exhaustive amino acid substitution analysis of peptides originating from target antigens, these microarrays can be used to address the specificity of polyclonal antibodies raised against such antigens containing hundreds of epitopes. However, the interpretation of the data provided in such large-scale screenings is far from trivial and in most cases it requires advanced computational and statistical skills. Here, we present an online application for automated identification of linear B cell epitopes, allowing the non-expert user to analyse peptide microarray data. The application takes as input quantitative peptide data of fully or partially substituted overlapping peptides from a given antigen sequence and identifies epitope residues (residues that are significantly affected by substitutions) and visualize the selectivity towards each residue by sequence logo plots. Demonstrating utility, the application was used to identify and address the antibody specificity of 18 linear epitope regions in Human Serum Albumin (HSA), using peptide microarray data consisting of fully substituted peptides spanning the entire sequence of HSA and incubated with polyclonal rabbit anti-HSA (and mouse anti-rabbit-Cy3). The application is made available at: www.cbs.dtu.dk/services/ArrayPitope. PMID:28095436

  16. Autoantibody profiling on human proteome microarray for biomarker discovery in cerebrospinal fluid and sera of neuropsychiatric lupus.

    Directory of Open Access Journals (Sweden)

    Chaojun Hu

    Full Text Available Autoantibodies in cerebrospinal fluid (CSF from patients with neuropsychiatric systemic lupus erythematosus (NPSLE may be potential biomarkers for prediction, diagnosis, or prognosis of NPSLE. We used a human proteome microarray with~17,000 unique full-length human proteins to investigate autoantibodies associated with NPSLE. Twenty-nine CSF specimens from 12 NPSLE, 7 non-NPSLE, and 10 control (non-systemic lupus erythematosuspatients were screened for NPSLE-associated autoantibodies with proteome microarrays. A focused autoantigen microarray of candidate NPSLE autoantigens was applied to profile a larger cohort of CSF with patient-matched sera. We identified 137 autoantigens associated with NPSLE. Ingenuity Pathway Analysis revealed that these autoantigens were enriched for functions involved in neurological diseases (score = 43.Anti-proliferating cell nuclear antigen (PCNA was found in the CSF of NPSLE and non-NPSLE patients. The positive rates of 4 autoantibodies in CSF specimens were significantly different between the SLE (i.e., NPSLE and non-NPSLE and control groups: anti-ribosomal protein RPLP0, anti-RPLP1, anti-RPLP2, and anti-TROVE2 (also known as anti-Ro/SS-A. The positive rate for anti-SS-A associated with NPSLE was higher than that for non-NPSLE (31.11% cf. 10.71%; P = 0.045.Further analysis showed that anti-SS-A in CSF specimens was related to neuropsychiatric syndromes of the central nervous system in SLE (P = 0.009. Analysis with Spearman's rank correlation coefficient indicated that the titers of anti-RPLP2 and anti-SS-A in paired CSF and serum specimens significantly correlated. Human proteome microarrays offer a powerful platform to discover novel autoantibodies in CSF samples. Anti-SS-A autoantibodies may be potential CSF markers for NPSLE.

  17. Sensitivity and fidelity of DNA microarray improved with integration of Amplified Differential Gene Expression (ADGE

    Directory of Open Access Journals (Sweden)

    Ile Kristina E

    2003-07-01

    Full Text Available Abstract Background The ADGE technique is a method designed to magnify the ratios of gene expression before detection. It improves the detection sensitivity to small change of gene expression and requires small amount of starting material. However, the throughput of ADGE is low. We integrated ADGE with DNA microarray (ADGE microarray and compared it with regular microarray. Results When ADGE was integrated with DNA microarray, a quantitative relationship of a power function between detected and input ratios was found. Because of ratio magnification, ADGE microarray was better able to detect small changes in gene expression in a drug resistant model cell line system. The PCR amplification of templates and efficient labeling reduced the requirement of starting material to as little as 125 ng of total RNA for one slide hybridization and enhanced the signal intensity. Integration of ratio magnification, template amplification and efficient labeling in ADGE microarray reduced artifacts in microarray data and improved detection fidelity. The results of ADGE microarray were less variable and more reproducible than those of regular microarray. A gene expression profile generated with ADGE microarray characterized the drug resistant phenotype, particularly with reference to glutathione, proliferation and kinase pathways. Conclusion ADGE microarray magnified the ratios of differential gene expression in a power function, improved the detection sensitivity and fidelity and reduced the requirement for starting material while maintaining high throughput. ADGE microarray generated a more informative expression pattern than regular microarray.

  18. High-throughput screening of suppression subtractive hybridization cDNA libraries using DNA microarray analysis

    CSIR Research Space (South Africa)

    Van den Berg, N

    2004-11-01

    Full Text Available DNAs to the SSH libraries arrayed on glass slides, two values were calculated for each clone, an enrichment ratio 1 (ER1) and an enrichment ratio 2 (ER2). Graphical representation of ER1 and ER2 enabled the identification of clones that were likely to represent up...

  19. Breast cancer screening

    Science.gov (United States)

    Mammogram - breast cancer screening; Breast exam - breast cancer screening; MRI - breast cancer screening ... performed to screen women to detect early breast cancer when it is more likely to be cured. ...

  20. The tissue microarray OWL schema: An open-source tool for sharing tissue microarray data

    Directory of Open Access Journals (Sweden)

    Hyunseok P Kang

    2010-01-01

    Full Text Available Background: Tissue microarrays (TMAs are enormously useful tools for translational research, but incompatibilities in database systems between various researchers and institutions prevent the efficient sharing of data that could help realize their full potential. Resource Description Framework (RDF provides a flexible method to represent knowledge in triples, which take the form Subject- Predicate-Object. All data resources are described using Uniform Resource Identifiers (URIs, which are global in scope. We present an OWL (Web Ontology Language schema that expands upon the TMA data exchange specification to address this issue and assist in data sharing and integration. Methods: A minimal OWL schema was designed containing only concepts specific to TMA experiments. More general data elements were incorporated from predefined ontologies such as the NCI thesaurus. URIs were assigned using the Linked Data format. Results: We present examples of files utilizing the schema and conversion of XML data (similar to the TMA DES to OWL. Conclusion: By utilizing predefined ontologies and global unique identifiers, this OWL schema provides a solution to the limitations of XML, which represents concepts defined in a localized setting. This will help increase the utilization of tissue resources, facilitating collaborative translational research efforts.

  1. Dimension reduction methods for microarray data: a review

    Directory of Open Access Journals (Sweden)

    Rabia Aziz

    2017-03-01

    Full Text Available Dimension reduction has become inevitable for pre-processing of high dimensional data. “Gene expression microarray data” is an instance of such high dimensional data. Gene expression microarray data displays the maximum number of genes (features simultaneously at a molecular level with a very small number of samples. The copious numbers of genes are usually provided to a learning algorithm for producing a complete characterization of the classification task. However, most of the times the majority of the genes are irrelevant or redundant to the learning task. It will deteriorate the learning accuracy and training speed as well as lead to the problem of overfitting. Thus, dimension reduction of microarray data is a crucial preprocessing step for prediction and classification of disease. Various feature selection and feature extraction techniques have been proposed in the literature to identify the genes, that have direct impact on the various machine learning algorithms for classification and eliminate the remaining ones. This paper describes the taxonomy of dimension reduction methods with their characteristics, evaluation criteria, advantages and disadvantages. It also presents a review of numerous dimension reduction approaches for microarray data, mainly those methods that have been proposed over the past few years.

  2. Application of Microarray technology in research and diagnostics

    DEFF Research Database (Denmark)

    Helweg-Larsen, Rehannah Borup

    The overall purpose of this thesis is to evaluate the use of microarray analysis to investigate the transcriptome of human cancers and human follicular cells and define the correlation between expression of human genes and specific cancer types as well as the developmental competence of the oocyt...

  3. Microtiter plate-based antibody microarrays for bacteria and toxins

    Science.gov (United States)

    Research has focused on the development of rapid biosensor-based, high-throughput, and multiplexed detection of pathogenic bacteria in foods. Specifically, antibody microarrays in 96-well microtiter plates have been generated for the purpose of selective detection of Shiga toxin-producing E. coli (...

  4. Exploiting fluorescence for multiplex immunoassays on protein microarrays

    Science.gov (United States)

    Herbáth, Melinda; Papp, Krisztián; Balogh, Andrea; Matkó, János; Prechl, József

    2014-09-01

    Protein microarray technology is becoming the method of choice for identifying protein interaction partners, detecting specific proteins, carbohydrates and lipids, or for characterizing protein interactions and serum antibodies in a massively parallel manner. Availability of the well-established instrumentation of DNA arrays and development of new fluorescent detection instruments promoted the spread of this technique. Fluorescent detection has the advantage of high sensitivity, specificity, simplicity and wide dynamic range required by most measurements. Fluorescence through specifically designed probes and an increasing variety of detection modes offers an excellent tool for such microarray platforms. Measuring for example the level of antibodies, their isotypes and/or antigen specificity simultaneously can offer more complex and comprehensive information about the investigated biological phenomenon, especially if we take into consideration that hundreds of samples can be measured in a single assay. Not only body fluids, but also cell lysates, extracted cellular components, and intact living cells can be analyzed on protein arrays for monitoring functional responses to printed samples on the surface. As a rapidly evolving area, protein microarray technology offers a great bulk of information and new depth of knowledge. These are the features that endow protein arrays with wide applicability and robust sample analyzing capability. On the whole, protein arrays are emerging new tools not just in proteomics, but glycomics, lipidomics, and are also important for immunological research. In this review we attempt to summarize the technical aspects of planar fluorescent microarray technology along with the description of its main immunological applications.

  5. Versatile High Throughput Microarray Analysis for Marine Glycobiology

    DEFF Research Database (Denmark)

    Asunción Salmeán, Armando

    to concept proof that is possible to use the Comprehensive Microarray Polymer Profiling (CoMPP) as a tool for other extracellular matrixes such as marine animals and not only for algal or plant cell walls. Thus, we discovered fucoidan and cellulose epitopes in several tissues of various marine animals from...

  6. Application of Microarray technology in research and diagnostics

    DEFF Research Database (Denmark)

    Helweg-Larsen, Rehannah Borup

    The overall purpose of this thesis is to evaluate the use of microarray analysis to investigate the transcriptome of human cancers and human follicular cells and define the correlation between expression of human genes and specific cancer types as well as the developmental competence of the oocyte...

  7. Quantitative analysis of tumor mitochondrial RNA using microarray

    Institute of Scientific and Technical Information of China (English)

    Cheng-Bo Han; Xiao-Yun Mao; Yan Xin; Shao-Cheng Wang; Jia-Ming Ma; Yu-Jie Zhao

    2005-01-01

    AIM: To design a novel method to rapidly detect the quantitative alteration of mtRNA in patients with tumors.METHODS: Oligo 6.22 and Primer Premier 5.0 bio-soft were used to design 15 pairs of primers of mtRNA cDNA probes in light of the functional and structural property of mtDNA, and then RT-PCR amplification was used to produce 15 probes of mtRNA from one normal gastric mucosal tissue. Total RNA extracted from 9 gastric cancers and corresponding normal gastric mucosal tissues was reverse transcribed into cDNA labeled with fluorescein. The spotted mtDNA microarrays were made and hybridized. Finally,the microarrays were scanned with a GeneTACTM laser scanner to get the hybridized results. Northern blot was used to confirm the microarray results.RESULTS: The hybridized spots were distinct with clear and consistent backgrounds. After data was standardized according to the housekeeping genes, the results showed that the expression levels of some mitochondrial genes in gastric carcinoma were different from those in the corresponding non-cancerous regions.CONCLUSION: The mtDNA expression microarray can rapidly, massively and exactly detect the quantity of mtRNA in tissues and cells. In addition, the whole expressive information of mtRNA from a tumor patient on just one slide can be obtained using this method, providing an effective method to investigate the relationship between mtDNA expression and tumorigenesis.

  8. Viral discovery and sequence recovery using DNA microarrays.

    Directory of Open Access Journals (Sweden)

    David Wang

    2003-11-01

    Full Text Available Because of the constant threat posed by emerging infectious diseases and the limitations of existing approaches used to identify new pathogens, there is a great demand for new technological methods for viral discovery. We describe herein a DNA microarray-based platform for novel virus identification and characterization. Central to this approach was a DNA microarray designed to detect a wide range of known viruses as well as novel members of existing viral families; this microarray contained the most highly conserved 70mer sequences from every fully sequenced reference viral genome in GenBank. During an outbreak of severe acute respiratory syndrome (SARS in March 2003, hybridization to this microarray revealed the presence of a previously uncharacterized coronavirus in a viral isolate cultivated from a SARS patient. To further characterize this new virus, approximately 1 kb of the unknown virus genome was cloned by physically recovering viral sequences hybridized to individual array elements. Sequencing of these fragments confirmed that the virus was indeed a new member of the coronavirus family. This combination of array hybridization followed by direct viral sequence recovery should prove to be a general strategy for the rapid identification and characterization of novel viruses and emerging infectious disease.

  9. A methodology for global validation of microarray experiments

    Directory of Open Access Journals (Sweden)

    Sladek Robert

    2006-07-01

    Full Text Available Abstract Background DNA microarrays are popular tools for measuring gene expression of biological samples. This ever increasing popularity is ensuring that a large number of microarray studies are conducted, many of which with data publicly available for mining by other investigators. Under most circumstances, validation of differential expression of genes is performed on a gene to gene basis. Thus, it is not possible to generalize validation results to the remaining majority of non-validated genes or to evaluate the overall quality of these studies. Results We present an approach for the global validation of DNA microarray experiments that will allow researchers to evaluate the general quality of their experiment and to extrapolate validation results of a subset of genes to the remaining non-validated genes. We illustrate why the popular strategy of selecting only the most differentially expressed genes for validation generally fails as a global validation strategy and propose random-stratified sampling as a better gene selection method. We also illustrate shortcomings of often-used validation indices such as overlap of significant effects and the correlation coefficient and recommend the concordance correlation coefficient (CCC as an alternative. Conclusion We provide recommendations that will enhance validity checks of microarray experiments while minimizing the need to run a large number of labour-intensive individual validation assays.

  10. Native antigen fractionation protein microarrays for biomarker discovery.

    Science.gov (United States)

    Caiazzo, Robert J; O'Rourke, Dennis J; Barder, Timothy J; Nelson, Bryce P; Liu, Brian C-S

    2011-01-01

    In this protocol, we used the T24 human bladder cancer cell line as a source of native antigens to construct fractionated lysate microarrays. Subsequently, these microarrays were used to compare the autoantibody responses of individuals with interstitial cystitis/painful bladder syndrome (IC/PBS) to those of normal female controls. To accomplish this, T24 cells were lysed under nondenaturing conditions to obtain native antigens. These native antigens were then fractionated in 2D using a PF-2D liquid chromatography; the first dimension separated the proteins by their isoelectric points, and the second separated them according to hydrophobicity. The resulting protein fractions were printed onto nitrocellulose-coated glass slides (PATH slides) to create a set of fractionated lysate microarrays. To compare the autoantibody responses of IC/PBS patients with normal controls, the fractionated lysate arrays were competitively hybridized with fluorescently labeled IgG samples purified from both IC/PBS and control sera. This protocol presents a detailed description of the creation and use of native antigen fractionated lysate microarrays for autoantibody profiling.

  11. Application of four dyes in gene expression analyses by microarrays

    NARCIS (Netherlands)

    Staal, Y.; van Herwijnen, M.H.M.; van Schooten, F.J.; van Delft, J.H.M.

    2005-01-01

    BACKGROUND: DNA microarrays are widely used in gene expression analyses. To increase throughput and minimize costs without reducing gene expression data obtained, we investigated whether four mRNA samples can be analyzed simultaneously by applying four different fluorescent dyes. RESULTS: Following

  12. SNP typing on the NanoChip electronic microarray

    DEFF Research Database (Denmark)

    Børsting, Claus; Sanchez Sanchez, Juan Jose; Morling, Niels

    2005-01-01

    We describe a single nucleotide polymorphism (SNP) typing protocol developed for the NanoChip electronic microarray. The NanoChip array consists of 100 electrodes covered by a thin hydrogel layer containing streptavidin. An electric currency can be applied to one, several, or all electrodes...

  13. Employing image processing techniques for cancer detection using microarray images.

    Science.gov (United States)

    Dehghan Khalilabad, Nastaran; Hassanpour, Hamid

    2017-02-01

    Microarray technology is a powerful genomic tool for simultaneously studying and analyzing the behavior of thousands of genes. The analysis of images obtained from this technology plays a critical role in the detection and treatment of diseases. The aim of the current study is to develop an automated system for analyzing data from microarray images in order to detect cancerous cases. The proposed system consists of three main phases, namely image processing, data mining, and the detection of the disease. The image processing phase performs operations such as refining image rotation, gridding (locating genes) and extracting raw data from images the data mining includes normalizing the extracted data and selecting the more effective genes. Finally, via the extracted data, cancerous cell is recognized. To evaluate the performance of the proposed system, microarray database is employed which includes Breast cancer, Myeloid Leukemia and Lymphomas from the Stanford Microarray Database. The results indicate that the proposed system is able to identify the type of cancer from the data set with an accuracy of 95.45%, 94.11%, and 100%, respectively.

  14. Robust Likelihood-Based Survival Modeling with Microarray Data

    Directory of Open Access Journals (Sweden)

    HyungJun Cho

    2008-09-01

    Full Text Available Gene expression data can be associated with various clinical outcomes. In particular, these data can be of importance in discovering survival-associated genes for medical applications. As alternatives to traditional statistical methods, sophisticated methods and software programs have been developed to overcome the high-dimensional difficulty of microarray data. Nevertheless, new algorithms and software programs are needed to include practical functions such as the discovery of multiple sets of survival-associated genes and the incorporation of risk factors, and to use in the R environment which many statisticians are familiar with. For survival modeling with microarray data, we have developed a software program (called rbsurv which can be used conveniently and interactively in the R environment. This program selects survival-associated genes based on the partial likelihood of the Cox model and separates training and validation sets of samples for robustness. It can discover multiple sets of genes by iterative forward selection rather than one large set of genes. It can also allow adjustment for risk factors in microarray survival modeling. This software package, the rbsurv package, can be used to discover survival-associated genes with microarray data conveniently.

  15. Microarrays for Universal Detection and Identification of Phytoplasmas

    DEFF Research Database (Denmark)

    Nicolaisen, Mogens; Nyskjold, Henriette; Bertaccini, Assunta

    2013-01-01

    Detection and identification of phytoplasmas is a laborious process often involving nested PCR followed by restriction enzyme analysis and fine-resolution gel electrophoresis. To improve throughput, other methods are needed. Microarray technology offers a generic assay that can potentially detect...

  16. A microarray immunoassay for simultaneous detection of proteins and bacteria

    Science.gov (United States)

    Delehanty, James B.; Ligler, Frances S.

    2002-01-01

    We report the development and characterization of an antibody microarray biosensor for the rapid detection of both protein and bacterial analytes under flow conditions. Using a noncontact microarray printer, biotinylated capture antibodies were immobilized at discrete locations on the surface of an avidin-coated glass microscope slide. Preservation of capture antibody function during the deposition process was accomplished with the use of a low-salt buffer containing sucrose and bovine serum albumin. The slide was fitted with a six-channel flow module that conducted analyte-containing solutions over the array of capture antibody microspots. Detection of bound analyte was subsequently achieved using fluorescent tracer antibodies. The pattern of fluorescent complexes was interrogated using a scanning confocal microscope equipped with a 635-nm laser. This microarray system was employed to detect protein and bacterial analytes both individually and in samples containing mixtures of analytes. Assays were completed in 15 min, and detection of cholera toxin, staphylococcal enterotoxin B, ricin, and Bacillus globigii was demonstrated at levels as low as 8 ng/mL, 4 ng/mL, 10 ng/mL, and 6.2 x 10(4) cfu/mL, respectively. The assays presented here are very fast, as compared to previously published methods for measuring antibody-antigen interactions using microarrays (minutes versus hours).

  17. Kernel Based Nonlinear Dimensionality Reduction and Classification for Genomic Microarray

    Directory of Open Access Journals (Sweden)

    Lan Shu

    2008-07-01

    Full Text Available Genomic microarrays are powerful research tools in bioinformatics and modern medicinal research because they enable massively-parallel assays and simultaneous monitoring of thousands of gene expression of biological samples. However, a simple microarray experiment often leads to very high-dimensional data and a huge amount of information, the vast amount of data challenges researchers into extracting the important features and reducing the high dimensionality. In this paper, a nonlinear dimensionality reduction kernel method based locally linear embedding(LLE is proposed, and fuzzy K-nearest neighbors algorithm which denoises datasets will be introduced as a replacement to the classical LLE’s KNN algorithm. In addition, kernel method based support vector machine (SVM will be used to classify genomic microarray data sets in this paper. We demonstrate the application of the techniques to two published DNA microarray data sets. The experimental results confirm the superiority and high success rates of the presented method.

  18. Development of DNA Microarrays for Metabolic Pathway and Bioprocess Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Stephanopoulos

    2004-07-31

    Transcriptional profiling experiments utilizing DNA microarrays to study the intracellular accumulation of PHB in Synechocystis has proved difficult in large part because strains that show significant differences in PHB which would justify global analysis of gene expression have not been isolated.

  19. VIPR: A probabilistic algorithm for analysis of microbial detection microarrays

    Directory of Open Access Journals (Sweden)

    Holbrook Michael R

    2010-07-01

    Full Text Available Abstract Background All infectious disease oriented clinical diagnostic assays in use today focus on detecting the presence of a single, well defined target agent or a set of agents. In recent years, microarray-based diagnostics have been developed that greatly facilitate the highly parallel detection of multiple microbes that may be present in a given clinical specimen. While several algorithms have been described for interpretation of diagnostic microarrays, none of the existing approaches is capable of incorporating training data generated from positive control samples to improve performance. Results To specifically address this issue we have developed a novel interpretive algorithm, VIPR (Viral Identification using a PRobabilistic algorithm, which uses Bayesian inference to capitalize on empirical training data to optimize detection sensitivity. To illustrate this approach, we have focused on the detection of viruses that cause hemorrhagic fever (HF using a custom HF-virus microarray. VIPR was used to analyze 110 empirical microarray hybridizations generated from 33 distinct virus species. An accuracy of 94% was achieved as measured by leave-one-out cross validation. Conclusions VIPR outperformed previously described algorithms for this dataset. The VIPR algorithm has potential to be broadly applicable to clinical diagnostic settings, wherein positive controls are typically readily available for generation of training data.

  20. Broad spectrum microarray for fingerprint-based bacterial species identification

    Directory of Open Access Journals (Sweden)

    Frey Jürg E

    2010-02-01

    Full Text Available Abstract Background Microarrays are powerful tools for DNA-based molecular diagnostics and identification of pathogens. Most target a limited range of organisms and are based on only one or a very few genes for specific identification. Such microarrays are limited to organisms for which specific probes are available, and often have difficulty discriminating closely related taxa. We have developed an alternative broad-spectrum microarray that employs hybridisation fingerprints generated by high-density anonymous markers distributed over the entire genome for identification based on comparison to a reference database. Results A high-density microarray carrying 95,000 unique 13-mer probes was designed. Optimized methods were developed to deliver reproducible hybridisation patterns that enabled confident discrimination of bacteria at the species, subspecies, and strain levels. High correlation coefficients were achieved between replicates. A sub-selection of 12,071 probes, determined by ANOVA and class prediction analysis, enabled the discrimination of all samples in our panel. Mismatch probe hybridisation was observed but was found to have no effect on the discriminatory capacity of our system. Conclusions These results indicate the potential of our genome chip for reliable identification of a wide range of bacterial taxa at the subspecies level without laborious prior sequencing and probe design. With its high resolution capacity, our proof-of-principle chip demonstrates great potential as a tool for molecular diagnostics of broad taxonomic groups.

  1. Gene expression profiling of mouse embryos with microarrays

    Science.gov (United States)

    Sharov, Alexei A.; Piao, Yulan; Ko, Minoru S. H.

    2011-01-01

    Global expression profiling by DNA microarrays provides a snapshot of cell and tissue status and becomes an essential tool in biological and medical sciences. Typical questions that can be addressed by microarray analysis in developmental biology include: (1) to find a set of genes expressed in a specific cell type; (2) to identify genes expressed commonly in multiple cell types; (3) to follow the time-course changes of gene expression patterns; (4) to demonstrate cell’s identity by showing similarities or differences among two or multiple cell types; (5) to find regulatory pathways and/or networks affected by gene manipulations, such as overexpression or repression of gene expression; (6) to find downstream target genes of transcription factors; (7) to find downstream target genes of cell signaling; (8) to examine the effects of environmental manipulation of cells on gene expression patterns; and (9) to find the effects of genetic manipulation in embryos and adults. Here we describe strategies for executing these experiments and monitoring changes of cell state with gene expression microarrays in application to mouse embryology. Both statistical assessment and interpretation of data are discussed. We also present a protocol for performing microarray analysis on a small amount of embryonic materials. PMID:20699157

  2. Improving comparability between microarray probe signals by thermodynamic intensity correction

    DEFF Research Database (Denmark)

    Bruun, G. M.; Wernersson, Rasmus; Juncker, Agnieszka

    2007-01-01

    different probes. It is therefore of great interest to correct for the variation between probes. Much of this variation is sequence dependent. We demonstrate that a thermodynamic model for hybridization of either DNA or RNA to a DNA microarray, which takes the sequence-dependent probe affinities...

  3. Microarray-based RNA profiling of breast cancer

    DEFF Research Database (Denmark)

    Larsen, Martin J; Thomassen, Mads; Tan, Qihua

    2014-01-01

    Microarray is a powerful technique used extensively for gene expression analysis. Different technologies are available, but lack of standardization makes it challenging to compare and integrate data. Furthermore, batch-related biases within datasets are common but often not tackled. We have analy...

  4. Large scale multiplex PCR improves pathogen detection by DNA microarrays

    Directory of Open Access Journals (Sweden)

    Krönke Martin

    2009-01-01

    Full Text Available Abstract Background Medium density DNA microchips that carry a collection of probes for a broad spectrum of pathogens, have the potential to be powerful tools for simultaneous species identification, detection of virulence factors and antimicrobial resistance determinants. However, their widespread use in microbiological diagnostics is limited by the problem of low pathogen numbers in clinical specimens revealing relatively low amounts of pathogen DNA. Results To increase the detection power of a fluorescence-based prototype-microarray designed to identify pathogenic microorganisms involved in sepsis, we propose a large scale multiplex PCR (LSplex PCR for amplification of several dozens of gene-segments of 9 pathogenic species. This protocol employs a large set of primer pairs, potentially able to amplify 800 different gene segments that correspond to the capture probes spotted on the microarray. The LSplex protocol is shown to selectively amplify only the gene segments corresponding to the specific pathogen present in the analyte. Application of LSplex increases the microarray detection of target templates by a factor of 100 to 1000. Conclusion Our data provide a proof of principle for the improvement of detection of pathogen DNA by microarray hybridization by using LSplex PCR.

  5. Workflows for microarray data processing in the Kepler environment

    Directory of Open Access Journals (Sweden)

    Stropp Thomas

    2012-05-01

    Full Text Available Abstract Background Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. Results We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data and therefore are close to

  6. Independent component analysis of Alzheimer's DNA microarray gene expression data

    Directory of Open Access Journals (Sweden)

    Vanderburg Charles R

    2009-01-01

    Full Text Available Abstract Background Gene microarray technology is an effective tool to investigate the simultaneous activity of multiple cellular pathways from hundreds to thousands of genes. However, because data in the colossal amounts generated by DNA microarray technology are usually complex, noisy, high-dimensional, and often hindered by low statistical power, their exploitation is difficult. To overcome these problems, two kinds of unsupervised analysis methods for microarray data: principal component analysis (PCA and independent component analysis (ICA have been developed to accomplish the task. PCA projects the data into a new space spanned by the principal components that are mutually orthonormal to each other. The constraint of mutual orthogonality and second-order statistics technique within PCA algorithms, however, may not be applied to the biological systems studied. Extracting and characterizing the most informative features of the biological signals, however, require higher-order statistics. Results ICA is one of the unsupervised algorithms that can extract higher-order statistical structures from data and has been applied to DNA microarray gene expression data analysis. We performed FastICA method on DNA microarray gene expression data from Alzheimer's disease (AD hippocampal tissue samples and consequential gene clustering. Experimental results showed that the ICA method can improve the clustering results of AD samples and identify significant genes. More than 50 significant genes with high expression levels in severe AD were extracted, representing immunity-related protein, metal-related protein, membrane protein, lipoprotein, neuropeptide, cytoskeleton protein, cellular binding protein, and ribosomal protein. Within the aforementioned categories, our method also found 37 significant genes with low expression levels. Moreover, it is worth noting that some oncogenes and phosphorylation-related proteins are expressed in low levels. In

  7. Rapid determination of serological cytokine biomarkers for hepatitis B virus-related hepatocellular carcinoma using antibody microarrays

    Institute of Scientific and Technical Information of China (English)

    Taotao Liu; Ruyi Xue; Ling Dong; Hao Wu; Danying Zhang; Xizhong Shen

    2011-01-01

    Hepatocellular carcinoma (HCC) is one of the most frequent tumors worldwide with an increasing incidence. The exploration of biomarkers for HCC is one of the main aims for improving the efficacy of diagnosis and treatment. The microarray technology provides a high-throughput platform for parallel exploration of biomarkers for clinics. In this study, we used antibody microarrays to screen the novel cytokine biomarkers of hepatitis B virus (HBV)-related HCC. Cytokine-secreting patterns in sera were determined from 109 cases including 43 HBV-related HCC patients, 33 chronic hepatitis B patients, and 33 normal controls by Ray Bio() Biotin label-based human antibody array. The correlation analysis was performed with conventional clinical diagnostic biomarkers, including serum alanine aminotransferase, alpha-fetoprotein (AFP) and hepatitis B surface antigen. Our results showed that in HBV-related HCC group, which had the highest percentage of AFP positive (>20 ng/ml) ratio, six cytokines were found differentially expressed in HCC patients (P < 0.05), compared with either normal controls or chronic hepatitis B group. Two macrophage-related cytokines, macrophage-derived che-mokine (MDC) and macrophage-stimulating protein α (MSPα), displayed significant difference in the HCC group. Furthermore, an HCC diagnostic model for prediction was constructed, by which the combination of MDC and MSPa together with AFP had improved the diagnostic sensitivity from 60% (AFP alone) to 73.2% with similar specificity. Our results suggested that MDC and MSPa screened by antibody microarrays might serve as novel cytokines biomarkers for potential auxiliary diagnosis of HBV-related HCC.

  8. Computational biology of genome expression and regulation--a review of microarray bioinformatics.

    Science.gov (United States)

    Wang, Junbai

    2008-01-01

    Microarray technology is being used widely in various biomedical research areas; the corresponding microarray data analysis is an essential step toward the best utilizing of array technologies. Here we review two components of the microarray data analysis: a low level of microarray data analysis that emphasizes the designing, the quality control, and the preprocessing of microarray experiments, then a high level of microarray data analysis that focuses on the domain-specific microarray applications such as tumor classification, biomarker prediction, analyzing array CGH experiments, and reverse engineering of gene expression networks. Additionally, we will review the recent development of building a predictive model in genome expression and regulation studies. This review may help biologists grasp a basic knowledge of microarray bioinformatics as well as its potential impact on the future evolvement of biomedical research fields.

  9. Differentiating pancreatic lesions by Microarray and QPCR analysis of pancreatic juice RNAs

    NARCIS (Netherlands)

    C.D. Rogers; N. Fukushima; N. Sato; C. Shi; N. Prasad; S.R. Hustinx; H. Matsubayashi; M. Canto; J.R. Eshleman; R.H. Hruban; M. Goggins

    2006-01-01

    Background: The gene expression profile of pancreatic cancer is significantly different from that of normal pancreas. Differences in gene expression are detectable using microarrays, but microarrays have traditionally been applied to pancreatic cancer tissue obtained from surgical resection. We hypo

  10. DNA Microarray-based Ecotoxicological Biomarker Discovery in a Small Fish Model Species

    Science.gov (United States)

    This paper addresses several issues critical to use of zebrafish oligonucleotide microarrays for computational toxicology research on endocrine disrupting chemicals using small fish models, and more generally, the use of microarrays in aquatic toxicology.

  11. Seeded Bayesian Networks: Constructing genetic networks from microarray data

    Directory of Open Access Journals (Sweden)

    Quackenbush John

    2008-07-01

    Full Text Available Abstract Background DNA microarrays and other genomics-inspired technologies provide large datasets that often include hidden patterns of correlation between genes reflecting the complex processes that underlie cellular metabolism and physiology. The challenge in analyzing large-scale expression data has been to extract biologically meaningful inferences regarding these processes – often represented as networks – in an environment where the datasets are often imperfect and biological noise can obscure the actual signal. Although many techniques have been developed in an attempt to address these issues, to date their ability to extract meaningful and predictive network relationships has been limited. Here we describe a method that draws on prior information about gene-gene interactions to infer biologically relevant pathways from microarray data. Our approach consists of using preliminary networks derived from the literature and/or protein-protein interaction data as seeds for a Bayesian network analysis of microarray results. Results Through a bootstrap analysis of gene expression data derived from a number of leukemia studies, we demonstrate that seeded Bayesian Networks have the ability to identify high-confidence gene-gene interactions which can then be validated by comparison to other sources of pathway data. Conclusion The use of network seeds greatly improves the ability of Bayesian Network analysis to learn gene interaction networks from gene expression data. We demonstrate that the use of seeds derived from the biomedical literature or high-throughput protein-protein interaction data, or the combination, provides improvement over a standard Bayesian Network analysis, allowing networks involving dynamic processes to be deduced from the static snapshots of biological systems that represent the most common source of microarray data. Software implementing these methods has been included in the widely used TM4 microarray analysis package.

  12. Microarray analysis in the archaeon Halobacterium salinarum strain R1.

    Directory of Open Access Journals (Sweden)

    Jens Twellmeyer

    Full Text Available BACKGROUND: Phototrophy of the extremely halophilic archaeon Halobacterium salinarum was explored for decades. The research was mainly focused on the expression of bacteriorhodopsin and its functional properties. In contrast, less is known about genome wide transcriptional changes and their impact on the physiological adaptation to phototrophy. The tool of choice to record transcriptional profiles is the DNA microarray technique. However, the technique is still rarely used for transcriptome analysis in archaea. METHODOLOGY/PRINCIPAL FINDINGS: We developed a whole-genome DNA microarray based on our sequence data of the Hbt. salinarum strain R1 genome. The potential of our tool is exemplified by the comparison of cells growing under aerobic and phototrophic conditions, respectively. We processed the raw fluorescence data by several stringent filtering steps and a subsequent MAANOVA analysis. The study revealed a lot of transcriptional differences between the two cell states. We found that the transcriptional changes were relatively weak, though significant. Finally, the DNA microarray data were independently verified by a real-time PCR analysis. CONCLUSION/SIGNIFICANCE: This is the first DNA microarray analysis of Hbt. salinarum cells that were actually grown under phototrophic conditions. By comparing the transcriptomics data with current knowledge we could show that our DNA microarray tool is well applicable for transcriptome analysis in the extremely halophilic archaeon Hbt. salinarum. The reliability of our tool is based on both the high-quality array of DNA probes and the stringent data handling including MAANOVA analysis. Among the regulated genes more than 50% had unknown functions. This underlines the fact that haloarchaeal phototrophy is still far away from being completely understood. Hence, the data recorded in this study will be subject to future systems biology analysis.

  13. Sex determination of bovine preimplantation embryos by oligonucleotide microarray.

    Science.gov (United States)

    Yang, Hua; Zhong, Fagang; Yang, Yonglin; Wang, Xinhua; Liu, Shouren; Zhu, Bin

    2013-06-01

    The aim has been to set up a rapid and accurate microarray assay using sandwich mode for sex determination of bovine preimplantation embryos. Twelve sequence-specific oligonucleotide capture probes used to discriminate 12 samples were spotted onto the aldehyde-modified glass slides by Arrayer. The 2 recognition probes used to identify coding regions of the sex-determining region of the Y chromosome gene (SRY) and β-casein (CSN2) reference gene were coupled with biotin. The assay was optimized by using genomic DNA extracted from blood samples of known sex individuals. Polymerase chain reaction (PCR) was used to amplify the fragments in the HMG box region of SRY gene and CSN2 gene with sequence-specific primers. The sex of samples was identified by detecting both the SRY and CSN2 genes simultaneously in 2 reaction cells of microarrays, with the male having SRY and CSN2 signals and the female only CSN2. The sex of 20 bovine preimplantation embryos was determined by oligonucleotide microarray. The protocol was run with a blind test that showed a 100% (82/82) specificity and accuracy in sexing of leukocytes. The bovine embryos were transferred into 20 bovine recipients, with a pregnant rate of 40% (8/20). Three calves were born at term, and 5 fetuses were miscarried. Their sexes were fully in accordance with the embryonic sex predetermination predicted by oligonucleotide microarray. This suggests that the oligonucleotide microarray method of SRY gene analysis can be used in early sex prediction of bovine embryos in breeding programs.

  14. Microarray data integration for genome-wide analysis of human tissue-selective gene expression

    OpenAIRE

    Wang, Liangjiang; Srivastava, Anand K; Schwartz, Charles E

    2010-01-01

    Background Microarray gene expression data are accumulating in public databases. The expression profiles contain valuable information for understanding human gene expression patterns. However, the effective use of public microarray data requires integrating the expression profiles from heterogeneous sources. Results In this study, we have compiled a compendium of microarray expression profiles of various human tissue samples. The microarray raw data generated in different research laboratorie...

  15. In Situ-Synthesized Novel Microarray Optimized for Mouse Stem Cell and Early Developmental Expression Profiling

    OpenAIRE

    Carter, Mark G.; Hamatani, Toshio; Sharov, Alexei A; Carmack, Condie E; Qian, Yong; Aiba, Kazuhiro; Ko, Naomi T.; Dudekula, Dawood B.; Brzoska, Pius M.; Hwang, S. Stuart; Minoru S.H. Ko

    2003-01-01

    Applications of microarray technologies to mouse embryology/genetics have been limited, due to the nonavailability of microarrays containing large numbers of embryonic genes and the gap between microgram quantities of RNA required by typical microarray methods and the miniscule amounts of tissue available to researchers. To overcome these problems, we have developed a microarray platform containing in situ-synthesized 60-mer oligonucleotide probes representing approximately 22,000 unique mous...

  16. Molecular biological identification of Babesia, Theileria, and Anaplasma species in cattle in Egypt using PCR assays, gene sequence analysis and a novel DNA microarray.

    Science.gov (United States)

    El-Ashker, Maged; Hotzel, Helmut; Gwida, Mayada; El-Beskawy, Mohamed; Silaghi, Cornelia; Tomaso, Herbert

    2015-01-30

    In this preliminary study, a novel DNA microarray system was tested for the diagnosis of bovine piroplasmosis and anaplasmosis in comparison with microscopy and PCR assay results. In the Dakahlia Governorate, Egypt, 164 cattle were investigated for the presence of piroplasms and Anaplasma species. All investigated cattle were clinically examined. Blood samples were screened for the presence of blood parasites using microscopy and PCR assays. Seventy-one animals were acutely ill, whereas 93 were apparently healthy. In acutely ill cattle, Babesia/Theileria species (n=11) and Anaplasma marginale (n=10) were detected. Mixed infections with Babesia/Theileria spp. and A. marginale were present in two further cases. A. marginale infections were also detected in apparently healthy subjects (n=23). The results of PCR assays were confirmed by DNA sequencing. All samples that were positive by PCR for Babesia/Theileria spp. gave also positive results in the microarray analysis. The microarray chips identified Babesia bovis (n=12) and Babesia bigemina (n=2). Cattle with babesiosis were likely to have hemoglobinuria and nervous signs when compared to those with anaplasmosis that frequently had bloody feces. We conclude that clinical examination in combination with microscopy are still very useful in diagnosing acute cases of babesiosis and anaplasmosis, but a combination of molecular biological diagnostic assays will detect even asymptomatic carriers. In perspective, parallel detection of Babesia/Theileria spp. and A. marginale infections using a single microarray system will be a valuable improvement.

  17. Autoantigen Microarray for High-throughput Autoantibody Profiling in Systemic Lupus Erythematosus

    Institute of Scientific and Technical Information of China (English)

    Honglin Zhu; Hui Luo; Mei Yan; Xiaoxia Zuo; Quan-Zhen Li

    2015-01-01

    Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by the production of autoantibodies to a broad range of self-antigens. Profiling the autoantibody repertoire using array-based technology has emerged as a powerful tool for the identification of biomarkers in SLE and other autoimmune diseases. Proteomic microarray has the capacity to hold large number of self-antigens on a solid surface and serve as a high-throughput screening method for the determination of autoantibody specificities. The autoantigen arrays carrying a wide variety of self-antigens, such as cell nuclear components (nucleic acids and associated proteins), cytoplas-mic proteins, phospholipid proteins, cell matrix proteins, mucosal/secreted proteins, glomeruli, and other tissue-specific proteins, have been used for screening of autoantibody specificities associated with different manifestations of SLE. Arrays containing synthetic peptides and molecular modified proteins are also being utilized for identification of autoantibodies targeting to special antigenic epi-topes. Different isotypes of autoantibodies, including IgG, IgM, IgA, and IgE, as well as other Ig subtypes, can be detected simultaneously with multi-color labeled secondary antibodies. Serum and plasma are the most common biologic materials for autoantibody detection, but other body fluids such as cerebrospinal fluid, synovial fluid, and saliva can also be a source of autoantibody detection.

  18. Exploring host-pathogen interactions through genome wide protein microarray analysis.

    Science.gov (United States)

    Scietti, Luigi; Sampieri, Katia; Pinzuti, Irene; Bartolini, Erika; Benucci, Barbara; Liguori, Alessia; Haag, Andreas F; Lo Surdo, Paola; Pansegrau, Werner; Nardi-Dei, Vincenzo; Santini, Laura; Arora, Seguinde; Leber, Xavier; Rindi, Simonetta; Savino, Silvana; Costantino, Paolo; Maione, Domenico; Merola, Marcello; Speziale, Pietro; Bottomley, Matthew J; Bagnoli, Fabio; Masignani, Vega; Pizza, Mariagrazia; Scharenberg, Meike; Schlaeppi, Jean-Marc; Nissum, Mikkel; Liberatori, Sabrina

    2016-06-15

    During bacterial pathogenesis extensive contacts between the human and the bacterial extracellular proteomes take place. The identification of novel host-pathogen interactions by standard methods using a case-by-case approach is laborious and time consuming. To overcome this limitation, we took advantage of large libraries of human and bacterial recombinant proteins. We applied a large-scale protein microarray-based screening on two important human pathogens using two different approaches: (I) 75 human extracellular proteins were tested on 159 spotted Staphylococcus aureus recombinant proteins and (II) Neisseria meningitidis adhesin (NadA), an important vaccine component against serogroup B meningococcus, was screened against ≈2300 spotted human recombinant proteins. The approach presented here allowed the identification of the interaction between the S. aureus immune evasion protein FLIPr (formyl-peptide receptor like-1 inhibitory protein) and the human complement component C1q, key players of the offense-defense fighting; and of the interaction between meningococcal NadA and human LOX-1 (low-density oxidized lipoprotein receptor), an endothelial receptor. The novel interactions between bacterial and human extracellular proteins here presented might provide a better understanding of the molecular events underlying S. aureus and N. meningitidis pathogenesis.

  19. Analysis of Protein Glycosylation and Phosphorylation Using Liquid Phase Separation, Protein Microarray Technology, and Mass Spectrometry

    Science.gov (United States)

    Zhao, Jia; Patwa, Tasneem H.; Pal, Manoj; Qiu, Weilian; Lubman, David M.

    2010-01-01

    Summary Protein glycosylation and phosphorylation are very common posttranslational modifications. The alteration of these modifications in cancer cells is closely related to the onset and progression of cancer and other disease states. In this protocol, strategies for monitoring the changes in protein glycosylation and phosphorylation in serum or tissue cells on a global scale and specifically characterizing these alterations are included. The technique is based on lectin affinity enrichment for glycoproteins, all liquid-phase two-dimensional fractionation, protein microarray, and mass spectrometry technology. Proteins are separated based on pI in the first dimension using chromatofocusing (CF) or liquid isoelectric focusing (IEF) followed by the second-dimension separation using nonporous silica RP-HPLC. Five lectins with different binding specificities to glycan structures are used for screening glycosylation patterns in human serum through a biotin–streptavidin system. Fluorescent phosphodyes and phosphospecific antibodies are employed to detect specific phosphorylated proteins in cell lines or human tissues. The purified proteins of interest are identified by peptide sequencing. Their modifications including glycosylation and phosphorylation could be further characterized by mass-spectrometry-based approaches. These strategies can be used in biological samples for large-scale glycoproteome/phosphoproteome screening as well as for individual protein modification analysis. PMID:19241043

  20. Exploring host-pathogen interactions through genome wide protein microarray analysis

    Science.gov (United States)

    Scietti, Luigi; Sampieri, Katia; Pinzuti, Irene; Bartolini, Erika; Benucci, Barbara; Liguori, Alessia; Haag, Andreas F.; Lo Surdo, Paola; Pansegrau, Werner; Nardi-Dei, Vincenzo; Santini, Laura; Arora, Seguinde; Leber, Xavier; Rindi, Simonetta; Savino, Silvana; Costantino, Paolo; Maione, Domenico; Merola, Marcello; Speziale, Pietro; Bottomley, Matthew J.; Bagnoli, Fabio; Masignani, Vega; Pizza, Mariagrazia; Scharenberg, Meike; Schlaeppi, Jean-Marc; Nissum, Mikkel; Liberatori, Sabrina

    2016-01-01

    During bacterial pathogenesis extensive contacts between the human and the bacterial extracellular proteomes take place. The identification of novel host-pathogen interactions by standard methods using a case-by-case approach is laborious and time consuming. To overcome this limitation, we took advantage of large libraries of human and bacterial recombinant proteins. We applied a large-scale protein microarray-based screening on two important human pathogens using two different approaches: (I) 75 human extracellular proteins were tested on 159 spotted Staphylococcus aureus recombinant proteins and (II) Neisseria meningitidis adhesin (NadA), an important vaccine component against serogroup B meningococcus, was screened against ≈2300 spotted human recombinant proteins. The approach presented here allowed the identification of the interaction between the S. aureus immune evasion protein FLIPr (formyl-peptide receptor like-1 inhibitory protein) and the human complement component C1q, key players of the offense-defense fighting; and of the interaction between meningococcal NadA and human LOX-1 (low-density oxidized lipoprotein receptor), an endothelial receptor. The novel interactions between bacterial and human extracellular proteins here presented might provide a better understanding of the molecular events underlying S. aureus and N. meningitidis pathogenesis. PMID:27302108

  1. Debye screening

    Science.gov (United States)

    Brydges, David C.; Federbush, Paul

    1980-10-01

    The existence and exponential clustering of correlation functions for a classical coulomb system at low density or high temperature are proven using methods from constructive quantum field theory, the sine gordon transformation and the Glimm, Jaffe, Spencer expansion about mean field theory. This is a vindication of a belief of long standing among physicists, known as Debye screening. That is, because of special properties of the coulomb potential, the configurations of significant probability are those in which the long range parts of r -1 are mostly cancelled, leaving an effective exponentially decaying potential acting between charge clouds. This paper generalizes a previous paper of one of the authors in which these results were obtained for a special lattice system. The present treatment covers the continuous mechanics situation, with essentially arbitrary short range forces and charge species. Charge symmetry is not assumed.

  2. Discovery of novel targets with high throughput RNA interference screening.

    Science.gov (United States)

    Kassner, Paul D

    2008-03-01

    High throughput technologies have the potential to affect all aspects of drug discovery. Considerable attention is paid to high throughput screening (HTS) for small molecule lead compounds. The identification of the targets that enter those HTS campaigns had been driven by basic research until the advent of genomics level data acquisition such as sequencing and gene expression microarrays. Large-scale profiling approaches (e.g., microarrays, protein analysis by mass spectrometry, and metabolite profiling) can yield vast quantities of data and important information. However, these approaches usually require painstaking in silico analysis and low-throughput basic wet-lab research to identify the function of a gene and validate the gene product as a potential therapeutic drug target. Functional genomic screening offers the promise of direct identification of genes involved in phenotypes of interest. In this review, RNA interference (RNAi) mediated loss-of-function screens will be discussed and as well as their utility in target identification. Some of the genes identified in these screens should produce similar phenotypes if their gene products are antagonized with drugs. With a carefully chosen phenotype, an understanding of the biology of RNAi and appreciation of the limitations of RNAi screening, there is great potential for the discovery of new drug targets.

  3. Allergen micro-array detection of specific IgE-reactivity in Chinese allergy patients

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yi-wu; ZHONG Nan-shan; Michael D Spangfort; LI Jing; LAI Xu-xin; ZHAO De-yu; LIU Xiao-fan; LIN Xiao-ping; Birgitte Gjesing; Paola Palazzo; Adriano Mari

    2011-01-01

    Background Allergen micro-arrays are powerful tools for screening of serum IgE-reactivity.In this study allergen micro-arrays were used to identify dominating IgE-binding allergens and cross-reactivity patterns among selected Chinese allergy patients.Methods The study was conducted using patient sera from the cities of Guangzhou,Nanjing,Chengdu and Shenyang.In total 100 sera with Dermatophagoides pteronyssinus (Der p) specific IgE-levels higher than 50 kU/L were selected for testing against 103 individual allergens.Results Among 100 selected patients, 95% showed IgE-reactivity towards house-dust mite allergens Dermatophagoides farinae (Der f) 1,Der f 2 and Der p 2 and 94% were IgE positive against Der p 1,and 60% of sera contained IgE reacting against allergen Euroglyphus maynei (Eur m) 2.IgE against cat allergen,Felisdomesticus (Fel d)1,was seen in 20%.Only 2% showed specific IgE-reactivity to Der p 10,a panallergen belonging to the tropomyosin family.Serum IgE-reactivity towards other allergens was in general low.IgE-reactivity against pollen allergens showed geographic differences.Conclusions This study clearly confirms that group 1 and group 2 are major allergens of house dust mites.These selected house-dust mite allergy patients are close to being mono-sensitized.Der p 10 is not an important allergen for cross-reactivity.Specific IgE-sensitization towards pollen allergens is low in southern China compared to other regions.The prevalence of food and stinging insect allergens known to give rise to IgE-mediated cross-reactivity is 2% or less.

  4. Dorsal horn-enriched genes identified by DNA microarray, in situ hybridization and immunohistochemistry

    Directory of Open Access Journals (Sweden)

    Koblan Kenneth S

    2002-08-01

    Full Text Available Abstract Background Neurons in the dorsal spinal cord play important roles in nociception and pain. These neurons receive input from peripheral sensory neurons and then transmit the signals to the brain, as well as receive and integrate descending control signals from the brain. Many molecules important for pain transmission have been demonstrated to be localized to the dorsal horn of the spinal cord. Further understanding of the molecular interactions and signaling pathways in the dorsal horn neurons will require a better knowledge of the molecular neuroanatomy in the dorsal spinal cord. Results A large scale screening was conducted for genes with enriched expression in the dorsal spinal cord using DNA microarray and quantitative real-time PCR. In addition to genes known to be specifically expressed in the dorsal spinal cord, other neuropeptides, receptors, ion channels, and signaling molecules were also found enriched in the dorsal spinal cord. In situ hybridization and immunohistochemistry revealed the cellular expression of a subset of these genes. The regulation of a subset of the genes was also studied in the spinal nerve ligation (SNL neuropathic pain model. In general, we found that the genes that are enriched in the dorsal spinal cord were not among those found to be up-regulated in the spinal nerve ligation model of neuropathic pain. This study also provides a level of validation of the use of DNA microarrays in conjunction with our novel analysis algorithm (SAFER for the identification of differences in gene expression. Conclusion This study identified molecules that are enriched in the dorsal horn of the spinal cord and provided a molecular neuroanatomy in the spinal cord, which will aid in the understanding of the molecular mechanisms important in nociception and pain.

  5. Reliable pre-eclampsia pathways based on multiple independent microarray data sets.

    Science.gov (United States)

    Kawasaki, Kaoru; Kondoh, Eiji; Chigusa, Yoshitsugu; Ujita, Mari; Murakami, Ryusuke; Mogami, Haruta; Brown, J B; Okuno, Yasushi; Konishi, Ikuo

    2015-02-01

    Pre-eclampsia is a multifactorial disorder characterized by heterogeneous clinical manifestations. Gene expression profiling of preeclamptic placenta have provided different and even opposite results, partly due to data compromised by various experimental artefacts. Here we aimed to identify reliable pre-eclampsia-specific pathways using multiple independent microarray data sets. Gene expression data of control and preeclamptic placentas were obtained from Gene Expression Omnibus. Single-sample gene-set enrichment analysis was performed to generate gene-set activation scores of 9707 pathways obtained from the Molecular Signatures Database. Candidate pathways were identified by t-test-based screening using data sets, GSE10588, GSE14722 and GSE25906. Additionally, recursive feature elimination was applied to arrive at a further reduced set of pathways. To assess the validity of the pre-eclampsia pathways, a statistically-validated protocol was executed using five data sets including two independent other validation data sets, GSE30186, GSE44711. Quantitative real-time PCR was performed for genes in a panel of potential pre-eclampsia pathways using placentas of 20 women with normal or severe preeclamptic singleton pregnancies (n = 10, respectively). A panel of ten pathways were found to discriminate women with pre-eclampsia from controls with high accuracy. Among these were pathways not previously associated with pre-eclampsia, such as the GABA receptor pathway, as well as pathways that have already been linked to pre-eclampsia, such as the glutathione and CDKN1C pathways. mRNA expression of GABRA3 (GABA receptor pathway), GCLC and GCLM (glutathione metabolic pathway), and CDKN1C was significantly reduced in the preeclamptic placentas. In conclusion, ten accurate and reliable pre-eclampsia pathways were identified based on multiple independent microarray data sets. A pathway-based classification may be a worthwhile approach to elucidate the pathogenesis of pre-eclampsia.

  6. ANALYSIS OF GENES ASSOCIATED WITH LYMPHATIC METASTASIS IN PANCREATIC CARCINOMA USING cDNA MICROARRAY

    Institute of Scientific and Technical Information of China (English)

    谭志军; 胡先贵; 曹贵松; 唐岩

    2003-01-01

    Objective: To identify new markers for prediction of lymph node metastasis. Methods: cDNA probes were prepared by labeling mRNA from samples of four pancreatic carcinoma tissues with Cy5-dUTP and mRNA from adjacent normal tissues with Cy3-dUTP respectively through reverse transcription. The mixed probes of each sample were then hybridized with 4,096 cDNA arrays (4,000 unique human cDNA sequences), and the fluorescent signals were scanned by ScanArray 3000 scanner (General Scanning, Inc.). The values of Cy5-dUTP and Cy3-dUTP on each spot were analyzed and calculated by ImaGene 3.0 software (BioDiscovery, Inc.). Genes that differentially expresses in each cancerous tissue were sought out according to the standard that the absolute value of natural logarithm of the ratio of Cy5 to Cy3 is greater than 0.69, i. e., more than 2 times change of gene expression, and the signal value of either Cy3 and Cy5 need to be greater than 600. Then, the genes differently expressed in cancer with and without lymphatic metastasis were screened out for further analysis. Results: Among 2 samples with lymphatic metastasis and 2 samples without metastasis, 56 genes, which accounted for 1.40% of genes on the microarray slides, exhibited differentially expression in cancerous tissues with lymphatic metastasis. There were 32 over-expressed genes including 11 having been registered in Genebank, and 24 under-expressed genes including 3 in Genebank. Conclusion: Microarray analysis may provide invaluable information to identify specific gene expression profile of lymphatic metastasis in pancreatic cancer.

  7. Analysis of gene expression profile of pancreatic carcinoma using CDNA microarray

    Institute of Scientific and Technical Information of China (English)

    ZhiJun Tan; Xian-Gui Hu; Gui-Song Cao; Yan Tang

    2003-01-01

    AIM: To identify new diagnostic markers and drug targets,the gene expression profiles of pancreatic cancer were compared with that of adjacent normal tissues utilizing cDNA microarray analysis.METHODS: cDNA probes were prepared by labeling mRNA from samples of six pancreatic carcinoma tissues with Cy5dUTP and mRNA from adjacent normal tissues with Cy3dUTP respectively through reverse transcription. The mixed probes of each sample were then hybridized with 12 800cDNA arrays (12 648 unique human cDNA sequences), and the fluorescent signals were scanned by ScanArray 3 000scanner (General Scanning, Inc.). The values of CyS-dUTP and Cy3-dUTP on each spot were analyzed and calculated by ImaGene 3.0 software (BioDiscovery, Inc.). Differentially expressed genes were screened according to the criterion that the absolute value of natural logarithm of the ratio of Cy5-dUTP to Cy3-dUTP was greater-than 0.69.RESETS: Among 6 samples investigated, 301 genes, which accounted for 2.38% of genes on the microarry slides,exhibited differentially expression at least in 5. There were 166 over-expressed genes including 136 having been registered in Genebank, and 135 under-expressed genes including 79 in Genebank in cancerous tissues.CONCLUSION: Microarray analysis may provide invaluable information on disease pathology, progression, resistance to treatment, and response to cellular microenvironments of pancreatic carcinoma and ultimately may lead to improving early diagnosis and discovering innovative therapeutic approaches for cancer.

  8. Evaluation of Novel Multiplex Antibody Kit for Human Immunodeficiency Virus 1/2 and Hepatitis C Virus Using Sol-Gel Based Microarray

    Directory of Open Access Journals (Sweden)

    Seung Gyu Yun

    2015-01-01

    Full Text Available Background. Microarrays enable high-throughput screening (HTS of disease-related molecules, including important signaling proteins/peptides and small molecules that are in low abundance. In this study, we developed a multiplex blood bank screening platform, referred to as the Hi3-1 assay, for simultaneous detection of human immunodeficiency virus 1/2 (HIV 1/2 and hepatitis C virus (HCV. Methods. The Hi3-1 assay was tested using four panels (Panel 1, n=4,581 patient samples; Panel 2, n=15 seroconversion samples; Panel 3, n=4 performance samples; and Panel 4, n=251 purchased positive control samples, and the results were collected by the Department of Laboratory Medicine, Korea University Medical College, Republic of Korea. The present study compares the sensitivity of the multiplex detection platform for both HIV and HCV using a sol-gel based microarray, which was based on a reference test (Architect HIV Ag/Ab Combo and Architect anti-HCV assays, in Korean patients. Results. The sensitivity of the multiplex detection platform for both HIV and HCV was 100%, and the specificity was 99.96% for HIV and 99.76% for HCV, which is equivalent to that of the reference test. Conclusion. We have successfully applied a novel screening technology to multiplex HIV and HCV diagnoses in a blood bank screening test.

  9. Investigating amoebic pathogenesis using Entamoeba histolytica DNA microarrays

    Indian Academy of Sciences (India)

    Upinder Singh; Preetam Shah

    2002-11-01

    Entamoeba histolytica, a protozoan parasite, causes diarrhea and liver abscesses resulting in 50 million cases of infection worldwide annually. Elucidation of parasite virulence determinants has recently been investigated using genetic approaches. We have undertaken a genomics approach to identify novel virulence determinants in the parasite. A DNA microarray of E. histolytica is being developed based on sequenced genomic clones from the genome sequencing efforts of The Institute of Genomic Research (TIGR) and the Sanger Center. Hybridization of the slides with samples labelled differentially using fluorescent dyes allows the characterization of transcriptional profiles of genes under the biological conditions tested. Additionally, a genome-wide comparison of E. histolytica and E. dispar can be undertaken. The development of an E. histolytica microarray will be outlined and its uses in identifying novel virulence determinants and characterizing amoebic biology will be discussed.

  10. Classification analysis of microarray data based on ontological engineering

    Institute of Scientific and Technical Information of China (English)

    LI Guo-qi; SHENG Huan-ye

    2007-01-01

    Background knowledge is important for data mining, especially in complicated situation. Ontological engineering is the successor of knowledge engineering. The sharable knowledge bases built on ontology can be used to provide background knowledge to direct the process of data mining. This paper gives a common introduction to the method and presents a practical analysis example using SVM (support vector machine) as the classifier. Gene Ontology and the accompanying annotations compose a big knowledge base, on which many researches have been carried out. Microarray dataset is the output of DNA chip.With the help of Gene Ontology we present a more elaborate analysis on microarray data than former researchers. The method can also be used in other fields with similar scenario.

  11. MatArray: a Matlab toolbox for microarray data.

    Science.gov (United States)

    Venet, David

    2003-03-22

    The microarray technology allows the high-throughput quantification of the mRNA level of thousands of genes under dozens of conditions, generating a wealth of data which must be analyzed using some form of computational means. A popular framework for such analysis is Matlab, a powerful computing language for which many functions have been written. However, although complex topics like neural networks or principal component analysis are freely available in Matlab, functions to perform more basic tasks like data normalization or hierarchical clustering in an efficient manner are not. The MatArray toolbox aims at filling this gap by offering efficient implementations of the most needed functions for microarray analysis. The functions in the toolbox are command-line only, since it is geared toward seasoned Matlab users.

  12. Key aspects of analyzing microarray gene-expression data.

    Science.gov (United States)

    Chen, James J

    2007-05-01

    One major challenge with the use of microarray technology is the analysis of massive amounts of gene-expression data for various applications. This review addresses the key aspects of the microarray gene-expression data analysis for the two most common objectives: class comparison and class prediction. Class comparison mainly aims to select which genes are differentially expressed across experimental conditions. Gene selection is separated into two steps: gene ranking and assigning a significance level. Class prediction uses expression profiling analysis to develop a prediction model for patient selection, diagnostic prediction or prognostic classification. Development of a prediction model involves two components: model building and performance assessment. It also describes two additional data analysis methods: gene-class testing and multiple ordering criteria.

  13. Enhancing the quality metric of protein microarray image

    Institute of Scientific and Technical Information of China (English)

    王立强; 倪旭翔; 陆祖康; 郑旭峰; 李映笙

    2004-01-01

    The novel method of improving the quality metric of protein microarray image presented in this paper reduces impulse noise by using an adaptive median filter that employs the switching scheme based on local statistics characters; and achieves the impulse detection by using the difference between the standard deviation of the pixels within the filter window and the current pixel of concern. It also uses a top-hat filter to correct the background variation. In order to decrease time consumption, the top-hat filter core is cross structure. The experimental results showed that, for a protein microarray image contaminated by impulse noise and with slow background variation, the new method can significantly increase the signal-to-noise ratio, correct the trends in the background, and enhance the flatness of the background and the consistency of the signal intensity.

  14. Detection of human papillomaviruses by polymerase chain reaction and ligation reaction on universal microarray.

    Directory of Open Access Journals (Sweden)

    Jarmo Ritari

    Full Text Available Sensitive and specific detection of human papillomaviruses (HPV in cervical samples is a useful tool for the early diagnosis of epithelial neoplasia and anogenital lesions. Recent studies support the feasibility of HPV DNA testing instead of cytology (Pap smear as a primary test in population screening for cervical cancer. This is likely to be an option in the near future in many countries, and it would increase the efficiency of screening for cervical abnormalities. We present here a microarray test for the detection and typing of 15 most important high-risk HPV types and two low risk types. The method is based on type specific multiplex PCR amplification of the L1 viral genomic region followed by ligation detection reaction where two specific ssDNA probes, one containing a fluorescent label and the other a flanking ZipCode sequence, are joined by enzymatic ligation in the presence of the correct HPV PCR product. Human beta-globin is amplified in the same reaction to control for sample quality and adequacy. The genotyping capacity of our approach was evaluated against Linear Array test using cervical samples collected in transport medium. Altogether 14 out of 15 valid samples (93% gave concordant results between our test and Linear Array. One sample was HPV56 positive in our test and high-risk positive in Hybrid Capture 2 but remained negative in Linear Array. The preliminary results suggest that our test has accurate multiple HPV genotyping capability with the additional advantages of generic detection format, and potential for high-throughput screening.

  15. Detection of human papillomaviruses by polymerase chain reaction and ligation reaction on universal microarray.

    Science.gov (United States)

    Ritari, Jarmo; Hultman, Jenni; Fingerroos, Rita; Tarkkanen, Jussi; Pullat, Janne; Paulin, Lars; Kivi, Niina; Auvinen, Petri; Auvinen, Eeva

    2012-01-01

    Sensitive and specific detection of human papillomaviruses (HPV) in cervical samples is a useful tool for the early diagnosis of epithelial neoplasia and anogenital lesions. Recent studies support the feasibility of HPV DNA testing instead of cytology (Pap smear) as a primary test in population screening for cervical cancer. This is likely to be an option in the near future in many countries, and it would increase the efficiency of screening for cervical abnormalities. We present here a microarray test for the detection and typing of 15 most important high-risk HPV types and two low risk types. The method is based on type specific multiplex PCR amplification of the L1 viral genomic region followed by ligation detection reaction where two specific ssDNA probes, one containing a fluorescent label and the other a flanking ZipCode sequence, are joined by enzymatic ligation in the presence of the correct HPV PCR product. Human beta-globin is amplified in the same reaction to control for sample quality and adequacy. The genotyping capacity of our approach was evaluated against Linear Array test using cervical samples collected in transport medium. Altogether 14 out of 15 valid samples (93%) gave concordant results between our test and Linear Array. One sample was HPV56 positive in our test and high-risk positive in Hybrid Capture 2 but remained negative in Linear Array. The preliminary results suggest that our test has accurate multiple HPV genotyping capability with the additional advantages of generic detection format, and potential for high-throughput screening.

  16. Quantification of global transcription patterns in prokaryotes using spotted microarrays

    OpenAIRE

    Sidders, B.; Withers, M; Kendall, SL; J. Bacon; Waddell, SJ; Hinds, J; Golby, P.; Movahedzadeh, F; Cox, RA; Frita, R.; Ten Bokum, AM; Wernisch, L; Stoker, NG

    2007-01-01

    \\ud \\ud We describe an analysis, applicable to any spotted microarray dataset produced using genomic DNA as a reference, that quantifies prokaryotic levels of mRNA on a genome-wide scale. Applying this to Mycobacterium tuberculosis, we validate the technique, show a correlation between level of expression and biological importance, define the complement of invariant genes and analyze absolute levels of expression by functional class to develop ways of understanding an organism's biology witho...

  17. Universal ligation-detection-reaction microarray applied for compost microbes

    Directory of Open Access Journals (Sweden)

    Romantschuk Martin

    2008-12-01

    Full Text Available Abstract Background Composting is one of the methods utilised in recycling organic communal waste. The composting process is dependent on aerobic microbial activity and proceeds through a succession of different phases each dominated by certain microorganisms. In this study, a ligation-detection-reaction (LDR based microarray method was adapted for species-level detection of compost microbes characteristic of each stage of the composting process. LDR utilises the specificity of the ligase enzyme to covalently join two adjacently hybridised probes. A zip-oligo is attached to the 3'-end of one probe and fluorescent label to the 5'-end of the other probe. Upon ligation, the probes are combined in the same molecule and can be detected in a specific location on a universal microarray with complementary zip-oligos enabling equivalent hybridisation conditions for all probes. The method was applied to samples from Nordic composting facilities after testing and optimisation with fungal pure cultures and environmental clones. Results Probes targeted for fungi were able to detect 0.1 fmol of target ribosomal PCR product in an artificial reaction mixture containing 100 ng competing fungal ribosomal internal transcribed spacer (ITS area or herring sperm DNA. The detection level was therefore approximately 0.04% of total DNA. Clone libraries were constructed from eight compost samples. The LDR microarray results were in concordance with the clone library sequencing results. In addition a control probe was used to monitor the per-spot hybridisation efficiency on the array. Conclusion This study demonstrates that the LDR microarray method is capable of sensitive and accurate species-level detection from a complex microbial community. The method can detect key species from compost samples, making it a basis for a tool for compost process monitoring in industrial facilities.

  18. Fast Gene Ontology based clustering for microarray experiments

    OpenAIRE

    Ovaska Kristian; Laakso Marko; Hautaniemi Sampsa

    2008-01-01

    Abstract Background Analysis of a microarray experiment often results in a list of hundreds of disease-associated genes. In order to suggest common biological processes and functions for these genes, Gene Ontology annotations with statistical testing are widely used. However, these analyses can produce a very large number of significantly altered biological processes. Thus, it is often challenging to interpret GO results and identify novel testable biological hypotheses. Results We present fa...

  19. Gel-forming reagents and uses thereof for preparing microarrays

    Science.gov (United States)

    Golova, Julia; Chernov, Boris; Perov, Alexander

    2010-11-09

    New gel-forming reagents including monomers and cross-linkers, which can be applied to gel-drop microarray manufacturing by using co-polymerization approaches are disclosed. Compositions for the preparation of co-polymerization mixtures with new gel-forming monomers and cross-linker reagents are described herein. New co-polymerization compositions and cross-linkers with variable length linker groups between unsaturated C.dbd.C bonds that participate in the formation of gel networks are disclosed.

  20. Basic Concepts of Microarrays and Potential Applications in Clinical Microbiology

    OpenAIRE

    Miller, Melissa B.; Tang, Yi-Wei

    2009-01-01

    Summary: The introduction of in vitro nucleic acid amplification techniques, led by real-time PCR, into the clinical microbiology laboratory has transformed the laboratory detection of viruses and select bacterial pathogens. However, the progression of the molecular diagnostic revolution currently relies on the ability to efficiently and accurately offer multiplex detection and characterization for a variety of infectious disease pathogens. Microarray analysis has the capability to offer robu...

  1. Tissue Microarray A New Tool for Cancer Research

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Shanghai Outdo Biotech Co.Ltd. (Outdo Biotech) is a leading company in human/animal Tissue Microarrays (TMA) and "Clinical-Type" Gene Chip (CTGC) in China. Our shareholders are Shanghai Biochip Co., Ltd. & National Engineering Center for Biochip at Shanghai, Shanghai Cancer institute and Eastern Liver and Bladder Hospital of Second Military Medical University. TMA is a mean of combining tens to hundreds of specimens of tissue, paraffin embedded or frozen, onto a single slide for analysis at once. Our constr...

  2. A portable interferometric micro-array reader on image sensor

    OpenAIRE

    Villar Zafra, Aitor

    2014-01-01

    [ANGLÈS] Microarrays constitute a valuable analytical tool for multiplex and high-throughput analysis and are widely used in genomics and proteomics with many potential applications. During the last decades, protein chips have found increasing acceptance for diagnostic applications due to several advantages over conventional bioanalysis such as miniaturization, parallelization, real-time and sensitivity. Even though the majority of DNA-sensor systems relies on labeling of DNA, the recent prog...

  3. Segmentation and intensity estimation for microarray images with saturated pixels

    Directory of Open Access Journals (Sweden)

    Yang Yan

    2011-11-01

    Full Text Available Abstract Background Microarray image analysis processes scanned digital images of hybridized arrays to produce the input spot-level data for downstream analysis, so it can have a potentially large impact on those and subsequent analysis. Signal saturation is an optical effect that occurs when some pixel values for highly expressed genes or peptides exceed the upper detection threshold of the scanner software (216 - 1 = 65, 535 for 16-bit images. In practice, spots with a sizable number of saturated pixels are often flagged and discarded. Alternatively, the saturated values are used without adjustments for estimating spot intensities. The resulting expression data tend to be biased downwards and can distort high-level analysis that relies on these data. Hence, it is crucial to effectively correct for signal saturation. Results We developed a flexible mixture model-based segmentation and spot intensity estimation procedure that accounts for saturated pixels by incorporating a censored component in the mixture model. As demonstrated with biological data and simulation, our method extends the dynamic range of expression data beyond the saturation threshold and is effective in correcting saturation-induced bias when the lost information is not tremendous. We further illustrate the impact of image processing on downstream classification, showing that the proposed method can increase diagnostic accuracy using data from a lymphoma cancer diagnosis study. Conclusions The presented method adjusts for signal saturation at the segmentation stage that identifies a pixel as part of the foreground, background or other. The cluster membership of a pixel can be altered versus treating saturated values as truly observed. Thus, the resulting spot intensity estimates may be more accurate than those obtained from existing methods that correct for saturation based on already segmented data. As a model-based segmentation method, our procedure is able to identify inner

  4. Gene set analyses for interpreting microarray experiments on prokaryotic organisms

    OpenAIRE

    Heffron Fred; Van Bruggen Dirk; DeJongh Matthew; Best Aaron A; Tintle Nathan L; Porwollik Steffen; Taylor Ronald C

    2008-01-01

    Abstract Background Despite the widespread usage of DNA microarrays, questions remain about how best to interpret the wealth of gene-by-gene transcriptional levels that they measure. Recently, methods have been proposed which use biologically defined sets of genes in interpretation, instead of examining results gene-by-gene. Despite a serious limitation, a method based on Fisher's exact test remains one of the few plausible options for gene set analysis when an experiment has few replicates, ...

  5. Microarray expression analysis of epithelial ovarian cancer with distinct differentiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To identify gene expression profiling in epithelial ovarian cancer and to explore its correlation with histopathology characterization and prognosis. Gene expression profiles were generated from 10 human ovarian frozen tissue specimens using Agilent Human 1A microarrays. Strikingly, clear differences of gene expression patterns were observed in ovarian cancer as compared to normal tissues. Unique gene profiles were observed in moderately and poorly differentiated epithelial ovarian cancer. It is concluded that different histopathology characterization likely exists extensive molecular heterogeneity.

  6. Microarray, SAGE and their applications to cardiovascular diseases

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The wealth of DNA data generated by the human genome project coupling with recently invented high-throughput gene expression profiling techniques has dramatically sped up the process for biomedical researchers on elucidating the role of genes in human diseases. One powerful method to reveal insight into gene functions is the systematic analysis of gene expression. Two popular high-throughput gene expression technologies, microarray and Serial Analysis of Gene Expression (SAGE) are capable of producing large amounts of gene expression data with the potential of providing novel insights into fundamental disease processes, especially complex syndromes such as cardiovascular disease, whose etiologies are due to multiple genetic factors and their interplay with the environment. Microarray and SAGE have already been used to examine gene expression patterns of cell-culture, animal and human tissues models of cardiovascular diseases. In this review, we will first give a brief introduction of microarray and SAGE technologies and point out their limitations. We will then discuss the major discoveries and the new biological insightsthat have emerged from their applications to cardiovascular diseases. Finally we will touch upon potential challenges and future developments in this area.

  7. New 3-D microarray platform based on macroporous polymer monoliths.

    Science.gov (United States)

    Rober, M; Walter, J; Vlakh, E; Stahl, F; Kasper, C; Tennikova, T

    2009-06-30

    Polymer macroporous monoliths are widely used as efficient sorbents in different, mostly dynamic, interphase processes. In this paper, monolithic materials strongly bound to the inert glass surface are suggested as operative matrices at the development of three-dimensional (3-D) microarrays. For this purpose, several rigid macroporous copolymers differed by reactivity and hydrophobic-hydrophilic properties were synthesized and tested: (1) glycidyl methacrylate-co-ethylene dimethacrylate (poly(GMA-co-EDMA)), (2) glycidyl methacrylate-co-glycerol dimethacrylate (poly(GMA-co-GDMA)), (3) N-hydroxyphthalimide ester of acrylic acid-co-glycidyl methacrylate-co-ethylene dimethacrylate (poly(HPIEAA-co-GMA-co-EDMA)), (4) 2-cyanoethyl methacrylate-co-ethylene dimethacrylate (poly(CEMA-co-EDMA)), and (5) 2-cyanoethyl methacrylate-co-2-hydroxyethyl methacrylate-co-ethylene dimethacrylate (poly(CEMA-co-HEMA-co-EDMA)). The constructed devices were used as platforms for protein microarrays construction and model mouse IgG-goat anti-mouse IgG affinity pair was used to demonstrate the potential of developed test-systems, as well as to optimize microanalytical conditions. The offered microarray platforms were applied to detect the bone tissue marker osteopontin directly in cell culture medium.

  8. Subtype Identification of Avian Influenza Virus on DNA Microarray

    Institute of Scientific and Technical Information of China (English)

    WANG Xiu-rong; YU Kang-zhen; DENG Guo-hua; SHI Rui; LIU Li-ling; QIAO Chuan-ling; BAO Hong-mei; KONG Xian-gang; CHEN Hua-lan

    2005-01-01

    We have developed a rapid microarray-based assay for the reliable detection of H5, H7 and H9 subtypes of avian influenza virus (AIV). The strains used in the experiment were A/Goose/Guangdong/1/96 (H5N1), A/African starling/983/79 (H7N1) and A/Turkey/Wiscosin/1/66 (H9N2). The capture DNAs clones which encoding approximate 500-bp avian influenza virus gene fragments obtained by RT-PCR, were spotted on a slide-bound microarray. Cy5-1abeled fluorescent cDNAs,which generated from virus RNA during reverse transcription were hybridized to these capture DNAs. These capture DNAs contained multiple fragments of the hemagglutinin and matrix protein genes of AIV respectively, for subtyping and typing AIV. The arrays were scanned to determine the probe binding sites. The hybridization pattern agreed approximately with the known grid location of each target. The results show that DNA microarray technology provides a useful diagnostic method for AIV.

  9. ArrayPipe: a flexible processing pipeline for microarray data

    Science.gov (United States)

    Hokamp, Karsten; Roche, Fiona M.; Acab, Michael; Rousseau, Marc-Etienne; Kuo, Byron; Goode, David; Aeschliman, Dana; Bryan, Jenny; Babiuk, Lorne A.; Hancock, Robert E. W.; Brinkman, Fiona S. L.

    2004-01-01

    A number of microarray analysis software packages exist already; however, none combines the user-friendly features of a web-based interface with potential ability to analyse multiple arrays at once using flexible analysis steps. The ArrayPipe web server (freely available at www.pathogenomics.ca/arraypipe) allows the automated application of complex analyses to microarray data which can range from single slides to large data sets including replicates and dye-swaps. It handles output from most commonly used quantification software packages for dual-labelled arrays. Application features range from quality assessment of slides through various data visualizations to multi-step analyses including normalization, detection of differentially expressed genes, andcomparison and highlighting of gene lists. A highly customizable action set-up facilitates unrestricted arrangement of functions, which can be stored as action profiles. A unique combination of web-based and command-line functionality enables comfortable configuration of processes that can be repeatedly applied to large data sets in high throughput. The output consists of reports formatted as standard web pages and tab-delimited lists of calculated values that can be inserted into other analysis programs. Additional features, such as web-based spreadsheet functionality, auto-parallelization and password protection make this a powerful tool in microarray research for individuals and large groups alike. PMID:15215429

  10. A Glance at DNA Microarray Technology and Applications

    Directory of Open Access Journals (Sweden)

    Amir-Ata Saei

    2011-08-01

    Full Text Available Introduction: Because of huge impacts of “OMICS” technologies in life sciences, many researchers aim to implement such high throughput approach to address cellular and/or molecular functions in response to any influential intervention in genomics, proteomics, or metabolomics levels. However, in many cases, use of such technologies often encounters some cybernetic difficulties in terms of knowledge extraction from a bunch of data using related softwares. In fact, there is little guidance upon data mining for novices. The main goal of this article is to provide a brief review on different steps of microarray data handling and mining for novices and at last to introduce different PC and/or web-based softwares that can be used in preprocessing and/or data mining of microarray data. Methods: To pursue such aim, recently published papers and microarray softwares were reviewed. Results: It was found that defining the true place of the genes in cell networks is the main phase in our understanding of programming and functioning of living cells. This can be obtained with global/selected gene expression profiling. Conclusion: Studying the regulation patterns of genes in groups, using clustering and classification methods helps us understand different pathways in the cell, their functions, regulations and the way one component in the system affects the other one. These networks can act as starting points for data mining and hypothesis generation, helping us reverse engineer.

  11. DNA Microarray Technologies: A Novel Approach to Geonomic Research

    Energy Technology Data Exchange (ETDEWEB)

    Hinman, R.; Thrall, B.; Wong, K,

    2002-01-01

    A cDNA microarray allows biologists to examine the expression of thousands of genes simultaneously. Researchers may analyze the complete transcriptional program of an organism in response to specific physiological or developmental conditions. By design, a cDNA microarray is an experiment with many variables and few controls. One question that inevitably arises when working with a cDNA microarray is data reproducibility. How easy is it to confirm mRNA expression patterns? In this paper, a case study involving the treatment of a murine macrophage RAW 264.7 cell line with tumor necrosis factor alpha (TNF) was used to obtain a rough estimate of data reproducibility. Two trials were examined and a list of genes displaying either a > 2-fold or > 4-fold increase in gene expression was compiled. Variations in signal mean ratios between the two slides were observed. We can assume that erring in reproducibility may be compensated by greater inductive levels of similar genes. Steps taken to obtain results included serum starvation of cells before treatment, tests of mRNA for quality/consistency, and data normalization.

  12. Sequence-dependent fluorescence of cyanine dyes on microarrays.

    Science.gov (United States)

    Agbavwe, Christy; Somoza, Mark M

    2011-01-01

    Cy3 and Cy5 are among the most commonly used oligonucleotide labeling molecules. Studies of nucleic acid structure and dynamics use these dyes, and they are ubiquitous in microarray experiments. They are sensitive to their environment and have higher quantum yield when bound to DNA. The fluorescent intensity of terminal cyanine dyes is also known to be significantly dependent on the base sequence of the oligonucleotide. We have developed a very precise and high-throughput method to evaluate the sequence dependence of oligonucleotide labeling dyes using microarrays and have applied the method to Cy3 and Cy5. We used light-directed in-situ synthesis of terminally-labeled microarrays to determine the fluorescence intensity of each dye on all 1024 possible 5'-labeled 5-mers. Their intensity is sensitive to all five bases. Their fluorescence is higher with 5' guanines, and adenines in subsequent positions. Cytosine suppresses fluorescence. Intensity falls by half over the range of all 5-mers for Cy3, and two-thirds for Cy5. Labeling with 5'-biotin-streptavidin-Cy3/-Cy5 gives a completely different sequence dependence and greatly reduces fluorescence compared with direct terminal labeling.

  13. Sequence-dependent fluorescence of cyanine dyes on microarrays.

    Directory of Open Access Journals (Sweden)

    Christy Agbavwe

    Full Text Available Cy3 and Cy5 are among the most commonly used oligonucleotide labeling molecules. Studies of nucleic acid structure and dynamics use these dyes, and they are ubiquitous in microarray experiments. They are sensitive to their environment and have higher quantum yield when bound to DNA. The fluorescent intensity of terminal cyanine dyes is also known to be significantly dependent on the base sequence of the oligonucleotide. We have developed a very precise and high-throughput method to evaluate the sequence dependence of oligonucleotide labeling dyes using microarrays and have applied the method to Cy3 and Cy5. We used light-directed in-situ synthesis of terminally-labeled microarrays to determine the fluorescence intensity of each dye on all 1024 possible 5'-labeled 5-mers. Their intensity is sensitive to all five bases. Their fluorescence is higher with 5' guanines, and adenines in subsequent positions. Cytosine suppresses fluorescence. Intensity falls by half over the range of all 5-mers for Cy3, and two-thirds for Cy5. Labeling with 5'-biotin-streptavidin-Cy3/-Cy5 gives a completely different sequence dependence and greatly reduces fluorescence compared with direct terminal labeling.

  14. A New Distribution Family for Microarray Data †

    Science.gov (United States)

    Kelmansky, Diana Mabel; Ricci, Lila

    2017-01-01

    The traditional approach with microarray data has been to apply transformations that approximately normalize them, with the drawback of losing the original scale. The alternative standpoint taken here is to search for models that fit the data, characterized by the presence of negative values, preserving their scale; one advantage of this strategy is that it facilitates a direct interpretation of the results. A new family of distributions named gpower-normal indexed by p∈R is introduced and it is proven that these variables become normal or truncated normal when a suitable gpower transformation is applied. Expressions are given for moments and quantiles, in terms of the truncated normal density. This new family can be used to model asymmetric data that include non-positive values, as required for microarray analysis. Moreover, it has been proven that the gpower-normal family is a special case of pseudo-dispersion models, inheriting all the good properties of these models, such as asymptotic normality for small variances. A combined maximum likelihood method is proposed to estimate the model parameters, and it is applied to microarray and contamination data. R codes are available from the authors upon request. PMID:28208652

  15. Fecal source tracking in water using a mitochondrial DNA microarray.

    Science.gov (United States)

    Vuong, Nguyet-Minh; Villemur, Richard; Payment, Pierre; Brousseau, Roland; Topp, Edward; Masson, Luke

    2013-01-01

    A mitochondrial-based microarray (mitoArray) was developed for rapid identification of the presence of 28 animals and one family (cervidae) potentially implicated in fecal pollution in mixed activity watersheds. Oligonucleotide probes for genus or subfamily-level identification were targeted within the 12S rRNA - Val tRNA - 16S rRNA region in the mitochondrial genome. This region, called MI-50, was selected based on three criteria: 1) the ability to be amplified by universal primers 2) these universal primer sequences are present in most commercial and domestic animals of interest in source tracking, and 3) that sufficient sequence variation exists within this region to meet the minimal requirements for microarray probe discrimination. To quantify the overall level of mitochondrial DNA (mtDNA) in samples, a quantitative-PCR (Q-PCR) universal primer pair was also developed. Probe validation was performed using DNA extracted from animal tissues and, for many cases, animal-specific fecal samples. To reduce the amplification of potentially interfering fish mtDNA sequences during the MI-50 enrichment step, a clamping PCR method was designed using a fish-specific peptide nucleic acid. DNA extracted from 19 water samples were subjected to both array and independent PCR analyses. Our results confirm that the mitochondrial microarray approach method could accurately detect the dominant animals present in water samples emphasizing the potential for this methodology in the parallel scanning of a large variety of animals normally monitored in fecal source tracking.

  16. MAGMA: analysis of two-channel microarrays made easy.

    Science.gov (United States)

    Rehrauer, Hubert; Zoller, Stefan; Schlapbach, Ralph

    2007-07-01

    The web application MAGMA provides a simple and intuitive interface to identify differentially expressed genes from two-channel microarray data. While the underlying algorithms are not superior to those of similar web applications, MAGMA is particularly user friendly and can be used without prior training. The user interface guides the novice user through the most typical microarray analysis workflow consisting of data upload, annotation, normalization and statistical analysis. It automatically generates R-scripts that document MAGMA's entire data processing steps, thereby allowing the user to regenerate all results in his local R installation. The implementation of MAGMA follows the model-view-controller design pattern that strictly separates the R-based statistical data processing, the web-representation and the application logic. This modular design makes the application flexible and easily extendible by experts in one of the fields: statistical microarray analysis, web design or software development. State-of-the-art Java Server Faces technology was used to generate the web interface and to perform user input processing. MAGMA's object-oriented modular framework makes it easily extendible and applicable to other fields and demonstrates that modern Java technology is also suitable for rather small and concise academic projects. MAGMA is freely available at www.magma-fgcz.uzh.ch.

  17. Sequencing ebola and marburg viruses genomes using microarrays.

    Science.gov (United States)

    Hardick, Justin; Woelfel, Roman; Gardner, Warren; Ibrahim, Sofi

    2016-08-01

    Periodic outbreaks of Ebola and Marburg hemorrhagic fevers have occurred in Africa over the past four decades with case fatality rates reaching as high as 90%. The latest Ebola outbreak in West Africa in 2014 raised concerns that these infections can spread across continents and pose serious health risks. Early and accurate identification of the causative agents is necessary to contain outbreaks. In this report, we describe sequencing-by-hybridization (SBH) technique using high density microarrays to identify Ebola and Marburg viruses. The microarrays were designed to interrogate the sequences of entire viral genomes, and were evaluated with three species of Ebolavirus (Reston, Sudan, and Zaire), and three strains of Marburgvirus (Angola, Musoke, and Ravn). The results showed that the consensus sequences generated with four or more hybridizations had 92.1-98.9% accuracy over 95-99% of the genomes. Additionally, with SBH microarrays it was possible to distinguish between different strains of the Lake Victoria Marburgvirus. J. Med. Virol. 88:1303-1308, 2016. © 2016 Wiley Periodicals, Inc.

  18. Coupled Two-Way Clustering Analysis of Gene Microarray Data

    CERN Document Server

    Getz, G; Domany, E

    2000-01-01

    We present a novel coupled two-way clustering approach to gene microarray data analysis. The main idea is to identify subsets of the genes and samples, such that when one of these is used to cluster the other, stable and significant partitions emerge. The search for such subsets is a computationally complex task: we present an algorithm, based on iterative clustering, which performs such a search. This analysis is especially suitable for gene microarray data, where the contributions of a variety of biological mechanisms to the gene expression levels are entangled in a large body of experimental data. The method was applied to two gene microarray data sets, on colon cancer and leukemia. By identifying relevant subsets of the data and focusing on them we were able to discover partitions and correlations that were masked and hidden when the full dataset was used in the analysis. Some of these partitions have clear biological interpretation; others can serve to identify possible directions for future research.

  19. Laser-based patterning for transfected cell microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Andrew L; Creasey, Rhiannon; Voelcker, Nicolas H [Flinders University, GPO Box 2100, Bedford Park, SA 5042 (Australia); Hayes, Jason P [MiniFAB, 1 Dalmore Drive, Caribbean Park, Scoresby VIC 3179 (Australia); Thissen, Helmut, E-mail: Nico.Voelcker@flinders.edu.a [CSIRO Molecular and Health Technologies, Bayview Avenue, Clayton VIC 3168 (Australia)

    2009-12-15

    The spatial control over biomolecule- and cell-surface interactions is of great interest to a broad range of biomedical applications, including sensors, implantable devices and cell microarrays. Microarrays in particular require precise spatial control and the formation of patterns with microscale features. Here, we have developed an approach specifically designed for transfected cell microarray (TCM) applications that allows microscale spatial control over the location of both DNA and cells on highly doped p-type silicon substrates. This was achieved by surface modification, involving plasma polymerization of allylamine, grafting of poly(ethylene glycol) and subsequent excimer laser ablation. DNA could be delivered in a spatially defined manner using ink-jet printing. In addition, electroporation was investigated as an approach to transfect attached cells with adsorbed DNA and good transfection efficiencies of approximately 20% were observed. The ability of the microstructured surfaces to spatially direct both DNA adsorption and cell attachment was demonstrated in a functional TCM, making this system an exciting platform for chip-based functional genomics.

  20. Coupled two-way clustering analysis of gene microarray data

    Science.gov (United States)

    Getz, Gad; Levine, Erel; Domany, Eytan

    2000-10-01

    We present a coupled two-way clustering approach to gene microarray data analysis. The main idea is to identify subsets of the genes and samples, such that when one of these is used to cluster the other, stable and significant partitions emerge. The search for such subsets is a computationally complex task. We present an algorithm, based on iterative clustering, that performs such a search. This analysis is especially suitable for gene microarray data, where the contributions of a variety of biological mechanisms to the gene expression levels are entangled in a large body of experimental data. The method was applied to two gene microarray data sets, on colon cancer and leukemia. By identifying relevant subsets of the data and focusing on them we were able to discover partitions and correlations that were masked and hidden when the full dataset was used in the analysis. Some of these partitions have clear biological interpretation; others can serve to identify possible directions for future research.

  1. Screening and expression of genes from metagenomes.

    Science.gov (United States)

    Leis, Benedikt; Angelov, Angel; Liebl, Wolfgang

    2013-01-01

    Microorganisms are the most abundant and widely spread organisms on earth. They colonize a huge variety of natural and anthropogenic environments, including very specialized ecological niches and even extreme habitats, which are made possible by the immense metabolic diversity and genetic adaptability of microbes. As most of the organisms from environmental samples defy cultivation, cultivation-independent metagenomics approaches have been applied since more than one decade to access and characterize the phylogenetic diversity in microbial communities as well as their metabolic potential and ecological functions. Thereby, metagenomics has fully emerged as an own scientific field for mining new biocatalysts for many industrially relevant processes in biotechnology and pharmaceutics. This review summarizes common metagenomic approaches ranging from sampling, isolation of nucleic acids, construction of metagenomic libraries and their evaluation. Sequence-based screenings implement next-generation sequencing platforms, microarrays or PCR-based methods, while function-based analysis covers heterologous expression of metagenomic libraries in diverse screening setups. Major constraints and advantages of each strategy are described. The importance of alternative host-vector systems is discussed, and in order to underline the role of phylogenetic and physiological distance from the gene donor and the expression host employed, a case study is presented that describes the screening of a genomic library from an extreme thermophilic bacterium in both Escherichia coli and Thermus thermophilus. Metatranscriptomics, metaproteomics and single-cell-based methods are expected to complement metagenomic screening efforts to identify novel biocatalysts from environmental samples.

  2. Instance-based concept learning from multiclass DNA microarray data

    Directory of Open Access Journals (Sweden)

    Dubitzky Werner

    2006-02-01

    Full Text Available Abstract Background Various statistical and machine learning methods have been successfully applied to the classification of DNA microarray data. Simple instance-based classifiers such as nearest neighbor (NN approaches perform remarkably well in comparison to more complex models, and are currently experiencing a renaissance in the analysis of data sets from biology and biotechnology. While binary classification of microarray data has been extensively investigated, studies involving multiclass data are rare. The question remains open whether there exists a significant difference in performance between NN approaches and more complex multiclass methods. Comparative studies in this field commonly assess different models based on their classification accuracy only; however, this approach lacks the rigor needed to draw reliable conclusions and is inadequate for testing the null hypothesis of equal performance. Comparing novel classification models to existing approaches requires focusing on the significance of differences in performance. Results We investigated the performance of instance-based classifiers, including a NN classifier able to assign a degree of class membership to each sample. This model alleviates a major problem of conventional instance-based learners, namely the lack of confidence values for predictions. The model translates the distances to the nearest neighbors into 'confidence scores'; the higher the confidence score, the closer is the considered instance to a pre-defined class. We applied the models to three real gene expression data sets and compared them with state-of-the-art methods for classifying microarray data of multiple classes, assessing performance using a statistical significance test that took into account the data resampling strategy. Simple NN classifiers performed as well as, or significantly better than, their more intricate competitors. Conclusion Given its highly intuitive underlying principles – simplicity

  3. Mental Health Screening Center

    Science.gov (United States)

    ... Releases & Announcements Public Service Announcements Partnering with DBSA Mental Health Screening Center These online screening tools are not ... you have any concerns, see your doctor or mental health professional. Depression This screening form was developed from ...

  4. Lung Cancer Screening

    Science.gov (United States)

    ... Treatment Lung Cancer Prevention Lung Cancer Screening Research Lung Cancer Screening (PDQ®)–Patient Version What is screening? Go ... These are called diagnostic tests . General Information About Lung Cancer Key Points Lung cancer is a disease in ...

  5. Skin Cancer Screening

    Science.gov (United States)

    ... Genetics of Skin Cancer Skin Cancer Screening Research Skin Cancer Screening (PDQ®)–Patient Version What is screening? ... These are called diagnostic tests . General Information About Skin Cancer Key Points Skin cancer is a disease ...

  6. Testicular Cancer Screening

    Science.gov (United States)

    ... Health Professional Testicular Cancer Treatment Testicular Cancer Screening Testicular Cancer Screening (PDQ®)–Patient Version What is screening? Go ... These are called diagnostic tests . General Information About Testicular Cancer Key Points Testicular cancer is a disease in ...

  7. Signal stability of Cy3 and Cy5 on antibody microarrays

    Directory of Open Access Journals (Sweden)

    Kim Caroline

    2006-10-01

    Full Text Available Abstract Background The antibody microarray technique is a newly emerging proteomics tool for differential protein expression analyses that uses fluorescent dyes Cy 3 and Cy 5. Environmental factors, such as light exposure, can affect the signal intensity of fluorescent dyes on microarray slides thus, it is logical to scan microarray slides immediately after the final wash and drying processes. However, no research data are available concerning time-dependent changes of fluorescent signals on antibody microarray slides to this date. In the present study, microarray slides were preserved at -20°C after regular microarray experiments and were rescanned at day 10, 20 and 30 to evaluate change in signal intensity. Results Fluorescent intensities of microarray spots were detected using a confocal laser scanner after the experiment at day 0, and re-examined at day 10, 20 and 30, respectively. Fluorescent intensities of rescanned microarray spots did not show significant changes when compared with those scanned immediately after standard microarray experiments. Conclusion Microarray slides can be preserved and rescanned multiple times using a confocal laser scanner over a period of days or weeks.

  8. A protein allergen microarray detects specific IgE to pollen surface, cytoplasmic, and commercial allergen extracts.

    Directory of Open Access Journals (Sweden)

    Katinka A Vigh-Conrad

    Full Text Available Current diagnostics for allergies, such as skin prick and radioallergosorbent tests, do not allow for inexpensive, high-throughput screening of patients. Additionally, extracts used in these methods are made from washed pollen that lacks pollen surface materials that may contain allergens.We sought to develop a high-throughput assay to rapidly measure allergen-specific IgE in sera and to explore the relative allergenicity of different pollen fractions (i.e. surface, cytoplasmic, commercial extracts. To do this, we generated a protein microarray containing surface, cytoplasmic, and commercial extracts from 22 pollen species, commercial extracts from nine non-pollen allergens, and five recombinant allergenic proteins. Pollen surface and cytoplasmic fractions were prepared by extraction into organic solvents and aqueous buffers, respectively. Arrays were incubated with <25 uL of serum from 176 individuals and bound IgE was detected by indirect immunofluorescence, providing a high-throughput measurement of IgE. We demonstrated that the allergen microarray is a reproducible method to measure allergen-specific IgE in small amounts of sera. Using this tool, we demonstrated that specific IgE clusters according to the phylogeny of the allergen source. We also showed that the pollen surface, which has been largely overlooked in the past, contained potent allergens. Although, as a class, cytoplasmic fractions obtained by our pulverization/precipitation method were comparable to commercial extracts, many individual allergens showed significant differences.These results support the hypothesis that protein microarray technology is a useful tool for both research and in the clinic. It could provide a more efficient and less painful alternative to traditionally used skin prick tests, making it economically feasible to compare allergen sensitivity of different populations, monitor individual responses over time, and facilitate genetic studies on pollen allergy.

  9. Prenatal screening and genetics

    DEFF Research Database (Denmark)

    Alderson, P; Aro, A R; Dragonas, T

    2001-01-01

    Although the term 'genetic screening' has been used for decades, this paper discusses how, in its most precise meaning, genetic screening has not yet been widely introduced. 'Prenatal screening' is often confused with 'genetic screening'. As we show, these terms have different meanings, and we...... examine definitions of the relevant concepts in order to illustrate this point. The concepts are i) prenatal, ii) genetic screening, iii) screening, scanning and testing, iv) maternal and foetal tests, v) test techniques and vi) genetic conditions. So far, prenatal screening has little connection...... with precisely defined genetics. There are benefits but also disadvantages in overstating current links between them in the term genetic screening. Policy making and professional and public understandings about screening could be clarified if the distinct meanings of prenatal screening and genetic screening were...

  10. Discovery of an inhibitor of a transcription factor using small molecule microarrays and diversity-oriented synthesis.

    Science.gov (United States)

    Koehler, Angela N; Shamji, Alykhan F; Schreiber, Stuart L

    2003-07-16

    Small molecule microarrays were screened to identify a small molecule ligand for Hap3p, a subunit of the yeast Hap2/3/4/5p transcription factor complex. The compound, named haptamide A, was determined to have a KD of 5.03 muM for binding to Hap3p using surface plasmon resonance analysis. Haptamide A also inhibited activation of a GDH1-lacZ reporter gene in a dose-dependent fashion. To explore structure-activity relationships, 11 derivatives of haptamide A were prepared using the same synthetic route that was developed for the original library synthesis. Analysis of dissociation constants and IC50 values for the reporter gene assay revealed a more potent inhibitor, haptamide B, with a KD of 330 nM. Whole-genome transcriptional profiling was used to compare effects of haptamide B with a hap3Delta yeast strain. Treatment with haptamide B, like the deletion mutant, reduced lactate-induced transcription of several genes from wild-type levels. Profiling the genetic "knockout" and the chemical genetic "knockdown" led to the identification of several genes that are regulated by Hap3p under nonfermentative conditions. These results demonstrate that a small molecule discovered using the small molecule microarray binding assay can permeate yeast cells and reach its target transcription factor protein in cells.

  11. Investigation of parameters that affect the success rate of microarray-based allele-specific hybridization assays.

    Directory of Open Access Journals (Sweden)

    Lena Poulsen

    Full Text Available BACKGROUND: The development of microarray-based genetic tests for diseases that are caused by known mutations is becoming increasingly important. The key obstacle to developing functional genotyping assays is that such mutations need to be genotyped regardless of their location in genomic regions. These regions include large variations in G+C content, and structural features like hairpins. METHODS/FINDINGS: We describe a rational, stable method for screening and combining assay conditions for the genetic analysis of 42 Phenylketonuria-associated mutations in the phenylalanine hydroxylase gene. The mutations are located in regions with large variations in G+C content (20-75%. Custom-made microarrays with different lengths of complementary probe sequences and spacers were hybridized with pooled PCR products of 12 exons from each of 38 individual patient DNA samples. The arrays were washed with eight buffers with different stringencies in a custom-made microfluidic system. The data were used to assess which parameters play significant roles in assay development. CONCLUSIONS: Several assay development methods found suitable probes and assay conditions for a functional test for all investigated mutation sites. Probe length, probe spacer length, and assay stringency sufficed as variable parameters in the search for a functional multiplex assay. We discuss the optimal assay development methods for several different scenarios.

  12. Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.

    Science.gov (United States)

    Guzzi, Pietro Hiram; Cannataro, Mario

    2013-08-01

    A current trend in genomics is the investigation of the cell mechanism using different technologies, in order to explain the relationship among genes, molecular processes and diseases. For instance, the combined use of gene-expression arrays and genomic arrays has been demonstrated as an effective instrument in clinical practice. Consequently, in a single experiment different kind of microarrays may be used, resulting in the production of different types of binary data (images and textual raw data). The analysis of microarray data requires an initial preprocessing phase, that makes raw data suitable for use on existing analysis platforms, such as the TIGR M4 (TM4) Suite. An additional challenge to be faced by emerging data analysis platforms is the ability to treat in a combined way those different microarray formats coupled with clinical data. In fact, resulting integrated data may include both numerical and symbolic data (e.g. gene expression and SNPs regarding molecular data), as well as temporal data (e.g. the response to a drug, time to progression and survival rate), regarding clinical data. Raw data preprocessing is a crucial step in analysis but is often performed in a manual and error prone way using different software tools. Thus novel, platform independent, and possibly open source tools enabling the semi-automatic preprocessing and annotation of different microarray data are needed. The paper presents Micro-Analyzer (Microarray Analyzer), a cross-platform tool for the automatic normalization, summarization and annotation of Affymetrix gene expression and SNP binary data. It represents the evolution of the μ-CS tool, extending the preprocessing to SNP arrays that were not allowed in μ-CS. The Micro-Analyzer is provided as a Java standalone tool and enables users to read, preprocess and analyse binary microarray data (gene expression and SNPs) by invoking TM4 platform. It avoids: (i) the manual invocation of external tools (e.g. the Affymetrix Power

  13. Microarray expression profiling in adhesion and normal peritoneal tissues.

    Science.gov (United States)

    Ambler, Dana R; Golden, Alicia M; Gell, Jennifer S; Saed, Ghassan M; Carey, David J; Diamond, Michael P

    2012-05-01

    To identify molecular markers associated with adhesion and normal peritoneal tissue using microarray expression profiling. Comparative study. University hospital. Five premenopausal women. Adhesion and normal peritoneal tissue samples were obtained from premenopausal women. Ribonucleic acid was extracted using standard protocols and processed for hybridization to Affymetrix Whole Transcript Human Gene Expression Chips. Microarray data were obtained from five different patients, each with adhesion tissue and normal peritoneal samples. Real-time polymerase chain reaction was performed for confirmation using standard protocols. Gene expression in postoperative adhesion and normal peritoneal tissues. A total of 1,263 genes were differentially expressed between adhesion and normal tissues. One hundred seventy-three genes were found to be up-regulated and 56 genes were down-regulated in the adhesion tissues compared with normal peritoneal tissues. The genes were sorted into functional categories according to Gene Ontology annotations. Twenty-six up-regulated genes and 11 down-regulated genes were identified with functions potentially relevant to the pathophysiology of postoperative adhesions. We evaluated and confirmed expression of 12 of these specific genes via polymerase chain reaction. The pathogenesis, natural history, and optimal treatment of postoperative adhesive disease remains unanswered. Microarray analysis of adhesions identified specific genes with increased and decreased expression when compared with normal peritoneum. Knowledge of these genes and ontologic pathways with altered expression provide targets for new therapies to treat patients who have or are at risk for postoperative adhesions. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Microarrays: molecular allergology and nanotechnology for personalised medicine (I).

    Science.gov (United States)

    Lucas, J M

    2010-01-01

    The diagnosis of antibody-mediated allergic disorders is based on the clinical findings and the detection of allergen-specific IgE based on in vitro and in vivo techniques, together with allergen provocation tests. In vitro diagnostic techniques have progressed enormously following the introduction of the advances made in proteomics and nanotechnology--offering tools for the diagnosis and investigation of allergy at molecular level. The most advanced developments are the microarray techniques, which in genomics allowed rapid description of the human genetic code, and which now have been applied to proteomics, broadening the field for research and clinical use. Together with these technological advances, the characterisation of most of the different proteins generating specific IgE and which conform each natural allergen, as well as their purification or genetic engineering-based synthesis, have been crucial elements--offering the possibility of identifying disease-causing allergens at molecular level, establishing a component-resolved diagnosis (CRD), using them to study the natural course of the disease, and applying them to improvements in specific immunotherapy. Microarrays of allergic components offer results relating to hundreds of these allergenic components in a single test, and use a small amount of serum that can be obtained from capillary blood. The availability of new molecules will allow the development of panels including new allergenic components and sources, which will require evaluation for clinical use. The present study reviews these new developments, component-resolved diagnosis, and the development of microarray techniques as a critical element for furthering our knowledge of allergic disease.

  15. Determination of strongly overlapping signaling activity from microarray data

    Directory of Open Access Journals (Sweden)

    Bidaut Ghislain

    2006-02-01

    Full Text Available Abstract Background As numerous diseases involve errors in signal transduction, modern therapeutics often target proteins involved in cellular signaling. Interpretation of the activity of signaling pathways during disease development or therapeutic intervention would assist in drug development, design of therapy, and target identification. Microarrays provide a global measure of cellular response, however linking these responses to signaling pathways requires an analytic approach tuned to the underlying biology. An ongoing issue in pattern recognition in microarrays has been how to determine the number of patterns (or clusters to use for data interpretation, and this is a critical issue as measures of statistical significance in gene ontology or pathways rely on proper separation of genes into groups. Results Here we introduce a method relying on gene annotation coupled to decompositional analysis of global gene expression data that allows us to estimate specific activity on strongly coupled signaling pathways and, in some cases, activity of specific signaling proteins. We demonstrate the technique using the Rosetta yeast deletion mutant data set, decompositional analysis by Bayesian Decomposition, and annotation analysis using ClutrFree. We determined from measurements of gene persistence in patterns across multiple potential dimensionalities that 15 basis vectors provides the correct dimensionality for interpreting the data. Using gene ontology and data on gene regulation in the Saccharomyces Genome Database, we identified the transcriptional signatures of several cellular processes in yeast, including cell wall creation, ribosomal disruption, chemical blocking of protein synthesis, and, criticially, individual signatures of the strongly coupled mating and filamentation pathways. Conclusion This works demonstrates that microarray data can provide downstream indicators of pathway activity either through use of gene ontology or transcription

  16. Mathematical design of prokaryotic clone-based microarrays

    Directory of Open Access Journals (Sweden)

    Quirijns Elisabeth J

    2005-09-01

    Full Text Available Abstract Background Clone-based microarrays, on which each spot represents a random genomic fragment, are a good alternative to open reading frame-based microarrays, especially for microorganisms for which the complete genome sequence is not available. Since the generation of a genomic DNA library is a random process, it is beforehand uncertain which genes are represented. Nevertheless, the genome coverage of such an array, which depends on different variables like the insert size and the number of clones in the library, can be predicted by mathematical approaches. When applying the classical formulas that determine the probability that a certain sequence is represented in a DNA library at the nucleotide level, massive amounts of clones would be necessary to obtain a proper coverage of the genome. Results This paper describes the development of two complementary equations for determining the genome coverage at the gene level. The first equation predicts the fraction of genes that is represented on the array in a detectable way and cover at least a set part (the minimal insert coverage of the genomic fragment by which these genes are represented. The higher this minimal insert coverage, the larger the chance that changes in expression of a specific gene can be detected and attributed to that gene. The second equation predicts the fraction of genes that is represented in spots on the array that only represent genes from a single transcription unit, which information can be interpreted in a quantitative way. Conclusion Validation of these equations shows that they form reliable tools supporting optimal design of prokaryotic clone-based microarrays.

  17. Up-to-Date Applications of Microarrays and Their Way to Commercialization

    Directory of Open Access Journals (Sweden)

    Sarah Schumacher

    2015-04-01

    Full Text Available This review addresses up-to-date applications of Protein Microarrays. Protein Microarrays play a significant role in basic research as well as in clinical applications and are applicable in a lot of fields, e.g., DNA, proteins and small molecules. Additionally they are on the way to enter clinics in routine diagnostics. Protein Microarrays can be powerful tools to improve healthcare. An overview of basic characteristics to mediate essential knowledge of this technique is given. To reach this goal, some challenges still have to be addressed. A few applications of Protein Microarrays in a medical context are shown. Finally, an outlook, where the potential of Protein Microarrays is depicted and speculations how the future of Protein Microarrays will look like are made.

  18. Optimization of Cyanine Dye Stability and Analysis of FRET Interaction on DNA Microarrays.

    Science.gov (United States)

    von der Haar, Marcel; Heuer, Christopher; Pähler, Martin; von der Haar, Kathrin; Lindner, Patrick; Scheper, Thomas; Stahl, Frank

    2016-11-30

    The application of DNA microarrays for high throughput analysis of genetic regulation is often limited by the fluorophores used as markers. The implementation of multi-scan techniques is limited by the fluorophores' susceptibility to photobleaching when exposed to the scanner laser light. This paper presents combined mechanical and chemical strategies which enhance the photostability of cyanine 3 and cyanine 5 as part of solid state DNA microarrays. These strategies are based on scanning the microarrays while the hybridized DNA is still in an aqueous solution with the presence of a reductive/oxidative system (ROXS). Furthermore, the experimental setup allows for the analysis and eventual normalization of Förster-resonance-energy-transfer (FRET) interaction of cyanine-3/cyanine-5 dye combinations on the microarray. These findings constitute a step towards standardization of microarray experiments and analysis and may help to increase the comparability of microarray experiment results between labs.

  19. Optimization of Cyanine Dye Stability and Analysis of FRET Interaction on DNA Microarrays

    Directory of Open Access Journals (Sweden)

    Marcel von der Haar

    2016-11-01

    Full Text Available The application of DNA microarrays for high throughput analysis of genetic regulation is often limited by the fluorophores used as markers. The implementation of multi-scan techniques is limited by the fluorophores’ susceptibility to photobleaching when exposed to the scanner laser light. This paper presents combined mechanical and chemical strategies which enhance the photostability of cyanine 3 and cyanine 5 as part of solid state DNA microarrays. These strategies are based on scanning the microarrays while the hybridized DNA is still in an aqueous solution with the presence of a reductive/oxidative system (ROXS. Furthermore, the experimental setup allows for the analysis and eventual normalization of Förster-resonance-energy-transfer (FRET interaction of cyanine-3/cyanine-5 dye combinations on the microarray. These findings constitute a step towards standardization of microarray experiments and analysis and may help to increase the comparability of microarray experiment results between labs.

  20. Up-to-Date Applications of Microarrays and Their Way to Commercialization.

    Science.gov (United States)

    Schumacher, Sarah; Muekusch, Sandra; Seitz, Harald

    2015-04-23

    This review addresses up-to-date applications of Protein Microarrays. Protein Microarrays play a significant role in basic research as well as in clinical applications and are applicable in a lot of fields, e.g., DNA, proteins and small molecules. Additionally they are on the way to enter clinics in routine diagnostics. Protein Microarrays can be powerful tools to improve healthcare. An overview of basic characteristics to mediate essential knowledge of this technique is given. To reach this goal, some challenges still have to be addressed. A few applications of Protein Microarrays in a medical context are shown. Finally, an outlook, where the potential of Protein Microarrays is depicted and speculations how the future of Protein Microarrays will look like are made.