WorldWideScience

Sample records for abc protein superfamilies

  1. Evolutionary Pattern of N-Glycosylation Sequon Numbers in Eukaryotic ABC Protein Superfamilies

    DEFF Research Database (Denmark)

    Rao, R Shyama Prasad; Buus, Ole Thomsen; Wollenweber, Bernd

    2010-01-01

    and their underlying causes have largely been unexplored. We computed the actual and probabilistic occurrence of NXS/T sequons in ABC protein superfamilies from eight diverse eukaryotic organisms. The ABC proteins contained significantly higher NXS/T sequon numbers compared to respective genome-wide average...

  2. The ABC protein turned chloride channel whose failure causes cystic fibrosis

    Science.gov (United States)

    Gadsby, David C.; Vergani, Paola; Csanády, László

    2006-03-01

    CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes.

  3. Evolution of the extended LHC protein superfamily in photosynthesis

    OpenAIRE

    Engelken, Johannes

    2010-01-01

    In photosynthesis, sunlight interacts with colorful photosynthetic pigments like the chlorophylls, carotenoids and phycobilines. The first two of these pigments can be bound by members of the extended light-harvesting complex (LHC) protein superfamily and are organised in order to take on functions in the collection of or in the defense against sunlight. The extended LHC superfamily comprises several protein families, like the LHCs, the photosystem II subunit S (PSBS), the red algal lineage c...

  4. The Villin/Gelsolin/Fragmin Superfamily Proteins in Plants

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The villin/gelsolin/fragmin superfamily is a conserved Ca2+ -dependent family of actin-regulating proteins that is widely present both in mammalian and non-mammalian organisms. They have traditionally been characterized by the same core of three or six tandem gelsolin subdomains. The study in vertebrates and lower eukaryotic cells has revealed that the villinlgelsolin/fragmin superfamily of proteins has versatile functions including severing, capping, nucleating or bundling actin filaments. In plants, encouraging progress has been made in this field of research in recent years. This review will summarize the identified plant homologs of villin/gelsolin/fragmin superfamily, thus providing a basis for reflection on their biochemical activities and functions in plants.

  5. Structural evolution of the protein kinase-like superfamily.

    Directory of Open Access Journals (Sweden)

    Eric D Scheeff

    2005-10-01

    Full Text Available The protein kinase family is large and important, but it is only one family in a larger superfamily of homologous kinases that phosphorylate a variety of substrates and play important roles in all three superkingdoms of life. We used a carefully constructed structural alignment of selected kinases as the basis for a study of the structural evolution of the protein kinase-like superfamily. The comparison of structures revealed a "universal core" domain consisting only of regions required for ATP binding and the phosphotransfer reaction. Remarkably, even within the universal core some kinase structures display notable changes, while still retaining essential activity. Hence, the protein kinase-like superfamily has undergone substantial structural and sequence revision over long evolutionary timescales. We constructed a phylogenetic tree for the superfamily using a novel approach that allowed for the combination of sequence and structure information into a unified quantitative analysis. When considered against the backdrop of species distribution and other metrics, our tree provides a compelling scenario for the development of the various kinase families from a shared common ancestor. We propose that most of the so-called "atypical kinases" are not intermittently derived from protein kinases, but rather diverged early in evolution to form a distinct phyletic group. Within the atypical kinases, the aminoglycoside and choline kinase families appear to share the closest relationship. These two families in turn appear to be the most closely related to the protein kinase family. In addition, our analysis suggests that the actin-fragmin kinase, an atypical protein kinase, is more closely related to the phosphoinositide-3 kinase family than to the protein kinase family. The two most divergent families, alpha-kinases and phosphatidylinositol phosphate kinases (PIPKs, appear to have distinct evolutionary histories. While the PIPKs probably have an

  6. Structural Evolution of the Protein Kinase-Like Superfamily.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available The protein kinase family is large and important, but it is only one family in a larger superfamily of homologous kinases that phosphorylate a variety of substrates and play important roles in all three superkingdoms of life. We used a carefully constructed structural alignment of selected kinases as the basis for a study of the structural evolution of the protein kinase-like superfamily. The comparison of structures revealed a "universal core" domain consisting only of regions required for ATP binding and the phosphotransfer reaction. Remarkably, even within the universal core some kinase structures display notable changes, while still retaining essential activity. Hence, the protein kinase-like superfamily has undergone substantial structural and sequence revision over long evolutionary timescales. We constructed a phylogenetic tree for the superfamily using a novel approach that allowed for the combination of sequence and structure information into a unified quantitative analysis. When considered against the backdrop of species distribution and other metrics, our tree provides a compelling scenario for the development of the various kinase families from a shared common ancestor. We propose that most of the so-called "atypical kinases" are not intermittently derived from protein kinases, but rather diverged early in evolution to form a distinct phyletic group. Within the atypical kinases, the aminoglycoside and choline kinase families appear to share the closest relationship. These two families in turn appear to be the most closely related to the protein kinase family. In addition, our analysis suggests that the actin-fragmin kinase, an atypical protein kinase, is more closely related to the phosphoinositide-3 kinase family than to the protein kinase family. The two most divergent families, alpha-kinases and phosphatidylinositol phosphate kinases (PIPKs, appear to have distinct evolutionary histories. While the PIPKs probably have an

  7. Identification of protein superfamily from structure- based sequence motif

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The structure-based sequence motif of the distant proteins in evolution, protein tyrosine phosphatases (PTP) Ⅰ and Ⅱ superfamilies, as an example, has been defined by the structural comparison, structure-based sequence alignment and analyses on substitution patterns of residues in common sequence conserved regions. And the phosphatases Ⅰ and Ⅱ can be correctly identified together by the structure-based PTP sequence motif from SWISS-PROT and TrEBML databases. The results show that the correct rates of identification are over 98%. This is the first time to identify PTP Ⅰ and Ⅱ together by this motif.

  8. The Defensins Consist of Two Independent, Convergent Protein Superfamilies.

    Science.gov (United States)

    Shafee, Thomas M A; Lay, Fung T; Hulett, Mark D; Anderson, Marilyn A

    2016-09-01

    The defensin and defensin-like proteins are an extensive group of small, cationic, disulfide-rich proteins found in animals, plants, and fungi and mostly perform roles in host defense. The term defensin was originally used for small mammalian proteins found in neutrophils and was subsequently applied to insect proteins and plant γ-thionins based on their perceived sequence and structural similarity. Defensins are often described as ancient innate immunity molecules and classified as a single superfamily and both sequence alignments and phylogenies have been constructed. Here, we present evidence that the defensins have not all evolved from a single ancestor. Instead, they consist of two analogous superfamilies, and extensive convergent evolution is the source of their similarities. Evidence of common origin necessarily gets weaker for distantly related genes, as is the case for defensins, which are both divergent and small. We show that similarities that have been used as evidence for common origin are all expected by chance in short, constrained, disulfide-rich proteins. Differences in tertiary structure, secondary structure order, and disulfide bond connectivity indicate convergence as the likely source of the similarity. We refer to the two evolutionarily independent groups as the cis-defensins and trans-defensins based on the orientation of the most conserved pair of disulfides. PMID:27297472

  9. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    Science.gov (United States)

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-01-01

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer. PMID:26512702

  10. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    Science.gov (United States)

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-01-01

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  11. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily

    Directory of Open Access Journals (Sweden)

    Marc Lenoir

    2015-10-01

    Full Text Available The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH and Tec homology (TH domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  12. Export of recombinant proteins in Escherichia coli using ABC transporter with an attached lipase ABC transporter recognition domain (LARD

    Directory of Open Access Journals (Sweden)

    Moon Yuseok

    2009-01-01

    Full Text Available Abstract Background ATP binding cassette (ABC transporter secretes the protein through inner and outer membranes simultaneously in gram negative bacteria. Thermostable lipase (TliA of Pseudomonas fluorescens SIK W1 is secreted through the ABC transporter. TliA has four glycine-rich repeats (GGXGXD in its C-terminus, which appear in many ABC transporter-secreted proteins. From a homology model of TliA derived from the structure of P. aeruginosa alkaline protease (AprA, lipase ABC transporter domains (LARDs were designed for the secretion of fusion proteins. Results The LARDs included four glycine-rich repeats comprising a β-roll structure, and were added to the C-terminus of test proteins. Either Pro-Gly linker or Factor Xa site was added between fusion proteins and LARDs. We attached different length of LARDs such as LARD0, LARD1 or whole TliA (the longest LARD to three types of proteins; green fluorescent protein (GFP, epidermal growth factor (EGF and cytoplasmic transduction peptide (CTP. These fusion proteins were expressed in Escherichia coli together with ABC transporter of either P. fluorescens or Erwinia chrysanthemi. Export of fusion proteins with the whole TliA through the ABC transporter was evident on the basis of lipase enzymatic activity. Upon supplementation of E. coli with ABC transporter, GFP-LARDs and EGF-LARDs were excreted into the culture supernatant. Conclusion The LARDs or whole TliA were attached to C-termini of model proteins and enabled the export of the model proteins such as GFP and EGF in E. coli supplemented with ABC transporter. These results open the possibility for the extracellular production of recombinant proteins in Pseudomonas using LARDs or TliA as a C-terminal signal sequence.

  13. Functional analysis of candidate ABC transporter proteins for sitosterol transport

    DEFF Research Database (Denmark)

    Albrecht, C; Elliott, J I; Sardini, A;

    2002-01-01

    Two ATP-binding cassette (ABC) proteins, ABCG5 and ABCG8, have recently been associated with the accumulation of dietary cholesterol in the sterol storage disease sitosterolemia. These two 'half-transporters' are assumed to dimerize to form the complete sitosterol transporter which reduces...... implicated in lipid movement and expressed in tissues with a role in sterol synthesis and absorption, might also be involved in sitosterol transport. Transport by the multidrug resistance P-glycoprotein (P-gp; Abcb1), the multidrug resistance-associated protein (Mrp1; Abcc1), the breast cancer resistance......-specific ABC transporters have acquired specificity to exclude sitosterol and related sterols like cholesterol presumably because the abundance of cholesterol in the membrane would interfere with their action; in consequence, specific transporters have evolved to handle these sterols....

  14. Genetic variation in the proximal promoter of ABC and SLC superfamilies: liver and kidney specific expression and promoter activity predict variation.

    Directory of Open Access Journals (Sweden)

    Stephanie E Hesselson

    Full Text Available Membrane transporters play crucial roles in the cellular uptake and efflux of an array of small molecules including nutrients, environmental toxins, and many clinically used drugs. We hypothesized that common genetic variation in the proximal promoter regions of transporter genes contribute to observed variation in drug response. A total of 579 polymorphisms were identified in the proximal promoters (-250 to +50 bp and flanking 5' sequence of 107 transporters in the ATP Binding Cassette (ABC and Solute Carrier (SLC superfamilies in 272 DNA samples from ethnically diverse populations. Many transporter promoters contained multiple common polymorphisms. Using a sliding window analysis, we observed that, on average, nucleotide diversity (pi was lowest at approximately 300 bp upstream of the transcription start site, suggesting that this region may harbor important functional elements. The proximal promoters of transporters that were highly expressed in the liver had greater nucleotide diversity than those that were highly expressed in the kidney consistent with greater negative selective pressure on the promoters of kidney transporters. Twenty-one promoters were evaluated for activity using reporter assays. Greater nucleotide diversity was observed in promoters with strong activity compared to promoters with weak activity, suggesting that weak promoters are under more negative selective pressure than promoters with high activity. Collectively, these results suggest that the proximal promoter region of membrane transporters is rich in variation and that variants in these regions may play a role in interindividual variation in drug disposition and response.

  15. PASS2: an automated database of protein alignments organised as structural superfamilies

    Directory of Open Access Journals (Sweden)

    Sowdhamini Ramanathan

    2004-04-01

    Full Text Available Abstract Background The functional selection and three-dimensional structural constraints of proteins in nature often relates to the retention of significant sequence similarity between proteins of similar fold and function despite poor sequence identity. Organization of structure-based sequence alignments for distantly related proteins, provides a map of the conserved and critical regions of the protein universe that is useful for the analysis of folding principles, for the evolutionary unification of protein families and for maximizing the information return from experimental structure determination. The Protein Alignment organised as Structural Superfamily (PASS2 database represents continuously updated, structural alignments for evolutionary related, sequentially distant proteins. Description An automated and updated version of PASS2 is, in direct correspondence with SCOP 1.63, consisting of sequences having identity below 40% among themselves. Protein domains have been grouped into 628 multi-member superfamilies and 566 single member superfamilies. Structure-based sequence alignments for the superfamilies have been obtained using COMPARER, while initial equivalencies have been derived from a preliminary superposition using LSQMAN or STAMP 4.0. The final sequence alignments have been annotated for structural features using JOY4.0. The database is supplemented with sequence relatives belonging to different genomes, conserved spatially interacting and structural motifs, probabilistic hidden markov models of superfamilies based on the alignments and useful links to other databases. Probabilistic models and sensitive position specific profiles obtained from reliable superfamily alignments aid annotation of remote homologues and are useful tools in structural and functional genomics. PASS2 presents the phylogeny of its members both based on sequence and structural dissimilarities. Clustering of members allows us to understand diversification of

  16. Comparison of molecular dynamics and superfamily spaces of protein domain deformation

    Directory of Open Access Journals (Sweden)

    Cuesta Isabel

    2009-02-01

    Full Text Available Abstract Background It is well known the strong relationship between protein structure and flexibility, on one hand, and biological protein function, on the other hand. Technically, protein flexibility exploration is an essential task in many applications, such as protein structure prediction and modeling. In this contribution we have compared two different approaches to explore the flexibility space of protein domains: i molecular dynamics (MD-space, and ii the study of the structural changes within superfamily (SF-space. Results Our analysis indicates that the MD-space and the SF-space display a significant overlap, but are still different enough to be considered as complementary. The SF-space space is wider but less complex than the MD-space, irrespective of the number of members in the superfamily. Also, the SF-space does not sample all possibilities offered by the MD-space, but often introduces very large changes along just a few deformation modes, whose number tend to a plateau as the number of related folds in the superfamily increases. Conclusion Theoretically, we obtained two conclusions. First, that function restricts the access to some flexibility patterns to evolution, as we observe that when a superfamily member changes to become another, the path does not completely overlap with the physical deformability. Second, that conformational changes from variation in a superfamily are larger and much simpler than those allowed by physical deformability. Methodologically, the conclusion is that both spaces studied are complementary, and have different size and complexity. We expect this fact to have application in fields as 3D-EM/X-ray hybrid models or ab initio protein folding.

  17. Cystatin superfamily.

    Science.gov (United States)

    Ochieng, Josiah; Chaudhuri, Gautam

    2010-02-01

    Cystatins, the classical inhibitors of C1 cysteine proteinases, have been extensively studied and reviewed in the literature. Over the last 20 years, however, proteins containing cystatin domains but lacking protease inhibitory activities have been identified, and most likely more will be described in the near future. These proteins together with family 1, 2, and 3 cystatins constitute the cystatin superfamily. Mounting evidence points to the new roles that some members of the superfamily have acquired over the course of their evolution. This review is focused on the roles of cystatins in: 1) tumorigenesis, 2) stabilization of matrix metalloproteinases, 3) glomerular filtration rate, 4) immunomodulation, and 5) neurodegenerative diseases. It is the goal of this review to get as many investigators as possible to take a second look at the cystatin superfamily regarding their potential involvement in serious human ailments.

  18. Taxonomic distribution and origins of the extended LHC (light-harvesting complex antenna protein superfamily

    Directory of Open Access Journals (Sweden)

    Brinkmann Henner

    2010-07-01

    Full Text Available Abstract Background The extended light-harvesting complex (LHC protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS. The evolution of this complex superfamily has long remained elusive, partially due to previously missing families. Results In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae: glaucophytes, red algae and green plants (Viridiplantae. By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll a/b-binding-like protein (RedCAP family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping. Conclusions The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the

  19. Exploring fold space preferences of new-born and ancient protein superfamilies.

    Directory of Open Access Journals (Sweden)

    Hannah Edwards

    Full Text Available The evolution of proteins is one of the fundamental processes that has delivered the diversity and complexity of life we see around ourselves today. While we tend to define protein evolution in terms of sequence level mutations, insertions and deletions, it is hard to translate these processes to a more complete picture incorporating a polypeptide's structure and function. By considering how protein structures change over time we can gain an entirely new appreciation of their long-term evolutionary dynamics. In this work we seek to identify how populations of proteins at different stages of evolution explore their possible structure space. We use an annotation of superfamily age to this space and explore the relationship between these ages and a diverse set of properties pertaining to a superfamily's sequence, structure and function. We note several marked differences between the populations of newly evolved and ancient structures, such as in their length distributions, secondary structure content and tertiary packing arrangements. In particular, many of these differences suggest a less elaborate structure for newly evolved superfamilies when compared with their ancient counterparts. We show that the structural preferences we report are not a residual effect of a more fundamental relationship with function. Furthermore, we demonstrate the robustness of our results, using significant variation in the algorithm used to estimate the ages. We present these age estimates as a useful tool to analyse protein populations. In particularly, we apply this in a comparison of domains containing greek key or jelly roll motifs.

  20. Novel insights into the function of the conserved domain of the CAP superfamily of proteins

    Directory of Open Access Journals (Sweden)

    Nick K. Olrichs

    2016-04-01

    Full Text Available Members of the Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins (CAP superfamily are found in a remarkable variety of biological species. The presence of a highly conserved CAP domain defines the CAP family members, which in many cases is linked to other functional protein domains. As a result, this superfamily of proteins is involved in a large variety of biological processes such as reproduction, tumor suppression, and immune regulation. The role of the CAP domain and its conserved structure throughout evolution in relation to the diverse functions of CAP proteins is, however, poorly understood. Recent studies on the mammalian Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1, which consists almost exclusively of a CAP domain, may shed new light on the function of the CAP domain. GAPR-1 was shown to form amyloid fibrils but also to possess anti-amyloidogenic properties against other amyloid forming peptides. Amyloid prediction analysis reveals the presence of potentially amyloidogenic sequences within the highly conserved sequence motifs of the CAP domain. This review will address the structural properties of GAPR-1 in combination with existing knowledge on CAP protein structure-function relationships. We propose that the CAP domain is a structural domain, which can regulate protein-protein interactions of CAP family members using its amyloidogenic properties.

  1. The N-terminal extension domain of the C. elegans half-molecule ABC transporter, HMT-1, is required for protein-protein interactions and function.

    Directory of Open Access Journals (Sweden)

    Sungjin Kim

    Full Text Available BACKGROUND: Members of the HMT-1 (heavy metal tolerance factor 1 subfamily of the ATP-binding cassette (ABC transporter superfamily detoxify heavy metals and have unique topology: they are half-molecule ABC transporters that, in addition to a single transmembrane domain (TMD1 and a single nucleotide-binding domain (NBD1, possess a hydrophobic NH2-terminal extension (NTE. These structural features distinguish HMTs from other ABC transporters in different species including Drosophila and humans. Functional ABC transporters, however, are comprised of at least four-domains (two TMDs and two NDBs formed from either a single polypeptide or by the association of two or four separate subunits. Whether HMTs act as oligomers and what role the NTE domain plays in their function have not been determined. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we examined the oligomeric status of Caenorhabditis elegans HMT-1 and the functional significance of its NTE using gel-filtration chromatography in combination with the mating-based split-ubiquitin yeast two-hybrid system (mbSUS and functional in vivo assays. We found that HMT-1 exists in a protein complex in C. elegans. Studies in S. cerevisiae showed that HMT-1 at a minimum homodimerizes and that oligomerization is essential for HMT-1 to confer cadmium tolerance. We also established that the NTE domain plays an important structural and functional role: it is essential for HMT-1 oligomerization and Cd-detoxification function. However, the NTE itself was not sufficient for oligomerization suggesting that multiple structural features of HMT-1 must associate to form a functional transporter. CONCLUSIONS: The prominence of heavy metals as environmental toxins and the remarkable conservation of HMT-1 structural architecture and function in different species reinforce the value of continued studies of HMT-1 in model systems for identifying functional domains in HMT1 of humans.

  2. Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump

    OpenAIRE

    Hinchliffe, Philip; Greene, Nicholas P.; Paterson, Neil G.; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2014-01-01

    Periplasmic adaptor proteins are key components of bacterial tripartite efflux pumps. The 2.85 Å resolution structure of an MFS (major facilitator superfamily) pump adaptor, Aquifex aeolicus EmrA, shows linearly arranged α-helical coiled-coil, lipoyl, and β-barrel domains, but lacks the fourth membrane-proximal domain shown in other pumps to interact with the inner membrane transporter. The adaptor α-hairpin, which binds outer membrane TolC, is exceptionally long at 127 Å, and the β-barrel co...

  3. The barber's pole worm CAP protein superfamily--A basis for fundamental discovery and biotechnology advances.

    Science.gov (United States)

    Mohandas, Namitha; Young, Neil D; Jabbar, Abdul; Korhonen, Pasi K; Koehler, Anson V; Amani, Parisa; Hall, Ross S; Sternberg, Paul W; Jex, Aaron R; Hofmann, Andreas; Gasser, Robin B

    2015-12-01

    Parasitic worm proteins that belong to the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 (CAP) superfamily are proposed to play key roles in the infection process and the modulation of immune responses in host animals. However, there is limited information on these proteins for most socio-economically important worms. Here, we review the CAP protein superfamily of Haemonchus contortus (barber's pole worm), a highly significant parasitic roundworm (order Strongylida) of small ruminants. To do this, we mined genome and transcriptomic datasets, predicted and curated full-length amino acid sequences (n=45), undertook systematic phylogenetic analyses of these data and investigated transcription throughout the life cycle of H. contortus. We inferred functions for selected Caenorhabditis elegans orthologs (including vap-1, vap-2, scl-5 and lon-1) based on genetic networking and by integrating data and published information, and were able to infer that a subset of orthologs and their interaction partners play pivotal roles in growth and development via the insulin-like and/or the TGF-beta signalling pathways. The identification of the important and conserved growth regulator LON-1 led us to appraise the three-dimensional structure of this CAP protein by comparative modelling. This model revealed the presence of different topological moieties on the canonical fold of the CAP domain, which coincide with an overall charge separation as indicated by the electrostatic surface potential map. These observations suggest the existence of separate sites for effector binding and receptor interactions, and thus support the proposal that these worm molecules act in similar ways as venoms act as ligands for chemokine receptors or G protein-coupled receptor effectors. In conclusion, this review should guide future molecular studies of these molecules, and could support the development of novel interventions against haemonchosis.

  4. Radiation Damage and Racemic Protein Crystallography Reveal the Unique Structure of the GASA/Snakin Protein Superfamily.

    Science.gov (United States)

    Yeung, Ho; Squire, Christopher J; Yosaatmadja, Yuliana; Panjikar, Santosh; López, Gemma; Molina, Antonio; Baker, Edward N; Harris, Paul W R; Brimble, Margaret A

    2016-07-01

    Proteins from the GASA/snakin superfamily are common in plant proteomes and have diverse functions, including hormonal crosstalk, development, and defense. One 63-residue member of this family, snakin-1, an antimicrobial protein from potatoes, has previously been chemically synthesized in a fully active form. Herein the 1.5 Å structure of snakin-1, determined by a novel combination of racemic protein crystallization and radiation-damage-induced phasing (RIP), is reported. Racemic crystals of snakin-1 and quasi-racemic crystals incorporating an unnatural 4-iodophenylalanine residue were prepared from chemically synthesized d- and l-proteins. Breakage of the C-I bonds in the quasi-racemic crystals facilitated structure determination by RIP. The crystal structure reveals a unique protein fold with six disulfide crosslinks, presenting a distinct electrostatic surface that may target the protein to microbial cell surfaces. PMID:27145301

  5. Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump.

    Science.gov (United States)

    Hinchliffe, Philip; Greene, Nicholas P; Paterson, Neil G; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2014-08-25

    Periplasmic adaptor proteins are key components of bacterial tripartite efflux pumps. The 2.85 Å resolution structure of an MFS (major facilitator superfamily) pump adaptor, Aquifex aeolicus EmrA, shows linearly arranged α-helical coiled-coil, lipoyl, and β-barrel domains, but lacks the fourth membrane-proximal domain shown in other pumps to interact with the inner membrane transporter. The adaptor α-hairpin, which binds outer membrane TolC, is exceptionally long at 127 Å, and the β-barrel contains a conserved disordered loop. The structure extends the view of adaptors as flexible, modular components that mediate diverse pump assembly, and suggests that in MFS tripartite pumps a hexamer of adaptors could provide a periplasmic seal. PMID:24996185

  6. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily.

    Science.gov (United States)

    Matsunaga, James; Barocchi, Michele A; Croda, Julio; Young, Tracy A; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A; Reis, Mitermayer G; Riley, Lee W; Haake, David A; Ko, Albert I

    2003-08-01

    Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudogene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  7. New insights into potential functions for the protein 4.1superfamily of proteins in kidney epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Calinisan, Venice; Gravem, Dana; Chen, Ray Ping-Hsu; Brittin,Sachi; Mohandas, Narla; Lecomte, Marie-Christine; Gascard, Philippe

    2005-06-17

    Members of the protein 4.1 family of adapter proteins are expressed in a broad panel of tissues including various epithelia where they likely play an important role in maintenance of cell architecture and polarity and in control of cell proliferation. We have recently characterized the structure and distribution of three members of the protein 4.1 family, 4.1B, 4.1R and 4.1N, in mouse kidney. We describe here binding partners for renal 4.1 proteins, identified through the screening of a rat kidney yeast two-hybrid system cDNA library. The identification of putative protein 4.1-based complexes enables us to envision potential functions for 4.1 proteins in kidney: organization of signaling complexes, response to osmotic stress, protein trafficking, and control of cell proliferation. We discuss the relevance of these protein 4.1-based interactions in kidney physio-pathology in the context of their previously identified functions in other cells and tissues. Specifically, we will focus on renal 4.1 protein interactions with beta amyloid precursor protein (beta-APP), 14-3-3 proteins, and the cell swelling-activated chloride channel pICln. We also discuss the functional relevance of another member of the protein 4.1 superfamily, ezrin, in kidney physiopathology.

  8. Cloning, crystallization and preliminary X-ray study of XC1258, a CN-hydrolase superfamily protein from Xanthomonas campestris

    International Nuclear Information System (INIS)

    A CN-hydrolase superfamily protein from the plant pathogen X. campestris has been overexpressed in E. coli, purified and crystallized. CN-hydrolase superfamily proteins are involved in a wide variety of non-peptide carbon–nitrogen hydrolysis reactions, producing some important natural products such as auxin, biotin, precursors of antibiotics etc. These reactions all involve attack on a cyano or carbonyl carbon by a conserved novel catalytic triad Glu-Lys-Cys through a thiol acylenzyme intermediate. However, classification into the CN-hydrolase superfamily based on sequence similarity alone is not straightforward and further structural data are necessary to improve this categorization. Here, the cloning, expression, crystallization and preliminary X-ray analysis of XC1258, a CN-hydrolase superfamily protein from the plant pathogen Xanthomonas campestris (Xcc), are reported. The SeMet-substituted XC1258 crystals diffracted to a resolution of 1.73 Å. They are orthorhombic and belong to space group P21212, with unit-cell parameters a = 143.8, b = 154.63, c = 51.3 Å, respectively

  9. Modeling-dependent protein characterization of the rice aldehyde dehydrogenase (ALDH superfamily reveals distinct functional and structural features.

    Directory of Open Access Journals (Sweden)

    Simeon O Kotchoni

    Full Text Available The completion of the rice genome sequence has made it possible to identify and characterize new genes and to perform comparative genomics studies across taxa. The aldehyde dehydrogenase (ALDH gene superfamily encoding for NAD(P(+-dependent enzymes is found in all major plant and animal taxa. However, the characterization of plant ALDHs has lagged behind their animal- and prokaryotic-ALDH homologs. In plants, ALDHs are involved in abiotic stress tolerance, male sterility restoration, embryo development and seed viability and maturation. However, there is still no structural property-dependent functional characterization of ALDH protein superfamily in plants. In this paper, we identify members of the rice ALDH gene superfamily and use the evolutionary nesting events of retrotransposons and protein-modeling-based structural reconstitution to report the genetic and molecular and structural features of each member of the rice ALDH superfamily in abiotic/biotic stress responses and developmental processes. Our results indicate that rice-ALDHs are the most expanded plant ALDHs ever characterized. This work represents the first report of specific structural features mediating functionality of the whole families of ALDHs in an organism ever characterized.

  10. Expression Divergence of Duplicate Genes in the Protein Kinase Superfamily in Pacific Oyster.

    Science.gov (United States)

    Gao, Dahai; Ko, Dennis C; Tian, Xinmin; Yang, Guang; Wang, Liuyang

    2015-01-01

    Gene duplication has been proposed to serve as the engine of evolutionary innovation. It is well recognized that eukaryotic genomes contain a large number of duplicated genes that evolve new functions or expression patterns. However, in mollusks, the evolutionary mechanisms underlying the divergence and the functional maintenance of duplicate genes remain little understood. In the present study, we performed a comprehensive analysis of duplicate genes in the protein kinase superfamily using whole genome and transcriptome data for the Pacific oyster. A total of 64 duplicated gene pairs were identified based on a phylogenetic approach and the reciprocal best BLAST method. By analyzing gene expression from RNA-seq data from 69 different developmental and stimuli-induced conditions (nine tissues, 38 developmental stages, eight dry treatments, seven heat treatments, and seven salty treatments), we found that expression patterns were significantly correlated for a number of duplicate gene pairs, suggesting the conservation of regulatory mechanisms following divergence. Our analysis also identified a subset of duplicate gene pairs with very high expression divergence, indicating that these gene pairs may have been subjected to transcriptional subfunctionalization or neofunctionalization after the initial duplication events. Further analysis revealed a significant correlation between expression and sequence divergence (as revealed by synonymous or nonsynonymous substitution rates) under certain conditions. Taken together, these results provide evidence for duplicate gene sequence and expression divergence in the Pacific oyster, accompanying its adaptation to harsh environments. Our results provide new insights into the evolution of duplicate genes and their expression levels in the Pacific oyster.

  11. Structure of the stress response protein DR1199 from Deinococcus radiodurans: a member of the DJ-1 superfamily.

    Science.gov (United States)

    Fioravanti, Emanuela; Durá, M Asunción; Lascoux, David; Micossi, Elena; Franzetti, Bruno; McSweeney, Sean

    2008-11-01

    The expression level of protein DR1199 is observed to increase considerably in the radio-resistant bacterium Deinococcus radiodurans following irradiation. This protein belongs to the DJ-1 superfamily, which includes proteins with diverse functions, such as the archaeal proteases PhpI and PfpI, the bacterial chaperone Hsp31 and hyperosmotic stress protein YhbO, and the human Parkinson's disease-related protein DJ-1. All members of the superfamily are oligomeric, and the oligomerization interface varies from protein to protein. Although for many of these proteins, their function remains obscure, most of them are involved in cellular protection against environmental stresses. We have determined the structure of DR1199 to a resolution of 2.15 A, and we have tested its function and studied its role in the response to irradiation and more generally to oxidative stress in D. radiodurans. The protein is a dimer displaying an oligomerization interface similar to that observed for the YhbO and PhpI proteins. The cysteine in the catalytic triad (Cys 115) is oxidized in our structure, similar to modifications seen in the corresponding cysteine of the DJ-1 protein. The oxidation occurs spontaneously in DR1199 crystals. In solution, no proteolytic or chaperone activity was detected. On the basis of our results, we suggest that DR1199 might work as a general stress protein involved in the detoxification of the cell from oxygen reactive species, rather than as a peptidase in D. radiodurans.

  12. The Schizosaccharomyces pombe mam1 gene encodes an ABC transporter mediating secretion of M-factor

    DEFF Research Database (Denmark)

    Christensen, P U; Davey, William John; Nielsen, O;

    1997-01-01

    In the fission yeast Schizosaccharomyces pombe, cells of opposite mating type communicate via diffusible peptide pheromones prior to mating. We have cloned the S. pombe mam1 gene, which encodes a 1336-amino acid protein belonging to the ATP-binding cassette (ABC) superfamily. The mam1 gene is onl...

  13. Isolation of a novel member of small G protein superfamily and its expression in colon cancer

    Institute of Scientific and Technical Information of China (English)

    Wei Yan; Wen-Liang Wang; Feng Zhu; Sheng-Quan Chen; Qing-Long Li; Li Wang

    2003-01-01

    AIM: APMCF1 is a novel human gene whose transcripts are up-regulated in apoptotic MCF-7 cells. In order to learn more about this gene′s function in other tumors, we cloned its full length cDNA and prepared its polyclonal antibody to investigate its expression in colon cancers with immunohistochemistry.METHODS: With the method of 5′ rapid amplification of cDNA end (RACE) and EST assembled in GenBank, we extended the length of APMCF1 at 5′ end. Then the sequence encoding the APMCF1 protein was amplified by RT-PCR from the total RNA of apoptotic MCF-7 cells and cloned into the prokaryotic expression vector pGEX-KG to construct recombinant expression vector pGEX-APMCF1. The GSTAPMCF1 fusion protein was expressed in E. coli and used to immunize rabbits to get the rabbit anti-APMCF1 serum. The specificity of polyclonal anti-APMCF1 antibody was determined by Western blot. Then we investigated the expression of Apmcf1 in colon cancers and normal colonic mucosa with immunohistochemistry.RESULTS: A cDNA fragment with a length of 1 745 bp was obtained. APMCF1 was mapped to chromosome 3q22.2and spanned at least 14.8 kb of genomic DNA with seven exons and six introns contained. Bioinformatic analysis showed the protein encoded by APMCF1 contained a small GTP-binding protein (G proteins) domain and was homologous to mouse signal recognition particle receptor β(SRβ). A coding region covering 816 bp was cloned and polyclonal anti-APMCF1 antibody was prepared successfully.The immunohistochemistry study showed that APMCF1 had a strong expression in colon cancer.CONCLUSION: APMCF1 may be the gene coding human signal recognition particle receptor β and belongs to the small-G protein superfamily. Its strong expression pattern in colon cancer suggests it may play a role in colon cancer development.

  14. Molekulare Charakterisierung der neuroprotektiven Wirkung transmembraner Proteine der TM9-Superfamilie und der TMEFF-Proteine

    OpenAIRE

    Wiegand, Anne Katharina Gisela

    2013-01-01

    Im Rahmen dieser Dissertation sollte die neuroprotektive Wirkung der transmembranen Proteine TM9SF1 und TMEFF1 untersucht werden. Es wurden relative Expressionsanalysen der beiden Proteine an SHSY5Y-Zellen und humanen Gewebeproben im Vergleich zu house-keeping-Genen sowie Klonierungsversuche von TM9SF1 durchgeführt. Im Ergebnis wurden die neuroprotektiven, antiapoptotischen und wachstumsregulierenden Eigenschaften von TM9SF1 und TMEFF1 bestätigt. The experiments within the framework of...

  15. Stimulation of the UvrABC enzyme-catalyzed repair reactions by the UvrD protein (DNA helicase II).

    OpenAIRE

    Kumura, K; Sekiguchi, M.; Steinum, A L; Seeberg, E

    1985-01-01

    An in vitro assay system was constructed using highly purified preparations of UvrA, UvrB, UvrC, UvrD proteins and DNA polymerase I, the objective being to analyse the role of UvrD protein in excision repair of UV-induced DNA damage. UvrABC enzyme-initiated repair synthesis was greatly enhanced by the addition of UvrD protein to the reaction mixture. Further analysis revealed that UvrD protein stimulated introduction of strand breaks in irradiated DNA by UvrABC enzyme but had no effect on the...

  16. Aspergillus niger protein estA defines a new class of fungal esterases within the alfa/beta hydrolase fold superfamily of proteins

    NARCIS (Netherlands)

    Bourne, Y.; Hasper, A.A.; Chahinian, H.; Juin, M.; Graaff, de L.H.

    2004-01-01

    From the fungus Aspergillus niger, we identified a new gene encoding protein EstA, a member of the alpha/beta-hydrolase fold superfamily but of unknown substrate specificity. EstA was overexpressed and its crystal structure was solved by molecular replacement using a lipaseacetylcholinesterase chime

  17. Evolution of plant virus movement proteins from the 30K superfamily and of their homologs integrated in plant genomes

    Energy Technology Data Exchange (ETDEWEB)

    Mushegian, Arcady R., E-mail: mushegian2@gmail.com [Division of Molecular and Cellular Biosciences, National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230 (United States); Elena, Santiago F., E-mail: sfelena@ibmcp.upv.es [Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, 46022 València (Spain); The Santa Fe Institute, Santa Fe, NM 87501 (United States)

    2015-02-15

    Homologs of Tobacco mosaic virus 30K cell-to-cell movement protein are encoded by diverse plant viruses. Mechanisms of action and evolutionary origins of these proteins remain obscure. We expand the picture of conservation and evolution of the 30K proteins, producing sequence alignment of the 30K superfamily with the broadest phylogenetic coverage thus far and illuminating structural features of the core all-beta fold of these proteins. Integrated copies of pararetrovirus 30K movement genes are prevalent in euphyllophytes, with at least one copy intact in nearly every examined species, and mRNAs detected for most of them. Sequence analysis suggests repeated integrations, pseudogenizations, and positive selection in those provirus genes. An unannotated 30K-superfamily gene in Arabidopsis thaliana genome is likely expressed as a fusion with the At1g37113 transcript. This molecular background of endopararetrovirus gene products in plants may change our view of virus infection and pathogenesis, and perhaps of cellular homeostasis in the hosts. - Highlights: • Sequence region shared by plant virus “30K” movement proteins has an all-beta fold. • Most euphyllophyte genomes contain integrated copies of pararetroviruses. • These integrated virus genomes often include intact movement protein genes. • Molecular evidence suggests that these “30K” genes may be selected for function.

  18. Evolution of plant virus movement proteins from the 30K superfamily and of their homologs integrated in plant genomes

    International Nuclear Information System (INIS)

    Homologs of Tobacco mosaic virus 30K cell-to-cell movement protein are encoded by diverse plant viruses. Mechanisms of action and evolutionary origins of these proteins remain obscure. We expand the picture of conservation and evolution of the 30K proteins, producing sequence alignment of the 30K superfamily with the broadest phylogenetic coverage thus far and illuminating structural features of the core all-beta fold of these proteins. Integrated copies of pararetrovirus 30K movement genes are prevalent in euphyllophytes, with at least one copy intact in nearly every examined species, and mRNAs detected for most of them. Sequence analysis suggests repeated integrations, pseudogenizations, and positive selection in those provirus genes. An unannotated 30K-superfamily gene in Arabidopsis thaliana genome is likely expressed as a fusion with the At1g37113 transcript. This molecular background of endopararetrovirus gene products in plants may change our view of virus infection and pathogenesis, and perhaps of cellular homeostasis in the hosts. - Highlights: • Sequence region shared by plant virus “30K” movement proteins has an all-beta fold. • Most euphyllophyte genomes contain integrated copies of pararetroviruses. • These integrated virus genomes often include intact movement protein genes. • Molecular evidence suggests that these “30K” genes may be selected for function

  19. Computational modeling of protein interactions and phosphoform kinetics in the KaiABC cyanobacterial circadian clock

    CERN Document Server

    Byrne, Mark

    2014-01-01

    The KaiABC circadian clock from cyanobacteria is the only known three-protein oscillatory system which can be reconstituted outside the cell and which displays sustained periodic dynamics in various molecular state variables. Despite many recent experimental and theoretical studies there are several open questions regarding the central mechanism(s) responsible for creating this ~24 hour clock in terms of molecular assembly/disassembly of the proteins and site-dependent phosphorylation and dephosphorylation of KaiC monomers. Simulations of protein-protein interactions and phosphorylation reactions constrained by analytical fits to partial reaction experimental data support the central mechanism of oscillation as KaiB-induced KaiA sequestration in KaiABC complexes associated with the extent of Ser431 phosphorylation in KaiC hexamers. A simple two-state deterministic model in terms of the degree of phosphorylation of Ser431 and Thr432 sites alone can reproduce the previously observed circadian oscillation in the...

  20. The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport.

    Science.gov (United States)

    Alva, Vikram; Lupas, Andrei N

    2016-08-01

    The tubular lipid-binding (TULIP) superfamily has emerged in recent years as a major mediator of lipid sensing and transport in eukaryotes. It currently encompasses three protein families, SMP-like, BPI-like, and Takeout-like, which share a common fold. This fold consists of a long helix wrapped in a highly curved anti-parallel β-sheet, enclosing a central, lipophilic cavity. The SMP-like proteins, which include subunits of the ERMES complex and the extended synaptotagmins (E-Syts), appear to be mainly located at membrane contacts sites (MCSs) between organelles, mediating inter-organelle lipid exchange. The BPI-like proteins, which include the bactericidal/permeability-increasing protein (BPI), the LPS (lipopolysaccharide)-binding protein (LBP), the cholesteryl ester transfer protein (CETP), and the phospholipid transfer protein (PLTP), are either involved in innate immunity against bacteria through their ability to sense lipopolysaccharides, as is the case for BPI and LBP, or in lipid exchange between lipoprotein particles, as is the case for CETP and PLTP. The Takeout-like proteins, which are comprised of insect juvenile hormone-binding proteins and arthropod allergens, transport, where known, lipid hormones to target tissues during insect development. In all cases, the activity of these proteins is underpinned by their ability to bind large, hydrophobic ligands in their central cavity and segregate them away from the aqueous environment. Furthermore, where they are involved in lipid exchange, recent structural studies have highlighted their ability to establish lipophilic, tubular channels, either between organelles in the case of SMP domains or between lipoprotein particles in the case of CETP. Here, we review the current knowledge on the structure, versatile functions, and evolution of the TULIP superfamily. We propose a deep evolutionary split in this superfamily, predating the Last Eukaryotic Common Ancestor, between the SMP-like proteins, which act on

  1. Integrated analysis of residue coevolution and protein structure in ABC transporters.

    Directory of Open Access Journals (Sweden)

    Attila Gulyás-Kovács

    Full Text Available Intraprotein side chain contacts can couple the evolutionary process of amino acid substitution at one position to that at another. This coupling, known as residue coevolution, may vary in strength. Conserved contacts thus not only define 3-dimensional protein structure, but also indicate which residue-residue interactions are crucial to a protein's function. Therefore, prediction of strongly coevolving residue-pairs helps clarify molecular mechanisms underlying function. Previously, various coevolution detectors have been employed separately to predict these pairs purely from multiple sequence alignments, while disregarding available structural information. This study introduces an integrative framework that improves the accuracy of such predictions, relative to previous approaches, by combining multiple coevolution detectors and incorporating structural contact information. This framework is applied to the ABC-B and ABC-C transporter families, which include the drug exporter P-glycoprotein involved in multidrug resistance of cancer cells, as well as the CFTR chloride channel linked to cystic fibrosis disease. The predicted coevolving pairs are further analyzed based on conformational changes inferred from outward- and inward-facing transporter structures. The analysis suggests that some pairs coevolved to directly regulate conformational changes of the alternating-access transport mechanism, while others to stabilize rigid-body-like components of the protein structure. Moreover, some identified pairs correspond to residues previously implicated in cystic fibrosis.

  2. Secretion of natural and synthetic toxic compounds from filamentous fungi by membrane transporters of the ATP-binding cassette and major facilitator superfamily

    NARCIS (Netherlands)

    Stergiopoulos, I.; Zwiers, L.H.; Waard, De M.A.

    2002-01-01

    This review provides an overview of members of the ATP-binding cassette (ABC) and major facilitator superfamily (MFS) of transporters identified in filamentous fungi. The most common function of these membrane proteins is to provide protection against natural toxic compounds present in the environme

  3. Etude structure/fonction d'une proteine ABC : SUR, le récepteur des sulfonylurées

    OpenAIRE

    Gally, Fabienne

    2005-01-01

    ATP-sensitive K+ channels (KATP channels) are metabolic sensors formed by the association of an ATP-inhibited inwardlyrectifying K+ channel (Kir6.2) and a regulatory subunit, SUR, of the ABC protein family. SUR adjusts channel gating as afunction of internal ATP and ADP. It is also the target of pharmaceutical KATP channel openers (KCO) or blockers.We have worked on several structure/function relationships of SUR as a model of eucaryotic ABC protein. The naturalassociation of SUR with an ion ...

  4. KinMutRF: a random forest classifier of sequence variants in the human protein kinase superfamily

    DEFF Research Database (Denmark)

    Pons, Tirso; Vazquez, Miguel; Matey-Hernandez, María Luisa;

    2016-01-01

    Background: The association between aberrant signal processing by protein kinases and human diseases such as cancer was established long time ago. However, understanding the link between sequence variants in the protein kinase superfamily and the mechanistic complex traits at the molecular level...... unclassified variants were excluded from the training set. Furthermore, KinMutRF is discussed with respect to two independent kinase-specific sets of mutations no included in the training and testing, Kin-Driver (643 variants) and Pon-BTK (1495 variants). Moreover, we provide predictions for the 848 protein...... remains challenging: cells tolerate most genomic alterations and only a minor fraction disrupt molecular function sufficiently and drive disease. Results: KinMutRF is a novel random-forest method to automatically identify pathogenic variants in human kinases. Twenty six decision trees implemented...

  5. Family business: the multidrug-resistance related protein (MRP) ABC transporter genes in Arabidopsis thaliana.

    Science.gov (United States)

    Kolukisaoglu, H Uner; Bovet, Lucien; Klein, Markus; Eggmann, Thomas; Geisler, Markus; Wanke, Dierk; Martinoia, Enrico; Schulz, Burkhard

    2002-11-01

    Despite the completion of the sequencing of the entire genome of Arabidopsis thaliana (L.) Heynh., the exact determination of each single gene and its function remains an open question. This is especially true for multigene families. An approach that combines analysis of genomic structure, expression data and functional genomics to ascertain the role of the members of the multidrug-resistance-related protein ( MRP) gene family, a subfamily of the ATP-binding cassette (ABC) transporters from Arabidopsis is presented. We used cDNA sequencing and alignment-based re-annotation of genomic sequences to define the exact genic structure of all known AtMRP genes. Analysis of promoter regions suggested different induction conditions even for closely related genes. Expression analysis for the entire gene family confirmed these assumptions. Phylogenetic analysis and determination of segmental duplication in the regions of AtMRP genes revealed that the evolution of the extraordinarily high number of ABC transporter genes in plants cannot solely be explained by polyploidisation during the evolution of the Arabidopsis genome. Interestingly MRP genes from Oryza sativa L. (rice; OsMRP) show very similar genomic structures to those from Arabidopsis. Screening of large populations of T-DNA-mutagenised lines of A. thaliana resulted in the isolation of AtMRP insertion mutants. This work opens the way for the defined analysis of a multigene family of important membrane transporters whose broad variety of functions expands their traditional role as cellular detoxifiers. PMID:12430019

  6. 1.55 Å Structure of the Ectoine Binding Protein TeaA of the Osmoregulated TRAP-Transporter TeaABC from Halomonas elongata

    OpenAIRE

    Kuhlmann, Sonja I.; Terwisscha van Scheltinga, Anke C; Bienert, Ralf; Kunte, Hans-Jörg; Ziegler, Christine

    2008-01-01

    TeaABC from the moderate halophilic bacterium Halomonas elongata belongs to the tripartite ATP-independent periplasmic transporters (TRAP-T), a family of secondary transporters functioning in conjunction with periplasmic substrate binding proteins. TeaABC facilitates the uptake of the compatible solutes ectoine and hydroxyectoine that are accumulated in the cytoplasm under hyperosmotic stress to protect the cell from dehydration. TeaABC is the only known TRAP-T activated by osmotic stress. Cu...

  7. Comparative genomic analysis of mitochondrial protein-coding genes in Veneroida clams: Analysis of superfamily-specific genomic and evolutionary features.

    Science.gov (United States)

    Hwang, Jae Yeon; Lee, Chang-Kyu; Kim, Heebal; Nam, Bo-Hye; An, Cheul Min; Park, Jung Youn; Park, Kyu-Hyun; Huh, Chul-Sung; Kim, Eun Bae

    2015-12-01

    Veneroida is the largest order of bivalves, and these clams are commercially important in Asian countries. Although numerous studies have focused on the genomic characters of individual species or genera in Veneroida, superfamily-specific genomic characters have not been determined. In this study, we performed a comparative genomic analysis of 12 mitochondrial protein coding genes (PCGs) from 25 clams in six Veneroida superfamilies to determine genomic and evolutionary features of each superfamily. Length and distribution of nucleotides encoding the PCGs were too variable to define superfamily-specific genomic characters. Phylogenetic analysis revealed that PCGs are suitable for classification of species in three superfamilies: Cardioidea, Mactroidea, and Veneroidea. However, one species classified in Tellinoidea, Sinonovacula constricta, was evolutionarily closer to Solenoidea clams than Tellinoidea clams. dN/dS analysis showed that positively selected sites in NADH dehydrogenase subunit, nd4 and subunit of ATP synthase, atp6 were present in Mactroidea. Differences in selected sites in the nd4 and atp6 could be caused by superfamily-level differences in sodium transport or ATP synthesis functions, respectively. These differences in selected sites in NADH may have conferred these animals, which have low motility and do not generally move, with increased flexibility to maintain homeostasis in the face of osmotic pressure. Our study provides insight into evolutionary traits as well as facilitates identification of veneroids. PMID:26343338

  8. Crystal structure of ATP-binding subunit of an ABC transporter from Geobacillus kaustophilus.

    Science.gov (United States)

    Manjula, M; Pampa, K J; Kumar, S M; Mukherjee, S; Kunishima, N; Rangappa, K S; Lokanath, N K

    2015-03-27

    The ATP binding cassette (ABC) transporters, represent one of the largest superfamilies of primary transporters, which are very essential for various biological functions. The crystal structure of ATP-binding subunit of an ABC transporter from Geobacillus kaustophilus has been determined at 1.77 Å resolution. The crystal structure revealed that the protomer has two thick arms, (arm I and II), which resemble 'L' shape. The ATP-binding pocket is located close to the end of arm I. ATP molecule is docked into the active site of the protein. The dimeric crystal structure of ATP-binding subunit of ABC transporter from G. kaustophilus has been compared with the previously reported crystal structure of ATP-binding subunit of ABC transporter from Salmonella typhimurium.

  9. 1.55 Å Structure of the Ectoine Binding Protein TeaA of the Osmoregulated TRAP-Transporter TeaABC from Halomonas elongata

    NARCIS (Netherlands)

    Kuhlmann, Sonja I.; Terwisscha van Scheltinga, Anke C.; Bienert, Ralf; Kunte, Hans-Jörg; Ziegler, Christine

    2008-01-01

    TeaABC from the moderate halophilic bacterium Halomonas elongata belongs to the tripartite ATP-independent periplasmic transporters (TRAP-T), a family of secondary transporters functioning in conjunction with periplasmic substrate binding proteins. TeaABC facilitates the uptake of the compatible sol

  10. Proteome scale census of major facilitator superfamily transporters in Trichoderma reesei using protein sequence and structure based classification enhanced ranking.

    Science.gov (United States)

    Chaudhary, Nitika; Kumari, Indu; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf

    2016-07-01

    Trichoderma spp. have been acknowledged as potent bio-control agents against microbial pathogens and also as plant growth promoters. Various secondary metabolites are attributed for these beneficial activities. Major facilitator superfamily (MFS) includes the large proportion of efflux-pumps which are linked with membrane transport of these secondary metabolites. We have carried out a proteome-wide identification of MFS transporters using protein sequence and structure based hierarchical method in Trichoderma reesei. 448 proteins out of 9115 were detected to carry transmembrane helices. MFS specific intragenic gene duplication and its context with transport function have been presented. Finally, using homology based techniques, domains and motifs of MFS families have been identified and utilized to classify them. From query dataset of 448 transmembrane proteins, 148 proteins are identified as potential MFS transporters. Sugar porter, drug: H(+) antiporter-1, monocarboxylate porter and anion: cation symporter emerged as major MFS families with 51, 35, 17 and 11 members respectively. Representative protein tertiary structures of these families are homology modeled for structure-function analysis. This study may help to understand the molecular basis of secretion and transport of agriculturally valuable secondary metabolites produced by these bio-control fungal agents which may be exploited in future for enhancing its biotechnological applications in eco-friendly sustainable development.

  11. Proteome scale census of major facilitator superfamily transporters in Trichoderma reesei using protein sequence and structure based classification enhanced ranking.

    Science.gov (United States)

    Chaudhary, Nitika; Kumari, Indu; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf

    2016-07-01

    Trichoderma spp. have been acknowledged as potent bio-control agents against microbial pathogens and also as plant growth promoters. Various secondary metabolites are attributed for these beneficial activities. Major facilitator superfamily (MFS) includes the large proportion of efflux-pumps which are linked with membrane transport of these secondary metabolites. We have carried out a proteome-wide identification of MFS transporters using protein sequence and structure based hierarchical method in Trichoderma reesei. 448 proteins out of 9115 were detected to carry transmembrane helices. MFS specific intragenic gene duplication and its context with transport function have been presented. Finally, using homology based techniques, domains and motifs of MFS families have been identified and utilized to classify them. From query dataset of 448 transmembrane proteins, 148 proteins are identified as potential MFS transporters. Sugar porter, drug: H(+) antiporter-1, monocarboxylate porter and anion: cation symporter emerged as major MFS families with 51, 35, 17 and 11 members respectively. Representative protein tertiary structures of these families are homology modeled for structure-function analysis. This study may help to understand the molecular basis of secretion and transport of agriculturally valuable secondary metabolites produced by these bio-control fungal agents which may be exploited in future for enhancing its biotechnological applications in eco-friendly sustainable development. PMID:27041239

  12. Functional analysis of the ATP-binding cassette (ABC transporter gene family of Tribolium castaneum

    Directory of Open Access Journals (Sweden)

    Broehan Gunnar

    2013-01-01

    Full Text Available Abstract Background The ATP-binding cassette (ABC transporters belong to a large superfamily of proteins that have important physiological functions in all living organisms. Most are integral membrane proteins that transport a broad spectrum of substrates across lipid membranes. In insects, ABC transporters are of special interest because of their role in insecticide resistance. Results We have identified 73 ABC transporter genes in the genome of T. castaneum, which group into eight subfamilies (ABCA-H. This coleopteran ABC family is significantly larger than those reported for insects in other taxonomic groups. Phylogenetic analysis revealed that this increase is due to gene expansion within a single clade of subfamily ABCC. We performed an RNA interference (RNAi screen to study the function of ABC transporters during development. In ten cases, injection of double-stranded RNA (dsRNA into larvae caused developmental phenotypes, which included growth arrest and localized melanization, eye pigmentation defects, abnormal cuticle formation, egg-laying and egg-hatching defects, and mortality due to abortive molting and desiccation. Some of the ABC transporters we studied in closer detail to examine their role in lipid, ecdysteroid and eye pigment transport. Conclusions The results from our study provide new insights into the physiological function of ABC transporters in T. castaneum, and may help to establish new target sites for insect control.

  13. Lysophosphatidylinositol: a novel link between ABC transporters and G-protein-coupled receptors.

    Science.gov (United States)

    Ruban, Emily L; Ferro, Riccardo; Arifin, Syamsul Ahmad; Falasca, Marco

    2014-10-01

    Lysophosphatidylinositol (LPI) is a well-known bioactive lipid that is able to activate signalling cascades relevant to cell proliferation, migration, survival and tumorigenesis. Our previous work suggested that LPI is involved in cancer progression since it can be released in the medium of Ras-transformed fibroblasts and can function as an autocrine modulator of cell growth. Different research groups have established that LPI is the specific and functional ligand for G-protein-coupled receptor 55 (GPR55) and that this GPR55-LPI axis is able to activate signalling cascades that are relevant for different cell functions. Work in our laboratory has recently unravelled an autocrine loop, by which LPI synthesized by cytosolic phospholipase A₂ (cPLA₂) is pumped out of the cell by ATP-binding cassette (ABC) transporter C1 (ABCC1)/multidrug resistance protein 1 (MRP1), initiating a signalling cascade downstream of GPR55. Our current work suggests that blockade of this pathway may represent a novel strategy to inhibit cancer cell proliferation. PMID:25233417

  14. Cementogenesis and the induction of periodontal tissue regeneration by the osteogenic proteins of the transforming growth factor-beta superfamily.

    Science.gov (United States)

    Ripamonti, U; Petit, J-C; Teare, J

    2009-04-01

    The antiquity and severity of periodontal diseases are demonstrated by the hard evidence of alveolar bone loss in gnathic remains of the Pliocene/Pleistocene deposits of the Bloubank Valley at Sterkfontein, Swartkrans and Kromdrai in South Africa. Extant Homo has characterized and cloned a superfamily of proteins which include the bone morphogenetic proteins that regulate tooth morphogenesis at different stages of development as temporally and spatially connected events. The induction of cementogenesis, periodontal ligament and alveolar bone regeneration are regulated by the co-ordinated expression of bone morphogenetic proteins. Naturally derived and recombinant human bone morphogenetic proteins induce periodontal tissue regeneration in mammals. Morphological analyses on undecalcified sections cut at 3-6 mum on a series of mandibular molar Class II and III furcation defects induced in the non-human primate Papio ursinus show the induction of cementogenesis. Sharpey's fibers nucleate as a series of composite collagen bundles within the cementoid matrix in close relation to embedded cementocytes. Osteogenic protein-1 and bone morphogenetic protein-2 possess a structure-activity profile, as shown by the morphology of tissue regeneration, preferentially cementogenic and osteogenic, respectively. In Papio ursinus, transforming growth factor-beta(3) also induces cementogenesis, with Sharpey's fibers inserting into newly formed alveolar bone. Capillary sprouting and invasion determine the sequential insertion and alignment of individual collagenic bundles. The addition of responding stem cells prepared by finely mincing fragments of autogenous rectus abdominis muscle significantly enhances the induction of periodontal tissue regeneration when combined with transforming growth factor-beta(3) implanted in Class II and III furcation defects of Papio ursinus. PMID:18842117

  15. Mammalian antimicrobial proteins and peptides: overview on the RNase A superfamily members involved in innate host defence.

    Science.gov (United States)

    Boix, Ester; Nogués, M Victòria

    2007-05-01

    The review starts with a general outlook of the main mechanisms of action of antimicrobial proteins and peptides, with the final aim of understanding the biological function of antimicrobial RNases, and identifying the key events that account for their selective properties. Although most antibacterial proteins and peptides do display a wide-range spectrum of action, with a cytotoxic activity against bacteria, fungi, eukaryotic parasites and viruses, we have only focused on their bactericidal activity. We start with a detailed description of the main distinctive structural features of the bacteria target and on the polypeptides, which act as selective host defence weapons.Following, we include an overview of all the current available information on the mammalian RNases which display an antimicrobial activity. There is a wealth of information on the structural, catalytic mechanism and evolutionary relationships of the RNase A superfamily. The bovine pancreatic RNase A (RNase A), the reference member of the mammalian RNase family, has been the main research object of several Nobel laureates in the 60s, 70s and 80s. A potential antimicrobial function was only recently suggested for several members of this family. In fact, the recent evolutionary studies indicate that this protein family may have started off with a host defence function. Antimicrobial RNases constitute an interesting example of proteins involved in the mammalian innate immune defence system. Besides, there is wealth of available information on the mechanism of action of short antimicrobial peptides, but little is known on larger polypeptides, that is, on proteins. Therefore, the identification of the mechanisms of action of antimicrobial RNases would contribute to the understanding of the proteins involved in the innate immunity.

  16. Crystal structure of the phosphate-binding protein (PBP-1) of an ABC-type phosphate transporter from Clostridium perfringens

    OpenAIRE

    Gonzalez, Daniel; Richez, Magali; Bergonzi, Celine; Chabriere, Eric; Elias, Mikael

    2014-01-01

    Phosphate limitation is an important environmental stress that affects the metabolism of various organisms and, in particular, can trigger the virulence of numerous bacterial pathogens. Clostridium perfringens, a human pathogen, is one of the most common causes of enteritis necroticans, gas gangrene and food poisoning. Here, we focused on the high affinity phosphate-binding protein (PBP-1) of an ABC-type transporter, responsible for cellular phosphate uptake. We report the crystal structure (...

  17. Molecular Evolution of the Rab-Escort-Protein/Guanine-Nucleotide-Dissociation-Inhibitor Superfamily

    OpenAIRE

    Alory, Christelle; Balch, William E.

    2003-01-01

    Prenylation of Rab GTPases regulating vesicle traffic by Rab geranylgeranyltransferase (RabGGTase) requires a complex formed by the association of newly synthesized Rab proteins with Rab-escort-protein (REP), the choroideremia-gene-product that is mutated in disease, leading to loss of vision. After delivery to the membrane by the REP–Rab complex, subsequent recycling to the cytosol requires the REP-related guanine-nucleotide-dissociation-inhibitor (GDI). Although REP and GDI share common Rab...

  18. Heme Transfer from Streptococcal Cell Surface Protein Shp to HtsA of Transporter HtsABC

    OpenAIRE

    Liu, Mengyao; Lei, Benfang

    2005-01-01

    Human pathogen group A streptococcus (GAS) can take up heme from host heme-containing proteins as a source of iron. Little is known about the heme acquisition mechanism in GAS. We recently identified a streptococcal cell surface protein (designated Shp) and the lipoprotein component (designated HtsA) of an ATP-binding cassette (ABC) transporter made by GAS as heme-binding proteins. In an effort to delineate the molecular mechanism involved in heme acquisition by GAS, heme-free Shp (apo-Shp) a...

  19. Function of the ABC transporters, P-glycoprotein, multidrug resistance protein and breast cancer resistance protein, in minimal residual disease in acute myeloid leukemia.

    NARCIS (Netherlands)

    Pol, van der M.A.; Broxterman, H.J.; Pater, JM; Feller, N.; Maas, M.; Weijers, GW; Scheffer, G.L.; Allen, JD; Scheper, R.J.; Loevezijn, van A; Ossenkoppele, G.J.; Schuurhuis, G.J.

    2003-01-01

    BACKGROUND AND OBJECTIVES: Relapse is common in acute myeloid leukemia (AML) because of persistence of minimal residual disease (MRD). ABC-transporters P-glycoprotein (Pgp) and multidrug resistance protein (MRP), are thought to contribute to treatment failure, while it is unknown whether breast canc

  20. Comparative analyses of quaternary arrangements in homo-oligomeric proteins in superfamilies: Functional implications.

    Science.gov (United States)

    Sudha, Govindarajan; Srinivasan, Narayanaswamy

    2016-09-01

    A comprehensive analysis of the quaternary features of distantly related homo-oligomeric proteins is the focus of the current study. This study has been performed at the levels of quaternary state, symmetry, and quaternary structure. Quaternary state and quaternary structure refers to the number of subunits and spatial arrangements of subunits, respectively. Using a large dataset of available 3D structures of biologically relevant assemblies, we show that only 53% of the distantly related homo-oligomeric proteins have the same quaternary state. Considering these homologous homo-oligomers with the same quaternary state, conservation of quaternary structures is observed only in 38% of the pairs. In 36% of the pairs of distantly related homo-oligomers with different quaternary states the larger assembly in a pair shows high structural similarity with the entire quaternary structure of the related protein with lower quaternary state and it is referred as "Russian doll effect." The differences in quaternary state and structure have been suggested to contribute to the functional diversity. Detailed investigations show that even though the gross functions of many distantly related homo-oligomers are the same, finer level differences in molecular functions are manifested by differences in quaternary states and structures. Comparison of structures of biological assemblies in distantly and closely related homo-oligomeric proteins throughout the study differentiates the effects of sequence divergence on the quaternary structures and function. Knowledge inferred from this study can provide insights for improved protein structure classification and function prediction of homo-oligomers. Proteins 2016; 84:1190-1202. © 2016 Wiley Periodicals, Inc. PMID:27177429

  1. Comparative analyses of quaternary arrangements in homo-oligomeric proteins in superfamilies: Functional implications.

    Science.gov (United States)

    Sudha, Govindarajan; Srinivasan, Narayanaswamy

    2016-09-01

    A comprehensive analysis of the quaternary features of distantly related homo-oligomeric proteins is the focus of the current study. This study has been performed at the levels of quaternary state, symmetry, and quaternary structure. Quaternary state and quaternary structure refers to the number of subunits and spatial arrangements of subunits, respectively. Using a large dataset of available 3D structures of biologically relevant assemblies, we show that only 53% of the distantly related homo-oligomeric proteins have the same quaternary state. Considering these homologous homo-oligomers with the same quaternary state, conservation of quaternary structures is observed only in 38% of the pairs. In 36% of the pairs of distantly related homo-oligomers with different quaternary states the larger assembly in a pair shows high structural similarity with the entire quaternary structure of the related protein with lower quaternary state and it is referred as "Russian doll effect." The differences in quaternary state and structure have been suggested to contribute to the functional diversity. Detailed investigations show that even though the gross functions of many distantly related homo-oligomers are the same, finer level differences in molecular functions are manifested by differences in quaternary states and structures. Comparison of structures of biological assemblies in distantly and closely related homo-oligomeric proteins throughout the study differentiates the effects of sequence divergence on the quaternary structures and function. Knowledge inferred from this study can provide insights for improved protein structure classification and function prediction of homo-oligomers. Proteins 2016; 84:1190-1202. © 2016 Wiley Periodicals, Inc.

  2. The superfamily of C3b/C4b-binding proteins

    DEFF Research Database (Denmark)

    Kristensen, Torsten; D'Eustachio, P; Ogata, R T;

    1987-01-01

    The determination of primary structures by amino acid and nucleotide sequencing for the C3b-and/or C4b-binding proteins H, C4BP, CR1, B, and C2 has revealed the presence of a common structural element. This element is approximately 60 amino acids long and is repeated in a tandem fashion, commenci...

  3. The Caulobacter crescentus Paracrystalline S-Layer Protein Is Secreted by an ABC Transporter (Type I) Secretion Apparatus

    OpenAIRE

    Awram, Peter; Smit, John

    1998-01-01

    Caulobacter crescentus is a gram-negative bacterium that produces a two-dimensional crystalline array on its surface composed of a single 98-kDa protein, RsaA. Secretion of RsaA to the cell surface relies on an uncleaved C-terminal secretion signal. In this report, we identify two genes encoding components of the RsaA secretion apparatus. These components are part of a type I secretion system involving an ABC transporter protein. These genes, lying immediately 3′ of rsaA, were found by screen...

  4. Update of the human secretoglobin (SCGB) gene superfamily and an example of 'evolutionary bloom' of androgen-binding protein genes within the mouse Scgb gene superfamily

    OpenAIRE

    Jackson Brian C; Thompson David C; Wright Mathew W; McAndrews Monica; Bernard Alfred; Nebert Daniel W; Vasiliou Vasilis

    2011-01-01

    Abstract The secretoglobins (SCGBs) comprise a family of small, secreted proteins found in animals exclusively of mammalian lineage. There are 11 human SCGB genes and five pseudogenes. Interestingly, mice have 68 Scgb genes, four of which are highly orthologous to human SCGB genes; the remainder represent an 'evolutionary bloom' and make up a large gene family represented by only six counterparts in humans. SCGBs are found in high concentrations in many mammalian secretions, including fluids ...

  5. Update of the human secretoglobin (SCGB gene superfamily and an example of 'evolutionary bloom' of androgen-binding protein genes within the mouse Scgb gene superfamily

    Directory of Open Access Journals (Sweden)

    Jackson Brian C

    2011-10-01

    Full Text Available Abstract The secretoglobins (SCGBs comprise a family of small, secreted proteins found in animals exclusively of mammalian lineage. There are 11 human SCGB genes and five pseudogenes. Interestingly, mice have 68 Scgb genes, four of which are highly orthologous to human SCGB genes; the remainder represent an 'evolutionary bloom' and make up a large gene family represented by only six counterparts in humans. SCGBs are found in high concentrations in many mammalian secretions, including fluids of the lung, lacrimal gland, salivary gland, prostate and uterus. Whereas the biological activities of most individual SCGBs have not been fully characterised, what already has been discovered suggests that this family has an important role in the modulation of inflammation, tissue repair and tumorigenesis. In mice, the large Scgb1b and Scgb2b gene families encode the androgen-binding proteins, which have been shown to play a role in mate selection. Although much has been learned about SCGBs in recent years, clearly more research remains to be done to allow a better understanding of the roles of these proteins in human health and disease. Such information is predicted to reveal valuable novel drug targets for the treatment of inflammation, as well as designing biomarkers that might identify tissue damage or cancer.

  6. Secretoglobin Superfamily Protein SCGB3A2 Deficiency Potentiates Ovalbumin-Induced Allergic Pulmonary Inflammation

    Directory of Open Access Journals (Sweden)

    Taketomo Kido

    2014-01-01

    Full Text Available Secretoglobin (SCGB 3A2, a cytokine-like secretory protein of small molecular weight, which may play a role in lung inflammation, is predominantly expressed in airway epithelial cells. In order to understand the physiological role of SCGB3A2, Scgb3a2−/− mice were generated and characterized. Scgb3a2−/− mice did not exhibit any overt phenotypes. In ovalbumin- (OVA- induced airway allergy inflammation model, Scgb3a2−/− mice in mixed background showed a decreased OVA-induced airway inflammation, while six times C57BL/6NCr backcrossed congenic Scgb3a2−/− mice showed a slight exacerbation of OVA-induced airway inflammation as compared to wild-type littermates. These results indicate that the loss of SCGB3A2 function was influenced by a modifier gene(s in mixed genetic background and suggest that SCGB3A2 has anti-inflammatory property. The results further suggest the possible use of recombinant human SCGB3A2 as an anti-inflammatory agent.

  7. A Novel Two Domain-Fusion Protein in Cyanobacteria with Similarity to the CAB/ELIP/HLIP Superfamily: Evolutionary Implications and Regulation

    Institute of Scientific and Technical Information of China (English)

    Oliver Kilian; Anne Soisig Steunou; Arthur R.Grossman; Devaki Bhaya

    2008-01-01

    Vascular plants contain abundant, light-harvesting complexes in the thylakoid membrane that are non-covalently associated with chlorophylls and carotenoids. These light-harvesting chlorophyll a/b binding (LHC) proteins are members of an extended CAB/ELIP/HLIP superfamily of distantly related polypeptides, which have between one and four transmembrane helices (TMH). This superfamily includes the single TMH, high-light-inducible proteins (Hlips), found in cyanobacteria that are induced by various stress conditions, including high light, and are considered ancestral to the LHC proteins. The roles of, and evolutionary relationships between, these superfamily members are of particular interest,since they function in both light harvesting and photoprotection and may have evolved through tandem gene duplication and fusion events. We have investigated the Hlips (hli gene family) in the thermophilic unicellular cyanobacterium Synechococcus OS-B'. The five hli genes present on the genome of Synechococcus OS-B' are relatively similar, but transcript analyses indicate that there are different patterns of transcript accumulation when the cells are exposed to various growth conditions, suggesting that different Hlips may have specific functions. Hlip5 has an additional TMH at the N-terminus as a result of a novel fusion event. This additional TMH is very similar to a conserved hypothetical, single membrane-spanning polypeptide present in most cyanobacteria. The evolutionary significance of these results is discussed.

  8. Complement system proteins which interact with C3b or C4b A superfamily of structurally related proteins

    DEFF Research Database (Denmark)

    Reid, K B M; Bentley, D R; Campbell, R D;

    1986-01-01

    Recent cDNA sequencing data has allowed the prediction of the entire amino acid sequences of complement components factor B and C2, the complement control proteins factor H and C4b-binding protein and a partial sequence for the Cab/C4b receptor CR1. These proteins all contain internal repeating u...

  9. The ABCs of Candida albicans Multidrug Transporter Cdr1.

    Science.gov (United States)

    Prasad, Rajendra; Banerjee, Atanu; Khandelwal, Nitesh Kumar; Dhamgaye, Sanjiveeni

    2015-12-01

    In the light of multidrug resistance (MDR) among pathogenic microbes and cancer cells, membrane transporters have gained profound clinical significance. Chemotherapeutic failure, by far, has been attributed mainly to the robust and diverse array of these proteins, which are omnipresent in every stratum of the living world. Candida albicans, one of the major fungal pathogens affecting immunocompromised patients, also develops MDR during the course of chemotherapy. The pivotal membrane transporters that C. albicans has exploited as one of the strategies to develop MDR belongs to either the ATP binding cassette (ABC) or the major facilitator superfamily (MFS) class of proteins. The ABC transporter Candida drug resistance 1 protein (Cdr1p) is a major player among these transporters that enables the pathogen to outplay the battery of antifungals encountered by it. The promiscuous Cdr1 protein fulfills the quintessential need of a model to study molecular mechanisms of multidrug transporter regulation and structure-function analyses of asymmetric ABC transporters. In this review, we cover the highlights of two decades of research on Cdr1p that has provided a platform to study its structure-function relationships and regulatory circuitry for a better understanding of MDR not only in yeast but also in other organisms. PMID:26407965

  10. The PD-(D/EXK superfamily revisited: identification of new members among proteins involved in DNA metabolism and functional predictions for domains of (hitherto unknown function

    Directory of Open Access Journals (Sweden)

    Bujnicki Janusz M

    2005-07-01

    Full Text Available Abstract Background The PD-(D/EXK nuclease superfamily, initially identified in type II restriction endonucleases and later in many enzymes involved in DNA recombination and repair, is one of the most challenging targets for protein sequence analysis and structure prediction. Typically, the sequence similarity between these proteins is so low, that most of the relationships between known members of the PD-(D/EXK superfamily were identified only after the corresponding structures were determined experimentally. Thus, it is tempting to speculate that among the uncharacterized protein families, there are potential nucleases that remain to be discovered, but their identification requires more sensitive tools than traditional PSI-BLAST searches. Results The low degree of amino acid conservation hampers the possibility of identification of new members of the PD-(D/EXK superfamily based solely on sequence comparisons to known members. Therefore, we used a recently developed method HHsearch for sensitive detection of remote similarities between protein families represented as profile Hidden Markov Models enhanced by secondary structure. We carried out a comparison of known families of PD-(D/EXK nucleases to the database comprising the COG and PFAM profiles corresponding to both functionally characterized as well as uncharacterized protein families to detect significant similarities. The initial candidates for new nucleases were subsequently verified by sequence-structure threading, comparative modeling, and identification of potential active site residues. Conclusion In this article, we report identification of the PD-(D/EXK nuclease domain in numerous proteins implicated in interactions with DNA but with unknown structure and mechanism of action (such as putative recombinase RmuC, DNA competence factor CoiA, a DNA-binding protein SfsA, a large human protein predicted to be a DNA repair enzyme, predicted archaeal transcription regulators, and the head

  11. Involvement of helicase II (uvrD gene product) and DNA polymerase I in excision mediated by the uvrABC protein complex.

    OpenAIRE

    Caron, P R; Kushner, S R; Grossman, L

    1985-01-01

    The bimodal-incision nature of the reaction of UV-irradiated DNA catalyzed by the Escherichia coli uvrABC protein complex potentially leads to excision of a 12- to 13-nucleotide-long damaged fragment. However, the oligonucleotide fragment containing the UV-induced pyrimidine dimer is not released under nondenaturing in vitro reaction conditions. Also, the uvrABC proteins are stably bound to the incised DNA and do not turn over after the incision event. In this communication it is shown that r...

  12. Alleviation of temperature-sensitive secretion defect of Pseudomonas fluorescens ATP-binding cassette (ABC) transporter, TliDEF, by a change of single amino acid in the ABC protein, TliD.

    Science.gov (United States)

    Eom, Gyeong Tae; Oh, Joon Young; Park, Ji Hyun; Lim, Hye Jin; Lee, So Jeong; Kim, Eun Young; Choi, Ji-Eun; Jegal, Jonggeon; Song, Bong Keun; Yu, Ju-Hyun; Song, Jae Kwang

    2016-09-01

    An ABC transporter, TliDEF, from Pseudomonas fluorescens SIK W1, mediates the secretion of its cognate lipase, TliA, in a temperature-dependent secretion manner; the TliDEF-mediated secretion of TliA was impossible at the temperatures over 33°C. To isolate a mutant TliDEF capable of secreting TliA at 35°C, the mutagenesis of ABC protein (TliD) was performed. The mutated tliD library where a random point mutation was introduced by error-prone PCR was coexpressed with the wild-type tliE, tliF and tliA in Escherichia coli. Among approximately 10,000 colonies of the tliD library, we selected one colony that formed transparent halo on LB-tributyrin plates at 35°C. At the growth temperature of 35°C, the selected mutant TliD showed 1.75 U/ml of the extracellular lipase activity, while the wild-type TliDEF did not show any detectable lipase activity in the culture supernatant of E. coli. Moreover, the mutant TliD also showed higher level of TliA secretion than the wild-type TliDEF at other culture temperatures, 20°C, 25°C and 30°C. The mutant TliD had a single amino acid change (Ser287Pro) in the predicted transmembrane region in the membrane domain of TliD, implying that the corresponding region of TliD was important for causing the temperature-dependent secretion of TliDEF. These results suggested that the property of ABC transporter could be changed by the change of amino acid in the ABC protein. PMID:27033673

  13. Involvement of helicase II (uvrD gene product) and DNA polymerase I in excision mediated by the uvrABC protein complex

    Energy Technology Data Exchange (ETDEWEB)

    Caron, P.R.; Kushner, S.R.; Grossman, L.

    1985-08-01

    The bimodal-incision nature of the reaction of UV-irradiated DNA catalyzed by the Escherichia coli uvrABC protein complex potentially leads to excision of a 12- to 13-nucleotide-long damaged fragment. However, the oligonucleotide fragment containing the UV-induced pyrimidine dimer is not released under nondenaturing in vitro reaction conditions. Also, the uvrABC proteins are stably bound to the incised DNA and do not turn over after the incision event. In this communication it is shown that release of the damaged fragment from the parental uvrABC-incised DNA is dependent upon either chelating conditions or the simultaneous addition of the uvrD gene product (helicase II) and the polA gene product (DNA polymerase I) when polymerization of deoxynucleoside triphosphate substrates is concomitantly catalyzed. The product of this multiprotein-catalyzed series of reactions serves as a substrate for polynucleotide ligase, resulting in the restoration of the integrity of the strands of DNA. The addition of the uvrD protein to the incised DNA-uvrABC complex also results in turnover of the uvrC protein. It is suggested that the repair processes of incision, excision, resynthesis, and ligation are coordinately catalyzed by a complex of proteins in a ''repairosome'' configuration.

  14. Involvement of helicase II (uvrD gene product) and DNA polymerase I in excision mediated by the uvrABC protein complex

    International Nuclear Information System (INIS)

    The bimodal-incision nature of the reaction of UV-irradiated DNA catalyzed by the Escherichia coli uvrABC protein complex potentially leads to excision of a 12- to 13-nucleotide-long damaged fragment. However, the oligonucleotide fragment containing the UV-induced pyrimidine dimer is not released under nondenaturing in vitro reaction conditions. Also, the uvrABC proteins are stably bound to the incised DNA and do not turn over after the incision event. In this communication it is shown that release of the damaged fragment from the parental uvrABC-incised DNA is dependent upon either chelating conditions or the simultaneous addition of the uvrD gene product (helicase II) and the polA gene product (DNA polymerase I) when polymerization of deoxynucleoside triphosphate substrates is concomitantly catalyzed. The product of this multiprotein-catalyzed series of reactions serves as a substrate for polynucleotide ligase, resulting in the restoration of the integrity of the strands of DNA. The addition of the uvrD protein to the incised DNA-uvrABC complex also results in turnover of the uvrC protein. It is suggested that the repair processes of incision, excision, resynthesis, and ligation are coordinately catalyzed by a complex of proteins in a ''repairosome'' configuration

  15. Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells

    NARCIS (Netherlands)

    Muller, M; deVries, EGE; Jansen, PLM

    1996-01-01

    The human multidrug resistance protein (MRP), a 190-kDa member of the ABC-protein superfamily, is an ATP-dependent glutathione S-conjugate carrier (GS-X pump) and is present in membranes of many, if not all, cells, Overexpression of MRP in tumor cells contributes to resistance to natural product dru

  16. Mapping the functional yeast ABC transporter interactome

    OpenAIRE

    Snider, Jamie; Hanif, Asad; Lee, Mid Eum; Jin, Ke; Yu, Analyn R.; Graham, Chris; Chuk, Matthew; Damjanovic, Dunja; Wierzbicka, Marta; Tang, Priscilla; Balderes, Dina; Wong, Victoria; Jessulat, Matthew; Darowski, Katelyn D.; Luis, Bryan-Joseph San

    2013-01-01

    ABC transporters are a ubiquitous class of integral membrane proteins of immense clinical interest because of their strong association with human disease and pharmacology. To improve our understanding of these proteins, we used Membrane Yeast Two-Hybrid (MYTH) technology to map the protein interactome of all non-mitochondrial ABC transporters in the model organism Saccharomy cescerevisiae, and combined this data with previously reported yeast ABC transporter interactions in the BioGRID databa...

  17. Classification of a Haemophilus influenzae ABC transporter HI1470/71 through its cognate molybdate periplasmic binding protein, MolA.

    Science.gov (United States)

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C; Pinkett, Heather W

    2011-11-01

    molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB(2)C(2) (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 Å resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The ∼100 μM binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate. The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus. PMID:22078568

  18. Classification of a Haemophilus influenzae ABC Transporter HI1470/71 through Its Cognate Molybdate Periplasmic Binding Protein, MolA

    Energy Technology Data Exchange (ETDEWEB)

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C.; Pinkett, Heather W. (CIT); (NWU)

    2014-10-02

    molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB{sub 2}C{sub 2} (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 {angstrom} resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The {approx}100 {mu}M binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate. The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.

  19. Mapping the functional yeast ABC transporter interactome.

    Science.gov (United States)

    Snider, Jamie; Hanif, Asad; Lee, Mid Eum; Jin, Ke; Yu, Analyn R; Graham, Chris; Chuk, Matthew; Damjanovic, Dunja; Wierzbicka, Marta; Tang, Priscilla; Balderes, Dina; Wong, Victoria; Jessulat, Matthew; Darowski, Katelyn D; San Luis, Bryan-Joseph; Shevelev, Igor; Sturley, Stephen L; Boone, Charles; Greenblatt, Jack F; Zhang, Zhaolei; Paumi, Christian M; Babu, Mohan; Park, Hay-Oak; Michaelis, Susan; Stagljar, Igor

    2013-09-01

    ATP-binding cassette (ABC) transporters are a ubiquitous class of integral membrane proteins of immense clinical interest because of their strong association with human disease and pharmacology. To improve our understanding of these proteins, we used membrane yeast two-hybrid technology to map the protein interactome of all of the nonmitochondrial ABC transporters in the model organism Saccharomyces cerevisiae and combined this data with previously reported yeast ABC transporter interactions in the BioGRID database to generate a comprehensive, integrated 'interactome'. We show that ABC transporters physically associate with proteins involved in an unexpectedly diverse range of functions. We specifically examine the importance of the physical interactions of ABC transporters in both the regulation of one another and in the modulation of proteins involved in zinc homeostasis. The interaction network presented here will be a powerful resource for increasing our fundamental understanding of the cellular role and regulation of ABC transporters. PMID:23831759

  20. Solution structure and phylogenetics of Prod1, a member of the three-finger protein superfamily implicated in salamander limb regeneration.

    Directory of Open Access Journals (Sweden)

    Acely Garza-Garcia

    Full Text Available BACKGROUND: Following the amputation of a limb, newts and salamanders have the capability to regenerate the lost tissues via a complex process that takes place at the site of injury. Initially these cells undergo dedifferentiation to a state competent to regenerate the missing limb structures. Crucially, dedifferentiated cells have memory of their level of origin along the proximodistal (PD axis of the limb, a property known as positional identity. Notophthalmus viridescens Prod1 is a cell-surface molecule of the three-finger protein (TFP superfamily involved in the specification of newt limb PD identity. The TFP superfamily is a highly diverse group of metazoan proteins that includes snake venom toxins, mammalian transmembrane receptors and miscellaneous signaling molecules. METHODOLOGY/PRINCIPAL FINDINGS: With the aim of identifying potential orthologs of Prod1, we have solved its 3D structure and compared it to other known TFPs using phylogenetic techniques. The analysis shows that TFP 3D structures group in different categories according to function. Prod1 clusters with other cell surface protein TFP domains including the complement regulator CD59 and the C-terminal domain of urokinase-type plasminogen activator. To infer orthology, a structure-based multiple sequence alignment of representative TFP family members was built and analyzed by phylogenetic methods. Prod1 has been proposed to be the salamander CD59 but our analysis fails to support this association. Prod1 is not a good match for any of the TFP families present in mammals and this result was further supported by the identification of the putative orthologs of both CD59 and N. viridescens Prod1 in sequence data for the salamander Ambystoma tigrinum. CONCLUSIONS/SIGNIFICANCE: The available data suggest that Prod1, and thereby its role in encoding PD identity, is restricted to salamanders. The lack of comparable limb-regenerative capability in other adult vertebrates could be

  1. Superfamilies of Evolved and Designed Networks

    Science.gov (United States)

    Milo, Ron; Itzkovitz, Shalev; Kashtan, Nadav; Levitt, Reuven; Shen-Orr, Shai; Ayzenshtat, Inbal; Sheffer, Michal; Alon, Uri

    2004-03-01

    Complex biological, technological, and sociological networks can be of very different sizes and connectivities, making it difficult to compare their structures. Here we present an approach to systematically study similarity in the local structure of networks, based on the significance profile (SP) of small subgraphs in the network compared to randomized networks. We find several superfamilies of previously unrelated networks with very similar SPs. One superfamily, including transcription networks of microorganisms, represents ``rate-limited'' information-processing networks strongly constrained by the response time of their components. A distinct superfamily includes protein signaling, developmental genetic networks, and neuronal wiring. Additional superfamilies include power grids, protein-structure networks and geometric networks, World Wide Web links and social networks, and word-adjacency networks from different languages.

  2. Pleiotropic effects of the vacuolar ABC transporter MLT1 of Candida albicans on cell function and virulence.

    Science.gov (United States)

    Khandelwal, Nitesh Kumar; Kaemmer, Philipp; Förster, Toni M; Singh, Ashutosh; Coste, Alix T; Andes, David R; Hube, Bernhard; Sanglard, Dominique; Chauhan, Neeraj; Kaur, Rupinder; d'Enfert, Christophe; Mondal, Alok Kumar; Prasad, Rajendra

    2016-06-01

    Among the several mechanisms that contribute to MDR (multidrug resistance), the overexpression of drug-efflux pumps belonging to the ABC (ATP-binding cassette) superfamily is the most frequent cause of resistance to antifungal agents. The multidrug transporter proteins Cdr1p and Cdr2p of the ABCG subfamily are major players in the development of MDR in Candida albicans Because several genes coding for ABC proteins exist in the genome of C. albicans, but only Cdr1p and Cdr2p have established roles in MDR, it is implicit that the other members of the ABC family also have alternative physiological roles. The present study focuses on an ABC transporter of C. albicans, Mlt1p, which is localized in the vacuolar membrane and specifically transports PC (phosphatidylcholine) into the vacuolar lumen. Transcriptional profiling of the mlt1∆/∆ mutant revealed a down-regulation of the genes involved in endocytosis, oxidoreductase activity, virulence and hyphal development. High-throughput MS-based lipidome analysis revealed that the Mlt1p levels affect lipid homoeostasis and thus lead to a plethora of physiological perturbations. These include a delay in endocytosis, inefficient sequestering of reactive oxygen species (ROS), defects in hyphal development and attenuated virulence. The present study is an emerging example where new and unconventional roles of an ABC transporter are being identified. PMID:27026051

  3. Insect Resistance to Bacillus thuringiensis Toxin Cry2Ab Is Conferred by Mutations in an ABC Transporter Subfamily A Protein.

    Directory of Open Access Journals (Sweden)

    Wee Tek Tay

    2015-11-01

    Full Text Available The use of conventional chemical insecticides and bacterial toxins to control lepidopteran pests of global agriculture has imposed significant selection pressure leading to the rapid evolution of insecticide resistance. Transgenic crops (e.g., cotton expressing the Bt Cry toxins are now used world wide to control these pests, including the highly polyphagous and invasive cotton bollworm Helicoverpa armigera. Since 2004, the Cry2Ab toxin has become widely used for controlling H. armigera, often used in combination with Cry1Ac to delay resistance evolution. Isolation of H. armigera and H. punctigera individuals heterozygous for Cry2Ab resistance in 2002 and 2004, respectively, allowed aspects of Cry2Ab resistance (level, fitness costs, genetic dominance, complementation tests to be characterised in both species. However, the gene identity and genetic changes conferring this resistance were unknown, as was the detailed Cry2Ab mode of action. No cross-resistance to Cry1Ac was observed in mutant lines. Biphasic linkage analysis of a Cry2Ab-resistant H. armigera family followed by exon-primed intron-crossing (EPIC marker mapping and candidate gene sequencing identified three independent resistance-associated INDEL mutations in an ATP-Binding Cassette (ABC transporter gene we named HaABCA2. A deletion mutation was also identified in the H. punctigera homolog from the resistant line. All mutations truncate the ABCA2 protein. Isolation of further Cry2Ab resistance alleles in the same gene from field H. armigera populations indicates unequal resistance allele frequencies and the potential for Bt resistance evolution. Identification of the gene involved in resistance as an ABC transporter of the A subfamily adds to the body of evidence on the crucial role this gene family plays in the mode of action of the Bt Cry toxins. The structural differences between the ABCA2, and that of the C subfamily required for Cry1Ac toxicity, indicate differences in the

  4. Insect Resistance to Bacillus thuringiensis Toxin Cry2Ab Is Conferred by Mutations in an ABC Transporter Subfamily A Protein.

    Science.gov (United States)

    Tay, Wee Tek; Mahon, Rod J; Heckel, David G; Walsh, Thomas K; Downes, Sharon; James, William J; Lee, Sui-Fai; Reineke, Annette; Williams, Adam K; Gordon, Karl H J

    2015-11-01

    The use of conventional chemical insecticides and bacterial toxins to control lepidopteran pests of global agriculture has imposed significant selection pressure leading to the rapid evolution of insecticide resistance. Transgenic crops (e.g., cotton) expressing the Bt Cry toxins are now used world wide to control these pests, including the highly polyphagous and invasive cotton bollworm Helicoverpa armigera. Since 2004, the Cry2Ab toxin has become widely used for controlling H. armigera, often used in combination with Cry1Ac to delay resistance evolution. Isolation of H. armigera and H. punctigera individuals heterozygous for Cry2Ab resistance in 2002 and 2004, respectively, allowed aspects of Cry2Ab resistance (level, fitness costs, genetic dominance, complementation tests) to be characterised in both species. However, the gene identity and genetic changes conferring this resistance were unknown, as was the detailed Cry2Ab mode of action. No cross-resistance to Cry1Ac was observed in mutant lines. Biphasic linkage analysis of a Cry2Ab-resistant H. armigera family followed by exon-primed intron-crossing (EPIC) marker mapping and candidate gene sequencing identified three independent resistance-associated INDEL mutations in an ATP-Binding Cassette (ABC) transporter gene we named HaABCA2. A deletion mutation was also identified in the H. punctigera homolog from the resistant line. All mutations truncate the ABCA2 protein. Isolation of further Cry2Ab resistance alleles in the same gene from field H. armigera populations indicates unequal resistance allele frequencies and the potential for Bt resistance evolution. Identification of the gene involved in resistance as an ABC transporter of the A subfamily adds to the body of evidence on the crucial role this gene family plays in the mode of action of the Bt Cry toxins. The structural differences between the ABCA2, and that of the C subfamily required for Cry1Ac toxicity, indicate differences in the detailed mode

  5. Characterization of a novel domain ‘GATE’ in the ABC protein DrrA and its role in drug efflux by the DrrAB complex

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Han; Rahman, Sadia; Li, Wen; Fu, Guoxing; Kaur, Parjit, E-mail: pkaur@gsu.edu

    2015-03-27

    A novel domain, GATE (Glycine-loop And Transducer Element), is identified in the ABC protein DrrA. This domain shows sequence and structural conservation among close homologs of DrrA as well as distantly-related ABC proteins. Among the highly conserved residues in this domain are three glycines, G215, G221 and G231, of which G215 was found to be critical for stable expression of the DrrAB complex. Other conserved residues, including E201, G221, K227 and G231, were found to be critical for the catalytic and transport functions of the DrrAB transporter. Structural analysis of both the previously published crystal structure of the DrrA homolog MalK and the modeled structure of DrrA showed that G215 makes close contacts with residues in and around the Walker A motif, suggesting that these interactions may be critical for maintaining the integrity of the ATP binding pocket as well as the complex. It is also shown that G215A or K227R mutation diminishes some of the atomic interactions essential for ATP catalysis and overall transport function. Therefore, based on both the biochemical and structural analyses, it is proposed that the GATE domain, located outside of the previously identified ATP binding and hydrolysis motifs, is an additional element involved in ATP catalysis. - Highlights: • A novel domain ‘GATE’ is identified in the ABC protein DrrA. • GATE shows high sequence and structural conservation among diverse ABC proteins. • GATE is located outside of the previously studied ATP binding and hydrolysis motifs. • Conserved GATE residues are critical for stability of DrrAB and for ATP catalysis.

  6. The structure of BVU2987 from Bacteroides vulgatus reveals a superfamily of bacterial periplasmic proteins with possible inhibitory function

    International Nuclear Information System (INIS)

    The crystal structure of the BVU2987 gene product from B. vulgatus (UniProt A6L4L1) reveals that members of the new Pfam family PF11396 (domain of unknown function; DUF2874) are similar to β-lactamase inhibitor protein and YpmB. Proteins that contain the DUF2874 domain constitute a new Pfam family PF11396. Members of this family have predominantly been identified in microbes found in the human gut and oral cavity. The crystal structure of one member of this family, BVU2987 from Bacteroides vulgatus, has been determined, revealing a β-lactamase inhibitor protein-like structure with a tandem repeat of domains. Sequence analysis and structural comparisons reveal that BVU2987 and other DUF2874 proteins are related to β-lactamase inhibitor protein, PepSY and SmpA-OmlA proteins and hence are likely to function as inhibitory proteins

  7. Classification of a Haemophilus influenzae ABC transporter HI1470/71 through its cognate molybdate periplasmic binding protein, MolA

    OpenAIRE

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C.; Pinkett, Heather W.

    2011-01-01

    molA(HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB2C2 (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7-Å resolution, respectively. The MolA binding protein binds molybdate and tungstate but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate binding protein structurally solved. The ~100 μM binding affinity...

  8. Smed-SmB, a member of the LSm protein superfamily, is essential for chromatoid body organization and planarian stem cell proliferation.

    Science.gov (United States)

    Fernandéz-Taboada, Enrique; Moritz, Sören; Zeuschner, Dagmar; Stehling, Martin; Schöler, Hans R; Saló, Emili; Gentile, Luca

    2010-04-01

    Planarians are an ideal model system to study in vivo the dynamics of adult pluripotent stem cells. However, our knowledge of the factors necessary for regulating the 'stemness' of the neoblasts, the adult stem cells of planarians, is sparse. Here, we report on the characterization of the first planarian member of the LSm protein superfamily, Smed-SmB, which is expressed in stem cells and neurons in Schmidtea mediterranea. LSm proteins are highly conserved key players of the splicing machinery. Our study shows that Smed-SmB protein, which is localized in the nucleus and the chromatoid body of stem cells, is required to safeguard the proliferative ability of the neoblasts. The chromatoid body, a cytoplasmatic ribonucleoprotein complex, is an essential regulator of the RNA metabolism required for the maintenance of metazoan germ cells. However, planarian neoblasts and neurons also rely on its functions. Remarkably, Smed-SmB dsRNA-mediated knockdown results in a rapid loss of organization of the chromatoid body, an impairment of the ability to post-transcriptionally process the transcripts of Smed-CycB, and a severe proliferative failure of the neoblasts. This chain of events leads to a quick depletion of the neoblast pool, resulting in a lethal phenotype for both regenerating and intact animals. In summary, our results suggest that Smed-SmB is an essential component of the chromatoid body, crucial to ensure a proper RNA metabolism and essential for stem cell proliferation. PMID:20215344

  9. A putative amino acid ABC transporter substrate-binding protein, NMB1612, from Neisseria meningitidis, induces murine bactericidal antibodies against meningococci expressing heterologous NMB1612 proteins.

    Science.gov (United States)

    Hung, Miao-Chiu; Humbert, María Victoria; Laver, Jay R; Phillips, Renee; Heckels, John E; Christodoulides, Myron

    2015-08-26

    The nmb1612 (NEIS1533) gene encoding the ~27-kDa putative amino acid ATP-binding cassette (ABC) transporter, periplasmic substrate-binding protein from Neisseria meningitidis serogroup B (MenB) strain MC58 was cloned and expressed in Escherichia coli, and the purified recombinant (r)NMB1612 was used for animal immunization studies. Immunization of mice with rNMB1612 adsorbed to Al(OH)3 and in liposomes with and without MPLA, induced antiserum with bactericidal activity in an assay using baby rabbit complement, against the homologous strain MC58 (encoding protein representative of Allele 62) and killed heterologous strains encoding proteins of three other alleles (representative of Alleles 1, 64 and 68), with similar SBA titres. However, strain MC58 was not killed (titre protein was killed (median titres of 16-64 in the hSBA). Analysis of the NMB1612 amino acid sequences from 4351 meningococcal strains in the pubmlst.org/Neisseria database and a collection of 13 isolates from colonized individuals and from patients, showed that antibodies raised against rNMB1612 could potentially kill at least 72% of the MenB strains in the complete sequence database. For MenB disease occurring specifically in the UK from 2013 to 2015, >91% of the isolates causing disease in this recent period expressed NMB1612 protein encoded by Allele 1 and could be potentially killed by sera raised to the recombinant antigen in the current study. The NMB1612 protein was surface-accessible and expressed by different meningococcal strains. In summary, the properties of (i) NMB1612 protein conservation and expression, (ii) limited amino acid sequence variation between proteins encoded by different alleles, and (iii) the ability of a recombinant protein to induce cross-strain bactericidal antibodies, would all suggest a promising antigen for consideration for inclusion in new meningococcal vaccines.

  10. Major facilitator superfamily domain-containing protein 2a (MFSD2A has roles in body growth, motor function, and lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Justin H Berger

    Full Text Available The metabolic adaptations to fasting in the liver are largely controlled by the nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARα, where PPARα upregulates genes encoding the biochemical pathway for β-oxidation of fatty acids and ketogenesis. As part of an effort to identify and characterize nutritionally regulated genes that play physiological roles in the adaptation to fasting, we identified Major facilitator superfamily domain-containing protein 2a (Mfsd2a as a fasting-induced gene regulated by both PPARα and glucagon signaling in the liver. MFSD2A is a cell-surface protein homologous to bacterial sodium-melibiose transporters. Hepatic expression and turnover of MFSD2A is acutely regulated by fasting/refeeding, but expression in the brain is constitutive. Relative to wildtype mice, gene-targeted Mfsd2a knockout mice are smaller, leaner, and have decreased serum, liver and brown adipose triglycerides. Mfsd2a knockout mice have normal liver lipid metabolism but increased whole body energy expenditure, likely due to increased β-oxidation in brown adipose tissue and significantly increased voluntary movement, but surprisingly exhibited a form of ataxia. Together, these results indicate that MFSD2A is a nutritionally regulated gene that plays myriad roles in body growth and development, motor function, and lipid metabolism. Moreover, these data suggest that the ligand(s that are transported by MFSD2A play important roles in these physiological processes and await future identification.

  11. Human tetraspanin transmembrane 4 superfamily member 4 or intestinal and liver tetraspan membrane protein is overexpressed in hepatocellular carcinoma and accelerates tumor cell growth

    Institute of Scientific and Technical Information of China (English)

    Ying Li; Leiming Wang; Jie Qiu; Liang Da; Pierre Tiollais; Zaiping Li; Mujun Zhao

    2012-01-01

    The human transmembrane 4 superfamily member 4 or intestinal and liver tetraspan membrane protein (TM4SF4/il-TMP) was originally cloned as an intestinal and liver tetraspan membrane protein and mediates density-dependent cell proliferation.The rat homolog of TM4SF4 was found to be up-regulated in regenerating liver after two-thirds hepatectomy and overexpression of TM4SF4 could enhance liver injury induced by CCl4.However,the expression and significance of TM4SF4/il-TMP in liver cancer remain unknown.Here,we report that TM4SF4/il-TMP is frequently and significantly overexpressed in hepatocellular carcinoma (HCC).Real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that TM4SF4/il-TMP mRNA and protein levels were upregulated in ~80% of HCC tissues,Immunohistochemical analysis of a 75 paired HCC tissue microarray revealed that TM4SF4/il-TMP was significantly overexpressed in HCC tissues (P < 0.001),and high immunointensity of TM4SF4/iI-TMP tended to be in well-to-moderately differentiated HCC compared with poorly differentiated tumors.Functional studies showed that overexpression of TM4SF4/il-TMP in QGY-7701 and BEL-7404 HCC cell lines through stable transfection of TM4SF4 expression plasmid significantly promoted both cell growth and colony formation of HCC cells.Reduction of TM4SF4/il-TMP expression in QGY-7701 and BEL-7404 cells by stably transfecting TM4SF4 antisense plasmid caused great inhibition of cell proliferation.Our findings suggest that TM4SF4/il-TMP has the potential to be biomarker in HCC and plays a crucial role in promotion of cancer cell proliferation.

  12. BC4707 is a major facilitator superfamily multidrug resistance transport protein from Bacillus cereus implicated in fluoroquinolone tolerance.

    Directory of Open Access Journals (Sweden)

    Roger Simm

    Full Text Available Transcriptional profiling highlighted a subset of genes encoding putative multidrug transporters in the pathogen Bacillus cereus that were up-regulated during stress produced by bile salts. One of these multidrug transporters (BC4707 was selected for investigation. Functional characterization of the BC4707 protein in Escherichia coli revealed a role in the energized efflux of xenobiotics. Phenotypic analyses after inactivation of the gene bc4707 in Bacillus cereus ATCC14579 suggested a more specific, but modest role in the efflux of norfloxacin. In addition to this, transcriptional analyses showed that BC4707 is also expressed during growth of B. cereus under non-stressful conditions where it may have a role in the normal physiology of the bacteria. Altogether, the results indicate that bc4707, which is part of the core genome of the B. cereus group of bacteria, encodes a multidrug resistance efflux protein that is likely involved in maintaining intracellular homeostasis during growth of the bacteria.

  13. Effect of the deletion of qmoABC and the promoter distal gene encoding a hypothetical protein on sulfate-reduction in Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zane, Grant M.; Yen, Huei-chi Bill; Wall, Judy D.

    2010-03-18

    The pathway of electrons required for the reduction of sulfate in sulfate-reducing bacteria (SRB) is not yet fully characterized. In order to determine the role of a transmembrane protein complex suggested to be involved in this process, a deletion of Desulfovibrio vulgaris Hildenborough was created by marker exchange mutagenesis that eliminated four genes putatively encoding the QmoABC complex and a hypothetical protein (DVU0851). The Qmo complex (quinone-interacting membrane-bound oxidoreductase) is proposed to be responsible for transporting electrons to the dissimilatory adenosine-5?phosphosulfate (APS) reductase in SRB. In support of the predicted role of this complex, the deletion mutant was unable to grow using sulfate as its sole electron acceptor with a range of electron donors. To explore a possible role for the hypothetical protein in sulfate reduction, a second mutant was constructed that had lost only the gene that codes for DVU0851. The second constructed mutant grew with sulfate as the sole electron acceptor; however, there was a lag that was not present with the wild-type or complemented strain. Neither deletion strain was significantly impaired for growth with sulfite or thiosulfate as terminal electron acceptor. Complementation of the D(qmoABC-DVU0851) mutant with all four genes or only the qmoABC genes restored its ability to grow by sulfate respiration. These results confirmed the prediction that the Qmo complex is in the electron pathway for sulfate-reduction and revealed that no other transmembrane complex could compensate when Qmo was lacking.

  14. Diversity of function in the isocitrate lyase enzyme superfamily: the Dianthus caryophyllus petal death protein cleaves alpha-keto and alpha-hydroxycarboxylic acids.

    Science.gov (United States)

    Lu, Zhibing; Feng, Xiaohua; Song, Ling; Han, Ying; Kim, Alexander; Herzberg, Osnat; Woodson, William R; Martin, Brian M; Mariano, Patrick S; Dunaway-Mariano, Debra

    2005-12-20

    The work described in this paper was carried out to define the chemical function a new member of the isocitrate lyase enzyme family derived from the flowering plant Dianthus caryophyllus. This protein (Swiss-Prot entry Q05957) is synthesized in the senescent flower petals and is named the "petal death protein" or "PDP". On the basis of an analysis of the structural contexts of sequence markers common to the C-C bond lyases of the isocitrate lyase/phosphoenolpyruvate mutase superfamily, a substrate screen that employed a (2R)-malate core structure was designed. Accordingly, stereochemically defined C(2)- and C(3)-substituted malates were synthesized and tested as substrates for PDP-catalyzed cleavage of the C(2)-C(3) bond. The screen identified (2R)-ethyl, (3S)-methylmalate, and oxaloacetate [likely to bind as the hydrate, C(2)(OH)(2) gem-diol] as the most active substrates (for each, k(cat)/K(m) = 2 x 10(4) M(-)(1) s(-)(1)). In contrast to the stringent substrate specificities previously observed for the Escherichia coli isocitrate and 2-methylisocitrate lyases, the PDP tolerated hydrogen, methyl, and to a much lesser extent acetate substituents at the C(3) position (S configuration only) and hydoxyl, methyl, ethyl, propyl, and to a much lesser extent isobutyl substituents at C(2) (R configuration only). It is hypothesized that PDP functions in oxalate production in Ca(2+) sequestering and/or in carbon scavenging from alpha-hydroxycarboxylate catabolites during the biochemical transition accompanying petal senescence.

  15. 硫酯蛋白家族保守区域分析%An Initial Analysis of Sequence Conservation of Thioester-containing Proteins (TEPs) Superfamily

    Institute of Scientific and Technical Information of China (English)

    覃川杰; 王永明; 颉江; 陈香; 廖潇

    2012-01-01

    硫酯蛋白家族(thioester-containing proteins,TEPs)广泛分布于动物界,在动物非特异性免疫反应中发挥了重要的作用,然而其家族成员多,分子进化关系复杂.本研究从基因数据库中挑取已收录TEPs家族各成员的氨基酸全序列,包括α2-巨球蛋白、补体3、补体4、murinoglobulins、卵巨球蛋白、妊娠区带蛋白α-1-抑制因子等.多重序列比对分析TEPs家族各成员间功能位点和保守区域的变化,构建系统进化树分析TEPs家族分子进化.TEPs家族除保守的GC* EQ * * 硫酯键区域及两侧的脯氨酸残基,还有7个完全保守的氨基酸残基及G * * * * Q *T,FPETW,QTD,KPTVK等保守区域.上述分析结果可为深入研究TEPs家族分子进化及动物非特异性免疫进化提供参考.%Thioester-containing proteins (TEPs) were widely distributed in animal kingdom, and played an important role in innate immunity system. This study aimed to study the molecular characterization and motif variation of TEPs, and lead to an improved classification system for TEPs containing fhioester bond with detailed sequence comparison. A PSI-BLAST search at NCBI was performed using Musmmculu alpha 2-macroglobulin as a query, and this superfamily includes alpha 2-mac-roglobulin. murinoglobulins, ovoinacroglobulins, pregnancy zone proteins, alpha-1-inhibitor III, and complement proteins (complement) C3,C4. Then, multiple sequence alignments and phylogenetic analysis of TEPs domains were performed using the CLUSTALW program. The blasted results showed, except for conserved G * * EQ * * domain, there were about 12 fully conserved domains in all blasted sequences. Alignment of deduced ammo acid sequence within TEPs showed that the over all structure of TEPs are evolutionarily conserved. In TEPs family, the function motifs were conserved with little variation, other amino acid sequences were low homologous. These analyses have established a framework of information about evolutionary

  16. A reciprocating twin-channel model for ABC transporters.

    Science.gov (United States)

    Jones, Peter M; George, Anthony M

    2014-08-01

    ABC transporters comprise a large, diverse, and ubiquitous superfamily of membrane active transporters. Their core architecture is a dimer of dimers, comprising two transmembrane (TM) domains that bind substrate, and two ATP-binding cassettes, which use the cell's energy currency to couple substrate translocation to ATP hydrolysis. Despite the availability of over a dozen resolved structures and a wealth of biochemical and biophysical data, this field is bedeviled by controversy and long-standing mechanistic questions remain unresolved. The prevailing paradigm for the ABC transport mechanism is the Switch Model, in which the ATP-binding cassettes dimerize upon binding two ATP molecules, and thence dissociate upon sequential ATP hydrolysis. This cycle of nucleotide-binding domain (NBD) dimerization and dissociation is coupled to a switch between inward- or outward facing conformations of a single TM channel; this alternating access enables substrate binding on one face of the membrane and its release at the other. Notwithstanding widespread acceptance of the Switch Model, there is substantial evidence that the NBDs do not separate very much, if at all, and thus physical separation of the ATP cassettes observed in crystallographic structures may be an artefact. An alternative Constant Contact Model has been proposed, in which ATP hydrolysis occurs alternately at the two ATP-binding sites, with one of the sites remaining closed and containing occluded nucleotide at all times. In this model, the cassettes remain in contact and the active sites swing open in an alternately seesawing motion. Whilst the concept of NBD association/dissociation in the Switch Model is naturally compatible with a single alternating-access channel, the asymmetric functioning proposed by the Constant Contact model suggests an alternating or reciprocating function in the TMDs. Here, a new model for the function of ABC transporters is proposed in which the sequence of ATP binding, hydrolysis, and

  17. A Major Facilitator Superfamily protein encoded by TcMucK gene is not required for cuticle pigmentation, growth and development in Tribolium castaneum.

    Science.gov (United States)

    Mun, Seulgi; Noh, Mi Young; Osanai-Futahashi, Mizuko; Muthukrishnan, Subbaratnam; Kramer, Karl J; Arakane, Yasuyuki

    2014-06-01

    Insect cuticle pigmentation and sclerotization (tanning) are vital physiological processes for insect growth, development and survival. We have previously identified several colorless precursor molecules as well as enzymes involved in their biosynthesis and processing to yield the mature intensely colored body cuticle pigments. A recent study indicated that the Bombyx mori (silkmoth) gene, BmMucK, which encodes a protein orthologous to a Culex pipiens quiquefasciatus (Southern house mosquito) cis,cis, muconate transporter, is a member of the "Major Facilitator Superfamily" (MFS) of transporter proteins and is associated with the appearance of pigmented body segments of naturally occurring body color mutants of B. mori. While RNA interference of the BmMucK gene failed to result in any observable phenotype, RNAi using a dsRNA for an orthologous gene from the red flour beetle, Tribolium castaneum, was reported to result in molting defects and darkening of the cuticle and some body parts, leading to the suggestion that orthologs of MucK genes may differ in their functions among insects. To verify the role and essentiality of the ortholog of this gene in development and body pigmentation function in T. castaneum we obtained cDNAs for the orthologous gene (TcMucK) from RNA isolated from the GA-1 wild-type strain of T. castaneum. The sequence of a 1524 nucleotides-long cDNA for TcMucK which encodes the putatively full-length protein, was assembled from two overlapping RT-PCR fragments and the expression profile of this gene during development was analyzed by real-time PCR. This cDNA encodes a 55.8 kDa protein consisting of 507 amino acid residues and includes 11 putative transmembrane segments. Transcripts of TcMucK were detected throughout all of the developmental stages analyzed. The function of this gene was explored by injection of two different double-stranded RNAs targeting different regions of the TcMucK gene (dsTcMucKs) into young larvae to down

  18. Identification of the minimal region in lipase ABC transporter recognition domain of Pseudomonas fluorescens for secretion and fluorescence of green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Park Yeonwoo

    2012-05-01

    Full Text Available Abstract Background TliA is a thermostable lipase secreted by the type 1 secretion system (T1SS of Pseudomonas fluorescens. The secretion is promoted by its secretion/chaperone domain located near the C-terminus, which is composed mainly of four Repeat-in-Toxin (RTX repeats. In order to identify the minimal region of TliA responsible for its secretion, five different copies of the secretion/chaperone domain, each involving truncated N-terminal residues and a common C-terminus, were acquired and named as lipase ABC transporter recognition domains (LARDs. Each LARD was fused to epidermal growth factor (EGF or green fluorescent protein (GFP, and the secretion of EGF-LARD or GFP-LARD fusion proteins was assessed in Escherichia coli with ABC transporter. Results Among the fusion proteins, GFP or EGF with 105-residue LARD3 was most efficiently secreted. In addition, GFP-LARD3 emitted wild type GFP fluorescence. Structurally, LARD3 had the 4 RTX repeats exposed at the N-terminus, while other LARDs had additional residues prior to them or missed some of the RTX repeats. LARD3 was both necessary and sufficient for efficient secretion and maintenance of GFP fluorescence in E. coli, which was also confirmed in P. fluorescens and P. fluorescens ▵tliA, a knock-out mutant of tliA. Conclusion LARD3 was a potent secretion signal in T1SS for its fusion flanking RTX motif, which enhanced secretion and preserved the fluorescence of GFP. LARD3-mediated secretion in E. coli or P. fluorescens will enable the development of enhanced protein manufacturing factory and recombinant microbe secreting protein of interest in situ.

  19. Functionally Relevant Residues of Cdr1p: A Multidrug ABC Transporter of Human Pathogenic Candida albicans

    Directory of Open Access Journals (Sweden)

    Rajendra Prasad

    2011-01-01

    Full Text Available Reduced intracellular accumulation of drugs (due to rapid efflux mediated by the efflux pump proteins belonging to ABC (ATP Binding Cassette and MFS (Major Facilitators superfamily is one of the most common strategies adopted by multidrug resistance (MDR pathogenic yeasts. To combat MDR, it is essential to understand the structure and function of these transporters so that inhibitors/modulators to these can be developed. The sequence alignments of the ABC transporters reveal selective divergence within much conserved domains of Nucleotide-Binding Domains (NBDs which is unique to all fungal transporters. Recently, the role of conserved but divergent residues of Candida Drug Resistance 1 (CDR1, an ABC drug transporter of human pathogenic Candida albicans, has been examined with regard to ATP binding and hydrolysis. In this paper, we focus on some of the recent advances on the relevance of divergent and conserved amino acids of CaCdr1p and also discuss as to how drug interacts with Trans Membrane Domains (TMDs residues for its extrusion from MDR cells.

  20. ABC Kinga kauplused = ABC King shoe stores

    Index Scriptorium Estoniae

    2011-01-01

    Tallinnas Kristiine keskuses, Tartu Kaubamajas ja Pärnus Port Artur 2 asuvate ABC Kinga kaupluste sisekujundusest. Sisearhitekid Andres Labi ja Janno Roos (Ruumilabor OÜ), loetletud nende ühiselt tehtud töid

  1. Tumor Necrosis Factor Superfamily in Innate Immunity and Inflammation

    OpenAIRE

    Šedý, John; Bekiaris, Vasileios; Ware, Carl F.

    2014-01-01

    The tumor necrosis factor superfamily (TNFSF) and its corresponding receptor superfamily (TNFRSF) form communication pathways required for developmental, homeostatic, and stimulus-responsive processes in vivo. Although this receptor–ligand system operates between many different cell types and organ systems, many of these proteins play specific roles in immune system function. The TNFSF and TNFRSF proteins lymphotoxins, LIGHT (homologous to lymphotoxins, exhibits inducible expression, and comp...

  2. Isolation and Characterization of the Colletotrichum acutatum ABC Transporter CaABC1

    Directory of Open Access Journals (Sweden)

    Suyoung Kim

    2014-12-01

    Full Text Available Fungi tolerate exposure to various abiotic stresses, including cytotoxic compounds and fungicides, via their ATP-driven efflux pumps belonging to ATP-binding cassette (ABC transporters. To clarify the molecular basis of interaction between the fungus and various abiotic stresses including fungicides, we constructed a cDNA library from germinated conidia of Colletotrichum acutatum, a major anthracnose pathogen of pepper (Capsicum annum L.. Over 1,000 cDNA clones were sequenced, of which single clone exhibited significant nucleotide sequence homology to ABC transporter genes. We isolated three fosmid clones containing the C. acutatum ABC1 (CaABC1 gene in full-length from genomic DNA library screening. The CaABC1 gene consists of 4,059 bp transcript, predicting a 1,353-aa protein. The gene contains the typical ABC signature and Walker A and B motifs. The 5′-flanking region contains a CAAT motif, a TATA box, and a Kozak region. Phylogenetic and structural analysis suggested that the CaABC1 is a typical ABC transporter gene highly conserved in various fungal species, as well as in Chromista, Metazoans, and Viridiplantae. We also found that CaABC1 was up-regulated during conidiation and a minimal medium condition. Moreover, CaABC1 was induced in iprobenfos, kresoxim-methyl, thiophanate-methyl, and hygromycin B. These results demonstrate that CaABC1 is necessary for conidiation, abiotic stress, and various fungicide resistances. These results will provide the basis for further study on the function of ABC transporter genes in C. acutatum.

  3. The lipopolysaccharide-binding protein participating in hemocyte nodule formation in the silkworm Bombyx mori is a novel member of the C-type lectin superfamily with two different tandem carbohydrate-recognition domains.

    Science.gov (United States)

    Koizumi, N; Imamura, M; Kadotani, T; Yaoi, K; Iwahana, H; Sato, R

    1999-01-25

    We recently isolated and characterized the lipopolysaccharide (LPS)-binding protein, BmLBP, from the larval hemolymph of the silkworm Bombyx mori. BmLBP is a pattern recognition molecule that recognizes the lipid A portion of LPS and participates in a cellular defense reaction. This paper describes the cDNA cloning of BmLBP. The deduced amino acid sequence of BmLBP revealed that BmLBP is a novel member of the C-type lectin superfamily with a unique structural feature that consists of two different carbohydrate-recognition domains in tandem, a short and a long form. PMID:9989592

  4. Development of Fourth Generation ABC Inhibitors from Natural Products: A Novel Approach to Overcome Cancer Multidrug Resistance.

    Science.gov (United States)

    Karthikeyan, Subburayan; Hoti, Sugeerappa Laxmanappa

    2015-01-01

    Multidrug resistance (MDR) in cancer caused due to overexpression of ABC drug transporters is a major problem in modern chemotherapy. Molecular investigations on MDR have revealed that the resistance is due to various transport proteins of the ABC superfamily which include Phosphoglycoprotein (P-gp/MDR1/ ABCB1), multidrug resistance-associated protein-1 (MRP1), and the breast cancer resistance protein (BCRP). They have been characterized functionally and are considered as major players in the development of MDR in cancer cells. These ATP-dependent transporter proteins cause MDR either by decreased uptake of the drug or increased efflux of the drug from the target organelles. Several MDR-reversing agents are being developed and are in various stages of clinical trials. The first three generations of ABC modulators such as quinine, verapamil, cyclosporine-A, tariquitor, PSC 833, LY335979, and GF120918 required to be administered in high doses to reverse MDR and were associated with adverse effects. Additionally, these modulators non-selectively inhibit ABC and adversely accumulate chemotherapeutic drugs in brain and kidney. Currently, research has stepped up towards reversing MDR by using natural products which exhibitted potential as chemosensitizers. Globally, there is a rich biodiversity of natural products which can be sourced for developing drugs. These products may provide more lead compounds with superior activity, foremost to the development of more effective therapies for MDR cancer cells. Here, we briefly review the status of natural products for reversing MDR modulators, and discuss the long term goal of MDR strategies in current clinical settings. PMID:25584696

  5. A SNARE-Like Superfamily Protein SbSLSP from the Halophyte Salicornia brachiata Confers Salt and Drought Tolerance by Maintaining Membrane Stability, K(+)/Na(+) Ratio, and Antioxidant Machinery.

    Science.gov (United States)

    Singh, Dinkar; Yadav, Narendra Singh; Tiwari, Vivekanand; Agarwal, Pradeep K; Jha, Bhavanath

    2016-01-01

    About 1000 salt-responsive ESTs were identified from an extreme halophyte Salicornia brachiata. Among these, a novel salt-inducible gene SbSLSP (Salicornia brachiata SNARE-like superfamily protein), showed up-regulation upon salinity and dehydration stress. The presence of cis-regulatory motifs related to abiotic stress in the putative promoter region supports our finding that SbSLSP gene is inducible by abiotic stress. The SbSLSP protein showed a high sequence identity to hypothetical/uncharacterized proteins from Beta vulgaris, Spinacia oleracea, Eucalyptus grandis, and Prunus persica and with SNARE-like superfamily proteins from Zostera marina and Arabidopsis thaliana. Bioinformatics analysis predicted a clathrin adaptor complex small-chain domain and N-myristoylation site in the SbSLSP protein. Subcellular localization studies indicated that the SbSLSP protein is mainly localized in the plasma membrane. Using transgenic tobacco lines, we establish that overexpression of SbSLSP resulted in elevated tolerance to salt and drought stress. The improved tolerance was confirmed by alterations in a range of physiological parameters, including high germination and survival rate, higher leaf chlorophyll contents, and reduced accumulation of Na(+) ion and reactive oxygen species (ROS). Furthermore, overexpressing lines also showed lower water loss, higher cell membrane stability, and increased accumulation of proline and ROS-scavenging enzymes. Overexpression of SbSLSP also enhanced the transcript levels of ROS-scavenging and signaling enzyme genes. This study is the first investigation of the function of the SbSLSP gene as a novel determinant of salinity/drought tolerance. The results suggest that SbSLSP could be a potential candidate to increase salinity and drought tolerance in crop plants for sustainable agriculture in semi-arid saline soil. PMID:27313584

  6. A SNARE-like superfamily protein SbSLSP from the halophyte Salicornia brachiata confers salt and drought tolerance by maintaining membrane stability, K+/Na+ ratio, and antioxidant machinery

    Directory of Open Access Journals (Sweden)

    Dinkar eSingh

    2016-06-01

    Full Text Available About 1000 salt-responsive ESTs were identified from an extreme halophyte Salicornia brachiata. Among these, a novel salt-inducible gene SbSLSP, (Salicornia brachiata SNARE-like superfamily protein showed up-regulation upon salinity and dehydration stress. The presence of cis-regulatory motifs related to abiotic stress in the putative promoter region supports our finding that SbSLSP gene is inducible by abiotic stress. The SbSLSP protein showed a high sequence identity to hypothetical/uncharacterised proteins from Beta vulgaris, Spinacia oleracea, Eucalyptus grandis and Prunus persica and with SNARE-like superfamily proteins from Zostera marina and Arabidopsis thaliana. Bioinformatics analysis predicted a clathrin adaptor complex small-chain domain and N-myristoylation site in the SbSLSP protein. Subcellular localisation studies indicated that the SbSLSP protein is mainly localised in the plasma membrane. Using transgenic tobacco lines, we establish that overexpression of SbSLSP resulted in elevated tolerance to salt and drought stress. The improved tolerance was confirmed by alterations in a range of physiological parameters, including high germination and survival rate, higher leaf chlorophyll contents, and reduced accumulation of Na+ ion and reactive oxygen species (ROS. Furthermore, overexpressing lines also showed lower water loss, higher cell membrane stability and increased accumulation of proline and ROS-scavenging enzymes. Overexpression of SbSLSP also enhanced the transcript levels of ROS-scavenging and signalling enzyme genes. This study is the first investigation of the function of the SbSLSP gene as a novel determinant of salinity/drought tolerance. The results suggest that SbSLSP could be a potential candidate to increase salinity and drought tolerance in crop plants for sustainable agriculture in semi-arid saline soil.

  7. A SNARE-Like Superfamily Protein SbSLSP from the Halophyte Salicornia brachiata Confers Salt and Drought Tolerance by Maintaining Membrane Stability, K(+)/Na(+) Ratio, and Antioxidant Machinery.

    Science.gov (United States)

    Singh, Dinkar; Yadav, Narendra Singh; Tiwari, Vivekanand; Agarwal, Pradeep K; Jha, Bhavanath

    2016-01-01

    About 1000 salt-responsive ESTs were identified from an extreme halophyte Salicornia brachiata. Among these, a novel salt-inducible gene SbSLSP (Salicornia brachiata SNARE-like superfamily protein), showed up-regulation upon salinity and dehydration stress. The presence of cis-regulatory motifs related to abiotic stress in the putative promoter region supports our finding that SbSLSP gene is inducible by abiotic stress. The SbSLSP protein showed a high sequence identity to hypothetical/uncharacterized proteins from Beta vulgaris, Spinacia oleracea, Eucalyptus grandis, and Prunus persica and with SNARE-like superfamily proteins from Zostera marina and Arabidopsis thaliana. Bioinformatics analysis predicted a clathrin adaptor complex small-chain domain and N-myristoylation site in the SbSLSP protein. Subcellular localization studies indicated that the SbSLSP protein is mainly localized in the plasma membrane. Using transgenic tobacco lines, we establish that overexpression of SbSLSP resulted in elevated tolerance to salt and drought stress. The improved tolerance was confirmed by alterations in a range of physiological parameters, including high germination and survival rate, higher leaf chlorophyll contents, and reduced accumulation of Na(+) ion and reactive oxygen species (ROS). Furthermore, overexpressing lines also showed lower water loss, higher cell membrane stability, and increased accumulation of proline and ROS-scavenging enzymes. Overexpression of SbSLSP also enhanced the transcript levels of ROS-scavenging and signaling enzyme genes. This study is the first investigation of the function of the SbSLSP gene as a novel determinant of salinity/drought tolerance. The results suggest that SbSLSP could be a potential candidate to increase salinity and drought tolerance in crop plants for sustainable agriculture in semi-arid saline soil.

  8. A SNARE-Like Superfamily Protein SbSLSP from the Halophyte Salicornia brachiata Confers Salt and Drought Tolerance by Maintaining Membrane Stability, K+/Na+ Ratio, and Antioxidant Machinery

    Science.gov (United States)

    Singh, Dinkar; Yadav, Narendra Singh; Tiwari, Vivekanand; Agarwal, Pradeep K.; Jha, Bhavanath

    2016-01-01

    About 1000 salt-responsive ESTs were identified from an extreme halophyte Salicornia brachiata. Among these, a novel salt-inducible gene SbSLSP (Salicornia brachiata SNARE-like superfamily protein), showed up-regulation upon salinity and dehydration stress. The presence of cis-regulatory motifs related to abiotic stress in the putative promoter region supports our finding that SbSLSP gene is inducible by abiotic stress. The SbSLSP protein showed a high sequence identity to hypothetical/uncharacterized proteins from Beta vulgaris, Spinacia oleracea, Eucalyptus grandis, and Prunus persica and with SNARE-like superfamily proteins from Zostera marina and Arabidopsis thaliana. Bioinformatics analysis predicted a clathrin adaptor complex small-chain domain and N-myristoylation site in the SbSLSP protein. Subcellular localization studies indicated that the SbSLSP protein is mainly localized in the plasma membrane. Using transgenic tobacco lines, we establish that overexpression of SbSLSP resulted in elevated tolerance to salt and drought stress. The improved tolerance was confirmed by alterations in a range of physiological parameters, including high germination and survival rate, higher leaf chlorophyll contents, and reduced accumulation of Na+ ion and reactive oxygen species (ROS). Furthermore, overexpressing lines also showed lower water loss, higher cell membrane stability, and increased accumulation of proline and ROS-scavenging enzymes. Overexpression of SbSLSP also enhanced the transcript levels of ROS-scavenging and signaling enzyme genes. This study is the first investigation of the function of the SbSLSP gene as a novel determinant of salinity/drought tolerance. The results suggest that SbSLSP could be a potential candidate to increase salinity and drought tolerance in crop plants for sustainable agriculture in semi-arid saline soil. PMID:27313584

  9. Designer TGFβ superfamily ligands with diversified functionality.

    Directory of Open Access Journals (Sweden)

    George P Allendorph

    Full Text Available Transforming Growth Factor--beta (TGFβ superfamily ligands, including Activins, Growth and Differentiation Factors (GDFs, and Bone Morphogenetic Proteins (BMPs, are excellent targets for protein-based therapeutics because of their pervasiveness in numerous developmental and cellular processes. We developed a strategy termed RASCH (Random Assembly of Segmental Chimera and Heteromer, to engineer chemically-refoldable TGFβ superfamily ligands with unique signaling properties. One of these engineered ligands, AB208, created from Activin-βA and BMP-2 sequences, exhibits the refolding characteristics of BMP-2 while possessing Activin-like signaling attributes. Further, we find several additional ligands, AB204, AB211, and AB215, which initiate the intracellular Smad1-mediated signaling pathways more strongly than BMP-2 but show no sensitivity to the natural BMP antagonist Noggin unlike natural BMP-2. In another design, incorporation of a short N-terminal segment from BMP-2 was sufficient to enable chemical refolding of BMP-9, without which was never produced nor refolded. Our studies show that the RASCH strategy enables us to expand the functional repertoire of TGFβ superfamily ligands through development of novel chimeric TGFβ ligands with diverse biological and clinical values.

  10. Differentiation of infection from vaccination in foot-and-mouth disease by the detection of antibodies to the non-structural proteins 3D, 3AB and 3ABC in ELISA using antigens expressed in baculovirus

    DEFF Research Database (Denmark)

    Sørensen, K.J.; Madsen, K.G.; Madsen, E.S.;

    1998-01-01

    a positive result in both the 3AB and the 3ABC ELISA's. Two cattle that had been both vaccinated and infected also gave, positive results in both tests, suggesting that the 3AB and 3ABC ELISA's, but not the 3D ELISA might represent a reliable means of detecting infection in a vaccinated population.......The baculovirus expression system was found to be efficient at expressing the 3D, the 3AB and the 3ABC non-structural proteins (NSP) of foot-and-mouth disease virus (FMDV) as antigens recognised by immune sera in ELISA. ELISA's using 3D, 3AB and 3ABC detected antibodies from day 8 and 10 after...... experimental infection of susceptible cattle and sheep and cattle remained seropositive for more than 395 days. The ELISA's detected antibodies against any of the seven serotypes of FMDV. The 3D ELISA was specific and precise and as sensitive as established ELISA's which measure antibody to structural proteins...

  11. Structure and Function of the LmbE-like Superfamily

    Directory of Open Access Journals (Sweden)

    Shane Viars

    2014-05-01

    Full Text Available The LmbE-like superfamily is comprised of a series of enzymes that use a single catalytic metal ion to catalyze the hydrolysis of various substrates. These substrates are often key metabolites for eukaryotes and prokaryotes, which makes the LmbE-like enzymes important targets for drug development. Herein we review the structure and function of the LmbE-like proteins identified to date. While this is the newest superfamily of metallohydrolases, a growing number of functionally interesting proteins from this superfamily have been characterized. Available crystal structures of LmbE-like proteins reveal a Rossmann fold similar to lactate dehydrogenase, which represented a novel fold for (zinc metallohydrolases at the time the initial structure was solved. The structural diversity of the N-acetylglucosamine containing substrates affords functional diversity for the LmbE-like enzyme superfamily. The majority of enzymes identified to date are metal-dependent deacetylases that catalyze the hydrolysis of a N-acetylglucosamine moiety on substrate using a combination of amino acid side chains and a single bound metal ion, predominantly zinc. The catalytic zinc is coordinated to proteins via His2-Asp-solvent binding site. Additionally, studies indicate that protein dynamics play important roles in regulating access to the active site and facilitating catalysis for at least two members of this protein superfamily.

  12. The role of a conserved acidic residue in calcium-dependent protein folding for a low density lipoprotein (LDL)-A module: implications in structure and function for the LDL receptor superfamily.

    Science.gov (United States)

    Guo, Ying; Yu, Xuemei; Rihani, Kayla; Wang, Qing-Yin; Rong, Lijun

    2004-04-16

    One common feature of the more than 1,000 complement-type repeats (or low density lipoprotein (LDL)-A modules) found in LDL receptor and the other members of the LDL receptor superfamily is a cluster of five highly conserved acidic residues in the C-terminal region, DXXXDXXDXXDE. However, the role of the third conserved aspartate of these LDL-A modules in protein folding and ligand recognition has not been elucidated. In this report, using a model LDL-A module and several experimental approaches, we demonstrate that this acidic residue, like the other four conserved acidic residues, is involved in calcium-dependent protein folding. These results suggest an alternative calcium coordination conformation for the LDL-A modules. The proposed model provides a plausible explanation for the conservation of this acidic residue among the LDL-A modules. Furthermore, the model can explain why mutations of this residue in human LDL receptor cause familial hypercholesterolemia. PMID:14749324

  13. Thermodynamics of ABC transporters.

    Science.gov (United States)

    Zhang, Xuejun C; Han, Lei; Zhao, Yan

    2016-01-01

    ABC transporters form the largest of all transporter families, and their structural study has made tremendous progress over recent years. However, despite such advances, the precise mechanisms that determine the energy-coupling between ATP hydrolysis and the conformational changes following substrate binding remain to be elucidated. Here, we present our thermodynamic analysis for both ABC importers and exporters, and introduce the two new concepts of differential-binding energy and elastic conformational energy into the discussion. We hope that the structural analysis of ABC transporters will henceforth take thermodynamic aspects of transport mechanisms into account as well.

  14. The quorum-sensing molecule farnesol is a modulator of drug efflux mediated by ABC multidrug transporters and synergizes with drugs in Candida albicans.

    Science.gov (United States)

    Sharma, Monika; Prasad, Rajendra

    2011-10-01

    Overexpression of the CaCDR1-encoded multidrug efflux pump protein CaCdr1p (Candida drug resistance protein 1), belonging to the ATP binding cassette (ABC) superfamily of transporters, is one of the most prominent contributors of multidrug resistance (MDR) in Candida albicans. Thus, blocking or modulating the function of the drug efflux pumps represents an attractive approach in combating MDR. In the present study, we provide first evidence that the quorum-sensing molecule farnesol (FAR) is a specific modulator of efflux mediated by ABC multidrug transporters, such as CaCdr1p and CaCdr2p of C. albicans and ScPdr5p of Saccharomyces cerevisiae. Interestingly, FAR did not modulate the efflux mediated by the multidrug extrusion pump protein CaMdr1p, belonging to the major facilitator superfamily (MFS). Kinetic data revealed that FAR competitively inhibited rhodamine 6G efflux in CaCdr1p-overexpressing cells, with a simultaneous increase in an apparent K(m) without affecting the V(max) values and the ATPase activity. We also observed that when used in combination, FAR at a nontoxic concentration synergized with the drugs at their respective nonlethal concentrations, as was evident from their resistant clinical isolates of C. albicans. Our biochemical experiments revealed that the synergistic interaction of FAR with the drugs led to reactive oxygen species accumulation, which triggered early apoptosis, and that both could be partly reversed by the addition of an antioxidant. Collectively, FAR modulates drug extrusion mediated exclusively by ABC proteins and is synergistic to fluconazole (FLC), ketoconazole (KTC), miconazole (MCZ), and amphotericin (AMB). PMID:21768514

  15. Know Your Diabetes ABCs

    Medline Plus

    Full Text Available ... the importance of blood pressure, cholesterol and diabetes management to prevent heart attacks and strokes. Sharon Boykin: ... Knowing your ABCs will help you reduce your risk of heart attack and stroke to live a ...

  16. Know Your Diabetes ABCs

    Medline Plus

    Full Text Available ... Announcer: People with diabetes should work with their doctors to monitor the ABCs of diabetes. Judith Fradkin, ... want patients who have diabetes to ask their doctors, "What is my A1C, my blood pressure, my ...

  17. Know Your Diabetes ABCs

    Medline Plus

    Full Text Available ... between diabetes and heart disease. Judith Fradkin, M.D.: What most people don't know is that ... stroke among people with diabetes. Judith Fradkin, M.D.: We call this approach "the ABCs of diabetes." ...

  18. Know Your Diabetes ABCs

    Medline Plus

    Full Text Available ... among people with diabetes. Judith Fradkin, M.D.: We call this approach "the ABCs of diabetes." A ... the importance of all three of these and we know that controlling the three can dramatically reduce ...

  19. Know Your Diabetes ABCs

    Medline Plus

    Full Text Available ... prevent two of the disease's most serious complications. John Buse, M.D.: As the population ages, we ... of living -- your living conditions will be better. John Buse, M.D.: Knowing your ABCs will help ...

  20. Implications of Mycobacterium Major Facilitator Superfamily for Novel Measures against Tuberculosis.

    Science.gov (United States)

    Wang, Rui; Zhang, Zhen; Xie, Longxiang; Xie, Jianping

    2015-01-01

    Major facilitator superfamily (MFS) is an important secondary membrane transport protein superfamily conserved from prokaryotes to eukaryotes. The MFS proteins are widespread among bacteria and are responsible for the transfer of substrates. Pathogenic Mycobacterium MFS transporters, their distribution, function, phylogeny, and predicted crystal structures were studied to better understand the function of MFS and to discover specific inhibitors of MFS for better tuberculosis control.

  1. Ancestry and diversity of the HMG box superfamily

    OpenAIRE

    Laudet, V; Stehelin, D.; Clevers, J.C.

    1993-01-01

    The HMG box is a novel type of DNA-binding domain found in a diverse group of proteins. The HMG box superfamily comprises a.o. the High Mobility Group proteins HMG1 and HMG2, the nucleolar transcription factor UBF, the lymphoid transcription factors TCF-1 and LEF-1, the fungal mating-type genes mat-Mc and MATA1, and the mammalian sex-determining gene SRY. The superfamily dates back to at least 1,000 million years ago, as its members appear in animals, plants and yeast. Alignment of all known ...

  2. An ABC transporter B family protein, ABCB19, is required for cytoplasmic streaming and gravitropism of the inflorescence stems.

    Science.gov (United States)

    Okamoto, Keishi; Ueda, Haruko; Shimada, Tomoo; Tamura, Kentaro; Koumoto, Yasuko; Tasaka, Masao; Morita, Miyo Terao; Hara-Nishimura, Ikuko

    2016-01-01

    A significant feature of plant cells is the extensive motility of organelles and the cytosol, which was originally defined as cytoplasmic streaming. We suggested previously that a three-way interaction between plant-specific motor proteins myosin XIs, actin filaments, and the endoplasmic reticulum (ER) was responsible for cytoplasmic streaming. (1) Currently, however, there are no reports of molecular components for cytoplasmic streaming other than the actin-myosin-cytoskeleton and ER-related proteins. In the present study, we found that elongated cells of inflorescence stems of Arabidopsis thaliana exhibit vigorous cytoplasmic streaming. Statistical analysis showed that the maximal velocity of plastid movements is 7.26 µm/s, which is much faster than the previously reported velocities of organelles. Surprisingly, the maximal velocity of streaming in the inflorescence stem cells was significantly reduced to 1.11 µm/s in an Arabidopsis mutant, abcb19-101, which lacks ATP BINDING CASSETTE SUBFAMILY B19 (ABCB19) that mediates the polar transport of the phytohormone auxin together with PIN-FORMED (PIN) proteins. Polar auxin transport establishes the auxin concentration gradient essential for plant development and tropisms. Deficiency of ABCB19 activity eventually caused enhanced gravitropic responses of the inflorescence stems and abnormally flexed inflorescence stems. These results suggest that ABCB19-mediated auxin transport plays a role not only in tropism regulation, but also in cytoplasmic streaming.

  3. Small-angle X-ray scattering analysis reveals the ATP-bound monomeric state of the ATPase domain from the homodimeric MutL endonuclease, a GHKL phosphotransferase superfamily protein.

    Science.gov (United States)

    Iino, Hitoshi; Hikima, Takaaki; Nishida, Yuya; Yamamoto, Masaki; Kuramitsu, Seiki; Fukui, Kenji

    2015-05-01

    DNA mismatch repair is an excision system that removes mismatched bases chiefly generated by replication errors. In this system, MutL endonucleases direct the excision reaction to the error-containing strand of the duplex by specifically incising the newly synthesized strand. Both bacterial homodimeric and eukaryotic heterodimeric MutL proteins belong to the GHKL ATPase/kinase superfamily that comprises the N-terminal ATPase and C-terminal dimerization regions. Generally, the GHKL proteins show large ATPase cycle-dependent conformational changes, including dimerization-coupled ATP binding of the N-terminal domain. Interestingly, the ATPase domain of human PMS2, a subunit of the MutL heterodimer, binds ATP without dimerization. The monomeric ATP-bound state of the domain has been thought to be characteristic of heterodimeric GHKL proteins. In this study, we characterized the ATP-bound state of the ATPase domain from the Aquifex aeolicus MutL endonuclease, which is a homodimeric GHKL protein unlike the eukaryotic MutL. Gel filtration, dynamic light scattering, and small-angle X-ray scattering analyses clearly showed that the domain binds ATP in a monomeric form despite its homodimeric nature. This indicates that the uncoupling of dimerization and ATP binding is a common feature among bacterial and eukaryotic MutL endonucleases, which we suggest is closely related to the molecular mechanisms underlying mismatch repair. PMID:25809295

  4. Analysis of superfamily specific profile-profile recognition accuracy

    Directory of Open Access Journals (Sweden)

    Saqi Mansoor AS

    2004-12-01

    Full Text Available Abstract Background Annotation of sequences that share little similarity to sequences of known function remains a major obstacle in genome annotation. Some of the best methods of detecting remote relationships between protein sequences are based on matching sequence profiles. We analyse the superfamily specific performance of sequence profile-profile matching. Our benchmark consists of a set of 16 protein superfamilies that are highly diverse at the sequence level. We relate the performance to the number of sequences in the profiles, the profile diversity and the extent of structural conservation in the superfamily. Results The performance varies greatly between superfamilies with the truncated receiver operating characteristic, ROC10, varying from 0.95 down to 0.01. These large differences persist even when the profiles are trimmed to approximately the same level of diversity. Conclusions Although the number of sequences in the profile (profile width and degree of sequence variation within positions in the profile (profile diversity contribute to accurate detection there are other superfamily specific factors.

  5. Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes

    Directory of Open Access Journals (Sweden)

    Turk Vito

    2009-11-01

    Full Text Available Abstract Background The cystatin superfamily comprises cysteine protease inhibitors that play key regulatory roles in protein degradation processes. Although they have been the subject of many studies, little is known about their genesis, evolution and functional diversification. Our aim has been to obtain a comprehensive insight into their origin, distribution, diversity, evolution and classification in Eukaryota, Bacteria and Archaea. Results We have identified in silico the full complement of the cystatin superfamily in more than 2100 prokaryotic and eukaryotic genomes. The analysis of numerous eukaryotic genomes has provided strong evidence for the emergence of this superfamily in the ancestor of eukaryotes. The progenitor of this superfamily was most probably intracellular and lacked a signal peptide and disulfide bridges, much like the extant Giardia cystatin. A primordial gene duplication produced two ancestral eukaryotic lineages, cystatins and stefins. While stefins remain encoded by a single or a small number of genes throughout the eukaryotes, the cystatins have undergone a more complex and dynamic evolution through numerous gene and domain duplications. In the cystatin superfamily we discovered twenty vertebrate-specific and three angiosperm-specific orthologous families, indicating that functional diversification has occurred only in multicellular eukaryotes. In vertebrate orthologous families, the prevailing trends were loss of the ancestral inhibitory activity and acquisition of novel functions in innate immunity. Bacterial cystatins and stefins may be emergency inhibitors that enable survival of bacteria in the host, defending them from the host's proteolytic activity. Conclusion This study challenges the current view on the classification, origin and evolution of the cystatin superfamily and provides valuable insights into their functional diversification. The findings of this comprehensive study provide guides for future

  6. Know Your Diabetes ABCs

    Medline Plus

    Full Text Available ... somebody who's already had a heart attack. Announcer: Research shows that controlling blood sugar, blood pressure and cholesterol are critical in preventing heart disease and stroke among people with diabetes. Judith Fradkin, M.D.: We call this approach "the ABCs of diabetes." A is the A1C, ...

  7. Rapportering med ABC modellen

    DEFF Research Database (Denmark)

    Wiese, Lars Ole

    2006-01-01

    I denne artikel diskuteres Activity Based Costing (ABC) som rapporterings-teknik for kunde profitabilitet. Der argumenteres for, at indtægtserhvervel-sen inkl. dens direkte omkostningsforbrug bør adskilles fra omkostnings-beskrivelsen til produktfremstilling. Dvs. der gennemføres en aktivitetsba...

  8. ABC's of Being Smart

    Science.gov (United States)

    Foster, Joanne

    2011-01-01

    Determining what giftedness is all about means focusing on many aspects of the individual. In this paper, the author focuses on letter D of the ABC's of being smart. She starts with specifics about giftedness (details), and then moves on to some ways of thinking (dispositions).

  9. Human ATP-binding cassette (ABC transporter family

    Directory of Open Access Journals (Sweden)

    Vasiliou Vasilis

    2009-04-01

    Full Text Available Abstract There exist four fundamentally different classes of membrane-bound transport proteins: ion channels; transporters; aquaporins; and ATP-powered pumps. ATP-binding cassette (ABC transporters are an example of ATP-dependent pumps. ABC transporters are ubiquitous membrane-bound proteins, present in all prokaryotes, as well as plants, fungi, yeast and animals. These pumps can move substrates in (influx or out (efflux of cells. In mammals, ABC transporters are expressed predominantly in the liver, intestine, blood-brain barrier, blood-testis barrier, placenta and kidney. ABC proteins transport a number of endogenous substrates, including inorganic anions, metal ions, peptides, amino acids, sugars and a large number of hydrophobic compounds and metabolites across the plasma membrane, and also across intracellular membranes. The human genome contains 49 ABC genes, arranged in eight subfamilies and named via divergent evolution. That ABC genes are important is underscored by the fact that mutations in at least I I of these genes are already known to cause severe inherited diseases (eg cystic fibrosis and X-linked adrenoleukodystrophy [X-ALD]. ABC transporters also participate in the movement of most drugs and their metabolites across cell surface and cellular organelle membranes; thus, defects in these genes can be important in terms of cancer therapy, pharmacokinetics and innumerable pharmacogenetic disorders.

  10. Functional analysis of ABC transporter genes from Botrytis cinerea identifies BcatrB as a transporter of eugenol

    NARCIS (Netherlands)

    Schoonbeek, H.; Nistelrooy, van J.G.M.; Waard, de M.A.

    2003-01-01

    The role of multiple ATP-binding cassette (ABC) and major facilitator superfamily (MFS) transporter genes from the plant pathogenic fungus Botrytis cinerea in protection against natural fungitoxic compounds was studied by expression analysis and phenotyping of gene-replacement mutants. The expressio

  11. ABCE1 is a highly conserved RNA silencing suppressor.

    Directory of Open Access Journals (Sweden)

    Kairi Kärblane

    Full Text Available ATP-binding cassette sub-family E member 1 (ABCE1 is a highly conserved protein among eukaryotes and archaea. Recent studies have identified ABCE1 as a ribosome-recycling factor important for translation termination in mammalian cells, yeast and also archaea. Here we report another conserved function of ABCE1. We have previously described AtRLI2, the homolog of ABCE1 in the plant Arabidopsis thaliana, as an endogenous suppressor of RNA silencing. In this study we show that this function is conserved: human ABCE1 is able to suppress RNA silencing in Nicotiana benthamiana plants, in mammalian HEK293 cells and in the worm Caenorhabditis elegans. Using co-immunoprecipitation and mass spectrometry, we found a number of potential ABCE1-interacting proteins that might support its function as an endogenous suppressor of RNA interference. The interactor candidates are associated with epigenetic regulation, transcription, RNA processing and mRNA surveillance. In addition, one of the identified proteins is translin, which together with its binding partner TRAX supports RNA interference.

  12. ABC transporters in anticancer drug transport – Less ons for Therapy, Drug Development and Delivery Systems

    Directory of Open Access Journals (Sweden)

    Suresh P.K

    2015-03-01

    Full Text Available The structural aspects as well as the classification of the ABC superfamily (the largest group of transmembrane proteins has been highlighted. Over-expression of one or more of these transporters, barring exceptions, can correlate with an increased drug resistance (the multidrug resistance phenotype. Hence, studying these proteins, using experimental and in silico approaches, has tremendous benefit for patient selection as well as stratification into “good” and “poor” drug responders. Further, the need to obtain a better insight into “intrinsic” and “extrinsic” mechanisms of resistance were reiterated upon, based on the relative recruitment of the different signal transduction molecules. The concept of the reversal of the MDR phenotype, has been discussed and extended in the context of combination therapy. This form of therapy involves the use of a cocktail of synthetic and biopharmaceutical drugs as well as nanotechnology-based approaches, for improvements in their pharmacokinetic (PK and pharmacodynamic (PD profile. Such strategies have targeted the heterogeneous cancer and cancer stem cells, signaling molecules, marker enzymes as well as the microenvironment for improved efficacy and safety as well as to minimize the chance of relapse

  13. Genome-wide comparative analysis of ABC systems in the Bdellovibrio-and-like organisms.

    Science.gov (United States)

    Li, Nan; Chen, Huan; Williams, Henry N

    2015-05-10

    Bdellovibrio-and-like organisms (BALOs) are gram-negative, predatory bacteria with wide variations in genome sizes and GC content and ecological habitats. The ATP-binding cassette (ABC) systems have been identified in several prokaryotes, fungi and plants and have a role in transport of materials in and out of cells and in cellular processes. However, knowledge of the ABC systems of BALOs remains obscure. A total of 269 putative ABC proteins were identified in BALOs. The genes encoding these ABC systems occupy nearly 1.3% of the gene content in freshwater Bdellovibrio strains and about 0.7% in their saltwater counterparts. The proteins found belong to 25 ABC system families based on their structural characteristics and functions. Among these, 16 families function as importers, 6 as exporters and 3 are involved in various cellular processes. Eight of these 25 ABC system families were deduced to be the core set of ABC systems conserved in all BALOs. All Bacteriovorax strains have 28 or less ABC systems. On the contrary, the freshwater Bdellovibrio strains have more ABC systems, typically around 51. In the genome of Bdellovibrio exovorus JSS (CP003537.1), 53 putative ABC systems were detected, representing the highest number among all the BALO genomes examined in this study. Unexpected high numbers of ABC systems involved in cellular processes were found in all BALOs. Phylogenetic analysis suggests that the majority of ABC proteins can be assigned into many separate families with high bootstrap supports (>50%). In this study, a general framework of sequence-structure-function connections for the ABC systems in BALOs was revealed providing novel insights for future investigations. PMID:25707746

  14. Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases

    Directory of Open Access Journals (Sweden)

    Purta Elzbieta

    2007-03-01

    Full Text Available Abstract Background SPOUT methyltransferases (MTases are a large class of S-adenosyl-L-methionine-dependent enzymes that exhibit an unusual alpha/beta fold with a very deep topological knot. In 2001, when no crystal structures were available for any of these proteins, Anantharaman, Koonin, and Aravind identified homology between SpoU and TrmD MTases and defined the SPOUT superfamily. Since then, multiple crystal structures of knotted MTases have been solved and numerous new homologous sequences appeared in the databases. However, no comprehensive comparative analysis of these proteins has been carried out to classify them based on structural and evolutionary criteria and to guide functional predictions. Results We carried out extensive searches of databases of protein structures and sequences to collect all members of previously identified SPOUT MTases, and to identify previously unknown homologs. Based on sequence clustering, characterization of domain architecture, structure predictions and sequence/structure comparisons, we re-defined families within the SPOUT superfamily and predicted putative active sites and biochemical functions for the so far uncharacterized members. We have also delineated the common core of SPOUT MTases and inferred a multiple sequence alignment for the conserved knot region, from which we calculated the phylogenetic tree of the superfamily. We have also studied phylogenetic distribution of different families, and used this information to infer the evolutionary history of the SPOUT superfamily. Conclusion We present the first phylogenetic tree of the SPOUT superfamily since it was defined, together with a new scheme for its classification, and discussion about conservation of sequence and structure in different families, and their functional implications. We identified four protein families as new members of the SPOUT superfamily. Three of these families are functionally uncharacterized (COG1772, COG1901, and COG4080

  15. ATP-binding cassette (ABC) transporters in normal and pathological lung

    NARCIS (Netherlands)

    van der Deen, M; de Vries, EGE; Timens, W; Scheper, RJ; Timmer-Bosscha, H; Postma, DS

    2005-01-01

    ATP-binding cassette ( ABC) transporters are a family of transmembrane proteins that can transport a wide variety of substrates across biological membranes in an energy-dependent manner. Many ABC transporters such as P-glycoprotein ( P-gp), multidrug resistance-associated protein 1 ( MRP1) and breas

  16. CD147 immunoglobulin superfamily receptor function and role in pathology.

    Science.gov (United States)

    Iacono, Kathryn T; Brown, Amy L; Greene, Mark I; Saouaf, Sandra J

    2007-12-01

    The immunoglobulin superfamily member CD147 plays an important role in fetal, neuronal, lymphocyte and extracellular matrix development. Here we review the current understanding of CD147 expression and protein interactions with regard to CD147 function and its role in pathologic conditions including heart disease, Alzheimer's disease, stroke and cancer. A model linking hypoxic conditions found within the tumor microenvironment to upregulation of CD147 expression and tumor progression is introduced. PMID:17945211

  17. CD147 Immunoglobulin Superfamily Receptor Function and Role in Pathology

    OpenAIRE

    Iacono, Kathryn T.; Brown, Amy L.; Greene, Mark I.; Saouaf, Sandra J.

    2007-01-01

    The immunoglobulin superfamily member CD147 plays an important role in fetal, neuronal, lymphocyte and extracellular matrix development. Here we review the current understanding of CD147 expression and protein interactions with regard to CD147 function and its role in pathologic conditions including heart disease, Alzheimer’s disease, stroke and cancer. A model linking hypoxic conditions found within the tumor microenvironment to up-regulation of CD147 expression and tumor progression is intr...

  18. ABCs in College English Education

    Institute of Scientific and Technical Information of China (English)

    李利文

    2011-01-01

    As is known to us all, human beings are always brought under control by such many things as the hormone in our body, the mood produced in our brain and the external world, which leads us to a topic of how to create an atmosphere for the undergraduates to fit well in with the college English education. In our teaching management, the ABCs about college English education works as an assistant. Here, ABCs about college English education refer to some fundamental skills with regard to the undergraduates English education. The ABCs, which always encourage students' involvement, would work effectively if teachers understand them well.

  19. The role of ABC proteins Aus1p and Pdr11p in the uptake of external sterols in yeast: dehydroergosterol fluorescence study

    DEFF Research Database (Denmark)

    Kohut, Peter; Wüstner, Daniel; Hronska, L;

    2011-01-01

    Uptake of external sterols in the yeast Saccharomyces cerevisiae is a multistep process limited to anaerobiosis or heme deficiency. It includes crossing the cell wall, insertion of sterol molecules into plasma membrane and their internalization and integration into intracellular membranes. We...... applied the fluorescent ergosterol analog dehydroergosterol (DHE) to monitor the initial steps of sterol uptake by three independent approaches: fluorescence spectroscopy, fluorescence microscopy and sterol quantification by HPLC. Using specific fluorescence characteristics of DHE we showed that the entry...... of sterol molecules into plasma membrane is not spontaneous but requires assistance of two ABC (ATP-binding cassette) pumps--Aus1p or Pdr11p. DHE taken up by uptake-competent hem1ΔAUS1PDR11 cells could be directly visualized by UV-sensitive wide field fluorescence microscopy. HPLC analysis of sterols...

  20. Plasmodium interspersed repeats: the major multigene superfamily of malaria parasites

    Science.gov (United States)

    Janssen, Christoph S.; Phillips, R. Stephen; Turner, C. Michael R.; Barrett, Michael P.

    2004-01-01

    Functionally related homologues of known genes can be difficult to identify in divergent species. In this paper, we show how multi-character analysis can be used to elucidate the relationships among divergent members of gene superfamilies. We used probabilistic modelling in conjunction with protein structural predictions and gene-structure analyses on a whole-genome scale to find gene homologies that are missed by conventional similarity-search strategies and identified a variant gene superfamily in six species of malaria (Plasmodium interspersed repeats, pir). The superfamily includes rif in P.falciparum, vir in P.vivax, a novel family kir in P.knowlesi and the cir/bir/yir family in three rodent malarias. Our data indicate that this is the major multi-gene family in malaria parasites. Protein localization of products from pir members to the infected erythrocyte membrane in the rodent malaria parasite P.chabaudi, demonstrates phenotypic similarity to the products of pir in other malaria species. The results give critical insight into the evolutionary adaptation of malaria parasites to their host and provide important data for comparative immunology between malaria parasites obtained from laboratory models and their human counterparts. PMID:15507685

  1. The ABCs of Sex Ed.

    Science.gov (United States)

    Sroka, Stephen R.

    2002-01-01

    Cites statistics on extent of sexually transmitted diseases and pregnancies among adolescents; describes ideological dispute over how to teach sex education; advocates teaching the ABCs of sex education: Abstinence, Be Monogamous, and Condoms. (PKP)

  2. Politseiniku lustlik ABC / Pekka Erelt

    Index Scriptorium Estoniae

    Erelt, Pekka, 1965-

    1999-01-01

    Politsei on välja andnud 'Politseiniku ABC', mis antakse igale politseinikule. Karikaturist Heiki Ernits on peaaegu igale taskuraamatu leheküljele joonistanud pildikese mundrimeestest kentsakates situatsioonides.

  3. The ABC of Ribosome-Related Antibiotic Resistance

    Science.gov (United States)

    Wilson, Daniel N.

    2016-01-01

    ABSTRACT The increase in multidrug-resistant pathogenic bacteria is limiting the utility of our current arsenal of antimicrobial agents. Mechanistically understanding how bacteria obtain antibiotic resistance is a critical first step to the development of improved inhibitors. One common mechanism for bacteria to obtain antibiotic resistance is by employing ATP-binding cassette (ABC) transporters to actively pump the drug from the cell. The ABC-F family includes proteins conferring resistance to a variety of clinically important ribosome-targeting antibiotics; however, controversy remains as to whether resistance is conferred via efflux like other ABC transporters or whether another mechanism, such as ribosome protection, is at play. A recent study by Sharkey and coworkers (L. K. Sharkey, T. A. Edwards, and A. J. O’Neill, mBio 7:e01975-15, 2016, http://dx.doi.org/10.1128/mBio.01975-15) provides strong evidence that ABC-F proteins conferring antibiotic resistance utilize ribosome protection mechanisms, namely, by interacting with the ribosome and displacing the drug from its binding site, thus revealing a novel role for ABC-F proteins in antibiotic resistance. PMID:27143393

  4. A new method of research on molecular evolution of pro-teinase superfamily

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The molecular evolutionary tree, also known as a phylogenetic tree, of the serine proteinase superfamily was constructed by means of structural alignment. Three-dimensional structures of proteins were aligned by the SSAP program of Orengo and Taylor to obtain evolutionary dis-tances. The resulting evolutionary tree provides a topology graph that can reflect the evolution of structure and function of homology proteinase. Moreover, study on evolution of the serine proteinase superfamily can lead to better under-standing of the relationship and evolutionary difference among proteins of the superfamily, and is of significance to protein engineering, molecular design and protein structure prediction. Structure alignment is one of the useful methods of research on molecular evolution of protein.

  5. Structural advances for the major facilitator superfamily (MFS) transporters.

    Science.gov (United States)

    Yan, Nieng

    2013-03-01

    The major facilitator superfamily (MFS) is one of the largest groups of secondary active transporters conserved from bacteria to humans. MFS proteins selectively transport a wide spectrum of substrates across biomembranes and play a pivotal role in multiple physiological processes. Despite intense investigation, only seven MFS proteins from six subfamilies have been structurally elucidated. These structures were captured in distinct states during a transport cycle involving alternating access to binding sites from either side of the membrane. This review discusses recent progress in MFS structure analysis and focuses on the molecular basis for substrate binding, co-transport coupling, and alternating access.

  6. Asymmetric switching in a homodimeric ABC transporter: a simulation study.

    Directory of Open Access Journals (Sweden)

    Jussi Aittoniemi

    2010-04-01

    Full Text Available ABC transporters are a large family of membrane proteins involved in a variety of cellular processes, including multidrug and tumor resistance and ion channel regulation. Advances in the structural and functional understanding of ABC transporters have revealed that hydrolysis at the two canonical nucleotide-binding sites (NBSs is co-operative and non-simultaneous. A conserved core architecture of bacterial and eukaryotic ABC exporters has been established, as exemplified by the crystal structure of the homodimeric multidrug exporter Sav1866. Currently, it is unclear how sequential ATP hydrolysis arises in a symmetric homodimeric transporter, since it implies at least transient asymmetry at the NBSs. We show by molecular dynamics simulation that the initially symmetric structure of Sav1866 readily undergoes asymmetric transitions at its NBSs in a pre-hydrolytic nucleotide configuration. MgATP-binding residues and a network of charged residues at the dimer interface are shown to form a sequence of putative molecular switches that allow ATP hydrolysis only at one NBS. We extend our findings to eukaryotic ABC exporters which often consist of two non-identical half-transporters, frequently with degeneracy substitutions at one of their two NBSs. Interestingly, many residues involved in asymmetric conformational switching in Sav1866 are substituted in degenerate eukaryotic NBS. This finding strengthens recent suggestions that the interplay of a consensus and a degenerate NBS in eukaroytic ABC proteins pre-determines the sequence of hydrolysis at the two NBSs.

  7. ABCE1 is essential for S phase progression in human cells.

    Science.gov (United States)

    Toompuu, Marina; Kärblane, Kairi; Pata, Pille; Truve, Erkki; Sarmiento, Cecilia

    2016-05-01

    ABCE1 is a highly conserved protein universally present in eukaryotes and archaea, which is crucial for the viability of different organisms. First identified as RNase L inhibitor, ABCE1 is currently recognized as an essential translation factor involved in several stages of eukaryotic translation and ribosome biogenesis. The nature of vital functions of ABCE1, however, remains unexplained. Here, we study the role of ABCE1 in human cell proliferation and its possible connection to translation. We show that ABCE1 depletion by siRNA results in a decreased rate of cell growth due to accumulation of cells in S phase, which is accompanied by inefficient DNA synthesis and reduced histone mRNA and protein levels. We infer that in addition to the role in general translation, ABCE1 is involved in histone biosynthesis and DNA replication and therefore is essential for normal S phase progression. In addition, we analyze whether ABCE1 is implicated in transcript-specific translation via its association with the eIF3 complex subunits known to control the synthesis of cell proliferation-related proteins. The expression levels of a few such targets regulated by eIF3A, however, were not consistently affected by ABCE1 depletion. PMID:26985706

  8. The predicted ABC transporter AbcEDCBA is required for type IV secretion system expression and lysosomal evasion by Brucella ovis.

    Directory of Open Access Journals (Sweden)

    Teane M A Silva

    Full Text Available Brucella ovis is a major cause of reproductive failure in rams and it is one of the few well-described Brucella species that is not zoonotic. Previous work showed that a B. ovis mutant lacking a species-specific ABC transporter (ΔabcBA was attenuated in mice and was unable to survive in macrophages. The aim of this study was to evaluate the role of this ABC transporter during intracellular survival of B. ovis. In HeLa cells, B. ovis WT was able to survive and replicate at later time point (48 hpi, whereas an ΔabcBA mutant was attenuated at 24 hpi. The reduced survival of the ΔabcBA mutant was associated with a decreased ability to exclude the lysosomal marker LAMP1 from its vacuolar membrane, suggesting a failure to establish a replicative niche. The ΔabcBA mutant showed a reduced abundance of the Type IV secretion system (T4SS proteins VirB8 and VirB11 in both rich and acid media, when compared to WT B. ovis. However, mRNA levels of virB1, virB8, hutC, and vjbR were similar in both strains. These results support the notion that the ABC transporter encoded by abcEDCBA or its transported substrate acts at a post-transcriptional level to promote the optimal expression of the B. ovis T4SS within infected host cells.

  9. Purification, crystallization and preliminary X-ray analysis of the galacto-N-biose-/lacto-N-biose I-binding protein (GL-BP) of the ABC transporter from Bifidobacterium longum JCM1217

    International Nuclear Information System (INIS)

    Preliminary X-ray analysis of the galacto-N-biose-/lacto-N-biose I-binding protein (GL-BP) of the ABC transporter from B. longum is described. A recombinant galacto-N-biose-/lacto-N-biose I-binding protein (GL-BP) from Bifidobacterium longum JCM1217 has been prepared and crystallized by the hanging-drop vapour-diffusion method using 10 mg ml−1 purified enzyme, 0.01 M zinc sulfate, 0.1 M MES buffer pH 5.9–6.4 and 20–22%(v/v) PEG MME 550 in the presence of 5 mM disaccharide ligands. Suitable crystals grew after 10 d incubation at 293 K. The crystals belong to space group C2221, with unit-cell parameters a = 106.3, b = 143.6, c = 114.6 Å for the lacto-N-biose I complex and a = 106.4, b = 143.4, c = 115.5 Å for the galacto-N-biose complex, and diffracted to 1.85 and 1.99 Å resolution, respectively

  10. Lipid dependence of ABC transporter localization and function

    NARCIS (Netherlands)

    Klappe, Karin; Hummel, Ina; Hoekstra, Dick; Kok, Jan Willem

    2009-01-01

    Lipid rafts have been implicated in many cellular functions, including protein and lipid transport and signal transduction. ATP-binding cassette (ABC) transporters have also been localized in these membrane domains. In this review the evidence for this specific localization will be evaluated and dis

  11. ABC transporters of the wheat pathogen Mycosphaerella graminicola

    NARCIS (Netherlands)

    Zwiers, L.H.

    2002-01-01

     A TP- b inding c assette (ABC) transporters belong to one of the largest protein families known. They play a role in numerous vital processes in the cell and are characterised by their capacity to transport a broad variety of substrates, ranging fr

  12. Disease causing mutations in the TNF and TNFR superfamilies: Focus on molecular mechanisms driving disease

    NARCIS (Netherlands)

    A.A. Lobito; T.L. Gabriel; J.P. Medema; F.C. Kimberley

    2011-01-01

    The tumor necrosis factor (TNF) and TNF receptor (TNFR) superfamilies comprise multidomain proteins with diverse roles in cell activation, proliferation and cell death. These proteins play pivotal roles in the initiation, maintenance and termination of immune responses and have vital roles outside t

  13. Systematic Identification of Rice ABC1 Gene Family and Its Response to Abiotic Stress

    Institute of Scientific and Technical Information of China (English)

    GAO Qing-song; ZHANG Dan; Xu Liang; XU Chen-wu

    2011-01-01

    Members of the activity of bc1 complex (ABC1) family are protein kinases that are widely found in prokaryotes and eukaryotes.Previous studies showed that several plant ABC1 genes participated in the abiotic stress response.Here,we present the systematic identification of rice and Arabidopsis ABC1 genes and the expression analysis of rice ABC1 genes.A total of 15 and 17 ABC1 genes from the rice and Arabidopsis genomes,respectively,were identified using a bioinformatics approach.Phylogenetic analyses of these proteins suggested that the divergence of this family had occurred and their main characteristics were established before the monocot-dicot split.Indeed,species-specific expansion contributed to the evolution of this family in rice and Arabidopsis after the monocot-dicot split.Intron/exon structure analysis indicated that most of the orthologous genes had similar exon sizes,but diverse intron sizes,and the rice genes contained larger introns,moreover,intron gain was an important event accompanying the recent evolution of the rice ABC1 family.Multiple sequence alignment revealed one conserved amino acid segment and four conserved amino acids in the ABC1 domain.Online subcellular localization predicted that nine rice ABC1 proteins were localized in chloroplasts.Real-time RT-PCR established that the rice ABC1 genes were primarily expressed in leaves and the expression could be modulated by a broad range of abiotic factors such as H2O2,abscisic acid,low temperature,drought,darkness and high salinity.These results reveal that the rice ABC1 gene family plays roles in the environmental stress response and specific biological processes of rice.

  14. Molecular modeling of the human multidrug resistance protein 1 (MRP1/ABCC1)

    International Nuclear Information System (INIS)

    Multidrug resistance protein 1 (MRP1/ABCC1) is a 190 kDa member of the ATP-binding cassette (ABC) superfamily of transmembrane transporters that is clinically relevant for its ability to confer multidrug resistance by actively effluxing anticancer drugs. Knowledge of the atomic structure of MRP1 is needed to elucidate its transport mechanism, but only low resolution structural data are currently available. Consequently, comparative modeling has been used to generate models of human MRP1 based on the crystal structure of the ABC transporter Sav1866 from Staphylococcus aureus. In these Sav1866-based models, the arrangement of transmembrane helices differs strikingly from earlier models of MRP1 based on the structure of the bacterial lipid transporter MsbA, both with respect to packing of the twelve helices and their interactions with the nucleotide binding domains. The functional importance of Tyr324 in transmembrane helix 6 predicted to project into the substrate translocation pathway was investigated

  15. The ABCs of Student Engagement

    Science.gov (United States)

    Parsons, Seth A.; Nuland, Leila Richey; Parsons, Allison Ward

    2014-01-01

    Student engagement is an important consideration for teachers and administrators because it is explicitly associated with achievement. What the authors call the ABC's of engagement they outline as: Affective engagement, Behavioral engagement, and Cognitive engagement. They also present "Three Things Every Teacher Needs to Know about…

  16. abc: An Extensible AspectJ Compiler

    DEFF Research Database (Denmark)

    Avgustinov, Pavel; Christensen, Aske Simon; Hendren, Laurie J.;

    2006-01-01

    checking and code generation, as well as data flow and control flow analyses. The AspectBench Compiler (abc) is an implementation of such a workbench. The base version of abc implements the full AspectJ language. Its front end is built using the Polyglot framework, as a modular extension of the Java...... overview of how to use abc to implement an extension. We illustrate the extension mechanisms of abc through a number of small, but nontrivial, examples. We then proceed to contrast the design goals of abc with those of the original AspectJ compiler, and how these different goals have led to different...

  17. Transient receptor potential (TRP gene superfamily encoding cation channels

    Directory of Open Access Journals (Sweden)

    Pan Zan

    2011-01-01

    Full Text Available Abstract Transient receptor potential (TRP non-selective cation channels constitute a superfamily, which contains 28 different genes. In mammals, this superfamily is divided into six subfamilies based on differences in amino acid sequence homology between the different gene products. Proteins within a subfamily aggregate to form heteromeric or homomeric tetrameric configurations. These different groupings have very variable permeability ratios for calcium versus sodium ions. TRP expression is widely distributed in neuronal tissues, as well as a host of other tissues, including epithelial and endothelial cells. They are activated by environmental stresses that include tissue injury, changes in temperature, pH and osmolarity, as well as volatile chemicals, cytokines and plant compounds. Their activation induces, via intracellular calcium signalling, a host of responses, including stimulation of cell proliferation, migration, regulatory volume behaviour and the release of a host of cytokines. Their activation is greatly potentiated by phospholipase C (PLC activation mediated by coupled GTP-binding proteins and tyrosine receptors. In addition to their importance in maintaining tissue homeostasis, some of these responses may involve various underlying diseases. Given the wealth of literature describing the multiple roles of TRP in physiology in a very wide range of different mammalian tissues, this review limits itself to the literature describing the multiple roles of TRP channels in different ocular tissues. Accordingly, their importance to the corneal, trabecular meshwork, lens, ciliary muscle, retinal, microglial and retinal pigment epithelial physiology and pathology is reviewed.

  18. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    Science.gov (United States)

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  19. Classification and evolutionary history of the single-strand annealing proteins, RecT, Redβ, ERF and RAD52

    Directory of Open Access Journals (Sweden)

    Aravind L

    2002-03-01

    Full Text Available Abstract Background The DNA single-strand annealing proteins (SSAPs, such as RecT, Redβ, ERF and Rad52, function in RecA-dependent and RecA-independent DNA recombination pathways. Recently, they have been shown to form similar helical quaternary superstructures. However, despite the functional similarities between these diverse SSAPs, their actual evolutionary affinities are poorly understood. Results Using sensitive computational sequence analysis, we show that the RecT and Redβ proteins, along with several other bacterial proteins, form a distinct superfamily. The ERF and Rad52 families show no direct evolutionary relationship to these proteins and define novel superfamilies of their own. We identify several previously unknown members of each of these superfamilies and also report, for the first time, bacterial and viral homologs of Rad52. Additionally, we predict the presence of aberrant HhH modules in RAD52 that are likely to be involved in DNA-binding. Using the contextual information obtained from the analysis of gene neighborhoods, we provide evidence of the interaction of the bacterial members of each of these SSAP superfamilies with a similar set of DNA repair/recombination protein. These include different nucleases or Holliday junction resolvases, the ABC ATPase SbcC and the single-strand-binding protein. We also present evidence of independent assembly of some of the predicted operons encoding SSAPs and in situ displacement of functionally similar genes. Conclusions There are three evolutionarily distinct superfamilies of SSAPs, namely the RecT/Redβ, ERF, and RAD52, that have different sequence conservation patterns and predicted folds. All these SSAPs appear to be primarily of bacteriophage origin and have been acquired by numerous phylogenetically distant cellular genomes. They generally occur in predicted operons encoding one or more of a set of conserved DNA recombination proteins that appear to be the principal functional

  20. NCBI nr-aa BLAST: CBRC-TTRU-01-0272 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TTRU-01-0272 ref|ZP_03055167.1| cyclodextrin ABC superfamily ATP binding casse...tte transporter, membrane protein [Bacillus pumilus ATCC 7061] gb|EDW21594.1| cyclodextrin ABC superfamily A

  1. Mutations in the Arabidopsis Peroxisomal ABC Transporter COMATOSE Allow Differentiation between Multiple Functions In Planta: Insights from an Allelic Series

    OpenAIRE

    Dietrich, Daniela; Schmuths, Heike; Lousa, Carine De Marcos; Baldwin, Jocelyn M.; Baldwin, Stephen A.; Baker, Alison; Theodoulou, Frederica L; Holdsworth, Michael J

    2009-01-01

    COMATOSE (CTS), the Arabidopsis homologue of human Adrenoleukodystrophy protein (ALDP), is required for import of substrates for peroxisomal β-oxidation. A new allelic series and a homology model based on the bacterial ABC transporter, Sav1866, provide novel insights into structure-function relations of ABC subfamily D proteins. In contrast to ALDP, where the majority of mutations result in protein absence from the peroxisomal membrane, all CTS mutants produced stable protein. Mutation of con...

  2. Precambrian origins of the TNFR superfamily.

    Science.gov (United States)

    Quistad, S D; Traylor-Knowles, N

    2016-01-01

    The evolution of the tumor necrosis factor/tumor necrosis factor receptor superfamily (TNF/TNFR) is complicated and not well understood. To date, most TNFR studies have focused on vertebrate models leaving the role of TNFRs in invertebrates largely unexplored. The evolution of important cellular processes including stress response, apoptosis, development, and inflammation will be better understood by examining the TNF/TNFR superfamily in ancient invertebrate phyla. How widespread is this gene family within the evolutionary tree of life and is there evidence for similar function in invertebrates? A first step is to identify the presence or absence of these genes within basal metazoan taxa using the signature cysteine-rich domain (CRD) of the TNFR superfamily. In this perspective, we will start by examining what is currently known about the function of TNFRs in invertebrates. Then, we will assess the role of TNFRs in apoptosis and explore the origins of the domains found in TNFRs including the death domain (DD) and CRD. Finally, we will examine the phylogenetic relationship between TNFRs containing DDs identified to date. From these data, we propose a model for a Precambrian origin of TNFRs and their functional role in apoptosis. PMID:27551546

  3. Sustaining an Effective ABC-ABM System

    Directory of Open Access Journals (Sweden)

    Gary COKINS

    2011-02-01

    Full Text Available The purpose of this paper is to describe the Activity- Based Costing (ABC and Activity-Based Management (ABM system and techniques to sustain them as a permanent and repeatable production reporting system, not just for one-off analysis. A comparison is made between ABC/ABM modeling software that extracts source data and business systems that include ABC/ABM modeling features. There are presented the stages of updating, running and rerunning the ABC/ABM system. The resulting information calculated and provided by the ABC/ABM system are analyzed and interpreted in terms of a multidimensional data analysis. The article ends with the authors' conclusions about the benefits of continued operation of sustaining the ABC/ABM system.

  4. Mechanism of ABC transporters: A molecular dynamics simulation of a well characterized nucleotide-binding subunit

    OpenAIRE

    Peter M Jones; Anthony M George

    2002-01-01

    ATP-binding cassette (ABC) transporters are membrane-bound molecular pumps that form one of the largest of all protein families. Several of them are central to phenomena of biomedical interest, including cystic fibrosis and resistance to chemotherapeutic drugs. ABC transporters share a common architecture comprising two hydrophilic nucleotide-binding domains (NBDs) and two hydrophobic transmembrane domains (TMDs) that form the substrate pathway across the membrane. The conformational changes ...

  5. Dephosphorylation of the Core Clock Protein KaiC in the Cyanobacterial KaiABC Circadian Oscillator Proceeds via an ATP Synthase Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Egli, Martin; Mori, Tetsuya; Pattanayek, Rekha; Xu, Yao; Qin, Ximing; Johnson, Carl H. (Vanderbilt)

    2014-10-02

    The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro from three proteins, KaiA, KaiB, and KaiC in the presence of ATP, to tick in a temperature-compensated manner. KaiC, the central cog of this oscillator, forms a homohexamer with 12 ATP molecules bound between its N- and C-terminal domains and exhibits unusual properties. Both the N-terminal (CI) and C-terminal (CII) domains harbor ATPase activity, and the subunit interfaces between CII domains are the sites of autokinase and autophosphatase activities. Hydrolysis of ATP correlates with phosphorylation at threonine and serine sites across subunits in an orchestrated manner, such that first T432 and then S431 are phosphorylated, followed by dephosphorylation of these residues in the same order. Although structural work has provided insight into the mechanisms of ATPase and kinase, the location and mechanism of the phosphatase have remained enigmatic. From the available experimental data based on a range of approaches, including KaiC crystal structures and small-angle X-ray scattering models, metal ion dependence, site-directed mutagenesis (i.e., E318, the general base), and measurements of the associated clock periods, phosphorylation patterns, and dephosphorylation courses as well as a lack of sequence motifs in KaiC that are typically associated with known phosphatases, we hypothesized that KaiCII makes use of the same active site for phosphorylation and dephosphorlyation. We observed that wild-type KaiC (wt-KaiC) exhibits an ATP synthase activity that is significantly reduced in the T432A/S431A mutant. We interpret the first observation as evidence that KaiCII is a phosphotransferase instead of a phosphatase and the second that the enzyme is capable of generating ATP, both from ADP and P{sub i} (in a reversal of the ATPase reaction) and from ADP and P-T432/P-S431 (dephosphorylation). This new concept regarding the mechanism of dephosphorylation is also supported by the

  6. Superfamily assignments for the yeast proteome through integration of structure prediction with the gene ontology.

    Directory of Open Access Journals (Sweden)

    Lars Malmström

    2007-04-01

    Full Text Available Saccharomyces cerevisiae is one of the best-studied model organisms, yet the three-dimensional structure and molecular function of many yeast proteins remain unknown. Yeast proteins were parsed into 14,934 domains, and those lacking sequence similarity to proteins of known structure were folded using the Rosetta de novo structure prediction method on the World Community Grid. This structural data was integrated with process, component, and function annotations from the Saccharomyces Genome Database to assign yeast protein domains to SCOP superfamilies using a simple Bayesian approach. We have predicted the structure of 3,338 putative domains and assigned SCOP superfamily annotations to 581 of them. We have also assigned structural annotations to 7,094 predicted domains based on fold recognition and homology modeling methods. The domain predictions and structural information are available in an online database at http://rd.plos.org/10.1371_journal.pbio.0050076_01.

  7. ABC model and floral evolution

    Institute of Scientific and Technical Information of China (English)

    LI Guisheng; MENG Zheng; KONG Hongzhi; CHEN Zhiduan; LU Anming

    2003-01-01

    The paper introduces the classical ABC model of floral development and thereafter ABCD, ABCDE and quartet models, and presents achievements in the studies on floral evolution such as the improved understanding on the relationship of reproductive organs between gnetophytes and angiosperms, new results in perianth evolution and identified homology of floral organs between dicots and monocots. The evo-devo studies on plant taxa at different evolutionary levels are useful to better understanding the homology of floral organs, and to clarifying the mysteries of the origin and subsequent diversification of flowers.

  8. The Nuclear Receptor Superfamily at Thirty.

    Science.gov (United States)

    McEwan, Iain J

    2016-01-01

    The human genome codes for 48 members of the nuclear receptor superfamily, half of which have known ligands. Natural ligands for nuclear receptors are generally lipophilic in nature and include steroid hormones, bile acids, fatty acids, thyroid hormones, certain vitamins, and prostaglandins. Nuclear receptors regulate gene expression programs controlling development, differentiation, metabolic homeostasis and reproduction, in both a temporal and a tissue-selective manner. Since the original cloning of the cDNAs for the estrogen and glucocorticoid receptors, large strides have been made in our understanding of the structure and function of this family of transcription factors and their role in pathophysiology. PMID:27246330

  9. The P450 gene superfamily: recommended nomenclature.

    Science.gov (United States)

    Nebert, D W; Adesnik, M; Coon, M J; Estabrook, R W; Gonzalez, F J; Guengerich, F P; Gunsalus, I C; Johnson, E F; Kemper, B; Levin, W

    1987-02-01

    A nomenclature for the P450 gene superfamily is proposed based on evolution. Recommendations include Roman numerals for distinct gene families, capital letters for subfamilies, and Arabic numerals for individual genes. An updating of this list, which presently includes 65 entries, will be required every 1-2 years. Assignment of orthologous genes is presently uncertain in some cases--between widely diverged species and especially in the P450II family due to the large number of genes. As more is known, it might become necessary to change some gene assignments that are based on our present knowledge. PMID:3829886

  10. A phylogenetic analysis of the ubiquitin superfamily based on sequence and structural information.

    Science.gov (United States)

    Yang, Zhen; Chen, Haikui; Yang, Xiaobo; Wan, Xueshuai; He, Lian; Miao, Ruoyu; Yang, Huayu; Zhong, Yang; Wang, Li; Zhao, Haitao

    2014-09-01

    Ubiquitin belongs to an important class of protein modifier and gene expression regulator proteins that participates in various cellular processes. A large number of ubiquitin-related proteins have been identified during the last two decades. However, the evolutionary history of this ancient gene family remains largely unknown. We analyzed the members of the superfamily using both sequence- and structure-based methodology to better understand the evolution of ubiquitin-related proteins. As a part of these analyses we used the MEME algorithm to extract common sequence motifs across the superfamily, and we inferred the phylogeny and distribution of the superfamily members across multiple species. A total of 23 families were identified in the gene family. Several common sequence motifs were revealed and evaluated. We also found that the number of genes for ubiquitin-related proteins encoded within a specific genome correlates with the biological complexity of that particular species. This analysis should provide valuable insight into the sequence/function relationships and evolutionary history of ubiquitin and ubiquitin-related proteins. PMID:24997693

  11. Identification and functional characterization of Penicillium marneffei pleiotropic drug resistance transporters ABC1 and ABC2.

    Science.gov (United States)

    Panapruksachat, Siribun; Iwatani, Shun; Oura, Takahiro; Vanittanakom, Nongnuch; Chindamporn, Ariya; Niimi, Kyoko; Niimi, Masakazu; Lamping, Erwin; Cannon, Richard D; Kajiwara, Susumu

    2016-07-01

    Penicilliosis caused by the dimorphic fungus Penicillium marneffei is an endemic, AIDS-defining illness and, after tuberculosis and cryptococcosis, the third most common opportunistic infection of AIDS patients in tropical Southeast Asia. Untreated, patients have poor prognosis; however, primary amphotericin B treatment followed by prolonged itraconazole prophylaxis is effective. To identify ATP-binding cassette (ABC) transporters that may play a role in potential multidrug resistance of P. marneffei, we identified and classified all 46 P. marneffei ABC transporters from the genome sequence. PmABC1 and PmABC2 were most similar to the archetype Candida albicans multidrug efflux pump gene CDR1. P. marneffei Abc1p (PmAbc1p) was functionally expressed in Saccharomyces cerevisiae, although at rather low levels, and correctly localized to the plasma membrane, causing cells to be fourfold to eightfold more resistant to azoles and many other xenobiotics than untransformed cells. P. marneffei Abc2p (PmAbc2p) was expressed at similarly low levels, but it had no efflux activity and did not properly localize to the plasma membrane. Interestingly, PmAbc1p mislocalized and lost its transport activity when cells were shifted to 37 °C. We conclude that expression of PmAbc1p in S. cerevisiae confers resistance to several xenobiotics indicating that PmAbc1p may be a multidrug efflux pump. PMID:26782644

  12. abc: An extensible AspectJ compiler

    DEFF Research Database (Denmark)

    Avgustinov, Pavel; Christensen, Aske Simon; Hendren, Laurie;

    2005-01-01

    checking and code generation, as well as data flow and control flow analyses. The AspectBench Compiler (abc) is an implementation of such a workbench. The base version of abc implements the full AspectJ language. Its frontend is built, using the Polyglot framework, as a modular extension of the Java...

  13. Main trends of karyotype evolution in the superfamily Chalcidoidea (Hymenoptera

    Directory of Open Access Journals (Sweden)

    Vladimir Gokhman

    2009-08-01

    Full Text Available An overview of karyotype evolution in the superfamily Chalcidoidea is given. Structural types of chromosome sets in the superfamily are listed. Main pathways of karyotypic change in the Chalcidoidea are outlined. The chromosome set containing eleven subtelo- or acrocentrics is considered as an ancestral karyotype for the superfamily. Multiple independent reductions in n values through chromosomal fusions presumably occurred in various groups of chalcid families.

  14. Main trends of karyotype evolution in the superfamily Chalcidoidea (Hymenoptera)

    OpenAIRE

    Vladimir Gokhman; Alex Gumovsky

    2009-01-01

    An overview of karyotype evolution in the superfamily Chalcidoidea is given. Structural types of chromosome sets in the superfamily are listed. Main pathways of karyotypic change in the Chalcidoidea are outlined. The chromosome set containing eleven subtelo- or acrocentrics is considered as an ancestral karyotype for the superfamily. Multiple independent reductions in n values through chromosomal fusions presumably occurred in various groups of chalcid families.

  15. Bcmfs1, a novel major facilitator superfamily transporter from Botrytis cinerea, provides tolerance towards the natural toxic compounds camptothecin and cercosporin and towards fungicides.

    Science.gov (United States)

    Hayashi, Keisuke; Schoonbeek, Henk-Jan; De Waard, Maarten A

    2002-10-01

    Bcmfs1, a novel major facilitator superfamily gene from Botrytis cinerea, was cloned, and replacement and overexpression mutants were constructed to study its function. Replacement mutants showed increased sensitivity to the natural toxic compounds camptothecin and cercosporin, produced by the plant Camptotheca acuminata and the plant pathogenic fungus Cercospora kikuchii, respectively. Overexpression mutants displayed decreased sensitivity to these compounds and to structurally unrelated fungicides, such as sterol demethylation inhibitors (DMIs). A double-replacement mutant of Bcmfs1 and the ATP-binding cassette (ABC) transporter gene BcatrD was more sensitive to DMI fungicides than a single-replacement mutant of BcatrD, known to encode an important ABC transporter of DMIs. The sensitivity of the wild-type strain and mutants to DMI fungicides correlated with Bcmfs1 expression levels and with the initial accumulation of oxpoconazole by germlings of these isolates. The results indicate that Bcmfs1 is a major facilitator superfamily multidrug transporter involved in protection against natural toxins and fungicides and has a substrate specificity that overlaps with the ABC transporter BcatrD. Bcmfs1 may be involved in protection of B. cinerea against plant defense compounds during the pathogenic phase of growth on host plants and against fungitoxic antimicrobial metabolites during its saprophytic phase of growth.

  16. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal

    Directory of Open Access Journals (Sweden)

    Choi Cheol-Hee

    2005-10-01

    Full Text Available Abstract One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein.

  17. Fungal ABC transporter deletion and localization analysis.

    Science.gov (United States)

    Kovalchuk, Andriy; Weber, Stefan S; Nijland, Jeroen G; Bovenberg, Roel A L; Driessen, Arnold J M

    2012-01-01

    Fungal cells are highly complex as their metabolism is compartmentalized harboring various types of subcellular organelles that are bordered by one or more membranes. Knowledge about the intracellular localization of transporter proteins is often required for the understanding of their biological function. Among different approaches available, the localization analysis based on the expression of GFP fusions is commonly used as a relatively fast and cost-efficient method that allows visualization of proteins of interest in both live and fixed cells. In addition, inactivation of transporter genes is an important tool to resolve their specific function. Here we provide a detailed protocol for the deletion and localization analysis of ABC transporters in the filamentous fungus Penicillium chrysogenum. It includes construction of expression plasmids, their transformation into fungal strains, cultivation of transformants, microscopy analysis, as well as additional protocols on staining of fungal cells with organelle-specific dyes like Hoechst 33342, MitoTracker DeepRed, and FM4-64. PMID:22183644

  18. Bioinformatics analysis for structure and function of mitochondrial carrier protein superfamily from Spirometra mansoni%曼氏迭宫绦虫线粒体载体蛋白结构和功能的生物信息学分析

    Institute of Scientific and Technical Information of China (English)

    芦亚君; 史大中; 钟赛凤; 甘秀凤; 吕刚

    2013-01-01

    目的 应用生物信息学技术预测曼氏迭宫绦虫线粒体载体蛋白超家族的结构和功能,为进一步研究曼氏迭宫绦虫的蛋白质提供理论依据.方法 将测得的曼氏迭宫绦虫成虫EST序列用ORF finder获取开放读码框,Blast进行分析其结构域.应用分析工具Protparam、InterProScan、protscale、SignalP-3.0、PSORTⅡ、BepiPred、TMHMM、VectorNTI Suite 9软件包、Phyre2分别进行该蛋白质的基本性质、结构域、疏水性、信号肽、亚细胞定位、抗原表位、跨膜区及空间结构的预测及分析.结果 Blast预测该蛋白质为线粒体载体蛋白超家族,保守功能域为线粒体二羧酸载体,含294个氨基酸残基,理论分子量为32 132.2 Da.与曼氏血吸虫进化地位最接近;有1个信号肽位点和6个潜在的抗原表位.结论 曼氏迭宫绦虫线粒体二羧酸载体能够介导苹果酸、琥珀酸等二羧酸的转运,使其跨越线粒体膜参与三羧酸循环,为虫体自身提供能量,可能是潜在的疫苗候选分子及药物作用靶点.%Objective To study the structure and function of mitochondrial carrier protein superfamily from Spirometra mansoni by bioinformatics technology,and to provide a theoretical basis for further study.Methods Open reading frame (ORF) of EST sequence from Spirometra mansoni was obtained by ORF finder and was translated into amino acid by DNAclub.The structure domain was analyzed by Blast.By the method of online analysis tools:Protparam,InterProScan,protscale,SignalP-3.0,PSORT Ⅱ,BepiPred,TMtHMM,VectorNTI Suite 9 packages and Phyre2,the structure and function of the protein were predicted and analyzed.Results The mitochondrial carrier protein superfamily may be Spirometra mansoni mitochondrial dicarboxylate carrier (Sm DIC).The sequence contained 294 amino acid residues and its theoretical molecular weight was 32003.4 Da.It had three full conserved functional domains that was mito-carr superfamily,with the closest to

  19. An ABC for decision making

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Costa Garcia

    2015-04-01

    Full Text Available The present study was aimed at proposing a systematic evaluation of cranial computed tomography, identifying the main aspects to be analyzed in order to facilitate the decision making process regarding diagnosis and management in emergency settings. The present descriptive study comprised a literature review at the following databases: Access Medicine and Access Emergency Medicine (McGraw- Hill Education; British Medical Journal Evidence Center; UptoDate; Bireme; PubMed; Lilacs; SciELO; ProQuest; Micromedex (Thomson Reuters; Embase. Once the literature review was completed, the authors identified the main diseases with tomographic repercussions and proposed the present system to evaluate cranial computed tomography images. An easy-to-memorize ABC system will facilitate the decision making in emergency settings, as it covers the main diseases encountered by intensivists and emergency physicians, and provides a sequential guidance about anatomical structures to be investigated as well as their respective alterations.

  20. An ABC for decision making.

    Science.gov (United States)

    Garcia, Luiz Henrique Costa; Ferreira, Bruna Cortez

    2015-01-01

    The present study was aimed at proposing a systematic evaluation of cranial computed tomography, identifying the main aspects to be analyzed in order to facilitate the decision making process regarding diagnosis and management in emergency settings. The present descriptive study comprised a literature review at the following databases: Access Medicine and Access Emergency Medicine (McGraw- Hill Education); British Medical Journal Evidence Center; UptoDate; Bireme; PubMed; Lilacs; SciELO; ProQuest; Micromedex (Thomson Reuters); Embase. Once the literature review was completed, the authors identified the main diseases with tomographic repercussions and proposed the present system to evaluate cranial computed tomography images. An easy-to-memorize ABC system will facilitate the decision making in emergency settings, as it covers the main diseases encountered by intensivists and emergency physicians, and provides a sequential guidance about anatomical structures to be investigated as well as their respective alterations.

  1. An ABC for decision making.

    Science.gov (United States)

    Garcia, Luiz Henrique Costa; Ferreira, Bruna Cortez

    2015-01-01

    The present study was aimed at proposing a systematic evaluation of cranial computed tomography, identifying the main aspects to be analyzed in order to facilitate the decision making process regarding diagnosis and management in emergency settings. The present descriptive study comprised a literature review at the following databases: Access Medicine and Access Emergency Medicine (McGraw- Hill Education); British Medical Journal Evidence Center; UptoDate; Bireme; PubMed; Lilacs; SciELO; ProQuest; Micromedex (Thomson Reuters); Embase. Once the literature review was completed, the authors identified the main diseases with tomographic repercussions and proposed the present system to evaluate cranial computed tomography images. An easy-to-memorize ABC system will facilitate the decision making in emergency settings, as it covers the main diseases encountered by intensivists and emergency physicians, and provides a sequential guidance about anatomical structures to be investigated as well as their respective alterations. PMID:25987751

  2. An ABC for decision making

    International Nuclear Information System (INIS)

    The present study was aimed at proposing a systematic evaluation of cranial computed tomography, identifying the main aspects to be analyzed in order to facilitate the decision making process regarding diagnosis and management in emergency settings. The present descriptive study comprised a literature review at the following databases: Access Medicine and Access Emergency Medicine (McGraw-Hill Education); British Medical Journal Evidence Center; UptoDate; Bireme; PubMed; Lilacs; SciELO; ProQuest; Micromedex (Thomson Reuters); Embase. Once the literature review was completed, the authors identified the main diseases with tomographic repercussions and proposed the present system to evaluate cranial computed tomography images. An easy-to-memorize ABC system will facilitate the decision making in emergency settings, as it covers the main diseases encountered by intensivists and emergency physicians, and provides a sequential guidance about anatomical structures to be investigated as well as their respective alterations. (author)

  3. An ABC for decision making

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Luiz Henrique Costa, E-mail: luiz_mogi@yahoo.com.br [Associacao de Medicina Intensiva Brasileira (AMIB), Sao Paulo, SP (Brazil); Irmandade da Santa Casa de Misericordia de Sao Paulo, SP (Brazil); Ferreira, Bruna Cortez [Hospital de Base de Sao Jose do Rio Preto, SP (Brazil)

    2015-03-15

    The present study was aimed at proposing a systematic evaluation of cranial computed tomography, identifying the main aspects to be analyzed in order to facilitate the decision making process regarding diagnosis and management in emergency settings. The present descriptive study comprised a literature review at the following databases: Access Medicine and Access Emergency Medicine (McGraw-Hill Education); British Medical Journal Evidence Center; UptoDate; Bireme; PubMed; Lilacs; SciELO; ProQuest; Micromedex (Thomson Reuters); Embase. Once the literature review was completed, the authors identified the main diseases with tomographic repercussions and proposed the present system to evaluate cranial computed tomography images. An easy-to-memorize ABC system will facilitate the decision making in emergency settings, as it covers the main diseases encountered by intensivists and emergency physicians, and provides a sequential guidance about anatomical structures to be investigated as well as their respective alterations. (author)

  4. Comparative analysis of cystatin superfamily in platyhelminths.

    Science.gov (United States)

    Guo, Aijiang

    2015-01-01

    The cystatin superfamily is comprised of cysteine proteinase inhibitors and encompasses at least 3 subfamilies: stefins, cystatins and kininogens. In this study, the platyhelminth cystatin superfamily was identified and grouped into stefin and cystatin subfamilies. The conserved domain of stefins (G, QxVxG) was observed in all members of platyhelminth stefins. The three characteristics of cystatins, the cystatin-like domain (G, QxVxG, PW), a signal peptide, and one or two conserved disulfide bonds, were observed in platyhelminths, with the exception of cestodes, which lacked the conserved disulfide bond. However, it is noteworthy that cestode cystatins had two tandem repeated domains, although the second tandem repeated domain did not contain a cystatin-like domain, which has not been previously reported. Tertiary structure analysis of Taenia solium cystatin, one of the cestode cystatins, demonstrated that the N-terminus of T. solium cystatin formed a five turn α-helix, a five stranded β-pleated sheet and a hydrophobic edge, similar to the structure of chicken cystatin. Although no conserved disulfide bond was found in T. solium cystatin, the models of T. solium cystatin and chicken cystatin corresponded at the site of the first disulfide bridge of the chicken cystatin. However, the two models were not similar regarding the location of the second disulfide bridge of chicken cystatin. These results showed that T. solium cystatin and chicken cystatin had similarities and differences, suggesting that the biochemistry of T. solium cystatin could be similar to chicken cystatin in its inhibitory function and that it may have further functional roles. The same results were obtained for other cestode cystatins. Phylogenetic analysis showed that cestode cystatins constituted an independent clade and implied that cestode cystatins should be considered to have formed a new clade during evolution.

  5. Comparative analysis of cystatin superfamily in platyhelminths.

    Directory of Open Access Journals (Sweden)

    Aijiang Guo

    Full Text Available The cystatin superfamily is comprised of cysteine proteinase inhibitors and encompasses at least 3 subfamilies: stefins, cystatins and kininogens. In this study, the platyhelminth cystatin superfamily was identified and grouped into stefin and cystatin subfamilies. The conserved domain of stefins (G, QxVxG was observed in all members of platyhelminth stefins. The three characteristics of cystatins, the cystatin-like domain (G, QxVxG, PW, a signal peptide, and one or two conserved disulfide bonds, were observed in platyhelminths, with the exception of cestodes, which lacked the conserved disulfide bond. However, it is noteworthy that cestode cystatins had two tandem repeated domains, although the second tandem repeated domain did not contain a cystatin-like domain, which has not been previously reported. Tertiary structure analysis of Taenia solium cystatin, one of the cestode cystatins, demonstrated that the N-terminus of T. solium cystatin formed a five turn α-helix, a five stranded β-pleated sheet and a hydrophobic edge, similar to the structure of chicken cystatin. Although no conserved disulfide bond was found in T. solium cystatin, the models of T. solium cystatin and chicken cystatin corresponded at the site of the first disulfide bridge of the chicken cystatin. However, the two models were not similar regarding the location of the second disulfide bridge of chicken cystatin. These results showed that T. solium cystatin and chicken cystatin had similarities and differences, suggesting that the biochemistry of T. solium cystatin could be similar to chicken cystatin in its inhibitory function and that it may have further functional roles. The same results were obtained for other cestode cystatins. Phylogenetic analysis showed that cestode cystatins constituted an independent clade and implied that cestode cystatins should be considered to have formed a new clade during evolution.

  6. A Comparative Analysis of Synonymous Codon Usage Bias Pattern in Human Albumin Superfamily

    Directory of Open Access Journals (Sweden)

    Hoda Mirsafian

    2014-01-01

    Full Text Available Synonymous codon usage bias is an inevitable phenomenon in organismic taxa across the three domains of life. Though the frequency of codon usage is not equal across species and within genome in the same species, the phenomenon is non random and is tissue-specific. Several factors such as GC content, nucleotide distribution, protein hydropathy, protein secondary structure, and translational selection are reported to contribute to codon usage preference. The synonymous codon usage patterns can be helpful in revealing the expression pattern of genes as well as the evolutionary relationship between the sequences. In this study, synonymous codon usage bias patterns were determined for the evolutionarily close proteins of albumin superfamily, namely, albumin, α-fetoprotein, afamin, and vitamin D-binding protein. Our study demonstrated that the genes of the four albumin superfamily members have low GC content and high values of effective number of codons (ENC suggesting high expressivity of these genes and less bias in codon usage preferences. This study also provided evidence that the albumin superfamily members are not subjected to mutational selection pressure.

  7. 真菌的多向耐药性ABC转运蛋白%Pleiotropic drug resistance ABC transporters in fungi

    Institute of Scientific and Technical Information of China (English)

    王倩; 崔志峰

    2011-01-01

    Overexpression of pleiotropic drug resistance (PDR) efflux pumps of the ATP-binding cassette (ABC) transporter superfamily is the major cause of fungal multi-drug resistance and decreased efficacy of antifungal drugs. This review focused on recent progresses in understanding of the PDR efflux pumps of ABC transporter superfamily in Saccharo-myces cerevisiae and the fungal pathogens Candida albicans, Cryptococcus neoformans, and Aspergillus fumigates. The mechanisms underlying efflux pump-mediated drug resistance and the regulatory networks involved were discussed. Investigation of the PDR efflux pumps of ABC transporter superfamily and their impact on drug resistance may lead to strategies to overcome fungal multi-drug resistance and improve drug efficacy.%真菌的多向耐药性ABC转运蛋白(ATP-binding cassette transporters)是导致多药耐药性和抗真菌药物治疗效果明显下降的主要原因.文章对酿酒酵母(accharomyces cerevisiae)和主要致病真菌白色假丝酵母(Candida albicans)、新型隐球酵母(Cryptococcus neoformans)和烟曲霉(Aspergillus fumigatus)中的多向耐药性ABC转运蛋白的种类、药物外排机制以及基因表达调控网络的研究进展作一综述,为深入了解真菌的多向耐药性机制以及探讨克服多向耐药性的策略和提高药效提供参考.

  8. Applying the ABCs in provider organizations.

    Science.gov (United States)

    Pandey, Seema

    2012-11-01

    Activity-based costing (ABC) is an accounting technique designed to guard against potentially serious financial problems that can arise when an organization's accounting costs deviate significantly from its actual costs. In general, an ABC analysis considers two factors: a cost element (a directly measurable unit of cost, such as the cost of an item) and a cost driver (a directly measurable feature of the service, such as how often the item is used). ABC is best applied to specific service areas, orservice packages, for which consumption of resources is largely predictable and atomic units of services can be accurately identified. PMID:23173369

  9. Role of ABC transporters in cancer chemotherapy

    Institute of Scientific and Technical Information of China (English)

    Yue-Li Sun; Atish Patel; Priyank Kumar; Zhe-Sheng Chen

    2012-01-01

    Multidrug resistance (MDR) in cancer cells can significantly attenuate the response to chemotherapy and increase the likelihood of mortality.The major mechanism involved in conferring MDR is the overexpression of ATP-binding cassette (ABC) transporters,which can increase efflux of drugs from cancer cells,thereby decreasing intracellular drug concentration.Modulators of ABC transporters have the potential to augment the efficacy of anticancer drugs.This editorial highlights some major findings related to ABC transporters and current strategies to overcome MDR.

  10. Applying the ABCs in provider organizations.

    Science.gov (United States)

    Pandey, Seema

    2012-11-01

    Activity-based costing (ABC) is an accounting technique designed to guard against potentially serious financial problems that can arise when an organization's accounting costs deviate significantly from its actual costs. In general, an ABC analysis considers two factors: a cost element (a directly measurable unit of cost, such as the cost of an item) and a cost driver (a directly measurable feature of the service, such as how often the item is used). ABC is best applied to specific service areas, orservice packages, for which consumption of resources is largely predictable and atomic units of services can be accurately identified.

  11. Performance Optimization of Benchmark Functions Using VTS-ABC Algorithm

    Directory of Open Access Journals (Sweden)

    Twinkle Gupta

    2014-10-01

    Full Text Available A new variant based on tournament selection called VTS-ABC algorithm is provided in this paper. Its performance is compared with standard ABC algorithm with different size of data on several Benchmark functions and results show that VTS-ABC provides better quality of solution than original ABC algorithm in every case.

  12. A Comprehensive Bioinformatics Analysis of the Nudix Superfamily in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    D. Gunawardana

    2009-01-01

    Full Text Available Nudix enzymes are a superfamily with a conserved common reaction mechanism that provides the capacity for the hydrolysis of a broad spectrum of metabolites. We used hidden Markov models based on Nudix sequences from the PFAM and PROSITE databases to identify Nudix hydrolases encoded by the Arabidopsis genome. 25 Nudix hydrolases were identified and classified into 11 individual families by pairwise sequence alignments. Intron phases were strikingly conserved in each family. Phylogenetic analysis showed that all multimember families formed monophyletic clusters. Conserved familial sequence motifs were identified with the MEME motif analysis algorithm. One motif (motif 4 was found in three diverse families. All proteins containing motif 4 demonstrated a degree of preference for substrates containing an ADP moiety. We conclude that HMM model-based genome scanning and MEME motif analysis, respectively, can significantly improve the identification and assignment of function of new members of this mechanistically-diverse protein superfamily.

  13. Neuroprotective effect of chondroitinase ABC on primary and secondary brain injury after stroke in hypertensive rats.

    Science.gov (United States)

    Chen, Xin-ran; Liao, Song-jie; Ye, Lan-xiang; Gong, Qiong; Ding, Qiao; Zeng, Jin-sheng; Yu, Jian

    2014-01-16

    Focal cerebral infarction causes secondary damage in the ipsilateral ventroposterior thalamic nucleus (VPN). Chondroitin sulfate proteoglycans (CSPGs) are a family of putative inhibitory components, and its degradation by chondroitinase ABC (ChABC) promotes post-injury neurogenesis. This study investigated the role of ChABC in the primary and secondary injury post stroke in hypertension. Renovascular hypertensive Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAO), and were subjected to continuous intra-infarct infusion of ChABC (0.12 U/d for 7 days) 24 h later. Neurological function was evaluated by a modified neurologic severity score. Neurons were counted in the peri-infarct region and the ipsilateral VPN 8 and 14 days after MCAO by Nissl staining and NeuN labeling. The expressions of CSPGs, growth-associated protein-43 (GAP-43) and synaptophysin (SYN) were detected with immunofluorescence or Western blotting. The intra-infarct infusion of ChABC, by degrading accumulated CSPGs, rescued neuronal loss and increased the levels of GAP-43 and SYN in both the ipsilateral cortex and VPN, indicating enhancd neuron survival as well as augmented axonal growth and synaptic plasticity, eventually improving overall neurological function. The study demonstrated that intra-infarct ChABC infusion could salvage the brain from both primary and secondary injury by the intervention on the neuroinhibitory environment post focal cerebral infarction.

  14. Impaired mitochondrial energy production and ABC transporter function-A crucial interconnection in dementing proteopathies of the brain.

    Science.gov (United States)

    Pahnke, Jens; Fröhlich, Christina; Krohn, Markus; Schumacher, Toni; Paarmann, Kristin

    2013-10-01

    Ageing is the main risk factor for the development of dementing neurodegenerative diseases (NDs) and it is accompanied by the accumulation of variations in mitochondrial DNA. The resulting tissue-specific alterations in ATP production and availability cause deteriorations of cerebral clearance mechanisms that are important for the removal of toxic peptides and its aggregates. ABC transporters were shown to be the most important exporter superfamily for toxic peptides, e.g. β-amyloid and α-synuclein. Their activity is highly dependent on the availability of ATP and forms a directed energy-exporter network, linking decreased mitochondrial function with highly impaired ABC transporter activity and disease progression. In this paper, we describe a network based on interactions between ageing, energy metabolism, regeneration, accumulation of toxic peptides and the development of proteopathies of the brain with a focus on Alzheimer's disease (AD). Additionally, we provide new experimental evidence for interactions within this network in regenerative processes in AD.

  15. Structural conservation in the major facilitator superfamily as revealed by comparative modeling

    OpenAIRE

    Vardy, Eyal; Arkin, Isaiah T.; Gottschalk, Kay E.; Kaback, H. Ronald; Schuldiner, Shimon

    2004-01-01

    The structures of membrane transporters are still mostly unsolved. Only recently, the first two high-resolution structures of transporters of the major facilitator superfamily (MFS) were published. Despite the low sequence similarity of the two proteins involved, lactose permease and glycerol-3-phosphate transporter, the reported structures are highly similar. This leads to the hypothesis that all members of the MFS share a similar structure, regardless of their low sequence identity. To test...

  16. CYP51: A Major Drug Target in the Cytochrome P450 Superfamily

    OpenAIRE

    Lepesheva, Galina I.; Hargrove, Tatyana Y.; Kleshchenko, Yuliya; Nes, W. David; Villalta, Fernando; Waterman, Michael R.

    2008-01-01

    The cytochrome P540 (CYP) superfamily currently includes about 9,000 proteins forming more than 800 families. The enzymes catalyze monooxygenation of a vast array of compounds and play essentially two roles. They provide biodefense (detoxification of xenobiotics, antibiotic production) and participate in biosynthesis of important endogenous molecules, particularly steroids. Based on these two roles, sterol 14|*alpha*|-demethylases (CYP51) belong to the second group of P450s. The CYP51 family,...

  17. Structure of a conserved hypothetical protein, TTHA0849 from Thermus thermophilus HB8, at 2.4 Å resolution: a putative member of the StAR-related lipid-transfer (START) domain superfamily

    International Nuclear Information System (INIS)

    The crystal structure of a conserved hypothetical protein, TTHA0849 from T. thermophilus HB8, has been determined at 2.4 Å resolution. The compact α+β structure shows the typical folding of the steroidogenic acute regulatory-related lipid-transfer (START) domain. The crystal structure of a conserved hypothetical protein, TTHA0849 from Thermus thermophilus HB8, has been determined at 2.4 Å resolution as a part of a structural and functional genomics project on T. thermophilus HB8. The main-chain folding shows a compact α+β motif, forming a hydrophobic cavity in the molecule. A structural similarity search reveals that it resembles those steroidogenic acute regulatory proteins that contain the lipid-transfer (START) domain, even though TTHA0849 shows comparatively weak sequence identity to polyketide cyclases. However, the size of the ligand-binding cavity is distinctly smaller than other START domain-containing proteins, suggesting that it catalyses the transfer of smaller ligand molecules

  18. The abc-conjecture for Algebraic Numbers

    Institute of Scientific and Technical Information of China (English)

    Jerzy BROWKIN

    2006-01-01

    The abc-conjecture for the ring of integers states that, for every ε> 0 and every triple of relatively prime nonzero integers (a, b, c) satisfying a + b = c, we have max(|a|, |b|, |c|) ≤ rad(abc)1+ε with a finite number of exceptions. Here the radical rad(m) is the product of all distinct prime factors of m.In the present paper we propose an abc-conjecture for the field of all algebraic numbers. It is based on the definition of the radical (in Section 1) and of the height (in Section 2) of an algebraic number.From this abc-conjecture we deduce some versions of Fermat's last theorem for the field of all algebraic numbers, and we discuss from this point of view known results on solutions of Fermat's equation in fields of small degrees over Q.

  19. Molecular and immunological analysis of an ABC transporter complex required for cytochrome c biogenesis.

    Science.gov (United States)

    Goldman, B S; Beckman, D L; Bali, A; Monika, E M; Gabbert, K K; Kranz, R G

    1997-05-16

    The helABC genes are predicted to encode an ATP-binding cassette (ABC) transporter necessary for heme export for ligation in bacterial cytochrome c biogenesis. The recent discoveries of homologs of the helB and helC genes in plant mitochondrial genomes suggest this is a highly conserved transporter in prokaryotes and some eukaryotes with the HelB and HelC proteins comprising the transmembrane components. Molecular genetic analysis in the Gram-negative bacterium Rhodobacter capsulatus was used to show that the helABC and helDX genes are part of an operon linked to the secDF genes. To facilitate analysis of this transporter, strains with non-polar deletions in each gene, epitope and reporter-tagged HelABCD proteins, and antisera specific to the HelA and HelX proteins were generated. We directly demonstrate that this transporter is present in the cytoplasmic membrane as an HelABCD complex. The HelB and HelC but not HelD proteins are necessary for the binding and stability of the HelA protein, the cytoplasmic subunit containing the ATP-binding region. In addition we show that the HelA protein co-immunoprecipitates with either the HelC or HelD proteins. Thus, the HelABCD heme export complex is distinguished by the presence of four membrane-associated subunits and represents a unique subfamily of ABC transporters. PMID:9175857

  20. Whole-transcriptome survey of the putative ATP-binding cassette (ABC transporter family genes in the latex-producing laticifers of Hevea brasiliensis.

    Directory of Open Access Journals (Sweden)

    Nie Zhiyi

    Full Text Available The ATP-binding cassette (ABC proteins or transporters constitute a large protein family in plants and are involved in many different cellular functions and processes, including solute transportation, channel regulation and molecular switches, etc. Through transcriptome sequencing, a transcriptome-wide survey and expression analysis of the ABC protein genes were carried out using the laticiferous latex from Hevea brasiliensis (rubber tree. A total of 46 putative ABC family proteins were identified in the H. brasiliensis latex. These consisted of 12 'full-size', 21 'half-size' and 13 other putative ABC proteins, and all of them showed strong conservation with their Arabidopsis thaliana counterparts. This study indicated that all eight plant ABC protein paralog subfamilies were identified in the H. brasiliensis latex, of which ABCB, ABCG and ABCI were the most abundant. Real-time quantitative reverse transcription-polymerase chain reaction assays demonstrated that gene expression of several latex ABC proteins was regulated by ethylene, jasmonic acid or bark tapping (a wound stress stimulation, and that HbABCB15, HbABCB19, HbABCD1 and HbABCG21 responded most significantly of all to the abiotic stresses. The identification and expression analysis of the latex ABC family proteins could facilitate further investigation into their physiological involvement in latex metabolism and rubber biosynthesis by H. brasiliensis.

  1. Aldo-keto reductase (AKR) superfamily: genomics and annotation.

    Science.gov (United States)

    Mindnich, Rebekka D; Penning, Trevor M

    2009-07-01

    Aldo-keto reductases (AKRs) are phase I metabolising enzymes that catalyse the reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H)-dependent reduction of carbonyl groups to yield primary and secondary alcohols on a wide range of substrates, including aliphatic and aromatic aldehydes and ketones, ketoprostaglandins, ketosteroids and xenobiotics. In so doing they functionalise the carbonyl group for conjugation (phase II enzyme reactions). Although functionally diverse, AKRs form a protein superfamily based on their high sequence identity and common protein fold, the (alpha/beta) 8 -barrel structure. Well over 150 AKR enzymes, from diverse organisms, have been annotated so far and given systematic names according to a nomenclature that is based on multiple protein sequence alignment and degree of identity. Annotation of non-vertebrate AKRs at the National Center for Biotechnology Information or Vertebrate Genome Annotation (vega) database does not often include the systematic nomenclature name, so the most comprehensive overview of all annotated AKRs is found on the AKR website (http://www.med.upenn.edu/akr/). This site also hosts links to more detailed and specialised information (eg on crystal structures, gene expression and single nucleotide polymorphisms [SNPs]). The protein-based AKR nomenclature allows unambiguous identification of a given enzyme but does not reflect the wealth of genomic and transcriptomic variation that exists in the various databases. In this context, identification of putative new AKRs and their distinction from pseudogenes are challenging. This review provides a short summary of the characteristic features of AKR biochemistry and structure that have been reviewed in great detail elsewhere, and focuses mainly on nomenclature and database entries of human AKRs that so far have not been subject to systematic annotation. Recent developments in the annotation of SNP and transcript variance in AKRs are also summarised. PMID:19706366

  2. Aldo-keto reductase (AKR superfamily: Genomics and annotation

    Directory of Open Access Journals (Sweden)

    Mindnich Rebekka D

    2009-07-01

    Full Text Available Abstract Aldo-keto reductases (AKRs are phase I metabolising enzymes that catalyse the reduced nicotinamide adenine dinucleotide (phosphate (NAD(PH-dependent reduction of carbonyl groups to yield primary and secondary alcohols on a wide range of substrates, including aliphatic and aromatic aldehydes and ketones, ketoprostaglan-dins, ketosteroids and xenobiotics. In so doing they functionalise the carbonyl group for conjugation (phase II enzyme reactions. Although functionally diverse, AKRs form a protein superfamily based on their high sequence identity and common protein fold, the (α/(β8-barrel structure. Well over 150 AKR enzymes, from diverse organisms, have been annotated so far and given systematic names according to a nomenclature that is based on multiple protein sequence alignment and degree of identity. Annotation of non-vertebrate AKRs at the National Center for Biotechnology Information or Vertebrate Genome Annotation (vega database does not often include the systematic nomenclature name, so the most comprehensive overview of all annotated AKRs is found on the AKR website (http://www.med.upenn.edu/akr/. This site also hosts links to more detailed and specialised information (eg on crystal structures, gene expression and single nucleotide polymorphisms [SNPs]. The protein-based AKR nomenclature allows unambiguous identification of a given enzyme but does not reflect the wealth of genomic and transcriptomic variation that exists in the various databases. In this context, identification of putative new AKRs and their distinction from pseudogenes are challenging. This review provides a short summary of the characteristic features of AKR biochemistry and structure that have been reviewed in great detail elsewhere, and focuses mainly on nomenclature and database entries of human AKRs that so far have not been subject to systematic annotation. Recent developments in the annotation of SNP and transcript variance in AKRs are also summarised.

  3. Development of Conformation Independent Computational Models for the Early Recognition of Breast Cancer Resistance Protein Substrates

    Directory of Open Access Journals (Sweden)

    Melisa Edith Gantner

    2013-01-01

    Full Text Available ABC efflux transporters are polyspecific members of the ABC superfamily that, acting as drug and metabolite carriers, provide a biochemical barrier against drug penetration and contribute to detoxification. Their overexpression is linked to multidrug resistance issues in a diversity of diseases. Breast cancer resistance protein (BCRP is the most expressed ABC efflux transporter throughout the intestine and the blood-brain barrier, limiting oral absorption and brain bioavailability of its substrates. Early recognition of BCRP substrates is thus essential to optimize oral drug absorption, design of novel therapeutics for central nervous system conditions, and overcome BCRP-mediated cross-resistance issues. We present the development of an ensemble of ligand-based machine learning algorithms for the early recognition of BCRP substrates, from a database of 262 substrates and nonsubstrates compiled from the literature. Such dataset was rationally partitioned into training and test sets by application of a 2-step clustering procedure. The models were developed through application of linear discriminant analysis to random subsamples of Dragon molecular descriptors. Simple data fusion and statistical comparison of partial areas under the curve of ROC curves were applied to obtain the best 2-model combination, which presented 82% and 74.5% of overall accuracy in the training and test set, respectively.

  4. The ABC-paradox: is Time Driven ABC relevant for small and Medium sized enterprises (SME)?

    DEFF Research Database (Denmark)

    Fladkjær, Henrik Find; Jensen, Erling

    Several articles suggest that Activity Based Costing (ABC) has failed to succeed in practical use. It is even argued that we have an ABC-paradox. Activity Based Costing has won theoretically in nu-merous articles in journals, through books, being included in all major Business Accounting text...

  5. TGF-β superfamily members from the helminth Fasciola hepatica show intrinsic effects on viability and development.

    Science.gov (United States)

    Japa, Ornampai; Hodgkinson, Jane E; Emes, Richard D; Flynn, Robin J

    2015-03-11

    The helminth Fasciola hepatica causes fasciolosis throughout the world, a major disease of livestock and an emerging zoonotic disease in humans. Sustainable control mechanisms such as vaccination are urgently required. To discover potential vaccine targets we undertook a genome screen to identify members of the transforming growth factor (TGF) family of proteins. Herein we describe the discovery of three ligands belonging to this superfamily and the cloning and characterisation of an activin/TGF like molecule we term FhTLM. FhTLM has a limited expression pattern both temporally across the parasite stages but also spatially within the worm. Furthermore, a recombinant form of this protein is able to enhance the rate (or magnitude) of multiple developmental processes of the parasite indicating a conserved role for this protein superfamily in the developmental biology of a major trematode parasite. Our study demonstrates for the first time the existence of this protein superfamily within F. hepatica and assigns a function to one of the three identified ligands. Moreover further exploration of this superfamily may yield future targets for diagnostic or vaccination purposes due to its stage restricted expression and functional role.

  6. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies.

    Science.gov (United States)

    Li, Wen; Zhang, Han; Assaraf, Yehuda G; Zhao, Kun; Xu, Xiaojun; Xie, Jinbing; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-07-01

    Multidrug resistance is a key determinant of cancer chemotherapy failure. One of the major causes of multidrug resistance is the enhanced efflux of drugs by membrane ABC transporters. Targeting ABC transporters projects a promising approach to eliminating or suppressing drug resistance in cancer treatment. To reveal the functional mechanisms of ABC transporters in drug resistance, extensive studies have been conducted from identifying drug binding sites to elucidating structural dynamics. In this review article, we examined the recent crystal structures of ABC proteins to depict the functionally important structural elements, such as domains, conserved motifs, and critical amino acids that are involved in ATP-binding and drug efflux. We inspected the drug-binding sites on ABC proteins and the molecular mechanisms of various substrate interactions with the drug binding pocket. While our continuous battle against drug resistance is far from over, new approaches and technologies have emerged to push forward our frontier. Most recent developments in anti-MDR strategies include P-gp inhibitors, RNA-interference, nano-medicines, and delivering combination strategies. With the advent of the 'Omics' era - genomics, epigenomics, transcriptomics, proteomics, and metabolomics - these disciplines play an important role in fighting the battle against chemoresistance by further unraveling the molecular mechanisms of drug resistance and shed light on medical therapies that specifically target MDR. PMID:27449595

  7. Sensitive and specific fluorescent probes for functional analysis of the three major types of mammalian ABC transporters.

    Directory of Open Access Journals (Sweden)

    Irina V Lebedeva

    Full Text Available An underlying mechanism for multi drug resistance (MDR is up-regulation of the transmembrane ATP-binding cassette (ABC transporter proteins. ABC transporters also determine the general fate and effect of pharmaceutical agents in the body. The three major types of ABC transporters are MDR1 (P-gp, P-glycoprotein, ABCB1, MRP1/2 (ABCC1/2 and BCRP/MXR (ABCG2 proteins. Flow cytometry (FCM allows determination of the functional expression levels of ABC transporters in live cells, but most dyes used as indicators (rhodamine 123, DiOC(2(3, calcein-AM have limited applicability as they do not detect all three major types of ABC transporters. Dyes with broad coverage (such as doxorubicin, daunorubicin and mitoxantrone lack sensitivity due to overall dimness and thus may yield a significant percentage of false negative results. We describe two novel fluorescent probes that are substrates for all three common types of ABC transporters and can serve as indicators of MDR in flow cytometry assays using live cells. The probes exhibit fast internalization, favorable uptake/efflux kinetics and high sensitivity of MDR detection, as established by multidrug resistance activity factor (MAF values and Kolmogorov-Smirnov statistical analysis. Used in combination with general or specific inhibitors of ABC transporters, both dyes readily identify functional efflux and are capable of detecting small levels of efflux as well as defining the type of multidrug resistance. The assay can be applied to the screening of putative modulators of ABC transporters, facilitating rapid, reproducible, specific and relatively simple functional detection of ABC transporter activity, and ready implementation on widely available instruments.

  8. Analysis and update of the human solute carrier (SLC gene superfamily

    Directory of Open Access Journals (Sweden)

    He Lei

    2009-01-01

    Full Text Available Abstract The solute-carrier gene (SLC superfamily encodes membrane-bound transporters. The SLC superfamily comprises 55 gene families having at least 362 putatively functional protein-coding genes. The gene products include passive transporters, symporters and antiporters, located in all cellular and organelle membranes, except, perhaps, the nuclear membrane. Transport substrates include amino acids and oligopeptides, glucose and other sugars, inorganic cations and anions (H+, HCO3-, Cl-, Na+, K+, Ca2+, Mg2+, PO43-, HPO42-, H2PO4-, SO42-, C2O42-, OH-,CO32-, bile salts, carboxylate and other organic anions, acetyl coenzyme A, essential metals, biogenic amines, neurotransmitters, vitamins, fatty acids and lipids, nucleosides, ammonium, choline, thyroid hormone and urea. Contrary to gene nomenclature commonly assigned on the basis of evolutionary divergence http://www.genenames.org/, the SLC gene superfamily has been named based largely on transporter function by proteins having multiple transmembrane domains. Whereas all the transporters exist for endogenous substrates, it is likely that drugs, non-essential metals and many other environmental toxicants are able to 'hitch-hike' on one or another of these transporters, thereby enabling these moieties to enter (or leave the cell. Understanding and characterising the functions of these transporters is relevant to medicine, genetics, developmental biology, pharmacology and cancer chemotherapy.

  9. TNF and TNF Receptor Superfamily Members in HIV infection: New Cellular Targets for Therapy?

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2013-01-01

    Full Text Available Tumor necrosis factor (TNF and TNF receptors (TNFR superfamily members are engaged in diverse cellular phenomena such as cellular proliferation, morphogenesis, apoptosis, inflammation, and immune regulation. Their role in regulating viral infections has been well documented. Viruses have evolved with numerous strategies to interfere with TNF-mediated signaling indicating the importance of TNF and TNFR superfamily in viral pathogenesis. Recent research reports suggest that TNF and TNFRs play an important role in the pathogenesis of HIV. TNFR signaling modulates HIV replication and HIV proteins interfere with TNF/TNFR pathways. Since immune activation and inflammation are the hallmark of HIV infection, the use of TNF inhibitors can have significant impact on HIV disease progression. In this review, we will describe how HIV infection is modulated by signaling mediated through members of TNF and TNFR superfamily and in turn how these latter could be targeted by HIV proteins. Finally, we will discuss the emerging therapeutics options based on modulation of TNF activity that could ultimately lead to the cure of HIV-infected patients.

  10. The cytochrome P450 superfamily:Key players in plant development and defense

    Institute of Scientific and Technical Information of China (English)

    XU Jun; WANG Xin-yu; GUO Wang-zhen

    2015-01-01

    The cytochrome P450 (CYP) superfamily is the largest enzymatic protein family in plants, and it also widely exists in mammals, fungi, bacteria, insects and so on. Members of this superfamily are involved in multiple metabolic pathways with distinct and complex functions, playing important roles in a vast array of reactions. As a result, numerous secondary metabolites are synthesized that function as growth and developmental signals or protect plants from various biotic and abiotic stresses. Here, we summarize the characterization of CYPs, as wel as their phylogenetic classiifcation. We also focus on recent advances in elucidating the roles of CYPs in mediating plant growth and development as wel as biotic and abiotic stresses responses, providing insights into their potential utilization in plant breeding.

  11. ATP and AMP Mutually Influence Their Interaction with the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) at Separate Binding Sites*

    OpenAIRE

    Randak, Christoph O.; Dong, Qian; Ver Heul, Amanda R.; Elcock, Adrian H.; Welsh, Michael J.

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, ...

  12. Marine Natural Products as Breast Cancer Resistance Protein Inhibitors

    Directory of Open Access Journals (Sweden)

    Lilia Cherigo

    2015-04-01

    Full Text Available Breast cancer resistance protein (BCRP is a protein belonging to the ATP-binding cassette (ABC transporter superfamily that has clinical relevance due to its multi-drug resistance properties in cancer. BCRP can be associated with clinical cancer drug resistance, in particular acute myelogenous or acute lymphocytic leukemias. The overexpression of BCRP contributes to the resistance of several chemotherapeutic drugs, such as topotecan, methotrexate, mitoxantrone, doxorubicin and daunorubicin. The Food and Drugs Administration has already recognized that BCRP is clinically one of the most important drug transporters, mainly because it leads to a reduction of clinical efficacy of various anticancer drugs through its ATP-dependent drug efflux pump function as well as its apparent participation in drug resistance. This review article aims to summarize the different research findings on marine natural products with BCRP inhibiting activity. In this sense, the potential modulation of physiological targets of BCRP by natural or synthetic compounds offers a great possibility for the discovery of new drugs and valuable research tools to recognize the function of the complex ABC-transporters.

  13. An ABC analysis for power generation project

    Directory of Open Access Journals (Sweden)

    Batool Hasani

    2013-07-01

    Full Text Available One of the primary concerns on performance measurement is to know how much a particular project cost. However, using traditional method on project-based products often leads to inappropriate results. In this paper, we re-examine this issue by comparing the cost of a power station construction project using ABC versus traditional method. The results of survey show that ABC method is capable of providing better estimates for overhead costs compared with traditional method. In other words, ABC method helps reduce some of the unnecessary overhead cost items and increase on some other cost components. This helps increase the relative efficiency of the system by reducing total cost of project.

  14. Are lipid rafts involved in ABC transporter-mediated drug resistance of tumor cells?

    NARCIS (Netherlands)

    Kok, Jan Willem; Klappe, Karin; Hummel, Ina; Kroesen, Bart-Jan; Sietsma, Hannie; Meszaros, Peter

    2008-01-01

    Since their discovery, lipid rafts have been implicated in several cellular functions, including protein transport in polarized cells and signal transduction. Also in multidrug resistance lipid rafts may be important with regard to the localization of ATP-binding cassette (ABC) transporters in these

  15. Mammalian P4-ATPases and ABC transporters and their role in phospholipid transport.

    Science.gov (United States)

    Coleman, Jonathan A; Quazi, Faraz; Molday, Robert S

    2013-03-01

    Transport of phospholipids across cell membranes plays a key role in a wide variety of biological processes. These include membrane biosynthesis, generation and maintenance of membrane asymmetry, cell and organelle shape determination, phagocytosis, vesicle trafficking, blood coagulation, lipid homeostasis, regulation of membrane protein function, apoptosis, etc. P(4)-ATPases and ATP binding cassette (ABC) transporters are the two principal classes of membrane proteins that actively transport phospholipids across cellular membranes. P(4)-ATPases utilize the energy from ATP hydrolysis to flip aminophospholipids from the exocytoplasmic (extracellular/lumen) to the cytoplasmic leaflet of cell membranes generating membrane lipid asymmetry and lipid imbalance which can induce membrane curvature. Many ABC transporters play crucial roles in lipid homeostasis by actively transporting phospholipids from the cytoplasmic to the exocytoplasmic leaflet of cell membranes or exporting phospholipids to protein acceptors or micelles. Recent studies indicate that some ABC proteins can also transport phospholipids in the opposite direction. The importance of P(4)-ATPases and ABC transporters is evident from the findings that mutations in many of these transporters are responsible for severe human genetic diseases linked to defective phospholipid transport. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.

  16. Structural relationships in the lysozyme superfamily: significant evidence for glycoside hydrolase signature motifs.

    Directory of Open Access Journals (Sweden)

    Alexandre Wohlkönig

    Full Text Available BACKGROUND: Chitin is a polysaccharide that forms the hard, outer shell of arthropods and the cell walls of fungi and some algae. Peptidoglycan is a polymer of sugars and amino acids constituting the cell walls of most bacteria. Enzymes that are able to hydrolyze these cell membrane polymers generally play important roles for protecting plants and animals against infection with insects and pathogens. A particular group of such glycoside hydrolase enzymes share some common features in their three-dimensional structure and in their molecular mechanism, forming the lysozyme superfamily. RESULTS: Besides having a similar fold, all known catalytic domains of glycoside hydrolase proteins of lysozyme superfamily (families and subfamilies GH19, GH22, GH23, GH24 and GH46 share in common two structural elements: the central helix of the all-α domain, which invariably contains the catalytic glutamate residue acting as general-acid catalyst, and a β-hairpin pointed towards the substrate binding cleft. The invariant β-hairpin structure is interestingly found to display the highest amino acid conservation in aligned sequences of a given family, thereby allowing to define signature motifs for each GH family. Most of such signature motifs are found to have promising performances for searching sequence databases. Our structural analysis further indicates that the GH motifs participate in enzymatic catalysis essentially by containing the catalytic water positioning residue of inverting mechanism. CONCLUSIONS: The seven families and subfamilies of the lysozyme superfamily all have in common a β-hairpin structure which displays a family-specific sequence motif. These GH β-hairpin motifs contain potentially important residues for the catalytic activity, thereby suggesting the participation of the GH motif to catalysis and also revealing a common catalytic scheme utilized by enzymes of the lysozyme superfamily.

  17. Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Chun Zhang; Xijing He; Haopeng Li; Guoyu Wang

    2013-01-01

    As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was injected on the next day in the combination group. At 14 days, the mean Basso, Beattie and Bresnahan score of the rats in the combination group was higher than other groups. Hematoxylin-eosin staining showed that the necrotic area was significantly reduced in the combination group compared with other groups. Glial fibrillary acidic protein-chondroitin sulfate proteoglycan double staining showed that the damage zone of astrocytic scars was significantly reduced without the cavity in the combination group. Glial fibrillary acidic protein/growth associated protein-43 double immunostaining revealed that positive fibers traversed the damage zone in the combination group. These results suggest that the combination of chondroitinase ABC and bone marrow mesenchymal stem cell transplantation contributes to the repair of spinal cord injury.

  18. New Broom To Sweep Clean At ABC

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Agricultural Bank of China (ABC) has a new president. The last non- publicly traded state-owned lender in China announced on July 6 that Xiang Junbo, former Vice Governor of the People’s Bank of China, or the central bank, had beenappointed to take o

  19. Calculus ABCs: A Gateway for Freshman Calculus

    Science.gov (United States)

    Fulton, Scott R.

    2003-01-01

    This paper describes a gateway testing program designed to ensure that students acquire basic skills in freshman calculus. Students must demonstrate they have mastered standards for "Absolutely Basic Competency"--the Calculus ABCs--in order to pass the course with a grade of C or better. We describe the background, standards, and testing program.…

  20. An asymmetric post-hydrolysis state of the ABC transporter ATPase dimer.

    Directory of Open Access Journals (Sweden)

    Anthony M George

    Full Text Available ABC transporters are a superfamily of enzyme pumps that hydrolyse ATP in exchange for translocation of substrates across cellular membranes. Architecturally, ABC transporters are a dimer of transmembrane domains coupled to a dimer of nucleotide binding domains (NBDs: the NBD dimer contains two ATP-binding sites at the intersubunit interface. A current controversy is whether the protomers of the NBD dimer separate during ATP hydrolysis cycling, or remain in constant contact. In order to investigate the ABC ATPase catalytic mechanism, MD simulations using the recent structure of the ADP+Pi-bound MJ0796 isolated NBD dimer were performed. In three independent simulations of the ADP+Pi/apo state, comprising a total of >0.5 µs, significant opening of the apo (empty active site was observed; occurring by way of intrasubunit rotations between the core and helical subdomains within both NBD monomers. In contrast, in three equivalent simulations of the ATP/apo state, the NBD dimer remained close to the crystal structure, and no opening of either active site occurred. The results thus showed allosteric coupling between the active sites, mediated by intrasubunit conformational changes. Opening of the apo site is exquisitely tuned to the nature of the ligand, and thus to the stage of the reaction cycle, in the opposite site. In addition to this, in also showing how one active site can open, sufficient to bind nucleotide, while the opposite site remains occluded and bound to the hydrolysis products ADP+Pi, the results are consistent with a Constant Contact Model. Conversely, they show how there may be no requirement for the NBD protomers to separate to complete the catalytic cycle.

  1. An asymmetric post-hydrolysis state of the ABC transporter ATPase dimer.

    Science.gov (United States)

    George, Anthony M; Jones, Peter M

    2013-01-01

    ABC transporters are a superfamily of enzyme pumps that hydrolyse ATP in exchange for translocation of substrates across cellular membranes. Architecturally, ABC transporters are a dimer of transmembrane domains coupled to a dimer of nucleotide binding domains (NBDs): the NBD dimer contains two ATP-binding sites at the intersubunit interface. A current controversy is whether the protomers of the NBD dimer separate during ATP hydrolysis cycling, or remain in constant contact. In order to investigate the ABC ATPase catalytic mechanism, MD simulations using the recent structure of the ADP+Pi-bound MJ0796 isolated NBD dimer were performed. In three independent simulations of the ADP+Pi/apo state, comprising a total of >0.5 µs, significant opening of the apo (empty) active site was observed; occurring by way of intrasubunit rotations between the core and helical subdomains within both NBD monomers. In contrast, in three equivalent simulations of the ATP/apo state, the NBD dimer remained close to the crystal structure, and no opening of either active site occurred. The results thus showed allosteric coupling between the active sites, mediated by intrasubunit conformational changes. Opening of the apo site is exquisitely tuned to the nature of the ligand, and thus to the stage of the reaction cycle, in the opposite site. In addition to this, in also showing how one active site can open, sufficient to bind nucleotide, while the opposite site remains occluded and bound to the hydrolysis products ADP+Pi, the results are consistent with a Constant Contact Model. Conversely, they show how there may be no requirement for the NBD protomers to separate to complete the catalytic cycle. PMID:23573213

  2. An alternative physiological role for the EmhABC efflux pump in Pseudomonas fluorescens cLP6a

    Directory of Open Access Journals (Sweden)

    Adebusuyi Abigail A

    2011-11-01

    Full Text Available Abstract Background Efflux pumps belonging to the resistance-nodulation-division (RND superfamily in bacteria are involved in antibiotic resistance and solvent tolerance but have an unknown physiological role. EmhABC, a RND-type efflux pump in Pseudomonas fluorescens strain cLP6a, extrudes hydrophobic antibiotics, dyes and polycyclic aromatic hydrocarbons including phenanthrene. The effects of physico-chemical factors such as temperature or antibiotics on the activity and expression of EmhABC were determined in order to deduce its physiological role(s in strain cLP6a in comparison to the emhB disruptant strain, cLP6a-1. Results Efflux assays conducted with 14C-phenanthrene showed that EmhABC activity is affected by incubation temperature. Increased phenanthrene efflux was measured in cLP6a cells grown at 10°C and decreased efflux was observed at 35°C compared with cells grown at the optimum temperature of 28°C. Membrane fatty acids in cLP6a cells were substantially altered by changes in growth temperature and in the presence of tetracycline. Changed membrane fatty acids and increased membrane permeability were associated with ~30-fold increased expression of emhABC in cLP6a cells grown at 35°C, and with increased extracellular free fatty acids. Growth of P. fluorescens cLP6a at supra-optimal temperature was enhanced by the presence of EmhABC compared to strain cLP6a-1. Conclusions Combined, these observations suggest that the EmhABC efflux pump may be involved in the management of membrane stress effects such as those due to unfavourable incubation temperatures. Efflux of fatty acids replaced as a result of membrane damage or phospholipid turnover may be the primary physiological role of the EmhABC efflux pump in P. fluorescens cLP6a.

  3. Invited review: Mechanisms of GTP hydrolysis and conformational transitions in the dynamin superfamily.

    Science.gov (United States)

    Daumke, Oliver; Praefcke, Gerrit J K

    2016-08-01

    Dynamin superfamily proteins are multidomain mechano-chemical GTPases which are implicated in nucleotide-dependent membrane remodeling events. A prominent feature of these proteins is their assembly- stimulated mechanism of GTP hydrolysis. The molecular basis for this reaction has been initially clarified for the dynamin-related guanylate binding protein 1 (GBP1) and involves the transient dimerization of the GTPase domains in a parallel head-to-head fashion. A catalytic arginine finger from the phosphate binding (P-) loop is repositioned toward the nucleotide of the same molecule to stabilize the transition state of GTP hydrolysis. Dynamin uses a related dimerization-dependent mechanism, but instead of the catalytic arginine, a monovalent cation is involved in catalysis. Still another variation of the GTP hydrolysis mechanism has been revealed for the dynamin-like Irga6 which bears a glycine at the corresponding position in the P-loop. Here, we highlight conserved and divergent features of GTP hydrolysis in dynamin superfamily proteins and show how nucleotide binding and hydrolysis are converted into mechano-chemical movements. We also describe models how the energy of GTP hydrolysis can be harnessed for diverse membrane remodeling events, such as membrane fission or fusion. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 580-593, 2016. PMID:27062152

  4. Polymorphic Variants of LIGHT (TNF Superfamily-14) Alter Receptor Avidity and Bioavailability1

    OpenAIRE

    Cheung, Timothy C.; Coppieters, Ken; Sanjo, Hideki; Oborne, Lisa M.; Norris, Paula S.; Coddington, Amy; Granger, Steven W.; Elewaut, Dirk; Ware, Carl F.

    2010-01-01

    The TNF superfamily member, LIGHT (TNFSF14) is a key cytokine that activates T cells and dendritic cells, and is implicated as a mediator of inflammatory, metabolic and malignant diseases. LIGHT engages the Lymphotoxin-β receptor (LTβR) and herpesvirus entry mediator (HVEM, TNFRSF14), but is competitively limited in activating these receptors by soluble decoy receptor-3 (DcR3, TNFRSF6B). Two variants in the human LIGHT alter the protein at E214K (rs344560) in the receptor-binding domain and S...

  5. Understanding transport by the major facilitator superfamily (MFS): structures pave the way.

    Science.gov (United States)

    Quistgaard, Esben M; Löw, Christian; Guettou, Fatma; Nordlund, Pär

    2016-02-01

    Members of the major facilitator superfamily (MFS) of transport proteins are essential for the movement of a wide range of substrates across biomembranes. As this transport requires a series of conformational changes, structures of MFS transporters captured in different conformational states are needed to decipher the transport mechanism. Recently, a large number of MFS transporter structures have been determined, which has provided us with an unprecedented opportunity to understand general aspects of the transport mechanism. We propose an updated model for the conformational cycle of MFS transporters, the 'clamp-and-switch model', and discuss the role of so-called 'gating residues' and the substrate in modulating these conformational changes.

  6. Differential contributions of five ABC transporters to mutidrug resistance, antioxidion and virulence of Beauveria bassiana, an entomopathogenic fungus.

    Science.gov (United States)

    Song, Ting-Ting; Zhao, Jing; Ying, Sheng-Hua; Feng, Ming-Guang

    2013-01-01

    Multidrug resistance (MDR) confers agrochemical compatibility to fungal cells-based mycoinsecticdes but mechanisms involved in MDR remain poorly understood for entomopathogenic fungi, which have been widely applied as biocontrol agents against arthropod pests. Here we characterized the functions of five ATP-binding cassette (ABC) transporters, which were classified to the subfamilies ABC-B (Mdr1), ABC-C (Mrp1) and ABC-G (Pdr1, Pdr2 and Pdr5) and selected from 54 full-size ABC proteins of Beauveria bassiana based on their main domain architecture, membrane topology and transcriptional responses to three antifungal inducers. Disruption of each transporter gene resulted in significant reduction in resistance to four to six of eight fungicides or antifungal drugs tested due to their differences in structure and function. Compared with wild-type and complemented (control) strains, disruption mutants of all the five transporter genes became significantly less tolerant to the oxidants menadione and H₂O₂ based on 22-41% and 10-31% reductions of their effective concentrations required for the suppression of 50% colony growth at 25°C. Under a standardized spray, the killing actions of ΔPdr5 and ΔMrp1 mutants against Spodoptera litura second-instar larvae were delayed by 59% and 33% respectively. However, no significant virulence change was observed in three other delta mutants. Taken together, the examined five ABC transporters contribute differentially to not only the fungal MDR but antioxidant capability, a phenotype rarely associated with ABC efflux pumps in previous reports; at least some of them are required for the full virulence of B. bassiana, thereby affecting the fungal biocontrol potential. Our results indicate that ABC pump-dependent MDR mechanisms exist in entomopathogenic fungi as do in yeasts and human and plant pathogenic fungi.

  7. Differential contributions of five ABC transporters to mutidrug resistance, antioxidion and virulence of Beauveria bassiana, an entomopathogenic fungus.

    Directory of Open Access Journals (Sweden)

    Ting-Ting Song

    Full Text Available Multidrug resistance (MDR confers agrochemical compatibility to fungal cells-based mycoinsecticdes but mechanisms involved in MDR remain poorly understood for entomopathogenic fungi, which have been widely applied as biocontrol agents against arthropod pests. Here we characterized the functions of five ATP-binding cassette (ABC transporters, which were classified to the subfamilies ABC-B (Mdr1, ABC-C (Mrp1 and ABC-G (Pdr1, Pdr2 and Pdr5 and selected from 54 full-size ABC proteins of Beauveria bassiana based on their main domain architecture, membrane topology and transcriptional responses to three antifungal inducers. Disruption of each transporter gene resulted in significant reduction in resistance to four to six of eight fungicides or antifungal drugs tested due to their differences in structure and function. Compared with wild-type and complemented (control strains, disruption mutants of all the five transporter genes became significantly less tolerant to the oxidants menadione and H₂O₂ based on 22-41% and 10-31% reductions of their effective concentrations required for the suppression of 50% colony growth at 25°C. Under a standardized spray, the killing actions of ΔPdr5 and ΔMrp1 mutants against Spodoptera litura second-instar larvae were delayed by 59% and 33% respectively. However, no significant virulence change was observed in three other delta mutants. Taken together, the examined five ABC transporters contribute differentially to not only the fungal MDR but antioxidant capability, a phenotype rarely associated with ABC efflux pumps in previous reports; at least some of them are required for the full virulence of B. bassiana, thereby affecting the fungal biocontrol potential. Our results indicate that ABC pump-dependent MDR mechanisms exist in entomopathogenic fungi as do in yeasts and human and plant pathogenic fungi.

  8. Evolution and diversity of the Ras superfamily of small GTPases in prokaryotes.

    Science.gov (United States)

    Wuichet, Kristin; Søgaard-Andersen, Lotte

    2015-01-01

    The Ras superfamily of small GTPases are single domain nucleotide-dependent molecular switches that act as highly tuned regulators of complex signal transduction pathways. Originally identified in eukaryotes for their roles in fundamental cellular processes including proliferation, motility, polarity, nuclear transport, and vesicle transport, recent studies have revealed that single domain GTPases also control complex functions such as cell polarity, motility, predation, development and antibiotic resistance in bacteria. Here, we used a computational genomics approach to understand the abundance, diversity, and evolution of small GTPases in prokaryotes. We collected 520 small GTPase sequences present in 17% of 1,611 prokaryotic genomes analyzed that cover diverse lineages. We identified two discrete families of small GTPases in prokaryotes that show evidence of three distinct catalytic mechanisms. The MglA family includes MglA homologs, which are typically associated with the MglB GTPase activating protein, whereas members of the Rup (Ras superfamily GTPase of unknown function in prokaryotes) family are not predicted to interact with MglB homologs. System classification and genome context analyses support the involvement of small GTPases in diverse prokaryotic signal transduction pathways including two component systems, laying the foundation for future experimental characterization of these proteins. Phylogenetic analysis of prokaryotic and eukaryotic GTPases supports that the last universal common ancestor contained ancestral MglA and Rup family members. We propose that the MglA family was lost from the ancestral eukaryote and that the Ras superfamily members in extant eukaryotes are the result of vertical and horizontal gene transfer events of ancestral Rup GTPases.

  9. Nanostructured assemblies from amphiphilic ABC multiblock polymers

    Science.gov (United States)

    Hillmyer, Marc A.

    2012-02-01

    Amphiphilic AB diblock copolymers containing a water compatible segment can self-assemble in aqueous media to give supramolecular structures that include simple spherical micelles and macromolecular vesicles termed polymersomes. Amphiphilic ABA triblocks with hydrophobic end blocks can adopt analogous structures but can also form gels at high polymer concentrations. The structural and chemical diversity demonstrated in block copolymer micelles and gels makes them attractive for applications ranging from drug delivery to personal care products to nanoreactors. The inclusion of a third block in amphiphilic ABC triblock systems can lead to a much wider array of self-assembled structures that depend not only on composition but also on block sequence, architecture and incompatibility considerations. I will present our recent efforts on tuning micelle and gel structure and behavior using controlled architecture ABC triblocks. The combination of diverse polymer segments into a single macromolecule is a powerful method for development of self-assembled structures with both new form and new function.

  10. MANFAAT DATA WAREHOUSE PADA PT ABC

    Directory of Open Access Journals (Sweden)

    Evaristus Didik Madyatmadja

    2013-11-01

    Full Text Available The purpose of this paper is to analyze the current system to find out problems faced by the company and propose alternative solutions and generate information needed by management by designing a data warehouse according to the information needs of PT ABC. This research implements analysis and design of data warehouse by Ralph Kimball and Ross cited by Connolly and Begg, known as Nine-Step Methodology. The result obtained is a data warehouse application that may present a multidimensional historical data that can assist the management in decisions. Designing data warehouse at PT ABC makes concise the enterprise data and can be viewed from several dimensions. It helps users analyze data for strategic decision quickly and accurately.

  11. Analyzing health care operations using ABC.

    Science.gov (United States)

    Ross, Thomas K

    2004-01-01

    The evolution of health care created a climate in which cost was subordinate to medical treatment. Current reimbursement constraints have increased the need for providers to be cost conscious, but they have discovered that current accounting practices do not provide the appropriate information to determine the cost of service or make decisions. This article argues that activity-based costing (ABC) can bridge the gap between the medical and financial communities and provide a foundation for performance improvement. PMID:15151193

  12. ABC of physics a very brief guide

    CERN Document Server

    Okun, Lev Borisovich

    2012-01-01

    This little book concentrates on the foundations of modern physics (its "ABC's") and its most fundamental constants: c - the velocity of light and ? - the quantum of action. First of all, the book is addressed to professional physicists, but in order to achieve maximal concentration and clarity it uses the simplest (high school) mathematics. As a result many pages of the book will be useful to college students and may appeal to a more general audience.

  13. Structural basis for amino acid export by DMT superfamily transporter YddG.

    Science.gov (United States)

    Tsuchiya, Hirotoshi; Doki, Shintaro; Takemoto, Mizuki; Ikuta, Tatsuya; Higuchi, Takashi; Fukui, Keita; Usuda, Yoshihiro; Tabuchi, Eri; Nagatoishi, Satoru; Tsumoto, Kouhei; Nishizawa, Tomohiro; Ito, Koichi; Dohmae, Naoshi; Ishitani, Ryuichiro; Nureki, Osamu

    2016-05-30

    The drug/metabolite transporter (DMT) superfamily is a large group of membrane transporters ubiquitously found in eukaryotes, bacteria and archaea, and includes exporters for a remarkably wide range of substrates, such as toxic compounds and metabolites. YddG is a bacterial DMT protein that expels aromatic amino acids and exogenous toxic compounds, thereby contributing to cellular homeostasis. Here we present structural and functional analyses of YddG. Using liposome-based analyses, we show that Escherichia coli and Starkeya novella YddG export various amino acids. The crystal structure of S. novella YddG at 2.4 Å resolution reveals a new membrane transporter topology, with ten transmembrane segments in an outward-facing state. The overall structure is basket-shaped, with a large substrate-binding cavity at the centre of the molecule, and is composed of inverted structural repeats related by two-fold pseudo-symmetry. On the basis of this intramolecular symmetry, we propose a structural model for the inward-facing state and a mechanism of the conformational change for substrate transport, which we confirmed by biochemical analyses. These findings provide a structural basis for the mechanism of transport of DMT superfamily proteins.

  14. Structural basis for amino acid export by DMT superfamily transporter YddG.

    Science.gov (United States)

    Tsuchiya, Hirotoshi; Doki, Shintaro; Takemoto, Mizuki; Ikuta, Tatsuya; Higuchi, Takashi; Fukui, Keita; Usuda, Yoshihiro; Tabuchi, Eri; Nagatoishi, Satoru; Tsumoto, Kouhei; Nishizawa, Tomohiro; Ito, Koichi; Dohmae, Naoshi; Ishitani, Ryuichiro; Nureki, Osamu

    2016-06-16

    The drug/metabolite transporter (DMT) superfamily is a large group of membrane transporters ubiquitously found in eukaryotes, bacteria and archaea, and includes exporters for a remarkably wide range of substrates, such as toxic compounds and metabolites. YddG is a bacterial DMT protein that expels aromatic amino acids and exogenous toxic compounds, thereby contributing to cellular homeostasis. Here we present structural and functional analyses of YddG. Using liposome-based analyses, we show that Escherichia coli and Starkeya novella YddG export various amino acids. The crystal structure of S. novella YddG at 2.4 Å resolution reveals a new membrane transporter topology, with ten transmembrane segments in an outward-facing state. The overall structure is basket-shaped, with a large substrate-binding cavity at the centre of the molecule, and is composed of inverted structural repeats related by two-fold pseudo-symmetry. On the basis of this intramolecular symmetry, we propose a structural model for the inward-facing state and a mechanism of the conformational change for substrate transport, which we confirmed by biochemical analyses. These findings provide a structural basis for the mechanism of transport of DMT superfamily proteins. PMID:27281193

  15. Classification and nomenclature of the superfamily of short-chain dehydrogenases/reductases (SDRs).

    Science.gov (United States)

    Persson, Bengt; Kallberg, Yvonne

    2013-02-25

    The short-chain dehydrogenases/reductases (SDRs) constitute one of the largest protein superfamilies known today. The members are distantly related with typically 20-30% residue identity in pair-wise comparisons. Still, all hitherto structurally known SDRs present a common three-dimensional structure consisting of a Rossmann fold with a parallel beta sheet flanked by three helices on each side. Using hidden Markov models (HMMs), we have developed a semi-automated subclassification system for this huge family. Currently, 75% of all SDR forms have been assigned to one of the 464 families totalling 122,940 proteins. There are 47 human SDR families, corresponding to 75 genes. Most human SDR families (35 families) have only one gene, while 12 have between 2 and 8 genes. For more than half of the human SDR families, the three-dimensional fold is known. The number of SDR members increases considerably every year, but the number of SDR families now starts to converge. The classification method has paved the ground for a sustainable and expandable nomenclature system. Information on the SDR superfamily is continuously updated at http://sdr-enzymes.org/. PMID:23200746

  16. Follicle-restricted compartmentalization of transforming growth factor beta superfamily ligands in the feline ovary.

    Science.gov (United States)

    Bristol, Sarah K; Woodruff, Teresa K

    2004-03-01

    Ovarian follicular development, follicle selection, and the process of ovulation remain poorly understood in most species. Throughout reproductive life, follicle fate is balanced between growth and apoptosis. These opposing forces are controlled by numerous endocrine, paracrine, and autocrine factors, including the ligands represented by the transforming growth factor beta (TGFbeta) superfamily. TGFbeta, activin, inhibin, bone morphometric protein (BMP), and growth differentiation factor 9 (GDF-9) are present in the ovary of many animals; however, no comprehensive analysis of the localization of each ligand or its receptors and intracellular signaling molecules during folliculogenesis has been done. The domestic cat is an ideal model for studying ovarian follicle dynamics due to an abundance of all follicle populations, including primordial stage, and the amount of readily available tissue following routine animal spaying. Additionally, knowledge of the factors involved in feline follicular development could make an important impact on in vitro maturation/in vitro fertilization (IVM/IVF) success for endangered feline species. Thus, the presence and position of TGFbeta superfamily members within the feline ovary have been evaluated in all stages of follicular development by immunolocalization. The cat inhibin alpha subunit protein is present in all follicle stages but increases in intensity within the mural granulosa cells in large antral follicles. The inhibin betaA and betaB subunit proteins, in addition to the activin type I (ActRIB) and activin type II receptor (ActRIIB), are produced in primordial and primary follicle granulosa cells. Additionally, inhibin betaA subunit is detected in the theca cells from secondary through large antral follicle size classes. GDF-9 is restricted to the oocyte of preantral and antral follicles, whereas the type II BMP receptor (BMP-RII) protein is predominantly localized to primordial- and primary-stage follicles. TGFbeta1, 2

  17. LSSVM-ABC Algorithm for Stock Price prediction

    OpenAIRE

    Hegazy, Osman; Soliman, Omar S.; Salam, Mustafa Abdul

    2014-01-01

    In this paper, Artificial Bee Colony (ABC) algorithm which inspired from the behavior of honey bees swarm is presented. ABC is a stochastic population-based evolutionary algorithm for problem solving. ABC algorithm, which is considered one of the most recently swarm intelligent techniques, is proposed to optimize least square support vector machine (LSSVM) to predict the daily stock prices. The proposed model is based on the study of stocks historical data, technical indicators and optimizing...

  18. Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale.

    Science.gov (United States)

    Parton, Daniel L; Grinaway, Patrick B; Hanson, Sonya M; Beauchamp, Kyle A; Chodera, John D

    2016-06-01

    The rapidly expanding body of available genomic and protein structural data provides a rich resource for understanding protein dynamics with biomolecular simulation. While computational infrastructure has grown rapidly, simulations on an omics scale are not yet widespread, primarily because software infrastructure to enable simulations at this scale has not kept pace. It should now be possible to study protein dynamics across entire (super)families, exploiting both available structural biology data and conformational similarities across homologous proteins. Here, we present a new tool for enabling high-throughput simulation in the genomics era. Ensembler takes any set of sequences-from a single sequence to an entire superfamily-and shepherds them through various stages of modeling and refinement to produce simulation-ready structures. This includes comparative modeling to all relevant PDB structures (which may span multiple conformational states of interest), reconstruction of missing loops, addition of missing atoms, culling of nearly identical structures, assignment of appropriate protonation states, solvation in explicit solvent, and refinement and filtering with molecular simulation to ensure stable simulation. The output of this pipeline is an ensemble of structures ready for subsequent molecular simulations using computer clusters, supercomputers, or distributed computing projects like Folding@home. Ensembler thus automates much of the time-consuming process of preparing protein models suitable for simulation, while allowing scalability up to entire superfamilies. A particular advantage of this approach can be found in the construction of kinetic models of conformational dynamics-such as Markov state models (MSMs)-which benefit from a diverse array of initial configurations that span the accessible conformational states to aid sampling. We demonstrate the power of this approach by constructing models for all catalytic domains in the human tyrosine kinase

  19. Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale.

    Directory of Open Access Journals (Sweden)

    Daniel L Parton

    2016-06-01

    Full Text Available The rapidly expanding body of available genomic and protein structural data provides a rich resource for understanding protein dynamics with biomolecular simulation. While computational infrastructure has grown rapidly, simulations on an omics scale are not yet widespread, primarily because software infrastructure to enable simulations at this scale has not kept pace. It should now be possible to study protein dynamics across entire (superfamilies, exploiting both available structural biology data and conformational similarities across homologous proteins. Here, we present a new tool for enabling high-throughput simulation in the genomics era. Ensembler takes any set of sequences-from a single sequence to an entire superfamily-and shepherds them through various stages of modeling and refinement to produce simulation-ready structures. This includes comparative modeling to all relevant PDB structures (which may span multiple conformational states of interest, reconstruction of missing loops, addition of missing atoms, culling of nearly identical structures, assignment of appropriate protonation states, solvation in explicit solvent, and refinement and filtering with molecular simulation to ensure stable simulation. The output of this pipeline is an ensemble of structures ready for subsequent molecular simulations using computer clusters, supercomputers, or distributed computing projects like Folding@home. Ensembler thus automates much of the time-consuming process of preparing protein models suitable for simulation, while allowing scalability up to entire superfamilies. A particular advantage of this approach can be found in the construction of kinetic models of conformational dynamics-such as Markov state models (MSMs-which benefit from a diverse array of initial configurations that span the accessible conformational states to aid sampling. We demonstrate the power of this approach by constructing models for all catalytic domains in the human

  20. Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale.

    Science.gov (United States)

    Parton, Daniel L; Grinaway, Patrick B; Hanson, Sonya M; Beauchamp, Kyle A; Chodera, John D

    2016-06-01

    The rapidly expanding body of available genomic and protein structural data provides a rich resource for understanding protein dynamics with biomolecular simulation. While computational infrastructure has grown rapidly, simulations on an omics scale are not yet widespread, primarily because software infrastructure to enable simulations at this scale has not kept pace. It should now be possible to study protein dynamics across entire (super)families, exploiting both available structural biology data and conformational similarities across homologous proteins. Here, we present a new tool for enabling high-throughput simulation in the genomics era. Ensembler takes any set of sequences-from a single sequence to an entire superfamily-and shepherds them through various stages of modeling and refinement to produce simulation-ready structures. This includes comparative modeling to all relevant PDB structures (which may span multiple conformational states of interest), reconstruction of missing loops, addition of missing atoms, culling of nearly identical structures, assignment of appropriate protonation states, solvation in explicit solvent, and refinement and filtering with molecular simulation to ensure stable simulation. The output of this pipeline is an ensemble of structures ready for subsequent molecular simulations using computer clusters, supercomputers, or distributed computing projects like Folding@home. Ensembler thus automates much of the time-consuming process of preparing protein models suitable for simulation, while allowing scalability up to entire superfamilies. A particular advantage of this approach can be found in the construction of kinetic models of conformational dynamics-such as Markov state models (MSMs)-which benefit from a diverse array of initial configurations that span the accessible conformational states to aid sampling. We demonstrate the power of this approach by constructing models for all catalytic domains in the human tyrosine kinase

  1. ATP-Binding Cassette (ABC) Transporters of the Human Respiratory Tract Pathogen, Moraxella catarrhalis: Role in Virulence.

    Science.gov (United States)

    Murphy, Timothy F; Brauer, Aimee L; Johnson, Antoinette; Kirkham, Charmaine

    2016-01-01

    Moraxella catarrhalis is a human respiratory tract pathogen that causes otitis media (middle ear infections) in children and respiratory tract infections in adults with chronic obstructive pulmonary disease. In view of the huge global burden of disease caused by M. catarrhalis, the development of vaccines to prevent these infections and better approaches to treatment have become priorities. In previous work, we used a genome mining approach that identified three substrate binding proteins (SBPs) of ATP-binding cassette (ABC) transporters as promising candidate vaccine antigens. In the present study, we performed a comprehensive assessment of 19 SBPs of 15 ABC transporter systems in the M. catarrhalis genome by engineering knockout mutants and studying their role in assays that assess mechanisms of infection. The capacity of M. catarrhalis to survive and grow in the nutrient-limited and hostile environment of the human respiratory tract, including intracellular growth, account in part for its virulence. The results show that ABC transporters that mediate uptake of peptides, amino acids, cations and anions play important roles in pathogenesis by enabling M. catarrhalis to 1) grow in nutrient-limited conditions, 2) invade and survive in human respiratory epithelial cells and 3) persist in the lungs in a murine pulmonary clearance model. The knockout mutants of SBPs and ABC transporters showed different patterns of activity in the assay systems, supporting the conclusion that different SBPs and ABC transporters function at different stages in the pathogenesis of infection. These results indicate that ABC transporters are nutritional virulence factors, functioning to enable the survival of M catarrhalis in the diverse microenvironments of the respiratory tract. Based on the role of ABC transporters as virulence factors of M. catarrhalis, these molecules represent potential drug targets to eradicate the organism from the human respiratory tract. PMID:27391026

  2. Protein Arrays for Multidrug-resistance in Human Leukemia Cell Determination

    Directory of Open Access Journals (Sweden)

    Zuhong Lu

    2005-05-01

    Full Text Available A novel technique was developed, that was high throughput simultaneousscreening of multiple resistance protein expression based on a protein array system. Themethod combined the advantage of the specificity of enzyme-linked immunosorbentassays with the sensitivity and high throughput of microspot. In this system, the multipleresistance protein arrays were created by spotting the captured antibodies onto the glassslide. The arrays were then incubated with cell samples of leukemia patients. The boundproteins were recognized by biotin-conjugated antibodies and detected by CCD.Experiments demonstrated that three multiple resistance proteins, including Pgp, MRPand BCRP which are members of the ATP-binding-cassette (ABC superfamily ofmembrane transporters could be simultaneously detected using this new approach.Research work shows the result is coincident with flow cytometry (FCM (P>0.01. Itprovided a methodology to develop many high-density protein array systems to detect avariety of proteins. The protein arrays will provide a powerful tool to identify theleukemia cell protein expression and rapidly validate their MDR determination.

  3. The role of the atypical kinases ABC1K7 and ABC1K8 in abscisic acid responses

    Directory of Open Access Journals (Sweden)

    Anna eManara

    2016-03-01

    Full Text Available The ABC1K family of atypical kinases (activity of bc1 complex kinase is represented in bacteria, archaea and eukaryotes. In plants they regulate diverse physiological processes in the chloroplasts and mitochondria, but their precise functions are poorly defined. ABC1K7 and ABC1K8 are probably involved in oxidative stress responses, isoprenyl lipid synthesis and distribution of iron within chloroplasts. Because reactive oxygen species take part in abscisic acid (ABA-mediated processes, we investigated the functions of ABC1K7 and ABC1K8 during germination, stomatal movement and leaf senescence. Both genes were upregulated by ABA treatment and some ABA-responsive physiological processes were affected in abc1k7 and abc1k8 mutants. Germination was more severely affected by ABA, osmotic stress and salt stress in the single and double mutants; the stomatal aperture was smaller in the mutants under standard growth conditions and was not further reduced by exogenous ABA application; ABA-induced senescence symptoms were more severe in the leaves of the single and double mutants compared to wild type leaves. Taken together, our results suggest that ABC1K7 and ABC1K8 might be involved in the cross-talk between ABA and ROS signaling.

  4. Cache Domains That are Homologous to, but Different from PAS Domains Comprise the Largest Superfamily of Extracellular Sensors in Prokaryotes.

    Science.gov (United States)

    Upadhyay, Amit A; Fleetwood, Aaron D; Adebali, Ogun; Finn, Robert D; Zhulin, Igor B

    2016-04-01

    Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly built computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms. Furthermore, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes. PMID:27049771

  5. The Anabaena sensory rhodopsin transducer defines a novel superfamily of prokaryotic small-molecule binding domains

    Directory of Open Access Journals (Sweden)

    De Souza Robson F

    2009-08-01

    Full Text Available Abstract The Anabaena sensory rhodopsin transducer (ASRT is a small protein that has been claimed to function as a signaling molecule downstream of the cyanobacterial sensory rhodopsin. However, orthologs of ASRT have been detected in several bacteria that lack rhodopsin, raising questions about the generality of this function. Using sequence profile searches we show that ASRT defines a novel superfamily of β-sandwich fold domains. Through contextual inference based on domain architectures and predicted operons and structural analysis we present strong evidence that these domains bind small molecules, most probably sugars. We propose that the intracellular versions like ASRT probably participate as sensors that regulate a diverse range of sugar metabolism operons or even the light sensory behavior in Anabaena by binding sugars or related metabolites. We also show that one of the extracellular versions define a predicted sugar-binding structure in a novel cell-surface lipoprotein found across actinobacteria, including several pathogens such as Tropheryma, Actinomyces and Thermobifida. The analysis of this superfamily also provides new data to investigate the evolution of carbohydrate binding modes in β-sandwich domains with very different topologies. Reviewers: This article was reviewed by M. Madan Babu and Mark A. Ragan.

  6. Roles for the TGFβ superfamily in the development and survival of midbrain dopaminergic neurons.

    Science.gov (United States)

    Hegarty, Shane V; Sullivan, Aideen M; O'Keeffe, Gerard W

    2014-10-01

    The adult midbrain contains 75% of all dopaminergic neurons in the CNS. Within the midbrain, these neurons are divided into three anatomically and functionally distinct clusters termed A8, A9 and A10. The A9 group plays a functionally non-redundant role in the control of voluntary movement, which is highlighted by the motor syndrome that results from their progressive degeneration in the neurodegenerative disorder, Parkinson's disease. Despite 50 years of investigation, treatment for Parkinson's disease remains symptomatic, but an intensive research effort has proposed delivering neurotrophic factors to the brain to protect the remaining dopaminergic neurons, or using these neurotrophic factors to differentiate dopaminergic neurons from stem cell sources for cell transplantation. Most neurotrophic factors studied in this context have been members of the transforming growth factor β (TGFβ) superfamily. In recent years, an intensive research effort has focused on understanding the function of these proteins in midbrain dopaminergic neuron development and their role in the molecular architecture that regulates the development of this brain region, with the goal of applying this knowledge to develop novel therapies for Parkinson's disease. In this review, the current evidence showing that TGFβ superfamily members play critical roles in the regulation of midbrain dopaminergic neuron induction, differentiation, target innervation and survival during embryonic and postnatal development is analysed, and the implications of these findings are discussed.

  7. Ligand Binding and Crystal Structures of the Substrate-Binding Domain of the ABC Transporter OpuA

    NARCIS (Netherlands)

    Wolters, Justina C.; Berntsson, Ronnie P-A.; Gul, Nadia; Karasawa, Akira; Thunnissen, Andy-Mark W. H.; Slotboom, Dirk-Jan; Poolman, Bert

    2010-01-01

    The ABC transporter OpuA from Lactococcus lactis transports glycine betaine upon activation by threshold values of ionic strength. In this study, the ligand binding characteristics of purified OpuA in a detergent-solubilized state and of its substrate-binding domain produced as soluble protein (OpuA

  8. Toward Determining ATPase Mechanism in ABC Transporters: Development of the Reaction Path-Force Matching QM/MM Method.

    Science.gov (United States)

    Zhou, Y; Ojeda-May, P; Nagaraju, M; Pu, J

    2016-01-01

    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are ubiquitous ATP-dependent membrane proteins involved in translocations of a wide variety of substrates across cellular membranes. To understand the chemomechanical coupling mechanism as well as functional asymmetry in these systems, a quantitative description of how ABC transporters hydrolyze ATP is needed. Complementary to experimental approaches, computer simulations based on combined quantum mechanical and molecular mechanical (QM/MM) potentials have provided new insights into the catalytic mechanism in ABC transporters. Quantitatively reliable determination of the free energy requirement for enzymatic ATP hydrolysis, however, requires substantial statistical sampling on QM/MM potential. A case study shows that brute force sampling of ab initio QM/MM (AI/MM) potential energy surfaces is computationally impractical for enzyme simulations of ABC transporters. On the other hand, existing semiempirical QM/MM (SE/MM) methods, although affordable for free energy sampling, are unreliable for studying ATP hydrolysis. To close this gap, a multiscale QM/MM approach named reaction path-force matching (RP-FM) has been developed. In RP-FM, specific reaction parameters for a selected SE method are optimized against AI reference data along reaction paths by employing the force matching technique. The feasibility of the method is demonstrated for a proton transfer reaction in the gas phase and in solution. The RP-FM method may offer a general tool for simulating complex enzyme systems such as ABC transporters. PMID:27498639

  9. Toward Determining ATPase Mechanism in ABC Transporters: Development of the Reaction Path–Force Matching QM/MM Method

    Science.gov (United States)

    Zhou, Y.; Ojeda-May, P.; Nagaraju, M.; Pu, J.

    2016-01-01

    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are ubiquitous ATP-dependent membrane proteins involved in translocations of a wide variety of substrates across cellular membranes. To understand the chemomechanical coupling mechanism as well as functional asymmetry in these systems, a quantitative description of how ABC transporters hydrolyze ATP is needed. Complementary to experimental approaches, computer simulations based on combined quantum mechanical and molecular mechanical (QM/MM) potentials have provided new insights into the catalytic mechanism in ABC transporters. Quantitatively reliable determination of the free energy requirement for enzymatic ATP hydrolysis, however, requires substantial statistical sampling on QM/MM potential. A case study shows that brute force sampling of ab initio QM/MM (AI/MM) potential energy surfaces is computationally impractical for enzyme simulations of ABC transporters. On the other hand, existing semiempirical QM/MM (SE/MM) methods, although affordable for free energy sampling, are unreliable for studying ATP hydrolysis. To close this gap, a multiscale QM/MM approach named reaction path–force matching (RP–FM) has been developed. In RP–FM, specific reaction parameters for a selected SE method are optimized against AI reference data along reaction paths by employing the force matching technique. The feasibility of the method is demonstrated for a proton transfer reaction in the gas phase and in solution. The RP–FM method may offer a general tool for simulating complex enzyme systems such as ABC transporters. PMID:27498639

  10. Dashboard Auditing of Activity-Based Costing (ABC)

    OpenAIRE

    Sorinel Capusneanu

    2009-01-01

    This article aims to define the dashboard auditing according to the specifics of Activity-Based Costing method (ABC). It describes the main objectives of dashboard auditing, the criteria that a dashboard auditor should meet and the step-by-step stages of the entire dashboard auditing process according to the Activity-Based Costing method (ABC).

  11. Dashboard auditing of ABC (Activity-Based Costing). Theoretical approaches

    OpenAIRE

    Căpuşneanu, Sorinel/I

    2009-01-01

    This article aims to define the dashboard auditing according to the specifics of Activity-Based Costing method (ABC). It describes the main objectives of dashboard auditing, the criteria that a dashboard auditor should meet and the step-by-step stages of the entire dashboard auditing process of an enterprise from steel industry according to the Activity-Based Costing method (ABC).

  12. How heterogeneous is the involvement of ABC transporters against insecticides?

    Science.gov (United States)

    Porretta, Daniele; Epis, Sara; Mastrantonio, Valentina; Ferrari, Marco; Bellini, Romeo; Favia, Guido; Urbanelli, Sandra

    2016-05-01

    Understanding the molecular mechanisms underlying cellular defense against xenobiotic compounds is a main research issue in medical and veterinary entomology, as insecticide/acaricide resistance is a major threat in the control of arthropods. ABC transporters are recognized as a component of the detoxifying mechanism in arthropods. We investigated the possible involvement of ABC transporters in defense to the organophosphate insecticide temephos in the malarial vector Anopheles stephensi. We performed bioassays on larvae of An. stephensi, using insecticide alone and in combination with ABC-transporter inhibitors, to assess synergism between these compounds. Next, we investigated the expression profiles of six ABC transporter genes in larvae exposed to temephos. Surprisingly, neither bioassays nor gene expression analyses provided any evidence for a major role of ABC transporters in defense against temephos in An. stephensi. We thus decided to review existing literature to generate a record of other studies that failed to reveal a role for ABC transporters against particular insecticides/acaricides. A review of the scientific literature led to the recovery of 569 papers about ABC transporters; among these, 50 involved arthropods, and 10 reported negative results. Our study on An. stephensi and accompanying literature review highlight the heterogeneity that exists in ABC transporter involvement in defense/resistance mechanisms in arthropods. PMID:26855383

  13. ABCs of Being Smart: S Is for Supporting

    Science.gov (United States)

    Foster, Joanne

    2014-01-01

    Joanne Foster's article "R We There Yet?" was first published in "Parenting for High Potential" ("PHP") in 2006, which became the springboard for the "ABCs of Being Smart" series of columns. At that time, Foster invited "PHP" readers to think about their own versions of the "ABCs of Being…

  14. abc: The AspectBench Compiler for AspectJ

    DEFF Research Database (Denmark)

    Allan, Chris; Avgustinov, Pavel; Christensen, Aske Simon;

    2005-01-01

    abc is an extensible, optimising compiler for AspectJ. It has been designed as a workbench for experimental research in aspect-oriented programming languages and compilers. We outline a programme of research in these areas, and we review how abc can help in achieving those research goals...

  15. PASS2 database for the structure-based sequence alignment of distantly related SCOP domain superfamilies: update to version 5 and added features.

    Science.gov (United States)

    Gandhimathi, Arumugam; Ghosh, Pritha; Hariharaputran, Sridhar; Mathew, Oommen K; Sowdhamini, R

    2016-01-01

    Structure-based sequence alignment is an essential step in assessing and analysing the relationship of distantly related proteins. PASS2 is a database that records such alignments for protein domain superfamilies and has been constantly updated periodically. This update of the PASS2 version, named as PASS2.5, directly corresponds to the SCOPe 2.04 release. All SCOPe structural domains that share less than 40% sequence identity, as defined by the ASTRAL compendium of protein structures, are included. The current version includes 1977 superfamilies and has been assembled utilizing the structure-based sequence alignment protocol. Such an alignment is obtained initially through MATT, followed by a refinement through the COMPARER program. The JOY program has been used for structural annotations of such alignments. In this update, we have automated the protocol and focused on inclusion of new features such as mapping of GO terms, absolutely conserved residues among the domains in a superfamily and inclusion of PDBs, that are absent in SCOPe 2.04, using the HMM profiles from the alignments of the superfamily members and are provided as a separate list. We have also implemented a more user-friendly manner of data presentation and options for downloading more features. PASS2.5 version is available at http://caps.ncbs.res.in/pass2/. PMID:26553811

  16. Sustained Delivery of Chondroitinase ABC from Hydrogel System

    Directory of Open Access Journals (Sweden)

    Filippo Rossi

    2012-03-01

    Full Text Available In the injured spinal cord, chondroitin sulfate proteoglycans (CSPGs are the principal responsible of axon growth inhibition and they contribute to regenerative failure, promoting glial scar formation. Chondroitinase ABC (chABC is known for being able to digest proteoglycans, thus degrading glial scar and favoring axonal regrowth. However, its classic administration is invasive, infection-prone and clinically problematic. An agarose-carbomer (AC1 hydrogel, already used in SCI repair strategies, was here investigated as a delivery system capable of an effective chABC administration: the material ability to include chABC within its pores and the possibility to be injected into the target tissue were firstly proved. Subsequently, release kinetic and the maintenance of enzymatic activity were positively assessed: AC1 hydrogel was thus confirmed to be a feasible tool for chABC delivery and a promising device for spinal cord injury topic repair strategies.

  17. The Origin and Early Evolution of Membrane Proteins

    Science.gov (United States)

    Pohorille, Andrew; Schweighofter, Karl; Wilson, Michael A.

    2006-01-01

    The origin and early evolution of membrane proteins, and in particular ion channels, are considered from the point of view that the transmembrane segments of membrane proteins are structurally quite simple and do not require specific sequences to fold. We argue that the transport of solute species, especially ions, required an early evolution of efficient transport mechanisms, and that the emergence of simple ion channels was protobiologically plausible. We also argue that, despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. These properties can be subtly modulated by local modifications to the sequence rather than global changes in molecular architecture. In order to address the evolution and development of ion channels, we focus on identifying those protein domains that are commonly associated with ion channel proteins and are conserved throughout the three main domains of life (Eukarya, Prokarya, and Archaea). We discuss the potassium-sodium-calcium superfamily of voltage-gated ion channels, mechanosensitive channels, porins, and ABC-transporters and argue that these families of membrane channels have sufficiently universal architectures that they can readily adapt to the diverse functional demands arising during evolution.

  18. The structure of hookworm platelet inhibitor (HPI), a CAP superfamily member from Ancylostoma caninum.

    Science.gov (United States)

    Ma, Dongying; Francischetti, Ivo M B; Ribeiro, Jose M C; Andersen, John F

    2015-06-01

    Secreted protein components of hookworm species include a number of representatives of the cysteine-rich/antigen 5/pathogenesis-related 1 (CAP) protein family known as Ancylostoma-secreted proteins (ASPs). Some of these have been considered as candidate antigens for the development of vaccines against hookworms. The functions of most CAP superfamily members are poorly understood, but one form, the hookworm platelet inhibitor (HPI), has been isolated as a putative antagonist of the platelet integrins αIIbβ3 and α2β1. Here, the crystal structure of HPI is described and its structural features are examined in relation to its possible function. The HPI structure is similar to those of other ASPs and shows incomplete conservation of the sequence motifs CAP1 and CAP2 that are considered to be diagnostic of CAP superfamily members. The asymmetric unit of the HPI crystal contains a dimer with an extensive interaction interface, but chromatographic measurements indicate that it is primarily monomeric in solution. In the dimeric structure, the putative active-site cleft areas from both monomers are united into a single negatively charged depression. A potential Lys-Gly-Asp disintegrin-like motif was identified in the sequence of HPI, but is not positioned at the apex of a tight turn, making it unlikely that it interacts with the integrin. Recombinant HPI produced in Escherichia coli was found not to inhibit the adhesion of human platelets to collagen or fibrinogen, despite having a native structure as shown by X-ray diffraction. This result corroborates previous analyses of recombinant HPI and suggests that it might require post-translational modification or have a different biological function. PMID:26057788

  19. Conformational dynamics in substrate-binding domains influences transport in the ABC importer GlnPQ.

    Science.gov (United States)

    Gouridis, Giorgos; Schuurman-Wolters, Gea K; Ploetz, Evelyn; Husada, Florence; Vietrov, Ruslan; de Boer, Marijn; Cordes, Thorben; Poolman, Bert

    2015-01-01

    The conformational dynamics in ABC transporters is largely elusive. The ABC importer GlnPQ from Lactococcus lactis has different covalently linked substrate-binding domains (SBDs), thus making it an excellent model system to elucidate the dynamics and role of the SBDs in transport. We demonstrate by single-molecule spectroscopy that the two SBDs intrinsically transit from open to closed ligand-free conformation, and the proteins capture their amino acid ligands via an induced-fit mechanism. High-affinity ligands elicit transitions without changing the closed-state lifetime, whereas low-affinity ligands dramatically shorten it. We show that SBDs in the closed state compete for docking onto the translocator, but remarkably the effect is strongest without ligand. We find that the rate-determining steps depend on the SBD and the amino acid transported. We conclude that the lifetime of the closed conformation controls both SBD docking to the translocator and substrate release.

  20. Using mass spectrometry for identification of ABC transporters from Xanthomonas citri and mutants expressed in different growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Faria, J.N.; Balan, A. [Laboratorio Nacional de Biociencias - LNBIO, Campinas, SP (Brazil); Paes Leme, A.F. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)

    2012-07-01

    Full text: Xanthomonas citri is a phytopathogenic bacterium that infects citrus plants causing significant losses for the economy. In our group, we have focused on the identification and characterization of ABC transport proteins of this bacterium, in order to determinate their function for growth in vitro and in vivo, during infection. ABC transporters represent one of the largest families of proteins, which transport since small molecules as ions up to oligopeptides and sugars. In prokaryotic cells many works have reported the ABC transport function in pathogenesis, resistance, biofilm formation, infectivity and DNA repair, but until our knowledge, there is no data related to these transporters and X. citri. So, In order to determinate which transporters are expressed in X. citri, we started a proteomic analysis based on mono and bi-dimensional gels associated to mass spectrometry analyses. After growing X. citri and two different mutants deleted for ssuA and nitA genes in LB and minimum media, cellular extracts were obtained and used for preparation of mono and bi-dimensional gels. Seven bands covering the expected mass of ABC transporter components (20 kDa to 50 kDa) in SDS-PAGE were cut off the gel, treated with trypsin and submitted to the MS for protein identification. The results of 2D gels were good enough and will serve as a standard for development of similar experiments in large scale. (author)

  1. ABC for network managers. Key to efficiency improvement; ABC voor netbeheerders. Sleutel tot efficiencyverbetering

    Energy Technology Data Exchange (ETDEWEB)

    Osse, M.J.E. [Ernst and Young Consulting, Utrecht (Netherlands)

    1999-12-01

    In order to give everyone who wants to supply electricity a fair chance, network managers must make costs transparent. Next to the rules for the tariff code, they can also make use of a cost charging method, the so-called ABC-N (Activity Based Costing for Networks). This method makes the costs transparent and therefore also helps the network managers to improve their efficiency. That is essential in view of the pressure from the supervisor for the Dutch electric power sector.

  2. A putative cell surface receptor for white spot syndrome virus is a member of a transporter superfamily.

    Directory of Open Access Journals (Sweden)

    Huai-Ting Huang

    Full Text Available White spot syndrome virus (WSSV, a large enveloped DNA virus, can cause the most serious viral disease in shrimp and has a wide host range among crustaceans. In this study, we identified a surface protein, named glucose transporter 1 (Glut1, which could also interact with WSSV envelope protein, VP53A. Sequence analysis revealed that Glut1 is a member of a large superfamily of transporters and that it is most closely related to evolutionary branches of this superfamily, branches that function to transport this sugar. Tissue tropism analysis showed that Glut1 was constitutive and highly expressed in almost all organs. Glut1's localization in shrimp cells was further verified and so was its interaction with Penaeus monodon chitin-binding protein (PmCBP, which was itself identified to interact with an envelope protein complex formed by 11 WSSV envelope proteins. In vitro and in vivo neutralization experiments using synthetic peptide contained WSSV binding domain (WBD showed that the WBD peptide could inhibit WSSV infection in primary cultured hemocytes and delay the mortality in shrimps challenged with WSSV. These findings have important implications for our understanding of WSSV entry.

  3. Subdivision of the MDR superfamily of medium-chain dehydrogenases/reductases through iterative hidden Markov model refinement

    Directory of Open Access Journals (Sweden)

    Persson Bengt

    2010-10-01

    Full Text Available Abstract Background The Medium-chain Dehydrogenases/Reductases (MDR form a protein superfamily whose size and complexity defeats traditional means of subclassification; it currently has over 15000 members in the databases, the pairwise sequence identity is typically around 25%, there are members from all kingdoms of life, the chain-lengths vary as does the oligomericity, and the members are partaking in a multitude of biological processes. There are profile hidden Markov models (HMMs available for detecting MDR superfamily members, but none for determining which MDR family each protein belongs to. The current torrential influx of new sequence data enables elucidation of more and more protein families, and at an increasingly fine granularity. However, gathering good quality training data usually requires manual attention by experts and has therefore been the rate limiting step for expanding the number of available models. Results We have developed an automated algorithm for HMM refinement that produces stable and reliable models for protein families. This algorithm uses relationships found in data to generate confident seed sets. Using this algorithm we have produced HMMs for 86 distinct MDR families and 34 of their subfamilies which can be used in automated annotation of new sequences. We find that MDR forms with 2 Zn2+ ions in general are dehydrogenases, while MDR forms with no Zn2+ in general are reductases. Furthermore, in Bacteria MDRs without Zn2+ are more frequent than those with Zn2+, while the opposite is true for eukaryotic MDRs, indicating that Zn2+ has been recruited into the MDR superfamily after the initial life kingdom separations. We have also developed a web site http://mdr-enzymes.org that provides textual and numeric search against various characterised MDR family properties, as well as sequence scan functions for reliable classification of novel MDR sequences. Conclusions Our method of refinement can be readily applied to

  4. The Janus kinase family and signaling through members of the cytokine receptor superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Ihle, J.N. [St. Jude Children`s Research Hospital, Memphis, TN (United States)

    1994-12-31

    Many cytokines initiate cellular responses through their interaction with members of the cytokine receptor superfamily which contain no catalytic domains in their cytoplasmic domains. Irrespective, ligand binding induces tyrosine phosphorylation, which requires a membrane proximal region of the cytoplasmic domain. Recent studies have shown that members of the Janus kinase (JAK) family of protein tyrosine kinases associate with the membrane proximal region, are rapidly tyrosine phosphorylated following ligand binding and their in vitro kinase activity is activated. The JAKs are 130-kDa proteins which lack SH2/SH3 domains and contain two kinase domains, an active domain and a second kinase-like domain. Individual receptors associate with, or require, one or more of the three known family members including JAK1, JAK2, and tyk2. Substrates of the JAKs include the 91-kDa and 113-kDa proteins of the interferon-stimulated transcription complex ISGF3. These proteins, when tyrosine phosphorylated, migrate to the nucleus and participate in the activation of gene transcription. Recent evidence suggests that the 91- and 113-kDa proteins are members of a large family of genes that are potential substrates of JAK family members and may regulate a variety of genes involved in cell growth, differentiation or function. 42 refs.

  5. A New Activity-Based Cost (ABC) Mathematical Model

    Institute of Scientific and Technical Information of China (English)

    JIANG Shuo; SONG Lei

    2003-01-01

    Along with the product price competition growing intensely, it is apparently important for reasonably distributing and counting cost. But, in sharing indirect cost, traditional cost accounting unveils the limitations increasingly, especially in authenticity of cost information. And the accounting theory circles and industry circles begin seeking one kind of new accurate cost calculation method, and the activity-based cost (ABC) method emerges as the times require. In this paper, we will build its mathematical model by the basic principle of ABC, and will improve its mathematical model further. We will establish its comparison mathematical model and make the ABC method go a step further to its practical application.

  6. ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells.

    Science.gov (United States)

    Chen, Mingli; Yin, Huancai; Bai, Pengli; Miao, Peng; Deng, Xudong; Xu, Yingxue; Hu, Jun; Yin, Jian

    2016-07-15

    This paper aimed to investigate the role of adenosine triphosphate-binding cassette (ABC) transporters on the efflux and the toxicity of nanoparticles in liver and kidney cells. In this study, we synthesized CdTe quantum dots (QDs) that were monodispersed and emitted green fluorescence (maximum peak at 530nm). Such QDs tended to accumulate in human hepatocellular carcinoma cells (HepG2), human kidney cells 2 (HK-2), and Madin-Darby canine kidney (MDCK) cells, and cause significant toxicity in all the three cell lines. Using specific inhibitors and inducers of P-glycoprotein (Pgp) and multidrug resistance associated proteins (Mrps), the cellular accumulation and subsequent toxicity of QDs in HepG2 and HK-2 cells were significantly affected, while only slight changes appeared in MDCK cells, corresponding well with the functional expressions of ABC transporters in cells. Moreover, treatment of QDs caused concentration- and time- dependent induction of ABC transporters in HepG2 and HK-2 cells, but such phenomenon was barely found in MDCK cells. Furthermore, the effects of CdTe QDs on ABC transporters were found to be greater than those of CdCl2 at equivalent concentrations of cadmium, indicating that the effects of QDs should be a combination of free Cd(2+) and specific properties of QDs. Overall, these results indicated a strong dependence between the functional expressions of ABC transporters and the efflux of QDs, which could be an important reason for the modulation of QDs toxicity by ABC transporters. PMID:27131644

  7. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Sourav, E-mail: sourav.bhattacharjee@wur.nl [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Opstal, Edward J. van; Alink, Gerrit M. [Wageningen University, Division of Toxicology (Netherlands); Marcelis, Antonius T. M.; Zuilhof, Han [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Rietjens, Ivonne M. C. M. [Wageningen University, Division of Toxicology (Netherlands)

    2013-06-15

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size {approx}45 nm) and polystyrene nanoparticles (PSNPs/size {approx}50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  8. ABC transporters involved in the biogenesis of the outer membrane in gram-negative bacteria.

    Science.gov (United States)

    Narita, Shin-ichiro

    2011-01-01

    The outer membrane of gram-negative bacteria is an asymmetric lipid bilayer with phospholipids and lipopolysaccharides (LPSs). β-Barreled outer membrane proteins and lipoproteins are embedded in the outer membrane. All of these constituents are essential to the function of the outer membrane. The transport systems for lipoproteins have been characterized in detail. An ATP-binding cassette (ABC) transporter, LolCDE, initiates sorting by mediating the detachment of lipoproteins from the inner membrane to form a water-soluble lipoprotein-LolA complex in the periplasm. Lipoproteins are then transferred to LolB at the outer membrane and are incorporated into the lipid bilayer. A model analogous to the Lol system has been suggested for the transport of LPS, where an ABC transporter, LptBFG, mediates the detachment of LPS from the inner membrane. Recent developments in the functional characterization of ABC transporters involved in the biogenesis of the outer membrane in gram-negative bacteria are discussed. PMID:21670534

  9. Evolution of Enzymatic Activities in the Enolase Superfamily: L-Fuconate Dehydratase from Xanthomonas campestris

    Energy Technology Data Exchange (ETDEWEB)

    Yew,W.; Fedorov, A.; Fedorov, E.; Rakus, J.; Pierce, R.; Almo, S.; Gerlt, J.

    2006-01-01

    Many members of the mechanistically diverse enolase superfamily have unknown functions. In this report the authors use both genome (operon) context and screening of a library of acid sugars to assign the L-fuconate dehydratase (FucD) function to a member of the mandelate racemase (MR) subgroup of the superfamily encoded by the Xanthomonas campestris pv. campestris str. ATCC 33913 genome (GI: 21233491). Orthologues of FucD are found in both bacteria and eukaryotes, the latter including the rTS beta protein in Homo sapiens that has been implicated in regulating thymidylate synthase activity. As suggested by sequence alignments and confirmed by high-resolution structures in the presence of active site ligands, FucD and MR share the same active site motif of functional groups: three carboxylate ligands for the essential Mg2+ located at the ends of th third, fourth, and fifth-strands in the (/)7-barrel domain (Asp 248, Glu 274, and Glu 301, respectively), a Lys-x-Lys motif at the end of the second-strand (Lys 218 and Lys 220), a His-Asp dyad at the end of the seventh and sixth-strands (His 351 and Asp 324, respectively), and a Glue at the end of the eighth-strand (Glu 382). The mechanism of the FucD reaction involves initial abstraction of the 2-proton by Lys 220, acid catalysis of the vinylogous-elimination of the 3-OH group by His 351, and stereospecific ketonization of the resulting 2-keto-3-deoxy-L-fuconate product. Screening of the library of acid sugars revealed substrate and functional promiscuity: In addition to L-fuconate, FucD also catalyzes the dehydration of L-galactonate, D-arabinonate, D-altronate, L-talonate, and D-ribonate. The dehydrations of L-fuconate, L-galactonate, and D-arabinonate are initiated by abstraction of the 2-protons by Lys 220. The dehydrations of L-talonate and D-ribonate are initiated by abstraction of the 2-protons by His 351; however, protonation of the enediolate intermediates by the conjugate acid of Lys 220 yields L

  10. Expression of TGF-beta superfamily growth factors, their receptors, the associated SMADs and antagonists in five isolated size-matched populations of pre-antral follicles from normal human ovaries

    DEFF Research Database (Denmark)

    Kristensen, Stine Gry; Andersen, Kasper; Clement, Christian Alexandro;

    2014-01-01

    proteins/genes were analysed by immunocytochemistry and quantitative RT-PCR.TGF-β superfamily genes with overall highest mRNA expressions levels included growth differentiation factors 9 (GDF9), bone morphogenic protein-15 (BMP15), BMP6, BMP-receptor-2 (BMPR2), anti-Müllerian hormone receptor 2 (AMHR2...

  11. Hsp31, a member of the DJ-1 superfamily, is a multitasking stress responder with chaperone activity.

    Science.gov (United States)

    Aslam, Kiran; Hazbun, Tony R

    2016-03-01

    Among different types of protein aggregation, amyloids are a biochemically well characterized state of protein aggregation that are associated with a large number of neurodegenerative diseases including Parkinson's disease, Alzheimer and Creutzfeldt-Jakob disease. Yeast, Saccharomyces cerevisiae is an insightful model to understand the underlying mechanism of protein aggregation. Many yeast molecular chaperones can modulate aggregation and misfolding of proteins including α-Syn and the Sup35 prion. Hsp31 is a homodimeric protein structurally similar to human DJ-1, a Parkinson's disease-linked protein, and both are members of the DJ-1/ThiJ/PfpI superfamily. An emerging view is that Hsp31 and its associated superfamily members each have divergent multitasking functions that have the common theme of responding and managing various types of cellular stress. Hsp31 has several biochemical activities including chaperone and detoxifying enzyme activities that modulate at various points of a stress pathway such as toxicity associated with protein misfolding. However, we have shown the protective role of Hsp31's chaperone activity can operate independent of detoxifying enzyme activities in preventing the early stages of protein aggregate formation and associated cellular toxicities. We provide additional data that collectively supports the multiple functional roles that can be accomplished independent of each other. We present data indicating Hsp31 purified from yeast is more active compared to expression and purification from E. coli suggesting that posttranslational modifications could be important for Hsp31 to be fully active. We also compare the similarities and differences in activities among paralogs of Hsp31 supporting a model in which this protein family has overlapping but diverging roles in responding to various sources of cellular stresses. PMID:27097320

  12. Redundancy Level Optimization in Modular Software System Models using ABC

    Directory of Open Access Journals (Sweden)

    Tarun Kumar Sharma

    2014-03-01

    Full Text Available The performance of optimization algorithms is problem dependent and as per no free lunch theorem, there exists no such algorithm which can be efficiently applied to every type of problem(s. However, we can modify the algorithm/ technique in a manner such that it is able to deal with a maximum type of problems. In this study we have modified the structure of basic Artificial Bee Colony (ABC, a recently proposed metaheuristic algorithm based on the concept of swarm intelligence to optimize the models of software reliability. The modified variant of ABC is termed as balanced ABC (B-ABC. The simulated results show the efficiency and capability of the variant to solve such type of the problems.

  13. Yang-Mills Theory and the ABC Conjecture

    CERN Document Server

    He, Yang-Hui; Probst, Malte; Read, James

    2016-01-01

    We establish a precise correspondence between the ABC Conjecture and N=4 super-Yang-Mills theory. This is achieved by combining three ingredients: (i) Elkies' method of mapping ABC-triples to elliptic curves in his demonstration that ABC implies Mordell/Faltings; (ii) an explicit pair of elliptic curve and associated Belyi map given by Khadjavi-Scharaschkin; and (iii) the fact that the bipartite brane-tiling/dimer model for a gauge theory with toric moduli space is a particular dessin d'enfant in the sense of Grothendieck. We explore this correspondence for the highest quality ABC-triples as well as large samples of random triples. The Conjecture itself is mapped to a statement about the fundamental domain of the toroidal compactification of the string realization of N=4 SYM.

  14. Multicompartment Micelles From π-Shaped ABC Block Copolymers

    Institute of Scientific and Technical Information of China (English)

    XIA Jun; ZHONG Chong-Li

    2007-01-01

    Dissipative particle dynamics simulations were performed on the morphology and structure of multicompartment micelles formed from n-shaped ABC block copolymers in water. The influences of chain architectures were studied in a systematic way, and a rich variety of morphologies were observed, such as spherical, wormlike,X-shaped, Y-shaped, ribbon-like, layered rod-like, layered disk-like, as well as network morphologies. The simulations show that the distance between the two grafts plays an important role in control of the morphology. Since π-shaped ABC block copolymers can be reduced to linear ABC and star ABC block copolymers, they are good model copolymers for studying the self-assembly of complex block copolymers into micelles. The knowledge obtained in this work as well as the new morphologies identified provide useful information for future rational design and synthesis of novel multicompartment micelles.

  15. Enhanced form of solving real coded numerical optimization problem using ABC algorithm with linear crossover operator

    OpenAIRE

    Mrs. Shanana Gajala Qureshi; Mrs. Uzma Arshi Ansari

    2012-01-01

    Artificial Bee Colony (ABC) algorithm is population-based swarm intelligence algorithm. There are many algorithms Present for solving numeric optimization problem.ABC is based on the intellectual behaviour of honey bee crowd. In this work, ABC algorithm is used with Genetic crossover machinist and tested on standard benchmark functions, and also result compared with the X-ABC algorithm with the advantage of fewer organize Parameters. Obtained results show that the performance of the ABC with ...

  16. Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale

    Science.gov (United States)

    Parton, Daniel L.; Grinaway, Patrick B.; Hanson, Sonya M.; Beauchamp, Kyle A.; Chodera, John D.

    2016-01-01

    The rapidly expanding body of available genomic and protein structural data provides a rich resource for understanding protein dynamics with biomolecular simulation. While computational infrastructure has grown rapidly, simulations on an omics scale are not yet widespread, primarily because software infrastructure to enable simulations at this scale has not kept pace. It should now be possible to study protein dynamics across entire (super)families, exploiting both available structural biology data and conformational similarities across homologous proteins. Here, we present a new tool for enabling high-throughput simulation in the genomics era. Ensembler takes any set of sequences—from a single sequence to an entire superfamily—and shepherds them through various stages of modeling and refinement to produce simulation-ready structures. This includes comparative modeling to all relevant PDB structures (which may span multiple conformational states of interest), reconstruction of missing loops, addition of missing atoms, culling of nearly identical structures, assignment of appropriate protonation states, solvation in explicit solvent, and refinement and filtering with molecular simulation to ensure stable simulation. The output of this pipeline is an ensemble of structures ready for subsequent molecular simulations using computer clusters, supercomputers, or distributed computing projects like Folding@home. Ensembler thus automates much of the time-consuming process of preparing protein models suitable for simulation, while allowing scalability up to entire superfamilies. A particular advantage of this approach can be found in the construction of kinetic models of conformational dynamics—such as Markov state models (MSMs)—which benefit from a diverse array of initial configurations that span the accessible conformational states to aid sampling. We demonstrate the power of this approach by constructing models for all catalytic domains in the human tyrosine

  17. Cupincin: A Unique Protease Purified from Rice (Oryza sativa L.) Bran Is a New Member of the Cupin Superfamily

    OpenAIRE

    Sreedhar, Roopesh; Kaul Tiku, Purnima

    2016-01-01

    Cupin superfamily is one of the most diverse super families. This study reports the purification and characterization of a novel cupin domain containing protease from rice bran for the first time. Hypothetical protein OsI_13867 was identified and named as cupincin. Cupincin was purified to 4.4 folds with a recovery of 4.9%. Cupincin had an optimum pH and temperature of pH 4.0 and 60°C respectively. Cupincin was found to be a homotrimer, consisting of three distinct subunits with apparent mole...

  18. Use of RNA Interference by In Utero Electroporation to Study Cortical Development: The Example of the Doublecortin Superfamily

    Directory of Open Access Journals (Sweden)

    Raanan Greenman

    2012-11-01

    Full Text Available The way we study cortical development has undergone a revolution in the last few years following the ability to use shRNA in the developing brain of the rodent embryo. The first gene to be knocked-down in the developing brain was doublecortin (Dcx. Here we will review knockdown experiments in the developing brain and compare them with knockout experiments, thus highlighting the advantages and disadvantages using the different systems. Our review will focus on experiments relating to the doublecortin superfamily of proteins.

  19. Product Profitability Analysis Based on EVA and ABC

    OpenAIRE

    Chen Lin; Shuangyuan Wang; Zhilin Qiao

    2013-01-01

    On the purpose of maximizing shareholders’ value, the profitability analysis established on the basis oftraditional accounting earnings cannot meet the demands of providing accurate decision-making information forenterprises. Therefore, this paper implements the Activity Based Costing (ABC) and the Economic Value Added(EVA) into the traditional profitability analysis system, sets up an improved EVA-ABC based profitabilityanalysis system as well as its relative indexes, and applies it to the s...

  20. ABC-B transporter genes in Dirofilaria immitis.

    Science.gov (United States)

    Bourguinat, Catherine; Che, Hua; Mani, Thangadurai; Keller, Kathy; Prichard, Roger K

    2016-08-01

    Dirofilaria immitis is a filarial nematode causing infection and heartworm disease in dogs and other canids, cats, and occasionally in humans. Prevention with macrocyclic lactones (ML) is recommended during the mosquito transmission season. Recently, ML resistance has been reported. ABC-B transporter genes are thought to be involved in the mechanism of ML resistance in other nematodes. This study aimed to identify all the ABC-B transporter genes in D. immitis using as a reference the nDi.2.2 D. immitis whole genome, which is not completely annotated. Using bioinformatic tools and PCR amplification on pooled D. immitis genomic DNA and on pooled cDNA, nine ABC transporter genes including one pseudogene were characterized. Bioinformatic and phylogenetic analyses allowed identification of three P-glycoproteins (Pgps) (Dim-pgp-3 Dim-pgp-10, Dim-pgp-11), of two ABC-B half transporter genes (one ortholog of Cel-haf-4 and Cel-haf-9; and one ortholog of Cel-haf-1 and Cel-haf-3), of one ABC half transporter gene (ortholog of Cel-haf-5) that contained an ABC-C motif, and of one additional half transporter that would require functional study for characterization. The number of ABC-B transporter genes identified was lower than in Caenorhabditis elegans and Haemonchus contortus. Further studies are needed to understand their possible role in ML resistance in D. immitis. These ABC transporters constitute a base for ML resistance investigation in D. immitis and advance our understanding of the molecular biology of this parasite. PMID:27164440

  1. Structure function analysis of serpin super-family: "a computational approach".

    Science.gov (United States)

    Singh, Poonam; Jairajpuri, Mohamad Aman

    2014-01-01

    Serine Protease inhibitors (serpins) are a super-family of proteins that controls the proteinases involved in the inflammation, complementation, coagulation and fibrinolytic pathways. Serpins are prone to conformational diseases due to a complex inhibition mechanism that involves large scale conformational change, and their susceptibility to undergo point mutations might lead to functional defects. Serpins are associated with diseases like emphysema/cirrhosis, angioedema, familial dementia, chronic obstructive bronchitis and thrombosis. Serpin polymerization based pathologies are fairly widespread and devising a cure has been difficult due to lack of clarity regarding its mechanism. Serpin can exist in various conformational states and has a variable cofactor binding ability. It has a large genome and proteome database which can be utilized to gain critical insight into their structure, mechanism and defects. Comprehensive computational studies on the serpin family is lacking, most of the work done till date is limited and deals mostly with few individual serpins. We have tried to analyze few aspect of this family using diverse computational biology tools and have shown the following: a) the importance of residue burial linked shift in the conformational stability as a major factor in increasing the polymer propensity in serpins. b) Amino acids involved in the polymerization are in general completely buried in the native conformation. c) An isozyme specific antithrombin study showed the structural basis of improved heparin binding to beta antithrombin as compared to alpha-antithrombin. d) A comprehensive cavity analysis showed its importance in inhibition and polymerizaiton and finally e) an interface analysis of various serpin protease complexes identified critical evolutionary conserved residues in exosite that determines its protease specificity. This work introduces the problem and emphasizes on the need for in-depth computational studies of serpin superfamily

  2. Phase transition in the ABC model.

    Science.gov (United States)

    Clincy, M; Derrida, B; Evans, M R

    2003-06-01

    Recent studies have shown that one-dimensional driven systems can exhibit phase separation even if the dynamics is governed by local rules. The ABC model, which comprises three particle species that diffuse asymmetrically around a ring, shows anomalous coarsening into a phase separated steady state. In the limiting case in which the dynamics is symmetric and the parameter q describing the asymmetry tends to one, no phase separation occurs and the steady state of the system is disordered. In the present work, we consider the weak asymmetry regime q=exp(-beta/N), where N is the system size, and study how the disordered state is approached. In the case of equal densities, we find that the system exhibits a second-order phase transition at some nonzero beta(c). The value of beta(c)=2pi square root 3 and the optimal profiles can be obtained by writing the exact large deviation functional. For nonequal densities, we write down mean-field equations and analyze some of their predictions. PMID:16241312

  3. Phylogenetic relationships among superfamilies of Cicadomorpha (Hemiptera: Auchenorrhyncha) inferred from the wing base structure

    OpenAIRE

    Yoshizawa, Kazunori; Wagatsuma, Mutsumi

    2012-01-01

    The infraorder Cicadomorpha is a monophyletic group of the order Hemiptera, suborder Auchenorrhyncha, and is composed of three superfamilies: Cercopoidea (spittle bugs), Cicadoidea (cicadas) and Membracoidea (leafhoppers and treehoppers). Phylogenetic relationships among the superfamilies have been highly controversial morphologically and molecularly, but recent molecular phylogenetic analyses provided support for Cercopoidea + Cicadoidea. In this study, we examined morphology of the wing bas...

  4. Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Silvia Dal Santo

    Full Text Available BACKGROUND: Expansins are proteins that loosen plant cell walls in a pH-dependent manner, probably by increasing the relative movement among polymers thus causing irreversible expansion. The expansin superfamily (EXP comprises four distinct families: expansin A (EXPA, expansin B (EXPB, expansin-like A (EXLA and expansin-like B (EXLB. There is experimental evidence that EXPA and EXPB proteins are required for cell expansion and developmental processes involving cell wall modification, whereas the exact functions of EXLA and EXLB remain unclear. The complete grapevine (Vitis vinifera genome sequence has allowed the characterization of many gene families, but an exhaustive genome-wide analysis of expansin gene expression has not been attempted thus far. METHODOLOGY/PRINCIPAL FINDINGS: We identified 29 EXP superfamily genes in the grapevine genome, representing all four EXP families. Members of the same EXP family shared the same exon-intron structure, and phylogenetic analysis confirmed a closer relationship between EXP genes from woody species, i.e. grapevine and poplar (Populus trichocarpa, compared to those from Arabidopsis thaliana and rice (Oryza sativa. We also identified grapevine-specific duplication events involving the EXLB family. Global gene expression analysis confirmed a strong correlation among EXP genes expressed in mature and green/vegetative samples, respectively, as reported for other gene families in the recently-published grapevine gene expression atlas. We also observed the specific co-expression of EXLB genes in woody organs, and the involvement of certain grapevine EXP genes in berry development and post-harvest withering. CONCLUSION: Our comprehensive analysis of the grapevine EXP superfamily confirmed and extended current knowledge about the structural and functional characteristics of this gene family, and also identified properties that are currently unique to grapevine expansin genes. Our data provide a model for the

  5. Metodologia ABC: implantação numa microempresa ABC methodology: implementation on a micro firm

    Directory of Open Access Journals (Sweden)

    Orlando Duran

    2000-08-01

    Full Text Available Este trabalho relata a implantação da metodologia de custos baseados em atividades numa microempresa do ramo metalúrgico. A proposta pretende demonstrar a viabilidade de aplicar esta técnica em empresas sem importar seu tamanho, só realizando algumas adaptações que garantam baixo investimento e curto espaço de tempo para obter os resultados. Na parte final do trabalho se realiza uma análise dos resultados obtidos verificando-se o potencial da informação gerada pela metodologia e seu uso como ferramenta de gestão.This paper presents an implementation of the activity based costing (ABC methodology in a small firm. The approach presented is intended to demonstrate the feasibility of applying the ABC methodology at any sized firm, only through few adaptations for ensuring low investments fees and speed in obtaining results and information from the system. Discussion about the results obtained during the implementation case are presented and the potential of using the information generated from the system as a managing tool is commented.

  6. Differentiation of foot-and-mouth disease virus infected animals from vaccinated animals using a blocking ELISA based on baculovirus expressed FMDV 3ABC antigen and a 3ABC monoclonal antibody

    DEFF Research Database (Denmark)

    Sørensen, K.J.; de Stricker, K.; Dyrting, K.C.;

    2005-01-01

    with homologous FMDV, positive reactions were obtained in all but one case. In some of these cattle the antibody response was detected late in comparison to the non-vaccinated infected cattle. The test gave results that compared favourably with two commercial ELISA's when used to test sera from cattle, pigs......A blocking ELISA that differentiated foot-and-mouth disease virus (FMDV) infected animals from vaccinated animals was developed which uses baculovirus expressed FMDV 3ABC non-structural protein as antigen and monoclonal antibody against FMDV 3ABC non-structural protein as capture and detector...... antibody. Sera from naive, vaccinated and infected cattle, sheep and pigs were examined. The specificity of the test was high. Non-specific reactions observed in particular in sera of cattle and sheep could be removed by filtration and inactivation. Positive reactions were obtained for sera from cattle...

  7. Identification and bioinformatic characterization of a multidrug resistance associated protein (ABCC) gene in Plasmodium berghei

    Science.gov (United States)

    González-Pons, María; Szeto, Ada C; González-Méndez, Ricardo; Serrano, Adelfa E

    2009-01-01

    Background The ATP-binding cassette (ABC) superfamily is one of the largest evolutionarily conserved families of proteins. ABC proteins play key roles in cellular detoxification of endobiotics and xenobiotics. Overexpression of certain ABC proteins, among them the multidrug resistance associated protein (MRP), contributes to drug resistance in organisms ranging from human neoplastic cells to parasitic protozoa. In the present study, the Plasmodium berghei mrp gene (pbmrp) was partially characterized and the predicted protein was classified using bioinformatics in order to explore its putative involvement in drug resistance. Methods The pbmrp gene from the P. berghei drug sensitive, N clone, was sequenced using a PCR strategy. Classification and domain organization of pbMRP were determined with bioinformatics. The Plasmodium spp. MRPs were aligned and analysed to study their conserved motifs and organization. Gene copy number and organization were determined via Southern blot analysis in both N clone and the chloroquine selected line, RC. Chromosomal Southern blots and RNase protection assays were employed to determine the chromosomal location and expression levels of pbmrp in blood stages. Results The pbmrp gene is a single copy, intronless gene with a predicted open reading frame spanning 5820 nucleotides. Bioinformatic analyses show that this protein has distinctive features characteristic of the ABCC sub-family. Multiple sequence alignments reveal a high degree of conservation in the nucleotide binding and transmembrane domains within the MRPs from the Plasmodium spp. analysed. Expression of pbmrp was detected in asexual blood stages. Gene organization, copy number and mRNA expression was similar in both lines studied. A chromosomal translocation was observed in the chloroquine selected RC line, from chromosome 13/14 to chromosome 8, when compared to the drug sensitive N clone. Conclusion In this study, the pbmrp gene was sequenced and classified as a member of

  8. Functional Annotation of Two New Carboxypeptidases from the Amidohydrolase Superfamily of Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, D.; Xu, C; Kumaran, D; Brown, A; Sauder, M; Burley, S; Swaminathan, S; Raushel, F

    2009-01-01

    Two proteins from the amidohydrolase superfamily of enzymes were cloned, expressed, and purified to homogeneity. The first protein, Cc0300, was from Caulobacter crescentus CB-15 (Cc0300), while the second one (Sgx9355e) was derived from an environmental DNA sequence originally isolated from the Sargasso Sea (gi|44371129). The catalytic functions and the substrate profiles for the two enzymes were determined with the aid of combinatorial dipeptide libraries. Both enzymes were shown to catalyze the hydrolysis of l-Xaa-l-Xaa dipeptides in which the amino acid at the N-terminus was relatively unimportant. These enzymes were specific for hydrophobic amino acids at the C-terminus. With Cc0300, substrates terminating in isoleucine, leucine, phenylalanine, tyrosine, valine, methionine, and tryptophan were hydrolyzed. The same specificity was observed with Sgx9355e, but this protein was also able to hydrolyze peptides terminating in threonine. Both enzymes were able to hydrolyze N-acetyl and N-formyl derivatives of the hydrophobic amino acids and tripeptides. The best substrates identified for Cc0300 were l-Ala-l-Leu with kcat and kcat/Km values of 37 s-1 and 1.1 x 105 M-1 s-1, respectively, and N-formyl-l-Tyr with kcat and kcat/Km values of 33 s-1 and 3.9 x 105 M-1 s-1, respectively. The best substrate identified for Sgx9355e was l-Ala-l-Phe with kcat and kcat/Km values of 0.41 s-1 and 5.8 x 103 M-1 s-1. The three-dimensional structure of Sgx9355e was determined to a resolution of 2.33 Angstroms with l-methionine bound in the active site. The a-carboxylate of the methionine is ion-paired to His-237 and also hydrogen bonded to the backbone amide groups of Val-201 and Leu-202. The a-amino group of the bound methionine interacts with Asp-328. The structural determinants for substrate recognition were identified and compared with other enzymes in this superfamily that hydrolyze dipeptides with different specificities.

  9. Effect of multiple cysteine substitutions on the functionality of human multidrug resistance protein 1 expressed in human embryonic kidney 293 cells: identification of residues essential for function.

    Science.gov (United States)

    Qin, Lei; Tam, Shui-Pang; Deeley, Roger G

    2012-07-01

    Multidrug resistance protein 1 (MRP1) is a broad-specificity membrane transporter belonging to the C branch of the ATP binding cassette (ABC) superfamily. MRP1 confers resistance to various chemotherapeutic drugs and transports a wide range of conjugated organic anions. Several ABCC proteins, including MRP1, are unusual among ABC transporters in having a third membrane-spanning domain (MSD), MSD0, at their N termini. MRP1 lacking this additional MSD (ΔMRP1) is able to traffic to the plasma membrane of mammalian cells and to transport a number of well characterized substrates. A cysteineless (cysless) ΔMRP1 has been expressed in yeast and reported to be functional. However, we found that trafficking of such a construct in human cells was severely compromised, and, even when expressed in insect Sf21 cells, the protein had extremely low transport activity. Therefore, we have systematically examined the effects of substituting cysteines in the four domains of ΔMRP1, initially with alanine. These studies allowed us to identify five cysteines that cannot be replaced with alanine without inactivating the protein. Substitution of two of these residues with alternative amino acids has allowed us to produce an almost cysless form of ΔMRP1 that traffics to the plasma membrane and transports leukotriene C(4), 17β-estradiol 17-β-D-glucuronide, and estrone-3-sulfate with kinetic characteristics similar to those of the wild-type protein. The distribution of the remaining Cys residues is such that the protein will provide a useful template for a variety of cysteine based mutagenesis studies.

  10. Modification of N-glycosylation sites allows secretion of bacterial chondroitinase ABC from mammalian cells.

    Science.gov (United States)

    Muir, Elizabeth M; Fyfe, Ian; Gardiner, Sonya; Li, Li; Warren, Philippa; Fawcett, James W; Keynes, Roger J; Rogers, John H

    2010-01-15

    Although many eukaryotic proteins have been secreted by transfected bacterial cells, little is known about how a bacterial protein is treated as it passes through the secretory pathway when expressed in a eukaryotic cell. The eukaryotic N-glycosylation system could interfere with folding and secretion of prokaryotic proteins whose sequence has not been adapted for glycosylation in structurally appropriate locations. Here we show that such interference does indeed occur for chondroitinase ABC from the bacterium Proteus vulgaris, and can be overcome by eliminating potential N-glycosylation sites. Chondroitinase ABC was heavily glycosylated when expressed in mammalian cells or in a mammalian translation system, and this process prevented secretion of functional enzyme. Directed mutagenesis of selected N-glycosylation sites allowed efficient secretion of active chondroitinase. As these proteoglycans are known to inhibit regeneration of axons in the mammalian central nervous system, the modified chondroitinase gene is a potential tool for gene therapy to promote neural regeneration, ultimately in human spinal cord injury.

  11. Enhanced form of solving real coded numerical optimization problem using ABC algorithm with linear crossover operator

    Directory of Open Access Journals (Sweden)

    Mrs. Shanana Gajala Qureshi

    2012-06-01

    Full Text Available Artificial Bee Colony (ABC algorithm is population-based swarm intelligence algorithm. There are many algorithms Present for solving numeric optimization problem.ABC is based on the intellectual behaviour of honey bee crowd. In this work, ABC algorithm is used with Genetic crossover machinist and tested on standard benchmark functions, and also result compared with the X-ABC algorithm with the advantage of fewer organize Parameters. Obtained results show that the performance of the ABC with crossover gives better results than the X-ABC algorithm.

  12. Mutational Analysis of Intracellular Loops Identify Cross Talk with Nucleotide Binding Domains of Yeast ABC Transporter Cdr1p

    OpenAIRE

    Shah, Abdul Haseeb; Rawal, Manpreet Kaur; Dhamgaye, Sanjiveeni; Komath, Sneha Sudha; Saxena, Ajay Kumar; Prasad, Rajendra

    2015-01-01

    The ABC transporter Cdr1 protein (Cdr1p) of Candida albicans, which plays a major role in antifungal resistance, has two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) that are interconnected by extracellular (ECLs) and intracellular (ICLs) loops. To examine the communication interface between the NBDs and ICLs of Cdr1p, we subjected all four ICLs to alanine scanning mutagenesis, replacing each of the 85 residues with an alanine. The resulting ICL mutant library was an...

  13. Identification of the GTPase superfamily in Mycoplasma synoviae and Mycoplasma hyopneumoniae

    Directory of Open Access Journals (Sweden)

    Clayton Luiz Borges

    2007-01-01

    Full Text Available Mycoplasmas are the smallest known prokaryotes with self-replication ability. They are obligate parasites, taking up many molecules of their hosts and acting as pathogens in men, animals, birds and plants. Mycoplasma hyopneumoniae is the infective agent of swine mycoplasmosis and Mycoplasma synoviae is responsible for subclinical upper respiratory infections that may result in airsacculitis and synovitis in chickens and turkeys. These highly infectious organisms present a worldwide distribution and are responsible for major economic problems. Proteins of the GTPase superfamily occur in all domains of life, regulating functions such as protein synthesis, cell cycle and differentiation. Despite their functional diversity, all GTPases are believed to have evolved from a single common ancestor. In this work we have identified mycoplasma GTPases by searching the complete genome databases of Mycoplasma synoviae and Mycoplasma hyopneumoniae, J (non-pathogenic and 7448 (pathogenic strains. Fifteen ORFs encoding predicted GTPases were found in M. synoviae and in the two strains of M. hyopneumoniae. Searches for conserved G domains in GTPases were performed and the sequences were classified into families. The GTPase phylogenetic analysis showed that the subfamilies were well resolved into clades. The presence of GTPases in the three strains suggests the importance of GTPases in 'minimalist' genomes.

  14. Relative Stabilities of Conserved and Non-Conserved Structures in the OB-Fold Superfamily

    Directory of Open Access Journals (Sweden)

    Andrei T. Alexandrescu

    2009-05-01

    Full Text Available The OB-fold is a diverse structure superfamily based on a β-barrel motif that is often supplemented with additional non-conserved secondary structures. Previous deletion mutagenesis and NMR hydrogen exchange studies of three OB-fold proteins showed that the structural stabilities of sites within the conserved β-barrels were larger than sites in non-conserved segments. In this work we examined a database of 80 representative domain structures currently classified as OB-folds, to establish the basis of this effect. Residue-specific values were obtained for the number of Cα-Cα distance contacts, sequence hydrophobicities, crystallographic B-factors, and theoretical B-factors calculated from a Gaussian Network Model. All four parameters point to a larger average flexibility for the non-conserved structures compared to the conserved β-barrels. The theoretical B-factors and contact densities show the highest sensitivity.Our results suggest a model of protein structure evolution in which novel structural features develop at the periphery of conserved motifs. Core residues are more resistant to structural changes during evolution since their substitution would disrupt a larger number of interactions. Similar factors are likely to account for the differences in stability to unfolding between conserved and non-conserved structures.

  15. Intracellular mediators of transforming growth factor β superfamily signaling localize to endosomes in chicken embryo and mouse lenses in vivo

    Directory of Open Access Journals (Sweden)

    Ishii Shunsuke

    2007-06-01

    Full Text Available Abstract Background Endocytosis is a key regulator of growth factor signaling pathways. Recent studies showed that the localization to endosomes of intracellular mediators of growth factor signaling may be required for their function. Although there is substantial evidence linking endocytosis and growth factor signaling in cultured cells, there has been little study of the endosomal localization of signaling components in intact tissues or organs. Results Proteins that are downstream of the transforming growth factor-β superfamily signaling pathway were found on endosomes in chicken embryo and postnatal mouse lenses, which depend on signaling by members of the TGFβ superfamily for their normal development. Phosphorylated Smad1 (pSmad1, pSmad2, Smad4, Smad7, the transcriptional repressors c-Ski and TGIF and the adapter molecules Smad anchor for receptor activation (SARA and C184M, localized to EEA-1- and Rab5-positive vesicles in chicken embryo and/or postnatal mouse lenses. pSmad1 and pSmad2 also localized to Rab7-positive late endosomes. Smad7 was found associated with endosomes, but not caveolae. Bmpr1a conditional knock-out lenses showed decreased nuclear and endosomal localization of pSmad1. Many of the effectors in this pathway were distributed differently in vivo from their reported distribution in cultured cells. Conclusion Based on the findings reported here and data from other signaling systems, we suggest that the localization of activated intracellular mediators of the transforming growth factor-β superfamily to endosomes is important for the regulation of growth factor signaling.

  16. Genome-wide identification and phylogenetic analysis of the AP2/ERF gene superfamily in sweet orange (Citrus sinensis).

    Science.gov (United States)

    Ito, T M; Polido, P B; Rampim, M C; Kaschuk, G; Souza, S G H

    2014-09-26

    Sweet orange (Citrus sinensis) plays an important role in the economy of more than 140 countries, but it is grown in areas with intermittent stressful soil and climatic conditions. The stress tolerance could be addressed by manipulating the ethylene response factor (ERF) transcription factors because they orchestrate plant responses to environmental stress. We performed an in silico study on the ERFs in the expressed sequence tag database of C. sinensis to identify potential genes that regulate plant responses to stress. We identified 108 putative genes encoding protein sequences of the AP2/ERF superfamily distributed within 10 groups of amino acid sequences. Ninety-one genes were assembled from the ERF family containing only one AP2/ERF domain, 13 genes were assembled from the AP2 family containing two AP2/ERF domains, and four other genes were assembled from the RAV family containing one AP2/ERF domain and a B3 domain. Some conserved domains of the ERF family genes were disrupted into a few segments by introns. This irregular distribution of genes in the AP2/ERF superfamily in different plant species could be a result of genomic losses or duplication events in a common ancestor. The in silico gene expression revealed that 67% of AP2/ERF genes are expressed in tissues with usual plant development, and 14% were expressed in stressed tissues. Because the AP2/ERF superfamily is expressed in an orchestrated way, it is possible that the manipulation of only one gene may result in changes in the whole plant function, which could result in more tolerant crops.

  17. Conformational plasticity of the type I maltose ABC importer.

    Science.gov (United States)

    Böhm, Simon; Licht, Anke; Wuttge, Steven; Schneider, Erwin; Bordignon, Enrica

    2013-04-01

    ATP-binding cassette (ABC) transporters couple the translocation of solutes across membranes to ATP hydrolysis. Crystal structures of the Escherichia coli maltose importer (MalFGK2) in complex with its substrate binding protein (MalE) provided unprecedented insights in the mechanism of substrate translocation, leaving the MalE-transporter interactions still poorly understood. Using pulsed EPR and cross-linking methods we investigated the effects of maltose and MalE on complex formation and correlated motions of the MalK2 nucleotide-binding domains (NBDs). We found that both substrate-free (open) and liganded (closed) MalE interact with the transporter with similar affinity in all nucleotide states. In the apo-state, binding of open MalE occurs via the N-lobe, leaving the C-lobe disordered, but upon maltose binding, closed MalE associates tighter to the transporter. In both cases the NBDs remain open. In the presence of ATP, the transporter binds both substrate-free and liganded MalE, both inducing the outward-facing conformation trapped in the crystal with open MalE at the periplasmic side and NBDs tightly closed. In contrast to ATP, ADP-Mg(2+) alone is sufficient to induce a semiopen conformation in the NBDs. In this nucleotide-driven state, the transporter binds both open and closed MalE with slightly different periplasmic configurations. We also found that dissociation of MalE is not a required step for substrate translocation since a supercomplex with MalE cross-linked to MalG retains the ability to hydrolyze ATP and to transport maltose. These features of MalE-MalFGK2 interactions highlight the conformational plasticity of the maltose importer, providing insights into the ATPase stimulation by unliganded MalE.

  18. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Teixeira Miguel C

    2012-07-01

    Full Text Available Abstract Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC Superfamily and Major Facilitator Superfamily (MFS in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to

  19. 如何实现ABC/ABM与ERP的集成

    Institute of Scientific and Technical Information of China (English)

    伍冬凤

    2006-01-01

    上世纪70年代之后,高新技术的蓬勃发展和广泛应用,为作业成本计算(Activity-Based Cost,ABC)和作业管理(Activity Based Management,ABM)的出现奠定了基础.本文以成本管理理论为起点,结合分析企业资源计划(Enterprise Resources Planning,ERP)系统基本原理与成本管理功能,据以提出一种将ABC/ABM与ERP集成的策略,并描述了ABC/ABM模块主要数据维护流程图.

  20. A PDZ-Like Motif in the Biliary Transporter ABCB4 Interacts with the Scaffold Protein EBP50 and Regulates ABCB4 Cell Surface Expression.

    Directory of Open Access Journals (Sweden)

    Quitterie Venot

    Full Text Available ABCB4/MDR3, a member of the ABC superfamily, is an ATP-dependent phosphatidylcholine translocator expressed at the canalicular membrane of hepatocytes. Defects in the ABCB4 gene are associated with rare biliary diseases. It is essential to understand the mechanisms of its canalicular membrane expression in particular for the development of new therapies. The stability of several ABC transporters is regulated through their binding to PDZ (PSD95/DglA/ZO-1 domain-containing proteins. ABCB4 protein ends by the sequence glutamine-asparagine-leucine (QNL, which shows some similarity to PDZ-binding motifs. The aim of our study was to assess the potential role of the QNL motif on the surface expression of ABCB4 and to determine if PDZ domain-containing proteins are involved. We found that truncation of the QNL motif decreased the stability of ABCB4 in HepG2-transfected cells. The deleted mutant ABCB4-ΔQNL also displayed accelerated endocytosis. EBP50, a PDZ protein highly expressed in the liver, strongly colocalized and coimmunoprecipitated with ABCB4, and this interaction required the QNL motif. Down-regulation of EBP50 by siRNA or by expression of an EBP50 dominant-negative mutant caused a significant decrease in the level of ABCB4 protein expression, and in the amount of ABCB4 localized at the canalicular membrane. Interaction of ABCB4 with EBP50 through its PDZ-like motif plays a critical role in the regulation of ABCB4 expression and stability at the canalicular plasma membrane.

  1. Effects of lipid environment on the conformational changes of an ABC importer.

    Science.gov (United States)

    Rice, Austin J; Alvarez, Frances J D; Davidson, Amy L; Pinkett, Heather W

    2014-01-01

    In order to shuttle substrates across the lipid bilayer, membrane proteins undergo a series of conformation changes that are influenced by protein structure, ligands, and the lipid environment. To test the effect of lipid on conformation change of the ABC transporter MolBC, EPR studies were conducted in lipids and detergents of variable composition. In both a detergent and lipid environment, MolBC underwent the same general conformation changes as detected by site-directed EPR spectroscopy. However, differences in activity and the details of the EPR analysis indicate conformational rigidity that is dependent on the lipid environment. From these observations, we conclude that native-like lipid mixtures provide the transporter with greater activity and conformational flexibility as well as technical advantages such as reconstitution efficiency and protein stability.

  2. ABCE1基因在非小细胞肺癌内相关调节miRNA的筛选%Screening of miRNA regulating ABCE1 gene in non-small-cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    田野; 刘思洋; 许辉; 姜文军; 赵希彤; 王晴; 田大力

    2015-01-01

    目的:筛选ATP结合盒E1(ABCE1)基因的相关调节miRNA,为诊治肺癌提供新思路。方法选取20例非小细胞肺癌患者,其中男性13例,女性7例;年龄45~73岁,平均年龄62.9岁。鳞癌11例,腺癌9例。应用生物信息学预测ABCE1基因上游的miRNA,通过实时定量聚合酶链反应(RT-Q-PCR)及免疫组织化学方法,对标本非小细胞癌组织和癌旁组织进行检测,并进行统计学分析,从中筛选出目的miRNA。结果生物信息软件预测7个最有可能调节 ABCE1基因的miRNA,分别为miR-29a/b/c、miR-135a/b、miR-203及miR-141;其中miR-29a/b/c、miR-135a、miR-203的表达在癌组织内较癌旁组织都有不同程度的降低,以miR-135a、miR-29c差异最为明显,与之对应ABCE1在相同的肺癌组织内表达上调(P<0.05);仅miR-135a与ABCE1在上述肺癌患者内表达呈现负性相关(r=-0.665,P=0.001)。结论在非小细胞肺癌内,很有可能是miR-135a负性调节ABCE1基因,两者结合可能成为诊治肺癌的新靶点。%Objective To screen the miRNAs regulating ATP-binding cassette transporter E1(ABCE1) gene in non-small-cell lung cancer, and explore new strategies in lung cancer diagnosis and therapy. Methods The 20 patients with non-small-cell lung cancer(11 squamous cell carcinoma and 9 adenocarcinoma) were enrolled, included 13 males and 7 females, which aged 45-73 years old with mean age of 62.9 years old. Bioinformatics was used to predict the miRNAs regulated ABCE1 gene;statistical analysis was then done to screen out the purpose miRNA by real-time quantitative PCR(RT-Q-PCR) and detected miRNAs and ABCE1 mRNA and protein. Results The result of bioinformatics software predicted that seven miRNAs had highest possibility to regulate ABCE1 gene, which were miR-29a/b/c, miR-135a/b, miR-203 and miR-141. The expression of miR-29a/b/c, miR-135a, miR-203, especially miR-135a and miR-29c in carcinoma tissues, compared to those

  3. Screening of miRNA regulating ABCE1 gene in non-small-cell lung cancer%ABCE1基因在非小细胞肺癌内相关调节miRNA的筛选

    Institute of Scientific and Technical Information of China (English)

    田野; 刘思洋; 许辉; 姜文军; 赵希彤; 王晴; 田大力

    2015-01-01

    Objective To screen the miRNAs regulating ATP-binding cassette transporter E1(ABCE1) gene in non-small-cell lung cancer, and explore new strategies in lung cancer diagnosis and therapy. Methods The 20 patients with non-small-cell lung cancer(11 squamous cell carcinoma and 9 adenocarcinoma) were enrolled, included 13 males and 7 females, which aged 45-73 years old with mean age of 62.9 years old. Bioinformatics was used to predict the miRNAs regulated ABCE1 gene;statistical analysis was then done to screen out the purpose miRNA by real-time quantitative PCR(RT-Q-PCR) and detected miRNAs and ABCE1 mRNA and protein. Results The result of bioinformatics software predicted that seven miRNAs had highest possibility to regulate ABCE1 gene, which were miR-29a/b/c, miR-135a/b, miR-203 and miR-141. The expression of miR-29a/b/c, miR-135a, miR-203, especially miR-135a and miR-29c in carcinoma tissues, compared to those in pericarcinomatous tissues experienced decrease to different degrees, while the expression of mRNA and protein of ABCE1 increased in carcinoma tissues ( P < 0.05). Moreover, there appeared to be negative correlation between miR-135a and ABCE1 in lung cancer tissues(r=-0.665,P=0.001). Conclusion It is demonstrated that the miR-135a negatively regulates ABCE1 gene, and the combination of them might be the new target for diagnosis and treatment of non-small-cell lung cancer.%目的:筛选ATP结合盒E1(ABCE1)基因的相关调节miRNA,为诊治肺癌提供新思路。方法选取20例非小细胞肺癌患者,其中男性13例,女性7例;年龄45~73岁,平均年龄62.9岁。鳞癌11例,腺癌9例。应用生物信息学预测ABCE1基因上游的miRNA,通过实时定量聚合酶链反应(RT-Q-PCR)及免疫组织化学方法,对标本非小细胞癌组织和癌旁组织进行检测,并进行统计学分析,从中筛选出目的miRNA。结果生物信息软件预测7个最有可能调节 ABCE1基因的miRNA,分别为miR-29a

  4. Functional Identification of Incorrectly Annotated Prolidases from the Amidohydrolase Superfamily of Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, D.; Patskovsky, Y; Xu, C; Meyer, A; Sauder, J; Burley, S; Almo, S; Raushel, F

    2009-01-01

    The substrate profiles for two proteins from Caulobacter crescentus CB15 (Cc2672 and Cc3125) and one protein (Sgx9359b) derived from a DNA sequence (gi|44368820) isolated from the Sargasso Sea were determined using combinatorial libraries of dipeptides and N-acyl derivatives of amino acids. These proteins are members of the amidohydrolase superfamily and are currently misannotated in NCBI as catalyzing the hydrolysis of l-Xaa-l-Pro dipeptides. Cc2672 was shown to catalyze the hydrolysis of l-Xaa-l-Arg/Lys dipeptides and the N-acetyl and N-formyl derivatives of lysine and arginine. This enzyme will also hydrolyze longer peptides that terminate in either lysine or arginine. The N-methyl phosphonate derivative of l-lysine was a potent competitive inhibitor of Cc2672 with a Ki value of 120 nM. Cc3125 was shown to catalyze the hydrolysis of l-Xaa-l-Arg/Lys dipeptides but will not hydrolyze tripeptides or the N-formyl and N-acetyl derivatives of lysine or arginine. The substrate profile for Sgx9359b is similar to that of Cc2672 except that compounds with a C-terminal lysine are not recognized as substrates. The X-ray structure of Sgx9359b was determined to a resolution of 2.3 Angstroms. The protein folds as a (e/a)8-barrel and self-associates to form a homooctamer. The active site is composed of a binuclear metal center similar to that found in phosphotriesterase and dihydroorotase. In one crystal form, arginine was bound adventitiously to the eight active sites within the octamer. The orientation of the arginine in the active site identified the structural determinants for recognition of the a-carboxylate and the positively charged side chains of arginine-containing substrates. This information was used to identify 18 other bacterial sequences that possess identical or similar substrate profiles.

  5. ABC estimation of unit costs for emergency department services.

    Science.gov (United States)

    Holmes, R L; Schroeder, R E

    1996-04-01

    Rapid evolution of the health care industry forces managers to make cost-effective decisions. Typical hospital cost accounting systems do not provide emergency department managers with the information needed, but emergency department settings are so complex and dynamic as to make the more accurate activity-based costing (ABC) system prohibitively expensive. Through judicious use of the available traditional cost accounting information and simple computer spreadsheets. managers may approximate the decision-guiding information that would result from the much more costly and time-consuming implementation of ABC. PMID:10156656

  6. Costs equations for cost modeling: application of ABC Matrix

    Directory of Open Access Journals (Sweden)

    Alex Fabiano Bertollo Santana

    2016-03-01

    Full Text Available This article aimed at providing an application of the ABC Matrix model - a management tool that models processes and activities. The ABC Matrix is based on matrix multiplication, using a fast algorithm for the development of costing systems and the subsequent translation of the costs in cost equations and systems. The research methodology is classified as a case study, using the simulation data to validate the model. The conclusion of the research is that the algorithm presented is an important development, because it is an effective approach to calculating the product cost and because it provides simple and flexible algorithm design software for controlling the cost of products

  7. Molecular dynamics simulations of the bacterial ABC transporter SAV1866 in the closed form.

    Science.gov (United States)

    St-Pierre, Jean-François; Bunker, Alex; Róg, Tomasz; Karttunen, Mikko; Mousseau, Normand

    2012-03-01

    The ATP binding cassette (ABC) transporter family of proteins contains members involved in ATP-mediated import or export of ligands at the cell membrane. For the case of exporters, the translocation mechanism involves a large-scale conformational change that involves a clothespin-like motion from an inward-facing open state, able to bind ligands and adenosine triphosphate (ATP), to an outward-facing closed state. Our work focuses on SAV1866, a bacterial member of the ABC transporter family for which the structure is known for the closed state. To evaluate the ability of this protein to undergo conformational changes at physiological temperature, we first performed conventional molecular dynamics (MD) on the cocrystallized adenosine diphosphate (ADP)-bound structure and on a nucleotide-free structure. With this assessment of SAV1866's stability, conformational changes were induced by steered molecular dynamics (SMD), in which the nucleotide binding domains (NBD) were pushed apart, simulating the ATP hydrolysis energy expenditure. We found that the transmembrane domain is not easily perturbed by large-scale motions of the NBDs. PMID:22339391

  8. [Role of ABC efflux transporters in the oral bioavailability and drug-induced intestinal toxicity].

    Science.gov (United States)

    Yokooji, Tomoharu

    2013-01-01

    The gastrointestinal tract is the organ that absorbs nutrients and water from foods and drinks. This organ is often exposed to various harmful xenobiotics, and therefore possesses various detoxification/barrier systems, including metabolizing enzymes and efflux transporters. Intestinal epithelial cells express ATP-binding cassette (ABC) efflux transporters such as P-glycoprotein, multidrug resistance-associated proteins (MRPs) and breast cancer resistance protein, in addition to various solute carrier (SLC) influx transporters. These transporters are expressed site- and membrane-specifically in enterocytes, which affects the bioavailability of ingested substrate drugs. Expression and/or function of transporters can be modulated by various compounds, including therapeutic drugs, herbal products, some foods, and by disease states. The modulation of transporters could cause unexpectedly higher or lower blood concentrations, marked inter- and intra-individual variations in pharmacokinetics, and unreliable pharmacological actions in association with toxicities of substrates. Recently, we found that hyperbilirubinemia, which occurs in some disease states, increased intestinal accumulation and toxicity of methotrexate, an MRP substrate, because of the suppression of MRP function by high plasma concentrations of conjugated bilirubin. We also attempted to ameliorate the intestinal toxicity of irinotecan hydrochloride by modulating the hepatic and intestinal functions of MRP2. This review summarizes our findings regarding the role of ABC transporters, especially MRPs, in oral bioavailability and in drug-induced intestinal toxicity. Our approach to treat intestinal toxicity using an MRP2 modulator is also described. PMID:23811769

  9. Migration of Adipose-derived Mesenchymal Stem Cells Stably Expressing Chondroitinase ABC In vitro

    Institute of Scientific and Technical Information of China (English)

    Jian-Huang Wu; Miao Li; Yan Liang; Tao Lu; Chun-Yue Duan

    2016-01-01

    Background:Several studies have revealed that adipose-derived mesenchymal stem cells (ADSCs) can be used as seed cells for the treatment of spinal cord injury (SCI).Chondroitinase ABC (ChABC) decomposes chondroitin sulfate proteoglycans in the glial scar that forms following SCI,allowing stem cells to penetrate through the scar and promote recovery of nerve function.This study aimed to establish ADSCs that stably express ChABC (ChABC-ADSCs) and evaluate the migratory capability of ChABC-ADSCs in vitro.Methods:ADSCs were obtained from Sprague-Dawley rats using secondary collagenase digestion.Their phenotypes were characterized using flow cytometry detection of cell surface antigens and their stem cell properties were confirmed by induction of differentiation.After successful culture,ADSCs were transfected with lentiviral vectors and ChABC-ADSCs were obtained.Proliferation curves of ChABC-ADSCs were determined using the Cell Counting Kit-8 method,ChABC expression was verified using Western blotting,and the migration of ChABC-ADSCs was analyzed using the transwell assay.Results:Secondary collagenase digestion increased the isolation efficiency of primary ADSCs.Following transfection using lentiviral vectors,the proliferation of ChABC-ADSCs was reduced in comparison with control ADSCs at 48 h (P < 0.05).And the level of ChABC expression in the ChABC-ADSC group was significantly higher than that of the ADSC group (P < 0.05).Moreover,ChABC-ADSC migration in matrigel was significantly enhanced in comparison with the control (P < 0.05).Conclusions:Secondary collagenase digestion can be used to effectively isolate ADSCs.ChABC-ADSCs constructed using lentiviral vector transfection stably express ChABC,and ChABC expression significantly enhances the migratory capacity of ADSCs.

  10. Migration of Adipose-derived Mesenchymal Stem Cells Stably Expressing Chondroitinase ABC In vitro

    Science.gov (United States)

    Wu, Jian-Huang; Li, Miao; Liang, Yan; Lu, Tao; Duan, Chun-Yue

    2016-01-01

    Background: Several studies have revealed that adipose-derived mesenchymal stem cells (ADSCs) can be used as seed cells for the treatment of spinal cord injury (SCI). Chondroitinase ABC (ChABC) decomposes chondroitin sulfate proteoglycans in the glial scar that forms following SCI, allowing stem cells to penetrate through the scar and promote recovery of nerve function. This study aimed to establish ADSCs that stably express ChABC (ChABC-ADSCs) and evaluate the migratory capability of ChABC-ADSCs in vitro. Methods: ADSCs were obtained from Sprague-Dawley rats using secondary collagenase digestion. Their phenotypes were characterized using flow cytometry detection of cell surface antigens and their stem cell properties were confirmed by induction of differentiation. After successful culture, ADSCs were transfected with lentiviral vectors and ChABC-ADSCs were obtained. Proliferation curves of ChABC-ADSCs were determined using the Cell Counting Kit-8 method, ChABC expression was verified using Western blotting, and the migration of ChABC-ADSCs was analyzed using the transwell assay. Results: Secondary collagenase digestion increased the isolation efficiency of primary ADSCs. Following transfection using lentiviral vectors, the proliferation of ChABC-ADSCs was reduced in comparison with control ADSCs at 48 h (P < 0.05). And the level of ChABC expression in the ChABC-ADSC group was significantly higher than that of the ADSC group (P < 0.05). Moreover, ChABC-ADSC migration in matrigel was significantly enhanced in comparison with the control (P < 0.05). Conclusions: Secondary collagenase digestion can be used to effectively isolate ADSCs. ChABC-ADSCs constructed using lentiviral vector transfection stably express ChABC, and ChABC expression significantly enhances the migratory capacity of ADSCs. PMID:27364797

  11. Crystal structure and potential physiological role of zebra fish thioesterase superfamily member 2 (fTHEM2)

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shanshan; Li, Han; Gao, Feng; Zhou, Ying, E-mail: zhouying@moon.ibp.ac.cn

    2015-08-07

    Thioesterase superfamily member 2 (THEM2) is an essential protein for mammalian cell proliferation. It belongs to the hotdog-fold thioesterase superfamily and catalyzes hydrolysis of thioester bonds of acyl-CoA in vitro, while its in vivo function remains unrevealed. In this study, Zebra fish was selected as a model organism to facilitate the investigations on THEM2. First, we solved the crystal structure of recombinant fTHEM2 at the resolution of 1.80 Å, which displayed a similar scaffolding as hTHEM2. Second, functional studies demonstrated that fTHEM2 is capable of hydrolyzing palmitoyl-CoA in vitro. In addition, injection of morpholino against fTHEM2 at one-cell stage resulted in distorted early embryo development, including delayed cell division, retarded development and increased death rate. The above findings validated our hypothesis that fTHEM2 could serve as an ideal surrogate for studying the physiological functions of THEM2. - Highlights: • The crystal structure of recombinant fTHEM2 is presented. • fTHEM2 is capable of hydrolyzing palmitoyl-CoA. • The influence of fTHEM2 on early embryo development is demonstrated.

  12. On Application of ABC Approach in Management of Agri- scientific Research Cost

    Institute of Scientific and Technical Information of China (English)

    Liangchun; ZHA

    2014-01-01

    This paper firstly introduced theoretical background of the Activity-Based Costing(ABC). Then,it analyzed necessity,extension resistance and difficulty of ABC approach in agri-scientific research institutions. Finally,it came up with some recommendations for scientifically learning and steadily promoting ABC method in agri-scientific research field.

  13. On Application of ABC Approach in Management of Agri-scientific Research Cost

    OpenAIRE

    Zha, Liangchun

    2014-01-01

    This paper firstly introduced theoretical background of the Activity-Based Costing (ABC). Then, it analyzed necessity, extension resistance and difficulty of ABC approach in agri-scientific research institutions. Finally, it came up with some recommendations for scientifically learning and steadily promoting ABC method in agri-scientific research field.

  14. Protein (Cyanobacteria): 341895 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_007047129.1 1117:11981 1118:12038 167375:1945 59930:2000 292564:2000 primosomal protein N' (repl...ication factor Y) - superfamily II helicase Cyanobium gracile PCC 6307 MPLEPLLPLFHRLNREHFDGQ...LTRENRPLVDVRWSDGRLTRTAGLYRRGRLADGRDLCEIVLSRPLLEPLPRQATLGTLCHEMIHAWVDRVLAVQEVHGPRFRTRMEQINRAQDDFQVSLRHRYPLPVAASRWIARCPRCDSRTPYQRRRQGLACRHCCERLHGGRWDASCLLVFEPNTA ...

  15. Primase-polymerases are a functionally diverse superfamily of replication and repair enzymes.

    Science.gov (United States)

    Guilliam, Thomas A; Keen, Benjamin A; Brissett, Nigel C; Doherty, Aidan J

    2015-08-18

    Until relatively recently, DNA primases were viewed simply as a class of proteins that synthesize short RNA primers requisite for the initiation of DNA replication. However, recent studies have shown that this perception of the limited activities associated with these diverse enzymes can no longer be justified. Numerous examples can now be cited demonstrating how the term 'DNA primase' only describes a very narrow subset of these nucleotidyltransferases, with the vast majority fulfilling multifunctional roles from DNA replication to damage tolerance and repair. This article focuses on the archaeo-eukaryotic primase (AEP) superfamily, drawing on recently characterized examples from all domains of life to highlight the functionally diverse pathways in which these enzymes are employed. The broad origins, functionalities and enzymatic capabilities of AEPs emphasizes their previous functional misannotation and supports the necessity for a reclassification of these enzymes under a category called primase-polymerases within the wider functional grouping of polymerases. Importantly, the repositioning of AEPs in this way better recognizes their broader roles in DNA metabolism and encourages the discovery of additional functions for these enzymes, aside from those highlighted here.

  16. Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea.

    Science.gov (United States)

    Vijayakumar, Harshavardhanan; Thamilarasan, Senthil Kumar; Shanmugam, Ashokraj; Natarajan, Sathishkumar; Jung, Hee-Jeong; Park, Jong-In; Kim, HyeRan; Chung, Mi-Young; Nou, Ill-Sup

    2016-01-01

    Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18) are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS). Currently, understanding of their function(s) during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST) and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible) under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT) and cold susceptible (CS) lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants. PMID:27472324

  17. Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea

    Directory of Open Access Journals (Sweden)

    Harshavardhanan Vijayakumar

    2016-07-01

    Full Text Available Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18 are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS. Currently, understanding of their function(s during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT and cold susceptible (CS lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants.

  18. Mycobacterium smegmatis MSMEG_3705 encodes a selective major facilitator superfamily efflux pump with multiple roles.

    Science.gov (United States)

    Zhang, Zhen; Wang, Rui; Xie, Jianping

    2015-06-01

    Mycobacterium smegmatis mc(2)155 MSMEG_3705 gene was annotated to encode a transporter protein that contains 12 alpha-helical transmembrane domains. We predicted MSMEG_3705 encoding a major facilitator superfamily (MFS) member. To confirm the prediction, the M. smegmatis mc(2)155 MSMEG_3705 gene was deleted. The MSMEG_3705 deletion mutant strain M. smegmatis mc(2)155 ∆MSMEG_3705 was more sensitive to capreomycin. Moreover, M. smegmatis mc(2)155 ∆MSMEG_3705 strain accumulated more ethidium bromide intracellular than wild-type M. smegmatis mc(2)155. Quite unexpectedly, M. smegmatis mc(2)155 ∆MSMEG_3705 grew faster than the wild-type M. smegmatis mc(2)155. The upregulation of the expression of MSMEG_3706, a gene encoding isocitrate lyase downstream MSMEG_3705, in the deletion mutant, might underlie such faster growth in the mutant. The study showed that MSMEG_3705 encodes a genuine MFS member and plays significant role in bacterial growth and antibiotics resistance.

  19. Phenotypic, Proteomic, and Genomic Characterization of a Putative ABC-Transporter Permease Involved in Listeria monocytogenes Biofilm Formation

    DEFF Research Database (Denmark)

    Zhu, Xinna; Liu, Weibing; Lametsch, René;

    2011-01-01

    The foodborne pathogen Listeria monocytogenes is able to form biofilms in food processing environments. Previously, we have reported that an lm.G_1771 gene (encoding a putative ABC-transporter permease) was involved in negative regulation of L. monocytogenes biofilm formation using LM-49, a biofilm......-enhanced mutant isolated on Tn917 mutagenesis (AEM 2008 p.7675–7683). Here, the possible action of this ABC-transporter permease in L. monocytogenes biofilm formation was characterized by phenotypic, proteomic, and genomic analyses using an lm.G_1771 gene deletant (Δ1771). The Δ1771 mutant exhibited the same...... enhanced ability for biofilm formation as the LM-49 strain using a crystal violet staining assay. DNA microarrays and two-dimensional gel electrophoresis revealed 49 and 11 differentially expressed (twofold or more) genes or proteins in Δ1771, respectively. The transcriptomics study indicated that lm...

  20. Lipid traffic: the ABC of transbilayer movement

    NARCIS (Netherlands)

    Raggers, R.J.; Pomorski, T.; Holthuis, J.C.M.; Kälin, N.; van Meer, G.

    2000-01-01

    Membrane lipids do not spontaneously exchange between the two leaflets of lipid bilayers because the polar headgroups cannot cross the hydrophobic membrane interior. Cellular membranes, notably eukaryotic plasma membranes, are equipped with special proteins that actively translocate lipids from one

  1. ABC transporters from Botrytis cinerea in biotic and abiotic interactions

    NARCIS (Netherlands)

    Schoonbeek, H.

    2004-01-01

    Botrytis cinereais the causal agent of grey mould disease on a wide variety of crop plants. It is relatively insensitive to natural and synthetic fungitoxic compounds. This thesis describes how ABC (ATP-binding cassette) transporters contribute to protection by actively secre

  2. ABCs of Being Smart... G Is for Gifted!

    Science.gov (United States)

    Foster, Joanne

    2012-01-01

    Giftedness can generate speculation, misconceptions, expectations, pride, innuendo, apprehension, puzzlement--and the list goes on. What does it mean to be a gifted learner? In this installment of the series "ABCs of Being Smart," the author grapples with the term gifted, giving a glimpse into giftedness, along with some general guidelines for…

  3. Selections from the ABC 2012 Annual Convention, Honolulu, Hawaii

    Science.gov (United States)

    Whalen, D. Joel

    2013-01-01

    The 13 Favorite Assignments featured here were presented at the 2012 Association for Business Communication (ABC) Annual Convention, Honolulu, Hawaii. A variety of learning objectives are featured, including the following: enhancing resume's visual impact, interpersonal skills, social media, team building, web design, community service…

  4. I am Calm: Towards a Psychoneurological Evaluation of ABC Ringtones

    Directory of Open Access Journals (Sweden)

    John N.A. Brown

    2015-10-01

    Full Text Available Anthropology-Based Computing (ABC suggests that socio-cultural, neurological, and physiological parameters of normal human interaction with the world can be applied to current technology in order to improve Human-Computer Interaction (HCI. To challenge this theory, we hypothesized smartphone ringtones that could be targeted to specific people in a manner that would inform them without disturbing their work or the work of others. In this paper we report the quantitative data from the first formal trials of these ‘ABC ringtones’. Beta Wave activity patterns were recorded in the brains of 10 participants exposed to 5 different ringtones at three different volumes while they were focused on performing a typing test in a noisy environment. Our preliminary findings seem to show that the ABC ringtones - at a volume too low to be consciously heard - triggered a response in the pre-attentive part of the brain, and that the embedded information was transferred to the attentive part of the brain by an internal mechanism that did not disrupt the work being done in the typing task. We propose that these results provide preliminary evidence for the ABC model of HCI and its explanation of the centering mechanism that is requisite if Peripheral Interaction is to be applied in changing Ubiquitous Computing into Calm Technology.

  5. The ABCs for Pre-Service Teacher Cultural Competency Development

    Science.gov (United States)

    He, Ye; Cooper, Jewell E.

    2009-01-01

    In an effort to combine pre-service teachers' self-reflection with their field experiences to enhance their cultural competency, this study adopted Schmidt's ABC's (Autobiography, Biography, and Cross-cultural Comparison) Model in two courses in a pre-service teacher education program. Through group comparisons, this study measured the impact that…

  6. Discovery of a distinct superfamily of Kunitz-type toxin (KTT from tarantulas.

    Directory of Open Access Journals (Sweden)

    Chun-Hua Yuan

    Full Text Available BACKGROUND: Kuntiz-type toxins (KTTs have been found in the venom of animals such as snake, cone snail and sea anemone. The main ancestral function of Kunitz-type proteins was the inhibition of a diverse array of serine proteases, while toxic activities (such as ion-channel blocking were developed under a variety of Darwinian selection pressures. How new functions were grafted onto an old protein scaffold and what effect Darwinian selection pressures had on KTT evolution remains a puzzle. PRINCIPAL FINDINGS: Here we report the presence of a new superfamily of ktts in spiders (TARANTULAS: Ornithoctonus huwena and Ornithoctonus hainana, which share low sequence similarity to known KTTs and is clustered in a distinct clade in the phylogenetic tree of KTT evolution. The representative molecule of spider KTTs, HWTX-XI, purified from the venom of O. huwena, is a bi-functional protein which is a very potent trypsin inhibitor (about 30-fold more strong than BPTI as well as a weak Kv1.1 potassium channel blocker. Structural analysis of HWTX-XI in 3-D by NMR together with comparative function analysis of 18 expressed mutants of this toxin revealed two separate sites, corresponding to these two activities, located on the two ends of the cone-shape molecule of HWTX-XI. Comparison of non-synonymous/synonymous mutation ratios (omega for each site in spider and snake KTTs, as well as PBTI like body Kunitz proteins revealed high Darwinian selection pressure on the binding sites for Kv channels and serine proteases in snake, while only on the proteases in spider and none detected in body proteins, suggesting different rates and patterns of evolution among them. The results also revealed a series of key events in the history of spider KTT evolution, including the formation of a novel KTT family (named sub-Kuntiz-type toxins derived from the ancestral native KTTs with the loss of the second disulfide bridge accompanied by several dramatic sequence modifications

  7. The ABCs of multidrug resistance in malaria.

    NARCIS (Netherlands)

    Koenderink, J.B.; Kavishe, R.A.; Rijpma, S.R.; Russel, F.G.M.

    2010-01-01

    Expanding drug resistance could become a major problem in malaria treatment, as only a limited number of effective antimalarials are available. Drug resistance has been associated with single nucleotide polymorphisms and an increased copy number of multidrug resistance protein 1 (MDR1), an ATP-bindi

  8. Up-regulation of tumor necrosis factor superfamily genes in early phases of photoreceptor degeneration.

    Directory of Open Access Journals (Sweden)

    Sem Genini

    Full Text Available We used quantitative real-time PCR to examine the expression of 112 genes related to retinal function and/or belonging to known pro-apoptotic, cell survival, and autophagy pathways during photoreceptor degeneration in three early-onset canine models of human photoreceptor degeneration, rod cone dysplasia 1 (rcd1, X-linked progressive retinal atrophy 2 (xlpra2, and early retinal degeneration (erd, caused respectively, by mutations in PDE6B, RPGRORF15, and STK38L. Notably, we found that expression and timing of differentially expressed (DE genes correlated with the cell death kinetics. Gene expression profiles of rcd1 and xlpra2 were similar; however rcd1 was more severe as demonstrated by the results of the TUNEL and ONL thickness analyses, a greater number of genes that were DE, and the identification of altered expression that occurred at earlier time points. Both diseases differed from erd, where a smaller number of genes were DE. Our studies did not highlight the potential involvement of mitochondrial or autophagy pathways, but all three diseases were accompanied by the down-regulation of photoreceptor genes, and up-regulation of several genes that belong to the TNF superfamily, the extrinsic apoptotic pathway, and pro-survival pathways. These proteins were expressed by different retinal cells, including horizontal, amacrine, ON bipolar, and Müller cells, and suggest an interplay between the dying photoreceptors and inner retinal cells. Western blot and immunohistochemistry results supported the transcriptional regulation for selected proteins. This study highlights a potential role for signaling through the extrinsic apoptotic pathway in early cell death events and suggests that retinal cells other than photoreceptors might play a primary or bystander role in the degenerative process.

  9. Structural Analysis of Papain-Like NlpC/P60 Superfamily Enzymes with a Circularly Permuted Topology Reveals Potential Lipid Binding Sites

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingping; Rawlings, Neil D.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Klock, Heath E.; Knuth, Mark W.; Miller, Mitchell D.; Elsliger, Marc-Andre; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A. (SG); (Wellcome)

    2012-07-11

    NlpC/P60 superfamily papain-like enzymes play important roles in all kingdoms of life. Two members of this superfamily, LRAT-like and YaeF/YiiX-like families, were predicted to contain a catalytic domain that is circularly permuted such that the catalytic cysteine is located near the C-terminus, instead of at the N-terminus. These permuted enzymes are widespread in virus, pathogenic bacteria, and eukaryotes. We determined the crystal structure of a member of the YaeF/YiiX-like family from Bacillus cereus in complex with lysine. The structure, which adopts a ligand-induced, 'closed' conformation, confirms the circular permutation of catalytic residues. A comparative analysis of other related protein structures within the NlpC/P60 superfamily is presented. Permutated NlpC/P60 enzymes contain a similar conserved core and arrangement of catalytic residues, including a Cys/His-containing triad and an additional conserved tyrosine. More surprisingly, permuted enzymes have a hydrophobic S1 binding pocket that is distinct from previously characterized enzymes in the family, indicative of novel substrate specificity. Further analysis of a structural homolog, YiiX (PDB 2if6) identified a fatty acid in the conserved hydrophobic pocket, thus providing additional insights into possible function of these novel enzymes.

  10. A Compute Environment of ABC95 Array Computer Based on Multi-FPGA Chip

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    ABC95 array computer is a multi-function network's computer based on FPGA technology, The multi-function network supports processors conflict-free access data from memory and supports processors access data from processors based on enhanced MESH network.ABC95 instruction's system includes control instructions, scalar instructions, vectors instructions.Mostly net-work instructions are introduced.A programming environment of ABC95 array computer assemble language is designed.A programming environment of ABC95 array computer for VC++ is advanced.It includes load function of ABC95 array computer program and data, store function, run function and so on.Specially, The data type of ABC95 array computer conflict-free access is defined.The results show that these technologies can develop programmer of ABC95 array computer effectively.

  11. ABC转运蛋白与巴西橡胶树产胶代谢%ABC Transporters and the Latex Regeneration Metabolism of Hevea brasiliensis

    Institute of Scientific and Technical Information of China (English)

    聂智毅; 黎瑜; 曾日中

    2013-01-01

    ABC转运蛋白(ATP Binding Cassette transporter)是目前已知最大、功能最广泛的蛋白家族之一。大多数ABC转运蛋白都能利用水解ATP释放的能量直接转运底物。许多研究结果显示,植物ABC转运蛋白在各种代谢产物的跨膜转运中起着重要作用。橡胶的产胶代谢是一种典型的植物类异戊二烯次生代谢,是影响橡胶产量的首要因素。相关实验结果显示, ABC转运蛋白可能参与橡胶树产胶代谢。本文介绍了模式植物拟南芥中的ABC转运蛋白研究进展,并对ABC转运蛋白与橡胶树产胶代谢的关系进行讨论。%ATP Binding Cassette transporters (ABC transporters) constitute the largest protein family with the most variety of functions. Most ABC transporters can utilize the energy of ATP hydrolysis to transport substances, and many researches reveal that ABC transporters play important roles in translocation of plant metabolites across membranes. Latex regeneration metabolism of Hevea brasiliensis is a typical of plant isoprenoid secondary metabolism and is the primary factor affecting rubber production. Researches reveal that ABC-transporters may be involved in the latex regeneration metabolism of Hevea brasiliensis. Base on the new advances in ABC-transporters in A rabidopsis thaliana, the relation between ABC-transporters and latex regeneration of Hevea brasiliensis was discussed in the review.

  12. 75 FR 49549 - ABC & D Recycling, Inc.-Lease and Operation Exemption-a Line of Railroad in Ware, MA

    Science.gov (United States)

    2010-08-13

    ... Surface Transportation Board ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line of Railroad in Ware, MA ABC & D Recycling, Inc. (ABC & D), a noncarrier, has filed a verified notice of exemption... operation of this trackage in FD 35356, ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line...

  13. Combination of chondroitinase ABC, glial cell line-derived neurotrophic factor and Nogo A antibody delayed-release microspheres promotes the functional recovery of spinal cord injury.

    Science.gov (United States)

    Zhang, Yu; Gu, Zuchao; Qiu, Guixing; Song, Yueming

    2013-11-01

    Spinal cord injury (SCI) is one of the most devastating injuries for patients. Glial cell line-derived neurotrophic factor (GDNF) is an important neurotrophic factor for the regeneration of the spinal neuraxial bundle, but GDNF would degrade rapidly if the protein was injected into the site of injury; thus, it cannot exert its fullest effects. Therefore, we introduced a delivery system of GDNF, poly(lactide-co-glycolic acid) (PLGA) delayed-release microspheres, in the current study and observed the effect of PLGA-GDNF and the combination of PLGA-GDNF and another 2 agents PLGA-chondroitinase ABC (ChABC) and PLGA-Nogo A antibody in the treatment of SCI rats. Our results showed that PLGA-GDNF and the combination of chABC, GDNF, and Nogo A antibody microspheres could elevate the locomotor scores of SCI rats. The effect of PLGA-GDNF was much better than that of GDNF. The cortical somatosensory evoked potential was also improved by PLGA-GDNF and the combination of chABC, GDNF, and Nogo A antibody microspheres. Our results suggest that PLGA delayed-release microsphere may be a useful and effective tool in delivering protein agents into the injury sites of patients with SCI. This novel combination therapy may provide a new idea in promoting the functional recovery of the damaged spinal cord.

  14. Expression and clinical significance of thymidylate synthase and adenosine triphosphate-binding cassette superfamily G member protein in advanced gastric carcinoma%进展期胃癌胸苷酸合成酶和三磷酸腺苷结合转运蛋白G超家族成员2的表达及意义

    Institute of Scientific and Technical Information of China (English)

    程浩; 贾喜花; 郑淑君; 张晓伟; 张金库

    2013-01-01

    目的 检测胸苷酸合成酶(TS)和三磷酸腺苷结合转运蛋白G超家族成员2(ABCG2)在进展期胃癌中的表达,探讨其与临床病理特征的关系.方法 收集80例进展期胃癌患者的手术标本,采用免疫组织化学方法,在胃癌组织和相应癌旁正常组织中检测TS和ABCG2的表达,在胃癌组织中检测P-糖蛋白的表达.分析TS、ABCG2表达与临床病理特征、P-糖蛋白表达的相关性.两组间比较行x2检验,多组间比较行Kruskal-Wallis H检验.结果 胃癌组织中TS和ABCG2的总阳性率[85.0%(68/80)和90.0% (72/80)]均高于癌旁正常组织[62.5%(50/80)和78.7% (63/80)],差异均有统计学意义(x2=11.466和16.463,P=0.009和0.001).TS和ABCG2在胃癌组织中的表达水平均与肿瘤TNM分期、分化程度、浸润深度密切相关(TS的x2=30.686、49.823、40.545,ABCG2的x2=48.192、64.722、47.512;P均<0.01),肿瘤分期越晚、分化程度越差、浸润越深,二者的表达水平越高.胃癌组织中TS和ABCG2的表达水平均与P-糖蛋白表达水平相关(x2=43.977和29.509,P均<0.01).结论 TS和ABCG2有可能成为判断胃癌恶性程度、进展、耐药及预后的指标.%Objective To investigate the expressions of thymidylate synthase (TS) and adenosine triphosphate (ATP)-binding cassette superfamily G member 2 (ABCG2) in advanced gastric cancer (GC) and to explore their correlation with clinical pathological features.Methods A total of 80surgical specimens of advanced gastric cancer patients were collected.The expressions of TS and ABCG2 in gastric cancer tissues and adjacent normal gastric tissues were detected by immunohistochemical method.The expression of P-glycoprotein in gastric cancer tissues was also examined.The correlations between TS,ABCG2 and clinical pathological features and P-glycoprotein were analyzed.Chi-square test was performed for two groups comparison and Kruskal-Wallis H test were used for multi-groups comparison.Results The positive rates

  15. AztD, a Periplasmic Zinc Metallochaperone to an ATP-binding Cassette (ABC) Transporter System in Paracoccus denitrificans.

    Science.gov (United States)

    Handali, Melody; Roychowdhury, Hridindu; Neupane, Durga P; Yukl, Erik T

    2015-12-11

    Bacterial ATP-binding cassette (ABC) transporters of transition metals are essential for acquisition of necessary elements from the environment. A large number of Gram-negative bacteria, including human pathogens, have a fourth conserved gene of unknown function adjacent to the canonical permease, ATPase, and solute-binding protein (SBP) genes of the AztABC zinc transporter system. To assess the function of this putative accessory factor (AztD) from Paracoccus denitrificans, we have analyzed its transcriptional regulation, metal binding properties, and interaction with the SBP (AztC). Transcription of the aztD gene is significantly up-regulated under conditions of zinc starvation. Recombinantly expressed AztD purifies with slightly substoichiometric zinc from the periplasm of Escherichia coli and is capable of binding up to three zinc ions with high affinity. Size exclusion chromatography and a simple intrinsic fluorescence assay were used to determine that AztD as isolated is able to transfer bound zinc nearly quantitatively to apo-AztC. Transfer occurs through a direct, associative mechanism that prevents loss of metal to the solvent. These results indicate that AztD is a zinc chaperone to AztC and likely functions to maintain zinc homeostasis through interaction with the AztABC system. This work extends our understanding of periplasmic zinc trafficking and the function of chaperones in this process.

  16. D-Ribulose 5-Phosphate 3-Epimerase: Functional and Structural Relationships to Members of the Ribulose-Phosphate Binding (beta/alpha)8-Barrel Superfamily

    International Nuclear Information System (INIS)

    The 'ribulose phosphate binding' superfamily defined by the Structural Classification of Proteins (SCOP) database is considered the result of divergent evolution from a common (β/α)8-barrel ancestor. The superfamily includes D-ribulose 5-phosphate 3-epimerase (RPE), orotidine 5'-monophosphate decarboxylase (OMPDC), and 3-keto-L-gulonate 6-phosphate decarboxylase (KGPDC), members of the OMPDC suprafamily, as well as enzymes involved in histidine and tryptophan biosynthesis that utilize phosphorylated metabolites as substrates. We now report studies of the functional and structural relationships of RPE to the members of the superfamily. As suggested by the results of crystallographic studies of the RPEs from rice and Plasmodium falciparum, the RPE from Streptococcus pyogenes is activated by Zn2+ which binds with a stoichiometry of one ion per polypeptide. Although wild type RPE has a high affinity for Zn2+ and inactive apoenzyme cannot be prepared, the affinity for Zn2+ is decreased by alanine substitutions for the two histidine residues that coordinate the Zn2+ ion (H34A and H67A); these mutant proteins can be prepared in an inactive, metal-free form and activated by exogenous Zn2+. The crystal structure of the RPE was solved at 1.8 Angstroms resolution in the presence of D-xylitol 5-phosphate, an inert analogue of the D-xylulose 5-phosphate substrate. This structure suggests that the 2,3-enediolate intermediate in the 1,1-proton transfer reaction is stabilized by bidentate coordination to the Zn2+ that also is liganded to His 34, Asp 36, His 67, and Asp 176; the carboxylate groups of the Asp residues are positioned also to function as the acid/base catalysts. Although the conformation of the bound analogue resembles those of ligands bound in the active sites of OMPDC and KGPDC, the identities of the active site residues that coordinate the essential Zn2+ and participate as acid/base catalysts are not conserved. We conclude that only the phosphate binding motif

  17. The cabABC Operon Essential for Biofilm and Rugose Colony Development in Vibrio vulnificus.

    Directory of Open Access Journals (Sweden)

    Jin Hwan Park

    2015-09-01

    Full Text Available A transcriptome analysis identified Vibrio vulnificus cabABC genes which were preferentially expressed in biofilms. The cabABC genes were transcribed as a single operon. The cabA gene was induced by elevated 3',5'-cyclic diguanylic acid (c-di-GMP and encoded a calcium-binding protein CabA. Comparison of the biofilms produced by the cabA mutant and its parent strain JN111 in microtiter plates using crystal-violet staining demonstrated that CabA contributed to biofilm formation in a calcium-dependent manner under elevated c-di-GMP conditions. Genetic and biochemical analyses revealed that CabA was secreted to the cell exterior through functional CabB and CabC, distributed throughout the biofilm matrix, and produced as the biofilm matured. These results, together with the observation that CabA also contributes to the development of rugose colony morphology, indicated that CabA is a matrix-associated protein required for maturation, rather than adhesion involved in the initial attachment, of biofilms. Microscopic comparison of the structure of biofilms produced by JN111 and the cabA mutant demonstrated that CabA is an extracellular matrix component essential for the development of the mature biofilm structures in flow cells and on oyster shells. Exogenously providing purified CabA restored the biofilm- and rugose colony-forming abilities of the cabA mutant when calcium was available. Circular dichroism and size exclusion analyses revealed that calcium binding induces CabA conformational changes which may lead to multimerization. Extracellular complementation experiments revealed that CabA can assemble a functional matrix only when exopolysaccharides coexist. Consequently, the combined results suggested that CabA is a structural protein of the extracellular matrix and multimerizes to a conformation functional in building robust biofilms, which may render V. vulnificus to survive in hostile environments and reach a concentrated infective dose.

  18. The Plant Short-Chain Dehydrogenase (SDR superfamily: genome-wide inventory and diversification patterns

    Directory of Open Access Journals (Sweden)

    Moummou Hanane

    2012-11-01

    Full Text Available Abstract Background Short-chain dehydrogenases/reductases (SDRs form one of the largest and oldest NAD(P(H dependent oxidoreductase families. Despite a conserved ‘Rossmann-fold’ structure, members of the SDR superfamily exhibit low sequence similarities, which constituted a bottleneck in terms of identification. Recent classification methods, relying on hidden-Markov models (HMMs, improved identification and enabled the construction of a nomenclature. However, functional annotations of plant SDRs remain scarce. Results Wide-scale analyses were performed on ten plant genomes. The combination of hidden Markov model (HMM based analyses and similarity searches led to the construction of an exhaustive inventory of plant SDR. With 68 to 315 members found in each analysed genome, the inventory confirmed the over-representation of SDRs in plants compared to animals, fungi and prokaryotes. The plant SDRs were first classified into three major types — ‘classical’, ‘extended’ and ‘divergent’ — but a minority (10% of the predicted SDRs could not be classified into these general types (‘unknown’ or ‘atypical’ types. In a second step, we could categorize the vast majority of land plant SDRs into a set of 49 families. Out of these 49 families, 35 appeared early during evolution since they are commonly found through all the Green Lineage. Yet, some SDR families — tropinone reductase-like proteins (SDR65C, ‘ABA2-like’-NAD dehydrogenase (SDR110C, ‘salutaridine/menthone-reductase-like’ proteins (SDR114C, ‘dihydroflavonol 4-reductase’-like proteins (SDR108E and ‘isoflavone-reductase-like’ (SDR460A proteins — have undergone significant functional diversification within vascular plants since they diverged from Bryophytes. Interestingly, these diversified families are either involved in the secondary metabolism routes (terpenoids, alkaloids, phenolics or participate in developmental processes (hormone biosynthesis or

  19. IMPLEMENTATION OF THE ABC COSTING IN A SERVICES PROVIDER COMPANY

    Directory of Open Access Journals (Sweden)

    Luiz Ricardo Aguena Jacintho Gil de Castro

    2012-12-01

    Full Text Available This paper describes the implementation of the Activity-Based Cost (ABC method in a company of taxes and accounting services and outlines the positive and negative aspects encountered during implementation. It should be taken into account that this work has been developed in the fiscal area of cost verification. Bibliographical references, internal company documents and interviews with industry officials and the administrator responsible for the company were used. In the evolving of operations, the costs of the fiscal area and their main activities have been described monthly and through this information, drivers have been developed and the ABC (Activity-Based Costing method has been adopted. With the implementation it became clear that the system provides better visualization for the decision making process, it also provided learning for the company, so that the method should be used for an undetermined period of time.

  20. Applying ABC analysis to the Navy's inventory management system

    OpenAIRE

    May, Benjamin

    2014-01-01

    Approved for public release; distribution is unlimited ABC Analysis is an inventory categorization technique used to classify and prioritize inventory items in an effort to better allocate business resources. A items are defined as the inventory items considered extremely important to the business, requiring strict oversight and control. B items are important to the business, but don’t require the tight controls and oversight required of the A items. C items are marginally important to the...

  1. Inventory management for the health sector: ABC analysis approach

    OpenAIRE

    Nabais, Joana Isabel Baptista

    2010-01-01

    A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics This project aims to analyse a hospital’s inventory management and make suggestions to improve its practices, with special attention on ABC analysis as an optimization tool for the inventory management, control and storage. Other cost reductions approaches are studied in order to contribute for the accurate management of clinical consumption...

  2. A STUDY ON THE ABC APPROACH IN COST MANAGEMENT PRACTICE

    OpenAIRE

    Violeta ISAI; Riana Iren RADU; Camelia IONESCU

    2014-01-01

    Activity-based costing (ABC), an alternative approach to traditional accounting, represents a costing methodology that identifies the main cost drivers, or the main activities in an organization, thus assigning the cost of the products and services according to the number of specific activities or transactions used in the development process of a product or service. This system is based on the measurement of all the activities performed within an organization and provides the companies with t...

  3. IMPLEMENTATION OF THE ABC COSTING IN A SERVICES PROVIDER COMPANY

    OpenAIRE

    Luiz Ricardo Aguena Jacintho Gil de Castro; Fernando de Almeida Santos

    2012-01-01

    This paper describes the implementation of the Activity-Based Cost (ABC) method in a company of taxes and accounting services and outlines the positive and negative aspects encountered during implementation. It should be taken into account that this work has been developed in the fiscal area of cost verification. Bibliographical references, internal company documents and interviews with industry officials and the administrator responsible for the company were used. In the evolving of opera...

  4. Validity of Autism Behavior Checklist (ABC: preliminary study

    Directory of Open Access Journals (Sweden)

    Marteleto Márcia Regina Fumagalli

    2005-01-01

    Full Text Available OBJECTIVE: To examine the concurrent and criterion validity of the Autism Behavior Checklist (ABC. METHODS: Three groups, comprising 38 mothers of children previously diagnosed with autism (DSM IV-TR, 2002, 43 mothers of children with language disorders other than autism, and 52 mothers of children who had no linguistic or behavioral complaints, were interviewed. In order to minimize the effect of maternal level of education, the questionnaire was completed by the researcher. To determine the concurrent validation, ANOVA and discriminant analysis were used. The ROC curve was used to establish the cutoff score of the sample and to examine the criterion validity. RESULTS: The mean total score was significantly higher in the group of mothers of autistic children than in the other groups. The ABC correctly identified 81.6% of the autistic children. The ROC curve cutoff score was 49, and the sensitivity was 92.1%, higher than the 57.89% found when a cutoff score of 68 was used. The specificity was 92.6%, similar to the 94.73% obtained with a cutoff score of 68. CONCLUSIONS: The ABC shows promise as an instrument for identifying children with autistic disorders, both in clinical and educational contexts, especially when a cutoff score of 49 is used.

  5. Second-order nonlinear optical metamaterials: ABC-type nanolaminates

    Energy Technology Data Exchange (ETDEWEB)

    Alloatti, L., E-mail: alloatti@mit.edu; Kieninger, C.; Lauermann, M.; Köhnle, K. [Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Froelich, A.; Wegener, M. [Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); Frenzel, T. [Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Freude, W. [Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Institute for Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Leuthold, J.; Koos, C., E-mail: christian.koos@kit.edu [Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Institute for Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany)

    2015-09-21

    We demonstrate a concept for second-order nonlinear metamaterials that can be obtained from non-metallic centrosymmetric constituents with inherently low optical absorption. The concept is based on iterative atomic-layer deposition of three different materials, A = Al{sub 2}O{sub 3}, B = TiO{sub 2}, and C = HfO{sub 2}. The centrosymmetry of the resulting ABC stack is broken since the ABC and the inverted CBA sequences are not equivalent—a necessary condition for non-zero second-order nonlinearity. In our experiments, we find that the bulk second-order nonlinear susceptibility depends on the density of interfaces, leading to a nonlinear susceptibility of 0.26 pm/V at a wavelength of 800 nm. ABC-type nanolaminates can be deposited on virtually any substrate and offer a promising route towards engineering of second-order optical nonlinearities at both infrared and visible wavelengths.

  6. The FTO (fat mass and obesity associated gene codes for a novel member of the non-heme dioxygenase superfamily

    Directory of Open Access Journals (Sweden)

    Andrade-Navarro Miguel A

    2007-11-01

    Full Text Available Abstract Background Genetic variants in the FTO (fat mass and obesity associated gene have been associated with an increased risk of obesity. However, the function of its protein product has not been experimentally studied and previously reported sequence similarity analyses suggested the absence of homologs in existing protein databases. Here, we present the first detailed computational analysis of the sequence and predicted structure of the protein encoded by FTO. Results We performed a sequence similarity search using the human FTO protein as query and then generated a profile using the multiple sequence alignment of the homologous sequences. Profile-to-sequence and profile-to-profile based comparisons identified remote homologs of the non-heme dioxygenase family. Conclusion Our analysis suggests that human FTO is a member of the non-heme dioxygenase (Fe(II- and 2-oxoglutarate-dependent dioxygenases superfamily. Amino acid conservation patterns support this hypothesis and indicate that both 2-oxoglutarate and iron should be important for FTO function. This computational prediction of the function of FTO should suggest further steps for its experimental characterization and help to formulate hypothesis about the mechanisms by which it relates to obesity in humans.

  7. Keanekaragaman Jenis Kupu-Kupu Superfamili Papilionoidae di Banyuwindu, Limbangan Kendal

    Directory of Open Access Journals (Sweden)

    Ratna Oqtafiana

    2013-03-01

    Full Text Available Kupu-kupu turut memberi andil dalam mempertahankan keseimbangan ekosistem dan memperkaya keanekaragaman hayati. Tujuan dari penelitian ini adalah untuk mengetahui keanekaragaman jenis kupu-kupu superfamili Papilionoidae di Dukuh Banyuwindu Desa Limbangan Kecamatan Limbangan Kabupaten Kendal khususnya di habitat hutan sekunder, permukiman, Daerah Aliran Sungai (DAS dan persawahan.Populasi dalam penelitian ini adalah semua jenis kupu-kupu superfamili Papilionoidae yang ada di Banyuwindu, Limbangan Kendal. Sampel penelitian ini adalah jenis kupu-kupu superfamili Papilionoidae yang teramati di Banyuwindu Limbangan Kendal khususnya di habitat hutan sekunder, permukiman, DAS dan persawahan. Penelitian dilakukan dengan metode Indeks Point Abudance (IPA atau metode titik hitung.Hasil penelitian ditemukan sebanyak 62 jenis kupu-kupu superfamili Papilionoidae yang terdiri dari 737 individu yang tergolong kedalam empat famili yaitu Papilionidae, Pieridae, Lycaenidae dan Nymphalidae. Hasil analisis indeks keanekaragaman jenis berkisar antara 2,74-3,09, indeks kemerataan jenis berkisar antara 0,86-0,87 dan memiliki dominansi berkisar antara 0,07-0,09. Indeks keanekaragaman jenis dan indeks kemerataan jenis tertinggi tercatat pada habitat permukiman yaitu 3,09 dan 0,87 dan memiliki dominansi 0,07 sedangkan terendah tercatat pada habitat persawahan yaitu 2,74 dan 0,86 dan memiliki dominansi 0,07.Butterfly also contribute in maintaining the ecological balance and enrich biodiversity. The aim of this research was to determine the diversity of butterflies’ superfamily Papilionoidae in Banyuwindu Hamlet Limbangan Sub district Kendal Regency, especially in the secondary forest habitat, settlements, river flow area (RFA and rice field. The population in this research were all kinds of butterflies’ Papilionoidae superfamily in Banyuwindu, Limbangan Kendal. The sample was kind of butterfly superfamily Papilionoidae that observed in Banyuwindu Limbangan Kendal

  8. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Dominik [Research Group Molecular Neuro-Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg (Germany); Daniel, Volker; Sadeghi, Mahmoud; Opelz, Gerhard [Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg (Germany); Naujokat, Cord, E-mail: cord.naujokat@med.uni-heidelberg.de [Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg (Germany)

    2010-04-16

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity of P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.

  9. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    International Nuclear Information System (INIS)

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity of P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.

  10. Structural basis for the hydrolysis of ATP by a nucleotide binding subunit of an amino acid ABC transporter from Thermus thermophilus.

    Science.gov (United States)

    Devi, Seenivasan Karthiga; Chichili, Vishnu Priyanka Reddy; Jeyakanthan, J; Velmurugan, D; Sivaraman, J

    2015-06-01

    ATP-binding cassette (ABC) transporters are a major family of small molecule transporter proteins, and their deregulation is associated with several diseases, including cancer. Here, we report the crystal structure of the nucleotide binding domain (NBD) of an amino acid ABC transporter from Thermus thermophilus (TTHA1159) in its apo form and as a complex with ADP along with functional studies. TTHA1159 is a putative arginine ABC transporter. The apo-TTHA1159 was crystallized in dimeric form, a hitherto unreported form of an apo NBD. Structural comparison of the apo and ADP-Mg(2+) complexes revealed that Phe14 of TTHA1159 undergoes a significant conformational change to accommodate ADP, and that the bound ADP interacts with the P-loop (Gly40-Thr45). Modeling of ATP-Mg(2+):TTHA1159 complex revealed that Gln86 and Glu164 are involved in water-mediated hydrogen bonding contacts and Asp163 in Mg(2+) ion-mediated hydrogen bonding contacts with the γ-phosphate of ATP, consistent with the findings of other ABC transporters. Mutational studies confirmed the necessity of each of these residues, and a comparison of the apo/ADP Mg(2+):TTHA1159 with its ATP-complex model suggests the likelihood of a key conformational change to the Gln86 side chain for ATP hydrolysis. PMID:25916755

  11. Bsep蛋白表达及调控与胆汁淤积的关系%Correlation between Bsep Protein Expression and Regulation and Cholestasis

    Institute of Scientific and Technical Information of China (English)

    王火平

    2012-01-01

    Bsep protein, also known bile salt export pump, belongs to superfamily of ATP binding cas-sette( ABC )transporters. The research on hepatocellular minute structure confirmed that it's mainly expressed in hepatocytic canalicular membrane, is an important transporter of the process of bile excretion. At present many studies indicate that there is close association between Bsep protein expression changes and functional deficiency and cholestasis. Studies of Bsep protein and other bile salt transporters comprehensively and deeply is helpful to reveal molecular mechanism of cholestasis,providing theoretical basis and new ideas for the prevention , diagnosis and treatment of cholestasis.%Bsep蛋白即胆盐输出泵,属于ATP结合盒转运体超家族.对肝细胞细微结构的研究证实其主要表达于肝细胞胆管膜侧,为胆汁生成过程中重要的转运载体.目前大量研究表明,其表达量变化及功能缺失与胆汁淤积发生之间存在密切关系.对Bsep蛋白及其他胆酸转运体的研究有助于全面深入地揭示胆汁淤积发生的部分分子机制,为胆汁淤积的预防、诊治提供理论依据和新的思路.

  12. Object Detection Based on Template Matching through Use of Best-So-Far ABC

    Directory of Open Access Journals (Sweden)

    Anan Banharnsakun

    2014-01-01

    Full Text Available Best-so-far ABC is a modified version of the artificial bee colony (ABC algorithm used for optimization tasks. This algorithm is one of the swarm intelligence (SI algorithms proposed in recent literature, in which the results demonstrated that the best-so-far ABC can produce higher quality solutions with faster convergence than either the ordinary ABC or the current state-of-the-art ABC-based algorithm. In this work, we aim to apply the best-so-far ABC-based approach for object detection based on template matching by using the difference between the RGB level histograms corresponding to the target object and the template object as the objective function. Results confirm that the proposed method was successful in both detecting objects and optimizing the time used to reach the solution.

  13. Object detection based on template matching through use of best-so-far ABC.

    Science.gov (United States)

    Banharnsakun, Anan; Tanathong, Supannee

    2014-01-01

    Best-so-far ABC is a modified version of the artificial bee colony (ABC) algorithm used for optimization tasks. This algorithm is one of the swarm intelligence (SI) algorithms proposed in recent literature, in which the results demonstrated that the best-so-far ABC can produce higher quality solutions with faster convergence than either the ordinary ABC or the current state-of-the-art ABC-based algorithm. In this work, we aim to apply the best-so-far ABC-based approach for object detection based on template matching by using the difference between the RGB level histograms corresponding to the target object and the template object as the objective function. Results confirm that the proposed method was successful in both detecting objects and optimizing the time used to reach the solution. PMID:24812556

  14. Object Detection Based on Template Matching through Use of Best-So-Far ABC

    Science.gov (United States)

    2014-01-01

    Best-so-far ABC is a modified version of the artificial bee colony (ABC) algorithm used for optimization tasks. This algorithm is one of the swarm intelligence (SI) algorithms proposed in recent literature, in which the results demonstrated that the best-so-far ABC can produce higher quality solutions with faster convergence than either the ordinary ABC or the current state-of-the-art ABC-based algorithm. In this work, we aim to apply the best-so-far ABC-based approach for object detection based on template matching by using the difference between the RGB level histograms corresponding to the target object and the template object as the objective function. Results confirm that the proposed method was successful in both detecting objects and optimizing the time used to reach the solution. PMID:24812556

  15. A novel inhibitor of α9α10 nicotinic acetylcholine receptors from Conus vexillum delineates a new conotoxin superfamily.

    Directory of Open Access Journals (Sweden)

    Sulan Luo

    Full Text Available Conotoxins (CTxs selectively target a range of ion channels and receptors, making them widely used tools for probing nervous system function. Conotoxins have been previously grouped into superfamilies according to signal sequence and into families based on their cysteine framework and biological target. Here we describe the cloning and characterization of a new conotoxin, from Conus vexillum, named αB-conotoxin VxXXIVA. The peptide does not belong to any previously described conotoxin superfamily and its arrangement of Cys residues is unique among conopeptides. Moreover, in contrast to previously characterized conopeptide toxins, which are expressed initially as prepropeptide precursors with a signal sequence, a ''pro'' region, and the toxin-encoding region, the precursor sequence of αB-VxXXIVA lacks a ''pro'' region. The predicted 40-residue mature peptide, which contains four Cys, was synthesized in each of the three possible disulfide arrangements. Investigation of the mechanism of action of αB-VxXXIVA revealed that the peptide is a nicotinic acetylcholine receptor (nAChR antagonist with greatest potency against the α9α10 subtype. (1H nuclear magnetic resonance (NMR spectra indicated that all three αB-VxXXIVA isomers were poorly structured in aqueous solution. This was consistent with circular dichroism (CD results which showed that the peptides were unstructured in buffer, but adopted partially helical conformations in aqueous trifluoroethanol (TFE solution. The α9α10 nAChR is an important target for the development of analgesics and cancer chemotherapeutics, and αB-VxXXIVA represents a novel ligand with which to probe the structure and function of this protein.

  16. Analysis of the Active-Site Mechanism of Tyrosyl-DNA Phosphodiesterase I: A Member of the Phospholipase D Superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Gajewski, Stefan; Comeaux, Evan Q.; Jafari, Nauzanene; Bharatham, Nagakumar; Bashford, Donald; White, Stephen W.; van Waardenburg, Robert C.A.M. (UAB); (SJCH)

    2012-03-15

    Tyrosyl-DNA phosphodiesterase I (Tdp1) is a member of the phospholipase D superfamily that hydrolyzes 3'-phospho-DNA adducts via two conserved catalytic histidines - one acting as the lead nucleophile and the second acting as a general acid/base. Substitution of the second histidine specifically to arginine contributes to the neurodegenerative disease spinocerebellar ataxia with axonal neuropathy (SCAN1). We investigated the catalytic role of this histidine in the yeast protein (His432) using a combination of X-ray crystallography, biochemistry, yeast genetics, and theoretical chemistry. The structures of wild-type Tdp1 and His432Arg both show a phosphorylated form of the nucleophilic histidine that is not observed in the structure of His432Asn. The phosphohistidine is stabilized in the His432Arg structure by the guanidinium group that also restricts the access of nucleophilic water molecule to the Tdp1-DNA intermediate. Biochemical analyses confirm that His432Arg forms an observable and unique Tdp1-DNA adduct during catalysis. Substitution of His432 by Lys does not affect catalytic activity or yeast phenotype, but substitutions with Asn, Gln, Leu, Ala, Ser, and Thr all result in severely compromised enzymes and DNA topoisomerase I-camptothecin dependent lethality. Surprisingly, His432Asn did not show a stable covalent Tdp1-DNA intermediate that suggests another catalytic defect. Theoretical calculations revealed that the defect resides in the nucleophilic histidine and that the pK{sub a} of this histidine is crucially dependent on the second histidine and on the incoming phosphate of the substrate. This represents a unique example of substrate-activated catalysis that applies to the entire phospholipase D superfamily.

  17. A Common Weight Linear Optimization Approach for Multicriteria ABC Inventory Classification

    OpenAIRE

    S. M. Hatefi; Torabi, S. A.

    2015-01-01

    Organizations typically employ the ABC inventory classification technique to have an efficient control on a huge amount of inventory items. The ABC inventory classification problem is classification of a large amount of items into three groups: A, very important; B, moderately important; and C, relatively unimportant. The traditional ABC classification only accounts for one criterion, namely, the annual dollar usage of the items. But, there are other important criteria in real world which str...

  18. Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury☆

    OpenAIRE

    Zhang, Chun; He, Xijing; Li, Haopeng; Wang, Guoyu

    2013-01-01

    As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was...

  19. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway

    OpenAIRE

    Lawn, Richard M.; Wade, David P.; Garvin, Michael R.; Wang, Xingbo; Schwartz, Karen; Porter, J. Gordon; Seilhamer, Jeffrey J.; Ashley M Vaughan; Oram, John F.

    1999-01-01

    The ABC1 transporter was identified as the defect in Tangier disease by a combined strategy of gene expression microarray analysis, genetic mapping, and biochemical studies. Patients with Tangier disease have a defect in cellular cholesterol removal, which results in near zero plasma levels of HDL and in massive tissue deposition of cholesteryl esters. Blocking the expression or activity of ABC1 reduces apolipoprotein-mediated lipid efflux from cultured cells, and increasing expression of ABC...

  20. Creating an iPhone application for collecting continuous ABC data.

    Science.gov (United States)

    Whiting, Seth W; Dixon, Mark R

    2012-01-01

    This paper provides an overview and task analysis for creating a continuous ABC data-collection application using Xcode on a Mac computer. Behavior analysts can program an ABC data collection system, complete with a customized list of target clients, antecedents, behaviors, and consequences to be recorded, and have the data automatically sent to an e-mail account after observations have concluded. Further suggestions are provided to customize the ABC data- collection system for individual preferences and clinical needs.

  1. Mechanistic Diversity in the RuBisCO Superfamily: The Enolase in the Methionine

    Energy Technology Data Exchange (ETDEWEB)

    Imker,H.; Fedorov, A.; Fedorov, E.; Almo, S.; Gerlt, J.

    2007-01-01

    D-Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the most abundant enzyme, is the paradigm member of the recently recognized mechanistically diverse RuBisCO superfamily. The RuBisCO reaction is initiated by abstraction of the proton from C3 of the D-ribulose 1,5-bisphosphate substrate by a carbamate oxygen of carboxylated Lys 201 (spinach enzyme). Heterofunctional homologues of RuBisCO found in species of Bacilli catalyze the tautomerization ('enolization') of 2,3-diketo-5-methylthiopentane 1-phosphate (DK-MTP 1-P) in the methionine salvage pathway in which 5-methylthio-D-ribose (MTR) derived from 5'-methylthioadenosine is converted to methionine [Ashida, H., Saito, Y., Kojima, C., Kobayashi, K., Ogasawara, N., and Yokota, A. (2003) A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO, Science 302, 286-290]. The reaction catalyzed by this 'enolase' is accomplished by abstraction of a proton from C1 of the DK-MTP 1-P substrate to form the tautomerized product, a conjugated enol. Because the RuBisCO- and 'enolase'-catalyzed reactions differ in the regiochemistry of proton abstraction but are expected to share stabilization of an enolate anion intermediate by coordination to an active site Mg{sup 2+}, we sought to establish structure-function relationships for the 'enolase' reaction so that the structural basis for the functional diversity could be established. We determined the stereochemical course of the reaction catalyzed by the 'enolases' from Bacillus subtilis and Geobacillus kaustophilus. Using stereospecifically deuterated samples of an alternate substrate derived from D-ribose (5-OH group instead of the 5-methylthio group in MTR) as well as of the natural DK-MTP 1-P substrate, we determined that the 'enolase'-catalyzed reaction involves abstraction of the 1-proS proton. We also determined the structure of the activated 'enolase' from G

  2. Developing a utility index for the Aberrant Behavior Checklist (ABC-C) for fragile X syndrome

    OpenAIRE

    Kerr, Cicely; Breheny, Katie; Lloyd, Andrew; Brazier, John; Bailey, Donald B.; Berry-Kravis, Elizabeth; Cohen, Jonathan; Petrillo, Jennifer

    2014-01-01

    Purpose This study aimed to develop a utility index (the ABC-UI) from the Aberrant Behavior Checklist-Community (ABC-C), for use in quantifying the benefit of emerging treatments for fragile X syndrome (FXS). Methods The ABC-C is a proxy-completed assessment of behaviour and is a widely used measure in FXS. A subset of ABC-C items across seven dimensions was identified to include in health state descriptions. This item reduction process was based on item performance, factor analysis and Rasch...

  3. Functional reconstitution and channel activity measurements of purified wildtype and mutant CFTR protein.

    Science.gov (United States)

    Eckford, Paul D W; Li, Canhui; Bear, Christine E

    2015-03-09

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a unique channel-forming member of the ATP Binding Cassette (ABC) superfamily of transporters. The phosphorylation and nucleotide dependent chloride channel activity of CFTR has been frequently studied in whole cell systems and as single channels in excised membrane patches. Many Cystic Fibrosis-causing mutations have been shown to alter this activity. While a small number of purification protocols have been published, a fast reconstitution method that retains channel activity and a suitable method for studying population channel activity in a purified system have been lacking. Here rapid methods are described for purification and functional reconstitution of the full-length CFTR protein into proteoliposomes of defined lipid composition that retains activity as a regulated halide channel. This reconstitution method together with a novel flux-based assay of channel activity is a suitable system for studying the population channel properties of wild type CFTR and the disease-causing mutants F508del- and G551D-CFTR. Specifically, the method has utility in studying the direct effects of phosphorylation, nucleotides and small molecules such as potentiators and inhibitors on CFTR channel activity. The methods are also amenable to the study of other membrane channels/transporters for anionic substrates.

  4. Chromokinesin: Kinesin superfamily regulating cell division through chromosome and spindle.

    Science.gov (United States)

    Zhong, Ai; Tan, Fu-Qing; Yang, Wan-Xi

    2016-09-01

    Material transportation is essential for appropriate cellular morphology and functions, especially during cell division. As a motor protein moving along microtubules, kinesin has several intracellular functions. Many kinesins play important roles in chromosome condensation and separation and spindle organization during the cell cycle. Some of them even can directly bind to chromosomes, as a result, these proteins are called chromokinesins. Kinesin-4 and kinesin-10 family are two major families of chromokinesin and many members can regulate some processes, both in mitosis and meiosis. Their functions have been widely studied. Here, we summarize current knowledge about known chromokinesins and introduce their intracellular features in accordance with different families. Furthermore, we have also introduced some new-found but unconfirmed kinesins which may have a relationship with chromosomes or the cell cycle. PMID:27196062

  5. A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily

    NARCIS (Netherlands)

    van Bloois, Edwin; Pazmino, Daniel E. Torres; Winter, Remko T.; Fraaije, Marco W.

    2010-01-01

    DyP-type peroxidases comprise a novel superfamily of heme-containing peroxidases which is unrelated to the superfamilies of known peroxidases and of which only a few members have been characterized in some detail. Here, we report the identification and characterization of a DyP-type peroxidase (TfuD

  6. Type II restriction endonuclease R.Eco29kI is a member of the GIY-YIG nuclease superfamily

    Directory of Open Access Journals (Sweden)

    Feder Marcin

    2007-07-01

    Full Text Available Abstract Background The majority of experimentally determined crystal structures of Type II restriction endonucleases (REases exhibit a common PD-(D/EXK fold. Crystal structures have been also determined for single representatives of two other folds: PLD (R.BfiI and half-pipe (R.PabI, and bioinformatics analyses supported by mutagenesis suggested that some REases belong to the HNH fold. Our previous bioinformatic analysis suggested that REase R.Eco29kI shares sequence similarities with one more unrelated nuclease superfamily, GIY-YIG, however so far no experimental data were available to support this prediction. The determination of a crystal structure of the GIY-YIG domain of homing endonuclease I-TevI provided a template for modeling of R.Eco29kI and prompted us to validate the model experimentally. Results Using protein fold-recognition methods we generated a new alignment between R.Eco29kI and I-TevI, which suggested a reassignment of one of the putative catalytic residues. A theoretical model of R.Eco29kI was constructed to illustrate its predicted three-dimensional fold and organization of the active site, comprising amino acid residues Y49, Y76, R104, H108, E142, and N154. A series of mutants was constructed to generate amino acid substitutions of selected residues (Y49A, R104A, H108F, E142A and N154L and the mutant proteins were examined for their ability to bind the DNA containing the Eco29kI site 5'-CCGCGG-3' and to catalyze the cleavage reaction. Experimental data reveal that residues Y49, R104, E142, H108, and N154 are important for the nuclease activity of R.Eco29kI, while H108 and N154 are also important for specific DNA binding by this enzyme. Conclusion Substitutions of residues Y49, R104, H108, E142 and N154 predicted by the model to be a part of the active site lead to mutant proteins with strong defects in the REase activity. These results are in very good agreement with the structural model presented in this work and with our

  7. Biochemistry and Crystal Structure of Ectoine Synthase: A Metal-Containing Member of the Cupin Superfamily.

    Directory of Open Access Journals (Sweden)

    Nils Widderich

    Full Text Available Ectoine is a compatible solute and chemical chaperone widely used by members of the Bacteria and a few Archaea to fend-off the detrimental effects of high external osmolarity on cellular physiology and growth. Ectoine synthase (EctC catalyzes the last step in ectoine production and mediates the ring closure of the substrate N-gamma-acetyl-L-2,4-diaminobutyric acid through a water elimination reaction. However, the crystal structure of ectoine synthase is not known and a clear understanding of how its fold contributes to enzyme activity is thus lacking. Using the ectoine synthase from the cold-adapted marine bacterium Sphingopyxis alaskensis (Sa, we report here both a detailed biochemical characterization of the EctC enzyme and the high-resolution crystal structure of its apo-form. Structural analysis classified the (SaEctC protein as a member of the cupin superfamily. EctC forms a dimer with a head-to-tail arrangement, both in solution and in the crystal structure. The interface of the dimer assembly is shaped through backbone-contacts and weak hydrophobic interactions mediated by two beta-sheets within each monomer. We show for the first time that ectoine synthase harbors a catalytically important metal co-factor; metal depletion and reconstitution experiments suggest that EctC is probably an iron-dependent enzyme. We found that EctC not only effectively converts its natural substrate N-gamma-acetyl-L-2,4-diaminobutyric acid into ectoine through a cyclocondensation reaction, but that it can also use the isomer N-alpha-acetyl-L-2,4-diaminobutyric acid as its substrate, albeit with substantially reduced catalytic efficiency. Structure-guided site-directed mutagenesis experiments targeting amino acid residues that are evolutionarily highly conserved among the extended EctC protein family, including those forming the presumptive iron-binding site, were conducted to functionally analyze the properties of the resulting EctC variants. An assessment of

  8. 基于 ABC-LS的传感器节点定位算法%SENSOR NODE LOCALISATION ALGORITHM BASED ON ABC-LS

    Institute of Scientific and Technical Information of China (English)

    程丽玲

    2015-01-01

    为了减少无线传感器网络节点的定位误差,提出一种人工蜂群算法(ABC)修正最小二乘(LS)定位误差的传感器节点定位算法( ABC-LS). 首先估计未知传感器节点与信标节点间距离,然后采用LS算法初步确定未知传感器节点位置,最后采用ABC算法对LS算法的节点定位误差进行修正,并采用仿真实验测试ABC-LS与其他节点定位算法的优劣. 结果表明,ABC-LS提高了无线传感器节点的定位精度.%In order to reduce the localisation error of wireless sensor network node, we propose a sensor node localisation algorithm ( ABC-LS), in which the artificial bee colony (ABC) algorithm is used to correct least squares (LS) algorithm.First, the distance between unknown sensor node and anchor node is estimated;then the location of unknown sensor node is initially determined by LS algorithm;finally, ABC algorithm is used to correct the node localisation error of LS algorithm.The pros and cons of ABC-LS algorithm and other node localisation algorithms are tested by simulation experiment, the experimental results show that ABC-LS improves the localisation accuracy of wireless sensor node.

  9. Targeting of the tumor necrosis factor receptor superfamily for cancer immunotherapy

    NARCIS (Netherlands)

    Bremer, Edwin

    2013-01-01

    The tumor necrosis factor (TNF) ligand and cognate TNF receptor superfamilies constitute an important regulatory axis that is pivotal for immune homeostasis and correct execution of immune responses. TNF ligands and receptors are involved in diverse biological processes ranging from the selective in

  10. Role of conserved glycine in zinc-dependent medium chain dehydrogenase/reductase superfamily

    DEFF Research Database (Denmark)

    Tiwari, Manish Kumar; Singh, Raushan Kumar; Singh, Ranjitha;

    2012-01-01

    yet have been adequately investigated. Using a density functional theory-based screening strategy, we have identified a strictly conserved glycine residue (Gly) in the zinc-dependent MDR superfamily. To elucidate the role of this conserved Gly in MDR, we carried out a comprehensive structural...

  11. Fetal antigen 1 (FA1), a circulating member of the epidermal growth factor (EGF) superfamily

    DEFF Research Database (Denmark)

    Jensen, Charlotte Harken; Krogh, T N; Støving, René Klinkby;

    1997-01-01

    We describe an ELISA technique for quantification of fetal antigen 1 (FA1), a glycoprotein belonging to the EGF-superfamily. The ELISA is based on immunospecifically purified polyclonal antibodies and has a dynamic range of 0.7-5.3 ng/ml, intra- and inter-assay C.V.s of less than 3.2% and an aver...

  12. Distribution and Genetic Diversity of the ABC Transporter Lipoproteins PiuA and PiaA within Streptococcus pneumoniae and Related Streptococci

    OpenAIRE

    Whalan, Rachael H.; Funnell, Simon G.P.; Bowler, Lucas D.; Hudson, Michael J.; Robinson, Andrew; Dowson, Christopher G.

    2006-01-01

    Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide. The existence of approximately 90 antigenically distinct capsular serotypes has greatly complicated the development of an effective pneumococcal vaccine. Virulence-associated proteins common and conserved among all capsular types now represent the best strategy to combat pneumococcal infections. PiuA and PiaA are the lipoprotein components of two pneumococcal iron ABC transporters and are required for full virulen...

  13. The use of active breathing control (ABC) to reduce margin for breathing motion

    International Nuclear Information System (INIS)

    Purpose: For tumors in the thorax and abdomen, reducing the treatment margin for organ motion due to breathing reduces the volume of normal tissues that will be irradiated. A higher dose can be delivered to the target, provided that the risk of marginal misses is not increased. To ensure safe margin reduction, we investigated the feasibility of using active breathing control (ABC) to temporarily immobilize the patient's breathing. Treatment planning and delivery can then be performed at identical ABC conditions with minimal margin for breathing motion. Methods and Materials: An ABC apparatus is constructed consisting of 2 pairs of flow monitor and scissor valve, 1 each to control the inspiration and expiration paths to the patient. The patient breathes through a mouth-piece connected to the ABC apparatus. The respiratory signal is processed continuously, using a personal computer that displays the changing lung volume in real-time. After the patient's breathing pattern becomes stable, the operator activates ABC at a preselected phase in the breathing cycle. Both valves are then closed to immobilize breathing motion. Breathing motion of 12 patients were held with ABC to examine their acceptance of the procedure. The feasibility of applying ABC for treatment was tested in 5 patients by acquiring volumetric scans with a spiral computed tomography (CT) scanner during active breath-hold. Two patients had Hodgkin's disease, 2 had metastatic liver cancer, and 1 had lung cancer. Two intrafraction ABC scans were acquired at the same respiratory phase near the end of normal or deep inspiration. An additional ABC scan near the end of normal expiration was acquired for 2 patients. The ABC scans were also repeated 1 week later for a Hodgkin's patient. In 1 liver patient, ABC scans were acquired at 7 different phases of the breathing cycle to facilitate examination of the liver motion associated with ventilation. Contours of the lungs and livers were outlined when applicable

  14. MAP激酶家族在淀粉样β蛋白片段25~35引起的大鼠海马炎症反应及细胞凋亡中的作用%MAP kinase superfamily in amyloid β-protein fragment 25-35-induced inflammation andapoptosis in rat hippocampus in vivo

    Institute of Scientific and Technical Information of China (English)

    金英; 范莹; 闫恩志; 宗志红; 包翠芬; 李智

    2005-01-01

    AIM To explore the mechanism of amyloid β-protein fragment 25-35(Aβ25-35)-induced inflammation and apoptosis in rat hippocampus in vivo by studying mitogen-activated protein kinase (MAPK) signaling pathway and the protective effect of anti-inflammatory drug ibuprofen. METHODS Rats were given ibuprofen (7.5 mg·kg-1 daily, ig) for 3 weeks prior to and 1 week after icv single dose of Aβ25-35 (10 μL, 1 mmol·L-1). Seven days after injection, Nissl staining and immunocytochemical technique were employed to determine the morphology of pyramidal neurons and astrocyte infiltration in hippocampal CA1. The expressions of IL-1β, extracellular signal-regulated kinase (ERK), p38 MAPK, PKC, and caspase-3 were determined by Western blot. Reverse transcription-PCR analysis showed changes in IL-1β mRNA level. RESULTS Intracerebroventricular injection of Aβ25-35 elicited astrocyte activation and infiltration and caused a strong inflammatory reaction characterized by increased IL-1β production and elevated IL-1β mRNA level. The inflammatory reaction was accompanied by the loss of pyramidal neurons in hippocampal CA1. The phosphorylation of p38 MAPK was significantly increased, on the other hand, the phosphorylation of ERK was significantly reduced and these were coupled with the increase of caspase-3 expression in hippocampal CA1. Ibuprofen (7.5 mg·kg-1 daily, 4 weeks) significantly reduced Aβ-induced IL-1β expression, caspase-3 expression and p38 MAPK activation. The loss of pyramidal neurons was also significantly attenuated by treatment with ibuprofen. CONCLUSION The activation of p38 MAPK and the down-regulation of ERK play a pivotal role in the inflam-matory response and apoptosis evoked by Aβ25-35 in vivo, which can be prevented by ibuprofen.%目的研究淀粉样β蛋白片段25~35(Aβ25~35)引起的大鼠海马炎症反应、细胞凋亡机制及抗炎药物布洛芬的保护作用.方法大鼠灌胃给予布洛芬7.5 mg·kg-1,连续应用3

  15. Design of the storage location based on the ABC analyses

    Science.gov (United States)

    Jemelka, Milan; Chramcov, Bronislav; Kříž, Pavel

    2016-06-01

    The paper focuses on process efficiency and saving storage costs. Maintaining inventory through putaway strategy takes personnel time and costs money. The aim is to control inventory in the best way. The ABC classification based on Villefredo Pareto theory is used for a design of warehouse layout. New design of storage location reduces the distance of fork-lifters, total costs and it increases inventory process efficiency. The suggested solutions and evaluation of achieved results are described in detail. Proposed solutions were realized in real warehouse operation.

  16. Accelerator-based conversion (ABC) of reactor and weapons plutonium

    International Nuclear Information System (INIS)

    An accelerator-based conversion (ABC) system is presented that is capable of rapidly burning plutonium in a low-inventory sub-critical system. The system also returns fission power to the grid and transmutes troublesome long-lived fission products to short lived or stable products. Higher actinides are totally fissioned. The system is suited not only to controlled, rapid burning of excess weapons plutonium, but to the long range application of eliminating or drastically reducing the world total inventory of plutonium. Deployment of the system will require the successful resolution of a broad range of technical issues introduced in the paper

  17. Redundancy Level Optimization in Modular Software System Models using ABC

    OpenAIRE

    Tarun Kumar Sharma; Millie Pant

    2014-01-01

    The performance of optimization algorithms is problem dependent and as per no free lunch theorem, there exists no such algorithm which can be efficiently applied to every type of problem(s). However, we can modify the algorithm/ technique in a manner such that it is able to deal with a maximum type of problems. In this study we have modified the structure of basic Artificial Bee Colony (ABC), a recently proposed metaheuristic algorithm based on the concept of swarm intelligence to optimize t...

  18. Improved avidin-biotin-peroxidase complex (ABC) staining.

    Science.gov (United States)

    Cattoretti, G; Berti, E; Schiró, R; D'Amato, L; Valeggio, C; Rilke, F

    1988-02-01

    A considerable intensification of the avidin-biotin-peroxidase complex staining system (ABC) was obtained by sequentially overlaying the sections to be immunostained with an avidin-rich and a biotin-rich complex. Each sequential addition contributed to the deposition of horseradish peroxidase on the immunostained site and allowed the subsequent binding of a complementary complex. With this technique a higher dilution of the antisera could be used and minute amounts of antigen masked by the fixative could be demonstrated on paraffin sections.

  19. The Heterodimeric ABC Transporter EfrCD Mediates Multidrug Efflux in Enterococcus faecalis.

    Science.gov (United States)

    Hürlimann, Lea M; Corradi, Valentina; Hohl, Michael; Bloemberg, Guido V; Tieleman, D Peter; Seeger, Markus A

    2016-09-01

    Nosocomial infections with Enterococcus faecalis are an emerging health problem. However, drug efflux pumps contributing to intrinsic drug resistance are poorly studied in this Gram-positive pathogen. In this study, we functionally investigated seven heterodimeric ABC transporters of E. faecalis that are annotated as drug efflux pumps. Deletion of ef0789-ef0790 on the chromosome of E. faecalis resulted in increased susceptibility to daunorubicin, doxorubicin, ethidium, and Hoechst 33342, and the corresponding transporter was named EfrCD. Unexpectedly, the previously described heterodimeric multidrug ABC transporter EfrAB contributes marginally to drug efflux in the endogenous context of E. faecalis In contrast, heterologous expression in Lactococcus lactis revealed that EfrAB, EfrCD, and the product of ef2226-ef2227 (EfrEF) mediate the efflux of fluorescent substrates and confer resistance to multiple dyes and drugs, including fluoroquinolones. Four of seven transporters failed to exhibit drug efflux activity for the set of drugs and dyes tested, even upon overexpression in L. lactis Since all seven transporters were purified as heterodimers after overexpression in L. lactis, a lack of drug efflux activity is not attributed to poor expression or protein aggregation. Reconstitution of the purified multidrug transporters EfrAB, EfrCD, and EfrEF in proteoliposomes revealed functional coupling between ATP hydrolysis and drug binding. Our analysis creates an experimental basis for the accurate prediction of drug efflux transporters and indicates that many annotated multidrug efflux pumps might be incapable of drug transport and thus might fulfill other physiological functions in the cell. PMID:27381387

  20. Angiocentric glioma from a perspective of A-B-C classification of epilepsy associated tumors.

    Science.gov (United States)

    Adamek, D; Siwek, G P; Chrobak, A A; Herman-Sucharska, I; Kwiatkowski, S; Morga, R; Radwańska, E; Urbanowicz, B

    2016-01-01

    Angiocentric glioma (AG) is a newly-classified, very rare, WHO grade I central nervous system (CNS) lesion, occurring usually in children and young adults. Only 52 patients with AG have been reported so far, making it one of the rarest neuropathological entities. Hereby we present two new cases of AG in young subjects with detailed neuropathological investigations and a neuroradiological picture along with a brief summary of all already published literature reports of this tumor. Histopathological examination of the resected tissue from both cases revealed similar changes characteristic of AG. The tumors were composed of spindle-like, elongated cells, forming characteristic pseudorosettes around vessels and diffusively infiltrating surrounding tissue, trapping neurons between tumor cells. Noticeably, some neoplastic cells encrusting vessels extended far beyond the main tumor mass. Hypothetically, this may be responsible for the recurrence of the tumor even in the case of apparently total excision. In immunohistochemistry, AG cells were glial fibrillary acidic protein (GFAP) and vimentin positive, also exhibiting a strikingly significant epithelial membrane antigen (EMA) dot-like staining pattern. In one of the cases, electron microscopy revealed ependymal differentiation features such as microvilli and cilia. Taken together, all these data strongly confirm a dual astroglial-ependymal nature of the tumor. Follow up corroborates benign character of this neoplasm. Both AGs reported here were immunonegative for the product of the mutated IDH-1 gene what, according to our best knowledge, has never been reported so far. It may suggest that in their pathogenesis AGs differ from grade II astrocytomas, which in most cases harbor a mutation of IDH-1. Noteworthy, neuroimaging in our cases was relatively characteristic but not conclusive, therefore biopsy (at least) is mandatory. A newly proposed so called "A-B-C" classification of long-term epilepsy-associated tumors (LEATs

  1. Antitubercular Agent Delamanid and Metabolites as Substrates and Inhibitors of ABC and Solute Carrier Transporters.

    Science.gov (United States)

    Sasabe, Hiroyuki; Shimokawa, Yoshihiko; Shibata, Masakazu; Hashizume, Kenta; Hamasako, Yusuke; Ohzone, Yoshihiro; Kashiyama, Eiji; Umehara, Ken

    2016-06-01

    Delamanid (Deltyba, OPC-67683) is the first approved drug in a novel class of nitro-dihydro-imidazooxazoles developed for the treatment of multidrug-resistant tuberculosis. Patients with tuberculosis require treatment with multiple drugs, several of which have known drug-drug interactions. Transporters regulate drug absorption, distribution, and excretion; therefore, the inhibition of transport by one agent may alter the pharmacokinetics of another, leading to unexpected adverse events. Therefore, it is important to understand how delamanid affects transport activity. In the present study, the potencies of delamanid and its main metabolites as the substrates and inhibitors of various transporters were evaluated in vitro Delamanid was not transported by the efflux ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp; MDR1/ABCB1) and breast cancer resistance protein (BCRP/ABCG2), solute carrier (SLC) transporters, organic anion-transporting polypeptides, or organic cation transporter 1. Similarly, metabolite 1 (M1) was not a substrate for any of these transporters except P-gp. Delamanid showed no inhibitory effect on ABC transporters MDR1, BCRP, and bile salt export pump (BSEP; ABCB11), SLC transporters, or organic anion transporters. M1 and M2 inhibited P-gp- and BCRP-mediated transport but did so only at the 50% inhibitory concentrations (M1, 4.65 and 5.71 μmol/liter, respectively; M2, 7.80 and 6.02 μmol/liter, respectively), well above the corresponding maximum concentration in plasma values observed following the administration of multiple doses in clinical trials. M3 and M4 did not affect the activities of any of the transporters tested. These in vitro data suggest that delamanid is unlikely to have clinically relevant interactions with drugs for which absorption and disposition are mediated by this group of transporters. PMID:27021329

  2. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Svenningsen, Katrine; Knudsen, Lina Almind;

    2015-01-01

    transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1....../Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes...

  3. The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily.

    Science.gov (United States)

    Pereira-Leal, J B; Seabra, M C

    2000-08-25

    The Rab/Ypt/Sec4 family forms the largest branch of the Ras superfamily of GTPases, acting as essential regulators of vesicular transport pathways. We used the large amount of information in the databases to analyse the mammalian Rab family. We defined Rab-conserved sequences that we designate Rab family (RabF) motifs using the conserved PM and G motifs as "landmarks". The Rab-specific regions were used to identify new Rab proteins in the databases and suggest rules for nomenclature. Surprisingly, we find that RabF regions cluster in and around switch I and switch II regions, i.e. the regions that change conformation upon GDP or GTP binding. This finding suggests that specificity of Rab-effector interaction cannot be conferred solely through the switch regions as is usually inferred. Instead, we propose a model whereby an effector binds to RabF (switch) regions to discriminate between nucleotide-bound states and simultaneously to other regions that confer specificity to the interaction, possibly Rab subfamily (RabSF) specific regions that we also define here. We discuss structural and functional data that support this model and its general applicability to the Ras superfamily of proteins.

  4. Comparativa entre ABC y TDABC, aplicaci??n pr??ctica real = Comparison between ABC and TDABC, actual practical application

    OpenAIRE

    R??o Blanco, Nuria del

    2015-01-01

    Con este trabajo se pretende realizar un estudio comparativo de los sistemas de costeo ABC (Activity Based Costing, Costeo Basado en las Actividades) y TDABC (Time- Driven Activity Based Costing, Costeo basado en el tiempo invertido por actividad). En el trabajo se determinan las bases te??ricas de ambos m??todos, realizando una aplicaci??n pr??ctica real, lo que permite una comparativa entre ellos. Las bases te??ricas se fundamentan en la teor??a de los propulsores de estos m??todos. Por su ...

  5. Role of a major facilitator superfamily transporter in adaptation capacity of Penicillium funiculosum under extreme acidic stress.

    Science.gov (United States)

    Xu, Xiaoxue; Chen, Jinyin; Xu, Houjuan; Li, Duochuan

    2014-08-01

    Fungal species present in extreme low pH environments are expected to have adapted for tolerance to high H(+) concentrations. However, their adaptability mechanism is unclear. In this study, we isolated an acid-tolerant strain of Penicillium funiculosum, which can grow actively at pH 1.0 and thrived in pH 0.6. A major facilitator superfamily transporter (PfMFS) was isolated from an acid-sensitive random insertional mutant (M4) of the fungus. It encodes a putative protein of 551 residues and contains 14 transmembrane-spanning segments. A targeted mutant (M7) carrying an inactivated copy of PfMFS showed an obvious reduction of growth compared with the wild type (WT) and complementation of M7 with PfMFS restored the wild-type level of growth at pH 1.0. Further data showed that the wild-type showed higher intracellular pH than M7 in response to pH 1. Subcellular localization showed that PfMFS was a cell membrane protein. Homology modeling showed structural similarity with an MFS transporter EmrD from Escherichiacoli. These results demonstrate that the PfMFS transporter is involved in the acid resistance and intracellular pH homeostasis of P. funiculosum.

  6. Extracellular Ribonuclease from Bacillus licheniformis (Balifase), a New Member of the N1/T1 RNase Superfamily

    Science.gov (United States)

    Nadyrova, Alsu; Ulyanova, Vera; Ilinskaya, Olga

    2016-01-01

    The N1/T1 RNase superfamily comprises enzymes with well-established antitumor effects, such as ribotoxins secreted by fungi, primarily by Aspergillus and Penicillium species, and bacterial RNase secreted by B. pumilus (binase) and B. amyloliquefaciens (barnase). RNase is regarded as an alternative to classical chemotherapeutic agents due to its selective cytotoxicity towards tumor cells. New RNase with a high degree of structural similarity with binase (73%) and barnase (74%) was isolated and purified from Bacillus licheniformis (balifase, calculated molecular weight 12421.9 Da, pI 8.91). The protein sample with enzymatic activity of 1.5 × 106 units/A280 was obtained. The physicochemical properties of balifase are similar to those of barnase. However, in terms of its gene organization and promoter activity, balifase is closer to binase. The unique feature of balifase gene organization consists in the fact that genes of RNase and its inhibitor are located in one operon. Similarly to biosynthesis of binase, balifase synthesis is induced under phosphate starvation; however, in contrast to binase, balifase does not form dimers under natural conditions. We propose that the highest stability of balifase among analyzed RNase types allows the protein to retain its structure without oligomerization. PMID:27656652

  7. Extracellular Ribonuclease from Bacillus licheniformis (Balifase, a New Member of the N1/T1 RNase Superfamily

    Directory of Open Access Journals (Sweden)

    Yulia Sokurenko

    2016-01-01

    Full Text Available The N1/T1 RNase superfamily comprises enzymes with well-established antitumor effects, such as ribotoxins secreted by fungi, primarily by Aspergillus and Penicillium species, and bacterial RNase secreted by B. pumilus (binase and B. amyloliquefaciens (barnase. RNase is regarded as an alternative to classical chemotherapeutic agents due to its selective cytotoxicity towards tumor cells. New RNase with a high degree of structural similarity with binase (73% and barnase (74% was isolated and purified from Bacillus licheniformis (balifase, calculated molecular weight 12421.9 Da, pI 8.91. The protein sample with enzymatic activity of 1.5 × 106 units/A280 was obtained. The physicochemical properties of balifase are similar to those of barnase. However, in terms of its gene organization and promoter activity, balifase is closer to binase. The unique feature of balifase gene organization consists in the fact that genes of RNase and its inhibitor are located in one operon. Similarly to biosynthesis of binase, balifase synthesis is induced under phosphate starvation; however, in contrast to binase, balifase does not form dimers under natural conditions. We propose that the highest stability of balifase among analyzed RNase types allows the protein to retain its structure without oligomerization.

  8. Transposition of the Tourist-MITE mPing in yeast: an assay that retains key features of catalysis by the class 2 PIF/Harbinger superfamily

    Directory of Open Access Journals (Sweden)

    Hancock C Nathan

    2010-02-01

    Full Text Available Abstract Background PIF/Harbinger is the most recently discovered DNA transposon superfamily and is now known to populate genomes from fungi to plants to animals. Mobilization of superfamily members requires two separate element-encoded proteins (ORF1 and TPase. Members of this superfamily also mobilize Tourist-like miniature inverted repeat transposable elements (MITEs, which are the most abundant transposable elements associated with the genes of plants, especially the cereal grasses. The phylogenetic analysis of many plant genomes indicates that MITEs can amplify rapidly from one or a few elements to hundreds or thousands. The most active DNA transposon identified to date in plants or animals is mPing, a rice Tourist-like MITE that is a deletion derivative of the autonomous Ping element. Ping and the closely related Pong are the only known naturally active PIF/Harbinger elements. Some rice strains accumulate ~40 new mPing insertions per plant per generation. In this study we report the development of a yeast transposition assay as a first step in deciphering the mechanism underlying the amplification of Tourist-MITEs. Results The ORF1 and TPase proteins encoded by Ping and Pong have been shown to mobilize mPing in rice and in transgenic Arabidopsis. Initial tests of the native proteins in a yeast assay resulted in very low transposition. Significantly higher activities were obtained by mutation of a putative nuclear export signal (NES in the TPase that increased the amount of TPase in the nucleus. When introduced into Arabidopsis, the NES mutant protein also catalyzed higher frequencies of mPing excision from the gfp reporter gene. Our yeast assay retains key features of excision and insertion of mPing including precise excision, extended insertion sequence preference, and a requirement for two proteins that can come from either Ping or Pong or both elements. Conclusions The yeast transposition assay provides a robust platform for analysis of

  9. Chondroitinase ABC treatment of injured spinal cord in rats Evaluation of long-term outcomes

    Institute of Scientific and Technical Information of China (English)

    Haifeng Yuan; Qingquan Kong; Yongli Ding; Yueming Song; Lihong Hu; Zili Wang; Hao Liu; Limin Liu; Quan Gong; Tao Li

    2010-01-01

    Chondroitin sulfate proteoglycans(CSPGs)which are produced by mature oligodendrocytes and reactive astrocytes can be upregulated after spinal cord injury and contribute to regenerative failure.Chondroitinase ABC(ChABC)digests glycosaminoglycan chains on CSPGs and can thereby overcome CSPG-mediated inhibition.However,many current studies have used an incomplete spinal cord injury model,and examined results after 8 12 weeks of ChABC treatment.In this study,a complete rat spinal cord transection injury model was used to study the long-term effects of ChABC treatment by subarachnoid catheter.Pathology of spinal cord regeneration was compared with control 24 weeks following ChABC treatment using immunohistochemistry and axon tracing techniques.At 24 weeks after injury,neurofilament 200 expression was significantly greater in the ChABC treatment group compared with the transection group.In the ChABC treatment group,axonal growth was demonstrated by a large number of biotinylated dextran amine positive axons caudal to,or past,the epicenter of injury.Biotinylated dextran amine-labeled fibers were found in the proximal end of the spinal cord in the transection alone group.These results confirm that ChABC can promote axon growth,neural regeneration,and repair after spinal cord injury in rats long after the initial injury.

  10. Conformational dynamics in substrate-binding domains influences transport in the ABC importer GlnPQ

    NARCIS (Netherlands)

    Gouridis, Giorgos; Schuurman-Wolters, Geesina; Ploetz, Evelyn; Husada, Florence; Vietrov, Ruslan; de Boer, Marijn; Cordes, Thorben; Poolman, Bert

    2015-01-01

    The conformational dynamics in ABC transporters is largely elusive. The ABC importer GlnPQ from Lactococcus lactis has different covalently linked substrate-binding domains (SBDs), thus making it an excellent model system to elucidate the dynamics and role of the SBDs in transport. We demonstrate by

  11. The ABCs of Activity-Based Costing: A Cost Containment and Reallocation Tool.

    Science.gov (United States)

    Turk, Frederick J.

    1992-01-01

    This article describes activity-based costing (ABC) and how this tool may help management understand the costs of major activities and identify possible alternatives. Also discussed are the traditional costing systems used by higher education and ways of applying ABC to higher education. (GLR)

  12. The Role of Activity Based Costing (ABC) in Educational Support Services: A White Paper.

    Science.gov (United States)

    Edds, Daniel B.

    Many front-line managers who are assuming more financial responsibility for their organizations find traditional cost accounting inadequate for their needs and are turning to Activity Based Costing (ABC). ABC is not a financial reporting system to serve the needs of regulatory agencies, but a tool that tracks costs from the general ledger…

  13. Parents' Perspectives on Braille Literacy: Results from the ABC Braille Study

    Science.gov (United States)

    Kamei-Hannan, Cheryl; Sacks, Sharon Zell

    2012-01-01

    Introduction: Parents who were the primary caretakers of children in the Alphabetic and Contracted Braille Study (ABC Braille Study) revealed their perspectives about braille literacy. Methods: A 30-item questionnaire was constructed by the ABC Braille research team, and researchers conducted telephone interviews with 31 parents who were the…

  14. Abrasive wear behavior of heat-treated ABC-silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da; Ritchie, Robert O.; De Jonghe, Lutgard C.

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  15. Creating an iPhone Application for Collecting Continuous ABC Data

    Science.gov (United States)

    Whiting, Seth W.; Dixon, Mark R.

    2012-01-01

    This paper provides an overview and task analysis for creating a continuous ABC data- collection application using Xcode on a Mac computer. Behavior analysts can program an ABC data collection system, complete with a customized list of target clients, antecedents, behaviors, and consequences to be recorded, and have the data automatically sent to…

  16. A STUDY ON THE ABC APPROACH IN COST MANAGEMENT PRACTICE

    Directory of Open Access Journals (Sweden)

    Violeta ISAI

    2014-06-01

    Full Text Available Activity-based costing (ABC, an alternative approach to traditional accounting, represents a costing methodology that identifies the main cost drivers, or the main activities in an organization, thus assigning the cost of the products and services according to the number of specific activities or transactions used in the development process of a product or service. This system is based on the measurement of all the activities performed within an organization and provides the companies with the opportunity to efficiently improve their activity or to reduce the costs with no quality loss for their customers. The primary aim of ABC method was to implement a logical system of additional allocation with a better information and improvement in the field of managerial policies, a real cost structure on the basis of which strategic managerial decisions could be further adopted. Under the terms of a continuous growth of fixed cost weighting, we will become more interested in the calculation system of process costing. This costs calculation method can bring on important benefits, especially for service provider companies, considering the high share of common- indirect costs (overhead, in their unit.

  17. Comparison of two 3ABC enzyme-linked immunosorbent assays for diagnosis of multiple-serotype foot-and-mouth disease in a cattle population in an area of endemicity

    DEFF Research Database (Denmark)

    Bronsvoort, B.M.D.; Sørensen, K.J.; Anderson, J.;

    2004-01-01

    standard." Diagnostic sensitivity and specificity were examined over a range of test cutoffs by using receiver operating characteristic curves, which allowed comparison of the overall performance of each test. The results indicated that the CHEKIT ELISA kit was 23% sensitive and 98% specific and the Danish....... The nonstructural polyprotein 3ABC has recently been proposed as such an antigen, and a number of diagnostic tests are being developed. This paper evaluates the performance of two FMDV tests for antibodies to nonstructural proteins in an unvaccinated cattle population from a region of Cameroon with endemic multiple......-serotype FMD. The CHEKIT-FMD-3ABC bo-ov (CHEKIT) enzyme-linked immunosorbent assay (ELISA) (Bommeli Diagnostics/Intervet) is a commercially available test that was compared with a competitive 3ABC ELISA (C-ELISA) developed in Denmark. The tests were compared with the virus neutralization test as the "gold...

  18. Substrate overlap and functional competition between human nucleotide excision repair and Escherichia coli photolyase and (A)BC excision nuclease

    International Nuclear Information System (INIS)

    Human cell free extract prepared by the method of Manley et al. carries out repair synthesis on UV-irradiated DNA. Removal of pyrimidine dimers by photoreactivation with DNA photolyase reduces repair synthesis by about 50%. With excess enzyme in the reaction mixture photolyase reduced the repair signal by the same amount even in the absence of photoreactivating light, presumably by binding to pyrimidine dimers and interfering with the binding of human damage recognition protein. Similarly, the UvrB subunit of Escherichia coli (A)BC excinuclease when loaded onto UV-irradiated or psoralen-adducted DNA inhibited repair synthesis by cell-free extract by 75-80%. The opposite was true also as HeLa cell free extract specifically inhibited the photorepair of a thymine dimer by DNA photolyase and its removal by (A)BC excinuclease. Cell-free extracts from xeroderma pigmentosum (XP) complementation groups A and C were equally effective in blocking the E. coli repair proteins, while extracts from complementation groups D and E were ineffective in blocking the E. coli enzyme. These results suggest that XP-D and XP-E cells are defective in the damage recognition subunits(s) of human excision nuclease

  19. Three novel C1q domain containing proteins from the disk abalone Haliotis discus discus: Genomic organization and analysis of the transcriptional changes in response to bacterial pathogens.

    Science.gov (United States)

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Jayasinghe, J D H E; Godahewa, G I; Park, Hae-Chul; Lee, Jehee

    2016-09-01

    The globular C1q (gC1q) domain containing proteins, commonly referred as C1q domain containing (C1qDC) proteins, are an essential family of proteins involved in various innate immune responses. In this study, three novel C1qDC proteins were identified from the disk abalone (Haliotis discus discus) transcriptome database and designated as AbC1qDC1, AbC1qDC2, and AbC1qDC3. The cDNA sequences of AbC1qDC1, AbC1qDC2, and AbC1qDC3 consisted of 807, 1305, and 660 bp open reading frames (ORFs) encoding 269, 435, and 220 amino acids (aa), respectively. Putative signal peptides and the N-terminal gC1q domain were identified in all three AbC1qDC proteins. An additional predicted motif region, known as the coiled coil region (CCR), was identified next to the signal sequence of AbC1qDC2. The genomic organization of the AbC1qDCs was determined using a bacterial artificial chromosome (BAC) library. It was found that the CDS of AbC1qDC1 was distributed among three exons, while the CDSs of AbC1qDC2 and AbC1qDC3 were distributed between two exons. Sequence analysis indicated that the AbC1qDC proteins shared muscle, and mantle tissues compare to the other tissues analyzed, using reverse transcription, followed by quantitative real-time PCR (qPCR) using SYBR Green, whereas AbC1qDC3 was predominantly expressed in gill tissues, followed by muscles and the hepatopancreas. The temporal expression of AbC1qDC transcripts in gills after bacterial (Vibrio parahaemolyticus and Listeria monocytogenes) and lipopolysaccharide stimulation indicated that AbC1qDCs can be strongly induced by both Gram-negative and Gram-positive bacterial species with different response profiles. The results of this study suggest that AbC1qDCs are involved in immune responses against invading bacterial pathogens. PMID:27417231

  20. The use of active breathing control (ABC) to minimize breathing motion during radiation therapy

    International Nuclear Information System (INIS)

    Purpose. Reducing the treatment margin for organ motion during breathing reduces the volume of irradiated normal tissues. This may allow a higher dose of radiation to be delivered to the target volume for thoracic and abdominal tumors. However, such margin reduction must not increase the risk of marginal misses which may lead to local failure. In this study, we investigate the feasibility of using Active Breathing Control (ABC) to temporarily immobilize the patient's breathing. Planning CT scans and radiation delivery can then be performed at identical ABC conditions such that a minimal margin for breathing motion can be prescribed safely. Methods and Materials. An active breathing control (ABC) apparatus was constructed consisting of two pairs of flow monitor and scissors valve; one each to control the inhalation and exhalation paths to the patient. The patient breathed through a mouth-piece or face mask connected to the ABC apparatus. A personal computer was used to process the respiratory signal and to display the changing lung volume in real-time. At some time after the patient achieved a stable breathing pattern, the operator activated ABC at a pre-selected point in the breathing cycle. Both valves were then closed to immobilize breathing motion. The period of active breath-hold was that which could be comfortably and repeatedly tolerated by each individual patient, as determined during a training session. The feasibility of the ABC procedure was studied by acquiring volumetric CT scans of a patient during active breath-hold. A helical CT scanner was used. These ABC scans were acquired at one-half to one-third the dose delivered with routine CT scanning. Nine patients with tumors in the thorax and abdomen were studied. Contiguous CT slices were obtained for a region which encompassed the target volume. At least 4 sets of volumetric scans were obtained; one with the patient breathing normally; two ABC scans at the same point near the end of normal inspiration

  1. Application of activity-based costing (ABC) for a Peruvian NGO healthcare provider.

    Science.gov (United States)

    Waters, H; Abdallah, H; Santillán, D

    2001-01-01

    This article describes the application of activity-based costing (ABC) to calculate the unit costs of the services for a health care provider in Peru. While traditional costing allocates overhead and indirect costs in proportion to production volume or to direct costs, ABC assigns costs through activities within an organization. ABC uses personnel interviews to determine principal activities and the distribution of individual's time among these activities. Indirect costs are linked to services through time allocation and other tracing methods, and the result is a more accurate estimate of unit costs. The study concludes that applying ABC in a developing country setting is feasible, yielding results that are directly applicable to pricing and management. ABC determines costs for individual clinics, departments and services according to the activities that originate these costs, showing where an organization spends its money. With this information, it is possible to identify services that are generating extra revenue and those operating at a loss, and to calculate cross subsidies across services. ABC also highlights areas in the health care process where efficiency improvements are possible. Conclusions about the ultimate impact of the methodology are not drawn here, since the study was not repeated and changes in utilization patterns and the addition of new clinics affected applicability of the results. A potential constraint to implementing ABC is the availability and organization of cost information. Applying ABC efficiently requires information to be readily available, by cost category and department, since the greatest benefits of ABC come from frequent, systematic application of the methodology in order to monitor efficiency and provide feedback for management. The article concludes with a discussion of the potential applications of ABC in the health sector in developing countries.

  2. Application of activity-based costing (ABC) for a Peruvian NGO healthcare provider.

    Science.gov (United States)

    Waters, H; Abdallah, H; Santillán, D

    2001-01-01

    This article describes the application of activity-based costing (ABC) to calculate the unit costs of the services for a health care provider in Peru. While traditional costing allocates overhead and indirect costs in proportion to production volume or to direct costs, ABC assigns costs through activities within an organization. ABC uses personnel interviews to determine principal activities and the distribution of individual's time among these activities. Indirect costs are linked to services through time allocation and other tracing methods, and the result is a more accurate estimate of unit costs. The study concludes that applying ABC in a developing country setting is feasible, yielding results that are directly applicable to pricing and management. ABC determines costs for individual clinics, departments and services according to the activities that originate these costs, showing where an organization spends its money. With this information, it is possible to identify services that are generating extra revenue and those operating at a loss, and to calculate cross subsidies across services. ABC also highlights areas in the health care process where efficiency improvements are possible. Conclusions about the ultimate impact of the methodology are not drawn here, since the study was not repeated and changes in utilization patterns and the addition of new clinics affected applicability of the results. A potential constraint to implementing ABC is the availability and organization of cost information. Applying ABC efficiently requires information to be readily available, by cost category and department, since the greatest benefits of ABC come from frequent, systematic application of the methodology in order to monitor efficiency and provide feedback for management. The article concludes with a discussion of the potential applications of ABC in the health sector in developing countries. PMID:11326572

  3. The X-ray Crystallographic Structure and Activity Analysis of a Pseudomonas-Specific Subfamily of the HAD Enzyme Superfamily Evidences a Novel Biochemical Function

    Energy Technology Data Exchange (ETDEWEB)

    Peisach,E.; Wang, L.; Burroughs, A.; Aravind, L.; Dunaway-Mariano, D.; Allen, K.

    2008-01-01

    The haloacid dehalogenase (HAD) superfamily is a large family of proteins dominated by phosphotransferases. Thirty-three sequence families within the HAD superfamily (HADSF) have been identified to assist in function assignment. One such family includes the enzyme phosphoacetaldehyde hydrolase (phosphonatase). Phosphonatase possesses the conserved Rossmanniod core domain and a C1-type cap domain. Other members of this family do not possess a cap domain and because the cap domain of phosphonatase plays an important role in active site desolvation and catalysis, the function of the capless family members must be unique. A representative of the capless subfamily, PSPTO{_}2114, from the plant pathogen Pseudomonas syringae, was targeted for catalytic activity and structure analyses. The X-ray structure of PSPTO{_}2114 reveals a capless homodimer that conserves some but not all of the intersubunit contacts contributed by the core domains of the phosphonatase homodimer. The region of the PSPTO{_}2114 that corresponds to the catalytic scaffold of phosphonatase (and other HAD phosphotransfereases) positions amino acid residues that are ill suited for Mg+2 cofactor binding and mediation of phosphoryl group transfer between donor and acceptor substrates. The absence of phosphotransferase activity in PSPTO{_}2114 was confirmed by kinetic assays. To explore PSPTO{_}2114 function, the conservation of sequence motifs extending outside of the HADSF catalytic scaffold was examined. The stringently conserved residues among PSPTO{_}2114 homologs were mapped onto the PSPTO{_}2114 three-dimensional structure to identify a surface region unique to the family members that do not possess a cap domain. The hypothesis that this region is used in protein-protein recognition is explored to define, for the first time, HADSF proteins which have acquired a function other than that of a catalyst. Proteins 2008.

  4. 75 FR 11991 - ABC & D Recycling, Inc.-Lease and Operation Exemption-a Line of Railroad in Ware, MA

    Science.gov (United States)

    2010-03-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board ABC & D Recycling, Inc.--Lease and Operation Exemption--a Line of Railroad in Ware, MA ABC & D Recycling, Inc. (ABC & D), a noncarrier, has filed a verified notice of...

  5. MgAtr7, a new type of ABC transporter from Mycosphaerella graminicola involved in iron homeostasis

    NARCIS (Netherlands)

    Zwiers, L.H.; Roohparvar, R.; Waard, de M.A.

    2007-01-01

    The ABC transporter-encoding gene MgAtr7 from the wheat pathogen Mycosphaerella graminicola was cloned based upon its high homology to ABC transporters involved in azole-fungicide sensitivity. Genomic and cDNA sequences indicated that the N-terminus of this ABC transporter contains a motif character

  6. Cloning of first abc transporter encoding gene from Trichoderma spp.and its expression during stress and mycoparasitism

    Institute of Scientific and Technical Information of China (English)

    Lanzuise S; Scala F; Del Sorbo G; Ruocco M; Scala V; Catapano L; Woo S; Ciliento R; Ferraioli S; Soriente I; Vinale F

    2004-01-01

    @@ Trichoderma in its natural environment competes for nutrient uptake and is required to protect itself from adverse natural toxic compounds, such as those produced by plants and other microbes in the soil community, or synthetic toxic compounds released human activity. One of the most important metabolic pathways for drug resistance and substrate uptake, both in prokaryotes and eukaryotes, is ATP dependent. The role of ABC transporter proteins in the biology of Trichoderma is still not known. We present the cloning of the first four ABC transporter genes (TABC1 , TABC2, TABC3,TABC4) in Trichoderma, and in particular T. atroviride P1, and the characterization of TABC2The complete sequence of this gene is 6535 bp, which includes a promoter of 1624 bp, a terminator of 642 bp and a coding region of 4264 bp. The promoter contains many of the potential transcription factor binding sites found in the 5' upstream region of the ech42 gene of T. atroviride P1. These included: heat shock factors (HSF), a nitrogen-regulating factor (Nit-2), a stress-response element (STRE), a GCR1 elements, and a Cre BP1 motif. Northern analysis and RT-PCR demonstrated that TABC2 is highly expressed when Trichoderma is subjected to nitrogen starvation, grown in the presence of culture filtrates of Botrytis cinerea, Rhizoctonia solani, and Pythium ultimum, or when N-acetylglucosamine is added to the substrate. TABC2 appears to be co-regulated with some CWDEencoding genes, suggesting that this is the first ABC transporter encoding gene involved in mycoparasitic events. It's role in the interaction of Trichoderma with fungal hosts or plants is being investigated by targeted gene disruption and overexpression.

  7. Avl9p, a Member of a Novel Protein Superfamily, Functions in the Late Secretory Pathway

    OpenAIRE

    Harsay, Edina; Schekman, Randy

    2007-01-01

    The branching of exocytic transport routes in both yeast and mammalian cells has complicated studies of the late secretory pathway, and the mechanisms involved in exocytic cargo sorting and exit from the Golgi and endosomes are not well understood. Because cargo can be sorted away from a blocked route and secreted by an alternate route, mutants defective in only one route do not exhibit a strong secretory phenotype and are therefore difficult to isolate. In a genetic screen designed to isolat...

  8. The TNF receptor and Ig superfamily members form an integrated signaling circuit controlling dendritic cell homeostasis

    Science.gov (United States)

    De Trez, Carl; Ware, Carl F.

    2008-01-01

    Dendritic cells (DC) constitute the most potent antigen presenting cells of the immune system, playing a key role bridging innate and adaptive immune responses. Specialized DC subsets differ depending on their origin, tissue location and the influence of trophic factors, the latter remain to be fully understood. Stromal cell and myeloid-associated Lymphotoxin-β receptor (LTβR) signaling is required for the local proliferation of lymphoid tissue DC. This review focuses the LTβR signaling cascade as a crucial positive trophic signal in the homeostasis of DC subsets. The noncanonical coreceptor pathway comprised of the Immunoglobulin (Ig) superfamily member, B and T lymphocyte attenuator (BTLA) and TNFR superfamily member, Herpesvirus entry mediator (HVEM) counter regulates the trophic signaling by LTβR. Together both pathways form an integrated signaling circuit achieving homeostasis of DC subsets. PMID:18511331

  9. Germ-line transgenesis of the Tc1/mariner superfamily transposon Minos in Ciona intestinalis

    OpenAIRE

    Sasakura, Yasunori; Awazu, Satoko; Chiba, Shota; Satoh, Nori

    2003-01-01

    The tadpole larva of the basal chordate Ciona intestinalis has the most simplified, basic body-plan of chordates. Because it has a compact genome with a complete draft sequence, a large quantity of EST/cDNA information, and a short generation time, Ciona is a suitable model for future genetics. We establish here a transgenic technique in Ciona that uses the Tc1/mariner superfamily transposon Minos. Minos was integrated efficiently into the genome of germ cells and transmitted stably to ...

  10. Abacavir forms novel cross-linking abacavir protein adducts in patients.

    Science.gov (United States)

    Meng, Xiaoli; Lawrenson, Alexandre S; Berry, Neil G; Maggs, James L; French, Neil S; Back, David J; Khoo, Saye H; Naisbitt, Dean J; Park, B Kevin

    2014-04-21

    Abacavir (ABC), a nucleoside-analogue reverse transcriptase inhibitor, is associated with severe hypersensitivity reactions that are thought to involve the activation of CD8+ T cells in a HLA-B*57:01-restricted manner. Recent studies have claimed that noncovalent interactions of ABC with HLA-B*57:01 are responsible for the immunological reactions associated with ABC. However, the formation of hemoglobin-ABC aldehyde (ABCA) adducts in patients exposed to ABC suggests that protein conjugation might represent a pathway for antigen formation. To further characterize protein conjugation reactions, we used mass spectrometric methods to define ABCA modifications in patients receiving ABC therapy. ABCA formed a novel intramolecular cross-linking adduct on human serum albumin (HSA) in patients and in vitro via Michael addition, followed by nucleophilic adduction of the aldehyde with a neighboring protein nucleophile. Adducts were detected on Lys159, Lys190, His146, and Cys34 residues in the subdomain IB of HSA. Only a cysteine adduct and a putative cross-linking adduct were detected on glutathione S-transferase Pi (GSTP). These findings reveal that ABC forms novel types of antigens in all patients taking the drug. It is therefore vital that the immunological consequences of such pathways of haptenation are explored in the in vitro models that have been used by various groups to define new mechanisms of drug hypersensitivity exemplified by ABC. PMID:24571427

  11. Origination, expansion, evolutionary trajectory, and expression bias of AP2/ERF superfamily in Brassica napus

    Directory of Open Access Journals (Sweden)

    Xiaoming Song

    2016-08-01

    Full Text Available The AP2/ERF superfamily, one of the most important transcription factor families, plays crucial roles in response to biotic and abiotic stresses. So far, a comprehensive evolutionary inference of its origination and expansion has not been available. Here, we identified 515 AP2/ERF genes in B. napus, a neo-tetraploid forming ~7500 years ago, and found that 82.14% of them were duplicated in the tetraploidization. A prominent subgenome bias was revealed in gene expression, tissue-specific, and gene conversion. Moreover, a large-scale analysis across plants and alga suggested that this superfamily could have been originated from AP2 family, expanding to form other families (ERF, and RAV. This process was accompanied by duplicating and/or alternative deleting AP2 domain, intragenic domain sequence conversion, and/or by acquiring other domains, resulting in copy number variations, alternatively contributing to functional innovation. We found that significant positive selection occurred at certain critical nodes during the evolution of land plants, possibly responding to changing environment. In conclusion, the present research revealed origination, functional innovation, and evolutionary trajectory of the AP2/ERF superfamily, contributing to understanding their roles in plant stress tolerance.

  12. Origination, Expansion, Evolutionary Trajectory, and Expression Bias of AP2/ERF Superfamily in Brassica napus.

    Science.gov (United States)

    Song, Xiaoming; Wang, Jinpeng; Ma, Xiao; Li, Yuxian; Lei, Tianyu; Wang, Li; Ge, Weina; Guo, Di; Wang, Zhenyi; Li, Chunjin; Zhao, Jianjun; Wang, Xiyin

    2016-01-01

    The AP2/ERF superfamily, one of the most important transcription factor families, plays crucial roles in response to biotic and abiotic stresses. So far, a comprehensive evolutionary inference of its origination and expansion has not been available. Here, we identified 515 AP2/ERF genes in B. napus, a neo-tetraploid forming ~7500 years ago, and found that 82.14% of them were duplicated in the tetraploidization. A prominent subgenome bias was revealed in gene expression, tissue-specific, and gene conversion. Moreover, a large-scale analysis across plants and alga suggested that this superfamily could have been originated from AP2 family, expanding to form other families (ERF, and RAV). This process was accompanied by duplicating and/or alternative deleting AP2 domain, intragenic domain sequence conversion, and/or by acquiring other domains, resulting in copy number variations, alternatively contributing to functional innovation. We found that significant positive selection occurred at certain critical nodes during the evolution of land plants, possibly responding to changing environment. In conclusion, the present research revealed origination, functional innovation, and evolutionary trajectory of the AP2/ERF superfamily, contributing to understanding their roles in plant stress tolerance. PMID:27570529

  13. Origination, Expansion, Evolutionary Trajectory, and Expression Bias of AP2/ERF Superfamily in Brassica napus

    Science.gov (United States)

    Song, Xiaoming; Wang, Jinpeng; Ma, Xiao; Li, Yuxian; Lei, Tianyu; Wang, Li; Ge, Weina; Guo, Di; Wang, Zhenyi; Li, Chunjin; Zhao, Jianjun; Wang, Xiyin

    2016-01-01

    The AP2/ERF superfamily, one of the most important transcription factor families, plays crucial roles in response to biotic and abiotic stresses. So far, a comprehensive evolutionary inference of its origination and expansion has not been available. Here, we identified 515 AP2/ERF genes in B. napus, a neo-tetraploid forming ~7500 years ago, and found that 82.14% of them were duplicated in the tetraploidization. A prominent subgenome bias was revealed in gene expression, tissue-specific, and gene conversion. Moreover, a large-scale analysis across plants and alga suggested that this superfamily could have been originated from AP2 family, expanding to form other families (ERF, and RAV). This process was accompanied by duplicating and/or alternative deleting AP2 domain, intragenic domain sequence conversion, and/or by acquiring other domains, resulting in copy number variations, alternatively contributing to functional innovation. We found that significant positive selection occurred at certain critical nodes during the evolution of land plants, possibly responding to changing environment. In conclusion, the present research revealed origination, functional innovation, and evolutionary trajectory of the AP2/ERF superfamily, contributing to understanding their roles in plant stress tolerance. PMID:27570529

  14. Phosphorylation of plastoglobular proteins in Arabidopsis thaliana.

    Science.gov (United States)

    Lohscheider, Jens N; Friso, Giulia; van Wijk, Klaas J

    2016-06-01

    Plastoglobules (PGs) are plastid lipid-protein particles with a small specialized proteome and metabolome. Among the 30 core PG proteins are six proteins of the ancient ABC1 atypical kinase (ABC1K) family and their locations in an Arabidopsis mRNA-based co-expression network suggested central regulatory roles. To identify candidate ABC1K targets and a possible ABC1K hierarchical phosphorylation network within the chloroplast PG proteome, we searched Arabidopsis phosphoproteomics data from publicly available sources. Evaluation of underlying spectra and/or associated information was challenging for a variety of reasons, but supported pSer sites and a few pThr sites in nine PG proteins, including five FIBRILLINS. PG phosphorylation motifs are discussed in the context of possible responsible kinases. The challenges of collection and evaluation of published Arabidopsis phosphorylation data are discussed, illustrating the importance of deposition of all mass spectrometry data in well-organized repositories such as PRIDE and ProteomeXchange. This study provides a starting point for experimental testing of phosho-sites in PG proteins and also suggests that phosphoproteomics studies specifically designed toward the PG proteome and its ABC1K are needed to understand phosphorylation networks in these specialized particles. PMID:26962209

  15. ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection

    Directory of Open Access Journals (Sweden)

    SARACOGLU, O. G.

    2016-08-01

    Full Text Available This paper presents a modeling approach based on the use of fuzzy reasoning mechanism to define a measured data set obtained from an optical sensing circuit. For this purpose, we implemented a simple but effective an in vitro optical sensor to measure glucose content of an aqueous solution. Measured data contain analog voltages representing the absorbance values of three wavelengths measured from an RGB LED in different glucose concentrations. To achieve a desired model performance, the parameters of the fuzzy models are optimized by using the artificial bee colony (ABC algorithm. The modeling results presented in this paper indicate that the fuzzy model optimized by the algorithm provide a successful modeling performance having the minimum mean squared error (MSE of 0.0013 which are in clearly good agreement with the measurements.

  16. Monte Carlo simulations of ABC stacked kagome lattice films

    Science.gov (United States)

    Yerzhakov, H. V.; Plumer, M. L.; Whitehead, J. P.

    2016-05-01

    Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.

  17. Supersymmetric Theory of Stochastic ABC Model: A Numerical Study

    CERN Document Server

    Ovchinnikov, Igor V; Ensslin, Torsten A; Wang, Kang L

    2016-01-01

    In this paper, we investigate numerically the stochastic ABC model, a toy model in the theory of astrophysical kinematic dynamos, within the recently proposed supersymmetric theory of stochastics (STS). STS characterises stochastic differential equations (SDEs) by the spectrum of the stochastic evolution operator (SEO) on elements of the exterior algebra or differentials forms over the system's phase space, X. STS can thereby classify SDEs as chaotic or non-chaotic by identifying the phenomenon of stochastic chaos with the spontaneously broken topological supersymmetry that all SDEs possess. We demonstrate the following three properties of the SEO, deduced previously analytically and from physical arguments: the SEO spectra for zeroth and top degree forms never break topological supersymmetry, all SDEs possesses pseudo-time-reversal symmetry, and each de Rahm cohomology class provides one supersymmetric eigenstate. Our results also suggests that the SEO spectra for forms of complementary degrees, i.e., k and ...

  18. Counting Smooth Solutions to the Equation A+B=C

    CERN Document Server

    Lagarias, J C

    2011-01-01

    This paper studies integer solutions to the Diophantine equation A+B=C in which none of A, B, C have a large prime factor. We set H(A, B,C) = max(|A|, |B|, |C|), and consider primitive solutions (gcd}(A, B, C)=1) having no prime factor p larger than (log H(A, B,C))^K, for a given finite K. On the assumption that the Generalized Riemann hypothesis (GRH) holds, we show that for any K > 8 there are infinitely many such primitive solutions having no prime factor larger than (log H(A, B, C))^K. We obtain in this range an asymptotic formula for the number of such suitably weighted primitive solutions.

  19. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal-plant arms-race and co-evolution.

    Science.gov (United States)

    Bock, Karl Walter

    2016-01-01

    UDP-glycosyltransferases (UGTs) are major phase II enzymes of a detoxification system evolved in all kingdoms of life. Lipophilic endobiotics such as hormones and xenobiotics including phytoalexins and drugs are conjugated by vertebrates mainly with glucuronic acid, by invertebrates and plants mainly with glucose. Plant-herbivore arms-race has been the major driving force for evolution of large UGT and other enzyme superfamilies. The UGT superfamily is defined by a common protein structure and signature sequence of 44 amino acids responsible for binding the UDP moiety of the sugar donor. Plants developed toxic phytoalexins stored as glucosides. Upon herbivore attack these conjugates are converted to highly reactive compounds. In turn, animals developed large families of UGTs in their intestine and liver to detoxify these phytoalexins. Interestingly, phytoalexins, exemplified by quercetin glucuronides and glucosinolate-derived isocyanates, are known insect attractant pigments in plants, and antioxidants, anti-inflammatory and chemopreventive compounds of humans. It is to be anticipated that phytochemicals may provide a rich source in beneficial drugs.

  20. 整合作业成本与经济附加值的ABC&EVA系统

    Institute of Scientific and Technical Information of China (English)

    白明

    2006-01-01

    整合作业成本(activity-based costing,缩写ABC)与经济附加值(economic value added,缩写EVA)的产物是ABC&EVA系统.ABC&EVA系统不仅能够揭示成本对象所创造的经济价值,而且还能够将ABC从单纯的成本计算扩展到业绩评价.本文在分析ABC&EVA系统原理的基础上,结合案例对ABC&EVA系统运行步骤加以说明.

  1. Applying Activity Based Costing (ABC Method to Calculate Cost Price in Hospital and Remedy Services

    Directory of Open Access Journals (Sweden)

    A Dabiri

    2012-04-01

    Full Text Available Background: Activity Based Costing (ABC is one of the new methods began appearing as a costing methodology in the 1990. It calculates cost price by determining the usage of resources. In this study, ABC method was used for calculating cost price of remedial services in hospitals.Methods: To apply ABC method, Shahid Faghihi Hospital was selected. First, hospital units were divided into three main departments: administrative, diagnostic, and hospitalized. Second, activity centers were defined by the activity analysis method. Third, costs of administrative activity centers were allocated into diagnostic and operational departments based on the cost driver. Finally, with regard to the usage of cost objectives from services of activity centers, the cost price of medical services was calculated.Results: The cost price from ABC method significantly differs from tariff method. In addition, high amount of indirect costs in the hospital indicates that capacities of resources are not used properly.Conclusion: Cost price of remedial services with tariff method is not properly calculated when compared with ABC method. ABC calculates cost price by applying suitable mechanisms but tariff method is based on the fixed price. In addition, ABC represents useful information about the amount and combination of cost price services.

  2. KEANEKARAGAMAN JENIS KUPU-KUPU SUPERFAMILI PAPILIONOIDAE DI DUKUH BANYUWINDU DESA LIMBANGAN KECAMATAN LIMBANGAN KABUPATEN KENDAL

    Directory of Open Access Journals (Sweden)

    M. Rahayuningsih

    2012-09-01

    Full Text Available Kupu-kupu merupakan bagian dari biodiversitas yang harus dijaga kelestariannya. Kupu-kupu memberikan keuntungan bagi kehidupan manusia. Secara ekologis kupu-kupu memberikan sumbangan dalam menjaga keseimbangan ekosistem dan memperkaya biodiversitas. Dukuh Banyuwindu merupakan salah satu pedukuhan di Desa Limbangan terletak di lembah dan berperan sebagai daerah ekoturisme. Tujuan kajian ini adalah untuk menentukan keanekaragaman spesies kupu-kupu superfamili Papilionoidae di Dukuh Banyuwindu Desa Limbangan Kabupaten Kendal, khususnya pada habitat hutan sekunder, pemukiman, daerah aliran sungai, dan persawahan. Penelitian dilakukan dengan metode Abundance Point Index. Penelitian menunjukkan terdapat 62 spesies kupu-kupu superfamili Papilionoidae yang terdiri dari 737 individu dan diklasifikasikan menjadi empat famili dinamai Papilionoidae, Pieridae, Lycaenidae, dan Nymphalidae. Indeks keanekaragaman jenis kupu-kupu superfamili Papilionoidae di Dukuh Banyuwindu berkisar antara 2,74-3,09, indeks kemerataan jenis berkisar antara 0,86-0,87 dan memiliki dominansi berkisar antara 0,07-0,09. Indeks keanekaragaman jenis dan indeks kemerataan jenis tertinggi tercatat pada habitat pemukiman yaitu 3,09 dan 0,87 sedangkan terendah tercatat pada habitat persawahan masing-masing sebesar 2,74 dan 0,86. The butterflies are part of biodiversity which must be preserved. These insect provide benefits to human life. Ecologically, butterfly contributed in maintain the balance of ecosystem and enrich the biodiversity. Banyuwindu Hamlet is one of the hamlets in Limbangan Village, located in the hills and will serve as an ecotourism area. The purpose of this study was to determine the diversity of butterfly species in the superfamily Papilionoidae at Banyuwindu Hamlet, Limbangan Village, Limbangan District, Kendal Regency, especially in secondary forest habitats, settlements, watershed, and rice fields. Research performed with Abundance Point Index Method. The

  3. ABC transporters B1, C1 and G2 differentially regulate neuroregeneration in mice.

    Directory of Open Access Journals (Sweden)

    Toni Schumacher

    Full Text Available BACKGROUND: ATP-binding cassette (ABC transporters are essential regulators of organismic homeostasis, and are particularly important in protecting the body from potentially harmful exogenous substances. Recently, an increasing number of in vitro observations have indicated a functional role of ABC transporters in the differentiation and maintenance of stem cells. Therefore, we sought to determine brain-related phenotypic changes in animals lacking the expression of distinct ABC transporters (ABCB1, ABCG2 or ABCC1. METHODOLOGY AND PRINCIPAL FINDINGS: Analyzing adult neurogenesis in ABC transporter-deficient animals in vivo and neuronal stem/progenitor cells in vitro resulted in complex findings. In vivo, the differentiation of neuronal progenitors was hindered in ABC transporter-deficient mice (ABCB1(0/0 as evidenced by lowered numbers of doublecortin(+ (-36% and calretinin(+ (-37% cells. In vitro, we confirmed that this finding is not connected to the functional loss of single neural stem/progenitor cells (NSPCs. Furthermore, assessment of activity, exploratory behavior, and anxiety levels revealed behavioral alterations in ABCB1(0/0 and ABCC1(0/0 mice, whereas ABCG2(0/0 mice were mostly unaffected. CONCLUSION AND SIGNIFICANCE: Our data show that single ABC transporter-deficiency does not necessarily impair neuronal progenitor homeostasis on the single NSPC level, as suggested by previous studies. However, loss of distinct ABC transporters impacts global brain homeostasis with far ranging consequences, leading to impaired neurogenic functions in vivo and even to distinct behavioral phenotypes. In addition to the known role of ABC transporters in proteopathies such as Parkinson's disease and Alzheimer's disease, our data highlight the importance of understanding the general function of ABC transporters for the brain's homeostasis and the regeneration potential.

  4. Transmembrane gate movements in the type II ATP-binding cassette (ABC) importer BtuCD-F during nucleotide cycle.

    Science.gov (United States)

    Joseph, Benesh; Jeschke, Gunnar; Goetz, Birke A; Locher, Kaspar P; Bordignon, Enrica

    2011-11-25

    ATP-binding cassette (ABC) transporters are ubiquitous integral membrane proteins that translocate substrates across cell membranes. The alternating access of their transmembrane domains to opposite sides of the membrane powered by the closure and reopening of the nucleotide binding domains is proposed to drive the translocation events. Despite clear structural similarities, evidence for considerable mechanistic diversity starts to accumulate within the importers subfamily. We present here a detailed study of the gating mechanism of a type II ABC importer, the BtuCD-F vitamin B(12) importer from Escherichia coli, elucidated by EPR spectroscopy. Distance changes at key positions in the translocation gates in the nucleotide-free, ATP- and ADP-bound conformations of the transporter were measured in detergent micelles and liposomes. The translocation gates of the BtuCD-F complex undergo conformational changes in line with a "two-state" alternating access model. We provide the first direct evidence that binding of ATP drives the gates to an inward-facing conformation, in contrast to type I importers specific for maltose, molybdate, or methionine. Following ATP hydrolysis, the translocation gates restore to an apo-like conformation. In the presence of ATP, an excess of vitamin B(12) promotes the reopening of the gates toward the periplasm and the dislodgment of BtuF from the transporter. The EPR data allow a productive translocation cycle of the vitamin B(12) transporter to be modeled.

  5. The ABC Catering Services Ltd.ABC食品供应服务公司

    Institute of Scientific and Technical Information of China (English)

    黄权初

    2001-01-01

    @@ 1 Introduction ABC Catering Services Ltd. has long recognized its needs to compete effectively in its key markets in the Pacific Rim. With ABC' s historical focus on delivering almost faultless service, comparatively little attention has been given to the supply chain cost of that delivery. However, the new kitchen at Seoul, was open in 1997, added more workload to the company. Things have not been working well since then.The ABC Corporation realizes that it is necessary to reduce supply chain costs and to improve its operation efficiency in order to retain and expand customer base.

  6. A Design of ABC95 Array Computer Multi-function Interconnection Chips

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    ABC95 array computer is a multi-function network computer based on FPGA technology. A notable feature of ABC95 array computer is the support of complex interconnection, which determines that the computer must have enough I/O band and flexible communications between Pes. The authors designed the interconnecting network chips of ABC95 and realized a form of multi-function interconnection. The multi-function interconnecting network supports conflict-free access from processors to memory matrix and the MESH network of enhanced processors to processor communications. The design scheme has been proved feasible by experiment.

  7. The structure and function of endophilin proteins

    DEFF Research Database (Denmark)

    Kjaerulff, Ole; Brodin, Lennart; Jung, Anita

    2011-01-01

    Members of the BAR domain protein superfamily are essential elements of cellular traffic. Endophilins are among the best studied BAR domain proteins. They have a prominent function in synaptic vesicle endocytosis (SVE), receptor trafficking and apoptosis, and in other processes that require...

  8. Identification of ABC transporter genes of Fusarium graminearum with roles in azole tolerance and/or virulence.

    Directory of Open Access Journals (Sweden)

    Ghada Abou Ammar

    Full Text Available Fusarium graminearum is a plant pathogen infecting several important cereals, resulting in substantial yield losses and mycotoxin contamination of the grain. Triazole fungicides are used to control diseases caused by this fungus on a worldwide scale. Our previous microarray study indicated that 15 ABC transporter genes were transcriptionally upregulated in response to tebuconazole treatment. Here, we deleted four ABC transporter genes in two genetic backgrounds of F. graminearum representing the DON (deoxynivalenol and the NIV (nivalenol trichothecene chemotypes. Deletion of FgABC3 and FgABC4 belonging to group I of ABC-G and to group V of ABC-C subfamilies of ABC transporters, respectively, considerably increased the sensitivity to the class I sterol biosynthesis inhibitors triazoles and fenarimol. Such effects were specific since they did not occur with any other fungicide class tested. Assessing the contribution of the four ABC transporters to virulence of F. graminearum revealed that, irrespective of their chemotypes, deletion mutants of FgABC1 (ABC-C subfamily group V and FgABC3 were impeded in virulence on wheat, barley and maize. Phylogenetic context and analyses of mycotoxin production suggests that FgABC3 may encode a transporter protecting the fungus from host-derived antifungal molecules. In contrast, FgABC1 may encode a transporter responsible for the secretion of fungal secondary metabolites alleviating defence of the host. Our results show that ABC transporters play important and diverse roles in both fungicide resistance and pathogenesis of F. graminearum.

  9. D-Ribulose 5-Phosphate 3-Epimerase: Functional and Structural Relationships to Members of the Ribulose-Phosphate Binding (beta/alpha)8-Barrel Superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Akana,J.; Federov, A.; Federov, E.; Novak, W.; Babbitt, P.; Almo, S.; Gerlt, J.

    2006-01-01

    The 'ribulose phosphate binding' superfamily defined by the Structural Classification of Proteins (SCOP) database is considered the result of divergent evolution from a common ({beta}/{alpha}){sub 8}-barrel ancestor. The superfamily includes D-ribulose 5-phosphate 3-epimerase (RPE), orotidine 5'-monophosphate decarboxylase (OMPDC), and 3-keto-L-gulonate 6-phosphate decarboxylase (KGPDC), members of the OMPDC suprafamily, as well as enzymes involved in histidine and tryptophan biosynthesis that utilize phosphorylated metabolites as substrates. We now report studies of the functional and structural relationships of RPE to the members of the superfamily. As suggested by the results of crystallographic studies of the RPEs from rice and Plasmodium falciparum, the RPE from Streptococcus pyogenes is activated by Zn{sup 2+} which binds with a stoichiometry of one ion per polypeptide. Although wild type RPE has a high affinity for Zn{sup 2+} and inactive apoenzyme cannot be prepared, the affinity for Zn{sup 2+} is decreased by alanine substitutions for the two histidine residues that coordinate the Zn{sup 2+} ion (H34A and H67A); these mutant proteins can be prepared in an inactive, metal-free form and activated by exogenous Zn{sup 2+}. The crystal structure of the RPE was solved at 1.8 Angstroms resolution in the presence of D-xylitol 5-phosphate, an inert analogue of the D-xylulose 5-phosphate substrate. This structure suggests that the 2,3-enediolate intermediate in the 1,1-proton transfer reaction is stabilized by bidentate coordination to the Zn{sup 2+} that also is liganded to His 34, Asp 36, His 67, and Asp 176; the carboxylate groups of the Asp residues are positioned also to function as the acid/base catalysts. Although the conformation of the bound analogue resembles those of ligands bound in the active sites of OMPDC and KGPDC, the identities of the active site residues that coordinate the essential Zn{sup 2+} and participate as acid/base catalysts

  10. Non-equivalent roles of two periplasmic subunits in the function and assembly of triclosan pump TriABC from Pseudomonas aeruginosa.

    Science.gov (United States)

    Weeks, Jon W; Nickels, Logan M; Ntreh, Abigail T; Zgurskaya, Helen I

    2015-10-01

    In Gram-negative bacteria, multidrug efflux transporters function in complexes with periplasmic membrane fusion proteins (MFPs) that enable antibiotic efflux across the outer membrane. In this study, we analyzed the function, composition and assembly of the triclosan efflux transporter TriABC-OpmH from Pseudomonas aeruginosa. We report that this transporter possesses a surprising substrate specificity that encompasses not only triclosan but the detergent SDS, which are often used together in antibacterial soaps. These two compounds interact antagonistically in a TriABC-dependent manner and negate antibacterial properties of each other. Unlike other efflux pumps that rely on a single MFP for their activities, two different MFPs, TriA and TriB, are required for triclosan/SDS resistance mediated by TriABC-OpmH. We found that analogous mutations in the α-helical hairpin and membrane proximal domains of TriA and TriB differentially affect triclosan efflux and assembly of the complex. Furthermore, our results show that TriA and TriB function as a dimer, in which TriA is primarily responsible for stabilizing interactions with the outer membrane channel, whereas TriB is important for the stimulation of the transporter. We conclude that MFPs are engaged into complexes as asymmetric dimers, in which each protomer plays a specific role. PMID:26193906

  11. In vitro establishment of ivermectin-resistant Rhipicephalus microplus cell line and the contribution of ABC transporters on the resistance mechanism.

    Science.gov (United States)

    Pohl, Paula C; Carvalho, Danielle D; Daffre, Sirlei; Vaz, Itabajara da Silva; Masuda, Aoi

    2014-08-29

    The cattle tick Rhipicephalus microplus is one of the most economically damaging livestock ectoparasites, and its widespread resistance to acaricides is a considerable challenge to its control. In this scenario, the establishment of resistant cell lines is a useful approach to understand the mechanisms involved in the development of acaricide resistance, to identify drug resistance markers, and to develop new acaricides. This study describes the establishment of an ivermectin (IVM)-resistant R. microplus embryonic cell line, BME26-IVM. The resistant cells were obtained after the exposure of IVM-sensitive BME26 cells to increasing doses of IVM in a step-wise manner, starting from an initial non-toxic concentration of 0.5 μg/mL IVM, and reaching 6 μg/mL IVM after a 46-week period. BME26-IVM cell line was 4.5 times more resistant to IVM than the parental BME26 cell line (lethal concentration 50 (LC50) 15.1 ± 1.6 μg/mL and 3.35 ± 0.09 μg/mL, respectively). As an effort to determine the molecular mechanisms governing resistance, the contribution of ATP-binding cassette (ABC) transporter was investigated. Increased expression levels of ABC transporter genes were found in IVM-treated cells, and resistance to IVM was significantly reduced by co-incubation with 5 μM cyclosporine A (CsA), an ABC transporter inhibitor, suggesting the involvement of these proteins in IVM-resistance. These results are similar to those already described in IVM-resistant tick populations, and suggest that similar resistance mechanisms are involved in vitro and in vivo. They reinforce the hypothesis that ABC transporters are involved in IVM resistance and support the use of BME26-IVM as an in vitro approach to study acaricide resistance mechanisms. PMID:24956999

  12. Therapeutic potential of inhibiting ABCE1 and eRF3 genes via siRNA strategy using chitosan nanoparticles in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cengiz, Bagdat Burcu; Asik, Mehmet Dogan [Hacettepe University, Nanotechnology and Nanomedicine Division (Turkey); Kara, Goknur [Hacettepe University, Biochemistry Division, Chemistry Department (Turkey); Turk, Mustafa [Kirikkale University, Bioengineering Department (Turkey); Denkbas, Emir Baki, E-mail: denkbas@hacettepe.edu.tr [Hacettepe University, Biochemistry Division, Chemistry Department (Turkey)

    2015-04-15

    In recent years, targeted cancer therapy strategies have begun to take the place of the conventional treatments. Inhibition of the specific genes, involved in cancer progress, via small interfering RNA (siRNA) has become one of the promising therapeutic approaches for cancer therapy. However, due to rapid nuclease degradation and poor cellular uptake of siRNA, a suitable carrier for siRNA penetration inside the cells is required. We used chitosan nanoparticles (CS-NPs) to efficiently deliver ATP-binding casette E1 (ABCE1) and eukaryotic release factor 3 (eRF3)-targeting siRNAs, individually and together, to reduce the proliferation and induce the apoptosis of breast cancer cells. The CS-NPs were generated by ionic gelation method using tripolyphosphate (TPP) as a crosslinker. Nanoparticles (NPs) were obtained with diameters ranging between 110 and 230 nm and the zeta potential of approximately 27 mV optimizing the solution pH to 4.5 and CS/TPP mass ratio to 3:1. Loading efficiencies of 98.69 % ± 0.051 and 98.83 % ± 0.047 were achieved when ABCE1 siRNA and eRF3 siRNA were entrapped into the NPs, respectively. Cell proliferation assay demonstrated that siRNA-loaded CS-NPs were more effective on cancer cells when compared to siRNAs without CS-NPs. Parallel results were also obtained by apoptosis/necrosis, double-staining analysis. Within our study, the potency of ABCE1 and eRF3 siRNAs were shown for the first time with this kind of polymeric delivery system. The results also indicated that ABCE1 and eRF3, important molecules in protein synthesis, could serve as effective targets to inhibit the cancer cells.

  13. Therapeutic potential of inhibiting ABCE1 and eRF3 genes via siRNA strategy using chitosan nanoparticles in breast cancer cells

    International Nuclear Information System (INIS)

    In recent years, targeted cancer therapy strategies have begun to take the place of the conventional treatments. Inhibition of the specific genes, involved in cancer progress, via small interfering RNA (siRNA) has become one of the promising therapeutic approaches for cancer therapy. However, due to rapid nuclease degradation and poor cellular uptake of siRNA, a suitable carrier for siRNA penetration inside the cells is required. We used chitosan nanoparticles (CS-NPs) to efficiently deliver ATP-binding casette E1 (ABCE1) and eukaryotic release factor 3 (eRF3)-targeting siRNAs, individually and together, to reduce the proliferation and induce the apoptosis of breast cancer cells. The CS-NPs were generated by ionic gelation method using tripolyphosphate (TPP) as a crosslinker. Nanoparticles (NPs) were obtained with diameters ranging between 110 and 230 nm and the zeta potential of approximately 27 mV optimizing the solution pH to 4.5 and CS/TPP mass ratio to 3:1. Loading efficiencies of 98.69 % ± 0.051 and 98.83 % ± 0.047 were achieved when ABCE1 siRNA and eRF3 siRNA were entrapped into the NPs, respectively. Cell proliferation assay demonstrated that siRNA-loaded CS-NPs were more effective on cancer cells when compared to siRNAs without CS-NPs. Parallel results were also obtained by apoptosis/necrosis, double-staining analysis. Within our study, the potency of ABCE1 and eRF3 siRNAs were shown for the first time with this kind of polymeric delivery system. The results also indicated that ABCE1 and eRF3, important molecules in protein synthesis, could serve as effective targets to inhibit the cancer cells

  14. Pseudomonas aeruginosa capability to recruit zinc under conditions of limited metal availability is affected by inactivation of the ZnuABC transporter

    Science.gov (United States)

    D'Orazio, Melania; Mastropasqua, Maria Chiara; Cerasi, Mauro; Pacello, Francesca; Consalvo, Ada; Chirullo, Barbara; Mortensen, Brittany; Skaar, Eric P.; Ciavardelli, Domenico; Pasquali, Paolo; Battistoni, Andrea

    2015-01-01

    The ability of a large number of bacterial pathogens to multiply in the infected host and cause disease is dependent on their ability to express high affinity zinc importers. In many bacteria ZnuABC, a transporter of the ABC family, plays a central role in the process of zinc uptake in zinc poor environments, including the tissues of the infected host. To initiate an investigation into the relevance of the zinc uptake apparatus for Pseudomonas aeruginosa pathogenicity, we have generated a znuA mutant in the PA14 strain. We have found that this mutant strain displays a limited growth defect in zinc depleted media. The znuA mutant strain is more sensitive than the wild type strain to calprotectin-mediated growth inhibition, but both the strains are highly resistant to this zinc sequestering antimicrobial protein. Moreover, intracellular zinc content is not evidently affected by inactivation of the ZnuABC transporter. These findings suggest that P. aeruginosa is equipped with redundant mechanisms for the acquisition of zinc that might favor P. aeruginosa colonization of environments containing low levels of this metal. Nonetheless, deletion of znuA affects alginate production, reduces the activity of extracellular zinc-containing proteases, including LasA, LasB and Protease IV, and decreases the ability of P. aeruginosa to disseminate during systemic infections. These results indicate that efficient zinc acquisition is critical for the expression of various virulence features typical of P. aeruginosa and that ZnuABC also plays an important role in zinc homeostasis in this microorganism. PMID:25751674

  15. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice

    Science.gov (United States)

    Brzozowska, Natalia; Li, Kong M.; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S.

    2016-01-01

    Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b−∕−), Bcrp knockout (Abcg2−∕−), combined P-gp/Bcrp knockout (Abcb1a/b−∕−Abcg2−∕−) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders. PMID:27257556

  16. The Crystal Structure of the YknZ Extracellular Domain of ABC Transporter YknWXYZ from Bacillus amyloliquefaciens.

    Directory of Open Access Journals (Sweden)

    Yongbin Xu

    Full Text Available Bacillus possesses the peptide toxin Sporulation-Delaying Protein (SDP, which can kill cells within a biofilm to support continued growth, thereby delaying the onset of biofilm sporulation. The four-component transporter YknWXYZ acts as a major SDP efflux pump to protect cells against the endogenous SDP toxin, for which YknYZ is a non-canonical ATP-binding cassette (ABC-type transporter. YknYZ consists of the following two components: (1 an individual protein (YknY and (2 a respective permease (YknZ. To date, the crystal structure, molecular function, and mechanism of action of the integral membrane protein YknZ remain to be elucidated. In this study, to characterize the structural and biochemical roles of YknZ in the functional assembly of YknWXYZ, we predicted and overexpressed the YknZ extracellular domain. We determined the crystal structure of B. amyloliquefaciens YknZ at a resolution of 2.0 Å. The structure revealed that the YknZ extracellular region exhibits significant structural similarity with the MacB periplasmic domain, which is a non-canonical ABC-type transporter in the tripartite macrolide-specific efflux pump in Gram-negative bacteria. We also found that the YknZ extracellular domain can directly bind to an extracellular component of YknX. This structural and biochemical study provides insights into the assembly of YknWXYZ, which may be relevant to understanding cannibalistic peptide toxin resistance in Bacillus and controlling bacterial growth.

  17. Brassboard Astrometric Beam Combiner (ABC) Development for the Space Interferometry Mission (SIM)

    Science.gov (United States)

    Jeganathan, Muthu; Kuan, Gary; Rud, Mike; Lin, Sean; Sutherland, Kristen; Moore, James; An, Xin

    2008-01-01

    The Astrometric Beam Combiner (ABC) is a critical element of the Space Interferometry Mission (SIM) that performs three key functions: coherently combine starlight from two siderostats; individually detect starlight for angle tracking; and disperse and detect the interferometric fringes. In addition, the ABC contains: a stimulus, cornercubes and shutters for in-orbit calibration; several tip/tilt mirror mechanisms for in-orbit alignment; and internal metrology beam launcher for pathlength monitoring. The detailed design of the brassboard ABC (which has the form, fit and function of the flight unit) is complete, procurement of long-lead items is underway, and assembly and testing is expected to be completed in Spring 2009. In this paper, we present the key requirements for the ABC, details of the completed optical and mechanical design as well as plans for assembly and alignment.

  18. Armpits, Belly Buttons and Chronic Wounds: The ABCs of Our Body Bacteria

    Science.gov (United States)

    ... and Chronic Wounds: The ABCs of Our Body Bacteria By Alisa Machalek and Allison MacLachlan Posted April ... treating skin and other conditions. Chronic Wounds and Bacteria Bacteria from human skin grown on agar in ...

  19. Selection of optimal artificial boundary condition (ABC) frequencies for structural damage identification

    Science.gov (United States)

    Mao, Lei; Lu, Yong

    2016-07-01

    In this paper, the sensitivities of artificial boundary condition (ABC) frequencies to the damages are investigated, and the optimal sensors are selected to provide the reliable structural damage identification. The sensitivity expressions for one-pin and two-pin ABC frequencies, which are the natural frequencies from structures with one and two additional constraints to its original boundary condition, respectively, are proposed. Based on the expressions, the contributions of the underlying mode shapes in the ABC frequencies can be calculated and used to select more sensitive ABC frequencies. Selection criteria are then defined for different conditions, and their performance in structural damage identification is examined with numerical studies. From the findings, conclusions are given.

  20. Preliminary lifetime predictions for 304 stainless steel as the LANL ABC blanket material

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.J.; Buksa, J.J.; Houts, M.G.; Arthur, E.D.

    1997-11-01

    The prediction of materials lifetime in the preconceptual Los Alamos National Laboratory (LANL) Accelerator-Based Conversion of Plutonium (ABC) is of utmost interest. Because Hastelloy N showed good corrosion resistance to the Oak Ridge National Laboratory Molten Salt Reactor Experiment fuel salt that is similar to the LANL ABC fuel salt, Hastelloy N was originally proposed for the LANL ABC blanket material. In this paper, the possibility of using 304 stainless steel as a replacement for the Hastelloy N is investigated in terms of corrosion issues and fluence-limit considerations. An attempt is made, based on the previous Fast Flux Test Facility design data, to predict the preliminary lifetime estimate of the 304 stainless steel used in the blanket region of the LANL ABC.

  1. Vipsi ABC Grupp teatas kavatsusest börsile minna / Anne Oja

    Index Scriptorium Estoniae

    Oja, Anne, 1970-

    2010-01-01

    Kaubanduskontsern ABC Grupp maksis tagasi 97,2 mln. krooni eest võlakirju, juhatuse esimehe teatel kasutab ettevõtte meeskond saadud kogemusi naasmaks tulevikus avaliku ettevõtte staatusesse juba aktsiaemitendina

  2. About existence of stationary points for the Arnold-Beltrami-Childress (ABC) flow

    CERN Document Server

    Ershkov, Sergey V

    2015-01-01

    The existence of stationary points for the dynamical system of ABC-flow is considered. The ABC-flow, a three-parameter velocity field that provides a simple stationary solution of Euler's equations in three dimensions for incompressible, inviscid fluid flows, is the prototype for the study of turbulence (it provides a simple example of dynamical chaos). But, nevertheless, between the chaotic trajectories of the appropriate solutions of such a system we can reveal the stationary points, the deterministic basis among the chaotic behaviour of ABC-flow dynamical system. It has been proved the existence of 1 point for two partial cases of parameters {A, B, C}: 1) A = B = 1; 2) C = 1 (A^2 + B^2 = 1). Moreover, dynamical system of ABC-flow allows 3 points of such a type, depending on the meanings of parameters {A, B, C}.

  3. Dimerization and enzymatic activity of fungal 17β-hydroxysteroid dehydrogenase from the short-chain dehydrogenase/reductase superfamily

    Directory of Open Access Journals (Sweden)

    Kristan Katja

    2005-12-01

    Full Text Available Abstract Background 17β-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17β-HSDcl is a member of the short-chain dehydrogenase/reductase (SDR superfamily. SDR proteins usually function as dimers or tetramers and 17β-HSDcl is also a homodimer under native conditions. Results We have investigated here which secondary structure elements are involved in the dimerization of 17β-HSDcl and examined the importance of dimerization for the enzyme activity. Sequence similarity with trihydroxynaphthalene reductase from Magnaporthe grisea indicated that Arg129 and His111 from the αE-helices interact with the Asp121, Glu117 and Asp187 residues from the αE and αF-helices of the neighbouring subunit. The Arg129Asp and His111Leu mutations both rendered 17β-HSDcl monomeric, while the mutant 17β-HSDcl-His111Ala was dimeric. Circular dichroism spectroscopy analysis confirmed the conservation of the secondary structure in both monomers. The three mutant proteins all bound coenzyme, as shown by fluorescence quenching in the presence of NADP+, but both monomers showed no enzymatic activity. Conclusion We have shown by site-directed mutagenesis and structure/function analysis that 17β-HSDcl dimerization involves the αE and αF helices of both subunits. Neighbouring subunits are connected through hydrophobic interactions, H-bonds and salt bridges involving amino acid residues His111 and Arg129. Since the substitutions of these two amino acid residues lead to inactive monomers with conserved secondary structure, we suggest dimerization is a prerequisite for catalysis. A detailed understanding of this dimerization could lead to the development of compounds that will specifically prevent dimerization, thereby serving as a new type of inhibitor.

  4. A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis.

    Science.gov (United States)

    Remy, Estelle; Cabrito, Tânia R; Baster, Pawel; Batista, Rita A; Teixeira, Miguel C; Friml, Jiri; Sá-Correia, Isabel; Duque, Paula

    2013-03-01

    Many key aspects of plant development are regulated by the polarized transport of the phytohormone auxin. Cellular auxin efflux, the rate-limiting step in this process, has been shown to rely on the coordinated action of PIN-formed (PIN) and B-type ATP binding cassette (ABCB) carriers. Here, we report that polar auxin transport in the Arabidopsis thaliana root also requires the action of a Major Facilitator Superfamily (MFS) transporter, Zinc-Induced Facilitator-Like 1 (ZIFL1). Sequencing, promoter-reporter, and fluorescent protein fusion experiments indicate that the full-length ZIFL1.1 protein and a truncated splice isoform, ZIFL1.3, localize to the tonoplast of root cells and the plasma membrane of leaf stomatal guard cells, respectively. Using reverse genetics, we show that the ZIFL1.1 transporter regulates various root auxin-related processes, while the ZIFL1.3 isoform mediates drought tolerance by regulating stomatal closure. Auxin transport and immunolocalization assays demonstrate that ZIFL1.1 indirectly modulates cellular auxin efflux during shootward auxin transport at the root tip, likely by regulating plasma membrane PIN2 abundance. Finally, heterologous expression in yeast revealed that ZIFL1.1 and ZIFL1.3 share H(+)-coupled K(+) transport activity. Thus, by determining the subcellular and tissue distribution of two isoforms, alternative splicing dictates a dual function for the ZIFL1 transporter. We propose that this MFS carrier regulates stomatal movements and polar auxin transport by modulating potassium and proton fluxes in Arabidopsis cells.

  5. Genome-wide identification and analysis of the aldehyde dehydrogenase (ALDH) gene superfamily in apple (Malus × domestica Borkh.).

    Science.gov (United States)

    Li, Xiaoqin; Guo, Rongrong; Li, Jun; Singer, Stacy D; Zhang, Yucheng; Yin, Xiangjing; Zheng, Yi; Fan, Chonghui; Wang, Xiping

    2013-10-01

    Aldehyde dehydrogenases (ALDHs) represent a protein superfamily encoding NAD(P)(+)-dependent enzymes that oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes. In plants, they are involved in many biological processes and play a role in the response to environmental stress. In this study, a total of 39 ALDH genes from ten families were identified in the apple (Malus × domestica Borkh.) genome. Synteny analysis of the apple ALDH (MdALDH) genes indicated that segmental and tandem duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of these gene families in apple. Moreover, synteny analysis between apple and Arabidopsis demonstrated that several MdALDH genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes appeared before the divergence of lineages that led to apple and Arabidopsis. In addition, phylogenetic analysis, as well as comparisons of exon-intron and protein structures, provided further insight into both their evolutionary relationships and their putative functions. Tissue-specific expression analysis of the MdALDH genes demonstrated diverse spatiotemporal expression patterns, while their expression profiles under abiotic stress and various hormone treatments indicated that many MdALDH genes were responsive to high salinity and drought, as well as different plant hormones. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles, of the apple MdALDH genes will not only be useful for the further analysis of ALDH genes and their roles in stress response, but may also aid in the future improvement of apple stress tolerance.

  6. The Assessment of Burden of COPD (ABC) Scale: A Reliable and Valid Questionnaire.

    Science.gov (United States)

    Slok, Annerika H M; Bemelmans, Thomas C H; Kotz, Daniel; van der Molen, Thys; Kerstjens, Huib A M; In 't Veen, Johannes C C M; Chavannes, Niels H; Asijee, Guus M; Rutten-van Mölken, Maureen P M H; van Schayck, Onno C P

    2016-08-01

    The newly developed Assessment of Burden of COPD (ABC) scale is a 14-item self-administered questionnaire which measures the physical, psychological, emotional and/or social burden as experienced by patients with chronic obstructive pulmonary disease (COPD). The ABC scale is part of the ABC tool that visualises the outcomes of the questionnaire. The aim of this study was to assess the reliability and construct validity of the ABC scale. This multi-centre survey study was conducted in the practices of 19 general practitioners and 9 pulmonologists throughout the Netherlands. Next to the ABC scale, patients with COPD completed the Saint George Respiratory Questionnaire (SGRQ). Reliability analyses were performed with data from 162 cases. Cronbach's alpha was 0.91 for the total scale. Test-retest reliability, measured at a two week interval (n = 137), had an intra-class correlation coefficient of 0.92. Analyses for convergent validity were performed with data from 133 cases. Discriminant and known-groups validity was analysed with data from 162 cases. The ABC scale total score had a strong correlation with the total score of the SGRQ (r = 0.72, p < 0.001) but a weak correlation with the forced expired volume in 1 second predicted (r = -0.28, p < 0.001). Subgroups with more severe disease, defined by GOLD-stage, frequency of exacerbations, activity level and depression scored statistically significantly (p < 0.05) worse on almost all domains of the ABC scale than the less severe subgroups. The ABC scale seems a valid and reliable tool with good discriminative properties. PMID:26788838

  7. Chondroitinase ABC Improves Basic and Skilled Locomotion in Spinal Cord Injured Cats

    OpenAIRE

    Tester, Nicole J.; Howland, Dena R.

    2007-01-01

    Chondroitin sulfate proteoglycans (CSPGs) are upregulated in the central nervous system following injury. Chondroitin sulfate glycosaminoglycan (CS GAG) side chains substituted on this family of molecules contribute to the limited functional recovery following injury by restricting axonal growth and synaptic plasticity. In the current study, the effects of degrading CS GAGs with Chondroitinase ABC (Ch’ase ABC) in the injured spinal cords of adult cats were assessed. Three groups were evaluate...

  8. Glycolysis Inhibition Inactivates ABC Transporters to Restore Drug Sensitivity in Malignant Cells

    OpenAIRE

    Ayako Nakano; Daisuke Tsuji; Hirokazu Miki; Qu Cui; Salah Mohamed El Sayed; Akishige Ikegame; Asuka Oda; Hiroe Amou; Shingen Nakamura; Takeshi Harada; Shiro Fujii; Kumiko Kagawa; Kyoko Takeuchi; Akira Sakai; Shuji Ozaki

    2011-01-01

    Cancer cells eventually acquire drug resistance largely via the aberrant expression of ATP-binding cassette (ABC) transporters, ATP-dependent efflux pumps. Because cancer cells produce ATP mostly through glycolysis, in the present study we explored the effects of inhibiting glycolysis on the ABC transporter function and drug sensitivity of malignant cells. Inhibition of glycolysis by 3-bromopyruvate (3BrPA) suppressed ATP production in malignant cells, and restored the retention of daunorubic...

  9. SOME IMPORTANT FACTORS AFFECTING EVOLUTION OF ACTIVITY BASED COSTING (ABC SYSTEM IN EGYPTIAN MANUFACTURING FIRMS

    Directory of Open Access Journals (Sweden)

    Karim MAMDOUH ABBAS

    2014-04-01

    Full Text Available The present investigation aims to determine the factors affecting evolution of Activity Based Costing (ABC system in Egyptian case. The study used the survey method to describe and analyze these factors in some Egyptian firms. The population of the study is Egyptian manufacturing firms. Accordingly, the number of received questionnaires was 392 (23 Egyptian manufacturing firms in the first half of 2013. Finally, the study stated some influencing factors for evolution this system (ABC in Egyptian manufacturing firms.

  10. Analysis over Critical Issues of Implementation or Non-implementation of the ABC Method in Romania

    Directory of Open Access Journals (Sweden)

    Sorinel Cãpusneanu

    2009-12-01

    Full Text Available This article analyses the critical issues regarding implementation or non-implementation of the Activity-Based Costing (ABC method in Romania. There are highlighted the specialists views in the field opinions and own point of view of the authors regarding informational, technical, behavioral, financial, managerial, property and competitive issues regarding implementation or non-implementation of the ABC method in Romania.

  11. ABC Transporters and their Role in Nucleoside and Nucleotide Drug Resistance

    OpenAIRE

    Fukuda, Yu; Schuetz, John D.

    2012-01-01

    ATP-binding cassette (ABC) transporters confer drug resistance against a wide range of chemotherapeutic agents, including nucleoside and nucleotide based drugs. While nucleoside based drugs have been used for many years in the treatment of solid and hematological malignancies as well as viral and autoimmune diseases, the potential contribution of ABC transporters has only recently been recognized. This neglect is likely because activation of nucleoside derivatives require an initial carrier-m...

  12. Efficient processing of TFO-directed psoralen DNA interstrand crosslinks by the UvrABC nuclease

    OpenAIRE

    Christensen, Laura A.; Wang, Hong; van Houten, Bennett; Vasquez, Karen M.

    2008-01-01

    Photoreactive psoralens can form interstrand crosslinks (ICLs) in double-stranded DNA. In eubacteria, the endonuclease UvrABC plays a key role in processing psoralen ICLs. Psoralen-modified triplex-forming oligonucleotides (TFOs) can be used to direct ICLs to specific genomic sites. Previous studies of pyrimidine-rich methoxypsoralen–modified TFOs indicated that the TFO inhibits cleavage by UvrABC. Because different chemistries may alter the processing of TFO-directed ICLs, we investigated th...

  13. Motivation of foreign degree students to choose ABC University for their undergraduate studies

    OpenAIRE

    Thapa, Suman; Phung, Mai Anh

    2013-01-01

    Every year, the number of foreign degree students is increasing in Finnish universities. These foreign students come from a wide range of nations all over the world. Being one of the best universities of applied sciences in Helsinki, Finland, each year ABC University receives applications of students from Vietnam, China, Nepal, Bangladesh, Russia, various African countries and so on. The aim of this qualitative research is to investigate why foreign degree students choose ABC University as th...

  14. Why activity based costing (ABC) is still tagging behind the traditional costing in Malaysia?

    OpenAIRE

    Rasiah, Devinaga

    2011-01-01

    This study compares activity-based costing (ABC) model and traditional costing method in Malaysia. Activity based costing (ABC) which was developed into the manufacturing/service sectors in Malaysia. It calculates the cost and performance of activities, resources and cost objects. It can be considered as an alternative model to Traditional Cost-based accounting systems. In this study the results indicated that most operations managers believed that their present cost systems were adequate for...

  15. Improvement of Managerial Accounting in Electricity Industry by Applyng the ABC Method (Activity Based Costing)

    OpenAIRE

    Rof Letiþia Maria; Stanciu Ionela Cornelia

    2011-01-01

    The objective of this scientific approach is to present a valid and reasoned opinion on the contribution of a modern method of cost calculation, ABC method (Activity Based Costing), in improvement of managerial accounting, to conduct a comparative study of traditional methods of calculation and to highlight the benefits of adopting and implementing modern methods of calculation. ABC method is a methodological approach of "refining" the system costs, that places in the centre of cost matter th...

  16. SOME IMPORTANT FACTORS AFFECTING EVOLUTION OF ACTIVITY BASED COSTING (ABC) SYSTEM IN EGYPTIAN MANUFACTURING FIRMS

    OpenAIRE

    Karim MAMDOUH ABBAS

    2014-01-01

    The present investigation aims to determine the factors affecting evolution of Activity Based Costing (ABC) system in Egyptian case. The study used the survey method to describe and analyze these factors in some Egyptian firms. The population of the study is Egyptian manufacturing firms. Accordingly, the number of received questionnaires was 392 (23 Egyptian manufacturing firms) in the first half of 2013. Finally, the study stated some influencing factors for evolution this system (ABC) in Eg...

  17. Active Breathing Control (ABC) : Messung und Reduktion von ateminduzierten Organbewegungen des Thorax

    OpenAIRE

    Kientopf, Aline

    2009-01-01

    PURPOSE: Extensive radiotherapy volumes for tumors of the chest are partly caused by interfractional organ motion. We evaluated the feasibility of respiratory observation tools using the active breathing control (ABC) system and the effect on breathing cycle regularity and reproducibility.METHODS AND MATERIALS: Thirty-six patients with unresectable tumors of the chest were selected for evaluation of the ABC system. Computed tomography scans were performed at various respiratory phases startin...

  18. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Directory of Open Access Journals (Sweden)

    Feng-Xia Tian

    Full Text Available Aldehyde dehydrogenases (ALDHs constitute a superfamily of NAD(P+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  19. Optimization of Straight Cylindrical Turning Using Artificial Bee Colony (ABC) Algorithm

    Science.gov (United States)

    Prasanth, Rajanampalli Seshasai Srinivasa; Hans Raj, Kandikonda

    2016-06-01

    Artificial bee colony (ABC) algorithm, that mimics the intelligent foraging behavior of honey bees, is increasingly gaining acceptance in the field of process optimization, as it is capable of handling nonlinearity, complexity and uncertainty. Straight cylindrical turning is a complex and nonlinear machining process which involves the selection of appropriate cutting parameters that affect the quality of the workpiece. This paper presents the estimation of optimal cutting parameters of the straight cylindrical turning process using the ABC algorithm. The ABC algorithm is first tested on four benchmark problems of numerical optimization and its performance is compared with genetic algorithm (GA) and ant colony optimization (ACO) algorithm. Results indicate that, the rate of convergence of ABC algorithm is better than GA and ACO. Then, the ABC algorithm is used to predict optimal cutting parameters such as cutting speed, feed rate, depth of cut and tool nose radius to achieve good surface finish. Results indicate that, the ABC algorithm estimated a comparable surface finish when compared with real coded genetic algorithm and differential evolution algorithm.

  20. Hybrid optimization algorithm of PSO and ABC%PSO和ABC的混合优化算法

    Institute of Scientific and Technical Information of China (English)

    刘俊芳; 张雪英; 宁爱平

    2011-01-01

    This paper proposes a parallel hybrid optimization algorithm of ABC-PSO by combining Particle Swarm Optimization (PSO) algorithm and Artificial Bee Colony (ABC) algorithm.In each iteration, the swarm is divided into two sub-groups, one sub-group evolves using PSO algorithm, the other sub-group evolves using ABC algorithm and then the two algorithms are compared after selecting the best fitness value.Through comparing the hybrid algorithm with the standard PSO algorithm in evolving solution to four standard functions, the results show that the ABC-PSO hybrid algorithm has a better optimization performance.%通过将粒子群优化(Particle Swarm Optimization,PSO)算法与人工蜂群(Artificial Bee Colony,ABC)算法相结合,提出一种ABC-PSO并行混合优化算法.在每次迭代中,将种群分为两个子种群,一个子种群使用PSO算法,另一个子种群使用ABC算法,两个算法寻优后进行比较,选出最优适应值.通过混合算法对4个标准函数进行测试,并与标准PSO算法进行比较,结果表明混合算法具有更好的优化性能.

  1. astroABC: An Approximate Bayesian Computation Sequential Monte Carlo sampler for cosmological parameter estimation

    CERN Document Server

    Jennings, Elise

    2016-01-01

    Given the complexity of modern cosmological parameter inference where we are faced with non-Gaussian data and noise, correlated systematics and multi-probe correlated data sets, the Approximate Bayesian Computation (ABC) method is a promising alternative to traditional Markov Chain Monte Carlo approaches in the case where the Likelihood is intractable or unknown. The ABC method is called "Likelihood free" as it avoids explicit evaluation of the Likelihood by using a forward model simulation of the data which can include systematics. We introduce astroABC, an open source ABC Sequential Monte Carlo (SMC) sampler for parameter estimation. A key challenge in astrophysics is the efficient use of large multi-probe datasets to constrain high dimensional, possibly correlated parameter spaces. With this in mind astroABC allows for massive parallelization using MPI, a framework that handles spawning of jobs across multiple nodes. A key new feature of astroABC is the ability to create MPI groups with different communica...

  2. Abc Amino Acids: Design, Synthesis, and Properties of New Photoelastic Amino Acids

    Energy Technology Data Exchange (ETDEWEB)

    Standaert, Robert F [ORNL; Park, Dr Seung Bum [Seoul National University

    2006-01-01

    Photoisomerizable amino acids provide a direct avenue to the experimental manipulation of bioactive polypeptides, potentially allowing real-time, remote control of biological systems and enabling useful applications in nanobiotechnology. Herein, we report a new class of photoisomerizable amino acids intended to cause pronounced expansion and contraction in the polypeptide backbone, i.e., to be photoelastic. These compounds, termed Abc amino acids, employ a photoisomerizable azobiphenyl chromophore to control the relative disposition of aminomethyl and carboxyl substituents. Molecular modeling of nine Abc isomers led to the identification of one with particularly attractive properties, including the ability to induce contractions up to 13A in the backbone upon transa?cis photoisomerization. This isomer, designated mpAbc, has substituents at meta and para positions on the inner (azo-linked) and outer rings, respectively. An efficient synthesis of Fmoc-protected mpAbc was executed in which the biaryl components were formed via Suzuki couplings and the azo linkage was formed via amine/nitroso condensation; protected forms of three other Abc isomers were prepared similarly. A decapeptide incorporating mpAbc was synthesized by conventional solid-phase methods and displayed characteristic azobenzene photochemical behavior with optimal conversion to the cis isomer at 360 nm and a thermal cisa?trans half life of 100 min. at 80 AoC.

  3. DEVELOPMENT OF A STRATEGIC MANAGEMENT TOOL IN A THERMAL POWER PLANT USING ABC AND BSC MODELS

    Directory of Open Access Journals (Sweden)

    Rishi Dwivedi

    2016-05-01

    Full Text Available In today’s dynamic, uncertain and highly competitive business environment, the long term success of an organization critically depends on the perceptions, choices and actions of its managers regarding their strategies. Activity based costing (ABC and balanced scorecard (BSC are the modern day management approaches acknowledged as reliable tools for strategy formulation and implementation in an organization. In this paper, ABC and BSC models are separately proposed and applied in the merry-go-round (MGR department of an Indian thermal power plant. The results elicited from adoption of these two models in the said power plant provide more accurate, timely, and reliable operational and financial information at different activity levels of the organization, which would help in effective strategic and tactical decision making. Even though, there are limited published research papers related to application of ABC model in power plants, none of them has adopted ABC and BSC techniques in an Indian contextual environment. Additionally, an integrated ABC-BSC model is designed to harness the complementary synergies of both ABC and BSC models.

  4. Modulation of Bacterial Multidrug Resistance Efflux Pumps of the Major Facilitator Superfamily

    Directory of Open Access Journals (Sweden)

    Sanath Kumar

    2013-01-01

    Full Text Available Bacterial infections pose a serious public health concern, especially when an infectious disease has a multidrug resistant causative agent. Such multidrug resistant bacteria can compromise the clinical utility of major chemotherapeutic antimicrobial agents. Drug and multidrug resistant bacteria harbor several distinct molecular mechanisms for resistance. Bacterial antimicrobial agent efflux pumps represent a major mechanism of clinical resistance. The major facilitator superfamily (MFS is one of the largest groups of solute transporters to date and includes a significant number of bacterial drug and multidrug efflux pumps. We review recent work on the modulation of multidrug efflux pumps, paying special attention to those transporters belonging primarily to the MFS.

  5. General survey of hAT transposon superfamily with highlight on hobo element in Drosophila.

    Science.gov (United States)

    Ladevèze, Véronique; Chaminade, Nicole; Lemeunier, Françoise; Periquet, Georges; Aulard, Sylvie

    2012-09-01

    The hAT transposons, very abundant in all kingdoms, have a common evolutionary origin probably predating the plant-fungi-animal divergence. In this paper we present their general characteristics. Members of this superfamily belong to Class II transposable elements. hAT elements share transposase, short terminal inverted repeats and eight base-pairs duplication of genomic target. We focus on hAT elements in Drosophila, especially hobo. Its distribution, dynamics and impact on genome restructuring in laboratory strains as well as in natural populations are reported. Finally, the evolutionary history of hAT elements, their domestication and use as transgenic tools are discussed.

  6. Giant mini-clusters as possible origin of halo phenomena observed in super-families

    Science.gov (United States)

    1985-01-01

    Among 91 mini-clusters from 30 high energy Chiron-type families in Chacaltaya emulsion chambers, there were observed several extremely large multiplicity clusters in the highest energy range, far beyond the average of ordinary type clusters. Some details of microscopic observation of those giant mini-clusters in nuclear emulsion plates and some phenomenological regularity found in common among them are described. Such giant mini-clusters are possible candidates for the origin of narrow symmetric single halo phenomena in X-ray films which are frequently observed in super-families of visible energy greater than 1,000 TeV.

  7. Allosteric modulation of G-protein coupled receptors

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Spalding, Tracy A

    2004-01-01

    The superfamily of G-protein coupled receptors (GPCRs) has more than 1000 members and is the largest family of proteins in the body. GPCRs mediate signalling of stimuli as diverse as light, ions, small molecules, peptides and proteins and are the targets for many pharmaceuticals. Most GPCR ligands...

  8. Identification of the in vivo function of the high-efficiency D-mannonate dehydratase in Caulobacter crescentus NA1000 from the enolase superfamily.

    Science.gov (United States)

    Wichelecki, Daniel J; Graff, Dylan C; Al-Obaidi, Nawar; Almo, Steven C; Gerlt, John A

    2014-07-01

    The d-mannonate dehydratase (ManD) subgroup of the enolase superfamily contains members with varying catalytic activities (high-efficiency, low-efficiency, or no activity) that dehydrate d-mannonate and/or d-gluconate to 2-keto-3-deoxy-d-gluconate [Wichelecki, D. J., et al. (2014) Biochemistry 53, 2722-2731]. Despite extensive in vitro characterization, the in vivo physiological role of a ManD has yet to be established. In this study, we report the in vivo functional characterization of a high-efficiency ManD from Caulobacter crescentus NA1000 (UniProt entry B8GZZ7) by in vivo discovery of its essential role in d-glucuronate metabolism. This in vivo functional annotation may be extended to ~50 additional proteins.

  9. IGSF9 Family Proteins

    DEFF Research Database (Denmark)

    Hansen, Maria; Walmod, Peter Schledermann

    2013-01-01

    The Drosophila protein Turtle and the vertebrate proteins immunoglobulin superfamily (IgSF), member 9 (IGSF9/Dasm1) and IGSF9B are members of an evolutionarily ancient protein family. A bioinformatics analysis of the protein family revealed that invertebrates contain only a single IGSF9 family gene......, the longest isoforms of the proteins have the same general organization as the neural cell adhesion molecule family of cell adhesion molecule proteins, and like this family of proteins, IGSF9 family members are expressed in the nervous system. A review of the literature revealed that Drosophila Turtle...... facilitates homophilic cell adhesion. Moreover, IGSF9 family proteins have been implicated in the outgrowth and branching of neurites, axon guidance, synapse maturation, self-avoidance, and tiling. However, despite the few published studies on IGSF9 family proteins, reports on the functions of both Turtle...

  10. Toward an asymptotic behaviour of the ABC dynamo

    CERN Document Server

    Bouya, Ismaël

    2016-01-01

    The ABC flow was originally introduced by Arnol'd to investigate Lagrangian chaos. It soon became the prototype example to illustrate magnetic-field amplification via fast dynamo action, i.e. dynamo action exhibiting magnetic-field amplification on a typical timescale independent of the electrical resistivity of the medium. Even though this flow is the most classical example for this important class of dynamos (with application to large-scale astrophysical objects), it was recently pointed out (Bouya Isma\\"el and Dormy Emmanuel, Phys. Fluids, 25 (2013) 037103) that the fast dynamo nature of this flow was unclear, as the growth rate still depended on the magnetic Reynolds number at the largest values available so far $(\\text{Rm} = 25000)$ . Using state-of-the-art high-performance computing, we present high-resolution simulations (up to 40963) and extend the value of $\\text{Rm}$ up to $ 5\\cdot10^5$ . Interestingly, even at these huge values, the growth rate of the leading eigenmode still depends on the controll...

  11. Discovery of novel, high potent, ABC type PTP1B inhibitors with TCPTP selectivity and cellular activity.

    Science.gov (United States)

    Liu, Peihong; Du, Yongli; Song, Lianhua; Shen, Jingkang; Li, Qunyi

    2016-08-01

    Protein tyrosine phosphatase 1B (PTP1B) as a key negative regulator of both insulin and leptin receptor pathways has been an attractive therapeutic target for the treatment of type 2 diabetes mellitus (T2DM) and obesity. With the goal of enhancing potency and selectivity of the PTP1B inhibitors, a series of methyl salicylate derivatives as ABC type PTP1B inhibitors (P1-P7) were discovered. More importantly, compound P6 exhibited high potent inhibitory activity (IC50 = 50 nM) for PTP1B with 15-fold selectivity over T-cell PTPase (TCPTP). Further studies on cellular activities revealed that compound P6 could enhance insulin-mediated insulin receptor β (IRβ) phosphorylation and insulin-stimulated glucose uptake. PMID:27123900

  12. Human ABC transporter ABCG2/BCRP expression in chemoresistance: basic and clinical perspectives for molecular cancer therapeutics

    Directory of Open Access Journals (Sweden)

    Noguchi K

    2014-02-01

    Full Text Available Kohji Noguchi, Kazuhiro Katayama, Yoshikazu Sugimoto Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan Abstract: Adenine triphosphate (ATP-binding cassette (ABC transporter proteins, such as ABCB1/P-glycoprotein (P-gp and ABCG2/breast cancer resistance protein (BCRP, transport various structurally unrelated compounds out of cells. ABCG2/BCRP is referred to as a “half-type” ABC transporter, functioning as a homodimer, and transports anticancer agents such as irinotecan, 7-ethyl-10-hydroxycamptothecin (SN-38, gefitinib, imatinib, methotrexate, and mitoxantrone from cells. The expression of ABCG2/BCRP can confer a multidrug-resistant phenotype on cancer cells and affect drug absorption, distribution, metabolism, and excretion in normal tissues, thus modulating the in vivo efficacy of chemotherapeutic agents. Clarification of the substrate preferences and structural relationships of ABCG2/BCRP is essential for our understanding of the molecular mechanisms underlying its effects in vivo during chemotherapy. Its single-nucleotide polymorphisms are also involved in determining the efficacy of chemotherapeutics, and those that reduce the functional activity of ABCG2/BCRP might be associated with unexpected adverse effects from normal doses of anticancer drugs that are ABCG2/BCRP substrates. Importantly, many recently developed molecular-targeted cancer drugs, such as the tyrosine kinase inhisbitors, imatinib mesylate, gefitinib, and others, can also interact with ABCG2/BCRP. Both functional single-nucleotide polymorphisms and inhibitory agents of ABCG2/BCRP modulate the in vivo pharmacokinetics and pharmacodynamics of these molecular cancer treatments, so the pharmacogenetics of ABCG2/BCRP is an important consideration in the application of molecular-targeted chemotherapies. Keywords: kinase inhibitor, SNP, single-nucleotide polymorphisms, molecular target

  13. Bioinformatic methods in protein characterization

    OpenAIRE

    Kallberg, Yvonne

    2002-01-01

    Bioinformatics is an emerging interdisciplinary research field in which mathematics. computer science and biology meet. In this thesis. bioinformatic methods for analysis of functional and structural properties among proteins will be presented. I have developed and applied bioinformatic methods on the enzyme superfamily of short-chain dehydrogenases/reductases (SDRs), coenzyme-binding enzymes of the Rossmann fold type, and amyloid-forming proteins and peptides. The basis...

  14. ABC- and SLC-Transporters in Murine and Bovine Mammary Epithelium--Effects of Prochloraz.

    Directory of Open Access Journals (Sweden)

    Yagmur Yagdiran

    Full Text Available Some chemicals are ligands to efflux transporters which may result in high concentrations in milk. Limited knowledge is available on the influence of maternal exposure to chemicals on the expression and function of transporters in the lactating mammary gland. We determined gene expression of ABC and SLC transporters in murine mammary tissue of different gestation and lactation stages, in murine mammary cells (HC11 featuring resting and secreting phenotypes and in bovine mammary tissue and cells (BME-UV. Effects on transporter expression and function of the imidazole fungicide prochloraz, previously reported to influence BCRP in mammary cells, was investigated on transporter expression and function in the two cell lines. Transporters studied were BCRP, MDR1, MRP1, OATP1A5/OATP1A2, OCTN1 and OCT1. Gene expressions of BCRP and OCT1 in murine mammary glands were increased during gestation and lactation, whereas MDR1, MRP1, OATP1A5 and OCTN1 were decreased, compared to expressions in virgins. All transporters measured in mammary glands of mice were detected in bovine mammary tissue and in HC11 cells, while only MDR1 and MRP1 were detected in BME-UV cells. Prochloraz treatment induced MDR1 gene and protein expression in both differentiated HC11 and BME-UV cells and increased protein function in HC11 cells, resulting in decreased accumulation of the MDR1 substrate digoxin. In conclusion, our results demonstrate that murine (HC11 and bovine (BME-UV mammary epithelial cells can be applied to characterize expression and function of transporters as well as effects of contaminants on the mammary transporters. An altered expression, induced by a drug or toxic chemical, on any of the transporters expressed in the mammary epithelial cells during lactation may modulate the well-balanced composition of nutrients and/or secretion of contaminants in milk with potential adverse effects on breast-fed infants and dairy consumers.

  15. Characterizations of Two Bacterial Persulfide Dioxygenases of the Metallo-β-lactamase Superfamily.

    Science.gov (United States)

    Sattler, Steven A; Wang, Xia; Lewis, Kevin M; DeHan, Preston J; Park, Chung-Min; Xin, Yufeng; Liu, Honglei; Xian, Ming; Xun, Luying; Kang, ChulHee

    2015-07-31

    Persulfide dioxygenases (PDOs), also known as sulfur dioxygenases (SDOs), oxidize glutathione persulfide (GSSH) to sulfite and GSH. PDOs belong to the metallo-β-lactamase superfamily and play critical roles in animals, plants, and microorganisms, including sulfide detoxification. The structures of two PDOs from human and Arabidopsis thaliana have been reported; however, little is known about the substrate binding and catalytic mechanism. The crystal structures of two bacterial PDOs from Pseudomonas putida and Myxococcus xanthus were determined at 1.5- and 2.5-Å resolution, respectively. The structures of both PDOs were homodimers, and their metal centers and β-lactamase folds were superimposable with those of related enzymes, especially the glyoxalases II. The PDOs share similar Fe(II) coordination and a secondary coordination sphere-based hydrogen bond network that is absent in glyoxalases II, in which the corresponding residues are involved instead in coordinating a second metal ion. The crystal structure of the complex between the Pseudomonas PDO and GSH also reveals the similarity of substrate binding between it and glyoxalases II. Further analysis implicates an identical mode of substrate binding by known PDOs. Thus, the data not only reveal the differences in metal binding and coordination between the dioxygenases and the hydrolytic enzymes in the metallo-β-lactamase superfamily, but also provide detailed information on substrate binding by PDOs. PMID:26082492

  16. [Partial cross-cultural adaptation of the Aberrant Behavior Checklist (ABC) scale for analysis of patients with mental retardation].

    Science.gov (United States)

    Losapio, Mirella Fiuza; Silva, Lis Gomes; Pondé, Milena Pereira; Novaes, Camila Marinho; Santos, Darci Neves dos; Argollo, Nayara; Oliveira, Ivete Maria Santos; Brasil, Heloisa Helena Alves

    2011-05-01

    The aim of the ABC (Aberrant Behavior Checklist) is to evaluate the treatment response for aberrant behavior in patients with mental retardation. The aim of this study was to describe the partial cross-cultural adaptation of the ABC scale to Brazilian Portuguese. The process included conceptual and item equivalence, two translations (T1, T2) and their back-translations (R1, R2), evaluation of referential and general equivalence, expert evaluations, a pre-test, and elaboration of the final version. Conceptual and item equivalences of the ABC were considered pertinent to Brazilian culture. Semantic equivalence showed good correspondence between R1 items and ABC. Reasonable correspondence was obtained between ABC items and R2. All of the professors understood 94.8% of the items in the scale, while relatives understood 87.9%. The Brazilian Portuguese version of the ABC scale thus is available for use, with the appropriate conceptual, item, and semantic equivalence.

  17. Chondroitinase ABC promotes recovery of adaptive limb movements and enhances axonal growth caudal to a spinal hemisection

    OpenAIRE

    Jefferson, Stephanie C.; Tester, Nicole J.; Howland, Dena R.

    2011-01-01

    A number of studies have shown that Chondroitinase ABC (Ch’ase ABC) digestion of inhibitory chondroitin sulfate glycosaminoglycans significantly enhances axonal growth and recovery in rodents following spinal cord injury (SCI). Further, our group has shown improved recovery following SCI in the larger cat model. The purpose of the current study was to determine if intraspinal delivery of Ch’ase ABC, following T10 hemisections in adult cats, enhances adaptive movement features during a skilled...

  18. Building Social Capital : A Field Study of the Active, Beautiful and Clean Waters (ABC Waters) Programme in Singapore

    OpenAIRE

    Tovatt, Oliver

    2015-01-01

    This thesis presents a field study examining the effect of the Active, Beautiful and Clean Waters (ABC Waters) Programme in Singapore on social capital. Based on a multi-disciplinary approach and following the theoretical framework of bonding and bridging social capital developed by Robert Putnam and others, three different cases of the ABC Programme were compared, looking particularly at the level of blue-green landscape integration. The three cases comprised the ABC flagship project ‘Bishan...

  19. ABC and VED Analysis of the Pharmacy Store of a Tertiary Care Teaching, Research and Referral Healthcare Institute of India

    OpenAIRE

    Devnani, M; Gupta, AK; Nigah, R

    2010-01-01

    The ABC and VED (vital, essential, desirable) analysis of the pharmacy store of Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India, was conducted to identify the categories of items needing stringent management control. The annual consumption and expenditure incurred on each item of pharmacy for the year 2007-08 was analyzed and inventory control techniques, i.e. ABC, VED and ABC-VED matrix analysis, were applied. The drug formulary of the pharmacy consisted...

  20. Cutting edge SRU control : improved environmental compliance with Jacobs advanced burner control+ (ABC+)

    Energy Technology Data Exchange (ETDEWEB)

    Molenaar, G. [Jacobs Canada Inc., Calgary, AB (Canada); Henning, A.; Kobussen, S. [Jacobs Nederland BV, Hoogvliet (Netherlands)

    2009-07-01

    Oil sands bitumen contains approximately 4 to 5 per cent sulphur by weight and the bitumen is upgraded to produce lighter fractions. During coking the bitumen is heated and cracked into lighter molecules and a mixture of kerosene, naphtha and gas oil is recovered via fractionation. Then, the vapors leaving the fractionator are processed through hydrodesulphurization, followed by removal by amine based sweetening units. The acid gas from the ASUs is sent to the sulphur recovery units (SRUs) where most of the sulphur is recovered as elemental sulphur. The oil sands industry faces many challenges with respect to environmental impact, energy use and greenhouse gas emissions including the recovery of sulphur and minimizing hydrogen sulfide (H{sub 2}S) and sulphur dioxide (SO{sub 2}) emissions from the oil sands production facilities. In order to improve the SRU control response to acid gas feed variations, Jacobs Comprimo Sulphur Solutions implemented advanced burner control+ (ABC+) at Suncor's Simonette Gas Plant's SRU in northern Alberta. This control system used an acid gas feed analyzer and dynamic algorithms to control the combustion air to the reaction furnace. The analyzer measures H{sub 2}S, total hydrocarbons, carbon dioxide (CO{sub 2}) and water (H{sub 2}O) accurately and quickly, which is important for having effective and fast air-to-acid gas ratio control. The paper provided background information on the Suncor Simonette Gas Plant and discussed ABC+ versus conventional control. An overview of the simplified ABC and ABC+ systems was then illustrated and presented. The ABB multiwave process photometer was also explained. Last, a dynamic simulation of the potential benefits of ABC+ was discussed and the ABC+ benefits for oil sands were presented. It was concluded that ABC+ provides improved SRU performance, reduced SO{sub 2} emissions and violations, and reduced flaring. 1 tab., 3 figs.

  1. A PhoPQ-Regulated ABC Transporter System Exports Tetracycline in Pseudomonas aeruginosa.

    Science.gov (United States)

    Chen, Lin; Duan, Kangmin

    2016-05-01

    Pseudomonas aeruginosa is an important human pathogen whose infections are difficult to treat due to its high intrinsic resistance to many antibiotics. Here, we show that the disruption of PA4456, encoding the ATP binding component of a putative ATP-binding cassette (ABC) transporter, increased the bacterium's susceptible to tetracycline and other antibiotics or toxic chemicals. Fluorescence spectroscopy and antibiotic accumulation tests showed that the interruption of the ABC transporter caused increased intracellular accumulation of tetracycline, demonstrating a role of the ABC transporter in tetracycline expulsion. Site-directed mutagenesis proved that the conserved residues of E170 in the Walker B motif and H203 in the H-loop, which are important for ATP hydrolysis, were essential for the function of PA4456. Through a genome-wide search, the PhoPQ two-component system was identified as a regulator of the computationally predicted PA4456-4452 operon that encodes the ABC transporter system. A >5-fold increase of the expression of this operon was observed in the phoQ mutant. The results obtained also show that the expression of the phzA1B1C1D1E1 operon and the production of pyocyanin were significantly higher in the ABC transporter mutant, signifying a connection between the ABC transporter and pyocyanin production. These results indicated that the PhoPQ-regulated ABC transporter is associated with intrinsic resistance to antibiotics and other adverse compounds in P. aeruginosa, probably by extruding them out of the cell. PMID:26953208

  2. Molecular phylogeny of the bivalve superfamily Galeommatoidea (Heterodonta, Veneroida reveals dynamic evolution of symbiotic lifestyle and interphylum host switching

    Directory of Open Access Journals (Sweden)

    Goto Ryutaro

    2012-09-01

    Full Text Available Abstract Background Galeommatoidea is a superfamily of bivalves that exhibits remarkably diverse lifestyles. Many members of this group live attached to the body surface or inside the burrows of other marine invertebrates, including crustaceans, holothurians, echinoids, cnidarians, sipunculans and echiurans. These symbiotic species exhibit high host specificity, commensal interactions with hosts, and extreme morphological and behavioral adaptations to symbiotic life. Host specialization to various animal groups has likely played an important role in the evolution and diversification of this bivalve group. However, the evolutionary pathway that led to their ecological diversity is not well understood, in part because of their reduced and/or highly modified morphologies that have confounded traditional taxonomy. This study elucidates the taxonomy of the Galeommatoidea and their evolutionary history of symbiotic lifestyle based on a molecular phylogenic analysis of 33 galeommatoidean and five putative galeommatoidean species belonging to 27 genera and three families using two nuclear ribosomal genes (18S and 28S ribosomal DNA and a nuclear (histone H3 and mitochondrial (cytochrome oxidase subunit I protein-coding genes. Results Molecular phylogeny recovered six well-supported major clades within Galeommatoidea. Symbiotic species were found in all major clades, whereas free-living species were grouped into two major clades. Species symbiotic with crustaceans, holothurians, sipunculans, and echiurans were each found in multiple major clades, suggesting that host specialization to these animal groups occurred repeatedly in Galeommatoidea. Conclusions Our results suggest that the evolutionary history of host association in Galeommatoidea has been remarkably dynamic, involving frequent host switches between different animal phyla. Such an unusual pattern of dynamic host switching is considered to have resulted from their commensalistic lifestyle, in

  3. Uncovering the Transmembrane Metal Binding Site of the Novel Bacterial Major Facilitator Superfamily-Type Copper Importer CcoA

    Directory of Open Access Journals (Sweden)

    Bahia Khalfaoui-Hassani

    2016-01-01

    Full Text Available Uptake and trafficking of metals and their delivery to their respective metalloproteins are important processes. Cells need precise control of each step to avoid exposure to excessive metal concentrations and their harmful consequences. Copper (Cu is a required micronutrient used as a cofactor in proteins. However, in large amounts, it can induce oxidative damage; hence, Cu homeostasis is indispensable for cell survival. Biogenesis of respiratory heme-Cu oxygen (HCO reductases includes insertion of Cu into their catalytic subunits to form heme-Cu binuclear centers. Previously, we had shown that CcoA is a major facilitator superfamily (MFS-type bacterial Cu importer required for biogenesis of cbb3-type cytochrome c oxidase (cbb3-Cox. Here, using Rhodobacter capsulatus, we focused on the import and delivery of Cu to cbb3-Cox. By comparing the CcoA amino acid sequence with its homologues from other bacterial species, we located several well-conserved Met, His, and Tyr residues that might be important for Cu transport. We determined the topology of the transmembrane helices that carry these residues to establish that they are membrane embedded, and substituted for them amino acids that do not ligand metal atoms. Characterization of these mutants for their uptake of radioactive 64Cu and cbb3-Cox activities demonstrated that Met233 and His261 of CcoA are essential and Met237 and Met265 are important, whereas Tyr230 has no role for Cu uptake or cbb3-Cox biogenesis. These findings show for the first time that CcoA-mediated Cu import relies on conserved Met and His residues that could act as metal ligands at the membrane-embedded Cu binding domain of this transporter.

  4. Cupincin: A Unique Protease Purified from Rice (Oryza sativa L.) Bran Is a New Member of the Cupin Superfamily.

    Science.gov (United States)

    Sreedhar, Roopesh; Kaul Tiku, Purnima

    2016-01-01

    Cupin superfamily is one of the most diverse super families. This study reports the purification and characterization of a novel cupin domain containing protease from rice bran for the first time. Hypothetical protein OsI_13867 was identified and named as cupincin. Cupincin was purified to 4.4 folds with a recovery of 4.9%. Cupincin had an optimum pH and temperature of pH 4.0 and 60 °C respectively. Cupincin was found to be a homotrimer, consisting of three distinct subunits with apparent molecular masses of 33.45 kDa, 22.35 kDa and 16.67 kDa as determined by MALDI-TOF, whereas it eluted as a single unit with an apparent molecular mass of 135.33 ± 3.52 kDa in analytical gel filtration and migrated as a single band in native page, suggesting its homogeneity. Sequence identity of cupincin was deduced by determining the amino-terminal sequence of the polypeptide chains and by and de novo sequencing. For understanding the hydrolysing mechanism of cupincin, its three-dimensional model was developed. Structural analysis indicated that cupincin contains His313, His326 and Glu318 with zinc ion as the putative active site residues, inhibition of enzyme activity by 1,10-phenanthroline and atomic absorption spectroscopy confirmed the presence of zinc ion. The cleavage specificity of cupincin towards oxidized B-chain of insulin was highly specific; cleaving at the Leu15-Tyr16 position, the specificity was also determined using neurotensin as a substrate, where it cleaved only at the Glu1-Tyr2 position. Limited proteolysis of the protease suggests a specific function for cupincin. These results demonstrated cupincin as a completely new protease. PMID:27064905

  5. Cupincin: A Unique Protease Purified from Rice (Oryza sativa L. Bran Is a New Member of the Cupin Superfamily.

    Directory of Open Access Journals (Sweden)

    Roopesh Sreedhar

    Full Text Available Cupin superfamily is one of the most diverse super families. This study reports the purification and characterization of a novel cupin domain containing protease from rice bran for the first time. Hypothetical protein OsI_13867 was identified and named as cupincin. Cupincin was purified to 4.4 folds with a recovery of 4.9%. Cupincin had an optimum pH and temperature of pH 4.0 and 60 °C respectively. Cupincin was found to be a homotrimer, consisting of three distinct subunits with apparent molecular masses of 33.45 kDa, 22.35 kDa and 16.67 kDa as determined by MALDI-TOF, whereas it eluted as a single unit with an apparent molecular mass of 135.33 ± 3.52 kDa in analytical gel filtration and migrated as a single band in native page, suggesting its homogeneity. Sequence identity of cupincin was deduced by determining the amino-terminal sequence of the polypeptide chains and by and de novo sequencing. For understanding the hydrolysing mechanism of cupincin, its three-dimensional model was developed. Structural analysis indicated that cupincin contains His313, His326 and Glu318 with zinc ion as the putative active site residues, inhibition of enzyme activity by 1,10-phenanthroline and atomic absorption spectroscopy confirmed the presence of zinc ion. The cleavage specificity of cupincin towards oxidized B-chain of insulin was highly specific; cleaving at the Leu15-Tyr16 position, the specificity was also determined using neurotensin as a substrate, where it cleaved only at the Glu1-Tyr2 position. Limited proteolysis of the protease suggests a specific function for cupincin. These results demonstrated cupincin as a completely new protease.

  6. Arabidopsis POLYOL TRANSPORTER5, a new member of the monosaccharide transporter-like superfamily, mediates H+-Symport of numerous substrates, including myo-inositol, glycerol, and ribose.

    Science.gov (United States)

    Klepek, Yvonne-Simone; Geiger, Dietmar; Stadler, Ruth; Klebl, Franz; Landouar-Arsivaud, Lucie; Lemoine, Rémi; Hedrich, Rainer; Sauer, Norbert

    2005-01-01

    Six genes of the Arabidopsis thaliana monosaccharide transporter-like (MST-like) superfamily share significant homology with polyol transporter genes previously identified in plants translocating polyols (mannitol or sorbitol) in their phloem (celery [Apium graveolens], common plantain [Plantago major], or sour cherry [Prunus cerasus]). The physiological role and the functional properties of this group of proteins were unclear in Arabidopsis, which translocates sucrose and small amounts of raffinose rather than polyols. Here, we describe POLYOL TRANSPORTER5 (AtPLT5), the first member of this subgroup of Arabidopsis MST-like transporters. Transient expression of an AtPLT5-green fluorescent protein fusion in plant cells and functional analyses of the AtPLT5 protein in yeast and Xenopus oocytes demonstrate that AtPLT5 is located in the plasma membrane and characterize this protein as a broad-spectrum H+-symporter for linear polyols, such as sorbitol, xylitol, erythritol, or glycerol. Unexpectedly, however, AtPLT5 catalyzes also the transport of the cyclic polyol myo-inositol and of different hexoses and pentoses, including ribose, a sugar that is not transported by any of the previously characterized plant sugar transporters. RT-PCR analyses and AtPLT5 promoter-reporter gene plants revealed that AtPLT5 is most strongly expressed in Arabidopsis roots, but also in the vascular tissue of leaves and in specific floral organs. The potential physiological role of AtPLT5 is discussed. PMID:15598803

  7. Operating cost analysis of anaesthesia: Activity based costing (ABC analysis

    Directory of Open Access Journals (Sweden)

    Majstorović Branislava M.

    2011-01-01

    Full Text Available Introduction. Cost of anaesthesiology represent defined measures to determine a precise profile of expenditure estimation of surgical treatment, which is important regarding planning of healthcare activities, prices and budget. Objective. In order to determine the actual value of anaestesiological services, we started with the analysis of activity based costing (ABC analysis. Methods. Retrospectively, in 2005 and 2006, we estimated the direct costs of anestesiological services (salaries, drugs, supplying materials and other: analyses and equipment. of the Institute of Anaesthesia and Resuscitation of the Clinical Centre of Serbia. The group included all anesthetized patients of both sexes and all ages. We compared direct costs with direct expenditure, “each cost object (service or unit” of the Republican Health-care Insurance. The Summary data of the Departments of Anaesthesia documented in the database of the Clinical Centre of Serbia. Numerical data were utilized and the numerical data were estimated and analyzed by computer programs Microsoft Office Excel 2003 and SPSS for Windows. We compared using the linear model of direct costs and unit costs of anaesthesiological services from the Costs List of the Republican Health-care Insurance. Results. Direct costs showed 40% of costs were spent on salaries, (32% on drugs and supplies, and 28% on other costs, such as analyses and equipment. The correlation of the direct costs of anaestesiological services showed a linear correlation with the unit costs of the Republican Healthcare Insurance. Conclusion. During surgery, costs of anaesthesia would increase by 10% the surgical treatment cost of patients. Regarding the actual costs of drugs and supplies, we do not see any possibility of costs reduction. Fixed elements of direct costs provide the possibility of rationalization of resources in anaesthesia.

  8. Identification of novel families and classification of the C2 domain superfamily elucidate the origin and evolution of membrane targeting activities in eukaryotes.

    Science.gov (United States)

    Zhang, Dapeng; Aravind, L

    2010-12-01

    Eukaryotes contain an elaborate membrane system, which bounds the cell itself, nuclei, organelles and transient intracellular structures, such as vesicles. The emergence of this system was marked by an expansion of a number of structurally distinct classes of lipid-binding domains that could throw light on the early evolution of eukaryotic membranes. The C2 domain is a useful model to understand these events because it is one of the most prevalent eukaryotic lipid-binding domains deployed in diverse functional contexts. Most studies have concentrated on C2 domains prototyped by those in protein kinase C (PKC-C2) isoforms that bind lipid in a calcium-dependent manner. While two other distinct families of C2 domains, namely those in PI3K-C2 and PTEN-C2 are also recognized, a complete picture of evolutionary relationships within the C2 domain superfamily is lacking. We systematically studied this superfamily using sequence profile searches, phylogenetic and phyletic-pattern analysis and structure-prediction. Consequently, we identified several distinct families of C2 domains including those respectively typified by C2 domains in the Aida (axin interactor, dorsalization associated) proteins, B9 proteins (e.g. Mks1 (Xbx-7), Stumpy (Tza-1) and Tza-2) involved in centrosome migration and ciliogenesis, Dock180/Zizimin proteins which are Rac/CDC42 GDP exchange factors, the EEIG1/Sym-3, EHBP1 and plant RPG/PMI1 proteins involved in endocytotic recycling and organellar positioning and an apicomplexan family. We present evidence that the last eukaryotic common ancestor (LECA) contained at least 10 C2 domains belonging to 6 well-defined families. Further, we suggest that this pre-LECA diversification was linked to the emergence of several quintessentially eukaryotic structures, such as membrane repair and vesicular trafficking system, anchoring of the actin and tubulin cytoskeleton to the plasma and vesicular membranes, localization of small GTPases to membranes and lipid

  9. Annotating enzymes of uncertain function: the deacylation of D-amino acids by members of the amidohydrolase superfamily.

    Science.gov (United States)

    Cummings, Jennifer A; Fedorov, Alexander A; Xu, Chengfu; Brown, Shoshana; Fedorov, Elena; Babbitt, Patricia C; Almo, Steven C; Raushel, Frank M

    2009-07-14

    The catalytic activities of three members of the amidohydrolase superfamily were discovered using amino acid substrate libraries. Bb3285 from Bordetella bronchiseptica, Gox1177 from Gluconobacter oxidans, and Sco4986 from Streptomyces coelicolor are currently annotated as d-aminoacylases or N-acetyl-d-glutamate deacetylases. These three enzymes are 22-34% identical to one another in amino acid sequence. Substrate libraries containing nearly all combinations of N-formyl-d-Xaa, N-acetyl-d-Xaa, N-succinyl-d-Xaa, and l-Xaa-d-Xaa were used to establish the substrate profiles for these enzymes. It was demonstrated that Bb3285 is restricted to the hydrolysis of N-acyl-substituted derivatives of d-glutamate. The best substrates for this enzyme are N-formyl-d-glutamate (k(cat)/K(m) = 5.8 x 10(6) M(-1) s(-1)), N-acetyl-d-glutamate (k(cat)/K(m) = 5.2 x 10(6) M(-1) s(-1)), and l-methionine-d-glutamate (k(cat)/K(m) = 3.4 x 10(5) M(-1) s(-1)). Gox1177 and Sco4986 preferentially hydrolyze N-acyl-substituted derivatives of hydrophobic d-amino acids. The best substrates for Gox1177 are N-acetyl-d-leucine (k(cat)/K(m) = 3.2 x 10(4) M(-1) s(-1)), N-acetyl-d-tryptophan (k(cat)/K(m) = 4.1 x 10(4) M(-1) s(-1)), and l-tyrosine-d-leucine (k(cat)/K(m) = 1.5 x 10(4) M(-1) s(-1)). A fourth protein, Bb2785 from B. bronchiseptica, did not have d-aminoacylase activity. The best substrates for Sco4986 are N-acetyl-d-phenylalanine and N-acetyl-d-tryptophan. The three-dimensional structures of Bb3285 in the presence of the product acetate or a potent mimic of the tetrahedral intermediate were determined by X-ray diffraction methods. The side chain of the d-glutamate moiety of the inhibitor is ion-paired to Arg-295, while the alpha-carboxylate is ion-paired with Lys-250 and Arg-376. These results have revealed the chemical and structural determinants for substrate specificity in this protein. Bioinformatic analyses of an additional approximately 250 sequences identified as members of this group

  10. Annotating Enzymes of Uncertain Function: The Deacylation of d-Amino Acids by Members of the Amidohydrolase Superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Fedorov, A; Xu, C; Brown, S; Fedorov, E; Babbitt, P; Almo, S; Raushel, F

    2009-01-01

    The catalytic activities of three members of the amidohydrolase superfamily were discovered using amino acid substrate libraries. Bb3285 from Bordetella bronchiseptica, Gox1177 from Gluconobacter oxidans, and Sco4986 from Streptomyces coelicolor are currently annotated as d-aminoacylases or N-acetyl-d-glutamate deacetylases. These three enzymes are 22-34% identical to one another in amino acid sequence. Substrate libraries containing nearly all combinations of N-formyl-d-Xaa, N-acetyl-d-Xaa, N-succinyl-d-Xaa, and l-Xaa-d-Xaa were used to establish the substrate profiles for these enzymes. It was demonstrated that Bb3285 is restricted to the hydrolysis of N-acyl-substituted derivatives of d-glutamate. The best substrates for this enzyme are N-formyl-d-glutamate (k{sub cat}/K{sub m} = 5.8 x 10{sup 6} M{sup -1} s{sup -1}), N-acetyl-d-glutamate (k{sub cat}/K{sub m} = 5.2 x 10{sup 6} M{sup -1} s{sup -1}), and l-methionine-d-glutamate (k{sub cat}/K{sub m} = 3.4 x 10{sup 5} M{sup -1} s{sup -1}). Gox1177 and Sco4986 preferentially hydrolyze N-acyl-substituted derivatives of hydrophobic d-amino acids. The best substrates for Gox1177 are N-acetyl-d-leucine (k{sub cat}/K{sub m} = 3.2 x 104 M{sup -1} s-1), N-acetyl-d-tryptophan (kcat/Km = 4.1 x 104 M-1 s-1), and l-tyrosine-d-leucine (kcat/Km = 1.5 x 104 M-1 s-1). A fourth protein, Bb2785 from B. bronchiseptica, did not have d-aminoacylase activity. The best substrates for Sco4986 are N-acetyl-d-phenylalanine and N-acetyl-d-tryptophan. The three-dimensional structures of Bb3285 in the presence of the product acetate or a potent mimic of the tetrahedral intermediate were determined by X-ray diffraction methods. The side chain of the d-glutamate moiety of the inhibitor is ion-paired to Arg-295, while the {alpha}-carboxylate is ion-paired with Lys-250 and Arg-376. These results have revealed the chemical and structural determinants for substrate specificity in this protein. Bioinformatic analyses of an additional {approx}250

  11. CD177: A member of the Ly-6 gene superfamily involved with neutrophil proliferation and polycythemia vera

    OpenAIRE

    Bettinotti Maria; Caruccio Lorraine; Stroncek David F

    2004-01-01

    Abstract Genes in the Leukocyte Antigen 6 (Ly-6) superfamily encode glycosyl-phosphatidylinositol (GPI) anchored glycoproteins (gp) with conserved domains of 70 to 100 amino acids and 8 to 10 cysteine residues. Murine Ly-6 genes encode important lymphocyte and hematopoietic stem cell antigens. Recently, a new member of the human Ly-6 gene superfamily has been described, CD177. CD177 is polymorphic and has at least two alleles, PRV-1 and NB1. CD177 was first described as PRV-1, a gene that is ...

  12. A Common Weight Linear Optimization Approach for Multicriteria ABC Inventory Classification

    Directory of Open Access Journals (Sweden)

    S. M. Hatefi

    2015-01-01

    Full Text Available Organizations typically employ the ABC inventory classification technique to have an efficient control on a huge amount of inventory items. The ABC inventory classification problem is classification of a large amount of items into three groups: A, very important; B, moderately important; and C, relatively unimportant. The traditional ABC classification only accounts for one criterion, namely, the annual dollar usage of the items. But, there are other important criteria in real world which strongly affect the ABC classification. This paper proposes a novel methodology based on a common weight linear optimization model to solve the multiple criteria inventory classification problem. The proposed methodology enables the classification of inventory items via a set of common weights which is very essential in a fair classification. It has a remarkable computational saving when compared with the existing approaches and at the same time it needs no subjective information. Furthermore, it is easy enough to apply for managers. The proposed model is applied on an illustrative example and a case study taken from the literature. Both numerical results and qualitative comparisons with the existing methods reveal several merits of the proposed approach for ABC analysis.

  13. Glycolysis inhibition inactivates ABC transporters to restore drug sensitivity in malignant cells.

    Directory of Open Access Journals (Sweden)

    Ayako Nakano

    Full Text Available Cancer cells eventually acquire drug resistance largely via the aberrant expression of ATP-binding cassette (ABC transporters, ATP-dependent efflux pumps. Because cancer cells produce ATP mostly through glycolysis, in the present study we explored the effects of inhibiting glycolysis on the ABC transporter function and drug sensitivity of malignant cells. Inhibition of glycolysis by 3-bromopyruvate (3BrPA suppressed ATP production in malignant cells, and restored the retention of daunorubicin or mitoxantrone in ABC transporter-expressing, RPMI8226 (ABCG2, KG-1 (ABCB1 and HepG2 cells (ABCB1 and ABCG2. Interestingly, although side population (SP cells isolated from RPMI8226 cells exhibited higher levels of glycolysis with an increased expression of genes involved in the glycolytic pathway, 3BrPA abolished Hoechst 33342 exclusion in SP cells. 3BrPA also disrupted clonogenic capacity in malignant cell lines including RPMI8226, KG-1, and HepG2. Furthermore, 3BrPA restored cytotoxic effects of daunorubicin and doxorubicin on KG-1 and RPMI8226 cells, and markedly suppressed subcutaneous tumor growth in combination with doxorubicin in RPMI8226-implanted mice. These results collectively suggest that the inhibition of glycolysis is able to overcome drug resistance in ABC transporter-expressing malignant cells through the inactivation of ABC transporters and impairment of SP cells with enhanced glycolysis as well as clonogenic cells.

  14. Accelerator-based conversion (ABC) of weapons plutonium: Plant layout study and related design issues

    International Nuclear Information System (INIS)

    In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemical Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R ampersand D plan for ABC are described on the bases of the ''strawman'' or ''point-of-departure'' plant layout that resulted from this study

  15. Efficient processing of TFO-directed psoralen DNA interstrand crosslinks by the UvrABC nuclease.

    Science.gov (United States)

    Christensen, Laura A; Wang, Hong; Van Houten, Bennett; Vasquez, Karen M

    2008-12-01

    Photoreactive psoralens can form interstrand crosslinks (ICLs) in double-stranded DNA. In eubacteria, the endonuclease UvrABC plays a key role in processing psoralen ICLs. Psoralen-modified triplex-forming oligonucleotides (TFOs) can be used to direct ICLs to specific genomic sites. Previous studies of pyrimidine-rich methoxypsoralen-modified TFOs indicated that the TFO inhibits cleavage by UvrABC. Because different chemistries may alter the processing of TFO-directed ICLs, we investigated the effect of another type of triplex formed by purine-rich TFOs on the processing of 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) ICLs by the UvrABC nuclease. Using an HMT-modified TFO to direct ICLs to a specific site, we found that UvrABC made incisions on the purine-rich strand of the duplex approximately 3 bases from the 3'-side and approximately 9 bases from the 5'-side of the ICL, within the TFO-binding region. In contrast to previous reports, the UvrABC nuclease cleaved the TFO-directed psoralen ICL with a greater efficiency than that of the psoralen ICL alone. Furthermore, the TFO was dissociated from its duplex binding site by UvrA and UvrB. As mutagenesis by TFO-directed ICLs requires nucleotide excision repair, the efficient processing of these lesions supports the use of triplex technology to direct DNA damage for genome modification. PMID:18996898

  16. Crystal Structure Analysis of Wild Type and Fast Hydrolyzing Mutant of EhRabX3, a Tandem Ras Superfamily GTPase from Entamoeba histolytica.

    Science.gov (United States)

    Srivastava, Vijay Kumar; Chandra, Mintu; Saito-Nakano, Yumiko; Nozaki, Tomoyoshi; Datta, Sunando

    2016-01-16

    The enteric protozoan parasite, Entamoeba histolytica, is the causative agent of amoebic dysentery, liver abscess and colitis in human. Vesicular trafficking plays a key role in the survival and virulence of the protozoan and is regulated by various Rab GTPases. EhRabX3 is a catalytically inefficient amoebic Rab protein, which is unique among the eukaryotic Ras superfamily by virtue of its tandem domain organization. Here, we report the crystal structures of GDP-bound fast hydrolyzing mutant (V71A/K73Q) and GTP-bound wild type EhRabX3 at 3.1 and 2.8Å resolutions, respectively. Though both G-domains possess "phosphate binding loop containing nucleoside triphosphate hydrolases fold", only the N-terminal domain binds to guanine nucleotide. The relative orientation of the N-terminal domain and C-terminal domain is stabilized by numerous inter-domain interactions. Compared to other Ras superfamily members, both the GTPase domains displayed large deviation in switch II perhaps due to non-conservative substitutions in this region. As a result, entire switch II is restructured and moved away from the nucleotide binding pocket, providing a rationale for the diminished GTPase activity of EhRabX3. The N-terminal GTPase domain possesses unusually large number of cysteine residues. X-ray crystal structure of the fast hydrolyzing mutant of EhRabX3 revealed that C39 and C163 formed an intra-molecular disulfide bond. Subsequent mutational and biochemical studies suggest that C39 and C163 are critical for maintaining the structural integrity and function of EhRabX3. Structure-guided functional investigation of cysteine mutants could provide the physiological implications of the disulfide bond and could allow us to design potential inhibitors for the better treatment of intestinal amebiasis.

  17. Secondary metabolites inhibiting ABC transporters and reversing resistance of cancer cells and fungi to cytotoxic and antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Michael eWink

    2012-04-01

    Full Text Available Fungal, bacterial and cancer cells can develop resistance against antifungal, antibacterial or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: 1. Activation of ABC transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, 2. Activation of cytochrome p450 oxidases which can oxidise lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulphate or amino acids, and 3. Activation of glutathione transferase, which can conjugate xenobiotics. This review summarises the evidence that secondary metabolites of plants, such as alkaloids, phenolics and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria and fungi. Among the active natural products several lipophilic terpenoids ( monoterpenes, diterpenes, triterpenes (including saponins, steroids (including cardiac glycosides and tetraterpenes but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids function probably as competitive inhibitors of P-gp, MRP1 and BCRP in cancer cells, or efflux pumps in bacteria (NorA and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse MDR, at least partially, of adapted and resistant cells. If these secondary metabolites are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion.

  18. Effect of New O-Superfamily Conotoxin on Voltage-Activated Currents of Hippocampal Neurons

    Institute of Scientific and Technical Information of China (English)

    李湛; 何湘平; 戴秋云; 黄培堂; 谢佐平

    2004-01-01

    The effects of a new O-superfamily conotoxin, SO3, on sodium current (/Na), transient A-type potassium currents (/A), and delayed rectified potassium currents (/K), were examined in cultured rat hippocampal neurons using the whole-cell patch clamp technique. Addition of SO3 caused a concentration-dependent,rapidly developing, and reversible inhibition of voltage-activated currents. The IC50 values for the blockage of /Na, /A, and /K were calculated as 0.49, 33.9, and 7.6 μmol/L, respectively. The determined Hill coefficients were 1.7, 0.6, and 1.2, respectively. These results indicate that SO3 can selectively inhibit neuronal sodium and potassium currents.

  19. The Tumor Necrosis Factor Superfamily of Cytokines in the Inflammatory Myopathies: Potential Targets for Therapy

    Directory of Open Access Journals (Sweden)

    Boel De Paepe

    2012-01-01

    Full Text Available The idiopathic inflammatory myopathies (IM represent a heterogeneous group of autoimmune diseases, of which dermatomyositis (DM, polymyositis (PM, and sporadic inclusion body myositis (IBM are the most common. The crucial role played by tumor necrosis factor alpha (TNFα in the IM has long been recognized. However, so far, 18 other members of the TNF superfamily have been characterized, and many of these have not yet received the attention they deserve. In this paper, we summarize current findings for all TNF cytokines in IM, pinpointing what we know already and where current knowledge fails. For each TNF family member, possibilities for treating inflammatory diseases in general and the IM in particular are explored.

  20. Melanocortin receptors and their accessory proteins

    OpenAIRE

    Cooray, Sadani N.; Clark, Adrian J.L.

    2010-01-01

    Abstract The melanocortin receptor family consists of 5 members which belong to the GPCR superfamily. Their specific ligands, the melanocortins are peptide hormones which are formed by the proteolytic cleavage of the proopiomelanocortin (POMC) protein. It is now recognised that certain GPCRs require accessory proteins for their function. Like these GPCRs the melanocortin receptor family is also known to be associated with accessory proteins that regulate their function. ...