WorldWideScience

Sample records for abb robots form

  1. ABB high burnup fuel

    International Nuclear Information System (INIS)

    Andersson, S.; Helmersson, S.; Nilsson, S.; Jourdain, P.; Karlsson, L.; Limback, M.; Garde, A.M.

    1999-01-01

    Fuel designed and fabricated by ABB is now operating in 40 PWRs and BWRs in Europe, the United States and Korea. An excellent fuel reliability track record has been established. High burnups are proven for both PWR and BWR. Thermal margin improving features and advanced burnable absorber concepts enable the utilities to adopt demanding duty cycles to meet new economic objectives. In particular we note the excellent reliability record of ABB PWR fuel equipped with Guardian TM debris filter proven to meet the 6 rod-cycles fuel failure goal, and the out-standing operating record of the SVEA 10 x 10 fuel, where ABB is the only vendor to date with batch experience to high burnup. ABB is dedicated to maintain high fuel reliability as well as continually improve and develop a broad line of PWR and BWR products. ABB's development and fuel follow-up activities are performed in close co-operation with its utility customers. This paper provides an overview of recent fuel performance and reliability experience at ABB. Selected development and validation activities for PWR and BWR fuel are presented, for which the ABB test facilities in Windsor (TF-2 loop, mechanical test laboratory) and Vaesteras (FRIGG, BURE) are essential. (authors)

  2. ABB honoured in Estonia

    Index Scriptorium Estoniae

    2008-01-01

    Energeetikafirma ABB pälvis Ettevõtluse Arendamise Sihtasutuse poolt Eesti parimale ettevõttele antava "Ettevõtluse Auhinna 2008" ja Aasta Välisinvestori tiitli. 18. septembril 2008 toimunud pidulikul tseremoonial autasustas president Toomas Hendrik Ilves ABB Balti riikide juhti Bo Henrikssoni

  3. Transient analysis capabilities at ABB-CE

    International Nuclear Information System (INIS)

    Kling, C.L.

    1992-01-01

    The transient capabilities at ABB-Combustion Engineering (ABB-CE) Nuclear Power are a function of the computer hardware and related network used, the computer software that has evolved over the years, and the commercial technical exchange agreements with other related organizations and customers. ABB-CEA is changing from a mainframe/personal computer network to a distributed workstation/personal computer local area network. The paper discusses computer hardware, mainframe computing, personal computers, mainframe/personal computer networks, workstations, transient analysis computer software, design/operation transient analysis codes, safety (licensed) analysis codes, cooperation with ABB-Atom, and customer support

  4. ABB advanced BWR and PWR fuel

    International Nuclear Information System (INIS)

    Junkrans, S.; Helmersson, S.; Andersson, S.

    1999-01-01

    Fuel designed and fabricated by ABB is now operating in 40 PWRs and BWRs in Europe, the United States and Korea. An excellent fuel reliability track record has been established. High burnups are proven for both BWR and PWR. Thermal margin improving features and advanced burnable absorber concepts enable the utilities to adopt demanding duty cycles to meet new economic objectives. In particular we note the excellent reliability record of ABB PWR fuel equipped with Guardian TM debris filter, proven to meet the -6 rod-cycles fuel failure goal, and the out-standing operating record of the SVEA 10x10 BWR fuel, where ABB is the only vendor to date with multi batch experience to high burnup. ABB is dedicated to maintain high fuel reliability as well as continually improve and develop a broad line of BWR and PWR products. ABB's development and fuel follow-up activities are performed in close co-operation with its customers. (orig.)

  5. ABB PWR fuel design for high burnup

    International Nuclear Information System (INIS)

    Nilsson, S.; Jourdain, P.; Limback, M.; Garde, A.M.

    1998-01-01

    Corrosion, hydriding and irradiation induced growth of a based materials are important factors for the high burnup performance of PWR fuel. ABB has developed a number of Zr based alloys to meet the need for fuel that enables operation to elevated burnups. The materials include composition and processing optimised Zircaloy 4 (OPTIN TM ) and Zircaloy 2 (Zircaloy 2P), as well as advanced Zr based alloys with chemical compositions outside the composition specified for Zircaloy. The advanced alloys are either used as Duplex or as single component claddings. The Duplex claddings have an inner component of Zircaloy and an outer layer of Zr with small additions of alloying elements. ABB has furthermore improved the dimensional stability of the fuel assembly by developing stiffer and more bow resistant guide tubes while debris related fuel failures have been eliminated from ABB fuel by introducing the Guardian TM grid. Intermediate flow mixers that improve the thermal hydraulic performance and the dimensional stability of the fuel has also been developed within ABB. (author)

  6. ABB. CASE's GUARDIANTM Debris Resistant Fuel Assembly Design

    International Nuclear Information System (INIS)

    Dixon, D. J.; Wohlsen, W. D.

    1992-01-01

    ABB CE's experience, that 72% of all recent fuel-rod failures are caused by debris fretting, is typical. In response to this problem, ABB Combustion Engineering began supplying in the late 1980s fuel assemblies with a variety of debris resistant features, including both long-end caps and small flow holes. Now ABB CAE has developed an advanced debris resistant design concept, GUARDIAN TM , which has the advantage of capturing and retaining more debris than other designs, while displacing less plenum or active fuel volume than the long end-cap design. GUARDIAN TM design features have now been implemented into four different assembly designs. ABB CASE's GUARDIAN TM fuel assembly is an advanced debris-resistant design which has both superior filtering performance and uniquely, excellent debris retention, Retention effectively removes the debris from circulation in the coolant so that it is not able to threaten the fuel again. GUARDIAN TM features have been incorporated into four ABB. CAE fuel assembly designs. These assemblies are all fully compatible with the NSLS, and full-batch operation with GUARDIAN TM began in 1992. The number of plants of both CAE and non-CAE design which accept GUARDIAN TM for debris protection is expected to grow significantly during the next few years

  7. First robotized assembly line in for multivalve cylinder heads in Europe; Erste roborterautomatisierte Montagelinie fuer Mehrventilzylinderkoepfe in Europa

    Energy Technology Data Exchange (ETDEWEB)

    Simonis, G. [ABB Flexible Automation GmbH, Langenfeld (Germany)

    1996-12-31

    From its earliest days the automotive industry has pioneered the automation of factory operations. This reputation is being added to by yet another new development in the assembly area. The trendsetter is ABB Flexible Automation GmbH, based in Butzbach, Germany, which has developed a future-oriented concept for vehicle engine assembly in which jointed-arm robots play a key role. The new concept has been adopted for Europe`s first robotized assembly line for multivalve cylinder heads, installed by ABB for the German carmaker Audi in Gyoer, Hungary. (orig.) [Deutsch] Die Automobilindustrie war und ist Vorreiter in der Automatisierung betrieblicher Ablaeufe. Einmal mehr zeigt sich dies im Montagebereich. Trendsetter ist hier die ABB Flexible Automation GmbH, Butzbach/Deutschland, die fuer die Montage von Fahrzeugaggregaten ein zukunftweisendes Konzept entwickelt hat. Gelenkarmroboter spielen dabei eine entscheidende Rolle. Ein Beispiel dafuer: Die erste roboterautomatisierte Montageanlage fuer Mehrventilzylinderkoepfe in Europa, die ABB fuer den Automobilhersteller Audi im ungarischen Gyoer realisiert hat. (orig.)

  8. Experimental testing of an ABB Master application

    International Nuclear Information System (INIS)

    Haapanen, P.; Maskuniitty, M.; Korhonen, J.; Tuulari, E.

    1995-10-01

    A prototype dynamic testing harness for programmable automation systems has been specified and implemented at the Technical Research Centre of Finland (VTT). In order to get experience on the methodology and equipment for the testing of systems important to the safety of nuclear power plants, where the safety and reliability requirements often are very high, two different pilot systems have been tested. One system was an ABB Master application, which was loaned for testing from ABB Atom by Teollisuuden Voima Oy (TVO). Another system, loaned from Siemens AG (SAG) by IVO International Oy (IVO), was an application realized with SAG's digital SILT technology. The report describes the experiences gained in testing an APRM pilot system realized with ABB Master technology. The testing of the pilot application took place in the VTT Automation laboratory in Otaniemi in September-October 1994. The purpose of the testing was not to assess the quality of the pilot system, but to get experience in the testing methodology and find out the further development needs and potentials of the test methodology and equipment. (7 refs., 14 figs., 9 tabs.)

  9. Material operating behaviour of ABB BWR control rods

    International Nuclear Information System (INIS)

    Rebensdorff, B.; Bart, G.

    2000-01-01

    The BWR control rods made by ABB use boron carbide (B 4 C and hafnium as absorber material within a cladding of stainless steel. The general behaviour under operation has proven to be very good. ABB and many of their control rod customers have performed extensive inspection programs of control rod behaviour. However, due to changes in the material properties under fast and thermal neutron irradiation defects may occur in the control rods at high neutron fluences. Examinations of irradiated control rod materials have been performed in hot cell laboratories. The examinations have revealed the defect mechanism Irradiation Assisted Stress Corrosion Cracking (IASCC) to appear in the stainless steel cladding. For IASCC to occur three factors have to act simultaneously. Stress, material sensitization and an oxidising environment. Stress may be obtained from boron carbide swelling due to irradiation. Stainless steel may be sensitized to intergranular stress corrosion cracking under irradiation. Normally the reactor environment in a BWR is oxidising. The presentation focuses on findings from hot cell laboratory work on irradiated ABB BWR control rods and studies of irradiated control rod materials in the hot cells at PSI. Apart from physical, mechanical and microstructural examinations, isotope analyses were performed to describe the local isotopic burnup of boron. Consequences (such as possible B 4 C washout) of a under operation in a ABB BWR, after the occurrence of a crack is discussed based on neutron radiographic examinations of control rods operated with cracks. (author)

  10. Differential Kinematics Of Contemporary Industrial Robots

    Science.gov (United States)

    Szkodny, T.

    2014-08-01

    The paper presents a simple method of avoiding singular configurations of contemporary industrial robot manipulators of such renowned companies as ABB, Fanuc, Mitsubishi, Adept, Kawasaki, COMAU and KUKA. To determine the singular configurations of these manipulators a global form of description of the end-effector kinematics was prepared, relative to the other links. On the basis of this description , the formula for the Jacobian was defined in the end-effector coordinates. Next, a closed form of the determinant of the Jacobian was derived. From the formula, singular configurations, where the determinant's value equals zero, were determined. Additionally, geometric interpretations of these configurations were given and they were illustrated. For the exemplary manipulator, small corrections of joint variables preventing the reduction of the Jacobian order were suggested. An analysis of positional errors, caused by these corrections, was presented

  11. Impact of workstations on criticality analyses at ABB combustion engineering

    International Nuclear Information System (INIS)

    Tarko, L.B.; Freeman, R.S.; O'Donnell, P.F.

    1993-01-01

    During 1991, ABB Combustion Engineering (ABB C-E) made the transition from a CDC Cyber 990 mainframe for nuclear criticality safety analyses to Hewlett Packard (HP)/Apollo workstations. The primary motivation for this change was improved economics of the workstation and maintaining state-of-the-art technology. The Cyber 990 utilized the NOS operating system with a 60-bit word size. The CPU memory size was limited to 131 100 words of directly addressable memory with an extended 250000 words available. The Apollo workstation environment at ABB consists of HP/Apollo-9000/400 series desktop units used by most application engineers, networked with HP/Apollo DN10000 platforms that use 32-bit word size and function as the computer servers and network administrative CPUS, providing a virtual memory system

  12. Protocolo de comunicación trabajador-robot mediante imágenes

    OpenAIRE

    Castilla Berduque, José Angel

    2015-01-01

    La idea del proyecto viene del concepto de “fábricas del futuro”, donde las barreras entre robots y humanos se rompen para que la colaboración entre ambos sea como en un equipo. Para la realización de este proyecto se ha utilizado el brazo robótico IRB120 de la marca ABB de 6 Grados de libertad, Matlab y el software Robot Studio. El Objetivo principal de este proyecto es establecer el protocolo de comunicación trabajador-robot mediante imágenes. El trabajador debería poder ...

  13. Design and Analysis of an Abbé Free Coplanar Stage

    Directory of Open Access Journals (Sweden)

    Chung Tien-Tung

    2017-01-01

    Full Text Available Design and analysis of a new Abbé free coplanar xy stage are presented in this paper. The xy stage is formed as conventional xy stages which combine with two stacked up linear guides. The x-guide is on the bottom and the y-guide is on top of the x-guide. The travel range of this xy stage is 300mm × 300mm, which fits dimensions of 12-inch wafers. A special mechanism is designed such that the z-surface of the y-guide has the same height as the z-surface of x-guide, and the Abbé error and cumulative error of this coplanar stage can be reduced. The concept of symmetric structure design is also considered to eliminate the structural deformation due to driving force of two guides. For this long travel range precision stage, the finite element method (FEM is applied to analyze the structural deformation and vibration natural frequencies. The requirement of structural deformation due to self-weight load is limited to 1.5μm, and first natural frequency is limited to over 100 Hz.

  14. Telerobotics: through-the-Internet teleoperation of the ABB IRB 2000 industrial robot

    Science.gov (United States)

    Alvares, Alberto J.; Caribe de Carvalho, Guilherme; Paulinyi, Luis F. d. A.; Alfaro, Sadek C. A.

    1999-11-01

    Robotic systems can be controlled remotely through the use of telerobotics. This work presents a through-the-internet teleoperation system for remotely operating the IRB2000 industrial robot. The IRB2000 controller allows external access through a RS232 serial communication link, which is based on a 42 function proprietary communication protocol. The proposed teleoperation system uses this communication capability by connecting it to a local area network based on TCP/IP (Transport Control Protocol/Internet Protocol). The system was implemented using a Client/Server architecture, having as server a UNIX (LINUX) platform.

  15. 10. VDE/ABB lightning protection conference. Lectures

    International Nuclear Information System (INIS)

    2013-01-01

    The proceedings of the 10. VDE/ABB lightning protection conference include lectures on the following issues: Status on the standardization and resulting consequences; lightning protection of specific facilities; electrical grounding and potential equalization; lightning research; personal security and protection.

  16. BWR 90: The ABB advanced BWR design

    International Nuclear Information System (INIS)

    Haukeland, S.; Ivung, B.; Pedersen, T.

    1999-01-01

    ABB has two evolutionary advanced fight water reactors available today - the BWR 90 boiling water reactor and the System 80+ pressurised water reactor. The BWR 90 is based on the design, construction, commissioning and operation of the BWR 75 plants. The operation experience of the six plants of this advanced design has been very good. The average annual energy availability is above 90%, and the total power generation costs have been low. In the development of BWR 90 specific changes were introduced to the reference design, to adapt to technological progress, new safety requirements and to achieve cost savings. The thermal power rating of BWR 90 is 3800 MWth (providing a nominal 1374 MWe net), slightly higher dim that of the reference plant ABB Atom has taken advantage of margins gained using a new generation of its SVEA fuel to attain this power rating without major design modifications. The BWR 90 design was completed and offered to the TVO utility in Finland in 1991, as one of the contenders for the fifth Finnish nuclear power plant project. Thus, the design is available today for deployment in new plant projects. Utility views were incorporated through co-operation with the Finnish utility TVO, owner and operator of the two Olkiluoto plants of BWR 75 design. A review against the European Utility Requirement (EUR) set of requirements has been performed, since the design, in 1997, was selected by the EUR Steering Committee to be the first BWR to be evaluated against the EUR documents. The work is scheduled for completion in 1998. It will be the subject of an 'EUR Volume 3 Subset for BWR 90' document. ABB is continuing its BWR development work with the 'evolutionary' design BWR 90+. The primary design goal is to develop the BWR as a competitive option for the anticipated revival of the market for new nuclear plants beyond the turn of the century, as well as feeding ideas and inputs to the continuous modernisation efforts at operating plants. The development is

  17. ABB and the global market

    International Nuclear Information System (INIS)

    Lindahl, G.

    1994-01-01

    Competing in a global environment implies that the authors previous business environment has been less than global, and there are indeed changes underway that lead to a more universal environment. But, there are still differences between regions and especially between the mature economies in the OECD countries and the rapidly developing countries, of which a majority are in Asia. For the OECD countries, the time after World War 2 and up to about 1970 was a period of unprecedented growth. Rebuilding after the war and a general growth of the use of electric power required high investments in power systems and caused a booming market for equipment suppliers. After a trend break in the beginning of the 1970s to less than 40 GW 10 years later, then slowly increased to about 50 GW today. At the same time, annual capacity growth in developing countries increased from less than 20 GW to about 50 GW, i.e. the same level as in OECD. This means that ABB is now passing a cross-over point: from now on less than half of their global market is in their well-known OECD world. And this share will continue to shrink. ABB is now restructuring to fulfill market needs in less developed, developing, and newly industrialized countries. This is the most important change in their global environment is addressed in this article

  18. Total quality approach at ABB Atom Nuclear Fuel - winner of the Swedish quality award 1994

    International Nuclear Information System (INIS)

    Moorlin, K.; Olsson, S.

    1995-01-01

    ABB Atom Nuclear Fuel Division received the Swedish Quality Award 1994. The company has since many years a reputation for high product quality and a well implemented quality assurance system. Since some years a total quality approach is applied. For ABB Atom, total quality means continuous improvement of all business processes keeping the customer in focus. This paper elaborates on the improvement tools used at the ABB Atom Nuclear Fuel Division and gives some detailed information of the experience. (author) 6 figs

  19. Forming Human-Robot Teams Across Time and Space

    Science.gov (United States)

    Hambuchen, Kimberly; Burridge, Robert R.; Ambrose, Robert O.; Bluethmann, William J.; Diftler, Myron A.; Radford, Nicolaus A.

    2012-01-01

    NASA pushes telerobotics to distances that span the Solar System. At this scale, time of flight for communication is limited by the speed of light, inducing long time delays, narrow bandwidth and the real risk of data disruption. NASA also supports missions where humans are in direct contact with robots during extravehicular activity (EVA), giving a range of zero to hundreds of millions of miles for NASA s definition of "tele". . Another temporal variable is mission phasing. NASA missions are now being considered that combine early robotic phases with later human arrival, then transition back to robot only operations. Robots can preposition, scout, sample or construct in advance of human teammates, transition to assistant roles when the crew are present, and then become care-takers when the crew returns to Earth. This paper will describe advances in robot safety and command interaction approaches developed to form effective human-robot teams, overcoming challenges of time delay and adapting as the team transitions from robot only to robots and crew. The work is predicated on the idea that when robots are alone in space, they are still part of a human-robot team acting as surrogates for people back on Earth or in other distant locations. Software, interaction modes and control methods will be described that can operate robots in all these conditions. A novel control mode for operating robots across time delay was developed using a graphical simulation on the human side of the communication, allowing a remote supervisor to drive and command a robot in simulation with no time delay, then monitor progress of the actual robot as data returns from the round trip to and from the robot. Since the robot must be responsible for safety out to at least the round trip time period, the authors developed a multi layer safety system able to detect and protect the robot and people in its workspace. This safety system is also running when humans are in direct contact with the robot

  20. ABB Turbo advanced fuel for application in System 80 family of plants

    International Nuclear Information System (INIS)

    Karoutas, Z.E.; Dixon, D.J.; Shapiro, N.L.

    1998-01-01

    ABB Combustion Engineering Nuclear Operations (ABB CE) has developed an Advanced Fuel Design, tailored to the Combustion Engineering, Inc. (CE) Nuclear Steam Supply System (NSSS) environment. This Advanced Fuel Design called Turbo features a full complement of innovative components, including GUARDIAN debris-resistant spacer grids, Turbo Zircaloy mixing grids to increase thermal margin and grid-to-rod fretting resistance, value-added fuel pellets to increase fuel loading, advanced cladding to increase achievable burnup, and axial blankets and Erbium integral burnable absorbers for improving fuel cycle economics. This paper summarizes the Turbo Fuel Design and its application to a System 80 family type plant. Benefits in fuel reliability, thermal margin, improved fuel cycle economics and burn up capability are compared relative to the current ABB CE standard fuel design. The fuel management design and the associated thermal margin are also evaluated. (author)

  1. Rigorous modelling of light's intensity angular-profile in Abbe refractometers with absorbing homogeneous fluids

    International Nuclear Information System (INIS)

    García-Valenzuela, A; Contreras-Tello, H; Márquez-Islas, R; Sánchez-Pérez, C

    2013-01-01

    We derive an optical model for the light intensity distribution around the critical angle in a standard Abbe refractometer when used on absorbing homogenous fluids. The model is developed using rigorous electromagnetic optics. The obtained formula is very simple and can be used suitably in the analysis and design of optical sensors relying on Abbe type refractometry.

  2. Robot-based additive manufacturing for flexible die-modelling in incremental sheet forming

    Science.gov (United States)

    Rieger, Michael; Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd

    2017-10-01

    The paper describes the application concept of additive manufactured dies to support the robot-based incremental sheet metal forming process (`Roboforming') for the production of sheet metal components in small batch sizes. Compared to the dieless kinematic-based generation of a shape by means of two cooperating industrial robots, the supporting robot models a die on the back of the metal sheet by using the robot-based fused layer manufacturing process (FLM). This tool chain is software-defined and preserves the high geometrical form flexibility of Roboforming while flexibly generating support structures adapted to the final part's geometry. Test series serve to confirm the feasibility of the concept by investigating the process challenges of the adhesion to the sheet surface and the general stability as well as the influence on the geometric accuracy compared to the well-known forming strategies.

  3. Interactive language learning by robots: the transition from babbling to word forms.

    Science.gov (United States)

    Lyon, Caroline; Nehaniv, Chrystopher L; Saunders, Joe

    2012-01-01

    The advent of humanoid robots has enabled a new approach to investigating the acquisition of language, and we report on the development of robots able to acquire rudimentary linguistic skills. Our work focuses on early stages analogous to some characteristics of a human child of about 6 to 14 months, the transition from babbling to first word forms. We investigate one mechanism among many that may contribute to this process, a key factor being the sensitivity of learners to the statistical distribution of linguistic elements. As well as being necessary for learning word meanings, the acquisition of anchor word forms facilitates the segmentation of an acoustic stream through other mechanisms. In our experiments some salient one-syllable word forms are learnt by a humanoid robot in real-time interactions with naive participants. Words emerge from random syllabic babble through a learning process based on a dialogue between the robot and the human participant, whose speech is perceived by the robot as a stream of phonemes. Numerous ways of representing the speech as syllabic segments are possible. Furthermore, the pronunciation of many words in spontaneous speech is variable. However, in line with research elsewhere, we observe that salient content words are more likely than function words to have consistent canonical representations; thus their relative frequency increases, as does their influence on the learner. Variable pronunciation may contribute to early word form acquisition. The importance of contingent interaction in real-time between teacher and learner is reflected by a reinforcement process, with variable success. The examination of individual cases may be more informative than group results. Nevertheless, word forms are usually produced by the robot after a few minutes of dialogue, employing a simple, real-time, frequency dependent mechanism. This work shows the potential of human-robot interaction systems in studies of the dynamics of early language

  4. Centrifugal forming and mechanical properties of silicone-based elastomers for soft robotic actuators

    Science.gov (United States)

    Kulkarni, Parth

    This thesis describes the centrifugal forming and resulting mechanical properties of silicone-based elastomers for the manufacture of soft robotic actuators. This process is effective at removing bubbles that get entrapped within 3D-printed, enclosed molds. Conventional methods for rapid prototyping of soft robotic actuators to remove entrapped bubbles typically involve degassing under vacuum, with open-faced molds that limit the layout of formed parts to raised 2D geometries. As the functionality and complexity of soft robots increase, there is a need to mold complete 3D structures with controlled thicknesses or curvatures on multiples surfaces. In addition, characterization of the mechanical properties of common elastomers for these soft robots has lagged the development of new designs. As such, relationships between resulting material properties and processing parameters are virtually non-existent. One of the goals of this thesis is to provide guidelines and physical insights to relate the design, processing conditions, and resulting properties of soft robotic components to each other. Centrifugal forming with accelerations on the order of 100 g's is capable of forming bubble-free, true 3D components for soft robotic actuators, and resulting demonstrations in this work include an aquatic locomotor, soft gripper, and an actuator that straightens when pressurized. Finally, this work shows that the measured mechanical properties of 3D geometries fabricated within enclosed molds through centrifugal forming possess comparable mechanical properties to vacuumed materials formed from open-faced molds with raised 2D features.

  5. Calculating the Weather: Deductive Reasoning and Disciplinary "Telos" in Cleveland Abbe's Rhetorical Transformation of Meteorology

    Science.gov (United States)

    Majdik, Zoltan P.; Platt, Carrie Anne; Meister, Mark

    2011-01-01

    This paper explores the rhetorical basis of a major paradigm change in meteorology, from a focus on inductive observation to deductive, mathematical reasoning. Analysis of Cleveland Abbe's "The Physical Basis of Long-Range Weather Forecasts" demonstrates how in his advocacy for a new paradigm, Abbe navigates the tension between piety to tradition…

  6. Use of ABB ADVANT Power for large scale instrumentation and controls replacements in nuclear power plants

    International Nuclear Information System (INIS)

    Pucak, J.L.; Brown, E.M.

    1999-01-01

    One of the major issues facing plants planning for life extension is the viability and feasibility of modernization of a plant's existing I and C systems including the safety systems and the control room. This paper discusses the ABB approach to the implementation of large scale Instrumentation and Controls (I and C) modernization. ABB applies a segmented architecture approach using the ADVANT Power control system to meet the numerous constraints of a major I and C upgrade program. The segmented architecture and how it supports implementation of a complete I and C upgrade either in one outage or in a series of outages is presented. ADVANT Power contains standardized industrial control equipment that is designed to support 1E applications as well as turbine and non-1E process control. This equipment forms the basis for the architecture proposed for future new nuclear plant sales as well as large scale retrofits. (author)

  7. La figure historique d’Ibn ‘Abbâs

    Directory of Open Access Journals (Sweden)

    Viviane Comerro

    2012-01-01

    Full Text Available ‘Abdallâh b. ‘Abbâs est l’une des hautes figures du savoir islamique constitué au premier siècle. Les diverses notices biographiques qui lui ont été consacrées dans les sources sunnites en témoignent à travers le portrait lisse et monochrome du Compagnon et du savant. Cependant, un autre portrait nous a été conservé, celui d’un homme partisan, au cœur de la mêlée qui oppose les différents clans de Quraysh dans la lutte pour le pouvoir. La figure dessinée par l’ouvrage édité sous le titre Akhbâr al-Dawla l-‘Abbâsiyya (ou quelques autres ouvrages du même genre échappe en grande partie à l’exemplum déshistoricisé des traditionnistes. Cet autre point de vue ne donne nullement à croire que l’auteur anonyme des ADA nous fournit une image plus authentiquement historique d’Ibn ‘Abbâs, mais il vient contredire la vision des religieux, ou celle des anthropologues, qui s’attachent à gommer l’accidentel dans le portrait stéréotypé. Certes, l’homme de chair et d’os, l’individu Ibn ‘Abbâs, nous échappe définitivement, mais sa figure historique peut-être pas. On peut, en effet, se demander si dans les informations rapportées par certains akhbâr, et qui relèvent de la recréation littéraire, ne se dissimule pas aussi la démarche réflexive de l’historien qui met en scène des faits en leur fournissant une explication. À la différence des traditionnistes qui ne se risquent dans le conflit que de façon allusive ou feutrée, les historiographes et leurs informateurs, des hommes souvent non répertoriés parce qu’ils n’appartiennent pas aux cercles de la riwâya, ne dissimulent pas les enjeux d’ordre historique. Quelques exemples empruntés aux ADA en sont donnés.

  8. ABB wet flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Niijhawan, P.

    1994-12-31

    The wet limestone process for flue gas desulfurization (FGD) is outlined. The following topics are discussed: wet flue gas desulfurization, wet FGD characteristics, wet scrubbers, ABB wet FGD experience, wet FGD forced oxidation, advanced limestone FGD systems, key design elements, open spray tower design, spray tower vs. packed tower, important performance parameters, SO{sub 2} removal efficiency, influence by L/G, limestone utilization, wet FGD commercial database, particulate removal efficiencies, materials of construction, nozzle layout, spray nozzles, recycle pumps, mist elimination, horizontal flow demister, mist eliminator washing, reagent preparation system, spray tower FGDS power consumption, flue gas reheat options, byproduct conditioning system, and wet limestone system.

  9. FRIGG '95. ABB Atom's upgraded T/H loop

    International Nuclear Information System (INIS)

    Noren, T.

    1995-01-01

    The FRIGG '95 project is an upgrading and modernization of the FRIGG loop, ABB Atom's fuel test rig with BWR operating conditions. The current FRIGG loop with test section and heater rods is described, together with the modifications involved in the FRIGG '95 project, including the new unique tomographic void measuring system to be installed. Finally CFD (Computational Fluid Dynamics) is introduced. (orig) (8 refs., 10 figs.)

  10. Assessment of reflood heat transfer model of COBRA-TIF against ABB-CE evaluation model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. I.; Lee, S. Y.; Park, C. E.; Choi, H. R.; Choi, C. J. [Korea Power Engineering Company Inc., Taejon (Korea, Republic of)

    2000-05-01

    According to 10 CFR 50 Appendix K, ECCS performance evaluation model should be based on the experimental data of FLECHT and have the conservatism compared with experimental data. To meet this requirement ABB-CE has the complicate code structure as follows: COMPERC-II calculates three reflood rates, and FLELAPC and HTCOF calculate the reflood heat transfer coefficients, and finally STRIKIN-II calculates the cladding temperature using the reflood heat transfer calculated in previous stage. In this paper, to investigate whether or not COBRA-TF satisfies the requirement of Appendix K, the reflood heat transfer coefficient of COBRA-TF was assessed against ABB-CE MOD-2C model. It was found out that COBRA-TF predicts properly the experimental data and has more conservatism than the results of ABB-CE MOD-2C model. Based on these results, it can be concluded that the reflood heat transfer coefficients calculated by COBRA-TF meet the requirement of Appendix K.

  11. A Vision-Based Self-Calibration Method for Robotic Visual Inspection Systems

    Science.gov (United States)

    Yin, Shibin; Ren, Yongjie; Zhu, Jigui; Yang, Shourui; Ye, Shenghua

    2013-01-01

    A vision-based robot self-calibration method is proposed in this paper to evaluate the kinematic parameter errors of a robot using a visual sensor mounted on its end-effector. This approach could be performed in the industrial field without external, expensive apparatus or an elaborate setup. A robot Tool Center Point (TCP) is defined in the structural model of a line-structured laser sensor, and aligned to a reference point fixed in the robot workspace. A mathematical model is established to formulate the misalignment errors with kinematic parameter errors and TCP position errors. Based on the fixed point constraints, the kinematic parameter errors and TCP position errors are identified with an iterative algorithm. Compared to the conventional methods, this proposed method eliminates the need for a robot-based-frame and hand-to-eye calibrations, shortens the error propagation chain, and makes the calibration process more accurate and convenient. A validation experiment is performed on an ABB IRB2400 robot. An optimal configuration on the number and distribution of fixed points in the robot workspace is obtained based on the experimental results. Comparative experiments reveal that there is a significant improvement of the measuring accuracy of the robotic visual inspection system. PMID:24300597

  12. Inverse Kinematics With Closed Form Solution For Denso Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Ikhsan Eka Prasetia

    2015-03-01

    Full Text Available In this paper, the forward kinematics and inverse kinematics used on the Denso robot manipulator which has a 6-DOF. The forward kinematics will result in the desired position by end-effector, while inverse kinematics produce angel on each joint. Inverse kinematics problem are very difficult, therefor to obtain the solution of inverse kinematics using closed form solution with geometry approach. The simulation result obtained from forward kinematics and inverse kinematics is determining desired position by Denso robot manipulator. Forward kinematics produce the desired position by the end-effector. Inverse kinematics produce joint angle, where the inverse kinematics produce eight conditions obtained from closed form solution with geometry approach to reach the desired position by the end-effector.

  13. Finite element Fourier and Abbe transform methods for generalization of aperture function and geometry in Fraunhofer diffraction theory

    International Nuclear Information System (INIS)

    Kraus, H.G.

    1991-01-01

    This paper discusses methods for calculating Fraunhofer intensity fields resulting from diffraction through one- and two-dimensional apertures are presented. These methods are based on the geometric concept of finite elements and on Fourier and Abbe transforms. The geometry of the two-dimensional diffracting aperture(s) is based on biquadratic isoparametric elements, which are used to define aperture(s) of complex geometry. These elements are also used to build complex amplitude and phase functions across the aperture(s) which may be of continuous or discontinuous form. The transform integrals are accurately and efficiently integrated numerically using Gaussian quadrature. The power of these methods is most evident in two dimensions, where several examples are presented which include secondary obstructions, straight and curved secondary spider supports, multiple-mirror arrays, synthetic aperture arrays, segmented mirrors, apertures covered by screens, apodization, and phase plates. Typically, the finite element Abbe transform method results in significant gains in computational efficiency over the finite element Fourier transform method, but is also subject to some loss in generality

  14. Influence of part orientation on the geometric accuracy in robot-based incremental sheet metal forming

    Science.gov (United States)

    Störkle, Denis Daniel; Seim, Patrick; Thyssen, Lars; Kuhlenkötter, Bernd

    2016-10-01

    This article describes new developments in an incremental, robot-based sheet metal forming process (`Roboforming') for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet metal forming (ISF) machines, this system offers high geometrical form flexibility without the need of any part-dependent tools. The industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors present the influence of the part orientation and the forming sequence on the geometric accuracy. Their influence is illustrated with the help of various experimental results shown and interpreted within this article.

  15. A Model Based Approach to Increase the Part Accuracy in Robot Based Incremental Sheet Metal Forming

    International Nuclear Information System (INIS)

    Meier, Horst; Laurischkat, Roman; Zhu Junhong

    2011-01-01

    One main influence on the dimensional accuracy in robot based incremental sheet metal forming results from the compliance of the involved robot structures. Compared to conventional machine tools the low stiffness of the robot's kinematic results in a significant deviation of the planned tool path and therefore in a shape of insufficient quality. To predict and compensate these deviations offline, a model based approach, consisting of a finite element approach, to simulate the sheet forming, and a multi body system, modeling the compliant robot structure, has been developed. This paper describes the implementation and experimental verification of the multi body system model and its included compensation method.

  16. Germany's Intercity Express with ABB three-phase propulsion. The high-speed era begins for German Federal Railway

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, D.

    1991-01-01

    June 2, 1991, marked for German Federal Railway (DB) the start of a new era. On that day its new Intercity Express (ICE) trains began regular operation, setting new standards not only in travel comfort but also in technical and operational innovation. The train's present running speed on the Hamburg-Frankfurt-Munich line, which includes the longest section of DB's new high-speed 'Neubaustrecke' routes, is 250 km/h. Of the 60 ICE trains ordered by DB, 41 had been delivered by September 1991. ABB invested its entire AC drive know-how in the development of the train's power cars. Acting within a consortium, ABB Henschel supplied about one third of the electrical equipment, including transformers, power converters and the control equipment, which includes DAVID, a modern diagnostics system. Other ABB deliveries were the displays for the drivers' cabs and the locomotive's safety equipment. Among the mechanical parts ABB supplied were the bogies, doors, walls and roofs, and the brake modules. (orig.).

  17. Vibration Suppression for Improving the Estimation of Kinematic Parameters on Industrial Robots

    Directory of Open Access Journals (Sweden)

    David Alejandro Elvira-Ortiz

    2016-01-01

    Full Text Available Vibration is a phenomenon that is present on every industrial system such as CNC machines and industrial robots. Moreover, sensors used to estimate angular position of a joint in an industrial robot are severely affected by vibrations and lead to wrong estimations. This paper proposes a methodology for improving the estimation of kinematic parameters on industrial robots through a proper suppression of the vibration components present on signals acquired from two primary sensors: accelerometer and gyroscope. A Kalman filter is responsible for the filtering of spurious vibration. Additionally, a sensor fusion technique is used to merge information from both sensors and improve the results obtained using each sensor separately. The methodology is implemented in a proprietary hardware signal processor and tested in an ABB IRB 140 industrial robot, first by analyzing the motion profile of only one joint and then by estimating the path tracking of two welding tasks: one rectangular and another one circular. Results from this work prove that the sensor fusion technique accompanied by proper suppression of vibrations delivers better estimation than other proposed techniques.

  18. Kinematic-Kinetic-Rigidity Evaluation of a Six Axis Robot Performing a Task

    Directory of Open Access Journals (Sweden)

    H. Karagulle

    2012-11-01

    Full Text Available Six axis serial robots of different sizes are widely used for pick and place, welding and various other operations in industry. Developments in mechatronics, which is the synergistic integration of mechanism, electronics and computer control to achieve a functional system, offer effective solutions for the design of such robots. The integrated analysis of robots is usually used in the design stage. In this study, it is offered that the integrated analysis of robots can also be used at the application stage. SolidWorks, CosmosMotion and ABAQUS programs are used with an integrated approach. Integration software (IS is developed in Visual Basic by using the application programming interface (API capabilities of these programs. An ABB-IRB1400 industrial robot is considered for the study. Different trajectories are considered. Each task is first evaluated by a kinematic analysis. If the task is out of the workspace, then the task is cancelled. This evaluation can also be done by robot programs like Robot Studio. It is proposed that the task must be evaluated by considering the limits for velocities, motor actuation torques, reaction forces, natural frequencies, displacements and stresses due to the flexibility. The evaluation is done using kinematic, kinetic and rigidity evaluation charts. The approach given in this work can be used for the optimal usage of robots.

  19. BWR 90 and BWR 90+: Two advanced BWR design generations from ABB

    International Nuclear Information System (INIS)

    Haukeland, S.; Ivung, B.; Pedersen, T.

    1999-01-01

    ABB has two evolutionary advanced light water reactors available today - the BWR 90 boiling water reactor and the System 80+ pressurised water reactor. The BWR 90 is based on the design, construction, commissioning and operation of the BWR 75 plants. The operation experience of the six plants of this advanced design has been very good. The average annual energy availability is above 90%, and total power generation costs have been low. When developing the BWR 90 specific changes were introduced to a reference design, to adapt to technological progress, new safety requirements and to achieve cost savings. The thermal power rating of BWR 90 is 3800 MWth (providing a nominal 1374 MWe net), slightly higher than that of the reference plant ABB Atom has taken advantage of margins gained using a new generation of its SVEA fuel to attain this power rating without major design modifications. The BWR 90 design was completed and offered to the TVO utility in Finland in 1991, as one of the contenders for the fifth Finnish nuclear power plant project. Hence, the design is available today for deployment in new plant projects. Utility views were incorporated through co-operation with the Finnish utility TVO, owner and operator of the two Olkiluoto plants of BWR 75 design. A review against the European Utility Requirement (EUR) set of requirements has been performed, since the design, in 1997, was selected by the EUR Steering Committee to be the first BWR to be evaluated against the EUR documents. The review work was completed in 1998. It will be the subject of an 'EUR Volume 3 Subset for BWR 90' document. ABB is continuing its BWR development work with an 'evolutionary' design called BWR 90+, which aims at developing the BWR as a competitive option for the anticipated revival of the market for new nuclear plants beyond the turn of the century, as well as feeding ideas and inputs to the continuous modernisation efforts at operating plants. The development is performed by ABB Atom

  20. ABB Oy Motors and Generators -yksikön energiansyöttöjen erotus- ja lukitusohjeet

    OpenAIRE

    Chi, Henri

    2017-01-01

    Tämä insinöörityö toteutettiin Quant Finland Oy:lle, joka vastaa Helsingin Pitäjänmäen ABB Motors and Generators -tehtaan kunnossapidosta. Insinöörityön tavoitteena oli luoda energiansyöttöjen lukitus- ja erotusohjeet tehtaan koneistoille, laitteille ja järjestelmille. Tehtaalla on isoja koneita ja laitteita, jonka erotus- ja lukitustoimenpiteitä kaikki eivät osaa. Näin ollen on haluttu mahdollistaa turvallinen työskentely tarjoamalla selkeät erotus- ja lukitusohjeet. ABB Motors and Gene...

  1. Design of a robotized workstation making use of the integration of CAD models and Robotic Simulation software as way of pairing and comparing real and virtual environments

    Directory of Open Access Journals (Sweden)

    Velíšek Karol

    2017-01-01

    Full Text Available Over the last years, there has been an increasing tendency and pressure on the faster implementation robotic devices and systems in manufacturing. Such transition involves several disciplines starting with the prototyping of CAD models itself. The paper addresses the creation of CAD models and is mainly aimed at their integration in a given simulation environment according to the conception and guidelines of Industry 4.0, where the part itself becomes the entity carrying most of the needed information at any time of a production process. The creation of such CAD models is key for the further and better customization of simulations. In other to better exemplify all this, the paper describes the whole process of “virtual to real life implementation” of a given robotized workplace needed to be developed at the Institute. The design of such robotized workplace included the use of an ABB IRB 120 robot and several other devices which were all designed, simulated and analyzed in a virtual environment before the final development and implementation. This paper helped demonstrating the importance of having exactly the same model (real and virtual with respect to the success of the offline simulations.

  2. Control de la mano robot Inmoov-SR mediante casco NeuroSky Mindset

    OpenAIRE

    Hernández Martínez, Antonio

    2017-01-01

    En este trabajo el objetivo es conseguir controlar los movimientos de apertura y cierre de la mano robot InMoov-SR conectada al brazo IRB120 de ABB mediante señales EEG, recogidas por medio del casco NeuroSky Mindset. Las señales son recogidas cuando el sujeto está en estado basal y cuando realiza movimiento con su mano y son procesadas con la ayuda de Matlab para de esta manera conseguir establecer las señales de control necesarias para activar la apertura o el cierre de la mano. Final...

  3. Development of an Abbe Error Free Micro Coordinate Measuring Machine

    Directory of Open Access Journals (Sweden)

    Qiangxian Huang

    2016-04-01

    Full Text Available A micro Coordinate Measuring Machine (CMM with the measurement volume of 50 mm × 50 mm × 50 mm and measuring accuracy of about 100 nm (2σ has been developed. In this new micro CMM, an XYZ stage, which is driven by three piezo-motors in X, Y and Z directions, can achieve the drive resolution of about 1 nm and the stroke of more than 50 mm. In order to reduce the crosstalk among X-, Y- and Z-stages, a special mechanical structure, which is called co-planar stage, is introduced. The movement of the stage in each direction is detected by a laser interferometer. A contact type of probe is adopted for measurement. The center of the probe ball coincides with the intersection point of the measuring axes of the three laser interferometers. Therefore, the metrological system of the CMM obeys the Abbe principle in three directions and is free from Abbe error. The CMM is placed in an anti-vibration and thermostatic chamber for avoiding the influence of vibration and temperature fluctuation. A series of experimental results show that the measurement uncertainty within 40 mm among X, Y and Z directions is about 100 nm (2σ. The flatness of measuring face of the gauge block is also measured and verified the performance of the developed micro CMM.

  4. Assessment of the TASS 1-D neutronics model for the westinghouse and ABB-CE type PWR reactivity induced transients

    International Nuclear Information System (INIS)

    Choi, J.D.; Yoon, H.Y.; Um, K.S.; Kim, H.C.; Sim, S.K.

    1997-01-01

    Best estimate transient analysis code, TASS, has been developed for the normal and transient simulation of the Westinghouse and ABB-CE type PWRs. TASS thermal hydraulic model is based on the non-homogeneous, non-equilibrium two-phase continuity, energy and mixture momentum equations with constitutive relations for closure. Core neutronics model employs both the point kinetics and one-dimensional neutron diffusion model. Semi-implicit numerical scheme is used to solve the discretized finite difference equations. TASS one dimensional neutronics core model has been assessed through the reactivity induced transient analyses for the KORI-3, three loop Westinghouse PWR, and Younggwang-3 (YGN-3), two-loop ABB-CE PWR, nuclear power plants currently operating in Korea. The assessment showed that the TASS one dimensional neutronics core model can be applied for the Westinghouse and ABB-CE type PWRs to gain thermal margin which is necessary for a potential use of the high fuel burnup, extended fuel cycle, power upgrading and for the plant life extension

  5. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    OpenAIRE

    Hooman Samani; Elham Saadatian; Natalie Pang; Doros Polydorou; Owen Noel Newton Fernando; Ryohei Nakatsu; Jeffrey Tzu Kwan Valino Koh

    2013-01-01

    In this paper, we have investigated the concept of “Cultural Robotics” with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. Ac...

  6. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    Directory of Open Access Journals (Sweden)

    Hooman Samani

    2013-12-01

    Full Text Available In this paper, we have investigated the concept of “Cultural Robotics” with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. According to the importance of the embodiment of robots in the sense of presence, the influence of robots in communication culture is anticipated. The sustainability of robotics culture based on diversity for cultural communities for various acceptance modalities is explored in order to anticipate the creation of different attributes of culture between robots and humans in the future.

  7. Colgajo Sabattini-Abbe en H tumbada para reconstrucción de labio leporino bilateral secundario

    Directory of Open Access Journals (Sweden)

    Juan Márquez-Cañada

    Full Text Available La reconstrucción del labio leporino secundario tiene al colgajo Sabattini-Abbe como una de sus principales herramientas reconstructivas básicas, si bien se han propuesto diferentes modificaciones de la técnica original para lograr una minuciosa reconstrucción de las deformidades secundarias presentes en los pacientes con labio leporino. Presentamos una modificación del colgajo Sabattini-Abbe, el colgajo en H tumbada. Este colgajo modificado incluye un segmento vertical y dos horizontales para restaurar con un solo colgajo, y adhiriéndonos al principio de la Cirugía Plástica de reconstruir lo similar con lo similar, tanto piel como bermellón de las áreas central y laterales del labio superior, las cuales se hallan comúnmente afectadas en los pacientes con labio leporino bilateral secundario.

  8. Distributed Robotics Education

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2011-01-01

    Distributed robotics takes many forms, for instance, multirobots, modular robots, and self-reconfigurable robots. The understanding and development of such advanced robotic systems demand extensive knowledge in engineering and computer science. In this paper, we describe the concept of a distribu......Distributed robotics takes many forms, for instance, multirobots, modular robots, and self-reconfigurable robots. The understanding and development of such advanced robotic systems demand extensive knowledge in engineering and computer science. In this paper, we describe the concept...... to be changed, related to multirobot control and human-robot interaction control from virtual to physical representation. The proposed system is valuable for bringing a vast number of issues into education – such as parallel programming, distribution, communication protocols, master dependency, connectivity...

  9. L’ARCHE DE NOÉ et autres articles religieux de l’abbé Mallet dans l’Encyclopédie

    OpenAIRE

    Rex, Walter E.

    2006-01-01

    Complètement oublié aujourd’hui, l’abbé Edme Mallet (1713-55) fournit à l’Encyclopédie plus de mille articles portant surtout sur l’histoire ancienne et moderne et sur la littérature. Il écrivit aussi et ce fut son principal titre de gloire dans l’entreprise — des articles de théologie : en effet, il y figure comme théologien en titre de tous les premiers volumes. S’il faut reconnaître la considérable érudition de l’abbé Mallet comme historien, on peut néanmoins légitimement se demander pour ...

  10. Inverse Kinematics With Closed Form Solution For Denso Robot Manipulator

    OpenAIRE

    Ikhsan Eka Prasetia; Trihastuti Agustinah

    2015-01-01

    In this paper, the forward kinematics and inverse kinematics used on the Denso robot manipulator which has a 6-DOF. The forward kinematics will result in the desired position by end-effector, while inverse kinematics produce angel on each joint. Inverse kinematics problem are very difficult, therefor to obtain the solution of inverse kinematics using closed form solution with geometry approach. The simulation result obtained from forward kinematics and inverse kinematics is determining desire...

  11. Desarrollo de una interfaz para el control del robot IRB desde Matlab

    OpenAIRE

    Gutiérrez Corbacho, Azahara

    2014-01-01

    El objetivo de este proyecto es realizar la comunicación con el brazo robótico, IRB120 de ABB, a través de la herramienta de software matemático Matlab. Para ello desarrollaremos un socket de comunicación, que se encargará enviar y procesar los datos. Para comprobar que la comunicación funciona y que el envío de datos se realiza correctamente, se implementarán en Matlab, una serie de interfaces de comunicación con el robot y una aplicación final. La primera, será una interfaz gráfica r...

  12. Desarrollo de un Banco de Pruebas Experimental mediante Control de Fuerza con Robot Industrial para el Análisis de la Respuesta Mecánica de Asientos de Coche

    Directory of Open Access Journals (Sweden)

    A. Valera

    2009-04-01

    Full Text Available Resumen: Este trabajo presenta el desarrollo de un banco de pruebas experimental para el análisis de la respuesta mecánica de los asientos de vehículos durante la entrada y salida de pasajeros. Para realizar este desarrollo, se consideran dos fases: la primera fase es la captura de datos, realizada mediante una manta sensorizada con una red de galgas de presión y un sistema de fotogrametría a fin de capturar el movimiento realizado por una persona al sentarse en el asiento de un automóvil. La segunda fase consiste en reproducir dicho movimiento de forma automática mediante un maniquí acoplado a un robot, controlando la fuerza que ejerce el maniquí sobre el asiento.El desarrollo debe permitir aplicar diferentes estrategias de control de fuerza con robots industriales, utilizando para ello una plataforma de prueba consistente en el robot IRB140 de ABB y un sensor de fuerza industrial JR3 de 6 grados de libertad. Como arquitectura de control, se presentan dos alternativas. La primera utiliza la aplicación software WebWare SDK de ABB. En la segunda solución, se ha modificado el controlador original S4CPlus del robot, proporcionando una arquitectura abierta de control que permite la implementación de nuevos algoritmos de control de movimiento y fuerza en el robot industrial.Con esta aplicación, se simula el proceso realizado por una persona al sentarse y levantarse del asiento de un automóvil, monitorizándose y controlándose la fuerza que ejerce un maniquí sobre un asiento para garantizar igualdad de condiciones con el caso real. El sistema desarrollado tiene numerosas aplicaciones prácticas, como por ejemplo la de poder analizar el desgaste que estos movimientos ocasionan en la tapicería de los asientos. Palabras clave: control de fuerza, control de robots, simulación de movimientos humanos, control por computador, aplicaciones digitales de computación, robots manipuladores

  13. Mergeable nervous systems for robots.

    Science.gov (United States)

    Mathews, Nithin; Christensen, Anders Lyhne; O'Grady, Rehan; Mondada, Francesco; Dorigo, Marco

    2017-09-12

    Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.

  14. Social Robots

    DEFF Research Database (Denmark)

    Social robotics is a cutting edge research area gathering researchers and stakeholders from various disciplines and organizations. The transformational potential that these machines, in the form of, for example, caregiving, entertainment or partner robots, pose to our societies and to us as indiv......Social robotics is a cutting edge research area gathering researchers and stakeholders from various disciplines and organizations. The transformational potential that these machines, in the form of, for example, caregiving, entertainment or partner robots, pose to our societies and to us...... as individuals seems to be limited by our technical limitations and phantasy alone. This collection contributes to the field of social robotics by exploring its boundaries from a philosophically informed standpoint. It constructively outlines central potentials and challenges and thereby also provides a stable...

  15. Perbaikan Pengelolaan Pergudangan Melalui Penerapan Sistem Informasi Pergudangan di CV. ABB

    Directory of Open Access Journals (Sweden)

    Hery Hamdi Azwir

    2017-05-01

    Full Text Available Warehousing management problems that exist in the CV. ABB is the management of warehouses that are susceptible to manipulation of data, methods of work are still very manual such as recording a spare part only handwritten by the warehouse, frequent loss of spare parts in the warehouse, the bon false, and the lack of supervision instruments for oversee the spare parts in the warehouse. To overcome these problems, then made improvements through the implementation of warehouse management information system. Improvements in the form of procurement supervision instruments using the application PHP7 and MySQL, because the existence of the application makes it easy to keep an eye on spare parts in the warehouse, ranging from spare part comes in, spare part out, anyone who requests a part, stock of spare parts of existing in the warehouse, stock outs are used to help finance the manufacture purchase order, reports the spare parts that go into the warehouse of the supplier and request a report part. Not only is it a system of warehousing information can facilitate in making purchase order finance and carry out the approval of the request part of the user. Thus the system becomes more transparent.

  16. Robot friendship: Can a robot be a friend?

    DEFF Research Database (Denmark)

    Emmeche, Claus

    2014-01-01

    Friendship is used here as a conceptual vehicle for framing questions about the distinctiveness of human cognition in relation to natural systems such as other animal species and to artificial systems such as robots. By exploring this very common form of a human interpersonal relationship......, the author indicates that even though it is difficult to say something generally true about friendship among humans, distinct forms of friendship as practiced and distinct notions of friendship have been investigated in the social and human sciences and in biology. A more general conceptualization...... of friendship as a triadic relation analogous to the sign relation is suggested. Based on this the author asks how one may conceive of robot-robot and robot-human friendships; and how an interdisciplinary perspective upon that relation can contribute to analyse levels of embodied cognition in natural...

  17. Afterword: Robot Conceptualizations Between Continuity and Innovation

    Directory of Open Access Journals (Sweden)

    Leopoldina Fortunati

    2013-01-01

    Full Text Available The aim of this afterword is to discuss a topic that links all the papers presented in this special issue. This transversal topic is the forms of social robots. Firstly, social robots form is discussed in light of the forms of robotics we have inherited from the past. This includes the models of society that each of them embodied, as well as the social logic of the emotions connected to them. Secondly, social robots form is analyzed in light of the arrival in a new area for robotics, that of robots in the domestic sphere. Here, the system of filters created by the mass appropriation of information and communication technologies in the last two decades, has set the premise for a change of the social contract that has made social robot penetration possible. Whilst exploring the models and the meanings of social robots in the domestic sphere it emerges that robotics is following two different paths: one addressing the material part of housework (more traditional robotics and the other addressing the immaterial part of reproduction work (more innovative robotics. Finally, the paper analyzes the dematerialization process of social robotics that is still taking place, a practice that is defined herein as “ubiquitous social roboting.”

  18. ROBOT LITERACY AN APPROACH FOR SHARING SOCIETY WITH INTELLIGENT ROBOTS

    Directory of Open Access Journals (Sweden)

    Hidetsugu Suto

    2013-12-01

    Full Text Available A novel concept of media education called “robot literacy” is proposed. Here, robot literacy refers to the means of forming an appropriate relationship with intelligent robots. It can be considered a kind of media literacy. People who were born after the Internet age can be considered “digital natives” who have new morals and values and behave differently than previous generations in Internet societies. This can cause various problems among different generations. Thus, the necessity of media literacy education is increasing. Internet technologies, as well as robotics technologies are growing rapidly, and people who are born after the “home robot age,” whom the author calls “robot natives,” will be expected to have a certain degree of “robot literacy.” In this paper, the concept of robot literacy is defined and an approach to robot literacy education is discussed.

  19. Advanced light water reactor program at ABB-Combustion Engineering Nuclear Power

    International Nuclear Information System (INIS)

    Cahn, H.

    1990-01-01

    To meet the needs of Electric Utilities ordering nuclear power plants in the 1990s, ABB-Combustion Engineering is developing two designs which will meet EPRI consensus requirements and new licensing issues. The System 80 Plus design is an evolutionary pressurized water reactor plant modelled after the successful System 80 design in operation in Palo Verde and under construction in Korea. System Plus is currently under review by the US Nuclear Regulatory Commission with final design approval expected in 1991 and design certification in 1992. The Safe Integral Reactor (SIR) plant is a smaller facility with passive safety features and modular construction intended for design certification in the late 1990s. (author)

  20. Generación de trayectorias y evitación de obstáculos para el robot IRB120 en entorno Matlab

    OpenAIRE

    Blanco Fernández, Nicolás

    2015-01-01

    En este proyecto se abordará el desarrollo de una aplicación que permita una comunicación eficaz y fluida con el brazo robótico IRB120 de ABB desde el entorno Matlab, posibilitando la generación de trayectorias definidas por el usuario a través de unos “puntos de paso” intermedios, así como la detección de nuevos obstáculos presentes en la trayectoria del robot y la planificación de nuevas trayectorias recalculadas para evitarlos. La detección del área de trabajo se efectuará mediante el s...

  1. A Robot Trajectory Optimization Approach for Thermal Barrier Coatings Used for Free-Form Components

    Science.gov (United States)

    Cai, Zhenhua; Qi, Beichun; Tao, Chongyuan; Luo, Jie; Chen, Yuepeng; Xie, Changjun

    2017-10-01

    This paper is concerned with a robot trajectory optimization approach for thermal barrier coatings. As the requirements of high reproducibility of complex workpieces increase, an optimal thermal spraying trajectory should not only guarantee an accurate control of spray parameters defined by users (e.g., scanning speed, spray distance, scanning step, etc.) to achieve coating thickness homogeneity but also help to homogenize the heat transfer distribution on the coating surface. A mesh-based trajectory generation approach is introduced in this work to generate path curves on a free-form component. Then, two types of meander trajectories are generated by performing a different connection method. Additionally, this paper presents a research approach for introducing the heat transfer analysis into the trajectory planning process. Combining heat transfer analysis with trajectory planning overcomes the defects of traditional trajectory planning methods (e.g., local over-heating), which helps form the uniform temperature field by optimizing the time sequence of path curves. The influence of two different robot trajectories on the process of heat transfer is estimated by coupled FEM models which demonstrates the effectiveness of the presented optimization approach.

  2. ABB engagement in efforts to improve the safety of RBMK reactors

    International Nuclear Information System (INIS)

    Tiren, L.I.; Bioere, S.; Molin, J.

    1993-01-01

    ABB Atom is engaged in safety analysis for the Ignalinsk (RBMK) nuclear power plant. The analysis is done within the framework of two different initiatives of the Swedish Nuclear Power Inspectorate, namely: probabilistic safety assessment, i.e. the BARSELINA project, and analysis of containment safety issues. The aim is to enable decisions to be made for specific hardware modifications. The following items were considered by the Swedish Nuclear Power Inspectorate to be the most significant with regard to safety and were thus selected for further study or action: nondestructive testing of primary system components, fire and flooding protection, pressure relief from the reactor cavity in certain accident sequences, Accident Localization System improvements, and a separate auxiliary feedwater system. (Z.S.) 1 fig

  3. Pipeline robots with elastic elements

    Directory of Open Access Journals (Sweden)

    A. Matuliauskas

    2002-10-01

    Full Text Available In the article constructions of the pipeline robots with elastic elements are reviewed and the scheme of new original construction is presented. The mathematical models of a robot with one-dimensional vibration exciter with two degrees of freedom were developed and the equations of movement were formed and written. The mathematical model of the pipeline robot with circular elements is formed and its motion equations are presented.

  4. Swarm Robotics with Circular Formation Motion Including Obstacles Avoidance

    Directory of Open Access Journals (Sweden)

    Nabil M. Hewahi

    2017-07-01

    Full Text Available The robots science has been developed over the past few years, where robots have become used to accomplish difficult, repetitive or accurate tasks, which are very hard for humans to carry out. In this paper, we propose an algorithm to control the motion of a swarm of robots and make them able to avoid obstacles. The proposed solution is based on forming the robots in circular fashion. A group set of robots consists of multiple groups of robots, each group of robots consists of robots forming a circular shape and each group set is a circular form of robots. The proposed algorithm is concerned with first locating the randomly generated robots in groups and secondly with the swarm robot motion and finally with the swarm obstacle avoidance and swarm reorganization after crossing the obstacle. The proposed algorithm has been simulated with five different obstacles with various numbers of randomly generated robots. The results show that the swarm in the circular form can deal with the obstacles very effectively by passing the obstacles smoothly. The proposed algorithm has been compared with flocking algorithm and it is shown that the circular formation algorithm does not need extensive computation after obstacle avoidance whereas the flocking algorithm needs extensive computation. In addition, the circular formation algorithm maintains every robot in its group after avoiding the obstacles whereas with flocking algorithm does not.

  5. Performance analysis of power swing blocking feature in ABB 670 series impedance relays

    Directory of Open Access Journals (Sweden)

    Maciej Łosiński

    2012-12-01

    Full Text Available This paper presents test results of a distance protection’s PSD power swing detection feature in ABB 670 series relays. A RED670 relay was tested, which is part of the hydroelectric set protection in Żarnowiec Pumped Storage Plant. The power swing blocking feature’s performance was analysed on the basis of the results of object tests made with an Omicron digital tester. Also presented are simulation results that illustrate the PSD feature’s response to power swings caused by a disturbance in the power system. It is also shown how a distance protection may react to the same fault, depending on its settings.

  6. Anthropomorphic Robot Design and User Interaction Associated with Motion

    Science.gov (United States)

    Ellis, Stephen R.

    2016-01-01

    Though in its original concept a robot was conceived to have some human-like shape, most robots now in use have specific industrial purposes and do not closely resemble humans. Nevertheless, robots that resemble human form in some way have continued to be introduced. They are called anthropomorphic robots. The fact that the user interface to all robots is now highly mediated means that the form of the user interface is not necessarily connected to the robots form, human or otherwise. Consequently, the unique way the design of anthropomorphic robots affects their user interaction is through their general appearance and the way they move. These robots human-like appearance acts as a kind of generalized predictor that gives its operators, and those with whom they may directly work, the expectation that they will behave to some extent like a human. This expectation is especially prominent for interactions with social robots, which are built to enhance it. Often interaction with them may be mainly cognitive because they are not necessarily kinematically intricate enough for complex physical interaction. Their body movement, for example, may be limited to simple wheeled locomotion. An anthropomorphic robot with human form, however, can be kinematically complex and designed, for example, to reproduce the details of human limb, torso, and head movement. Because of the mediated nature of robot control, there remains in general no necessary connection between the specific form of user interface and the anthropomorphic form of the robot. But their anthropomorphic kinematics and dynamics imply that the impact of their design shows up in the way the robot moves. The central finding of this report is that the control of this motion is a basic design element through which the anthropomorphic form can affect user interaction. In particular, designers of anthropomorphic robots can take advantage of the inherent human-like movement to 1) improve the users direct manual control over

  7. Robot Wars: US Empire and geopolitics in the robotic age

    Science.gov (United States)

    Shaw, Ian GR

    2017-01-01

    How will the robot age transform warfare? What geopolitical futures are being imagined by the US military? This article constructs a robotic futurology to examine these crucial questions. Its central concern is how robots – driven by leaps in artificial intelligence and swarming – are rewiring the spaces and logics of US empire, warfare, and geopolitics. The article begins by building a more-than-human geopolitics to de-center the role of humans in conflict and foreground a worldly understanding of robots. The article then analyzes the idea of US empire, before speculating upon how and why robots are materializing new forms of proxy war. A three-part examination of the shifting spaces of US empire then follows: (1) Swarm Wars explores the implications of miniaturized drone swarming; (2) Roboworld investigates how robots are changing US military basing strategy and producing new topological spaces of violence; and (3) The Autogenic Battle-Site reveals how autonomous robots will produce emergent, technologically event-ful sites of security and violence – revolutionizing the battlespace. The conclusion reflects on the rise of a robotic US empire and its consequences for democracy. PMID:29081605

  8. Mutual Visibility by Robots with Persistent Memory

    OpenAIRE

    Bhagat, Subhash; Mukhopadhyaya, Krishnendu

    2017-01-01

    This paper addresses the mutual visibility problem for a set of semi-synchronous, opaque robots occupying distinct positions in the Euclidean plane. Since robots are opaque, if three robots lie on a line, the middle robot obstructs the visions of the two other robots. The mutual visibility problem asks the robots to coordinate their movements to form a configuration, within finite time and without collision, in which no three robots are collinear. Robots are endowed with a constant bits of pe...

  9. Distributed formation control for autonomous robots

    NARCIS (Netherlands)

    Garcia de Marina Peinado, Hector Jesús

    2016-01-01

    This thesis addresses several theoretical and practical problems related to formation-control of autonomous robots. Formation-control aims to simultaneously accomplish the tasks of forming a desired shape by the robots and controlling their coordinated collective motion. This kind of robot

  10. "CONFIRMATORY SURVEY RESULTS FOR THE ABB COMBUSTION ENGINEERING SITE WINDSOR, CONNECTICUT DCN 5158-SR-02-2

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, WADE C

    2013-03-25

    The objectives of the confirmatory activities were to provide independent contractor field data reviews and to generate independent radiological data for use by the NRC in evaluating the adequacy and accuracy of the contractor's procedures and FSS results. ORAU reviewed ABB CE's decommissioning plan, final status survey plan, and the applicable soil DCGLs, which were developed based on an NRC-approved radiation dose assessment. The surveys include gamma surface scans, gamma direct measurements, and soil sampling.

  11. Selecting the right robot: Influence of user attitude, robot sociability and embodiment on user preferences

    NARCIS (Netherlands)

    Ligthart, Mike; Truong, Khiet Phuong

    Selecting the suitable form of a robot, i.e. physical or virtual, for a task is not straightforward. The choice for a physical robot is not self-evident when the task is not physical but entirely social in nature. Results from previous studies comparing robots with different body types are found to

  12. Athermalization and achromatization of visible/SWIR optics using instantaneous Abbe number

    Science.gov (United States)

    Ramsey, J. L.

    2017-11-01

    With the move to more and more lightweight and cost-effective design, a move to multiband or multi-spectral optics is required. These systems are becoming more prevalent in the market as new detector technologies have been developed. However, the lens designs are only starting to be considered with the addition of new materials in the MWIR and the LWIR. For the VIS/SWIR region the designs have been possible, but a lack of detector technology has resulted in few designs being considered for actual manufacturing. These designs are also difficult due to changes in the Abbe number in the different wavebands. Where the glass map is robust in the visible region, there exists a lack of crown glasses in the SWIR, and one is left with mostly flint glasses. This proves challenging from a chromatic perspective. The challenge becomes even more difficult if one wants to incorporate athermalization.

  13. ABB.-Combustion Engineering's Experience in Nuclear Power Plant Engineering and Construction in Korea

    International Nuclear Information System (INIS)

    Veris, James W.

    1992-01-01

    The Yonggwang Nuclear Project is a milestone project for the Korean Nuclear Industry. The Project has the two objectives of obtaining self-reliance in all aspects of nuclear technology and of constructing two modern nuclear power plants under the leadership of Korean companies acting as prime contractors. ABB.-Combustion Engineering 1000 MW System 80+ TM was chosen in 1987 as the NSLS design to meet these two objectives. This paper summarizers the significant experiences and lessons learned through the first four years of the Project as well as identifying implications for such future projects. The unique challenges of the project are identified and an evaluation of the experiences in the technology, self-reliance program and in the design and manufacturing processes will be made

  14. Survival of falling robots

    Science.gov (United States)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-01-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  15. Survival of falling robots

    Science.gov (United States)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-02-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  16. Intelligence for Human-Assistant Planetary Surface Robots

    Science.gov (United States)

    Hirsh, Robert; Graham, Jeffrey; Tyree, Kimberly; Sierhuis, Maarten; Clancey, William J.

    2006-01-01

    The central premise in developing effective human-assistant planetary surface robots is that robotic intelligence is needed. The exact type, method, forms and/or quantity of intelligence is an open issue being explored on the ERA project, as well as others. In addition to field testing, theoretical research into this area can help provide answers on how to design future planetary robots. Many fundamental intelligence issues are discussed by Murphy [2], including (a) learning, (b) planning, (c) reasoning, (d) problem solving, (e) knowledge representation, and (f) computer vision (stereo tracking, gestures). The new "social interaction/emotional" form of intelligence that some consider critical to Human Robot Interaction (HRI) can also be addressed by human assistant planetary surface robots, as human operators feel more comfortable working with a robot when the robot is verbally (or even physically) interacting with them. Arkin [3] and Murphy are both proponents of the hybrid deliberative-reasoning/reactive-execution architecture as the best general architecture for fully realizing robot potential, and the robots discussed herein implement a design continuously progressing toward this hybrid philosophy. The remainder of this chapter will describe the challenges associated with robotic assistance to astronauts, our general research approach, the intelligence incorporated into our robots, and the results and lessons learned from over six years of testing human-assistant mobile robots in field settings relevant to planetary exploration. The chapter concludes with some key considerations for future work in this area.

  17. Dynamic Modelling Of A SCARA Robot

    Science.gov (United States)

    Turiel, J. Perez; Calleja, R. Grossi; Diez, V. Gutierrez

    1987-10-01

    This paper describes a method for modelling industrial robots that considers dynamic approach to manipulation systems motion generation, obtaining the complete dynamic model for the mechanic part of the robot and taking into account the dynamic effect of actuators acting at the joints. For a four degree of freedom SCARA robot we obtain the dynamic model for the basic (minimal) configuration, that is, the three degrees of freedom that allow us to place the robot end effector in a desired point, using the Lagrange Method to obtain the dynamic equations in matrix form. The manipulator is considered to be a set of rigid bodies inter-connected by joints in the form of simple kinematic pairs. Then, the state space model is obtained for the actuators that move the robot joints, uniting the models of the single actuators, that is, two DC permanent magnet servomotors and an electrohydraulic actuator. Finally, using a computer simulation program written in FORTRAN language, we can compute the matrices of the complete model.

  18. Novel robotic systems and future directions

    Directory of Open Access Journals (Sweden)

    Ki Don Chang

    2018-01-01

    Full Text Available Robot-assistance is increasingly used in surgical practice. We performed a nonsystematic literature review using PubMed/MEDLINE and Google for robotic surgical systems and compiled information on their current status. We also used this information to predict future about the direction of robotic systems based on various robotic systems currently being developed. Currently, various modifications are being made in the consoles, robotic arms, cameras, handles and instruments, and other specific functions (haptic feedback and eye tracking that make up the robotic surgery system. In addition, research for automated surgery is actively being carried out. The development of future robots will be directed to decrease the number of incisions and improve precision. With the advent of artificial intelligence, a more practical form of robotic surgery system can be introduced and will ultimately lead to the development of automated robotic surgery system.

  19. Robotics and nuclear power. Report by the Technology Transfer Robotics Task Team

    International Nuclear Information System (INIS)

    1985-06-01

    A task team was formed at the request of the Department of Energy to evaluate and assess technology development needed for advanced robotics in the nuclear industry. The mission of these technologies is to provide the nuclear industry with the support for the application of advanced robotics to reduce nuclear power generating costs and enhance the safety of the personnel in the industry. The investigation included robotic and teleoperated systems. A robotic system is defined as a reprogrammable, multifunctional manipulator designed to move materials, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks. A teleoperated system includes an operator who remotely controls the system by direct viewing or through a vision system

  20. Kinematic Model of NAO Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Miloš D. Jovanović

    2014-06-01

    Full Text Available This paper presents synthesis of kinematic model of NAO humanoid robot of Aldebaran Robotics. NAO humanoid robot has complex kinematic structure with 25 active degrees of freedom (DOF. Humanoid system is formed through 5 mutually depended kinematic chains. After that we applied standard aspects of kinematic chains synthesis and Denavit-Hartenberg parameters of each of 5 chains of robotic structure were introduced. Also, mutual relationships between chains were described, as well as their physical and structural dependence. Generated kinematic model will be the starting point for further dynamical modeling of NAO humanoid robot and motion synthesis on actual platform.

  1. Social categorization of social robots: anthropomorphism as a function of robot group membership.

    Science.gov (United States)

    Eyssel, Friederike; Kuchenbrandt, Dieta

    2012-12-01

    Previous work on social categorization has shown that people often use cues such as a person's gender, age, or ethnicity to categorize and form impressions of others. The present research investigated effects of social category membership on the evaluation of humanoid robots. More specifically, participants rated a humanoid robot that either belonged to their in-group or to a national out-group with regard to anthropomorphism (e.g., mind attribution, warmth), psychological closeness, contact intentions, and design. We predicted that participants would show an in-group bias towards the robot that ostensibly belonged to their in-group--as indicated by its name and location of production. In line with our hypotheses, participants not only rated the in-group robot more favourably--importantly, they also anthropomorphized it more strongly than the out-group robot. Our findings thus document that people even apply social categorization processes and subsequent differential social evaluations to robots. ©2011 The British Psychological Society.

  2. Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks.

    Science.gov (United States)

    Wang, Zhijun; Mirdamadi, Reza; Wang, Qing

    2016-01-01

    Intelligent agents such as robots can form ad hoc networks and replace human being in many dangerous scenarios such as a complicated disaster relief site. This project prototypes and builds a computer simulator to simulate robot kinetics, unsupervised learning using Kohonen networks, as well as group intelligence when an ad hoc network is formed. Each robot is modeled using an object with a simple set of attributes and methods that define its internal states and possible actions it may take under certain circumstances. As the result, simple, reliable, and affordable robots can be deployed to form the network. The simulator simulates a group of robots as an unsupervised learning unit and tests the learning results under scenarios with different complexities. The simulation results show that a group of robots could demonstrate highly collaborative behavior on a complex terrain. This study could potentially provide a software simulation platform for testing individual and group capability of robots before the design process and manufacturing of robots. Therefore, results of the project have the potential to reduce the cost and improve the efficiency of robot design and building.

  3. Human-Robot Interaction and Human Self-Realization

    DEFF Research Database (Denmark)

    Nørskov, Marco

    2014-01-01

    is to test the basis for this type of discrimination when it comes to human-robot interaction. Furthermore, the paper will take Heidegger's warning concerning technology as a vantage point and explore the possibility of human-robot interaction forming a praxis that might help humans to be with robots beyond...

  4. Impact of Dietary, Socioeconomic, and Physical Factors on Obese and Overweight Schoolchildren Living in Sidi-Bel-Abbes (West of Algeria and Ain Defla (Centre

    Directory of Open Access Journals (Sweden)

    Didaoui Hayat

    2018-03-01

    Full Text Available Background and aims: The aim of the current study was to assess the impact of environmental factors; food, socio-economic, and physical activity, on a group of obese children living in Ain-Defla (Center Algeria and Sidi-Bel-Abbes (West Algeria.

  5. Designing competitions for education in robotics

    DEFF Research Database (Denmark)

    Andersen, Nils Axel; Ravn, Ole

    2012-01-01

    The paper describes design considerations for making a robot competition. Topics as level of participants, learning objective, evaluation form, task design and competition rules are treated. It is shown that careful design considering these topics are necessary for a succesful outcome of a compet......The paper describes design considerations for making a robot competition. Topics as level of participants, learning objective, evaluation form, task design and competition rules are treated. It is shown that careful design considering these topics are necessary for a succesful outcome...... of a competition. The conclusions are based on examples from more than 15 years of experience with robotic competitions....

  6. Creating and maintaining chemical artificial life by robotic symbiosis

    DEFF Research Database (Denmark)

    Hanczyc, Martin M.; Parrilla, Juan M.; Nicholson, Arwen

    2015-01-01

    We present a robotic platform based on the open source RepRap 3D printer that can print and maintain chemical artificial life in the form of a dynamic, chemical droplet. The robot uses computer vision, a self-organizing map, and a learning program to automatically categorize the behavior of the d......We present a robotic platform based on the open source RepRap 3D printer that can print and maintain chemical artificial life in the form of a dynamic, chemical droplet. The robot uses computer vision, a self-organizing map, and a learning program to automatically categorize the behavior...... confluence of chemical, artificial intelligence, and robotic approaches to artificial life....

  7. Creating and Maintaining Chemical Artificial Life by Robotic Symbiosis

    DEFF Research Database (Denmark)

    Hanczyc, Martin; Parrilla, Juan M.; Nicholson, Arwen

    2015-01-01

    We present a robotic platform based on the open source RepRap 3D printer that can print and maintain chemical artificial life in the form of a dynamic, chemical droplet. The robot uses computer vision, a self-organizing map, and a learning program to automatically categorize the behavior of the d......We present a robotic platform based on the open source RepRap 3D printer that can print and maintain chemical artificial life in the form of a dynamic, chemical droplet. The robot uses computer vision, a self-organizing map, and a learning program to automatically categorize the behavior...... confluence of chemical, artificial intelligence, and robotic approaches to artificial life....

  8. Piping benchmark problems for the ABB/CE System 80+ Standardized Plant

    International Nuclear Information System (INIS)

    Bezler, P.; DeGrassi, G.; Braverman, J.; Wang, Y.K.

    1994-07-01

    To satisfy the need for verification of the computer programs and modeling techniques that will be used to perform the final piping analyses for the ABB/Combustion Engineering System 80+ Standardized Plant, three benchmark problems were developed. The problems are representative piping systems subjected to representative dynamic loads with solutions developed using the methods being proposed for analysis for the System 80+ standard design. It will be required that the combined license licensees demonstrate that their solution to these problems are in agreement with the benchmark problem set. The first System 80+ piping benchmark is a uniform support motion response spectrum solution for one section of the feedwater piping subjected to safe shutdown seismic loads. The second System 80+ piping benchmark is a time history solution for the feedwater piping subjected to the transient loading induced by a water hammer. The third System 80+ piping benchmark is a time history solution of the pressurizer surge line subjected to the accelerations induced by a main steam line pipe break. The System 80+ reactor is an advanced PWR type

  9. 'Filigree Robotics'

    DEFF Research Database (Denmark)

    2016-01-01

    -scale 3D printed ceramics accompanied by prints, videos and ceramic probes, which introduce the material and design processes of the project.'Filigree Robotics' experiments with a combination of the traditional ceramic technique of ‘Overforming’ with 3d Laserscan and Robotic extrusion technique...... application of reflectivity after an initial 3d print. The consideration and integration of this material practice into a digital workflow took place in an interdisciplinary collaboration of Ceramicist Flemming Tvede Hansen from KADK Superformlab and architectural researchers from CITA (Martin Tamke, Henrik...... to the creation of the form and invites for experimentation. In Filigree Robotics we combine the crafting of the mold with a parallel running generative algorithm, which is fed by a constant laserscan of the 3d surface. This algorithm, analyses the topology of the mold, identifies high and low points and uses...

  10. Transferring human impedance regulation skills to robots

    CERN Document Server

    Ajoudani, Arash

    2016-01-01

    This book introduces novel thinking and techniques to the control of robotic manipulation. In particular, the concept of teleimpedance control as an alternative method to bilateral force-reflecting teleoperation control for robotic manipulation is introduced. In teleimpedance control, a compound reference command is sent to the slave robot including both the desired motion trajectory and impedance profile, which are then realized by the remote controller. This concept forms a basis for the development of the controllers for a robotic arm, a dual-arm setup, a synergy-driven robotic hand, and a compliant exoskeleton for improved interaction performance.

  11. Monitoring of temperature-mediated phase transitions of adipose tissue by combined optical coherence tomography and Abbe refractometry.

    Science.gov (United States)

    Yanina, Irina Y; Popov, Alexey P; Bykov, Alexander V; Meglinski, Igor V; Tuchin, Valery V

    2018-01-01

    Observation of temperature-mediated phase transitions between lipid components of the adipose tissues has been performed by combined use of the Abbe refractometry and optical coherence tomography. The phase transitions of the lipid components were clearly observed in the range of temperatures from 24°C to 60°C, and assessed by quantitatively monitoring the changes of the refractive index of 1- to 2-mm-thick porcine fat tissue slices. The developed approach has a great potential as an alternative method for obtaining accurate information on the processes occurring during thermal lipolysis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. CONFIRMATORY SURVEY RESULTS FOR PORTIONS OF THE ABB COMBUSTION ENGINEERING SITE IN WINDSOR, CONNECTICUT DURING THE FALL OF 2011

    Energy Technology Data Exchange (ETDEWEB)

    Wade C. Adams

    2011-12-09

    From the mid-1950s until mid-2000, the Combustion Engineering, Inc. (CE) site in Windsor, Connecticut (Figure A-1) was involved in the research, development, engineering, production, and servicing of nuclear fuels, systems, and services. The site is currently undergoing decommissioning that will lead to license termination and unrestricted release in accordance with the requirements of the License Termination Rule in 10 CFR Part 20, Subpart E. Asea Brown Boveri Incorporated (ABB) has been decommissioning the CE site since 2001.

  13. Confirmatory Survey Results For Portions Of The ABB Combustion Engineering Site In Windsor, Connecticut During The Fall Of 2011

    International Nuclear Information System (INIS)

    Adams, Wade C.

    2011-01-01

    From the mid-1950s until mid-2000, the Combustion Engineering, Inc. (CE) site in Windsor, Connecticut (Figure A-1) was involved in the research, development, engineering, production, and servicing of nuclear fuels, systems, and services. The site is currently undergoing decommissioning that will lead to license termination and unrestricted release in accordance with the requirements of the License Termination Rule in 10 CFR Part 20, Subpart E. Asea Brown Boveri Incorporated (ABB) has been decommissioning the CE site since 2001.

  14. Laws on Robots, Laws by Robots, Laws in Robots : Regulating Robot Behaviour by Design

    NARCIS (Netherlands)

    Leenes, R.E.; Lucivero, F.

    2015-01-01

    Speculation about robot morality is almost as old as the concept of a robot itself. Asimov’s three laws of robotics provide an early and well-discussed example of moral rules robots should observe. Despite the widespread influence of the three laws of robotics and their role in shaping visions of

  15. Experiments on co-operating robot arms

    International Nuclear Information System (INIS)

    Arthaya, B.; De Schutter, J.

    1994-01-01

    When two robots manipulate a common object or perform a single task together, a closed-kinematic chain is formed. If both robots are controlled under position control only, at a certain phase during the manipulation, the interaction forces may become unacceptably high. The interaction forces are caused by the kinematic as well as the dynamic errors in the robot position controller. In order to avoid this problem, a synchronized motion between both robots has to be generated, not only by controlling the position (velocity) of the two end-effectors, but also by controlling the interaction forces between them. In order to generate a synchronized motion, the first robot controller continuously modifies the task frame velocity corresponding to the velocity of the other robot. This implies that the velocity of the other robot is used as feed-forward information in order to anticipate its motion. This approach results in a better tracking behaviour

  16. Human-robot skills transfer interfaces for a flexible surgical robot.

    Science.gov (United States)

    Calinon, Sylvain; Bruno, Danilo; Malekzadeh, Milad S; Nanayakkara, Thrishantha; Caldwell, Darwin G

    2014-09-01

    In minimally invasive surgery, tools go through narrow openings and manipulate soft organs to perform surgical tasks. There are limitations in current robot-assisted surgical systems due to the rigidity of robot tools. The aim of the STIFF-FLOP European project is to develop a soft robotic arm to perform surgical tasks. The flexibility of the robot allows the surgeon to move within organs to reach remote areas inside the body and perform challenging procedures in laparoscopy. This article addresses the problem of designing learning interfaces enabling the transfer of skills from human demonstration. Robot programming by demonstration encompasses a wide range of learning strategies, from simple mimicking of the demonstrator's actions to the higher level imitation of the underlying intent extracted from the demonstrations. By focusing on this last form, we study the problem of extracting an objective function explaining the demonstrations from an over-specified set of candidate reward functions, and using this information for self-refinement of the skill. In contrast to inverse reinforcement learning strategies that attempt to explain the observations with reward functions defined for the entire task (or a set of pre-defined reward profiles active for different parts of the task), the proposed approach is based on context-dependent reward-weighted learning, where the robot can learn the relevance of candidate objective functions with respect to the current phase of the task or encountered situation. The robot then exploits this information for skills refinement in the policy parameters space. The proposed approach is tested in simulation with a cutting task performed by the STIFF-FLOP flexible robot, using kinesthetic demonstrations from a Barrett WAM manipulator. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Inverse Kinematic Analysis Of A Quadruped Robot

    Directory of Open Access Journals (Sweden)

    Muhammed Arif Sen

    2017-09-01

    Full Text Available This paper presents an inverse kinematics program of a quadruped robot. The kinematics analysis is main problem in the manipulators and robots. Dynamic and kinematic structures of quadruped robots are very complex compared to industrial and wheeled robots. In this study inverse kinematics solutions for a quadruped robot with 3 degrees of freedom on each leg are presented. Denavit-Hartenberg D-H method are used for the forward kinematic. The inverse kinematic equations obtained by the geometrical and mathematical methods are coded in MATLAB. And thus a program is obtained that calculate the legs joint angles corresponding to desired various orientations of robot and endpoints of legs. Also the program provides the body orientations of robot in graphical form. The angular positions of joints obtained corresponding to desired different orientations of robot and endpoints of legs are given in this study.

  18. A survey on pattern formation of autonomous mobile robots: asynchrony, obliviousness and visibility

    International Nuclear Information System (INIS)

    Yamauchi, Yukiko

    2013-01-01

    A robot system consists of autonomous mobile robots each of which repeats Look-Compute-Move cycles, where the robot observes the positions of other robots (Look phase), computes the track to the next location (Compute phase), and moves along the track (Move phase). In this survey, we focus on self-organization of mobile robots, especially their power of forming patterns. The formation power of a robot system is the class of patterns that the robots can form, and existing results show that the robot system's formation power is determined by their asynchrony, obliviousness, and visibility. We briefly survey existing results, with impossibilities and pattern formation algorithms. Finally, we present several open problems related to the pattern formation problem of mobile robots

  19. Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review.

    Science.gov (United States)

    Mehrholz, J; Harvey, L A; Thomas, S; Elsner, B

    2017-08-01

    Systematic review about randomised trials comparing different training strategies to improve gait in people with spinal cord injuries (SCI). The aim of this systematic review was to compare the effectiveness of body-weight-supported treadmill training (BWSTT) and robotic-assisted gait training with overground gait training and other forms of physiotherapy in people with traumatic SCI. Systematic review conducted by researchers from Germany and Australia. An extensive search was conducted for randomised controlled trials involving people with traumatic SCI that compared either BWSTT or robotic-assisted gait training with overground gait training and other forms of physiotherapy. The two outcomes of interest were walking speed (m s -1 ) and walking distance (m). BWSTT and robotic-assisted gait training were analysed separately, and data were pooled across trials to derive mean between-group differences using a random-effects model. Thirteen randomised controlled trials involving 586 people were identified. Ten trials involving 462 participants compared BWSTT to overground gait training and other forms of physiotherapy, but only nine trials provided useable data. The pooled mean (95% confidence interval (CI)) between-group differences for walking speed and walking distance were -0.03 m s -1 (-0.10 to 0.04) and -7 m (-45 to 31), respectively, favouring overground gait training. Five trials involving 344 participants compared robotic-assisted gait training to overground gait training and other forms of physiotherapy but only three provided useable data. The pooled mean (95% CI) between-group differences for walking speed and walking distance were -0.04 m s -1 (95% CI -0.21 to 0.13) and -6 m (95% CI -86 to 74), respectively, favouring overground gait training. BWSTT and robotic-assisted gait training do not increase walking speed more than overground gait training and other forms of physiotherapy do, but their effects on walking distance are not clear.

  20. Analysis of jacobian and singularity of planar parallel robots using screw theory

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Hyun; Lee, Jeh Won; Lee, Hyuk Jin [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    2012-11-15

    The Jacobian and singularity analysis of parallel robots is necessary to analyze robot motion. The derivations of the Jacobian matrix and singularity configuration are complicated and have no geometrical earning in the velocity form of the Jacobian matrix. In this study, the screw theory is used to derive the Jacobian of parallel robots. The statics form of the Jacobian has a geometrical meaning. In addition, singularity analysis can be performed by using the geometrical values. Furthermore, this study shows that the screw theory is applicable to redundantly actuated robots as well as non redundant robots.

  1. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction.

    Science.gov (United States)

    de Greeff, Joachim; Belpaeme, Tony

    2015-01-01

    Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children's social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference); the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a "mental model" of the robot, tailoring the tutoring to the robot's performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot's bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance.

  2. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction.

    Directory of Open Access Journals (Sweden)

    Joachim de Greeff

    Full Text Available Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children's social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference; the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a "mental model" of the robot, tailoring the tutoring to the robot's performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot's bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance.

  3. A design-centred framework for social human-robot interaction

    NARCIS (Netherlands)

    Bartneck, C.; Forlizzi, J.

    2004-01-01

    Robots currently integrate into our everyday lives, but little is known about how they can act socially. In this paper, we propose a definition of social robots and describe a framework that classifies properties of social robots. The properties consist of form, modality, social norms, autonomy, and

  4. Friendly network robotics; Friendly network robotics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper summarizes the research results on the friendly network robotics in fiscal 1996. This research assumes an android robot as an ultimate robot and the future robot system utilizing computer network technology. The robot aiming at human daily work activities in factories or under extreme environments is required to work under usual human work environments. The human robot with similar size, shape and functions to human being is desirable. Such robot having a head with two eyes, two ears and mouth can hold a conversation with human being, can walk with two legs by autonomous adaptive control, and has a behavior intelligence. Remote operation of such robot is also possible through high-speed computer network. As a key technology to use this robot under coexistence with human being, establishment of human coexistent robotics was studied. As network based robotics, use of robots connected with computer networks was also studied. In addition, the R-cube (R{sup 3}) plan (realtime remote control robot technology) was proposed. 82 refs., 86 figs., 12 tabs.

  5. Robotic Literacy Learning Companions: Exploring Student Engagement with a Humanoid Robot in an Afterschool Literacy Program

    Science.gov (United States)

    Levchak, Sofia

    2016-01-01

    This study was an investigation of the use of a NAO humanoid robot as an effective tool for engaging readers in an afterschool program as well as to find if increasing engagement using a humanoid robot would affect students' reading comprehension when compared to traditional forms of instruction. The targeted population of this study was…

  6. Development of a Survivable Cloud Multi-Robot Framework for Heterogeneous Environments

    Directory of Open Access Journals (Sweden)

    Isaac Osunmakinde

    2014-10-01

    Full Text Available Cloud robotics is a paradigm that allows for robots to offload computationally intensive and data storage requirements into the cloud by providing a secure and customizable environment. The challenge for cloud robotics is the inherent problem of cloud disconnection. A major assumption made in the development of the current cloud robotics frameworks is that the connection between the cloud and the robot is always available. However, for multi-robots working in heterogeneous environments, the connection between the cloud and the robots cannot always be guaranteed. This work serves to assist with the challenge of disconnection in cloud robotics by proposing a survivable cloud multi-robotics (SCMR framework for heterogeneous environments. The SCMR framework leverages the combination of a virtual ad hoc network formed by robot-to-robot communication and a physical cloud infrastructure formed by robot-to-cloud communications. The quality of service (QoS on the SCMR framework was tested and validated by determining the optimal energy utilization and time of response (ToR on drivability analysis with and without cloud connection. The design trade-off, including the result, is between the computation energy for the robot execution and the offloading energy for the cloud execution.

  7. Robot vision for nuclear advanced robot

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Okano, Hideharu; Kuno, Yoshinori; Miyazawa, Tatsuo; Shimada, Hideo; Okada, Satoshi; Kawamura, Astuo

    1991-01-01

    This paper describes Robot Vision and Operation System for Nuclear Advanced Robot. This Robot Vision consists of robot position detection, obstacle detection and object recognition. With these vision techniques, a mobile robot can make a path and move autonomously along the planned path. The authors implemented the above robot vision system on the 'Advanced Robot for Nuclear Power Plant' and tested in an environment mocked up as nuclear power plant facilities. Since the operation system for this robot consists of operator's console and a large stereo monitor, this system can be easily operated by one person. Experimental tests were made using the Advanced Robot (nuclear robot). Results indicate that the proposed operation system is very useful, and can be operate by only person. (author)

  8. Framework for robot skill learning using reinforcement learning

    Science.gov (United States)

    Wei, Yingzi; Zhao, Mingyang

    2003-09-01

    Robot acquiring skill is a process similar to human skill learning. Reinforcement learning (RL) is an on-line actor critic method for a robot to develop its skill. The reinforcement function has become the critical component for its effect of evaluating the action and guiding the learning process. We present an augmented reward function that provides a new way for RL controller to incorporate prior knowledge and experience into the RL controller. Also, the difference form of augmented reward function is considered carefully. The additional reward beyond conventional reward will provide more heuristic information for RL. In this paper, we present a strategy for the task of complex skill learning. Automatic robot shaping policy is to dissolve the complex skill into a hierarchical learning process. The new form of value function is introduced to attain smooth motion switching swiftly. We present a formal, but practical, framework for robot skill learning and also illustrate with an example the utility of method for learning skilled robot control on line.

  9. Robotics in space-age manufacturing

    Science.gov (United States)

    Jones, Chip

    1991-01-01

    Robotics technologies are developed to improve manufacturing of space hardware. The following applications of robotics are covered: (1) welding for the space shuttle and space station Freedom programs; (2) manipulation of high-pressure water for shuttle solid rocket booster refurbishment; (3) automating the application of insulation materials; (4) precision application of sealants; and (5) automation of inspection procedures. Commercial robots are used for these development programs, but they are teamed with advanced sensors, process controls, and computer simulation to form highly productive manufacturing systems. Many of the technologies are also being actively pursued in private sector manufacturing operations.

  10. Robotics as science (re)form: Exploring power, learning and gender(ed) identity formation in a "community of practice"

    Science.gov (United States)

    Hurner, Sheryl Marie

    "Robotics as Science (re)Form" utilizes qualitative research methods to examine the career trajectories and gender identity formation of female youth participating as members of an all-girl, academic team within the male-dominated environment of the FIRST Robotics competition. Following the constant comparative approach (Glaser & Strauss, 1967), my project relies upon triangulating ethnographic data drawn from extensive field notes, semi-structured interviews, and digital and video imagery compiled over two years of participant observation. Drawing upon the sociolinguistic "community of practice" (CoP) framework (Eckert & McConnell-Ginet, 1992; Lave & Wenger, 1991; Wenger, 1998), this study maps the range of gendered "identities" available to girls involved in non-traditional academic and occupational pursuits within a local context, and reveals the nature, structure and impact of power operating within this CoP, a significantly underdeveloped construct within the language and gender literature. These research findings (1) contribute to refining theories of situated or problem based learning with a focus on female youth (Lave & Wenger, 1991; Wenger, 1998); (2) reveal affordances and barriers within the local program design that enable (and preclude) women and minority youth entering the engineering pipeline; and (3) enrich our understanding of intragroup language and gendered "practices" to counter largely essentializing generalizations based upon quantitative analysis. Keywords: Robotics, gender, identity formation, science, STEM, communities of practice

  11. Swarm robotics and minimalism

    Science.gov (United States)

    Sharkey, Amanda J. C.

    2007-09-01

    Swarm Robotics (SR) is closely related to Swarm Intelligence, and both were initially inspired by studies of social insects. Their guiding principles are based on their biological inspiration and take the form of an emphasis on decentralized local control and communication. Earlier studies went a step further in emphasizing the use of simple reactive robots that only communicate indirectly through the environment. More recently SR studies have moved beyond these constraints to explore the use of non-reactive robots that communicate directly, and that can learn and represent their environment. There is no clear agreement in the literature about how far such extensions of the original principles could go. Should there be any limitations on the individual abilities of the robots used in SR studies? Should knowledge of the capabilities of social insects lead to constraints on the capabilities of individual robots in SR studies? There is a lack of explicit discussion of such questions, and researchers have adopted a variety of constraints for a variety of reasons. A simple taxonomy of swarm robotics is presented here with the aim of addressing and clarifying these questions. The taxonomy distinguishes subareas of SR based on the emphases and justifications for minimalism and individual simplicity.

  12. Algorithms for Rapidly Dispersing Robot Swarms in Unknown Environments

    OpenAIRE

    Hsiang, Tien-Ruey; Arkin, Esther M.; Bender, Michael; Fekete, Sandor P.; Mitchell, Joseph S. B.

    2002-01-01

    We develop and analyze algorithms for dispersing a swarm of primitive robots in an unknown environment, R. The primary objective is to minimize the makespan, that is, the time to fill the entire region. An environment is composed of pixels that form a connected subset of the integer grid. There is at most one robot per pixel and robots move horizontally or vertically at unit speed. Robots enter R by means of k>=1 door pixels Robots are primitive finite automata, only having local communicatio...

  13. Human-Robot Interaction: Status and Challenges.

    Science.gov (United States)

    Sheridan, Thomas B

    2016-06-01

    The current status of human-robot interaction (HRI) is reviewed, and key current research challenges for the human factors community are described. Robots have evolved from continuous human-controlled master-slave servomechanisms for handling nuclear waste to a broad range of robots incorporating artificial intelligence for many applications and under human supervisory control. This mini-review describes HRI developments in four application areas and what are the challenges for human factors research. In addition to a plethora of research papers, evidence of success is manifest in live demonstrations of robot capability under various forms of human control. HRI is a rapidly evolving field. Specialized robots under human teleoperation have proven successful in hazardous environments and medical application, as have specialized telerobots under human supervisory control for space and repetitive industrial tasks. Research in areas of self-driving cars, intimate collaboration with humans in manipulation tasks, human control of humanoid robots for hazardous environments, and social interaction with robots is at initial stages. The efficacy of humanoid general-purpose robots has yet to be proven. HRI is now applied in almost all robot tasks, including manufacturing, space, aviation, undersea, surgery, rehabilitation, agriculture, education, package fetch and delivery, policing, and military operations. © 2016, Human Factors and Ergonomics Society.

  14. Simplified Human-Robot Interaction: Modeling and Evaluation

    Directory of Open Access Journals (Sweden)

    Balazs Daniel

    2013-10-01

    Full Text Available In this paper a novel concept of human-robot interaction (HRI modeling is proposed. Including factors like trust in automation, situational awareness, expertise and expectations a new user experience framework is formed for industrial robots. Service Oriented Robot Operation, proposed in a previous paper, creates an abstract level in HRI and it is also included in the framework. This concept is evaluated with exhaustive tests. Results prove that significant improvement in task execution may be achieved and the new system is more usable for operators with less experience with robotics; personnel specific for small and medium enterprises (SMEs.

  15. Robotics

    Science.gov (United States)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  16. Knowledge based systems for intelligent robotics

    Science.gov (United States)

    Rajaram, N. S.

    1982-01-01

    It is pointed out that the construction of large space platforms, such as space stations, has to be carried out in the outer space environment. As it is extremely expensive to support human workers in space for large periods, the only feasible solution appears to be related to the development and deployment of highly capable robots for most of the tasks. Robots for space applications will have to possess characteristics which are very different from those needed by robots in industry. The present investigation is concerned with the needs of space robotics and the technologies which can be of assistance to meet these needs, giving particular attention to knowledge bases. 'Intelligent' robots are required for the solution of arising problems. The collection of facts and rules needed for accomplishing such solutions form the 'knowledge base' of the system.

  17. A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots.

    Science.gov (United States)

    Nam, Tae Hyeon; Shim, Jae Hong; Cho, Young Im

    2017-11-25

    Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM) process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth) sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed.

  18. A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots

    Directory of Open Access Journals (Sweden)

    Tae Hyeon Nam

    2017-11-01

    Full Text Available Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed.

  19. Robot 2015 : Second Iberian Robotics Conference : Advances in Robotics

    CERN Document Server

    Moreira, António; Lima, Pedro; Montano, Luis; Muñoz-Martinez, Victor

    2016-01-01

    This book contains a selection of papers accepted for presentation and discussion at ROBOT 2015: Second Iberian Robotics Conference, held in Lisbon, Portugal, November 19th-21th, 2015. ROBOT 2015 is part of a series of conferences that are a joint organization of SPR – “Sociedade Portuguesa de Robótica/ Portuguese Society for Robotics”, SEIDROB – Sociedad Española para la Investigación y Desarrollo de la Robótica/ Spanish Society for Research and Development in Robotics and CEA-GTRob – Grupo Temático de Robótica/ Robotics Thematic Group. The conference organization had also the collaboration of several universities and research institutes, including: University of Minho, University of Porto, University of Lisbon, Polytechnic Institute of Porto, University of Aveiro, University of Zaragoza, University of Malaga, LIACC, INESC-TEC and LARSyS. Robot 2015 was focussed on the Robotics scientific and technological activities in the Iberian Peninsula, although open to research and delegates from other...

  20. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction

    Science.gov (United States)

    de Greeff, Joachim; Belpaeme, Tony

    2015-01-01

    Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children’s social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference); the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a “mental model” of the robot, tailoring the tutoring to the robot’s performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot’s bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance. PMID:26422143

  1. Open innovation at the Abbe School of Photonics

    Science.gov (United States)

    Helgert, Christian; Geiss, Reinhard; Nolte, Stefan; Eilenberger, Falk; Zakoth, David; Mauroner, Oliver; Pertsch, Thomas

    2017-08-01

    The Abbe School of Photonics (ASP) provides and coordinates the optics and photonics education of graduate and doctoral students at the Friedrich Schiller University in Jena, Germany. The internationalized Master's degree program is the key activity in training students in the optical sciences. The program is designed to provide them with the skills necessary to fill challenging positions in industry and academia. Here, an essential factor is ASP's close collaboration with more than 20 German photonics companies. To sustain these partners' future economic development, the availability of highly qualified employees is constantly required. Accordingly, these industrial partners, the European Union, the local state and the federal German government are strongly involved in the sustainable development of ASP's curriculum by both conceptual and financial engagements. The main goal is to promote the students' academic careers and job experience in the photonics industry as well as in academia. To open up the program to students from all over the world, all ASP lectures and courses are taught in English. ASP's qualification strategy is fully research-oriented and based on the principles of academic freedom, competitive research conditions and internationalization at all levels. The education program is complemented by a structured doctoral student support and a prestigious guest professorship program. Recently, ASP and partners have started a project to build an open photonics laboratory in order to foster innovative and co-creative processes. The idea follows well-established open innovation schemes e.g. in electronics. This Photon Garage (German: "Lichtwerkstatt") will bring together professionals and interested laymen from different backgrounds to approach pertinent challenges in photonics. Here, we will share our latest insights into the potentials and opportunities offered by this novel educative approach.

  2. Robot Actors, Robot Dramaturgies

    DEFF Research Database (Denmark)

    Jochum, Elizabeth

    This paper considers the use of tele-operated robots in live performance. Robots and performance have long been linked, from the working androids and automata staged in popular exhibitions during the nineteenth century and the robots featured at Cybernetic Serendipity (1968) and the World Expo...

  3. A Robot with Complex Facial Expressions

    Directory of Open Access Journals (Sweden)

    J. Takeno

    2009-08-01

    Full Text Available The authors believe that the consciousness of humans basically originates from languages and their association-like flow of consciousness, and that feelings are generated accompanying respective languages. We incorporated artificial consciousness into a robot; achieved an association flow of language like flow of consciousness; and developed a robot called Kansei that expresses its feelings according to the associations occurring in the robot. To be able to fully communicate with humans, robots must be able to display complex expressions, such as a sense of being thrilled. We therefore added to the Kansei robot a device to express complex feelings through its facial expressions. The Kansei robot is actually an artificial skull made of aluminum, with servomotors built into it. The face is made of relatively soft polyethylene, which is formed to appear like a human face. Facial expressions are generated using 19 servomotors built into the skull, which pull metal wires attached to the facial “skin” to create expressions. The robot at present is capable of making six basic expressions as well as complex expressions, such as happiness and fear combined.

  4. Discovery Mondays: "Robots: At your service!"

    CERN Multimedia

    2005-01-01

    Two of the ISOLDE robots. Robots at CERN? Yes, because their presence is essential for replacing human beings when some tasks are too difficult for them, for example when materials are too fragile or too risky to work with. Come and discover the ISOLDE robots. You will also be able to meet "the Crab", in charge of carrying the LHC magnets in its claws. EPFL engineers from Autonomous Systems Lab and the Laboratory of Intelligent Systems will introduce you to some of their creations, including a robot built for planetary exploration, an indoor flying robot and a microrobot as tiny as a lump of sugar. At the next Discovery Monday, you will have the opportunity to meet robots of many sizes and forms. You will be amazed by their diversity and their personalities. Join us at the Microcosm (Reception Building 33, Meyrin site) on Monday 4 April from 7.30 p.m. to 9.00 p.m. Entrance Free http://www.cern.ch/microcosm http://intranet.cern.ch/Microcosm/LundisDecouverte/

  5. Discovery Mondays: "Robots: At your service!"

    CERN Multimedia

    2005-01-01

    Two of the ISOLDE robots. Robots at CERN? Yes, because their presence is essential for replacing human beings when some tasks are too difficult for them, for example when materials are too fragile or too risky to work with. Come and discover the ISOLDE robots. You will also be able to meet "the Crab", in charge of carrying the LHC magnets in its claws. EPFL engineers from Autonomous Systems Lab and the Laboratory of Intelligent Systems will introduce you to some of their creations, including a robot built for planetary exploration, an indoor flying robot and a microrobot as tiny as a lump of sugar. At the next Discovery Monday, you will have the opportunity to meet robots of many sizes and forms. You will be amazed by their diversity and their personalities. Join us at the Microcosm (Reception Building 33, Meyrin site) on Monday 4 April from 7.30 p.m. to 9.00 p.m. Entrance Free http://www.cern.ch/microcosm http://cern.ch/lundisdecouverte

  6. Systematic review of robotic surgery in gynecology: robotic techniques compared with laparoscopy and laparotomy.

    Science.gov (United States)

    Gala, Rajiv B; Margulies, Rebecca; Steinberg, Adam; Murphy, Miles; Lukban, James; Jeppson, Peter; Aschkenazi, Sarit; Olivera, Cedric; South, Mary; Lowenstein, Lior; Schaffer, Joseph; Balk, Ethan M; Sung, Vivian

    2014-01-01

    The Society of Gynecologic Surgeons Systematic Review Group performed a systematic review of both randomized and observational studies to compare robotic vs nonrobotic surgical approaches (laparoscopic, abdominal, and vaginal) for treatment of both benign and malignant gynecologic indications to compare surgical and patient-centered outcomes, costs, and adverse events associated with the various surgical approaches. MEDLINE and the Cochrane Central Register of Controlled Trials were searched from inception to May 15, 2012, for English-language studies with terms related to robotic surgery and gynecology. Studies of any design that included at least 30 women who had undergone robotic-assisted laparoscopic gynecologic surgery were included for review. The literature yielded 1213 citations, of which 97 full-text articles were reviewed. Forty-four studies (30 comparative and 14 noncomparative) met eligibility criteria. Study data were extracted into structured electronic forms and reconciled by a second, independent reviewer. Our analysis revealed that, compared with open surgery, robotic surgery consistently confers shorter hospital stay. The proficiency plateau seems to be lower for robotic surgery than for conventional laparoscopy. Of the various gynecologic applications, there seems to be evidence that renders robotic techniques advantageous over traditional open surgery for management of endometrial cancer. However, insofar as superiority, conflicting data are obtained when comparing robotics vs laparoscopic techniques. Therefore, the specific method of minimally invasive surgery, whether conventional laparoscopy or robotic surgery, should be tailored to patient selection, surgeon ability, and equipment availability. Copyright © 2014 AAGL. Published by Elsevier Inc. All rights reserved.

  7. Using Multi-Robot Systems for Engineering Education: Teaching and Outreach with Large Numbers of an Advanced, Low-Cost Robot

    Science.gov (United States)

    McLurkin, J.; Rykowski, J.; John, M.; Kaseman, Q.; Lynch, A. J.

    2013-01-01

    This paper describes the experiences of using an advanced, low-cost robot in science, technology, engineering, and mathematics (STEM) education. It presents three innovations: It is a powerful, cheap, robust, and small advanced personal robot; it forms the foundation of a problem-based learning curriculum; and it enables a novel multi-robot…

  8. Design of 3-D Printed Concentric Tube Robots

    OpenAIRE

    Morimoto, Tania K.; Okamura, Allison M.

    2016-01-01

    Concentric tube surgical robots are minimally invasive devices with the advantages of snake-like reconfigurability, long and thin form factor, and placement of actuation outside the patient’s body. These robots can also be designed and manufactured to acquire targets in specific patients for treating specific diseases in a manner that minimizes invasiveness. We propose that concentric tube robots can be manufactured using 3-D printing technology on a patient- and procedure-specific basis. In ...

  9. Is Ethics of Robotics about Robots? Philosophy of Robotics Beyond Realism and Individualilsm.

    NARCIS (Netherlands)

    Coeckelbergh, Mark

    2011-01-01

    If we are doing ethics of robotics, what exactly is the object of our inquiry? This paper challenges 'individualist' robot ontology and 'individualist' social philosophy of robots. It is argued that ethics of robotics should not study and evaluate robotics exclusively in terms of individual

  10. Robotics Team Lights Up New Year's Eve

    Science.gov (United States)

    LeBlanc, Cheryl

    2011-01-01

    A robotics team from Muncie, Indiana--the PhyXTGears--is made up of high school students from throughout Delaware County. The group formed as part of the FIRST Robotics program (For Inspiration and Recognition of Science and Technology), an international program founded by inventor Dean Kamen in which students work with professional engineers and…

  11. Adaptive Robotic Fabrication for Conditions of Material Inconsistency

    DEFF Research Database (Denmark)

    Nicholas, Paul; Zwierzycki, Mateusz; Clausen Nørgaard, Esben

    2017-01-01

    This paper describes research that addresses the variable behaviour of industrial quality metals and the extension of computational techniques into the fabrication process. It describes the context of robotic incremental sheet metal forming, a freeform method for imparting 3D form onto a 2D thin ...... is an offline predictive strategy based on machine learning. Rigidisation of thin metal skins......This paper describes research that addresses the variable behaviour of industrial quality metals and the extension of computational techniques into the fabrication process. It describes the context of robotic incremental sheet metal forming, a freeform method for imparting 3D form onto a 2D thin...

  12. 5th International Robotic Sailing Conference

    CERN Document Server

    Finnis, James

    2013-01-01

    Robotic sailing offers the potential of wind propelled vehicles which are sufficiently autonomous to remain at sea for months at a time. These could replace or augment existing oceanographic sampling systems, be used in border surveillance and security or offer a means of carbon neutral transportation. To achieve this represents a complex, multi-disciplinary challenge to boat designers and naval architects, systems/electrical engineers and computer scientists.  Since 2004 a series of competitions in the form of the Sailbot, World Robotic Sailing Championship and Microtransat competitions have sparked an explosion in the number of groups working on autonomous sailing robots. Despite this interest the longest distance sailed autonomously remains only a few hundred miles. Many of the challenges in building truly autonomous sailing robots still remain unsolved. These proceedings present the cutting edge of work in a variety of fields related to robotic sailing. They will be presented during the 5th International...

  13. Friendly network robotics; Friendly network robotics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    A working group (WG) study was conducted aiming at realizing human type robots. The following six working groups in the basement field were organized to study in terms mostly of items of technical development and final technical targets: platform, and remote attendance control in the basement field, maintenance of plant, etc., home service, disaster/construction, and entertainment in the application field. In the platform WG, a robot of human like form is planning which walks with two legs and works with two arms, and the following were discussed: a length of 160cm, weight of 110kg, built-in LAN, actuator specifications, modulated structure, intelligent driver, etc. In the remote attendance control WG, remote control using working function, stabilized movement, stabilized control, and network is made possible. Studied were made on the decision on a remote control cockpit by open architecture added with function and reformable, problems on the development of the standard language, etc. 77 ref., 82 figs., 21 tabs.

  14. Rethinking Regulation for Experimenting with Emerging Robotics Technologies

    NARCIS (Netherlands)

    Fosch Villaronga, Eduard; Heldeweg, Michiel A.

    2016-01-01

    Great expectations and major concerns accompany the development and possible uses of robotics in many areas of life and in many forms, such as drones and care-robots. Possible pro’s and con’s require careful regulatory attention, both as regards technological aspects and with respect to

  15. Behaviour based Mobile Robot Navigation Technique using AI System: Experimental Investigation on Active Media Pioneer Robot

    Directory of Open Access Journals (Sweden)

    S. Parasuraman, V.Ganapathy

    2012-10-01

    Full Text Available A key issue in the research of an autonomous robot is the design and development of the navigation technique that enables the robot to navigate in a real world environment. In this research, the issues investigated and methodologies established include (a Designing of the individual behavior and behavior rule selection using Alpha level fuzzy logic system  (b Designing of the controller, which maps the sensors input to the motor output through model based Fuzzy Logic Inference System and (c Formulation of the decision-making process by using Alpha-level fuzzy logic system. The proposed method is applied to Active Media Pioneer Robot and the results are discussed and compared with most accepted methods. This approach provides a formal methodology for representing and implementing the human expert heuristic knowledge and perception-based action in mobile robot navigation. In this approach, the operational strategies of the human expert driver are transferred via fuzzy logic to the robot navigation in the form of a set of simple conditional statements composed of linguistic variables.Keywards: Mobile robot, behavior based control, fuzzy logic, alpha level fuzzy logic, obstacle avoidance behavior and goal seek behavior

  16. Estimación de la fuerza de contacto para el control de robots manipuladores con movimientos restringidos

    Directory of Open Access Journals (Sweden)

    Javier Gámez García

    2007-01-01

    Full Text Available Resumen: En aquellas operaciones robóticas en las que un robot manipulador interactúa con su entorno resulta de extremada importancia poder controlar la fuerza que aquél ejerce sobre este. Con este objetivo, se suele colocar habitualmente un sensor de fuerza en la muñeca del manipulador, cerrando de esta forma el lazo de control. En lo que se refiere a estos sensores, uno de los principales problemas que plantean es que sus medidas están influenciadas no sólo por las fuerzas de contacto, sino también por las fuerzas relacionadas con la dinámica de la herramienta del manipulador, es decir, las fuerzas de inercia. En este artículo se presenta un nuevo estimador de la fuerza de contacto consistente en la integración de la información de sensores de fuerza, posición y aceleración. Además, se describe un procedimiento de calibración automático ‘plugand-play’ para la identificación y ajuste de los parámetros de este observador. Tanto el observador de la fuerza de contacto como el procedimiento de calibración automático han sido verificados experimentalmente en un robot industrial ABB con arquitectura software abierta. Palabras clave: Control de fuerza en robots manipuladores, Fusión sensorial, Observadores, Calibración Automática

  17. Automated Cable Preparation for Robotized Stator Cable Winding

    Directory of Open Access Journals (Sweden)

    Erik Hultman

    2017-04-01

    Full Text Available A method for robotized cable winding of the Uppsala University Wave Energy Converter generator stator has previously been presented and validated. The purpose of this study is to present and validate further developments to the method: automated stand-alone equipment for the preparation of the winding cables. The cable preparation consists of three parts: feeding the cable from a drum, forming the cable end and cutting the cable. Forming and cutting the cable was previously done manually and only small cable drums could be handled. Therefore the robot cell needed to be stopped frequently. The new equipment was tested in an experimental robot stator cable winding setup. Through the experiments, the equipment was validated to be able to perform fully automated and robust cable preparation. Suggestions are also given on how to further develop the equipment with regards to performance, robustness and quality. Hence, this work represents another important step towards demonstrating completely automated robotized stator cable winding.

  18. Exploratorium: Robots.

    Science.gov (United States)

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  19. Robotics in Arthroplasty: A Comprehensive Review.

    Science.gov (United States)

    Jacofsky, David J; Allen, Mark

    2016-10-01

    Robotic-assisted orthopedic surgery has been available clinically in some form for over 2 decades, claiming to improve total joint arthroplasty by enhancing the surgeon's ability to reproduce alignment and therefore better restore normal kinematics. Various current systems include a robotic arm, robotic-guided cutting jigs, and robotic milling systems with a diversity of different navigation strategies using active, semiactive, or passive control systems. Semiactive systems have become dominant, providing a haptic window through which the surgeon is able to consistently prepare an arthroplasty based on preoperative planning. A review of previous designs and clinical studies demonstrate that these robotic systems decrease variability and increase precision, primarily focusing on component positioning and alignment. Some early clinical results indicate decreased revision rates and improved patient satisfaction with robotic-assisted arthroplasty. The future design objectives include precise planning and even further improved consistent intraoperative execution. Despite this cautious optimism, many still wonder whether robotics will ultimately increase cost and operative time without objectively improving outcomes. Over the long term, every industry that has seen robotic technology be introduced, ultimately has shown an increase in production capacity, improved accuracy and precision, and lower cost. A new generation of robotic systems is now being introduced into the arthroplasty arena, and early results with unicompartmental knee arthroplasty and total hip arthroplasty have demonstrated improved accuracy of placement, improved satisfaction, and reduced complications. Further studies are needed to confirm the cost effectiveness of these technologies. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. HexaMob—A Hybrid Modular Robotic Design for Implementing Biomimetic Structures

    Directory of Open Access Journals (Sweden)

    Sasanka Sankhar Reddy CH.

    2017-10-01

    Full Text Available Modular robots are capable of forming primitive shapes such as lattice and chain structures with the additional flexibility of distributed sensing. The biomimetic structures developed using such modular units provides ease of replacement and reconfiguration in co-ordinated structures, transportation etc. in real life scenarios. Though the research in the employment of modular robotic units in formation of biological organisms is in the nascent stage, modular robotic units are already capable of forming such sophisticated structures. The modular robotic designs proposed so far in modular robotics research vary significantly in external structures, sensor-actuator mechanisms interfaces for docking and undocking, techniques for providing mobility, coordinated structures, locomotions etc. and each robotic design attempted to address various challenges faced in the domain of modular robotics by employing different strategies. This paper presents a novel modular wheeled robotic design - HexaMob facilitating four degrees of freedom (2 degrees for mobility and 2 degrees for structural reconfiguration on a single module with minimal usage of sensor-actuator assemblies. The crucial features of modular robotics such as back-driving restriction, docking, and navigation are addressed in the process of HexaMob design. The proposed docking mechanism is enabled using vision sensor, enhancing the capabilities in docking as well as navigation in co-ordinated structures such as humanoid robots.

  1. Modular robotic tiles: experiments for children with autism

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Dam Pedersen, Martin; Beck, Richard

    2009-01-01

    rehabilitation), and with the proper radio communication mechanism they may give unique possibilities for documentation of the physical activity (e.g., therapeutic treatment). A major point of concern in modular robotics is the connection mechanism, so we investigated different solutions for the connection......We developed a modular robotic tile and a system composed of a number of these modular robotic tiles. The system composed of the modular robotic tiles engages the user in physical activities, e.g., physiotherapy, sports, fitness, and entertainment. The modular robotic tiles motivate the user...... to perform physical activities by providing immediate feedback based upon their physical interaction with the system. With the modular robotic tiles, the user is able to make new physical set-ups within less than a minute. The tiles are applicable for different forms of physical activities (e.g., therapeutic...

  2. A Novel Robot of Manufacturing Space Solar Cell Arrays

    Directory of Open Access Journals (Sweden)

    Wu Yuexin

    2008-11-01

    Full Text Available This paper presents a novel robot employed to manufacture space solar cell arrays. First of all including the mechanical configuration and control system, the architecture of the robot is described. Then the flow velocity field of adhesive in the dispensing needles is acquired based on hydrodynamics. The accurate section form model of adhesive dispensed on the solar cells is obtained, which is essential for the robot to control the uniformity of dispensing adhesive. Finally the experiment validates the feasibility and reliability of the robot system. The application of robots instead of manual work in manufacturing space solar cell arrays will enhance the development of space industry.

  3. A Novel Robot of Manufacturing Space Solar Cell Arrays

    Directory of Open Access Journals (Sweden)

    Wu Yuexin

    2007-03-01

    Full Text Available This paper presents a novel robot employed to manufacture space solar cell arrays. First of all including the mechanical configuration and control system, the architecture of the robot is described. Then the flow velocity field of adhesive in the dispensing needles is acquired based on hydrodynamics. The accurate section form model of adhesive dispensed on the solar cells is obtained, which is essential for the robot to control the uniformity of dispensing adhesive. Finally the experiment validates the feasibility and reliability of the robot system. The application of robots instead of manual work in manufacturing space solar cell arrays will enhance the development of space industry.

  4. Electroactive polymer (EAP) actuators for future humanlike robots

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2009-03-01

    Human-like robots are increasingly becoming an engineering reality thanks to recent technology advances. These robots, which are inspired greatly by science fiction, were originated from the desire to reproduce the human appearance, functions and intelligence and they may become our household appliance or even companion. The development of such robots is greatly supported by emerging biologically inspired technologies. Potentially, electroactive polymer (EAP) materials are offering actuation capabilities that allow emulating the action of our natural muscles for making such machines perform lifelike. There are many technical issues related to making such robots including the need for EAP materials that can operate as effective actuators. Beside the technology challenges these robots also raise concerns that need to be addressed prior to forming super capable robots. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper, the potential EAP actuators and the challenges that these robots may pose will be reviewed.

  5. Robotic Oncological Surgery: Technology That's Here to Stay?

    Directory of Open Access Journals (Sweden)

    HRH Patel

    2009-09-01

    Full Text Available A robot functioning in an environment may exhibit various forms of behavior emerge from the interaction with its environment through sense, control and plan activities. Hence, this paper introduces a behaviour selection based navigation and obstacle avoidance algorithm with effective method for adapting robotic behavior according to the environment conditions and the navigated terrain. The developed algorithm enable the robot to select the suitable behavior in real-time to avoid obstacles based on sensory information through visual and ultrasonic sensors utilizing the robot's ability to step over obstacles, and move between surfaces of different heights. In addition, it allows the robot to react in appropriate manner to the changing conditions either by fine-tuning of behaviors or by selecting different set of behaviors to increase the efficiency of the robot over time. The presented approach has been demonstrated on quadruped robot in several different experimental environments and the paper provides an analysis of its performance.

  6. Electroactive Polymer (EAP) Actuators for Future Humanlike Robots

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2009-01-01

    Human-like robots are increasingly becoming an engineering reality thanks to recent technology advances. These robots, which are inspired greatly by science fiction, were originated from the desire to reproduce the human appearance, functions and intelligence and they may become our household appliance or even companion. The development of such robots is greatly supported by emerging biologically inspired technologies. Potentially, electroactive polymer (EAP) materials are offering actuation capabilities that allow emulating the action of our natural muscles for making such machines perform lifelike. There are many technical issues related to making such robots including the need for EAP materials that can operate as effective actuators. Beside the technology challenges these robots also raise concerns that need to be addressed prior to forming super capable robots. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper, the potential EAP actuators and the challenges that these robots may pose will be reviewed.

  7. Affective and behavioral responses to robot-initiated social touch : Towards understanding the opportunities and limitations of physical contact in human-robot interaction

    NARCIS (Netherlands)

    Willemse, C.J.A.M.; Toet, A.; Erp, J.B.F. van

    2017-01-01

    Social touch forms an important aspect of the human non-verbal communication repertoire, but is often overlooked in human–robot interaction. In this study, we investigated whether robot-initiated touches can induce physiological, emotional, and behavioral responses similar to those reported for

  8. Affective and Behavioral Responses to Robot-Initiated Social Touch : Toward Understanding the Opportunities and Limitations of Physical Contact in Human–Robot Interaction

    NARCIS (Netherlands)

    Willemse, Christian J. A. M.; Toet, Alexander; van Erp, Jan B. F.

    2017-01-01

    Social touch forms an important aspect of the human non-verbal communication repertoire, but is often overlooked in human-robot interaction. In this study, we investigated whether robot-initiated touches can induce physiological, emotional, and behavioral responses similar to those reported for

  9. Internationalized and research-oriented photonics education: Abbe School of Photonics

    Science.gov (United States)

    Helgert, Christian; Nolte, Stefan; Pertsch, Thomas

    2015-10-01

    The Abbe School of Photonics (ASP) provides and coordinates the optics and photonics education of graduate and doctoral students at the Friedrich Schiller University in Jena, Germany. The internationalized Master's degree program is the key activity in training students in the optical sciences. The program is designed to provide them with the skills necessary to fill challenging positions in industry and academia. Here, an essential factor is ASP's close collaboration with more than 20 German photonics companies. To sustain these partners' future economic development, the availability of highly qualified employees is constantly required. Accordingly, these industrial partners, the European Union, the local state and the federal German government are strongly involved in the sustainable development of ASP's curriculum by both conceptual and financial engagements. The main goal is to promote the students' academic careers and job experience in the photonics industry as well as in academia. To open up the program to students from all over the world, all ASP lectures and courses are taught in English. Since 2009, more than 250 graduate students from more than 40 different countries have been enrolled at the School. Almost 90% of them of non-German nationality, fulfilling the essential ASP philosophy to locally establish an international education program. ASP's qualification strategy is fully research-oriented and based on the principles of academic freedom, competitive research conditions and internationalization at all levels. The education program is complemented by a structured doctoral student support and a prestigious guest professorship program.

  10. USAR Robot Communication Using ZigBee Technology

    Science.gov (United States)

    Tsui, Charles; Carnegie, Dale; Pan, Qing Wei

    This paper reports the successful development of an automatic routing wireless network for USAR (urban search and rescue) robots in an artificial rubble environment. The wireless network was formed using ZigBee modules and each module was attached to a micro-controller in order to model a wireless USAR robot. Proof of concept experiments were carried out by deploying the networked robots into artificial rubble. The rubble was simulated by connecting holes and trenches that were dug in 50 cm deep soil. The simulated robots were placed in the bottom of the holes. The holes and trenches were then covered up by various building materials and soil to simulate a real rubble environment. Experiments demonstrated that a monitoring computer placed 10 meters outside the rubble can establish proper communication with all robots inside the artificial rubble environment.

  11. Learning to Explain: The Role of Educational Robots in Science Education

    Science.gov (United States)

    Datteri, Edoardo; Zecca, Luisa; Laudisa, Federico; Castiglioni, Marco

    2013-01-01

    Educational robotics laboratories typically involve building and programming robotic systems to perform particular tasks or solve problems. In this paper we explore the potential educational value of a form of robot-supported educational activity that has been little discussed in the literature. During these activities, primary school children are…

  12. The NMBU Phenotyping Robot; A Modified Version of Thorvald

    OpenAIRE

    Skattum, Kristine

    2017-01-01

    Soil compaction is a big problem in farming industry. This is why Pål Johan From in 2014, along with four master students, designed and built the agricultural robot Thorvald I. A light weighted robot that avoids soil compaction. Two years later, a new team of master students designed and built Thorvald II, where the goal was to make the robot module based. The modularity formed the basis of this thesis, where the goal was to design a modified version of Thorvald. The modified robot is ord...

  13. Robotics

    International Nuclear Information System (INIS)

    Scheide, A.W.

    1983-01-01

    This article reviews some of the technical areas and history associated with robotics, provides information relative to the formation of a Robotics Industry Committee within the Industry Applications Society (IAS), and describes how all activities relating to robotics will be coordinated within the IEEE. Industrial robots are being used for material handling, processes such as coating and arc welding, and some mechanical and electronics assembly. An industrial robot is defined as a programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for a variety of tasks. The initial focus of the Robotics Industry Committee will be on the application of robotics systems to the various industries that are represented within the IAS

  14. Controlling Tensegrity Robots Through Evolution

    Science.gov (United States)

    Iscen, Atil; Agogino, Adrian; SunSpiral, Vytas; Tumer, Kagan

    2013-01-01

    Tensegrity structures (built from interconnected rods and cables) have the potential to offer a revolutionary new robotic design that is light-weight, energy-efficient, robust to failures, capable of unique modes of locomotion, impact tolerant, and compliant (reducing damage between the robot and its environment). Unfortunately robots built from tensegrity structures are difficult to control with traditional methods due to their oscillatory nature, nonlinear coupling between components and overall complexity. Fortunately this formidable control challenge can be overcome through the use of evolutionary algorithms. In this paper we show that evolutionary algorithms can be used to efficiently control a ball-shaped tensegrity robot. Experimental results performed with a variety of evolutionary algorithms in a detailed soft-body physics simulator show that a centralized evolutionary algorithm performs 400 percent better than a hand-coded solution, while the multi-agent evolution performs 800 percent better. In addition, evolution is able to discover diverse control solutions (both crawling and rolling) that are robust against structural failures and can be adapted to a wide range of energy and actuation constraints. These successful controls will form the basis for building high-performance tensegrity robots in the near future.

  15. Two-legged walking robot prescribed motion on a rough cylinder

    Science.gov (United States)

    Golubev, Yury; Melkumova, Elena

    2018-05-01

    The motion of a walking robot with n legs, that ensure the desired motion of the robot body, is described using general dynamics theoretical framework. When each of the robot legs contacts the surface in a single foothold, the momentum and angular momentum theorems yield a system of six differential equations that form a complete description of the robot motion. In the case of two-leg robot (n = 2) the problem of the existence of the solution can be reduced to a system of algebraic inequalities. Using numerical analysis, the classification of footholds positions for different values of the friction coefficient is obtained.

  16. Development of Multiple Capsule Robots in Pipe

    Directory of Open Access Journals (Sweden)

    Shuxiang Guo

    2018-05-01

    Full Text Available Swallowable capsule robots which travel in body cavities to implement drug delivery, minimally invasive surgery, and diagnosis have provided great potential for medical applications. However, the space constraints of the internal environment and the size limitations of the robots are great challenges to practical application. To address the fundamental challenges of narrow body cavities, a different-frequency driven approach for multiple capsule robots with screw structure manipulated by external electromagnetic field is proposed in this paper. The multiple capsule robots are composed of driven permanent magnets, joint permanent magnets, and a screw body. The screw body generates a propulsive force in a fluidic environment. Moreover, robots can form new constructions via mutual docking and release. To provide manipulation guidelines for active locomotion, a dynamic model of axial propulsion and circumferential torque is established. The multiple start and step-out frequencies for multiple robots are defined theoretically. Moreover, the different-frequency driven approach based on geometrical parameters of screw structure and the overlap angles of magnetic polarities is proposed to drive multiple robots in an identical electromagnetic field. Finally, two capsule robots were prototyped and experiments in a narrow pipe were conducted to verify the different motions such as docking, release, and cooperative locomotion. The experimental results demonstrated the validity of the driven approach for multiple capsule robots in narrow body cavities.

  17. Towards Versatile Robots Through Open Heterogeneous Modular Robots

    DEFF Research Database (Denmark)

    Lyder, Andreas

    arises, a new robot can be assembled rapidly from the existing modules, in contrast to conventional robots, which require a time consuming and expensive development process. In this thesis we define a modular robot to be a robot consisting of dynamically reconfigurable modules. The goal of this thesis......Robots are important tools in our everyday life. Both in industry and at the consumer level they serve the purpose of increasing our scope and extending our capabilities. Modular robots take the next step, allowing us to easily create and build various robots from a set of modules. If a problem...... is to increase the versatility and practical usability of modular robots by introducing new conceptual designs. Until now modular robots have been based on a pre-specified set of modules, and thus, their functionality is limited. We propose an open heterogeneous design concept, which allows a modular robot...

  18. Ethorobotics: A New Approach to Human-Robot Relationship

    Directory of Open Access Journals (Sweden)

    Ádám Miklósi

    2017-06-01

    Full Text Available Here we aim to lay the theoretical foundations of human-robot relationship drawing upon insights from disciplines that govern relevant human behaviors: ecology and ethology. We show how the paradox of the so called “uncanny valley hypothesis” can be solved by applying the “niche” concept to social robots, and relying on the natural behavior of humans. Instead of striving to build human-like social robots, engineers should construct robots that are able to maximize their performance in their niche (being optimal for some specific functions, and if they are endowed with appropriate form of social competence then humans will eventually interact with them independent of their embodiment. This new discipline, which we call ethorobotics, could change social robotics, giving a boost to new technical approaches and applications.

  19. Ethorobotics: A New Approach to Human-Robot Relationship

    Science.gov (United States)

    Miklósi, Ádám; Korondi, Péter; Matellán, Vicente; Gácsi, Márta

    2017-01-01

    Here we aim to lay the theoretical foundations of human-robot relationship drawing upon insights from disciplines that govern relevant human behaviors: ecology and ethology. We show how the paradox of the so called “uncanny valley hypothesis” can be solved by applying the “niche” concept to social robots, and relying on the natural behavior of humans. Instead of striving to build human-like social robots, engineers should construct robots that are able to maximize their performance in their niche (being optimal for some specific functions), and if they are endowed with appropriate form of social competence then humans will eventually interact with them independent of their embodiment. This new discipline, which we call ethorobotics, could change social robotics, giving a boost to new technical approaches and applications. PMID:28649213

  20. Dynamics of parallel robots from rigid bodies to flexible elements

    CERN Document Server

    Briot, Sébastien

    2015-01-01

    This book starts with a short recapitulation on basic concepts, common to any types of robots (serial, tree structure, parallel, etc.), that are also necessary for computation of the dynamic models of parallel robots. Then, as dynamics requires the use of geometry and kinematics, the general equations of geometric and kinematic models of parallel robots are given. After, it is explained that parallel robot dynamic models can be obtained by decomposing the real robot into two virtual systems: a tree-structure robot (equivalent to the robot legs for which all joints would be actuated) plus a free body corresponding to the platform. Thus, the dynamics of rigid tree-structure robots is analyzed and algorithms to obtain their dynamic models in the most compact form are given. The dynamic model of the real rigid parallel robot is obtained by closing the loops through the use of the Lagrange multipliers. The problem of the dynamic model degeneracy near singularities is treated and optimal trajectory planning for cro...

  1. RoMPS concept review automatic control of space robot, volume 2

    Science.gov (United States)

    Dobbs, M. E.

    1991-01-01

    Topics related to robot operated materials processing in space (RoMPS) are presented in view graph form and include: (1) system concept; (2) Hitchhiker Interface Requirements; (3) robot axis control concepts; (4) Autonomous Experiment Management System; (5) Zymate Robot Controller; (6) Southwest SC-4 Computer; (7) oven control housekeeping data; and (8) power distribution.

  2. Socially intelligent robots: dimensions of human-robot interaction.

    Science.gov (United States)

    Dautenhahn, Kerstin

    2007-04-29

    Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them.

  3. Robotic vehicle with multiple tracked mobility platforms

    Science.gov (United States)

    Salton, Jonathan R [Albuquerque, NM; Buttz, James H [Albuquerque, NM; Garretson, Justin [Albuquerque, NM; Hayward, David R [Wetmore, CO; Hobart, Clinton G [Albuquerque, NM; Deuel, Jr., Jamieson K.

    2012-07-24

    A robotic vehicle having two or more tracked mobility platforms that are mechanically linked together with a two-dimensional coupling, thereby forming a composite vehicle of increased mobility. The robotic vehicle is operative in hazardous environments and can be capable of semi-submersible operation. The robotic vehicle is capable of remote controlled operation via radio frequency and/or fiber optic communication link to a remote operator control unit. The tracks have a plurality of track-edge scallop cut-outs that allow the tracks to easily grab onto and roll across railroad tracks, especially when crossing the railroad tracks at an oblique angle.

  4. METALLOGRAPHIC SAMPLE PREPARATION STATION-CONSTRUCTIVE CONCEPT

    Directory of Open Access Journals (Sweden)

    AVRAM Florin Timotei

    2016-11-01

    Full Text Available In this paper we propose to present the issues involved in the case of the constructive conception of a station for metallographic sample preparation. This station is destined for laboratory work. The metallographic station is composed of a robot ABB IRB1600, a metallographic microscope, a gripping device, a manipulator, a laboratory grinding and polishing machine. The robot will be used for manipulation of the sample preparation and the manipulator take the sample preparation for processing.

  5. Analysis of a closed-kinematic chain robot manipulator

    Science.gov (United States)

    Nguyen, Charles C.; Pooran, Farhad J.

    1988-01-01

    Presented are the research results from the research grant entitled: Active Control of Robot Manipulators, sponsored by the Goddard Space Flight Center (NASA) under grant number NAG-780. This report considers a class of robot manipulators based on the closed-kinematic chain mechanism (CKCM). This type of robot manipulators mainly consists of two platforms, one is stationary and the other moving, and they are coupled together through a number of in-parallel actuators. Using spatial geometry and homogeneous transformation, a closed-form solution is derived for the inverse kinematic problem of the six-degree-of-freedom manipulator, built to study robotic assembly in space. Iterative Newton Raphson method is employed to solve the forward kinematic problem. Finally, the equations of motion of the above manipulators are obtained by employing the Lagrangian method. Study of the manipulator dynamics is performed using computer simulation whose results show that the robot actuating forces are strongly dependent on the mass and centroid locations of the robot links.

  6. Robot engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seul

    2006-02-15

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  7. Robot engineering

    International Nuclear Information System (INIS)

    Jung, Seul

    2006-02-01

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  8. Vision Guided Intelligent Robot Design And Experiments

    Science.gov (United States)

    Slutzky, G. D.; Hall, E. L.

    1988-02-01

    The concept of an intelligent robot is an important topic combining sensors, manipulators, and artificial intelligence to design a useful machine. Vision systems, tactile sensors, proximity switches and other sensors provide the elements necessary for simple game playing as well as industrial applications. These sensors permit adaption to a changing environment. The AI techniques permit advanced forms of decision making, adaptive responses, and learning while the manipulator provides the ability to perform various tasks. Computer languages such as LISP and OPS5, have been utilized to achieve expert systems approaches in solving real world problems. The purpose of this paper is to describe several examples of visually guided intelligent robots including both stationary and mobile robots. Demonstrations will be presented of a system for constructing and solving a popular peg game, a robot lawn mower, and a box stacking robot. The experience gained from these and other systems provide insight into what may be realistically expected from the next generation of intelligent machines.

  9. Planning and decision making for aerial robots

    CERN Document Server

    Bestaoui Sebbane, Yasmina

    2014-01-01

    This book provides an introduction to the emerging field of planning and decision making for aerial robots. An aerial robot is the ultimate form of Unmanned Aerial Vehicle, an aircraft endowed with built-in intelligence, requiring no direct human control and able to perform a specific task. It must be able to fly within a partially structured environment, to react and adapt to changing environmental conditions and to accommodate for the uncertainty that exists in the physical world. An aerial robot can be termed as a physical agent that exists and flies in the real 3D world, can sense its environment and act on it to achieve specific goals. So throughout this book, an aerial robot will also be termed as an agent.   Fundamental problems in aerial robotics include the tasks of spatial motion, spatial sensing and spatial reasoning. Reasoning in complex environments represents a difficult problem. The issues specific to spatial reasoning are planning and decision making. Planning deals with the trajectory algori...

  10. Multi-Robot Remote Interaction with FS-MAS

    Directory of Open Access Journals (Sweden)

    Yunliang Jiang

    2013-02-01

    Full Text Available The need to reduce bandwidth, improve productivity, autonomy and the scalability in multi-robot teleoperation has been recognized for a long time. In this article we propose a novel finite state machine mobile agent based on the network interaction service model, namely FS-MAS. This model consists of three finite state machines, namely the Finite State Mobile Agent (FS-Agent, which is the basic service module. The Service Content Finite State Machine (Content-FS, using the XML language to define workflow, to describe service content and service computation process. The Mobile Agent computation model Finite State Machine (MACM-FS, used to describe the service implementation. Finally, we apply this service model to the multi-robot system, the initial realization completing complex tasks in the form of multi-robot scheduling. This demonstrates that the robot has greatly improved intelligence, and provides a wide solution space for critical issues such as task division, rational and efficient use of resource and multi-robot collaboration.

  11. Calibration of Robot Reference Frames for Enhanced Robot Positioning Accuracy

    OpenAIRE

    Cheng, Frank Shaopeng

    2008-01-01

    This chapter discussed the importance and methods of conducting robot workcell calibration for enhancing the accuracy of the robot TCP positions in industrial robot applications. It shows that the robot frame transformations define the robot geometric parameters such as joint position variables, link dimensions, and joint offsets in an industrial robot system. The D-H representation allows the robot designer to model the robot motion geometry with the four standard D-H parameters. The robot k...

  12. Learning for intelligent mobile robots

    Science.gov (United States)

    Hall, Ernest L.; Liao, Xiaoqun; Alhaj Ali, Souma M.

    2003-10-01

    Unlike intelligent industrial robots which often work in a structured factory setting, intelligent mobile robots must often operate in an unstructured environment cluttered with obstacles and with many possible action paths. However, such machines have many potential applications in medicine, defense, industry and even the home that make their study important. Sensors such as vision are needed. However, in many applications some form of learning is also required. The purpose of this paper is to present a discussion of recent technical advances in learning for intelligent mobile robots. During the past 20 years, the use of intelligent industrial robots that are equipped not only with motion control systems but also with sensors such as cameras, laser scanners, or tactile sensors that permit adaptation to a changing environment has increased dramatically. However, relatively little has been done concerning learning. Adaptive and robust control permits one to achieve point to point and controlled path operation in a changing environment. This problem can be solved with a learning control. In the unstructured environment, the terrain and consequently the load on the robot"s motors are constantly changing. Learning the parameters of a proportional, integral and derivative controller (PID) and artificial neural network provides an adaptive and robust control. Learning may also be used for path following. Simulations that include learning may be conducted to see if a robot can learn its way through a cluttered array of obstacles. If a situation is performed repetitively, then learning can also be used in the actual application. To reach an even higher degree of autonomous operation, a new level of learning is required. Recently learning theories such as the adaptive critic have been proposed. In this type of learning a critic provides a grade to the controller of an action module such as a robot. The creative control process is used that is "beyond the adaptive critic." A

  13. Kinematics and Application of a Hybrid Industrial Robot – Delta-RST

    Directory of Open Access Journals (Sweden)

    Ning Liu

    2014-04-01

    Full Text Available Serial robots and parallel robots have their own pros and cons. While hybrid robots consisting of both of them are possible and expected to retain their merits and minimize the disadvantages. The Delta-RST presented here is such a hybrid robot built up by integrating a 3-DoFs traditional Delta parallel structure and a 3-DoFs RST robotic wrist. In this paper, we focus on its kinematics analysis and its applications in industry. Firstly, the robotic system of the Delta-RST will be described briefly. Then the complete and systemic kinematics of this kind of robot will be presented in detail, followed by simulations and applications to demonstrate the correctness of the analysis, as well as the effectiveness of the developed robotic system. The closed-form kinematic analysis results are universal for similar hybrid robots constructing with the Delta parallel mechanism and serial chains.

  14. A Reconfigurable Omnidirectional Soft Robot Based on Caterpillar Locomotion.

    Science.gov (United States)

    Zou, Jun; Lin, Yangqiao; Ji, Chen; Yang, Huayong

    2018-04-01

    A pneumatically powered, reconfigurable omnidirectional soft robot based on caterpillar locomotion is described. The robot is composed of nine modules arranged as a three by three matrix and the length of this matrix is 154 mm. The robot propagates a traveling wave inspired by caterpillar locomotion, and it has all three degrees of freedom on a plane (X, Y, and rotation). The speed of the robot is about 18.5 m/h (two body lengths per minute) and it can rotate at a speed of 1.63°/s. The modules have neodymium-iron-boron (NdFeB) magnets embedded and can be easily replaced or combined into other configurations. Two different configurations are presented to demonstrate the possibilities of the modular structure: (1) by removing some modules, the omnidirectional robot can be reassembled into a form that can crawl in a pipe and (2) two omnidirectional robots can crawl close to each other and be assembled automatically into a bigger omnidirectional robot. Omnidirectional motion is important for soft robots to explore unstructured environments. The modular structure gives the soft robot the ability to cope with the challenges of different environments and tasks.

  15. Store-Carry and Forward-Type M2M Communication Protocol Enabling Guide Robots to Work together and the Method of Identifying Malfunctioning Robots Using the Byzantine Algorithm

    Directory of Open Access Journals (Sweden)

    Yoshio Suga

    2016-11-01

    Full Text Available This paper concerns a service in which multiple guide robots in an area display arrows to guide individual users to their destinations. It proposes a method of identifying malfunctioning robots and robots that give wrong directions to users. In this method, users’ mobile terminals and robots form a store-carry and forward-type M2M communication network, and a distributed cooperative protocol is used to enable robots to share information and identify malfunctioning robots using the Byzantine algorithm. The robots do not directly communicate with each other, but through users’ mobile terminals. We have introduced the concept of the quasi-synchronous number, so whether a certain robot is malfunctioning can be determined even when items of information held by all of the robots are not synchronized. Using simulation, we have evaluated the proposed method in terms of the rate of identifying malfunctioning robots, the rate of reaching the destination and the average length of time to reach the destination.

  16. New form of the Euler-Bernoulli rod equation applied to robotic systems

    Directory of Open Access Journals (Sweden)

    Filipović Mirjana

    2008-01-01

    Full Text Available This paper presents a theoretical background and an example of extending the Euler-Bernoulli equation from several aspects. Euler-Bernoulli equation (based on the known laws of dynamics should be supplemented with all the forces that are participating in the formation of the bending moment of the considered mode. The stiffness matrix is a full matrix. Damping is an omnipresent elasticity characteristic of real systems, so that it is naturally included in the Euler-Bernoulli equation. It is shown that Daniel Bernoulli's particular integral is just one component of the total elastic deformation of the tip of any mode to which we have to add a component of the elastic deformation of a stationary regime in accordance with the complexity requirements of motion of an elastic robot system. The elastic line equation mode of link of a complex elastic robot system is defined based on the so-called 'Euler-Bernoulli Approach' (EBA. It is shown that the equation of equilibrium of all forces present at mode tip point ('Lumped-mass approach' (LMA follows directly from the elastic line equation for specified boundary conditions. This, in turn, proves the essential relationship between LMA and EBA approaches. In the defined mathematical model of a robotic system with multiple DOF (degree of freedom in the presence of the second mode, the phenomenon of elasticity of both links and joints are considered simultaneously with the presence of the environment dynamics - all based on the previously presented theoretical premises. Simulation results are presented. .

  17. Long-term knowledge acquisition using contextual information in a memory-inspired robot architecture

    Science.gov (United States)

    Pratama, Ferdian; Mastrogiovanni, Fulvio; Lee, Soon Geul; Chong, Nak Young

    2017-03-01

    In this paper, we present a novel cognitive framework allowing a robot to form memories of relevant traits of its perceptions and to recall them when necessary. The framework is based on two main principles: on the one hand, we propose an architecture inspired by current knowledge in human memory organisation; on the other hand, we integrate such an architecture with the notion of context, which is used to modulate the knowledge acquisition process when consolidating memories and forming new ones, as well as with the notion of familiarity, which is employed to retrieve proper memories given relevant cues. Although much research has been carried out, which exploits Machine Learning approaches to provide robots with internal models of their environment (including objects and occurring events therein), we argue that such approaches may not be the right direction to follow if a long-term, continuous knowledge acquisition is to be achieved. As a case study scenario, we focus on both robot-environment and human-robot interaction processes. In case of robot-environment interaction, a robot performs pick and place movements using the objects in the workspace, at the same time observing their displacement on a table in front of it, and progressively forms memories defined as relevant cues (e.g. colour, shape or relative position) in a context-aware fashion. As far as human-robot interaction is concerned, the robot can recall specific snapshots representing past events using both sensory information and contextual cues upon request by humans.

  18. Robot and Human Surface Operations on Solar System Bodies

    Science.gov (United States)

    Weisbin, C. R.; Easter, R.; Rodriguez, G.

    2001-01-01

    This paper presents a comparison of robot and human surface operations on solar system bodies. The topics include: 1) Long Range Vision of Surface Scenarios; 2) Human and Robots Complement Each Other; 3) Respective Human and Robot Strengths; 4) Need More In-Depth Quantitative Analysis; 5) Projected Study Objectives; 6) Analysis Process Summary; 7) Mission Scenarios Decompose into Primitive Tasks; 7) Features of the Projected Analysis Approach; and 8) The "Getting There Effect" is a Major Consideration. This paper is in viewgraph form.

  19. Generic robot architecture

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  20. Molecular Robots Obeying Asimov's Three Laws of Robotics.

    Science.gov (United States)

    Kaminka, Gal A; Spokoini-Stern, Rachel; Amir, Yaniv; Agmon, Noa; Bachelet, Ido

    2017-01-01

    Asimov's three laws of robotics, which were shaped in the literary work of Isaac Asimov (1920-1992) and others, define a crucial code of behavior that fictional autonomous robots must obey as a condition for their integration into human society. While, general implementation of these laws in robots is widely considered impractical, limited-scope versions have been demonstrated and have proven useful in spurring scientific debate on aspects of safety and autonomy in robots and intelligent systems. In this work, we use Asimov's laws to examine these notions in molecular robots fabricated from DNA origami. We successfully programmed these robots to obey, by means of interactions between individual robots in a large population, an appropriately scoped variant of Asimov's laws, and even emulate the key scenario from Asimov's story "Runaround," in which a fictional robot gets into trouble despite adhering to the laws. Our findings show that abstract, complex notions can be encoded and implemented at the molecular scale, when we understand robots on this scale on the basis of their interactions.

  1. CITEQ creates a transformer for underground electric networks: a joint initiative by Hydro-Quebec and ABB

    International Nuclear Information System (INIS)

    Cordeau, P.

    1997-01-01

    Advances in technology regarding underground transformers was discussed. After more than 3 years of research, CITEQ (Centre d'innovation sur le transport d'energie du Quebec), a new company founded by Hydro-Quebec and ABB, is on the verge of a breakthrough with a new submersible transformer with solid insulation. This transformer was specially designed for use in underground electric networks. The new transformer is a good alternative to conventional oil transformers which have a high risk of pollution mainly due to corrosion, leaks, explosions or fires. Also, the outer shell of the new transformer is composed of composite material which will eliminate the need for maintenance. The service life of the new transformer is expected to be approximately 30 to 40 years. CITEQ is hoping that this new technology will benefit the residential sector which is powered by underground distribution networks. 1 fig

  2. Colias: An Autonomous Micro Robot for Swarm Robotic Applications

    Directory of Open Access Journals (Sweden)

    Farshad Arvin

    2014-07-01

    Full Text Available Robotic swarms that take inspiration from nature are becoming a fascinating topic for multi-robot researchers. The aim is to control a large number of simple robots in order to solve common complex tasks. Due to the hardware complexities and cost of robot platforms, current research in swarm robotics is mostly performed by simulation software. The simulation of large numbers of these robots in robotic swarm applications is extremely complex and often inaccurate due to the poor modelling of external conditions. In this paper, we present the design of a low-cost, open-platform, autonomous micro-robot (Colias for robotic swarm applications. Colias employs a circular platform with a diameter of 4 cm. It has a maximum speed of 35 cm/s which enables it to be used in swarm scenarios very quickly over large arenas. Long-range infrared modules with an adjustable output power allow the robot to communicate with its direct neighbours at a range of 0.5 cm to 2 m. Colias has been designed as a complete platform with supporting software development tools for robotics education and research. It has been tested in both individual and swarm scenarios, and the observed results demonstrate its feasibility for use as a micro-sized mobile robot and as a low-cost platform for robot swarm applications.

  3. Simulation tools for robotics research and assessment

    Science.gov (United States)

    Fields, MaryAnne; Brewer, Ralph; Edge, Harris L.; Pusey, Jason L.; Weller, Ed; Patel, Dilip G.; DiBerardino, Charles A.

    2016-05-01

    The Robotics Collaborative Technology Alliance (RCTA) program focuses on four overlapping technology areas: Perception, Intelligence, Human-Robot Interaction (HRI), and Dexterous Manipulation and Unique Mobility (DMUM). In addition, the RCTA program has a requirement to assess progress of this research in standalone as well as integrated form. Since the research is evolving and the robotic platforms with unique mobility and dexterous manipulation are in the early development stage and very expensive, an alternate approach is needed for efficient assessment. Simulation of robotic systems, platforms, sensors, and algorithms, is an attractive alternative to expensive field-based testing. Simulation can provide insight during development and debugging unavailable by many other means. This paper explores the maturity of robotic simulation systems for applications to real-world problems in robotic systems research. Open source (such as Gazebo and Moby), commercial (Simulink, Actin, LMS), government (ANVEL/VANE), and the RCTA-developed RIVET simulation environments are examined with respect to their application in the robotic research domains of Perception, Intelligence, HRI, and DMUM. Tradeoffs for applications to representative problems from each domain are presented, along with known deficiencies and disadvantages. In particular, no single robotic simulation environment adequately covers the needs of the robotic researcher in all of the domains. Simulation for DMUM poses unique constraints on the development of physics-based computational models of the robot, the environment and objects within the environment, and the interactions between them. Most current robot simulations focus on quasi-static systems, but dynamic robotic motion places an increased emphasis on the accuracy of the computational models. In order to understand the interaction of dynamic multi-body systems, such as limbed robots, with the environment, it may be necessary to build component

  4. Biofeedback for robotic gait rehabilitation

    Directory of Open Access Journals (Sweden)

    Colombo Gery

    2007-01-01

    Full Text Available Abstract Background Development and increasing acceptance of rehabilitation robots as well as advances in technology allow new forms of therapy for patients with neurological disorders. Robot-assisted gait therapy can increase the training duration and the intensity for the patients while reducing the physical strain for the therapist. Optimal training effects during gait therapy generally depend on appropriate feedback about performance. Compared to manual treadmill therapy, there is a loss of physical interaction between therapist and patient with robotic gait retraining. Thus, it is difficult for the therapist to assess the necessary feedback and instructions. The aim of this study was to define a biofeedback system for a gait training robot and test its usability in subjects without neurological disorders. Methods To provide an overview of biofeedback and motivation methods applied in gait rehabilitation, previous publications and results from our own research are reviewed. A biofeedback method is presented showing how a rehabilitation robot can assess the patients' performance and deliver augmented feedback. For validation, three subjects without neurological disorders walked in a rehabilitation robot for treadmill training. Several training parameters, such as body weight support and treadmill speed, were varied to assess the robustness of the biofeedback calculation to confounding factors. Results The biofeedback values correlated well with the different activity levels of the subjects. Changes in body weight support and treadmill velocity had a minor effect on the biofeedback values. The synchronization of the robot and the treadmill affected the biofeedback values describing the stance phase. Conclusion Robot-aided assessment and feedback can extend and improve robot-aided training devices. The presented method estimates the patients' gait performance with the use of the robot's existing sensors, and displays the resulting biofeedback

  5. Micro intelligence robot

    International Nuclear Information System (INIS)

    Jeon, Yon Ho

    1991-07-01

    This book gives descriptions of micro robot about conception of robots and micro robot, match rules of conference of micro robots, search methods of mazes, and future and prospect of robots. It also explains making and design of 8 beat robot like making technique, software, sensor board circuit, and stepping motor catalog, speedy 3, Mr. Black and Mr. White, making and design of 16 beat robot, such as micro robot artist, Jerry 2 and magic art of shortening distances algorithm of robot simulation.

  6. Sensor-guided parking system for a carlike robot

    Science.gov (United States)

    Jiang, Kaichum; Seneviratne, L. D.

    1998-07-01

    This paper presents an automated parking strategy for a car- like mobile robot. The study considers general parking manoeuvre cases for a rectangular robot, including parallel parking. The robot is constructed simulating a conventional car, which is subject to non-holonomic constraints and thus only has two degrees of freedom. The parking space is considered as rectangular, and detected by ultrasonic sensors mounted on the robot. A motion planning algorithm develops a collision-free path for parking, taking into account the non- holonomic constraints acting on the car-like robot. A research into general car maneuvers has been conducted and useful results have been achieved. The motion planning algorithm uses these results, combined with configuration space method, to produce a collision-free path for parallel parking, depending on the parking space detected. A control program in the form of a graphical user interface has been developed for users to operate the system with ease. The strategy is implemented on a modified B12 mobile robot. The strategy presented has the potential for application in automobiles.

  7. Design of 3-D Printed Concentric Tube Robots.

    Science.gov (United States)

    Morimoto, Tania K; Okamura, Allison M

    2016-12-01

    Concentric tube surgical robots are minimally invasive devices with the advantages of snake-like reconfigurability, long and thin form factor, and placement of actuation outside the patient's body. These robots can also be designed and manufactured to acquire targets in specific patients for treating specific diseases in a manner that minimizes invasiveness. We propose that concentric tube robots can be manufactured using 3-D printing technology on a patient- and procedure-specific basis. In this paper, we define the design requirements and manufacturing constraints for 3-D printed concentric tube robots and experimentally demonstrate the capabilities of these robots. While numerous 3-D printing technologies and materials can be used to create such robots, one successful example uses selective laser sintering to make an outer tube with a polyether block amide and uses stereolithography to make an inner tube with a polypropylene-like material. This enables a tube pair with precurvatures of 0.0775 and 0.0455 mm -1 , which can withstand strains of 20% and 5.5% for the outer and inner tubes, respectively.

  8. Socially intelligent robots that understand and respond to human touch

    NARCIS (Netherlands)

    Jung, Merel Madeleine

    Touch is an important nonverbal form of interpersonal interaction which is used to communicate emotions and other social messages. As interactions with social robots are likely to become more common in the near future these robots should also be able to engage in tactile interaction with humans.

  9. Modelling of industrial robot in LabView Robotics

    Science.gov (United States)

    Banas, W.; Cwikła, G.; Foit, K.; Gwiazda, A.; Monica, Z.; Sekala, A.

    2017-08-01

    Currently can find many models of industrial systems including robots. These models differ from each other not only by the accuracy representation parameters, but the representation range. For example, CAD models describe the geometry of the robot and some even designate a mass parameters as mass, center of gravity, moment of inertia, etc. These models are used in the design of robotic lines and sockets. Also systems for off-line programming use these models and many of them can be exported to CAD. It is important to note that models for off-line programming describe not only the geometry but contain the information necessary to create a program for the robot. Exports from CAD to off-line programming system requires additional information. These models are used for static determination of reachability points, and testing collision. It’s enough to generate a program for the robot, and even check the interaction of elements of the production line, or robotic cell. Mathematical models allow robots to study the properties of kinematic and dynamic of robot movement. In these models the geometry is not so important, so are used only selected parameters such as the length of the robot arm, the center of gravity, moment of inertia. These parameters are introduced into the equations of motion of the robot and motion parameters are determined.

  10. Towards Sociable Robots

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    This thesis studies aspects of self-sufficient energy (energy autonomy) for truly autonomous robots and towards sociable robots. Over sixty years of history of robotics through three developmental ages containing single robot, multi-robot systems, and social (sociable) robots, the main objective...... of roboticists mostly focuses on how to make a robotic system function autonomously and further, socially. However, such approaches mostly emphasize behavioural autonomy, rather than energy autonomy which is the key factor for not only any living machine, but for life on the earth. Consequently, self......-sufficient energy is one of the challenges for not only single robot or multi-robot systems, but also social and sociable robots. This thesis is to deal with energy autonomy for multi-robot systems through energy sharing (trophallaxis) in which each robot is equipped with two capabilities: self-refueling energy...

  11. Biomass feeds vegetarian robot; Biomassa voedt vegetarische robot

    Energy Technology Data Exchange (ETDEWEB)

    Van den Brandt, M. [Office for Science and Technology, Embassy of the Kingdom of the Netherlands, Washington (United States)

    2009-09-15

    This brief article addresses the EATR robot (Energetically Autonomous Tactical Robot) that was developed by Cyclone Power and uses biomass as primary source of energy for propulsion. [Dutch] Een kort artikel over de door Cyclone Power ontwikkelde EATR-robot (Energetically Autonomous Tactical Robot) die voor de voortdrijving biomassa gebruikt als primaire energiebron.

  12. Robot Futures

    DEFF Research Database (Denmark)

    Christoffersen, Anja; Grindsted Nielsen, Sally; Jochum, Elizabeth Ann

    Robots are increasingly used in health care settings, e.g., as homecare assistants and personal companions. One challenge for personal robots in the home is acceptance. We describe an innovative approach to influencing the acceptance of care robots using theatrical performance. Live performance...... is a useful testbed for developing and evaluating what makes robots expressive; it is also a useful platform for designing robot behaviors and dialogue that result in believable characters. Therefore theatre is a valuable testbed for studying human-robot interaction (HRI). We investigate how audiences...... perceive social robots interacting with humans in a future care scenario through a scripted performance. We discuss our methods and initial findings, and outline future work....

  13. Soft Robotics Week

    CERN Document Server

    Rossiter, Jonathan; Iida, Fumiya; Cianchetti, Matteo; Margheri, Laura

    2017-01-01

    This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.

  14. Towards Versatile Robots Through Open Heterogeneous Modular Robots

    OpenAIRE

    Lyder, Andreas

    2010-01-01

    Robots are important tools in our everyday life. Both in industry and at the consumer level they serve the purpose of increasing our scope and extending our capabilities. Modular robots take the next step, allowing us to easily create and build various robots from a set of modules. If a problem arises, a new robot can be assembled rapidly from the existing modules, in contrast to conventional robots, which require a time consuming and expensive development process. In this thesis we define a ...

  15. Robotic architectures

    CSIR Research Space (South Africa)

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  16. Improvement of the operation of wheels mobile robot TRASMAR2; Mejora del funcionamiento del robot movil de ruedas TRASMAR2

    Energy Technology Data Exchange (ETDEWEB)

    Guerra C, D. A.; Tovar M, R. [Instituto Tecnologico de San Luis Potosi, Av. Tecnologico s/n, Col. UPA Soledad de Graciano Sanchez, 78437 San Luis Potosi (Mexico); Gonzalez M, J. L.; Segovia de los Rios, A., E-mail: deniwar@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In the Instituto Nacional de Investigaciones Nucleares (ININ), personnel have been working in the development of wheels mobile robots for the surveillance and supervision of contaminated areas, and for the radioactive material transport. One of these achievements is the wheels mobile robot denominated TRASMAR2, which is sought that works in the tele operated form using net technologies, in particular, using a Web page by means of the client-servant technology. For this, diverse circuits and control programs have been development with the purpose that the robot carries out the movements that are required, being considered the use of sensors to avoid collisions. The different programs have been implemented in different micro controllers, and although the robot was working, is necessary to optimize and to concentrate these programs on a single micro controller. In this work are presented the analysis of the previously implemented programs, as the realized changes, including new programs required to improve the robot operation. As complement, was development and implemented an alternative proposal of the robot's tele operation by means of a Web page using Lab view, which is described in the work. With this proposal tele operate the robot was achieved, although its application is evaluating due to the resources that is consumes. (author)

  17. Future of robots

    International Nuclear Information System (INIS)

    Stauffer, R.

    1984-01-01

    A decade ago, the United States was creating about 75% of the world's technology. Today, it is something like 50%. A decade from now, the figure could be down to 30%. The deteriorating condition of the U.S. competitive position in the world marketplace has become painfully evident to our government, the business community, and to labor. As with the energy crisis of several years ago, there has been a rude awakening to the critical need for a turnaround in our efforts to improve both productivity and quality. Industrial robots represent one of the most promising approaches to achieving both objectives. Today's top buzzword is, indeed, ''robot.'' The attention is well deserved. These versatile forms of flexible automation can improve productivity and quality through their consistent performance under the most difficult of working conditions. They are building an excellent track record in terms of dependability and uptime. The robot population in the U.S. now stands at around 7000, with sales growing at an annual rate of about 30%. By 1990, the total number of these machines on the plant floor could reach 100,000

  18. A Novel Reconfigurable Robot for Urban Search and Rescue

    Directory of Open Access Journals (Sweden)

    Houxiang Zhang

    2006-12-01

    Full Text Available This paper presents a novel mobile robot for urban search and rescue based on reconfiguration. The system consists of three identical modules; actually each module is an entire robotic system that can perform distributed activities. To achieve highly adaptive locomotion capabilities, the robot's serial and parallel mechanisms form an active joint, enabling it to change its shape in three dimensions. A docking mechanism enables adjacent modules to connect or disconnect flexibly and automatically. This mechanical structure and the control system are introduced in detail, followed by a description of the locomotion capabilities. In the end, the successful on-site tests confirm the principles described above and the robot's ability.

  19. A Novel Reconfigurable Robot for Urban Search and Rescue

    Directory of Open Access Journals (Sweden)

    Zhicheng Deng

    2008-11-01

    Full Text Available This paper presents a novel mobile robot for urban search and rescue based on reconfiguration. The system consists of three identical modules; actually each module is an entire robotic system that can perform distributed activities. To achieve highly adaptive locomotion capabilities, the robot's serial and parallel mechanisms form an active joint, enabling it to change its shape in three dimensions. A docking mechanism enables adjacent modules to connect or disconnect flexibly and automatically. This mechanical structure and the control system are introduced in detail, followed by a description of the locomotion capabilities. In the end, the successful on-site tests confirm the principles described above and the robot's ability.

  20. Soft Robotics.

    Science.gov (United States)

    Whitesides, George M

    2018-04-09

    This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Additive Manufacturing Cloud via Peer-Robot Collaboration

    Directory of Open Access Journals (Sweden)

    Yuan Yao

    2016-05-01

    Full Text Available When building a 3D printing cloud manufacturing platform, self-sensing and collaboration on manufacturing resources present challenging problems. This paper proposes a peer-robot collaboration framework to deal with these issues. Each robot combines heterogeneous additive manufacturing hardware and software, acting as an intelligent agent. Through collaboration with other robots, it forms a dynamic and scalable integration manufacturing system. The entire distributed system is managed by rules that employ an internal rule engine, which supports rule conversion and conflict resolution. Two additive manufacturing service scenarios are designed to analyse the efficiency and scalability of the framework. Experiments show that the presented method performs well in tasks requiring large-scale access to resources and collaboration.

  2. Control of complex physically simulated robot groups

    Science.gov (United States)

    Brogan, David C.

    2001-10-01

    Actuated systems such as robots take many forms and sizes but each requires solving the difficult task of utilizing available control inputs to accomplish desired system performance. Coordinated groups of robots provide the opportunity to accomplish more complex tasks, to adapt to changing environmental conditions, and to survive individual failures. Similarly, groups of simulated robots, represented as graphical characters, can test the design of experimental scenarios and provide autonomous interactive counterparts for video games. The complexity of writing control algorithms for these groups currently hinders their use. A combination of biologically inspired heuristics, search strategies, and optimization techniques serve to reduce the complexity of controlling these real and simulated characters and to provide computationally feasible solutions.

  3. The Dominant Robot: Threatening Robots Cause Psychological Reactance, Especially When They Have Incongruent Goals

    Science.gov (United States)

    Roubroeks, M. A. J.; Ham, J. R. C.; Midden, C. J. H.

    Persuasive technology can take the form of a social agent that persuades people to change behavior or attitudes. However, like any persuasive technology, persuasive social agents might trigger psychological reactance, which can lead to restoration behavior. The current study investigated whether interacting with a persuasive robot can cause psychological reactance. Additionally, we investigated whether goal congruency plays a role in psychological reactance. Participants programmed a washing machine while a robot gave threatening advice. Confirming expectations, participants experienced more psychological reactance when receiving high-threatening advice compared to low-threatening advice. Moreover, when the robot gave high-threatening advice and expressed an incongruent goal, participants reported the highest level of psychological reactance (on an anger measure). Finally, high-threatening advice led to more restoration, and this relationship was partially mediated by psychological reactance. Overall, results imply that under certain circumstances persuasive technology can trigger opposite effects, especially when people have incongruent goal intentions.

  4. Exploiting Child-Robot Aesthetic Interaction for a Social Robot

    OpenAIRE

    Lee, Jae-Joon; Kim, Dae-Won; Kang, Bo-Yeong

    2012-01-01

    A social robot interacts and communicates with humans by using the embodied knowledge gained from interactions with its social environment. In recent years, emotion has emerged as a popular concept for designing social robots. Several studies on social robots reported an increase in robot sociability through emotional imitative interactions between the robot and humans. In this paper conventional emotional interactions are extended by exploiting the aesthetic theories that the sociability of ...

  5. Evolutionary robotics

    Indian Academy of Sciences (India)

    In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to ...

  6. Interactive Exploration Robots: Human-Robotic Collaboration and Interactions

    Science.gov (United States)

    Fong, Terry

    2017-01-01

    For decades, NASA has employed different operational approaches for human and robotic missions. Human spaceflight missions to the Moon and in low Earth orbit have relied upon near-continuous communication with minimal time delays. During these missions, astronauts and mission control communicate interactively to perform tasks and resolve problems in real-time. In contrast, deep-space robotic missions are designed for operations in the presence of significant communication delay - from tens of minutes to hours. Consequently, robotic missions typically employ meticulously scripted and validated command sequences that are intermittently uplinked to the robot for independent execution over long periods. Over the next few years, however, we will see increasing use of robots that blend these two operational approaches. These interactive exploration robots will be remotely operated by humans on Earth or from a spacecraft. These robots will be used to support astronauts on the International Space Station (ISS), to conduct new missions to the Moon, and potentially to enable remote exploration of planetary surfaces in real-time. In this talk, I will discuss the technical challenges associated with building and operating robots in this manner, along with lessons learned from research conducted with the ISS and in the field.

  7. Trajectory Planning and Walking Pattern Generation of Humanoid Robot Motion

    Directory of Open Access Journals (Sweden)

    Saeed Abdolshah

    2014-12-01

    Full Text Available Walking trajectory generation for a humanoid robot is a challenging control  issue. In this paper, a walking cycle has been recognized considering human motion, and nine simple steps were distinguished in a full step of walking which form motion trajectory, and generates a simplified ZMP motion formulation. This system was used in humanoid robot simulation motion and is achievable easily in walking steps of robot. A minimum DOFs humanoid robot has been considered and geometrical relationships between the robot links were presented by the Denavit-Hartenberg method. The inverse kinematics equations have been solved regarding to extracted ZMP trajectory formula, and constraints in different steps. As a result; angular velocity, acceleration and power of motors were obtained using the relationships and Jacobin. At each step, extracted data were applied on simulated robot in Matlab, and Visual Nastran software. Zero moment point trajectory was evaluated in simulation environment.

  8. Incidencia de Chrysobothris sp. en cedro (Cedrela odorata) y caoba (Swietenia humilis) con o sin asocio a guineo (Musa balbissiana ABB) en Rivas, Nicaragua

    OpenAIRE

    Sequeira, N Yilber; Bustos-Pérez, Irnan; González-Martínez, Álvaro José; Chavarría-Ñamendi, Francisco José

    2016-01-01

    Se analizó la incidencia de Chrysobothris sp. en cedro (Cedrela odorata) y caoba (Swietenia humilis) durante el periodo entre febrero a noviembre de 2014 bajo un Sistema Agroforestal “Taungya” en el departamento de Rivas, Nicaragua. No se encontraron diferencias estadísticas significativas de Chrysobothris sp. en cedro y caoba asociados o no asociados a guineo (Musa balbissiana ABB). La preferencia de Chrysobothris sp. fue tres veces mayor en cedro que caoba. El daño de la larva en el tallo p...

  9. Design and Optimization of Intelligent Service Robot Suspension System Using Dynamic Model

    International Nuclear Information System (INIS)

    Choi, Seong Hoon; Park, Tae Won; Lee, Soo Ho; Jung, Sung Pil; Jun, Kab Jin; Yoon, J. W.

    2010-01-01

    Recently, an intelligent service robot is being developed for use in guiding and providing information to visitors about the building at public institutions. The intelligent robot has a sensor at the bottom to recognize its location. Four wheels, which are arranged in the form of a lozenge, support the robot. This robot cannot be operated on uneven ground because its driving parts are attached to its main body that contains the important internal components. Continuous impact with the ground can change the precise positions of the components and weaken the connection between each structural part. In this paper, the design of the suspension system for such a robot is described. The dynamic model of the robot is created, and the driving characteristics of the robot with the designed suspension system are simulated. Additionally, the suspension system is optimized to reduce the impact for the robot components

  10. Robotic buildings(s)

    NARCIS (Netherlands)

    Bier, H.H.

    2014-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic building to be in the last decade prototypically implemented. In this context, robotic building implies both physically built robotic environments and robotically

  11. Cloud Robotics Platforms

    Directory of Open Access Journals (Sweden)

    Busra Koken

    2015-01-01

    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  12. Robot Mechanisms

    CERN Document Server

    Lenarcic, Jadran; Stanišić, Michael M

    2013-01-01

    This book provides a comprehensive introduction to the area of robot mechanisms, primarily considering industrial manipulators and humanoid arms. The book is intended for both teaching and self-study. Emphasis is given to the fundamentals of kinematic analysis and the design of robot mechanisms. The coverage of topics is untypical. The focus is on robot kinematics. The book creates a balance between theoretical and practical aspects in the development and application of robot mechanisms, and includes the latest achievements and trends in robot science and technology.

  13. Robots de servicio

    Directory of Open Access Journals (Sweden)

    Rafael Aracil

    2008-04-01

    Full Text Available Resumen: El término Robots de Servicio apareció a finales de los años 80 como una necesidad de desarrollar máquinas y sistemas capaces de trabajar en entornos diferentes a los fabriles. Los Robots de Servicio tenían que poder trabajar en entornos noestructurados, en condiciones ambientales cambiantes y con una estrecha interacción con los humanos. En 1995 fue creado por la IEEE Robotics and Automation Society, el Technical Committee on Service Robots, y este comité definió en el año 2000 las áreas de aplicación de los Robots de Servicios, que se pueden dividir en dos grandes grupos: 1 sectores productivos no manufactureros tales como edificación, agricultura, naval, minería, medicina, etc. y 2 sectores de servicios propiamente dichos: asistencia personal, limpieza, vigilancia, educación, entretenimiento, etc. En este trabajo se hace una breve revisión de los principales conceptos y aplicaciones de los robots de servicio. Palabras clave: Robots de servicio, robots autónomos, robots de exteriores, robots de educación y entretenimiento, robots caminantes y escaladores, robots humanoides

  14. Prediction of Path Deviation in Robot Based Incremental Sheet Metal Forming by Means of a New Solid-Shell Finite Element Technology and a Finite Elastoplastic Model with Combined Hardening

    Science.gov (United States)

    Kiliclar, Yalin; Laurischkat, Roman; Vladimirov, Ivaylo N.; Reese, Stefanie

    2011-08-01

    The presented project deals with a robot based incremental sheet metal forming process, which is called roboforming and has been developed at the Chair of Production Systems. It is characterized by flexible shaping using a freely programmable path-synchronous movement of two industrial robots. The final shape is produced by the incremental infeed of the forming tool in depth direction and its movement along the part contour in lateral direction. However, the resulting geometries formed in roboforming deviate several millimeters from the reference geometry. This results from the compliance of the involved machine structures and the springback effects of the workpiece. The project aims to predict these deviations caused by resiliences and to carry out a compensative path planning based on this prediction. Therefore a planning tool is implemented which compensates the robots's compliance and the springback effects of the sheet metal. The forming process is simulated by means of a finite element analysis using a material model developed at the Institute of Applied Mechanics (IFAM). It is based on the multiplicative split of the deformation gradient in the context of hyperelasticity and combines nonlinear kinematic and isotropic hardening. Low-order finite elements used to simulate thin sheet structures, such as used for the experiments, have the major problem of locking, a nonphysical stiffening effect. For an efficient finite element analysis a special solid-shell finite element formulation based on reduced integration with hourglass stabilization has been developed. To circumvent different locking effects, the enhanced assumed strain (EAS) and the assumed natural strain (ANS) concepts are included in this formulation. Having such powerful tools available we obtain more accurate geometries.

  15. Filigree Robotics

    DEFF Research Database (Denmark)

    Tamke, Martin; Evers, Henrik Leander; Clausen Nørgaard, Esben

    2016-01-01

    Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture.......Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture....

  16. Hydraulic bilateral construction robot; Yuatsushiki bilateral kensetsu robot

    Energy Technology Data Exchange (ETDEWEB)

    Maehata, K.; Mori, N. [Kayaba Industry Co. Ltd., Tokyo (Japan)

    1999-05-15

    Concerning a hydraulic bilateral construction robot, its system constitution, structures and functions of important components, and the results of some tests are explained, and the researches conducted at Gifu University are described. The construction robot in this report is a servo controlled system of a version developed from the mini-shovel now available in the market. It is equipped, in addition to an electrohydraulic servo control system, with various sensors for detecting the robot attitude, vibration, and load state, and with a camera for visualizing the surrounding landscape. It is also provided with a bilateral joy stick which is a remote control actuator capable of working sensation feedback and with a rocking unit that creates robot movements of rolling, pitching, and heaving. The construction robot discussed here, with output increased and response faster thanks to the employment of a hydraulic driving system for the aim of building a robot system superior in performance to the conventional model designed primarily for heavy duty, proves after tests to be a highly sophisticated remotely controlled robot control system. (NEDO)

  17. An Intelligent Agent-Controlled and Robot-Based Disassembly Assistant

    Science.gov (United States)

    Jungbluth, Jan; Gerke, Wolfgang; Plapper, Peter

    2017-09-01

    One key for successful and fluent human-robot-collaboration in disassembly processes is equipping the robot system with higher autonomy and intelligence. In this paper, we present an informed software agent that controls the robot behavior to form an intelligent robot assistant for disassembly purposes. While the disassembly process first depends on the product structure, we inform the agent using a generic approach through product models. The product model is then transformed to a directed graph and used to build, share and define a coarse disassembly plan. To refine the workflow, we formulate “the problem of loosening a connection and the distribution of the work” as a search problem. The created detailed plan consists of a sequence of actions that are used to call, parametrize and execute robot programs for the fulfillment of the assistance. The aim of this research is to equip robot systems with knowledge and skills to allow them to be autonomous in the performance of their assistance to finally improve the ergonomics of disassembly workstations.

  18. Actuation control of a PiezoMEMS biomimetic robotic jellyfish

    Science.gov (United States)

    Alejandre, Alvaro; Olszewski, Oskar; Jackson, Nathan

    2017-06-01

    Biomimetic micro-robots try to mimic the motion of a living system in the form of a synthetically developed microfabricated device. Dynamic motion of living systems have evolved through the years, but trying to mimic these motions is challenging. Micro-robotics are particular challenging as the fabrication of devices and controlling the motion in 3 dimensions is difficult. However, micro-scale robotics have potential to be used in a wide range of applications. MEMS based robots that can move and function in a liquid environment is of particular interest. This paper describes the development of a piezoMEMS based device that mimics the movement of a jellyfish. The paper focuses on the development of a finite element model that investigates a method of controlling the individual piezoelectric beams in order to create a jet propulsion motion, consisting of a quick excitation pulse followed by a slow recovery pulse in order to maximize thrust and velocity. By controlling the individual beams or legs of the jellyfish robot the authors can control the robot to move precisely in 3 dimensions.

  19. Robotics education

    International Nuclear Information System (INIS)

    Benton, O.

    1984-01-01

    Robotics education courses are rapidly spreading throughout the nation's colleges and universities. Engineering schools are offering robotics courses as part of their mechanical or manufacturing engineering degree program. Two year colleges are developing an Associate Degree in robotics. In addition to regular courses, colleges are offering seminars in robotics and related fields. These seminars draw excellent participation at costs running up to $200 per day for each participant. The last one drew 275 people from Texas to Virginia. Seminars are also offered by trade associations, private consulting firms, and robot vendors. IBM, for example, has the Robotic Assembly Institute in Boca Raton and charges about $1,000 per week for course. This is basically for owners of IBM robots. Education (and training) can be as short as one day or as long as two years. Here is the educational pattern that is developing now

  20. Robot Aesthetics

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Putnam, Lance Jonathan

    This paper considers art-based research practice in robotics through a discussion of our course and relevant research projects in autonomous art. The undergraduate course integrates basic concepts of computer science, robotic art, live performance and aesthetic theory. Through practice...... in robotics research (such as aesthetics, culture and perception), we believe robot aesthetics is an important area for research in contemporary aesthetics....

  1. The methods and algorithms for designing complex three-dimensional robots

    International Nuclear Information System (INIS)

    Solovjev, A.E.; Naumov, V.B.

    1996-01-01

    For automation designing by the Robotics laboratory were executed some fundamental and applied researches. This researching allowed to create rational mathematical model for numeric modeling with real-time simulation. In the mathematical model used set of equations of rigid body's motion in Lagrange's form and set of Appel's equations taking into consideration holonomic and non-holonomic connections. In present article are considered methods and algorithms of dynamic modeling of a system of rigid bodies for robotics task and brief description of the package Computer Aided Engineering for Industrial Robots, based on considered algorithms. So far as, in researching of robots the dynamic tasks (direct and inverse) are more interesting than another tasks, authors pay attention just on these problems

  2. Robots: l'embarras de richesses [:survey of robots available

    International Nuclear Information System (INIS)

    Meieran, H.; Brittain, K.; Sturkey, R.

    1989-01-01

    A survey of robots available for use in the nuclear industry is presented. Two new categories of mobile robots have been introduced since the last survey (April 1987): pipe crawlers and underwater robots. The number of robots available has risen to double what it was two years ago and four times what it was in 1986. (U.K.)

  3. Robots Social Embodiment in Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Brian Duffy

    2008-11-01

    Full Text Available This work aims at demonstrating the inherent advantages of embracing a strong notion of social embodiment in designing a real-world robot control architecture with explicit ?intelligent? social behaviour between a collective of robots. It develops the current thinking on embodiment beyond the physical by demonstrating the importance of social embodiment. A social framework develops the fundamental social attributes found when more than one robot co-inhabit a physical space. The social metaphors of identity, character, stereotypes and roles are presented and implemented within a real-world social robot paradigm in order to facilitate the realisation of explicit social goals.

  4. Robotic intelligence kernel

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  5. Multiplexed Force and Deflection Sensing Shell Membranes for Robotic Manipulators

    Science.gov (United States)

    Park, Yong-Lae; Black, Richard; Moslehi, Behzad; Cutkosky, Mark; Chau, Kelvin

    2012-01-01

    Force sensing is an essential requirement for dexterous robot manipulation, e.g., for extravehicular robots making vehicle repairs. Although strain gauges have been widely used, a new sensing approach is desirable for applications that require greater robustness, design flexibility including a high degree of multiplexibility, and immunity to electromagnetic noise. This invention is a force and deflection sensor a flexible shell formed with an elastomer having passageways formed by apertures in the shell, with an optical fiber having one or more Bragg gratings positioned in the passageways for the measurement of force and deflection.

  6. An Intelligent Robot Programing

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Yong

    2012-01-15

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  7. An Intelligent Robot Programing

    International Nuclear Information System (INIS)

    Hong, Seong Yong

    2012-01-01

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  8. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan

    International Nuclear Information System (INIS)

    1991-01-01

    In FY 1990 Robotics Technology Development Program (RTDP) planning teams visited five DOE sites. These sites were selected by the Office of Technology Development to provide a needs basis for developing a 5-Year Plan. Visits to five DOE sites provided identification of needs for robotics technology development to support Environmental Restoration and Waste Management (ER ampersand WM) projects at those sites. Additional site visits will be conducted in the future to expand the planning basis. This volume summarizes both the results of the site visits and the needs and requirements of the priority ER ampersand WM activities at the sites, including potential needs for robotics and remote systems technology. It also discusses hazards associated with the site activities and any problems or technical uncertainties associated with dealing with the hazards in the performance of the ER ampersand WM work. Robotic or remote systems currently under development for remediation projects or waste operations are also discussed. The information in this document is organized principally by site, activity, and priority. Section 2.0, Site Needs, is based on information from the site visit reports and provides a summary which focuses on the site needs and requirements for each priority activity. Section 2.0 also records evaluations and discussions by the RTDP team following the site visit. Section 3.0, Commonality Assessment, documents similar site needs where common, or cross-cutting, robotics technology might be applied to several activities. Section 4.0 contains a summary of the site needs and requirements in tabular form. 1 tab

  9. Neuro-robotics from brain machine interfaces to rehabilitation robotics

    CERN Document Server

    Artemiadis

    2014-01-01

    Neuro-robotics is one of the most multidisciplinary fields of the last decades, fusing information and knowledge from neuroscience, engineering and computer science. This book focuses on the results from the strategic alliance between Neuroscience and Robotics that help the scientific community to better understand the brain as well as design robotic devices and algorithms for interfacing humans and robots. The first part of the book introduces the idea of neuro-robotics, by presenting state-of-the-art bio-inspired devices. The second part of the book focuses on human-machine interfaces for pe

  10. Cloud Robotics Model

    OpenAIRE

    Mester, Gyula

    2015-01-01

    Cloud Robotics was born from the merger of service robotics and cloud technologies. It allows robots to benefit from the powerful computational, storage, and communications resources of modern data centres. Cloud robotics allows robots to take advantage of the rapid increase in data transfer rates to offload tasks without hard real time requirements. Cloud Robotics has rapidly gained momentum with initiatives by companies such as Google, Willow Garage and Gostai as well as more than a dozen a...

  11. Case studies in configuration control for redundant robots

    Science.gov (United States)

    Seraji, H.; Lee, T.; Colbaugh, R.; Glass, K.

    1989-01-01

    A simple approach to configuration control of redundant robots is presented. The redundancy is utilized to control the robot configuration directly in task space, where the task will be performed. A number of task-related kinematic functions are defined and combined with the end-effector coordinates to form a set of configuration variables. An adaptive control scheme is then utilized to ensure that the configuration variables track the desired reference trajectories as closely as possible. Simulation results are presented to illustrate the control scheme. The scheme has also been implemented for direct online control of a PUMA industrial robot, and experimental results are presented. The simulation and experimental results validate the configuration control scheme for performing various realistic tasks.

  12. Space Robotics Challenge

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Robotics Challenge seeks to infuse robot autonomy from the best and brightest research groups in the robotics community into NASA robots for future...

  13. Are Sex Robots as Bad as Killing Robots

    OpenAIRE

    Richardson, Kathleen

    2016-01-01

    In 2015 the Campaign Against Sex Robots was launched to draw attention to the technological production of new kinds of objects: sex robots of women and children. The campaign was launched shortly after the Future of Life Institute published an online petition: “Autonomous Weapons: An Open Letter From AI and Robotics Researchers” which was signed by leading luminaries in the field of AI and Robotics. In response to the Campaign, an academic at Oxford University opened an ethics thread “Are sex...

  14. Fusion of perceptions for perceptual robotics

    NARCIS (Netherlands)

    Ciftcioglu, O.; Bittermann, M.S.; Sariyildiz, I.S.

    2006-01-01

    Fusion of perception information for perceptual robotics is described. The visual perception is mathematically modelled as a probabilistic process obtaining and interpreting visual data from an environment. The visual data is processed in a multiresolutional form via wavelet transform and optimally

  15. Acceptance of an assistive robot in older adults: a mixed-method study of human-robot interaction over a 1-month period in the Living Lab setting.

    Science.gov (United States)

    Wu, Ya-Huei; Wrobel, Jérémy; Cornuet, Mélanie; Kerhervé, Hélène; Damnée, Souad; Rigaud, Anne-Sophie

    2014-01-01

    There is growing interest in investigating acceptance of robots, which are increasingly being proposed as one form of assistive technology to support older adults, maintain their independence, and enhance their well-being. In the present study, we aimed to observe robot-acceptance in older adults, particularly subsequent to a 1-month direct experience with a robot. Six older adults with mild cognitive impairment (MCI) and five cognitively intact healthy (CIH) older adults were recruited. Participants interacted with an assistive robot in the Living Lab once a week for 4 weeks. After being shown how to use the robot, participants performed tasks to simulate robot use in everyday life. Mixed methods, comprising a robot-acceptance questionnaire, semistructured interviews, usability-performance measures, and a focus group, were used. Both CIH and MCI subjects were able to learn how to use the robot. However, MCI subjects needed more time to perform tasks after a 1-week period of not using the robot. Both groups rated similarly on the robot-acceptance questionnaire. They showed low intention to use the robot, as well as negative attitudes toward and negative images of this device. They did not perceive it as useful in their daily life. However, they found it easy to use, amusing, and not threatening. In addition, social influence was perceived as powerful on robot adoption. Direct experience with the robot did not change the way the participants rated robots in their acceptance questionnaire. We identified several barriers to robot-acceptance, including older adults' uneasiness with technology, feeling of stigmatization, and ethical/societal issues associated with robot use. It is important to destigmatize images of assistive robots to facilitate their acceptance. Universal design aiming to increase the market for and production of products that are usable by everyone (to the greatest extent possible) might help to destigmatize assistive devices.

  16. Multi-robot control interface

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Walton, Miles C [Idaho Falls, ID

    2011-12-06

    Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes a multi-robot common window comprised of information received from each of the plurality of robots.

  17. Developments and Control of Biocompatible Conducting Polymer for Intracorporeal Continuum Robots.

    Science.gov (United States)

    Chikhaoui, Mohamed Taha; Benouhiba, Amine; Rougeot, Patrick; Rabenorosoa, Kanty; Ouisse, Morvan; Andreff, Nicolas

    2018-04-30

    Dexterity of robots is highly required when it comes to integration for medical applications. Major efforts have been conducted to increase the dexterity at the distal parts of medical robots. This paper reports on developments toward integrating biocompatible conducting polymers (CP) into inherently dexterous concentric tube robot paradigm. In the form of tri-layer thin structures, CP micro-actuators produce high strains while requiring less than 1 V for actuation. Fabrication, characterization, and first integrations of such micro-actuators are presented. The integration is validated in a preliminary telescopic soft robot prototype with qualitative and quantitative performance assessment of accurate position control for trajectory tracking scenarios. Further, CP micro-actuators are integrated to a laser steering system in a closed-loop control scheme with displacements up to 5 mm. Our first developments aim toward intracorporeal medical robotics, with miniaturized actuators to be embedded into continuum robots.

  18. Efficient three-dimensional resist profile-driven source mask optimization optical proximity correction based on Abbe-principal component analysis and Sylvester equation

    Science.gov (United States)

    Lin, Pei-Chun; Yu, Chun-Chang; Chen, Charlie Chung-Ping

    2015-01-01

    As one of the critical stages of a very large scale integration fabrication process, postexposure bake (PEB) plays a crucial role in determining the final three-dimensional (3-D) profiles and lessening the standing wave effects. However, the full 3-D chemically amplified resist simulation is not widely adopted during the postlayout optimization due to the long run-time and huge memory usage. An efficient simulation method is proposed to simulate the PEB while considering standing wave effects and resolution enhancement techniques, such as source mask optimization and subresolution assist features based on the Sylvester equation and Abbe-principal component analysis method. Simulation results show that our algorithm is 20× faster than the conventional Gaussian convolution method.

  19. Robotics

    Energy Technology Data Exchange (ETDEWEB)

    Lorino, P; Altwegg, J M

    1985-05-01

    This article, which is aimed at the general reader, examines latest developments in, and the role of, modern robotics. The 7 main sections are sub-divided into 27 papers presented by 30 authors. The sections are as follows: 1) The role of robotics, 2) Robotics in the business world and what it can offer, 3) Study and development, 4) Utilisation, 5) Wages, 6) Conditions for success, and 7) Technological dynamics.

  20. Dynamic electronic institutions in agent oriented cloud robotic systems.

    Science.gov (United States)

    Nagrath, Vineet; Morel, Olivier; Malik, Aamir; Saad, Naufal; Meriaudeau, Fabrice

    2015-01-01

    The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology.

  1. FPGA for Robotic Applications: from Android/Humanoid Robots to Artificial Men

    Directory of Open Access Journals (Sweden)

    Tole Sutikno

    2011-12-01

    Full Text Available Researches on home robots have been increasing enormously. There has always existed a continuous research effort on problems of anthropomorphic robots which is now called humanoid robots. Currently, robotics has evolved to the point that different branches have reached a remarkable level of maturity, that neural network and fuzzy logic are the main artificial intelligence as intelligent control on the robotics. Despite all this progress, while aiming at accomplishing work-tasks originally charged only to humans, robotic science has perhaps quite naturally turned into the attempt to create artificial men. It is true that artificial men or android humanoid robots open certainly very broad prospects. This “robot” may be viewed as a personal helper, and it will be called a home-robot, or personal robot. This is main reason why the two special sections are issued in the TELKOMNIKA sequentially.

  2. A Quadruped Micro-Robot Based on Piezoelectric Driving

    Directory of Open Access Journals (Sweden)

    Qi Su

    2018-03-01

    Full Text Available Inspired by a way of rowing, a new piezoelectric driving quadruped micro-robot operating in bending-bending hybrid vibration modes was proposed and tested in this work. The robot consisted of a steel base, four steel connecting pins and four similar driving legs, and all legs were bonded by four piezoelectric ceramic plates. The driving principle is discussed, which is based on the hybrid of first order vertical bending and first order horizontal bending vibrations. The bending-bending hybrid vibration modes motivated the driving foot to form an elliptical trajectory in space. The vibrations of four legs were used to provide the driving forces for robot motion. The proposed robot was fabricated and tested according to driving principle. The vibration characteristics and elliptical movements of the driving feet were simulated by FEM method. Experimental tests of vibration characteristics and mechanical output abilities were carried out. The tested resonance frequencies and vibration amplitudes agreed well with the FEM calculated results. The size of robot is 36 mm × 98 mm × 14 mm, its weight is only 49.8 g, but its maximum load capacity achieves 200 g. Furthermore, the robot can achieve a maximum speed of 33.45 mm/s.

  3. Teaching Joint-Level Robot Programming with a New Robotics Software Tool

    Directory of Open Access Journals (Sweden)

    Fernando Gonzalez

    2017-12-01

    Full Text Available With the rising popularity of robotics in our modern world there is an increase in the number of engineering programs that offer the basic Introduction to Robotics course. This common introductory robotics course generally covers the fundamental theory of robotics including robot kinematics, dynamics, differential movements, trajectory planning and basic computer vision algorithms commonly used in the field of robotics. Joint programming, the task of writing a program that directly controls the robot’s joint motors, is an activity that involves robot kinematics, dynamics, and trajectory planning. In this paper, we introduce a new educational robotics tool developed for teaching joint programming. The tool allows the student to write a program in a modified C language that controls the movement of the arm by controlling the velocity of each joint motor. This is a very important activity in the robotics course and leads the student to gain knowledge of how to build a robotic arm controller. Sample assignments are presented for different levels of difficulty.

  4. Mobile robot trajectory tracking using noisy RSS measurements: an RFID approach.

    Science.gov (United States)

    Miah, M Suruz; Gueaieb, Wail

    2014-03-01

    Most RF beacons-based mobile robot navigation techniques rely on approximating line-of-sight (LOS) distances between the beacons and the robot. This is mostly performed using the robot's received signal strength (RSS) measurements from the beacons. However, accurate mapping between the RSS measurements and the LOS distance is almost impossible to achieve in reverberant environments. This paper presents a partially-observed feedback controller for a wheeled mobile robot where the feedback signal is in the form of noisy RSS measurements emitted from radio frequency identification (RFID) tags. The proposed controller requires neither an accurate mapping between the LOS distance and the RSS measurements, nor the linearization of the robot model. The controller performance is demonstrated through numerical simulations and real-time experiments. ©2013 Published by ISA. All rights reserved.

  5. [Robotics and improvement of the quality of geriatric care].

    Science.gov (United States)

    Ettore, Éric; Wyckaert, Emeline; David, Renaud; Robert, Philippe; Guérin, Olivier; Prate, Frédéric

    2016-01-01

    New technologies offer innovations to improve the care of the elderly with Alzheimer's or and other forms of dementia. Robots, endowed with features such as monitoring of physiological parameters, cognitive training or occupational therapy, have appeared. They are not, however, intended to replace humans. Still underutilized, these robots are in development, much like the digital literacy of the elderly. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. A Modular Approach to Redundant Robot Control

    International Nuclear Information System (INIS)

    Anderson, R.J.

    1997-12-01

    This paper describes a modular approach for computing redundant robot kinematics. First some conventional redundant control methods are presented and shown to be 'passive control laws', i.e. they can be represented by a network consisting of passive elements. These networks are then put into modular form by applying scattering operator techniques. Additional subnetwork modules can then be added to further shape the motion. Modules for obstacle detection, joint limit avoidance, proximity sensing, and for imposing nonlinear velocity constraints are presented. The resulting redundant robot control system is modular, flexible and robust

  7. Timing of Multimodal Robot Behaviors during Human-Robot Collaboration

    DEFF Research Database (Denmark)

    Jensen, Lars Christian; Fischer, Kerstin; Suvei, Stefan-Daniel

    2017-01-01

    In this paper, we address issues of timing between robot behaviors in multimodal human-robot interaction. In particular, we study what effects sequential order and simultaneity of robot arm and body movement and verbal behavior have on the fluency of interactions. In a study with the Care-O-bot, ...... output plays a special role because participants carry their expectations from human verbal interaction into the interactions with robots....

  8. Integration of advanced teleoperation technologies for control of space robots

    Science.gov (United States)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  9. Robotics Potential Fields

    Directory of Open Access Journals (Sweden)

    Jordi Lucero

    2009-01-01

    Full Text Available This problem was to calculate the path a robot would take to navigate an obstacle field and get to its goal. Three obstacles were given as negative potential fields which the robot avoided, and a goal was given a positive potential field that attracted the robot. The robot decided each step based on its distance, angle, and influence from every object. After each step, the robot recalculated and determined its next step until it reached its goal. The robot's calculations and steps were simulated with Microsoft Excel.

  10. Robot Teleoperation and Perception Assistance with a Virtual Holographic Display

    Science.gov (United States)

    Goddard, Charles O.

    2012-01-01

    Teleoperation of robots in space from Earth has historically been dfficult. Speed of light delays make direct joystick-type control infeasible, so it is desirable to command a robot in a very high-level fashion. However, in order to provide such an interface, knowledge of what objects are in the robot's environment and how they can be interacted with is required. In addition, many tasks that would be desirable to perform are highly spatial, requiring some form of six degree of freedom input. These two issues can be combined, allowing the user to assist the robot's perception by identifying the locations of objects in the scene. The zSpace system, a virtual holographic environment, provides a virtual three-dimensional space superimposed over real space and a stylus tracking position and rotation inside of it. Using this system, a possible interface for this sort of robot control is proposed.

  11. Design and control of a pneumatic musculoskeletal biped robot.

    Science.gov (United States)

    Zang, Xizhe; Liu, Yixiang; Liu, Xinyu; Zhao, Jie

    2016-04-29

    Pneumatic artificial muscles are quite promising actuators for humanoid robots owing to their similar characteristics with human muscles. Moreover, biologically inspired musculoskeletal systems are particularly important for humanoid robots to perform versatile dynamic tasks. This study aims to develop a pneumatic musculoskeletal biped robot, and its controller, to realize human-like walking. According to the simplified musculoskeletal structure of human lower limbs, each leg of the biped robot is driven by nine muscles, including three pairs of monoarticular muscles which are arranged in the flexor-extensor form, as well as three biarticular muscles which span two joints. To lower cost, high-speed on/off solenoid valves rather than proportional valves are used to control the muscles. The joint trajectory tracking controller based on PID control method is designed to achieve the desired motion. Considering the complex characteristics of pneumatic artificial muscles, the control model is obtained through parameter identification experiments. Preliminary experimental results demonstrate that the biped robot is able to walk with this control strategy. The proposed musculoskeletal structure and control strategy are effective for the biped robot to achieve human-like walking.

  12. Nuclear analysis via internet based on robocom, a robotic computing environment

    International Nuclear Information System (INIS)

    Kim, J.H.; Liu, J.; Foung, R.

    1997-01-01

    Nuclear engineers can resume the pioneering role the authors once played in network computing. The authors can transform Internet World Wide Web from offering information to offering analysis capabilities in the form of software robots that are capable of processing information of their own. Pooling such transmittable robots by the nuclear analysis community would represent a collaborative effort to automate nuclear engineering analysis. Samples of HTML files for a web site, a robot and its corresponding schematics are included to demonstrate the ease of implementation

  13. Healthcare Robotics

    OpenAIRE

    Riek, Laurel D.

    2017-01-01

    Robots have the potential to be a game changer in healthcare: improving health and well-being, filling care gaps, supporting care givers, and aiding health care workers. However, before robots are able to be widely deployed, it is crucial that both the research and industrial communities work together to establish a strong evidence-base for healthcare robotics, and surmount likely adoption barriers. This article presents a broad contextualization of robots in healthcare by identifying key sta...

  14. INDUSTRIAL ROBOT REPEATABILITY TESTING WITH HIGH SPEED CAMERA PHANTOM V2511

    Directory of Open Access Journals (Sweden)

    Jerzy Józwik

    2016-12-01

    Full Text Available Apart from accuracy, one of the parameters describing industrial robots is positioning accuracy. The parameter in question, which is the subject of this paper, is often the decisive factor determining whether to apply a given robot to perform certain tasks or not. Articulated robots are predominantly used in such processes as: spot weld-ing, transport of materials and other welding applications, where high positioning repeatability is required. It is therefore essential to recognise the parameter in question and to control it throughout the operation of the robot. This paper presents methodology for robot positioning accuracy measurements based on vision technique. The measurements were conducted with Phantom v2511 high-speed camera and TEMA Motion software, for motion analysis. The object of the measurements was a 6-axis Yaskawa Motoman HP20F industrial robot. The results of measurements obtained in tests provided data for the calculation of positioning accuracy of the robot, which was then juxtaposed against robot specifications. Also analysed was the impact of the direction of displacement on the value of attained pose errors. Test results are given in a graphic form.

  15. A Novel Docking System for Modular Self-Reconfigurable Robots

    Directory of Open Access Journals (Sweden)

    Tan Zhang

    2017-10-01

    Full Text Available Existing self-reconfigurable robots achieve connections and disconnections by a separate drive of the docking system. In this paper, we present a new docking system with which the connections and disconnections are driven by locomotion actuators, without the need for a separate drive, which reduces the weight and the complexity of the modules. This self-reconfigurable robot consists of two types of fundamental modules, i.e., active and passive modules. By the docking system, two types of connections are formed with the fundamental modules, and the docking and undocking actions are achieved through simple control with less sensory feedback. This paper describes the design of the robotic modules, the docking system, the docking process, and the docking force analysis. An experiment is performed to demonstrate the self-reconfigurable robot with the docking system.

  16. RIPE [robot independent programming environment]: A robot independent programming environment

    International Nuclear Information System (INIS)

    Miller, D.J.; Lennox, R.C.

    1990-01-01

    Remote manual operations in radiation environments are typically performed very slowly. Sensor-based computer-controlled robots hold great promise for increasing the speed and safety of remote operations; however, the programming of robotic systems has proven to be expensive and difficult. Generalized approaches to robot programming that reuse available software modules and employ programming languages which are independent of the specific robotic and sensory devices being used are needed to speed software development and increase overall system reliability. This paper discusses the robot independent programming environment (RIPE) developed at Sandia National Laboratories (SNL). The RIPE is an object-oriented approach to robot system architectures; it is a software environment that facilitates rapid design and implementation of complex robot systems for diverse applications. An architecture based on hierarchies of distributed multiprocessors provides the computing platform for a layered programming structure that models applications using software objects. These objects are designed to support model-based automated programming of robotic and machining devices, real-time sensor-based control, error handling, and robust communication

  17. Evolutionary Developmental Robotics: Improving Morphology and Control of Physical Robots.

    Science.gov (United States)

    Vujovic, Vuk; Rosendo, Andre; Brodbeck, Luzius; Iida, Fumiya

    2017-01-01

    Evolutionary algorithms have previously been applied to the design of morphology and control of robots. The design space for such tasks can be very complex, which can prevent evolution from efficiently discovering fit solutions. In this article we introduce an evolutionary-developmental (evo-devo) experiment with real-world robots. It allows robots to grow their leg size to simulate ontogenetic morphological changes, and this is the first time that such an experiment has been performed in the physical world. To test diverse robot morphologies, robot legs of variable shapes were generated during the evolutionary process and autonomously built using additive fabrication. We present two cases with evo-devo experiments and one with evolution, and we hypothesize that the addition of a developmental stage can be used within robotics to improve performance. Moreover, our results show that a nonlinear system-environment interaction exists, which explains the nontrivial locomotion patterns observed. In the future, robots will be present in our daily lives, and this work introduces for the first time physical robots that evolve and grow while interacting with the environment.

  18. Robust exponential stabilization of nonholonomic wheeled mobile robots with unknown visual parameters

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The visual servoing stabilization of nonholonomic mobile robot with unknown camera parameters is investigated.A new kind of uncertain chained model of nonholonomic kinemetic system is obtained based on the visual feedback and the standard chained form of type (1,2) mobile robot.Then,a novel time-varying feedback controller is proposed for exponentially stabilizing the position and orientation of the robot using visual feedback and switching strategy when the camera parameters are not known.The exponential s...

  19. Recent advances in robotics

    International Nuclear Information System (INIS)

    Beni, G.; Hackwood, S.

    1984-01-01

    Featuring 10 contributions, this volume offers a state-of-the-art report on robotic science and technology. It covers robots in modern industry, robotic control to help the disabled, kinematics and dynamics, six-legged walking robots, a vector analysis of robot manipulators, tactile sensing in robots, and more

  20. Hybrid robotic systems for upper limb rehabilitation after stroke: A review.

    Science.gov (United States)

    Resquín, Francisco; Cuesta Gómez, Alicia; Gonzalez-Vargas, Jose; Brunetti, Fernando; Torricelli, Diego; Molina Rueda, Francisco; Cano de la Cuerda, Roberto; Miangolarra, Juan Carlos; Pons, José Luis

    2016-11-01

    In recent years the combined use of functional electrical stimulation (FES) and robotic devices, called hybrid robotic rehabilitation systems, has emerged as a promising approach for rehabilitation of lower and upper limb motor functions. This paper presents a review of the state of the art of current hybrid robotic solutions for upper limb rehabilitation after stroke. For this aim, studies have been selected through a search using web databases: IEEE-Xplore, Scopus and PubMed. A total of 10 different hybrid robotic systems were identified, and they are presented in this paper. Selected systems are critically compared considering their technological components and aspects that form part of the hybrid robotic solution, the proposed control strategies that have been implemented, as well as the current technological challenges in this topic. Additionally, we will present and discuss the corresponding evidences on the effectiveness of these hybrid robotic therapies. The review also discusses the future trends in this field. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Development of the first force-controlled robot for otoneurosurgery.

    Science.gov (United States)

    Federspil, Philipp A; Geisthoff, Urban W; Henrich, Dominik; Plinkert, Peter K

    2003-03-01

    In some surgical specialties (eg, orthopedics), robots are already used in the operating room for bony milling work. Otological surgery and otoneurosurgery may also greatly benefit from the enhanced precision of robotics. Experimental study on robotic milling of oak wood and human temporal bone specimen. A standard industrial robot with a six-degrees-of-freedom serial kinematics was used, with force feedback to proportionally control the robot speed. Different milling modes and characteristic path parameters were evaluated to generate milling paths based on computer-aided design (CAD) geometry data of a cochlear implant and an implantable hearing system. The best-suited strategy proved to be the spiral horizontal milling mode with the burr held perpendicular to the temporal bone surface. To reduce groove height, the distance between paths should equal half the radius of the cutting burr head. Because of the vibration of the robot's own motors, a high oscillation of the SD of forces was encountered. This oscillation dropped drastically to nearly 0 Newton (N) when the burr head made contact with the dura mater, because of its damping characteristics. The cutting burr could be kept in contact with the dura mater for an extended period without damaging it, because of the burr's blunt head form. The robot moved the burr smoothly according to the encountered resistances. The study reports the first development of a functional robotic milling procedure for otoneurosurgery with force-based speed control. Future plans include implementation of ultrasound-based local navigation and performance of robotic mastoidectomy.

  2. Put Your Robot In, Put Your Robot Out: Sequencing through Programming Robots in Early Childhood

    Science.gov (United States)

    Kazakoff, Elizabeth R.; Bers, Marina Umaschi

    2014-01-01

    This article examines the impact of programming robots on sequencing ability in early childhood. Thirty-four children (ages 4.5-6.5 years) participated in computer programming activities with a developmentally appropriate tool, CHERP, specifically designed to program a robot's behaviors. The children learned to build and program robots over three…

  3. Artificial pheromone for path selection by a foraging swarm of robots.

    Science.gov (United States)

    Campo, Alexandre; Gutiérrez, Alvaro; Nouyan, Shervin; Pinciroli, Carlo; Longchamp, Valentin; Garnier, Simon; Dorigo, Marco

    2010-11-01

    Foraging robots involved in a search and retrieval task may create paths to navigate faster in their environment. In this context, a swarm of robots that has found several resources and created different paths may benefit strongly from path selection. Path selection enhances the foraging behavior by allowing the swarm to focus on the most profitable resource with the possibility for unused robots to stop participating in the path maintenance and to switch to another task. In order to achieve path selection, we implement virtual ants that lay artificial pheromone inside a network of robots. Virtual ants are local messages transmitted by robots; they travel along chains of robots and deposit artificial pheromone on the robots that are literally forming the chain and indicating the path. The concentration of artificial pheromone on the robots allows them to decide whether they are part of a selected path. We parameterize the mechanism with a mathematical model and provide an experimental validation using a swarm of 20 real robots. We show that our mechanism favors the selection of the closest resource is able to select a new path if a selected resource becomes unavailable and selects a newly detected and better resource when possible. As robots use very simple messages and behaviors, the system would be particularly well suited for swarms of microrobots with minimal abilities.

  4. An iterative learning controller for nonholonomic mobile robots

    International Nuclear Information System (INIS)

    Oriolo, G.; Panzieri, S.; Ulivi, G.

    1998-01-01

    The authors present an iterative learning controller that applies to nonholonomic mobile robots, as well as other systems that can be put in chained form. The learning algorithm exploits the fact that chained-form. The learning algorithm exploits the fact that chained-form systems are linear under piecewise-constant inputs. The proposed control scheme requires the execution of a small number of experiments to drive the system to the desired state in finite time, with nice convergence and robustness properties with respect to modeling inaccuracies as well as disturbances. To avoid the necessity of exactly reinitializing the system at each iteration, the basic method is modified so as to obtain a cyclic controller, by which the system is cyclically steered through an arbitrary sequence of states. As a case study, a carlike mobile robot is considered. Both simulation and experimental results are reported to show the performance of the method

  5. Características del análisis proximal de harinas obtenidas de frutos de plátanos variedades Papocho y Pelipita (Musa ABB Simmonds)

    OpenAIRE

    Pedro Juan Espitia-Pérez; Yuri Janio Pardo-Plaza; Alba Patricia Montalvo-Puente

    2013-01-01

    En el estudio se hizo un análisis proximal de las harinas crudas sin tratar obtenidas de frutos de las variedades de plátano Papocho y Pelipita (Musa ABB Simmonds) no comerciales en diferentes etapas de desarrollo y se analizó su posible uso como materia prima alimenticia. Los resultados comparativos mostraron que los contenidos y porcentajes de fibra cruda en Papocho variaron entre 2.54 y 1.37% y en Pelipita entre 6.45 y 0.88%, la proteína cruda en Papocho entre 6.70 y 3.81% y en Pelipita en...

  6. Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots.

    Science.gov (United States)

    Hagiwara, Yoshinobu; Inoue, Masakazu; Kobayashi, Hiroyoshi; Taniguchi, Tadahiro

    2018-01-01

    In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., "I am in my home" and "I am in front of the table," a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA). Object recognition results using convolutional neural network (CNN), hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL), and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept.

  7. Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots

    Directory of Open Access Journals (Sweden)

    Yoshinobu Hagiwara

    2018-03-01

    Full Text Available In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., “I am in my home” and “I am in front of the table,” a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA. Object recognition results using convolutional neural network (CNN, hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL, and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept.

  8. Human Robot Interaction for Hybrid Collision Avoidance System for Indoor Mobile Robots

    Directory of Open Access Journals (Sweden)

    Mazen Ghandour

    2017-06-01

    Full Text Available In this paper, a novel approach for collision avoidance for indoor mobile robots based on human-robot interaction is realized. The main contribution of this work is a new technique for collision avoidance by engaging the human and the robot in generating new collision-free paths. In mobile robotics, collision avoidance is critical for the success of the robots in implementing their tasks, especially when the robots navigate in crowded and dynamic environments, which include humans. Traditional collision avoidance methods deal with the human as a dynamic obstacle, without taking into consideration that the human will also try to avoid the robot, and this causes the people and the robot to get confused, especially in crowded social places such as restaurants, hospitals, and laboratories. To avoid such scenarios, a reactive-supervised collision avoidance system for mobile robots based on human-robot interaction is implemented. In this method, both the robot and the human will collaborate in generating the collision avoidance via interaction. The person will notify the robot about the avoidance direction via interaction, and the robot will search for the optimal collision-free path on the selected direction. In case that no people interacted with the robot, it will select the navigation path autonomously and select the path that is closest to the goal location. The humans will interact with the robot using gesture recognition and Kinect sensor. To build the gesture recognition system, two models were used to classify these gestures, the first model is Back-Propagation Neural Network (BPNN, and the second model is Support Vector Machine (SVM. Furthermore, a novel collision avoidance system for avoiding the obstacles is implemented and integrated with the HRI system. The system is tested on H20 robot from DrRobot Company (Canada and a set of experiments were implemented to report the performance of the system in interacting with the human and avoiding

  9. Robots and lattice automata

    CERN Document Server

    Adamatzky, Andrew

    2015-01-01

    The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...

  10. Robot vision

    International Nuclear Information System (INIS)

    Hall, E.L.

    1984-01-01

    Almost all industrial robots use internal sensors such as shaft encoders which measure rotary position, or tachometers which measure velocity, to control their motions. Most controllers also provide interface capabilities so that signals from conveyors, machine tools, and the robot itself may be used to accomplish a task. However, advanced external sensors, such as visual sensors, can provide a much greater degree of adaptability for robot control as well as add automatic inspection capabilities to the industrial robot. Visual and other sensors are now being used in fundamental operations such as material processing with immediate inspection, material handling with adaption, arc welding, and complex assembly tasks. A new industry of robot vision has emerged. The application of these systems is an area of great potential

  11. Multi-Locomotion Robotic Systems New Concepts of Bio-inspired Robotics

    CERN Document Server

    Fukuda, Toshio; Sekiyama, Kosuke; Aoyama, Tadayoshi

    2012-01-01

    Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as...

  12. Exploration and Navigation for Mobile Robots With Perceptual Limitations

    Directory of Open Access Journals (Sweden)

    Leonardo Romero

    2006-09-01

    Full Text Available To learn a map of an environment a mobile robot has to explore its workspace using its sensors. Sensors are noisy and have perceptual limitations that must be considered while learning a map. This paper considers a mobile robot with sensor perceptual limitations and introduces a new method for exploring and navigating autonomously in indoor environments. To minimize the risk of collisions as well as to not exceed the range of sensors, we introduce the concept of a travel space as a way to associate costs to grid cells of the map, based on distances to obstacles. During exploration the mobile robot minimizes its movements, including rotations, to reach the nearest unexplored region of the environment, using a dynamic programming algorithm. Once the exploration ends, the travel space is used to form a roadmap, a net of safe roads that the mobile robot can use for navigation. These exploration and navigation method are tested using a simulated and a real mobile robot with promising results.

  13. Exploration and Navigation for Mobile Robots With Perceptual Limitations

    Directory of Open Access Journals (Sweden)

    Eduardo F. Morales

    2008-11-01

    Full Text Available To learn a map of an environment a mobile robot has to explore its workspace using its sensors. Sensors are noisy and have perceptual limitations that must be considered while learning a map. This paper considers a mobile robot with sensor perceptual limitations and introduces a new method for exploring and navigating autonomously in indoor environments. To minimize the risk of collisions as well as to not exceed the range of sensors, we introduce the concept of a travel space as a way to associate costs to grid cells of the map, based on distances to obstacles. During exploration the mobile robot minimizes its movements, including rotations, to reach the nearest unexplored region of the environment, using a dynamic programming algorithm. Once the exploration ends, the travel space is used to form a roadmap, a net of safe roads that the mobile robot can use for navigation. These exploration and navigation method are tested using a simulated and a real mobile robot with promising results.

  14. Investigation of human-robot interface performance in household environments

    Science.gov (United States)

    Cremer, Sven; Mirza, Fahad; Tuladhar, Yathartha; Alonzo, Rommel; Hingeley, Anthony; Popa, Dan O.

    2016-05-01

    Today, assistive robots are being introduced into human environments at an increasing rate. Human environments are highly cluttered and dynamic, making it difficult to foresee all necessary capabilities and pre-program all desirable future skills of the robot. One approach to increase robot performance is semi-autonomous operation, allowing users to intervene and guide the robot through difficult tasks. To this end, robots need intuitive Human-Machine Interfaces (HMIs) that support fine motion control without overwhelming the operator. In this study we evaluate the performance of several interfaces that balance autonomy and teleoperation of a mobile manipulator for accomplishing several household tasks. Our proposed HMI framework includes teleoperation devices such as a tablet, as well as physical interfaces in the form of piezoresistive pressure sensor arrays. Mobile manipulation experiments were performed with a sensorized KUKA youBot, an omnidirectional platform with a 5 degrees of freedom (DOF) arm. The pick and place tasks involved navigation and manipulation of objects in household environments. Performance metrics included time for task completion and position accuracy.

  15. Controlling legs for locomotion-insights from robotics and neurobiology.

    Science.gov (United States)

    Buschmann, Thomas; Ewald, Alexander; von Twickel, Arndt; Büschges, Ansgar

    2015-06-29

    Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This paper gives an overview of the current knowledge on the control of legged locomotion in animals and machines and attempts to give walking control researchers from biology and robotics an overview of the current knowledge in both fields. We try to summarize the knowledge on the neurobiological basis of walking control in animals, emphasizing common principles seen in different species. In a section on walking robots, we review common approaches to walking controller design with a slight emphasis on biped walking control. We show where parallels between robotic and neurobiological walking controllers exist and how robotics and biology may benefit from each other. Finally, we discuss where research in the two fields diverges and suggest ways to bridge these gaps.

  16. Dynamics based modeling of wheeled platform for humanoid robot torso

    Directory of Open Access Journals (Sweden)

    Petrović Vladimir M.

    2016-01-01

    Full Text Available From the ancient mythology till the modern times, people were trying to build an artificial mechanical replica of themselves. Inspired by this long tradition of various engineering projects, we will hereby describe a partly humanoid robotic structure. Our robotic configuration is composed out of an anthropomimetic upper body, but instead of legs it uses a wheeled cart for the motion. In our research, this so-called semi-anthropomimetic structure has a four-wheeled cart. This work is aiming to analyze the behaviour of the robot that is exposed to different kind of external disturbances. Disturbances coming from the outside in the form of external forces (impulse and long term simulate the interactions of the robot and its ambience. Necessary simulations were thoroughly executed (in that way analyzing robotic balance and proper size of the cart is evaluated following the ZMP theoretical background. [Projekat Ministarstva nauke Republike Srbije, br. TR-35003 i br. III-44008

  17. Acceptance of an assistive robot in older adults: a mixed-method study of human–robot interaction over a 1-month period in the Living Lab setting

    Science.gov (United States)

    Wu, Ya-Huei; Wrobel, Jérémy; Cornuet, Mélanie; Kerhervé, Hélène; Damnée, Souad; Rigaud, Anne-Sophie

    2014-01-01

    Background There is growing interest in investigating acceptance of robots, which are increasingly being proposed as one form of assistive technology to support older adults, maintain their independence, and enhance their well-being. In the present study, we aimed to observe robot-acceptance in older adults, particularly subsequent to a 1-month direct experience with a robot. Subjects and methods Six older adults with mild cognitive impairment (MCI) and five cognitively intact healthy (CIH) older adults were recruited. Participants interacted with an assistive robot in the Living Lab once a week for 4 weeks. After being shown how to use the robot, participants performed tasks to simulate robot use in everyday life. Mixed methods, comprising a robot-acceptance questionnaire, semistructured interviews, usability-performance measures, and a focus group, were used. Results Both CIH and MCI subjects were able to learn how to use the robot. However, MCI subjects needed more time to perform tasks after a 1-week period of not using the robot. Both groups rated similarly on the robot-acceptance questionnaire. They showed low intention to use the robot, as well as negative attitudes toward and negative images of this device. They did not perceive it as useful in their daily life. However, they found it easy to use, amusing, and not threatening. In addition, social influence was perceived as powerful on robot adoption. Direct experience with the robot did not change the way the participants rated robots in their acceptance questionnaire. We identified several barriers to robot-acceptance, including older adults’ uneasiness with technology, feeling of stigmatization, and ethical/societal issues associated with robot use. Conclusion It is important to destigmatize images of assistive robots to facilitate their acceptance. Universal design aiming to increase the market for and production of products that are usable by everyone (to the greatest extent possible) might help to

  18. Visual Trajectory-Tracking Model-Based Control for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Andrej Zdešar

    2013-09-01

    Full Text Available In this paper we present a visual-control algorithm for driving a mobile robot along the reference trajectory. The configuration of the system consists of a two-wheeled differentially driven mobile robot that is observed by an overhead camera, which can be placed at arbitrary, but reasonable, inclination with respect to the ground plane. The controller must be capable of generating appropriate tangential and angular control velocities for the trajectory-tracking problem, based on the information received about the robot position obtained in the image. To be able to track the position of the robot through a sequence of images in real-time, the robot is marked with an artificial marker that can be distinguishably recognized by the image recognition subsystem. Using the property of differential flatness, a dynamic feedback compensator can be designed for the system, thereby extending the system into a linear form. The presented control algorithm for reference tracking combines a feedforward and a feedback loop, the structure also known as a two DOF control scheme. The feedforward part should drive the system to the vicinity of the reference trajectory and the feedback part should eliminate any errors that occur due to noise and other disturbances etc. The feedforward control can never achieve accurate reference following, but this deficiency can be eliminated with the introduction of the feedback loop. The design of the model predictive control is based on the linear error model. The model predictive control is given in analytical form, so the computational burden is kept at a reasonable level for real-time implementation. The control algorithm requires that a reference trajectory is at least twice differentiable function. A suitable approach to design such a trajectory is by exploiting some useful properties of the Bernstein-Bézier parametric curves. The simulation experiments as well as real system experiments on a robot normally used in the

  19. Emotion Attribution to a Non-Humanoid Robot in Different Social Situations

    Science.gov (United States)

    Lakatos, Gabriella; Gácsi, Márta; Konok, Veronika; Brúder, Ildikó; Bereczky, Boróka; Korondi, Péter; Miklósi, Ádám

    2014-01-01

    In the last few years there was an increasing interest in building companion robots that interact in a socially acceptable way with humans. In order to interact in a meaningful way a robot has to convey intentionality and emotions of some sort in order to increase believability. We suggest that human-robot interaction should be considered as a specific form of inter-specific interaction and that human–animal interaction can provide a useful biological model for designing social robots. Dogs can provide a promising biological model since during the domestication process dogs were able to adapt to the human environment and to participate in complex social interactions. In this observational study we propose to design emotionally expressive behaviour of robots using the behaviour of dogs as inspiration and to test these dog-inspired robots with humans in inter-specific context. In two experiments (wizard-of-oz scenarios) we examined humans' ability to recognize two basic and a secondary emotion expressed by a robot. In Experiment 1 we provided our companion robot with two kinds of emotional behaviour (“happiness” and “fear”), and studied whether people attribute the appropriate emotion to the robot, and interact with it accordingly. In Experiment 2 we investigated whether participants tend to attribute guilty behaviour to a robot in a relevant context by examining whether relying on the robot's greeting behaviour human participants can detect if the robot transgressed a predetermined rule. Results of Experiment 1 showed that people readily attribute emotions to a social robot and interact with it in accordance with the expressed emotional behaviour. Results of Experiment 2 showed that people are able to recognize if the robot transgressed on the basis of its greeting behaviour. In summary, our findings showed that dog-inspired behaviour is a suitable medium for making people attribute emotional states to a non-humanoid robot. PMID:25551218

  20. Emotion attribution to a non-humanoid robot in different social situations.

    Directory of Open Access Journals (Sweden)

    Gabriella Lakatos

    Full Text Available In the last few years there was an increasing interest in building companion robots that interact in a socially acceptable way with humans. In order to interact in a meaningful way a robot has to convey intentionality and emotions of some sort in order to increase believability. We suggest that human-robot interaction should be considered as a specific form of inter-specific interaction and that human-animal interaction can provide a useful biological model for designing social robots. Dogs can provide a promising biological model since during the domestication process dogs were able to adapt to the human environment and to participate in complex social interactions. In this observational study we propose to design emotionally expressive behaviour of robots using the behaviour of dogs as inspiration and to test these dog-inspired robots with humans in inter-specific context. In two experiments (wizard-of-oz scenarios we examined humans' ability to recognize two basic and a secondary emotion expressed by a robot. In Experiment 1 we provided our companion robot with two kinds of emotional behaviour ("happiness" and "fear", and studied whether people attribute the appropriate emotion to the robot, and interact with it accordingly. In Experiment 2 we investigated whether participants tend to attribute guilty behaviour to a robot in a relevant context by examining whether relying on the robot's greeting behaviour human participants can detect if the robot transgressed a predetermined rule. Results of Experiment 1 showed that people readily attribute emotions to a social robot and interact with it in accordance with the expressed emotional behaviour. Results of Experiment 2 showed that people are able to recognize if the robot transgressed on the basis of its greeting behaviour. In summary, our findings showed that dog-inspired behaviour is a suitable medium for making people attribute emotional states to a non-humanoid robot.

  1. Architectural setup for online monitoring and control of process parameters in robot-based ISF

    Science.gov (United States)

    Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd

    2017-10-01

    This article describes new developments in an incremental, robot-based sheet metal forming process (Roboforming) for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet forming (ISF) machines, this system offers high geometrical design flexibility without the need of any part-dependent tools. However, the industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors introduce a new architectural setup extending the current one by a superordinate process control. This sophisticated control consists of two modules, i.e. the compensation of the two industrial robots' low structural stiffness as well as a combined force/torque control. It is assumed that this contribution will lead to future research and development projects in which the authors will thoroughly investigate ISF process parameters influencing the geometric accuracy of the forming results.

  2. Summary of astronaut inputs on automation and robotics for Space Station Freedom

    Science.gov (United States)

    Weeks, David J.

    1990-01-01

    Astronauts and payload specialists present specific recommendations in the form of an overview that relate to the use of automation and robotics on the Space Station Freedom. The inputs are based on on-orbit operations experience, time requirements for crews, and similar crew-specific knowledge that address the impacts of automation and robotics on productivity. Interview techniques and specific questionnaire results are listed, and the majority of the responses indicate that incorporating automation and robotics to some extent and with human backup can improve productivity. Specific support is found for the use of advanced automation and EVA robotics on the Space Station Freedom and for the use of advanced automation on ground-based stations. Ground-based control of in-flight robotics is required, and Space Station activities and crew tasks should be analyzed to assess the systems engineering approach for incorporating automation and robotics.

  3. Robotic vision system for random bin picking with dual-arm robots

    Directory of Open Access Journals (Sweden)

    Kang Sangseung

    2016-01-01

    Full Text Available Random bin picking is one of the most challenging industrial robotics applications available. It constitutes a complicated interaction between the vision system, robot, and control system. For a packaging operation requiring a pick-and-place task, the robot system utilized should be able to perform certain functions for recognizing the applicable target object from randomized objects in a bin. In this paper, we introduce a robotic vision system for bin picking using industrial dual-arm robots. The proposed system recognizes the best object from randomized target candidates based on stereo vision, and estimates the position and orientation of the object. It then sends the result to the robot control system. The system was developed for use in the packaging process of cell phone accessories using dual-arm robots.

  4. Modular Robotic Wearable

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2009-01-01

    In this concept paper we trace the contours and define a new approach to robotic systems, composed of interactive robotic modules which are somehow worn on the body. We label such a field as Modular Robotic Wearable (MRW). We describe how, by using modular robotics for creating wearable....... Finally, by focusing on the intersection of the combination modular robotic systems, wearability, and bodymind we attempt to explore the theoretical characteristics of such approach and exploit the possible playware application fields....

  5. Marine Robot Autonomy

    CERN Document Server

    2013-01-01

    Autonomy for Marine Robots provides a timely and insightful overview of intelligent autonomy in marine robots. A brief history of this emerging field is provided, along with a discussion of the challenges unique to the underwater environment and their impact on the level of intelligent autonomy required.  Topics covered at length examine advanced frameworks, path-planning, fault tolerance, machine learning, and cooperation as relevant to marine robots that need intelligent autonomy.  This book also: Discusses and offers solutions for the unique challenges presented by more complex missions and the dynamic underwater environment when operating autonomous marine robots Includes case studies that demonstrate intelligent autonomy in marine robots to perform underwater simultaneous localization and mapping  Autonomy for Marine Robots is an ideal book for researchers and engineers interested in the field of marine robots.      

  6. An intelligent inspection and survey robot

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1995-01-01

    Large quantities of mixed and low-level radioactive waste contained in 55-, 85-, and 110-gallon steel drums are stored at Department of Energy (DOE) warehouses located throughout the United States. The steel drums are placed on pallets and stacked on top of one another, forming a column of drums ranging in heights of one to four drums and up to 16 feet high. The columns of drums are aligned in rows forming an aisle approximately three feet wide between the rows of drums. Tens of thousands of drums are stored in these warehouses throughout the DOE complex. ARIES (Autonomous Robotic Inspection Experimental System), is under development for the DOE to survey and inspect these drums. The robot will navigate through the aisles and perform an inspection operation, typically performed by a human operator, making decisions about the condition of the drums and maintaining a database of pertinent information about each drum

  7. An intelligent inspection and survey robot

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, J.S. [Univ. of South Carolina, Columbia, SC (United States)

    1995-10-01

    Large quantities of mixed and low-level radioactive waste contained in 55-, 85-, and 110-gallon steel drums are stored at Department of Energy (DOE) warehouses located throughout the United States. The steel drums are placed on pallets and stacked on top of one another, forming a column of drums ranging in heights of one to four drums and up to 16 feet high. The columns of drums are aligned in rows forming an aisle approximately three feet wide between the rows of drums. Tens of thousands of drums are stored in these warehouses throughout the DOE complex. ARIES (Autonomous Robotic Inspection Experimental System) is under development for the DOE to survey and inspect these drums. The robot will navigate through the aisles and perform an inspection operation, typically performed by a human operator, making decisions about the condition of the drums and maintaining a data of pertinent information about each drum.

  8. An intelligent inspection and survey robot

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1995-01-01

    Large quantities of mixed and low-level radioactive waste contained in 55-, 85-, and 110-gallon steel drums are stored at Department of Energy (DOE) warehouses located throughout the United States. The steel drums are placed on pallets and stacked on top of one another, forming a column of drums ranging in heights of one to four drums and up to 16 feet high. The columns of drums are aligned in rows forming an aisle approximately three feet wide between the rows of drums. Tens of thousands of drums are stored in these warehouses throughout the DOE complex. ARIES (Autonomous Robotic Inspection Experimental System) is under development for the DOE to survey and inspect these drums. The robot will navigate through the aisles and perform an inspection operation, typically performed by a human operator, making decisions about the condition of the drums and maintaining a data of pertinent information about each drum

  9. An overview of the program to place advanced automation and robotics on the Space Station

    Science.gov (United States)

    Heydorn, Richard P.

    1987-01-01

    The preliminary design phase of the Space Station has uncovered a large number of potential uses of automation and robotics, most of which deal with the assembly and operation of the Station. If NASA were to vigorously push automation and robotics concepts in the design, the Station crew would probably be free to spend a substantial portion of time on payload activities. However, at this point NASA has taken a conservative attitude toward automation and robotics. For example, the belief is that robotics should evolve through telerobotics and that uses of artificial intelligence should be initially used in an advisory capacity. This conservativeness is in part due to the new and untested nature of automation and robotics; but, it is also due to emphases plased on designing the Station to the so-called upfront cost without thoroughly understanding the life cycle cost. Presumably automation and robotics has a tendency to increase the initial cost of the Space Station but could substantially reduce the life cycle cost. To insure that NASA will include some form of robotic capability, Congress directed to set aside funding. While this stimulates the development of robotics, it does not necessarily stimulate uses of artificial intelligence. However, since the initial development costs of some forms of artificial intelligence, such as expert systems, are in general lower than they are for robotics one is likely to see several expert systems being used on the Station.

  10. Industrial Robots.

    Science.gov (United States)

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  11. Non-manufacturing applications of robotics

    International Nuclear Information System (INIS)

    Dauchez, P.

    2000-12-01

    This book presents the different non-manufacturing sectors of activity where robotics can have useful or necessary applications: underwater robotics, agriculture robotics, road work robotics, nuclear robotics, medical-surgery robotics, aids to disabled people, entertainment robotics. Service robotics has been voluntarily excluded because this developing sector is not mature yet. (J.S.)

  12. Improvement of the operation of wheels mobile robot TRASMAR2

    International Nuclear Information System (INIS)

    Guerra C, D. A.; Tovar M, R.; Gonzalez M, J. L.; Segovia de los Rios, A.

    2013-10-01

    In the Instituto Nacional de Investigaciones Nucleares (ININ), personnel have been working in the development of wheels mobile robots for the surveillance and supervision of contaminated areas, and for the radioactive material transport. One of these achievements is the wheels mobile robot denominated TRASMAR2, which is sought that works in the tele operated form using net technologies, in particular, using a Web page by means of the client-servant technology. For this, diverse circuits and control programs have been development with the purpose that the robot carries out the movements that are required, being considered the use of sensors to avoid collisions. The different programs have been implemented in different micro controllers, and although the robot was working, is necessary to optimize and to concentrate these programs on a single micro controller. In this work are presented the analysis of the previously implemented programs, as the realized changes, including new programs required to improve the robot operation. As complement, was development and implemented an alternative proposal of the robot's tele operation by means of a Web page using Lab view, which is described in the work. With this proposal tele operate the robot was achieved, although its application is evaluating due to the resources that is consumes. (author)

  13. Advanced robot locomotion.

    Energy Technology Data Exchange (ETDEWEB)

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  14. Scaling Robotic Displays: Displays and Techniques for Dismounted Movement with Robots

    Science.gov (United States)

    2010-04-01

    you are performing the low crawl 4.25 5.00 Drive the robot while you are negotiating the hill 6.00 5.00 Drive the robot while you are climbing the... stairs 4.67 5.00 Drive the robot while you are walking 5.70 5.27 HMD It was fairly doable. 1 When you’re looking through the lens, it’s not...Scaling Robotic Displays: Displays and Techniques for Dismounted Movement with Robots by Elizabeth S. Redden, Rodger A. Pettitt

  15. Disposable Fluidic Actuators for Miniature In-Vivo Surgical Robotics.

    Science.gov (United States)

    Pourghodrat, Abolfazl; Nelson, Carl A

    2017-03-01

    Fusion of robotics and minimally invasive surgery (MIS) has created new opportunities to develop diagnostic and therapeutic tools. Surgical robotics is advancing from externally actuated systems to miniature in-vivo robotics. However, with miniaturization of electric-motor-driven surgical robots, there comes a trade-off between the size of the robot and its capability. Slow actuation, low load capacity, sterilization difficulties, leaking electricity and transferring produced heat to tissues, and high cost are among the key limitations of the use of electric motors in in-vivo applications. Fluid power in the form of hydraulics or pneumatics has a long history in driving many industrial devices and could be exploited to circumvent these limitations. High power density and good compatibility with the in-vivo environment are the key advantages of fluid power over electric motors when it comes to in-vivo applications. However, fabrication of hydraulic/pneumatic actuators within the desired size and pressure range required for in-vivo surgical robotic applications poses new challenges. Sealing these types of miniature actuators at operating pressures requires obtaining very fine surface finishes which is difficult and costly. The research described here presents design, fabrication, and testing of a hydraulic/pneumatic double-acting cylinder, a limited-motion vane motor, and a balloon-actuated laparoscopic grasper. These actuators are small, seal-less, easy to fabricate, disposable, and inexpensive, thus ideal for single-use in-vivo applications. To demonstrate the ability of these actuators to drive robotic joints, they were modified and integrated in a robotic arm. The design and testing of this surgical robotic arm are presented to validate the concept of fluid-power actuators for in-vivo applications.

  16. Polite Interactions with Robots

    DEFF Research Database (Denmark)

    Benotti, Luciana; Blackburn, Patrick Rowan

    2016-01-01

    We sketch an inference architecture that permits linguistic aspects of politeness to be interpreted; we do so by applying the ideas of politeness theory to the SCARE corpus of task-oriented dialogues, a type of dialogue of particular relevance to robotics. The fragment of the SCARE corpus we...... analyzed contains 77 uses of politeness strategies: our inference architecture covers 58 of them using classical AI planning techniques; the remainder require other forms of means-ends inference. So by the end of the paper we will have discussed in some detail how to interpret automatically different forms...

  17. Human-Robot Interaction

    Science.gov (United States)

    Sandor, Aniko; Cross, E. Vincent, II; Chang, Mai Lee

    2015-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces affect the human's ability to perform tasks effectively and efficiently when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. For efficient and effective remote navigation of a rover, a human operator needs to be aware of the robot's environment. However, during teleoperation, operators may get information about the environment only through a robot's front-mounted camera causing a keyhole effect. The keyhole effect reduces situation awareness which may manifest in navigation issues such as higher number of collisions, missing critical aspects of the environment, or reduced speed. One way to compensate for the keyhole effect and the ambiguities operators experience when they teleoperate a robot is adding multiple cameras and including the robot chassis in the camera view. Augmented reality, such as overlays, can also enhance the way a person sees objects in the environment or in camera views by making them more visible. Scenes can be augmented with integrated telemetry, procedures, or map information. Furthermore, the addition of an exocentric (i.e., third-person) field of view from a camera placed in the robot's environment may provide operators with the additional information needed to gain spatial awareness of the robot. Two research studies investigated possible mitigation approaches to address the keyhole effect: 1) combining the inclusion of the robot chassis in the camera view with augmented reality overlays, and 2) modifying the camera

  18. Biologically inspired control of humanoid robot arms robust and adaptive approaches

    CERN Document Server

    Spiers, Adam; Herrmann, Guido

    2016-01-01

    This book investigates a biologically inspired method of robot arm control, developed with the objective of synthesising human-like motion dynamically, using nonlinear, robust and adaptive control techniques in practical robot systems. The control method caters to a rising interest in humanoid robots and the need for appropriate control schemes to match these systems. Unlike the classic kinematic schemes used in industrial manipulators, the dynamic approaches proposed here promote human-like motion with better exploitation of the robot’s physical structure. This also benefits human-robot interaction. The control schemes proposed in this book are inspired by a wealth of human-motion literature that indicates the drivers of motion to be dynamic, model-based and optimal. Such considerations lend themselves nicely to achievement via nonlinear control techniques without the necessity for extensive and complex biological models. The operational-space method of robot control forms the basis of many of the techniqu...

  19. Flowrate behavior and clustering of self-driven robots in a channel

    Science.gov (United States)

    Tian, Bo; Sun, Wang-Ping; Li, Ming; Jiang, Rui; Hu, Mao-Bin

    2018-03-01

    In this paper, the collective motion of self-driven robots is studied experimentally and theoretically. In the channel, the flowrate of robots increases with the density linearly, even if the density of the robots tends to 1.0. There is no abrupt drop in the flowrate, similar to the collective motion of ants. We find that the robots will adjust their velocities by a serial of tiny collisions. The speed-adjustment will affect both robots involved in the collision, and will help to maintain a nearly uniform velocity for the robots. As a result, the flowrate drop will disappear. In the motion, the robots neither gather together nor scatter completely. Instead, they form some clusters to move together. These clusters are not stable during the moving process, but their sizes follow a power-law-alike distribution. We propose a theoretical model to simulate this collective motion process, which can reproduce these behaviors well. Analytic results about the flowrate behavior are also consistent with experiments. Project supported by the Key Research and Development Program, China (Grant No. 2016YFC0802508) and the National Natural Science Foundation of China (Grant Nos. 11672289 and 11422221).

  20. Robots in pipe and vessel inspection: past, present, and future

    International Nuclear Information System (INIS)

    Mueller, T.A.; Tyndall, J.F.

    1984-01-01

    Over the past several decades, remotely operated scanners have been employed to inspect piping and pressure vessels. These devices in their early forms were manually controlled manipulators functioning as mere extensions of the operator. With the addition of limit sensing, speed control, and positional feedback and display, the early manipulators became primitive robots. By adding computer controls with their degree of intelligence to the devices, they achieved the status of robots. Future applications of vision, adaptive control, proximity sensing, and pattern recognition will bring these devices to a level of intelligence that will make automated robotic inspection of pipes and pressure vessels a true reality

  1. Next generation light robotic

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Palima, Darwin; Banas, Andrew Rafael

    2017-01-01

    -assisted surgery imbibes surgeons with superhuman abilities and gives the expression “surgical precision” a whole new meaning. Still in its infancy, much remains to be done to improve human-robot collaboration both in realizing robots that can operate safely with humans and in training personnel that can work......Conventional robotics provides machines and robots that can replace and surpass human performance in repetitive, difficult, and even dangerous tasks at industrial assembly lines, hazardous environments, or even at remote planets. A new class of robotic systems no longer aims to replace humans...... with so-called automatons but, rather, to create robots that can work alongside human operators. These new robots are intended to collaborate with humans—extending their abilities—from assisting workers on the factory floor to rehabilitating patients in their homes. In medical robotics, robot...

  2. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    Directory of Open Access Journals (Sweden)

    Kristel Knaepen

    Full Text Available In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support. Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.

  3. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    Science.gov (United States)

    Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain

    2015-01-01

    In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.

  4. Design Concepts of Emergency Response Robot Platform K-R2D2

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sun Young; Jeong, Kyungmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    From the analysis for various mobile robots competed in DARPA Robotics Challenge, there are some drawbacks in using two or four legs because bipedal locomotion is not yet suitable for maintaining stability and quadrupedal locomotion is difficult to go through narrow aisles. Motivated by the above observations, we propose a K-R2D2 robot platform with three legs arranged in the form of a triangle like as R2-D2 robot which is a fictional robot character in the Star Wars movies. This robot has 3 legs with tracks in each sole of the leg. It is statically stable since there are three contact points to ground. In addition, three legs are also possible to design a structure walking stairs that can expand and contract in the vertical direction. This paper has presented the conceptual design, it is developed on the purpose of quick response instead of emergent workers to the extreme conditions disasters. This robot is emergency response robot platform KR2D2 with three legs, which is statically stable to walk or wheel depending on the terrains and move quickly as possible as on uneven terrain or stairs.

  5. Design Concepts of Emergency Response Robot Platform K-R2D2

    International Nuclear Information System (INIS)

    Noh, Sun Young; Jeong, Kyungmin

    2016-01-01

    From the analysis for various mobile robots competed in DARPA Robotics Challenge, there are some drawbacks in using two or four legs because bipedal locomotion is not yet suitable for maintaining stability and quadrupedal locomotion is difficult to go through narrow aisles. Motivated by the above observations, we propose a K-R2D2 robot platform with three legs arranged in the form of a triangle like as R2-D2 robot which is a fictional robot character in the Star Wars movies. This robot has 3 legs with tracks in each sole of the leg. It is statically stable since there are three contact points to ground. In addition, three legs are also possible to design a structure walking stairs that can expand and contract in the vertical direction. This paper has presented the conceptual design, it is developed on the purpose of quick response instead of emergent workers to the extreme conditions disasters. This robot is emergency response robot platform KR2D2 with three legs, which is statically stable to walk or wheel depending on the terrains and move quickly as possible as on uneven terrain or stairs

  6. Roles and Self-Reconfigurable Robots

    DEFF Research Database (Denmark)

    Dvinge, Nicolai; Schultz, Ulrik Pagh; Christensen, David Johan

    2007-01-01

    A self-reconfigurable robot is a robotic device that can change its own shape. Self-reconfigurable robots are commonly built from multiple identical modules that can manipulate each other to change the shape of the robot. The robot can also perform tasks such as locomotion without changing shape......., significantly simplifying the task of programming self-reconfigurable robots. Our language fully supports programming the ATRON self-reconfigurable robot, and has been used to implement several controllers running both on the physical modules and in simulation.......A self-reconfigurable robot is a robotic device that can change its own shape. Self-reconfigurable robots are commonly built from multiple identical modules that can manipulate each other to change the shape of the robot. The robot can also perform tasks such as locomotion without changing shape....... Programming a modular, self-reconfigurable robot is however a complicated task: the robot is essentially a real-time, distributed embedded system, where control and communication paths often are tightly coupled to the current physical configuration of the robot. To facilitate the task of programming modular...

  7. Robot Teachers

    DEFF Research Database (Denmark)

    Nørgård, Rikke Toft; Ess, Charles Melvin; Bhroin, Niamh Ni

    The world's first robot teacher, Saya, was introduced to a classroom in Japan in 2009. Saya, had the appearance of a young female teacher. She could express six basic emotions, take the register and shout orders like 'be quiet' (The Guardian, 2009). Since 2009, humanoid robot technologies have...... developed. It is now suggested that robot teachers may become regular features in educational settings, and may even 'take over' from human teachers in ten to fifteen years (cf. Amundsen, 2017 online; Gohd, 2017 online). Designed to look and act like a particular kind of human; robot teachers mediate human...... existence and roles, while also aiming to support education through sophisticated, automated, human-like interaction. Our paper explores the design and existential implications of ARTIE, a robot teacher at Oxford Brookes University (2017, online). Drawing on an initial empirical exploration we propose...

  8. Brain computer interface for operating a robot

    Science.gov (United States)

    Nisar, Humaira; Balasubramaniam, Hari Chand; Malik, Aamir Saeed

    2013-10-01

    A Brain-Computer Interface (BCI) is a hardware/software based system that translates the Electroencephalogram (EEG) signals produced by the brain activity to control computers and other external devices. In this paper, we will present a non-invasive BCI system that reads the EEG signals from a trained brain activity using a neuro-signal acquisition headset and translates it into computer readable form; to control the motion of a robot. The robot performs the actions that are instructed to it in real time. We have used the cognitive states like Push, Pull to control the motion of the robot. The sensitivity and specificity of the system is above 90 percent. Subjective results show a mixed trend of the difficulty level of the training activities. The quantitative EEG data analysis complements the subjective results. This technology may become very useful for the rehabilitation of disabled and elderly people.

  9. Accelerating Robot Development through Integral Analysis of Human-Robot Interaction

    NARCIS (Netherlands)

    Kooijmans, T.; Kanda, T.; Bartneck, C.; Ishiguro, H.; Hagita, N.

    2007-01-01

    The development of interactive robots is a complicated process, involving a plethora of psychological, technical, and contextual influences. To design a robot capable of operating "intelligently" in everyday situations, one needs a profound understanding of human-robot interaction (HRI). We propose

  10. Micro Robotics Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Our research is focused on the challenges of engineering robotic systems down to sub-millimeter size scales. We work both on small mobile robots (robotic insects for...

  11. Robot fish bio-inspired fishlike underwater robots

    CERN Document Server

    Li, Zheng; Youcef-Toumi, Kamal; Alvarado, Pablo

    2015-01-01

    This book provides a comprehensive coverage on robot fish including design, modeling and optimization, control, autonomous control and applications. It gathers contributions by the leading researchers in the area. Readers will find the book very useful for designing and building robot fish, not only in theory but also in practice. Moreover, the book discusses various important issues for future research and development, including design methodology, control methodology, and autonomous control strategy. This book is intended for researchers and graduate students in the fields of robotics, ocean engineering and related areas.

  12. Robotics in endoscopy.

    Science.gov (United States)

    Klibansky, David; Rothstein, Richard I

    2012-09-01

    The increasing complexity of intralumenal and emerging translumenal endoscopic procedures has created an opportunity to apply robotics in endoscopy. Computer-assisted or direct-drive robotic technology allows the triangulation of flexible tools through telemanipulation. The creation of new flexible operative platforms, along with other emerging technology such as nanobots and steerable capsules, can be transformational for endoscopic procedures. In this review, we cover some background information on the use of robotics in surgery and endoscopy, and review the emerging literature on platforms, capsules, and mini-robotic units. The development of techniques in advanced intralumenal endoscopy (endoscopic mucosal resection and endoscopic submucosal dissection) and translumenal endoscopic procedures (NOTES) has generated a number of novel platforms, flexible tools, and devices that can apply robotic principles to endoscopy. The development of a fully flexible endoscopic surgical toolkit will enable increasingly advanced procedures to be performed through natural orifices. The application of platforms and new flexible tools to the areas of advanced endoscopy and NOTES heralds the opportunity to employ useful robotic technology. Following the examples of the utility of robotics from the field of laparoscopic surgery, we can anticipate the emerging role of robotic technology in endoscopy.

  13. Educational robotics as an Innovative teaching practice using technology: minimization of risks

    Science.gov (United States)

    Kvesko, S. B.; Kvesko, N. G.; Korniyenko, A. A.; Kabanova, N. N.

    2018-05-01

    This research is focused on studying educational robotics, specifically robots which provide functions of educational activity. We have considered the questions of intelligent agents’ behavior and have studied their educational opportunities. Educational robotics is a powerful tool of developing person’s skills and abilities in various fields of technical creativity and professional activity. The evolutionary development of robotics is connected with development of artificial intelligence, where emotions play a great role in operations. Nowadays the main thing is to form the ability and skills of optimum interaction with social environment when a person, based on gained knowledge, is capable to put goals of the activity in strict accordance with laws and society conditions and using current technology.

  14. Implementation and Reconfiguration of Robot Operating System on Human Follower Transporter Robot

    Directory of Open Access Journals (Sweden)

    Addythia Saphala

    2015-10-01

    Full Text Available Robotic Operation System (ROS is an im- portant platform to develop robot applications. One area of applications is for development of a Human Follower Transporter Robot (HFTR, which  can  be  considered  as a custom mobile robot utilizing differential driver steering method and equipped with Kinect sensor. This study discusses the development of the robot navigation system by implementing Simultaneous Localization and Mapping (SLAM.

  15. IMPLEMENTASI ALGORITMA BREADTH FIRST SEARCH DAN OBSTACLE DETECTION DALAM PENELUSURAN LABIRIN DINAMIS MENGGUNAKAN ROBOT LEGO

    Directory of Open Access Journals (Sweden)

    Adi Wibowo

    2012-05-01

    Full Text Available Dewasa ini perkembangan teknologi di dunia robot edukasi berkembang pesat. Robot-robot edukasi ini sering digunakan dalam riset penelitian karena kemudahan-kemudahan yang diberikannya dari segi perangkat keras. Salah satu contoh robot edukasi adalah robot LEGO Mindstorms NXT. Pada penelitian ini robot LEGO dibangun dalam bentuk robot line follower. Robot ini mampu menelusuri dan mencari jalan keluar dari labirin dinamis. Dalam menelusuri dan mencari jalan keluar, robot LEGO menggunakan algoritma Breadth First Search dan Manhattan Distance dalam memutuskan jalan mana yang harus diambil. Ketika menemui objek halangan, robot LEGO akan mengenali dan menghindari objek halangan tersebut dengan algoritma Obstacle Detection yang dimilikinya. Hasil implementasi membuktikan bahwa algoritma penelusuran labirin dinamis ini dapat diimplementasikan pada robot LEGO meskipun terdapat banyak keterbatasan dalam robot LEGO. Nowadays, the development of technology in educational robots is rapidly evolving. Educational robots are often used in research studies because they provide convenience in terms of hardware. One example is the educational robot LEGO Mindstorms NXT robot. In this research, LEGO robots built in the form of line follower robot. Robot is able to browse and find a way out of the dynamic labyrinth. In track and find a way out, LEGO robot uses an algorithm Breadth First Search and Manhattan Distance in deciding which path to take. When encountering an obstacle object, LEGO robot will recognize and avoid that obstacle objects with Obstacle Detection algorithm. The results prove that the implementation of a dynamic maze search algorithm can be implemented on a LEGO robot even though there are many limitations in LEGO robot.

  16. Stingray-inspired robot with simply actuated intermediate motion

    Science.gov (United States)

    Neely, Lincoln; Gaiennie, Jack; Noble, Nick; Erickson, Jonathan C.

    2016-04-01

    Batoids, or rays, utilize unique forms of locomotion that may offer more efficient techniques of motorized propulsion in various marine environments. We present a novel biomimetic engineering design and assembly of a stingray-inspired robot swimmer. The robots locomotion mimics the Dasyatis americana, or southern stingray, whose distinction among rays is its intermediate motion, characterized by sweeping strokes that propagate between 1/2-1 wavelength of the fin profile in the posterior direction. Though oscillatory ( wavelengths) ray-based robots have been created, this project demonstrates new engineering possibilities in what is, to the best of our knowledge, the first intermediately propelled batoid-based robot. The robots fins were made of silicone rubber, cast in a 3-D printed mold, with wingspan of 42 cm (1/2 - 1/5 scale for males and females, respectively, scale of model organism). Two anteriorly placed servomotors per fin were used, all controlled by one wirelessly enabled Arduino microcontroller. Each servomotor oscillated a flexible rod with cylindrical joint, whose frequency, speed, and front-back phase delay were user-programmed over wireless connection. During free-swimming tests, the fin profile developed about 0.8 wavelength, qualifying for successful mimicry of its biological inspiration. The robot satisfactorily maintained straight-line motion, reaching average peak velocity of 9.4+/-1.0 cm/s (0.27-0.03 body lengths/second) at its optimum flapping frequency of 1.4 Hz. This is in the same order of magnitude of speed normalized to body length achieved by others in two recent batoid-based projects. In summary, our robot performed intermediate stingray locomotion with relatively fewer components, which reveals robust potential for innovation of the simple intermediate batoid-based robot swimmer.

  17. Safety Critical Java for Robotics Programming

    DEFF Research Database (Denmark)

    Thomsen, Bent; Luckow, Kasper Søe; Bøgholm, Thomas

    2015-01-01

    This paper introduces Safety Critical Java (SCJ) and argues its readiness for robotics programming. We give an overview of the work done at Aalborg University and elsewhere on SCJl, some of its implementations in the form of the JOP, FijiVM and HVM and some of the tools, especially WCA, Teta...

  18. Localization Using Magnetic Patterns for Autonomous Mobile Robot

    Directory of Open Access Journals (Sweden)

    Won Suk You

    2014-03-01

    Full Text Available In this paper, we present a method of localization using magnetic landmarks. With this method, it is possible to compensate the pose error (xe, ye, θe of a mobile robot correctly and localize its current position on a global coordinate system on the surface of a structured environment with magnetic landmarks. A set of four magnetic bars forms total six different patterns of landmarks and these patterns can be read by the mobile robot with magnetic hall sensors. A sequential motion strategy for a mobile robot is proposed to find the geometric center of magnetic landmarks by reading the nonlinear magnetic field. The mobile robot first moves into the center region of the landmark where it can read the magnetic pattern, after which tracking and global localization can be easily achieved by recognizing the patterns of neighboring landmarks. Experimental results show the effectiveness of the sequential motion strategy for estimating the center of the first encountered landmark as well as the performance of tracking and global localization of the proposed system.

  19. Promoting Diversity in Undergraduate Research in Robotics-Based Seismic

    Science.gov (United States)

    Gifford, C. M.; Arthur, C. L.; Carmichael, B. L.; Webber, G. K.; Agah, A.

    2006-12-01

    The motivation for this research was to investigate forming evenly-spaced grid patterns with a team of mobile robots for future use in seismic imaging in polar environments. A team of robots was incrementally designed and simulated by incorporating sensors and altering each robot's controller. Challenges, design issues, and efficiency were also addressed. This research project incorporated the efforts of two undergraduate REU students from Elizabeth City State University (ECSU) in North Carolina, and the research staff at the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas. ECSU is a historically black university. Mentoring these two minority students in scientific research, seismic, robotics, and simulation will hopefully encourage them to pursue graduate degrees in science-related or engineering fields. The goals for this 10-week internship during summer 2006 were to educate the students in the fields of seismology, robotics, and virtual prototyping and simulation. Incrementally designing a robot platform for future enhancement and evaluation was central to this research, and involved simulation of several robots working together to change seismic grid shape and spacing. This process gave these undergraduate students experience and knowledge in an actual research project for a real-world application. The two undergraduate students gained valuable research experience and advanced their knowledge of seismic imaging, robotics, sensors, and simulation. They learned that seismic sensors can be used in an array to gather 2D and 3D images of the subsurface. They also learned that robotics can support dangerous or difficult human activities, such as those in a harsh polar environment, by increasing automation, robustness, and precision. Simulating robot designs also gave them experience in programming behaviors for mobile robots. Thus far, one academic paper has resulted from their research. This paper received third place at the 2006

  20. A natural-language interface to a mobile robot

    Science.gov (United States)

    Michalowski, S.; Crangle, C.; Liang, L.

    1987-01-01

    The present work on robot instructability is based on an ongoing effort to apply modern manipulation technology to serve the needs of the handicapped. The Stanford/VA Robotic Aid is a mobile manipulation system that is being developed to assist severely disabled persons (quadriplegics) in performing simple activities of everyday living in a homelike, unstructured environment. It consists of two major components: a nine degree-of-freedom manipulator and a stationary control console. In the work presented here, only the motions of the Robotic Aid's omnidirectional motion base have been considered, i.e., the six degrees of freedom of the arm and gripper have been ignored. The goal has been to develop some basic software tools for commanding the robot's motions in an enclosed room containing a few objects such as tables, chairs, and rugs. In the present work, the environmental model takes the form of a two-dimensional map with objects represented by polygons. Admittedly, such a highly simplified scheme bears little resemblance to the elaborate cognitive models of reality that are used in normal human discourse. In particular, the polygonal model is given a priori and does not contain any perceptual elements: there is no polygon sensor on board the mobile robot.

  1. Presentation robot Advee

    Czech Academy of Sciences Publication Activity Database

    Krejsa, Jiří; Věchet, Stanislav; Hrbáček, J.; Ripel, T.; Ondroušek, V.; Hrbáček, R.; Schreiber, P.

    2012-01-01

    Roč. 18, 5/6 (2012), s. 307-322 ISSN 1802-1484 Institutional research plan: CEZ:AV0Z20760514 Keywords : mobile robot * human - robot interface * localization Subject RIV: JD - Computer Applications, Robot ics

  2. Final Report-Confirmatory Survey Results for the ABB Combustion Engineering Site, Windsor, Connecticut; Revision 1 (DCN 5158-SR-02-1) (Docket No. 030-03754; RFTA No. 12-003)

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, WADE C

    2013-01-28

    The objectives of the confirmatory activities were to provide independent contractor field data reviews and to generate independent radiological data for use by the NRC in evaluating the adequacy and accuracy of the contractor's procedures and FSS results. ORAU reviewed ABB CE's decommissioning plan, final status survey plan, and the applicable soil DCGLs, which were developed based on an NRC-approved radiation dose assessment. The surveys included gamma surface scans, gamma direct measurements, and soil sampling.

  3. Application Value of Slider-Crank Mechanism in Pick-and-Place Operation of Delta Robot

    Directory of Open Access Journals (Sweden)

    Zhe QIN

    2018-01-01

    Full Text Available By absorbing the advantages of the rotary-driven Delta robot and linear-driven Delta robot, a Delta robot for pick-and-place operation that forms a crank-slider at the drive joint is designed.To take the most common gate shaped curve in Cartesian space as the motion trail of robotic pick-and-place operation, according to the kinematics inverse solution theory of Delta robot, this thesis mainly solves the output angular velocity of robot-driven joint. Establishing the static transfer mathematical model and solving the forced condition of driving joint. The simulation analysis show that after the upper slider-crank mechanism is connected to the driving joint, the angular velocity of the driving joint changes suddenly, which caused a rigid impact on the robot in the picking and releasing operation, though the force of the driving joint can be made smaller.

  4. Robotic surgery update.

    Science.gov (United States)

    Jacobsen, G; Elli, F; Horgan, S

    2004-08-01

    Minimally invasive surgical techniques have revolutionized the field of surgery. Telesurgical manipulators (robots) and new information technologies strive to improve upon currently available minimally invasive techniques and create new possibilities. A retrospective review of all robotic cases at a single academic medical center from August 2000 until November 2002 was conducted. A comprehensive literature evaluation on robotic surgical technology was also performed. Robotic technology is safely and effectively being applied at our institution. Robotic and information technologies have improved upon minimally invasive surgical techniques and created new opportunities not attainable in open surgery. Robotic technology offers many benefits over traditional minimal access techniques and has been proven safe and effective. Further research is needed to better define the optimal application of this technology. Credentialing and educational requirements also need to be delineated.

  5. Robot-laser system

    International Nuclear Information System (INIS)

    Akeel, H.A.

    1987-01-01

    A robot-laser system is described for providing a laser beam at a desired location, the system comprising: a laser beam source; a robot including a plurality of movable parts including a hollow robot arm having a central axis along which the laser source directs the laser beam; at least one mirror for reflecting the laser beam from the source to the desired location, the mirror being mounted within the robot arm to move therewith and relative thereto to about a transverse axis that extends angularly to the central axis of the robot arm; and an automatic programmable control system for automatically moving the mirror about the transverse axis relative to and in synchronization with movement of the robot arm to thereby direct the laser beam to the desired location as the arm is moved

  6. Effects of Robot Facial Characteristics and Gender in Persuasive Human-Robot Interaction

    Directory of Open Access Journals (Sweden)

    Aimi S. Ghazali

    2018-06-01

    Full Text Available The growing interest in social robotics makes it relevant to examine the potential of robots as persuasive agents and, more specifically, to examine how robot characteristics influence the way people experience such interactions and comply with the persuasive attempts by robots. The purpose of this research is to identify how the (ostensible gender and the facial characteristics of a robot influence the extent to which people trust it and the psychological reactance they experience from its persuasive attempts. This paper reports a laboratory study where SociBot™, a robot capable of displaying different faces and dynamic social cues, delivered persuasive messages to participants while playing a game. In-game choice behavior was logged, and trust and reactance toward the advisor were measured using questionnaires. Results show that a robotic advisor with upturned eyebrows and lips (features that people tend to trust more in humans is more persuasive, evokes more trust, and less psychological reactance compared to one displaying eyebrows pointing down and lips curled downwards at the edges (facial characteristics typically not trusted in humans. Gender of the robot did not affect trust, but participants experienced higher psychological reactance when interacting with a robot of the opposite gender. Remarkably, mediation analysis showed that liking of the robot fully mediates the influence of facial characteristics on trusting beliefs and psychological reactance. Also, psychological reactance was a strong and reliable predictor of trusting beliefs but not of trusting behavior. These results suggest robots that are intended to influence human behavior should be designed to have facial characteristics we trust in humans and could be personalized to have the same gender as the user. Furthermore, personalization and adaptation techniques designed to make people like the robot more may help ensure they will also trust the robot.

  7. Robotic seeding

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Fountas, Spyros; Sørensen, Claus Aage Grøn

    2017-01-01

    Agricultural robotics has received attention for approximately 20 years, but today there are only a few examples of the application of robots in agricultural practice. The lack of uptake may be (at least partly) because in many cases there is either no compelling economic benefit......, or there is a benefit but it is not recognized. The aim of this chapter is to quantify the economic benefits from the application of agricultural robots under a specific condition where such a benefit is assumed to exist, namely the case of early seeding and re-seeding in sugar beet. With some predefined assumptions...... with regard to speed, capacity and seed mapping, we found that among these two technical systems both early seeding with a small robot and re-seeding using a robot for a smaller part of the field appear to be financially viable solutions in sugar beet production....

  8. Intelligent, self-contained robotic hand

    Science.gov (United States)

    Krutik, Vitaliy; Doo, Burt; Townsend, William T.; Hauptman, Traveler; Crowell, Adam; Zenowich, Brian; Lawson, John

    2007-01-30

    A robotic device has a base and at least one finger having at least two links that are connected in series on rotary joints with at least two degrees of freedom. A brushless motor and an associated controller are located at each joint to produce a rotational movement of a link. Wires for electrical power and communication serially connect the controllers in a distributed control network. A network operating controller coordinates the operation of the network, including power distribution. At least one, but more typically two to five, wires interconnect all the controllers through one or more joints. Motor sensors and external world sensors monitor operating parameters of the robotic hand. The electrical signal output of the sensors can be input anywhere on the distributed control network. V-grooves on the robotic hand locate objects precisely and assist in gripping. The hand is sealed, immersible and has electrical connections through the rotary joints for anodizing in a single dunk without masking. In various forms, this intelligent, self-contained, dexterous hand, or combinations of such hands, can perform a wide variety of object gripping and manipulating tasks, as well as locomotion and combinations of locomotion and gripping.

  9. Acceptance of an assistive robot in older adults: a mixed-method study of human–robot interaction over a 1-month period in the Living Lab setting

    Directory of Open Access Journals (Sweden)

    Wu YH

    2014-05-01

    Full Text Available Ya-Huei Wu,1,2 Jérémy Wrobel,1,2 Mélanie Cornuet,1,2 Hélène Kerhervé,1,2 Souad Damnée,1,2 Anne-Sophie Rigaud1,21Hôpital Broca, Assistance Publique – Hôpitaux de Paris, 2Research Team 4468, Faculté de Médecine, Université Paris Descartes, Paris, FranceBackground: There is growing interest in investigating acceptance of robots, which are increasingly being proposed as one form of assistive technology to support older adults, maintain their independence, and enhance their well-being. In the present study, we aimed to observe robot-acceptance in older adults, particularly subsequent to a 1-month direct experience with a robot.Subjects and methods: Six older adults with mild cognitive impairment (MCI and five cognitively intact healthy (CIH older adults were recruited. Participants interacted with an assistive robot in the Living Lab once a week for 4 weeks. After being shown how to use the robot, participants performed tasks to simulate robot use in everyday life. Mixed methods, comprising a robot-acceptance questionnaire, semistructured interviews, usability-performance measures, and a focus group, were used.Results: Both CIH and MCI subjects were able to learn how to use the robot. However, MCI subjects needed more time to perform tasks after a 1-week period of not using the robot. Both groups rated similarly on the robot-acceptance questionnaire. They showed low intention to use the robot, as well as negative attitudes toward and negative images of this device. They did not perceive it as useful in their daily life. However, they found it easy to use, amusing, and not threatening. In addition, social influence was perceived as powerful on robot adoption. Direct experience with the robot did not change the way the participants rated robots in their acceptance questionnaire. We identified several barriers to robot-acceptance, including older adults’ uneasiness with technology, feeling of stigmatization, and ethical

  10. An Adaptive Robot Game

    DEFF Research Database (Denmark)

    Hansen, Søren Tranberg; Svenstrup, Mikael; Dalgaard, Lars

    2010-01-01

    The goal of this paper is to describe an adaptive robot game, which motivates elderly people to do a regular amount of physical exercise while playing. One of the advantages of robot based games is that the initiative to play can be taken autonomously by the robot. In this case, the goal is to im......The goal of this paper is to describe an adaptive robot game, which motivates elderly people to do a regular amount of physical exercise while playing. One of the advantages of robot based games is that the initiative to play can be taken autonomously by the robot. In this case, the goal...... is to improve the mental and physical state of the user by playing a physical game with the robot. Ideally, a robot game should be simple to learn but difficult to master, providing an appropriate degree of challenge for players with different skills. In order to achieve that, the robot should be able to adapt...

  11. Facilitating Programming of Vision-Equipped Robots through Robotic Skills and Projection Mapping

    DEFF Research Database (Denmark)

    Andersen, Rasmus Skovgaard

    The field of collaborative industrial robots is currently developing fast both in the industry and in the scientific community. Companies such as Rethink Robotics and Universal Robots are redefining the concept of an industrial robot and entire new markets and use cases are becoming relevant for ...

  12. Evolution of robotic arms.

    Science.gov (United States)

    Moran, Michael E

    2007-01-01

    The foundation of surgical robotics is in the development of the robotic arm. This is a thorough review of the literature on the nature and development of this device with emphasis on surgical applications. We have reviewed the published literature and classified robotic arms by their application: show, industrial application, medical application, etc. There is a definite trend in the manufacture of robotic arms toward more dextrous devices, more degrees-of-freedom, and capabilities beyond the human arm. da Vinci designed the first sophisticated robotic arm in 1495 with four degrees-of-freedom and an analog on-board controller supplying power and programmability. von Kemplen's chess-playing automaton left arm was quite sophisticated. Unimate introduced the first industrial robotic arm in 1961, it has subsequently evolved into the PUMA arm. In 1963 the Rancho arm was designed; Minsky's Tentacle arm appeared in 1968, Scheinman's Stanford arm in 1969, and MIT's Silver arm in 1974. Aird became the first cyborg human with a robotic arm in 1993. In 2000 Miguel Nicolalis redefined possible man-machine capacity in his work on cerebral implantation in owl-monkeys directly interfacing with robotic arms both locally and at a distance. The robotic arm is the end-effector of robotic systems and currently is the hallmark feature of the da Vinci Surgical System making its entrance into surgical application. But, despite the potential advantages of this computer-controlled master-slave system, robotic arms have definite limitations. Ongoing work in robotics has many potential solutions to the drawbacks of current robotic surgical systems.

  13. Advanced mechanics in robotic systems

    CERN Document Server

    Nava Rodríguez, Nestor Eduardo

    2011-01-01

    Illustrates original and ambitious mechanical designs and techniques for the development of new robot prototypes Includes numerous figures, tables and flow charts Discusses relevant applications in robotics fields such as humanoid robots, robotic hands, mobile robots, parallel manipulators and human-centred robots

  14. The Adam and Eve Robot Scientists for the Automated Discovery of Scientific Knowledge

    Science.gov (United States)

    King, Ross

    A Robot Scientist is a physically implemented robotic system that applies techniques from artificial intelligence to execute cycles of automated scientific experimentation. A Robot Scientist can automatically execute cycles of hypothesis formation, selection of efficient experiments to discriminate between hypotheses, execution of experiments using laboratory automation equipment, and analysis of results. The motivation for developing Robot Scientists is to better understand science, and to make scientific research more efficient. The Robot Scientist `Adam' was the first machine to autonomously discover scientific knowledge: both form and experimentally confirm novel hypotheses. Adam worked in the domain of yeast functional genomics. The Robot Scientist `Eve' was originally developed to automate early-stage drug development, with specific application to neglected tropical disease such as malaria, African sleeping sickness, etc. We are now adapting Eve to work with on cancer. We are also teaching Eve to autonomously extract information from the scientific literature.

  15. Design and Implementation of Fire Extinguisher Robot with Robotic Arm

    Directory of Open Access Journals (Sweden)

    Memon Abdul Waris

    2018-01-01

    Full Text Available Robot is a device, which performs human task or behave like a human-being. It needs expertise skills and complex programming to design. For designing a fire fighter robot, many sensors and motors were used. User firstly send robot to an affected area, to get live image of the field with the help of mobile camera via Wi-Fi using IP camera application to laptop. If any signs of fire shown in image, user direct robot in that particular direction for confirmation. Fire sensor and temperature sensor detects and measures the reading, after confirmation robot sprinkle water on affected field. During extinguish process if any obstacle comes in between the prototype and the affected area the ultrasonic sensor detects the obstacle, in response the robotic arm moves to pick and place that obstacle to another location for clearing the path. Meanwhile if any poisonous gas is present, the gas sensor detects and indicates by making alarm.

  16. The Tactile Ethics of Soft Robotics: Designing Wisely for Human-Robot Interaction.

    Science.gov (United States)

    Arnold, Thomas; Scheutz, Matthias

    2017-06-01

    Soft robots promise an exciting design trajectory in the field of robotics and human-robot interaction (HRI), promising more adaptive, resilient movement within environments as well as a safer, more sensitive interface for the objects or agents the robot encounters. In particular, tactile HRI is a critical dimension for designers to consider, especially given the onrush of assistive and companion robots into our society. In this article, we propose to surface an important set of ethical challenges for the field of soft robotics to meet. Tactile HRI strongly suggests that soft-bodied robots balance tactile engagement against emotional manipulation, model intimacy on the bonding with a tool not with a person, and deflect users from personally and socially destructive behavior the soft bodies and surfaces could normally entice.

  17. Mapping of unknown industrial plant using ROS-based navigation mobile robot

    Science.gov (United States)

    Priyandoko, G.; Ming, T. Y.; Achmad, M. S. H.

    2017-10-01

    This research examines how humans work with teleoperated unmanned mobile robot inspection in industrial plant area resulting 2D/3D map for further critical evaluation. This experiment focuses on two parts, the way human-robot doing remote interactions using robust method and the way robot perceives the environment surround as a 2D/3D perspective map. ROS (robot operating system) as a tool was utilized in the development and implementation during the research which comes up with robust data communication method in the form of messages and topics. RGBD SLAM performs the visual mapping function to construct 2D/3D map using Kinect sensor. The results showed that the mobile robot-based teleoperated system are successful to extend human perspective in term of remote surveillance in large area of industrial plant. It was concluded that the proposed work is robust solution for large mapping within an unknown construction building.

  18. Modeling of welded bead profile for rapid prototyping by robotic MAG welding

    Institute of Scientific and Technical Information of China (English)

    CAO Yong; ZHU Sheng; WANG Tao; WANG Wanglong

    2009-01-01

    As a deposition technology, robotic metal active gas(MAG) welding has shown new promise for rapid prototyping (RP) of metallic parts. During the process of metal forming using robotic MAG welding, sectional profile of single-pass welded bead is critical to formed accuracy and quality of metal pans. In this paper, the experiments of single-pass welded bead for rapid prototyping using robotic MAG welding were carried out. The effect of some edge detectors on the cross-sectional edge of welded bead was discussed and curve fitting was applied using leat square fitting. Consequently, the mathematical model of welded bead profile was developed. The experimental results show that good shape could be obtained under suitable welding parameters. Canny operawr is suitable to edge detection of welded bead profile, and the mathematical model of welded bead profile developed is approximately parabola.

  19. Robot-assisted general surgery.

    Science.gov (United States)

    Hazey, Jeffrey W; Melvin, W Scott

    2004-06-01

    With the initiation of laparoscopic techniques in general surgery, we have seen a significant expansion of minimally invasive techniques in the last 16 years. More recently, robotic-assisted laparoscopy has moved into the general surgeon's armamentarium to address some of the shortcomings of laparoscopic surgery. AESOP (Computer Motion, Goleta, CA) addressed the issue of visualization as a robotic camera holder. With the introduction of the ZEUS robotic surgical system (Computer Motion), the ability to remotely operate laparoscopic instruments became a reality. US Food and Drug Administration approval in July 2000 of the da Vinci robotic surgical system (Intuitive Surgical, Sunnyvale, CA) further defined the ability of a robotic-assist device to address limitations in laparoscopy. This includes a significant improvement in instrument dexterity, dampening of natural hand tremors, three-dimensional visualization, ergonomics, and camera stability. As experience with robotic technology increased and its applications to advanced laparoscopic procedures have become more understood, more procedures have been performed with robotic assistance. Numerous studies have shown equivalent or improved patient outcomes when robotic-assist devices are used. Initially, robotic-assisted laparoscopic cholecystectomy was deemed safe, and now robotics has been shown to be safe in foregut procedures, including Nissen fundoplication, Heller myotomy, gastric banding procedures, and Roux-en-Y gastric bypass. These techniques have been extrapolated to solid-organ procedures (splenectomy, adrenalectomy, and pancreatic surgery) as well as robotic-assisted laparoscopic colectomy. In this chapter, we review the evolution of robotic technology and its applications in general surgical procedures.

  20. Grasping in Robotics

    CERN Document Server

    2013-01-01

    Grasping in Robotics contains original contributions in the field of grasping in robotics with a broad multidisciplinary approach. This gives the possibility of addressing all the major issues related to robotized grasping, including milestones in grasping through the centuries, mechanical design issues, control issues, modelling achievements and issues, formulations and software for simulation purposes, sensors and vision integration, applications in industrial field and non-conventional applications (including service robotics and agriculture).   The contributors to this book are experts in their own diverse and wide ranging fields. This multidisciplinary approach can help make Grasping in Robotics of interest to a very wide audience. In particular, it can be a useful reference book for researchers, students and users in the wide field of grasping in robotics from many different disciplines including mechanical design, hardware design, control design, user interfaces, modelling, simulation, sensors and hum...

  1. Designing Emotionally Expressive Robots

    DEFF Research Database (Denmark)

    Tsiourti, Christiana; Weiss, Astrid; Wac, Katarzyna

    2017-01-01

    Socially assistive agents, be it virtual avatars or robots, need to engage in social interactions with humans and express their internal emotional states, goals, and desires. In this work, we conducted a comparative study to investigate how humans perceive emotional cues expressed by humanoid...... robots through five communication modalities (face, head, body, voice, locomotion) and examined whether the degree of a robot's human-like embodiment affects this perception. In an online survey, we asked people to identify emotions communicated by Pepper -a highly human-like robot and Hobbit – a robot...... for robots....

  2. A study on dynamically reconfigurable robotic systems, 3

    International Nuclear Information System (INIS)

    Fukuda, Toshio; Kawauchi, Yoshio; Buss, M.; Asama, Hajime.

    1990-01-01

    The dynamically reconfigurable robotic system (DRRS) is a new kind of robotic system which is able to reconfigurate itself to an optimal structure depending on the purpose and exvironment. To realize this concept, we proposed the CEBOT (cell-structured robot). Communication is needed in the CEBOT system as follows. When cells are separated, a communication master cell needs to know the other cell's function and position and determine the target cell for docking. Mobile cells should be able to coordinate with other mobile cell. When cells are docked, forming a cell structure/module, a master cell should control the bending joint cell and know which cells the construction is composed of. In this paper, we propose a communication protocol for both cases with optical sensor applicable to CEBOT. Some experimental results are shown by realizing the proposed communication method between cells. (author)

  3. Periodontal Wound Healing by Transplantation of Jaw Bone Marrow-Derived Mesenchymal Stem Cells in Chitosan/Anorganic Bovine Bone Carrier Into One-Wall Infrabony Defects in Beagles.

    Science.gov (United States)

    Zang, Shengqi; Jin, Lei; Kang, Shuai; Hu, Xin; Wang, Meng; Wang, Jinjin; Chen, Bo; Peng, Bo; Wang, Qintao

    2016-08-01

    This study aims to evaluate the performance of chitosan/anorganic bovine bone (C/ABB) scaffold seeded with human jaw bone marrow-derived mesenchymal stem cells (hJBMMSCs) in supporting the healing/repair of 1-wall critical-size periodontal defects. Physical properties of the C/ABB scaffold were compared with those of the chitosan scaffold. hJBMMSCs were obtained from healthy human alveolar bone during the extraction of third molar impacted teeth. One-wall (7 × 4 mm) infrabony defects were surgically created at the bilateral mandibular third premolars and first molars in six beagles. The defects were randomly assigned to six groups and implanted with different scaffolds: 1) chitosan (C) scaffold; 2) C scaffold with hJBMMSCs (C + cell); 3) C/ABB scaffold (C/ABB); 4) C/ABB scaffold with hJBMMSCs (C/ABB + cell); 5) ABB scaffold (ABB); and 6) open flap debridement (control). The animals were euthanized 8 weeks after surgery for histologic analysis. The C/ABB scaffold had a porous structure and increased compressive strength. Both C/ABB and C/ABB + cell exhibited the newly formed cellular mixed-fiber cementum, woven/lamellar bone, and periodontal ligament. Cementum formation was significantly greater in group C/ABB + cell than in group C/ABB (2.64 ± 0.50 mm versus 0.91 ± 0.55 mm, P <0.05). For new bone (NB) height, group C/ABB + cell and C/ABB showed mean ± SD values of 2.83 ± 0.29 mm and 2.65 ± 0.52 mm and for NB area 8.89 ± 1.65 mm and 8.73 ± 1.94 mm(2), respectively. For NB (height and area), there was no significant difference between the two groups. The combination of hJBMMSCs and C/ABB scaffolds could promote periodontal repair. Future studies are expected to further optimize the combination and lead to an ideal periodontal regeneration.

  4. Design and implementation air quality monitoring robot

    Science.gov (United States)

    Chen, Yuanhua; Li, Jie; Qi, Chunxue

    2017-01-01

    Robot applied in environmental protection can break through the limitations in working environment, scope and mode of the existing environmental monitoring and pollution abatement equipments, which undertake the innovation and improvement in the basin, atmosphere, emergency and pollution treatment facilities. Actually, the relevant technology is backward with limited research and investment. Though the device companies have achieved some results in the study on the water quality monitoring, pipeline monitoring and sewage disposal, this technological progress on the whole is still much slow, and the mature product has not been formed. As a result, the market urges a demand of a new type of device which is more suitable for environmental protection on the basis of robot successfully applied in other fields. This paper designs and realizes a tracked mobile robot of air quality monitoring, which can be used to monitor air quality for the pollution accident in industrial parks and regular management.

  5. Fundamentals of soft robot locomotion.

    Science.gov (United States)

    Calisti, M; Picardi, G; Laschi, C

    2017-05-01

    Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human-robot interaction and locomotion. Although field applications have emerged for soft manipulation and human-robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. © 2017 The Author(s).

  6. Reliability and radiation tolerance of robots for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, K [Risoe National Lab. (Denmark); Decreton, M [SCK.CEN (Belgium); Seifert, C C [Siemens AG (Germany); Sharp, R [AEA Technology (United Kingdom)

    1996-10-01

    The reliability of a robot for nuclear applications will be affected by environmental factors such as dust, water, vibrations, heat, and, in particular, ionising radiation. The present report describes the work carried out in a project addressing the reliability and radiation tolerance of such robots. A widely representative range of components and materials has been radiation tested and the test results have been collated in a database along with data provided by the participants from earlier work and data acquired from other sources. A radiation effects guide has been written for the use by designers of electronic equipment for robots. A generic reliability model has been set up together with generic failure strategies, forming the basis for specific reliability modelling carried out in other projects. Modelling tools have been examined and developed for the prediction of the performance of electronic circuits subjected to radiation. Reports have been produced dealing with the prediction and detection of upcoming failures in electronic systems. Operational experience from the use of robots in radiation work in various contexts has been compiled in a report, and another report has been written on cost/benefit considerations about the use of robots. Also the possible impact of robots on the safety of the surrounding plant has been considered and reported. (au) 16 ills., 236 refs.

  7. Application requirements for Robotic Nursing Assistants in hospital environments

    Science.gov (United States)

    Cremer, Sven; Doelling, Kris; Lundberg, Cody L.; McNair, Mike; Shin, Jeongsik; Popa, Dan

    2016-05-01

    In this paper we report on analysis toward identifying design requirements for an Adaptive Robotic Nursing Assistant (ARNA). Specifically, the paper focuses on application requirements for ARNA, envisioned as a mobile assistive robot that can navigate hospital environments to perform chores in roles such as patient sitter and patient walker. The role of a sitter is primarily related to patient observation from a distance, and fetching objects at the patient's request, while a walker provides physical assistance for ambulation and rehabilitation. The robot will be expected to not only understand nurse and patient intent but also close the decision loop by automating several routine tasks. As a result, the robot will be equipped with sensors such as distributed pressure sensitive skins, 3D range sensors, and so on. Modular sensor and actuator hardware configured in the form of several multi-degree-of-freedom manipulators, and a mobile base are expected to be deployed in reconfigurable platforms for physical assistance tasks. Furthermore, adaptive human-machine interfaces are expected to play a key role, as they directly impact the ability of robots to assist nurses in a dynamic and unstructured environment. This paper discusses required tasks for the ARNA robot, as well as sensors and software infrastructure to carry out those tasks in the aspects of technical resource availability, gaps, and needed experimental studies.

  8. Simulation of robotic courier deliveries in hospital distribution services.

    Science.gov (United States)

    Rossetti, M D; Felder, R A; Kumar, A

    2000-06-01

    Flexible automation in the form of robotic couriers holds the potential for decreasing operating costs while improving delivery performance in hospital delivery systems. This paper discusses the use of simulation modeling to analyze the costs, benefits, and performance tradeoffs related to the installation and use of a fleet of robotic couriers within hospital facilities. The results of this study enable a better understanding of the delivery and transportation requirements of hospitals. Specifically, we examine how a fleet of robotic couriers can meet the performance requirements of the system while maintaining cost efficiency. We show that for clinical laboratory and pharmaceutical deliveries a fleet of six robotic couriers can achieve significant performance gains in terms of turn-around time and delivery variability over the current system of three human couriers per shift or 13 FTEs. Specifically, the simulation results indicate that using robotic couriers to perform both clinical laboratory and pharmaceutical deliveries would result in a 34% decrease in turn-around time, and a 38% decrease in delivery variability. In addition, a break-even analysis indicated that a positive net present value occurs if nine or more FTEs are eliminated with a resulting ROI of 12%. This analysis demonstrates that simulation can be a valuable tool for examining health care distribution services and indicates that a robotic courier system may yield significant benefits over a traditional courier system in this application.

  9. Reliability and radiation tolerance of robots for nuclear applications

    International Nuclear Information System (INIS)

    Lauridsen, K.; Decreton, M.; Seifert, C.C.; Sharp, R.

    1996-10-01

    The reliability of a robot for nuclear applications will be affected by environmental factors such as dust, water, vibrations, heat, and, in particular, ionising radiation. The present report describes the work carried out in a project addressing the reliability and radiation tolerance of such robots. A widely representative range of components and materials has been radiation tested and the test results have been collated in a database along with data provided by the participants from earlier work and data acquired from other sources. A radiation effects guide has been written for the use by designers of electronic equipment for robots. A generic reliability model has been set up together with generic failure strategies, forming the basis for specific reliability modelling carried out in other projects. Modelling tools have been examined and developed for the prediction of the performance of electronic circuits subjected to radiation. Reports have been produced dealing with the prediction and detection of upcoming failures in electronic systems. Operational experience from the use of robots in radiation work in various contexts has been compiled in a report, and another report has been written on cost/benefit considerations about the use of robots. Also the possible impact of robots on the safety of the surrounding plant has been considered and reported. (au) 16 ills., 236 refs

  10. Advancing the Strategic Messages Affecting Robot Trust Effect: The Dynamic of User- and Robot-Generated Content on Human-Robot Trust and Interaction Outcomes.

    Science.gov (United States)

    Liang, Yuhua Jake; Lee, Seungcheol Austin

    2016-09-01

    Human-robot interaction (HRI) will soon transform and shift the communication landscape such that people exchange messages with robots. However, successful HRI requires people to trust robots, and, in turn, the trust affects the interaction. Although prior research has examined the determinants of human-robot trust (HRT) during HRI, no research has examined the messages that people received before interacting with robots and their effect on HRT. We conceptualize these messages as SMART (Strategic Messages Affecting Robot Trust). Moreover, we posit that SMART can ultimately affect actual HRI outcomes (i.e., robot evaluations, robot credibility, participant mood) by affording the persuasive influences from user-generated content (UGC) on participatory Web sites. In Study 1, participants were assigned to one of two conditions (UGC/control) in an original experiment of HRT. Compared with the control (descriptive information only), results showed that UGC moderated the correlation between HRT and interaction outcomes in a positive direction (average Δr = +0.39) for robots as media and robots as tools. In Study 2, we explored the effect of robot-generated content but did not find similar moderation effects. These findings point to an important empirical potential to employ SMART in future robot deployment.

  11. Next-generation robotic surgery--from the aspect of surgical robots developed by industry.

    Science.gov (United States)

    Nakadate, Ryu; Arata, Jumpei; Hashizume, Makoto

    2015-02-01

    At present, much of the research conducted worldwide focuses on extending the ability of surgical robots. One approach is to extend robotic dexterity. For instance, accessibility and dexterity of the surgical instruments remains the largest issue for reduced port surgery such as single port surgery or natural orifice surgery. To solve this problem, a great deal of research is currently conducted in the field of robotics. Enhancing the surgeon's perception is an approach that uses advanced sensor technology. The real-time data acquired through the robotic system combined with the data stored in the robot (such as the robot's location) provide a major advantage. This paper aims at introducing state-of-the-art products and pre-market products in this technological advancement, namely the robotic challenge in extending dexterity and hopefully providing the path to robotic surgery in the near future.

  12. Humanlike Robots - The Upcoming Revolution in Robotics

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2009-01-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  13. Humanlike robots: the upcoming revolution in robotics

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2009-08-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  14. Inverse kinematic solution for near-simple robots and its application to robot calibration

    Science.gov (United States)

    Hayati, Samad A.; Roston, Gerald P.

    1986-01-01

    This paper provides an inverse kinematic solution for a class of robot manipulators called near-simple manipulators. The kinematics of these manipulators differ from those of simple-robots by small parameter variations. Although most robots are by design simple, in practice, due to manufacturing tolerances, every robot is near-simple. The method in this paper gives an approximate inverse kinematics solution for real time applications based on the nominal solution for these robots. The validity of the results are tested both by a simulation study and by applying the algorithm to a PUMA robot.

  15. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion.

    Science.gov (United States)

    Marras, Stefano; Porfiri, Maurizio

    2012-08-07

    The integration of biomimetic robots in a fish school may enable a better understanding of collective behaviour, offering a new experimental method to test group feedback in response to behavioural modulations of its 'engineered' member. Here, we analyse a robotic fish and individual golden shiners (Notemigonus crysoleucas) swimming together in a water tunnel at different flow velocities. We determine the positional preference of fish with respect to the robot, and we study the flow structure using a digital particle image velocimetry system. We find that biomimetic locomotion is a determinant of fish preference as fish are more attracted towards the robot when its tail is beating rather than when it is statically immersed in the water as a 'dummy'. At specific conditions, the fish hold station behind the robot, which may be due to the hydrodynamic advantage obtained by swimming in the robot's wake. This work makes a compelling case for the need of biomimetic locomotion in promoting robot-animal interactions and it strengthens the hypothesis that biomimetic robots can be used to study and modulate collective animal behaviour.

  16. Micro robot bible

    International Nuclear Information System (INIS)

    Yoon, Jin Yeong

    2000-08-01

    This book deals with micro robot, which tells of summary of robots like entertainment robots and definition of robots, introduction of micro mouse about history, composition and rules, summary of micro controller with its history, appearance and composition, introduction of stepping motor about types, structure, basic characteristics, and driving ways, summary of sensor section, power, understanding of 80C196KC micro controller, basic driving program searching a maze algorithm, smooth turn and making of tracer line.

  17. Micro robot bible

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin Yeong

    2000-08-15

    This book deals with micro robot, which tells of summary of robots like entertainment robots and definition of robots, introduction of micro mouse about history, composition and rules, summary of micro controller with its history, appearance and composition, introduction of stepping motor about types, structure, basic characteristics, and driving ways, summary of sensor section, power, understanding of 80C196KC micro controller, basic driving program searching a maze algorithm, smooth turn and making of tracer line.

  18. Robots at Work

    OpenAIRE

    Graetz, Georg; Michaels, Guy

    2015-01-01

    Despite ubiquitous discussions of robots' potential impact, there is almost no systematic empirical evidence on their economic effects. In this paper we analyze for the first time the economic impact of industrial robots, using new data on a panel of industries in 17 countries from 1993-2007. We find that industrial robots increased both labor productivity and value added. Our panel identification is robust to numerous controls, and we find similar results instrumenting increased robot use wi...

  19. To Err Is Robot: How Humans Assess and Act toward an Erroneous Social Robot

    Directory of Open Access Journals (Sweden)

    Nicole Mirnig

    2017-05-01

    Full Text Available We conducted a user study for which we purposefully programmed faulty behavior into a robot’s routine. It was our aim to explore if participants rate the faulty robot different from an error-free robot and which reactions people show in interaction with a faulty robot. The study was based on our previous research on robot errors where we detected typical error situations and the resulting social signals of our participants during social human–robot interaction. In contrast to our previous work, where we studied video material in which robot errors occurred unintentionally, in the herein reported user study, we purposefully elicited robot errors to further explore the human interaction partners’ social signals following a robot error. Our participants interacted with a human-like NAO, and the robot either performed faulty or free from error. First, the robot asked the participants a set of predefined questions and then it asked them to complete a couple of LEGO building tasks. After the interaction, we asked the participants to rate the robot’s anthropomorphism, likability, and perceived intelligence. We also interviewed the participants on their opinion about the interaction. Additionally, we video-coded the social signals the participants showed during their interaction with the robot as well as the answers they provided the robot with. Our results show that participants liked the faulty robot significantly better than the robot that interacted flawlessly. We did not find significant differences in people’s ratings of the robot’s anthropomorphism and perceived intelligence. The qualitative data confirmed the questionnaire results in showing that although the participants recognized the robot’s mistakes, they did not necessarily reject the erroneous robot. The annotations of the video data further showed that gaze shifts (e.g., from an object to the robot or vice versa and laughter are typical reactions to unexpected robot behavior

  20. ROILA : RObot Interaction LAnguage

    NARCIS (Netherlands)

    Mubin, O.

    2011-01-01

    The number of robots in our society is increasing rapidly. The number of service robots that interact with everyday people already outnumbers industrial robots. The easiest way to communicate with these service robots, such as Roomba or Nao, would be natural speech. However, the limitations

  1. Work organisation and quality control in a welding robotic cell

    OpenAIRE

    Moniz, António

    1993-01-01

    In this paper is analyzed the work organization and the forms of quality control in a robotic welding station in a company of office equipment and metal components manufacturing. The robotic cell is recent and works in two shifts. Quality and production rationalization implied in this firms the adoption of a strategy of organization of teamwork, and it is supported the collaborative tools to decrease the possibilities for errors and to improve means and methods of manufacturing. The analysis ...

  2. An Intelligent Inference System for Robot Hand Optimal Grasp Preshaping

    Directory of Open Access Journals (Sweden)

    Cabbar Veysel Baysal

    2010-11-01

    Full Text Available This paper presents a novel Intelligent Inference System (IIS for the determination of an optimum preshape for multifingered robot hand grasping, given object under a manipulation task. The IIS is formed as hybrid agent architecture, by the synthesis of object properties, manipulation task characteristics, grasp space partitioning, lowlevel kinematical analysis, evaluation of contact wrench patterns via fuzzy approximate reasoning and ANN structure for incremental learning. The IIS is implemented in software with a robot hand simulation.

  3. Evidence for robots.

    Science.gov (United States)

    Shenoy, Ravikiran; Nathwani, Dinesh

    2017-01-01

    Robots have been successfully used in commercial industry and have enabled humans to perform tasks which are repetitive, dangerous and requiring extreme force. Their role has evolved and now includes many aspects of surgery to improve safety and precision. Orthopaedic surgery is largely performed on bones which are rigid immobile structures which can easily be performed by robots with great precision. Robots have been designed for use in orthopaedic surgery including joint arthroplasty and spine surgery. Experimental studies have been published evaluating the role of robots in arthroscopy and trauma surgery. In this article, we will review the incorporation of robots in orthopaedic surgery looking into the evidence in their use. © The Authors, published by EDP Sciences, 2017.

  4. Message Encryption in Robot Operating System: Collateral Effects of Hardening Mobile Robots

    Directory of Open Access Journals (Sweden)

    Francisco J. Rodríguez-Lera

    2018-03-01

    Full Text Available In human–robot interaction situations, robot sensors collect huge amounts of data from the environment in order to characterize the situation. Some of the gathered data ought to be treated as private, such as medical data (i.e., medication guidelines, personal, and safety information (i.e., images of children, home habits, alarm codes, etc.. However, most robotic software development frameworks are not designed for securely managing this information. This paper analyzes the scenario of hardening one of the most widely used robotic middlewares, Robot Operating System (ROS. The study investigates a robot’s performance when ciphering the messages interchanged between ROS nodes under the publish/subscribe paradigm. In particular, this research focuses on the nodes that manage cameras and LIDAR sensors, which are two of the most extended sensing solutions in mobile robotics, and analyzes the collateral effects on the robot’s achievement under different computing capabilities and encryption algorithms (3DES, AES, and Blowfish to robot performance. The findings present empirical evidence that simple encryption algorithms are lightweight enough to provide cyber-security even in low-powered robots when carefully designed and implemented. Nevertheless, these techniques come with a number of serious drawbacks regarding robot autonomy and performance if they are applied randomly. To avoid these issues, we define a taxonomy that links the type of ROS message, computational units, and the encryption methods. As a result, we present a model to select the optimal options for hardening a mobile robot using ROS.

  5. 1st Iberian Robotics Conference

    CERN Document Server

    Sanfeliu, Alberto; Ferre, Manuel; ROBOT2013; Advances in robotics

    2014-01-01

    This book contains the proceedings of the ROBOT 2013: FIRST IBERIAN ROBOTICS CONFERENCE and it can be said that included both state of the art and more practical presentations dealing with implementation problems, support technologies and future applications. A growing interest in Assistive Robotics, Agricultural Robotics, Field Robotics, Grasping and Dexterous Manipulation, Humanoid Robots, Intelligent Systems and Robotics, Marine Robotics, has been demonstrated by the very relevant number of contributions. Moreover, ROBOT2013 incorporates a special session on Legal and Ethical Aspects in Robotics that is becoming a topic of key relevance. This Conference was held in Madrid (28-29 November 2013), organised by the Sociedad Española para la Investigación y Desarrollo en Robótica (SEIDROB) and by the Centre for Automation and Robotics - CAR (Universidad Politécnica de Madrid (UPM) and Consejo Superior de Investigaciones Científicas (CSIC)), along with the co-operation of Grupo Temático de Robótica CEA-GT...

  6. Springer handbook of robotics

    CERN Document Server

    Khatib, Oussama

    2016-01-01

    The second edition of this handbook provides a state-of-the-art cover view on the various aspects in the rapidly developing field of robotics. Reaching for the human frontier, robotics is vigorously engaged in the growing challenges of new emerging domains. Interacting, exploring, and working with humans, the new generation of robots will increasingly touch people and their lives. The credible prospect of practical robots among humans is the result of the scientific endeavour of a half a century of robotic developments that established robotics as a modern scientific discipline. The ongoing vibrant expansion and strong growth of the field during the last decade has fueled this second edition of the Springer Handbook of Robotics. The first edition of the handbook soon became a landmark in robotics publishing and won the American Association of Publishers PROSE Award for Excellence in Physical Sciences & Mathematics as well as the organization’s Award for Engineering & Technology. The second edition o...

  7. Innovations in robotic surgery.

    Science.gov (United States)

    Gettman, Matthew; Rivera, Marcelino

    2016-05-01

    Developments in robotic surgery have continued to advance care throughout the field of urology. The purpose of this review is to evaluate innovations in robotic surgery over the past 18 months. The release of the da Vinci Xi system heralded an improvement on the Si system with improved docking, the ability to further manipulate robotic arms without clashing, and an autofocus universal endoscope. Robotic simulation continues to evolve with improvements in simulation training design to include augmented reality in robotic surgical education. Robotic-assisted laparoendoscopic single-site surgery continues to evolve with improvements on technique that allow for tackling previously complex pathologic surgical anatomy including urologic oncology and reconstruction. Last, innovations of new surgical platforms with robotic systems to improve surgeon ergonomics and efficiency in ureteral and renal surgery are being applied in the clinical setting. Urologic surgery continues to be at the forefront of the revolution of robotic surgery with advancements in not only existing technology but also creation of entirely novel surgical systems.

  8. Faster-than-real-time robot simulation for plan development and robot safety

    International Nuclear Information System (INIS)

    Crane, C.D. III; Dalton, R.; Ogles, J.; Tulenko, J.S.; Zhou, X.

    1990-01-01

    The University of Florida, in cooperation with the Universities of Texas, Tennessee, and Michigan and Oak Ridge National Laboratory (ORNL), is developing an advanced robotic system for the US Department of Energy under the University Program for Robotics for Advanced Reactors. As part of this program, the University of Florida has been pursuing the development of a faster-than-real-time robotic simulation program for planning and control of mobile robotic operations to ensure the efficient and safe operation of mobile robots in nuclear power plants and other hazardous environments

  9. Soft-Material Robotics

    OpenAIRE

    Wang, L; Nurzaman, SG; Iida, Fumiya

    2017-01-01

    There has been a boost of research activities in robotics using soft materials in the past ten years. It is expected that the use and control of soft materials can help realize robotic systems that are safer, cheaper, and more adaptable than the level that the conventional rigid-material robots can achieve. Contrary to a number of existing review and position papers on soft-material robotics, which mostly present case studies and/or discuss trends and challenges, the review focuses on the fun...

  10. VEGETATIVE DEVELOPMENT OF EUROPEAN PEAR WITH QUINCE AND DIFFERENT APPLICATION FORMS OF NUTRIENTS

    Directory of Open Access Journals (Sweden)

    FABIANE NUNES SILVEIRA

    Full Text Available ABSTRACT The pear consumption in Brazil is significant and the country is dependent on the import of this fruit to meet the internal market. The aim of this study was to evaluate the vegetative growth of European pear trees grafted on quince with two application forms of nutrients. The study was conducted during the 2012/13, 2013/14 and 2014/15 harvests, in the experimental area of the Universidade do Estado de Santa Catarina / UDESC, in Lages. The cultivars used were Rocha, Santa Maria and Abbé Fétel. The quinces were ‘Adams’ and ‘EMA’. The application forms of the nutrients were conventional and fertigation. The experiment was carried out in a randomized block design and the arrangement of treatments was sub subdivided plots. The application form of nutrients and rootstocks of quince little influenced on the vegetative growth of the plants, being more influenced by the scion in the soil conditions of this study.

  11. AssistMe robot, an assistance robotic platform

    Directory of Open Access Journals (Sweden)

    A. I. Alexan

    2012-06-01

    Full Text Available This paper presents the design and implementation of a full size assistance robot. Its main purpose it to assist a person and eventually avoid a life threatening situation. Its implementation revolves around a chipKIT Arduino board that interconnects a robotic base controller with a 7 inch TABLET PC and various sensors. Due to the Android and Arduino combination, the robot can interact with the person and provide an easy development platform for future improvement and feature adding. The TABLET PC is Webcam, WIFI and Bluetooth enabled, offering a versatile platform that is able to process data and in the same time provide the user a friendly interface.

  12. Optimal elastic coupling in form of one mechanical spring to improve energy efficiency of walking bipedal robots

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Fabian; Römer, Ulrich, E-mail: ulrich.roemer@kit.edu; Fidlin, Alexander; Seemann, Wolfgang [Institute of Engineering Mechanics, Karlsruhe Institute of Technology (Germany)

    2016-11-15

    This paper presents a method to optimize the energy efficiency of walking bipedal robots by more than 80 % in a speed range from 0.3 to 2.3 m/s using elastic couplings—mechanical springs with movement speed independent parameters. The considered planar robot consists of a trunk, two two-segmented legs, two actuators in the hip joints, two actuators in the knee joints and an elastic coupling between the shanks. It is modeled as underactuated system to make use of its natural dynamics and feedback controlled via input–output linearization. A numerical optimization of the joint angle trajectories as well as the elastic couplings is performed to minimize the average energy expenditure over the whole speed range. The elastic couplings increase the swing leg motion’s natural frequency thus making smaller steps more efficient which reduce the impact loss at the touchdown of the swing leg. The process of energy turnover is investigated in detail for the robot with and without elastic coupling between the shanks. Furthermore, the influences of the elastic couplings’ topology and of joint friction are analyzed. It is shown that the optimization of the robot’s motion and elastic coupling towards energy efficiency leads to a slightly slower convergence rate of the controller, yet no loss of stability, but a lower sensitivity with respect to disturbances. The optimal elastic coupling discovered via numerical optimization is a linear torsion spring with transmissions between the shanks. A design proposal for this elastic coupling—which does not affect the robot’s trunk and parallel shank motion and can be used to enhance an existing robot—is given for planar as well as spatial robots.

  13. Socially Impaired Robots: Human Social Disorders and Robots' Socio-Emotional Intelligence

    OpenAIRE

    Vitale, Jonathan; Williams, Mary-Anne; Johnston, Benjamin

    2016-01-01

    Social robots need intelligence in order to safely coexist and interact with humans. Robots without functional abilities in understanding others and unable to empathise might be a societal risk and they may lead to a society of socially impaired robots. In this work we provide a survey of three relevant human social disorders, namely autism, psychopathy and schizophrenia, as a means to gain a better understanding of social robots' future capability requirements. We provide evidence supporting...

  14. Modelling of cooperating robotized systems with the use of object-based approach

    Science.gov (United States)

    Foit, K.; Gwiazda, A.; Banas, W.; Sekala, A.; Hryniewicz, P.

    2015-11-01

    Today's robotized manufacturing systems are characterized by high efficiency. The emphasis is placed mainly on the simultaneous work of machines. It could manifest in many ways, where the most spectacular one is the cooperation of several robots, during work on the same detail. What's more, recently a dual-arm robots are used that could mimic the manipulative skills of human hands. As a result, it is often hard to deal with the situation, when it is necessary not only to maintain sufficient precision, but also the coordination and proper sequence of movements of individual robots’ arms. The successful completion of this task depends on the individual robot control systems and their respective programmed, but also on the well-functioning communication between robot controllers. A major problem in case of cooperating robots is the possibility of collision between particular links of robots’ kinematic chains. This is not a simple case, because the manufacturers of robotic systems do not disclose the details of the control algorithms, then it is hard to determine such situation. Another problem with cooperation of robots is how to inform the other units about start or completion of part of the task, so that other robots can take further actions. This paper focuses on communication between cooperating robotic units, assuming that every robot is represented by object-based model. This problem requires developing a form of communication protocol that the objects can use for collecting the information about its environment. The approach presented in the paper is not limited to the robots and could be used in a wider range, for example during modelling of the complete workcell or production line.

  15. Educational Robotics as Mindtools

    Science.gov (United States)

    Mikropoulos, Tassos A.; Bellou, Ioanna

    2013-01-01

    Although there are many studies on the constructionist use of educational robotics, they have certain limitations. Some of them refer to robotics education, rather than educational robotics. Others follow a constructionist approach, but give emphasis only to design skills, creativity and collaboration. Some studies use robotics as an educational…

  16. Multi-robot caravanning

    KAUST Repository

    Denny, Jory

    2013-11-01

    We study multi-robot caravanning, which is loosely defined as the problem of a heterogeneous team of robots visiting specific areas of an environment (waypoints) as a group. After formally defining this problem, we propose a novel solution that requires minimal communication and scales with the number of waypoints and robots. Our approach restricts explicit communication and coordination to occur only when robots reach waypoints, and relies on implicit coordination when moving between a given pair of waypoints. At the heart of our algorithm is the use of leader election to efficiently exploit the unique environmental knowledge available to each robot in order to plan paths for the group, which makes it general enough to work with robots that have heterogeneous representations of the environment. We implement our approach both in simulation and on a physical platform, and characterize the performance of the approach under various scenarios. We demonstrate that our approach can successfully be used to combine the planning capabilities of different agents. © 2013 IEEE.

  17. Self-Organizing Robots

    CERN Document Server

    Murata, Satoshi

    2012-01-01

    It is man’s ongoing hope that a machine could somehow adapt to its environment by reorganizing itself. This is what the notion of self-organizing robots is based on. The theme of this book is to examine the feasibility of creating such robots within the limitations of current mechanical engineering. The topics comprise the following aspects of such a pursuit: the philosophy of design of self-organizing mechanical systems; self-organization in biological systems; the history of self-organizing mechanical systems; a case study of a self-assembling/self-repairing system as an autonomous distributed system; a self-organizing robot that can create its own shape and robotic motion; implementation and instrumentation of self-organizing robots; and the future of self-organizing robots. All topics are illustrated with many up-to-date examples, including those from the authors’ own work. The book does not require advanced knowledge of mathematics to be understood, and will be of great benefit to students in the rob...

  18. Evaluating alternative gait strategies using evolutionary robotics.

    Science.gov (United States)

    Sellers, William I; Dennis, Louise A; W -J, Wang; Crompton, Robin H

    2004-05-01

    Evolutionary robotics is a branch of artificial intelligence concerned with the automatic generation of autonomous robots. Usually the form of the robot is predefined and various computational techniques are used to control the machine's behaviour. One aspect is the spontaneous generation of walking in legged robots and this can be used to investigate the mechanical requirements for efficient walking in bipeds. This paper demonstrates a bipedal simulator that spontaneously generates walking and running gaits. The model can be customized to represent a range of hominoid morphologies and used to predict performance parameters such as preferred speed and metabolic energy cost. Because it does not require any motion capture data it is particularly suitable for investigating locomotion in fossil animals. The predictions for modern humans are highly accurate in terms of energy cost for a given speed and thus the values predicted for other bipeds are likely to be good estimates. To illustrate this the cost of transport is calculated for Australopithecus afarensis. The model allows the degree of maximum extension at the knee to be varied causing the model to adopt walking gaits varying from chimpanzee-like to human-like. The energy costs associated with these gait choices can thus be calculated and this information used to evaluate possible locomotor strategies in early hominids.

  19. Human-robot interaction tests on a novel robot for gait assistance.

    Science.gov (United States)

    Tagliamonte, Nevio Luigi; Sergi, Fabrizio; Carpino, Giorgio; Accoto, Dino; Guglielmelli, Eugenio

    2013-06-01

    This paper presents tests on a treadmill-based non-anthropomorphic wearable robot assisting hip and knee flexion/extension movements using compliant actuation. Validation experiments were performed on the actuators and on the robot, with specific focus on the evaluation of intrinsic backdrivability and of assistance capability. Tests on a young healthy subject were conducted. In the case of robot completely unpowered, maximum backdriving torques were found to be in the order of 10 Nm due to the robot design features (reduced swinging masses; low intrinsic mechanical impedance and high-efficiency reduction gears for the actuators). Assistance tests demonstrated that the robot can deliver torques attracting the subject towards a predicted kinematic status.

  20. A biomimetic jellyfish robot based on ionic polymer metal composite actuators

    International Nuclear Information System (INIS)

    Yeom, Sung-Weon; Oh, Il-Kwon

    2009-01-01

    A biomimetic jellyfish robot based on ionic polymer metal composite actuators was fabricated and activated to mimic real locomotive behavior with pulse and recovery processes. To imitate the curved shape of the jellyfish, a thermal treatment was applied to obtain a permanent initial deformation of a hemispherical form. The bio-inspired input signal was generated for mimicking real locomotion of the jellyfish. The vertical floating displacement and the thrust force of the biomimetic jellyfish robot under various input signals were measured and compared. The present results show that the bio-inspired electrical input signal with pulse-recovery process generates much higher floating velocity of the biomimetic jellyfish robot in comparison with pure sinusoidal excitations. The curved shape of the IPMC actuator through thermal treatments can be successfully applied to mimic the real biomimetic robots with smooth curves

  1. Pose Estimation and Adaptive Robot Behaviour for Human-Robot Interaction

    DEFF Research Database (Denmark)

    Svenstrup, Mikael; Hansen, Søren Tranberg; Andersen, Hans Jørgen

    2009-01-01

    Abstract—This paper introduces a new method to determine a person’s pose based on laser range measurements. Such estimates are typically a prerequisite for any human-aware robot navigation, which is the basis for effective and timeextended interaction between a mobile robot and a human. The robot......’s pose. The resulting pose estimates are used to identify humans who wish to be approached and interacted with. The interaction motion of the robot is based on adaptive potential functions centered around the person that respect the persons social spaces. The method is tested in experiments...

  2. From sex robots to love robots: is mutual love with a robot possible?

    NARCIS (Netherlands)

    Nyholm, S.R.; Frank, L.E.; Danaher, J.; McArthur, N.

    2017-01-01

    Some critics of sex-robots worry that their use might spread objectifying attitudes about sex, and common sense places a higher value on sex within love-relationships than on casual sex. If there could be mutual love between humans and sex-robots, this could help to ease the worries about

  3. The relation between people's attitudes and anxiety towards robots in human-robot interaction

    NARCIS (Netherlands)

    de Graaf, M.M.A.; Ben Allouch, Soumaya

    2013-01-01

    This paper examines the relation between an interaction with a robot and peoples’ attitudes and emotion towards robots. In our study, participants have had an acquaintance talk with a social robot and both their general attitude and anxiety towards social robots were measured before and after the

  4. Robotic hand project

    OpenAIRE

    Karaçizmeli, Cengiz; Çakır, Gökçe; Tükel, Dilek

    2014-01-01

    In this work, the mechatronic based robotic hand is controlled by the position data taken from the glove which has flex sensors mounted to capture finger bending of the human hand. The angular movement of human hand’s fingers are perceived and processed by a microcontroller, and the robotic hand is controlled by actuating servo motors. It has seen that robotic hand can simulate the movement of the human hand that put on the glove, during tests have done. This robotic hand can be used not only...

  5. PEAR: Prototyping Expressive Animated Robots - A framework for social robot prototyping

    OpenAIRE

    Balit , Etienne; Vaufreydaz , Dominique; Reignier , Patrick

    2018-01-01

    International audience; Social robots are transitioning from lab experiments to commercial products, creating new needs for proto-typing and design tools. In this paper, we present a framework to facilitate the prototyping of expressive animated robots. For this, we start by reviewing the design of existing social robots in order to define a set of basic components of social robots. We then show how to extend an existing 3D animation software to enable the animation of these components. By co...

  6. Developing a successful robotics program.

    Science.gov (United States)

    Luthringer, Tyler; Aleksic, Ilija; Caire, Arthur; Albala, David M

    2012-01-01

    Advancements in the robotic surgical technology have revolutionized the standard of care for many surgical procedures. The purpose of this review is to evaluate the important considerations in developing a new robotics program at a given healthcare institution. Patients' interest in robotic-assisted surgery has and continues to grow because of improved outcomes and decreased periods of hospitalization. Resulting market forces have created a solid foundation for the implementation of robotic surgery into surgical practice. Given proper surgeon experience and an efficient system, robotic-assisted procedures have been cost comparable to open surgical alternatives. Surgeon training and experience is closely linked to the efficiency of a new robotics program. Formally trained robotic surgeons have better patient outcomes and shorter operative times. Training in robotics has shown no negative impact on patient outcomes or mentor learning curves. Individual economic factors of local healthcare settings must be evaluated when planning for a new robotics program. The high cost of the robotic surgical platform is best offset with a large surgical volume. A mature, experienced surgeon is integral to the success of a new robotics program.

  7. Communication of Robot Status to Improve Human-Robot Collaboration

    Data.gov (United States)

    National Aeronautics and Space Administration — Future space exploration will require humans and robots to collaborate to perform all the necessary tasks. Current robots mostly operate separately from humans due...

  8. Graphical models for simulation and control of robotic systems for waste handling

    International Nuclear Information System (INIS)

    Drotning, W.D.; Bennett, P.C.

    1992-01-01

    This paper discusses detailed geometric models which have been used within a graphical simulation environment to study transportation cask facility design and to perform design and analyses of robotic systems for handling of nuclear waste. The models form the basis for a robot control environment which provides safety, flexibility, and reliability for operations which span the spectrum from autonomous control to tasks requiring direct human intervention

  9. Making Humanoid Robots More Acceptable Based on the Study of Robot Characters in Animation

    Directory of Open Access Journals (Sweden)

    Fatemeh Maleki

    2015-03-01

    Full Text Available In this paper we take an approach in Humanoid Robots are not considered as robots who resembles human beings in a realistic way of appearance and act but as robots who act and react like human that make them more believable by people. Regarding this approach we will study robot characters in animation movies and discuss what makes some of them to be accepted just like a moving body and what makes some other robot characters to be believable as a living human. The goal of this paper is to create a rule set that describes friendly, socially acceptable, kind, cute... robots and in this study we will review example robots in popular animated movies. The extracted rules and features can be used for making real robots more acceptable.

  10. Robotics in medicine

    Science.gov (United States)

    Kuznetsov, D. N.; Syryamkin, V. I.

    2015-11-01

    Modern technologies play a very important role in our lives. It is hard to imagine how people can get along without personal computers, and companies - without powerful computer centers. Nowadays, many devices make modern medicine more effective. Medicine is developing constantly, so introduction of robots in this sector is a very promising activity. Advances in technology have influenced medicine greatly. Robotic surgery is now actively developing worldwide. Scientists have been carrying out research and practical attempts to create robotic surgeons for more than 20 years, since the mid-80s of the last century. Robotic assistants play an important role in modern medicine. This industry is new enough and is at the early stage of development; despite this, some developments already have worldwide application; they function successfully and bring invaluable help to employees of medical institutions. Today, doctors can perform operations that seemed impossible a few years ago. Such progress in medicine is due to many factors. First, modern operating rooms are equipped with up-to-date equipment, allowing doctors to make operations more accurately and with less risk to the patient. Second, technology has enabled to improve the quality of doctors' training. Various types of robots exist now: assistants, military robots, space, household and medical, of course. Further, we should make a detailed analysis of existing types of robots and their application. The purpose of the article is to illustrate the most popular types of robots used in medicine.

  11. Efficient inverse position transformation for TR 4000S robot manipulator

    Directory of Open Access Journals (Sweden)

    Kesheng Wang

    1989-04-01

    Full Text Available An efficient method is developed for computing the inverse kinematic position solution with a closed form for the TR 4000S spray painting robot manipulator with five degrees of freedom and non-spherical wrist construction. The inverse kinematic problem is defined as the transformation from Cartesian space to the joint space. The solution is based on the geometrical separation of the arm and wrist of a robot manipulator and shows that it is very systematic, efficient and easily derived.

  12. Inventing Japan's 'robotics culture': the repeated assembly of science, technology, and culture in social robotics.

    Science.gov (United States)

    Sabanović, Selma

    2014-06-01

    Using interviews, participant observation, and published documents, this article analyzes the co-construction of robotics and culture in Japan through the technical discourse and practices of robotics researchers. Three cases from current robotics research--the seal-like robot PARO, the Humanoid Robotics Project HRP-2 humanoid, and 'kansei robotics' - show the different ways in which scientists invoke culture to provide epistemological grounding and possibilities for social acceptance of their work. These examples show how the production and consumption of social robotic technologies are associated with traditional crafts and values, how roboticists negotiate among social, technical, and cultural constraints while designing robots, and how humans and robots are constructed as cultural subjects in social robotics discourse. The conceptual focus is on the repeated assembly of cultural models of social behavior, organization, cognition, and technology through roboticists' narratives about the development of advanced robotic technologies. This article provides a picture of robotics as the dynamic construction of technology and culture and concludes with a discussion of the limits and possibilities of this vision in promoting a culturally situated understanding of technology and a multicultural view of science.

  13. German robots: The impact of industrial robots on workers

    OpenAIRE

    Dauth, Wolfgang; Findeisen, Sebastian; Südekum, Jens; Wößner, Nicole

    2017-01-01

    We study the impact of rising robot exposure on the careers of individual manufacturing workers, and the equilibrium impact across industries and local labor markets in Germany. We find no evidence that robots cause total job losses, but they do affect the composition of aggregate employment. Every robot destroys two manufacturing jobs. This accounts for almost 23 percent of the overall decline of manufacturing employment in Germany over the period 1994-2014, roughly 275,000 jobs. But this lo...

  14. Towards a miniature self-propelled jellyfish-like swimming robot

    Directory of Open Access Journals (Sweden)

    Junzhi Yu

    2016-10-01

    Full Text Available Jellyfish uses jet propulsion to achieve a diversity of propulsion modes in the water. In this article, a miniature jellyfish-inspired swimming robot is designed and built, which is capable of executing horizontal and vertical propulsion and maneuvers. In order to imitate the jellyfish in terms of morphology and kinematics, the robotic jellyfish is designed to be comprised of a streamlined head, a cavity shell, four separate drive units with bevel gears, and a soft outer skin encasing the drive units. A combination of four six-bar linkage mechanisms that are centrally symmetric is adopted as the driver to regulate the phases of contraction and relaxation of the bell-shaped body. Furthermore, a triangle wave generator is incorporated to generate rhythmic drive signals, which is implemented on the microcontroller. Through independent and coordinated control of the four drive units, the robotic jellyfish is able to replicate various propulsion modes similar to real jellyfish. Aquatic tests on the actual robot verify the effectiveness of the formed design scheme along with the proposed control methods.

  15. Soft mobile robots driven by foldable dielectric elastomer actuators

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenjie; Liu, Fan; Ma, Ziqi; Li, Chenghai; Zhou, Jinxiong, E-mail: jxzhouxx@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-08-28

    A cantilever beam with elastic hinge pulled antagonistically by two dielectric elastomer (DE) membranes in tension forms a foldable actuator if one DE membrane is subject to a voltage and releases part of tension. Simply placing parallel rigid bars on the prestressed DE membranes results in enhanced actuators working in a pure shear state. We report design, analysis, fabrication, and experiment of soft mobile robots that are moved by such foldable DE actuators. We describe systematic measurement of the foldable actuators and perform theoretical analysis of such actuators based on minimization of total energy, and a good agreement is achieved between model prediction and measurement. We develop two versions of prototypes of soft mobile robots driven either by two sets of DE membranes or one DE membrane and elastic springs. We demonstrate locomotion of these soft mobile robots and highlight several key design parameters that influence locomotion of the robots. A 45 g soft robot driven by a cyclic triangle voltage with amplitude 7.4 kV demonstrates maximal stroke 160 mm or maximal rolling velocity 42 mm/s. The underlying mechanics and physics of foldable DE actuators can be leveraged to develop other soft machines for various applications.

  16. Autonomous military robotics

    CERN Document Server

    Nath, Vishnu

    2014-01-01

    This SpringerBrief reveals the latest techniques in computer vision and machine learning on robots that are designed as accurate and efficient military snipers. Militaries around the world are investigating this technology to simplify the time, cost and safety measures necessary for training human snipers. These robots are developed by combining crucial aspects of computer science research areas including image processing, robotic kinematics and learning algorithms. The authors explain how a new humanoid robot, the iCub, uses high-speed cameras and computer vision algorithms to track the objec

  17. Robotic arm

    Science.gov (United States)

    Kwech, Horst

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel.

  18. Toward cognitive robotics

    Science.gov (United States)

    Laird, John E.

    2009-05-01

    Our long-term goal is to develop autonomous robotic systems that have the cognitive abilities of humans, including communication, coordination, adapting to novel situations, and learning through experience. Our approach rests on the recent integration of the Soar cognitive architecture with both virtual and physical robotic systems. Soar has been used to develop a wide variety of knowledge-rich agents for complex virtual environments, including distributed training environments and interactive computer games. For development and testing in robotic virtual environments, Soar interfaces to a variety of robotic simulators and a simple mobile robot. We have recently made significant extensions to Soar that add new memories and new non-symbolic reasoning to Soar's original symbolic processing, which should significantly improve Soar abilities for control of robots. These extensions include episodic memory, semantic memory, reinforcement learning, and mental imagery. Episodic memory and semantic memory support the learning and recalling of prior events and situations as well as facts about the world. Reinforcement learning provides the ability of the system to tune its procedural knowledge - knowledge about how to do things. Mental imagery supports the use of diagrammatic and visual representations that are critical to support spatial reasoning. We speculate on the future of unmanned systems and the need for cognitive robotics to support dynamic instruction and taskability.

  19. Conceptions of health service robots

    DEFF Research Database (Denmark)

    Lystbæk, Christian Tang

    2015-01-01

    Technology developments create rich opportunities for health service providers to introduce service robots in health care. While the potential benefits of applying robots in health care are extensive, the research into the conceptions of health service robot and its importance for the uptake...... of robotics technology in health care is limited. This article develops a model of the basic conceptions of health service robots that can be used to understand different assumptions and values attached to health care technology in general and health service robots in particular. The article takes...... a discursive approach in order to develop a conceptual framework for understanding the social values of health service robots. First a discursive approach is proposed to develop a typology of conceptions of health service robots. Second, a model identifying four basic conceptions of health service robots...

  20. Continuum limbed robots for locomotion

    Science.gov (United States)

    Mutlu, Alper

    This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.

  1. Soft computing in advanced robotics

    CERN Document Server

    Kobayashi, Ichiro; Kim, Euntai

    2014-01-01

    Intelligent system and robotics are inevitably bound up; intelligent robots makes embodiment of system integration by using the intelligent systems. We can figure out that intelligent systems are to cell units, while intelligent robots are to body components. The two technologies have been synchronized in progress. Making leverage of the robotics and intelligent systems, applications cover boundlessly the range from our daily life to space station; manufacturing, healthcare, environment, energy, education, personal assistance, logistics. This book aims at presenting the research results in relevance with intelligent robotics technology. We propose to researchers and practitioners some methods to advance the intelligent systems and apply them to advanced robotics technology. This book consists of 10 contributions that feature mobile robots, robot emotion, electric power steering, multi-agent, fuzzy visual navigation, adaptive network-based fuzzy inference system, swarm EKF localization and inspection robot. Th...

  2. Robotics and remote systems applications

    International Nuclear Information System (INIS)

    Rabold, D.E.

    1996-01-01

    This article is a review of numerous remote inspection techniques in use at the Savannah River (and other) facilities. These include: (1) reactor tank inspection robot, (2) californium waste removal robot, (3) fuel rod lubrication robot, (4) cesium source manipulation robot, (5) tank 13 survey and decontamination robots, (6) hot gang valve corridor decontamination and junction box removal robots, (7) lead removal from deionizer vessels robot, (8) HB line cleanup robot, (9) remote operation of a front end loader at WIPP, (10) remote overhead video extendible robot, (11) semi-intelligent mobile observing navigator, (12) remote camera systems in the SRS canyons, (13) cameras and borescope for the DWPF, (14) Hanford waste tank camera system, (15) in-tank precipitation camera system, (16) F-area retention basin pipe crawler, (17) waste tank wall crawler and annulus camera, (18) duct inspection, and (19) deionizer resin sampling

  3. Situation Assessment for Mobile Robots

    DEFF Research Database (Denmark)

    Beck, Anders Billesø

    Mobile robots have become a mature technology. The first cable guided logistics robots were introduced in the industry almost 60 years ago. In this time the market for mobile robots in industry has only experienced a very modest growth and only 2.100 systems were sold worldwide in 2011. In recent...... years, many other domains have adopted the mobile robots, such as logistics robots at hospitals and the vacuum robots in our homes. However, considering the achievements in research the last 15 years within perception and operation in natural environments together with the reductions of costs in modern...... sensor systems, the growth potential for mobile robot applications are enormous. Many new technological components are available to move the limits of commercial mobile robot applications, but a key hindrance is reliability. Natural environments are complex and dynamic, and thus the risk of robots...

  4. Fundamentals of soft robot locomotion

    OpenAIRE

    Calisti, M.; Picardi, G.; Laschi, C.

    2017-01-01

    Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human���robot interaction and locomotion. Although field applications have emerged for soft manipulation and human���robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This p...

  5. Isoplanatic systems in mesooptics

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1989-01-01

    The problem of the coma aberration suppression in optics. holography and mesooptics is discussed. A short review of the Abbe sine condition in the holography is given. Then the problem of the isoplanatic system construction in mesooptics is formulated. Its solution in the form of the generalized Abbe sine condition and the Welford theorem concerning the form of the holagram backing is presented. 16 refs.; 13 figs

  6. Assistive humanoid robot MARKO: development of the neck mechanism

    Directory of Open Access Journals (Sweden)

    Penčić Marko

    2017-01-01

    Full Text Available The paper presents the development of neck mechanism for humanoid robots. The research was conducted within the project which is developing a humanoid robot Marko that represents assistive apparatus in the physical therapy for children with cerebral palsy.There are two basic ways for the neck realization of the robots. The first is based on low backlash mechanisms that have high stiffness and the second one based on the viscoelastic elements having variable flexibility. We suggest low backlash differential gear mechanism that requires small actuators. Based on the kinematic-dynamic requirements a dynamic model of the robots upper body is formed. Dynamic simulation for several positions of the robot was performed and the driving torques of neck mechanism are determined.Realized neck has 2 DOFs and enables movements in the direction of flexion-extension 100°, rotation ±90° and the combination of these two movements. It consists of a differential mechanism with three spiral bevel gears of which the two are driving and are identical, and the third one which is driven gear to which the robot head is attached. Power transmission and motion from the actuators to the input links of the differential mechanism is realized with two parallel placed gear mechanisms that are identical.Neck mechanism has high carrying capacity and reliability, high efficiency, low backlash that provide high positioning accuracy and repeatability of movements, compact design and small mass and dimensions.

  7. Attributing Agency to Automated Systems: Reflections on Human-Robot Collaborations and Responsibility-Loci.

    Science.gov (United States)

    Nyholm, Sven

    2017-07-18

    Many ethicists writing about automated systems (e.g. self-driving cars and autonomous weapons systems) attribute agency to these systems. Not only that; they seemingly attribute an autonomous or independent form of agency to these machines. This leads some ethicists to worry about responsibility-gaps and retribution-gaps in cases where automated systems harm or kill human beings. In this paper, I consider what sorts of agency it makes sense to attribute to most current forms of automated systems, in particular automated cars and military robots. I argue that whereas it indeed makes sense to attribute different forms of fairly sophisticated agency to these machines, we ought not to regard them as acting on their own, independently of any human beings. Rather, the right way to understand the agency exercised by these machines is in terms of human-robot collaborations, where the humans involved initiate, supervise, and manage the agency of their robotic collaborators. This means, I argue, that there is much less room for justified worries about responsibility-gaps and retribution-gaps than many ethicists think.

  8. Towards more effective robotic gait training for stroke rehabilitation: a review

    Directory of Open Access Journals (Sweden)

    Pennycott Andrew

    2012-09-01

    Full Text Available Abstract Background Stroke is the most common cause of disability in the developed world and can severely degrade walking function. Robot-driven gait therapy can provide assistance to patients during training and offers a number of advantages over other forms of therapy. These potential benefits do not, however, seem to have been fully realised as of yet in clinical practice. Objectives This review determines ways in which robot-driven gait technology could be improved in order to achieve better outcomes in gait rehabilitation. Methods The literature on gait impairments caused by stroke is reviewed, followed by research detailing the different pathways to recovery. The outcomes of clinical trials investigating robot-driven gait therapy are then examined. Finally, an analysis of the literature focused on the technical features of the robot-based devices is presented. This review thus combines both clinical and technical aspects in order to determine the routes by which robot-driven gait therapy could be further developed. Conclusions Active subject participation in robot-driven gait therapy is vital to many of the potential recovery pathways and is therefore an important feature of gait training. Higher levels of subject participation and challenge could be promoted through designs with a high emphasis on robotic transparency and sufficient degrees of freedom to allow other aspects of gait such as balance to be incorporated.

  9. Open Issues in Evolutionary Robotics.

    Science.gov (United States)

    Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.

  10. Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.

    Science.gov (United States)

    Ampatzis, Christos; Tuci, Elio; Trianni, Vito; Christensen, Anders Lyhne; Dorigo, Marco

    2009-01-01

    This research work illustrates an approach to the design of controllers for self-assembling robots in which the self-assembly is initiated and regulated by perceptual cues that are brought forth by the physical robots through their dynamical interactions. More specifically, we present a homogeneous control system that can achieve assembly between two modules (two fully autonomous robots) of a mobile self-reconfigurable system without a priori introduced behavioral or morphological heterogeneities. The controllers are dynamic neural networks evolved in simulation that directly control all the actuators of the two robots. The neurocontrollers cause the dynamic specialization of the robots by allocating roles between them based solely on their interaction. We show that the best evolved controller proves to be successful when tested on a real hardware platform, the swarm-bot. The performance achieved is similar to the one achieved by existing modular or behavior-based approaches, also due to the effect of an emergent recovery mechanism that was neither explicitly rewarded by the fitness function, nor observed during the evolutionary simulation. Our results suggest that direct access to the orientations or intentions of the other agents is not a necessary condition for robot coordination: Our robots coordinate without direct or explicit communication, contrary to what is assumed by most research works in collective robotics. This work also contributes to strengthening the evidence that evolutionary robotics is a design methodology that can tackle real-world tasks demanding fine sensory-motor coordination.

  11. [Robotics in pediatric surgery].

    Science.gov (United States)

    Camps, J I

    2011-10-01

    Despite the extensive use of robotics in the adult population, the use of robotics in pediatrics has not been well accepted. There is still a lack of awareness from pediatric surgeons on how to use the robotic equipment, its advantages and indications. Benefit is still controversial. Dexterity and better visualization of the surgical field are one of the strong values. Conversely, cost and a lack of small instruments prevent the use of robotics in the smaller patients. The aim of this manuscript is to present the controversies about the use of robotics in pediatric surgery.

  12. Toward a framework for levels of robot autonomy in human-robot interaction.

    Science.gov (United States)

    Beer, Jenay M; Fisk, Arthur D; Rogers, Wendy A

    2014-07-01

    A critical construct related to human-robot interaction (HRI) is autonomy, which varies widely across robot platforms. Levels of robot autonomy (LORA), ranging from teleoperation to fully autonomous systems, influence the way in which humans and robots may interact with one another. Thus, there is a need to understand HRI by identifying variables that influence - and are influenced by - robot autonomy. Our overarching goal is to develop a framework for levels of robot autonomy in HRI. To reach this goal, the framework draws links between HRI and human-automation interaction, a field with a long history of studying and understanding human-related variables. The construct of autonomy is reviewed and redefined within the context of HRI. Additionally, the framework proposes a process for determining a robot's autonomy level, by categorizing autonomy along a 10-point taxonomy. The framework is intended to be treated as guidelines to determine autonomy, categorize the LORA along a qualitative taxonomy, and consider which HRI variables (e.g., acceptance, situation awareness, reliability) may be influenced by the LORA.

  13. [Robot-aided training in rehabilitation].

    Science.gov (United States)

    Hachisuka, Kenji

    2010-02-01

    Recently, new training techniques that involve the use of robots have been used in the rehabilitation of patients with hemiplegia and paraplegia. Robots used for training the arm include the MIT-MANUS, Arm Trainer, mirror-image motion enabler (MIME) robot, and the assisted rehabilitation and measurement (ARM) Guide. Robots that are used for lower-limb training are the Rehabot, Gait Trainer, Lokomat, LOPES Exoskeleton Robot, and Gait Assist Robot. Robot-aided therapy has enabled the functional training of the arm and the lower limbs in an effective, easy, and comfortable manner. Therefore, with this type of therapy, the patients can repeatedly undergo sufficient and accurate training for a prolonged period. However, evidence of the benefits of robot-aided training has not yet been established.

  14. Current status of robotic simulators in acquisition of robotic surgical skills.

    Science.gov (United States)

    Kumar, Anup; Smith, Roger; Patel, Vipul R

    2015-03-01

    This article provides an overview of the current status of simulator systems in robotic surgery training curriculum, focusing on available simulators for training, their comparison, new technologies introduced in simulation focusing on concepts of training along with existing challenges and future perspectives of simulator training in robotic surgery. The different virtual reality simulators available in the market like dVSS, dVT, RoSS, ProMIS and SEP have shown face, content and construct validity in robotic skills training for novices outside the operating room. Recently, augmented reality simulators like HoST, Maestro AR and RobotiX Mentor have been introduced in robotic training providing a more realistic operating environment, emphasizing more on procedure-specific robotic training . Further, the Xperience Team Trainer, which provides training to console surgeon and bed-side assistant simultaneously, has been recently introduced to emphasize the importance of teamwork and proper coordination. Simulator training holds an important place in current robotic training curriculum of future robotic surgeons. There is a need for more procedure-specific augmented reality simulator training, utilizing advancements in computing and graphical capabilities for new innovations in simulator technology. Further studies are required to establish its cost-benefit ratio along with concurrent and predictive validity.

  15. Implementasi Sensor Cahaya Sebagai Pengontrol Keseimbangan Robot Beroda Dua Menggunakan Kontroler PID

    Directory of Open Access Journals (Sweden)

    Barlian Henryranu P.

    2014-07-01

    Full Text Available Abstrak Dengan menggabungkan Sistem Kontrol, sensor dan motor Servo diharapkan Robot segway dapat direalisasikan. Dalam penelitian ini Sistem Kontrol yang digunakan adalah metode PID, sedangkan sensor yang akan digunakan adalah cahaya yang merepresentasikan sudut kemiringan terhadap bumi. Dengan input berupa Error sudut dan Del Error sudut terhadap bumi maka didapatkan hasil PID kontroller berupa angular rate yang digunakan untuk mengontrol kedua rodanya. Robot Segway memiliki rise time/fall time, settling time dan Robot Segway mampu mencapai kesetimbangannya kembali (steady state setelah mendapatkan gangguan dari luar. Kata kunci: Robot kesetimbangan, sensor cahaya, PID kontroler Abstract By combining the Control System, sensors and Servos motors are expected to Segway can be realized. In this research use the PID method, while the sensor to be used is the light that represents the elevation angle of the earth. With the input is angel Error and angel Del Error of the earth then the results obtained in the form of angular rate PID Controller is used to Control the two wheels. Segway Robot has a rise time / fall time, settling time and Segway Robot can reach the balance again (steady state after get a outside disturbance. Keywords: Self-balancing robot, light sensor, PID Controller

  16. Collaboration Layer for Robots in Mobile Ad-hoc Networks

    DEFF Research Database (Denmark)

    Borch, Ole; Madsen, Per Printz; Broberg, Jacob Honor´e

    2009-01-01

    networks to solve tasks collaboratively. In this proposal the Collaboration Layer is modelled to handle service and position discovery, group management, and synchronisation among robots, but the layer is also designed to be extendable. Based on this model of the Collaboration Layer, generic services...... are provided to the application running on the robot. The services are generic because they can be used by many different applications, independent of the task to be solved. Likewise, specific services are requested from the underlying Virtual Machine, such as broadcast, multicast, and reliable unicast....... A prototype of the Collaboration Layer has been developed to run in a simulated environment and tested in an evaluation scenario. In the scenario five robots solve the tasks of vacuum cleaning and entrance guarding, which involves the ability to discover potential co-workers, form groups, shift from one group...

  17. Process for anodizing a robotic device

    Science.gov (United States)

    Townsend, William T [Weston, MA

    2011-11-08

    A robotic device has a base and at least one finger having at least two links that are connected in series on rotary joints with at least two degrees of freedom. A brushless motor and an associated controller are located at each joint to produce a rotational movement of a link. Wires for electrical power and communication serially connect the controllers in a distributed control network. A network operating controller coordinates the operation of the network, including power distribution. At least one, but more typically two to five, wires interconnect all the controllers through one or more joints. Motor sensors and external world sensors monitor operating parameters of the robotic hand. The electrical signal output of the sensors can be input anywhere on the distributed control network. V-grooves on the robotic hand locate objects precisely and assist in gripping. The hand is sealed, immersible and has electrical connections through the rotary joints for anodizing in a single dunk without masking. In various forms, this intelligent, self-contained, dexterous hand, or combinations of such hands, can perform a wide variety of object gripping and manipulating tasks, as well as locomotion and combinations of locomotion and gripping.

  18. Simulation, Modeling, and Programming for Autonomous Robots : preface

    NARCIS (Netherlands)

    Brugali, Davide; Broenink, Johannes F.; Kroeger, Torsten; MacDonald, Bruce A.

    2014-01-01

    Robots are versatile machines that are increasingly being used not only to per- form dirty, dangerous, and dull tasks in manufacturing industries, but also to achieve societal objectives, such as enhancing safety in transportation, reducing the use of pesticide in agriculture, helping people with

  19. Spread of Cooking Bananas (Musa spp., genome ABB in a Traditional Plantain-Growing Area in Southeast Nigeria

    Directory of Open Access Journals (Sweden)

    Ezedinma, C.

    2002-01-01

    Full Text Available The study examined the level and rate of spread of cooking bananas (Musa spp., ABB genome to determine their success among the farmers. They were introduced in Southeastern Nigeria in the mid-1980s by the International Institute of Tropical Agriculture (IITA as an interim measure to reduce the incidence of black sigatoka disease on plantains. Data were collected, using a structured questionnaire, from 285 randomly selected farmers in 76 villages. Results of the study indicate that about 60% of the respondents have given out suckers to other fellow-farmers. On average, every "diffuser" distributed 8 cooking banana suckers to 5 new fellow-farmers. Primary and secondary diffusions accounted for 59% and 61% respectively; while inter-village diffusion accounted for about 50% of the movement of the suckers. The study also found that the demand for the crop has been increasing since its introduction in the region. These results indicate a high level of diffusion of the crop considering its newness in the region and that it is well accepted. They also suggest that the crop has the potential of supplementing plantain in food and income generation for the farmers in the region.

  20. A Human-Robot Interaction Perspective on Assistive and Rehabilitation Robotics.

    Science.gov (United States)

    Beckerle, Philipp; Salvietti, Gionata; Unal, Ramazan; Prattichizzo, Domenico; Rossi, Simone; Castellini, Claudio; Hirche, Sandra; Endo, Satoshi; Amor, Heni Ben; Ciocarlie, Matei; Mastrogiovanni, Fulvio; Argall, Brenna D; Bianchi, Matteo

    2017-01-01

    Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human-robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions.

  1. DSLs in robotics

    DEFF Research Database (Denmark)

    Schultz, Ulrik Pagh; Bordignon, Mirko; Stoy, Kasper

    2017-01-01

    Robotic systems blend hardware and software in a holistic way that intrinsically raises many crosscutting concerns such as concurrency, uncertainty, and time constraints. These concerns make programming robotic systems challenging as expertise from multiple domains needs to be integrated...... conceptually and technically. Programming languages play a central role in providing a higher level of abstraction. This briefing presents a case study on the evolution of domain-specific languages based on modular robotics. The case study on the evolution of domain-specific languages is based on a series...... of DSL prototypes developed over five years for the domain of modular, self-reconfigurable robots....

  2. Robots de servicio

    OpenAIRE

    Aracil, Rafael; Balaguer, Carlos; Armada, Manuel

    2008-01-01

    8 págs, 9 figs. El término Robots de Servicio apareció a finales de los años 80 como una necesidad de desarrollar máquinas y sistemas capaces de trabajar en entornos diferentes a los fabriles. Los Robots de Servicio tenían que poder trabajar en entornos noestructurados, en condiciones ambientales cambiantes y con una estrecha interacción con los humanos. En 1995 fue creado por la IEEE Robotics and Automation Society, el Technical Committee on Service Robots, y este comité definió en el año...

  3. Robotic arm

    International Nuclear Information System (INIS)

    Kwech, H.

    1989-01-01

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube is disclosed. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel. 23 figs

  4. Measuring Attitudes Towards Telepresence Robots

    OpenAIRE

    M Tsui, Katherine; Desai, Munjal; A. Yanco, Holly; Cramer, Henriette; Kemper, Nicander

    2011-01-01

    Studies using Nomura et al.’s “Negative Attitude toward Robots Scale” (NARS) [1] as an attitudinal measure have featured robots that were perceived to be autonomous, indepen- dent agents. State of the art telepresence robots require an explicit human-in-the-loop to drive the robot around. In this paper, we investigate if NARS can be used with telepresence robots. To this end, we conducted three studies in which people watched videos of telepresence robots (n=70), operated te...

  5. Robotic environments

    NARCIS (Netherlands)

    Bier, H.H.

    2011-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic architectural environments to be implemented and tested in the last decade in virtual and physical prototypes. These prototypes are incorporating sensing-actuating

  6. 2016 International Symposium on Experimental Robotics

    CERN Document Server

    Nakamura, Yoshihiko; Khatib, Oussama; Venture, Gentiane

    2017-01-01

    Experimental Robotics XV is the collection of papers presented at the International Symposium on Experimental Robotics, Roppongi, Tokyo, Japan on October 3-6, 2016. 73 scientific papers were selected and presented after peer review. The papers span a broad range of sub-fields in robotics including aerial robots, mobile robots, actuation, grasping, manipulation, planning and control and human-robot interaction, but shared cutting-edge approaches and paradigms to experimental robotics. The readers will find a breadth of new directions of experimental robotics. The International Symposium on Experimental Robotics is a series of bi-annual symposia sponsored by the International Foundation of Robotics Research, whose goal is to provide a forum dedicated to experimental robotics research. Robotics has been widening its scientific scope, deepening its methodologies and expanding its applications. However, the significance of experiments remains and will remain at the center of the discipline. The ISER gatherings are...

  7. An assigned responsibility system for robotic teleoperation control.

    Science.gov (United States)

    Small, Nicolas; Lee, Kevin; Mann, Graham

    2018-01-01

    This paper proposes an architecture that explores a gap in the spectrum of existing strategies for robot control mode switching in adjustable autonomy. In situations where the environment is reasonably known and/or predictable, pre-planning these control changes could relieve robot operators of the additional task of deciding when and how to switch. Such a strategy provides a clear division of labour between the automation and the human operator(s) before the job even begins, allowing for individual responsibilities to be known ahead of time, limiting confusion and allowing rest breaks to be planned. Assigned Responsibility is a new form of adjustable autonomy-based teleoperation that allows the selective inclusion of automated control elements at key stages of a robot operation plan's execution. Progression through these stages is controlled by automatic goal accomplishment tracking. An implementation is evaluated through engineering tests and a usability study, demonstrating the viability of this approach and offering insight into its potential applications.

  8. Haptic/graphic rehabilitation: integrating a robot into a virtual environment library and applying it to stroke therapy.

    Science.gov (United States)

    Sharp, Ian; Patton, James; Listenberger, Molly; Case, Emily

    2011-08-08

    Recent research that tests interactive devices for prolonged therapy practice has revealed new prospects for robotics combined with graphical and other forms of biofeedback. Previous human-robot interactive systems have required different software commands to be implemented for each robot leading to unnecessary developmental overhead time each time a new system becomes available. For example, when a haptic/graphic virtual reality environment has been coded for one specific robot to provide haptic feedback, that specific robot would not be able to be traded for another robot without recoding the program. However, recent efforts in the open source community have proposed a wrapper class approach that can elicit nearly identical responses regardless of the robot used. The result can lead researchers across the globe to perform similar experiments using shared code. Therefore modular "switching out"of one robot for another would not affect development time. In this paper, we outline the successful creation and implementation of a wrapper class for one robot into the open-source H3DAPI, which integrates the software commands most commonly used by all robots.

  9. Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned

    Science.gov (United States)

    Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich

    2013-01-01

    This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.

  10. Robot Control Overview: An Industrial Perspective

    Directory of Open Access Journals (Sweden)

    T. Brogårdh

    2009-07-01

    Full Text Available One key competence for robot manufacturers is robot control, defined as all the technologies needed to control the electromechanical system of an industrial robot. By means of modeling, identification, optimization, and model-based control it is possible to reduce robot cost, increase robot performance, and solve requirements from new automation concepts and new application processes. Model-based control, including kinematics error compensation, optimal servo reference- and feed-forward generation, and servo design, tuning, and scheduling, has meant a breakthrough for the use of robots in industry. Relying on this breakthrough, new automation concepts such as high performance multi robot collaboration and human robot collaboration can be introduced. Robot manufacturers can build robots with more compliant components and mechanical structures without loosing performance and robots can be used also in applications with very high performance requirements, e.g., in assembly, machining, and laser cutting. In the future it is expected that the importance of sensor control will increase, both with respect to sensors in the robot structure to increase the control performance of the robot itself and sensors outside the robot related to the applications and the automation systems. In this connection sensor fusion and learning functionalities will be needed together with the robot control for easy and intuitive installation, programming, and maintenance of industrial robots.

  11. Low cost submarine robot

    Directory of Open Access Journals (Sweden)

    Ponlachart Chotikarn

    2010-10-01

    Full Text Available A submarine robot is a semi-autonomous submarine robot used mainly for marine environmental research. We aim todevelop a low cost, semi-autonomous submarine robot which is able to travel underwater. The robot’s structure was designedand patented using a novel idea of the diving system employing a volume adjustment mechanism to vary the robot’s density.A light weight, flexibility and small structure provided by PVC can be used to construct the torpedo-liked shape robot.Hydraulic seal and O-ring rubbers are used to prevent water leaking. This robot is controlled by a wired communicationsystem.

  12. Vision-Based Robot Following Using PID Control

    Directory of Open Access Journals (Sweden)

    Chandra Sekhar Pati

    2017-06-01

    Full Text Available Applications like robots which are employed for shopping, porter services, assistive robotics, etc., require a robot to continuously follow a human or another robot. This paper presents a mobile robot following another tele-operated mobile robot based on a PID (Proportional–Integral-Differential controller. Here, we use two differential wheel drive robots; one is a master robot and the other is a follower robot. The master robot is manually controlled and the follower robot is programmed to follow the master robot. For the master robot, a Bluetooth module receives the user’s command from an android application which is processed by the master robot’s controller, which is used to move the robot. The follower robot receives the image from the Kinect sensor mounted on it and recognizes the master robot. The follower robot identifies the x, y positions by employing the camera and the depth by using the Kinect depth sensor. By identifying the x, y, and z locations of the master robot, the follower robot finds the angle and distance between the master and follower robot, which is given as the error term of a PID controller. Using this, the follower robot follows the master robot. A PID controller is based on feedback and tries to minimize the error. Experiments are conducted for two indigenously developed robots; one depicting a humanoid and the other a small mobile robot. It was observed that the follower robot was easily able to follow the master robot using well-tuned PID parameters.

  13. ROBOTICS 2014 - The International Conference on ROBOTICS, Bucharest, Romania, October 23-24, 2014

    Directory of Open Access Journals (Sweden)

    Iulian TABĂRĂ

    2014-12-01

    Full Text Available ROBOTICS 2014 was organized by Robotics Society of Romania (RSR with the support of University POLITEHNICA of Bucharest (UPB, Institute of Solid Mechanics of the Romanian Academy (ISMRA and Technical University of Civil Engineering Bucharest (TUCEB, Ministry of National Education (MNE, under the patronage of International Federation for the Promotion of Mechanism and Machine Science (IFToMM. The first scientific event in the field of Robotics in Romania was held at the University POLITEHNICA of Bucharest (UPB, in 1981, by Professor Chrisitan PELECUDI, head of the Mechanisms and Robots research and design team MERO (MEchanisms and RObots and was named "National Symposium of Robotics ". Since the first edition have been held in Romania various scientific events dedicated to Robotics under the name of National Seminars (first fifteen events, since 1981 and National and International Conferences (last five editions. This is the 22nd edition of these scientific events, the first three (1981, 1982, and 1983 being held at the Polytechnic University of Bucharest.

  14. Robotic hand with modular extensions

    Science.gov (United States)

    Salisbury, Curt Michael; Quigley, Morgan

    2015-01-20

    A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.

  15. Physical Human Robot Interaction for a Wall Mounting Robot - External Force Estimation

    DEFF Research Database (Denmark)

    Alonso García, Alejandro; Villarmarzo Arruñada, Noelia; Pedersen, Rasmus

    2018-01-01

    The use of collaborative robots enhances human capabilities, leading to better working conditions and increased productivity. In building construction, such robots are needed, among other tasks, to install large glass panels, where the robot takes care of the heavy lifting part of the job while...

  16. Automation and robotics technology for intelligent mining systems

    Science.gov (United States)

    Welsh, Jeffrey H.

    1989-01-01

    The U.S. Bureau of Mines is approaching the problems of accidents and efficiency in the mining industry through the application of automation and robotics to mining systems. This technology can increase safety by removing workers from hazardous areas of the mines or from performing hazardous tasks. The short-term goal of the Automation and Robotics program is to develop technology that can be implemented in the form of an autonomous mining machine using current continuous mining machine equipment. In the longer term, the goal is to conduct research that will lead to new intelligent mining systems that capitalize on the capabilities of robotics. The Bureau of Mines Automation and Robotics program has been structured to produce the technology required for the short- and long-term goals. The short-term goal of application of automation and robotics to an existing mining machine, resulting in autonomous operation, is expected to be accomplished within five years. Key technology elements required for an autonomous continuous mining machine are well underway and include machine navigation systems, coal-rock interface detectors, machine condition monitoring, and intelligent computer systems. The Bureau of Mines program is described, including status of key technology elements for an autonomous continuous mining machine, the program schedule, and future work. Although the program is directed toward underground mining, much of the technology being developed may have applications for space systems or mining on the Moon or other planets.

  17. Robotically enhanced rubber hand illusion.

    Science.gov (United States)

    Arata, Jumpei; Hattori, Masashi; Ichikawa, Shohei; Sakaguchi, Masamichi

    2014-01-01

    The rubber hand illusion is a well-known multisensory illusion. In brief, watching a rubber hand being stroked by a paintbrush while one's own unseen hand is synchronously stroked causes the rubber hand to be attributed to one's own body and to "feel like it's my hand." The rubber hand illusion is thought to be triggered by the synchronized tactile stimulation of both the subject's hand and the fake hand. To extend the conventional rubber hand illusion, we introduce robotic technology in the form of a master-slave telemanipulator. The developed one degree-of-freedom master-slave system consists of an exoskeleton master equipped with an optical encoder that is worn on the subject's index finger and a motor-actuated index finger on the rubber hand, which allows the subject to perform unilateral telemanipulation. The moving rubber hand illusion has been studied by several researchers in the past with mechanically connected rigs between the subject's body and the fake limb. The robotic instruments let us investigate the moving rubber hand illusion with less constraints, thus behaving closer to the classic rubber hand illusion. In addition, the temporal delay between the body and the fake limb can be precisely manipulated. The experimental results revealed that the robotic instruments significantly enhance the rubber hand illusion. The time delay is significantly correlated with the effect of the multisensory illusion, and the effect significantly decreased at time delays over 100 ms. These findings can potentially contribute to the investigations of neural mechanisms in the field of neuroscience and of master-slave systems in the field of robotics.

  18. Vision-Based Robot Following Using PID Control

    OpenAIRE

    Chandra Sekhar Pati; Rahul Kala

    2017-01-01

    Applications like robots which are employed for shopping, porter services, assistive robotics, etc., require a robot to continuously follow a human or another robot. This paper presents a mobile robot following another tele-operated mobile robot based on a PID (Proportional–Integral-Differential) controller. Here, we use two differential wheel drive robots; one is a master robot and the other is a follower robot. The master robot is manually controlled and the follower robot is programmed to ...

  19. Robot Tracer with Visual Camera

    Science.gov (United States)

    Jabbar Lubis, Abdul; Dwi Lestari, Yuyun; Dafitri, Haida; Azanuddin

    2017-12-01

    Robot is a versatile tool that can function replace human work function. The robot is a device that can be reprogrammed according to user needs. The use of wireless networks for remote monitoring needs can be utilized to build a robot that can be monitored movement and can be monitored using blueprints and he can track the path chosen robot. This process is sent using a wireless network. For visual robot using high resolution cameras to facilitate the operator to control the robot and see the surrounding circumstances.

  20. Robotics for nuclear power plants

    International Nuclear Information System (INIS)

    Shiraiwa, Takanori; Watanabe, Atsuo; Miyasawa, Tatsuo

    1984-01-01

    Demand for robots in nuclear power plants is increasing of late in order to reduce workers' exposure to radiations. Especially, owing to the progress of microelectronics and robotics, earnest desire is growing for the advent of intellecturized robots that perform indeterminate and complicated security work. Herein represented are the robots recently developed for nuclear power plants and the review of the present status of robotics. (author)

  1. Robotics for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Shiraiwa, Takanori; Watanabe, Atsuo; Miyasawa, Tatsuo

    1984-10-01

    Demand for robots in nuclear power plants is increasing of late in order to reduce workers' exposure to radiations. Especially, owing to the progress of microelectronics and robotics, earnest desire is growing for the advent of intellecturized robots that perform indeterminate and complicated security work. Herein represented are the robots recently developed for nuclear power plants and the review of the present status of robotics.

  2. 30 Years of Robotic Surgery.

    Science.gov (United States)

    Leal Ghezzi, Tiago; Campos Corleta, Oly

    2016-10-01

    The idea of reproducing himself with the use of a mechanical robot structure has been in man's imagination in the last 3000 years. However, the use of robots in medicine has only 30 years of history. The application of robots in surgery originates from the need of modern man to achieve two goals: the telepresence and the performance of repetitive and accurate tasks. The first "robot surgeon" used on a human patient was the PUMA 200 in 1985. In the 1990s, scientists developed the concept of "master-slave" robot, which consisted of a robot with remote manipulators controlled by a surgeon at a surgical workstation. Despite the lack of force and tactile feedback, technical advantages of robotic surgery, such as 3D vision, stable and magnified image, EndoWrist instruments, physiologic tremor filtering, and motion scaling, have been considered fundamental to overcome many of the limitations of the laparoscopic surgery. Since the approval of the da Vinci(®) robot by international agencies, American, European, and Asian surgeons have proved its factibility and safety for the performance of many different robot-assisted surgeries. Comparative studies of robotic and laparoscopic surgical procedures in general surgery have shown similar results with regard to perioperative, oncological, and functional outcomes. However, higher costs and lack of haptic feedback represent the major limitations of current robotic technology to become the standard technique of minimally invasive surgery worldwide. Therefore, the future of robotic surgery involves cost reduction, development of new platforms and technologies, creation and validation of curriculum and virtual simulators, and conduction of randomized clinical trials to determine the best applications of robotics.

  3. Human Robotic Systems (HRS): Controlling Robots over Time Delay Element

    Data.gov (United States)

    National Aeronautics and Space Administration — This element involves the development of software that enables easier commanding of a wide range of NASA relevant robots through the Robot Application Programming...

  4. Adaptive training algorithm for robot-assisted upper-arm rehabilitation, applicable to individualised and therapeutic human-robot interaction.

    Science.gov (United States)

    Chemuturi, Radhika; Amirabdollahian, Farshid; Dautenhahn, Kerstin

    2013-09-28

    influence of the gravity on the direction of the movement. The GENTLE/A system was able to adapt so that the duration required to execute point-to-point movement was according to the leading or lagging performance of the user with respect to the robot. This adaptability could be useful in the clinical settings when stroke subjects interact with the system and could also serve as an assessment parameter across various interaction sessions. As the system adapts to user input, and as the task becomes easier through practice, the robot would auto-tune for more demanding and challenging interactions. The improvement in performance of the participants in an embedded environment when compared to a virtual environment also shows promise for clinical applicability, to be tested in due time. Studying the physiology of upper arm to understand the muscle groups involved, and their influence on various movements executed during this study forms a key part of our future work.

  5. Advances in robot kinematics

    CERN Document Server

    Khatib, Oussama

    2014-01-01

    The topics addressed in this book cover the whole range of kinematic analysis, synthesis and design and consider robotic systems possessing serial, parallel and cable driven mechanisms. The robotic systems range from being less than fully mobile to kinematically redundant to overconstrained.  The fifty-six contributions report the latest results in robot kinematics with emphasis on emerging areas such as design and control of humanoids or humanoid subsystems. The book is of interest to researchers wanting to bring their knowledge up to date regarding modern topics in one of the basic disciplines in robotics, which relates to the essential property of robots, the motion of mechanisms.

  6. Effect of cognitive biases on human-robot interaction: a case study of robot's misattribution

    OpenAIRE

    Biswas, Mriganka; Murray, John

    2014-01-01

    This paper presents a model for developing long-term human-robot interactions and social relationships based on the principle of 'human' cognitive biases applied to a robot. The aim of this work is to study how a robot influenced with human ‘misattribution’ helps to build better human-robot interactions than unbiased robots. The results presented in this paper suggest that it is important to know the effect of cognitive biases in human characteristics and interactions in order to better u...

  7. Robotic systems in spine surgery.

    Science.gov (United States)

    Onen, Mehmet Resid; Naderi, Sait

    2014-01-01

    Surgical robotic systems have been available for almost twenty years. The first surgical robotic systems were designed as supportive systems for laparoscopic approaches in general surgery (the first procedure was a cholecystectomy in 1987). The da Vinci Robotic System is the most common system used for robotic surgery today. This system is widely used in urology, gynecology and other surgical disciplines, and recently there have been initial reports of its use in spine surgery, for transoral access and anterior approaches for lumbar inter-body fusion interventions. SpineAssist, which is widely used in spine surgery, and Renaissance Robotic Systems, which are considered the next generation of robotic systems, are now FDA approved. These robotic systems are designed for use as guidance systems in spine instrumentation, cement augmentations and biopsies. The aim is to increase surgical accuracy while reducing the intra-operative exposure to harmful radiation to the patient and operating team personnel during the intervention. We offer a review of the published literature related to the use of robotic systems in spine surgery and provide information on using robotic systems.

  8. Robots in the Roses

    OpenAIRE

    2014-01-01

    2014-04 Robots in the Roses A CRUSER Sponsored Event. The 4th Annual Robots in the Roses provides a venue for Faculty & NPS Students to showcase unmanned systems research (current or completed) and recruit NPS Students to join in researching on your project. Posters, robots, vehicles, videos, and even just plain humans welcome! Families are welcome to attend Robots in the Roses as we'll have a STEM activity for children to participate in.

  9. Robot Motion and Control 2011

    CERN Document Server

    2012-01-01

    Robot Motion Control 2011 presents very recent results in robot motion and control. Forty short papers have been chosen from those presented at the sixth International Workshop on Robot Motion and Control held in Poland in June 2011. The authors of these papers have been carefully selected and represent leading institutions in this field. The following recent developments are discussed: • Design of trajectory planning schemes for holonomic and nonholonomic systems with optimization of energy, torque limitations and other factors. • New control algorithms for industrial robots, nonholonomic systems and legged robots. • Different applications of robotic systems in industry and everyday life, like medicine, education, entertainment and others. • Multiagent systems consisting of mobile and flying robots with their applications The book is suitable for graduate students of automation and robotics, informatics and management, mechatronics, electronics and production engineering systems as well as scientists...

  10. Full autonomous microline trace robot

    Science.gov (United States)

    Yi, Deer; Lu, Si; Yan, Yingbai; Jin, Guofan

    2000-10-01

    Optoelectric inspection may find applications in robotic system. In micro robotic system, smaller optoelectric inspection system is preferred. However, as miniaturizing the size of the robot, the number of the optoelectric detector becomes lack. And lack of the information makes the micro robot difficult to acquire its status. In our lab, a micro line trace robot has been designed, which autonomous acts based on its optoelectric detection. It has been programmed to follow a black line printed on the white colored ground. Besides the optoelectric inspection, logical algorithm in the microprocessor is also important. In this paper, we propose a simply logical algorithm to realize robot's intelligence. The robot's intelligence is based on a AT89C2051 microcontroller which controls its movement. The technical details of the micro robot are as follow: dimension: 30mm*25mm*35*mm; velocity: 60mm/s.

  11. QFD-based conceptual design of an autonomous underwater robot

    Directory of Open Access Journals (Sweden)

    Thip Pasawang

    2015-12-01

    Full Text Available Autonomous underwater robots in the past few years have been designed according to the individual concepts and experiences of the researchers. To design a robot, which meets all the requirements of potential users, is an advanced work. Hence, a systematic design method that could include users’ preferences and requirements is needed. This paper presents the quality function deployment (QFD technique to design an autonomous underwater robot focusing on the Thai Navy military mission. Important user requirements extracted from the QFD method are the ability to record videos, operating at depth up to 10 meters, the ability to operate remotely with cable and safety concerns related to water leakages. Less important user requirements include beauty, using renewable energy, operating remotely with radio and ability to work during night time. The important design parameters derived from the user requirements are a low cost-controller, an autonomous control algorithm, a compass sensor and vertical gyroscope, and a depth sensor. Of low-importance ranked design parameters include the module design, use clean energy, a low noise electric motor, remote surveillance design, a pressure hull, and a beautiful hull form design. The study results show the feasibility of using QFD techniques to systematically design the autonomous underwater robot to meet user requirements. Mapping between the design and expected parameters and a conceptual drafting design of an autonomous underwater robot are also presented.

  12. Rehabilitation robotics.

    Science.gov (United States)

    Krebs, H I; Volpe, B T

    2013-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician's toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual's functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Robots of the Future

    Indian Academy of Sciences (India)

    two main types of robots: industrial robots, and autonomous robots. .... position); it also has a virtual CPU with two stacks and three registers that hold 32-bit strings. Each item ..... just like we can aggregate images, text, and information from.

  14. A Human–Robot Interaction Perspective on Assistive and Rehabilitation Robotics

    Directory of Open Access Journals (Sweden)

    Philipp Beckerle

    2017-05-01

    Full Text Available Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human–robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions.

  15. A Human–Robot Interaction Perspective on Assistive and Rehabilitation Robotics

    Science.gov (United States)

    Beckerle, Philipp; Salvietti, Gionata; Unal, Ramazan; Prattichizzo, Domenico; Rossi, Simone; Castellini, Claudio; Hirche, Sandra; Endo, Satoshi; Amor, Heni Ben; Ciocarlie, Matei; Mastrogiovanni, Fulvio; Argall, Brenna D.; Bianchi, Matteo

    2017-01-01

    Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human–robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions. PMID:28588473

  16. Advances in Robotics and Virtual Reality

    CERN Document Server

    Hassanien, Aboul

    2012-01-01

    A beyond human knowledge and reach, robotics is strongly involved in tackling challenges of new emerging multidisciplinary fields. Together with humans, robots are busy exploring and working on the new generation of ideas and problems whose solution is otherwise impossible to find. The future is near when robots will sense, smell and touch people and their lives. Behind this practical aspect of human-robotics, there is a half a century spanned robotics research, which transformed robotics into a modern science. The Advances in Robotics and Virtual Reality is a compilation of emerging application areas of robotics. The book covers robotics role in medicine, space exploration and also explains the role of virtual reality as a non-destructive test bed which constitutes a premise of further advances towards new challenges in robotics. This book, edited by two famous scientists with the support of an outstanding team of fifteen authors, is a well suited reference for robotics researchers and scholars from related ...

  17. Design of a Two-Step Calibration Method of Kinematic Parameters for Serial Robots

    Science.gov (United States)

    WANG, Wei; WANG, Lei; YUN, Chao

    2017-03-01

    Serial robots are used to handle workpieces with large dimensions, and calibrating kinematic parameters is one of the most efficient ways to upgrade their accuracy. Many models are set up to investigate how many kinematic parameters can be identified to meet the minimal principle, but the base frame and the kinematic parameter are indistinctly calibrated in a one-step way. A two-step method of calibrating kinematic parameters is proposed to improve the accuracy of the robot's base frame and kinematic parameters. The forward kinematics described with respect to the measuring coordinate frame are established based on the product-of-exponential (POE) formula. In the first step the robot's base coordinate frame is calibrated by the unit quaternion form. The errors of both the robot's reference configuration and the base coordinate frame's pose are equivalently transformed to the zero-position errors of the robot's joints. The simplified model of the robot's positioning error is established in second-power explicit expressions. Then the identification model is finished by the least square method, requiring measuring position coordinates only. The complete subtasks of calibrating the robot's 39 kinematic parameters are finished in the second step. It's proved by a group of calibration experiments that by the proposed two-step calibration method the average absolute accuracy of industrial robots is updated to 0.23 mm. This paper presents that the robot's base frame should be calibrated before its kinematic parameters in order to upgrade its absolute positioning accuracy.

  18. Can Social Robots Qualify for Moral Consideration? Reframing the Question about Robot Rights

    Directory of Open Access Journals (Sweden)

    Herman T. Tavani

    2018-03-01

    Full Text Available A controversial question that has been hotly debated in the emerging field of robot ethics is whether robots should be granted rights. Yet, a review of the recent literature in that field suggests that this seemingly straightforward question is far from clear and unambiguous. For example, those who favor granting rights to robots have not always been clear as to which kinds of robots should (or should not be eligible; nor have they been consistent with regard to which kinds of rights—civil, legal, moral, etc.—should be granted to qualifying robots. Also, there has been considerable disagreement about which essential criterion, or cluster of criteria, a robot would need to satisfy to be eligible for rights, and there is ongoing disagreement as to whether a robot must satisfy the conditions for (moral agency to qualify either for rights or (at least some level of moral consideration. One aim of this paper is to show how the current debate about whether to grant rights to robots would benefit from an analysis and clarification of some key concepts and assumptions underlying that question. My principal objective, however, is to show why we should reframe that question by asking instead whether some kinds of social robots qualify for moral consideration as moral patients. In arguing that the answer to this question is “yes,” I draw from some insights in the writings of Hans Jonas to defend my position.

  19. Multi-Robot Assembly Strategies and Metrics

    Science.gov (United States)

    MARVEL, JEREMY A.; BOSTELMAN, ROGER; FALCO, JOE

    2018-01-01

    We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies. PMID:29497234

  20. Multi-Robot Assembly Strategies and Metrics.

    Science.gov (United States)

    Marvel, Jeremy A; Bostelman, Roger; Falco, Joe

    2018-02-01

    We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies.

  1. Present and Future of Nuclear Robotics

    International Nuclear Information System (INIS)

    Bielza Ciaz-Caneja, M.; Carmena Servet, P.; Gomez Santamaria, J.; Gonzalez Fernandez, J.; Izquierdo Mendoza, J.A.; Linares Pintos, F.; Martinez Gonzalez; Muntion Ruesgas, A.; Serna Oliveira, M.A.

    1997-01-01

    New technologies have increased the use of robotic systems in fields other than Industry. As a result, research and developers are focusing their interest in concepts like Intelligent Robotics and Robotics in Services. This paper describes the use of Robotics in Nuclear facilities, where robots can be used to protect workers in high radiation areas, to reduce total worker exposure and to minimise downtime. First, the structure of robot systems is introduced and the benefits of nuclear robots is presented. Next, the paper describes some specific nuclear applications and the families of nuclear robots present in the market. After that, a section is devoted to Nuclear Robotics in Spain, with emphasis in some of the developments being carried out at present. Finally, some reflections about the future of robots in Nuclear Industry are offered. (Author) 18 refs

  2. Dynamic Modelling of a CPG-Controlled Amphibious Biomimetic Swimming Robot

    Directory of Open Access Journals (Sweden)

    Rui Ding

    2013-04-01

    Full Text Available This paper focuses on the modelling and control problems of a self-propelled, multimodal amphibious robot. Inspired by the undulatory body motions of fish and dolphins, the amphibious robot propels itself underwater by oscillations of several modular fish-like propelling units coupled with a pair of pectoral fins capable of non-continuous 360 degree rotation. In order to mimic fish-like undulating propulsion, a control architecture based on Central Pattern Generator (CPG is applied to the amphibious robot for robust swimming gaits, including forward and backward swimming and turning, etc. With the simplification of the robot as a multi-link serial mechanism, a Lagrangian function is employed to establish the hydrodynamic model for steady swimming. The CPG motion control law is then imported into the Lagrangian-based dynamic model, where an associated system of kinematics and dynamics is formed to solve real-time movements and, further, to guide the exploration of the CPG parameters and steady locomotion gaits. Finally, comparative results between the simulations and experiments are provided to show the effectiveness of the built control models.

  3. A psychology based approach for longitudinal development in cognitive robotics

    Directory of Open Access Journals (Sweden)

    James eLaw

    2014-01-01

    Full Text Available A major challenge in robotics is the ability to learn, from novel experiences, new behaviour that is useful for achieving new goals and skills. Autonomous systems must be able to learn solely through the environment, thus ruling out a priori task knowledge, tuning, extensive training, or other forms of pre-programming. Learning must also be cumulative and incremental, as complex skills are built on top of primitive skills. Additionally, it must be driven by intrinsic motivation because formative experience is gained through autonomous activity, even in the absence of extrinsic goals or tasks. This paper presents an approach to these issues through robotic implementations inspired by the learning behaviour of human infants. We describe an approach to developmental learning and present results from a demonstration of longitudinal development on an iCub humanoid robot. The results cover the rapid emergence of staged behaviour, the role of constraints in development, the effect of bootstrapping between stages, and the use of a schema memory of experiential fragments in learning new skills. The context is a longitudinalexperiment in which the robot advanced from uncontrolled motor babbling to skilled hand/eyeintegrated reaching and basic manipulation of objects. This approach offers promise for furtherfast and effective sensory-motor learning techniques for robotic learning.

  4. Architectures of soft robotic locomotion enabled by simple mechanical principles.

    Science.gov (United States)

    Zhu, Liangliang; Cao, Yunteng; Liu, Yilun; Yang, Zhe; Chen, Xi

    2017-06-28

    In nature, a variety of limbless locomotion patterns flourish, from the small or basic life forms (Escherichia coli, amoebae, etc.) to the large or intelligent creatures (e.g., slugs, starfishes, earthworms, octopuses, jellyfishes, and snakes). Many bioinspired soft robots based on locomotion have been developed in the past few decades. In this work, based on the kinematics and dynamics of two representative locomotion modes (i.e., worm-like crawling and snake-like slithering), we propose a broad set of innovative designs for soft mobile robots through simple mechanical principles. Inspired by and going beyond the existing biological systems, these designs include 1-D (dimensional), 2-D, and 3-D robotic locomotion patterns enabled by the simple actuation of continuous beams. We report herein over 20 locomotion modes achieving various locomotion functions, including crawling, rising, running, creeping, squirming, slithering, swimming, jumping, turning, turning over, helix rolling, wheeling, etc. Some are able to reach high speed, high efficiency, and overcome obstacles. All these locomotion strategies and functions can be integrated into a simple beam model. The proposed simple and robust models are adaptive for severe and complex environments. These elegant designs for diverse robotic locomotion patterns are expected to underpin future deployments of soft robots and to inspire a series of advanced designs.

  5. Robots as Confederates

    DEFF Research Database (Denmark)

    Fischer, Kerstin

    2016-01-01

    This paper addresses the use of robots in experimental research for the study of human language, human interaction, and human nature. It is argued that robots make excellent confederates that can be completely controlled, yet which engage human participants in interactions that allow us to study...... numerous linguistic and psychological variables in isolation in an ecologically valid way. Robots thus combine the advantages of observational studies and of controlled experimentation....

  6. Mechanical design and optimal control of humanoid robot (TPinokio

    Directory of Open Access Journals (Sweden)

    Teck Chew Wee

    2014-04-01

    Full Text Available The mechanical structure and the control of the locomotion of bipedal humanoid is an important and challenging domain of research in bipedal robots. Accurate models of the kinematics and dynamics of the robot are essential to achieve bipedal locomotion. Toe-foot walking produces a more natural and faster walking speed and it is even possible to perform stretch knee walking. This study presents the mechanical design of a toe-feet bipedal, TPinokio and the implementation of some optimal walking gait generation methods. The optimality in the gait trajectory is achieved by applying augmented model predictive control method and the pole-zero cancellation method, taken into consideration of a trade-off between walking speed and stability. The mechanism of the TPinokio robot is designed in modular form, so that its kinematics can be modelled accurately into a multiple point-mass system, its dynamics is modelled using the single and double mass inverted pendulum model and zero-moment-point concept. The effectiveness of the design and control technique is validated by simulation testing with the robot walking on flat surface and climbing stairs.

  7. Developing new behavior strategies of robot soccer team SjF TUKE Robotics

    Directory of Open Access Journals (Sweden)

    Mikuláš Hajduk

    2016-09-01

    Full Text Available There are too many types of robotic soccer approaches at present. SjF TUKE Robotics, who won robot soccer world tournament for year 2010 in category MiroSot, is a team with multiagent system approach. They have one main agent (master and five agent players, represented by robots. There is a point of view, in the article, for code programmer how to create new behavior strategies by creating a new code for master. There is a methodology how to prepare and create it following some rules.

  8. Learning robotics using Python

    CERN Document Server

    Joseph, Lentin

    2015-01-01

    If you are an engineer, a researcher, or a hobbyist, and you are interested in robotics and want to build your own robot, this book is for you. Readers are assumed to be new to robotics but should have experience with Python.

  9. Open middleware for robotics

    CSIR Research Space (South Africa)

    Namoshe, M

    2008-12-01

    Full Text Available and their technologies within the field of multi-robot systems to ease the difficulty of realizing robot applications. And lastly, an example of algorithm development for multi-robot co-operation using one of the discussed software architecture is presented...

  10. Design-Oriented Enhanced Robotics Curriculum

    Science.gov (United States)

    Yilmaz, M.; Ozcelik, S.; Yilmazer, N.; Nekovei, R.

    2013-01-01

    This paper presents an innovative two-course, laboratory-based, and design-oriented robotics educational model. The robotics curriculum exposed senior-level undergraduate students to major robotics concepts, and enhanced the student learning experience in hybrid learning environments by incorporating the IEEE Region-5 annual robotics competition…

  11. Interaction with Soft Robotic Tentacles

    DEFF Research Database (Denmark)

    Jørgensen, Jonas

    2018-01-01

    Soft robotics technology has been proposed for a number of applications that involve human-robot interaction. In this tabletop demonstration it is possible to interact with two soft robotic platforms that have been used in human-robot interaction experiments (also accepted to HRI'18 as a Late...

  12. Robot Games for Elderly

    DEFF Research Database (Denmark)

    Hansen, Søren Tranberg

    2011-01-01

    improve a person’s overall health, and this thesis investigates how games based on an autonomous, mobile robot platform, can be used to motivate elderly to move physically while playing. The focus of the investigation is on the development of games for an autonomous, mobile robot based on algorithms using...... spatio-temporal information about player behaviour - more specifically, I investigate three types of games each using a different control strategy. The first game is based on basic robot control which allows the robot to detect and follow a person. A field study in a rehabilitation centre and a nursing....... The robot facilitates interaction, and the study suggests that robot based games potentially can be used for training balance and orientation. The second game consists in an adaptive game algorithm which gradually adjusts the game challenge to the mobility skills of the player based on spatio...

  13. Robot Comedy Lab: Experimenting with the Social Dynamics of Live Performance

    Directory of Open Access Journals (Sweden)

    Kleomenis eKatevas

    2015-08-01

    Full Text Available The success of live comedy depends on a performer's ability to 'work' an audience. Ethnographic studies suggest that this involves the co-ordinated use of subtle social signals such as body orientation, gesture, gaze by both performers and audience members. Robots provide a unique opportunity to test the effects of these signals experimentally. Using a life-size humanoid robot, programmed to perform a stand-up comedy routine, we manipulated the robot's patterns of gesture and gaze and examined their effects on the real-time responses of a live audience. The strength and type of responses were captured using SHOREtm computer vision analytics. The results highlight the complex, reciprocal social dynamics of performer and audience behavior. People respond more positively when the robot looks at them, negatively when it looks away and that different performative gestures elicit systematically different patterns of audience response. This demonstrates that the responses of individual audience members depend on the specific interaction they're having with the performer. This work provides insights into how to design more effective, more socially engaging, forms of robot interaction that can be used in a variety of service contexts.

  14. Lessons of nuclear robot history

    International Nuclear Information System (INIS)

    Oomichi, Takeo

    2014-01-01

    Severe accidents occurred at Fukushima Daiichi Nuclear Power Station stirred up people's great expectation of nuclear robot's deployment. However unexpected nuclear disaster, especially rupture of reactor building caused by core meltdown and hydrogen explosion, made it quite difficult to introduce nuclear robot under high radiation environment to cease accidents and dispose damaged reactor. Robotics Society of Japan (RSJ) set up committee to look back upon lessons learned from 50 year's past experience of nuclear robot development and summarized 'Lessons of nuclear robot history', which was shown on the home page website of RSJ. This article outlined it with personal comment. History of nuclear robot developed for inspection and maintenance at normal operation and for specific required response at nuclear accidents was reviewed with many examples at home and abroad for TMI, Chernobyl and JCO accidents. Present state of Fukushima accident response robot's introduction and development was also described with some comments on nuclear robot development from academia based on lessons. (T. Tanaka)

  15. The Power of Educational Robotics

    Science.gov (United States)

    Cummings, Timothy

    The purpose of this action research project was to investigate the impact a students' participation in educational robotics has on his or her performance in the STEM subjects. This study attempted to utilize educational robotics as a method for increasing student achievement and engagement in STEM subjects. Over the course of 12 weeks, an after-school robotics program was offered to students. Guided by the standards and principles of VEX IQ, a leading resource in educational robotics, students worked in collaboration on creating a design for their robot, building and testing their robot, and competing in the VEX IQ Crossover Challenge. Student data was gathered through a pre-participation survey, observations from the work they performed in robotics club, their performance in STEM subject classes, and the analysis of their end-of-the-year report card. Results suggest that the students who participate in robotics club experienced a positive impact on their performance in STEM subject classes.

  16. Singularity now: using the ventricular assist device as a model for future human-robotic physiology.

    Science.gov (United States)

    Martin, Archer K

    2016-04-01

    In our 21 st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today's world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named "IshBot") can best be studied in ventricular assist devices - VAD.

  17. Adaptive Robotic Fabrication for Conditions of Material Inconsistency

    DEFF Research Database (Denmark)

    Nicholas, Paul; Zwierzycki, Mateusz; Clausen Nørgaard, Esben

    2017-01-01

    This paper describes research that addresses the variable behaviour of industrial quality metals and the extension of computational techniques into the fabrication process. It describes the context of robotic incremental sheet metal forming, a freeform method for imparting 3D form onto a 2D thin...... and the fabrication process? Here, two adaptive methods are presented that aim to increase forming accuracy with only a minimum increase in fabrication time, and that maintain ongoing input from the results of the fabrication process. The first method is an online sensor-based strategy and the second method...

  18. Clean-room robot implementation

    International Nuclear Information System (INIS)

    Comeau, J.L.

    1982-01-01

    A robot has been incorporated in a clean room operation in which vacuum tube parts are cleaned just prior to final assembly with a 60 lb/in 2 blast of argon gas. The robot is programmed to pick up the parts, manipulate/rotate them as necessary in the jet pattern and deposit them in a tray precleaned by the robot. A carefully studied implementation plan was followed in the procurement, installation, modification and programming of the robot facility. An unusual configuration of one tube part required a unique gripper design. A study indicated that the tube parts processed by the robot are 12% cleaner than those manually cleaned by an experienced operator

  19. Referees check robots after qualifying match at regional robotic competition at KSC

    Science.gov (United States)

    1999-01-01

    Referees check the robots on the floor of the playing field after a qualifying match of the 1999 Southeastern Regional robotic competition at Kennedy Space Center Visitor Complex . Thirty schools from around the country have converged at KSC for the event that pits gladiator robots against each other in an athletic-style competition. The robots have to retrieve pillow- like disks from the floor, as well as climb onto the platform (with flags) and raise the cache of pillows to a height of eight feet. KSC is hosting the event being sponsored by the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers.

  20. Design and Implementation of a New DELTA Parallel Robot in Robotics Competitions

    Directory of Open Access Journals (Sweden)

    Jonqlan Lin

    2015-10-01

    Full Text Available This investigation concerns the design and implementation of the DELTA parallel robot, covering the entire mechatronic process, involving kinematics, control design and optimizing methods. To accelerate the construction of the robot, 3D printing is used to fabricate end-effector parts. The parts are modular, low-cost, reconfigurable and can be assembled in less time than is required for conventionally fabricated parts. The controller, including the control algorithm and human-machine interface (HMI, is coded using the Borland C++ Builder 6 Personal software environment. The integration of the motion controller with image recognition into an opto-mechatronics system is presented. The robot system has been entered into robotic competitions in Taiwan. The experimental results reveal that the proposed DELTA robot completed the tasks in those competitions successfully.

  1. Working with Robots: The Real Story.

    Science.gov (United States)

    Fey, Carol

    1986-01-01

    Looks at some of the realities of life with robots: robots aren't replacing entire shifts of workers; a robot is just a tool; regular plant personnel maintain robots; and job category and seniority dictate who is trained to maintain robots. (CT)

  2. Robots: An Impact on Education.

    Science.gov (United States)

    Blaesi, LaVon; Maness, Marion

    1984-01-01

    Provides background information on robotics and robots, considering impact of robots on the workplace and concerns of the work force. Discusses incorporating robotics into the educational system at all levels, exploring industry-education partnerships to fund introduction of new technology into the curriculum. New funding sources and funding…

  3. Jumping robots: a biomimetic solution to locomotion across rough terrain.

    Science.gov (United States)

    Armour, Rhodri; Paskins, Keith; Bowyer, Adrian; Vincent, Julian; Megill, William; Bomphrey, Richard

    2007-09-01

    This paper introduces jumping robots as a means to traverse rough terrain; such terrain can pose problems for traditional wheeled, tracked and legged designs. The diversity of jumping mechanisms found in nature is explored to support the theory that jumping is a desirable ability for a robot locomotion system to incorporate, and then the size-related constraints are determined from first principles. A series of existing jumping robots are presented and their performance summarized. The authors present two new biologically inspired jumping robots, Jollbot and Glumper, both of which incorporate additional locomotion techniques of rolling and gliding respectively. Jollbot consists of metal hoop springs forming a 300 mm diameter sphere, and when jumping it raises its centre of gravity by 0.22 m and clears a height of 0.18 m. Glumper is of octahedral shape, with four 'legs' that each comprise two 500 mm lengths of CFRP tube articulating around torsion spring 'knees'. It is able to raise its centre of gravity by 1.60 m and clears a height of 1.17 m. The jumping performance of the jumping robot designs presented is discussed and compared against some specialized jumping animals. Specific power output is thought to be the performance-limiting factor for a jumping robot, which requires the maximization of the amount of energy that can be stored together with a minimization of mass. It is demonstrated that this can be achieved through optimization and careful materials selection.

  4. Robotics in hazardous waste management

    International Nuclear Information System (INIS)

    Mahalingam, R.J.; Jayaraman, K.M.; Cunningham, A.J.; Meieran, H.B.; Zafrir, H.; Kroitoru, L.

    1994-01-01

    This paper addresses the advent of mobile robotic systems into the earth sciences and environmental studies. It presents issues surrounding the rationale for employing stationary and mobile robots to assist in waste chemical site remediation and cleanup activities, missions that could be conducted, and the current availability status for these devices. This rationale is an extension of that being promoted by the US Department of Energy (DOE) to assist in resolving environmental restoration and waste management (ER and WM) issues associated with several DOE national laboratories, facilities, and other sites. DOE has also committed to restore the environment surrounding the existing storage facilities and sites to a safe state. Technologies that are expected to play a major role in these activities are stationary and mobile robotic devices, and in particular, mobile robots. Specific topics discussed in this article include: introduction to robotics: motivations for considering robots in HWM: incorporation of robotics into HWM methods--this subsection includes a rationale for performing a ''screening test'' to determine the advantages of using a robot; safety and performance factors; illustrations for robots in action and current and future trends

  5. IntelliTable: Inclusively-Designed Furniture with Robotic Capabilities.

    Science.gov (United States)

    Prescott, Tony J; Conran, Sebastian; Mitchinson, Ben; Cudd, Peter

    2017-01-01

    IntelliTable is a new proof-of-principle assistive technology system with robotic capabilities in the form of an elegant universal cantilever table able to move around by itself, or under user control. We describe the design and current capabilities of the table and the human-centered design methodology used in its development and initial evaluation. The IntelliTable study has delivered robotic platform programmed by a smartphone that can navigate around a typical home or care environment, avoiding obstacles, and positioning itself at the user's command. It can also be configured to navigate itself to pre-ordained places positions within an environment using ceiling tracking, responsive optical guidance and object-based sonar navigation.

  6. Future of robotic surgery.

    Science.gov (United States)

    Lendvay, Thomas Sean; Hannaford, Blake; Satava, Richard M

    2013-01-01

    In just over a decade, robotic surgery has penetrated almost every surgical subspecialty and has even replaced some of the most commonly performed open oncologic procedures. The initial reports on patient outcomes yielded mixed results, but as more medical centers develop high-volume robotics programs, outcomes appear comparable if not improved for some applications. There are limitations to the current commercially available system, and new robotic platforms, some designed to compete in the current market and some to address niche surgical considerations, are being developed that will change the robotic landscape in the next decade. Adoption of these new systems will be dependent on overcoming barriers to true telesurgery that range from legal to logistical. As additional surgical disciplines embrace robotics and open surgery continues to be replaced by robotic approaches, it will be imperative that adequate education and training keep pace with technology. Methods to enhance surgical performance in robotics through the use of simulation and telementoring promise to accelerate learning curves and perhaps even improve surgical readiness through brief virtual-reality warm-ups and presurgical rehearsal. All these advances will need to be carefully and rigorously validated through not only patient outcomes, but also cost efficiency.

  7. Hand-held medical robots.

    Science.gov (United States)

    Payne, Christopher J; Yang, Guang-Zhong

    2014-08-01

    Medical robots have evolved from autonomous systems to tele-operated platforms and mechanically-grounded, cooperatively-controlled robots. Whilst these approaches have seen both commercial and clinical success, uptake of these robots remains moderate because of their high cost, large physical footprint and long setup times. More recently, researchers have moved toward developing hand-held robots that are completely ungrounded and manipulated by surgeons in free space, in a similar manner to how conventional instruments are handled. These devices provide specific functions that assist the surgeon in accomplishing tasks that are otherwise challenging with manual manipulation. Hand-held robots have the advantages of being compact and easily integrated into the normal surgical workflow since there is typically little or no setup time. Hand-held devices can also have a significantly reduced cost to healthcare providers as they do not necessitate the complex, multi degree-of-freedom linkages that grounded robots require. However, the development of such devices is faced with many technical challenges, including miniaturization, cost and sterility, control stability, inertial and gravity compensation and robust instrument tracking. This review presents the emerging technical trends in hand-held medical robots and future development opportunities for promoting their wider clinical uptake.

  8. Human-Robot Planetary Exploration Teams

    Science.gov (United States)

    Tyree, Kimberly

    2004-01-01

    The EVA Robotic Assistant (ERA) project at NASA Johnson Space Center studies human-robot interaction and robotic assistance for future human planetary exploration. Over the past four years, the ERA project has been performing field tests with one or more four-wheeled robotic platforms and one or more space-suited humans. These tests have provided experience in how robots can assist humans, how robots and humans can communicate in remote environments, and what combination of humans and robots works best for different scenarios. The most efficient way to understand what tasks human explorers will actually perform, and how robots can best assist them, is to have human explorers and scientists go and explore in an outdoor, planetary-relevant environment, with robots to demonstrate what they are capable of, and roboticists to observe the results. It can be difficult to have a human expert itemize all the needed tasks required for exploration while sitting in a lab: humans do not always remember all the details, and experts in one arena may not even recognize that the lower level tasks they take for granted may be essential for a roboticist to know about. Field tests thus create conditions that more accurately reveal missing components and invalid assumptions, as well as allow tests and comparisons of new approaches and demonstrations of working systems. We have performed field tests in our local rock yard, in several locations in the Arizona desert, and in the Utah desert. We have tested multiple exploration scenarios, such as geological traverses, cable or solar panel deployments, and science instrument deployments. The configuration of our robot can be changed, based on what equipment is needed for a given scenario, and the sensor mast can even be placed on one of two robot bases, each with different motion capabilities. The software architecture of our robot is also designed to be as modular as possible, to allow for hardware and configuration changes. Two focus

  9. Dynamic photogrammetric calibration of industrial robots

    Science.gov (United States)

    Maas, Hans-Gerd

    1997-07-01

    Today's developments in industrial robots focus on aims like gain of flexibility, improvement of the interaction between robots and reduction of down-times. A very important method to achieve these goals are off-line programming techniques. In contrast to conventional teach-in-robot programming techniques, where sequences of actions are defined step-by- step via remote control on the real object, off-line programming techniques design complete robot (inter-)action programs in a CAD/CAM environment. This poses high requirements to the geometric accuracy of a robot. While the repeatability of robot poses in the teach-in mode is often better than 0.1 mm, the absolute pose accuracy potential of industrial robots is usually much worse due to tolerances, eccentricities, elasticities, play, wear-out, load, temperature and insufficient knowledge of model parameters for the transformation from poses into robot axis angles. This fact necessitates robot calibration techniques, including the formulation of a robot model describing kinematics and dynamics of the robot, and a measurement technique to provide reference data. Digital photogrammetry as an accurate, economic technique with realtime potential offers itself for this purpose. The paper analyzes the requirements posed to a measurement technique by industrial robot calibration tasks. After an overview on measurement techniques used for robot calibration purposes in the past, a photogrammetric robot calibration system based on off-the- shelf lowcost hardware components will be shown and results of pilot studies will be discussed. Besides aspects of accuracy, reliability and self-calibration in a fully automatic dynamic photogrammetric system, realtime capabilities are discussed. In the pilot studies, standard deviations of 0.05 - 0.25 mm in the three coordinate directions could be achieved over a robot work range of 1.7 X 1.5 X 1.0 m3. The realtime capabilities of the technique allow to go beyond kinematic robot

  10. Robots As Intentional Agents: Using Neuroscientific Methods to Make Robots Appear More Social.

    Science.gov (United States)

    Wiese, Eva; Metta, Giorgio; Wykowska, Agnieszka

    2017-01-01

    Robots are increasingly envisaged as our future cohabitants. However, while considerable progress has been made in recent years in terms of their technological realization, the ability of robots to interact with humans in an intuitive and social way is still quite limited. An important challenge for social robotics is to determine how to design robots that can perceive the user's needs, feelings, and intentions, and adapt to users over a broad range of cognitive abilities. It is conceivable that if robots were able to adequately demonstrate these skills, humans would eventually accept them as social companions. We argue that the best way to achieve this is using a systematic experimental approach based on behavioral and physiological neuroscience methods such as motion/eye-tracking, electroencephalography, or functional near-infrared spectroscopy embedded in interactive human-robot paradigms. This approach requires understanding how humans interact with each other, how they perform tasks together and how they develop feelings of social connection over time, and using these insights to formulate design principles that make social robots attuned to the workings of the human brain. In this review, we put forward the argument that the likelihood of artificial agents being perceived as social companions can be increased by designing them in a way that they are perceived as intentional agents that activate areas in the human brain involved in social-cognitive processing. We first review literature related to social-cognitive processes and mechanisms involved in human-human interactions, and highlight the importance of perceiving others as intentional agents to activate these social brain areas. We then discuss how attribution of intentionality can positively affect human-robot interaction by (a) fostering feelings of social connection, empathy and prosociality, and by (b) enhancing performance on joint human-robot tasks. Lastly, we describe circumstances under which

  11. Robots As Intentional Agents: Using Neuroscientific Methods to Make Robots Appear More Social

    Science.gov (United States)

    Wiese, Eva; Metta, Giorgio; Wykowska, Agnieszka

    2017-01-01

    Robots are increasingly envisaged as our future cohabitants. However, while considerable progress has been made in recent years in terms of their technological realization, the ability of robots to interact with humans in an intuitive and social way is still quite limited. An important challenge for social robotics is to determine how to design robots that can perceive the user’s needs, feelings, and intentions, and adapt to users over a broad range of cognitive abilities. It is conceivable that if robots were able to adequately demonstrate these skills, humans would eventually accept them as social companions. We argue that the best way to achieve this is using a systematic experimental approach based on behavioral and physiological neuroscience methods such as motion/eye-tracking, electroencephalography, or functional near-infrared spectroscopy embedded in interactive human–robot paradigms. This approach requires understanding how humans interact with each other, how they perform tasks together and how they develop feelings of social connection over time, and using these insights to formulate design principles that make social robots attuned to the workings of the human brain. In this review, we put forward the argument that the likelihood of artificial agents being perceived as social companions can be increased by designing them in a way that they are perceived as intentional agents that activate areas in the human brain involved in social-cognitive processing. We first review literature related to social-cognitive processes and mechanisms involved in human–human interactions, and highlight the importance of perceiving others as intentional agents to activate these social brain areas. We then discuss how attribution of intentionality can positively affect human–robot interaction by (a) fostering feelings of social connection, empathy and prosociality, and by (b) enhancing performance on joint human–robot tasks. Lastly, we describe circumstances under

  12. Robots As Intentional Agents: Using Neuroscientific Methods to Make Robots Appear More Social

    Directory of Open Access Journals (Sweden)

    Eva Wiese

    2017-10-01

    Full Text Available Robots are increasingly envisaged as our future cohabitants. However, while considerable progress has been made in recent years in terms of their technological realization, the ability of robots to interact with humans in an intuitive and social way is still quite limited. An important challenge for social robotics is to determine how to design robots that can perceive the user’s needs, feelings, and intentions, and adapt to users over a broad range of cognitive abilities. It is conceivable that if robots were able to adequately demonstrate these skills, humans would eventually accept them as social companions. We argue that the best way to achieve this is using a systematic experimental approach based on behavioral and physiological neuroscience methods such as motion/eye-tracking, electroencephalography, or functional near-infrared spectroscopy embedded in interactive human–robot paradigms. This approach requires understanding how humans interact with each other, how they perform tasks together and how they develop feelings of social connection over time, and using these insights to formulate design principles that make social robots attuned to the workings of the human brain. In this review, we put forward the argument that the likelihood of artificial agents being perceived as social companions can be increased by designing them in a way that they are perceived as intentional agents that activate areas in the human brain involved in social-cognitive processing. We first review literature related to social-cognitive processes and mechanisms involved in human–human interactions, and highlight the importance of perceiving others as intentional agents to activate these social brain areas. We then discuss how attribution of intentionality can positively affect human–robot interaction by (a fostering feelings of social connection, empathy and prosociality, and by (b enhancing performance on joint human–robot tasks. Lastly, we describe

  13. Two Legged Walking Robot

    OpenAIRE

    Kraus, V.

    2015-01-01

    The aim of this work is to construct a two-legged wirelessly controlled walking robot. This paper describes the construction of the robot, its control electronics, and the solution of the wireless control. The article also includes a description of the application to control the robot. The control electronics of the walking robot are built using the development kit Arduino Mega, which is enhanced with WiFi module allowing the wireless control, a set of ultrasonic sensors for detecting obstacl...

  14. RHOBOT: Radiation hardened robotics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.C.; Posey, L.D. [Sandia National Labs., Albuquerque, NM (United States)

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  15. RHOBOT: Radiation hardened robotics

    International Nuclear Information System (INIS)

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program

  16. Automated technological equipment-robot complexes

    International Nuclear Information System (INIS)

    Zhitomirskii, S.V.; Samorodskikh, B.L.

    1984-01-01

    This paper surveys the types of automated technological equipment robot complexes. The principal elements of such complexes are described. Complexes are divided into two principal groups: those using simultaneously acting robots, and those using successively acting robots. The great variety of types of robots using successive action is then described

  17. Robotic liver surgery

    Science.gov (United States)

    Leung, Universe

    2014-01-01

    Robotic surgery is an evolving technology that has been successfully applied to a number of surgical specialties, but its use in liver surgery has so far been limited. In this review article we discuss the challenges of minimally invasive liver surgery, the pros and cons of robotics, the evolution of medical robots, and the potentials in applying this technology to liver surgery. The current data in the literature are also presented. PMID:25392840

  18. Experiential Learning of Robotics Fundamentals Based on a Case Study of Robot-Assisted Stereotactic Neurosurgery

    Science.gov (United States)

    Faria, Carlos; Vale, Carolina; Machado, Toni; Erlhagen, Wolfram; Rito, Manuel; Monteiro, Sérgio; Bicho, Estela

    2016-01-01

    Robotics has been playing an important role in modern surgery, especially in procedures that require extreme precision, such as neurosurgery. This paper addresses the challenge of teaching robotics to undergraduate engineering students, through an experiential learning project of robotics fundamentals based on a case study of robot-assisted…

  19. Teleautonomous Control on Rescue Robot Prototype

    Directory of Open Access Journals (Sweden)

    Son Kuswadi

    2012-12-01

    Full Text Available Robot application in disaster area can help responder team to save victims. In order to finish task, robot must have flexible movement mechanism so it can pass through uncluttered area. Passive linkage can be used on robot chassis so it can give robot flexibility. On physical experiments, robot is succeeded to move through gravels and 5 cm obstacle. Rescue robot also has specialized control needs. Robot must able to be controlled remotely. It also must have ability to move autonomously. Teleautonomous control method is combination between those methods. It can be concluded from experiments that on teleoperation mode, operator must get used to see environment through robot’s camera. While on autonomous mode, robot is succeeded to avoid obstacle and search target based on sensor reading and controller program. On teleautonomous mode, robot can change control mode by using bluetooth communication for data transfer, so robot control will be more flexible.

  20. International Conference Educational Robotics 2016

    CERN Document Server

    Moro, Michele; Menegatti, Emanuele

    2017-01-01

    This book includes papers presented at the International Conference “Educational Robotics 2016 (EDUROBOTICS)”, Athens, November 25, 2016. The papers build on constructivist and constructionist pedagogy and cover a variety of topics, including teacher education, design of educational robotics activities, didactical models, assessment methods, theater robotics, programming & making electronics with Snap4Arduino, the Duckietown project, robotics driven by tangible programming, Lego Mindstorms combined with App Inventor, the Orbital Education Platform, Anthropomorphic Robots and Human Meaning Makers in Education, and more. It provides researchers interested in educational robotics with the latest advances in the field with a focus on science, technology, engineering, arts and mathematics (STEAM) education. At the same time it offers teachers and educators from primary to secondary and tertiary education insights into how educational robotics can trigger the development of technological interest and 21st c...