WorldWideScience

Sample records for abaqus thermomechanics code

  1. Thermal and mechanical response of steel sheets welded by laser process: Preanalysis made by ABAQUS code

    Energy Technology Data Exchange (ETDEWEB)

    Carmignani, B.; Daneri, A.; Giambuzzi, S.; Toselli, G. [ENEA, Bologna (Italy). Centro Ricerche Energia `E. Clementel` - Area Energetica

    1994-11-01

    In this work, the conclusive report on the activity, developed in the frame of the european project EUREKA-FASP (EU353), concerning the numerical simulation of the thermal and mechanical response of steel sheets, welded by a laser welding process, is presented. This type of welding process is of interest in the shipyard field. ABAQUS code, in its implicit version, has been used. Besides the description of the studies concerning more directly the laser welding, simulations of traditional welding processes, executed in order to single out particular aspects and calculation strategies to be utilized for the simulation of the process object of the study made, are presented and discussed.

  2. Cold rolling simulation of 6061 aluminium alloy ring based on ABAQUS/Explicit code%基于ABAQUS/Explicit 6061铝合金环件冷轧仿真研究

    Institute of Scientific and Technical Information of China (English)

    罗晓东; 柳浩; 朱永祥

    2014-01-01

    基于ABAQUS/Explicit平台建立了6061铝合金环件冷轧模型,研究环件轧制过程中金属的变形规律,包括环件的咬入和锻透情况、应力-应变分布情况、轧制力与轧制力矩等。研究表明,环件的最终成型质量好,壁厚误差在0.1 mm以内,直径误差在1 mm左右。%Based on ABAQUS/Explicit code,a cold rolling model of 6061 aluminium alloy ring was proposed to study deformation law,such as bite condition,plastic penetration condition,stress and strain distribution,rolling force and rolling moment,and so on. The results show that the formed ring has good quality,the wall thickness error is less than 0.1 mm and the diameter error is about 1 mm.

  3. Simulation of Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes

    Science.gov (United States)

    2015-11-01

    JOHN J KINGMAN ROAD SUITE 0944 FORT BELVOIR, VA 22060-6218 COMMANDER ATTN: SEA 05P2 NAVAL SEA SYSTEMS COMMAND 5 1333 ISAAC HULL AVENUE S.E...was performed by the Welding, Processing, and Nondestructive Evaluation Branch (Code 611) and the Hull Response and Protection Branch (Code 664) of...COMMAND 2 1333 ISAAC HULL AVENUE S.E. WASHINGTON NAVY YARD WASHINGTON, DC 20376 ATTN: Gardner, Sensharma COMMANDER ATTN: SEA 05V NAVAL SEA

  4. Development of thermal analysis method for the near field of HLW repository using ABAQUS

    Energy Technology Data Exchange (ETDEWEB)

    Kuh, Jung Eui; Kang, Chul Hyung; Park, Jeong Hwa [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-10-01

    An appropriate tool is needed to evaluate the thermo-mechanical stability of high level radioactive waste (HLW) repository. In this report a thermal analysis methodology for the near field of HLW repository is developed to use ABAQUS which is one of the multi purpose FEM code and has been used for many engineering area. The main contents of this methodology development are the structural and material modelling to simulate a repository, setup of side conditions, e.g., boundary and load conditions, and initial conditions, and the procedure to selection proper material parameters. In addition to these, the interface programs for effective production of input data and effective change of model size for sensitivity analysis for disposal concept development are developed. The results of this work will be apply to evaluate the thermal stability and to use as main input data for mechanical analysis of HLW repository. (author). 20 refs., 15 figs., 5 tabs.

  5. A new code for predicting the thermo-mechanical and irradiation behavior of metallic fuels in sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydin, E-mail: karahan@mit.ed [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology (United States); Buongiorno, Jacopo [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology (United States)

    2010-01-31

    An engineering code to predict the irradiation behavior of U-Zr and U-Pu-Zr metallic alloy fuel pins and UO{sub 2}-PuO{sub 2} mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named Fuel Engineering and Structural analysis Tool (FEAST). FEAST has several modules working in coupled form with an explicit numerical algorithm. These modules describe fission gas release and fuel swelling, fuel chemistry and restructuring, temperature distribution, fuel-clad chemical interaction, and fuel and clad mechanical analysis including transient creep-fracture for the clad. Given the fuel pin geometry, composition and irradiation history, FEAST can analyze fuel and clad thermo-mechanical behavior at both steady-state and design-basis (non-disruptive) transient scenarios. FEAST was written in FORTRAN-90 and has a simple input file similar to that of the LWR fuel code FRAPCON. The metal-fuel version is called FEAST-METAL, and is described in this paper. The oxide-fuel version, FEAST-OXIDE is described in a companion paper. With respect to the old Argonne National Laboratory code LIFE-METAL and other same-generation codes, FEAST-METAL emphasizes more mechanistic, less empirical models, whenever available. Specifically, fission gas release and swelling are modeled with the GRSIS algorithm, which is based on detailed tracking of fission gas bubbles within the metal fuel. Migration of the fuel constituents is modeled by means of thermo-transport theory. Fuel-clad chemical interaction models based on precipitation kinetics were developed for steady-state operation and transients. Finally, a transient intergranular creep-fracture model for the clad, which tracks the nucleation and growth of the cavities at the grain boundaries, was developed for and implemented in the code. Reducing the empiricism in the constitutive models should make it more acceptable to extrapolate FEAST-METAL to new fuel compositions and higher burnup, as envisioned in advanced sodium

  6. A new code for predicting the thermo-mechanical and irradiation behavior of metallic fuels in sodium fast reactors

    Science.gov (United States)

    Karahan, Aydın; Buongiorno, Jacopo

    2010-01-01

    An engineering code to predict the irradiation behavior of U-Zr and U-Pu-Zr metallic alloy fuel pins and UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named Fuel Engineering and Structural analysis Tool (FEAST). FEAST has several modules working in coupled form with an explicit numerical algorithm. These modules describe fission gas release and fuel swelling, fuel chemistry and restructuring, temperature distribution, fuel-clad chemical interaction, and fuel and clad mechanical analysis including transient creep-fracture for the clad. Given the fuel pin geometry, composition and irradiation history, FEAST can analyze fuel and clad thermo-mechanical behavior at both steady-state and design-basis (non-disruptive) transient scenarios. FEAST was written in FORTRAN-90 and has a simple input file similar to that of the LWR fuel code FRAPCON. The metal-fuel version is called FEAST-METAL, and is described in this paper. The oxide-fuel version, FEAST-OXIDE is described in a companion paper. With respect to the old Argonne National Laboratory code LIFE-METAL and other same-generation codes, FEAST-METAL emphasizes more mechanistic, less empirical models, whenever available. Specifically, fission gas release and swelling are modeled with the GRSIS algorithm, which is based on detailed tracking of fission gas bubbles within the metal fuel. Migration of the fuel constituents is modeled by means of thermo-transport theory. Fuel-clad chemical interaction models based on precipitation kinetics were developed for steady-state operation and transients. Finally, a transient intergranular creep-fracture model for the clad, which tracks the nucleation and growth of the cavities at the grain boundaries, was developed for and implemented in the code. Reducing the empiricism in the constitutive models should make it more acceptable to extrapolate FEAST-METAL to new fuel compositions and higher burnup, as envisioned in advanced sodium reactors

  7. Thermomechanics of soft inelastics bodies with application to asphalt behavior

    Directory of Open Access Journals (Sweden)

    Kudrjavčeva Ljudmila T.

    2014-01-01

    Full Text Available Thermomechanical behavior of hot mix asphalt (HMA is considered. Its highly irregular microstructure is covered by the hierarchical approach. A brief survey of endochronic thermodynamics precedes constitutive consideration. Two constitutive models are discussed: classical Perzyna’s approach and tensor representation based approach. The second is superior due to its possibility to cover properly diverse multiaxial nonproportioal stress-strain histories. However, due to availability of experimental data the first model is applied to rutting problem through Abaqus FEM code with material user subroutine developed by the authors. Vakulenko’s thermodynamic time appropriate for aging is incorporated. Hyperelasticviscoplastic behavior is considered and some preliminary results are presented. [Projekat Ministarstva nauke Republike Srbije, br. 171004 i br. TR32036

  8. Seismic transducer modeling using ABAQUS

    Energy Technology Data Exchange (ETDEWEB)

    Stephen R. Novascone

    2004-05-01

    A seismic transducer, known as an orbital vibrator, consists of a rotating imbalance driven by an electric motor. When suspended in a liquid-filled wellbore, vibrations of the device are coupled to the surrounding geologic media. In this mode, an orbital vibrator can be used as an efficient rotating dipole source for seismic imaging. Alternately, the motion of an orbital vibrator is affected by the physical properties of the surrounding media. From this point of view, an orbital vibrator can be used as a stand-alone sensor. The reaction to the surroundings can be sensed and recorded by geophones inside the orbital vibrator. These reactions are a function of the media’s physical properties such as modulus, damping, and density, thereby identifying the rock type. This presentation shows how the orbital vibrator and surroundings were modeled with an ABAQUS acoustic FEM. The FEM is found to compare favorably with theoretical predictions. A 2D FEM and analytical model are compared to an experimental data set. Each model compares favorably with the data set.

  9. Thermo-mechanical interaction effects in foam cored sandwich panels-correlation between High-order models and Finite element analysis results

    DEFF Research Database (Denmark)

    Palleti, Hara Naga Krishna Teja; Santiuste, Carlos; Thomsen, Ole Thybo;

    2010-01-01

    Thermo-mechanical interaction effects including thermal material degradation in polymer foam cored sandwich structures is investigated using the commercial Finite Element Analysis (FEA) package ABAQUS/Standard. Sandwich panels with different boundary conditions in the form of simply supported...

  10. Measurement and Prediction of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    Science.gov (United States)

    Davis, Brian; Turner, Travis L.; Seelecke, Stefan

    2008-01-01

    An experimental and numerical investigation into the static and dynamic responses of shape memory alloy hybrid composite (SMAHC) beams is performed to provide quantitative validation of a recently commercialized numerical analysis/design tool for SMAHC structures. The SMAHC beam specimens consist of a composite matrix with embedded pre-strained SMA actuators, which act against the mechanical boundaries of the structure when thermally activated to adaptively stiffen the structure. Numerical results are produced from the numerical model as implemented into the commercial finite element code ABAQUS. A rigorous experimental investigation is undertaken to acquire high fidelity measurements including infrared thermography and projection moire interferometry for full-field temperature and displacement measurements, respectively. High fidelity numerical results are also obtained from the numerical model and include measured parameters, such as geometric imperfection and thermal load. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.

  11. Samovar: a thermomechanical code for modeling of geodynamic processes in the lithosphere-application to basin evolution

    DEFF Research Database (Denmark)

    Elesin, Y; Gerya, T; Artemieva, Irina

    2010-01-01

    We present a new 2D finite difference code, Samovar, for high-resolution numerical modeling of complex geodynamic processes. Examples are collision of lithospheric plates (including mountain building and subduction) and lithosphere extension (including formation of sedimentary basins, regions...... partial melting and magma transport in the lithosphere. The thermal and mechanical parts of the code are tested for a series of physical problems with analytical solutions. We apply the code to geodynamic modeling by examining numerically the processes of lithosphere extension and basin formation...... of extended crust, and rift zones). The code models deformation of the lithosphere with viscoelastoplastic rheology, including erosion/sedimentation processes and formation of shear zones in areas of high stresses. It also models steady-state and transient conductive and advective thermal processes including...

  12. Samovar: a thermomechanical code for modeling of geodynamic processes in the lithosphere-application to basin evolution

    DEFF Research Database (Denmark)

    Elesin, Y; Gerya, T; Artemieva, Irina;

    2010-01-01

    We present a new 2D finite difference code, Samovar, for high-resolution numerical modeling of complex geodynamic processes. Examples are collision of lithospheric plates (including mountain building and subduction) and lithosphere extension (including formation of sedimentary basins, regions...... of extended crust, and rift zones). The code models deformation of the lithosphere with viscoelastoplastic rheology, including erosion/sedimentation processes and formation of shear zones in areas of high stresses. It also models steady-state and transient conductive and advective thermal processes including...... partial melting and magma transport in the lithosphere. The thermal and mechanical parts of the code are tested for a series of physical problems with analytical solutions. We apply the code to geodynamic modeling by examining numerically the processes of lithosphere extension and basin formation...

  13. Samovar: a thermomechanical code for modeling of geodynamic processes in the lithosphere-application to basin evolution

    OpenAIRE

    Elesin, Y; Gerya, T.; Artemieva, Irina; Thybo, Hans

    2010-01-01

    We present a new 2D finite difference code, Samovar, for high-resolution numerical modeling of complex geodynamic processes. Examples are collision of lithospheric plates (including mountain building and subduction) and lithosphere extension (including formation of sedimentary basins, regions of extended crust, and rift zones). The code models deformation of the lithosphere with viscoelastoplastic rheology, including erosion/sedimentation processes and formation of shear zones in areas of hig...

  14. Description of modelling to be implemented in the fuel rod thermomechanics code Cyrano3; Description des modeles a introduire dans le logiciel de thermomecanique du crayon combustible Cyrano3

    Energy Technology Data Exchange (ETDEWEB)

    Baron, D.; Bouffioux, P.

    1993-06-01

    CYRANO3 is the new EDF thermomechanical code developed to evaluate the overall fuel rod behavior under irradiation. In that context, this paper presents the phenomena to be simulated and the correlations adopted for modelling purposes. The empirical models presented are taken from the CYRANO2 code and a compilation of the relevant literature. The present revision corrects and supplements version B on the basis of its use during the software coding phase from January 1991 to May 1993. (authors). figs., tabs., 120 refs.

  15. MCTP, a code for the thermo-mechanical analysis of a fuel rod of BWR type reactors (Neutron part); MCTP, un codigo para el analisis termo-mecanico de una barra combustible de reactores tipo BWR (Parte Neutronica)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez L, H.; Ortiz V, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: hhl@nuclear.inin.mx

    2003-07-01

    In the National Institute of Nuclear Research of Mexico a code for the thermo-mechanical analysis of the fuel rods of the BWR type reactors of the Nucleo electric Central of Laguna Verde is developed. The code solves the diffusion equation in cylindrical coordinates with several energy groups. The code, likewise, calculates the temperature distribution and power distribution in those fuel rods. The code is denominated Multi groups With Temperatures and Power (MCTP). In the code, the energy with which the fission neutrons are emitted it is divided in six groups. They are also considered the produced perturbations by the changes in the temperatures of the materials that constitute the fuel rods, the content of fission products, the uranium consumption and in its case the gadolinium, as well as the plutonium production. In this work there are present preliminary results obtained with the code, using data of operation of the Nucleo electric Central of Laguna Verde. (Author)

  16. Measurement and Prediction of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    Science.gov (United States)

    Davis, Brian; Turner, Travis L.; Seelecke, Stefan

    2005-01-01

    Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.

  17. Introduction to finite element analysis using MATLAB and Abaqus

    CERN Document Server

    Khennane, Amar

    2013-01-01

    There are some books that target the theory of the finite element, while others focus on the programming side of things. Introduction to Finite Element Analysis Using MATLAB(R) and Abaqus accomplishes both. This book teaches the first principles of the finite element method. It presents the theory of the finite element method while maintaining a balance between its mathematical formulation, programming implementation, and application using commercial software. The computer implementation is carried out using MATLAB, while the practical applications are carried out in both MATLAB and Abaqus. MA

  18. Abaqus2Matlab: A suitable tool for finite element post-processing

    DEFF Research Database (Denmark)

    Papazafeiropoulos, George; Muñiz-Calvente, Miguel; Martínez Pañeda, Emilio

    2017-01-01

    A suitable piece of software is presented to connect Abaqus, a sophisticated finite element package, with Matlab, the most comprehensive program for mathematical analysis. This interface between these well- known codes not only benefits from the image processing and the integrated graph-plotting ......A suitable piece of software is presented to connect Abaqus, a sophisticated finite element package, with Matlab, the most comprehensive program for mathematical analysis. This interface between these well- known codes not only benefits from the image processing and the integrated graph......-plotting features of Matlab but also opens up new opportunities in results post-processing, statistical analysis and mathemat- ical optimization, among many other possibilities. The software architecture and usage are appropriately described and two problems of particular engineering significance are addressed...... to demonstrate its capa- bilities. Firstly, the software is employed to assess cleavage fracture through a novel 3-parameter Weibull probabilistic framework. Then, its potential to create and train neural networks is used to identify damage parameters through a hybrid experimental–numerical scheme, and model...

  19. Simulating thermo-mechanical interaction between a xenon gas-filled chamber and tungsten first-wall armor for the LIFE reactor design using the BUCKY 1-D radiation hydrodynamics code

    Energy Technology Data Exchange (ETDEWEB)

    Heltemes, T A; Prochaska, A E; Moses, G A, E-mail: taheltemes@wisc.ed [Fusion Technology Institute, University of Wisconsin - Madison, 1500 Engineering Dr., Madison WI 53706 (United States)

    2010-08-01

    The BUCKY 1-D radiation hydrodynamics code has been used to simulate the dynamic thermo-mechanical interaction between a xenon gas-filled chamber and tungsten first-wall armor with an indirect-drive laser fusion target for the LIFE reactor design. Two classes of simulations were performed: (1) short-time (0-2 ms) simulations to fully capture the hydrodynamic effects of the introduction of the LIFE indirect-drive target x-ray and ion threat spectra and (2) long-time (2-70 ms) simulations starting with quiescent chamber conditions characteristic of those at 2 ms to estimate xenon plasma cooling between target implosions at 13 Hz. The short-time simulation results reported are: (1) the plasma hydrodynamics of the xenon in the chamber, (2) dynamic overpressure on the tungsten armor, and (3) time-dependent temperatures in the tungsten armor. The ramifications of local thermodynamic equilibrium (LTE) vs. non-LTE opacity models are also addressed.

  20. Analysis of SMA Hybrid Composite Structures using Commercial Codes

    Science.gov (United States)

    Turner, Travis L.; Patel, Hemant D.

    2004-01-01

    A thermomechanical model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures has been recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilevered beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilevered beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.

  1. Abaqus/Standard-based quantification of human cardiac mechanical properties

    CERN Document Server

    Genet, Martin; Kuhl, Ellen; Guccione, Julius

    2016-01-01

    Computational modeling can provide critical insight into existing and potential new surgical procedures, medical or minimally-invasive treatments for heart failure, one of the leading causes of deaths in the world that has reached epidemic proportions. In this paper, we present our Abaqus/Standard-based pipeline to create subject-specific left ventricular models. We first review our generic left ventricular model, and then the personalization process based on magnetic resonance images. Identification of subject-specific cardiac material properties is done by coupling Abaqus/Standard to the python optimization library NL-Opt. Compared to previous studies from our group, the emphasis is here on the fully implicit solving of the model, and the two-parameter optimization of the passive cardiac material properties.

  2. Fuselage Versus Subcomponent Panel Response Correlation Based on ABAQUS Explicit Progressive Damage Analysis Tools

    Science.gov (United States)

    Gould, Kevin E.; Satyanarayana, Arunkumar; Bogert, Philip B.

    2016-01-01

    Analysis performed in this study substantiates the need for high fidelity vehicle level progressive damage analyses (PDA) structural models for use in the verification and validation of proposed sub-scale structural models and to support required full-scale vehicle level testing. PDA results are presented that capture and correlate the responses of sub-scale 3-stringer and 7-stringer panel models and an idealized 8-ft diameter fuselage model, which provides a vehicle level environment for the 7-stringer sub-scale panel model. Two unique skin-stringer attachment assumptions are considered and correlated in the models analyzed: the TIE constraint interface versus the cohesive element (COH3D8) interface. Evaluating different interfaces allows for assessing a range of predicted damage modes, including delamination and crack propagation responses. Damage models considered in this study are the ABAQUS built-in Hashin procedure and the COmplete STress Reduction (COSTR) damage procedure implemented through a VUMAT user subroutine using the ABAQUS/Explicit code.

  3. Analysis of SMA Hybrid Composite Structures in MSC.Nastran and ABAQUS

    Science.gov (United States)

    Turner, Travis L.; Patel, Hemant D.

    2005-01-01

    A thermoelastic constitutive model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures was recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilever beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilever beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.

  4. Development of a user element in ABAQUS for modelling of cohesive laws in composite structures

    DEFF Research Database (Denmark)

    Feih, S.

    2006-01-01

    forward, and most existing publications consider theoretical and therefore simpler softening shapes. In this article, bridging laws were implemented intoan interface element in the UEL user subroutine in the finite element code ABAQUS. Comparison with different experimental data points for crack opening...... measurements of the crack growth resistance and the end opening of the notch. The advantage of this method is that these bridging laws represent material laws independent of the specimen geometry. However, theadaption of the experimentally determined shape to a numerically valid model shape is not straight......, crack length and crack shape show the sensitivity of these results to the assumed bridging law shape.It is furthermore shown that the numerical predictions can be used to improve the bridging law fit. One shape with one adjustable parameter then fits all experimental data sets....

  5. Modelling cohesive laws in finite element simulations via an adapted contact procedure in ABAQUS

    DEFF Research Database (Denmark)

    Feih, S.

    2004-01-01

    is not straightforward, and most existing publications consider theoretical and therefore simpler softening shapes. Two possible methods of bridging law approximation areexplained and compared in this report. The bridging laws were implemented in a numerical user subroutine in the finite element code ABAQUS. The main......The influence of different fibre sizings on the strength and fracture toughness of composites was studied by investigating the characteristics of fibre cross-over bridging in DCB specimens loaded with pure bending moments. These tests result in bridginglaws, which are obtained by simultaneous...... measurements of the crack growth resistance and the end opening of the notch. The advantage of this method is that these bridging laws represent material laws independent of the specimen geometry. However, theadaption of the experimentally determined shape to a numerically valid model shape...

  6. Thermo-Mechanical Simulation of Brake Disc Frictional Character by Moment of Inertia

    OpenAIRE

    Fei Gao

    2014-01-01

    The distribution of temperatures gradient and thermal stress of brake disc has been simulated by FEM code to make brake disc thermal stress more homogenously. In this study, using moment of inertia to simulate the realistic brake process instead of theoretically predefines the train deceleration rate, nonlinear deceleration rate and thermo-mechanical behavior has been revealed. The FEM models build upon LS-DYNA® thermo-mechanical code and contact algorithm. Non-uniform temperature alone disc ...

  7. Abaqus/CAE二次开发功能与应用实例%Secondary development functions and applications of Abaqus/CAE

    Institute of Scientific and Technical Information of China (English)

    黄霖

    2011-01-01

    为实现复杂的有限元前后处理功能,介绍基于Abaqus/CAE进行内核脚本和GUI的程序开发,并阐述这两种开发方式的特点和相互关系.用双动拉深杯形件和汽车覆盖件两个实例说明Python和Abaqus GUI Toolkit在Abaqus/CAE二次开发中的应用;通过二次开发实现将CFD计算得到的热边界条件向实体单元网格模型表面映射的功能.对开发过程和程序流程进行的详细描述可为用户进行Abaqus/CAE二次开发提供参考.

  8. Design of Stiffness for Air Spring Based on ABAQUS

    Directory of Open Access Journals (Sweden)

    Hongguang Li

    2013-01-01

    Full Text Available In this paper, an axisymmetric finite element (FE model of an air spring was carried out with the software ABAQUS to design its target vertical stiffness. The bellows was simulated by the reinforced surface element. The compressed gas in the cavity of the air spring was represented by the hydrostatic fluid element. The target stiffness is obtained by modifying the valid area of the cross section. At last, the results of experiment coincided well with the simulation data. The study shows that the static stiffness of air spring is sensitive to the effective area of the cross section. The conclusion has certain practical significance for the design and the optimization of the same kind of air spring.

  9. Calibrating the Abaqus Crushable Foam Material Model using UNM Data

    Energy Technology Data Exchange (ETDEWEB)

    Schembri, Philip E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewis, Matthew W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-27

    Triaxial test data from the University of New Mexico and uniaxial test data from W-14 is used to calibrate the Abaqus crushable foam material model to represent the syntactic foam comprised of APO-BMI matrix and carbon microballoons used in the W76. The material model is an elasto-plasticity model in which the yield strength depends on pressure. Both the elastic properties and the yield stress are estimated by fitting a line to the elastic region of each test response. The model parameters are fit to the data (in a non-rigorous way) to provide both a conservative and not-conservative material model. The model is verified to perform as intended by comparing the values of pressure and shear stress at yield, as well as the shear and volumetric stress-strain response, to the test data.

  10. Finite Element Analysis of Wheel Rim Using Abaqus Software

    Directory of Open Access Journals (Sweden)

    Bimal Bastin

    2017-02-01

    Full Text Available The rim is the "outer edge of a wheel, holding the tire". It makes up the outer circular design of the wheel on which the inside edge of the tire is mounted on vehicles such as automobiles. A standard automotive steel wheel rim is made from a rectangular sheet metal. Design is an important industrial activity which influences the quality of the product being produced. The wheel rim is modeled by using modeling software SOLIDWORKS . Later this modal is imported to ABAQUS for analysis. Static load analysis has been done by applying a pressure of 5N/mm2 . The materials taken for analysis are steel alloy, Aluminium, Magnesium, and Forged Steel. The displacement occurred to the rim is noted after applying the static load to different materials and maximum principal stresses were also noted

  11. ParaView visualization of Abaqus output on the mechanical deformation of complex microstructures

    Science.gov (United States)

    Liu, Qingbin; Li, Jiang; Liu, Jie

    2017-02-01

    Abaqus® is a popular software suite for finite element analysis. It delivers linear and nonlinear analyses of mechanical and fluid dynamics, includes multi-body system and multi-physics coupling. However, the visualization capability of Abaqus using its CAE module is limited. Models from microtomography have extremely complicated structures, and datasets of Abaqus output are huge, requiring a visualization tool more powerful than Abaqus/CAE. We convert Abaqus output into the XML-based VTK format by developing a Python script and then using ParaView to visualize the results. Such capabilities as volume rendering, tensor glyphs, superior animation and other filters allow ParaView to offer excellent visualizing manifestations. ParaView's parallel visualization makes it possible to visualize very big data. To support full parallel visualization, the Python script achieves data partitioning by reorganizing all nodes, elements and the corresponding results on those nodes and elements. The data partition scheme minimizes data redundancy and works efficiently. Given its good readability and extendibility, the script can be extended to the processing of more different problems in Abaqus. We share the script with Abaqus users on GitHub.

  12. A coupled thermo-mechanical model of friction stir welding

    Directory of Open Access Journals (Sweden)

    Veljić Darko M.

    2012-01-01

    Full Text Available A coupled thermo-mechanical model was developed to study the temperature fields, the plunge force and the plastic deformations of Al alloy 2024-T351 under different rotating speed: 350, 400 and 450 rpm, during the friction stir welding (FSW process. Three-dimensional FE model has been developed in ABAQUS/Explicit using the arbitrary Lagrangian-Eulerian formulation, the Johnson-Cook material law and the Coulomb’s Law of friction. Numerical results indicate that the maximum temperature in the FSW process is lower than the melting point of the welding material. The temperature filed is approximately symmetrical along the welding line. A lower plastic strain region can be found near the welding tool in the trailing side on the bottom surface. With increasing rotation speed, the low plastic strain region is reduced. When the rotational speed is increased, the plunge force can be reduced. Regions with high equivalent plastic strains are observed which correspond to the nugget and the flow arm.

  13. SIMULATION OF COMPLEX THERMOMECHANICAL FATIGUE

    Institute of Scientific and Technical Information of China (English)

    R.Bardenheier; G.Rogers

    2004-01-01

    Two different types of experimental techniques to perform non-isothermal, unicxial and biaxial fatigue testa were described. A new miniaturised electrothermalmechanical test rig was presented and discussed. It enables testing of small specimens under complex thermomechanical loading conditions. In order to cope with the simulation of well defined biaxial proportional and non-proportional loadings with in-phase and out-of-phase superposition of thermal loads a cruciform biaxial fatigue testing machine has been developed. Special design features of both machines, and the specimens tested, as well as typical test results were discussed.

  14. Thermo-mechanical coupling strategies in elastic-plastic problems

    Science.gov (United States)

    Vaz, M.; Lange, M. R.

    2017-03-01

    Modeling strategies aimed at thermo-mechanical coupled problems has been developed for a wide range of engineering applications. Staggered-type coupling procedures have been largely used in materials processing operations, especially in commercial codes, owing to their simplicity and flexibility. The present work shows that, in thermo-plastic problems, the classical implementation of the most common coupling procedure may present accuracy issues and time-stepping dependency. Numerical experiments indicate that an iterative coupling scheme constitutes a viable and simple approach to this class of problems.

  15. Simulation of thermomechanical fatigue in solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Fang, H.E.; Porter, V.L.; Fye, R.M.; Holm, E.A. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31

    Thermomechanical fatigue (TMF) is a very complex phenomenon in electronic component systems and has been identified as one prominent degradation mechanism for surface mount solder joints in the stockpile. In order to precisely predict the TMF-related effects on the reliability of electronic components in weapons, a multi-level simulation methodology is being developed at Sandia National Laboratories. This methodology links simulation codes of continuum mechanics (JAS3D), microstructural mechanics (GLAD), and microstructural evolution (PARGRAIN) to treat the disparate length scales that exist between the macroscopic response of the component and the microstructural changes occurring in its constituent materials. JAS3D is used to predict strain/temperature distributions in the component due to environmental variable fluctuations. GLAD identifies damage initiation and accumulation in detail based on the spatial information provided by JAS3D. PARGRAIN simulates the changes of material microstructure, such as the heterogeneous coarsening in Sn-Pb solder, when the component`s service environment varies.

  16. Thermomechanical measurements on thermal microactuators.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Michael Sean; Epp, David S.; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2009-01-01

    Due to the coupling of thermal and mechanical behaviors at small scales, a Campaign 6 project was created to investigate thermomechanical phenomena in microsystems. This report documents experimental measurements conducted under the auspices of this project. Since thermal and mechanical measurements for thermal microactuators were not available for a single microactuator design, a comprehensive suite of thermal and mechanical experimental data was taken and compiled for model validation purposes. Three thermal microactuator designs were selected and fabricated using the SUMMiT V{sup TM} process at Sandia National Laboratories. Thermal and mechanical measurements for the bent-beam polycrystalline silicon thermal microactuators are reported, including displacement, overall actuator electrical resistance, force, temperature profiles along microactuator legs in standard laboratory air pressures and reduced pressures down to 50 mTorr, resonant frequency, out-of-plane displacement, and dynamic displacement response to applied voltages.

  17. Thermomechanical Modelling of Friction Stir Welding

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Schmidt, Henrik Nikolaj Blicher; Tutum, Cem Celal

    2009-01-01

    Friction Stir Welding (FSW) is a fully coupled thermomechanical process and should in general be modelled as such. Basically, there are two major application areas of thermomechanical models in the investigation of the FSW process: i) Analysis of the thermomechanical conditions such as e.g. heat...... generation and local material deformation (often referred to as flow) during the welding process itself. ii) Prediction of the residual stresses that will be present in the joint structure post to welding. While the former in general will call for a fully-coupled thermomechanical procedure, however...... for the FSW process at hand, the heat generation must either be prescribed analytically or based on a fully coupled analysis of the welding process itself. Along this line, a recently proposed thermal-pseudo-mechanical model is presented in which the temperature dependent yield stress of the weld material...

  18. Thermo-Mechanical Simulation of Brake Disc Frictional Character by Moment of Inertia

    Directory of Open Access Journals (Sweden)

    Fei Gao

    2014-01-01

    Full Text Available The distribution of temperatures gradient and thermal stress of brake disc has been simulated by FEM code to make brake disc thermal stress more homogenously. In this study, using moment of inertia to simulate the realistic brake process instead of theoretically predefines the train deceleration rate, nonlinear deceleration rate and thermo-mechanical behavior has been revealed. The FEM models build upon LS-DYNA® thermo-mechanical code and contact algorithm. Non-uniform temperature alone disc radial direction was caused by severe friction in short time and the low heat transfer coefficient of its material. Parametric analysis for disc brakes have been carried out by comparison of grouped brake applications conform to UIC code, the main factor cause the high temperature gradient and thermal stress of brake disc is brake force and its initial speed.

  19. Transmutation Fuel Performance Code Thermal Model Verification

    Energy Technology Data Exchange (ETDEWEB)

    Gregory K. Miller; Pavel G. Medvedev

    2007-09-01

    FRAPCON fuel performance code is being modified to be able to model performance of the nuclear fuels of interest to the Global Nuclear Energy Partnership (GNEP). The present report documents the effort for verification of the FRAPCON thermal model. It was found that, with minor modifications, FRAPCON thermal model temperature calculation agrees with that of the commercial software ABAQUS (Version 6.4-4). This report outlines the methodology of the verification, code input, and calculation results.

  20. A Transversely Isotropic Thermo-mechanical Framework for Oil Shale

    Science.gov (United States)

    Semnani, S. J.; White, J. A.; Borja, R. I.

    2014-12-01

    The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers

  1. Drift-scale thermomechanical analysis for the retrievability systems study

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, F.C. [M& O/Woodward Clyde Federal Services, Las Vegas, NV (United States)

    1996-04-01

    A numerical method was used to estimate the stability of potential emplacement drifts without considering a ground support system as a part of the Thermal Loading Systems Study for the Yucca Mountain Site Characterization Project. The stability of the drift is evaluated with two variables: the level of thermal loading and the diameter of the emplacement drift. The analyses include the thermomechanical effects generated by the excavation of the drift, subsequently by the thermal loads from heat-emitting waste packages, and finally by the thermal reduction resulting from rapid cooling ventilation required for the waste retrieval if required. The Discontinuous Deformation Analysis (DDA) code was used to analyze the thermomechanical response of the rock mass of multiple blocks separated by joints. The result of this stability analysis is used to discuss the geomechanical considerations for the advanced conceptual design (ACD) with respect to retrievability. In particular, based on the rock mass strength of the host rock described in the current version of the Reference Information Base, the computed thermal stresses, generated by 111 MTU/acre thermal loads in the near field at 100 years after waste emplacement, is beyond the criterion for the rock mass strength used to predict the stability of the rock mass surrounding the emplacement drift.

  2. Modelling of friction anisotropy of deepdrawing sheet in ABAQUS/EXPLICIT

    Directory of Open Access Journals (Sweden)

    F. Stachowicz

    2010-07-01

    Full Text Available This paper presents the experimental and numerical results of rectangular cup drawing of steel sheets. The aim of the experimental study was to analyze material behavior under deformation. The received results were further used to verify the results from numerical simulation by taking friction and material anisotropy into consideration. A 3D parametric finite element (FE model was built using the FE-package ABAQUS/Standard. ABAQUS allows analyzing physical models of real processes putting special emphasis on geometrical non-linearities caused by large deformations, material non-linearities and complex friction conditions. Frictional properties of the deep drawing quality steel sheet were determined by using the pin-on-disc tribometer. It shows that the friction coefficient value depends on the measured angle from the rolling direction and corresponds to the surface topography. A quadratic Hill anisotropic yield criterion was compared with Huber-Mises yield criterion having isotropic hardening. Plastic anisotropy is the result of the distortion of the yield surface shape due to the material microstructural state. The sensitivity of constitutive laws to the initial data characterizing material behavior isalso presented. It is found that plastic anisotropy of the matrix in ductile sheet metal has influence on deformation behavior of the material. If the material and friction anisotropy are taken into account in the finite element analysis, this approach undoubtedly gives the most approximate numerical results to real processes. This paper is the first part of the study of numerical investigation using ABAQUS and mainly deals with the most influencing parameters in a forming process to simulate the sheet metal forming of rectangular cup.

  3. Experiments investigating advanced materials under thermomechanical loading

    Science.gov (United States)

    Bartolotta, Paul A.

    1988-01-01

    Many high temperature aircraft and rocket engine components experience large mechanical loads as well as severe thermal gradients and transients. These nonisothermal conditions are often large enough to cause inelastic deformations, which are the ultimate cause for failure in those parts. A way to alleviate this problem is through improved engine designs based on better predictions of thermomechanical material behavior. To address this concern, an experimental effort was recently initiated within the Hot Section Technology (HOST) program at Lewis. As part of this effort, two new test systems were added to the Fatigue and Structures Lab., which allowed thermomechanical tests to be conducted under closely controlled conditions. These systems are now being used for thermomechanical testing for the Space Station Receiver program, and will be used to support development of metal matrix composites.

  4. Implementation of Bounding Surface Model into ABAQUS and Its Application to Wellbore Stability Analysis

    Science.gov (United States)

    Chen, S.; Al-Muntasheri, G.; Abousleiman, Y. N.

    2014-12-01

    The critical state concept based bounding surface model is one of the most widely used elastoplastic constitutive models for geomaterials, attributed mainly to its essential feature of allowing plastic deformation to occur for stress points within the bounding surface and thus the capability to represent the realistic non-recoverable behaviour of soils and rocks observed under the cyclic loading. This paper develops an implicit integration algorithm for the bounding surface model, using the standard return mapping approach (elastic predictor-plastic corrector), to obtain the updated stresses for the given strain increments. The formulation of the constitutive integration requires the derivation of a supplementary differential equation to describe the evolution of a key variable, i.e., the ratio between the image stress and the current stress quantities. It is essentially an extension of the integration scheme presented in an earlier work used for the simple bounding surface version of modified Cam Clay associated with a substantially simplified hardening rule. The integration algorithm for the bounding surface model is implemented into the finite element analysis commercial program, ABAQUS, through the material interface of UMAT (user defined material subroutine), and then used for the analysis of wellbore stability problem. The predictions from the ABAQUS simulations are generally in excellent agreement with the available analytical solutions, thus demonstrating the accuracy and robustness of the proposed integration scheme.

  5. Thermomechanical analysis of an elastoplastic rough body in sliding contact with flat surface and the effect of adjacent contact asperity

    Directory of Open Access Journals (Sweden)

    Jianmeng Huang

    2015-05-01

    Full Text Available The study of the instantaneous frictional temperature, stress, and equivalent plastic strain generated when two surfaces are in frictional sliding process plays a significant role in understanding friction and wear mechanism. A thermomechanical coupling model between a rough body and a flat body is established. The model integrates the heat flux coupling between the sliding surfaces and considers the effects of the interaction among contact asperities and elastoplastic deformation of the rough body. The thermomechanical problem under this three-dimensional model is solved by the nonlinear finite element methods in ABAQUS software. The results show that the temperature, contact pressure, and stress are coupled. The results of the real contact area and the instantaneous frictional temperature, contact pressure, and VonMises equivalent stress on the local contact region fluctuate obviously due to the interaction among the adjacent contact asperities. The influence of asperity interaction is not constant but intermittent. Its time interval is related to the added interaction of a new adjacent contact asperity. The fluctuation of the VonMises equivalent stress makes the equivalent plastic strain of the frictional surface layer accumulate continually which might cause fatigue wear and plastic deformation wear of the material when the frictional rotating process was repeated.

  6. FE Thermomechanics and Material Sampling Points

    NARCIS (Netherlands)

    Giessen, Erik van der

    1987-01-01

    The thermomechanics of finite elements of continuous media is discussed. The novel key concept introduced is that of material sampling points attributed to each finite element. Similar to representing the spatial interactions by a finite number of nodal quantities, the state of a finite element is r

  7. Simulation of Mechanical Stress on Stainless Steel for Pb-Bi Corrosion Test by Using ABAQUS

    Science.gov (United States)

    Irwanto, D.; Mustari, A. P. A.; Budiman, B. A.

    2017-03-01

    Pb-Bi eutectic with its advantageous is proposed to be utilized as a coolant in the GEN IV type of rSeactor. However, high temperature corrosion when contact with stainless steels is one of the issues of Pb-Bi eutectic utilization. It is known that in the environment of high temperature Pb-Bi, mechanical strength of stainless steel may decrease. Thus, simulation of mechanical stress working on stainless steel during in-situ bending test by using ABAQUS was conducted. Several bending degrees were simulated at high temperature to obtain the mechanical stress information. Temperature condition was strongly affect the stress vs. displacement profile. The reported mechanical strength reduction percentage was used to draw predicted mechanical stress under high temperature Pb-Bi environment.

  8. Application of Abaqus to analysis of the temperature field in elements heated by moving heat sources

    Directory of Open Access Journals (Sweden)

    W. Piekarska

    2010-10-01

    Full Text Available Numerical analysis of thermal phenomena occurring during laser beam heating is presented in this paper. Numerical models of surface andvolumetric heat sources were presented and the influence of different laser beam heat source power distribution on temperature field wasanalyzed. Temperature field was obtained by a numerical solution the transient heat transfer equation with activity of inner heat sources using finite element method. Temperature distribution analysis in welded joint was performed in the ABAQUS/Standard solver. The DFLUXsubroutine was used for implementation of the movable welding heat source model. Temperature-depended thermophysical properties for steelwere assumed in computer simulations. Temperature distribution in laser beam surface heated and butt welded plates was numericallyestimated.

  9. Introduction to nonlinear thermomechanics of solids

    CERN Document Server

    Kleiber, Michał

    2016-01-01

    The first part of this textbook presents the mathematical background needed to precisely describe the basic problem of continuum thermomechanics. The book then concentrates on developing governing equations for the problem dealing in turn with the kinematics of material continuum, description of the state of stress, discussion of the fundamental conservation laws of underlying physics, formulation of initial-boundary value problems and presenting weak (variational) formulations. In the final part the crucial issue of developing techniques for solving specific problems of thermomechanics is addressed. To this aim the authors present a discretized formulation of the governing equations, discuss the fundamentals of the finite element method and develop some basic algorithms for solving algebraic and ordinary differential equations typical of problems on hand. Theoretical derivations are followed by carefully prepared computational exercises and solutions.

  10. Thermomechanics of composite structures under high temperatures

    CERN Document Server

    Dimitrienko, Yu I

    2016-01-01

    This pioneering book presents new models for the thermomechanical behavior of composite materials and structures taking into account internal physico-chemical transformations such as thermodecomposition, sublimation and melting at high temperatures (up to 3000 K). It is of great importance for the design of new thermostable materials and for the investigation of reliability and fire safety of composite structures. It also supports the investigation of interaction of composites with laser irradiation and the design of heat-shield systems. Structural methods are presented for calculating the effective mechanical and thermal properties of matrices, fibres and unidirectional, reinforced by dispersed particles and textile composites, in terms of properties of their constituent phases. Useful calculation methods are developed for characteristics such as the rate of thermomechanical erosion of composites under high-speed flow and the heat deformation of composites with account of chemical shrinkage. The author expan...

  11. Thermomechanical behavior of comercial yellow gold alloy

    Directory of Open Access Journals (Sweden)

    Miloš G. Djordjević

    2016-03-01

    Full Text Available With the development of science and technology, in the late 19th century, began the research and application of new alloys for making jewelry. By adding different amounts of Cu and Ag alloy of Au, as well as adding some new elements (Zn, alloys were obtained with different color spectrum (from red to yellow and different technological and metallurgical characteristics. This paper aims to show thermomechanical behavior of commercial yellow Au alloys for making jewelry.

  12. Multiaxial Fatigue Analysis of Wing Structure Based on ABAQUS/FE-SAFE%基于ABAQUS/FE-SAFE的机翼结构多轴疲劳分析

    Institute of Scientific and Technical Information of China (English)

    孙淼; 许瑛; 李隆

    2016-01-01

    以CAE技术为基础对机翼结构进行多轴疲劳分析。为了能够准确预测机翼结构的疲劳寿命,采用流体力学分析与有限元分析相结合的方法,使用流体力学分析软件 FLUENT 对机翼飞行外载荷特性进行了分析,在有限元分析软件ABAQUS中进行了机翼结构静力学分析,并基于Brown-Miller多轴疲劳理论,利用FE-SAFE软件进行机翼结构多轴疲劳分析,得到了机翼结构的疲劳寿命情况以及疲劳薄弱位置。分析结果与实际情况对比表明,该方法可有效预测机翼结构疲劳寿命,为机翼结构疲劳分析提供新途径,为机翼设计时估算机翼使用寿命提供参考。%The multiaxial fatigue analysis of the wing structure is investigated based on CAE technology in this paper. In order to forecast the fatigue life of the wing structure accurately, the analysis of flying wing external load characteristic is carried out by FLUENT with the method of the combination of fluid mechanics and finite element analysis. The static of the wing structure is analyzed with the finite element software ABAQUS, the multiaxial fatigue of the wing structure based on the theory of Brown-Miller multiaxial fatigue is also analyzed by FE-SAFE. The fatigue life and weak position of the wing is obtained. In contrast with actual situation, the results indicate that this method can predict the fatigue life of the wing structure effectively, which provides a new way for the analysis of the wing structure, and reference for estimating the fatigue life of the wing when designing the airfoil.

  13. Thermomechanical evaluation of the fuel assemblies fabricated in the ININ; Evaluacion termomecanica de los ensambles combustibles fabricados en el ININ

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez L, H.; Ortiz V, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2005-07-01

    The pilot plant of fuel production of the National Institute of Nuclear Research (ININ) provided to the Laguna Verde Nuclear Power Plant (CNLV) four fuel assemblies type GE9B. The fuel irradiation was carried out in the unit 1 of the CNLV during four operation cycles, highlighting the fact that in their third cycle the four assemblies were placed in the center of the reactor core. In the Nuclear Systems Department (DSN) of the ININ it has been carried out studies to evaluate their neutron performance and to be able to determine the exposure levels of this fuels. Its also outlines the necessity to carry out a study of the thermomechanical behavior of the fuel rods that compose the assemblies, through computational codes that simulate their performance so much thermal as mechanical. For such purpose has been developing in the DSN the FETMA code, together with the codes that compose the system Fuel Management System (FMS), which evaluates the thermomechanical performance of fuel elements. In this work were used the FETMA and FEMAXI codes (developed by JAERI) to study the thermomechanical performance of the fuel elements manufactured in the ININ. (Author)

  14. Numerical Investigation of the Seismic Behavior of Corrugated Steel Shear Wall by ABAQUS software

    Directory of Open Access Journals (Sweden)

    Ali Banazadeh

    2016-09-01

    Full Text Available Advantages of using steel shear walls in supplying the requirements of regulations relating to the peripheral loadings including winds and earthquake have caused that the use develops in constructs. High capacity of the system inenergy dissipation, significant primary stiffness, and profitability are among main advantages of this system. However, it has some weaknesses such as elastic buckling of the filler plate before its flow which this issue sometimes causes the increase in the need to out-of-plate stiffness of columns. One of the methods of coping with this phenomenon is the use ofcorrugated plates instead ofbed plates. Different studies indicate that this group of plates enjoy relatively better capacity of absorbing energy and reduce in-plate instability of the system as well. The present study is to investigate and model numerically this type of plate using ABAQUS software and by gauging the verification of numerical model outputs, develop the use of it on plates with different angular position. The results indicate that in spite of the reduction in theultimate bearing capacity of corrugated plates compared to bed plates, the degree of absorbing energy and formability of the system increases significantly.

  15. Thermomechanical Multiaxial Fatigue Testing Capability Developed

    Science.gov (United States)

    1996-01-01

    Structural components in aeronautical gas turbine engines typically experience multiaxial states of stress under nonisothermal conditions. To estimate the durability of the various components in the engine, one must characterize the cyclic deformation and fatigue behavior of the materials used under thermal and complex mechanical loading conditions. To this end, a testing protocol and associated test control software were developed at the NASA Lewis Research Center for thermomechanical axial-torsional fatigue tests. These tests are to be performed on thin-walled, tubular specimens fabricated from the cobalt-based superalloy Haynes 188. The software is written in C and runs on an MS-DOS based microcomputer.

  16. 基于ABAQUS?R的复合材料跨尺度失效分析软件开发

    Institute of Scientific and Technical Information of China (English)

    薛斌; 李星

    2015-01-01

    复合材料跨尺度失效理论是近些年提出的一类基于物理失效模式的强度理论,它从细观层面判定纤维和基体的失效,在分析复合材料性能匹配和耐久性方面有独特的优势. 提出了一种新的跨尺度失效判定准则,利用Abaqus?R的内嵌Python脚本语言开发了复合材料跨尺度失效分析软件CMFAS,编制了图形用户界面(GUI)进行人机交互,实现了代表体积单元(RVE)参数化建模及后处理、应力放大系数矩阵生成、失效准则临界值求解和损伤演化处理等一系列功能,最终生成Abaqus?R子程序文件USDFLD和VUSDFLD.%Composite multiscale failure theory is a newly proposed category of strength criteria, based on mechanical failure modes. In this theory, fiber and matrix failure are determined in meso level, which has special advantage in analyzing material property matching and durability. A new multiscale failure criteria was proposed, CMFAS (Composite Multiscale Failure Analysis Software) was developed using Python scripting language embedded in Abaqus?R . In CMFAS, GUI (Graphic User Interface) was compiled to realize human-computer interaction, RVE (Representative Volume Element) parametric modeling and post processing, stress amplification factors generation, failure criteria critical value solving and damage evolution were automatically accomplished, finally Abaqus?R subroutine files USDFLD and VUSDFLD were given.

  17. Thermomechanical loading applied on the cladding tube during the pellet cladding mechanical interaction phase of a rapid reactivity initiated accident

    OpenAIRE

    2014-01-01

    International audience; Calculations of the CABRI REP-Na5 pulse were performed with the ALCYONE code in order to determine the evolution of the thermomechanical loading applied on the cladding tube during the Pellet-Cladding Mechanical Interaction (PCMI) phase of a rapid Reactivity Initiated Accident (RIA) initiated at 280 °C that lasted 8.8 ms. The evolution of the following parameters are reported: the cladding temperature, heating rate, strain rate and loading biaxiality. The impact of the...

  18. Thermomechanical behavior of dry contacts in disc brake rotor with a grey cast iron composition

    Directory of Open Access Journals (Sweden)

    Belhocine Ali

    2013-01-01

    Full Text Available The main purpose of this study is to analysis the thermomechanical behavior of the dry contact between the brake disc and pads during the braking phase. The simulation strategy is based on the calculation code ANSYS11. The modeling of transient temperature in the disk is actually used to identify the factor of geometric design of the disk to install the ventilation system in vehicles. The thermal-structural analysis is then used coupling to determine the deformation established and the Von Mises stresses in the disk, the contact pressure distribution in pads. The results are satisfactory compared to those found in the literature.

  19. A Multi-objective Optimization Application in Friction Stir Welding: Considering Thermo-mechanical Aspects

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Hattel, Jesper Henri

    2010-01-01

    model implemented in the FE-code, ANSYS. The thermal model is based on a heat source description which in essence is governed by the rotational speed and the temperature dependent yield stress of the work piece material. This model in turn delivers the temperature field, in order to compute thermal...... strain field which is the main driver for the mechanical model predicting both transient and finally residual stresses in the work piece. This thermo-mechanical model is then used in the aforementioned constrained MOO case where the two objectives are conflicting. Following this, two reasonable design...

  20. In the Structural Modal Analysis Application of ABAQUS Based on Python%基于Python的ABAQUS在结构模态分析上的应用

    Institute of Scientific and Technical Information of China (English)

    禹文涛; 徐航; 梁军勇

    2012-01-01

    The python script interface is provided by ABAQUS for programmers aimed at second-developed ABAQUS. Executing python script at ABAQUS environment, may automatically-setting-up, repeat and modify models and analysis tasks expediently, may realize parametric study and access output database, etc. In this paper, a coupling as an example to introduce based on the ABAQUS Python in structural modal analysis application.%ABAQUS为二次开发用户提供了Python脚本接口。在ABAQUS环境下执行Python脚本,可方便地实现自动化创建、重复、修改模型及分析任务,实现参数化研究,访问结果数据库等功能。以某联轴器为例,介绍了基于Python的ABAQUS在结构模态分析上的应用。

  1. Thermomechanically-controlled Processing for Producing Ship-building Steels

    Directory of Open Access Journals (Sweden)

    B. Basu

    2005-01-01

    Full Text Available The thermomechanically-controlled processing of a newly developed high-strength lowalloy steel has been designed in such a way that the problems, normally faced in producing thequench and tempered steels, have been mitigated and the final product (steel plates are available in as rolled condition rather than quench and tempered steels.A low-carbon, low-alloy steel having nickel, chromium, copper, niobium, boron, has been designed for ease of welding, improved weldability over the conventional steels, and responsiveto the thermomechanically-controlled processing. A number of laboratory-scale batches of the alloy were made with different combinations of thermomechanically-controlled processingparameters. The different thermomechanically-controlled processing parameters studied include (i slab-reheating temperature,~ (ii. def.orm ation above recrvstallisation temperature, (iiideformation below recrystallisation temperature, and (iv finish-rolling temperature. The thermomechanically-processed steel plates, under certain combinations of  thermomechanically-controlled ~rocessi-ne.o arameters. showed excellent combination of imvact and tensile n.r on. erties. In this paper, the microstructure-property correlation has been made to throw light on the type of microstructure required to obtain such superior package of mechanical properties. Further, the optimised laboratory-scale thermomechanically-controlled processing parameters, which were used to process newer hatches of the steel made through industrial route, have delivered encouraging results.

  2. Thermo-mechanical ratcheting in jointed rock masses

    KAUST Repository

    Pasten, C.

    2015-09-01

    Thermo-mechanical coupling takes place in jointed rock masses subjected to large thermal oscillations. Examples range from exposed surfaces under daily and seasonal thermal fluctuations to subsurface rock masses affected by engineered systems such as geothermal operations. Experimental, numerical and analytical results show that thermo-mechanical coupling can lead to wedging and ratcheting mechanisms that result in deformation accumulation when the rock mass is subjected to a biased static-force condition. Analytical and numerical models help in identifying the parameter domain where thermo-mechanical ratcheting can take place.

  3. Thermomechanic micro-generators for energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Huesgen, Till

    2010-07-01

    This work, in contrast, focuses on the development of a novel thermomechanic generator based on a dynamic micro engine. The engine is fabricated on a chip-scale in silicon technology and is unique regarding its size and properties. A closed engine chamber, filled with a working fluid, performs a reciprocating motion between a heat source and a heat sink. Thereby, the engine operates passively hence it is self starting and the operation frequency depends on the applied temperature difference. Primary goals of this work are the design of the engine and an experimental proof-of-concent. A hybrid model composed of a FEM simulation for the membrane mechanics, analytical calculations of the thermodynamic cycle, and a thermal network model, allows to theoretically investigate the engine performance. The relevant benchmarks are the operation frequency, mechanical output power and the thermal resistance of the engine. Using this model, an exemplary optimization of the engine geometry is conducted with respect to a high efficiency. In this case, a theoretical optimum of 28.3 x 10{sup -4}% is found for the thermomechanic energy conversion. The experimental part focuses on the fabrication and characterization of a not optimized demonstrator engine. Two different types of working fluid are applied, either air or an organic coolant. The maximum measured operation frequency is 1.2 Hz at 100 K temperature difference for the air-filled engine and 0.75 Hy at 37 K temperature difference for the engine filled with the organic coolant. A maximum velocity of 0.061 m/sec and -0.031 m/sec is measured for the upward and downward motion. These experimental data yield a maximum mechanical output power of 0.5 {mu}W for the air-filled engine and 0.26 {mu}W for the engine filled with the organic coolant. The integration of an electric generator provides a further task. Two fundamentally different approaches have been investigated. The first approach is based on an electromagnetic conversion of

  4. Thermomechanical treatment of austempered ductile iron

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The production of lightweight ferrous castings with increased strength properties became unavoidable hter aluminum and magnesium castings. The relatively new ferrous casting alloy ADI offers promising strength prospects, and the thermo-mechanical treatment of ductile iron may suggest a new fluence of thermomechanical treatment,either by ausforming just after quenching and before the onset of austempering reaction or by cold rolling after of this work, ausforming of ADI up to 25% reduction in height during a rolling operation was found to add a mechanical processing component compared to the conventional ADI heat treatment, thus increasing the rate ics of ausferrite formation was studied using both metallographic as well as XRD-techniques. The effect of ausforming on strength was quite dramatic (up to 70% and 50% increase in the yield and ultimate strength respectively). A mechanism involving both a refined microstructural scale and an elevated dislocation density was suggested. Nickel eformation is necessary to alleviate the deleterious effect of alloy segregation on ductility.luence of cold rolling (CR) on the mechanical properties and structural characteristics ofADI wasinvestigated. The variation in properties was related to the amount of retained austenite nsformation. In the course of tensile deformation of ADI, transformation induced plasticity (TRIP) takes place, indicated by the increase of the instantaneous value of strain-hardening exponent with o partial transformation of γr to martensite under the CR strain. Such strain-induced transformation resulted in higher amounts of mechanically generated therefore increased, while ductility and impact toughness decreased with increasing CR reduction.

  5. Interfacing VPSC with finite element codes. Demonstration of irradiation growth simulation in a cladding tube

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Anirban [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-23

    This Milestone report shows good progress in interfacing VPSC with the FE codes ABAQUS and MOOSE, to perform component-level simulations of irradiation-induced deformation in Zirconium alloys. In this preliminary application, we have performed an irradiation growth simulation in the quarter geometry of a cladding tube. We have benchmarked VPSC-ABAQUS and VPSC-MOOSE predictions with VPSC-SA predictions to verify the accuracy of the VPSCFE interface. Predictions from the FE simulations are in general agreement with VPSC-SA simulations and also with experimental trends.

  6. EXPERIENCE WITH THERMOMECHANICAL FATIGUE UNDER SERVICE-TYPE LOADING

    Institute of Scientific and Technical Information of China (English)

    A.Scholz; A.Schmidt; A.Samir; C.Berger

    2004-01-01

    The thermomechanical fatigue behaviour of different high temperature alloys has been investigated and is under investigation respectively. The creep-fatigue behaviour of heat resistant steels was investigated by long-term service-type strain cycling tests simulating thermomechanical fatigue (TMF-) loading conditions at the heated surface of e.g. turbine rotors. Single-stage as well as three-stage cycles leads to similar results at the application of the damage accumulation rule. Life prediction which simulates typical combinations of cold starts, warm starts and hot starts has been established successfully for isothermal service-type loading and will be exceeded for thermomechanical loading. Long-term thermomechanical fatigue testing of Thermal Barrier Coating systems show typical delamination damage. An advanced TMF cruciform testing system enables complex multiaxial loading.

  7. Thermomechanical coupling effect of PVC sheet with defects

    Institute of Scientific and Technical Information of China (English)

    杨占宇; 罗迎社; 粟建新; 张永忠; 邓旭华; 陈胜铭; 邓瑞基; 马敏伟; 张亮

    2008-01-01

    Thermomechanical coupling of PVC sheet with defects under uniaxial loading at different rates and different sizes of microbores was studied.The local temperature field of the dynamic damage-rupture process zone at crack tip was surveyed with infrared thermographic sensor.Based on the irreversible thermomechanics theory,the dissipation law of deformation-heat effect during the whole process was found.Furthermore,the effect of thermoelasticity in the initial stage of extension was explained.

  8. An extended thermo-mechanically coupled algorithm for simulation of superelasticity and shape memory effect in shape memory alloys

    Institute of Scientific and Technical Information of China (English)

    S. HASHEMI; H. AHMADIAN; S. MOHAMMADI

    2015-01-01

    Thermo-mechanical coupling in shape memory alloys is a very complicated phenomenon. The heat generation/absorption during forward/reverse transformation can lead to temperature-dependent variation of its mechanical behavior in the forms of superelasticity and shape memory effect. However, unlike the usual assumption, slow loading rate cannot guarantee an isothermal process. A two-dimensional thermo-mechanically coupled algorithm is proposed based on the original model of Lagoudas to efficiently model both superelasticity and shape memory effects and the influence of various strain rates, aspect ratios and boundary conditions. To implement the coupled model into a finite element code, a numerical staggered algorithm is employed. A number of simulations are performed to verify the proposed approach with available experimental and numerical data and to assess its efficiency in solving complex SMA problems.

  9. Thermomechanical treatment of austempered ductile iron

    Directory of Open Access Journals (Sweden)

    A. A. Nofal

    2007-11-01

    Full Text Available The production of lightweight ferrous castings with increased strength properties became unavoidable facing the serious challenge of lighter aluminum and magnesium castings. The relatively new ferrous casting alloy ADI offers promising strength prospects, and the thermo-mechanical treatment of ductile iron may suggest a new route for production of thin-wall products. This work aims at studying the influence of thermomechanical treatment, either by ausforming just after quenching and before the onset of austempering reaction or by cold rolling after austempering. In the first part of this work, ausforming of ADI up to 25% reduction in height during a rolling operation was found to add a mechanical processing component compared to the conventional ADI heat treatment, thus increasing the rate of ausferrite formation and leading to a much finer and more homogeneous ausferrite product. The kinetics of ausferrite formation was studied using both metallographic as well as XRD-techniques. The effect of ausforming on the strength was quite dramatic (up to 70% and 50% increase in the yield and ultimate strength respectively. A mechanism involving both a refined microstructural scale and an elevated dislocation density was suggested. Nickel is added to ADI to increase hardenability of thick section castings, while ausforming to higher degrees of deformation is necessary to alleviate the deleterious effect of alloy segregation on ductility. In the second part of this work, the influence of cold rolling (CR on the mechanical properties and structural characteristics of ADI was investigated. The variation in properties was related to the amount of retained austenite (γr and its mechanically induced ransformation. In the course of tensile deformation of ADI, transformation induced plasticity (TRIP takes place, indicated by the increase of the instantaneous value of strain-hardening exponent with tensile strain. The amount of retained austenite was found to

  10. Thermo-mechanical characterization of silicone foams

    Energy Technology Data Exchange (ETDEWEB)

    Rangaswamy, Partha [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Nickolaus A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cady, Carl M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewis, Matthew W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-01

    Cellular solids such as elastomeric foams are used in many structural applications to absorb and dissipate energy, due to their light weight (low density) and high energy absorption capability. In this paper we will discuss foams derived from S5370, a silicone foam formulation developed by Dow Corning. In the application presented, the foam is consolidated into a cushion component of constant thickness but variable density. A mechanical material model developed by Lewis (2013), predicts material response, in part, as a function of relative density. To determine the required parameters for this model we have obtained the mechanical response in compression for ambient, cold and hot temperatures. The variable density cushion provided samples sufficient samples so that the effect of sample initial density on the mechanical response could be studied. The mechanical response data showed extreme sensitivity to relative density. We also observed at strains corresponding to 1 MPa a linear relationship between strain and initial density for all temperatures. Samples taken from parts with a history of thermal cycling demonstrated a stiffening response that was a function of temperature, with the trend of more stiffness as temperature increased above ambient. This observation is in agreement with the entropic effects on the thermo-mechanical behavior of silicone polymers. In this study, we present the experimental methods necessary for the development of a material model, the testing protocol, analysis of test data, and a discussion of load (stress) and gap (strain) as a function of sample initial densities and temperatures

  11. Thermomechanical fatigue in single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Moverare Johan J.

    2014-01-01

    Full Text Available Thermomechanical fatigue (TMF is a mechanism of deformation which is growing in importance due to the efficiency of modern cooling systems and the manner in which turbines and associated turbomachinery are now being operated. Unfortunately, at the present time, relatively little research has been carried out particularly on TMF of single crystal (SX superalloys, probably because the testing is significantly more challenging than the more standard creep and low cycle fatigue (LCF cases; the scarcity and relative expense of the material are additional factors. In this paper, the authors summarise their experiences on the TMF testing of SX superalloys, built up over several years. Emphasis is placed upon describing: (i the nature of the testing method, the challenges involved in ensuring that an given testing methodology is representative of engine conditions (ii the behaviour of a typical Re-containing second generation alloy such as CMSX-4, and its differing performance in out-of-phase/in-phase loading and crystallographic orientation and (iii the differences in behaviour displayed by the Re-containing alloys and new Re-free variants such as STAL15. It is demonstrated that the Re-containing superalloys are prone to different degradation mechanisms involving for example microtwinning, TCP precipitation and recrystallisation. The performance of STAL15 is not too inferior to alloys such as CMSX-4, suggesting that creep resistance itself does not correlate strongly with resistance to TMF. The implications for alloy design efforts are discussed.

  12. First principles calculation of thermo-mechanical properties of thoria using Quantum ESPRESSO

    Science.gov (United States)

    Malakkal, Linu; Szpunar, Barbara; Zuniga, Juan Carlos; Siripurapu, Ravi Kiran; Szpunar, Jerzy A.

    2016-05-01

    In this work, we have used Quantum ESPRESSO (QE), an open source first principles code, based on density-functional theory, plane waves, and pseudopotentials, along with quasi-harmonic approximation (QHA) to calculate the thermo-mechanical properties of thorium dioxide (ThO2). Using Python programming language, our group developed qe-nipy-advanced, an interface to QE, which can evaluate the structural and thermo-mechanical properties of materials. We predicted the phonon contribution to thermal conductivity (kL) using the Slack model. We performed the calculations within local density approximation (LDA) and generalized gradient approximation (GGA) with the recently proposed version for solids (PBEsol). We employed a Monkhorst-Pack 5 × 5 × 5 k-points mesh in reciprocal space with a plane wave cut-off energy of 150 Ry to obtain the convergence of the structure. We calculated the dynamical matrices of the lattice on a 4 × 4 × 4 mesh. We have predicted the heat capacity, thermal expansion and the phonon contribution to thermal conductivity, as a function of temperature up to 1400K, and compared them with the previous work and known experimental results.

  13. FY15 Report on Thermomechanical Testing

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Buchholz, Stuart [RESPEC, Rapid City, SD (United States)

    2015-08-01

    Sandia is participating in the third phase of a United States (US)-German Joint Project that compares constitutive models and simulation procedures on the basis of model calculations of the thermomechanical behavior and healing of rock salt (Salzer et al. 2015). The first goal of the project is to evaluate the ability of numerical modeling tools to correctly describe the relevant deformation phenomena in rock salt under various influences. Among the numerical modeling tools required to address this are constitutive models that are used in computer simulations for the description of the thermal, mechanical, and hydraulic behavior of the host rock under various influences and for the long-term prediction of this behavior. Achieving this goal will lead to increased confidence in the results of numerical simulations related to the secure disposal of radioactive wastes in rock salt. Results of the Joint Project may ultimately be used to make various assertions regarding stability analysis of an underground repository in salt during the operating phase as well as long-term integrity of the geological barrier in the post-operating phase A primary evaluation of constitutive model capabilities comes by way of predicting large-scale field tests. The Joint Project partners decided to model Waste Isolation Pilot Plant (WIPP) Rooms B & D which are full-scale rooms having the same dimensions. Room D deformed under natural, ambient conditions while Room B was thermally driven by an array of waste-simulating heaters (Munson et al. 1988; 1990). Existing laboratory test data for WIPP salt were carefully scrutinized and the partners decided that additional testing would be needed to help evaluate advanced features of the constitutive models. The German partners performed over 140 laboratory tests on WIPP salt at no charge to the US Department of Energy (DOE).

  14. Multiaxial and thermomechanical fatigue considerations in damage tolerant design

    Science.gov (United States)

    Leese, G. E.; Bill, R. C.

    1985-01-01

    In considering damage tolerant design concepts for gas turbine hot section components, several challenging concerns arise: Complex multiaxial loading situations are encountered; Thermomechanical fatigue loading involving very wide temperature ranges is imposed on components; Some hot section materials are extremely anisotropic; and coatings and environmental interactions play an important role in crack propagation. The effects of multiaxiality and thermomechanical fatigue are considered from the standpoint of their impact on damage tolerant design concepts. Recently obtained research results as well as results from the open literature are examined and their implications for damage tolerant design are discussed. Three important needs required to advance analytical capabilities in support of damage tolerant design become readily apparent: (1) a theoretical basis to account for the effect of nonproportional loading (mechanical and mechanical/thermal); (2) the development of practical crack growth parameters that are applicable to thermomechanical fatigue situations; and (3) the development of crack growth models that address multiple crack failures.

  15. A Kind of Damage Criteria Imported to ABAQUS%一种损伤准则在ABAQUS中的引入

    Institute of Scientific and Technical Information of China (English)

    董杰; 李永池; 胡秀章

    2006-01-01

    利用ABAQUS/Explicit模块所提供的材料本构接口VUMAT,将一种含损伤热塑性本构方程和微空洞延性损伤准则引入其中,以圆柱壳在外爆载荷下破坏问题为例,进行了数值模拟,将壳体破裂时的一些参数与实验进行了比较,包括破裂时间与平均环向应变,结果基本相符,说明所采用的方法可行有效.

  16. 基于ABAQUS的连杆疲劳分析%Fatigue Analysis of Connecting Rods Based on ABAQUS

    Institute of Scientific and Technical Information of China (English)

    谈梅兰; 武国玉; 梁福祥

    2013-01-01

    为了全面地考察连杆受到的动态疲劳载荷,在发动机标定工况下,利用转动惯量法对连杆进行了运动学和动力学分析.基于临界平面法,用ABAQUS软件进行二次开发得到了连杆的疲劳计算模块.采用有限元方法分析计算了连杆的疲劳寿命.整个过程是在ABAQUS软件中用Python语言编程来实现的.数值计算结果显示,与传统的最大拉压工况结果相比,在发动机标定工况下得到的计算结果能比较全面地反映连杆的疲劳特性,表明该数值计算方法正确,二次开发程序可行.%In order to investigate the dynamic fatigue loads of a connecting rod under engine calibration conditions more fully, the analysis of kinematics and dynamics of the connecting rod was carried out using the rotational inertia method. With the help of the critical plane method, fatigue calculation module was redeveloped based on ABAQUS. The fatigue life was given through finite element analysis of the connecting rod. The whole process was achieved by Python programming language in the ABAQUS software. The developed method herein is able to reflect the connecting rod's fatigue properties more fully by the comparison of numerical results obtained in the engine calibration conditions with the traditional results of the maximum tensile and compressive conditions. It is also shown that the numerical calculation is correct, the redevelopment of the program is feasible.

  17. The Damage Law of HTPB Propellant under Thermomechanical Loading

    Science.gov (United States)

    Liu, Cheng-wu; Yang, Jian-hong; Wang, Xian-meng; Ma, Yong-kang

    2016-01-01

    By way of measuring the acoustic emission (AE) signals of Hydroxyl-terminated polybutadiene (HTPB) propellant in condition of uniform speed, and combined with the scanning electron microscopy (SEM) fracture surface observation, the damage law of HTPB composite solid propellant under thermomechanical loading was studied. The results show that the effects of thermomechanical loading on HTPB propellant are related to the time and can be divided into three different stages. In the first stage, thermal air aging dominates; in the second stage, interface damage is dominant; and in the third stage, thermal air aging is once again dominant.

  18. Thermomechanical properties of PMMA and modified SWCNT composites

    Science.gov (United States)

    Kalakonda, P; Banne, S

    2017-01-01

    It is well known that the addition of carbon nanotubes (CNTs) can strongly affect the thermomechanical and electrical properties of the polymer into which they are dispersed. The common solvent mixing dispersion method of functionalized CNTs and polymer composites can improve thermal, mechanical, and electrical properties. In this study, functionalized single-walled CNTs (COOH-SWCNTs) and poly(methyl methacrylate) were used to fabricate the polymer nanocomposites using a common solvent dispersion mixing method. The homogenous dispersion of COOH-SWCNTs in the composites resulted in improved thermomechanical properties of these composites; this was analyzed using scanning electron microscopy. PMID:28223784

  19. Thermomechanical loading applied on the cladding tube during the pellet cladding mechanical interaction phase of a rapid reactivity initiated accident

    Science.gov (United States)

    Hellouin de Menibus, Arthur; Sercombe, Jerome; Auzoux, Quentin; Poussard, Christophe

    2014-10-01

    Calculations of the CABRI REP-Na5 pulse were performed with the ALCYONE code in order to determine the evolution of the thermomechanical loading applied on the cladding tube during the Pellet-Cladding Mechanical Interaction (PCMI) phase of a rapid Reactivity Initiated Accident (RIA) initiated at 280 °C that lasted 8.8 ms. The evolution of the following parameters are reported: the cladding temperature, heating rate, strain rate and loading biaxiality. The impact of these parameters on the cladding mechanical behavior and fracture are then briefly reviewed.

  20. 基于ABAQUS的非线性粘弹性本构模型二次开发%Developing of Nonlinear Viscoelastic Constitutive Model Based on ABAQUS

    Institute of Scientific and Technical Information of China (English)

    彭云

    2011-01-01

    基于大型非线性有限元软件ABAQUS/EXPLICIT所提供的用户材料子程序接口VUMAT,对非线性粘弹性本构模型进行二次开发.通过标准犬骨单轴拉伸算例,验证了子程序的有效性,弥补了ABAQUS仅含线性粘弹性本构模型的不足.文中详述了材料子程序开发流程,探讨了涉及的诸多实用技术,可为用户扩充ABAQUS的材料模型提供参考.%Based on the subroutine VUMAT, user - defined material model in the nonlinear FEM software ABAQUS/EXPIiCIT, a nonlinear viscoelastic constitutive model is developed. The validity of the subroutine has been proven through the standard uniaxial ten-sile model. The shortage of ABAQUS which only has linear viscoelastic constitutive model is remedied. This paper presents the process of developing a material constitutive model and some useful technology. It can be referred for extending the material constitutive model in ABAQUS.

  1. Thermo-mechanical Analysis of the CLIC Post-Linac Energy Collimators

    CERN Document Server

    Resta-Lopez, J; Latina, A

    2012-01-01

    The post-linac energy collimation system of the Compact Linear Collider (CLIC) has been designed for passive protection of the Beam Delivery System (BDS) against miss-steered beams due to failure modes in the main linac. In this paper, a thermo-mechanical analysis of the CLIC energy collimators is presented. This study is based on simulations using the codes FLUKA and ANSYS when an entire bunch train hits the collimators. Different failure mode scenarios in the main linac are considered. The aim is to improve the collimator in order to make a reliable and robust design so that survives without damage the impact of a full bunch train in case of likely events generating energy errors.

  2. Thermo-mechanical effects in majorana type quantum devices

    NARCIS (Netherlands)

    Gielen, A.W.J.; Mackenzie, F.O. Valega

    2015-01-01

    We have developed a multi-scale model, consisting of an atomistic model in LAMMPS of an InSb nanowire, and a continuum model in COMSOL of a socalled Majorana research device, to study the effects of thermo-mechanical deformations during the cool down from room temperature to the operating temperatur

  3. Thermo-Mechanical Modeling and Analysis for Turbopump Assemblies

    Science.gov (United States)

    Platt, Mike; Marsh, Matt

    2003-01-01

    Life, reliability, and cost are strongly impacted by steady and transient thermo-mechanical effect. Design cycle can suffer big setbacks when working a transient stress/deflection issue. Balance between objectives and constrains is always difficult. Requires assembly-level analysis early in the design cycle.

  4. 基于 ABAQUS 的红黏土地基排水固结沉降分析%Analysis on Drainage Consolidation Settlement of Red Clay Foundation by Using ABAQUS

    Institute of Scientific and Technical Information of China (English)

    赵蕾; 陈筠; 邬忠虎; 刘磊磊

    2015-01-01

    针对红黏土地区地基排水固结过程的复杂性,对红黏土地基排水固结沉降进行数值分析。采用大型通用有限元分析软件 ABAQUS /Standard 中的固结计算模块 Soils 和自带的修正剑桥模型,以某铝厂的改造工程项目为算例,对红黏土地基中的沉降随时间的变化规律、孔隙水压力消散规律、孔隙比随深度的非线性分布以及土体的有效应力增长进行了研究。研究表明:计算结果与土力学规律吻合,能准确反映红黏土地基固结沉降的实际情况,可为红黏土地基上的建(构)物改造工程地基处理和工程设计提供参考。%Due to the complexity of drainage consolidation of red clay foundation,we simulated and analyzed the consolidation settlement by using the consolidation calculation module Soils and modified Cambridge model of ABAQUS /Standard.The reconstruction project of an aluminum factory was taken as an example.The variation of red clay foundation’s settlement with time,the dissipation of pore water pressure,the non-linear distribution of void ratio with depth,and the effective stress growth of soil were researched.Results suggest that the calculated re-sults are in good agreement with the law of soil mechanics,and the actual situation of the red clay foundation con-solidation settlement could be reflected accurately.This research provides references for the foundation treatment and engineering design of buildings on red clay ground.

  5. ABAQUS动力无限元人工边界研究%Study of ABAQUS dynamic infinite element artificial boundary

    Institute of Scientific and Technical Information of China (English)

    戚玉亮; 大塚久哲

    2014-01-01

    Some valuable studies have been done in the aspects of numerical simulation of natural infinite foundation and seismic wave input. The thesis comments the advantages and disadvantages of infinite element, and expatiates on the theory system of ABAQUS infinite element which is improved. The artificial boundary of ABAQUS dynamic infinite element considering the impact of outland fluctuations is proposed. Based on the equivalent boundary force superposition principle, the incident and scattered waves are dealt with separately, and assumed that they are independently to each other. The input ground motion is converted to equivalent stress acting on the interface between the finite element and infinite element to solve the problem of exogenous incident wave. Case study results show that:for the calculation results obtained from inside vibration source and the fixed boundary, the distortion and disturbances appear;the results calculated by the method mentioned above are compared with the results of viscoelastic boundary, which make it certain that the filter function of outgoing scattered wave with the method mentioned above is better than viscoelastic boundary. Therefore, the improved ABAQUS dynamic infinite element boundary method is effective and has certain stability.%针对动力场天然无限地基的数值模拟与地震波输入问题进行了一些有意义的研究,评述了现有动力计算常用无限元的优缺点,详细阐述了ABAQUS无限元理论体系框架,并加以改进,提出一种考虑外域地震动影响的ABAQUS动力无限元人工边界。采用等效边界力的叠加原理,对入射波和散射波分开处理,视入射波和散射波在边界上互不影响,将输入地震动转化为作用于有限元无限元交界面上的等效应力的方法来解决外源波的入射问题。算例验证结果表明:内源振动和固定边界会出现失真和扰动现象,同时该计算结果与黏弹性边界的计算结果对

  6. Analysis of the thermo-mechanical behaviour of the DEMO Water-Cooled Lithium Lead breeding blanket module under normal operation steady state conditions

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A.; Arena, P. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Aubert, J. [CEA Saclay, DEN/DANS/DM2S/SEMT, 91191 Gif sur Yvette Cedex (France); Bongiovì, G. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Chiovaro, P., E-mail: pierluigi.chiovaro@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Giammusso, R. [ENEA – C.R. Brasimone, 40032 Camugnano (Italy); Li Puma, A. [CEA Saclay, DEN/DANS/DM2S/SEMT, 91191 Gif sur Yvette Cedex (France); Tincani, A. [ENEA – C.R. Brasimone, 40032 Camugnano (Italy)

    2015-10-15

    Highlights: • A DEMO WCLL blanket module thermo-mechanical behaviour has been investigated. • Two models of the WCLL blanket module have been set-up adopting a code based on FEM. • The water flow domain in the module has been considered. • A set of uncoupled steady state thermo-mechanical analyses has been carried out. • Critical temperature is not overcome. Safety verifications are generally satisfied. - Abstract: Within the framework of DEMO R&D activities, a research cooperation has been launched between ENEA, the University of Palermo and CEA to investigate the thermo-mechanical behaviour of the outboard equatorial module of the DEMO1 Water-Cooled Lithium Lead (WCLL) blanket under normal operation steady state scenario. The research campaign has been carried out following a theoretical–computational approach based on the Finite Element Method (FEM) and adopting a qualified commercial FEM code. In particular, two different 3D FEM models (Model 1 and Model 2), reproducing respectively the central and the lateral poloidal–radial slices of the WCLL blanket module, have been set up. A particular attention has been paid to the modelling of water flow domain, within both the segment box channels and the breeder zone tubes, to simulate realistically the coolant-box thermal coupling. Results obtained are herewith reported and critically discussed.

  7. 基于MATLAB与ABAQUS联合开发的自动斜齿轮FEMA工具%Automatic FEM Analysis tools for Cylinder Gear Pairs Based on Joint Development of MATLAB and ABAQUS

    Institute of Scientific and Technical Information of China (English)

    连礼斐; 方宗德

    2014-01-01

    基于Python语言编写命令流二次开发ABAQUS,生成斜齿轮FEM分析GUI用户参数交互界面.联合MATLAB强大的数据处理功能,实现斜齿轮接触分析中装配位置转换、约束边界识别、接触面识别的数据文件.INP文件调用过程数据文件,由内核命令提交ABAQUS/Explicit分析任务,并载入ABAQUS/Visualization模块,显示分析结果.

  8. ABAQUS二次开发在车架模态分析中的应用%Application of Secondary Development Based on ABAQUS in Frame’ s Modal Analysis

    Institute of Scientific and Technical Information of China (English)

    李猛; 于存贵; 齐贤伟; 崔二巍

    2014-01-01

    Based on ABAQUS finite element software, this paper uses the Python scripting language for original GUI secondary de-velopment of ABAQUS and establishes a more concise and friendly user interface. By writing Python implementation kernel scripts, it realizes parametric modeling process and automatic displaying result and achieves the goal of raising the speed of modal analysis.%针对车架模态分析需要,基于ABAQUS有限元软件,使用Python语言,编写脚本语言对ABAQUS原有GUI进行二次开发,建立了更加简洁、快捷的用户操作界面;通过编写Python内核,实现了建模过程的参数化和计算结果的自动化。最终达到提高车架模态分析速度的目的。

  9. A holistic approach to thermomechanical processing of alloys

    Indian Academy of Sciences (India)

    S Venugopal; Baldev Raj

    2003-06-01

    New process design and control methods are needed for significantly improving productivity and reducing costs of thermomechanical processes such as hot metal forging. Current practices for accomplishing basic design tasks such as selecting the number of forming steps and specifying the processing conditions for each thermomechanical operation produce feasible solutions that are often far from optimal. Substantial improvements in effectiveness and efficiency can be realized through holistic approaches that optimize the whole system performance and not just individual subsystems such as workpiece material behavior, material flow in dies, and equipment responses. Recent progress in the application of dynamical modelling and process design techniques using ideal forming concepts and trajectory optimization are discussed. Monitoring methods for the on-line monitoring of the process and an intelligent forging system has been proposed.

  10. Modelling the Thermomechanical Conditions in Friction Stir Welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich

    Friction Stir Welding is a solid-state welding process invented by TWI in 1991. The FSW process is unique in the sense that joining of un-weldable alloys readily can be made. The thermomechanical conditions present in the workpiece during the welding process are of great interest since...... these control the properties of the weld. In the present work, a set of experimental, analytical and numerical analyses are carried out in order to evaluate the thermomechanical conditions descriptive for welding of aluminium, in this case AA2024-T3, under a specific set of welding parameters. Despite...... these specific data, the developed models can be applied for other alloys and welding parameters as well. A detailed experiment is carried out which constitutes the basis for the development and validation of the numerical and analytical models presented in this work. The contact condition at the tool...

  11. Thermo-mechanical behaviour of a compacted swelling clay

    CERN Document Server

    Tang, Anh-Minh; Barnel, Nathalie

    2008-01-01

    Compacted unsaturated swelling clay is often considered as a possible buffer material for deep nuclear waste disposal. An isotropic cell permitting simultaneous control of suction, temperature and pressure was used to study the thermo-mechanical behaviour of this clay. Tests were performed at total suctions ranging from 9 to 110 MPa, temperature from 25 to 80 degrees C, isotropic pressure from 0.1 to 60 MPa. It was observed that heating at constant suction and pressure induces either swelling or contraction. The results from compression tests at constant suction and temperature evidenced that at lower suction, the yield pressure was lower, the elastic compressibility parameter and the plastic compressibility parameter were higher. On the other hand, at a similar suction, the yield pressure was slightly influenced by the temperature; and the compressibility parameters were insensitive to temperature changes. The thermal hardening phenomenon was equally evidenced by following a thermo-mechanical path of loading...

  12. Finite element analysis for the arm of hydraulic excavators based on ABAQUS%应用 ABAQUS 的液压挖掘机动臂有限元分析

    Institute of Scientific and Technical Information of China (English)

    蒋小利; 江志刚; 张华; 胡晓莉

    2014-01-01

    The arm is a main component of a hydraulic excavator for completing the function ,the reasonability of the structure will directly affect the working performance and reliability of the hydraulic excavator .However,using the finite element method for structural analysis of excavator arm is the premise for ensuring the rationality for the structural design of the arm .Taking a certain type of hydraulic excavator(20t)as the research object,using finite element analysis software ABAQUS to carry out finite element analysis on its arm ,from which the cloud atlas of stress and deform was obtained .The analysis results show that the strength and stiffness for the arm was sufficient and theoretical guidance for the design and test of the arm was provided .%液压挖掘机动臂是完成液压挖掘机各项功能的主要构件,其结构设计的合理性直接关系到液压挖掘机的工作性能和可靠性。基于有限元分析方法的液压挖掘机动臂结构分析是保证液压挖掘机动臂结构设计合理性的前提,以某型液压挖掘机(20 t级)为研究对象,应用有限元分析软件ABAQUS对其动臂进行有限元分析,求得危险工况下该动臂的应力云图与位移云图,通过云图分析动臂的强度和刚度,为动臂的设计和试验提供参考。

  13. 基于Abaqus/explicit的钛合金高速切削切削力模拟研究%Simulation Study on Cutting Force During High Speed Machining Titanium Alloy Based on Abaqus/explicit

    Institute of Scientific and Technical Information of China (English)

    芮执元; 李川平; 郭俊锋; 冯瑞成

    2011-01-01

    The aim of this research was to investigate cutting force during high speed machining titanium alloy. Johnson- Cook materials model and fracture criterion of commercial finite element software Abaqus was used to simulate high speed machining Ti6Al4V. It was Analyzed that The influence of the cutting parameters (including feed rate, cutting depth, cutting speed) on the cutting forces. The results shown that cutting force, feed force, specific cutting force and specific feed force reduced with increases in cutting speed, cutting force, feed force increased and specific cutting force, specific feed force reduced with increases in feed rate.%针对高速切削钛合金时切削力的问题,利用有限元分析软件Abaqus的Johnson-Cook材料模型及Johnson-Cook断裂准则,对钛合金高速切削切削力进行了仿真研究,分析钛合金高速切削加工过程中各切削参数(包括进给量、切削深度和切削速度)对切削力的影响.结果表明,切削力、进给力、单位面积切削力和单位面积进给力都随速度的增大而减小;但随着进给速度的增大,切削力和进给力都增大,而单位面积的切削力和进给力都减小.

  14. Coating-Substrate Systems for Thermomechanically Durable Turbine Airfoils

    Science.gov (United States)

    2015-06-30

    Department Building 503, Room 1355 Santa Barbara, CA 93106 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research 8...approach has been to study in detail degradation mechanisms during thermomechanical cycling under isothermal fatigue conditions with sustained ...layers of surface protection. For example, yttria-stabilized zirconia (YSZ) thermal barrier coating systems are applied to nickel-base single crystals

  15. Thermo-mechanical design aspects of mercury bombardment ion thrusters.

    Science.gov (United States)

    Schnelker, D. E.; Kami, S.

    1972-01-01

    The mechanical design criteria are presented as background considerations for solving problems associated with the thermomechanical design of mercury ion bombardment thrusters. Various analytical procedures are used to aid in the development of thruster subassemblies and components in the fields of heat transfer, vibration, and stress analysis. Examples of these techniques which provide computer solutions to predict and control stress levels encountered during launch and operation of thruster systems are discussed. Computer models of specific examples are presented.

  16. Continuous damage parameter calculation under thermo-mechanical random loading

    OpenAIRE

    Marko Nagode

    2014-01-01

    The paper presents a method on how the mean stress effect on fatigue damage can be taken into account under an arbitrary low cycle thermo-mechanical loading. From known stress, elastoplastic strain and temperature histories the cycle amplitudes and cycle mean values are extracted and the damage parameter is computed. In contrast to the existing methods the proposed method enables continuous damage parameter computation without the need of waiting for the cycles to close. The limitations of th...

  17. Mechanocaloric and Thermomechanical Effects in Bose-Einstein Condensed Systems

    OpenAIRE

    Marques, G. C.; Bagnato, V. S.; Muniz, S. R.; Spehler, D.

    2005-01-01

    In this paper we extend previous hydrodynamic equations, governing the motion of Bose-Einstein-condensed fluids, to include temperature effects. This allows us to analyze some differences between a normal fluid and a Bose-Einstein-condensed one. We show that, in close analogy with superfluid He-4, a Bose-Einstein-condensed fluid exhibits the mechanocaloric and thermomechanical effects. In our approach we can explain both effects without using the hypothesis that the Bose-Einstein-condensed fl...

  18. Progress in thermomechanical control of steel plates and their commercialization

    OpenAIRE

    Kiyoshi Nishioka and Kazutoshi Ichikawa

    2012-01-01

    The water-cooled thermomechanical control process (TMCP) is a technology for improving the strength and toughness of water-cooled steel plates, while allowing control of the microstructure, phase transformation and rolling. This review describes metallurgical aspects of the microalloying of steel, such as niobium addition, and discusses advantages of TMCP, for example, in terms of weldability, which is reduced upon alloying. Other covered topics include the development of equipment, distortio...

  19. A fully coupled thermo-mechanical model for unsaturated soil

    OpenAIRE

    2007-01-01

    This paper addresses a new, unified thermomechanical constitutive model for unsaturated soils through a coupled study. In the context of elastoplasticity and the critical state theory, the model uses the concepts of multi-mechanism and bounding surface theory. This advanced constitutive approach involves thermo-plasticity of saturated and unsaturated soils. Bishop’s effective stress framework is adopted to represent the stress state in the soil. This stress is linked to the water retention...

  20. Effects of Subscale Size and Shape on Global Energy Dissipation in a Multiscale Model of a Fiber-Reinforced Composite Exhibiting Post-Peak Strain Softening Using Abaqus and FEAMAC

    Science.gov (United States)

    Pineda, Evan, J.; Bednarcyk, Brett, A.; Arnold, Steven, M.

    2012-01-01

    A mesh objective crack band model is implemented in the generalized method of cells (GMC) micromechanics model to predict failure of a composite repeating unit cell (RUC). The micromechanics calculations are achieved using the MAC/GMC core engine within the ImMAC suite of micromechanics codes, developed at the NASA Glenn Research Center. The microscale RUC is linked to a macroscale Abaqus/Standard finite element model using the FEAMAC multiscale framework (included in the ImMAC suite). The effects of the relationship between the characteristic length of the finite element and the size of the microscale RUC on the total energy dissipation of the multiscale model are investigated. A simple 2-D composite square subjected to uniaxial tension is used to demonstrate the effects of scaling the dimensions of the RUC such that the length of the sides of the RUC are equal to the characteristic length of the finite element. These results are compared to simulations where the size of the RUC is fixed, independent of the element size. Simulations are carried out for a variety of mesh densities and element shapes, including square and triangular. Results indicate that a consistent size and shape must be used to yield preserve energy dissipation across the scales.

  1. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    Science.gov (United States)

    Karahan, Aydın; Buongiorno, Jacopo

    2010-01-01

    An engineering code to model the irradiation behavior of UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  2. The Numerical Nuclear Reactor for High-Fidelity Integrated Simulation of Neutronic, Thermal-Hydraulic, and Thermo-Mechanical Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. S.; Ju, H. G.; Jeon, T. H. and others

    2005-03-15

    A comprehensive high fidelity reactor core modeling capability has been developed for detailed analysis of current and advanced reactor designs as part of a US-ROK collaborative I-NERI project. High fidelity was accomplished by integrating highly refined solution modules for the coupled neutronic, thermal-hydraulic, and thermo-mechanical phenomena. Each solution module employs methods and models that are formulated faithfully to the first-principles governing the physics, real geometry, and constituents. Specifically, the critical analysis elements that are incorporated in the coupled code capability are whole-core neutron transport solution, ultra-fine-mesh computational fluid dynamics/heat transfer solution, and finite-element-based thermo-mechanics solution, all obtained with explicit (fuel pin cell level) heterogeneous representations of the components of the core. The vast computational problem resulting from such highly refined modeling is solved on massively parallel computers, and serves as the 'numerical nuclear reactor'. Relaxation of modeling parameters were also pursued to make problems run on clusters of workstations and PCs for smaller scale applications as well.

  3. Coding Partitions

    Directory of Open Access Journals (Sweden)

    Fabio Burderi

    2007-05-01

    Full Text Available Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD, we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ``unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguouscomponent and other (if any totally ambiguouscomponents. In the case the code is finite, we give an algorithm for computing its canonical partition. This, in particular, allows to decide whether a given partition of a finite code X is a coding partition. This last problem is then approached in the case the code is a rational set. We prove its decidability under the hypothesis that the partition contains a finite number of classes and each class is a rational set. Moreover we conjecture that the canonical partition satisfies such a hypothesis. Finally we consider also some relationships between coding partitions and varieties of codes.

  4. Proceedings of the first thermomechanical workshop for shale

    Energy Technology Data Exchange (ETDEWEB)

    1986-03-01

    Chapter 2 provides a description of the three federal regulations that pertain to the development of a high-level nuclear waste repository regardless of the rock type. Chapter 3 summarizes the reference shale repository conditions selected for this workshop. A room-and-pillar configuration was considered at an extraction ratio of about 0.25. The depth was assumed to be 700 m. Chapter 4 gives a summary of several case histories that were considered to be valuable in gaining an understanding of some of the design and construction features that might be unique in creating underground openings in shale. Chapter 5 assesses the data and information needs, availability, technology for acquisition, and the research and development necessary for analytical/numerical modeling in heat transfer, fluid flow, and thermomechanics. Chapter 6 assesses data and information needs in the laboratory and considerations associated with shale rock characterization. Chapter 7 assesses the data and information needs, availability, technology for acquisition, and the research and development necessary for field/in situ testing. Chapter 8 presents the consensus of the workshop participants that there is a definite need to advance the state of knowledge concerning the thermomechanical behavior of shales and to gain experience in applying this knowledge to the design of room-and-pillar excavations. Finally, Chapter 9 provides a summary of the research and development needs in the various interacting activities of repository development, including analytical/numerical modeling, laboratory testing, and field/in situ testing. The main conclusion of the workshop was that a need exists for an aggressive program in laboratory, field, numerical modeling, and design studies to provide a thermomechanical, technological base for comparison of shale types and shale regions/areas/sites.

  5. Thermomechanical processing optimization for 304 austenitic stainless steel using artificial neural network and genetic algorithm

    Science.gov (United States)

    Feng, Wen; Yang, Sen

    2016-12-01

    Thermomechanical processing has an important effect on the grain boundary character distribution. To obtain the optimal thermomechanical processing parameters is the key of grain boundary engineering. In this study, genetic algorithm (GA) based on artificial neural network model was proposed to optimize the thermomechanical processing parameters. In this model, a back-propagation neural network (BPNN) was established to map the relationship between thermomechanical processing parameters and the fraction of low-Σ CSL boundaries, and GA integrated with BPNN (BPNN/GA) was applied to optimize the thermomechanical processing parameters. The validation of the optimal thermomechanical processing parameters was verified by an experiment. Moreover, the microstructures and the intergranular corrosion resistance of the base material (BM) and the materials produced by the optimal thermomechanical processing parameters (termed as the GBEM) were studied. Compared to the BM specimen, the fraction of low-Σ CSL boundaries was increased from 56.8 to 77.9% and the random boundary network was interrupted by the low-Σ CSL boundaries, and the intergranular corrosion resistance was improved in the GBEM specimen. The results indicated that the BPNN/GA model was an effective and reliable means for the thermomechanical processing parameters optimization, which resulted in improving the intergranular corrosion resistance in 304 austenitic stainless steel.

  6. Technical Aspects of New Concentrating Solar Thermomechanic Conversion

    Directory of Open Access Journals (Sweden)

    Ivan Herec

    2005-01-01

    Full Text Available The article concerns technical aspects of new concentrating solar thermo-mechanic conversion from the point of view of automated control algorithms of solar thermal motor working on a principle of modified Clausius-Rankin's thermal circulation. On the basis of the proposed algorithms for controlling of thermodynamic processes of the functional model of the solar thermal motor, which uses internal-system absorption of incoming heat radiation, double-step steam generation and regeneration of out coming heat, the design and the testing of controlling single-chip microprocessor electronics with specially designed software was executed.

  7. Thermomechanical behavior of rapidly solidified Fe-25Cr-20Ni

    Energy Technology Data Exchange (ETDEWEB)

    Draissia, M.; Boukhris, N.; Debili, M.Y. [LM2S, Dept. de Physique, Faculte des Sciences, Univ. Badji-Mokhtar, Annaba, Algerie (Turkey)

    2004-07-01

    The thermomechanical treatment at 1050 C under a stress of about 30 MPa, of milled ribbons from Fe-25Cr-20Ni (0.060%Ni-0.1%Ti) refractory stainless steel, leads to a recrystallisation of the as-melt-spun structure which is intermediate between cellular and columnar dendritic. The mean grain size in the relatively high density zones (85%) may be considered as low and do not exceed 10{mu}m. Other grains appear abnormally large and reach 30 {mu}m. The origin of these grains, must be researched in an exaggerate growth phenomenon under a local deformation near the critical work hardening. (orig.)

  8. Thermo-mechanical analysis using a multiphysics approach

    Energy Technology Data Exchange (ETDEWEB)

    Delprete, C; Rosso, C [Dipartimento di Meccanica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino (Italy); Freschi, F; Repetto, M, E-mail: cristiana.delprete@polito.i [Dipartimento di Ingegneria Elettrica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino (Italy)

    2009-08-01

    In the paper the Cell Method, a discrete method for solving partial differential equations, is applied to a time dependent thermo-mechanical problem. The basic equations are developed with a multiphysics approach and results, both in two-dimensional and tree-dimensional models, are presented. By means of the comparison with finite element approach, some advantages of the proposed methodology are highlighted, in particular quick model construction, capability to separate thermal strain from the mechanical one and, as a consequence, the capability to model the strain and stress evolution in a time dependent problem, considering possible mutual effects between thermal and mechanical fields.

  9. Mechanocaloric and thermomechanical effects in Bose-Einstein-condensed systems

    Science.gov (United States)

    Marques, G. C.; Bagnato, V. S.; Muniz, S. R.; Spehler, D.

    2004-05-01

    In this paper we extend previous hydrodynamic equations, governing the motion of Bose-Einstein-condensed fluids, to include temperature effects. This allows us to analyze some differences between a normal fluid and a Bose-Einstein-condensed one. We show that, in close analogy with superfluid 4He , a Bose-Einstein-condensed fluid exhibits the mechanocaloric and thermomechanical effects. In our approach we can explain both effects without using the hypothesis that the Bose-Einstein-condensed fluid has zero entropy. Such ideas could be investigated in existing experiments.

  10. Space cryogenics components based on the thermomechanical (TM) effect

    Science.gov (United States)

    Yuan, S. W. K.; Frederking, T. H. K.

    1988-01-01

    He II vapor-liquid phase separation (VLPS) is discussed, with emphasis on fluid-related transport phenomena. The VLPS system has been studied for both linear and nonlinear regimes, demonstrating that well-defined convection patterns exist in porous plug phase separators. In the second part, other components based on the thermomechanical effect are discussed in the limit of ideal conditions. Examples considered include the heat pipe transfer of zero net mass flow, liquid transfer pumps based on the fountain effect, mechanocaloric devices for cooling purposes, and He II vortex refrigerators.

  11. Thermomechanical Analysis (TMA) and its application to polymer systems

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jillian Cathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-25

    Thermomechanical analysis (TMA) instruments are used to measure dimensional changes as a sample is heated or cooled. Data obtained from these instruments can be used to calculate the glass transition (Tg) and the coefficient of thermal expansion (CTE). Commonly, materials expand when heated and contract when cooled; however, the rate of such changes depends largely on the type of material. In manufacturing, it is important to use components with similar CTE values to avoid product failure, leaks, or a build-up of thermal stress. Therefore, TMA is a straightforward, useful tool in research and industry.

  12. Thermomechanical Behavior of High Performance Epoxy/Organoclay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Artur Soares Cavalcanti Leal

    2014-01-01

    Full Text Available Nanocomposites of epoxy resin containing bentonite clay were fabricated to evaluate the thermomechanical behavior during heating. The epoxy resin system studied was prepared using bifunctional diglycidyl ether of bisphenol A (DGEBA, crosslinking agent diaminodiphenylsulfone (DDS, and diethylenetriamine (DETA. The purified bentonite organoclay (APOC was used in all experiments. The formation of nanocomposite was confirmed by X-ray diffraction analysis. Specimens of the fabricated nanocomposites were characterized by dynamic mechanical analysis (DMA. According to the DMA results a significant increase in glass transition temperature and storage modulus was evidenced when 1 phr of clay is added to epoxy resin.

  13. Preliminary AD-Horn Thermomechanical and Electrodynamic Simulations

    CERN Document Server

    AUTHOR|(CDS)2095747; Horvath, David; Calviani, Marco

    2016-01-01

    As part of the Antiproton Decelerator (AD) target area consolidation activities planned for LS2, it has been necessary to perform a comprehensive study of the thermo-structural behaviour of the AD magnetic horn during operation, in order to detail specific requirements for the upgrade projects and testing procedures. The present work illustrates the preliminary results of the finite element analysis carried out to evaluate the thermal and structural behaviour of the device, as well as the methodology used to model and solve the thermomechanical and electrodynamic simulations performed in the AD magnetic horn.

  14. Finite dimensional thermo-mechanical systems and second order constraints

    CERN Document Server

    Cendra, Hernán; Amaya, Maximiliano Palacios

    2016-01-01

    In this paper we study a class of physical systems that combine a finite number of mechanical and thermodynamic observables. We call them finite dimensional thermo-mechanical systems. We introduce these systems by means of simple examples. The evolution equations of the involved observables are obtained in each example by using, essentially, the Newton's law and the First Law of Thermodynamics only. We show that such equations are similar to those defining certain mechanical systems with higher order constraints. Moreover, we show that all of the given examples can be described in a variational formalism in terms of second order constrained systems.

  15. Optimization Design of Vehicle Front Axle Structure Based on ABAQUS and TOSCA%基于ABAQUS与TOSCA的汽车前桥结构优化设计

    Institute of Scientific and Technical Information of China (English)

    马瑞雪; 王欣; 覃祯员; 张科峰

    2012-01-01

    应用ABAQUS软件对汽车前桥进行强度分析,针对车桥强度不足问题,通过TOSCA优化软件对前桥进行拓扑优化设计,在保证承栽能力的前提下有效减轻其重量。%The author analyze the vehicle front axle for the strength by ABAQUS software. In view of the axle strength shortage problem, they use TOSCA optimization software designing the front axle topological optimization structure,in order to effectively reduce its weight under the condition of its bearing capacity.

  16. Atomistic modeling of thermomechanical properties of SWNT/Epoxy nanocomposites

    Science.gov (United States)

    Fasanella, Nicholas; Sundararaghavan, Veera

    2015-09-01

    Molecular dynamics simulations are performed to compute thermomechanical properties of cured epoxy resins reinforced with pristine and covalently functionalized carbon nanotubes. A DGEBA-DDS epoxy network was built using the ‘dendrimer’ growth approach where 75% of available epoxy sites were cross-linked. The epoxy model is verified through comparisons to experiments, and simulations are performed on nanotube reinforced cross-linked epoxy matrix using the CVFF force field in LAMMPS. Full stiffness matrices and linear coefficient of thermal expansion vectors are obtained for the nanocomposite. Large increases in stiffness and large decreases in thermal expansion were seen along the direction of the nanotube for both nanocomposite systems when compared to neat epoxy. The direction transverse to nanotube saw a 40% increase in stiffness due to covalent functionalization over neat epoxy at 1 K whereas the pristine nanotube system only saw a 7% increase due to van der Waals effects. The functionalized SWNT/epoxy nanocomposite showed an additional 42% decrease in thermal expansion along the nanotube direction when compared to the pristine SWNT/epoxy nanocomposite. The stiffness matrices are rotated over every possible orientation to simulate the effects of an isotropic system of randomly oriented nanotubes in the epoxy. The randomly oriented covalently functionalized SWNT/Epoxy nanocomposites showed substantial improvements over the plain epoxy in terms of higher stiffness (200% increase) and lower thermal expansion (32% reduction). Through MD simulations, we develop means to build simulation cells, perform annealing to reach correct densities, compute thermomechanical properties and compare with experiments.

  17. Continuous damage parameter calculation under thermo-mechanical random loading.

    Science.gov (United States)

    Nagode, Marko

    2014-01-01

    The paper presents a method on how the mean stress effect on fatigue damage can be taken into account under an arbitrary low cycle thermo-mechanical loading. From known stress, elastoplastic strain and temperature histories the cycle amplitudes and cycle mean values are extracted and the damage parameter is computed. In contrast to the existing methods the proposed method enables continuous damage parameter computation without the need of waiting for the cycles to close. The limitations of the standardized damage parameters are thus surpassed. The damage parameters derived initially for closed and isothermal cycles assuming that the elastoplastic stress-strain response follows the Masing and memory rules can now be used to take the mean stress effect into account under an arbitrary low cycle thermo-mechanical loading. The method includes:•stress and elastoplastic strain history transformation into the corresponding amplitude and mean values;•stress and elastoplastic strain amplitude and mean value transformation into the damage parameter amplitude history;•damage parameter amplitude history transformation into the damage parameter history.

  18. Thermomechanics of monolayer graphene: Rippling, thermal expansion and elasticity

    Science.gov (United States)

    Gao, Wei; Huang, Rui

    2014-05-01

    Thermomechanical properties of monolayer graphene with thermal fluctuation are studied by both statistical mechanics analysis and molecular dynamics (MD) simulations. While the statistical mechanics analysis in the present study is limited by a harmonic approximation, significant anharmonic effects are revealed by MD simulations. The amplitude of out-of-plane thermal fluctuation is calculated for graphene membranes under both zero stress and zero strain conditions. It is found that the fluctuation amplitude follows a power-law scaling with respect to the linear dimension of the membrane, but the roughness exponents are different for the two conditions due to anharmonic interactions between bending and stretching modes. Such thermal fluctuation or rippling is found to be responsible for the effectively negative in-plane thermal expansion of graphene at relatively low temperatures, while a transition to positive thermal expansion is predicted as the anharmonic interactions suppress the rippling effect at high temperatures. Subject to equi-biaxial tension, the amplitude of thermal rippling decreases nonlinearly, and the in-plane stress-strain relation of graphene becomes nonlinear even at infinitesimal strain, in contrast with classical theory of linear elasticity. It is found that the tangent biaxial modulus of graphene depends on strain non-monotonically, decreases with increasing temperature, and depends on membrane size. Both statistical mechanics and MD simulations suggest considerable entropic contribution to the thermomechanical properties of graphene, and as a result thermal rippling is intricately coupled with thermal expansion and thermoelasticity for monolayer graphene membranes.

  19. ISOTHERMAL AND THERMOMECHANICAL FATIGUE OF A NICKEL-BASE SUPERALLOY

    Directory of Open Access Journals (Sweden)

    Carlos Carvalho Engler-Pinto Júnior

    2014-06-01

    Full Text Available Thermal gradients arising during transient regimes of start-up and shutdown operations produce a complex thermal and mechanical fatigue loading which limits the life of turbine blades and other engine components operating at high temperatures. More accurate and reliable assessment under non-isothermal fatigue becomes therefore mandatory. This paper investigates the nickel base superalloy CM 247LC-DS under isothermal low cycle fatigue (LCF and thermomechanical fatigue (TMF. Test temperatures range from 600°C to 1,000°C. The behavior of the alloy is strongly affected by the temperature variation, especially in the 800°C-1,000°C range. The Ramberg-Osgood equation fits very well the observed isothermal behavior for the whole temperature range. The simplified non-isothermal stress-strain model based on linear plasticity proposed to represent the thermo-mechanical fatigue behavior was able to reproduce the observed behavior for both in-phase and out-of-phase TMF cycling.

  20. Effects of boundary conditions on thermomechanical calculations: Spent fuel test - climax

    Energy Technology Data Exchange (ETDEWEB)

    Butkovich, T.R.

    1982-10-01

    The effects of varying certain boundary conditions on the results of finite-element calculations were studied in relation to the Spent Fuel Test - Climax. The study employed a thermomechanical model with the ADINA structural analysis. Nodal temperature histories were generated with the compatible ADINAT heat flow codes. The boundary conditions studied included: (1) The effect of boundary loading on three progressively larger meshes. (2) Plane strain vs plane stress conditions. (3) The effect of isothermal boundaries on a small mesh and on a significantly larger mesh. The results showed that different mesh sizes had an insignificant effect on isothermal boundaries up to 5 y, while on the smallest and largest mesh, the maximum temperature difference in the mesh was <1{sup 0}C. In the corresponding ADINA calculation, these different mesh sizes produce insignificant changes in the stress field and displacements in the region of interest near the heat sources and excavations. On the other hand, plane stress produces horizontal and vertical stress differences approx. 9% higher than does plane strain.

  1. Holographic codes

    CERN Document Server

    Latorre, Jose I

    2015-01-01

    There exists a remarkable four-qutrit state that carries absolute maximal entanglement in all its partitions. Employing this state, we construct a tensor network that delivers a holographic many body state, the H-code, where the physical properties of the boundary determine those of the bulk. This H-code is made of an even superposition of states whose relative Hamming distances are exponentially large with the size of the boundary. This property makes H-codes natural states for a quantum memory. H-codes exist on tori of definite sizes and get classified in three different sectors characterized by the sum of their qutrits on cycles wrapped through the boundaries of the system. We construct a parent Hamiltonian for the H-code which is highly non local and finally we compute the topological entanglement entropy of the H-code.

  2. 基于ABAQUS的凉水井滑坡稳定性分析%Analysis on Landslide Stability based on ABAQUS

    Institute of Scientific and Technical Information of China (English)

    李伟

    2012-01-01

    利用大型有限元软件ABAQUS对凉水井滑坡段进行了数值模拟分析,通过应力应变场的云图分析,确定边坡的最危险潜在滑动面。依据强度折减法的原理,利用ABAQUS定义场变量为强度折减系数值,通过改变场变量实现摩擦角和粘聚力的折减,得出边坡稳定性安全系数,并对滑坡的整治措施提出建议。%Liangshuijing Landslide is analyzed through numerical simulation with large finite element software ABAQUS and the most dangerous potential sliding surface of the slope is confirmed through analysis on cloud atlas of the stress and strain field. Depending on the principle of strength reduction method, the field variables are defined as the value of strength reduction factor with ABAQUS so that the reduction of friction angle and cohesion could be realized by changing the field variables, and then the safety factor of the slope stability could be obtained. In addition, the advice against the landslide treatment is proposed.

  3. Thermo-mechanical properties of SOFC components investigated by a combined method

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Esposito, Vincenzo; Ramousse, Severine

    , and differential thermo-mechanical behavior at each layer. The combination of such factors can have a critical effect on the final shape and microstructure, and on the mechanical integrity. Thermo-mechanical properties and sintering mechanisms of important SOFC materials (CGO, YSZ, ScYSZ) were systematically...... characterized by mean of the combined use of optical dilatometry, cyclic loading thermo-mechanical analysis and scanning electron microscopy. The results from the different techniques were found complementary and the thorough understanding of viscoelastic properties of individual layers led to optimization...

  4. Numerical simulation of thermo-mechanical fatigue properties for particulate reinforced composites

    Institute of Scientific and Technical Information of China (English)

    Ran Guo; Huiji Shi; Zhenhan Yao

    2005-01-01

    In this paper, a two dimensional Voronoi cell element, formulated with creep, thermal and plastic strain, is applied for the numerical simulation of thermo-mechanical fatigue behavior for particulate reinforced composites.The relation between mechanical fatigue phases and thermal fatigue phases influences the thermo-mechanical fatigue behavior and cyclic creep damage. The topological features of micro-structure in particulate reinforced composites, such as the orientation, depth-width ratio, distribution and volume fraction of inclusions, have a great influence on thermomechanical behavior. Some related conclusions are obtained by examples of numerical simulation.

  5. Low cycle fatigue improvement of powder metallurgy titanium alloy through thermomechanical treatment

    Institute of Scientific and Technical Information of China (English)

    LIU Bin; LIU Yong; HE Xiao-yu; TANG Hui-ping; CHEN Li-fang

    2008-01-01

    A low-cost β type Ti-1.5Fe-6.8Mo-4.8Al-1.2Nd (mass fraction, %)(T12LCC) alloy was produced by blended elemental powder metallurgy(P/M) method and subsequent thermomechanical treatment. Low cycle fatigue(LCF) behavior of P/M T12LCC alloy before and after thermomechanical treatment was studied. The results show that the LCF resistance of P/M titanium alloy is significantly enhanced through the thermomechanical treatment. The mechanisms for the improvement of LCF behavior are attributed to the elimination of residual pores, the microstructure refining and homogenization.

  6. Polar Codes

    Science.gov (United States)

    2014-12-01

    QPSK Gaussian channels . .......................................................................... 39 vi 1. INTRODUCTION Forward error correction (FEC...Capacity of BSC. 7 Figure 5. Capacity of AWGN channel . 8 4. INTRODUCTION TO POLAR CODES Polar codes were introduced by E. Arikan in [1]. This paper...Under authority of C. A. Wilgenbusch, Head ISR Division EXECUTIVE SUMMARY This report describes the results of the project “More reliable wireless

  7. Microstructure and mechanical properties of vanadium alloys after thermomechanical treatments

    Energy Technology Data Exchange (ETDEWEB)

    Grinyaev, Konstantin V., E-mail: kvgrinyaev@inbox.ru; Ditenberg, Ivan A.; Smirnov, Ivan V.; Tyumentsev, Alexander N. [National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Siberian Physical-Technical Institute, Tomsk, 634050 (Russian Federation); Tsverova, Anastasiya S. [National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Chernov, Vyacheslav M.; Potapenko, Mikhail M. [A.A. Bochvar High Technology Research Institute of Inorganic Materials, Moscow, 123098 (Russian Federation)

    2015-10-27

    The results of investigation of dispersion strengthening effect on parameters of structural-phase states and characteristics of short-term strength and ductility of vanadium alloys of V–4Ti–4Cr, V–2.4Zr–0.25C, V–1.2Zr–8.8Cr and V–1.7Zr–4.2Cr–7.6W systems with different concentration of interstitial elements after optimized thermomechanical treatment mode were summarized. It was shown that for effective realization of dispersion strengthening by Orowan-type mechanism at least 25–50% of the initial volume fraction of coarse particles should be transformed into fine-disperse state and redistributed over the volume of material.

  8. Geometrical Field Formulation of Thermomechanics in Rational Mechanics

    CERN Document Server

    Jianhua, Xiao

    2010-01-01

    In modern science, the thermo mechanics motion can be traced back to quantum motion in micro viewpoint. On the other hand, the thermo mechanics is definitely related with geometrical configuration motion (phase) in macro viewpoint. On this sense, the thermomechanics should be formulated by two kinds of motion: quantum motion and configuration motion. Its principle goal ought to be bridge the gap between atomic physics and engineering practice. In this research, the configuration motion is formulated by deformation geometrical field (motion transformation tensor). The quantum motion is formulated by the wave function of quantum state. Based on these two fields, the thermo stress is formulated as the coupling of quantum motion and configuration motion. Along this line, the entropy is interpreted and formulated according to thermodynamics rules. For scalar entropy, the traditional meaning of entropy is reserved. For infinitesimal configuration variation, the formulation is degenerated to the traditional elastici...

  9. Standard practice for strain controlled thermomechanical fatigue testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers the determination of thermomechanical fatigue (TMF) properties of materials under uniaxially loaded strain-controlled conditions. A “thermomechanical” fatigue cycle is here defined as a condition where uniform temperature and strain fields over the specimen gage section are simultaneously varied and independently controlled. This practice is intended to address TMF testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. While this practice is specific to strain-controlled testing, many sections will provide useful information for force-controlled or stress-controlled TMF testing. 1.2 This practice allows for any maximum and minimum values of temperature and mechanical strain, and temperature-mechanical strain phasing, with the restriction being that such parameters remain cyclically constant throughout the duration of the test. No restrictions are placed on en...

  10. Thermo-mechanical coupled analysis of hot ring rolling process

    Institute of Scientific and Technical Information of China (English)

    SUN Zhi-chao; YANG He; OU Xin-zhe

    2008-01-01

    A 3D rigid-plastic and coupled thermo-mechanical FE model for hot ring rolling(HRR) was developed based on DEFORM 3D software, then coupled heat transferring, material flow and temperature distribution of the ring in HRR were simulated and the effects of process parameters on them were analyzed. The results show that the deformation nonuniformity of ring blank increases with the increase of the rotational speed of driver roll and friction factor or the decrease of the feed rate of idle roll and initial temperature of ring blank. The temperature nonuniformity of ring blank decreases with the increase of the feed rate of idle roll or the decrease of initial temperature of ring blank and friction factor. There is an optimum rotational speed of driver roll under which the temperature distribution of ring blank is the most uniform. The results obtained can provide a guide for forming parameters optimization and quality control.

  11. Thermomechanical properties of the silanized-kenaf/polystyrene composites

    Directory of Open Access Journals (Sweden)

    2009-10-01

    Full Text Available In order to improve the poor interfacial adhesion of the kenaf fiber and polystyrene (PS in their composite material, the surface of the kenaf fiber was modified using a synthesized polymeric coupling agent to promote adhesion with PS matrix. The dynamic thermo-mechanical properties of the composite composed of modified kenaf fiber and PS were also investigated. The polymeric coupling agent treatment of the kenaf fiber increased the fiber-matrix interaction through a condensation reaction between alkoxysilane and hydroxyl groups of kenaf cellulose. DMA (Dynamic Mechanical Thermal Analysis results showed that the modified fiber composites have higher E′ and lower tanδ than those with untreated fiber indicating that a greater interfacial interaction between the matrix resin and the fiber. It was also found that the storage modulus increases in proportion with the Si/C ratio on the fiber surface.

  12. A thermomechanical crystal plasticity constitutive model for ultrasonic consolidation

    KAUST Repository

    Siddiq, Amir

    2012-01-01

    We present a micromechanics-based thermomechanical constitutive model to simulate the ultrasonic consolidation process. Model parameters are calibrated using an inverse modeling approach. A comparison of the simulated response and experimental results for uniaxial tests validate and verify the appropriateness of the proposed model. Moreover, simulation results of polycrystalline aluminum using the identified crystal plasticity based material parameters are compared qualitatively with the electron back scattering diffraction (EBSD) results reported in the literature. The validated constitutive model is then used to simulate the ultrasonic consolidation process at sub-micron scale where an effort is exerted to quantify the underlying micromechanisms involved during the ultrasonic consolidation process. © 2011 Elsevier B.V. All rights reserved.

  13. Thermomechanical Property Data Base Developed for Ceramic Fibers

    Science.gov (United States)

    1996-01-01

    A key to the successful application of metal and ceramic composite materials in advanced propulsion and power systems is the judicious selection of continuous-length fiber reinforcement. Appropriate fibers can provide these composites with the required thermomechanical performance. To aid in this selection, researchers at the NASA Lewis Research Center, using in-house state-of-the-art test facilities, developed an extensive data base of the deformation and fracture properties of commercial and developmental ceramic fibers at elevated temperatures. Lewis' experimental focus was primarily on fiber compositions based on silicon carbide or alumina because of their oxidation resistance, low density, and high modulus. Test approaches typically included tensile and flexural measurements on single fibers or on multifilament tow fibers in controlled environments of air or argon at temperatures from 800 to 1400 C. Some fiber specimens were pretreated at composite fabrication temperatures to simulate in situ composite conditions, whereas others were precoated with potential interphase and matrix materials.

  14. Tensile properties of austempered ductile iron under thermomechanical treatment

    Science.gov (United States)

    Achary, J.

    2000-02-01

    A new processing method was investigated for improving the strength and elongation of austempered ductile iron (ADI) by grain refinement of parent austenite using thermomechanical treatment. The material was deformed at the austenitization temperature by single and multipass rolling before the austempering treatment. The effects of the amount of deformation, austenitization temperature, austempering temperatures, reaustenitization, and secondary deformation on the tensile properties were studied. The properties obtained using the method were compared with those of the ASTM standards. The effect of deformation on the graphite shape was also studied. Tensile strength/yield strength/elongation values were found to increase with increasing austenite deformation up to 40% and then to start decreasing. Tensile strength/yield strength and elongation values of 1700 MPa/1300 MPa/5% and 1350 MPa/920 MPa/15% can be achieved with this method in the ranges of variables studied.

  15. Tensile properties of austempered ductile iron under thermomechanical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Achary, J.

    2000-02-01

    A new processing method was investigated for improving the strength and elongation of austempered ductile iron (ADI) by grain refinement of parent austenite using thermomechanical treatment. The material was deformed at the austenitization temperature by single and multipass rolling before the austempering treatment. The effects of the amount of deformation, austenitization temperature, austempering temperatures, reaustenitization, and secondary deformation on the tensile properties were studied. The properties obtained using the method were compared with those of the ASTM standards. The effect of deformation on the graphite shape was also studied. Tensile strength/yield strength/elongation values were found to increase with increasing austenite deformation up to 40% and then to start decreasing. Tensile strength/yield strength and elongation values of 1,700 MPa/1,300 MPa/5% and 1,350 MPa/920 MPa/15% can be achieved with this method in the ranges of variables studied.

  16. Thermo-Mechanical Analyses of Dynamically Loaded Rubber Cylinders

    Science.gov (United States)

    Johnson, Arthur R.; Chen, Tzi-Kang

    2002-01-01

    Thick rubber components are employed by the Army to carry large loads. In tanks, rubber covers road wheels and track systems to protect roadways. It is difficult for design engineers to simulate the details of the hysteretic heating for large strain viscoelastic deformations. In this study, an approximation to the viscoelastic energy dissipated per unit time is investigated for use in estimating mechanically induced viscoelastic heating. Coupled thermo-mechanical simulations of large cyclic deformations of rubber cylinders are presented. The cylinders are first compressed axially and then cyclically loaded about the compressed state. Details of the algorithm and some computational issues are discussed. The coupled analyses are conducted for tall and short rubber cylinders both with and without imbedded metal disks.

  17. Design of an Annular Disc Subject to Thermomechanical Loading

    Directory of Open Access Journals (Sweden)

    Sergei Alexandrov

    2012-01-01

    Full Text Available Two solutions to design a thin annular disc of variable thickness subject to thermomechanical loading are proposed. It is assumed that the thickness of the disc is everywhere sufficiently small for the stresses to be averaged through the thickness. The state of stress is plane. The initiation of plastic yielding is controlled by Mises yield criterion. The design criterion for one of the solutions proposed requires that the distribution of stresses is uniform over the entire disc. In this case there is a relation between optimal values of the loading parameters at the final stage. The specific shape of the disc corresponds to each pair of such parameters. The other solution is obtained under the additional requirement that the distribution of strains is uniform. This solution exists for the disc of constant thickness at specific values of the loading parameters.

  18. Thermo-mechanical process for treatment of welds

    Energy Technology Data Exchange (ETDEWEB)

    Malik, R K

    1980-03-01

    Benefits from thermo-mechanical processing (TMP) of austenitic stainless steel weldments, analogous to hot isostatic pressing (HIP) of castings, most likely result from compressive plastic deformation, enhanced diffusion, and/or increased dislocation density. TMP improves ultrasonic inspectability of austenitic stainless steel welds owing to: conversion of cast dendrites into equiaxed austenitic grains, reduction in size and number of stringers and inclusions, and reduction of delta ferrite content. TMP induces structural homogenization and healing of void-type defects and thus contributes to an increase in elongation, impact strength, and fracture toughness as well as a significant reduction in data scatter for these properties. An optimum temperature for TMP or HIP of welds is one which causes negligible grain growth and an acceptable reduction in yield strength, and permits healing of porosity.

  19. On the thermomechanical deformation of silver shape memory nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Park, Harold S. [Department of Civil and Environmental Engineering, Vanderbilt University, VU Station B 351831, 2301 Vanderbilt Place, Nashville, TN 37235-1831 (United States)]. E-mail: harold.park@vanderbilt.edu; Ji, Changjiang [Department of Civil and Environmental Engineering, Vanderbilt University, VU Station B 351831, 2301 Vanderbilt Place, Nashville, TN 37235-1831 (United States)

    2006-06-15

    We present an analysis of the uniaxial thermomechanical deformation of single-crystal silver shape memory nanowires using atomistic simulations. We first demonstrate that silver nanowires can show both shape memory and pseudoelastic behavior, then perform uniaxial tensile loading of the shape memory nanowires at various deformation temperatures, strain rates and heat transfer conditions. The simulations show that the resulting mechanical response of the shape memory nanowires depends strongly upon the temperature during deformation, and can be fundamentally different from that observed in bulk polycrystalline shape memory alloys. The energy and temperature signatures of uniaxially loaded silver shape memory nanowires are correlated to the observed nanowire deformation, and are further discussed in comparison to bulk polycrystalline shape memory alloy behavior.

  20. Explanation of how to run the global local optimization code (GLO) to find surface heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S; Sahai, V; Stein, W

    1999-03-01

    From the evaluation[1] of the inverse techniques available, it was determined that the Global Local Optimization Code[2] can determine the surface heat flux using known experimental data at various points in the geometry. This code uses a whole domain approach in which an analysis code (such as TOPAZ2D or ABAQUS) can be run to get the appropriate data needed to minimize the heat flux function. This document is a compilation of our notes on how to run this code to find the surface heat flux. First, the code is described and the overall set-up procedure is reviewed. Then, creation of the configuration file is described. A specific configuration file is given with appropriate explanation. Using this information, the reader should be able to run GLO to find the surface heat flux.

  1. Research on Initial Geo-stress Balance Method Based on ABAQUS%基于ABAQUS的初始地应力平衡方法研究

    Institute of Scientific and Technical Information of China (English)

    代汝林; 李忠芳; 王姣

    2012-01-01

    Initial geo-stress is an important factor in geo-technical engineering numerical simulation and how to balance initial geo-stress in ABAQUS finite element software is the key to ensuring the validity of numerical calculation results.According to four kinds of different initial geo-stress balance methods provided by ABAQUS,this paper separately uses examples to verify the practicability,advantages and disadvantages of each method to conduct initial geo-stress balance and analysis results show that,as for simple geo-technical,the auto-balance method,keywords initial geo-stress definition method,ODB import method and initial geo-stress extraction method provided by ABAQUS can achieve the balance effect,however,with regard to geo-technical of complex geo-conditions,only auto-balance method and initial geo-stress extraction method can obtain better balance effect.The research conclusion can present reference for numerical calculation of complicated geo-technical.%初始地应力是岩土工程数值模拟时必需考虑的重要因素,如何在ABAQUS有限元软件中对初始地应力进行平衡是确保数值计算结果正确性的关键。针对ABAQUS提供的4种不同的初始地应力平衡的方法,分别举例验证各种方法进行初始地应力平衡的适用性及其优缺点;分析结果表明:对于简单岩土体,ABAQUS提供的自动平衡法、关键字定义初始地应力法、ODB导入法、初始地应力提取法都可以达到平衡的效果,而对于复杂地质条件的岩土体,只有采用自动平衡法和初始地应力提取法才能获得较好的平衡效果;研究结论可为复杂岩土体数值计算提供了参考。

  2. 3-D Numerical Simulation and Analysis of Complex Fiber Geometry RaFC Materials with High Volume Fraction and High Aspect Ratio based on ABAQUS PYTHON

    Science.gov (United States)

    Jin, BoCheng

    2011-12-01

    Organic and inorganic fiber reinforced composites with innumerable fiber orientation distributions and fiber geometries are abundantly available in several natural and synthetic structures. Inorganic glass fiber composites have been introduced to numerous applications due to their economical fabrication and tailored structural properties. Numerical characterization of such composite material systems is necessitated due to their intrinsic statistical nature, which renders extensive experimentation prohibitively time consuming and costly. To predict various mechanical behavior and characterizations of Uni-Directional Fiber Composites (UDFC) and Random Fiber Composites (RaFC), we numerically developed Representative Volume Elements (RVE) with high accuracy and efficiency and with complex fiber geometric representations encountered in uni-directional and random fiber networks. In this thesis, the numerical simulations of unidirectional RaFC fiber strand RVE models (VF>70%) are first presented by programming in ABAQUS PYTHON. Secondly, when the cross sectional aspect ratios (AR) of the second phase fiber inclusions are not necessarily one, various types of RVE models with different cross sectional shape fibers are simulated and discussed. A modified random sequential absorption algorithm is applied to enhance the volume fraction number (VF) of the RVE, which the mechanical properties represents the composite material. Thirdly, based on a Spatial Segment Shortest Distance (SSSD) algorithm, a 3-Dimentional RaFC material RVE model is simulated in ABAQUS PYTHON with randomly oriented and distributed straight fibers of high fiber aspect ratio (AR=100:1) and volume fraction (VF=31.8%). Fourthly, the piecewise multi-segments fiber geometry is obtained in MATLAB environment by a modified SSSD algorithm. Finally, numerical methods including the polynomial curve fitting and piecewise quadratic and cubic B-spline interpolation are applied to optimize the RaFC fiber geometries

  3. Thermo-mechanical response and fatigue behavior of shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kusagawa, Masaki; Asada, Yasuhide; Nakamura, Toshiya [Tokyo Univ. (Japan). Dept. of Mechanical Engineering

    1998-11-01

    Mechanical, thermo-mechanical and fatigue behaviors of Ni-Ti-Nb shape memory alloy (SMA) have been studied to prepare material data for a design purpose. Presented are testing devices, testing procedure and test results of monotonic tensile, recovery of inelastic deformation due to post heating (thermo-mechanical recovery) and fatigue for future use of the SMA as a structural material of nuclear incore structures. (orig.)

  4. GaN-on-diamond electronic device reliability: Mechanical and thermo-mechanical integrity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong [Center for Device Thermography and Reliability, H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Interface Analysis Center, H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Sun, Huarui; Pomeroy, James W.; Kuball, Martin, E-mail: Martin.Kuball@bristol.ac.uk [Center for Device Thermography and Reliability, H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Francis, Daniel; Faili, Firooz; Twitchen, Daniel J. [Element-Six Technologies, Santa Clara, California 95054 (United States)

    2015-12-21

    The mechanical and thermo-mechanical integrity of GaN-on-diamond wafers used for ultra-high power microwave electronic devices was studied using a micro-pillar based in situ mechanical testing approach combined with an optical investigation of the stress and heat transfer across interfaces. We find the GaN/diamond interface to be thermo-mechanically stable, illustrating the potential for this material for reliable GaN electronic devices.

  5. A Numerical Model for the Thermomechanical Conditions During Hydration of Early-age Concrete

    DEFF Research Database (Denmark)

    Hattel, Jesper; Thorborg, Jesper

    2003-01-01

    In the present study, a macroscopic numerical model for the thermomechanical conditions during hydration of early-age concrete is presented. The formulation is based on a semi-coupled, incremental thermomechanical model where the heat production from the hydration process is expressed in terms of...... analytical solutions are carried out as well as examples of analysis of real concrete structures. (C) 2002 Elsevier Science Inc. All rights reserved....

  6. Application of Second-developed on ABAQUS Pre-precess and Post-process%ABAQUS前、后处理模块二次开发的应用

    Institute of Scientific and Technical Information of China (English)

    朱兆华; 黄菊花; 张庭芳; 谢世坤; 白引娟

    2009-01-01

    文章以实例说明了Python脚本语言和ABAQUS GUI Toolkit在ABAQUS的前、后处理模块二次开发中的应用,并阐述了不同模块之间的调用流程.通过二次开发程序控制ABAQUS的建模和装配的过程,有效地解决了模型装配时的繁琐、易错等问题,提高了前处理的效率;因ABAQUS对板料拉深进行数值模拟的后处理功能不够全面,为扩展后处理的功能,更好地查看和分析模拟的结果,文章对ABAQUS后处理进行二次开发来达到这一目的.

  7. The effect of sequential coupling on radial displacement accuracy in electromagnetic inside-bead forming: simulation and experimental analysis using Maxwell and ABAQUS software

    Energy Technology Data Exchange (ETDEWEB)

    Chaharmiri, Rasoul; Arezoodar, Alireza Fallahi [Amirkabir University, Tehran (Iran, Islamic Republic of)

    2016-05-15

    Electromagnetic forming (EMF) is a high strain rate forming technology which can effectively deform and shape high electrically conductive materials at room temperature. In this study, the electromagnetic and mechanical parts of the process simulated using Maxwell and ABAQUS software, respectively. To provide a link between the software, two approaches include 'loose' and 'sequential' coupling were applied. This paper is aimed to investigate how sequential coupling would affect radial displacement accuracy, as an indicator of tube final shape, at various discharge voltages. The results indicated a good agreement for the both approaches at lower discharge voltages with more accurate results for sequential coupling, but at high discharge voltages, there was a non-negligible overestimation of about 43% for the loose coupling reduced to only 8.2% difference by applying sequential coupling in the case studied. Therefore, in order to reach more accurate predictions, applying sequential coupling especially at higher discharge voltages is strongly recommended.

  8. 基于ABAQUS二次开发的旋压参数化加工研究%Parametric Processing of Spinning Based on ABAQUS Secondary Development

    Institute of Scientific and Technical Information of China (English)

    邵培; 于存贵; 魏浩

    2015-01-01

    Python语言是ABAQUS软件二次开发的脚本语言及开发平台,旋压加工是机械加工的新型加工方式。以旋压加工仿真实例说明了Python脚本语言在ABAQUS前、后处理模块二次开发中的应用,通过编写Python脚本语言实现了自动化的建模、定义材料、装配、划分网格、定义边界条件和载荷及结果数据库输出等参数化研究,并采用软件自带的求解方法及网格自适应技术来模拟旋压加工的过程,通过结果数据得到的应力及能量图,为实际生产提供了合理的工艺依据,并为后续的机械旋压加工提供加工方法。%Python language is scripting languages and development platforms of The spin processing is a new machining method. This paper takes the spinning process simulation for example to describe the application of the Python scripting language in ABAQUS before and after processing module secondary development. The language is used to realize the automated modeling, definition of material,assembly,meshing,boundary conditions and loads and results database research output and ABAQUS / Explicit solving methods and adaptive grid technology are used to simulate the process of spin processing. According to the resulting data,the stress and energy diagrams are abtained. a reasonable basis is provided for the actual production and the processing method is given to the subsequent mechanical spinning process.

  9. Neutronic calculation of fast reactors by the EUCLID/V1 integrated code

    Science.gov (United States)

    Koltashev, D. A.; Stakhanova, A. A.

    2017-01-01

    This article considers neutronic calculation of a fast-neutron lead-cooled reactor BREST-OD-300 by the EUCLID/V1 integrated code. The main goal of development and application of integrated codes is a nuclear power plant safety justification. EUCLID/V1 is integrated code designed for coupled neutronics, thermomechanical and thermohydraulic fast reactor calculations under normal and abnormal operating conditions. EUCLID/V1 code is being developed in the Nuclear Safety Institute of the Russian Academy of Sciences. The integrated code has a modular structure and consists of three main modules: thermohydraulic module HYDRA-IBRAE/LM/V1, thermomechanical module BERKUT and neutronic module DN3D. In addition, the integrated code includes databases with fuel, coolant and structural materials properties. Neutronic module DN3D provides full-scale simulation of neutronic processes in fast reactors. Heat sources distribution, control rods movement, reactivity level changes and other processes can be simulated. Neutron transport equation in multigroup diffusion approximation is solved. This paper contains some calculations implemented as a part of EUCLID/V1 code validation. A fast-neutron lead-cooled reactor BREST-OD-300 transient simulation (fuel assembly floating, decompression of passive feedback system channel) and cross-validation with MCU-FR code results are presented in this paper. The calculations demonstrate EUCLID/V1 code application for BREST-OD-300 simulating and safety justification.

  10. Speech coding

    Energy Technology Data Exchange (ETDEWEB)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the

  11. Analysis of the thermo-mechanical deformations in a hot forging tool by numerical simulation

    Science.gov (United States)

    L-Cancelos, R.; Varas, F.; Martín, E.; Viéitez, I.

    2016-03-01

    Although programs have been developed for the design of tools for hot forging, its design is still largely based on the experience of the tool maker. This obliges to build some test matrices and correct their errors to minimize distortions in the forged piece. This phase prior to mass production consumes time and material resources, which makes the final product more expensive. The forging tools are usually constituted by various parts made of different grades of steel, which in turn have different mechanical properties and therefore suffer different degrees of strain. Furthermore, the tools used in the hot forging are exposed to a thermal field that also induces strain or stress based on the degree of confinement of the piece. Therefore, the mechanical behaviour of the assembly is determined by the contact between the different pieces. The numerical simulation allows to analyse different configurations and anticipate possible defects before tool making, thus, reducing the costs of this preliminary phase. In order to improve the dimensional quality of the manufactured parts, the work presented here focuses on the application of a numerical model to a hot forging manufacturing process in order to predict the areas of the forging die subjected to large deformations. The thermo-mechanical model developed and implemented with free software (Code-Aster) includes the strains of thermal origin, strains during forge impact and contact effects. The numerical results are validated with experimental measurements in a tooling set that produces forged crankshafts for the automotive industry. The numerical results show good agreement with the experimental tests. Thereby, a very useful tool for the design of tooling sets for hot forging is achieved.

  12. Speaking Code

    DEFF Research Database (Denmark)

    Cox, Geoff

    ; alternatives to mainstream development, from performances of the live-coding scene to the organizational forms of commons-based peer production; the democratic promise of social media and their paradoxical role in suppressing political expression; and the market’s emptying out of possibilities for free...... development, Speaking Code unfolds an argument to undermine the distinctions between criticism and practice, and to emphasize the aesthetic and political aspects of software studies. Not reducible to its functional aspects, program code mirrors the instability inherent in the relationship of speech...... expression in the public realm. The book’s line of argument defends language against its invasion by economics, arguing that speech continues to underscore the human condition, however paradoxical this may seem in an era of pervasive computing....

  13. New Mechanical Model for the Transmutation Fuel Performance Code

    Energy Technology Data Exchange (ETDEWEB)

    Gregory K. Miller

    2008-04-01

    A new mechanical model has been developed for implementation into the TRU fuel performance code. The new model differs from the existing FRAPCON 3 model, which it is intended to replace, in that it will include structural deformations (elasticity, plasticity, and creep) of the fuel. Also, the plasticity algorithm is based on the “plastic strain–total strain” approach, which should allow for more rapid and assured convergence. The model treats three situations relative to interaction between the fuel and cladding: (1) an open gap between the fuel and cladding, such that there is no contact, (2) contact between the fuel and cladding where the contact pressure is below a threshold value, such that axial slippage occurs at the interface, and (3) contact between the fuel and cladding where the contact pressure is above a threshold value, such that axial slippage is prevented at the interface. The first stage of development of the model included only the fuel. In this stage, results obtained from the model were compared with those obtained from finite element analysis using ABAQUS on a problem involving elastic, plastic, and thermal strains. Results from the two analyses showed essentially exact agreement through both loading and unloading of the fuel. After the cladding and fuel/clad contact were added, the model demonstrated expected behavior through all potential phases of fuel/clad interaction, and convergence was achieved without difficulty in all plastic analysis performed. The code is currently in stand alone form. Prior to implementation into the TRU fuel performance code, creep strains will have to be added to the model. The model will also have to be verified against an ABAQUS analysis that involves contact between the fuel and cladding.

  14. Thermomechanical evaluation of BWR fuel elements for procedures of preconditioned with FEMAXI-V; Evaluacion termomecanica de elementos combustible BWR para procedimientos de preacondicionado con FEMAXI-V

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez L, H.; Lucatero, M.A.; Ortiz V, J. [ININ, Carretera Mexico-Toluca Km 36.5, La Marquesa, Estado de Mexico (Mexico)]. e-mail: hhl@nuclear.inin.mx

    2006-07-01

    The limitations in the burnt of the nuclear fuel usually are fixed by the one limit in the efforts to that undergo them the components of a nuclear fuel assembly. The limits defined its provide the direction to the fuel designer to reduce to the minimum the fuel failure during the operation, and they also prevent against some thermomechanical phenomena that could happen during the evolution of transitory events. Particularly, a limit value of LHGR is fixed to consider those physical phenomena that could lead to the interaction of the pellet-shirt (Pellet Cladding Interaction, PCI). This limit value it is related directly with an PCI limit that can be fixed based on experimental tests of power ramps. This way, to avoid to violate the PCI limit, the conditioning procedures of the fuel are still required for fuel elements with and without barrier. Those simulation procedures of the power ramp are carried out for the reactor operator during the starting maneuvers or of power increase like preventive measure of possible consequences in the thermomechanical behavior of the fuel. In this work, the thermomechanical behavior of two different types of fuel rods of the boiling water reactor is analyzed during the pursuit of the procedures of fuel preconditioning. Five diverse preconditioning calculations were carried out, each one with three diverse linear ramps of power increments. The starting point of the ramps was taken of the data of the cycle 8 of the unit 1 of the Laguna Verde Nucleo electric Central. The superior limit superior of the ramps it was the threshold of the lineal power in which a fuel failure could be presented by PCI, in function of the fuel burnt. The analysis was carried out with the FEMAXI-V code. (Author)

  15. Thermo-Mechanical Fatigue Crack Growth of RR1000

    Directory of Open Access Journals (Sweden)

    Christopher John Pretty

    2017-01-01

    Full Text Available Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechanisms. In the current work, a TMF crack growth testing method has been developed utilising induction heating and direct current potential drop techniques for polycrystalline nickel-based superalloys, such as RR1000. Results have shown that in-phase (IP testing produces accelerated crack growth rates compared with out-of-phase (OOP due to increased temperature at peak stress and therefore increased time dependent crack growth. The ordering of the crack growth rates is supported by detailed fractographic analysis which shows intergranular crack growth in IP test specimens, and transgranular crack growth in 90° OOP and 180° OOP tests. Isothermal tests have also been carried out for comparison of crack growth rates at the point of peak stress in the TMF cycles.

  16. Microstructure and Thermomechanical Properties of Magnesium Alloys Castings

    Directory of Open Access Journals (Sweden)

    P. Lichý

    2012-04-01

    Full Text Available Magnesium alloys thanks to their high specific strength have an extensive potential of the use in a number of industrial applications. The most important of them is the automobile industry in particular. Here it is possible to use this group of materials for great numbers of parts from elements in the car interior (steering wheels, seats, etc., through exterior parts (wheels particularly of sporting models, up to driving (engine blocks and gearbox mechanisms themselves. But the use of these alloys in the engine structure has its limitations as these parts are highly thermally stressed. But the commonly used magnesium alloys show rather fast decrease of strength properties with growing temperature of stressing them. This work is aimed at studying this properties both of alloys commonly used (of the Mg-Al-Zn, Mn type, and of that ones used in industrial manufacture in a limited extent (Mg-Al-Sr. These thermomechanical properties are further on complemented with the microstructure analysis with the aim of checking the metallurgical interventions (an effect of inoculation. From the studied materials the test castings were made from which the test bars for the tensile test were subsequently prepared. This test took place within the temperature range of 20°C – 300°C. Achieved results are summarized in the concluding part of the contribution.

  17. Thermomechanical Impact of Polyurethane Potting on Gun Launched Electronics

    Directory of Open Access Journals (Sweden)

    A. S. Haynes

    2013-01-01

    Full Text Available Electronics packages in precision guided munitions are used in guidance and control units, mission computers, and fuze-safe-and-arm devices. They are subjected to high g-loads during gun launch, pyrotechnic shocks during flight, and high g-loads upon impact with hard targets. To enhance survivability, many electronics packages are potted after assembly. The purpose of the potting is to provide additional structural support and shock damping. Researchers at the US Army recently completed a series of dynamic mechanical tests on a urethane-based potting material to assess its behavior in an electronics assembly during gun launch and under varying thermal launch conditions. This paper will discuss the thermomechanical properties of the potting material as well as simulation efforts to determine the suitability of this potting compound for gun launched electronics. Simulation results will compare stresses and displacements for a simplified electronics package with and without full potting. An evaluation of the advantages and consequences of potting electronics in munitions systems will also be discussed.

  18. Thermomechanical behavior of human carotid arteries in the passive state.

    Science.gov (United States)

    Guinea, G V; Atienza, J M; Elices, M; Aragoncillo, P; Hayashi, K

    2005-06-01

    Localized heating or cooling is expanding the clinical procedures used to treat cardiovascular diseases. Advantageous implementation and development of these methods are linked indissolubly to a deeper understanding of the arterial response to combined mechanical and thermal loads. Despite this, the basic thermomechanical behavior of human blood vessels still remains largely unknown, primarily due to the lack of appropriate experimental data. In this work, the influence of temperature on the passive behavior of human carotid arteries was studied in vitro by means of inflation tests. Eleven carotid segments were tested in the range 0-200 mmHg at four different temperatures of 17, 27, 37, and 42 degrees C. The results show that the combined change of temperature and stress has a dramatic effect on the dilatation coefficient of the arterial wall, which is shifted from negative to positive depending on the stress state, whereas the structural stiffness of the arterial wall does not change appreciably in the range of temperatures tested.

  19. Progress in thermomechanical control of steel plates and their commercialization

    Directory of Open Access Journals (Sweden)

    Kiyoshi Nishioka and Kazutoshi Ichikawa

    2012-01-01

    Full Text Available The water-cooled thermomechanical control process (TMCP is a technology for improving the strength and toughness of water-cooled steel plates, while allowing control of the microstructure, phase transformation and rolling. This review describes metallurgical aspects of the microalloying of steel, such as niobium addition, and discusses advantages of TMCP, for example, in terms of weldability, which is reduced upon alloying. Other covered topics include the development of equipment, distortions in steel plates, peripheral technologies such as steel making and casting, and theoretical modeling, as well as the history of property control in steel plate production and some early TMCP technologies. We provide some of the latest examples of applications of TMCP steel in various industries such as shipbuilding, offshore structures, building construction, bridges, pipelines, penstocks and cryogenic tanks. This review also introduces high heat-affected-zone toughness technologies, wherein the microstructure of steel is improved by the addition of fine particles of magnesium-containing sulfides and magnesium- or calcium-containing oxides. We demonstrate that thanks to ongoing developments TMCP has the potential to meet the ever-increasing demands of steel plates.

  20. Progress in thermomechanical control of steel plates and their commercialization

    Science.gov (United States)

    Nishioka, Kiyoshi; Ichikawa, Kazutoshi

    2012-04-01

    The water-cooled thermomechanical control process (TMCP) is a technology for improving the strength and toughness of water-cooled steel plates, while allowing control of the microstructure, phase transformation and rolling. This review describes metallurgical aspects of the microalloying of steel, such as niobium addition, and discusses advantages of TMCP, for example, in terms of weldability, which is reduced upon alloying. Other covered topics include the development of equipment, distortions in steel plates, peripheral technologies such as steel making and casting, and theoretical modeling, as well as the history of property control in steel plate production and some early TMCP technologies. We provide some of the latest examples of applications of TMCP steel in various industries such as shipbuilding, offshore structures, building construction, bridges, pipelines, penstocks and cryogenic tanks. This review also introduces high heat-affected-zone toughness technologies, wherein the microstructure of steel is improved by the addition of fine particles of magnesium-containing sulfides and magnesium- or calcium-containing oxides. We demonstrate that thanks to ongoing developments TMCP has the potential to meet the ever-increasing demands of steel plates.

  1. Thermo-Mechanical Processing and Properties of a Ductile Iron

    Energy Technology Data Exchange (ETDEWEB)

    Syn, C.K.; Lesuer, R.R.; Sherby, O.D.

    1997-07-14

    Thermo-mechanical processing of ductile irons is a potential method for enhancing their mechanical properties. A ductile cast iron containing 3.6% C, 2.6% Si and 0.045% Mg was continuously hot-and-warm rolled or one-step press-forged from a temperature in the austenite range (900{degrees}C-1100{degrees}C) to a temperature below the A, temperature. Various amounts of reduction were used (from 60% to more than 90%) followed by a short heat ent at 600`C. The heat ent lead to a structure of fine graphite in a matrix of ferrite and carbides. The hot-and- warm worked materials developed a pearlitic microstructure while the press-forged material developed a spheroidite-like carbide microstructure in the matrix. Cementite-denuded ferrite zones were developed around graphite stringers in the hot-and-warm worked materials, but such zones were absent in the press-forged material. Tensile properties including tensile strength and total elongation were measured along the direction parallel and transverse to the rolling direction and along the direction transverse to the press-forging direction. The tensile ductility and strength both increased with a decrease in the amount of hot-and-warm working. The press- forged materials showed higher strength (645 MPa) than the hot-and-warrn worked materials (575 MPa) when compared at the same ductility level (22% elongation).

  2. Ash fusion and thermo-mechanical (TMA) analyses

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A. [R.A. Creelman and Associates, Epping, NSW (Australia)

    1996-10-01

    Various tests and analytical techniques are used to evaluate the potential of coals to foul and slag furnace surfaces. This paper compares three thermo-mechanical analyses (TMA) techniques, the Australian Coal Industry Research Laboratories (ACIRL) `Improved Ash Fusion` test, the HRL Technologies Pty Ltd test, and the Commonwealth Scientific and Industrial Research Organisation test. The ACIRL test appears to the contender for becoming a standard test that will replace the ash fusibility temperatures test (AFT). The series of events which produce a fused mass is outlined from observations in the course of an experiment conducted by ACARP. The paper concludes that results from tests based on TMA quantify the extent of shrinkage and indicate temperatures at which rapid shrinkage occurs and which correspond to the formation of liquid phases that can be identified on ternary phase diagrams. Temperatures corresponding to particular extents of shrinkage and the existence and extent of formation of these phases, as quantified by the magnitude of `peaks` in the TMA test, provide an alternative basis for defining ash fusibility temperatures. Shrinkage procedures provide alternatives to existing AFTs, as well as techniques for trouble-shooting problems in existing plant. (author). 1 fig., 10 refs.

  3. A new in vitro model to study cellular responses after thermomechanical damage in monolayer cultures.

    Directory of Open Access Journals (Sweden)

    Alice Hettler

    Full Text Available Although electrosurgical instruments are widely used in surgery to cut tissue layers or to achieve hemostasis by coagulation (electrocautery, only little information is available concerning the inflammatory or immune response towards the debris generated. Given the elevated local temperatures required for successful electrocautery, the remaining debris is likely to contain a plethora of compounds entirely novel to the intracorporal setting. A very common in vitro method to study cell migration after mechanical damage is the scratch assay, however, there is no established model for thermomechanical damage to characterise cellular reactions. In this study, we established a new in vitro model to investigate exposure to high temperature in a carefully controlled cell culture system. Heatable thermostat-controlled aluminium stamps were developed to induce local damage in primary human umbilical vein endothelial cells (HUVEC. The thermomechanical damage invoked is reproducibly locally confined, therefore allowing studies, under the same experimental conditions, of cells affected to various degrees as well as of unaffected cells. We show that the unaffected cells surrounding the thermomechanical damage zone are able to migrate into the damaged area, resulting in a complete closure of the 'wound' within 48 h. Initial studies have shown that there are significant morphological and biological differences in endothelial cells after thermomechanical damage compared to the mechanical damage inflicted by using the unheated stamp as a control. Accordingly, after thermomechanical damage, cell death as well as cell protection programs were activated. Mononuclear cells adhered in the area adjacent to thermomechanical damage, but not to the zone of mechanical damage. Therefore, our model can help to understand the differences in wound healing during the early phase of regeneration after thermomechanical vs. mechanical damage. Furthermore, this model lends itself

  4. The Aster code; Code Aster

    Energy Technology Data Exchange (ETDEWEB)

    Delbecq, J.M

    1999-07-01

    The Aster code is a 2D or 3D finite-element calculation code for structures developed by the R and D direction of Electricite de France (EdF). This dossier presents a complete overview of the characteristics and uses of the Aster code: introduction of version 4; the context of Aster (organisation of the code development, versions, systems and interfaces, development tools, quality assurance, independent validation); static mechanics (linear thermo-elasticity, Euler buckling, cables, Zarka-Casier method); non-linear mechanics (materials behaviour, big deformations, specific loads, unloading and loss of load proportionality indicators, global algorithm, contact and friction); rupture mechanics (G energy restitution level, restitution level in thermo-elasto-plasticity, 3D local energy restitution level, KI and KII stress intensity factors, calculation of limit loads for structures), specific treatments (fatigue, rupture, wear, error estimation); meshes and models (mesh generation, modeling, loads and boundary conditions, links between different modeling processes, resolution of linear systems, display of results etc..); vibration mechanics (modal and harmonic analysis, dynamics with shocks, direct transient dynamics, seismic analysis and aleatory dynamics, non-linear dynamics, dynamical sub-structuring); fluid-structure interactions (internal acoustics, mass, rigidity and damping); linear and non-linear thermal analysis; steels and metal industry (structure transformations); coupled problems (internal chaining, internal thermo-hydro-mechanical coupling, chaining with other codes); products and services. (J.S.)

  5. Optimal codes as Tanner codes with cyclic component codes

    DEFF Research Database (Denmark)

    Høholdt, Tom; Pinero, Fernando; Zeng, Peng

    2014-01-01

    In this article we study a class of graph codes with cyclic code component codes as affine variety codes. Within this class of Tanner codes we find some optimal binary codes. We use a particular subgraph of the point-line incidence plane of A(2,q) as the Tanner graph, and we are able to describe...... the codes succinctly using Gröbner bases....

  6. Thermomechanical and Thermo-mechano-chemical Pretreatment of Wheat Straw using a Twin-screw Extruder

    Directory of Open Access Journals (Sweden)

    Virginie Vandenbossche

    2014-01-01

    Full Text Available Different thermo-mechanical extrusion pretreatments were evaluated as alternatives to traditional biomass pretreatments for lignocellulosic ethanol production. Wheat straw, a commonly available agricultural co-product, was chosen as the substrate model for the study. Five thermo-mechanical pretreatments were evaluated: one purely thermo-mechanical (TM using just water, and the rest thermo-mechano-chemical (TMC, thus using acid, alkaline, oxidant in alkaline medium, and organic solvent. The parietal constituents, hemicelluloses, cellulose, and lignin were quantified to enable the amounts extracted by the pretreatment to be estimated. The digestibility of cellulose was evaluated by quantifying the hydrolysability with an enzyme cocktail. Water thermomechanical treatment gave strong straw defibration; however the digestibility only attained 35%, whereas ground wheat straw was already 22%. This improvement is insufficient to prepare material for direct enzymatic hydrolysis; thus a combination of the thermo-mechanical and chemical treatment is required. All chemical treatments produced greater improvements in cellulose digestibility. For the acidic treatments, hydrolysability was between 42 and 50%, and reached 89% with alkaline pretreatment.

  7. System analysis with improved thermo-mechanical fuel rod models for modeling current and advanced LWR materials in accident scenarios

    Science.gov (United States)

    Porter, Ian Edward

    A nuclear reactor systems code has the ability to model the system response in an accident scenario based on known initial conditions at the onset of the transient. However, there has been a tendency for these codes to lack the detailed thermo-mechanical fuel rod response models needed for accurate prediction of fuel rod failure. This proposed work will couple today's most widely used steady-state (FRAPCON) and transient (FRAPTRAN) fuel rod models with a systems code TRACE for best-estimate modeling of system response in accident scenarios such as a loss of coolant accident (LOCA). In doing so, code modifications will be made to model gamma heating in LWRs during steady-state and accident conditions and to improve fuel rod thermal/mechanical analysis by allowing axial nodalization of burnup-dependent phenomena such as swelling, cladding creep and oxidation. With the ability to model both burnup-dependent parameters and transient fuel rod response, a fuel dispersal study will be conducted using a hypothetical accident scenario under both PWR and BWR conditions to determine the amount of fuel dispersed under varying conditions. Due to the fuel fragmentation size and internal rod pressure both being dependent on burnup, this analysis will be conducted at beginning, middle and end of cycle to examine the effects that cycle time can play on fuel rod failure and dispersal. Current fuel rod and system codes used by the Nuclear Regulatory Commission (NRC) are compilations of legacy codes with only commonly used light water reactor materials, Uranium Dioxide (UO2), Mixed Oxide (U/PuO 2) and zirconium alloys. However, the events at Fukushima Daiichi and Three Mile Island accident have shown the need for exploration into advanced materials possessing improved accident tolerance. This work looks to further modify the NRC codes to include silicon carbide (SiC), an advanced cladding material proposed by current DOE funded research on accident tolerant fuels (ATF). Several

  8. 基于ABAQUS的列车盘型制动的温度场分析%Analysis on Temperature Field of Train Disc Brake Based on ABAQUS

    Institute of Scientific and Technical Information of China (English)

    王国顺

    2013-01-01

    The influences of rotating speed and the friction radius,height and shape,and place form of braking block on the temperature field of the brake disc and brake block were simulated by the finite element analysis software of ABAQUS.The results show that with the increase of crank's rotating speed,the brake disc and brake block's temperatures are increased,and the distribution of high temperature region is changed from stripe to speckle.The reason is that with the increase of revolving speed,the vibration between the friction pairs is aggravated,and the local contact was produced to cause the high temperature.There is an inflection point of temperature in the thickness direction of brake disc,with the increase of the distance to the friction surface,the temperature is declined rapidly,and in the distance of 3 ~ 6 mm to the friction surface,the change of temperature is not obvious.The change of brake block height or shape has no obvious influence on the brake disc temperature,while the placement form of the triangle brake block has influence on temperature distribution.%应用有限元软件ABAQUS,模拟转动速度和制动块摩擦半径、高度以及形状与放置形式等对制动盘和制动块温度场的影响.得出如下结论:随转速的提高,制动盘和制动块温度升高,高温区的分布由条带状向斑点状转变,原因在于随转速增加,摩擦副间的振动程度加剧,从而造成局部接触产生高温.制动盘温度在厚度方向上存在一个拐点,随深度增加,制动盘温度快速下降,在距摩擦表面3~6mm时,温度变化不明显.制动块高度、形状改变,对制动盘温度无明显影响,而三角形制动块的放置形式对制动块温度分布有影响.

  9. Thermomechanical fatigue crack growth in a cast polycrystalline superalloy

    Directory of Open Access Journals (Sweden)

    Moverare Johan J.

    2014-01-01

    Full Text Available Thermomechanical fatigue (TMF crack growth testing has been performed on the polycrystalline superalloy IN792. All tests were conducted in mechanical strain control in the temperature range between 100 and 750 °C. The influence of in-phase (IP and out-of-phase (OP TMF cycles was investigated as well as the influence of applying extended dwell times (up to 6 hours at the maximum temperature. The crack growth rates were also evaluated based on linear elastic fracture mechanics and described as a function of the stress intensity factor KI. Without dwell time at the maximum temperature, the crack growth rates are generally higher for the OP-TMF cycle compared to the IP-TMF cycle, when equivalent nominal strain ranges are compared. However, due to the fact that the tests were conducted in mechanical strain control, the stress response is very different for the IP and OP cycles. Also the crack closure level differs significantly between the cycle types. By taking the stress response into account and comparing the crack growth rates for equivalent effective stress intensity factor rages ΔKeff defined as Kmax − Kclosure, very similar crack growth rates were actually noticed independent of whether an IP or OP cycle were used. While the introduction of a 6 hour dwell time significantly increased the crack growth rates for the IP-TMF cycle, a decrease in crack growth rates versus ΔKeff were actually seen for the OP-TMF cycle. The fracture behaviour during the different test conditions has been investigated using scanning electron microscopy.

  10. Shape memory alloy nanostructures with coupled dynamic thermo-mechanical effects

    Science.gov (United States)

    Dhote, R. P.; Gomez, H.; Melnik, R. N. V.; Zu, J.

    2015-07-01

    Employing the Ginzburg-Landau phase-field theory, a new coupled dynamic thermo-mechanical 3D model has been proposed for modeling the cubic-to-tetragonal martensitic transformations in shape memory alloy (SMA) nanostructures. The stress-induced phase transformations and thermo-mechanical behavior of nanostructured SMAs have been investigated. The mechanical and thermal hysteresis phenomena, local non-uniform phase transformations and corresponding non-uniform temperatures and deformations' distributions are captured successfully using the developed model. The predicted microstructure evolution qualitatively matches with the experimental observations. The developed coupled dynamic model has provided a better understanding of underlying martensitic transformation mechanisms in SMAs, as well as their effect on the thermo-mechanical behavior of nanostructures.

  11. Modelling thermomechanical conditions at the tool/matrix interface in Friction Stir Welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper

    2004-01-01

    In friction stir welding the material flow is among others controlled by the contact condition at the tool interface, the thermomechanical state of the matrix and the welding parameters. The conditions under which the deposition process is successful are not fully understood and in most models...... frictional and plastic dissipation. Of special interest is the contact condition along the shoulder/matrix and probe/matrix interfaces, as especially the latter affects the efficiency of the deposition process. The thermo-mechanical state in the workpiece is established by modelling both the dwell and weld...... presented previously in literature, the modelling of the material flow at the tool interface has been prescribed as boundary conditions, i.e. the material is forced to keep contact with the tool. The objective of the present work is to analyse the thermomechanical conditions under which a consolidated weld...

  12. The thermomechanical stability of Fe-based amorphous ribbons exhibiting magnetocaloric effect

    Science.gov (United States)

    Shishkin, D. A.; Volegov, A. S.; Baranov, N. V.

    2016-12-01

    The Fe-Nb-B and Fe71.5Cr2Si13.5B9Nb3Cu1 alloys have been prepared by rapid quenching from the melt, and the magnetic properties of alloys in the vicinity of the magnetic ordering have been studied before and after thermomechanical processing. It has been shown that change in the Fe:Nb:B ratio allows tuning the magnetic ordering temperature and the position of maximum of the isothermal magnetic entropy change | { - Δ Sm } | from 256 to 333 K. The thermomechanical treatment of alloys at 623 K under applied tensile stresses observed does not affect remarkably the magnetocaloric properties of alloys. The combination of high thermomechanical stability, good electrical, anti-corrosive and thermomagnetic properties makes these alloys promising for use in magnetic refrigeration devices.

  13. Effects of Microstructural Variability on Thermo-Mechanical Properties of a Woven Ceramic Matrix Composite

    Science.gov (United States)

    Goldsmith, Marlana B.; Sankar, Bhavani V.; Haftka, Raphael T.; Goldberg, Robert K.

    2013-01-01

    The objectives of this paper include identifying important architectural parameters that describe the SiC/SiC five-harness satin weave composite and characterizing the statistical distributions and correlations of those parameters from photomicrographs of various cross sections. In addition, realistic artificial cross sections of a 2D representative volume element (RVE) are generated reflecting the variability found in the photomicrographs, which are used to determine the effects of architectural variability on the thermo-mechanical properties. Lastly, preliminary information is obtained on the sensitivity of thermo-mechanical properties to architectural variations. Finite element analysis is used in combination with a response surface and it is shown that the present method is effective in determining the effects of architectural variability on thermo-mechanical properties.

  14. Innovative plasticized alginate obtained by thermo-mechanical mixing: Effect of different biobased polyols systems.

    Science.gov (United States)

    Gao, Chengcheng; Pollet, Eric; Avérous, Luc

    2017-02-10

    Plasticized alginate films with different biobased polyols (glycerol and sorbitol) and their mixtures were successfully prepared by thermo-mechanical mixing instead of the usual casting-evaporation procedure. The microstructure and properties of the different plasticized alginate formulations were investigated by SEM, FTIR, XRD, DMTA and uniaxial tensile tests. SEM and XRD results showed that native alginate particles were largely destructured with the plasticizers (polyols and water), under a thermo-mechanical input. With increasing amount of plasticizers, the samples showed enhanced homogeneity while their thermal and mechanical properties decreased. Compared to sorbitol, glycerol resulted in alginate films with a higher flexibility due to its better plasticization efficiency resulting from its smaller size and higher hydrophilic character. Glycerol and sorbitol mixtures seemed to be an optimum to obtain the best properties. This work showed that thermo-mechanical mixing is a promising method to produce, at large scale, plasticized alginate-based films with improved properties.

  15. Thermo-Mechanical Behaviour of Turbine Disc Assembly in the Presence of Residual Stresses

    Science.gov (United States)

    Maricic, Luke Anthony

    A comprehensive three dimensional coupled thermo-mechanical finite element study is performed on turbine blade attachments in gas turbine engines. The effects of the self-generated centrifugal forces of the disc and the associated blades, thermal loads, and shot peening residual are all considered in this thesis. Three aspects of the work were accordingly examined. The first was concerned with the coupled thermo-mechanical stress analysis and load sharing between the teeth of the fir-tree root. The second was devoted to the development of a complete model incorporating the effect of shot peening residual stresses upon the developed stress state. The effectiveness of shot peening treatment in response to cyclic thermo-mechanical loadings at the contact interface has also been studied. The third was concerned with the validation of some aspects of the developed models analytically using closed form solutions and experimentally using photoelasticity.

  16. ABAQUS/Python在斜齿轮动态啮合分析中的应用研究%The Analysis of Helical Gear' Dynamic Mesh Based on Parametric

    Institute of Scientific and Technical Information of China (English)

    赵炜; 葛文杰

    2012-01-01

    In order to improve gear drive's parametric modeling and the efficiency of simulation analysis, a pair of helical gear parametric modeling procedure was established through the second development of capabilities of ABAQUS with Python. By constructing a contrastive analysis model based on the finite element method to study the revolving speed's effect on dynamic engagement performance and contract property of tooth surface in dynamic mesh. The calculating results showed that revolving speed has an influence on meshing area and length as well as gear surface contact stress.%为准确、高效地提高齿轮传动的仿真分析效率,利用Python语言对有限元软件ABAQUS进行了二次开发,实现齿轮动态啮合分析从建模到后处理的自动化处理.通过实例分析了一对斜齿轮的啮合时变刚度及转速对斜齿轮动态啮合性能的影响,结合理论分析验证了分析的准确性及高效性.

  17. ABAQUS user subroutine based on IMD material constitute model%基于IMD材料唯像本构的ABAQUS用户子程序研究

    Institute of Scientific and Technical Information of China (English)

    陈松茂

    2012-01-01

    根据ABAQUS显式用户材料子程序VUMAT模块,提出了一个基于CF-DSGZ粘弹性本构理论及弹性预测—塑性校正算法、专用于模内装饰技术(IMD)热压成型数值分析的材料子程序.研究了子程序的数值计算原理及过程.以某IMD材料为例,通过将子程序嵌入ABAQUS软件,对试样进行高温单向拉伸数值模拟,并对比模拟结果与试验效果,验证子程序的准确性.%A material subroutine for numerically analyzing the thermoforming process of IMD was proposed according to the VUMAT module of ABAQUS/Explicit user material subroutine and based on CF-DSGZ viscoelastic constitutive theory and elastic prediction-plastic correction algorithm. The fundamental principle, program modules and program flow chart of the subroutine were studied. A numerical simulation on the uniaxial tension of sample material was carried out at high temperature and a comparison was made to validate the subroutine.

  18. NOVEL BIPHASE CODE -INTEGRATED SIDELOBE SUPPRESSION CODE

    Institute of Scientific and Technical Information of China (English)

    Wang Feixue; Ou Gang; Zhuang Zhaowen

    2004-01-01

    A kind of novel binary phase code named sidelobe suppression code is proposed in this paper. It is defined to be the code whose corresponding optimal sidelobe suppression filter outputs the minimum sidelobes. It is shown that there do exist sidelobe suppression codes better than the conventional optimal codes-Barker codes. For example, the sidelobe suppression code of length 11 with filter of length 39 has better sidelobe level up to 17dB than that of Barker code with the same code length and filter length.

  19. Influence of thermomechanical aging on fatigue behaviour of 2014 Al-alloy

    Indian Academy of Sciences (India)

    S Singh; D B Goel

    2005-04-01

    The fatigue behaviour of 2014 Al-alloy has been studied in various thermomechanically aged conditions. It is observed that fatigue properties can be improved by a thermomechanical treatment, which would reduce the concentrations of dispersoids, provide a relatively uniform deformation structure and produce fine distribution of ' precipitates. Fine ' particles inhibit dynamic recovery and produce uniform deformation structure, which improves fatigue behaviour. Presence of dispersoids and coarse precipitate particles leads to the formation of persistent slip bands (PSBs) and a highly heterogeneous deformation structure, which cause damage to fatigue properties.

  20. Thermomechanical modeling and data analysis for heating experiments at Stripa, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Chan, T.; Littlestone, N.; Wan, O.

    1979-11-01

    Comparisons were made between predicted and measured thermomechanical displacements and stresses for in situ heating experiments at a depth of 340 m in a granite body at Stripa, Sweden. We found that taking into account the temperature dependence of the thermal expansion coefficient and the mechanical properties of the rock substantially improves the agreement between theory and experiment. In general, the displacements calculated using laboratory values of rock properties agree better with field data than in the case of stresses. This may be due to the difference between in situ and laboratory rock modulus. The significance of temperature-dependent rock properties and strength to thermomechanical failure is also discussed.

  1. Effects of Thermomechanical Treatment on the Mechanical Properties and Microstructures of 6013 Alloy

    Institute of Scientific and Technical Information of China (English)

    HE Lizi; ZHANG Haitao; CUI Jianzhong

    2009-01-01

    The mechanical properties and microstructures of 6013 alloy after different ther-momechanical treatments were investigated. The detailed dislocation configurations after deformation and morphologies of age hardening precipitates were examined through transmission electron mi-croscopy (TEM). The experimental results show that the thermomechanical treatment can significantly enhance the strength of 6013 alloy, and has a similar influence trend on single and two-step aging behaviors. With the increasing deformation ratio, the peak-hardness (HV_( max)) increases, the time toHV_( max) shortens, and the density of tangled dislocation network increases. The aging precipitates be-come larger and inhomogeneous by applying thernomechanical treatment.

  2. Thermomechanical and Environmental Durability of Environmental Barrier Coated Ceramic Matrix Composites Under Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Bhatt, Ramakrishna T.; Harder, Bryan

    2016-01-01

    This paper presents the developments of thermo-mechanical testing approaches and durability performance of environmental barrier coatings (EBCs) and EBC coated SiCSiC ceramic matrix composites (CMCs). Critical testing aspects of the CMCs will be described, including state of the art instrumentations such as temperature, thermal gradient, and full field strain measurements; materials thermal conductivity evolutions and thermal stress resistance; NDE methods; thermo-mechanical stress and environment interactions associated damage accumulations. Examples are also given for testing ceramic matrix composite sub-elements and small airfoils to help better understand the critical and complex CMC and EBC properties in engine relevant testing environments.

  3. Prediction of Properties in Thermomechanically Treated Cu-Cr-Zr Alloy by an Artificial Neural Network

    Institute of Scientific and Technical Information of China (English)

    Juanhua SU; Qiming DONG; Ping LIU; Hejun LI; Buxi KANG

    2003-01-01

    A supervised artificial neural network (ANN) to model the nonlinear relationship between parameters of thermomechanical treatment processes with respect to hardness and conductivity properties was proposed for Cu-Cr-Zr alloy. The improved model was developed by the Levenberg-Marquardt training algorithm. A basic repository on the domain knowledge of thermomechanical treatment processes is established via sufficient data acquisition by the network. The results showed that the ANN system is an effective way and can be successfully used to predict and analyze the properties of Cu-Cr-Zr alloy.

  4. Uncertainty analysis of a one-dimensional constitutive model for shape memory alloy thermomechanical description

    DEFF Research Database (Denmark)

    Oliveira, Sergio A.; Savi, Marcelo A.; Santos, Ilmar F.

    2014-01-01

    The use of shape memory alloys (SMAs) in engineering applications has increased the interest of the accuracy analysis of their thermomechanical description. This work presents an uncertainty analysis related to experimental tensile tests conducted with shape memory alloy wires. Experimental data...... are compared with numerical simulations obtained from a constitutive model with internal constraints employed to describe the thermomechanical behavior of SMAs. The idea is to evaluate if the numerical simulations are within the uncertainty range of the experimental data. Parametric analysis is also developed...

  5. Thermomechanical processing and mechanical properties of hypereutectoid steels and cast irons

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Syn, C.K.; Sherby, O.D. (eds.)

    1998-01-01

    Recent advances in metallurgy of hypereutectoid steels and cast irons show that unique properties, such ultrahigh hardness and strength, and superplasticity, are achievable. This book focuses on the mechanical properties of hypereutectoid steels and cast irons as influenced by thermomechanical processing and microstructure. Some topics covered are: (1) Hot workability of hypereutectoid tool steels; (2) Thermomechanical processing of austempered ductile iron: An overview; (3) Mechanical behavior of ultrahigh strength, ultrahigh carbon steel wire and rod; and (4) Tensile elongation behavior of fine-grained Fe-C alloys at elevated temperatures.

  6. Properties of a Laminated Wood Composite Produced with Thermomechanically Treated Veneers

    OpenAIRE

    Larissa M. Arruda; Cláudio H. S. Del Menezzi

    2016-01-01

    The paper aimed at evaluating the properties of plywood made from thermomechanically treated wood veneers. Veneers from Amescla (Trattinnickia burseraefolia) wood were treated in a hydraulic press with electric resistance heating. Two temperature levels were applied, 140°C and 180°C, for 1 and 2 minutes with 2.7 N/mm2 of pressure. A total of 30 plywood boards were produced, including six boards produced from untreated veneers. The results showed that the thermomechanical treatment did not hav...

  7. From concatenated codes to graph codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Høholdt, Tom

    2004-01-01

    We consider codes based on simple bipartite expander graphs. These codes may be seen as the first step leading from product type concatenated codes to more complex graph codes. We emphasize constructions of specific codes of realistic lengths, and study the details of decoding by message passing...

  8. ABAQUS二次开发在机构参数化建模及仿真的应用%Application of Parametric Modeling and Simulation Based on Secondary Development of ABAQUS

    Institute of Scientific and Technical Information of China (English)

    朱铭君; 刘树华; 曹广群; 王东旭

    2016-01-01

    ABAQUS provides the Python script interface for secondary development. This article gives a detailed introduction of the functions such as realize the parametric study and access the database.And with a lock device as an example, it intro-duces the principle and method of secondary development of ABAQUS based on Python.%ABAQUS为二次开发用户提供了Python脚本接口。文章以ABAQUS二次开发的基本途径和方法为对象详细介绍实现参数化研究和访问结果数据库等功能。并以某开锁器为例,介绍了基于Python对ABAQUS进行二次开发的原理与方法。

  9. The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals

    CERN Document Server

    Lichtenberg, Tim; Gerya, Taras V; Meyer, Michael R

    2016-01-01

    The thermal history and internal structure of chondritic planetesimals, assembled before the giant impact phase of chaotic growth, potentially yield important implications for the final composition and evolution of terrestrial planets. These parameters critically depend on the internal balance of heating versus cooling, which is mostly determined by the presence of short-lived radionuclides (SLRs), such as aluminum-26 and iron-60, as well as the heat conductivity of the material. The heating by SLRs depends on their initial abundances, the formation time of the planetesimal and its size. It has been argued that the cooling history is determined by the porosity of the granular material, which undergoes dramatic changes via compaction processes and tends to decrease with time. In this study we assess the influence of these parameters on the thermo-mechanical evolution of young planetesimals with both 2D and 3D simulations. Using the code family I2ELVIS/I3ELVIS we have run numerous 2D and 3D numerical finite-dif...

  10. Aespoe Pillar Stability Experiment. Final coupled 3D thermo-mechanical modeling. Preliminary particle mechanical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wanne, Toivo; Johansson, Erik; Potyondy, David [Saanio and Riekkola Oy, Helsinki (Finland)

    2004-02-01

    SKB is planning to perform a large-scale pillar stability experiment called APSE (Aespoe Pillar Stability Experiment) at Aespoe HRL. The study is focused on understanding and control of progressive rock failure in hard crystalline rock and damage caused by high stresses. The elastic thermo-mechanical modeling was carried out in three dimensions because of the complex test geometry and in-situ stress tensor by using a finite-difference modeling software FLAC3D. Cracking and damage formation were modeled in the area of interest (pillar between two large scale holes) in two dimensions by using the Particle Flow Code (PFC), which is based on particle mechanics. FLAC and PFC were coupled to minimize the computer resources and the computing time. According to the modeling the initial temperature rises from 15 deg C to about 65 deg C in the pillar area during the heating period of 120 days. The rising temperature due to thermal expansion induces stresses in the pillar area and after 120 days heating the stresses have increased about 33% from the excavation induced maximum stress of 150 MPa to 200 MPa in the end of the heating period. The results from FLAC3D model showed that only regions where the crack initiation stress has exceeded were identified and they extended to about two meters down the hole wall. These could be considered the areas where damage may occur during the in-situ test. When the other hole is pressurized with a 0.8 MPa confining pressure it yields that 5 MPa more stress is needed to damage the rock than without confining pressure. This makes the damaged area in some degree smaller. High compressive stresses in addition to some tensile stresses might induce some AE (acoustic emission) activity in the upper part of the hole from the very beginning of the test and are thus potential areas where AE activities may be detected. Monitoring like acoustic emissions will be measured during the test execution. The 2D coupled PFC-FLAC modeling indicated that

  11. Thermo-mechanical loading response of hardened and tempered iron-carbon based alloys

    NARCIS (Netherlands)

    Morra, P.V.

    2004-01-01

    The mechanisms causing long term changes of materials at mild operating conditions, i.e. relatively low temperatures and loads, has not received as much attention as that for high temperature operating conditions because small strains are involved. Nevertheless the thermo-mechanical loading response

  12. Thermo-mechanical properties of polystyrene-based shape memory nanocomposites

    NARCIS (Netherlands)

    Xu, B.; Fu, Y.Q.; Ahmad, M.; Luo, J.K.; Huang, W.M.; Kraft, A.; Reuben, R.; Pei, Y.T.; Chen, Zhenguo; Hosson, J.Th.M. De

    2010-01-01

    Shape memory nanocomposites were fabricated using chemically cross-linked polystyrene (PS) copolymer as a matrix and different nanofillers (including alumina, silica and clay) as the reinforcing agents. Their thermo-mechanical properties and shape memory effects were characterized. Experimental resu

  13. Constitutive Modelling in Thermomechanical Processes, Using The Control Volume Method on Staggered Grid

    DEFF Research Database (Denmark)

    Thorborg, Jesper

    The objective of this thesis has been to improve and further develop the existing staggered grid control volume formulation of the thermomechanical equations. During the last ten years the method has proven to be efficient and accurate even for calculation on large structures. The application of ...

  14. Structure and substructure of austenite formed during heating of quenched and thermomechanically strengthened steels

    Energy Technology Data Exchange (ETDEWEB)

    Bernshtejn, M.L.; Kaputkina, L.M.; Prokoshkin, S.D.; Lyuttsau, A.V.; Prokoshkina, V.G. (Moskovskij Inst. Stali i Splavov (USSR))

    1982-06-01

    Mechanism of ..cap alpha.. ..-->.. ..gamma.. transformation in chromium and chromium-nickel steels, peculiarities of substructure formation of austenite formed at repeated heating after quenching and high-temperature thermomechanical treatment and its stability to recrystallization in steels with different martensite morphology and temperature of the initial stage of austenite formation are investigated.

  15. Shape distortion and thermo-mechanical properties of SOFC components from green tape to sintering body

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Ni, De Wei; Tadesse Molla, Tesfaye;

    to the strain rate difference between materials, was calculated using Cai’s model. Camber (curvature) development for in situ co-firing of a bi-layer ceramic green tape has been investigated. Analysis of shape evolution from green to sintered body can be carried out by the thermo-mechanical analysis techniques....

  16. Prediction of the thermo-mechanical material behavior of PEN foil during photolithographic processing

    NARCIS (Netherlands)

    Barink, M.; Goorhuis, M.; Giesen P.; Furthner, F.; Yakimets, I.

    2009-01-01

    Flexible substrates (polymers) for plastic electronic products are far less stable to environmental factors, like heat and moisture, than currently used non-flexible substrates (silicon). This introduces problems during the lithography process of these products. This study presents a thermo-mechanic

  17. DSC-Analysis of thermomechanically treated TiNi shape memory alloy

    NARCIS (Netherlands)

    Beyer, J.; Besselink, P.A.; Aartsen, A.J.

    1985-01-01

    The martensitic transformation behaviour, after thermomechanical treatment of the TiNi-alloy with two-way shape memory, have been studied by differential scanning calorimetry. The results are correlated with electrical resistivity and electron microscopical observations. One heating and cooling cycl

  18. Self-positioning of polymer membranes driven by thermomechanically induced plastic deformation

    DEFF Research Database (Denmark)

    Häfliger, Daniel; Hansen, Ole; Boisen, Anja

    2006-01-01

    Stress in polymeric resins is tailored by a thermomechanical process. It allows for controlled self-positioning of membranes in microdevices (see Figure). The process makes specific use of plastic deformation that results from the low viscosity of the polymer. This demonstrates that polymers offe...

  19. THERMO-MECHANICALLY PROCESSED ROLLED WIRE FOR HIGH-STRENGTH ON-BOARD WIRE

    Directory of Open Access Journals (Sweden)

    V. A. Lutsenko

    2011-01-01

    Full Text Available It is shown that at twisting of wire of diameter 1,83 mm, produced by direct wire drawing of thermomechanically processed rolled wire of diameter 5,5 mm of steel 90, metal stratification is completely eliminated at decrease of carbon, manganese and an additional alloying of chrome.

  20. Precision Glass Molding: Validation of an FE Model for Thermo-Mechanical Simulation

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard

    2014-01-01

    In precision glass molding process, the required accuracy for the final size and shape of the molded lenses as well as the complexity of this technology calls for a numerical simulation. The current paper addresses the development of an FE model for thermo-mechanical simulation of the precision...

  1. 基于ABAQUS的桩板墙地震响应分析%Seismic response analysis of anti-slide sheet pile wall using ABAQUS software

    Institute of Scientific and Technical Information of China (English)

    陈强; 刘强; 张建经

    2011-01-01

    桩板墙是一种重要的新型支挡结构,已被广泛地应用于边坡的加固.本文结合工程实例,采用有限元数值分析软件ABAQUS,对位于213国道DK1 016+800-DK1 016+835处的抗滑桩进行了分析.选取了"5.12"汶川地震中卧龙台站记录的地震动时程作为输入,通过分析得到了抗滑桩的弯矩、剪力、土压力分布等,并把分析结果与规范结果进行了比较.比较结果表明,当采用规范计算时,地震综合影响系数应取0.4才能使工程满足设计要求.在此基础上,再分别将汶川波的PGA(Peak Ground Aeceleration)折换到7度(0.15 g)、8度(0.30 g)、9度(0.40 g)及0.6 g,分别对抗滑桩进行了分析,将分析结果与规范对比发现,当按照规范计算时,地震综合影响系数分别取0.30(7度)、0.35(8度)、0.40(≥9度)时,能保证工程设计要求.

  2. Tribological Properties of Biomimetic Rails Based on ABAQUS%基于ABAQUS的仿生导轨摩擦学特性研究∗

    Institute of Scientific and Technical Information of China (English)

    马廉洁; 顾立晨; 陈杰; 骆勇真; 于爱兵

    2015-01-01

    以往复运动摩擦副为研究对象,通过ABAQUS有限元仿真,对比研究了仿生导轨与普通导轨的摩擦力分布、摩擦副温度、磨损状态等摩擦学性能。结果表明,普通摩擦副的摩擦力分布更加集中,仿生摩擦副则相对分散。普通摩擦副上低温区面积较大,仿生摩擦副低温区较小,仿生单元使得导轨上的温度分布更加均匀,最高温度也有所下降。仿生摩擦副的磨损较为均匀,磨损率明显低于普通摩擦副。%The object is reciprocating friction in this study. Comparing with contrast bionic and ordinary rail by ABAQUS, the tribological properties were studied, such as distribution of friction, temperature friction and wear status. The results indicated that the friction distribution of ordinary rail was concentrated, and the bionic friction was fragmented. The low temperature area was larger on ordinary rail, and low temperature area was smaller on bionic ordinary rail. The temperature distribution was more uniform becausing bionic u-nit on the rail, and the maximum temperature was also fell. The friction wear was more evenly on bionic rail, and the wear rate was significantly lower than ordinary friction.

  3. 基于Abaqus的汽车手刹行程分析及优化∗%Analysis and Optimization of Car Handbrake Stroke Based on Abaqus

    Institute of Scientific and Technical Information of China (English)

    丁晓明; 姚亮; 王伟

    2016-01-01

    For a MPV car, the handbrake stroke increased in the test phase ramp R&D after several pulling in turn and that may lead to problems of security incidents. To solve this problem, influencing factors are found by using Abaqus. Amount of travel by different factors are calculated. Then handbrake mechanism is optimized. Strength analysis of handbrake mechanism is conducted, and the results show that the stroke of the shaft stiffness severely affect the car handbrake stroke. So, changing the stiffness of the shaft material can greatly reduce the car's hand brake stroke. These workes are important for the future de-velopment of similar cars.%针对某车型手刹在开发阶段测试时发现坡道驻车时手刹在多次拉动后行程增加进而可能会导致安全事故的问题进行研究。通过利用Abaqus在不同工况下进行刚度分析来寻找影响手刹行程增加的关键项,得到了不同因素的行程增加量,然后对影响行程增加的关键量进行分析,选择对手刹机构进行优化。对手刹机构进行了强度分析,分析结果表明转轴的刚度严重影响汽车手刹行程,通过更改转轴刚度材料,大大缩短了该车型的手刹行程。整个分析优化过程为以后的同类车型的开发积累了经验。

  4. 基于Abaqus显式算法的铸铝车轮碰撞模拟%Impact Simulation of Casting Aluminum Wheel Using Abaqus/Explicit

    Institute of Scientific and Technical Information of China (English)

    郑玉卿; 刘建峰

    2011-01-01

    A numerical procedure using Abaqus/Explicit is presented to predict the impact performance of wheel during its impact test conducted as per the provisions in SAE J175.In an effort to savecomputation time, the striker is assigned an equivalent initial impact velocity to represent its end state of free-fall process, with a mass scaling method also adopted.The equivalent plastic strain is used as the damage indicator to judge whether the wheel should pass the impact test.The simulation result is verified in a real case and it shows that the plastic deformation of wheel tends to be concentrated at around the spoke-to-hub junction area.%介绍了一种基于Abaqus显式算法的计算方案来预测车轮在按SAE J175的规定进行车轮冲击试验过程中的车轮碰撞性能.为节省计算时间,赋予碰撞体一个撞击初速度代表其自由下落过程的最终状态,并采用了质量缩放法.以等效塑性应变作为损坏指标判定车轮是否通过动态冲击测试标准.仿真结果得到实例的验证,并表明车轮的塑性变形主要集中于轮毂与辐条连接的区域.

  5. Thermo-mechanical stress analysis of cryopreservation in cryobags and the potential benefit of nanowarming.

    Science.gov (United States)

    Solanki, Prem K; Bischof, John C; Rabin, Yoed

    2017-02-10

    Cryopreservation by vitrification is the only promising solution for long-term organ preservation which can save tens of thousands of lives across the world every year. One of the challenges in cryopreservation of large-size tissues and organs is to prevent fracture formation due to the tendency of the material to contract with temperature. The current study focuses on a pillow-like shape of a cryobag, while exploring various strategies to reduce thermo-mechanical stress during the rewarming phase of the cryopreservation protocol, where maximum stresses are typically found. It is demonstrated in this study that while the level of stress may generally increase with the increasing amount of CPA filled in the cryobag, the ratio between width and length of the cryobag play a significant role. Counterintuitively, the overall maximum stress is not found when the bag is filled to its maximum capacity (when the filled cryobag resembles a sphere). Parametric investigation suggests that reducing the initial rewarming rate between the storage temperature and the glass transition temperature may dramatically decrease the thermo-mechanical stress. Adding a temperature hold during rewarming at the glass transition temperature may reduce the thermo-mechanical stress in some cases, but may have an adverse effect in other cases. Finally, it is demonstrated that careful incorporation of volumetric heating by means on nanoparticles in an alternating magnetic field, or nanowarming, can dramatically reduce the resulting thermo-mechanical stress. These observations display the potential benefit of a thermo-mechanical design of the cryopreservation protocols in order to prevent structural damage.

  6. Space Time Codes from Permutation Codes

    CERN Document Server

    Henkel, Oliver

    2006-01-01

    A new class of space time codes with high performance is presented. The code design utilizes tailor-made permutation codes, which are known to have large minimal distances as spherical codes. A geometric connection between spherical and space time codes has been used to translate them into the final space time codes. Simulations demonstrate that the performance increases with the block lengths, a result that has been conjectured already in previous work. Further, the connection to permutation codes allows for moderate complex en-/decoding algorithms.

  7. Fundamentals of convolutional coding

    CERN Document Server

    Johannesson, Rolf

    2015-01-01

    Fundamentals of Convolutional Coding, Second Edition, regarded as a bible of convolutional coding brings you a clear and comprehensive discussion of the basic principles of this field * Two new chapters on low-density parity-check (LDPC) convolutional codes and iterative coding * Viterbi, BCJR, BEAST, list, and sequential decoding of convolutional codes * Distance properties of convolutional codes * Includes a downloadable solutions manual

  8. Strong Trinucleotide Circular Codes

    Directory of Open Access Journals (Sweden)

    Christian J. Michel

    2011-01-01

    Full Text Available Recently, we identified a hierarchy relation between trinucleotide comma-free codes and trinucleotide circular codes (see our previous works. Here, we extend our hierarchy with two new classes of codes, called DLD and LDL codes, which are stronger than the comma-free codes. We also prove that no circular code with 20 trinucleotides is a DLD code and that a circular code with 20 trinucleotides is comma-free if and only if it is a LDL code. Finally, we point out the possible role of the symmetric group ∑4 in the mathematical study of trinucleotide circular codes.

  9. Joint source channel coding using arithmetic codes

    CERN Document Server

    Bi, Dongsheng

    2009-01-01

    Based on the encoding process, arithmetic codes can be viewed as tree codes and current proposals for decoding arithmetic codes with forbidden symbols belong to sequential decoding algorithms and their variants. In this monograph, we propose a new way of looking at arithmetic codes with forbidden symbols. If a limit is imposed on the maximum value of a key parameter in the encoder, this modified arithmetic encoder can also be modeled as a finite state machine and the code generated can be treated as a variable-length trellis code. The number of states used can be reduced and techniques used fo

  10. Thermo-coupled Surface Cauchy-Born Theory: An Engineering Finite Element Approach to Modeling of Nanowire Thermomechanical Response

    DEFF Research Database (Denmark)

    Esfahania, M. Nasr; Sonne, Mads Rostgaard; Hattel, J. Henri;

    2016-01-01

    There are remarkable studies geared towards developing thermomechanical analyses of nanowires based on quasiharmonic and Molecular Dynamics simulations. These methods exhibit limited applicability due to the associated computational cost. In this study an engineering finite-temperature model base...

  11. Implementation of Anisotropic Bounding Surface Model on ABAQUS Software%土体边界面模型在ABAQUS软件中的研发与验证

    Institute of Scientific and Technical Information of China (English)

    钦亚洲; 孙钧

    2012-01-01

    Natural soft clay tends to be anisotropy developed during deposition, one-dimensional consolidation, and any subsequent straining. Anisotropy of clays affects its shear strength, stress-strain response, yield surface declination, and so on. An anisotropic bounding surface model is developed based on Wheeler's elastoplastic model (S-CLAY1). The developed model is programmed in ABAQUS software by writing UMAT subroutine, which is integrated in return mapping algorithm. The developed bounding surface model is validated with undrained triaxial shear test of Kaolin clay. The study shows that the developed model can well simulate the stress-strain behaviors and the change of excess pore pressure of normally consolidated and over-consolidated clays. Meanwhile, the developed bounding surface model can also efficiently depict the initial anisotropy and stress-induced anisotropy of consolidated natural soft clay.%天然土体一般都处于偏压固结状态,存在着初始各向异性.即使是等压固结土体,在其后的偏压加载过程中,也会产生应力诱发各向异性.土体各向异性对其强度、变形及屈服面倾向都会产生影响.Wheeler弹塑性模型采用旋转硬化来描述土体的各向异性.在Wheeler模型的基础上,结合边界面理论,将Wheeler模型拓展为各向异性边界面模型.模型采用ABAQUS软件的UMAT子程序接口,通过隐式积分算法(图形返回算法)编程实现.采用本模型对高岭土三轴不排水剪切试验进行了模拟,并与试验结果作了对比验证.结果表明:模型能够合理描述具有初始各向异性土体的应力应变行为、孔压曲线及应力路径,并能反映偏压加载下的应力诱发各向异性;模型既可适用于模拟正常固结土,也适用于对中等超固结土的模拟.

  12. Thermo-mechanical modelling of high energy particle beam impacts

    CERN Document Server

    Scapin, M; Dallocchio, A

    2010-01-01

    The unprecedented energy intensities of modern hadron accelerators yield special problems with the materials that are placed close to or into the high intensity beams. The energy stored in LHC in a single beam is equivalent to about 80 kg of TNT explosive, stored in a transverse beam area of 0.2 mm×0.2 mm. The materials placed close to the beam are used at, or even beyond, their damage limits. However, it is very difficult to predict structural efficiency and robustness accurately: beam-induced damage occurs in a regime where practical experience does not exist. This study is performed in order to estimate the damage on a copper component due to the impact with a 7 TeV proton beam generated by LHC. The case study represents an accidental case consequent to an abnormal release of the beam, in which 8 bunches irradiate the target directly. The energy delivered on the component is calculated using the FLUKA code and then used as input in the numerical simulations, that are carried out via the FEM code LS-DYNA. ...

  13. Correlation between mechanical properties and structural changes of the sintered Cu-4 at% Ag alloy during thermomechanical treatment

    OpenAIRE

    Rangelov Ivana I.; Nestorović Svetlana D.; Marković Desimir D.

    2008-01-01

    Influence of thermomechanical treatment on micro structure and strength (hardness and microhardness) of the sintered copper based Cu-4 at% Ag alloy was investigated using Vickers hardness and microhardness measurements, and optical microscopy. After sintering at 790°C, samples of Cu-4 at% Ag alloy were subjected to thermomechanical treatment by cold rolling with 20, 40 and 60% deformation degrees, and annealing below and over the recrystallization temperature. It was shown that microstructure...

  14. The Influence of Thermal Conditions on the Thermomechanics of Particulate-Composite, Mock Explosive Samples under Near-Resonant Excitation

    OpenAIRE

    2016-01-01

    Vapor detection is one of the most effective ways to find hidden plastic-bonded explosives in the field today. In recent years, it has been demonstrated that providing near-resonant vibratory excitation to explosives dramatically increases their vapor pressure, allowing for easier detection. Unfortunately, there currently exists a limited understanding of the thermomechanics of energetic material. This study seeks to help fill this technical void by exploring the thermomechanics of mock plast...

  15. Studies on the thermo-mechanical behavior of the CLIC two-beam module

    CERN Document Server

    Nousiainen, R; Österberg, K

    2010-01-01

    To fulfil the mechanical requirements set by the luminosity goals of the CLIC collider, currently under study, the 2-m two-beam modules, the shortest repetitive elements in the main linac, have to be controlled at micrometer level. At the same time these modules are exposed to variable high power dissipation while the accelerator is ramped up to nominal power as well as when the mode of CLIC operation is varied. This will result into inevitable temperature excursions driving mechanical distortions in and between different module components. A FEM model is essential to estimate and simulate the fundamental thermo-mechanical behaviour of the CLIC two-beam module to facilitate its design and development. In this paper, the fundamental thermal environments for the RF-components of the module are described. Also the thermal and structural results for the studied module configuration are presented showing the fundamental thermo-mechanical behaviour under the main CLIC collider operation conditions.

  16. Progress on modelling of the thermo-mechanical behavior of the CLIC two-beam module

    CERN Document Server

    Raatikainen, R; Niinikoski, T; Riddone, G

    2011-01-01

    under study, imposes micrometer mechanical stability of the 2-m long two-beam modules, the shortest repetitive elements of the main linacs. These modules will be exposed to variable high power dissipation during operation resulting in mechanical distortions in and between module components. The stability of the CLIC module will be tested in laboratory conditions at CERN in a full-scale prototype module. In this paper, the FEA model developed for CLIC prototype module is described. The thermal and structural results for the new module configuration are presented considering the thermo-mechanical behavior of the CLIC collider in its primary operation modes. These results will be compared to the laboratory measurements to be done during 2011 and 2012 with the full-scale prototype module. The experimental results will allow for better understanding of the module behaviour and they will be propagated back to the present thermo-mechanical model.

  17. Description of the performances of a thermo-mechanical energy harvester using bimetallic beams

    Science.gov (United States)

    Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.

    2016-06-01

    Many recent researches have been focused on the development of thermal energy harvesters using thermo-mechanical or thermo-electrical coupling phenomena associated to a first-order thermodynamic transition. In the case of the bimetallic strip heat engine, the exploitation of the thermo-mechanical instability of bimetallic membranes placed in a thermal gradient enables to convert heat into kinetic energy. This paper is a contribution to the modeling and the comprehension of these heat engines. By restraining the study to the simply-supported bimetallic beams and using a Ritz approximation of the beam shape, this paper aims to give an analytical solution to the first mode of the composite beams and then to evaluate the efficiency of the harvesters exploiting these kinds of instability.

  18. Unraveling the Effect of Thermomechanical Treatment on the Dissolution of Delta Ferrite in Austenitic Stainless Steels

    Science.gov (United States)

    Rezayat, Mohammad; Mirzadeh, Hamed; Namdar, Masih; Parsa, Mohammad Habibi

    2016-02-01

    Considering the detrimental effects of delta ferrite stringers in austenitic stainless steels and the industrial considerations regarding energy consumption, investigating, and optimizing the kinetics of delta ferrite removal is of vital importance. In the current study, a model alloy prone to the formation of austenite/delta ferrite dual phase microstructure was subjected to thermomechanical treatment using the wedge rolling test aiming to dissolve delta ferrite. The effect of introducing lattice defects and occurrence of dynamic recrystallization (DRX) were investigated. It was revealed that pipe diffusion is responsible for delta ferrite removal during thermomechanical process, whereas when the DRX is dominant, the kinetics of delta ferrite dissolution tends toward that of the static homogenization treatment for delta ferrite removal that is based on the lattice diffusion of Cr and Ni in austenite. It was concluded that the optimum condition for dissolution of delta ferrite can be defined by the highest rolling temperature and strain in which DRX is not pronounced.

  19. Mechanical and thermomechanical properties of polycarbonate-based polyurethane-silica nanocomposites

    Directory of Open Access Journals (Sweden)

    Rafał Poręba

    2011-09-01

    Full Text Available In this work aliphatic polycarbonate-based polyurethane-silica nanocomposites were synthesized and characterized. The influence of the type and of the concentration of nanofiller differing in average particle size (7 nm for Aerosil 380 and 40 nm for Nanosilica 999 on mechanical and thermomechanical properties was investigated. DMTA measurements showed that Nanosilica 999, irrespective of its concentration, slightly increased the value of the storage shear modulus G’ but Aerosil 380 brings about a nearly opposite effect, the shear modulus in the rubber region decreases with increasing filler content. Very high elongations at break ranging from 800% to more than 1000%, as well as high tensile strengths illustrate excellent ultimate tensile properties of the prepared samples. The best mechanical and thermomechanical properties were found for the sample filled with 0.5 wt.% of Nanosilica 999.

  20. Thermo-Mechanical Stress in High-Frequency Vacuum Electron Devices

    Science.gov (United States)

    Gamzina, Diana; Luhmann, Neville C.; Ravani, Bahram

    2016-09-01

    Analysis of the thermo-mechanical performance of high-frequency vacuum electron devices is essential to the advancement of RF sources towards high-power generation. Operation in an ultra-high vacuum environment, space restricting magnetic focusing, and limited material options are just some of the constraints that complicate thermal management in a high-power VED. An analytical method for evaluating temperature, stress, and deformation distribution in thin vacuum-to-cooling walls is presented, accounting for anisotropic material properties. Thin plate geometry is used and analytical expressions are developed for thermo-mechanical analysis that includes the microstructure effects of grain orientations. The method presented evaluates the maximum allowable heat flux that can be used to establish the power-handling limitation of high-frequency VEDs prior to full-scale design, accelerating time-to-manufacture.

  1. Earthquake depth-energy release: thermomechanical implications for dynamic plate theory

    CERN Document Server

    Patton, Regan L

    2012-01-01

    Analysis of the global centroid-moment tensor catalog reveals significant regional variations of seismic energy release to 290 km depth. These variations reflect radial and lateral contrasts in thermomechanical competence, consistent with a shear-dominated non-adiabatic boundary layer some 700-km thick, capped by denser oceanic lithosphere as much as 100 km thick, or lighter continental tectosphere 170 to 260 km thick. Thus, isobaric shearing at fractally-distributed depths likely facilitates toroidal plate rotations while minimizing global energy dissipation. Shear localization in the shallow crust occurs as dislocations at finite angles with respect to the shortening direction, with a 30 degree angle being the most likely. Consequently, relatively low-angle reverse faults, steep normal faults, and triple junctions with orthogonal or hexagonal symmetry are likely to form in regions of crustal shortening, extension, and transverse motion, respectively. Thermomechanical theory also predicts adiabatic condition...

  2. Thermo-Mechanical Stress in High-Frequency Vacuum Electron Devices

    Science.gov (United States)

    Gamzina, Diana; Luhmann, Neville C.; Ravani, Bahram

    2017-01-01

    Analysis of the thermo-mechanical performance of high-frequency vacuum electron devices is essential to the advancement of RF sources towards high-power generation. Operation in an ultra-high vacuum environment, space restricting magnetic focusing, and limited material options are just some of the constraints that complicate thermal management in a high-power VED. An analytical method for evaluating temperature, stress, and deformation distribution in thin vacuum-to-cooling walls is presented, accounting for anisotropic material properties. Thin plate geometry is used and analytical expressions are developed for thermo-mechanical analysis that includes the microstructure effects of grain orientations. The method presented evaluates the maximum allowable heat flux that can be used to establish the power-handling limitation of high-frequency VEDs prior to full-scale design, accelerating time-to-manufacture.

  3. Thermomechanical and electrical characterisation of EVA polymer compounds for cable accessories*

    Science.gov (United States)

    Santulli, Carlo; Balestrieri, Francesco; Mazzetti, Carlo; De Mestres, Pau

    2015-11-01

    In this work, materials used in the field of accessories for electrical cables have been characterised from a thermomechanical and electrical point of view, so to offer a realistic picture of material behaviour under a service involving the combined application of electrical charges and thermo-mechanical stresses. In particular, both materials are based on ethylene-vinylacetate (EVA) blend with the introduction in one case of aluminium trihydrate, whereas in the other case, carbon black was added, the two materials being referred as insulating and semi-conductive, respectively. The two materials had different rheological and thermal characteristics, which had an effect on electrical behaviour: however, the application of levels of radiation up to 60 kGy did not prove to widely change the profile of either polymer blends.

  4. Study of the Thermo-Mechanical Behavior of the CLIC Two-Beam Modules

    CERN Document Server

    Rossi, F; Riddone, G; Österberg, K; Kossyvakis, I; Gudkov, D; Samochkine, A

    2013-01-01

    The final luminosity target of the Compact LInear Collider (CLIC) imposes a micron-level stability requirement on the two-meter repetitive two-beam modules constituting the main linacs. Two-beam prototype modules are being assembled to extensively study their thermo-mechanical behaviour under different operation modes. The power dissipation occurring in the modules will be reproduced and the efficiency of the corresponding cooling systems validated. At the same time, the real environmental conditions present in the CLIC tunnel will be studied. Air conditioning and ventilation systems have been installed in the dedicated laboratory. The air temperature will be changed from 20 to 40°C, while the air flow rate will be varied up to 0.8 m/s. During all experimental tests, the alignment of the RF structures will be monitored to investigate the influence of power dissipation and air temperature on the overall thermo-mechanical behaviour. \

  5. Fracture mechanics in new designed power module under thermo-mechanical loads

    Directory of Open Access Journals (Sweden)

    Durand Camille

    2014-06-01

    Full Text Available Thermo-mechanically induced failure is a major reliability issue in the microelectronic industry. On this account, a new type of Assembly Interconnected Technology used to connect MOSFETs in power modules has been developed. The reliability is increased by using a copper clip soldered on the top side of the chip, avoiding the use of aluminium wire bonds, often responsible for the failure of the device. Thus the new designed MOSFET package does not follow the same failure mechanisms as standard modules. Thermal and power cycling tests were performed on these new packages and resulting failures were analyzed. Thermo-mechanical simulations including cracks in the aluminium metallization and intermetallics (IMC were performed using Finite Element Analysis in order to better understand crack propagation and module behaviour.

  6. Heat generation and thermo-mechanical effect modeling in longitudinally diode-pumped solid state lasers

    Science.gov (United States)

    Lakhdari, Fouad; Osmani, Ismahen; Tabet, Saida

    2015-09-01

    Thermal management in solid state laser is a challenge to the high power laser industry's ability to provide continued improvements in device and system performance. In this work an investigation of heat generation and thermo-mechanical effect in a high-power Nd:YAG and Yb:YAG cylindrical-type solid state laser pumped longitudinally with different power by fibre coupled laser diode is carried out by numerical simulation based on the finite element method (FEM). Impact of the dopant concentration on the power conversion efficiency is included in the simulation. The distribution of the temperature inside the lasing material is resolute according to the thermal conductivity. The thermo-mechanical effect is explored as a function of pump power in order to determine the maximum pumping power allowed to prevent the crystal's fracture. The presented simulations are in broad agreement with analytical solutions; provided that the boundary condition of the pump induced heat generation is accurately modelled.

  7. The development and production of thermo-mechanically forged tool steel spur gears

    Science.gov (United States)

    Bamberger, E. N.

    1973-01-01

    A development program to establish the feasibility and applicability of high energy rate forging procedures to tool steel spur gears was performed. Included in the study were relatively standard forging procedures as well as a thermo-mechanical process termed ausforming. The subject gear configuration utilized was essentially a standard spur gear having 28 teeth, a pitch diameter of 3.5 inches and a diametral pitch of 8. Initially it had been planned to use a high contact ratio gear design, however, a comprehensive evaluation indicated that severe forging problems would be encountered as a result of the extremely small teeth required by this type of design. The forging studies were successful in achieving gear blanks having integrally formed teeth using both standard and thermo-mechanical forging procedures.

  8. Properties of a Laminated Wood Composite Produced with Thermomechanically Treated Veneers

    Directory of Open Access Journals (Sweden)

    Larissa M. Arruda

    2016-01-01

    Full Text Available The paper aimed at evaluating the properties of plywood made from thermomechanically treated wood veneers. Veneers from Amescla (Trattinnickia burseraefolia wood were treated in a hydraulic press with electric resistance heating. Two temperature levels were applied, 140°C and 180°C, for 1 and 2 minutes with 2.7 N/mm2 of pressure. A total of 30 plywood boards were produced, including six boards produced from untreated veneers. The results showed that the thermomechanical treatment did not have any deleterious effect on glue line strength and most of the mechanical properties of plywood made from treated veneers were improved. On the other hand, plywood made from untreated veneers presented better dimensional stability. Dimensional stability properties were most affected by the temperature of the treatment, while mechanical stability, represented by the glue line shear strength, was positively affected by temperature and duration of the treatment.

  9. Turbo Codes Extended with Outer BCH Code

    DEFF Research Database (Denmark)

    Andersen, Jakob Dahl

    1996-01-01

    The "error floor" observed in several simulations with the turbo codes is verified by calculation of an upper bound to the bit error rate for the ensemble of all interleavers. Also an easy way to calculate the weight enumerator used in this bound is presented. An extended coding scheme is proposed...... including an outer BCH code correcting a few bit errors....

  10. Thermo-mechanical Response and Damping Behavior of Shape Memory Alloy-MAX Phase Composites

    Science.gov (United States)

    Kothalkar, Ankush Dilip; Benitez, Rogelio; Hu, Liangfa; Radovic, Miladin; Karaman, Ibrahim

    2014-05-01

    NiTi/Ti3SiC2 interpenetrating composites that combine two unique material systems—a shape memory alloy (SMA) and a MAX phase—demonstrating two different pseudoelastic mechanisms, were processed using spark plasma sintering. The goal of mixing these two material systems was to enhance the damping behavior and thermo-mechanical response of the composite by combining two pseudoelastic mechanisms, i.e., reversible stress-induced martensitic transformation in SMA and reversible incipient kink band formation in MAX phase. Equal volume fractions of equiatomic NiTi and Ti3SiC2 were used. Microstructural characterization was conducted using scanning electron microscopy to study the distribution of NiTi, Ti3SiC2, and remnant porosity in the composite. Thermo-mechanical testing in the form of thermal cycles under constant stress levels was performed in order to characterize shape memory behavior and thereby introducing residual stresses in the composites. Evolution of two-way shape memory effect was studied and related to the presence of residual stresses in the composites. Damping behavior, implying the energy dissipation per loading-unloading cycle under increasing compressive stresses, of pure NiTi, pure Ti3SiC2, as-sintered, and thermo-mechanically cycled (TC) NiTi/Ti3SiC2 composites, was investigated and compared to the literature data. In this study, the highest energy dissipation was observed for the TC composite followed by the as-sintered (AS) composite, pure NiTi, and pure Ti3SiC2 when compared at the same applied stress levels. Both the AS and TC composites showed higher damping up to 200 MPa stress than any of the metal—MAX phase composites reported in the literature to date. The ability to enhance the performance of the composite by controlling the thermo-mechanical loading paths was further discussed.

  11. Thermomechanical Simulation of Wear and Hot Bands in a Disc Brake by Adopting an Eulerian Approach

    OpenAIRE

    Rashid, Asim; Strömberg, Niclas

    2013-01-01

    In this paper frictional heating of a disc brake is simulated while taking wear into account. By performing thermomechanical finite element analysis, it is studied how the wear history will influence the development of hot bands. The frictional heat analysis is based on an Eulerian formulation of the disc, which requires significantly lower computational time as compared to a standard Lagrangian approach. A real disc-pad system to a heavy truck is considered, where complete three-dimensional ...

  12. Thermo-mechanical behaviour of heavy-duty disc brake systems

    OpenAIRE

    Chen, J. P.

    2001-01-01

    In heavy-duty disc brake systems, braking is a transient, non-linear and asymmetrical thermo-mechanical process. Surface cracking, rather than wear, is the major factor limiting the brake disc's life. The disc material (cast-iron), heat transfer boundary conditions and pad-disc frictional reactions are characteristically non-linear and asymmetrical during the friction process. Non-uniform deformation and surface cracks in brake discs result from the accumulation of excess...

  13. Thermomechanical cycling investigation of CU particulate and NITI reinforced lead-free solder

    OpenAIRE

    Horton, W. Scott.

    2006-01-01

    In todayâ s Flip Chip (FC) and Ball Grid Array (BGA) electronic packages solder joints provide both the electrical as well as the mechanical connections between the silicon chip and the substrate. Due to coefficient of thermal expansion (CTE) differences between the chip and substrate the solder joints undergo thermomechanical stresses and strains as an electronic package is heated and cooled with power on/off cycles. Advances in chip designs result in chips that are larger, run hotter and d...

  14. Thermomechanical Behavior of Monolithic SN-AG-CU Solder and Copper Fiber Reinforced Solders

    Science.gov (United States)

    2005-09-01

    controlled fatigue life, likely because of increased void -nucleation via creep-fatigue interactions. Since the solder is largely under strain-controlled...to plastically deform the solder in order to break the oxide layers and eliminate some minor voids around the NiTi particles. Figure 32... Underfill Constraint Effects during Thermomechanical Cycling of Flip Chip Solder Joints,” Journal of Electronic Materials, Vol. 31, No. 4, 2002

  15. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    Energy Technology Data Exchange (ETDEWEB)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

  16. Influence of vibrational treatment on thermomechanical response of material under conditions identical to friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, Ivan S., E-mail: ivkon@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Konovalenko, Igor S., E-mail: igkon@ispms.tsc.ru; Kolubaev, Evgeniy A., E-mail: eak@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Dmitriev, Andrey I., E-mail: dmitr@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Psakhie, Sergey G., E-mail: sp@ms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    A molecular dynamics model was constructed to describe material loading on the atomic scale by the mode identical to friction stir welding. It was shown that additional vibration applied to the tool during the loading mode provides specified intensity values and continuous thermomechanical action during welding. An increase in additional vibration intensity causes an increase both in the force acting on the workpiece from the rotating tool and in temperature within the welded area.

  17. Influence of vibrational treatment on thermomechanical response of material under conditions identical to friction stir welding

    Science.gov (United States)

    Konovalenko, Ivan S.; Konovalenko, Igor S.; Dmitriev, Andrey I.; Psakhie, Sergey G.; Kolubaev, Evgeniy A.

    2015-10-01

    A molecular dynamics model was constructed to describe material loading on the atomic scale by the mode identical to friction stir welding. It was shown that additional vibration applied to the tool during the loading mode provides specified intensity values and continuous thermomechanical action during welding. An increase in additional vibration intensity causes an increase both in the force acting on the workpiece from the rotating tool and in temperature within the welded area.

  18. Thermo-mechanical Modeling for Residual Stresses of Friction Stir Welding of Dissimilar Alloys

    OpenAIRE

    ABDUL ARIF; ABHISHEK; K. N. Pandey

    2013-01-01

    Friction stir welding is an advanced joining process that has been used for high production since 1996. FSW produces a weld that is strong than the base material because melting does not occur and joining takes place below the melting temperature of the material. FSW produces no fumes and can join aluminum alloys, magnesium, steels, copper and titanium. In this study, a thermo-mechanical model with improved potential is developed to study the formation of residual stress field in dissimilar ...

  19. Thermomechanical Modeling of Shape Memory Alloys with Rate Dependency on the Pseudoelastic Behavior

    Directory of Open Access Journals (Sweden)

    Jin-Ho Roh

    2014-01-01

    Full Text Available The loading-rate dependency on the pseudoelastic behaviors of shape memory alloy (SMA wires is experimentally and numerically investigated. The results are analyzed to estimate the parameters for a thermomechanical constitutive model of SMA wire with strain-rate dependency of the hysteresis behavior. An analytical model of SMAs is developed by using nonconstant parameters during various strain rates. Numerical simulations are performed to demonstrate the accuracy of the improved model.

  20. A multiscale finite element method for modeling fully coupled thermomechanical problems in solids

    KAUST Repository

    Sengupta, Arkaprabha

    2012-05-18

    This article proposes a two-scale formulation of fully coupled continuum thermomechanics using the finite element method at both scales. A monolithic approach is adopted in the solution of the momentum and energy equations. An efficient implementation of the resulting algorithm is derived that is suitable for multicore processing. The proposed method is applied with success to a strongly coupled problem involving shape-memory alloys. © 2012 John Wiley & Sons, Ltd.

  1. Effect of thermomechanical treatments on the aging response of centrifugally cast silicon carbide/aluminum composites

    OpenAIRE

    May, Christopher William

    1992-01-01

    Approved for public release; distribution is unlimited Differential scanning calorimetry was conducted using centrifugally cast monolithic A3356 aluminum material and 26 volume present silicon carbide (SiC) particle reinforced A356 aluminum matrix composite material in as-cast, cast and rolled, and cast and extruded conditions. Electrical resistivity and matrix micro-hardness measurements during isothermal aging treatments were also conducted. The effects of thermo-mechanical processing ...

  2. Thermomechanical Fatigue Behavior of Coated and Uncoated Enhanced SiC/SiC Studied

    Science.gov (United States)

    1996-01-01

    Thermomechanical fatigue (TMF) testing provides a method of evaluating candidate continuous-fiber-reinforced ceramic composites under thermal and mechanical loading conditions. Although these tests are complicated, they provide a reasonable approximation of the combined thermal and mechanical loads that will be experienced by the material in service. The resulting data will be used to develop life-prediction models as well as to aid materials development.

  3. A FINITE ELEMENT MODEL FOR NUMERICAL SIMULATION OF THERMO-MECHANICAL FRICTIONAL CONTACT PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    张洪武; 韩炜; 陈金涛; 段庆林

    2003-01-01

    Two kinds of variational principles for numerical simulation of heat transfer and contact analyses are respectively presented. A finite element model for numerical simulation of the thermal contact problems is developed with a pressure dependent heat transfer constitutive model across the contact surface. The numerical algorithm for the finite element analysis of the thermomechanical contact problems is thus developed. Numerical examples are computed and the results demonstrate the validity of the model and algorithm developed.

  4. A new isotropic cell for studying the thermo-mechanical behavior of unsaturated expansive clays

    CERN Document Server

    Tang, Anh-Minh; Barnel, Nathalie

    2007-01-01

    This paper presents a new suction-temperature controlled isotropic cell that can be used to study the thermo-mechanical behavior of unsaturated expansive clays. The vapor equilibrium technique is used to control the soil suction; the temperature of the cell is controlled using a thermostat bath. The isotropic pressure is applied using a volume/pressure controller that is also used to monitor the volume change of soil specimen. Preliminary experimental results showed good performance of the cell.

  5. Computational analysis of linear friction welding process and micromechanical modeling of deformation behavior for medium carbon steel

    Institute of Scientific and Technical Information of China (English)

    杨夏炜; 李文亚; 马铁军

    2015-01-01

    Finite element simulation of linear friction welding (LFW) medium carbon steel was carried out using the ABAQUS software. A two-dimensional (2D) coupled thermo-mechanical model was established. First, the temperature fields of medium carbon steel during LFW process were investigated. And then, the Mises stress and the 1st, 2nd and 3rd principal stresses fields’ evolution of the steel during LFW process were studied. The deformation behavior of LFW carbon steel was analyzed by using micromechanics model based on ABAQUS with Python code. The Lode parameter was expressed using the Mohr stress circle and it was investigated in detail.

  6. 3D Nonlinear Finite Elements Analysis on the Piled Wharf based-on ABAQUS%基于ABAQUS的桩基码头三维非线性有限元分析

    Institute of Scientific and Technical Information of China (English)

    陆微

    2008-01-01

    利用大型有限元分析软件ABAQUS,采用Mohr-Coulomb准则作为土体的屈服准则,在桩土间设置接触面模拟桩土间的相互作用,对某桩基排架码头进行了三维非线性有限元仿真模拟,分析了结构在土压力及上部荷载作用下的应力和变形状态.

  7. In situ thermomechanical testing methods for micro/nano-scale materials.

    Science.gov (United States)

    Kang, Wonmo; Merrill, Marriner; Wheeler, Jeffrey M

    2017-02-23

    The advance of micro/nanotechnology in energy-harvesting, micropower, electronic devices, and transducers for automobile and aerospace applications has led to the need for accurate thermomechanical characterization of micro/nano-scale materials to ensure their reliability and performance. This persistent need has driven various efforts to develop innovative experimental techniques that overcome the critical challenges associated with precise mechanical and thermal control of micro/nano-scale specimens during material characterization. Here we review recent progress in the development of thermomechanical testing methods from miniaturized versions of conventional macroscopic test systems to the current state of the art of in situ uniaxial testing capabilities in electron microscopes utilizing either indentation-based microcompression or integrated microsystems. We discuss the major advantages/disadvantages of these methods with respect to specimen size, range of temperature control, ease of experimentation and resolution of the measurements. We also identify key challenges in each method. Finally, we summarize some of the important discoveries that have been made using in situ thermomechanical testing and the exciting research opportunities still to come in micro/nano-scale materials.

  8. Manufacturing and thermomechanical testing of actively cooled all beryllium high heat flux test pieces

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, N.N.; Sokolov, Yu.A.; Shatalov, G.E. [and others

    1995-09-01

    One of the problems affiliated to ITER high heat flux elements development is a problem of interface of beryllium protection with heat sink routinely made of copper alloys. To get rid of this problem all beryllium elements could be used as heat receivers in places of enhanced thermal loads. In accordance with this objectives four beryllium test pieces of two types have been manufactured in {open_quotes}Institute of Beryllium{close_quotes} for succeeding thermomechanical testing. Two of them were manufactured in accordance with JET team design; they are round {open_quotes}hypervapotron type{close_quotes} test pieces. Another two ones are rectangular test sections with a twisted tape installed inside of the circular channel. Preliminary stress-strain analysis have been performed for both type of the test pieces. Hypervapotrons have been shipped to JET where they were tested on JET test bed. Thermomechanical testing of pieces of the type of {open_quotes}swirl tape inside of tube{close_quotes} have been performed on Kurchatov Institute test bed. Chosen beryllium grade properties, some details of manufacturing, results of preliminary stress-strain analysis and thermomechanical testing of the test pieces {open_quotes}swirl tape inside of tube{close_quotes} type are given in this report.

  9. Role of grain orientation in the failure of Sn-based solder joints under thermomechanical fatigue

    Institute of Scientific and Technical Information of China (English)

    Jing HAN; Hongtao CHEN; Mingyu LI

    2012-01-01

    A small Pb-free solder joint exhibits an extremely strong anisotropy due to the bodycentered tetragonal (BCT) lattice structure of β-Sn.Grain orientations can significantly influence the failure mode of Pb-free solder joints under thermomechanical fatigue (TMF) due to the coefficient of thermal expansion (CTE) mismatch of β-Sn grains.The research work in this paper focused on the microstructure and damage evolution of Sn3.0Ag0.5Cu BGA packages as well as individual Sn3.5Ag solder joints without constraints introduced by the package structure under TMF tests.The microstructure and damage evolution in cross-sections of solder joints under thermomechanical shock tests were characterized using optical microscopy with cross-polarized light and scanning electron microscopy (SEM),and orientations of Sn grains were determined by orientation imaging microscopy (OIM).During TMF,obvious recrystallization regions were observed with different thermomechanical responses depending on Sn grain orientations.It indicates that substantial stresses can build up at grain boundaries,leading to significant grain boundary sliding.The results show that recrystallized grains prefer to nucleate along pre-existing high-angle grain boundaries and fatigue cracks tend to propagate intergranularly in recrystallized regions,leading to an accelerated damage after recrystallization.

  10. Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan

    Science.gov (United States)

    Hickey, James; Gottsmann, Joachim; Nakamichi, Haruhisa; Iguchi, Masato

    2016-09-01

    Ground deformation often precedes volcanic eruptions, and results from complex interactions between source processes and the thermomechanical behaviour of surrounding rocks. Previous models aiming to constrain source processes were unable to include realistic mechanical and thermal rock properties, and the role of thermomechanical heterogeneity in magma accumulation was unclear. Here we show how spatio-temporal deformation and magma reservoir evolution are fundamentally controlled by three-dimensional thermomechanical heterogeneity. Using the example of continued inflation at Aira caldera, Japan, we demonstrate that magma is accumulating faster than it can be erupted, and the current uplift is approaching the level inferred prior to the violent 1914 Plinian eruption. Magma storage conditions coincide with estimates for the caldera-forming reservoir ~29,000 years ago, and the inferred magma supply rate indicates a ~130-year timeframe to amass enough magma to feed a future 1914-sized eruption. These new inferences are important for eruption forecasting and risk mitigation, and have significant implications for the interpretations of volcanic deformation worldwide.

  11. Thermo-mechanical fatigue reliability optimization of PBGA solder joints based on ANN-PSO

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ji-cheng; XIAO Xiao-qing; EN Yun-fei; CHEN Ni; WANG Xiang-zhong

    2008-01-01

    Based on a method combined artificial neural network (ANN) with particle swarm optimization (PSO) algorithm, the thermo-mechanical fatigue reliability of plastic ball grid array (PBGA) solder joints was studied. The simulation experiments of accelerated thermal cycling test were performed by ANSYS software. Based on orthogonal array experiments, a back-propagation artificial neural network (BPNN) was used to establish the nonlinear multivariate relationship between thermo-mechanical fatigue reliability and control factors. Then, PSO was applied to obtaining the optimal levels of control factors by using the output of BPNN as the affinity measure. The results show that the control factors, such as print circuit board (PCB) size, PCB thickness, substrate size,substrate thickness, PCB coefficient of thermal expansion (CTE), substrate CTE, silicon die CTE, and solder joint CTE, have a great influence on thermo-mechanical fatigue reliability of PBGA solder joints. The ratio of signal to noise of ANN-PSO method is 51.77dB and its error is 33.3% less than that of Taguchi method. Moreover, the running time of ANN-PSO method is only 2% of that of the BPNN. These conclusions are verified by the confirmative experiments.

  12. Thermo-mechanical study of high heat flux component mock-ups for ITER TBM

    Energy Technology Data Exchange (ETDEWEB)

    Bonelli, Flavia [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (Germany); Dipartimento Energia, Politecnico di Torino (Italy); Boccaccini, Lorenzo Virgilio, E-mail: lorenzo.boccaccini@kit.edu [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (Germany); Kunze, André; Maione, Ivan Alessio [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (Germany); Savoldi, Laura; Zanino, Roberto [Dipartimento Energia, Politecnico di Torino (Italy)

    2015-10-15

    Highlights: • Infrared radiation heaters for test of plasma facing component available at KIT. • Numerical model developed and validated to check uniformity of heat flux. • Thermo-mechanical calculations performed on a mock-up of the HCPB TBM FW. • Assessment done of representativity of stress conditions for the ITER TBMs. - Abstract: Commercial infrared heaters have been proposed to be used in the HELOKA facility under construction at Karlsruhe Institute of Technology (KIT) to test a mock-up of the first wall (FW), called thermo-cycle mock-up (TCM) plate, under stress loading comparable to those experienced by the test blanket modules (TBMs) in ITER. Two related issues are analyzed in this paper, in relation to the ongoing European project aimed at the design of the two EU TBMs: (1) the possibility to reproduce, by means of those heaters, high heat flux loading conditions on the TCM plate similar to those expected on the ITER TBMs, and (2) the thermo-mechanical analysis of the TCM itself, in order to define a suitable choice of experimental parameters and mechanical constraints leading to a relevant stress condition. A suitable heater model is developed and validated against experimental data from an ad-hoc test campaign. A thermo-mechanical study of the TCM plate is presented, showing that the structure is able to withstand high thermal loads, even in the most constrained case, reaching stress levels comparable to the ITER TBM.

  13. Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan

    Science.gov (United States)

    Hickey, James; Gottsmann, Joachim; Nakamichi, Haruhisa; Iguchi, Masato

    2016-01-01

    Ground deformation often precedes volcanic eruptions, and results from complex interactions between source processes and the thermomechanical behaviour of surrounding rocks. Previous models aiming to constrain source processes were unable to include realistic mechanical and thermal rock properties, and the role of thermomechanical heterogeneity in magma accumulation was unclear. Here we show how spatio-temporal deformation and magma reservoir evolution are fundamentally controlled by three-dimensional thermomechanical heterogeneity. Using the example of continued inflation at Aira caldera, Japan, we demonstrate that magma is accumulating faster than it can be erupted, and the current uplift is approaching the level inferred prior to the violent 1914 Plinian eruption. Magma storage conditions coincide with estimates for the caldera-forming reservoir ~29,000 years ago, and the inferred magma supply rate indicates a ~130-year timeframe to amass enough magma to feed a future 1914-sized eruption. These new inferences are important for eruption forecasting and risk mitigation, and have significant implications for the interpretations of volcanic deformation worldwide. PMID:27619897

  14. Effectiveness of gutta-percha and Resilon in filling lateral root canals using thermomechanical technique

    Directory of Open Access Journals (Sweden)

    Mário Tanomaru-Filho

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effectiveness of gutta-percha and Resilon in filling lateral root canals in cervical, middle, and apical third using a thermomechanical technique. MATERIAL AND METHOD: Root canals of artificial teeth were prepared using a standard preparation. The lateral canals were fabricated using a 0.3-mm-diameter bur at 3 parts of each root. By using Tagger's hybrid technique with a McSpadden thermomechanical compactor, the root canal was filled using the following filling materials: Dentsply gutta-percha, Endopoint gutta-percha, and Resilon cones. The root canal fillings were evaluated using digitized radiographs and the Image Tool software. The percentage of filled area of each lateral canal was determined. The data were subjected to analysis of variance (ANOVA and Tukey tests at a 5% significance level. RESULT: Resilon showed better effectiveness as a filling material. When the three thirds were compared, Resilon was more effective in the apical third than in the cervical third (p < 0.05. CONCLUSION: Resilon is an effective filling material for lateral root canals using a thermomechanical technique.

  15. Effect of Water on the Thermo-Mechanical Behavior of Carbon Cloth Phenolic

    Science.gov (United States)

    Sullivan, Roy M.; Stokes, Eric; Baker, Eric H.

    2011-01-01

    The results of thermo-mechanical experiments, which were conducted previously by one of the authors, are reviewed. The strain in the direction normal to the fabric plane was measured as a function of temperature for a variety of initial moisture contents and heating rates. In this paper, the general features of the thermo-mechanical response are discussed and the effect of heating rate and initial moisture content are highlighted. The mechanical interaction between the phenolic polymer and water trapped within its free volumes as the polymer is heated to high temperatures is discussed. An equation for the internal stresses which are generated within the polymer due to trapped water is obtained from the total stress expression for a binary mixture of polymer and water. Numerical solutions for moisture diffusion in the thermo-mechanical experiments were performed and the results of these solutions are presented. The results of the moisture diffusion solutions help to explain the effects of heating rate and moisture content on the strain behavior normal to the fabric plane.

  16. Optimization in Friction Stir Welding - With Emphasis on Thermo-mechanical Aspects

    DEFF Research Database (Denmark)

    Tutum, Cem Celal

    This book deals with the challenging multidisciplinary task of combining variant thermal and thermo-mechanical simulations for the manufacturing process of friction stir welding (FSW) with numerical optimization techniques in the search for optimal process parameters. The FSW process is character......This book deals with the challenging multidisciplinary task of combining variant thermal and thermo-mechanical simulations for the manufacturing process of friction stir welding (FSW) with numerical optimization techniques in the search for optimal process parameters. The FSW process...... is characterized by multiphysics involving solid material flow, heat transfer, thermal softening, recrystallization and the formation of residual stresses. Initially, the thermal models were addressed since they in essence constitute the basis of all other models of FSW. Following this, several integrated thermo...... combined with classical single-objective and evolutionary multi-objective optimization algorithms (i.e. SQP and NSGA-II), to find the optimum process parameters (heat input, rotational and traverse welding speeds) that would result in favorable thermo-mechanical conditions for the process....

  17. Thermo-Mechanical Analysis of Water-Cooled Gun Barrel During Burst Firing

    Institute of Scientific and Technical Information of China (English)

    FAN Li-xia; HU Zhi-gang; ZHAO Jian-bo

    2006-01-01

    The thermo-mechanical stress and deformation of water-cooled gun barrel during burst firing are studied by finite element analysis (FEA). The problem is modeled in two steps: 1) A transient heat transfer analysis is first carried out in order to determine temperature evolution and to predict the residual temperatures during the burst firing event; 2) The thermo-mecha-nical stresses and deformation caused by both the residual temperature field and the gas pressure are then calculated. The results show that the residual temperature field tends to a steady state with the increasing of rounds. The residual temperature field has much effect on the gun barrel stress and deformation, especially on the assembly area between barrel and water jacket. The gage between the barrel and water jacket is the critical factor to the thermo-mechanical stress and deformation. The results of this analysis will be very useful to develop the new strength design theory of the liquid-cooled gun barrel.

  18. A thermo-mechanical stress prediction model for contemporary planar sodium sulfur (NaS) cells

    Science.gov (United States)

    Jung, Keeyoung; Colker, Jeffrey P.; Cao, Yuzhe; Kim, Goun; Park, Yoon-Cheol; Kim, Chang-Soo

    2016-08-01

    We introduce a comprehensive finite-element analysis (FEA) computational model to accurately predict the thermo-mechanical stresses at heterogeneous joints and components of large-size sodium sulfur (NaS) cells during thermal cycling. Quantification of the thermo-mechanical stress is important because the accumulation of stress during cell assembly and/or operation is one of the critical issues in developing practical planar NaS cells. The computational model is developed based on relevant experimental assembly and operation conditions to predict the detailed stress field of a state-of-the-art planar NaS cell. Prior to the freeze-and-thaw thermal cycle simulation, residual stresses generated from the actual high temperature cell assembly procedures are calculated and implemented into the subsequent model. The calculation results show that large stresses are developed on the outer surface of the insulating header and the solid electrolyte, where component fracture is frequently observed in the experimental cell fabrication process. The impacts of the coefficients of thermal expansion (CTE) of glass materials and the thicknesses of cell container on the stress accumulation are also evaluated to improve the cell manufacturing procedure and to guide the material choices for enhanced thermo-mechanical stability of large-size NaS cells.

  19. Rateless feedback codes

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Koike-Akino, Toshiaki; Orlik, Philip

    2012-01-01

    This paper proposes a concept called rateless feedback coding. We redesign the existing LT and Raptor codes, by introducing new degree distributions for the case when a few feedback opportunities are available. We show that incorporating feedback to LT codes can significantly decrease both...... the coding overhead and the encoding/decoding complexity. Moreover, we show that, at the price of a slight increase in the coding overhead, linear complexity is achieved with Raptor feedback coding....

  20. Approach to the calculation of energy deposition in a container of fuel irradiated by the neutronic codes coupling fluid-dynamics; Aprpoximacion al calculo de la deposicion energetica en un contenedor de combustible irradiado mediante el acoplamiento de codigos neutronico fluido-dinamicos

    Energy Technology Data Exchange (ETDEWEB)

    Hueso, C.; Aleman, A.; Colomer, C.; Fabbri, M.; Martin, M.; Saellas, J.

    2013-07-01

    In this work identifies a possible area of improvement through the creation of a code of coupling between deposition energy codes which calculate neutron (MCNP), and data from heading into fluid dynamics (ANSYS-Fluent) or codes thermomechanical, called MAFACS (Monte Carlo ANSYS Fluent Automatic Coupling Software), being possible to so summarize the process by shortening the needs of computing time, increasing the precision of the results and therefore improving the design of the components.

  1. Coding for dummies

    CERN Document Server

    Abraham, Nikhil

    2015-01-01

    Hands-on exercises help you learn to code like a pro No coding experience is required for Coding For Dummies,your one-stop guide to building a foundation of knowledge inwriting computer code for web, application, and softwaredevelopment. It doesn't matter if you've dabbled in coding or neverwritten a line of code, this book guides you through the basics.Using foundational web development languages like HTML, CSS, andJavaScript, it explains in plain English how coding works and whyit's needed. Online exercises developed by Codecademy, a leading online codetraining site, help hone coding skill

  2. Advanced video coding systems

    CERN Document Server

    Gao, Wen

    2015-01-01

    This comprehensive and accessible text/reference presents an overview of the state of the art in video coding technology. Specifically, the book introduces the tools of the AVS2 standard, describing how AVS2 can help to achieve a significant improvement in coding efficiency for future video networks and applications by incorporating smarter coding tools such as scene video coding. Topics and features: introduces the basic concepts in video coding, and presents a short history of video coding technology and standards; reviews the coding framework, main coding tools, and syntax structure of AV

  3. Chosen aspects of thermo-mechanical phenomena in resin bonded sands by use of Hot Distortion tests

    Directory of Open Access Journals (Sweden)

    Z. Ignaszak

    2008-03-01

    Full Text Available In prcscnted article the problems on thermo-mechanical phenomena. which occur in mould submitted 20 zhcrmal choc. arc discussed.The author trid to answer rhe question concerning thc uscfulncss of Hot Distorzion tests (HD for estimation of parametcrs necessary indata basc oTsimulation codes. which permit forecasting both strcss ficlds and location olzones mcnaccd by tcars in castings. The total Iackoh these paramcrcrs which shouId bc acccssiblc as rcmpcra!ure F~rnciot n, csp~ciallyin high tcrnpcm!i~rcr angc 41T rnoi~ldh cating was should,Usability of typical mcthods serving to mctal alloys (clast icily modulus, yicld. Poisson coelficicnt, dilatation cocfficicnt is limired. Bcsidessinplc cxccptions, thc rncchanical characteristics 01" mould sands (R compression, R tcnsion. R hcnding docsn? obhrain the elaboratedmc!hndology and cotrespanding apparatus. Thc mc~hndotocy and cquipment. being propscd in thc '70s hv RCIRA, allowed tostudy rnnuld sand feature callcd Hot Distortion. In this pavr the I ID methodological basis of BClRA mcthod arc showcd. Thc modernapparatus DMA bascd on BCIRA mczhod was claboratcd and manulacturcd n fcw ycars ago in Poland. The author of this pawr makesrcccntIy a modification of DMA. Two thcrmic sources (clcctric and gascous to sarnplc hcating was testcd and analyscd. It was intmducedthe cxtended measurement and recording of choscn parameters. i.e, variability of tcmpraturc field in hcated sample. by trsc of pyromctcrand thermal camera. The analysis or rcsulrs according lo the interpretation or bchavior of quartz sands bonded by fzlranio rcsin was donc.

  4. On seismic dynamic response of sheet pile wharf based on ABAQUS%基于ABAQUS的板桩码头地震动力响应研究*

    Institute of Scientific and Technical Information of China (English)

    蒋建平; 刘春林; 蒋宏鸣; 史旦达

    2013-01-01

      Based on the implicit module and the FEM-IEM coupling model of ABAQUS, we study the dynamic response of the single anchor sheet pile wharf under the seismic load. It is found that the peak acceleration has a great effect upon the sheet pile bending moment, shear force and tension force of tension bar with the same seismic wave in different peak accelerations. Comparing with the data of static analysis, the sheet pile’s maximum bending moment grows by 40%and the tension force of tension bar by 10%to 50%as the seismic peak acceleration increases by 0.1g, but the growing rate of tension force of tension bar tends to be stable at the end. Under the seismic load, the maximum tension force of tension bar closes to the maximum shear force per unit width on the sheet pile. This paper makes a study on the impact of seismic peak acceleration upon the range of plastic zone between sheet pile bottom and anchorage wall. The results show that seismic ground motion imposes an important effect on the sheet pile wharf in comparison with static load, thus it provides references for design of the sheet pile wharf under the influence of earthquake.%  基于ABAQUS软件的隐式模块和有限元-无限元方法对单锚板桩码头进行了地震动响应研究。研究发现,在相同地震波不同加速度峰值情况下,峰值加速度对板桩码头的板桩弯矩、剪力和拉杆拉力有重要影响,与静力分析时的情况相比较,地震加速度峰值每增大0.1g,板桩最大弯矩相应增大约40%,拉杆拉力增大约10%~50%,但拉杆拉力增幅在后期逐渐趋于稳定;地震作用下,拉杆最大拉力与板桩墙最大剪力(单宽)基本相等;地震加速度峰值对板桩墙底与锚碇之间塑性区开展范围也有一定的影响。结果表明,与静载相比,地震对板桩码头的影响不容忽视。研究结果可为板桩码头考虑地震影响的设计提供参考。

  5. Development of anisotropic elasto-viscoplastic model in ABAQUS software%各向异性弹黏塑性模型在ABAQUS中的研发

    Institute of Scientific and Technical Information of China (English)

    钦亚洲; 李宁; 许建聪

    2012-01-01

    This paper presents an improved three-dimensional anisotropic elasto-viscoplastic constitutive model which is based on overstress theory of Perzyna and critical state theory. In this model a rotational hardening law of Wheeler is also adopted to account for initial anisotropy and changes in anisotropy due to stress. The viscoplastic strain will not occur when the stress state is located within the static yield surface. A power-type scaling function is adopted for the viscoplastic strain-rate. The constitutive model is programmed in ABAQUS software by writing UMAT subroutine, which is integrated with Return Mapping Algorithm. Anisotropically consolidated undrained (CU) triaxial creep test for Sackville clay is simulated by proposed model and the suitable integration time step is determined. Then other CU triaxial creep tests and CU triaxial constant strain rate tests are simulated. By switching the anisotropic features off, the proposed model is degraded to the isotropic model. The simulation results show (1) The CU triaxial creep tests with rotational hardening law is more accurate than isotropic model in the high level of the shear stress; (2) The CU triaxial constant strain rate tests rationally reflect that the undrained strength of soil increase with loading rate.%通过将Perzyna过应力理论与临界状态理论相结合,并引入Wheeler旋转硬化法则,提出一个能描述土体初始各向异性及应力诱发各向异性的三维弹黏塑性本构模型.模型考虑流变发生的下限,在三维应力空间,模型存在形状相似的静屈服面及动态加载面.采用缩放形式的幂函数.本构模型数值算法采用回映算法,借助ABAQUS软件UMAT子程序接口实现.并通过对三轴不排水蠕变试验的模拟,确定合适的积分步长.此后,分别对三轴不排水蠕变试验及常应变率三轴不排水剪切试验进行了模拟.模拟中通过设置不同参数值,可将模型退化为各向同性模型,并对这两种模

  6. Locally Orderless Registration Code

    DEFF Research Database (Denmark)

    2012-01-01

    This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows.......This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows....

  7. Locally orderless registration code

    DEFF Research Database (Denmark)

    2012-01-01

    This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows.......This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows....

  8. 桩-筏-土体系的地震软化行为及ABAQUS模拟研究%STUDY OF SEISMIC SOFTENING BEHAVIOR AND ABAQUS SIMULATION OF PILE-RAFT-CLAY SYSTEM

    Institute of Scientific and Technical Information of China (English)

    马亢; 许强

    2012-01-01

    通过开展离心机动力试验,充分揭示在地震荷载的持续作用下,土体将发生一定程度的软化,表现为周期的持续增大;然而基础(筏板)周期和桩身弯矩包络图几乎不发生改变,说明整个桩-筏结构在地震作用下的行为不会类似于土体发生软化(恶化的现象),而是能持续保持稳定,其动力行为主要取决于自身特性如桩身刚度和上部结构传递给筏板的荷载水平(惯性)等,同时土体的动力软化效应对桩-筏结构的影响很小.为了验证试验结果的正确性和合理性,采用ABAQUS 6.9程序对试验结果进行计算分析,土体模型包括软件内嵌的Hypoelastic非线性模型和所开发的考虑动力降强效应的HyperMas用户子程序模型(UMAT).计算结果符合试验实测结果,尤其能准确地捕捉桩身最大弯矩值和周期等重要的工程设计参数.且有侧重于基础单元的地震响应分析,非降强模型和降强模型的计算差异很小,再次说明土体软化对既有桩-筏结构影响很小,但采用非降强模型计算更为快捷、高效.%By conducting dynamic centrifuge tests on the pile-raft-clay system, that soil softening will be taken place in both near field and far field clay in a great degree is investigated, which are manifested as an increase in the resonance periods of clay layers with the level of shaking and successive earthquakes, while this is not the case for the pile-raft foundation since resonance periods of raft and bending moment envelopes of the pile are hardly affected by earthquake loadings. Furthermore, pile-raft dynamic behavior is hardly affected by the stiffness degradation of surrounding clay and could keep stable in successive earthquakes process. Then centrifuge tests are back-analyzed by using ABAQUS 6.9. The results show that, which are conducted using Hypoelastic model embedded in ABAQUS and a developed constitutive relationship, gave reasonably good agreement with the

  9. QR Codes 101

    Science.gov (United States)

    Crompton, Helen; LaFrance, Jason; van 't Hooft, Mark

    2012-01-01

    A QR (quick-response) code is a two-dimensional scannable code, similar in function to a traditional bar code that one might find on a product at the supermarket. The main difference between the two is that, while a traditional bar code can hold a maximum of only 20 digits, a QR code can hold up to 7,089 characters, so it can contain much more…

  10. Constructing quantum codes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Quantum error correcting codes are indispensable for quantum information processing and quantum computation.In 1995 and 1996,Shor and Steane gave first several examples of quantum codes from classical error correcting codes.The construction of efficient quantum codes is now an active multi-discipline research field.In this paper we review the known several constructions of quantum codes and present some examples.

  11. 3-D Numerical Simulation on the Chip Machining Process of a Metal Block

    Institute of Scientific and Technical Information of China (English)

    Yan Yixia; Yin Yihui; Li Weifen

    2004-01-01

    In this paper, the cutting process of a metal block is numerically simulated by the dynamic explicit FE code ABAQUS. Taking thermo-mechanical coupling effect into consideration, the simulation presents the variation of temperature, stress and strain distribution in the workpiece and chip. The effective plastic strain failure criterion is applied to modeling the chip separation and plastic formation. And the phenomenon of the contact and friction between the workpiece and the cutting tool are described in the paper.

  12. Study of the damaging mechanisms of a copper / carbon - carbon composite under thermomechanical loading; Etude des mecanismes d'endommagement d'un assemblage cuivre / composite carbone - carbone sous chargement thermomecanique

    Energy Technology Data Exchange (ETDEWEB)

    Moncel, L

    1999-06-18

    The purpose of this work is to understand and to identify the damaging mechanisms of Carbon-Carbon composite bonded to copper under thermomechanical loading. The study of the composite allowed the development of non-linear models. These ones have been introduced in the finite elements analysis code named CASTEM2000. They have been validated according to a correlation between simulation and mechanical tests on multi-material samples. These tests have also permitted us to better understand the behaviour of the bonding between composite and copper (damaging and fracture modes for different temperatures) under shear and tensile loadings. The damaging mechanisms of the bond under thermomechanical loading have been studied and identified according to microscopic observations on mock-ups which have sustained thermal cycling tests: some cracks appear in the composite, near the bond between the composite and the copper. The correlation between numerical and experimental results have been improved because of the reliability of the composite modelization, the use of residual stresses and the results of the bond mechanical characterization. (author)

  13. Study of the damaging mechanisms of a carbon - carbon composite bonded to copper under thermomechanical loading; Etude des mecanismes d'endommagement d'un assemblage cuivre / composite carbone - carbone sous chargement thermomecanique

    Energy Technology Data Exchange (ETDEWEB)

    Moncel, L

    1999-06-15

    The purpose of this work is to understand and to identify the damaging mechanisms of Carbon-Carbon composite bonded to copper under thermomechanical loading. The study of the composite allowed the development of non-linear models. These ones have been introduced in the finite elements analysis code named CASTEM 2000. They have been validated according to a correlation between simulation and mechanical tests on multi-material samples. These tests have also permitted us to better understand the behaviour of the bonding between composite and copper (damaging and fracture modes for different temperatures) under shear and tensile loadings. The damaging mechanisms of the bond under thermomechanical loading have been studied and identified according to microscopic observations on mock-ups which have sustained thermal cycling tests: some cracks appear in the composite, near the bond between the composite and the copper. The correlation between numerical and experimental results have been improved because of the reliability of the composite modelization, the use of residual stresses and the results of the bond mechanical characterisation. (author)

  14. Studies on in situ particulate reinforced tin-silver composite solders relevant to thermomechanical fatigue issues

    Science.gov (United States)

    Choi, Sunglak

    2001-07-01

    Global pressure based on environmental and health concerns regarding the use of Pb-bearing solder has forced the electronics industry to develop Pb-free alternative solders. Eutectic Sn-Ag solder has received much attention as a potential Pb-free candidate to replace Sn-Pb solder. Since introduction of surface mount technology, packaging density increased and the electronic devices became smaller. As a result, solders in electronic modules are forced to function as a mechanical connection as well as electrical contact. Solders are also exposed to very harsh service conditions such as automotive under-the-hood and aerospace applications. Solder joints experience thermomechanical fatigue, i.e. interaction of fatigue and creep, during thermal cycling due to temperature fluctuation in service conditions. Microstructural study on thermomechanical fatigue of the actual eutectic Sn-Ag and Sn-4Ag-0.5Cu solder joints was performed to better understand deformation and damage accumulation occurring during service. Incorporation of reinforcements has been pursued to improve the mechanical and particularly thermomechanical behavior of solders, and their service temperature capability. In-situ Sn-Ag composite solders were developed by incorporating Cu 6Sn5, Ni3Sn4, and FeSn2 particulate reinforcements in the eutectic Sn-Ag solder in an effort to enhance thermomechanical fatigue resistance. In-situ composite solders were investigated on the growth of interfacial intermetallic layer between solder and Cu substrate growth and creep properties. Solder joints exhibited significant deformation and damage on free surface and interior regions during thermomechanical fatigue. Cracks initiated on the free surface of the solder joints and propagated toward interior regions near the substrate of the solder joint. Crack grew along Sn grain boundaries by grain boundary sliding. There was significant residual stress within the solder joint causing more damage. Presence of small amount of Cu

  15. Thermomechanics of solid materials with application to the Gurson-Tvergaard material model

    Energy Technology Data Exchange (ETDEWEB)

    Santaoja, K. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1997-12-31

    The elastic-plastic material model for porous material proposed by Gurson and Tvergaard is evaluated. First a general description is given of constitutive equations for solid materials by thermomechanics with internal variables. The role and definition of internal variables are briefly discussed and the following definition is given: The independent variables present (possibly hidden) in the basic laws for thermomechanics are called controllable variables. The other independent variables are called internal variables. An internal variable is shown always to be a state variable. This work shows that if the specific dissipation function is a homogeneous function of degree one in the fluxes, a description for a time-independent process is obtained. When damage to materials is evaluated, usually a scalar-valued or tensorial variable called damage is introduced in the set of internal variables. A problem arises when determining the relationship between physically observable weakening of the material and the value for damage. Here a more feasible approach is used. Instead of damage, the void volume fraction is inserted into the set of internal variables. This allows use of an analytical equation for description of the mechanical weakening of the material. An extension to the material model proposed by Gurson and modified by Tvergaard is derived. The derivation is based on results obtained by thermomechanics and damage mechanics. The main difference between the original Gurson-Tvergaard material model and the extended one lies in the definition of the internal variable `equivalent tensile flow stress in the matrix material` denoted by {sigma}{sup M}. Using classical plasticity theory, Tvergaard elegantly derived an evolution equation for {sigma}{sup M}. This is not necessary in the present model, since damage mechanics gives an analytical equation between the stress tensor {sigma} and {sigma}M. Investigation of the Clausius-Duhem inequality shows that in compression

  16. Determination of Constitutive Equation for Thermo-mechanical Processing of INCONEL 718 Through Double Multivariate Nonlinear Regression Analysis

    Science.gov (United States)

    Hussain, Mirza Zahid; Li, Fuguo; Wang, Jing; Yuan, Zhanwei; Li, Pan; Wu, Tao

    2015-07-01

    The present study comprises the determination of constitutive relationship for thermo-mechanical processing of INCONEL 718 through double multivariate nonlinear regression, a newly developed approach which not only considers the effect of strain, strain rate, and temperature on flow stress but also explains the interaction effect of these thermo-mechanical parameters on flow behavior of the alloy. Hot isothermal compression experiments were performed on Gleeble-3500 thermo-mechanical testing machine in the temperature range of 1153 to 1333 K within the strain rate range of 0.001 to 10 s-1. The deformation behavior of INCONEL 718 is analyzed and summarized by establishing the high temperature deformation constitutive equation. The calculated correlation coefficient ( R) and average absolute relative error ( AARE) underline the precision of proposed constitutive model.

  17. Optimization of thermomechanical processes in Cu-Cr-Zr lead frame alloy using neural networks and genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    SU; Juanhua; LIU; Ping; DONG; Qiming; LI; Hejun

    2005-01-01

    The thermomechanical treatment process is effective in enhancing the properties of the lead frame copper alloy. In this study, an optimal pattern of the thermomechanical processes for Cu-Cr-Zr was investegated using an intelligent control technique consisting of neural networks and genetic algorithms. The input parameters of the artificial neural network (ANN) are the reduction ratio of cold rolling, aging temperature and aging time. The outputs of the ANN model are the two most important properties of hardness and conductivity. Based on the successfully trained ANN model,genetic algorithms (GA) are used to optimize the input parameters of the model and select perfect combinations of thermomechanical processing parameters and properties.The good generalization performance and optimized results of the integrated model are achieved.

  18. Hardening mechanisms in a dynamic strain aging alloy, Hastelloy X, during isothermal and thermomechanical cyclic deformation

    Science.gov (United States)

    Miner, R. V.; Castelli, M. G.

    1992-01-01

    The relative contributions of the hardening mechanisms in Hastelloy X during cyclic deformation were investigated by conducting isothermal cyclic deformation tests within a total strain range of +/-0.3 pct and at several temperatures and strain rates, and thermomechanical tests within several different temperature limits. The results of the TEM examinations and special constant structure tests showed that the precipitation on dislocations of Cr23C6 contributed to hardening, but only after sufficient time above 500 C. Solute drag alone produced very considerable cyclic hardening. Heat dislocation densities, peaking around 10 exp 11 per sq cm, were found to develop at temperatures producing the greatest cyclic hardening.

  19. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  20. Enhanced Tensile Properties of Mg Sheets by a Unique Thermomechanical Processing Method

    Science.gov (United States)

    Bian, Mingzhe; Zeng, Zhuoran; Xu, Shiwei; Tang, Weineng; Davies, Christopher H. J.; Birbilis, Nick; Nie, Jian-feng

    2016-12-01

    A unique thermomechanical processing method combining fast rolling with large thickness reduction and short-time annealing (FR-STA) was developed to produce lower-cost magnesium (Mg) sheets with improved tensile properties. Sheets of Mg-3Al-1Zn-0.3Mn (wt pct) and Mg-1Zn-0.2Nd-0.2Zr (wt pct) were produced by FR incorporating large thickness reduction, exhibiting enhanced strength and improved ductility relative to slow rolling with small thickness reduction after STA.

  1. Multiaxial and Thermomechanical Fatigue of Materials: A Historical Perspective and Some Future Challenges

    Science.gov (United States)

    Kalluri, Sreeramesh

    2013-01-01

    Structural materials used in engineering applications routinely subjected to repetitive mechanical loads in multiple directions under non-isothermal conditions. Over past few decades, several multiaxial fatigue life estimation models (stress- and strain-based) developed for isothermal conditions. Historically, numerous fatigue life prediction models also developed for thermomechanical fatigue (TMF) life prediction, predominantly for uniaxial mechanical loading conditions. Realistic structural components encounter multiaxial loads and non-isothermal loading conditions, which increase potential for interaction of damage modes. A need exists for mechanical testing and development verification of life prediction models under such conditions.

  2. Thermomechanical processing route to achieve ultrafine grains in low carbon microalloyed steels

    OpenAIRE

    2016-01-01

    .A new thermomechanical processing route is described for a microalloyed steel, with roughing deformation below the recrystallisation-stop temperature (T5%), followed by a rapid reheat to 1200 °C for 10s, and then finish deformation at the same temperature as the rough deformation. The new route focused on optimising the kinetics of strain-induced precipitation (SIP) and the formation of deformation-induced ferrite transformation (DITF). For comparative purposes, two experimental 0.06 wt% C s...

  3. On phase transformation models for thermo-mechanically coupled response of Nitinol

    KAUST Repository

    Sengupta, Arkaprabha

    2011-03-31

    Fully coupled thermomechanical models for Nitinol at the grain level are developed in this work to capture the inter-dependence between deformation and temperature under non-isothermal conditions. The martensite transformation equations are solved using a novel algorithm which imposes all relevant constraints on the volume fractions. The numerical implementation of the resulting models within the finite element method is effected by the monolithic solution of the momentum and energy equations. Validation of the models is achieved by means of thin-tube experiments at different strain rates. © 2011 Springer-Verlag.

  4. Economic Evaluation on Bio-Synthetic Natural Gas Production Integrated in a Thermomechanical Pulp Mill

    OpenAIRE

    Wennan Zhang; Jie He; Per Engstrand; Olof Björkqvist

    2015-01-01

    In this study, biorefinery as a concept is applied to thermomechanical pulp (TMP)-based paper production to evaluate the possibility of co-production of synthetic natural gas (SNG), electricity and district heating in addition to mechanical pulp and paper. The combined heat and power plant (CHP) associated to TMP is replaced by a biomass-to-SNG (BtSNG) plant. Implementing BtSNG in a mechanical pulp production line might improve the profitability of a TMP mill and also help to commercialize th...

  5. THERMO-MECHANICAL PROPERTIES OF FABRIC REINFORCED COMPOSITES WITH FILED EPOXY MATRIX

    Directory of Open Access Journals (Sweden)

    Igor ROMAN

    2010-10-01

    Full Text Available While the design problem seems to be essential in order to form a high performance composite one may ask more: is it possible to form a material able to give information about its state? Is it possible to control the properties of a composite through alternation of its various layers? Is it possible, finally, to obtain a multifunctional material based on a right design, on a cheap forming technique, on accessible components? This study is about partially answering the above questions. Two types of fiber fabric were used to form composites with filled epoxy matrix and materials bending and thermo-mechanical properties were evaluated using appropriate recommended methods.

  6. A thermo-mechanical analysis of a particle impact during thermal spraying

    Science.gov (United States)

    Danouni, Samir; Abdellah El-hadj, Abdellah; Zirari, Mounir; Belharizi, Mohamed

    2016-05-01

    The present study discusses the development of a simulation model of transient impact between a particle and a substrate. The equations for structural behavior are coupled with those of heat transfer, wherein material properties are taken as temperature dependent. The set of equations is solved with Ansys program using a direct coupling method. At first, structural model is solved without heat transfer. Then, coupled thermo-mechanical model is solved with and without thermoelastic effects. Computational results indicate that thermal consideration has significant effects on contact problem. In addition, it is shown that, themoelasticity consideration is crucial for simulating these problems to determine the structural and thermal parameters.

  7. Microstructuring of thermo-mechanically highly stressed surfaces final report of the DFG research group 576

    CERN Document Server

    Rienäcker, Adrian; Knoll, Gunter; Bach, Friedrich-Wilhelm; Maier, Hans; Reithmeier, Eduard; Dinkelacker, Friedrich

    2015-01-01

    This contributed volume presents the final research results of the DFG Research Group 576, which is a joint initiative of five different institutes of the Leibniz Universität Hannover and the Universität Kassel, Germany. The research of the DFG Research Group 576 focuses on improving the tribological behavior of thermomechanically highly stressed surfaces, particularly on cylinder liner for combustion engines. The target audience primarily comprises researchers and experts in the field but the book may also be beneficial for graduate students who want to specialize in the field.

  8. Elastoviscoplastic snap-through behavior of shallow arches subjected to thermomechanical loads

    Science.gov (United States)

    Simitses, George J.; Song, Yuzhao; Sheinman, Izhak

    1991-01-01

    The problem of snap-through buckling of clamped shallow arches under thermomechanical loads is investigated. The analysis is based on nonlinear kinematic relations and nonlinear rate-dependent unified constitutive equations. A finite element approach is employed to predict the, in general, inelastic buckling behavior. The construction material is alloy B1900 + Hf, which is commonly utilized in high-temperature environments. The effect of several parameters is assessed. These parameters include the rise parameter and temperature. Comparison between elastic and elastoviscoplastic responses is also presented.

  9. Thermomechanical theory of a Cosserat point with application to composite materials. (Reannouncement with new availability information)

    Energy Technology Data Exchange (ETDEWEB)

    Green, A.E.; Naghdi, P.M.

    1991-12-31

    After presenting a general thermomechanical theory of a Cosserat point with any number of directors in both Lagrangian and Eulerian forms, attention is confined to the development of a system of linearized equations for small deformation of elastic materials under isothermal conditions. With the help of the latter system of equations, several examples of elastic composite materials are discussed. These pertain to extension, torsion and flexure of a right cylinder of arbitrary uniform cross-section reinforced by any number of fillers with different elastic moduli.

  10. Thermo-Mechanical Behavior of Bentonite Buffer in a Deep Geological HLW Repository

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.; Cho, W. J.; Lee, J. O

    2008-08-15

    This work aims to investigate the influence of bentonite buffer and backfill, which will role as important engineered barriers, on the thermo-mechanical behaviors of a disposal system at a deep underground HLW repository. It will contribute to the disposal system development and performance assessment of the system. In this study, three-dimensional computer simulations were carried out with a consideration of the thermal and mechanical characteristics of the buffer and backfill for the investigation of the behavior of buffer and backfill under different disposal conditions. The understanding of the near field response to the variation of buffer and backfill properties will contribute to the development of an adequate buffer and backfill design in disposal conditions as well as the selection of a disposal site. The following conclusions could be drawn from the three-dimensional thermo-mechanical coupling analysis for investigating the possible influence of the bentonite buffer on the thermo-mechanical behavior around an underground repository, which is located at several hundred meters deep underground. o The bentonite swelling pressure can influence on the mechanical behavior of canister. Further detailed modeling is required in the future. o It is required to consider the water content and density of bentonite as important design parameters, because it was found that those influence the thermo-mechanical behavior of near field significantly. o A horizontal deposition hole and multi-level repository can results different maximum temperatures, stress concentration, and the required time for the maximum temperatures of canister, buffer, and rock compared to those of vertical deposition hole and single level repository. o Even though, the same laboratory results were used for driving the parameters for the plastic models used in the modeling, the mechanical behaviors were different. It is, therefore, required to use adequate plastic models for buffer and backfill

  11. User-defined Material Model for Thermo-mechanical Progressive Failure Analysis

    Science.gov (United States)

    Knight, Norman F., Jr.

    2008-01-01

    Previously a user-defined material model for orthotropic bimodulus materials was developed for linear and nonlinear stress analysis of composite structures using either shell or solid finite elements within a nonlinear finite element analysis tool. Extensions of this user-defined material model to thermo-mechanical progressive failure analysis are described, and the required input data are documented. The extensions include providing for temperature-dependent material properties, archival of the elastic strains, and a thermal strain calculation for materials exhibiting a stress-free temperature.

  12. Continuous recrystallization during thermomechanical processing of a superplastic Al-10Mg-0.1Zr alloy

    Science.gov (United States)

    Hales, S. J.; Mcnelley, T. R.; Crooks, R.

    1990-01-01

    Microstructural evolution via static continuous recrystallization during thermomechanical processing of an Al-Mg-Zr alloy is addressed. Mechanical property data demonstrated that as-rolled material was capable of superplastic response without further treatment. Further, superplastic ductility at 300 C was enhanced by a factor of five by increasing the reheating time between rolling passes during processing also at 300 C. This enhanced ductility was associated with a Cu-texture and a microstructure consisting of predominantly high-angle boundaries. Processing to minimize recovery resulted in a strong Brass-texture component, a predominantly low-angle boundary microstructure and poorer ductility.

  13. Thermomechanical cohesive zone models for analysis of composites failure under thermal gradients and transients

    Science.gov (United States)

    Hattiangadi, Ashwin A.

    A numerical framework to study multi-physics problem involving coupled thermomechanical analyses for cracks is outlined. Using a thermomechanical cohesive zone model (TM-CZM), load transfer behavior is coupled to heat conduction across a crack. Non-linear effects due to coupling between the mechanical and thermal problem occur through the conductance-separation response between crack faces as well as through the temperature dependence of material constants of the CZM. The TM-CZM is implemented in a convenient framework within the finite element method and applied in the study of: (i) interface crack growth; (ii) crack bridging; and (iii) photo-thermal imaging. Interface fracture in a thermal protection system (TPS) under transient monotonic and cyclic thermal loading is studied using the new TM-CZM and an analytical model. TPS includes an oxidation protection coating (OPC) on a carbon-carbon (C-C) composite substrate. The description of the load transfer behavior uses a traction-separation law with an internal residual property variable that determines the extent of damage caused by mechanical separation. Temperature dependence is incorporated, such that the interfacial strength and therefore the tractions decrease with temperature. The description of thermal transport includes an accurate representation of breakdown of interface conductance with increase in separation. The current state of interface failure, the presence of gas entrapped in the crack as well as radiative heat transfer determines the crack conductance. Coupling between thermal-mechanical analyses affects the interface crack initiation and growth behavior. An analytical model is presented for the uncoupled thermal-mechanical problem to calculate temperature fields and energy release rates. The TM-CZM is also applied in the study of bridged delamination cracks in composite laminates loaded under a temperature gradient. A micromechanism based bridging law is used for load transfer coupled to heat

  14. Network coding for computing: Linear codes

    CERN Document Server

    Appuswamy, Rathinakumar; Karamchandani, Nikhil; Zeger, Kenneth

    2011-01-01

    In network coding it is known that linear codes are sufficient to achieve the coding capacity in multicast networks and that they are not sufficient in general to achieve the coding capacity in non-multicast networks. In network computing, Rai, Dey, and Shenvi have recently shown that linear codes are not sufficient in general for solvability of multi-receiver networks with scalar linear target functions. We study single receiver networks where the receiver node demands a target function of the source messages. We show that linear codes may provide a computing capacity advantage over routing only when the receiver demands a `linearly-reducible' target function. % Many known target functions including the arithmetic sum, minimum, and maximum are not linearly-reducible. Thus, the use of non-linear codes is essential in order to obtain a computing capacity advantage over routing if the receiver demands a target function that is not linearly-reducible. We also show that if a target function is linearly-reducible,...

  15. Effect of thermomechanical treatment modes on structural-phase states and mechanical properties of metastable austenitic steel

    Science.gov (United States)

    Akkuzin, S. A.; Litovchenko, I. Yu.; Polekhina, N. A.; Tyumentsev, A. N.

    2016-11-01

    The features of the structural-phase states and mechanical properties of metastable austenitic steel after thermomechanical treatments have been investigated. It is shown that low-temperature and subsequent deformation in the temperature range 300-773 K contributes to the direct (γ → α')-martensitic transformation. The combination of low-temperature, subsequent warm deformation at 873 K and annealing at 1073 K leads to the direct (γ → α')- and reverse (α' → γ)-martensitic transformations. As a result of thermomechanical treatments submicrocrystalline two-phase structural states with high strength properties (σ0.1 ≈ 1160-1350 MPa) are formed.

  16. Effect of thermomechanical treatment on mechanical properties and electrical conductivity of a CuCrZr alloy

    Indian Academy of Sciences (India)

    G Durashevich; V Cvetkovski; V Jovanovich

    2002-02-01

    The CuCrZr alloy undergoes processes of precipitation during ageing. Besides precipitation hardening the strength is affected by cold deformation which is performed before and after ageing. The cold deformation (1) before ageing accelerates the process of strength hardening, since it induces higher rate of precipitation from the saturated -solid solution. Cold deformation (2) after ageing primarily affects the alloy strength. In this paper the results of the effect of thermomechanical treatment on mechanical properties and electrical conductivity of a CuCrZr alloy are presented. The aim of the paper was to evaluate the most suitable combination of thermomechanical treatment and alloy properties.

  17. Practices in Code Discoverability

    CERN Document Server

    Teuben, Peter; Nemiroff, Robert J; Shamir, Lior

    2012-01-01

    Much of scientific progress now hinges on the reliability, falsifiability and reproducibility of computer source codes. Astrophysics in particular is a discipline that today leads other sciences in making useful scientific components freely available online, including data, abstracts, preprints, and fully published papers, yet even today many astrophysics source codes remain hidden from public view. We review the importance and history of source codes in astrophysics and previous efforts to develop ways in which information about astrophysics codes can be shared. We also discuss why some scientist coders resist sharing or publishing their codes, the reasons for and importance of overcoming this resistance, and alert the community to a reworking of one of the first attempts for sharing codes, the Astrophysics Source Code Library (ASCL). We discuss the implementation of the ASCL in an accompanying poster paper. We suggest that code could be given a similar level of referencing as data gets in repositories such ...

  18. Enhancing QR Code Security

    OpenAIRE

    Zhang, Linfan; Zheng, Shuang

    2015-01-01

    Quick Response code opens possibility to convey data in a unique way yet insufficient prevention and protection might lead into QR code being exploited on behalf of attackers. This thesis starts by presenting a general introduction of background and stating two problems regarding QR code security, which followed by a comprehensive research on both QR code itself and related issues. From the research a solution taking advantages of cloud and cryptography together with an implementation come af...

  19. Gauge color codes

    DEFF Research Database (Denmark)

    Bombin Palomo, Hector

    2015-01-01

    Color codes are topological stabilizer codes with unusual transversality properties. Here I show that their group of transversal gates is optimal and only depends on the spatial dimension, not the local geometry. I also introduce a generalized, subsystem version of color codes. In 3D they allow...

  20. Informal Control code logic

    CERN Document Server

    Bergstra, Jan A

    2010-01-01

    General definitions as well as rules of reasoning regarding control code production, distribution, deployment, and usage are described. The role of testing, trust, confidence and risk analysis is considered. A rationale for control code testing is sought and found for the case of safety critical embedded control code.

  1. Refactoring test code

    NARCIS (Netherlands)

    Deursen, A. van; Moonen, L.M.F.; Bergh, A. van den; Kok, G.

    2001-01-01

    Two key aspects of extreme programming (XP) are unit testing and merciless refactoring. Given the fact that the ideal test code / production code ratio approaches 1:1, it is not surprising that unit tests are being refactored. We found that refactoring test code is different from refactoring product

  2. Fountain Codes: LT And Raptor Codes Implementation

    Directory of Open Access Journals (Sweden)

    Ali Bazzi, Hiba Harb

    2017-01-01

    Full Text Available Digital fountain codes are a new class of random error correcting codes designed for efficient and reliable data delivery over erasure channels such as internet. These codes were developed to provide robustness against erasures in a way that resembles a fountain of water. A digital fountain is rateless in a way that sender can send limitless number of encoded packets. The receiver doesn’t care which packets are received or lost as long as the receiver gets enough packets to recover original data. In this paper, the design of the fountain codes is explored with its implementation of the encoding and decoding algorithm so that the performance in terms of encoding/decoding symbols, reception overhead, data length, and failure probability is studied.

  3. ARC Code TI: ROC Curve Code Augmentation

    Data.gov (United States)

    National Aeronautics and Space Administration — ROC (Receiver Operating Characteristic) curve Code Augmentation was written by Rodney Martin and John Stutz at NASA Ames Research Center and is a modification of ROC...

  4. ARC Code TI: CODE Software Framework

    Data.gov (United States)

    National Aeronautics and Space Administration — CODE is a software framework for control and observation in distributed environments. The basic functionality of the framework allows a user to observe a distributed...

  5. Thermo-mechanical simulations of CO2 laser-fused silica interactions

    Science.gov (United States)

    Doualle, T.; Gallais, L.; Cormont, P.; Hébert, D.; Combis, P.; Rullier, J.-L.

    2016-03-01

    CO2 laser heating of silica glass is used in many scientific and industrial applications. Particularly, localized CO2 laser heating of silica glass has demonstrated its ability to mitigate surface damage on optics used for high power laser applications. To develop such applications, the control of temperature, heat affected area, and resulting mechanical stresses are critical. Therefore, it is necessary to understand the silica transformation, the material ejection, and the thermo-mechanical stresses induced by the laser heating and subsequent cooling. In this paper, we detail the development of comprehensive thermo-mechanical numerical simulations of these physical processes, based on finite-element method. The approach is developed for 2D or 3D cases to tackle the case of a moving beam at the surface of the sample, and we particularly discuss the choice of the different parameters based on bibliographic inputs. The thermal and mechanical numerical results have been compared to different dedicated experimental studies: infrared thermography measurements at the surface of the irradiated area, optical profilometry measurements of the laser-processed sites, and photo-elastic measurements. Very consistent results are obtained between numerical and experimental results for the description of the temperature gradients, the material ejection, and the residual stresses.

  6. Modeling of thermo-mechanical fatigue and damage in shape memory alloy axial actuators

    Science.gov (United States)

    Wheeler, Robert W.; Hartl, Darren J.; Chemisky, Yves; Lagoudas, Dimitris C.

    2015-04-01

    The aerospace, automotive, and energy industries have seen the potential benefits of using shape memory alloys (SMAs) as solid state actuators. Thus far, however, these actuators are generally limited to non-critical components or over-designed due to a lack of understanding regarding how SMAs undergo thermomechanical or actuation fatigue and the inability to accurately predict failure in an actuator during use. The purpose of this study was to characterize the actuation fatigue response of Nickel-Titanium-Hafnium (NiTiHf) axial actuators and, in turn, use this characterization to predict failure and monitor damage in dogbone actuators undergoing various thermomechanical loading paths. Calibration data was collected from constant load, full cycle tests ranging from 200-600MPa. Subsequently, actuator lifetimes were predicted for four additional loading paths. These loading paths consisted of linearly varying load with full transformation (300-500MPa) and step loads which transition from zero stress to 300-400MPa at various martensitic volume fractions. Thermal cycling was achieved via resistive heating and convective cooling and was controlled via a state machine developed in LabVIEW. A previously developed fatigue damage model, which is formulated such that the damage accumulation rate is general in terms of its dependence on current and local stress and actuation strain states, was utilized. This form allows the model to be utilized for specimens undergoing complex loading paths. Agreement between experiments and simulations is discussed.

  7. IMPROVING THE MECHANICAL PROPERTIES OF COPPER ALLOYS BY THERMO-MECHANICAL PROCESSING

    Institute of Scientific and Technical Information of China (English)

    M.C.Somani; L.P.Karjalainen

    2004-01-01

    Systematic physical simulation of thermo-mechanical processing routes has been applied on a Gleeble 1500 simulator to four copper alloys(mass %)Cu-0.57Co-0.32Si,Cu-0.55Cr-0.065P,Cu-0.22Zr-0.035Si and Cu-1.01Ni-0.43Si aimed at clarifying the influences of processing conditions on their final properties,strength and electrical conductivity.Flow curves were determined over wide temperature and strain rate ranges.Hardness was used as a measure of the strength level achieved.High hardness was obtained as using equal amounts(strains 0.5)of cold deformation before and after the precipitation annealing stage.The maximum values achieved for the Cu-Co-Si,Cu-Cr-P,Cu-Zr-Si and Cu-Ni-Si alloys were 190,165,178 and 193 HV5,respectively.A thermo-mechanical schedule involving the hot deformation-ageing-cold deformation stages showed even better results for the Cu-Zr-Si alloy.Consequently,the processing routes were designed based on simulation test results and wires of 5 and 2mm in diameters have been successfully processed in the industrial scale.

  8. A Jacobian-free Newton Krylov method for mortar-discretized thermomechanical contact problems

    Science.gov (United States)

    Hansen, Glen

    2011-07-01

    Multibody contact problems are common within the field of multiphysics simulation. Applications involving thermomechanical contact scenarios are also quite prevalent. Such problems can be challenging to solve due to the likelihood of thermal expansion affecting contact geometry which, in turn, can change the thermal behavior of the components being analyzed. This paper explores a simple model of a light water reactor nuclear fuel rod, which consists of cylindrical pellets of uranium dioxide (UO 2) fuel sealed within a Zircalloy cladding tube. The tube is initially filled with helium gas, which fills the gap between the pellets and cladding tube. The accurate modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel performance, including cladding stress and behavior under irradiated conditions, which are factors that affect the lifetime of the fuel. The thermomechanical contact approach developed here is based on the mortar finite element method, where Lagrange multipliers are used to enforce weak continuity constraints at participating interfaces. In this formulation, the heat equation couples to linear mechanics through a thermal expansion term. Lagrange multipliers are used to formulate the continuity constraints for both heat flux and interface traction at contact interfaces. The resulting system of nonlinear algebraic equations are cast in residual form for solution of the transient problem. A Jacobian-free Newton Krylov method is used to provide for fully-coupled solution of the coupled thermal contact and heat equations.

  9. Finite Element Analysis of the Deformation of Functionally Graded Plates under Thermomechanical Loads

    Directory of Open Access Journals (Sweden)

    A. E. Alshorbagy

    2013-01-01

    Full Text Available The first-order shear deformation plate model, accounting for the exact neutral plane position, is exploited to investigate the uncoupled thermomechanical behavior of functionally graded (FG plates. Functionally graded materials are mainly constructed to operate in high temperature environments. Also, FG plates are used in many applications (such as mechanical, electrical, and magnetic, where an amount of heat may be generated into the FG plate whenever other forms of energy (electrical, magnetic, etc. are converted into thermal energy. Several simulations are performed to study the behavior of FG plates, subjected to thermomechanical loadings, and focus the attention on the effect of the heat source intensity. Most of the previous studies have considered the midplane neutral one, while the actual position of neutral plane for functionally graded plates is shifted and should be firstly determined. A comparative study is performed to illustrate the effect of considering the neutral plane position. The volume fraction of the two constituent materials of the FG plate is varied smoothly and continuously, as a continuous power function of the material position, along the thickness of the plate.

  10. A Higher-Order Thermomechanical Vibration Analysis of Temperature-Dependent FGM Beams with Porosities

    Directory of Open Access Journals (Sweden)

    Farzad Ebrahimi

    2016-01-01

    Full Text Available In the present paper, thermomechanical vibration characteristics of functionally graded (FG Reddy beams made of porous material subjected to various thermal loadings are investigated by utilizing a Navier solution method for the first time. Four types of thermal loadings, namely, uniform, linear, nonlinear, and sinusoidal temperature rises, through the thickness direction are considered. Thermomechanical material properties of FG beam are assumed to be temperature-dependent and supposed to vary through thickness direction of the constituents according to power-law distribution (P-FGM which is modified to approximate the porous material properties with even and uneven distributions of porosities phases. The governing differential equations of motion are derived based on higher order shear deformation beam theory. Hamilton’s principle is applied to obtain the governing differential equations of motion which are solved by employing an analytical technique called the Navier type solution method. Influences of several important parameters such as power-law exponents, porosity distributions, porosity volume fractions, thermal effects, and slenderness ratios on natural frequencies of the temperature-dependent FG beams with porosities are investigated and discussed in detail. It is concluded that these effects play significant role in the thermodynamic behavior of porous FG beams.

  11. Effect of quinoa and potato flours on the thermomechanical and breadmaking properties ofwheat flour

    Directory of Open Access Journals (Sweden)

    E. Rodriguez-Sandoval

    2012-09-01

    Full Text Available The thermomechanical properties of dough and the physical characteristics of bread from quinoa-wheat and potato-wheat composite flours at 10 and 20% substitution level were evaluated. The functional properties of flours were measured by the water absorption index (WAI, water solubility index (WSI and swelling power (SP. The thermomechanical properties of wheat and composite flours were assessed using a Mixolab and the baking quality characteristics of breads were weight, height, width, and specific volume. The results showed that the higher values of WAI (4.48, WSI (7.45%, and SP (4.84 were for potato flour. The quinoa-wheat composite flour presented lower setback and cooking stability data, which are a good indicator of shelf life of bread. On the other hand, the potato-wheat composite flour showed lower stability, minimum torque and peak torque, and higher water absorption. Weight, height, width, and specific volume of wheat bread were most similar to samples of potato-wheat composite flour at 10% substitution level.

  12. A thermomechanical process to make iron aluminide (FeAl) sheet

    Energy Technology Data Exchange (ETDEWEB)

    Hajaligol, M.R.; Deevi, S.C. [Philip Morris Research Center, Richmond, VA (United States); Sikka, V.K. [Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37387 (United States); Scorey, C.R. [Ametek Specialty Metals Division, Wallingford, CT 06492 (United States)

    1998-12-31

    An innovative combination of roll compaction, and thermomechanical processing allowed manufacture of FeAl alloy intermetallic sheets with 24 wt.% Al content. Green sheets of FeAl were obtained by roll compaction of water atomized FeAl powder with a polymeric binder. Roll compacted green sheets were de-bindered and partially sintered prior to cold rolling through tungsten carbide rolls. Cold rolling decreased the thickness, reduced the level of porosity and work-hardened the sheets. Several intermediate annealings at or above 1100 C were found to be necessary to relieve the work hardening stresses prior to rolling the sheets to a final thickness of 0.20 mm. The annealing temperatures were chosen to be at or above 1100 C to allow concurrent sintering of FeAl necessary for the densification of FeAl sheets. Thermomechanical processing of cold rolled sheets allowed commercial manufacture of FeAl intermetallic sheets without the necessity of hot rolling of a cast FeAl ingot. Fully dense sheets possess fine grain microstructure with an average grain size of 20 {mu}m. The electrical resistivities of FeAl sheets can be varied from 140 to 155 {mu}{Omega} cm{sup -1}, and the high resistivities make them ideally suited for resistive heating applications. Mechanical properties of FeAl sheets are comparable to the properties of hot extruded FeAl alloys. (orig.) 26 refs.

  13. New three-dimensional far-field potential repository thermomechanical calculations; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, M.P.; Bai, M.; Goodrich, R.R.; Lin, M.; Carlisle, S. [Agapito (J.F.T.) and Associates, Inc., Grand Junction, CO (United States); Bauer, S.J. [Sandia National Labs., Albuquerque, NM (United States)

    1993-03-01

    The thermomechanical effect on the exploratory ramps, drifts, and shafts as a result of high-level nuclear waste disposal is examined using a three-dimensional thermo-elastic model. The repository layout modeled is based on the use of mechanical mining of all excavations with equivalent waste emplacement areal power densities of 57 and 80 kW/acre. Predicted temperatures and stress changes for the north and south access drifts, east main drift, east-west exploratory drift, the north and south Calico Hills access ramps, the Calico Hills north-south exploratory drift, and the optional exploratory studies facility and man and materials shafts are presented for times 10, 35, 50, 100, 300, 500, 1000, 2000, 5000, and 10,000 years after the start of waste emplacement. The study indicates that the east-west exploratory drift at the repository horizon is subject to the highest thermomechanical impact because it is located closest the buried waste canisters. For most exploratory openings, the thermally induced temperatures and stresses tend to reach the maximum magnitudes at approximately 1000 years after waste emplacement.

  14. Thermomechanical properties and performance of ceramic resonators for wireless pressure reading at high temperatures

    Science.gov (United States)

    Sturesson, P.; Khaji, Z.; Knaust, S.; Klintberg, L.; Thornell, G.

    2015-09-01

    This paper reports on the design, fabrication, and thermomechanical study of ceramic LC resonators for wireless pressure reading, verified at room temperature, at 500 °C and at 1000 °C for pressures up to 2.5 bar. Five different devices were fabricated from high-temperature co-fired ceramics (HTCC) and characterized. Alumina green tape sheets were screen printed with platinum paste, micromachined, laminated, and fired. The resulting samples were 21 mm  ×  19 mm with different thicknesses. An embedded communicator part was integrated with either a passive backing part or with a pressure-sensing element, including an 80 µm thick and 6 mm diameter diaphragm. The study includes measuring thermally and mechanically induced resonance frequency shifts, and thermally induced deformations. For the pressure sensor device, contributions from changes in the relative permittivity and from expanding air trapped in the cavity were extracted. The devices exhibited thermomechanical robustness during heating, regardless of the thickness of the backing. The pressure sensitivity decreased with increasing temperature from 15050 ppm bar-1 at room temperature to 2400 ppm bar-1 at 1000 °C, due to the decreasing pressure difference between the external pressure and the air pressure inside the cavity.

  15. Three-Dimensional Finite Element Modeling of Thermomechanical Problems in Functionally Graded Hydroxyapatite/Titanium Plate

    Directory of Open Access Journals (Sweden)

    S. N. S. Jamaludin

    2014-01-01

    Full Text Available The composition of hydroxyapatite (HA as the ceramic phase and titanium (Ti as the metallic phase in HA/Ti functionally graded materials (FGMs shows an excellent combination of high biocompatibility and high mechanical properties in a structure. Because the gradation of these properties is one of the factors that affects the response of the functionally graded (FG plates, this paper is presented to show the domination of the grading parameter on the displacement and stress distribution of the plates. A three-dimensional (3D thermomechanical model of a 20-node brick quadratic element is used in the simulation of the thermoelastic behaviors of HA/Ti FG plates subjected to constant and functional thermal, mechanical, and thermomechanical loadings. The convergence properties of the present results are examined thoroughly in order to assess the accuracy of the theory applied and to compare them with the established research results. Instead of the grading parameter, this study reveals that the loading field distribution can be another factor that reflects the thermoelastic properties of the HA/Ti FG plates. The FG structure is found to be able to withstand the thermal stresses while preserving the high toughness properties and thus shows its ability to operate at high temperature.

  16. Thermo-mechanical analysis of FG nanobeam with attached tip mass: an exact solution

    Science.gov (United States)

    Ghadiri, Majid; Jafari, Ali

    2016-12-01

    Present disquisition proposes an analytical solution method for exploring the vibration characteristics of a cantilever functionally graded nanobeam with a concentrated mass exposed to thermal loading for the first time. Thermo-mechanical properties of FGM nanobeam are supposed to change through the thickness direction of beam based on the rule of power-law (P-FGM). The small-scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. Linear temperature rise (LTR) through thickness direction is studied. Existence of centralized mass in the free end of nanobeam influences the mechanical and physical properties. Timoshenko beam theory is employed to derive the nonlocal governing equations and boundary conditions of FGM beam attached with a tip mass under temperature field via Hamilton's principle. An exact solution procedure is exploited to achieve the non-dimensional frequency of FG nanobeam exposed to temperature field with a tip mass. A parametric study is led to assess the efficacy of temperature changes, tip mass, small scale, beam thickness, power-law exponent, slenderness and thermal loading on the natural frequencies of FG cantilever nanobeam with a point mass at the free end. It is concluded that these parameters play remarkable roles on the dynamic behavior of FG nanobeam subjected to LTR with a tip mass. The results for simpler states are confirmed with known data in the literature. Presented numerical results can serve as benchmarks for future thermo-mechanical analyses of FG nanobeam with tip mass.

  17. The Effect of Thermo-Mechanical Treatment on Structure of Ultrahigh Carbon PM Steel

    Science.gov (United States)

    Nikiel, Piotr; Szczepanik, Stefan; Skrzypek, Stanisław Jan; Rogal, Łukasz

    2017-03-01

    The effects of thermo-mechanical treatment on selected properties related to the structure of Fe-0.85Mo-0.65i-1.4C powder metallurgy (PM) steel are reported. Three kinds of initial microstructure of specimens, i.e., pearlite + ferrite + cementite, martensite + retained austenite and α + spheroidized cementite were examined. Processing was carried out on a plastometer-dilatometer Bähr machine by compression cylindrical specimens at 775 °C at a strain rate of 0.001 s-1. X-ray diffraction was carried out with symmetrical Bragg-Brentano and grazing incident angle methods on a D8-Advance diffractometer with filtered radiation of cobalt CoK α . The following features were determined: texture, density of dislocations, density of vacancies, lattice parameter of Fe α and mean size of crystallites. Significant differences in structure were observed, especially in quenched specimen, as a result of the thermo-mechanical treatment. Regardless of initial state of the specimens, the determined properties were on a similar level. Crystallite size was in the range 97-106 nm, crystallite texture (I{200}/I{110}) × 10 = 1.15-1.62 and density of vacancies I{110}/I{220} = 7.06-7.52.

  18. Thermo-mechanical response of rigid plastic laminates for greenhouse covering

    Directory of Open Access Journals (Sweden)

    Silvana Fuina

    2016-09-01

    Full Text Available Innovation in the field of protected crops represents an argument of great applied and theoretical research attention due to constantly evolving technologies and automation for higher quality flower and vegetable production and to the corresponding environmental and economic impact. The aim of this paper is to provide an analysis of some thermomechanical properties of rigid polymeric laminates for greenhouses claddings, including innovative tests such as the thermographic ones. Four types of laminates have been analysed: two polycarbonates, a polymethylmethacrylate and a polyethylene terephthalate (PET. The tests gave interesting results on different important properties, such as radiometric properties, limit stresses, strains and ductility. Moreover, a direct comparison of infrared images and force elongation curves gave important information on the relation of the (localised or homogeneous damage evolution, with both an applicative and theoretical implication. Finally, even if to the authors knowledge at present there are no examples of using PET for covering greenhouses, the results of this paper indicates the thermomechanical and radiometric characteristics of this material make it interesting for agricultural applications.

  19. A novel approach to computational homogenization and its application to fully coupled two-scale thermomechanics

    Science.gov (United States)

    Fleischhauer, Robert; Božić, Marko; Kaliske, Michael

    2016-11-01

    The paper introduces a novel approach to computational homogenization by bridging the scales from microscale to macroscale. Whenever the microstructure is in an equilibrium state, the macrostructure needs to be in equilibrium, too. The novel approach is based on the concept of representative volume elements, stating that an assemblage of representative elements should be able to resemble the macrostructure. The resulting key assumption is the continuity of the appropriate kinematic fields across both scales. This assumption motivates the following idea. In contrast to existing approaches, where mostly constitutive quantities are homogenized, the balance equations, that drive the considered field quantities, are homogenized. The approach is applied to the fully coupled partial differential equations of thermomechanics solved by the finite element (FE) method. A novel consistent finite homogenization element is given with respect to discretized residual formulations and linearization terms. The presented FE has no restrictions regarding the thermomechanical constitutive laws that are characterizing the microstructure. A first verification of the presented approach is carried out against semi-analytical and reference solutions within the range of one-dimensional small strain thermoelasticity. Further verification is obtained by a comparison to the classical FE^2 method and its different types of boundary conditions within a finite deformation setting of purely mechanical problems. Furthermore, the efficiency of the novel approach is investigated and compared. Finally, structural examples are shown in order to demonstrate the applicability of the presented homogenization framework in case of finite thermo-inelasticity at different length scales.

  20. Software Certification - Coding, Code, and Coders

    Science.gov (United States)

    Havelund, Klaus; Holzmann, Gerard J.

    2011-01-01

    We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.

  1. Universal Rateless Codes From Coupled LT Codes

    CERN Document Server

    Aref, Vahid

    2011-01-01

    It was recently shown that spatial coupling of individual low-density parity-check codes improves the belief-propagation threshold of the coupled ensemble essentially to the maximum a posteriori threshold of the underlying ensemble. We study the performance of spatially coupled low-density generator-matrix ensembles when used for transmission over binary-input memoryless output-symmetric channels. We show by means of density evolution that the threshold saturation phenomenon also takes place in this setting. Our motivation for studying low-density generator-matrix codes is that they can easily be converted into rateless codes. Although there are already several classes of excellent rateless codes known to date, rateless codes constructed via spatial coupling might offer some additional advantages. In particular, by the very nature of the threshold phenomenon one expects that codes constructed on this principle can be made to be universal, i.e., a single construction can uniformly approach capacity over the cl...

  2. ELEFANT: a user-friendly multipurpose geodynamics code

    Directory of Open Access Journals (Sweden)

    C. Thieulot

    2014-07-01

    Full Text Available A new finite element code for the solution of the Stokes and heat transport equations is presented. It has purposely been designed to address geological flow problems in two and three dimensions at crustal and lithospheric scales. The code relies on the Marker-in-Cell technique and Lagrangian markers are used to track materials in the simulation domain which allows recording of the integrated history of deformation; their (number density is variable and dynamically adapted. A variety of rheologies has been implemented including nonlinear thermally activated dislocation and diffusion creep and brittle (or plastic frictional models. The code is built on the Arbitrary Lagrangian Eulerian kinematic description: the computational grid deforms vertically and allows for a true free surface while the computational domain remains of constant width in the horizontal direction. The solution to the large system of algebraic equations resulting from the finite element discretisation and linearisation of the set of coupled partial differential equations to be solved is obtained by means of the efficient parallel direct solver MUMPS whose performance is thoroughly tested, or by means of the WISMP and AGMG iterative solvers. The code accuracy is assessed by means of many geodynamically relevant benchmark experiments which highlight specific features or algorithms, e.g., the implementation of the free surface stabilisation algorithm, the (visco-plastic rheology implementation, the temperature advection, the capacity of the code to handle large viscosity contrasts. A two-dimensional application to salt tectonics presented as case study illustrates the potential of the code to model large scale high resolution thermo-mechanically coupled free surface flows.

  3. 基于实体模型的基桩动测曲线ABAQUS数值模拟及其应用%Application and ABAQUS numerical simulation for the curves of dynamic pile testing based on entity model

    Institute of Scientific and Technical Information of China (English)

    李火兵; 贺怀建; 徐文强; 杨朝帅

    2011-01-01

    In this paper,one kind of reliable numerical simulation for dynamic pile testing is to be explored,which provides a basis for the furthermore analysis of the curves of dynamic pile testing.The theory of dynamic pile testing is presented,and the necessity of numerical simulation for entity model is also analyzed.By using ABAQUS,the entity model is created and the related simulation curves are described.By contrast,the normalized curve of simulation is consistent with that of dynamic pile testing.Finally,a great number of statistics calculated by adopting ABAQUS supplies a basis for deeply studying curves of dynamic pile testing combined with wavelet analysis,neural network and 3D stratum visualization.%本文旨在探索一种可靠的基桩动测曲线数值模拟方法,在此基础上对基桩动测曲线做进一步的分析。文中介绍了基桩动测原理,分析了实体模型数值模拟的必要性。应用ABAQUS软件建立了桩土实体模型,计算得到相应的模拟曲线。归一化对比模拟曲线与模型桩动测曲线,发现两者有较好的一致性。通过ABAQUS模拟出大量数据,为进一步结合小波分析、神经网络、地层三维可视化研究基桩动测曲线提供了数据基础。

  4. 基于ABAQUS的钢轨铝热焊接接头的有限元分析%The Finite Element Analysis of Rail Thermite Welding Joint on ABAQUS

    Institute of Scientific and Technical Information of China (English)

    侯健

    2013-01-01

    A finite element model of rail welding joint is built with the finite element software ABAQUS,and the ABAQUS is used to analyze the mechanical properties of rail thermite welding joint under the pure rolling condition and pure sliding contion.Then basing on the analysis of the pure rolling wheel-rail contact,study the influence of the performance parameters such as speed of train,position of welding joint,width of welding zone.The results show that the sliding wheel-rail contact do harm to welding joint,the speed of train,positionof welding joint and width of welding zone has considerable effects on the mechanical properties of welding joints.%运用有限元软件ABAQUS强大的处理功能建立了钢轨铝热焊接接头弹塑性分析的有限元模型,并在此基础上进行轮轨纯滚动接触和全滑动接触两种工况下的焊接接头力学性能分析;然后在纯滚动接触的基础上,研究各项性能参数如车速、焊接接头位置、焊缝热影响区宽度、接头不平顺及波深等的影响.结果表明,轮轨滑动接触对接头损伤较大,车速、焊接接头位置、焊缝热影响区宽度对焊接接头力学性能有重要影响.

  5. Centrifuge Modeling of the Thermo-Mechanical Response of Energy Foundations

    Science.gov (United States)

    Goode, Joseph Collin, III

    This thesis presents the results from a series of centrifuge tests performed to understand the profiles of thermo-mechanical axial strain, axial displacement, and axial stress in semi-floating and end-bearing energy foundations installed in dry Nevada sand and Bonny silt layers during different combinations of mechanical loading and foundation heating. In addition to the construction details for the centrifuge scale-model reinforced concrete energy foundations, the results from 1 g thermo-mechanical characterization tests performed on the foundations to evaluate their mechanical and thermal material properties are presented in this thesis. In general, the centrifuge-scale tests involve application of an axial load to the head of the foundation followed by circulation of a heat exchange fluid through embedded tubing to bring the foundation to a constant temperature. After this point, mechanical loads were applied to the foundation to characterize their thermo-mechanical response. Specifically, loading tests to failure were performed on the semi-floating foundation installed in different soil layers to characterize the impact of temperature on the load-settlement curve, and elastic loading tests were performed on the end-bearing foundation to characterize the impact of temperature on the mobilized side shear distributions. During application of mechanical loads and changes in foundation temperature, the axial strains are measured using embedded strain gages. The soil and foundation temperatures, foundation head movement, and soil surface deformations are also monitored to characterize the thermo-mechanical response of the system. The tests performed in this study were used to investigate different phenomena relevant to the thermo-mechanical response of energy foundations. First, the role of end-restraint boundary conditions in both sand and silt were investigated by comparing the strain distributions for the end-bearing and semi-floating foundations in each soil type

  6. Chinese remainder codes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Aili; LIU Xiufeng

    2006-01-01

    Chinese remainder codes are constructed by applying weak block designs and the Chinese remainder theorem of ring theory.The new type of linear codes take the congruence class in the congruence class ring R/I1 ∩ I2 ∩…∩ In for the information bit,embed R/Ji into R/I1 ∩ I2 ∩…∩ In,and assign the cosets of R/Ji as the subring of R/I1 ∩ I2 ∩…∩ In and the cosets of R/Ji in R/I1 ∩ I2 ∩…∩ In as check lines.Many code classes exist in the Chinese remainder codes that have high code rates.Chinese remainder codes are the essential generalization of Sun Zi codes.

  7. Chinese Remainder Codes

    Institute of Scientific and Technical Information of China (English)

    张爱丽; 刘秀峰; 靳蕃

    2004-01-01

    Chinese Remainder Codes are constructed by applying weak block designs and Chinese Remainder Theorem of ring theory. The new type of linear codes take the congruence class in the congruence class ring R/I1∩I2∩…∩In for the information bit, embed R/Ji into R/I1∩I2∩…∩In, and asssign the cosets of R/Ji as the subring of R/I1∩I2∩…∩In and the cosets of R/Ji in R/I1∩I2∩…∩In as check lines. There exist many code classes in Chinese Remainder Codes, which have high code rates. Chinese Remainder Codes are the essential generalization of Sun Zi Codes.

  8. Testing algebraic geometric codes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Property testing was initially studied from various motivations in 1990’s. A code C  GF (r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector’s coordinates. The problem of testing codes was firstly studied by Blum, Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs). How to characterize locally testable codes is a complex and challenge problem. The local tests have been studied for Reed-Solomon (RS), Reed-Muller (RM), cyclic, dual of BCH and the trace subcode of algebraicgeometric codes. In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions). We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.

  9. Code of Ethics

    DEFF Research Database (Denmark)

    Adelstein, Jennifer; Clegg, Stewart

    2016-01-01

    Ethical codes have been hailed as an explicit vehicle for achieving more sustainable and defensible organizational practice. Nonetheless, when legal compliance and corporate governance codes are conflated, codes can be used to define organizational interests ostentatiously by stipulating norms...... for employee ethics. Such codes have a largely cosmetic and insurance function, acting subtly and strategically to control organizational risk management and protection. In this paper, we conduct a genealogical discourse analysis of a representative code of ethics from an international corporation...... to understand how management frames expectations of compliance. Our contribution is to articulate the problems inherent in codes of ethics, and we make some recommendations to address these to benefit both an organization and its employees. In this way, we show how a code of ethics can provide a foundation...

  10. Noisy Network Coding

    CERN Document Server

    Lim, Sung Hoon; Gamal, Abbas El; Chung, Sae-Young

    2010-01-01

    A noisy network coding scheme for sending multiple sources over a general noisy network is presented. For multi-source multicast networks, the scheme naturally extends both network coding over noiseless networks by Ahlswede, Cai, Li, and Yeung, and compress-forward coding for the relay channel by Cover and El Gamal to general discrete memoryless and Gaussian networks. The scheme also recovers as special cases the results on coding for wireless relay networks and deterministic networks by Avestimehr, Diggavi, and Tse, and coding for wireless erasure networks by Dana, Gowaikar, Palanki, Hassibi, and Effros. The scheme involves message repetition coding, relay signal compression, and simultaneous decoding. Unlike previous compress--forward schemes, where independent messages are sent over multiple blocks, the same message is sent multiple times using independent codebooks as in the network coding scheme for cyclic networks. Furthermore, the relays do not use Wyner--Ziv binning as in previous compress-forward sch...

  11. Testing algebraic geometric codes

    Institute of Scientific and Technical Information of China (English)

    CHEN Hao

    2009-01-01

    Property testing was initially studied from various motivations in 1990's.A code C (∩)GF(r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector's coordinates.The problem of testing codes was firstly studied by Blum,Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs).How to characterize locally testable codes is a complex and challenge problem.The local tests have been studied for Reed-Solomon (RS),Reed-Muller (RM),cyclic,dual of BCH and the trace subcode of algebraicgeometric codes.In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions).We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.

  12. Serially Concatenated IRA Codes

    CERN Document Server

    Cheng, Taikun; Belzer, Benjamin J

    2007-01-01

    We address the error floor problem of low-density parity check (LDPC) codes on the binary-input additive white Gaussian noise (AWGN) channel, by constructing a serially concatenated code consisting of two systematic irregular repeat accumulate (IRA) component codes connected by an interleaver. The interleaver is designed to prevent stopping-set error events in one of the IRA codes from propagating into stopping set events of the other code. Simulations with two 128-bit rate 0.707 IRA component codes show that the proposed architecture achieves a much lower error floor at higher SNRs, compared to a 16384-bit rate 1/2 IRA code, but incurs an SNR penalty of about 2 dB at low to medium SNRs. Experiments indicate that the SNR penalty can be reduced at larger blocklengths.

  13. Efficient modeling of metallic interconnects for thermo-mechanical simulation of SOFC stacks: homogenized behaviors and effect of contact

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kwok, Kawai; Frandsen, Henrik Lund

    2016-01-01

    Currently thermo-mechanical analysis of the entire solid oxide fuel cell (SOFC) stack at operational conditions is computationally challenging if the geometry of metallic interconnects is considered explicitly. This is particularly the case when creep deformations in the interconnect are consider...

  14. Thermo-mechanical controls on intraplate deformation and the role of plume – folding interactions in continental topography

    NARCIS (Netherlands)

    Cloetingh, S.; Burov, E.; Francois, T.

    2013-01-01

    Thermo-tectonic age and inherited structure exert the main controls on the bulk strength of the lithosphere in intraplate settings. Mechanical decoupling within the lithosphere strongly affects the interaction between deep Earth and surface processes. Thermo-mechanical models demonstrate the particu

  15. The structure and mechanical properties of Al-Mg-Mn alloys shaped in the process of thermomechanical treatment

    Directory of Open Access Journals (Sweden)

    W. Ozgowicz

    2011-04-01

    Full Text Available Purpose: The aim of research was to investigate the effect of heat treatment and low-temperature thermomechanical treatment (LTMT on the structure and mechanical properties of Al-Mg-Mn alloys.Design/methodology/approach: The range of researches included: performance of heat treatment and low-temperature thermomechanical treatment of AlMg1.5 and AlMg3.5Mn alloys, carry out of static tensile tests, measurements of hardness, metallographic observation (TEM and fractography (SEM.Findings: Analysis of the results allows to determine the effect of precipitation hardening and low-temperature thermomechanical treatment on the structure and mechanical properties of AlMg1.5 and AlMg3.5Mn alloys and to determine the effect on the topography of the specimens fracture after decohesion in tensile tests. Moreover, SEM researches allow to identity the chemical composition of precipitates in the structure of investigated alloys.Practical implications: The obtained results may serve as a basis for optimization of the process of the material used as components of vessels.Originality/value: The mechanical properties of the investigated aluminium alloys increase with the quantity of Mg, independently of their state and the parameters of heat treatment and low-temperature thermomechanical treatment. More refinement of precipitations, which affect the mechanical properties in ageing, ensured by LTMT compared with conventional heat treatment

  16. Lithosphere tectonics and thermo-mechanical properties: An integrated modeling approach for enhanced geothermal systems exploration in Europe

    NARCIS (Netherlands)

    Wees, J.D. van; Cloetingh, S.; Ziegler, P.A.; Lenkey, L.; Beekman, F.; Tesauro, M.; Förster, A.; Norden, B.; Kaban, M.; Hardebol, N.; Voorde, M.T.; Willingshofer, E.; Cornu, T.; Bonté, D.

    2009-01-01

    For geothermal exploration and the development of enhanced geothermal systems (EGS) knowlegde of temperature at drillable depth is a prerequisite for site selection. Equally important is the thermo-mechanical signature of the lithosphere and crust which allow to obtain critical constraints for the c

  17. Thermo-Mechanical Characterization of Silicon Carbide-Silicon Carbide Composites at Elevated Temperatures Using a Unique Combustion Facility

    Science.gov (United States)

    2009-09-10

    F THERMO-MECHANICAL CHARACTERIZATION OF SILICON CARBIDE - SILICON CARBIDE COMPOSITES AT ELEVATED...MECHANICAL CTERIZATION OF SILICON CARBIDE -SILIC BIDE COMPOSITES AT LEVATED TEMPER S USING A UNIQUE COMBUSTION FACILITY DISSERTATI N Ted T. Kim...THERMO-MECHANICAL CHARACTERIZATION OF SILICON CARBIDE - SILICON CARBIDE COMPOSITES AT ELEVATED TEMPERATURES USING A UNIQUE COMBUSTION FACILITY

  18. High-temperature mechanical properties improvement on modified 9Cr-1Mo martensitic steel through thermomechanical treatments

    Science.gov (United States)

    Hollner, S.; Fournier, B.; Le Pendu, J.; Cozzika, T.; Tournié, I.; Brachet, J.-C.; Pineau, A.

    2010-10-01

    In the framework of the development of generation IV nuclear reactors and fusion nuclear reactors, materials with an improved high temperature (≅650 °C) mechanical strength are required for specific components. The 9-12%Cr martensitic steels are candidate for these applications. Thermomechanical treatments including normalisation at elevated temperature (1150 °C), followed by warm-rolling in metastable austenitic phase and tempering, have been applied on the commercial Grade 91 martensitic steel in order to refine its microstructure and to improve its precipitation state. The temperature of the warm-rolling was set at 600 °C, and those of the tempering heat-treatment at 650 °C and 700 °C thanks to MatCalc software calculations. Microstructural observations proved that the warm-rolling and the following tempering heat-treatment lead to a finer martensitic microstructure pinned with numerous small carbide and nitride particles. The hardness values of thermomechanically treated Grade 91 steel are higher than those of the as-received Grade 91. It is also shown that the yield stress and the ductility of the thermomechanically treated Grade 91 steel are significantly improved compared to the as-received material. Preliminary creep results showed that these thermomechanical treatments improve the creep lifetime by at least a factor 14.

  19. Enhancement of Corrosion Resistance of Type 304 Stainless Steel Through a Novel Thermo-mechanical Surface Treatment

    Science.gov (United States)

    Toppo, Anita; Kaul, R.; Pujar, M. G.; Kamachi Mudali, U.; Kukreja, L. M.

    2013-02-01

    The paper describes a novel thermo-mechanical surface treatment approach, involving conventional shot blasting followed by laser surface heating, to engineer microstructural modification in type 304 austenitic stainless steel for enhancing its corrosion resistance. Thermo-mechanical surface treatment resulted in the formation of fine recrystallized grains with some strain-induced martensite on the modified surface. Surface treatment of type 304 stainless steel brought about significant improvement in its resistance against uniform as well as pitting corrosion. Electrochemical impedance spectroscopic studies showed improved polarization resistance ( R p) value for thermo-mechanically treated surface indicating formation of a more protective passive film than that formed on the untreated surface. In contrast to untreated type 304 stainless steel specimens where pits preferentially initiated at the site of Al2O3 inclusions, thermo-mechanically treated specimen exhibited only general dissolution with a few repassivated and shallow pits. Grain refinement and dispersion of alumina inclusions on the modified surface are considered to be the key factors responsible for improvement in uniform and pitting corrosion resistance of type 304SS.

  20. Thermomechanical Ablation

    Science.gov (United States)

    1975-09-01

    thermocouple inside of the model was recorded by a continuous strip chart recorder. Model shape as a function of time was obtained from 35 mm photographs of... CarbonDioxide Sublimation at an Axisymmetric Stagnation Point." Int. J. Heat and Mass Transfer, 8 1965.pp 511-51 47- 26. Zeldovich, Y. B. "On the Theory of

  1. Objective thermomechanics

    CERN Document Server

    Fülöp, Tamás

    2015-01-01

    An irreversible thermodynamical theory of solids is presented where the kinematic quantities are defined in an automatically objective way. Namely, auxiliary elements like reference frame, reference time and reference configuration are avoided by formulating the motion of the continuum on spacetime directly, utilizing the Weyl-Matolcsi description of spacetime. This restricts the range of definable kinematic quantities heavily. Solids are distinguished from fluids by possessing not only an instantaneous metric tensor but a relaxed metric, too, that represents the natural geometric structure of the solid. The comparison of the instantaneous metric to the relaxed one is the basis of the definition of the elastic state variable, the elastic deformedness tensor. Thermal expansion is conceived as the temperature dependence of the relaxed metric. As opposed to this reversible type of change, plasticity means an irreversible change in the relaxed metric, and is describable via a plastic change rate tensor. The relat...

  2. Thermomechanical characterization of one-way shape memory Nitinol as an actuator for active surgical needle

    Science.gov (United States)

    Honarvar, Mohammad

    Needle-based intervention insertion is one of the common surgical techniques used in many diagnostic and therapeutic percutaneous procedures. The success of such procedures highly depends on the accuracy of needle placement at target locations. An active needle has the potential to enhance the accuracy of needle placement as well as to improve clinical outcome. Bending forces provided by the attached actuators can assist the maneuverability in order to reach the targets following a desired trajectory. There are three major research parts in the development of active needle project in the Composites Laboratory of Temple University. They are thermomechanical characterization of shape memory alloy (SMA) or Nitinol as an actuator for smart needle, mechanical modeling and design of smart needles, and study of tissue needle interaction. The characterization of SMA is the focus of this dissertation. Unique thermomechanical properties of Nitinol known as shape memory effect and superelasticity make it applicable for different fields such as biomedical, structural and aerospace engineering. These unique behaviors are due to the comparatively large amount of recoverable strain which is being produced in a martensitic phase transformation. However, under certain ranges of stresses and temperatures, Nitinol wires exhibit unrecovered strain (also known as residual strain); which limits their applicability. Therefore, for applications that rely on the strain response in repetitive loading and unloading cycles, it is important to understand the generation of the unrecovered strain in the Nitinol wires. In this study, the unrecovered strain of Nitinol wires with various diameters was investigated, using two experimental approaches: constant stress and uniaxial tensile tests. Moreover, a critical range of stress was found beyond which the unrecovered strain was negligible at temperatures of 70 to 80°C depending on the wire diameter. Wire diameters varied from 0.10 to 0.29 mm were

  3. Thermo-mechanical design of the Plasma Driver Plate for the MITICA ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pavei, Mauro, E-mail: mauro.pavei@igi.cnr.it [Consorzio RFX, EURATOM-ENEA Association, Corso Stati Uniti 4, I-35127 Padova (Italy); Palma, Mauro Dalla; Marcuzzi, Diego [Consorzio RFX, EURATOM-ENEA Association, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2010-12-15

    In the framework of the activities for the development of the Neutral Beam Injector (NBI) for ITER, the detailed design of the Radio-Frequency (RF) negative ion source has been carried out. One of the most heated components of the RF source is the rear vertical plate, named Plasma Driver Plate (PDP), where the Back-Streaming positive Ions (BSI+) generated from stripping losses in the accelerator and back scattered on the plasma source impinge on. The heat loads that result are huge and concentrated, with first estimate of the power densities up to 60 MW/m{sup 2}. The breakdowns that occur into the accelerator cause such heat loads to act cyclically, so that the PDP is thermo-mechanically fatigue loaded. Moreover, the surface of the PDP facing the plasma is functionally required to be temperature controlled and to be molybdenum or tungsten coated. The thermo-hydraulic design of the plate has been carried out considering active cooling with ultra-pure water. Different heat sink materials, hydraulic circuit layout and manufacturing processes have been considered. The heat exhaust has been optimized by changing the channels geometry, the path of the heat flux in the heat sink, the thickness of the plate and maximizing the Heat Transfer Coefficient. Such optimization has been carried out by utilizing 3D Finite Element (FE) models. Afterwards all the suitable mechanical (aging, structural monotonic and cyclic) verifications have been carried out post-processing the results of the thermo-mechanical 3D FE analyses in accordance to specific procedures for nuclear components exposed to high temperature. The effect of sputtering phenomenon due to the high energy BSI+ impinging on the plate has been considered and combined with fatigue damage for the mechanical verification of the PDP. Alternative solutions having molybdenum (or tungsten coatings) facing the plasma, aiming to reduce the sputtering rate and the consequent plasma pollution, have been evaluated and related 3D FE

  4. On Polynomial Remainder Codes

    CERN Document Server

    Yu, Jiun-Hung

    2012-01-01

    Polynomial remainder codes are a large class of codes derived from the Chinese remainder theorem that includes Reed-Solomon codes as a special case. In this paper, we revisit these codes and study them more carefully than in previous work. We explicitly allow the code symbols to be polynomials of different degrees, which leads to two different notions of weight and distance. Algebraic decoding is studied in detail. If the moduli are not irreducible, the notion of an error locator polynomial is replaced by an error factor polynomial. We then obtain a collection of gcd-based decoding algorithms, some of which are not quite standard even when specialized to Reed-Solomon codes.

  5. Generating code adapted for interlinking legacy scalar code and extended vector code

    Science.gov (United States)

    Gschwind, Michael K

    2013-06-04

    Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled code is generated based on the source code, the first compiled code comprising code for accommodating the difference in register configurations used by the extended ABI and the legacy ABI. The first compiled code and second compiled code are intermixed to generate intermixed code, the second compiled code being compiled code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a call from the second compiled code to the first compiled code. The code for accommodating the difference in register configurations is associated with the at least one call instruction.

  6. Industrial Computer Codes

    Science.gov (United States)

    Shapiro, Wilbur

    1996-01-01

    This is an overview of new and updated industrial codes for seal design and testing. GCYLT (gas cylindrical seals -- turbulent), SPIRALI (spiral-groove seals -- incompressible), KTK (knife to knife) Labyrinth Seal Code, and DYSEAL (dynamic seal analysis) are covered. CGYLT uses G-factors for Poiseuille and Couette turbulence coefficients. SPIRALI is updated to include turbulence and inertia, but maintains the narrow groove theory. KTK labyrinth seal code handles straight or stepped seals. And DYSEAL provides dynamics for the seal geometry.

  7. The aeroelastic code FLEXLAST

    Energy Technology Data Exchange (ETDEWEB)

    Visser, B. [Stork Product Eng., Amsterdam (Netherlands)

    1996-09-01

    To support the discussion on aeroelastic codes, a description of the code FLEXLAST was given and experiences within benchmarks and measurement programmes were summarized. The code FLEXLAST has been developed since 1982 at Stork Product Engineering (SPE). Since 1992 FLEXLAST has been used by Dutch industries for wind turbine and rotor design. Based on the comparison with measurements, it can be concluded that the main shortcomings of wind turbine modelling lie in the field of aerodynamics, wind field and wake modelling. (au)

  8. Opening up codings?

    DEFF Research Database (Denmark)

    Steensig, Jakob; Heinemann, Trine

    2015-01-01

    We welcome Tanya Stivers’s discussion (Stivers, 2015/this issue) of coding social interaction and find that her descriptions of the processes of coding open up important avenues for discussion, among other things of the precise ad hoc considerations that researchers need to bear in mind, both when....... Instead we propose that the promise of coding-based research lies in its ability to open up new qualitative questions....

  9. ARC Code TI: ACCEPT

    Data.gov (United States)

    National Aeronautics and Space Administration — ACCEPT consists of an overall software infrastructure framework and two main software components. The software infrastructure framework consists of code written to...

  10. QR codes for dummies

    CERN Document Server

    Waters, Joe

    2012-01-01

    Find out how to effectively create, use, and track QR codes QR (Quick Response) codes are popping up everywhere, and businesses are reaping the rewards. Get in on the action with the no-nonsense advice in this streamlined, portable guide. You'll find out how to get started, plan your strategy, and actually create the codes. Then you'll learn to link codes to mobile-friendly content, track your results, and develop ways to give your customers value that will keep them coming back. It's all presented in the straightforward style you've come to know and love, with a dash of humor thrown

  11. MORSE Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, S.N.

    1984-01-01

    The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described.

  12. Thermomechanical effects of co-solute on the structure formation of bovine serum albumin.

    Science.gov (United States)

    George, Paul; Lundin, Leif; Kasapis, Stefan

    2014-08-15

    The effect of glucose syrup on the structural properties of bovine serum albumin has been addressed in preparations from low to high solids. Fifteen percent protein was mixed with the co-solute at concentrations up to 65% and subjected to thermal treatment to examine the changes in phase and state transitions. Thermomechanics were the working protocol being carried out with micro differential scanning calorimetry and small deformation dynamic oscillation. Results argue that protein molecules have been extensively stabilised by the addition of a co-solute, recorded via a delayed thermal denaturation. Further, increasing the glucose syrup enhanced polymer-polymer interactions leading to stronger networks following thermal denaturation of the globular protein. Condensed BSA/glucose syrup mixtures, i.e. at 80% solids, were cooled at subzero temperatures to exhibit a considerable state of vitrification. Molecular relaxation phenomena were successfully followed using theoretical concepts from synthetic polymer research to yield the mechanical glass transition temperature.

  13. Thermo-mechanical tests of a CFC divertor mock-up

    Science.gov (United States)

    Cardella, A.; Akiba, M.; Duwe, R.; Di Pietro, E.; Suzuki, S.; Satoh, K.; Reheis, N.

    1994-04-01

    Thermo-mechanical tests have been performed on a divertor mock-up consisting of a metallic tube armoured with five carbon fibre composite tiles. The tube is inserted inside the tiles and brazed with TiCuSil braze (monoblock concept). The tube material is TZM, a molybdenum alloy, and the armour material is SEP CARB N112, a high conductivity carbon-carbon composite. Using special surface preparation consisting of laser drilling, small (˜- 500 μm) holes in the composite have been made to increase the surface wetted by the braze and the resistance. The mock-up has been tested at the JAERI 400 kW electron beam test facility JEBIS. The aim of the test was to assess the performance of the mock-up in screening and thermal fatigue tests with particular attention to the behaviour of the armour to heat sink joint.

  14. Thermo-Mechanical tests for the CLIC two-beam module study

    CERN Document Server

    Xydou, A; Riddone, G; Daskalaki, E

    2014-01-01

    The luminosity goal of CLIC requires micron level precision with respect to the alignment of the components on its two-meter long modules, composing the two main linacs. The power dissipated inside the module components introduces mechanical deformations affecting their alignment and therefore the resulting machine performance. Several two-beam prototype modules must be assembled to extensively measure their thermo-mechanical behavior under different operation modes. In parallel, the real environmental conditions present in the CLIC tunnel should be studied. The air conditioning and ventilation system providing specified air temperature and flow has been installed in the dedicated laboratory. The power dissipation occurring in the modules is being reproduced by the electrical heaters inserted inside the RF structure mock-ups and the quadrupoles. The efficiency of the cooling systems is being verified and the alignment of module components is monitored. The measurement results will be compared to finite elemen...

  15. AB INITIO Modeling of Thermomechanical Properties of Mo-Based Alloys for Fossil Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Wai-Yim

    2013-12-31

    In this final scientific/technical report covering the period of 3.5 years started on July 1, 2011, we report the accomplishments on the study of thermo-mechanical properties of Mo-based intermetallic compounds under NETL support. These include computational method development, physical properties investigation of Mo-based compounds and alloys. The main focus is on the mechanical and thermo mechanical properties at high temperature since these are the most crucial properties for their potential applications. In particular, recent development of applying ab initio molecular dynamic (AIMD) simulations to the T1 (Mo{sub 5}Si{sub 3}) and T2 (Mo{sub 5}SiB{sub 2}) phases are highlighted for alloy design in further improving their properties.

  16. Thermo-mechanical concepts applied to modeling liquid propellant rocket engine stability

    Science.gov (United States)

    Kassoy, David R.; Norris, Adam

    2016-11-01

    The response of a gas to transient, spatially distributed energy addition can be quantified mathematically using thermo-mechanical concepts available in the literature. The modeling demonstrates that the ratio of the energy addition time scale to the acoustic time scale of the affected volume, and the quantity of energy added to that volume during the former determine the whether the responses to heating can be described as occurring at nearly constant volume, fully compressible or nearly constant pressure. Each of these categories is characterized by significantly different mechanical responses. Application to idealized configurations of liquid propellant rocket engines provides an opportunity to identify physical conditions compatible with gasdynamic disturbances that are sources of engine instability. Air Force Office of Scientific Research.

  17. A thermo-mechanical modelling of the Tribological Transformations of Surface

    Science.gov (United States)

    Antoni, Grégory; Désoyer, Thierry; Lebon, Frédéric

    2009-09-01

    The Tribological Transformations of Surface (TTS) are observed on samples of certain steels undergoing repeated compressive loadings. They correspond to a permanent, solid-solid phase transformation localized on the surfaces of the sample on which the loading is applied. The main hypothesis of the study is that TTS are not only due to the mechanical loading but also to the thermal loading which is associated to. Thus, a thermo-mechanical model is first proposed in the present Note, which is inspired by previous works on TRansformation Induced Plasticity (TRIP). The potentialities of the model are also briefly illustrated by a simple 1D example. To cite this article: G. Antoni et al., C. R. Mecanique 337 (2009).

  18. Thermomechanical properties of the coil of the superconducting magnets for the Large Hadron Collider

    CERN Document Server

    Couturier, K; Scandale, Walter; Todesco, Ezio; Tommasini, D

    2002-01-01

    The correct definition and measurement of the thermomechanical properties of the superconducting cable used in high-field magnets is crucial to study and model the behavior of the magnet coil from assembly to the operational conditions. In this paper, the authors analyze the superconducting coil of the main dipoles for the Large Hadron Collider. They describe an experimental setup for measuring the elastic modulus at room and at liquid nitrogen temperature and for evaluating the thermal contraction coefficient. The coils exhibit strong nonlinear stress-strain behavior characterized by hysteresis phenomena, which decreases from warm to cold temperature, and a thermal contraction coefficient, which depends on the stress applied to the cable during cooldown. (35 refs).

  19. On stability of NiTi wire during thermo-mechanical cycling

    Indian Academy of Sciences (India)

    C N Saikrishna; K V Ramaiah; S Allam Prabhu; S K Bhaumik

    2009-06-01

    The use of NiTi wire as thermal actuator involves repeated thermal cycling through the transformation range under a constant or fluctuating load. The stability of the material under such conditions has been a concern for the past many years. Experimental results show that for a given alloy composition, the repetitive functional behaviour of NiTi wire is largely dependent on the processing schedule/parameters and the stress–strain regime of thermo-mechanical cycling (TMC). Among the various processing parameters, retained cold work in the material and the shape memory annealing temperature/time have significant influence. It has been shown in the present study that for a stable functional behaviour, the material needs to be tailored through judicious selection of these parameters. Study also shows that, after processing, the material requires an additional stabilization treatment for ensuring minimal variation in the repetitive functional response upon TMC.

  20. CHARACTERIZATION OF THERMO-MECHANICAL FATIGUE PROPERTIES FOR PARTICULATE REINFORCED COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    H.J. Shi; H.X. Mei; R. Guo; G. Mesmacque

    2004-01-01

    A Voronoi cell element, formulated with creep, thermal and plastic strain was applied for investigation of thermo-mechanical fatigue behavior for particulate reinforced composites. Under the in-phase fatigue loading, the maximum of tensile deformation at the maximum given loading are larger than that at the same maximum under the out-phase fatigue. The stiffness decreases nonlinearly with the increasing of the phase angle, which results in increasing of the area of fatigue loop curve and the decrease in fatigue life. The spatially centralizing of inclusions results in decreasing of the plastic strain amplitude and the area of fatigue loop curve, which will also reduce the consumption of single-circle plastic strain energy and prolong the fatigue life.

  1. Thermo-mechanical properties of mixed ion-electron conducting membrane materials

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bingxin

    2011-07-01

    The thesis presents thermo-mechanical properties of La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF) and Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF) perovskite materials, which are considered as oxygen transport membranes (OTM) for gas separation units. Ring-on-ring bending test with disk-shaped samples and depth-sensitive micro-indentation have been used as macroscopic and microscopic tests, respectively. In addition, the thermo-mechanical properties of a third OTM candidate material La{sub 2}NiO{sub 4+{delta}} (LNO) were investigated. The results of the thermo-mechanical measurements with the BSCF revealed an anomaly between 200 C and 400 C. In particular, the temperature dependence of Young's modulus shows a minimum at {proportional_to} 200 C. Fracture stress and toughness exhibit a qualitatively similar behavior with a minimum between 200 C and 400 C, before recovering between 500 C and 800 C. X-ray diffraction analyses verified that BSCF remains cubic in the relevant temperature range. Hence the anomalies were assumed to be related to the transition of Co{sup 3+} spin states reported for other Co-containing perovskites. This assumption could be experimentally confirmed by magnetic susceptibility measurements. The fracture surfaces of the specimens are not affected by the mechanical anomalies at intermediate temperatures, since only a transgranular fracture mode has been observed. Complementary to the mechanical characterization of BSCF, also the temperature dependency of fracture stress and elastic behavior of LSCF have been determined. Phase compositions of LSCF have been studied by in-situ high temperature XRD. Changes in phase composition with temperature are observed. At ambient temperature the LSCF perovskite material comprises two phases: rhombohedral and cubic symmetry. The ratio of the two phases depends on both cooling rate and atmosphere. The transition of rhombohedral to cubic occurs between 700 C and

  2. Existence result for a class of generalized standard materials with thermomechanical coupling

    CERN Document Server

    Paoli, Laetitia

    2011-01-01

    This paper deals with the study of a three-dimensional model of thermomechanical coupling for viscous solids exhibiting hysteresis effects. This model is written in accordance with the formalism of generalized standard materials and it is composed of the momentum equilibrium equation combined with the flow rule, which describes some stress-strain dependance, coupled to the heat-transfer equation. More precisely, the coupling terms are linear with respect to the temperature and the displacement and non linear with respect to the internal variable. The main mathematical difficulty lies in the fact that the natural framework for the right-hand side of the heat equation is the space of L1 functions. A local existence result for this thermodynamically consistent problem is obtained by using a fixed-point argument. Then the solutions are proved to be physically admissible and global existence is discussed under some additional assumptions on the data.

  3. Modeling of microstructural evolution and flow stress of aluminium alloy during thermomechanical process

    Institute of Scientific and Technical Information of China (English)

    SHEN Jian(沈健); G.Gottstein

    2004-01-01

    The evolution of microstructural variables, including the densities of mobile dislocation, immobile dislocation at the cell interiors, immobile dislocation in the cell walls, as well as total dislocation density, of an Al-Mg-Si aluminium alloy during thermomechanical processing were simulated based on a three-internal-variables-model (3IVM) involving dislocation climb and interaction. Optimization was carried out to fit the calculated stress-strain curves to the experimental data of the Al-Mg-Si alloy with minimum mean deviation. Precipitations were taken into consideration of modeling. The stress-strain curves predicted by the kinetic equations of state in the 3IVM have a good agreement with the experimental data.

  4. An analysis of boundary condition effects on the thermomechanical modeling of the FSW process

    Science.gov (United States)

    Guedoiri, A.; Moufki, A.; Favier, V.; Zahrouni, H.

    2011-01-01

    The aim of the present work is to study the influence of thermal boundary conditions on the simulation of friction stir welding process "FSW". Generally, dimensions of the workpieces to be welded are very large and a very small zone surrounding the welding tool is modeled for the thermomechanical study of the process. This area, named box, should be small enough to reduce the computation time and large enough to minimize effects of boundary conditions. It is well known that during welding, the mixing zone is closed arround the tool; it is easily identified by analyzing the velocity field which is complex in contact interface with the tool and which tends rapidly to the tool traverse speed far from the tool. In the thermal analysis, the boundary conditions are not obvious since they depend on the welding parameters, on the workpiece dimensions and on its vicinity. We propose in this study a numerical strategy for determining the thermal boundary conditions on the box.

  5. Effect of Thermomechanical Processing on Mechanical Properties of Hot Rolled Multiphase Steel

    Institute of Scientific and Technical Information of China (English)

    LI Zhuang; WU Di; L(U) Hui-sheng

    2008-01-01

    The effect of thermomechanical processing (TMP) on the mechanical properties of hot rolled multiphase steel was investigated. TMP was conducted using a laboratory hot rolling mill, in which three different kinds of finish rolling deformation degrees and temperatures were applied. The results indicate that polygonal ferrite, granular bainite, and a considerable amount of stabilized retained austenite can be obtained by TMP. The stability of the retained austenite increases with decreasing finish rolling temperature and increasing finish rolling deformation degrees. Ultimate tensile strength (σb), total elongation (δ), and the product of ultimate tensile strength by total elongation (σb·δ) for 50% reduction at finish rolling temperature of 700 ℃ reach maximum values [791 MPa, 36% and 28 476 (MPa·%), respectively].

  6. RENEWAL OF BASIC LAWS AND PRINCIPLES FOR POLAR CONTINUUM THEORIES (Ⅴ)-POLAR THERMOMECHANICAL CONTINUA

    Institute of Scientific and Technical Information of China (English)

    戴天民

    2003-01-01

    The purpose is to reestablish rather complete basic balance equations and boundary conditions for polar thermomechanical continua based on the restudy of the traditional theories of micropolar thermoelasticity and thermopiezoelectricity. The equations of motion and the local balance equation of energy rate for micropolar thermoelasticity are derived from the rather complete principle of virtual power. The equations of motion, the balance equation of entropy and all boundary conditions are derived from the rather complete Hamilton principle. The new balance equations of momentum and energy rate which are essentially different from the existing results are presented. The corresponding results of micromorphic thermoelasticity and couple stress elastodynamics may be naturally obtained by the transition and the reduction from the micropolar case, respectively. Finally, the results of micropolar thermopiezoelectricity are directly given.

  7. Analog Studies of Thermomechanical Fatigue and Abrasive Wear of Cast and Forged Steels for "Autoforge" Dies

    Science.gov (United States)

    Kolesnikov, M. S.; Mironova, Yu. S.; Mukhametzyanova, G. F.; Novikova, I. E.; Novikov, V. Yu.

    2014-07-01

    Processes of thermomechanical fatigue and abrasive wear of suspension-cast precipitation-hardening ferrite-carbide steel 30T6NTiC-1.5 and standard steel 4Kh5MFS are studied. The dominant kinds of fracture typical for dies for semisolid stamping are determined. The factors and parameters of cyclic temperature and force loading are shown to produce a selective action on the competing kinds of damage of the die steels. A comparative analysis of the properties of the steels is performed. Steel 30T6NTiC-1.5 is shown to have substantial advantages over steel 4Kh5FMS traditionally used for making "Autoforge" dies.

  8. Thermo-mechanical analyses of ITER in-vessel magnetic sensor assembly

    Science.gov (United States)

    Gonzalez, W.; Arshad, S.; Peruzzo, S.; Portales, M.; Rizzolo, A.; Vayakis, G.

    2014-08-01

    This paper summarizes the work concerning design studies of the ITER in-vessel discrete magnetic sensor assemblies, with particular emphasis on the thermal behaviour of the Low Temperature Co-fired Ceramic (LTCC) magnetic sensor and on the thermo-mechanical aspects of the interface with the Vacuum Vessel (VV). The paper summarises the results of FEM thermal analyses performed on the LTCC sensor head and on the sensor assembly to assess the temperature distribution during operating conditions, which could affect the sensor signal due to Temperature-Induced Electromotive Force effect. The paper then concentrates on mechanical analysis of the Base-Plate to assess that the stress and deformation due to the welding to the VV are acceptable to guarantee a sound installation and a suitable thermal contact of the sensor assembly to the VV.

  9. Failure of EB-PVD Thermal Barrier Coatings Subjected to Thermo-Mechanical Loading

    Institute of Scientific and Technical Information of China (English)

    CHEN Chen; ZHANG Chun-xia; GUO Hong-bo; GONG Sheng-kai; ZHANG Yue

    2006-01-01

    Thermal barrier coatings (TBCs) were developed to protect metallic blades and vanes working in turbo-engines. The two-layered structure TBCs, consisting of NiCoCrAlY bond coat and yttria stabilized zirconia (YSZ), were deposited on a cylinder of superalloy substrate by the electron beam-physical vapor deposition (EB-PVD). The failure mechanism of the TBCs was investigated with a thermo-mechanical fatigue testing system under the service condition similar to that for turbine blades. Non-destructive evaluation of the coated specimens was conducted through the impedance spectroscopy. It is found that the crack initiation mainly takes place on the top coat at the edge of the heated zones.

  10. Thermo-mechanical Modeling for Residual Stresses of Friction Stir Welding of Dissimilar Alloys

    Directory of Open Access Journals (Sweden)

    ABDUL ARIF

    2013-06-01

    Full Text Available Friction stir welding is an advanced joining process that has been used for high production since 1996. FSW produces a weld that is strong than the base material because melting does not occur and joining takes place below the melting temperature of the material. FSW produces no fumes and can join aluminum alloys, magnesium, steels, copper and titanium. In this study, a thermo-mechanical model with improved potential is developed to study the formation of residual stress field in dissimilar materials. The model predictions were confirmed with experimental data obtained by Jamshidi et al. on dissimilar aluminum alloys AA6061 to AA5086. A commercial finite element software ANSYS® is used for simulation of friction stir welding. Longitudinal and transverse residual stresses are obtained when AA5086-O on the advancing side and AA6061- T6 on the retreating side after 15sec.

  11. Development of Semantic Description for Multiscale Models of Thermo-Mechanical Treatment of Metal Alloys

    Science.gov (United States)

    Macioł, Piotr; Regulski, Krzysztof

    2016-08-01

    We present a process of semantic meta-model development for data management in an adaptable multiscale modeling framework. The main problems in ontology design are discussed, and a solution achieved as a result of the research is presented. The main concepts concerning the application and data management background for multiscale modeling were derived from the AM3 approach—object-oriented Agile multiscale modeling methodology. The ontological description of multiscale models enables validation of semantic correctness of data interchange between submodels. We also present a possibility of using the ontological model as a supervisor in conjunction with a multiscale model controller and a knowledge base system. Multiscale modeling formal ontology (MMFO), designed for describing multiscale models' data and structures, is presented. A need for applying meta-ontology in the MMFO development process is discussed. Examples of MMFO application in describing thermo-mechanical treatment of metal alloys are discussed. Present and future applications of MMFO are described.

  12. ESCA (XPS) study on light-induced yellowing of thermomechanical and chemothermomechanical pulps

    Science.gov (United States)

    Tóth, András; Faix, Oskar; Rachor, Georg; Bertóti, Imre; Székely, Tamás

    1993-11-01

    Thermomechanical and chemothermomechanical pulp samples have been derived from Norway spruce ( Picea abies) and characterized by brightness measurements and ESCA before and after exposure to artificial light irradiation. The surface O/C atomic ratios of the non-irradiated pulps were found to be between 0.3 and 0.37, which was interpreted as being due to their high surface lignin contents. The brightness reversion was accompanied by a considerable increase in the surface O/C ratio, by a decrease in the relative intensity of the C1 component of the C1s peak ( BE = 285.0 eV), and by increases in those of the C2 ( BE = 286.6 eV) and C3 ( BE = 288.2 eV) parts. It had no effect on the shapes of the O 1s peaks. The results were related to the photo-oxidation and photoyellowing of high-yield pulps.

  13. Influence of tragacanth gum in egg white based bioplastics: Thermomechanical and water uptake properties.

    Science.gov (United States)

    López-Castejón, María Luisa; Bengoechea, Carlos; García-Morales, Moisés; Martínez, Inmaculada

    2016-11-05

    This study aims to extend the range of applications of tragacanth gum by studying its incorporation into bioplastics formulation, exploring the influence that different gum contents (0-20wt.%) exert over the thermomechanical and water uptake properties of bioplastics based on egg white albumen protein (EW). The effect of plasticizer nature was also evaluated through the modification of the water/glycerol ratio within the plasticizer fraction (fixed at 40wt.%). The addition of tragacanth gum generally yielded an enhancement of the water uptake capacity, being doubled at the highest content. Conversely, presence of tragacanth gum resulted in a considerable decrease in the bioplastic mechanical properties: both tensile strength and maximum elongation were reduced up to 75% approximately when compared to the gum-free system. Ageing of selected samples was also studied, revealing an important effect of storage time when tragacanth gum is present, possibly due to its hydrophilic character.

  14. Nonlinear thermomechanical deformation behaviour of P-FGM shallow spherical shell panel

    Institute of Scientific and Technical Information of China (English)

    Vishesh Ranjan Kar; Subrata Kumar Panda

    2016-01-01

    In the present article, the linear and the nonlinear deformation behaviour of functionally graded (FG) spherical shell panel are examined under thermomechanical load. The temperature-dependent effective material properties of FG shell panel are evaluated using Voigt’s micro-mechanical rule in conjunction with power-law distribution. The nonlinear mathematical model of the FG shell panel is developed based on higher-order shear deformation theory and Green-Lagrange type geometrical nonlinearity. The desired nonlinear governing equation of the FG shell panel is computed using the variational principle. The model is discretised through suitable nonlinear finite element steps and solved using direct iterative method. The convergence and the val-idation behaviour of the present numerical model are performed to show the efficacy of the model. The effect of different parameters on the nonlinear deformation behaviour of FG spherical shell panel is highlighted by solving numerous examples.

  15. Nonlinear thermomechanical deformation behaviour of P-FGM shallow spherical shell panel

    Directory of Open Access Journals (Sweden)

    Vishesh Ranjan Kar

    2016-02-01

    Full Text Available In the present article, the linear and the nonlinear deformation behaviour of functionally graded (FG spherical shell panel are examined under thermomechanical load. The temperature-dependent effective material properties of FG shell panel are evaluated using Voigt’s micro-mechanical rule in conjunction with power-law distribution. The nonlinear mathematical model of the FG shell panel is developed based on higher-order shear deformation theory and Green-Lagrange type geometrical nonlinearity. The desired nonlinear governing equation of the FG shell panel is computed using the variational principle. The model is discretised through suitable nonlinear finite element steps and solved using direct iterative method. The convergence and the validation behaviour of the present numerical model are performed to show the efficacy of the model. The effect of different parameters on the nonlinear deformation behaviour of FG spherical shell panel is highlighted by solving numerous examples.

  16. Design and Coupled Thermo-Mechanical Analysis of Silicon Carbide Primary Mirror Assembly

    Institute of Scientific and Technical Information of China (English)

    HAN Yuan-yuan; ZHANG Yu-min; HAN Jie-cai

    2006-01-01

    Based on the principle that the thermal expansion coefficient of the support structure should match that of the mirror, three schemes of primary mirror assembly were designed. Of them, the first is fused silica mirror plus 4J32 flexible support plus ZTC4 support back plate, the second K9 mirror plus 4J45 flexible support plus ZTC4 support back plate, and the third SiC mirror plus SiC rigid support back plate. A coupled thermo-mechanical analysis of the three primary mirror assemblies was made with finite element method. The results show that the SiC assembly is the best of all schemes in terms of their combination properties due to its elimination of the thermal expansion mismatch between the materials. The analytical results on the cryogenic property of the SiC primary mirror assembly show a higher surface finish of the SiC mirror even under the cryogenic condition.

  17. Mapping thermomechanical pulp sludge (TMPS) biochar characteristics for greenhouse produce safety.

    Science.gov (United States)

    Khan, Ataullah; Mirza, Mohyuddin; Fahlman, Brian; Rybchuk, Ryan; Yang, Jian; Harfield, Don; Anyia, Anthony O

    2015-02-11

    This study evaluates the existence of toxic compounds in thermomechanical pulp sludge (TMPS) derived biochars obtained through a slow pyrolysis process and establishes the criteria for manufacturing benign-quality biochar for safe greenhouse-based food production. Accordingly, nine TMPS biochars generated at different temperatures (450, 500, 550 °C) and residence times (30, 60, 120 min) were investigated. Depending on the production conditions, the polycyclic aromatic hydrocarbons (PAHs) sum varied from 0.4 to 236 μg/g biochar. Interestingly, correlations between the PAH content, toxicity, and process conditions were derived in the form of process toxicity relationships (PTRs). On the basis of the learning garnered in this study, it is recommended that TMPS feedstock will yield benign quality biochar when processed at a minimum 500 °C temperature for an optimum residence time of 30 min.

  18. Reconsideration of Criteria and Modeling in Order to Optimize the Efficiency of Irreversible Thermomechanical Heat Engines

    Directory of Open Access Journals (Sweden)

    Michel Feidt

    2010-12-01

    Full Text Available The purpose of this work is to precise and complete one recently proposed in the literature and relative to a general criterion to maximize the first law efficiency of irreversible heat engines. It is shown that the previous proposal seems to be a particular case. A new proposal has been developed for a Carnot irreversible thermomechanical heat engine at steady state associated to two infinite heat reservoirs (hot source, and cold sink: this constitutes the studied system. The presence of heat leak is accounted for, with the most simple form, as is done generally in the literature. Irreversibility is modeled through , created internal entropy rate in the converter (engine, and , total created entropy rate in the system. Heat transfer laws are represented as general functions of temperatures. These concepts are particularized to the most common heat transfer law (linear one. Consequences of the proposal are examined; some new analytical results are proposed for efficiencies.

  19. Modeling of mechanical behaviour of HSLA low carbon bainitic steel thermomechanically processed

    Science.gov (United States)

    Santos, D. B.; Rodrigues, P. C. M.; Cota, A. B.

    2003-10-01

    A comparative study of the microstructure characterization and mechanical properties was done in a HSLA low carbon (0.08%) bainitic steel containing boron, developed by industry as a bainitic steel grade APIX80. The steel was submitted to two different thermomechanical processes. In the first one, controlled rolling followed by accelerated cooling was applied in laboratory mill. In the second processing, specimens of the same steel were submitted to hot torsion testing. The influence of cooling conditions like start cooling temperature, cooling rates and finish cooling temperature on the microstructure and mechanical properties were investigated. The final microstructure obtained was a complex mixture of polygonal ferrite, perlite, bainite and martensite/retained austenite constituent. The use of multiple regression analysis allowed the establishment of quantitative relationships between the accelerated cooling variables and mechanical properties of the steel available from Vickers microhardness and tensile tests.

  20. Theory to test comparisons for selected aerospace multishell structures and their interfaces under thermomechanical loadings

    Science.gov (United States)

    Ferdie, R. D.; Ligocki, J. E.; England, D. H.

    1974-01-01

    Guidelines for structural shell analyses were obtained on the basis of theory-to-test comparisons made on two large-scale aerospace structures subject to thermomechanical loads. The first structural test was the cylindrical aluminum skin-stringer-ring construction of the S-IC forward skirt and S-II interstage. The second structural test included the truncated, cone-shaped, bonded honeycomb sandwich shell of the Spacecraft Lunar Module Adapter; the cylindrical bonded aluminum honeycomb sandwich construction of the Instrument Unit; and the skin-stringer construction with rings and intercostals of the S-IVB forward skirt. Analyses were made for loadings simulating the flight environment. Elementary shear lag theory was superimposed on shell analysis for interface junctions between stages to obtain favorable theory-to-test stress comparisons.

  1. A thermo-mechanically coupled finite strain model considering inelastic heat generation

    Science.gov (United States)

    Dunić, Vladimir; Busarac, Nenad; Slavković, Vukašin; Rosić, Bojana; Niekamp, Rainer; Matthies, Hermann; Slavković, Radovan; Živković, Miroslav

    2016-07-01

    The procedure for reuse of finite element method (FEM) programs for heat transfer and structure analysis to solve advanced thermo-mechanical problems is presented as powerful algorithm applicable for coupling of other physical fields (magnetic, fluid flow, etc.). In this case, nonlinear Block-Gauss-Seidel partitioned algorithm strongly couples the heat transfer and structural FEM programs by a component-based software engineering. Component template library provides possibility to exchange the data between the components which solve the corresponding subproblems. The structural component evaluates the dissipative energy induced by inelastic strain. The heat transfer component computes the temperature change due to the dissipation. The convergence is guaranteed by posing the global convergence criterion on the previously locally converged coupled variables. This enables reuse of software and allows the numerical simulation of thermo-sensitive problems.

  2. Effect of thermo-mechanical properties of PIM feedstock on compacts shape retention during debinding process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The removal of the binder from the powder compacts (debinding) can be a slow step and a source of problems. To improve the debinding process of powder injection molding operation, it's necessary to understand the thermal and mechanical properties of powder injection molding feedstocks and to find the major causes responsible for molding difficulties and compacts shape retention during debinding process. The effects of thermo-mechanical properties of the PIM feedstock on the compacts shape retention during debinding process were discussed and explained from practical point of view. The results indicate that the heat of fusion affects the cooling time. The binder component with high heat of fusion and high-decomposed temperature is more effective as the second binder component for the compact to retain its shape during debinding.

  3. Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites.

    Science.gov (United States)

    Lavoratti, Alessandra; Scienza, Lisete Cristine; Zattera, Ademir José

    2016-01-20

    Composites of unsaturated polyester resin (UPR) and cellulose nanofibers (CNFs) obtained from dry cellulose waste of softwood (Pinus sp.) and hardwood (Eucalyptus sp.) were developed. The fiber properties and the influence of the CNFs in the dynamic-mechanical and thermomechanical properties of the composites were evaluated. CNFs with a diameter of 70-90 nm were obtained. Eucalyptus sp. has higher α-cellulose content than Pinus sp. fibers. The crystallinity of the cellulose pulps decreased after grinding. However, high values were still obtained. The chemical composition of the fibers was not significantly altered by the grinding process. Eucalyptus sp. CNF composites had water absorption close to the neat resin at 1 wt% filler. The dynamic-mechanical properties of Eucalyptus sp. CNFs were slightly increased and the thermal stability was improved.

  4. Lab tests of a thermomechanical pump for shoot. [Superfluid Helium On-Orbit Transfer

    Science.gov (United States)

    Dipirro, Michael J.; Boyle, Robert F.

    1988-01-01

    Laboratory tests of a thermomechanical (TM) pump utilizing a commercially available porous disk have been conducted. Various size disks, heater configurations, and outlet flow impedances have been used to characterize scale models of the pump proposed for the Superfluid Helium On-Orbit Transfer (SHOOT) Flight Experiment. The results yield the scalability of the TM pump to larger diameters, and hence larger pumping rates, the dependence of flow rate on back pressure and heater power, and the limits of pumping speed due to internal losses within the porous disk due to mutual and superfluid friction. Analysis indicates that for low back pressures the flow rate is limited by the superfluid friction rather than the mutual friction. For the porous plug used in the early tests this amounts to a practical limit of 4.4 liters per hour per square centimeter. For a baselined flight plug area of 180 sq cm this yields 790 liters per hour.

  5. Improvement of thermo-mechanical position stability of the beam position monitor in PLS-II

    CERN Document Server

    Ha, Taekyun; Kwon, Hyuckchae; Han, Hongsik; Park, Chongdo

    2016-01-01

    In the storage ring of PLS-II, we reduced mechanical displacement of electron beam position monitors (e-BPMs) that is caused by heating during e-beam storage. The orbit feedback system intends that the electron beam pass through the center of the BPM, so to provide stable photon beam into beamlines the BPM pickup itself must be stable to sub-micrometer precision. Thermal deformation of the vacuum chambers on which the BPM pickups are mounted is inevitable when the electron beam current is changed by unintended beam abort. We reduced this deformation by improving the vacuum chamber support and by enhancing the water cooling. We report the thermo-mechanical analysis and displacement measurements of BPM pickups after the improvements.

  6. Thermo-mechanical modelling and experimental validation of CLIC prototype module type 0

    CERN Document Server

    Kortelainen, Lauri; Koivurova, Hannu; Riddone, Germana; Österberg, Kenneth

    Micron level stability of the two-meter repetitive modules constituting the two main linacs is one of the most important requirements to achieve the luminosity goal for the Compact Linear Collider. Structural deformations due to thermal loads and related to the RF power dissipated inside the modules affect the alignment of the linacs and therefore the resulting luminosity performance. A CLIC prototype module has been assembled in a dedicated laboratory and a thermal test program has been started in order to study its thermo-mechanical behaviour. This thesis focuses on the finite elements modelling of the first CLIC prototype module 0. The aim of the modelling is to examine the temperature distributions and the resulting deformations of the module in different operating conditions defined in the thermal test program. The theoretical results have been compared to the experimental ones; the comparison shows that the results are in good agreement both for the thermal behaviour of the module and for the resulting ...

  7. Rheological properties of refined wheat - millet flour based dough under thermo-mechanical stress.

    Science.gov (United States)

    Chakraborty, Subir K; Tiwari, Anu; Mishra, Atishay; Singh, Alok

    2015-05-01

    Designed experiments were conducted to study the rheological properties of baking dough prepared from different refined wheat flour (RWF) - barnyard millet blends with varying amount of water (WA), salt and sugar. Dough was subjected to thermo-mechanical stress in Mixolab, in which rheological properties were recorded in terms of five different torques. Second order polynomial models were developed using response surface methodology (RSM) to understand the effect of input variables (WA, barnyard millet, salt and sugar; all expressed as per cent of base flour) on torques recorded by Mixolab. Optimum values of input variables were obtained with constraints based on torque values which represented the qualities of acceptable bread dough. The models predicted that a dough with 57, 26, 1.8 and 3.3% of water, barnyard millet, salt and sugar, respectively, can be used for bread baking purposes.

  8. Modelling the thermo-mechanical volume change behaviour of compacted expansive clays

    CERN Document Server

    Tang, Anh-Minh; 10.1680/geot.2009.59.3.185

    2009-01-01

    Compacted expansive clays are often considered as a possible buffer material in high-level deep radioactive waste disposals. After the installation of waste canisters, the engineered clay barriers are subjected to thermo-hydro-mechanical actions in the form of water infiltration from the geological barrier, heat dissipation from the radioactive waste canisters, and stresses generated by clay swelling under almost confined conditions. The aim of the present work is to develop a constitutive model that is able to describe the behaviour of compacted expansive clays under these coupled thermo-hydro-mechanical actions. The proposed model is based on two existing models: one for the hydro-mechanical behaviour of compacted expansive clays and another for the thermo-mechanical behaviour of saturated clays. The elaborated model has been validated using the thermo-hydro-mechanical test results on the compacted MX80 bentonite. Comparison between the model prediction and the experimental data show that this model is able...

  9. Probing thermomechanics at the nanoscale: impulsively excited pseudosurface acoustic waves in hypersonic phononic crystals.

    Science.gov (United States)

    Nardi, Damiano; Travagliati, Marco; Siemens, Mark E; Li, Qing; Murnane, Margaret M; Kapteyn, Henry C; Ferrini, Gabriele; Parmigiani, Fulvio; Banfi, Francesco

    2011-10-12

    High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system's initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system's excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths.

  10. Low Cycle and Thermo-Mechanical Fatigue of Friction Welded Dissimilar Superalloys Joint

    Science.gov (United States)

    Sakaguchi, Motoki; Sano, Atsushi; Tran, Tra Hung; Okazaki, Masakazu; Sekihara, Masaru

    The high temperature strengths of the dissimilar friction welded superalloys joint between the cast polycrystalline Mar-M247 and the forged IN718 alloys have been investigated under low cycle and thermo-mechanical fatigue loadings, in comparison with those of the base metals. The experiments showed that the lives of the dissimilar joints were significantly influenced by the test conditions and loading modes. Not only the lives themselves but also the failure positions and mechanisms were sensitive to the loading mode. The fracture behaviors depending on the loading modes and test conditions were discussed, based on the macroscopic elastic follow-up mechanism and the microstructural inhomogeneity in the friction weld joint.

  11. Texture evolution during thermomechanical processing in rare earth free magnesium alloys

    Science.gov (United States)

    Miller, Victoria Mayne

    The use of wrought magnesium alloys is highly desirable for a wide range of applications where low component weight is desirable due to the high specific strength and stiffness the alloys can achieve. However, the implementation of wrought magnesium has been hindered by the limited room temperature formability which typically results from deformation processing. This work identifies opportunities for texture modification during thermomechanical processing of conventional (rare earth free) magnesium alloys via a combination of experimental investigation and polycrystal plasticity simulations. During deformation, it is observed that a homogeneous distribution of coarse intermetallic particles efficiently weakens deformation texture at all strain levels, while a highly inhomogeneous particle distribution is only effective at high strains. The particle deformation effects are complemented by the addition of alkaline earth solute, which modifies the relative deformation mode activity. During recrystallization, grains with basal orientations recrystallize more readily than off-basal grains, despite similar levels of internal misorientation. Dislocation substructure investigations revealed that this is a result of enhanced nucleation in the basal grains due to the dominance of prismatic slip. This dissertation identifies avenues to enhance the potential formability of magnesium alloys during thermomechanical processing by minimizing the evolved texture strength. The following are the identified key aspects of microstructural control: -Maintaining a fine grain size, likely via Zener pinning, to favorably modify deformation mode activity and homogenize deformation. -Developing a coarse, homogeneously distributed population of coarse intermetallic particles to promote a diffuse deformation texture. -Minimizing the activity of prismatic slip to retard the recrystallization of grains with basal orientations, allowing the development of a more diffuse recrystallization texture.

  12. Thermo-mechanical processing of austenitic steel to mitigate surface related degradation

    Science.gov (United States)

    Idell, Yaakov Jonathan

    Thermo-mechanical processing plays an important role in materials property optimization through microstructure modification, required by demanding modern materials applications. Due to the critical role of austenitic stainless steels, such as 316L, as structural components in harsh environments, e.g. in nuclear power plants, improved degradation resistance is desirable. A novel two-dimensional plane strain machining process has shown promise achieving significant grain size refinement through severe plastic deformation (SPD) and imparting large strains in the surface and subsurface regions of the substrate in various metals and alloys. The deformation process creates a heavily deformed 20 -- 30 micron thick nanocrystalline surface layer with increased hardness and minimal martensite formation. Post-deformation processing annealing treatments have been applied to assess stability of the refined scale microstructures and the potential for obtaining grain boundary engineered microstructures with increased fraction of low-energy grain boundaries and altered grain boundary network structure. Varying the deformation and heat treatment process parameters, allows for development of a full understanding of the nanocrystalline layer and cross-section of the surface substrate created. Micro-characterization was performed using hardness measurements, magnetometry, x-ray diffraction, scanning and transmission electron microscopy to assess property and microstructural changes. This study provides a fundamental understanding of two-dimensional plane strain machining as a thermo-mechanical processing technique, which may in the future deliver capabilities for creating grain boundary engineered surface modified components, typified by a combination of grain refinement with improved grain boundary network interconnectivity attributes suitable for use in harsh environments, such as those in commercial nuclear power plants where improved resistance to irradiation stress corrosion

  13. Research on universal combinatorial coding.

    Science.gov (United States)

    Lu, Jun; Zhang, Zhuo; Mo, Juan

    2014-01-01

    The conception of universal combinatorial coding is proposed. Relations exist more or less in many coding methods. It means that a kind of universal coding method is objectively existent. It can be a bridge connecting many coding methods. Universal combinatorial coding is lossless and it is based on the combinatorics theory. The combinational and exhaustive property make it closely related with the existing code methods. Universal combinatorial coding does not depend on the probability statistic characteristic of information source, and it has the characteristics across three coding branches. It has analyzed the relationship between the universal combinatorial coding and the variety of coding method and has researched many applications technologies of this coding method. In addition, the efficiency of universal combinatorial coding is analyzed theoretically. The multicharacteristic and multiapplication of universal combinatorial coding are unique in the existing coding methods. Universal combinatorial coding has theoretical research and practical application value.

  14. Scrum Code Camps

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Pries-Heje, Lene; Dahlgaard, Bente

    2013-01-01

    is required. In this paper we present the design of such a new approach, the Scrum Code Camp, which can be used to assess agile team capability in a transparent and consistent way. A design science research approach is used to analyze properties of two instances of the Scrum Code Camp where seven agile teams...

  15. Pseudonoise code tracking loop

    Science.gov (United States)

    Laflame, D. T. (Inventor)

    1980-01-01

    A delay-locked loop is presented for tracking a pseudonoise (PN) reference code in an incoming communication signal. The loop is less sensitive to gain imbalances, which can otherwise introduce timing errors in the PN reference code formed by the loop.

  16. READING A NEURAL CODE

    NARCIS (Netherlands)

    BIALEK, W; RIEKE, F; VANSTEVENINCK, RRD; WARLAND, D

    1991-01-01

    Traditional approaches to neural coding characterize the encoding of known stimuli in average neural responses. Organisms face nearly the opposite task - extracting information about an unknown time-dependent stimulus from short segments of a spike train. Here the neural code was characterized from

  17. The materiality of Code

    DEFF Research Database (Denmark)

    Soon, Winnie

    2014-01-01

    , Twitter and Facebook). The focus is not to investigate the functionalities and efficiencies of the code, but to study and interpret the program level of code in order to trace the use of various technological methods such as third-party libraries and platforms’ interfaces. These are important...

  18. Nuremberg code turns 60

    OpenAIRE

    Thieren, Michel; Mauron, Alex

    2007-01-01

    This month marks sixty years since the Nuremberg code – the basic text of modern medical ethics – was issued. The principles in this code were articulated in the context of the Nuremberg trials in 1947. We would like to use this anniversary to examine its ability to address the ethical challenges of our time.

  19. Safety Code A12

    CERN Multimedia

    SC Secretariat

    2005-01-01

    Please note that the Safety Code A12 (Code A12) entitled "THE SAFETY COMMISSION (SC)" is available on the web at the following url: https://edms.cern.ch/document/479423/LAST_RELEASED Paper copies can also be obtained from the SC Unit Secretariat, e-mail: sc.secretariat@cern.ch SC Secretariat

  20. Study on the Constitutive Model of Concrete and Steel for Explicit Dynamic Beam Elements of ABAQUS%ABAQUS显式分析梁单元的混凝土、钢筋本构模型

    Institute of Scientific and Technical Information of China (English)

    王强; 朱丽丽; 李哲; 刘琳

    2013-01-01

    There is no concrete constitutive model and reasonable steel constitutive model in the explicit analysis module of ABAQUS for spatial beam element. In this paper,the uniaxial constitutive model of concrete and steel is established in order to precisely simulate the nonlinear performance of RC column-beam members under seismic loads. The restraint effect of stirrup and the crack surface effect of concrete are included in the purposed concrete constitutive model. Bauschinger effect is also considered in the uniaxial constitutive model of steel. The material subroutines of these models are simultaneously developed and applied to the explicit dynamic module of ABAQUS by means of user-defined subroutine interface(VUMAT). In addition, the hysteretic performance of RC columns under cyclic loading is numerically simulated. Compared with the steel constitutive model of ABAQUS, the results show that the model of this paper can more rightly simulate the hysteretic performance of RC columns under the multiaxial load. Especially the biaxial bending coupling effect of the speciments is analyzed accurately. The established models can meet the demand for analyzing the nonlinear dynamic response of RC column-beam element under the multiaxial loading conditions.%目的 为准确模拟地震作用下钢筋混凝土梁柱构件的弹塑性受力特性,解决ABAQUS软件显式分析模块缺乏用于三维梁单元的混凝土本构模型及钢筋本构模型的问题.方法 采用的混凝土单轴本构模型考虑了箍筋对混凝土的约束影响以及混凝土裂面效应的影响,钢筋单轴本构模型合理考虑了Bauschinger效应,利用ABAQUS用户子程序接口VUMAT进行二次开发,编制了用于显式动力分析的梁单元混凝土、钢筋本构模型的计算程序,并对往复荷载下钢筋混凝土柱受力性能进行了数值模拟.结果 通过与ABAQUS自带的钢筋本构模型对比,验证了采用笔者给出的混凝土与钢筋本构模型能够较

  1. Astrophysics Source Code Library

    CERN Document Server

    Allen, Alice; Berriman, Bruce; Hanisch, Robert J; Mink, Jessica; Teuben, Peter J

    2012-01-01

    The Astrophysics Source Code Library (ASCL), founded in 1999, is a free on-line registry for source codes of interest to astronomers and astrophysicists. The library is housed on the discussion forum for Astronomy Picture of the Day (APOD) and can be accessed at http://ascl.net. The ASCL has a comprehensive listing that covers a significant number of the astrophysics source codes used to generate results published in or submitted to refereed journals and continues to grow. The ASCL currently has entries for over 500 codes; its records are citable and are indexed by ADS. The editors of the ASCL and members of its Advisory Committee were on hand at a demonstration table in the ADASS poster room to present the ASCL, accept code submissions, show how the ASCL is starting to be used by the astrophysics community, and take questions on and suggestions for improving the resource.

  2. Transformation invariant sparse coding

    DEFF Research Database (Denmark)

    Mørup, Morten; Schmidt, Mikkel Nørgaard

    2011-01-01

    Sparse coding is a well established principle for unsupervised learning. Traditionally, features are extracted in sparse coding in specific locations, however, often we would prefer invariant representation. This paper introduces a general transformation invariant sparse coding (TISC) model....... The model decomposes images into features invariant to location and general transformation by a set of specified operators as well as a sparse coding matrix indicating where and to what degree in the original image these features are present. The TISC model is in general overcomplete and we therefore invoke...... sparse coding to estimate its parameters. We demonstrate how the model can correctly identify components of non-trivial artificial as well as real image data. Thus, the model is capable of reducing feature redundancies in terms of pre-specified transformations improving the component identification....

  3. The Aesthetics of Coding

    DEFF Research Database (Denmark)

    Andersen, Christian Ulrik

    2007-01-01

    discusses code as the artist’s material and, further, formulates a critique of Cramer. The seductive magic in computer-generated art does not lie in the magical expression, but nor does it lie in the code/material/text itself. It lies in the nature of code to do something – as if it was magic......Computer art is often associated with computer-generated expressions (digitally manipulated audio/images in music, video, stage design, media facades, etc.). In recent computer art, however, the code-text itself – not the generated output – has become the artwork (Perl Poetry, ASCII Art, obfuscated...... avant-garde’. In line with Cramer, the artists Alex McLean and Adrian Ward (aka Slub) declare: “art-oriented programming needs to acknowledge the conditions of its own making – its poesis.” By analysing the Live Coding performances of Slub (where they program computer music live), the presentation...

  4. The SIFT Code Specification

    Science.gov (United States)

    1983-01-01

    The specification of Software Implemented Fault Tolerance (SIFT) consists of two parts, the specifications of the SIFT models and the specifications of the SIFT PASCAL program which actually implements the SIFT system. The code specifications are the last of a hierarchy of models describing the operation of the SIFT system and are related to the SIFT models as well as the PASCAL program. These Specifications serve to link the SIFT models to the running program. The specifications are very large and detailed and closely follow the form and organization of the PASCAL code. In addition to describing each of the components of the SIFT code, the code specifications describe the assumptions of the upper SIFT models which are required to actually prove that the code will work as specified. These constraints are imposed primarily on the schedule tables.

  5. Combustion chamber analysis code

    Science.gov (United States)

    Przekwas, A. J.; Lai, Y. G.; Krishnan, A.; Avva, R. K.; Giridharan, M. G.

    1993-05-01

    A three-dimensional, time dependent, Favre averaged, finite volume Navier-Stokes code has been developed to model compressible and incompressible flows (with and without chemical reactions) in liquid rocket engines. The code has a non-staggered formulation with generalized body-fitted-coordinates (BFC) capability. Higher order differencing methodologies such as MUSCL and Osher-Chakravarthy schemes are available. Turbulent flows can be modeled using any of the five turbulent models present in the code. A two-phase, two-liquid, Lagrangian spray model has been incorporated into the code. Chemical equilibrium and finite rate reaction models are available to model chemically reacting flows. The discrete ordinate method is used to model effects of thermal radiation. The code has been validated extensively against benchmark experimental data and has been applied to model flows in several propulsion system components of the SSME and the STME.

  6. 基于Abaqus和遗传算法的预应力混凝土风机塔架优化设计%The Optimization Design of Prestressed Reinforced Concrete Wind Tower Based on Abaqus and Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    孟冉; 马宏旺

    2013-01-01

    In this paper, the genetic algorithm was used to optimize the Prestressed Reinforced Concrete tower, under ultimate load and operation load, tower's stress and deformation were presented by Abaqus. During the optimization procedure, cost was taken as the objective function, detailing requirements and allowable values in standard provisions were regarded as constraint conditions, penalty function was introduced to convert problems into unconstraint and search for the optimal solution. Based on the Python language platform, the genetic algorithm by real decoding and the model scripts were compiled which connected Abaqus with genetic algorithm, it helps to solve the huge and complicated structures problems as the numerical model can be analyzed and optimized at the same time. The result shows that by using the method in this paper the cost of tower is reduced by 25% , and verifies the feasibility and effectiveness of the design optimization method.%运用遗传算法对预应力钢筋混凝土塔架进行优化,应用Abaqus计算塔架在极限荷载和正常工作荷载下的应力与变形.以造价为目标函数,以构造要求及规范规定的允许值为约束条件,引入罚函数将有约束问题转为无约束问题来搜索全局最优解.基于Python语言平台,编译了利用实数解码的遗传算法类以及Abaqus命令流文件,实现了Abaqus与遗传算法的对接,在数值建模分析的同时即可对模型进行优化,为解决大型复杂的结构优化问题,提供了一种可行的解决方法.实例分析表明,采用本文方法,塔架成本减小了将近约25%,验证了该优化设计方法的可行性与有效性.

  7. DEVELOPEMENT AND APPLICAYION OF MATERIAL CONSTITUTIVE MODELS BASED ON ABAQUS/EXPLICIT BEAM ELEMENTS%基于ABAQUS显式分析的梁单元材料模型开发应用

    Institute of Scientific and Technical Information of China (English)

    雷拓; 刘伯权; 刘锋

    2013-01-01

    The current status of steel and concrete uniaxial constitutive models was reviewed briefly.Based on the former research,constitutive models of steel and concrete were presented,which can consider the Bauschinger effect and stiffness degradation of steel,the strength and stiffness degradation of concrete under arbitrarily cyclic loading.Also,modeling methods of reinforced concrete beam elements and some measures using an explicit method for static and dynamic analyses were discussed at length.According to the demand of ABAQUS/Explicit package's VUMAT pattern,a user subroutine for fiber beam elements written in FORTRAN language was developed.By means of the comparison with the pseudo-static test and full scale shaking table test results,the reliability of user subroutine,also,modeling methods were validated.The results show that the user subroutine proposed here are applicable to refined the simulation of normal-and high-strength concrete beams &columns or other components characterized by flexural failure in complex large-scale structures widely.%简要回顾了目前钢筋、混凝土单轴本构关系的研究现状.在前人基础上,重新定义了钢筋、混凝土的本构模型.该模型可考虑反复荷载下钢筋的Bauschinger效应及刚度退化,混凝土任意反复荷载下的强度及刚度退化.讨论了适用于ABAQUS/Explicit分析的钢筋混凝土梁单元建模方法及求解静力、动力问题的注意事项.按照VUMAT接口格式,采用FORTRAN语言编制了纤维模型梁单元的钢筋、混凝土材料用户子程序.通过与拟静力试验及足尺振动台试验结果对比,验证了程序及建模方法的可靠性.结果表明:编制的材料子程序可广泛用于复杂结构中弯曲破坏为特征的普通及高强混凝土梁、柱等构件的精细化模拟.

  8. 用于ABAQUS显式分析梁单元的混凝土单轴本构模型%Study on a Uniaxial Constitutive Model of Concrete for Explicit Dynamic Beam Elements of ABAQUS

    Institute of Scientific and Technical Information of China (English)

    王强; 潘天林; 刘明; 李哲

    2011-01-01

    目的 为实现采用梁单元进行钢筋混凝土杆系结构的弹塑性响应分析,对其混凝土本构关系进行二次开发,使ABAQUS软件提供的混凝土材料模型能用于三维梁单元.方法 利用ABAQUS用户自定义材料程序VUMAT接口,开发用于显式动力分析的梁单元混凝土单轴本构模型,并编制相应的计算程序,对低周往复加载下的钢筋混凝土柱进行数值模拟计算.结果 数值模拟结果能够较好地反映轴力对钢筋混凝土构件滞回性能的影响以及钢筋混凝土柱的双向弯曲耦合性能.结论 笔者所开发的混凝土本构模型能够用于多维受力状态下钢筋混凝土梁柱构件的受力行为分析,满足钢筋混凝土杆系结构动力弹塑性分析的需求.%In order to use the beam element of FEM software ABAQUS for analyzing the elastic-plastic dynamic response of RC truss structures, it is necessary to carry out a secondary development of the concrete constitutive for spatial beam element. In this paper,a uniaxial constitutive model of concrete is established. The material subroutine of this model is successfully developed and applied to explicit dynamic module of ABAQUS by means of user-defined subroutine interface VUMAT. Afterwards,the hysteretic performance of RC columns under cyclic loading is numerically simulated and compared with experiment results. The results show that the uniaxial constitutive model can rightly simulate the influence on the hysteretic performance of RC columns under varies axial load,as well as the bi-axes bending coupling performance. The established model can meet the demand of analyzing the elastic-plastic dynamic response of RC frame structures.

  9. Numerical Verification of Cellular Steel Sheet Pile’ s Stability Against Overturning Using ABAQUS%基于ABAQUS的格形钢板桩抗倾覆稳定性数值分析

    Institute of Scientific and Technical Information of China (English)

    伍晓峰

    2016-01-01

    In this paper, the finite element analysis model of two-dimensional plane stress and strain of cellular steel sheet pile is established, and through the function of contact analysis of the general finite element software ABAQUS, the strength reduction method is adopted to compute the cellular steel sheet pile’ s safety factor against overturning. The paper compares the failure surface of cellular steel sheet pile structure calculated by finite element with the rupture surface assumed by traditional methods like the Hanson method to verify the rationality of the traditional assumptions. The result shows that, compared with the traditional methods, the present numerical method based on ABAQUS takes into consideration the positive safety factors against overturning that were ignored before and also avoids deviations resulted from internal force calculation adopted by traditional methods, thus the result is above average. When the same filling is used, the method can guarantee the same design safety factor while employing smaller size of structure so as to save construction costs.%以通用有限元软件ABAQUS的接触分析功能为工具,建立了格形钢板桩二维平面应力应变有限元分析模型,采用有限元强度折减法计算格形钢板桩的抗倾覆稳定性安全系数,对有限元计算的格形钢板桩结构的破坏面与传统方法假定的破裂面进行了比较,验证了传统假设的合理性。进一步分析了格形钢板桩前、后桩土压力分布和填料性质对格形钢板桩结构抗倾性能的影响,结果表明基于ABAQUS的数值计算方法与汉森法等传统理论方法相比不仅是可行的,而且能节省工程造价,在工程上具有实际意义。

  10. Transformation behaviors of Ti_(48.5)Ni_(48)Fe_2Nb_(1.5) dependence of annealing and thermomechanical cycling

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The effect of annealing treatments and thermomechanical cycling on the transformation behaviors and shape memory effect of Ti48.5Ni48Fe2Nb1.5 shape memory alloys were investigated using electrical resistivity measurement and tensile testing. It is found that the transformation behaviors are influenced considerably by the annealing treatments. Both Ms and As increase with increasing annealing temperature and cooling rate. Martensite stabilization occurs during thermomechanical cycles, thus resulting in lower...

  11. Application of RS Codes in Decoding QR Code

    Institute of Scientific and Technical Information of China (English)

    Zhu Suxia(朱素霞); Ji Zhenzhou; Cao Zhiyan

    2003-01-01

    The QR Code is a 2-dimensional matrix code with high error correction capability. It employs RS codes to generate error correction codewords in encoding and recover errors and damages in decoding. This paper presents several QR Code's virtues, analyzes RS decoding algorithm and gives a software flow chart of decoding the QR Code with RS decoding algorithm.

  12. Evaluation Codes from an Affine Veriety Code Perspective

    DEFF Research Database (Denmark)

    Geil, Hans Olav

    2008-01-01

    Evaluation codes (also called order domain codes) are traditionally introduced as generalized one-point geometric Goppa codes. In the present paper we will give a new point of view on evaluation codes by introducing them instead as particular nice examples of affine variety codes. Our study...

  13. Fulcrum Network Codes

    DEFF Research Database (Denmark)

    2015-01-01

    Fulcrum network codes, which are a network coding framework, achieve three objectives: (i) to reduce the overhead per coded packet to almost 1 bit per source packet; (ii) to operate the network using only low field size operations at intermediate nodes, dramatically reducing complexity in the net...... the number of dimensions seen by the network using a linear mapping. Receivers can tradeoff computational effort with network delay, decoding in the high field size, the low field size, or a combination thereof.......Fulcrum network codes, which are a network coding framework, achieve three objectives: (i) to reduce the overhead per coded packet to almost 1 bit per source packet; (ii) to operate the network using only low field size operations at intermediate nodes, dramatically reducing complexity...... in the network; and (iii) to deliver an end-to-end performance that is close to that of a high field size network coding system for high-end receivers while simultaneously catering to low-end ones that can only decode in a lower field size. Sources may encode using a high field size expansion to increase...

  14. Report number codes

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.N. (ed.)

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  15. Embedded foveation image coding.

    Science.gov (United States)

    Wang, Z; Bovik, A C

    2001-01-01

    The human visual system (HVS) is highly space-variant in sampling, coding, processing, and understanding. The spatial resolution of the HVS is highest around the point of fixation (foveation point) and decreases rapidly with increasing eccentricity. By taking advantage of this fact, it is possible to remove considerable high-frequency information redundancy from the peripheral regions and still reconstruct a perceptually good quality image. Great success has been obtained previously by a class of embedded wavelet image coding algorithms, such as the embedded zerotree wavelet (EZW) and the set partitioning in hierarchical trees (SPIHT) algorithms. Embedded wavelet coding not only provides very good compression performance, but also has the property that the bitstream can be truncated at any point and still be decoded to recreate a reasonably good quality image. In this paper, we propose an embedded foveation image coding (EFIC) algorithm, which orders the encoded bitstream to optimize foveated visual quality at arbitrary bit-rates. A foveation-based image quality metric, namely, foveated wavelet image quality index (FWQI), plays an important role in the EFIC system. We also developed a modified SPIHT algorithm to improve the coding efficiency. Experiments show that EFIC integrates foveation filtering with foveated image coding and demonstrates very good coding performance and scalability in terms of foveated image quality measurement.

  16. Coded MapReduce

    OpenAIRE

    Li, Songze; Maddah-Ali, Mohammad Ali; Avestimehr, A. Salman

    2015-01-01

    MapReduce is a commonly used framework for executing data-intensive jobs on distributed server clusters. We introduce a variant implementation of MapReduce, namely "Coded MapReduce", to substantially reduce the inter-server communication load for the shuffling phase of MapReduce, and thus accelerating its execution. The proposed Coded MapReduce exploits the repetitive mapping of data blocks at different servers to create coding opportunities in the shuffling phase to exchange (key,value) pair...

  17. Distributed multiple description coding

    CERN Document Server

    Bai, Huihui; Zhao, Yao

    2011-01-01

    This book examines distributed video coding (DVC) and multiple description coding (MDC), two novel techniques designed to address the problems of conventional image and video compression coding. Covering all fundamental concepts and core technologies, the chapters can also be read as independent and self-sufficient, describing each methodology in sufficient detail to enable readers to repeat the corresponding experiments easily. Topics and features: provides a broad overview of DVC and MDC, from the basic principles to the latest research; covers sub-sampling based MDC, quantization based MDC,

  18. Cryptography cracking codes

    CERN Document Server

    2014-01-01

    While cracking a code might seem like something few of us would encounter in our daily lives, it is actually far more prevalent than we may realize. Anyone who has had personal information taken because of a hacked email account can understand the need for cryptography and the importance of encryption-essentially the need to code information to keep it safe. This detailed volume examines the logic and science behind various ciphers, their real world uses, how codes can be broken, and the use of technology in this oft-overlooked field.

  19. Classical Holographic Codes

    CERN Document Server

    Brehm, Enrico M

    2016-01-01

    In this work, we introduce classical holographic codes. These can be understood as concatenated probabilistic codes and can be represented as networks uniformly covering hyperbolic space. In particular, classical holographic codes can be interpreted as maps from bulk degrees of freedom to boundary degrees of freedom. Interestingly, they are shown to exhibit features similar to those expected from the AdS/CFT correspondence. Among these are a version of the Ryu-Takayanagi formula and intriguing properties regarding bulk reconstruction and boundary representations of bulk operations. We discuss the relation of our findings with expectations from AdS/CFT and, in particular, with recent results from quantum error correction.

  20. Study of Thermo-Mechanical Effects Induced in Solids by High Energy Particle Beams: Analytical and Numerical Methods

    CERN Document Server

    Dallocchio, Alessandro; Kurtyka, T; Bertarelli, A

    2008-01-01

    Requirements of modern nuclear physics entail big efforts in the field of particle accelerator technology in order to build powerful machines providing particle beams at higher and higher energies; in this context, the Large Hadron Collider represents the future for particle physics. The LHC stores 360 MJ for each circulating beam; this large amount of energy is potentially destructive for accelerator equipments having direct interaction with particles; the need to handle high thermal loads bestows strategic importance to the study of thermo-mechanical problems in accelerator devices. The aim of this work is the study of thermo-mechanical effects induced in solids by high energy particle beams. Development of facilities devoted to the experimental test of accelerator equipments in real working conditions presents several technical difficulties and high cost; the importance of developing reliable methods and accurate models that could be efficiently applied during the design phase of the most critical particle...

  1. Thermo-mechanical properties of bowl-shaped grinding wheel and machining error compensation for grinding indexable inserts

    Institute of Scientific and Technical Information of China (English)

    张祥雷; 姚斌; 陈彬强; 孙维方; 王萌萌; 罗琪

    2015-01-01

    In order to meet the technical requirements of grinding the circumferential cutting edge of indexable inserts, thermo-mechanical properties of bowl-shaped grinding wheel in high speed grinding process and the influence of dimension variations of the grinding wheel on machining accuracy were investigated. Firstly, the variation trends of the dimension due to centrifugal force generated in different wheel speeds were studied and the effect of stress stiffening and spin softening was presented. Triangular heat flux distribution model was adopted to determine temperature distribution in grinding process. Temperature field cloud pictures were obtained by the finite element software. Then, dimension variation trends of wheel structure were acquired by considering the thermo-mechanical characteristic under combined action of centrifugal force and grinding heat at different speeds. A method of online dynamic monitoring and automatic compensation for dimension error of indexable insert was proposed. By experimental verification, the precision of the inserts satisfies the requirement of processing.

  2. Influence of thermomechanical processing on the structure and properties of Cu-Ag alloy in situ composites

    Institute of Scientific and Technical Information of China (English)

    NING; Yuan-tao; ZHANG; Xiao-hui; ZHANG; Jie

    2005-01-01

    The influences of the thermomechanical processing, including the solidification conditions, the cold deformation and the intermediate annealing treatment, on the structure and properties of the Cu-10Ag alloy in situ composite were studied in this paper. The cast structure and the structural changes in the cold deformation and intermediate annealing process were observed. The properties including the ultimate tensile strength (UTS) and the electrical conductivity were determined. A two-stage strain strengthening effect for the Cu-10Ag alloy in situ filamentary composite was observed. The factors influencing the UTS and conductivity were discussed. The solidification conditions in the range of 10-1000 K/s cooling rates and the intermediate heat treatment showed obviously influence on the structure and properties on the Cu-10Ag alloy in situ filamentary composite. The typical properties of the Cu-Ag alloy in situ filamentary composites through thermomechanical processing were reported.

  3. Effect of atherosclerosis on thermo-mechanical properties of arterial wall and its repercussion on plaque instability.

    Science.gov (United States)

    Guinea, G V; Atienza, J M; Fantidis, P; Rojo, F J; Ortega, A; Torres, M; Gonzalez, P; Elices, M L; Hayashi, K; Elices, M

    2009-03-06

    Data from the literature report febrile reactions prior to myocardial infarction in patients with normal coronary arteries and that coronary syndromes seem to be triggered by bacterial and viral infections, being fever the common symptom. The thermo-mechanical behavior of thoracic aortas of New Zealand White rabbits with different degrees of atherosclerosis was measured by means of pressure-diameter tests at different temperatures. Specific measurements of the thermal dilatation coefficient of atheroma plaques were performed by means of tensile tests. Results show a different thermo-mechanical behavior, the dilatation coefficient of atheroma plaque being at least twice that of the arterial wall. Temperature-induced mechanical stress at the plaque-vessel interface could be enough to promote plaque rupture. Therefore, increases of corporal temperature, either local or systemic, can play a role in increasing the risk of acute coronary syndromes and deserve a more comprehensive study.

  4. Shape distortion and thermo-mechanical properties of dense SOFC components from green tape to sintered body

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Esposito, Vincenzo; Ni, De Wei;

    . The characterization of thermo-mechanical properties, such as viscoelasticity, enables a prediction of microstructural stability of SOFCs. Tape-cast bi-layer structures for CGO/YSZ and CGO/ScYSZ was studied during the thermal processing. Different sintering kinetics of bi-layer tape give rise to localized tensile...... stresses, which develop a camber in the final sintered body. To analyze the phenomena, shrinkage of SOFC components single layers and camber development of bi-layers were measured in-situ by optical dilatometry. In addition, a thoughtful investigation of the viscoelastic properties of individual layers...... was carried out by thermo-mechanical analysis (TMA). The results from the different techniques were found complementary and viscous behavior of the layered ceramics was verified....

  5. Three-dimensional finite element analysis of stress distribution in inlay-restored mandibular first molar under simultaneous thermomechanical loads.

    Science.gov (United States)

    Çelik Köycü, Berrak; Imirzalioğlu, Pervin; Özden, Utku Ahmet

    2016-01-01

    Functional occlusal loads and intraoral temperature changes create stress in teeth. The purpose of this study was to evaluate the impact of simultaneous thermomechanical loads on stress distribution related to inlay restored teeth by three-dimensional finite element analysis. A mandibular first molar was constructed with tooth structures, surrounding bone and inlays of Type II gold alloy, ceramic, and composite resin. Stress patterns on the restorative materials, adhesive resin, enamel and dentin were analyzed after simulated temperature changes from 36°C to 4 or 60°C for 2 s with 200-N oblique loading. The results showed that the three types of inlays had similar stress distribution in the tooth structures and restorative materials. Concerning the adhesive resin, the composite resin inlay model exhibited lower stresses than ceramic and gold alloy inlays. Simultaneous thermomechanical loads caused high stress patterns in inlay-restored teeth. Composite resin inlays may be the better choice to avoid adhesive failure.

  6. Application of ABAQUS Second-developed on Design of Flexible Risers%ABAQUS二次开发在海洋柔性立管设计分析中的应用

    Institute of Scientific and Technical Information of China (English)

    孙丽萍; 周佳

    2011-01-01

    基于ABAQUS软件利用Python脚本语言和GUI功能开发了针对柔性立管的建模界面和求解模块.借此设计分析人员可以快速地建立柔性立管的有限元模型并进行计算分析,有效地解决了柔性立管在研制阶段的设计-分析-校核的重复繁琐问题,缩短了研发周期.%Using Python language and ABAQUS GUI Toolkit, the flexible riser simulation and calculation modular is developed. The program can make it simpler for the engineers to establish flexible riser model efficiently and to analyze whether it accords with its design requirements. The method can solve the trivial problem of the design-analysis-check during the design process and shorten the development period.

  7. Digital simulation and analysis on temperature f ield of wet multi-disc brake based on ABAQUS%基于ABAQUS的湿式多盘制动器温度场数值模拟分析

    Institute of Scientific and Technical Information of China (English)

    何建成; 张文明; 姜勇; 李荣昊; 朱利明

    2012-01-01

    以井下工程车辆的湿式多盘制动器为研究对象,建立了基于ABAQUS的湿式多盘制动器的热-机耦合有限元分析模型。通过对湿式多盘制动器温度场的数值模拟分析,得到了不同制动工况下湿式多盘制动器各摩擦副的温度变化曲线,为分析湿式多盘制动器的失效形式及原因提供了参考。%The paper established thermal-mechanical coupling FEM model of the wet multi-disc brake of an underground engineering truck based on ABAQUS.After the digital simulation and analysis of the temperature field of the wet multi-disc brake,the temperature variation curves of each friction pair at various braking modes were obtained.The curves offered references for analyzing failure forms and causes of the wet multi-disc brake.

  8. Temperature Field Analysis and Simulation of the PDC Bit Cutting Teeth Based on ABAQUS Software%基于ABAQUS的PDC钻头切削齿温度场分析与仿真

    Institute of Scientific and Technical Information of China (English)

    李勇; 邓嵘; 刘云胜

    2012-01-01

    基于有限元分析软件ABAQUS的Dmcker—Prager材料模型以及破坏准则,模拟PDC钻头切削齿在切削过程中的温度场,并讨论在切削过程中摩擦产生的热在切削齿后倾角的温度分布和磨损平面的温度分布情况。仿真分析结果能真实地表明在切削齿与岩石作用过程中的温度场、应力场的分布情况,为以后PDC钻头的设计提供有效的依据。%Based nn the finite element analysis of ABAQUS soft- ware's Drucker-Prager material model and failure criteria, simulating the temperature field of the PDC hit cutting leeth in cutting prueess, and discussing the heal generated by cutting process of fi'iction in culling teeth easter angle's temperature distrihntion and the wear plane's temperature distrihutiun. The simulation result can really show that the distribution of the temperature field amt stress field in the cutting teeth and rock interaction process, it can provide effective basis for the later design of the PDC bit.

  9. Importance of Building Code

    Directory of Open Access Journals (Sweden)

    Reshmi Banerjee

    2015-06-01

    Full Text Available A building code, or building control, is a set of rules that specify the minimum standards for constructed objects such as buildings and non building structures. The main purpose of building codes are to protect public health, safety and general welfare as they relate to the construction and occupancy of buildings and structures. The building code becomes law of a particular jurisdiction when formally enacted by the appropriate governmental or private authority. Building codes are generally intended to be applied by architects, engineers, constructors and regulators but are also used for various purposes by safety inspectors, environmental scientists, real estate developers, subcontractors, manufacturers of building products and materials, insurance companies, facility managers, tenants and others.

  10. Bandwidth efficient coding

    CERN Document Server

    Anderson, John B

    2017-01-01

    Bandwidth Efficient Coding addresses the major challenge in communication engineering today: how to communicate more bits of information in the same radio spectrum. Energy and bandwidth are needed to transmit bits, and bandwidth affects capacity the most. Methods have been developed that are ten times as energy efficient at a given bandwidth consumption as simple methods. These employ signals with very complex patterns and are called "coding" solutions. The book begins with classical theory before introducing new techniques that combine older methods of error correction coding and radio transmission in order to create narrowband methods that are as efficient in both spectrum and energy as nature allows. Other topics covered include modulation techniques such as CPM, coded QAM and pulse design.

  11. Code Disentanglement: Initial Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wohlbier, John Greaton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelley, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rockefeller, Gabriel M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Calef, Matthew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-27

    The first step to making more ambitious changes in the EAP code base is to disentangle the code into a set of independent, levelized packages. We define a package as a collection of code, most often across a set of files, that provides a defined set of functionality; a package a) can be built and tested as an entity and b) fits within an overall levelization design. Each package contributes one or more libraries, or an application that uses the other libraries. A package set is levelized if the relationships between packages form a directed, acyclic graph and each package uses only packages at lower levels of the diagram (in Fortran this relationship is often describable by the use relationship between modules). Independent packages permit independent- and therefore parallel|development. The packages form separable units for the purposes of development and testing. This is a proven path for enabling finer-grained changes to a complex code.

  12. Fulcrum Network Codes

    DEFF Research Database (Denmark)

    2015-01-01

    Fulcrum network codes, which are a network coding framework, achieve three objectives: (i) to reduce the overhead per coded packet to almost 1 bit per source packet; (ii) to operate the network using only low field size operations at intermediate nodes, dramatically reducing complexity...... in the network; and (iii) to deliver an end-to-end performance that is close to that of a high field size network coding system for high-end receivers while simultaneously catering to low-end ones that can only decode in a lower field size. Sources may encode using a high field size expansion to increase...... the number of dimensions seen by the network using a linear mapping. Receivers can tradeoff computational effort with network delay, decoding in the high field size, the low field size, or a combination thereof....

  13. The fast code

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, L.N.; Wilson, R.E. [Oregon State Univ., Dept. of Mechanical Engineering, Corvallis, OR (United States)

    1996-09-01

    The FAST Code which is capable of determining structural loads on a flexible, teetering, horizontal axis wind turbine is described and comparisons of calculated loads with test data are given at two wind speeds for the ESI-80. The FAST Code models a two-bladed HAWT with degrees of freedom for blade bending, teeter, drive train flexibility, yaw, and windwise and crosswind tower motion. The code allows blade dimensions, stiffnesses, and weights to differ and models tower shadow, wind shear, and turbulence. Additionally, dynamic stall is included as are delta-3 and an underslung rotor. Load comparisons are made with ESI-80 test data in the form of power spectral density, rainflow counting, occurrence histograms, and azimuth averaged bin plots. It is concluded that agreement between the FAST Code and test results is good. (au)

  14. Coded Random Access

    DEFF Research Database (Denmark)

    Paolini, Enrico; Stefanovic, Cedomir; Liva, Gianluigi

    2015-01-01

    , in which the structure of the access protocol can be mapped to a structure of an erasure-correcting code defined on graph. This opens the possibility to use coding theory and tools for designing efficient random access protocols, offering markedly better performance than ALOHA. Several instances of coded......The rise of machine-to-machine communications has rekindled the interest in random access protocols as a support for a massive number of uncoordinatedly transmitting devices. The legacy ALOHA approach is developed under a collision model, where slots containing collided packets are considered...... as waste. However, if the common receiver (e.g., base station) is capable to store the collision slots and use them in a transmission recovery process based on successive interference cancellation, the design space for access protocols is radically expanded. We present the paradigm of coded random access...

  15. Investigation impact of stressed state conditions and thermomechanical parameters on the texture and structure evolution in 1565ph aluminium alloy

    Science.gov (United States)

    Yashin, V. V.; Aryshensky, E. V.; Kawalla, R. F.; Serebryany, V. N.; Rushchits, S. V.

    2016-11-01

    The paper is devoted to study of the impact stress condition and thermomechanical treatment parameters on the structure and texture evolution of new 1565 ph aluminum alloy. For that purposes, we use test on Gleeble equipment, FM calculation, optical microscopy and x ray diffraction texture analysis. The dependency between the deformation texture components development and strain rate value was established. Differences in the texture evolution at uniaxial compression stress and plain strain mode were revealed.

  16. Prediction of Thermophysical and Thermomechanical Characteristics of Porous Carbon-Ceramic Composite Materials of the Heat Shield of Aerospace Craft

    Science.gov (United States)

    Reznik, S. V.; Prosuntsov, P. V.; Mikhailovskii, K. V.

    2015-05-01

    A procedure for predicting thermophysical and thermomechanical characteristics of porous carbon-ceramic composite materials of the heat shield of aerospace craft as functions of the type of reinforcement, porosity of the structure, and the characteristics of the material's components has been developed. Results of mathematical modeling of the temperature and stressed-strained states of representative volume elements for determining the characteristics of a carbon-ceramic composite material with account taken of its anisotropy have been given.

  17. Thermo-mechanical performance of an ablative/ceramic composite hybrid thermal protection structure for re-entry applications

    OpenAIRE

    Triantou, K.; Mergia, K; Florez, S.; Perez, B.; Bárcena, Jorge; Rotärmel, W.; Pinaud, G.; Fischer, W.P.P.

    2015-01-01

    Hybrid thermal protection systems for aerospace applications based on ablative material (ASTERM (TM)) and ceramic matrix composite (SICARBON (TM)) have been investigated. The ablative material and the ceramic matrix composite were joined using graphite and zirconia zirconium silicate based commercial high temperature adhesives. The thermo-mechanical performance of the structures was assessed from room temperature up to 900 degrees C. In all the joints there is a decrease of shear strength wit...

  18. Annotated Raptor Codes

    CERN Document Server

    Mahdaviani, Kaveh; Tellambura, Chintha

    2011-01-01

    In this paper, an extension of raptor codes is introduced which keeps all the desirable properties of raptor codes, including the linear complexity of encoding and decoding per information bit, unchanged. The new design, however, improves the performance in terms of the reception rate. Our simulations show a 10% reduction in the needed overhead at the benchmark block length of 64,520 bits and with the same complexity per information bit.

  19. On Expanded Cyclic Codes

    CERN Document Server

    Wu, Yingquan

    2008-01-01

    The paper has a threefold purpose. The first purpose is to present an explicit description of expanded cyclic codes defined in $\\GF(q^m)$. The proposed explicit construction of expanded generator matrix and expanded parity check matrix maintains the symbol-wise algebraic structure and thus keeps many important original characteristics. The second purpose of this paper is to identify a class of constant-weight cyclic codes. Specifically, we show that a well-known class of $q$-ary BCH codes excluding the all-zero codeword are constant-weight cyclic codes. Moreover, we show this class of codes achieve the Plotkin bound. The last purpose of the paper is to characterize expanded cyclic codes utilizing the proposed expanded generator matrix and parity check matrix. We analyze the properties of component codewords of a codeword and particularly establish the precise conditions under which a codeword can be represented by a subbasis. With the new insights, we present an improved lower bound on the minimum distance of...

  20. Robust Nonlinear Neural Codes

    Science.gov (United States)

    Yang, Qianli; Pitkow, Xaq

    2015-03-01

    Most interesting natural sensory stimuli are encoded in the brain in a form that can only be decoded nonlinearly. But despite being a core function of the brain, nonlinear population codes are rarely studied and poorly understood. Interestingly, the few existing models of nonlinear codes are inconsistent with known architectural features of the brain. In particular, these codes have information content that scales with the size of the cortical population, even if that violates the data processing inequality by exceeding the amount of information entering the sensory system. Here we provide a valid theory of nonlinear population codes by generalizing recent work on information-limiting correlations in linear population codes. Although these generalized, nonlinear information-limiting correlations bound the performance of any decoder, they also make decoding more robust to suboptimal computation, allowing many suboptimal decoders to achieve nearly the same efficiency as an optimal decoder. Although these correlations are extremely difficult to measure directly, particularly for nonlinear codes, we provide a simple, practical test by which one can use choice-related activity in small populations of neurons to determine whether decoding is suboptimal or optimal and limited by correlated noise. We conclude by describing an example computation in the vestibular system where this theory applies. QY and XP was supported by a grant from the McNair foundation.

  1. Poly-Lactide/Exfoliated C30B Interactions and Influence on Thermo-Mechanical Properties Due to Artificial Weathering

    Directory of Open Access Journals (Sweden)

    Wendy Margarita Chávez-Montes

    2016-04-01

    Full Text Available Thermal stability as well as enhanced mechanical properties of poly-lactide (PLA can increase PLA applications for short-use products. The conjunction of adequate molecular weight (MW as well as satisfactory thermo-mechanical properties, together, can lead to the achievement of suitable properties. However, PLA is susceptible to thermal degradation and thus an undesired decay of MW and a decrease of its mechanical properties during processing. To avoid this PLA degradation, nanofiller is incorporated as reinforcement to increase its thermo-mechanical properties. There are many papers focusing on filler effects on the thermal stability and mechanical properties of PLA/nanocomposites; however, these investigations lack an explanation of polymer/filler interactions. We propose interactions between PLA and Cloisite30B (C30B as nanofiller. We also study the effects on the thermal and mechanical properties due to molecular weight decay after exposure to artificial weathering. PLA blank and nanocomposites were subjected to three time treatments (0, 176, and 360 h of exposure to artificial weathering in order to achieve comparable materials with different MW. MW was acquired by means of Gel Permeation Chromatography (GPC. Thermo-mechanical properties were investigated through Thermogravimetric Analysis (TGA, Differential Scanning Calorimetry (DSC, X-ray Diffraction (XRD, Dynamic Mechanical Thermal Analysis (DMTA and Fourier Transform Infrared Spectroscopy (FTIR.

  2. First-principles study of thermal expansion and thermomechanics of single-layer black and blue phosphorus

    Science.gov (United States)

    Sun, Hongyi; Liu, Gang; Li, Qingfang; Wan, X. G.

    2016-05-01

    The linear thermal expansion coefficients (LTEC) and thermomechanics of single-layer black and blue phosphorus are systematically studied using first-principles based on quasiharmonic approximation. We find the thermal expansion of black phosphorus is very anisotropic. The LTEC along zigzag direction has a turning from negative to positive at around 138 K, while the LTEC along armchair direction is positive (except below 8 K) and about 2.5 times larger than that along zigzag direction at 300 K. For blue phosphorus, the LTEC is negative in the temperature range from 0 to 350 K. In addition, we find that the Young's modulus and Poisson's ratio of black phosphorus along zigzag direction are 4 to 5 times larger than those along armchair direction within considered temperature range, showing a remarkable anisotropic in-plane thermomechanics property. The mechanisms of these peculiar thermal properties are also explored. This work provides a theoretical understanding of the thermal expansion and thermomechanics of this single layer phosphorus family, which will be useful in nanodevices.

  3. Effect of Cycle Duration and Phasing on Thermomechanical Fatigue of Dog-Bone Specimens Made form Steel

    Directory of Open Access Journals (Sweden)

    Achegaf Zineb

    2010-01-01

    Full Text Available Problem statement: Lifetime of standard dog-bone specimens made form steel as affected by phasing between thermal cycles and strains cycles and by cycle duration in thermomechanical fatigue is assessed under various conditions of loading. Approach: The methodology used was based on finite element post-processing analysis by specialized fatigue software package that takes into account coupling of damage from three primary sources: Fatigue, oxidation and creep. Results: A parametric study has been conducted for various thermomechanical loadings and effects of phasing and cycle duration on lifetime have been evaluated. The associated percentages of damage mechanisms due to fatigue, oxidation and creep have been determined. Conclusion: It has been shown that both phasing and cycle duration have considerable effect on lifetime. In the range of parameters investigated, the in-phase cycles were found to reduce considerably damage in the specimen for low pressures and low temperatures. The results have shown also that there was no way of unique comparison of the various phasing configurations, since there exists always a case of thermomechanical loading for which one phasing configuration yields higher damage than any another configuration.

  4. Correlation between mechanical properties and structural changes of the sintered Cu-4 at% Ag alloy during thermomechanical treatment

    Directory of Open Access Journals (Sweden)

    Rangelov Ivana I.

    2008-01-01

    Full Text Available Influence of thermomechanical treatment on micro structure and strength (hardness and microhardness of the sintered copper based Cu-4 at% Ag alloy was investigated using Vickers hardness and microhardness measurements, and optical microscopy. After sintering at 790°C, samples of Cu-4 at% Ag alloy were subjected to thermomechanical treatment by cold rolling with 20, 40 and 60% deformation degrees, and annealing below and over the recrystallization temperature. It was shown that microstructure of Cu-4 at% Ag alloy changed with thermomechanical treatment, which directly causes changes of mechanical properties. Optical microphotograph of the sintered Cu-4 at% Ag alloy shows relatively homogeneous structure with spherical pores presented. The strength (hardness and microhardness of the sintered Cu-4 at% Ag alloy during cold rolling increases with deformation degree due to deformation strengthening. Maximum values of hardness and microhardness were for 60% deformation. The porosity still exists in spite of the fact that compacting was carried out during the cold rolling. The hardness and microhardness continue to increase after annealing at temperature bellow recrystallization temperature due to anneal hardening effect which occurs in a temperature range of 160-350°C. It was concluded that solute segregation to dislocations, analogous to the formation of Cottrel atmosphere in interstitial solid solutions, is primarily responsible for anneal hardening phenomenon. Annealing at higher temperatures (higher than 400°C results in strength decrease due to beginning of alloy recrystallization.

  5. On the hot cracking susceptibility of a semisolid aluminium 6061 weld: Application of a coupled solidification- thermomechanical model

    Science.gov (United States)

    Zareie Rajani, H. R.; Phillion, A. B.

    2015-06-01

    A coupled solidification-thermomechanical model is presented that investigates the hot tearing susceptibility of an aluminium 6061 semisolid weld. Two key phenomena are considered: excessive deformation of the semisolid weld, initiating a hot tear, and the ability of the semisolid weld to heal the hot tear by circulation of the molten metal. The model consists of two major modules: weld solidification and thermomechanical analysis. 1) By means of a multi-scale model of solidification, the microstructural evolution of the semisolid weld is simulated in 3D. The semisolid structure, which varies as a function of welding parameters, is composed of solidifying grains and a network of micro liquid channels. The weld solidification module is utilized to obtain the solidification shrinkage. The size of the micro liquid channels is used as an indicator to assess the healing ability of the semisolid weld. 2) Using the finite element method, the mechanical interaction between the weld pool and the base metal is simulated to capture the transient force field deforming the semisolid weld. Thermomechanical stresses and shrinkage stresses are both considered in the analysis; the solidification contractions are extracted from the weld solidification module and applied to the deformation simulation as boundary conditions. Such an analysis enables characterization of the potential for excessive deformation of the weld. The outputs of the model are used to study the effect of welding parameters including welding current and speed, and also welding constraint on the hot cracking susceptibility of an aluminium alloy 6061 semisolid weld.

  6. Thermomechanical Fatigue Durability of T650-35/PMR-15 Sheet Molding Compound

    Science.gov (United States)

    Castelli, Michael G.; Sutter, James K.; Benson, Dianne

    1998-01-01

    Although polyimide based composites have been used for many years in a wide variety of elevated temperature applications, very little work has been done to examine the durability and damage behavior under more prototypical thermomechanical fatigue (TMF) loadings. Synergistic effects resulting from simultaneous temperature and load cycling can potentially lead to enhanced, if not unique, damage modes and contribute to a number of nonlinear deformation responses. The goal of this research was to examine the effects of a TMF loading spectrum, representative of a gas turbine engine compressor application, on a polyimide sheet molding compound (SMC). High performance SMCs present alternatives to prepreg forms with great potential for low cost component production through less labor intensive, more easily automated manufacturing. To examine the issues involved with TMF, a detailed experimental investigation was conducted to characterize the durability of a T650-35/PMR-15 SMC subjected to TMF mission cycle loadings. Fatigue damage progression was tracked through macroscopic deformation and elastic stiffness. Additional properties, such as the glass transition temperature (T(sub g) and dynamic mechanical properties were examined. The fiber distribution orientation was also characterized through a detailed quantitative image analysis. Damage tolerance was quantified on the basis of residual static tensile properties after a prescribed number of TMF missions. Detailed microstructural examinations were conducted using optical and scanning electron microscopy to characterize the local damage. The imposed baseline TMF missions had only a modest impact on inducing fatigue damage with no statistically significant degradation occurring in the measured macroscopic properties. Microstructural damage was, however, observed subsequent to 100 h of TMF cycling which consisted primarily of fiber debonding and transverse cracking local to predominantly transverse fiber bundles. The TMF

  7. Correlation of microstructure and thermo-mechanical properties of a novel hydrogen transport membrane

    Science.gov (United States)

    Zhang, Yongjun

    A key part of the FutureGen concept is to support the production of hydrogen to fuel a "hydrogen economy," with the use of clean burning hydrogen in power-producing fuel cells, as well as for use as a transportation fuel. One of the key technical barriers to FutureGen deployment is reliable and efficient hydrogen separation technology. Most Hydrogen Transport Membrane (HTM) research currently focuses on separation technology and hydrogen flux characterization. No significant work has been performed on thermo-mechanical properties of HTMs. The objective of the thesis is to understand the structure-property correlation of HTM and to characterize (1) thermo mechanical properties under different reducing environments and thermal cycles (thermal shock), and (2) evaluate the stability of the novel HTM material. A novel HTM cermet bulk sample was characterized for its physical and mechanical properties at both room temperature and at elevated temperature up to 1000°C. Micro-structural properties and residual stresses were evaluated in order to understand the changing mechanism of the microstructure and its effects on the mechanical properties of materials. A correlation of the microstructural and thermo mechanical properties of the HTM system was established for both HTM and the substrate material. Mechanical properties of both selected structural ceramics and the novel HTM cermet bulk sample are affected mainly by porosity and microstructural features, such as grain size and pore size-distribution. The Young's Modulus (E-value) is positively correlated to the flexural strength for materials with similar crystallographic structure. However, for different crystallographic materials, physical properties are independent of mechanical properties. Microstructural properties, particularly, grain size and crystallographic structure, and thermodynamic properties are the main factors affecting the mechanical properties at both room and high temperatures. The HTM cermet behaves

  8. Thermomechanical analysis of nodule damage in HfO2/SiO2 multilayer coatings

    Institute of Scientific and Technical Information of China (English)

    Yongguang Shan; Hongbo He; C haoyang Wei; Ying Wang; Yuan'an Zhao

    2011-01-01

    Samples with nodular defects grown from gold nanoparticles are prepared, and laser-induced damage tests are conducted on them. Nodular defects, which are in critical state of damage, are cross-sectioned by focusing on the ion beam and by imaging using a field emission scanning electron microscope. The cross-sectional profile shows that cracks are generated and propagated along the nodular boundaries and the HfO2/SiO2 interface, or are even melted. The thermomechanical process induced by the heated seed region is analyzed based on the calculations of temperature increase and thermal stress. The numerical results give the critical temperature of the seed region and the thermal stress for crack generation, irradiated with threshold fluence. The numerical results are in good agreement with the experimental ones.%Samples with nodular defects grown from gold nanoparticles are prepared,and laser induced damage tests are conducted on them.Nodular defects,which are in critical state of damage,are cross-sectioned by focusing on the ion beam and by imaging using a field emission scanning electron microscope.The crosssectional profile shows that cracks are generated and propagated along the nodular boundaries and the HfO2/SiO2 interface,or are even melted.The thermomechanical process induced by the heated seed region is analyzed based on the calculations of temperature increase and thermal stress.The numerical results give the critical temperature of the seed region and the thermal stress for crack generation,irradiated with threshold fluence.The numerical results are in good agreement with the experimental ones.Nodular defect,a typical defect in multilayer coatings,largely limits the improvement of the laser-induced damage threshold (LIDT) in the nanosecond regime and thus has been widely investigated.Electric field enhancement in the nodule,induced by the microlens effect of the dome structure of nodular defects,is an important factor in reducing the LIDT[1-5].Recently

  9. Thermomechanical response of metal foam sandwich panels for structural thermal protection systems in hypersonic vehicles

    Science.gov (United States)

    Rakow, Joseph F.

    Sandwich panels with metal foam cores are proposed for load-bearing structural components in actively cooled thermal protection systems for aerospace vehicles. Prototype acreage metal foam sandwich panels (MFSP's) are constructed and analyzed with the central goal of characterizing the thermomechanical response of the system. MFSP's are subjected to uniform temperature fields and equibiaxial loading in a novel experimental load frame. The load frame exploits the mismatch of coefficients of thermal expansion and allows for thermostructural experimentation without the endemic conflict of thermal and mechanical boundary conditions. Back-to-back strain gages and distributed thermocouples capture the in-plane response of the panels, including buckling and elastic-plastic post-buckling. The out-of-plane response is captured via moire interferometry, which provides a visualization of evolving mode shapes throughout the post-buckling regime. The experimental results agree with an analytical prediction for critical temperatures in sandwich panels based on a Rayleigh-Ritz minimization of the energy functional for a Reissner-Mindlin plate. In addition, a three-dimensional finite element model of the non-linear thermomechanical response of the panel-frame experimental system is developed and the results are shown to agree well with the experimentally identified response of MFSP's. Central to analytical and numerical characterization of MFSP's is an understanding of the response of metal foam under shear loading. The shear response of metal foam is captured experimentally, providing density-dependent relationships for material stiffness, strength, and energy absorption. Speckle photography is employed to identify microstructural size effects in the distribution of strain throughout metal foam under shear loading. In addition, a micromechanical model is established for the density-dependent shear modulus of metal foam, which allows for the coupling of cell-level imperfections

  10. Thermo-mechanical properties of high aspect ratio silica nanofiber filled epoxy composites

    Science.gov (United States)

    Ren, Liyun

    The optimization of thermo-mechanical properties of polymer composites at low filler loadings is of great interest in both engineering and scientific fields. There have been several studies on high aspect ratio fillers as novel reinforcement phase for polymeric materials. However, facile synthesis method of high aspect ratio nanofillers is limited. In this study, a scalable synthesis method of high aspect ratio silica nanofibers is going to be presented. I will also demonstrate that the inclusion of high aspect ratio silica nanofibers in epoxy results in a significant improvement of epoxy thermo-mechanical properties at low filler loadings. With silica nanofiber concentration of 2.8% by volume, the Young's modulus, ultimate tensile strength and fracture toughness of epoxy increased ~23, ~28 and ~50%, respectively, compared to unfilled epoxy. At silica nanofiber volume concentration of 8.77%, the thermal expansion coefficient decreased by ˜40% and the thermal conductivity was improved by ˜95% at room temperature. In the current study, the influence of nano-sized silica filler aspect ratio on mechanical and thermal behavior of epoxy nanocomposites were studied by comparing silica nanofibers to spherical silica nanoparticles (with aspect ratio of one) at various filler loadings. The significant reinforcement of composite stiffness is attributed to the variation of the local stress state in epoxy due to the high aspect ratio of the silica nanofiber and the introduction of a tremendous amount of interfacial area between the nanofillers and the epoxy matrix. The fracture mechanisms of silica nanofiber filled epoxy were also investigated. The existence of high aspect ratio silica nanofiber promotes fracture energy dissipation by crack deflection, crack pinning as well as debonding with fiber pull-out leading to enhanced fracture toughness. High aspect ratio fillers also provide significant reduction of photon scattering due to formation of a continuous fiber network

  11. Polynomial weights and code constructions

    DEFF Research Database (Denmark)

    Massey, J; Costello, D; Justesen, Jørn

    1973-01-01

    polynomial included. This fundamental property is then used as the key to a variety of code constructions including 1) a simplified derivation of the binary Reed-Muller codes and, for any primepgreater than 2, a new extensive class ofp-ary "Reed-Muller codes," 2) a new class of "repeated-root" cyclic codes...... that are subcodes of the binary Reed-Muller codes and can be very simply instrumented, 3) a new class of constacyclic codes that are subcodes of thep-ary "Reed-Muller codes," 4) two new classes of binary convolutional codes with large "free distance" derived from known binary cyclic codes, 5) two new classes...... of long constraint length binary convolutional codes derived from2^r-ary Reed-Solomon codes, and 6) a new class ofq-ary "repeated-root" constacyclic codes with an algebraic decoding algorithm....

  12. Distributed Video Coding: Iterative Improvements

    DEFF Research Database (Denmark)

    Luong, Huynh Van

    Nowadays, emerging applications such as wireless visual sensor networks and wireless video surveillance are requiring lightweight video encoding with high coding efficiency and error-resilience. Distributed Video Coding (DVC) is a new coding paradigm which exploits the source statistics...

  13. Algebraic geometric codes with applications

    Institute of Scientific and Technical Information of China (English)

    CHEN Hao

    2007-01-01

    The theory of linear error-correcting codes from algebraic geomet-ric curves (algebraic geometric (AG) codes or geometric Goppa codes) has been well-developed since the work of Goppa and Tsfasman, Vladut, and Zink in 1981-1982. In this paper we introduce to readers some recent progress in algebraic geometric codes and their applications in quantum error-correcting codes, secure multi-party computation and the construction of good binary codes.

  14. Product Codes for Optical Communication

    DEFF Research Database (Denmark)

    Andersen, Jakob Dahl

    2002-01-01

    Many optical communicaton systems might benefit from forward-error-correction. We present a hard-decision decoding algorithm for the "Block Turbo Codes", suitable for optical communication, which makes this coding-scheme an alternative to Reed-Solomon codes.......Many optical communicaton systems might benefit from forward-error-correction. We present a hard-decision decoding algorithm for the "Block Turbo Codes", suitable for optical communication, which makes this coding-scheme an alternative to Reed-Solomon codes....

  15. Integration of the DRAGON5/DONJON5 codes in the SALOME platform for performing multi-physics calculations in nuclear engineering

    Science.gov (United States)

    Hébert, Alain

    2014-06-01

    We are presenting the computer science techniques involved in the integration of codes DRAGON5 and DONJON5 in the SALOME platform. This integration brings new capabilities in designing multi-physics computational schemes, with the possibility to couple our reactor physics codes with thermal-hydraulics or thermo-mechanics codes from other organizations. A demonstration is presented where two code components are coupled using the YACS module of SALOME, based on the CORBA protocol. The first component is a full-core 3D steady-state neuronic calculation in a PWR performed using DONJON5. The second component implement a set of 1D thermal-hydraulics calculations, each performed over a single assembly.

  16. Algebraic and stochastic coding theory

    CERN Document Server

    Kythe, Dave K

    2012-01-01

    Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.

  17. Optical coding theory with Prime

    CERN Document Server

    Kwong, Wing C

    2013-01-01

    Although several books cover the coding theory of wireless communications and the hardware technologies and coding techniques of optical CDMA, no book has been specifically dedicated to optical coding theory-until now. Written by renowned authorities in the field, Optical Coding Theory with Prime gathers together in one volume the fundamentals and developments of optical coding theory, with a focus on families of prime codes, supplemented with several families of non-prime codes. The book also explores potential applications to coding-based optical systems and networks. Learn How to Construct

  18. Thermomechanical Model and Bursting Tests to Evaluate the Risk of Swelling and Bursting of Modified 9Cr-1Mo Steel Steam Generator Tubes during a Sodium-Water Reaction Accident

    Directory of Open Access Journals (Sweden)

    C. Bertrand

    2014-01-01

    Full Text Available The MECTUB code was developed to evaluate the risk of swelling and bursting of Steam Generator (SG tubes. This code deals with the physic of intermediate steam-water leaks into sodium which induce a Sodium-Water Reaction (SWR. It is based on a one-dimensional calculation to describe the thermomechanical behavior of tubes under a high internal pressure and a fast external overheating. The mechanical model of MECTUB is strongly correlated with the kind of the material of the SG tubes. It has been developed and validated by using experiments performed on the alloy 800. A change to tubes made of Modified 9Cr-1Mo steel requires more knowledge of Modified 9Cr-1Mo steel behavior which influences the bursting time at high temperatures (up to 1200°C. Studies have been initiated to adapt the mechanical model and to qualify it for this material. The first part of this paper focuses on the mechanical law modelling (elasticity, plasticity, and creep for Modified 9Cr-1Mo steel and on overheating thermal data. In a second part, the results of bursting tests performed on Modified 9Cr-1Mo tubes in the SQUAT facility of CEA are used to validate the mechanical model of MECTUB for the Modified 9Cr-1Mo material.

  19. Golden Coded Multiple Beamforming

    CERN Document Server

    Li, Boyu

    2010-01-01

    The Golden Code is a full-rate full-diversity space-time code, which achieves maximum coding gain for Multiple-Input Multiple-Output (MIMO) systems with two transmit and two receive antennas. Since four information symbols taken from an M-QAM constellation are selected to construct one Golden Code codeword, a maximum likelihood decoder using sphere decoding has the worst-case complexity of O(M^4), when the Channel State Information (CSI) is available at the receiver. Previously, this worst-case complexity was reduced to O(M^(2.5)) without performance degradation. When the CSI is known by the transmitter as well as the receiver, beamforming techniques that employ singular value decomposition are commonly used in MIMO systems. In the absence of channel coding, when a single symbol is transmitted, these systems achieve the full diversity order provided by the channel. Whereas this property is lost when multiple symbols are simultaneously transmitted. However, uncoded multiple beamforming can achieve the full div...

  20. Coded source neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, Philip R [ORNL; Santos-Villalobos, Hector J [ORNL

    2011-01-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100 m) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100um and 10um aperture hole diameters show resolutions matching the hole diameters.

  1. Coded source neutron imaging

    Science.gov (United States)

    Bingham, Philip; Santos-Villalobos, Hector; Tobin, Ken

    2011-03-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100μm) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100μm and 10μm aperture hole diameters show resolutions matching the hole diameters.

  2. Influence of Subducting Plate Geometry on Upper Plate Deformation at Orogen Syntaxes: A Thermomechanical Modeling Approach

    Science.gov (United States)

    Nettesheim, Matthias; Ehlers, Todd; Whipp, David

    2016-04-01

    Syntaxes are short, convex bends in the otherwise slightly concave plate boundaries of subduction zones. These regions are of scientific interest because some syntaxes (e.g., the Himalaya or St. Elias region in Alaska) exhibit exceptionally rapid, focused rock uplift. These areas have led to a hypothesized connection between erosional and tectonic processes (top-down control), but have so far neglected the unique 3D geometry of the subducting plates at these locations. In this study, we contribute to this discussion by exploring the idea that subduction geometry may be sufficient to trigger focused tectonic uplift in the overriding plate (a bottom-up control). For this, we use a fully coupled 3D thermomechanical model that includes thermochronometric age prediction. The downgoing plate is approximated as spherical indenter of high rigidity, whereas both viscous and visco-plastic material properties are used to model deformation in the overriding plate. We also consider the influence of the curvature of the subduction zone and the ratio of subduction velocity to subduction zone advance. We evaluate these models with respect to their effect on the upper plate exhumation rates and localization. Results indicate that increasing curvature of the indenter and a stronger upper crust lead to more focused tectonic uplift, whereas slab advance causes the uplift focus to migrate and thus may hinder the emergence of a positive feedback.

  3. A thermomechanical study of the electrical resistance of Cu lead interconnections

    Science.gov (United States)

    Liu, D. S.; Chen, C. Y.; Chao, Y. C.

    2006-05-01

    The choice of liquid crystal display (LCD) driver packaging technology significantly influences the display performance of flat panel displays. Tape automated bonding (TAB) is generally the method of choice for connecting the LCD and the LCD driver circuit in flat panel displays. To achieve a finer pitch, an easier assembly, and a greater connection reliability, the design of the inner Cu lead must not only consider thermomechanical failure aspects, but must also maintain an acceptable joint resistance. This paper proposes an analytical model to predict the unit change in resistance of the copper foils used for TAB inner lead interconnections under various thermal environments and stressstrain states. The analytical model is based on a constitutive equation of the copper foil and the working principle of strain gages. Copper foil specimens are tensile tested at temperatures of 25°C, 50°C, 75°C, and 100°C at strain rates of 0.2/min. and 0.5/min., respectively, to confirm the validity of the developed analytical model. The numerical results and the experimental data are found to be in good agreement. Hence, the analytical method provides the means of predicting the thermal effect on the electrical and mechanical properties of the copper foils. Finally, by implementing finite-element method (FEM) solutions in the developed analytical model, this study constructs electrical resistance design charts to predict the variation in the electrical resistance of the copper foils under different thermal-mechanical conditions.

  4. Optimized design of thermo-mechanically loaded non-uniform bars by using a variational method

    Science.gov (United States)

    Nayak, P.; Saha, K. N.

    2016-08-01

    The present paper evaluates the axial strain and stress of a thermo-mechanically loaded non-uniform bar by using a numerical method based on a variational principle. The solutions are obtained up to the elastic limit of the material based on the assumptions that material properties are independent of temperature variation and plane cross-sections remain plane maintaining axisymmetry. This approximation is carried out by Galerkin's principle, using a linear combination of sets of orthogonal co-ordinate functions which satisfy prescribed boundary conditions. The solution algorithm is implemented with the help of MATLAB® computational simulation software. Some numerical results of thermoelastic field are presented and discussed for different bar materials such as mild steel, copper, aluminium alloy 6061 (Al alloy 6061), aluminium alloy 7075 (Al alloy 7075) and diamond. The effect of geometry parameters like aspect ratio, slenderness ratio and the type of taperness is investigated and the relevant results are obtained in dimensional form. The term bar used in this paper is in generic sense and hence the formulation is applicable for all one dimensional elements, e.g., rods, pipes, truss members, etc.

  5. Thermomechanical Fatigue Durability of T650-35/PMR-15 Sheet-Molding Compound Evaluated

    Science.gov (United States)

    Castelli, Michael G.

    1999-01-01

    High-performance polymer matrix composites (PMC's) continue to be the focus of a number of research efforts aimed at developing cost-effective, lightweight material alternatives for advanced aerospace and aeropropulsion applications. These materials not only offer significant advantages in specific stiffness and strength over their current metal counterparts, but they can be designed and manufactured to eliminate joints and fasteners by combining individual components into integral subassemblies, thus making them extremely attractive for commercial applications. With much emphasis on the low-cost manufacturing aspects of advanced composite structures, there is heightened interest in high-performance sheet-molding compounds (SMC's). Researchers at the NASA Lewis Research Center, in cooperation with the Allison Advanced Development Company, completed an investigation examining the use of T650-35/PMR-15 SMC for a midstage inner-vane endwall application within a gas turbine engine compressor. This component resides in the engine flow path and is subjected not only to high airflow rates, but also to elevated temperatures and pressures. This application is unique in that it represents a very aggressive use of high-performance SMC's, raising obvious concerns related to durability and property retention in the presence of microstructural damage. Therefore, it was necessary to evaluate the fatigue behavior and damage tolerance of this material subjected to a representative thermomechanical fatigue (TMF) mission-cycle loading spectrum.

  6. Thermo-mechanical modeling of turbulent heat transfer in gas-solid flows including particle collisions

    Energy Technology Data Exchange (ETDEWEB)

    Mansoori, Zohreh; Saffar-Avval, Majid; Basirat-Tabrizi, Hassan; Ahmadi, Goodarz; Lain, Santiago

    2002-12-01

    A thermo-mechanical turbulence model is developed and used for predicting heat transfer in a gas-solid flow through a vertical pipe with constant wall heat flux. The new four-way interaction model makes use of the thermal k{sub {theta}}-{tau}{sub {theta}} equations, in addition to the hydrodynamic k-{tau} transport, and accounts for the particle-particle and particle-wall collisions through a Eulerian/Lagrangian formulation. The simulation results indicate that the level of thermal turbulence intensity and the heat transfer are strongly affected by the particle collisions. Inter-particle collisions attenuate the thermal turbulence intensity near the wall but somewhat amplify the temperature fluctuations in the pipe core region. The hydrodynamic-to-thermal times-scale ratio and the turbulent Prandtl number in the region near the wall increase due to the inter-particle collisions. The results also show that the use of a constant or the single-phase gas turbulent Prandtl number produces error in the thermal eddy diffusivity and thermal turbulent intensity fields. Simulation results also indicate that the inter-particle contact heat conduction during collision has no significant effect in the range of Reynolds number and particle diameter studied.

  7. Effect of Two-Dimensional Grading on the Thermomechanical Response of the Panel

    Science.gov (United States)

    Birman, Victor; Chona, Ravinder; Byrd, Larry W.

    2008-02-01

    Some of the advantages of functionally graded materials (FGM) are related to their ability to provide a better thermal protection and reduce delamination tendencies present in layered composites. In particular, in ceramic-metal systems these goals can be achieved by increasing the concentration of ceramic particles in the region adjacent to the heated surface using a heterogeneous single layered structure. The unfortunate by-products of such design are asymmetry about the middle surface of the structure and bending-stretching coupling. As a result, displacements and stresses increase as compared to the symmetric counterpart, while the buckling loads and natural frequencies decrease. One of the possible solutions to the problem compensating for a reduced stiffness of FGM structures is based on the replacement of one-dimensional grading with a two-dimensional grading, including the regions with enhanced stiffness. The paper illustrates the formulation of the problem and peculiarities introduced in the solution by two-dimensional grading on the example of a large aspect ratio panel subject to thermomechanical loading.

  8. Thermo-mechanical test rig for experimental evaluation of thermal conductivity of ceramic pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Lo Frano, Rosa, E-mail: rosa.lofrano@ing.unipi.it; Aquaro, Donato; Pupeschi, Simone; Moscardini, Marigrazia

    2014-10-15

    Highlights: • Thermal conductivity values of bed as function of a material of known conductivity. • Minimizing the error caused by radial heat transfer. • Experimental evaluation of thermal conductivity of alumina pebble at different temperatures. • Experimental test with/without compression load. - Abstract: The experimental determination of mechanical and thermal properties of ceramic pebble beds, such as the lithium orthosilicate or lithium metatitanate, is a key issue in the framework of fusion power technology, for the reason that they are possible candidates in the design of breeder blankets. The paper deals with an experimental method for the evaluation of the thermal conductivity of ceramic pebble beds versus the temperature and compressive strain, based on a steady state heat flux through a material (alumina) of known conductivity. The alumina thermal conductivity is determined by means of the hot wire method. To assess the experimental method, a thermo-mechanical characterization of alumina pebble beds (a material largely available), having different diameters, considering a wide range of temperatures and compression forces has been carried out. Moreover preliminary tests have been performed on lithium orthosilicate and lithium metatitanate pebble beds.

  9. Thermomechanical fatigue – Damage mechanisms and mechanism-based life prediction methods

    Indian Academy of Sciences (India)

    H-J Christ; A Jung; H J Maier; R Teteruk

    2003-02-01

    An existing extensive database on the isothermal and thermomechanical fatigue behaviour of high-temperature titanium alloy IMI 834 and dispersoidstrengthened aluminum alloy X8019 in SiC particle-reinforced as well as unreinforced conditions was used to evaluate both the adaptability of fracture mechanics approaches to TMF and the resulting predictive capabilities of determining material life by crack propagation consideration. Selection of the correct microstructural concepts was emphasised and these concepts were, then adjusted by using data from independent experiments in order to avoid any sort of fitting. It is shown that the cyclic -integral ($\\Delta J_{\\text{eff}}$ concept) is suitable to predict the cyclic lifetime for conditions where the total crack propagation rate is approximately identical to pure fatigue crack growth velocity. In the case that crack propagation is strongly affected by creep, the creep–fatigue damage parameter $\\Delta_{C\\ F}$ introduced by Riedel can be successfully applied. If environmental effects are very pronounced, the accelerating influence of corrosion on fatigue crack propagation can no longer implicitly be taken into account in the fatigue crack growth law. Instead, a linear combination of the crack growth rate contributions from plain fatigue (determined in vacuum) and from environmental attack is assumed and found to yield a satisfactory prediction, if the relevant corrosion process is taken into account.

  10. Empirical Study of the Multiaxial, Thermomechanical Behavior of NiTiHf Shape Memory Alloys

    Science.gov (United States)

    Shukla, Dhwanil; Noebe, Ronald D.; Stebner Aaron P.

    2013-01-01

    An empirical study was conducted to characterize the multiaxial, thermomechanical responses of new high temperature NiTiHf alloys. The experimentation included loading thin walled tube Ni(sub 50.3)Ti(sub 29.7)Hf(sub 20) alloy samples along both proportional and nonproportional axial-torsion paths at different temperatures while measuring surface strains using stereo digital image correlation. A Ni(sub 50.3)Ti(sub 33.7)Hf(sub 16) alloy was also studied in tension and compression to document the effect of slightly depleting the Hf content on the constitutive responses of NiTiHf alloys. Samples of both alloys were made from nearly texture free polycrystalline material processed by hot extrusion. Analysis of the data shows that very small changes in composition significantly alter NiTiHf alloy properties, as the austenite finish (Af) temperature of the 16-at Hf alloy was found to be approximately 60 C less than the 20-at Hf alloy (approximately 120 C vs. 180 C). In addition, the 16-at Hf alloy exhibited smaller compressive transformation strains (2 vs. 2.5 percent). Multi-axial characterization of the 20-at % Hf alloy showed that while the random polycrystal transformation strains in tension (4 percent) and compression (2.5 percent) are modest in comparison with binary NiTi (6 percent, 4 percent), the torsion performance is superior (7 vs. 4 shear strain width to the pseudoelastic plateau).

  11. Nano-precipitation Strengthened G91 by Thermo-mechanical Treatment Optimization

    Science.gov (United States)

    Vivas, J.; Celada-Casero, C.; San Martín, D.; Serrano, M.; Urones-Garrote, E.; Adeva, P.; Aranda, M. M.; Capdevila, C.

    2016-11-01

    The increase of thermal efficiency in power plants has been the main driving force to develop Ferritic/Martensitic steels for structural applications capable of operating at 923 K (650 °C) and higher. It has been clarified in previous works that nano-sized precipitates and its distribution are the key factors controlling the stability of the microstructure at high operating temperatures. Based on the science of precipitate strengthening, the aim of this work is to optimize the thermo-mechanical treatment in a commercial creep-resistant steel (G91) to achieve a microstructure where MX precipitates present a suitable size and distribution. The alternative processing route proposed here allows gaining an increase up to 40 pct in yield strength at 973 K (700 °C) compared to the commercial steel. The results of small punch test carried out at room temperature showed that the improvement in strength was obtained without loss of ductility. This fact was attributed to a finer and more homogeneous dispersion of MX precipitates in comparison to the commercial steel.

  12. Modelling the thermomechanical behaviour of the tungsten first wall in HiPER laser fusion scenarios

    Science.gov (United States)

    Garoz, D.; Páramo, A. R.; Rivera, A.; Perlado, J. M.; González-Arrabal, R.

    2016-12-01

    The behaviour of a tungsten first wall is studied under the irradiation conditions predicted for the different operational scenarios of the European laser fusion project HiPER, which is based on direct drive targets and an evacuated dry wall chamber. The scenarios correspond to different stages in the development of a nuclear fusion reactor, from proof of principle (bunch mode facility) to economic feasibility (pre-commercial power plant). This work constitutes a quantitative study to evaluate first wall performance under realistic irradiation conditions in the different scenarios. We calculated the radiation fluxes assuming the geometrical configurations reported so far for HiPER. Then, we calculated the irradiation-induced evolution of first wall temperature and the thermomechanical response of the material. The results indicate that the first wall will plastically deform up to a few microns underneath the surface. Continuous operation in a power plant leads to fatigue failure with crack generation and growth. Finally, crack propagation and the minimum tungsten thickness required to fulfil the first wall protection role is studied. The response of tungsten as a first wall material as well as its main limitations will be discussed for the HiPER scenarios.

  13. Electro-thermomechanical characterization of Ti-Ni shape memory alloy thin wires

    Directory of Open Access Journals (Sweden)

    Nascimento Maria Marony Sousa Farias

    2006-01-01

    Full Text Available The use of shape memory alloys (SMA as smart structures and other modern applications require a previous evaluation of its performance under load as well as a training procedure. In general, these requirements lead to the design and assembly of a specific test bench. In this work, an experimental set-up was specially designed to perform the electro-thermomechanical characterization of SMA wires. This apparatus was used to determine the strain-temperature (epsilon - T and electrical resistance-temperature (R - T hysteretic characteristics curves of a Ti-Ni shape memory wire (90 mm in length and 150 µm in diameter under mechanical load. The SMA wire is loaded by means of constant weights and a controlled system for injection of electrical power allows performing the heating-cooling cycles. The obtained hysteretic epsilon - T and R - T characteristics curves for some levels of applied loads are used to determine important shape memory parameters, like martensitic transformation temperatures, temperature hysteresis, temperature slopes and shape memory effect under load. These parameters were in accord with the ones found in literature for the studied SMA wires.

  14. Thermo-Mechanical Behavior of Textile Heating Fabric Based on Silver Coated Polymeric Yarn

    Directory of Open Access Journals (Sweden)

    Anura Fernando

    2013-03-01

    Full Text Available This paper presents a study conducted on the thermo-mechanical properties of knitted structures, the methods of manufacture, effect of contact pressure at the structural binding points, on the degree of heating. The test results also present the level of heating produced as a function of the separation between the supply terminals. The study further investigates the rate of heating and cooling of the knitted structures. The work also presents the decay of heating properties of the yarn due to overheating. Thermal images were taken to study the heat distribution over the surface of the knitted fabric. A tensile tester having constant rate of extension was used to stretch the fabric. The behavior of temperature profile of stretched fabric was observed. A comparison of heat generation by plain, rib and interlock structures was studied. It was observed from the series of experiments that there is a minimum threshold force of contact at binding points of a knitted structure is required to pass the electricity. Once this force is achieved, stretching the fabric does not affect the amount of heat produced.

  15. Investigating Surface Effects on Thermomechanical Behavior of Embedded Circular Curved Nanosize Beams

    Directory of Open Access Journals (Sweden)

    Farzad Ebrahimi

    2016-01-01

    Full Text Available To investigate the surface effects on thermomechanical vibration and buckling of embedded circular curved nanosize beams, nonlocal elasticity model is used in combination with surface properties including surface elasticity, surface tension, and surface density for modeling the nanoscale effect. The governing equations are determined via the energy method. Analytically Navier method is utilized to solve the governing equations for simply supported nanobeam at both ends. Solving these equations enables us to estimate the natural frequency and critical buckling load for circular curved nanobeam including Winkler and Pasternak elastic foundations and under the effect of a uniform temperature change. The results determined are verified by comparing the results with available ones in literature. The effects of various parameters such as nonlocal parameter, surface properties, Winkler and Pasternak elastic foundations, temperature, and opening angle of circular curved nanobeam on the natural frequency and critical buckling load are successfully studied. The results reveal that the natural frequency and critical buckling load of circular curved nanobeam are significantly influenced by these effects.

  16. 3-D thermo-mechanical laboratory modelling of plate-tectonics

    Directory of Open Access Journals (Sweden)

    D. Boutelier

    2011-02-01

    Full Text Available We present an experimental apparatus for 3-D thermo-mechanical analogue modelling of plate-tectonics processes such as oceanic and continental subductions, arc-continent or continental collisions. The model lithosphere, made of temperature-sensitive elasto-plastic with softening analogue materials, is submitted to a constant temperature gradient producing a strength reduction with depth in each layer. The surface temperature is imposed using infrared emitters, which allows maintaining an unobstructed view of the model surface and the use of a high resolution optical strain monitoring technique (Particle Imaging Velocimetry. Subduction experiments illustrate how the stress conditions on the interplate zone can be estimated using a force sensor attached to the back of the upper plate and changed because of the density and strength of the subducting lithosphere or the lubrication of the plate boundary. The first experimental results reveal the potential of the experimental set-up to investigate the three-dimensional solid-mechanics interactions of lithospheric plates in multiple natural situations.

  17. THERMOMECHANICAL PROPERTIES OF JUTE/BAGASSE HYBRID FIBRE REINFORCED EPOXY THERMOSET COMPOSITES

    Directory of Open Access Journals (Sweden)

    Sudhir Kumar Saw

    2009-11-01

    Full Text Available Natural fibres are partly replacing currently used synthetic fibres as reinforcement for polymer composites. Jute fibre bundles were high-cellulose-content modified by alkali treatment, while the bagasse fibre bundles were modified by creating quinones in the lignin portions of fibre surfaces and reacting them with furfuryl alcohol (FA to increase their adhesiveness. The effects of different fibre bundle loading and modification of bagasse fibre surfaces in hybrid fibre reinforced epoxy composites have been studied. The role of fibre/matrix interactions in chemically modified hybrid composites were investigated using Differential Scanning Calorimeter, Differential Thermo Gravimetry, and a Universal Tensile Machine and compared with those of unmodified bagasse fibre bundles incorporated with modified jute fibre bundles reinforced hybrid composites. Fibre surface modification reduced the hydrophilicity of fibre bundles, and significantly increased mechanical properties of hybrid composites were observed in conjunction with SEM images. The SEM analysis of the fibre and the composite fractured surfaces have confirmed the FA grafting and shown a better compatibility at the interface between chemically modified fibre bundles and epoxy resin. This paper incorporates interesting results of thermomechanical properties and evaluation of fibre/matrix interactions.

  18. Mineral-Oxide-Doped Aluminum Titanate Ceramics with Improved Thermomechanical Properties

    Directory of Open Access Journals (Sweden)

    R. Papitha

    2013-01-01

    Full Text Available Investigations were carried out, on the effect of addition of kaolinite (2Al2O3·3SiO2·2H2O and talc (Mg3Si4O10(OH2 in terms of bulk density, XRD phases, microstructure, as well as thermal and mechanical properties of the aluminium titanate (AT ceramics. AT ceramics with additives have shown enhanced sinterability at 1550°C, achieving close to 99% of TD (theoretical density in comparison to 87% TD, exhibited with pure AT samples sintered at 1600°C, and found to be in agreement with the microstructural observations. XRD phase analysis of samples with maximum densities resulted in pure AT phase with a shift in unit cell parameters suggesting the formation of solid solutions. TG-DSC study indicated a clear shift in AT formation temperature with talc addition. Sintered specimens exhibited significant reduction in linear thermal expansion values by 63% (0.4210−6/C, (30–1000°C with talc addition. Thermal hysteresis of talc-doped AT specimens showed a substantial increase in hysteresis area corresponding to enhanced microcrack densities which in turn was responsible to maintain the low expansion values. Microstructural evaluation revealed a sizable decrease in crack lengths and 200% increase in flexural strength with talc addition. Results are encouraging providing a stable formulation with substantially enhanced thermomechanical properties.

  19. Qualitative and Quantitative Analysis of Thermomechanical Behavior of an Al4Sr Dispersed In Situ Composite

    Science.gov (United States)

    Ghasemzadeh-Khoshkroudi, M.; Zarei-Hanzaki, A.; Shafieizad, A. H.; Abedi, H. R.

    2017-03-01

    The flow behavior of Al/Al4Sr in situ composite and its thermomechanical processing characteristics were studied through highlighting the effects of Al4Sr reinforcements. Toward this aim, a set of hot compression tests was conducted over a wide range of temperature (300-600 °C) and strain rate (0.001-0.1 s-1). The results indicate that, besides the main role of aluminum matrix in accommodating the strain and flow hardening or softening, the dynamic evolution of the dispersed particles such as fragmentation, buckling, decomposing and coarsening is presented as the main factors affecting the flow characteristics. Furthermore, the effect of strain is examined using a constitutive model through considering the relative material constants as a function of strain with a sixth polynomial fitting. The deformation activation energy is estimated to be in the range of 265-380 kJ/mol. To this end, the developed model predicts the flow behavior highly similar to that of the real condition.

  20. Thermo-mechanical Densification of Populus tomentosa var. tomentosa with Low Moisture Content

    Directory of Open Access Journals (Sweden)

    Dengyun Tu

    2014-05-01

    Full Text Available This study used thermo-mechanical densification technology to compress low-moisture content (3~5% rapid-growth Populus tomentosa var. tomentosa trees to produce specimens with a low-compression ratio (small volume loss and a uniform density profile and desirable properties. Furthermore, the densified specimens were subjected to post-heat treatment at 180, 190, and 200 °C for 2, 3, and 4 h, respectively. Microscopic examination was performed to observe the changes that occurred in the wood vessels after densification. To determine the influence of post-heat treatment on the set recovery, the specimens were subjected to eight cycles of soaking and drying in 20 °C water and two cycles in boiling water. The density profile tendencies of the densified specimens were in accord with undensified specimens. Microscopic observation revealed that the deformations present in the densified wood resulted from the viscous buckling of cell walls without fracture. The volume of the void areas in the specimens decreased uniformly. Post-heat treatment can decrease compressive deformation, especially when applied at 200 °C for 4 h. After two boiling water cycles of soaking and drying, the densified wood still had a certain set recovery. Therefore, densified wood should be used sparingly in high temperature and high humidity environments.

  1. Features of deformation localization in stable austenitic steel under thermomechanical treatment

    Science.gov (United States)

    Litovchenko, I. Yu.; Akkuzin, S. A.; Polekhina, N. A.; Tyumentsev, A. N.

    2016-11-01

    Features of structural states of Fe-18Cr-14Ni-Mo austenitic steel after thermomechanical treatment, including low-temperature and warm rolling deformation, were investigated by means of transmission electron microscopy. It is shown that mechanical twinning in multiple systems and strain localization bands contribute to grain fragmentation with the formation of the submicrocrystalline austenitic structure. These bands lie in the microtwin structure, have high-angle (≈60°-90°, ) misorientations of the crystal lattice relative to the matrix and localize significant (up to ≈1) shear strain. In areas of the bands, structural states with high (tens of deg/μm) curvature of the crystal lattice and high local internal stresses are observed. The internal structure of the bands is presented by nanoscale fragments of austenite and α'-martensite. The presence of specific misorientations and fragments of martensite means that the formation mechanism of localized deformation bands are direct plus reverse (γ → α' → γ) martensitic transformations with the reverse transformation follows by an alternative path. These structural states provide high strength properties of steel: the yield strength is up to 1150 MPa.

  2. Thermo-mechanical fatigue properties of a ferritic stainless steel for solid oxide fuel cell interconnect

    Science.gov (United States)

    Chiu, Yung-Tang; Lin, Chih-Kuang

    2012-12-01

    Thermo-mechanical fatigue (TMF) behavior of a newly developed ferritic stainless steel (Crofer 22 H) for planar solid oxide fuel cell (pSOFC) interconnect is investigated. TMF tests under various combinations of cyclic mechanical and thermal loadings are conducted in air at a temperature range of 25oC-800 °C. Experimental results show the number of cycles to failure for non-hold-time TMF loading is decreased with an increase in the minimum stress applied at 800 °C. There is very little effect of maximum stress applied at 25 °C on the number of cycles to failure. The non-hold-time TMF life is dominated by a fatigue mechanism involving cyclic high-temperature softening plastic deformation. A hold-time of 100 h for the minimum stress applied at 800 °C causes a significant drop of number of cycles to failure due to a synergistic action of fatigue and creep. Creep and creep-fatigue interaction mechanisms are the two primary contributors to the hold-time TMF damage. The creep damage ratio in the hold-time TMF damage is increased with a decrease in applied stress at 800 °C and an increase in number of cycles to failure.

  3. Tensile and creep properties of thermomechanically processed boron modified Timetal 834 titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Kartik, E-mail: kartik@dmrl.drdo.in [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058 (India); Sarkar, Rajdeep; Ghosal, P.; Satyanarayana, D.V.V.; Kamat, S.V.; Nandy, T.K. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058 (India)

    2011-08-25

    Highlights: {yields} 0.2 wt.% boron refines the as-cast microstructure of Timetal 834 alloy. {yields} The boron addition leads to an improvement in strength (0.2% YS and UTS). {yields} The B modified alloy shows better creep resistance as compared to base alloy. {yields} These effects are attributed to load sharing mechanism by the TiB whiskers. - Abstract: The effect of addition of 0.2 wt.% B on the tensile and creep properties of Timetal 834 alloy was studied in the thermomechanically processed condition after subjecting it to different heat treatments. The 0.2% YS and UTS of the boron modified alloy was found to be higher than that of the base alloy irrespective of the heat treatment employed. The creep strain for 100 h as well as the steady state creep rate at a temperature of 600 deg. C and initial stress of 150 MPa stress was also significantly lower for the B modified alloy. The results were explained on the basis of load sharing by the TiB whiskers.

  4. Failure Behavior of Thermal Barrier Coatings on Cylindrical Superalloy Tube Under Thermomechanical Fatigue

    Institute of Scientific and Technical Information of China (English)

    Zhubing CHEN; Zhongguang WANG; Shijie ZHU

    2013-01-01

    Failure behavior of thermal barrier coatings on cylindrical superalloy tube was investigated under thermomechanical fatigue (TMF).Two types of TMF tests,i.e.in phase (IP) and out of phase (OP),were performed in the temperature range of 450-850 ℃.All tests were carried out under mechanical strain control at a given period of 300 s.The bond coat NiCrA1Y was produced by high velocity oxygen fuel (HVOF),and the top coat 7%Y2O3-ZrO2 was deposited by air plasma spraying (APS).The testing results showed that the OP TMF life was longer than the IP TMF one under the same mechanical strain amplitude.Observations of the fractured specimens revealed that the interface damage and cracking behavior in the two phasing conditions were different.In OP loading,the top coat was cracked and detached from the bond coat while no spallation was found in the IP loading.

  5. Studies on the flexural and thermomechanical properties of woven carbon/nanoclay-epoxy laminates

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, F.H. [Center for Advanced Materials, Tuskegee University, Tuskegee, AL 36088 (United States); Hosur, M.V. [Center for Advanced Materials, Tuskegee University, Tuskegee, AL 36088 (United States)]. E-mail: mhosur@gmail.com; Jeelani, S. [Center for Advanced Materials, Tuskegee University, Tuskegee, AL 36088 (United States)

    2006-04-15

    A systematic study was carried out to investigate the effects of nanoclay particles on flexural and thermal properties of woven carbon fiber reinforced polymer matrix composites. Different weight percentages of Nanomer[reg] I-28E nanoclay, a surface modified montmorillonite mineral, were dispersed in SC-15 epoxy using sonication route. The nanophased epoxy was then used to manufacture 6000 fiber tow-plain weave carbon/epoxy nanocomposites using vacuum assisted resin infusion molding (VARIM) process. Effect of post curing on these samples was also investigated. Three-point bend flexure and dynamic mechanical analysis (DMA) studies were carried out on eight and three layered samples, respectively. Maximum improvements in flexural strength and modulus were found for 2 wt.% nanoclay reinforced composites. Failure surface analysis of flexure samples was carried out by scanning electron microscopy (SEM) analysis. Dynamic mechanical analysis showed enhancement in thermomechanical properties. Glass transition temperature, T {sub g} of room temperature cured and thermally post cured samples showed an improvement of about 9 and 13 deg. C, respectively for 2 wt.% nanoclay loading.

  6. Thermomechanical model to assess stresses developed during elevated-temperature cleaning of coated optics.

    Science.gov (United States)

    Liddell, H P H; Lambropoulos, J C; Jacobs, S D

    2014-09-10

    A thermomechanical model is developed to estimate the stress response of an oxide coating to elevated-temperature chemical cleaning. Using a hafnia-silica multilayer dielectric pulse compressor grating as a case study, we demonstrate that substrate thickness can strongly affect the thermal stress response of the thin-film coating. As a result, coatings on large, thick substrates may be susceptible to modes of stress-induced failure (crazing or delamination) not seen in small parts. We compare the stress response of meter-scale optics to the behavior of small-scale test or "witness" samples, which are expected to be representative of their full-size counterparts. The effects of materials selection, solution temperature, and heating/cooling rates are explored. Extending the model to other situations, thermal stress results are surveyed for various combinations of commonly used materials. Seven oxide coatings (hafnia, silica, tantala, niobia, alumina, and multilayers of hafnia-silica and alumina-silica) and three glass substrates (BK7, borosilicate float glass, and fused silica) are examined to highlight some interesting results.

  7. Inorganic Nanoparticle-Modified Poly(Phenylene Sulphide/ Carbon Fiber Laminates: Thermomechanical Behaviour

    Directory of Open Access Journals (Sweden)

    Ana M. Díez-Pascual

    2013-07-01

    Full Text Available Carbon fiber (CF-reinforced high-temperature thermoplastics such as poly(phenylene sulphide (PPS are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS2 lubricant nanoparticles were used to manufacture PPS/IF-WS2/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS2 loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS2 improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (Tg. IF-WS2 contents higher than 0.5 wt % increased Tg and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS2 are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites.

  8. Analysis of the thermomechanical behavior of the IFMIF bayonet target assembly under design loading scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, D., E-mail: davide.bernardi@enea.it [ENEA Brasimone, Camugnano, BO (Italy); Arena, P.; Bongiovì, G.; Di Maio, P.A. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy); Frisoni, M. [ENEA Bologna, Via Martiri di Monte Sole 4, Bologna (Italy); Miccichè, G.; Serra, M. [ENEA Brasimone, Camugnano, BO (Italy)

    2015-10-15

    In the framework of the IFMIF Engineering Validation and Engineering Design Activities (IFMIF/EVEDA) phase, ENEA is responsible for the design of the European concept of the IFMIF lithium target system which foresees the possibility to periodically replace only the most irradiated and thus critical component (i.e., the backplate) while continuing to operate the rest of the target for a longer period (the so-called bayonet backplate concept). In this work, the results of the steady state thermomechanical analysis of the IFMIF bayonet target assembly under two different design loading scenarios (a “hot” scenario and a “cold” scenario) are briefly reported highlighting the relevant indications obtained with respect to the fulfillment of the design requirements. In particular, the analyses have shown that in the hot scenario the temperatures reached in the target assembly are within the material acceptable limits while in the cold scenario transition below the ductile to brittle transition temperature (DBTT) cannot be excluded. Moreover, results indicate that the contact between backplate and high flux test module is avoided and that the overall structural integrity of the system is assured in both scenarios. However, stress linearization analysis reveals that ITER Structural Design Criteria for In-vessel Components (SDC-IC) design rules are not always met along the selected paths at backplate middle plane section in the hot scenario, thus suggesting the need of a revision of the backplate design or a change of the operating conditions.

  9. Application of CCG Sensors to a High-Temperature Structure Subjected to Thermo-Mechanical Load

    Science.gov (United States)

    Xie, Weihua; Meng, Songhe; Jin, Hua; Du, Chong; Wang, Libin; Peng, Tao; Scarpa, Fabrizio; Xu, Chenghai

    2016-01-01

    This paper presents a simple methodology to perform a high temperature coupled thermo-mechanical test using ultra-high temperature ceramic material specimens (UHTCs), which are equipped with chemical composition gratings sensors (CCGs). The methodology also considers the presence of coupled loading within the response provided by the CCG sensors. The theoretical strain of the UHTCs specimens calculated with this technique shows a maximum relative error of 2.15% between the analytical and experimental data. To further verify the validity of the results from the tests, a Finite Element (FE) model has been developed to simulate the temperature, stress and strain fields within the UHTC structure equipped with the CCG. The results show that the compressive stress exceeds the material strength at the bonding area, and this originates a failure by fracture of the supporting structure in the hot environment. The results related to the strain fields show that the relative error with the experimental data decrease with an increase of temperature. The relative error is less than 15% when the temperature is higher than 200 °C, and only 6.71% at 695 °C. PMID:27754356

  10. Nanocrystallization of the Ti50Ni48Co2 Shape Memory Alloy by Thermomechanical Treatment

    Science.gov (United States)

    Mohammad Sharifi, E.; Karimzadeh, F.; Kermanpur, A.

    2015-01-01

    The microstructural evolution during nanostructuring of the Ti50Ni48Co2 shape memory alloy by thermomechanical processing is investigated. The high purity ingots were fabricated by a copper boat vacuum induction melting technique. The differential scanning calorimetry measurements showed that the homogenized Ti50Ni48Co2 specimen have two-stage transformation during cooling including the austenite to R phase and the R phase to martensite. The homogenized specimens were then hot rolled and annealed to prepare the initial microstructure. Thereafter, annealed specimens were subjected to cold rolling with various thickness reductions up to 70 %. Transmission electron microscopy revealed that the severe cold rolling led to the formation of a mixed microstructure consisting of amorphous and nanocrystalline phases in Ti50Ni48Co2 alloy. After annealing at 400 °C, the amorphous phase formed in the 70 % cold-rolled specimen was completely crystallized and an entire nanocrystalline structure with the grain size between 10 and 60 nm was achieved. The nanocrystalline Ti50Ni48Co2 alloy exhibited about 12 % of recoverable strain and very high plateau stress (about 730 MPa) which was significantly higher than that of the coarse-grained state.

  11. Thermo-mechanical segmentation of the Nazca plate in Central Andes

    Science.gov (United States)

    Clouard, Valerie

    2010-05-01

    The dynamics of the Chilean subduction is not uniform and presents along-strike variations controlled by plate interactions and pre-existing heterogeneity's in the upper plate. This study determines the variations of thermo-mechanical characteristics of the subducting Nazca plate before subduction, and their relations with the known South America plate segmentation. Thermal variations are derived from the regional depth anomalies of the seafloor. Seafloor depth anomalies are used to obtain maps of corrected ages and thickness of the oceanic lithosphere and compared to the heat flow anomaly data. It is abnormally colder/thicker to the north of the Iquique Ridge at 22°S and hotter/thinner to the south. Mechanical characteristics come from the shape of the bending prior to subduction. After age correction and filtering of the bathymetric data, the along-strike variations of the elastic thicness are traduced in mechanical thickness. A limit between strong and weak lithosphere appears at 28°S. To completely describe the Nazca plate and its correlation with interplate seismicity, the compositional characteristics are the third and necessary parameter. Finally, the Nazca plate can be divided in five main segments directly correlated with the seismic segmentation of the subduction. One interesting point is that the wavelength of measured lithospheric anomalies in front of the flat-slab is greater than the Juan Fernandez (JF) Ridge. It strongly suggests that it the oceanic lithosphere that is responsible for the flat-slab, and not only the JF Ridge.

  12. Surface and thermomechanical characterization of polyurethane networks based on poly(dimethylsiloxane and hyperbranched polyester

    Directory of Open Access Journals (Sweden)

    M. V. Pergal

    2013-10-01

    Full Text Available Two series of polyurethane (PU networks based on Boltorn® hyperbranched polyester (HBP and hydroxyethoxy propyl terminated poly(dimethylsiloxane (EO-PDMS or hydroxy propyl terminated poly(dimethylsiloxane (HPPDMS, were synthesized. The effect of the type of soft PDMS segment on the properties of PUs was investigated by Fourier transform infrared spectroscopy (FTIR, contact angle measurements, surface free energy determination, X-ray photoelectron spectroscopy (XPS, scanning electron microscopy (SEM, atomic force microscopy (AFM, dynamic mechanical thermal analysis (DMTA and differential scanning calorimetry (DSC. The surface characterization of PUs showed existence of slightly amphiphilic character and it revealed that PUs based on HP-PDMS have lower surface free energy, more hydrophobic surface and better waterproof performances than PUs based on EO-PDMS. PUs based on HPPDMS had higher crosslinking density than PUs based on EO-PDMS. DSC and DMTA results revealed that these newlysynthesized PUs exhibit the glass transition temperatures of the soft and hard segments. DMTA, SEM and AFM results confirmed existence of microphase separated morphology. The results obtained in this work indicate that PU networks based on HBP and PDMS have improved surface and thermomechanical properties.

  13. Structure and thermomechanical behavior of NiTiPt shape memory alloy wires.

    Science.gov (United States)

    Lin, Brian; Gall, Ken; Maier, Hans J; Waldron, Robbie

    2009-01-01

    The objective of this work is to understand the structure-property relationships in polycrystalline NiTiPt (Ti 42.7 at.% Ni 7.5 at %Pt) with a composition showing pseudoelasticity at ambient temperatures. Structural characterization of the alloy includes grain size determination and texture analysis while the thermomechanical properties are explored using tensile testing. Variation in heat treatment is used as a vehicle to modify microstructure. The results are compared to experiments on Ni-rich NiTi alloy wires (Ti-51.0 at.% Ni), which are in commercial use in various biomedical applications. With regards to microstructure, both alloys exhibit a fiber texture along the wire drawing axis; however, the NiTiPt alloy grain size is smaller than that of the Ni-rich NiTi wires, while the latter materials contain second-phase precipitates. Given the nanometer-scale grain size in NiTiPt and the dispersed, nanometer-scale precipitate size in NiTi, the overall strength and ductility of the alloys are essentially identical when given appropriate heat treatments. Property differences include a much smaller stress hysteresis and smaller temperature dependence of the transformation stress for NiTiPt alloys compared to NiTi alloys. Potential benefits and implications for use in vascular stent applications are discussed.

  14. Influences on the thermomechanical fatigue crack growth of the nickel alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, Michael; Schweizer, Christoph; Brontfeyn, Yakiv [Fraunhofer-Institut fuer Werkstoffmechanik (IWM), Freiburg im Breisgau (Germany)

    2015-02-01

    The following contribution deals with the experimental investigation and theoretical evaluation of fatigue crack growth under isothermal and non-isothermal conditions at the nickel alloy 617. The microstructure and mechanical properties of alloy 617 are influenced significantly by the thermal heat treatment and the following thermal exposure in service. Hence, a solution annealed and a long-time service exposed material condition is studied. The crack growth measurement is carried out by using an alternate current potential drop system, which is integrated into a thermomechanical fatigue (TMF) test facility. The measured fatigue crack growth rates results in a function of material condition, temperature and load waveform. Furthermore, the results of the non-isothermal tests depend on the phase between thermal and mechanical load (in-phase, out-of-phase). A fracture mechanic based, time dependent model is upgraded by an approach to consider environmental effects, where almost all model parameters represent directly measurable values. A consistent of all results and a good correlation with the experimental data can be achieved.

  15. PROPERTIES OF THERMO-MECHANICALLY TREATED WOOD FROM PINUS CARIBAEA VAR. HONDURENSIS

    Directory of Open Access Journals (Sweden)

    Cristiane Moreira Tavares Santos,

    2012-02-01

    Full Text Available This study aimed at evaluating the effect of thermo-mechanical treatment on properties of Pinus caribaea var. hondurensis wood. Two pressure levels (25% and 50% of the compression strength perpendicular to grain were evaluated. The treatment was applied in a laboratory hot press in one-step or two-step modes for 50 minutes. In the one-step treatment, the total pressure was applied after the temperature of the center of the wood reached 170°C. In the two-steps treatment, half of the pressure was applied after the center of the wood reached 100°C, and the final pressure was applied when it reached 170°C. The weight loss immediately after treatment was equivalent to the wood moisture content, indicating that degradation of wood polymers did not occur. However, the treatments showed decreasing values of the moisture content, which were reduced from 12.3% to 9.8%. A moderate improvement on surface roughness was achieved, while wood wettability was highly reduced in all treatments, as determined by contact angle measurement. On the other hand, the treatment applied did not improve the wood dimensional stability, but all mechanical properties presented a trend of improvement.

  16. Isolating lignin from spent liquor of thermomechanical pulping process via adsorption.

    Science.gov (United States)

    Oveissi, Farshad; Fatehi, Pedram

    2014-01-01

    Wood chips are pretreated with steam prior to refining in the thermomechanical pulping process. The steam treatment dissolves part of lignin of wood chips in the spent liquor (SL) of this process, and subsequently the SL is sent to the wastewater system of the process. However, the lignin of SL can be used in the production of value-added chemicals, but it should first be separated from the SL in order to have a feasible downstream process. In this study, activated carbon (AC) was considered as an adsorbent to isolate lignin from SL. The results showed that the maximum adsorption of lignin on AC was 166 mg/g under the optimal conditions of pH 5.2, 30 degrees C and 3 h treatment. Furthermore, the separation of lignin from SL was improved from 45% to 60% by having a two-stage adsorption process at pH 5.2, which also reduced the turbidity and chemical oxygen demand of SL by 39% and 32%, respectively.

  17. IMPACT OF THERMOMECHANICAL REFINING CONDITIONS ON FIBER QUALITY AND ENERGY CONSUMPTION BY MILL TRIAL

    Directory of Open Access Journals (Sweden)

    Jun Hua,

    2012-02-01

    Full Text Available Fiber thermomechanical refining is a critical step for the manufacturing of medium density fiberboard (MDF. To increase productivity and improve fiber quality with a reduction in energy consumption during refining, it is essential to determine appropriate refining conditions, such as the chips retention time (accumulated chip height, CH in the pre-heater, feeding screw revolution speed (SR in the chip feeding pipe, and the opening ratio of the discharge valve (OV in the discharge pipe. Using multiple regression analysis, relationships between the response variables (the total fibers, the specific energy consumption obtained by the motor power consumption/the total amount of dry fibers, and the percentage of qualified fibers and the predictor variables (OV, CH, and SR were modeled. Specific energy consumption decreased with an increase in CH. When more chips were stored in the pre-heater, the chips were softened by the extended steam-treatment time, reducing the energy consumption. There were negative relationships between the percentage of qualified fibers and the predictor variables (OV and SR. It was reasoned that a greater proportion of coarse fibre was produced when the discharge valve opening ratio or the feeding screw speed increased. This resulted in a reduction in the percentage of qualified fibers. Due to the large sample size (1667 measurements for each variable in this study, the resulting regression equations can be applied to estimate the productivity, energy consumption, and fiber quality during refining in an MDF mill.

  18. Copper dimer interactions on a thermomechanical superfluid {sup 4}He fountain

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Evgeny; Eloranta, Jussi, E-mail: Jussi.Eloranta@csun.edu [Department of Chemistry and Biochemistry, California State University at Northridge, 18111 Nordhoff St., Northridge, California 91330 (United States)

    2015-05-28

    Laser induced fluorescence imaging and frequency domain excitation spectroscopy of the copper dimer (B{sup 1}Σ{sub g}{sup +}←X{sup 1}Σ{sub u}{sup +}) in thermomechanical helium fountain at 1.7 K are demonstrated. The dimers penetrate into the fountain provided that their average propagation velocity is ca. 15 m/s. This energy threshold is interpreted in terms of an imperfect fountain liquid-gas interface, which acts as a trap for low velocity dimers. Orsay-Trento density functional theory calculations for superfluid {sup 4}He are used to characterize the dynamics of the dimer solvation process into the fountain. The dimers first accelerate towards the fountain surface and once the surface layer is crossed, they penetrate into the liquid and further slow down to Landau critical velocity by creating a vortex ring. Theoretical lineshape calculations support the assignment of the experimentally observed bands to Cu{sub 2} solvated in the bulk liquid. The vibronic progressions are decomposed of a zero-phonon line and two types of phonon bands, which correlate with solvent cavity interface compression (t < 200 fs) and expansion (200 < t < 500 fs) driven by the electronic excitation. The presented experimental method allows to perform molecular spectroscopy in bulk superfluid helium where the temperature and pressure can be varied.

  19. Qualitative and Quantitative Analysis of Thermomechanical Behavior of an Al4Sr Dispersed In Situ Composite

    Science.gov (United States)

    Ghasemzadeh-Khoshkroudi, M.; Zarei-Hanzaki, A.; Shafieizad, A. H.; Abedi, H. R.

    2017-02-01

    The flow behavior of Al/Al4Sr in situ composite and its thermomechanical processing characteristics were studied through highlighting the effects of Al4Sr reinforcements. Toward this aim, a set of hot compression tests was conducted over a wide range of temperature (300-600 °C) and strain rate (0.001-0.1 s-1). The results indicate that, besides the main role of aluminum matrix in accommodating the strain and flow hardening or softening, the dynamic evolution of the dispersed particles such as fragmentation, buckling, decomposing and coarsening is presented as the main factors affecting the flow characteristics. Furthermore, the effect of strain is examined using a constitutive model through considering the relative material constants as a function of strain with a sixth polynomial fitting. The deformation activation energy is estimated to be in the range of 265-380 kJ/mol. To this end, the developed model predicts the flow behavior highly similar to that of the real condition.

  20. Influence of thermomechanical fatigue loading on the fracture resistance of all-ceramic posterior crowns.

    Science.gov (United States)

    Senyilmaz, Dilek Pinar; Canay, Senay; Heydecke, Guido; Strub, Joerg Rudolf

    2010-06-01

    This study evaluated the fracture resistance and the survival rate of different all-ceramic crowns in-vitro after thermomechanical fatigue loading in comparison to porcelain-fused-to-metal posterior crowns. Sixteen crowns for human mandibular first molars were made of each of the following: Cercon, IPS-Empress 2 In-Ceram Zirconia, Procera AllZircon and porcelain-fused-to-metal. Half of the specimens of each group was thermocycled and dynamically loaded using a chewing simulator All samples were thereafter tested for the maximum fracture resistance. The survival rates after 1-2 million cycles in the artificial mouth were 100% in all the tested crown systems. The chewing simulation and thermocycling did not significantly decrease the fracture strength of the ceramic crowns (P>0.005). The median fracture load of Cercon, Procera AllZircon, In-Ceram Zirconia and PFM was significantly higher than IPS-Empress 2 both for loaded and non loaded groups (PZirconia and PFM was not significant (P>0.005). All-ceramic systems showed fracture load values similar to those of porcelain-fused-to-metal molar crowns and therefore may be considered for use in clinical studies.