Environmental conditions of two abandoned uranium mill tailings sites in northern Saskatchewan
International Nuclear Information System (INIS)
Kalin, M.
Two abandoned uranium mill tailings sites near Uranium City, Saskatchewan, have been studied in an attempt to follow the natural rehabilitation processes. The Gunnar site is a largely terrestrial environment while the Lorado mill tailings were discharged mainly into Nero Lake. This report describes the ecological conditions of both sites, potential long-term environmental degradation, and possible measures to assist the recovery of both areas
Long-term ecological behaviour of abandoned uranium mill tailings
International Nuclear Information System (INIS)
Kalin, Margarete
1984-12-01
Semi-aquatic and terrestrial areas on abandoned or inactive uranium mill tailings in Ontario were studied in order to identify the growth characteristics of the naturally invading species dominating these areas. Semi-aquatic areas of tailings sites have been invaded by cattails. These species formed wetland communities which varied in size, but all were essentially monocultures of Typha latifolia, T. angustifolia, or of the hybrids T. glauca. Sedges, Scripus cyperinus (wool-grass) and Phragmites australis (reed-grass), were found in transition zones between the cattail stand and the dry section of the tailings site. The expansion of the cattail stands appeared to be controlled by the hydrological conditions on the site, rather than the chemical characteristics of the tailings
Cleaning-up abandoned uranium mines in Saskatchewan's North
International Nuclear Information System (INIS)
Schramm, L.L.
2012-01-01
Thirty-six now-abandoned uranium mine and mill sites were developed and operated on or near Lake Athabasca, in Northern Saskatchewan, Canada, from approximately 1957 through 1964. During their operating lifetimes these mines produced large quantities of ore and tailings. After closure in the 1960's, these mine and mill sites were abandoned with little remediation and no reclamation being done. The governments of Canada and Saskatchewan are now funding the cleanup of these abandoned northern uranium mine and mill sites and have contracted the management of the project to the Saskatchewan Research Council (SRC). The clean-up activity is underway, with work at many of the smaller sites largely completed, work at the Gunnar site well underway, and a beginning made at the Lorado site. This lecture presents an overview of these operations. (author)
Uranium mills and mines environmental restoration in Spain
International Nuclear Information System (INIS)
Perez Estevez, C.; Lozano Martinez, F.
2000-01-01
ENRESA and ENUSA have dismantled and restored a uranium mill in Andujar (Andalucia), a uranium facility based on open pit mining and plant in La Haba (Extremadura) and 19 old uranium mines in Andalucia and Extremadura. The Andujar Uranium Mill was operated from 1959 to 1981 and has been restorated between 1991 and 1994. The site included the tailings pile and the processing plant. The Haba Uranium Site included the Plant (operating from 1976 to 1999), four open-pit mines (operating from 1966 to 1990), the heaps leaching and the tailings dam and has been restorated between 1992 and 1997. The 19 abandoned uranium mines were developed by underground mining with the exception of two sites, which were operated by open pit mining. Mining operations started around 1959 and were shutdown in 1981. There was a great diversity among the mines, in terms of site conditions. Whereas in some sites there was little trace of the mining works, in other sites large excavations, mining debris piles, abandoned shafs and galeries and remaining surface structures and equipment were encountered. (author)
Restoration activities in uranium mining and milling facilities in Spain
International Nuclear Information System (INIS)
Garcia Quiros, J.M.
1997-01-01
From the end of the 80's up to now, several tasks have been carried out in Spain on restoration in the field of uranium mining and milling, significant among them being Andujar Uranium Mill (FUA) closure and La Haba closure. Also, a study has been carried out on restoration of inoperative and abandoned uranium mine sites. At present, detailed plans are being worked out for the project on the closure of the Elefante plant. All activities have been developed in the common framework of national standards and regulations which are generally in compliance with the standards, regulations and recommendations of international organizations. This paper describes briefly the standards and the criteria applied to the restoration tasks at various sites of the uranium mining and milling facilities in Spain. The restoration activities have different characteristics La Haba facility is an isolated and conventional facility to produce uranium concentrate; in the case of old and abandoned uranium mines the intervention criteria is more relevant than the activities to be carried out; the closure (the first phase of licensing) and restoration activities of Elefante plant have to be developed taking into account that it is sited within the area of Quercus plant which is currently in operation. (author)
Radiochronological Age of a Uranium Metal Sample from an Abandoned Facility
Energy Technology Data Exchange (ETDEWEB)
Meyers, L A; Williams, R W; Glover, S E; LaMont, S P; Stalcup, A M; Spitz, H B
2012-03-16
A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940s and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope {sup 230}Th from the decay of {sup 234}U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 {+-} 1.5 years.
Radiochronological age of a uranium metal sample from an abandoned facility
International Nuclear Information System (INIS)
Meyers, L.A.; Stalcup, A.M.; Glover, S.E.; Spitz, H.B.
2013-01-01
A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940 and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope 230 Th from the decay of 234 U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 ± 1.5 years. (author)
Radiochronological Age of a Uranium Metal Sample from an Abandoned Facility
International Nuclear Information System (INIS)
Meyers, L.A.; Williams, R.W.; Glover, S.E.; LaMont, S.P.; Stalcup, A.M.; Spitz, H.B.
2012-01-01
A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940s and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope 230 Th from the decay of 234 U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 ± 1.5 years.
Evaluation of residual uranium contamination in the dirt floor of an abandoned metal rolling mill.
Glassford, Eric; Spitz, Henry; Lobaugh, Megan; Spitler, Grant; Succop, Paul; Rice, Carol
2013-02-01
A single, large, bulk sample of uranium-contaminated material from the dirt floor of an abandoned metal rolling mill was separated into different types and sizes of aliquots to simulate samples that would be collected during site remediation. The facility rolled approximately 11,000 tons of hot-forged ingots of uranium metal approximately 60 y ago, and it has not been used since that time. Thirty small mass (≈ 0.7 g) and 15 large mass (≈ 70 g) samples were prepared from the heterogeneously contaminated bulk material to determine how measurements of the uranium contamination vary with sample size. Aliquots of bulk material were also resuspended in an exposure chamber to produce six samples of respirable particles that were obtained using a cascade impactor. Samples of removable surface contamination were collected by wiping 100 cm of the interior surfaces of the exposure chamber with 47-mm-diameter fiber filters. Uranium contamination in each of the samples was measured directly using high-resolution gamma ray spectrometry. As expected, results for isotopic uranium (i.e., U and U) measured with the large-mass and small-mass samples are significantly different (p 0.05) from results for the large- or small-mass samples. Large-mass samples are more reliable for characterizing heterogeneously distributed radiological contamination than small-mass samples since they exhibit the least variation compared to the mean. Thus, samples should be sufficiently large in mass to insure that the results are truly representative of the heterogeneously distributed uranium contamination present at the facility. Monitoring exposure of workers and the public as a result of uranium contamination resuspended during site remediation should be evaluated using samples of sufficient size and type to accommodate the heterogeneous distribution of uranium in the bulk material.
Decommissioning of the Zirovski Vrh Uranium Mill
International Nuclear Information System (INIS)
Zabukovec, I.; Logar, Z.; Arh, S.
1996-01-01
First of the inventions, which will ensure the beginning of the permanent closure of uranium ore exploitation and prevent the consequences of mining in the Zirovski Vrh Uranium Mine, abandoned according to the law from July 1992, will be soon realized. After obtaining the location permit for dismantling the equipment, foundations and installations in four main buildings of the uranium mill, current procedures are carried out in order to obtain the permission for performing the mentioned activities and to make contracts with acting organizations. Those buildings contain sources of radiation, which were considered within the legal procedures and design of technical documentation. Instructions for decontamination and protection against radiation, both issued with those projects, highly contribute to the Slovenian experience in the field of practical management of radiation sources. Additional requirement, which enters difference between decommissioning of similar mills worldwide and the one mentioned, is preservation of buildings in order to change their purpose. (author)
Uranium Mill Tailings Management
International Nuclear Information System (INIS)
Nelson, J.D.
1982-01-01
This book presents the papers given at the Fifth Symposium on Uranium Mill Tailings Management. Advances made with regard to uranium mill tailings management, environmental effects, regulations, and reclamation are reviewed. Topics considered include tailings management and design (e.g., the Uranium Mill Tailings Remedial Action Project, environmental standards for uranium mill tailings disposal), surface stabilization (e.g., the long-term stability of tailings, long-term rock durability), radiological aspects (e.g. the radioactive composition of airborne particulates), contaminant migration (e.g., chemical transport beneath a uranium mill tailings pile, the interaction of acidic leachate with soils), radon control and covers (e.g., radon emanation characteristics, designing surface covers for inactive uranium mill tailings), and seepage and liners (e.g., hydrologic observations, liner requirements)
International Nuclear Information System (INIS)
Abdul, A.S.; Gillham, R.W.
1984-06-01
This report presents an evaluation of the results of simulation studies of groundwater discharge to streams from abandoned uranium mill tailings and the effects of this discharge on the flux of contaminants to surface water systems. In particular, a discussion of the sensitivity of subsurface discharge to specific geometirc, climatic and hydrogeologic factors is presented. Simulations were carried out using a two-dimensional numerical finite-element unsaturated-saturated flow model. A total of twenty-six simulations were made. The first twenty-four of these considered a tailings medium with homogeneous and isotropic hydraulic properties and with textural properties similar to those of sandy geological materials. In addition, two simulations were carried out for tailings materials with hydraulic properties that are similar to those of silt-loam. The results indicated that the actual quantity of subsurface discharge depends on many factors including rainfall rate and duration, surface slope, and texture. However, for the medium-fine sand material, subsurface discharge was always a significant component of the total discharge. Within the context of uranium tailings management this implies that large quantities of contaminants from subsurface sources of medium-textured tailings can be expected to be discharged to streams during stormflow events. Therefore there is reason to suspect that untreated runoff from such tailings will contain significant concentrations of contaminants for long periods of time
Remediation of uranium mill tailings wastes in Australia: a critical review
International Nuclear Information System (INIS)
Mudd, G.M.
2000-01-01
Australia has been an active participant in the global uranium mining industry since its inception in the 1940s. By the late 1950s five major mining and milling projects were operating, several small mines supplied custom ores. All of these projects were closed by the early 1960s, except for Rum Jungle which continued under government subsidy. Most sites have had lasting Environmental impacts. The advances in nuclear power in the 1960s saw increasing demand for uranium and Australia again explored with remarkable success in the Northern Territory, South Australia and Western Australia. After several government inquiries in the 1970s, Ranger, Nabarlek and Olympic Dam were operating by the mid 1980s. The principal risks from uranium mill tailings wastes arise from their radioactive nature and often their chemical toxicities. A critical review of the rehabilitation of abandoned uranium mines and mill tailings as a comparison for current projects is presented. It is concluded that the management of uranium mill tailings wastes is a complex task, requiring a sound multi-disciplinary approach. The problems include groundwater contamination, erosion, radon emanation and gamma radiation. evidence to data from the remediation of old and modern sites does not demonstrate effective long-term closure and safety
Romanian regulatory framework for uranium mining and milling (present and future)
International Nuclear Information System (INIS)
Rodna, A.L.; Dumitrescu, N.
2002-01-01
In Romania, all operations in the nuclear field, including uranium mining and milling, are regulated by Law no. 111/1996 (republished in 1998), regarding the safe conduct of nuclear activities. These activities can be performed only on the basis of an authorization released by the national regulatory authority, i.e. the National Commission for Nuclear Activities Control. The specific requirements which must be carried out by the owner of an operating licence for a uranium mining and milling operation are stipulated by the Republican Nuclear Safety Norms for Geological Research, Mining and Milling of Nuclear Raw Materials. These regulatory requirements have been in force since 1975. The regulatory norms include provisions that the effective dose limit for workers should not exceed 50 mSv/year and also that liquid effluents released into surface waters must have a content of natural radioactive elements that meets the standards for drinking water. The norms do not contain provisions concerning the conditions under which the mining sites and the uranium processing facilities can be shut down and decommissioned. The norms also do not contain requirements regarding either the rehabilitation of environments affected by abandoned mining and milling activities, nor criteria for the release of the rehabilitated sites for alternative uses. To implement the provisions of Council Directive 96/29 EURATOM in Romania, new Fundamental Radiological Protection Norms have been approved and will soon be published in the 'Monitorul Official' (Official Gazette of Romania). One of the main provisions of these norms is the reduction of the effective dose limit for the workers to 20 mSv/year. Changes in the Republican Nuclear Safety Norms for Geological Research, Mining and Milling of Nuclear Raw Materials, are also planned; these changes will be consistent with the Fundamental Radiological Protection Norms. To cover existing gaps, the new norms for uranium mining and milling will include
Overview of uranium mill tailings remedial action project of the United States of America 1995-1996
International Nuclear Information System (INIS)
Edge, R.
1997-01-01
From the early 1940's through the 1960's the United States federal government contracted for processed uranium ore for national defense research, weapons development and commercial nuclear energy. When these contracts were terminated, the mills ceased operation leaving large uranium tailings on the former mill sites. The purpose of the Uranium Remedial Action Project (UMTRA) is to minimize or eliminate potential health hazards resulting from exposure of the public to the tailings at these abandons sites. There are 24 inactive uranium mill tailings sites, in 10 states and an Indian reservation lands, included for clean up under the auspices of UMTRA. Presently the last 2 sites are under remediation. This paper addresses the progress of the project over the last two years. (author)
Bioassay for uranium mill tailings
International Nuclear Information System (INIS)
Tschaeche, A.N.
1986-01-01
Uranium mill tailings are composed of fine sand that contains, among other things, some uranium (U/sup 238/ primarily), and all of the uranium daughters starting with /sup 230/Th that are left behind after the usable uranium is removed in the milling process. Millions of pounds of tailings are and continue to be generated at uranium mills around the United States. Discrete uranium mill tailings piles exist near the mills. In addition, the tailings materials were used in communities situated near mill sites for such purposes as building materials, foundations for buildings, pipe runs, sand boxes, gardens, etc. The Uranium Mill Tailings Remedial Action Project (UMTRAP) is a U.S. Department of Energy Program designed with the intention of removing or stabilizing the mill tailings piles and the tailings used to communities so that individuals are not exposed above the EPA limits established for such tailings materials. This paper discusses the bioassay programs that are established for workers who remove tailings from the communities in which they are placed
Grouting of uranium mill tailings piles
International Nuclear Information System (INIS)
Boegly, W.J. Jr.; Tamura, T.; Williams, J.D.
1984-03-01
A program of remedial action was initiated for a number of inactive uranium mill tailings piles. These piles result from mining and processing of uranium ores to meet the nation's defense and nuclear power needs and represent a potential hazard to health and the environment. Possible remedial actions include the application of covers to reduce radon emissions and airborne transport of the tailings, liners to prevent groundwater contamination by leachates from the piles, physical or chemical stabilization of the tailings, or moving the piles to remote locations. Conventional installation of liners would require excavation of the piles to emplace the liner; however, utilization of grouting techniques, such as those used in civil engineering to stabilize soils, might be a potential method of producing a liner without excavation. Laboratory studies on groutability of uranium mill tailings were conducted using samples from three abandoned piles and employing a number of particulate and chemical grouts. These studies indicate that it is possible to alter the permeability of the tailings from ambient values of 10 -3 cm/s to values approaching 10 -7 cm/s using silicate grouts and to 10 -8 cm/s using acrylamide and acrylate grouts. An evaluation of grouting techniques, equipment required, and costs associated with grouting were also conducted and are presented. 10 references, 1 table
Long-term ecological behaviour of abandoned uranium mill tailings. 1
International Nuclear Information System (INIS)
Kalin, M.
1983-03-01
Inactive uranium mill tailings were surveyed in the Province of Ontario to describe their surface characteristics, identify naturally invading biota, and determine essential chemical and physical parameters associated with the tailings. Inactive tailings sites can have wet areas, tailings completely covered with water, and dry areas. In the wet areas of most sites, wetland vegetation stands were found which were dominated by species of cattails (Typhaceae), along with some species of rushes (Juncaceae) and sedges (Cyperceae). Dry areas of the tailings exhibited a variety of surface features which are often a reflection of different amelioration efforts. Most of the indigenous species of vascular plants identified on dry areas of the tailings occurred only sporadically. Invading plants found on most sites were the tree species, trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera). Elemental concentration and some physical characteristics of the tailings collected from a depth of 0-20 cm were determined. Uptake of heavy metals and radionuclides were evaluated in trees found in the dry areas and in cattails (Typha latifolia) in the wetland areas. Water bodies on tailings and surface water leaving the tailings, before and after treatment, were characterized in this survey. Aquatic bryophytes have invaded some water bodies on the tailings, and acid tolerant algae were evident in most of the water associated with the tailings. Ecological processes occurring on inactive uranium mill tailings which were identified in this survey are essential in evaluating the long-term fate of these waste sites
International Nuclear Information System (INIS)
Wang Jintang
1990-01-01
The production of uranium mill tailings and their risk assessment are described. The moethods of uranium mill tailings disposal and management are criticized and the necessity of the researches for uranium mill tailings cleaning treatment and no-wasle uranium ore milling process are demonstrated. The progress for these researches in China and other countries with uranium production is reviewed, and the corresponding conclusions are reported
International Nuclear Information System (INIS)
Momeni, M.H.; Kisieleski, W.E.; Yuan, Y.; Roberts, C.J.
1978-01-01
Evaluation of radiological risk of uranium milling is based on identification and quantification of sources of release and consideration of dynamic coupling among the meteorological, physiographical, hydrological environments and the affected individuals. Dispersion pathways of radionuclides are through air, soil, and water, each demanding locally tailored procedures for estimation of the rate of release of radioactivity and the pattern of biological uptake and exposure. The Uranium Dispersion and Dosimetry Code (UDAD), a comprehensive method for estimating the concentrations of the released radionuclides, dose rates, doses, and radiological health effects, is described. Predicted concentrations and exposure rates are compared with experimental data obtained from field research at active mills and abandoned tailings
Uranium-mill appraisal program
International Nuclear Information System (INIS)
Everett, R.J.; Cain, C.L.
1982-08-01
The results of special team appraisals at NRC-licensed uranium mills in the period May to November 1981 are reported. Since the Three Mile Island accident, NRC management has instituted a program of special team appraisals of radiation protection programs at certain NRC-licensed facilities. These appraisals were designed to identify weaknesses and strengths in NRC-licensed programs, including those areas not covered by explicit regulatory requirements. The regulatory requirements related to occupational radiation protection and environmental monitoring at uranium mills have been extensively upgraded in the past few years. In addition, there was some NRC staff concern with respect to the effectiveness of NRC licensing and inspection programs. In response to this concern and to changes in mill requirements, the NRC staff recommended that team appraisals be conducted at mills to determine the adequacy of mill programs, the effectiveness of the new requirements, and mill management implementation of programs and requirements. This report describes the appraisal scope and methodology as well as summary findings and conclusions. Significant weaknesses identified during the mill appraisals are discussed as well as recommendations for improvements in uranium mill programs and mill licensing and inspection
77 FR 14837 - Bioassay at Uranium Mills
2012-03-13
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0057] Bioassay at Uranium Mills AGENCY: Nuclear Regulatory..., ``Bioassay at Uranium Mills.'' This guide describes a bioassay program acceptable to the NRC staff for uranium mills and applicable portions of uranium conversion facilities where the possibility of exposure...
Source terms for airborne radioactivity arising from uranium mill wastes
International Nuclear Information System (INIS)
O'Riordan, M.C.; Downing, A.L.
1978-01-01
One of the problems in assessing the radiological impact of uranium milling is to determine the rates of release to the air of material from the various sources of radioactivity. Such source terms are required for modelling the transport of radioactive material in the atmosphere. Activity arises from various point and area sources in the mill itself and from the mill tailings. The state of the tailings changes in time from slurry to solid. A layer of water may be maintained over the solids during the life of the mine, and the tailings may be covered with inert material on abandonment. Releases may be both gaseous and particulate. This paper indicates ways in which radon emanation and the suspension of long-lived particulate activity might be quantified, and areas requiring further exploration are identified
International Nuclear Information System (INIS)
1993-09-01
Public concern regarding the potential human health and environmental effects from uranium mill tailings led Congress to pass the Uranium Mill Tailings Radiation Control Act (UMTRCA) (Public Law 95-604) in 1978. In the UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings at 24 abandoned uranium mill processing sites needing remedial action. Uranium processing activities at most of the 24 mill processing sites resulted in the formation of contaminated ground water beneath and, in some cases, downgradient of the sites. This contaminated ground water often has elevated levels of hazardous constituents such as uranium and nitrate. The purpose of the Ground Water Project is to protect human health and the environment by meeting EPA-proposed standards in areas where ground water has been contaminated with constituents from UMTRA Project sites. A major first step in the UMTRA Ground Water Project is the preparation of this Programmatic Environmental Impact Statement (PEIS). This document analyzes potential impacts of the alternatives, including the proposed action. These alternatives are programmatic in that they are plans for conducting the UMTRA Ground Water Project. The alternatives do not address site-specific ground water compliance. This PEIS is a planning document that will provide a framework for conducting the Ground Water Project; assess the potential programmatic and environmental impacts of conducting the UMTRA Ground Water Project; provide a method for determining the site-specific ground water compliance strategies; and provide data and information that can be used to prepare site-specific environmental impacts analyses documents more efficiently
Airborne effluent control at uranium mills
International Nuclear Information System (INIS)
Sears, M.B.
1976-01-01
The Oak Ridge National Laboratory has made an engineering cost--environmental benefit study of radioactive waste treatment systems for decreasing the amount of radioactive materials released from uranium ore processing mills. This paper summarizes the results of the study which pertain to the control and/or abatement of airborne radioactive materials from the mill processes. The tailings area is not included. Present practices in the uranium milling industry, with particular emphasis on effluent control and waste management, have been surveyed. A questionnaire was distributed to each active mill in the United States. Replies were received from about 75 percent of the mill operators. Visits were made to six operating uranium mills that were selected because they represented the different processes in use today and the newest, most modern in mill designs. Discussions were held with members of the Region IV Office of NRC and the Grand Junction Office of ERDA. Nuclear Science Abstracts, as well as other sources, were searched for literature pertinent to uranium mill processes, effluent control, and waste management
International Nuclear Information System (INIS)
Floeter, W.
1976-01-01
In this report uranium mining and milling are reviewed. The fuel cycle, different types of uranium geological deposits, blending of ores, open cast and underground mining, the mining cost and radiation protection in mines are treated in the first part of this report. In the second part, the milling of uranium ores is treated, including process technology, acid and alkaline leaching, process design for physical and chemical treatment of the ores, and the cost. Each chapter is clarified by added figures, diagrams, tables, and flowsheets. (HK) [de
Training manual for uranium mill workers on health protection from uranium
International Nuclear Information System (INIS)
McElroy, N.; Brodsky, A.
1986-01-01
This report provides information for uranium mill workers to help them understand the radiation safety aspects of working with uranium as it is processed from ore to yellowcake at the mills. The report is designed to supplement the radiation safety training provided by uranium mills to their workers. It is written in an easily readable style so that new employees with no previous experience working with uranium or radiation can obtain a basic understanding of the nature of radiation and the particular safety requirements of working with uranium. The report should be helpful to mill operators by providing training material to support their radiation safety training programs
Uranium mill tailings remedial action technology
International Nuclear Information System (INIS)
Hartley, J.N.; Gee, G.W.
1984-01-01
The uranium milling process involves the hydrometallurgical extraction of uranium from ores and the resultant generation of large quantities of waste referred to as tailings. Uranium mill tailings have been identified as requiring remediation because they contain residual radioactive material that is not removed in the milling process. Potential radiation exposure can result from direct contact with the tailings, from radon gas emitted by the tailings, and from radioactive contamination of groundwater. As a result, the technology developed under the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP) and the US Nuclear Regulatory Commission (NRC) Uranium Recovery Program have focused on radon control, groundwater contamination and the long-term protection of the containment system. This paper briefly summarizes the UMTRAP and NRC remedial action technology development. 33 references, 9 figures, 5 tables
Radon releases from Australian uranium mining and milling projects: assessing the UNSCEAR approach.
Mudd, Gavin M
2008-02-01
The release of radon gas and progeny from the mining and milling of uranium-bearing ores has long been recognised as a potential radiological health hazard. The standards for exposure to radon and progeny have decreased over time as the understanding of their health risk has improved. In recent years there has been debate on the long-term releases (10,000 years) of radon from uranium mining and milling sites, focusing on abandoned, operational and rehabilitated sites. The primary purpose has been estimates of the radiation exposure of both local and global populations. Although there has been an increasing number of radon release studies over recent years in the USA, Australia, Canada and elsewhere, a systematic evaluation of this work has yet to be published in the international literature. This paper presents a detailed compilation and analysis of Australian studies. In order to quantify radon sources, a review of data on uranium mining and milling wastes in Australia, as they influence radon releases, is presented. An extensive compilation of the available radon release data is then assembled for the various projects, including a comparison to predictions of radon behaviour where available. An analysis of cumulative radon releases is then developed and compared to the UNSCEAR approach. The implications for the various assessments of long-term releases of radon are discussed, including aspects such as the need for ongoing monitoring of rehabilitation at uranium mining and milling sites and life-cycle accounting.
Radon releases from Australian uranium mining and milling projects: assessing the UNSCEAR approach
International Nuclear Information System (INIS)
Mudd, Gavin M.
2008-01-01
The release of radon gas and progeny from the mining and milling of uranium-bearing ores has long been recognised as a potential radiological health hazard. The standards for exposure to radon and progeny have decreased over time as the understanding of their health risk has improved. In recent years there has been debate on the long-term releases (10,000 years) of radon from uranium mining and milling sites, focusing on abandoned, operational and rehabilitated sites. The primary purpose has been estimates of the radiation exposure of both local and global populations. Although there has been an increasing number of radon release studies over recent years in the USA, Australia, Canada and elsewhere, a systematic evaluation of this work has yet to be published in the international literature. This paper presents a detailed compilation and analysis of Australian studies. In order to quantify radon sources, a review of data on uranium mining and milling wastes in Australia, as they influence radon releases, is presented. An extensive compilation of the available radon release data is then assembled for the various projects, including a comparison to predictions of radon behaviour where available. An analysis of cumulative radon releases is then developed and compared to the UNSCEAR approach. The implications for the various assessments of long-term releases of radon are discussed, including aspects such as the need for ongoing monitoring of rehabilitation at uranium mining and milling sites and life-cycle accounting
Radioactive pollution investigation and disposal of abandoned uranium mines in Jiangsu province
International Nuclear Information System (INIS)
Zhang Qihong; Zhao Fuxiang; Wang Lihua
2008-01-01
The environment influence of five abandoned uranium mines in Jiangsu province from 1950s to 1960s is introduced. By monitoring air absorbed dose rate of external exposure γ radiation, it is found that the pollution scope of No.1 abandoned uranium mine is the biggest in five abandoned uranium mines. The No. 2 and No. 3 mine areas has achieved the limit use after they were desposed. The radioactivity and the gamma nuclein in solid samples(slag, soil, silt) and liquid samples (the surface water, the well water)of No. 1 abandoned uranium mine were further analyzed and measured, the measured values are higher. The pollution of abandoned uranium mines still exists and diffuses after 30 years. According to the monitoring results and the analysis of pollution present situation, suggestions and measures are proposed for the pollution control. (authors)
Environmental design of a uranium mill
International Nuclear Information System (INIS)
Quan, C.H.; Ring, R.J.; McNaughton, S.J.
2002-01-01
In the frame work of the Cleaner Technology Project for Uranium Mining and Milling, Australian Nuclear and Technology Organization (ANSTO), Environment Division of ANSTO has carried out a programme of research which seeks to identify, investigate and develop cleaner technologies that have the potential to minimize the environmental impact of uranium mining and milling. This paper describes three design options of a new uranium mill that can meet environmental, technical and economical objectives. The feasibility of such an approach was examined in the laboratory and in a pilot plant study. (author)
Colorado's prospectus on uranium milling
International Nuclear Information System (INIS)
Hazle, A.J.; Franz, G.A.; Gamewell, R.
1982-01-01
The first part of this paper will discuss Colorado's control of uranium mill tailings under Titles I and II of the Uranium Mill Tailings Radiation Control Act of 1978. Colorado has a legacy of nine inactive mill sites requiring reclamation under Title I, and two presently active plus a number of new mill proposals which must be regulated in accordance with Title II. Past failures in siting and control on the part of federal jurisdictions have left the state with a heavy legacy requiring extensive effort to address impacts to the state's environment and population. The second part of this paper will discuss the remedial action programme authorized under Public Law 92-314 for Mesa Country, where lack of federal control led to the dispersal of several hundred thousand tons of uranium mill tailings on thousands of properties, including hundreds of homes, schools and other structures. Successful completion of the State efforts under both programmes will depend on a high level of funding and on the maintenance of adequate regulatory standards. (author)
Landa, Edward R.; Cravotta, Charles A.; Naftz, David L.; Verplanck, Philip L.; Nordstrom, D. Kirk; Zielinski, Robert A.
2000-01-01
Recent research by the U.S. Geological Survey has characterized contaminant sources and identified important geochemical processes that influence transport of radionuclides from uranium mining and milling wastes. 1) Selective extraction studies indicated that alkaline earth sulfates and hydrous ferric oxides are important hosts of 226Ra in uranium mill tailings. The action of sulfate-reducing and ironreducing bacteria on these phases was shown to enhance release of radium, and this adverse result may temper decisions to dispose of uranium mill tailings in anaerobic environments. 2) Field studies have shown that although surface-applied sewage sludge/wood chip amendments aid in revegetating pyritic spoil, the nitrogen in sludge leachate can enhance pyrite oxidation, acidification of groundwater, and the consequent mobilization of metals and radionuclides. 3) In a U.S. Environmental Protection Agencyfunded study, three permeable reactive barriers consisting of phosphate-rich material, zero-valent iron, or amorphous ferric oxyhydroxide have been installed at an abandoned uranium upgrader facility near Fry Canyon, UT. Preliminary results indicate that each of the permeable reactive barriers is removing the majority of the uranium from the groundwater. 4) Studies on the geochemistry of rare earth elements as analogues for actinides such as uranium and thorium in acid mine drainage environments indicate high mobility under acid-weathering conditions but measurable attenuation associated with iron and aluminum colloid formation. Mass balances from field and laboratory studies are being used to quantify the amount of attenuation. 5) A field study in Colorado demonstrated the use of 234U/238U isotopic ratio measurements to evaluate contamination of shallow groundwater with uranium mill effluent.
EPA's role in uranium mining and milling
International Nuclear Information System (INIS)
Smith, P.B.
1980-01-01
EPA's role and actions in regulating uranium mining and milling are reviewed and updated. Special emphasis is given to EPA's current activities under the Uranium Mill Tailings Radiation Control Act of 1978
Reclamation of uranium mining and milling disturbances
International Nuclear Information System (INIS)
Farmer, E.E.; Schuman, G.E.
1987-01-01
Since 1945 the history of uranium mining and milling in the US has been a story of wide fluctuations in market prices and in mining and milling capacity. The late 1960's and the 1970's saw a sizeable reduction in the production of yellowcake because of an earlier over-supply, a leveling off of the military demand, and a failure of the nuclear electric power industry to create the anticipated commercial demand. The decline in the domestic production of yellowcake has continued through the early 1980's to the present. Today, there are five operating uranium mills in the US: one in Wyoming, two in Utah, one in New Mexico, and one in Texas. Of these five mills, three are operating on a reduced schedule, as little as three days a month. A significant portion of the current US production of uranium goes overseas to fulfill Japanese, French, and other European contracts. There is still a sizeable reclamation job to be accomplished on old uranium wastes, both tailings impoundments and overburden embankments. Before the Uranium Mill Tailings Control Act of 1978 (PL 95-604), reclamation was frequently omitted altogether, or else done in a haphazard fashion. We do not know the total area of unreclaimed, radioactive, uranium overburden wastes in the western US, but the area is large, probably several thousand hectares. Fortunately, these overburden wastes are almost entirely located in remote areas. Mill tailings are more difficult to reclaim than overburden, and tailings represent a more serious health hazards. There are approximately 25 million metric tons of unreclaimed uranium mill tailings, with variable health hazards, located in the US
A guide to the licensing of uranium and thorium mine and mill waste management systems
International Nuclear Information System (INIS)
1986-01-01
This document is issued to assist industry and the public in understanding the licensing process used by the Canadian Atomic Energy Control Board (AECB), and do describe and consolidate the requirements, criteria and guidelines the AECB uses in the regulation of uranium and thorium mine and mill waste management systems. All phases of these systems are addressed, including pre-development activities, siting and construction, operation, and decommissioning and abandonment
International Nuclear Information System (INIS)
Harms, V.L.
1982-07-01
A goal of this study was to acquire more complete baseline data on the existing flora of the Uranium City region, both in natural and human-disturbed sites. Emphasis was given to determining which plant species were naturally revegetating various abandoned uranium mine and mill waste disposal areas, other human-disturbed sites, and ecologically analogous sites. Another goal was to document the occurrence and distribution in the study region of rare and possibly endangered species. A further objective was to suggest regionally-occurring species with potential value for revegetating uranium mine and mill waste sites. Field investigations were carried out in the Uranium City region during August, 1981. During this time 1412 plant collections were made; a total of 366 plant species - trees, shrubs, forbs, graminoids, lichens, and bryophytes were recorded. The report includes an annotated checklist of plant species of the Uranium City region and a reference index of plant taxa indicating species that have high revegetation potential
International Nuclear Information System (INIS)
Kalin, M.
1980-06-01
This report consists of four independent studies of disused uranium mill tailings areas. The studies cover surface water movements, limnology, invasion of the tailings by vegetation, and soil nematodes in the mill tailings. (O.T.)
Radiation health and safety aspects in uranium milling
International Nuclear Information System (INIS)
Smart, B.C.
1982-01-01
This presentation deals mainly with radiation levels associated with the uranium milling operations, including yellowcake production. The regulation of uranium mills has not received much attention in the past because radiation levels have been generally low, and uranium milling has been substantially free of occupational illness. More attention is being directed towards minimizing exposures, and the Canadian Atomic Energy Control Board is working on new regulations which will reflect the recommendations of various hearings and the International Commission on Radiological Protection. Emphasis is now being placed on improving monitoring methods. At the beginning of 1982 a gamma dosimetry program will be put into effect for all uranium mine and mill workers. An improved method is also being sought to determine radon daughter exposures more accurately. It is expected that a better knowledge of monitoring and assessing thoron daughter levels in mine and mill facilities will be obtained soon. This radiation contribution will be included when calculating a combined radiation exposure factor for individual workers. Programs are underway to better monitor and assess uranium dust inhalation. Initial studies indicate that the present precautions taken to avoid dust inhalation at the mills are effective. A more complete study will be undertaken in 1982
The Canadian Nuclear Safety Commission Compliance Program for Uranium Mines and Mills
Energy Technology Data Exchange (ETDEWEB)
Schryer, D., E-mail: denis.schryer@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Saskatoon, Saskatchewan (Canada)
2014-05-15
The Canadian Nuclear Safety Commission (CNSC) is the principal nuclear regulator in Canada. The CNSC is empowered through the Nuclear Safety and Control Act (NSCA) and its associated regulations, to regulate the entire nuclear cycle which includes: uranium mining and milling, uranium refining and processing, fuel fabrication, power generation and nuclear waste management. A CNSC uranium mine licence is required by a proponent to site, prepare, construct, operate, decommission and abandon this nuclear facility. The CNSC licence is the legal instrument that authorizes the regulated activities and incorporates conditions and regulatory controls. Following a favourable Commission Tribunal decision to issue a licence to authorize the licensed activities, CNSC develops and executes a compliance plan of the licensee’s programs and procedures. The CNSC compliance plan is risk-informed and applies its resources to the identified higher risk areas. The compliance program is designed to encourage compliance by integrating three components: promotion, verification and enforcement and articulates the CNSC expectations to attain and maintain compliance with its regulatory requirements. The licensee performance is assessed through compliance activities and reported to the Commission to inform the licensing process during licence renewal. The application of the ongoing compliance assessment and risk management model ensures that deviations from impact predictions are addressed in a timely manner. The Uranium Mines and Mills Division of the CNSC are preparing to meet the challenges of the planned expansion of their Canadian uranium mining industry. The presentation will discuss these challenges and the measures required to address them. The Uranium Mines and Mills Division (UMMD) have adopted a structured compliance framework which includes formal procedures to conduct site inspections. New UMMD staff are trained to apply the regulations to licensed sites and to manage non
Management of wastes from uranium mines and mills
International Nuclear Information System (INIS)
Thomas, K.T.
1981-01-01
Uranium mining and milling operations have not given rise to much concern about their hazards, and with advancing technologies for mill processing and waste management, the situation will continue to improve. However, the disposal of large quantities of waste produced in mining and milling does have an environmental impact, owing to the long half-lives and the ready availability of the toxic radionuclides Ra-226 and Rn-222. This article deals with the management of wastes from uranium mines and mills
Uranium mill tailings and radon
International Nuclear Information System (INIS)
Hanchey, L.A.
1981-01-01
The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the US may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action Program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100
Uranium mill tailings and radon
Energy Technology Data Exchange (ETDEWEB)
Hanchey, L A
1981-04-01
The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the United States may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100.
Uranium mill tailings and radon
Energy Technology Data Exchange (ETDEWEB)
Hanchey, L A
1981-01-01
The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the US may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action Program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100.
Current uranium mill licensing issues
International Nuclear Information System (INIS)
Scarano, R.A.
1977-01-01
The problems encountered to insure environmentally safe mining and milling of uranium ores are reviewed. Emphasis is placed on the management of tailings resulting from milling operations. It is pointed out that although the concentration of radioactivity in the tailings is relatively low, control measures are necessary because of the large quantities involved and because of the long half-life of the parent radionuclides present. The major concerns with mill tailings are radon release to the atmosphere and isolation of the tailings from the human environment. Since it is anticipated that the amount of tailings created by the year 2000 will be more than an order of magnitude greater than the quantities that have been generated during the past 30 years, it is recommended that all mill tailings storage areas be located remote from public contact and in areas such that disruption and dispersion by natural forces and seepage of toxic materials into ground water systems are reduced to the maximum extent achievable. Technical issues that receive attention during the NRC licensing process for uranium mills and the preparation of environmental impact statements are discussed briefly
Radiation protection in uranium mining and milling industry
International Nuclear Information System (INIS)
Raghavayya, M.
2005-01-01
The first phase of the Nuclear Fuel Cycle is exploration for uranium and the next is mining and milling of uranium ore. This phase is mostly characterised by low levels of radioactivity and radiation exposure of the workers involved. Yet it is a paradoxical truth that incidence of cancer among the work force, especially miners, due to occupational radiation exposure (from radon and decay products) has been proved only in uranium mines in the entire Nuclear Fuel Cycle. Of course such incidence occurred before the detrimental effect of radiation exposure was realised and understood. Therefore it is important to familiarise oneself with the radiation hazards prevalent in the uranium mining and milling facilities so as to take appropriate remedial measures for the protection of not only the workers but also the public at large. There are both open cast and underground uranium mines around the world. Radiation hazards are considerably less significant in open cast mines than in underground mines unless the ore grade is very high. By default therefore the discussion which ensues relates mainly to radiation hazards in underground uranium mines and associated milling operations. The discussion gives a brief outline of typical uranium mine and mining and milling operations. This is followed by a description of the radiation hazards therein and protection measures that are to be taken to minimise radiation exposure. (author)
77 FR 35431 - Final Alternative Soils Standards for the Uravan, CO, Uranium Mill
2012-06-13
..., Uranium Mill AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Uranium milling alternative... amend their agreements to regulate uranium mill tailings (11e.(2) byproduct material). Six Agreement... transferring the Uravan uranium mill site to the U.S. Department of Energy. The NRC staff found no deficiencies...
Study of the Utah uranium-milling industry. Volume I. A policy analysis
International Nuclear Information System (INIS)
Turley, R.E.
1980-05-01
This is the first volume of a two volume study of the Utah Uranium Milling Industry. The study was precipitated by a 1977 report issued by the Western Interstate Nuclear Board entitled Policy Recommendations on Financing Stabilization. Perpetual Surveillance and Maintenance of Uranium Mill Tailings. Volume I of this study is a policy analysis or technology assessment of the uranium milling industry in the state of Utah; specifically, the study addresses issues that deal with the perpetual surveillance, monitoring, and maintenance of uranium tailings piles at the end of uranium milling operations, i.e., following shutdown and decommissioning. Volume II of this report serves somewhat as an appendix. It represents a full description of the uranium industry in the state of Utah, including its history and statements regarding its future. The topics covered in volume I are as follows: today's uranium industry in Utah; management of the industry's characteristic nuclear radiation; uranium mill licensing and regulation; state licensing and regulation of uranium mills; forecast of future milling operations; policy needs relative to perpetual surveillance, monitoring, and maintenance of tailings; policy needs relative to perpetual oversight; economic aspects; state revenue from uranium; and summary with conclusions and recommendations. Appendices, figures and tables are also presented
Environmental impact of uranium mining and milling in Australia
International Nuclear Information System (INIS)
Levins, D.M.
1980-01-01
Australia has almost twenty per cent of the Western World's low-cost uranium reserves, located mostly in the Alligator Rivers region of the Northern Territory. At present, only one uranium mill is operating in Australia, but a number of new mills are planned for the early 1980s. Details are given of Australian uranium mining and milling proposals and the measures taken to minimize their environmental impact. Major factors affecting environmental impact are discussed, including treatment of liquid wastes, water management, control of radon and other airborne releases, and disposal of tailings. (auth)
International Nuclear Information System (INIS)
Gatzweiler, R.; Mager, D.
1993-01-01
The production of natural uranium through mining and milling results in large volumes of low-level radioactive waste, mainly in mine dumps and mill tailings. Hazards which relate to abandoned uranium production sites and environmental remediation approaches are described in reference to the Wismut case. During the period 1947 to 1990 the former Soviet-German Wismut Corporation produced about 200 000 t of uranium from several deposits in Thuringia and Saxonia within a relatively small and densely populated area. These activities resulted in major land disturbance and other environmental damage. Restoration problems are highlighted. (orig.)
International Nuclear Information System (INIS)
McLaren, L.H.
1982-11-01
This bibliography contains information on uranium mill tailings included in the Department of Energy's Energy Data Base from January 1981 through October 1982. The abstracts are grouped by subject category as shown in the table of contents. Entries in the subject index also facilitate access by subject, e.g., Mill Tailings/Radiation Hazards. Within each category the arrangement is by report number for reports, followed by nonreports in reverse chronological order. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. (335 abstracts)
76 FR 70170 - Proposed Alternative Soils Standards for the Uravan, Colorado Uranium Mill
2011-11-10
..., Colorado Uranium Mill AGENCY: Nuclear Regulatory Commission. ACTION: Uranium milling alternative standards... Agreements to regulate uranium mill tailings (11e.(2) byproduct material). Six Agreement States have this... in Colorado are acceptable. Discussion The Uravan site began operations in 1912 as a radium mill and...
Jaduguda uranium mill : rich experiences for future challenges
International Nuclear Information System (INIS)
Beri, K.K.
1991-01-01
India's only uranium milling plant at Jaduguda was commissioned in 1967-68 utilising low grade uranium ore. The flowsheet of the mill and controlling parameters were based on studies done on laboratory and pilot plant scale tests at the Bhabha Atomic Research Centre, Bombay. The mill has worked upto expectation except in few areas where modifications had to be done for smooth production. Apart from this improvements in operating practices have been done based on experience gained in operating the mill, incorporating the recent technological advances. In the recent past, the mill was expanded to increase the installed capacity by 40% and was commissioned in October 1987. The expanded mill has given the desired capacity and is working smoothly. The present paper deals with the experience gained in running the plant for the last 20 years and changes incorporated (author). 4 figs
Descriptive documentation for New Mexico uranium milling model
International Nuclear Information System (INIS)
Bonem, G.; Livevano, R.J.
1981-01-01
The New Mexico Uranium Milling Model is a linear programming model. It can demonstrate how cost minimizing management can reduce the costs of milling uranium subject to a series of environmental, resource, and technological constraints. For example, if 15,000 tons were the targeted level of milling output, the model would provide the minimum cost of this production level, given certain levels of environmental, fuel, water, and technological constraints. The model was developed to allow state policymakers to assess the uranium industry from various standpoints. Through the use of the model, state policymakers can determine the effects of air and water discharge standards and limited capital availability on: milling costs of production; uses of electricity, fuel, and water; and levels of air and water emissions. The model covers the following: process technologies which are acid leach and carbonate leach; raw materials mix; air and water discharges; residual treatment process; and plant types
Mortality patterns among a retrospective cohort of uranium mill workers
International Nuclear Information System (INIS)
Waxweiler, R.J.; Archer, V.E.; Roscoe, R.J.; Watanabe, A.; Thun, M.J.
1983-01-01
The long-term health effects associated with the milling of uranium ore are of interest particularly because of exposures to uranium and thorium-230. Excess risks of pulmonary and lymphatic malignancies have been suggested by previous epdiemiologic studies of persons milling or smelting uranium ores, and nephrotoxic effects of uranium have been reported in both man and animals. To test these three previously reported associations and to assess all cause-specific mortality patterns among uranium mill workers, we carried out a retrospective cohort study of 2002 uranium millers employed in any of seven mills at least one year before 1972. Ninety-eight percent (98%) followup of the cohort through 1977 resulted in 533 deaths observed versus 605 expected from US White male mortality rates. Mortality from most causes was lower than expected. Significant excess risks were found only for nonmalignant respiratory disease and miscellaneous accidents but not for any of the three diseases of a priori interest. However, nonsignificant excesses were found for lymphatic malignancies after 20 years latency and for death due to chronic nephritis among short-term workers
Uranium Mill Tailings Remedial Action Project surface project management plan
International Nuclear Information System (INIS)
1994-09-01
This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials
Predicting radon flux from uranium mill tailings
International Nuclear Information System (INIS)
Freeman, H.D.; Hartley, J.N.
1983-11-01
Pacific Northwest Laboratory (PNL), under contract to the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP) office, is developing technology for the design of radon barriers for uranium mill tailings piles. To properly design a radon cover for a particular tailings pile, the radon flux emanating from the bare tailings must be known. The tailings characteristics required to calculate the radon flux include radium-226 content, emanating power, bulk density, and radon diffusivity. This paper presents theoretical and practical aspects of estimating the radon flux from an uranium tailings pile. Results of field measurements to verify the calculation methodology are also discussed. 24 references, 4 figures, 4 tables
Health physics program for the Edgemont Uranium Mill decommissioning project
International Nuclear Information System (INIS)
Polehn, J.L.; Wallace, R.G.; Reed, R.P.; Wilson, G.T.
1986-01-01
The Tennessee Valley Authority (TVA) is actively involved in decommissioning a uranium mill located near the town of Edgemont, South Dakota. The Edgemont Mill Decommissioning Project, which is unique in many respects, will involve dismantlement of the old inactive mill building and excavation and transportation of several million tons of uranium mill tailings to a permanent disposal site. To ensure that workers are adequately protected from radiation exposure during decommissioning operations, a health physics program appropriate for the decommissioning situation was developed. The Edgemont Mill Decommissioning Project Health Physics Manual (HPM) gives the programmatic requirements for worker radiation protection. The requirements of the HPM are implemented by means of detailed onsite operating procedures. The Edgemont project health physics program was developed using currently available regulations and guidance for an operating uranium mill with appropriate modifications for decommissioning. This paper discusses the development, implementation, and documentation of that program
Bioremediation of ground water contaminants at a uranium mill tailings site
International Nuclear Information System (INIS)
Barton, L.L.; Nuttall, H.E.; Thomson, B.M.; Lutze, W.
1995-01-01
Ground water contaminated with uranium from milling operations must be remediated to reduce the migration of soluble toxic compounds. At the mill tailings site near Tuba City, Arizona (USA) the approach is to employ bioremediation for in situ immobilization of uranium by bacterial reduction of uranyl, U(VI), compounds to uraninite, U(IV). In this initial phase of remediation, details are provided to indicate the magnitude of the contamination problem and to present preliminary evidence supporting the proposition that bacterial immobilization of uranium is possible. Additionally, consideration is given to contaminating cations and anions that may be at toxic levels in ground water at this uranium mill tailing site and detoxification strategies using bacteria are addressed. A model concept is employed so that results obtained at the Tuba City site could contribute to bioremediation of ground water at other uranium mill tailings sites
Biota of uranium mill tailings near the Black Hills
Mark A. Rumble
1982-01-01
Reclamation" often implies the enhancement of the land as wildlife habitat or for other productive uses. However, there are situations where revegetation to stabilize erosion is the only desired goal. Uranium mining and mill sites may fall into this later category. Data pertaining to plant and animal components on revegetated uranium mill tailings was collected....
Control and prevention of seepage from uranium mill waste disposal facilities
International Nuclear Information System (INIS)
Williams, R.E.
1978-01-01
This paper constitutes an analysis of the technologies which are available for the prevention of movement of waste waters out of uranium mill waste disposal facilities via sub-surface routes. Hydrogeologic criteria for potential uranium mill waste disposal sites and mathematical modeling of contaminant migration in ground water are presented. Methods for prevention of seepage from uranium mill waste disposal facilities are investigated: liners, clay seals, synthetic polymeric membranes (PVC, polyethylene, chlorinated polyethylene, hypalon, butyl rubber, neoprene, elasticized polyolefin)
Current practices and options for confinement of uranium mill tailings
International Nuclear Information System (INIS)
1981-01-01
At the United Nations Conference on the Human Environment, which took place in Stockholm from 4 to 6 June 1972, national governments were asked to explore, with the International Atomic Energy Agency and other appropriate international organizations, international co-operation on radioactive waste matters including those of mining and tailings disposal. Since that time the IAEA has been active in the field of uranium and thorium mill tailings management. As part of this activity, the present report describes current practices and options for confinement of uranium mill tailings. It is addressed to technical and administrative personnel who are involved in planning and implementing national and industrial programmes on the management of such tailings. In 1974 and 1975 the IAEA convened meetings of experts to review matters of interest and importance in the management of uranium and thorium mine and mill tailings. These activities led to the publication in 1976 of Management of Wastes from the Mining and Milling of Uranium and Thorium Ores, a Code of Practice and Guide to the Code, IAEA Safety Series No. 44. As a continuation of this activity, the IAEA is here dealing more specifically with the design and siting considerations for the management of uranium mill tailings
Radiological health aspects of uranium milling
International Nuclear Information System (INIS)
Fisher, D.R.; Stoetzel, G.A.
1983-05-01
This report describes the operation of conventional and unconventional uranium milling processes, the potential for occupational exposure to ionizing radiation at the mill, methods for radiological safety, methods of evaluating occupational radiation exposures, and current government regulations for protecting workers and ensuring that standards for radiation protection are adhered to. In addition, a survey of current radiological health practices is summarized
Radiological health aspects of uranium milling
Energy Technology Data Exchange (ETDEWEB)
Fisher, D.R.; Stoetzel, G.A.
1983-05-01
This report describes the operation of conventional and unconventional uranium milling processes, the potential for occupational exposure to ionizing radiation at the mill, methods for radiological safety, methods of evaluating occupational radiation exposures, and current government regulations for protecting workers and ensuring that standards for radiation protection are adhered to. In addition, a survey of current radiological health practices is summarized.
Mineralogy and geochemistry of uranium mill tailings
International Nuclear Information System (INIS)
Pagel, M.; Somot, S.
2002-01-01
We have investigated three main types of uranium mill tailings: (1) acid mill tailings (Mounana, Gabon), (2) neutralized acid mill tailings (Ecarpiere and Jouac, France) and (3) alkaline mill tailings (Lodeve, France). We have focused especially on radium behaviour which is of major environmental concern in these tailings, but other metals were also studied. It is shown that in type 1 , trapping of 226 Ra by anglesite and barite is dominant whereas in types 2 and 3, 226 Ra is mainly or significantly scavenged by Fe- Mn oxyhydroxides. This study points out the importance of keeping conditions in which these oxyhydroxides will be stable for the long-term. Uranium would be also released during acidification of the tailings. This shows the importance to know more about the behavior of Ra during the crystallization of oxyhydroxides and during tailings diagenesis. Therefore, it is very important to study the sorption of Ra by clay minerals or late authigeneous minerals such as barite. (author)
Integrated assessmet of the impacts associated with uranium mining and milling
Energy Technology Data Exchange (ETDEWEB)
Parzyck, D.C.; Baes, C.F. III; Berry, L.G.
1979-07-01
The occupational health and safety impacts are assessed for domestic underground mining, open pit mining, and milling. Public health impacts are calculated for a population of 53,000 located within 88 km (55 miles) of a typical southwestern uranium mill. The collective annual dose would be 6.5 man-lung rem/year, 89% of which is from /sup 222/Rn emitted from mill tailings. The dose to the United States population is estimated to be 6 x 10/sup 4/ man-lung rem from combined mining and milling operations. This may be comparedd with 5.7 x 10/sup 5/ man-lung rem from domestic use of natural gas and 4.4 x 10/sup 7/ man-lung rem from building interiors. Unavoidable adverse environmental impacts appear to be severe in a 250 ha area surrounding a mill site but negligible in the entire potentially impacted area (500,000 ha). The contemporary uranium resource and supply industry and its institutional settings are described in relation to the socio-economic impacts likely to emerge from high levels of uranium mining and milling. Radon and radon daughter monitoring techniques associated with uranium mining and milling are discussed.
Integrated assessmet of the impacts associated with uranium mining and milling
International Nuclear Information System (INIS)
Parzyck, D.C.; Baes, C.F. III; Berry, L.G.
1979-07-01
The occupational health and safety impacts are assessed for domestic underground mining, open pit mining, and milling. Public health impacts are calculated for a population of 53,000 located within 88 km (55 miles) of a typical southwestern uranium mill. The collective annual dose would be 6.5 man-lung rem/year, 89% of which is from 222 Rn emitted from mill tailings. The dose to the United States population is estimated to be 6 x 10 4 man-lung rem from combined mining and milling operations. This may be comparedd with 5.7 x 10 5 man-lung rem from domestic use of natural gas and 4.4 x 10 7 man-lung rem from building interiors. Unavoidable adverse environmental impacts appear to be severe in a 250 ha area surrounding a mill site but negligible in the entire potentially impacted area (500,000 ha). The contemporary uranium resource and supply industry and its institutional settings are described in relation to the socio-economic impacts likely to emerge from high levels of uranium mining and milling. Radon and radon daughter monitoring techniques associated with uranium mining and milling are discussed
Several issues on the decommissioning of uranium mining/milling facilities
International Nuclear Information System (INIS)
Xu Lechang; Xu Jianxin; Gao Shangxiong
2007-01-01
Several issues on the decommissioning of uranium mining/milling facilities are discussed at the national and international level of decommissioning, including radiation, monitoring, dose evaluation, covering, water treatment and stabilization of uranium tailings impoundment, etc. Some suggestions are made: drawing international lessons on decommissioning of uranium mining/milling facilities; enhancing monitoring and database construction in decommissioning management; stressing utilization of measured dose data; using the experience of other countries for reference on covering designs for uranium tailings impoundment and water treatment; strengthening decommissioning management, etc. (authors)
International Nuclear Information System (INIS)
Rael, G.J.; Cox, S.W.; Artiglia, E.W.
2000-01-01
The United States Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Surface Project has successfully completed the cleanup of 22 former uranium mill sites, more than 5400 vicinity properties, and has constructed 18 entombment cells. The Project has recently received the United States Nuclear Regulatory Commission's approval and certification for the last two disposal sites, with these sites being placed under the general license for long term custodial care of residual radioactive material. The UMTRA site located at Grand Junction, Colorado is a good example of the technical, political, economic, and public relations challenges that were overcome in achieving success. The UMTRA Team discussed, negotiated, planned, and eventually acted on this uranium mill tailings problem and brought the project to a successful conclusion for the community. From the early 1940s through the 1970s, uranium ore was mined in significant quantities under United States federal contracts for the government's national defence programmes, i.e. the Manhattan Engineering District and Atomic Energy Commission programmes. The problem started as the need for uranium decreased in the late 1960s, resulting in mills shutting down, leaving behind large quantities of process waste tailings and contaminated mill buildings. The former Climax Uranium Company mill site in Grand Junction was one of the largest of these sites. (author)
Uranium ore mill at Dolni Rozinka: 40 years of operation
International Nuclear Information System (INIS)
Toman, F.; Jezova, V.
2007-01-01
Uranium ore mined in the Rozna deposit is treated at a chemical treatment plant (a mill) situated in the close vicinity of the Rozna mine. In the mill, uranium is extracted from the crushed and ground-up ore by alkaline leaching. Uranium is then recovered from the solution by sorption on ion exchange resin; the next steps are precipitation and drying. Alkaline leaching is applied at the atmospheric pressure and the temperature of 80 deg C; the recovery factor is moving around 93%. The final product of the milling is uranium concentrate, ammonium diuranate (NH 4 ) 2 U 2 O 7 ), a so-called 'yellow cake' which is treated into a fuel for nuclear power plants in conversion facilities abroad. The milling is carried on under the condition of the closed cycle of technology water. Due to the positive annual precipitation balance, the over balance of technology water in tailings pond has to be purified before discharging into a river. Evaporation and membrane processes (electrodialysis and reverse osmosis) are used to purify the water. The mill at Dolni Rozinka has been in operation since 1968. It has processed 13.2 million tons of uranium ore which is about 14000 tons of uranium and purified more than 6 million m 3 of the over balanced technology water during 40 years. From the organizational point of view, the mine and the chemical treatment plant form the branch plant GEAM, which is a part of the state enterprise DIAMO. (author)
Environmental impact of uranium mining and milling
International Nuclear Information System (INIS)
Dory, A.B.
1981-08-01
The author introduces the subject with an overview of the regulatory requirments and philosophy applied to uranium mines and mills. The special attention given to tailings management is highlighted, and a discussion of the basic environmental concerns is concluded with an itemizing of the main tasks facing the AECB. The extent of the environmental impact of uranium mining, milling and waste management is illustrated with specific details pertaining to mines in the Elliot Lake area. The author concludes that the impact on the ground and surface water system is not alarming, and the impact on air quality is not significant beyond a few hundred metres from the mining facilities. The publicly perceived impact is discussed, followed by a rationale for the continued licensing of new uranium mining operations complete with tailings management facilities
Environmental Development Plan: uranium mining, milling, and conversion
International Nuclear Information System (INIS)
1979-08-01
This Environmental Development Plan (EDP) identifies the planning and management requirements and schedules needed to evaluate and assess the environmental, health, and safety (EH and S) aspects of the uranium mining, milling, and conversion technologies. The plan represents the collective perceptions of EH and S concerns and requirements and knowledge of ongoing research programs of most of the Federal agencies involved in significant EH and S R and D program management, standards setting, or regulatory activities associated with uranium mining, milling, and conversion
Uranium milling: Volume 1, Summary and text: Generic environmental impact statement: Draft
International Nuclear Information System (INIS)
1979-04-01
This generic environmental impact statement on uranium milling has been prepared in accordance with a notice of intent published by the Nuclear Regulatory Commission (NRC). The purpose of the statement is to assess the potential environmental impacts of uranium milling operations, in a programmatic context, including the management of uranium mill tailings, and to provide an opportunity for public participation in decisions on any proposed changes in NRC regulations based on this assessment. The principal objectives of the statement are to assess the nature and extent of the environmental impacts of uranium milling in the United states from local, regional, and national perspectives on both short- and long-term bases, to determine what regulatory actions are needed; to provide information on which to determine what regulatory requirements for management and disposal of mill tailings and mill decommissioning should be; and to support any rule makings that may be determined to be necessary. 39 figs., 130 tabs
Annual status report on the Uranium Mill Tailings Remedial Action Program
International Nuclear Information System (INIS)
1992-12-01
This fourteenth annual status report for the Uranium Mill Tailings Remedial Action (UMTRA) Project Office summarizes activities of the Uranium Mill Tailings Remedial Action Surface (UMTRA-Surface) and Uranium Mill Tailings Remedial Action Groundwater (UMTRA-Groundwater) Projects undertaken during fiscal year (FY) 1992 by the US Department of Energy (DOE) and other agencies. Project goals for FY 1993 are also presented. An annual report of this type was a statutory requirement through January 1, 1986, pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604. The DOE will continue to submit annual reports to DOE-Headquarters, the states, tribes, and local representatives through Project completion in order to inform the public of the yearly Project status. The purpose of the remedial action is to stabilize and control the tailings and other residual radioactive material (RRM) located on the inactive uranium processing sites in a safe and environmentally sound manner, and to minimize or eliminate potential health hazards. Commercial and residential properties near designated processing sites that are contaminated with material from the sites, herein referred to as ''vicinity properties (VP),'' are also eligible for remedial action. Included in the UMTRA Project are 24 inactive uranium processing sites and associated VPs located in 10 states, and the VPs associated with the Edgemont, South Dakota, uranium mill currently owned by the Tennessee Valley Authority (TVA) (Figure A.1, Appendix A)
Health risks from uranium mill tailings
International Nuclear Information System (INIS)
Russell, J.L.
1992-01-01
This paper reviews the risk to public health and the environment from uranium mill tailings. The steps taken by the Environmental Protection Agency (EPA) to reduce this risk from tailing are summarized
Elemental characterization of Tummalapalle uranium mill tailing
International Nuclear Information System (INIS)
Patra, A.C.; Sahoo, S.K.; Thakur, V.K.; Dubey, J.S.; Jha, S.K.; Tripathi, R.M.; Sharma, D.B.
2018-01-01
Elements are present in environmental matrices at varying concentrations. Their levels may increase due to anthropogenic activities like transportation, industrial activities, agriculture, urbanization and human activities. Trace elements can be classified as potentially toxic (eg. cadmium, arsenic, mercury, lead, nickel), probably essential (eg. cobalt, vanadium) and essential (eg. iron, zinc, copper, selenium, manganese). Due to the expansion of the Indian Nuclear Power Programme, new uranium mining sites are coming up. Mining and milling produce large quantities of low active mill tailings contained in engineered Tailings Ponds. The tailings are amenable for interaction with the geochemical forces and can act as potential sources of contamination. Thus it is necessary to ascertain the concentrations of elements that are present therein. In this paper we aim to characterize the uranium tailings generated from Tummalapalle uranium mining facility in Kadappa district, Andhra Pradesh, India
Optimization of uranium mill tailings disposal practices
International Nuclear Information System (INIS)
Richardson, Allan C.B.; Rowe, William D.
1984-01-01
So far as we have been to discern, no uranium mill tailings pile has yet been properly stabilized for long-term disposal. And although considerable effort is now being directed at developing practical solutions and at establishing standards for permanent disposal, the difficulties in application are diverse. They arise from the variety of environments in which milling is conducted, the significant costs associated with disposing of the large volumes of materials involved, the diverse nature of the hazards to be protected against, and uncertainties in both performance of controls and in how to determine societal responsibilities for management of the long term hazards to human populations from uranium tailings. There are 24 uranium tailings piles in the United States which no longer have responsible owners, and must now be disposed of by the U.S. Government in order to protect public health
Uranium mill tailings management
International Nuclear Information System (INIS)
1982-01-01
Facilities for the disposal of uranium mill tailings will invariably be subjected to geomorphological and climatological influences in the long-term. Proceedings of a workshop discuss how the principles of geomorphology can be applied to the siting, design, construction, decommissioning and rehabilitation of disposal facilities in order to provide for long-term containment and stability of tailings. The characteristics of tailings and their behaviour after disposal influence the potential impacts which might occur in the long-term. Proceedings of another workshop examine the technologies for uranium ore processing and tailings conditioning with a view to identifying improvements that could be made in such characteristics
Malin, Stephanie A.
Renewal of nuclear energy development has been proposed as one viable solution for reducing greenhouse gas emissions and impacts of climate change. This discussion became concrete as the first uranium mill proposed since the end of the Cold War, the Pinon Ridge Uranium Mill, received state permits in January 2011 to process uranium in southwest Colorado's Paradox Valley. Though environmental contamination from previous uranium activity caused one local community to be bulldozed to the ground, local support for renewed uranium activity emerges among local residents in communities like Nucla, Naturita, and Bedrock, Colorado. Regionally, however, a coalition of organized, oppositionbased grassroots groups fights the decision to permit the mill. Combined, these events allow social scientists a natural laboratory through which to view social repercussions of nuclear energy development. In this dissertation, I use a Polanyian theoretical framework to analyze social, political-economic, and environmental contexts of social movements surrounding PR Mill. My overarching research problem is: How might Polanyian double movement theory be applied to and made empirically testable within the social and environmental context of uranium development? I intended this analysis to inform energy policy debates regarding renewable energy. In Chapter 1, I found various forms of social dislocation lead to two divergent social movement outcomes. Economic social dislocation led to strong mill support among most local residents, according to archival, in-depth interview, and survey data. On the other hand, residents in regional communities experienced two other types of social dislocation -- another kind of economic dislocation, related to concern over boom-bust economies, and environmental health dislocations related to uranium exposure, creating conditions for a regional movement in opposition to PR Mill. In Chapter 2, I focus on regulations and find that two divergent social movements
Recycling and reuse of wastewater from uranium mining and milling
International Nuclear Information System (INIS)
Xu Lechang; Gao Jie; Zhang Xueli; Wei Guangzhi; Zhang Guopu
2010-01-01
Uranium mining/milling process, and the sources, recycling/reuse approach and treatment methods of process wastewater are introduced. The wastewater sources of uranium mining and milling include effluent, raffinate, tailings water, mine discharge, resin form converted solution, and precipitation mother liquor. Wastewater can be recycled/reused for leachant, eluent, stripping solution,washing solution and tailings slurry. (authors)
Site selection and general layout of heap leaching uranium mill
International Nuclear Information System (INIS)
Zhang Chunmao; Rongfeng
2011-01-01
The site selection and general layout of uranium mill is an important work in the design and consultation stage of uranium mining and metallurgy's engineering construction. Based on the design practices, the principles and methods for the site selection and general layout of heap leaching uranium mill are analyzed and studied. Some problems which should be paid much attention to in the design are discussed in hopes of providing a useful reference for the design and consultation of similar projects. (authors)
System for the hydrogeologic analysis of uranium mill waste disposal sites
International Nuclear Information System (INIS)
Osiensky, J.L.
1983-01-01
Most of the uranium mill wastes generated before 1977 are stored in unlined tailings ponds. Seepage from some of these ponds has been of sufficient severity that the US Nuclear Regulatory Commission (NRC) has required the installation of withdrawal wells to remove the contaminated groundwater. Uranium mill waste disposal facilities typically are located in complex hydrogeologic environments. This research was initiated in 1980 to analyze hydrogeologic data collected at seven disposal sites in the US that have experienced problems with groundwater contamination. The characteristics of seepage migration are site specific and are controlled by the hydrogeologic environment in the vicinity of each tailings pond. Careful monitoring of most seepage plumes was not initiated until approximately 1977. These efforts were accelerated as a consequence of the uranium Mill Tailings Act of 1979. Some of the data collected at uranium mill waste disposal sites in the past are incomplete and some were collected by methods that are outdated. Data frequently were collected in sequences which disrupted the continuity of the hydrogeologic analysis and decreased the effectiveness of the data collection programs. Evaluation of data collection programs for seven uranium mill waste disposal sites in the US has led to the development and presentation herein of a system for the hydrogeologic analysis of disposal sites
Uranium mill tailings management practices in Saskatchewan, Canada
International Nuclear Information System (INIS)
Clifton, A.W.; Barsi, R.G.; Melis, L.A.
1984-01-01
Uranium was discovered in Saskatchewan in 1934. The first major mill began operating at Beaverlodge in 1953; two other mills began production in the same area in 1955 and 1957. Waste management measures were limited at the early mills. A new generation of mills was brought into production beginning in 1975 utilizing engineered waste management systems. The paper presents a brief description of the geography and physical environment of northern Saskatchewan, Canada; reviews milling operations and waste managements systems; describes the evolution of waste management systems; and, comments on environmental control measures regulating the industry
Sequential extraction of uranium metal contamination
International Nuclear Information System (INIS)
Murry, M.M.; Spitz, H.B.; Connick, W.B.
2016-01-01
Samples of uranium contaminated dirt collected from the dirt floor of an abandoned metal rolling mill were analyzed for uranium using a sequential extraction protocol involving a series of five increasingly aggressive solvents. The quantity of uranium extracted from the contaminated dirt by each reagent can aid in predicting the fate and transport of the uranium contamination in the environment. Uranium was separated from each fraction using anion exchange, electrodeposition and analyzed by alpha spectroscopy analysis. Results demonstrate that approximately 77 % of the uranium was extracted using NH 4 Ac in 25 % acetic acid. (author)
Uranium Mill Tailings Remedial Action Project, Surface Project Management Plan. Revision 1
International Nuclear Information System (INIS)
1994-12-01
Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) authorizes the US Department of Energy (DOE) to undertake remedial action at 24 designated inactive uranium processing sites and associated vicinity properties (VP) containing uranium mill tailings and related residual radioactive materials. The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project is to minimize or eliminate radiation health hazards to the public and the environment at the 24 sites and related VPs. This document describes the management organization, system, and methods used to manage the design, construction, and other activities required to clean up the designated sites and associated VPs, in accordance with the UMTRCA
Uranium Mill Tailings Remedial Action Project, Surface Project Management Plan. Revision 1
Energy Technology Data Exchange (ETDEWEB)
1994-12-01
Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) authorizes the US Department of Energy (DOE) to undertake remedial action at 24 designated inactive uranium processing sites and associated vicinity properties (VP) containing uranium mill tailings and related residual radioactive materials. The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project is to minimize or eliminate radiation health hazards to the public and the environment at the 24 sites and related VPs. This document describes the management organization, system, and methods used to manage the design, construction, and other activities required to clean up the designated sites and associated VPs, in accordance with the UMTRCA.
Milling uranium silicide powder for dispersion nuclear fuels
Energy Technology Data Exchange (ETDEWEB)
Vieira, E.; Silva, D.G.; Souza, J.A.B.; Durazzo, M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Riella, H.G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)
2009-07-01
Full text: Uranium silicide (U3Si2) is presently considered the best fuel qualified so far in terms of uranium loading and performance. Stability of the U3Si2 fuel with uranium density of 4.8 g/cm3 was confirmed by burnup stability tests performed during the Reduced Enrichment for Research and Test Reactors (RERTR) program. This fuel was chosen to compose the first core of the new Brazilian Multipurpose Research Reactor (RMB), planned to be constructed in the next years. This new reactor will consume bigger quantities of U3Si2 powder, when compared with the small consumption of the IEA-R1 research reactor of IPEN-CNEN/SP, the unique MTR type research reactor operating in the country. At the present time, the milling operation of U3Si2 ingots is made manually. In order to increase the powder production capacity, the manual milling must be replaced by an automated procedure. This paper describes a new milling machine and procedure developed to produce U3Si2 powder with higher efficiency. (author)
Underground Milling of High-Grade Uranium Ore
Energy Technology Data Exchange (ETDEWEB)
Edwards, C., E-mail: chuck.edwards@amec.com [AMEC Americas Limited, Saskatoon, Saskatchewan (Canada)
2014-05-15
There are many safety and technical issues involved in the mining and progressing of high grade uranium ores such as those exploited in Northern Canada at present. With more of this type of mine due to commence production in the near future, operators have been looking at ways to better manage the situation. The paper describes underground milling of high-grade uranium ore as a means of optimising production costs and managing safety issues. In addition the paper presents some examples of possible process flowsheets and plant layouts that could be applicable to such operations. Finally an assessment of potential benefits from underground milling from a variety of viewpoints is provided. (author)
Energy Technology Data Exchange (ETDEWEB)
Jha, V.N., E-mail: jhavn1971@gmail.com; Tripathi, R.M., E-mail: tripathirm@yahoo.com; Sethy, N.K., E-mail: sethybarc@rediffmail.com; Sahoo, S.K., E-mail: sksbarc@gmail.com
2016-01-01
Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r = 0.86, p < 0.003). For sediment rooted plants significant correlation was found between uranium concentration in plant and the substrate (r = 0.88, p < 0.001). Both for other free floating species and sediment rooted plants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p < 0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. - Highlights: • Uranium mill tailings pond. • Jaduguda, India. • Fresh water plants. • Uranium uptake. • Relationship of uranium with stable elements.
A guide to ventilation requirements for uranium mines and mills. Regulatory guide G-221
International Nuclear Information System (INIS)
2003-06-01
The purpose of G-221 is to help persons address the requirements for the submission of ventilation-related information when applying for a Canadian Nuclear Safety Commission (CNSC) licence to site and construct, operate or decommission a uranium mine or mill. This guide is also intended to help applicants for a uranium mine or mill licence understand their operational and maintenance obligations with respect to ventilation systems, and to help CNSC staff evaluate the adequacy of applications for uranium mine and mill licences. This guide is relevant to any application for a CNSC licence to prepare a site for and construct, operate or decommission a uranium mine or mill. In addition to summarizing the ventilation-related obligations or uranium mine and mill licensee, the guide describes and discusses the ventilation-related information that licence applicants should typically submit to meet regulatory requirements. The guide pertains to any ventilation of uranium mines and mills for the purpose of assuring the radiation safety of workers and on-site personnel. This ventilation may be associated with any underground or surface area or premise that is licensable by the CNSC as part of a uranium mine or mill. These areas and premises typically include mine workings, mill buildings, and other areas or premises involving or potentially affected by radiation or radioactive materials. Some examples of the latter include offices, effluent treatment plants, cafeterias, lunch rooms and personnel change-rooms. (author)
Health concerns in uranium mining and milling
International Nuclear Information System (INIS)
Archer, V.E.
1981-01-01
Mortality of uranium miners from both lung cancer and other respiratory diseases is strongly dependent on exposure to radon daughters, cigarette smoking and height. Lung cancer among 15 different mining groups (uranium, iron, lead, zinc) was analyzed to determine what factors influence incidence and the induction-latent period. At low exposure or exposure rates, alpha radiation is more efficient in inducing lung cancer, producing an upward convex exposure-response curve. The induction-latent period is shortened by increased age at start of mining, by cigarette smoking and by high exposure rates. Instead of extrapolating downward from high exposures to estimate risk at low levels, it is suggested that it might be more appropriate to use cancer rates associated with background radiation as the lowest point on the exposure-response curve. Although health risks are much greater in uranium mines than mills, there is some health risk in the mills from long-lived radioactive materials
Development of uranium milling and conversion
International Nuclear Information System (INIS)
Takada, Shingo; Hirono, Shuichiro.
1983-11-01
The development and improvement of uranium milling and refining producing uranium tetrafluoride from ores by the wet process, without producing yellowcake as an intermediate product, have been carried out for over ten years with a small pilot plant (50 t-ore/day). In the past several years, a process for converting uranium tetrafluoride into hexafluoride has been developed successfully. To develop the process further, the construction of an integrated milling and conversion pilot plant (200 t-U/year) started in 1979 and was completed in 1981. This new plant has two systems of solvent extraction using tri-noctylamine: one of the systems treats the pregnant solution (uranyl sulphate) by heap-leaching followed by ion exchange, and the other treats the uranyl sulphate solution by dissolving imported yellowcake. The uranium loading solvents from the two systems are stripped with hydrochloric acid solution to obtain the concentrated uranium solution containing 100 g-U/1. Uranyl sulphate solution from the stripping circuit is reduced to a uranous sulphate solution by the electrolytic method. In a reduction cell, uranyl sulphate solution and dilute sulphuric acid are used respectively as catholyte and anolyte, and a cation exchange membrane is used to prevent re-oxidation of the uranous sulphate. In the following hydrofluorination step, uranium tetrafluoride, UF 4 .1-1.2H 2 O (particle size: 50-100μ), is produced continuously as the precipitate in an improved reaction vessel, and this makes it possible to simplify the procedures of liquid-solid separation, drying and granulation. The uranium tetrafluoride is dehydrated by heating to 350 0 C in an inert gas flow. The complete conversion from UF 4 into UF 6 is achieved by a fluidized-bed reactor and a high value of utilization efficiency of fluorine, over 99.9 percent, is attained at about 400 0 C. (author)
Uranium mill decommissioning - an update on the Edgemont experience
International Nuclear Information System (INIS)
Donovan, Th.K.; Chart, E.J.; Cummings, G.W.; Tappan, J.T.
1983-01-01
This paper describes the Edgemont Uranium Mill Decommissioning Project. An estimated 5.4 million tons of contaminated material including approximately 2.5 million tons of uranium mill tailings will be moved to a disposal site approved by the Nuclear Regulatory Commission (NRC). The decommissioning activities will be carried out by Silver King Mines, Inc., under a management services contract to the Tennessee Valley Authority. The primary advantages of the disposal site chosen are the short distance from the existing site and the approximately 650 feet of relatively dense impermeable shales above the shallowest known aquifer. Three large ore stockpiles containing about 100,000 pounds of uranium have been moved from the mill site to a proposed mine site. The decommissioning project will be carried out by using the existing labor force to the maximum extent possible thus preventing a population influx and the accompanying socioeconomic input to the city of Edgemont, SD
Uranium mining and milling sites in Argentina: environmental radiological monitoring (1980-1994)
International Nuclear Information System (INIS)
Bomben, A.M.; Gomez, J.C.; Oliveira, A.A.
1995-01-01
Environmental radiological monitoring in the vicinity of uranium mining and milling plants in Argentina is performed on a routine basis, in order to assess the possibility of significant environmental contamination due to uranium mill wastes and mill tailings of plants still operating or those where the exploitation have concluded. Dissolved natural uranium and 226 Ra concentrations in surface waters are measured in samples taken from rivers near the mills, according to a special monitoring plan set up for each facility. In addition, 222 Rn emanation rates from ore tailings are measured at times. In this paper the environmental radiological monitoring program results obtained for the 1980-1994 period are shown. From the data analyses it can be concluded that there are not significant differences for the concentrations of the radionuclides of interest, between the surface water samples taken from river location above and below the plants discharge points. Besides, no significant exposure results for the population living in the surrounding areas due to the uranium mining and milling plants operation or their wastes. (author). 2 refs., 5 figs
Molecular analysis of the bacterial diversity in uranium mill tailings
International Nuclear Information System (INIS)
Geissler, A.
2003-04-01
A culture-independent molecular approach has been applied to investigate the bacterial diversity in three uranium contaminated sites. The three analysed soil samples have been collected from the uranium waste pile Haberland near Johanngeorgenstadt (Germany), from the uranium mill tailings in Gunnison, Colorado (USA) and from the uranium mill tailings in Shiprock, New Mexico (USA). The 16S rDNA fragments which has been isolated through direct lysis of the whole-DNA were amplified by the use of the universal primers 16S 43f and 16S 1404r and cloned. With restriction fragment length polymorphismus (RFLP) were the clones screened and one representative of all RFLP types that occurred more than once in the clone library was sequenced and analysed. In spite of the contamination a considerable diversity and significant differences in the composition of the natural bacterial communities in these three sites have been found. In the sample collected from the waste pile Haberland near Johanngeorgenstadt α-Proteobacteria and representatives of the Holophaga/Acidobacterium were numerically predominant. The distribution of bacteria in the sample collected from uranium mill tailings Gunnison was very similar to those found in the Haberland waste pile, but there were found besides α-Proteobacteria and representatives of Holophaga/Acidobacterium a lot of γ-Proteobacteria. The structure of the bacterial community in the sample collected from the uranium mill tailings Shiprock was significantly different. Only some representatives of the Holophaga/Acidobacterium and α-Proteobacteria were represented. Large populations of Bacilli, γ-Proteobacteria and green non sulfur bacteria were dominant in this sample. (orig.)
Radiation pathways and potential health impacts from inactive uranium mill tailings
International Nuclear Information System (INIS)
1978-07-01
Radiation exposure pathways and potential health impacts were estimated as part of the evaluation of radioactive uranium mill tailings at the sites of inactive mills in eight western states. The purpose of this report is to describe in detail the methodology used in performing the pathway analysis and health effects estimations. In addition, specific parameters are presented for each of the 22 uranium mill sites that were evaluated. A computer program, RADAD, developed as part of this program, is described and listed
Review of environmental aspects of uranium mill operations: industry's view
International Nuclear Information System (INIS)
Beverly, R.G.
1977-01-01
Problems faced by uranium mill operators in complying with new environmental regulations and guidelines are discussed. It is pointed out that valid data must be available in order to evaluate impacts on the environment, to determine background radiation levels, to measure the effectiveness of control techniques, and to determine compliance with standards and regulations. Specific problem areas facing mill operators today and some of the unresolved questions include: sampling methods and equipment for radon in ambient air, measurements of radon and radon daughter exposures of people, radon emanation rate meaurements applicable to monitoring mill tailings, the calibration of γ counters, measurements of population doses, regulations concerning mill tailings reclamation nd stabilization, and the comparative value of in-vivo counting and uranium urinary excretion measurements for monitoring personnel
Radium, uranium and metals in acidic or alkaline uranium mill
International Nuclear Information System (INIS)
Somot, St.
1997-01-01
Uranium mill study sites have been chosen in function of their different characteristics: deposits age, treatment nature (alkaline or acid), mill origin. The realization of specific drilling allowed the simultaneous study of the interstitial water and the solid fraction of samples, cut at determined deep. A radiation imbalance between 230 Th and 226 Ra is observed in the acid treatment residues. The trace elements concentration spectrum is directly bound to the nature of the ore. Diamagnetic evolutions are observed in residues. The uranium concentrations are higher in carbonated waters than in calcic sulfated waters. The selective sequential lixiviation showed that the 226 Ra activity of the interstitial water is controlled by the Gypsum in acid treatment residues. In other hand in the alkaline treatment waters, the carbonates occur. The Ra retention is largely bound to the Fe and Mn oxy-hydroxides. (A.L.B.)
Domestic uranium mining and milling industry 1991
International Nuclear Information System (INIS)
1992-12-01
This report was prepared by the Energy Information Administration to provide the Secretary of Energy with basic data and analyses for ninth annual determination of the viability of the domestic uranium mining and milling industry. A viability determination is required annually, for the years 1983 through 1992, by Section 170B of the Nuclear Regulatory Commission (NRC) Authorization Act of 1983, Public Law 97-415, which amend the Atomic Energy Act of 1954. Topics include: evolution of the U.S. uranium industry; nuclear power requirements and uranium industry projections; and attributes of industry viability
Abandoned Uranium Mine (AUM) Regions, Navajo Nation, 2016, US EPA Region 9
U.S. Environmental Protection Agency — This GIS dataset contains polygon features representing the boundaries of the six Abandoned Uranium Mines (AUM) Regions, including the: Central, Eastern, Northern,...
Releases of radioactivity from uranium mills and effluent treatment costs
International Nuclear Information System (INIS)
Witherspoon, J.P.; Sears, M.B.; Blanco, R.E.
1977-01-01
Airborne releases of radioactive materials from uranium milling to the environment consist of ore dust, yellowcake dust, tailings dust, and radon gas while the mill is active. After a mill has ceased operations, tailings may be stabilized to minimize or prevent airborne releases of radioactive particulates. However, radon gas will continue to be released in amounts inversely proportional to the degree of stabilization treatment (and expense). Liquid waste disposal is by evaporation and natural seepage to the ground beneath the tailings impoundment area. The release of radioactive materials (and potential radiation exposures) determines the majority of costs associated with minimizing the environmental impact of uranium milling. Radwaste treatments to reduce estimated radiation doses to individuals to 3 to 5% of those received with current milling practices are equivalent to $0.66 per pounds of U 3 O 8 and 0.032 mill per kWhr of electricity. This cost would cover a high efficiency reverse jet bag filter and high energy venturi scrubbers for dusts, neutralization of liquids, and an asphalt-lined tailings basin with a clay core dam to reduce seepage. In addition, this increased cost would cover stabilization of tailings, after mill closure, with a 1-in. asphalt membrane topped by 2 ft of earth and 0.5 ft of crushed rock to provide protection against future leaching and wind erosion. The cost of reducing the radiological hazards associated with uranium milling to this degree would contribute about 0.4% to the current total cost of nuclear power
International Nuclear Information System (INIS)
Spitz, H.B.; Simpson, J.C.; Aldridge, T.L.
1984-05-01
Uranium urinalysis and in vivo examination results obtained from workers at eleven uranium mills between 1978 and 1980 were evaluated. The main purpose was to determine the degree of the mills' compliance with bioassay monitoring recommendations given in the draft NRC Regulatory Guide 8.22 (USNRC 1978). The effect of anticipated changes in the draft regulatory guidance, as expressed to PNL in May 1982, was also studied. Statistical analyses of the data showed that the bioassay results did not reliably meet the limited performance criteria given in the draft regulatory guide. Furthermore, quality control measurements of uranium in urine indicated that detection limits at α = β = 0.05 ranged from 13 μg/l to 29 μg/l, whereas the draft regulatory guidance suggests 5 μg/l as the detection limit. Recommendations for monitoring frequencies given in the draft guide were not followed consistently from mill to mill. The results of these statistical analyses indicate a need to include performance criteria for accuracy, precision, and confidence in revisions of the draft Regulatory Guide 8.22. Revised guidance should also emphasize the need for each mill to continually test the laboratory performing urinalyses by submitting quality control samples (i.e., blank and spiked urine samples as open and blind test) to insure that the performance criteria are being met. Recommendations for a bioassay audit program are also given. 25 references, 15 figures, 17 tables
International Nuclear Information System (INIS)
Brookins, D.G.
1981-12-01
In this module geological and geochemical data pertinent to locating, mining, and milling of uranium are examined. Chapters are devoted to: uranium source characteristics; uranium ore exploration methods; uranium reserve estimation for sandstone deposits; mining; milling; conversion processes for uranium; and properties of uranium, thorium, plutonium and their oxides and carbides
Health concerns in uranium mining and milling
International Nuclear Information System (INIS)
Archer, V.E.
1981-01-01
Mortality of uranium miners form both lung cancer and other respiratory diseases is strongly dependent on exposure to radon daughters, cigarette smoking and height. Lung cancer among 15 different mining groups (uranium, iron, led, zinc) was analyzed to determine what factors influence incidence and the induction-latent period. At low exposure or exposure rates, alpha radiation is more efficient in inducing lung cancer, producing an upward convex exposure-response curve. The induction-latent period is shortened by increased age at start of mining, by cigarette smoking and by high exposure rates. For a follow-up period of 20 to 25 years, the incidence increases with age at start of mining, with magnitude of exposure and with amount of cigarette smoking. Instead of extrapolating downward from high exposures to estimate risk at low levels, it is suggested that it might be more appropriate to use cancer rates associated with background radiation as the lowest point on the exposure-response curve. Although health risks are much greater in uranium mines than mills, there is some health risk in the mills from long-lived radioactive materials
Radiation protection on uranium mine and mill in China: past, present and future
International Nuclear Information System (INIS)
Li Xianjie; Wang Tingxue
2009-01-01
The future development of radiation protection on uranium mine and mill in China is discribed based on the history and existing state in China and the state of arts of radiation protection on uranium mine and mill in the world. (authors)
Humeca Uranium Mill. Nuclear Regulatory Commission's final environmental statement
International Nuclear Information System (INIS)
1976-04-01
The Humeca Uranium Mill is a carbonate-leach uranium ore refining plant with a capacity of about 500 tons of ore per day. Although the present licensing action does not extend to mining, the statement considers the environmental impact of the combined mining and milling project to be conducted by Rio Algom Corporation. The environmental impact, including adverse and beneficial environmental effects of the Rio Algom Uranium Mill, is as follows. (1) Temporary (about 10 years) reassignment of use of about 120 acres of land out of the total 2,573 acres controlled by Rio Algom Corporation. (2) The removal of an estimated 8.4 million pounds of uranium concentrates as a natural resource. This material will eventually be used to produce approximately 6.09 x 10 6 megawatt-days of electricity. (3) Removal and diversion of approximately 100 gallons per minute of local groundwater. (4) Stimulation of the local economy through payment of taxes and direct employment of about 200 persons in San Juan County over the next 10 years. Rio Algom estimates they will pay out over $11 million in salaries over this period of time. (5) The creation of stabilized tailings piles covering about 45 acres involving approximately 1,850,000 tons of solids containing solidified waste chemical and radioactive uranium and its daughter products. (6) Discharge of small quantities of chemicals and radioactive materials (that are not expected to produce discernible effects) into the local environs
Cleaning up commingled uranium mill tailings: is Federal assistance necessary
International Nuclear Information System (INIS)
1979-01-01
GAO was asked to determine whether Federal assistance should be given to operating mill owners that have processed uranium for sale to both government and industry and, thus, generated residual radioactive wastes. The wastes generated for both government and commercial use are called commingled uranium mill tailings. GAO recommends that the Congress provide assistance to active mill owners to share in the cost of cleaning up that portion of the tailings which were produced under Federal contract. Further, GAO believes that the Congress should also consider having the Federal government assist those mills who acted in good faith in meeting all legal requirements pertaining to controlling the mill tailings that were generated for commercial purposes and for which the Federal government is now requiring retroactive remedial action. At the same time, the Congress should make sure that this action establishes no precedent for the Federal government assuming the financial responsibility of cleaning up other non-Federal nuclear facilities and wastes, including those mill tailings generated after the date when the Federal government notified industry that the failings should be controlled
Environmental activities in uranium mining and milling. A Joint NEA/IAEA report
International Nuclear Information System (INIS)
1999-01-01
This report on 'Environmental Activities in Uranium Mining and Milling' presents an overview of environmental activities related to uranium production. The profile of activities and concerns are based on survey responses from 29 countries and a review of relevant activities of the International Atomic Energy Agency and the OECD Nuclear Energy Agency. It also provides an overview of the reported interests of specialists working in the field, including environmental impact assessment, emissions to air and water, work environment, radiation safety, waste handling and disposal, mine and mill decommissioning and site restoration, and the regulation of these activities. The report reflects the increasing awareness in all countries of the need for environmental protection. For several years large programmes have been underway in several countries to clean up wastes from closed mines and mills. Many of these sites, particularly the older ones, were brought into production, operated and closed when little was known about environmental effects. At the time, little concern was given to the resulting environmental impacts. Currently, planning for and conducting uranium mine closure and mill decommissioning, together with site clean-up and restoration, are of almost universal concern. Mine closure and mill decommissioning activities have been or are being conducted in most of the countries with a history of uranium production. Information about several mine closures and mill decommissioning projects is included in this report
UMTRA -- The US Uranium Mill Tailings Remedial Action Project
International Nuclear Information System (INIS)
Lightner, R.; Cormier, C.; Bierley, D.
1995-01-01
In the late 1970s, the United States (US) established the first comprehensive regulatory structure for the management, disposal, and long-term care of wastes produced from its domestic uranium processing industry. This regulatory framework was established through the passage of the Uranium Mill Tailings Radiation Control Act of 1978, often referred to as UMTRCA. This legislation created the Uranium Mill Tailings Remedial Action (UMTRA) Project and assigned the US Department of Energy (DOE) the lead in conducting the required remedial action at 24 designated inactive uranium ore processing sites. With the majority of these 22 sites complete, the DOE's UMTRA Project has established a distinguished reputation for safely and effectively remediating these low-level waste sites in a complex regulatory and socioeconomic environment. This paper describes the past accomplishments and current status of the UMTRA Project and discusses the DOE's plans for addressing ground water contamination associated with these sites and its commitment to continuing the long-term care and management of these disposal cells
Uranium Mill Tailings Remedial Action Project: technical approach document
International Nuclear Information System (INIS)
1986-05-01
The Uranium Mill Tailings Radiation Control Act of 1978, PL95-604, grants the Secretary of Energy authority and responsibility to perform such actions as are necessary to minimize radiation health hazards and other environmental hazards from inactive uranium mill sites. These cleanup actions are to be performed in compliance with the EPA standards (40 CFR Part 192) which became final on March 7, 1983. This document describes the general technical approaches and design criteria that are adopted by the US Department of Energy (DOE) in order to implement Remedial Action Plans (RAPs) and final designs that comply with EPA standards
Abandoned Uranium Mine (AUM) Points, Navajo Nation, 2016, US EPA Region 9
U.S. Environmental Protection Agency — This GIS dataset contains point features of all Abandoned Uranium Mines (AUMs) on or within one mile of the Navajo Nation. Points are centroids developed from the...
Guide to the bioassay of uranium at uranium mine-mill facilities
International Nuclear Information System (INIS)
1981-01-01
As a result of occupational exposure, uranium may be taken into the body by inhalation, ingestion or absorption through skin wounds. The organs at risk are the lung, kidney, and bones. Analysis of urine samples for uranium is recommended on a regular monthly basis, before and after a rest period, and it is suggested that a worker be removed from a working area if a level above 300 μg/l is found before a rest period, or 150 μg/l after a rest period. Background information on the development of a bioassay program is given, and a recommended program for uranium mine and mill facilities is included. (L.L.)
International Nuclear Information System (INIS)
Dreesen, D.R.; Cokal, E.J.; Thode, E.F.; Williams, J.M.
1983-06-01
This report summarizes the findings of research on uranium mill tailings conditioning technology development performed for the Department of Energy's (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP). Hazards and risks posed by tailings piles are discussed in relation to the goal of conditioning the tailings to reduce these hazards. The results of our efforts regarding characterization of tailings, removal of radionuclides, mineral recovery, thermal stabilization, and engineering/economic analysis of conditioning are presented. The implications of these results for remedial action plans are discussed and conclusions regarding the applicability of these technologies are also presented
International Nuclear Information System (INIS)
Downs, William F.; Storms, Erik F.
1992-01-01
Uranium mill tailings from the Susquehanna-Western mill near Falls City, Texas, were pumped to tailings ponds located in abandoned open pit uranium mines. The ores from these mines were oxidized. Uranium and the associated hazardous constituents were present in these ores as relatively soluble secondary minerals. Because the tailings piles are located on the outcrops of the units designated as the uppermost aquifer, there is no upgradient aquifer from which to establish 'background' water quality. The widespread mineralization in the area naturally imposes a large variability in water quality in these units. It was necessary to demonstrate to State and Federal regulators that selected downgradient wells were beyond the influence of milling operations, and to develop a series of 'indicator parameters' that could be used to differentiate milling contaminated groundwater from that native to the aquifer. (author)
Physical, chemical and dewatering characteristics of Ba/RaSO4 sludges from uranium milling
International Nuclear Information System (INIS)
Skeaff, J.M.; Campbell, H.W.
1980-01-01
There is concern that long-term environmental pollution caused by radionuclide-bearing acid drainage could occur upon the abandonment of uranium tailings areas. One source of dissolved radionuclides could be the Ba/RaSO 4 sludges formed in most tailings ponds. Prior to discharge to open watercourses, uranium tailings decants are usually treated with barium chloride to coprecipitate dissolved radium. The resulting sludge is allowed to settle in ponds, the size and retention time of which will depend on the mine site. It may be necessary for environmental reasons to remove these sludges for permanent disposal. CANMET has awarded a contract to Kilborn Ltd. of Toronto to study methods for the recovery and dewatering of these sludges. To provide data for the Kilborn contract on the physical, chemical and dewatering of Ba/RaSO 4 sludges presently being produced at uranium mine/mill sites, samples were taken from the operational settling ponds at Rio Algom Mines Ltd., Elliot Lake. Dewatering characterization has also been conducted on two pilot plant facility sludges, one produced at the Wastewater Technology Centre's pilot plant at Rio Algom Mines, and the other from the pilot scale settling ponds designed by James F. MacLaren Ltd. for Rio Algom. The chemical and radionuclide analyses for the CANMET sludge are also reported
Jha, V N; Tripathi, R M; Sethy, N K; Sahoo, S K
2016-01-01
Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r=0.86, puranium concentration in plant and the substrate (r=0.88, puranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (puranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. Copyright © 2015 Elsevier B.V. All rights reserved.
Engineering assessment of inactive uranium mill tailings
Energy Technology Data Exchange (ETDEWEB)
1981-07-01
The Grand Junction site has been reevaluated in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Grand Junction, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Grand Junction site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented herein range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $10,200,000 for stabilization in-place to about $39,500,000 for disposal in the DeBeque area, at a distance of about 35 mi, using transportation by rail. If transportation to DeBeque were by truck, the cost estimated to be about $41,900,000. Three principal alternatives for the reprocessing of the Grand Junction tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $150/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery appears not to be economically attractive.
Engineering assessment of inactive uranium mill tailings
International Nuclear Information System (INIS)
1981-07-01
The Grand Junction site has been reevaluated in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Grand Junction, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Grand Junction site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented herein range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $10,200,000 for stabilization in-place to about $39,500,000 for disposal in the DeBeque area, at a distance of about 35 mi, using transportation by rail. If transportation to DeBeque were by truck, the cost estimated to be about $41,900,000. Three principal alternatives for the reprocessing of the Grand Junction tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $150/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery appears not to be economically attractive
Groundwater leaching of neutralized and untreated acid-leached uranium-mill tailings
International Nuclear Information System (INIS)
Gee, G.W.; Begej, C.W.; Campbell, A.C.; Sauter, N.N.; Opitz, B.E.; Sherwood, D.R.
1981-01-01
Tailings neutralization was examined to determine the effect of neutralization on contaminant release. Column leaching of acid extracted uranium mill tailings from Exxon Highland Mill, Wyoming, Pathfinder Gas Hills Mill, Wyoming, and the Dawn Midnite Mill, Washington, resulted in the flushing of high concentrations of salts in the first four pore volumes of leachate, followed by a steady decrease to the original groundwater salt concentrations. Neutralization decreased the concentration of salts and radionuclides leaching from the tailings and decreased the volume of solution required to return the solution to the groundwater pH and EC. Radium-226 and uranium-238 leached quickly from the tailings in the initial pore volumes of both neutralized and unneutralized tailings, and then decreased significantly. 6 figures, 5 tables
Abandoned Uranium Mine (AUM) Region Polygons, Navajo Nation, 2016, US EPA Region 9
U.S. Environmental Protection Agency — This GIS dataset contains polygon features representing the boundaries of the six Abandoned Uranium Mines (AUM) Regions, including the: Central, Eastern, Northern,...
International Nuclear Information System (INIS)
Matthews, M.L.; Nagel, J.
1991-09-01
The inactive uranium mill tailings site near Lowman, Idaho, was designated as one of 24 abandoned uranium tailings sites to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan and certify that the remedial action complies with the standards promulgated by the US Environmental Protection Agency (EPA). The remedial action plan (RAP), which includes this remedial action selection report (RAS), has been developed to serve a two-fold purpose. First, it describes the activities that are proposed by the DOE to accomplish long-term stabilization and control of residual radioactive materials at the inactive uranium processing site near Lowman, Idaho. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Idaho, and the NRC, becomes Appendix B of the Cooperative Agreement (No. DE-FC04-85AL20535) between the DOE and the State of Idaho
Ecological aspects of microorganisms inhabiting uranium mill tailings
Miller, C.L.; Landa, E.R.; Updegraff, D.M.
1987-01-01
Numbers and types of microorganisms in uranium mill tailings were determined using culturing techniques. Arthrobacter were found to be the predominant microorganism inhabiting the sandy tailings, whereas Bacillus and fungi predominated in the slime tailings. Sulfate-reducing bacteria, capable of leaching radium, were isolated in low numbers from tailings samples but were isolated in significantly high numbers from topsoil in contact with the tailings. The results are placed in the context of the magnitude of uranium mill tailings in the United States, the hazards posed by the tailings, and how such hazards could be enhanced or diminished by microbial activities. Patterns in the composition of the microbial population are evaluated with respect to the ecological variables that influence microbial growth. ?? 1987 Springer-Verlag New York Inc.
National/international R and D programs on uranium mill tailings
International Nuclear Information System (INIS)
Hamel, P.E.
1981-05-01
The mining and milling of uranium ores results in the production of large quantities of wastes containing low concentrations of radionuclides such as uranium, thorium, radium, radon and their daughter products. The current concern of the regulatory authorities is with the extent of the problems and the disposal methods that must be required now to ensure that an acceptable level of protection is maintained in the long term. This concern is the subject of a number of R and D programs. In Canada, the Technical Planning Group on Uranium Tailings was established to review ongoing activities and to plan a research program on the management of wastes after the mine and mill have shut down. The Group has completed its review and a report containing its conclusions and recommendations for a proposed national R and D program has been prepared. Included is a proposal for a centralized organizational structure for the coordination and managment of the total program which is to be supported jointly by the federal government, two (Ontario, Saskatchewan) provincial governments, and uranium producers. At the international level, the Nuclear Energy Agency originated, in 1979, a program to study the extent of the long-term problems of uranium mill tailings, and to develop an internationally acceptable methodology for making rational decisions regarding their long-term management taking into account the ICRP principles and system of dose limitation
Studies of red soils as capping the uranium mill tailing impoundments
International Nuclear Information System (INIS)
Wen Zhijian; Chen Zhangru; Liu Zhengyi; Chen Guoliang
2001-01-01
Capping is one of the important technical engineering measures to assure the long term stabilization and isolation of uranium mill tailings. This paper reports in situ surveys of radon emanations before and after tailings slurries were capped with local red soils at the uranium mill tailings. The data obtained by soil-gas surveys reveal that radon emanation decreased with an increase in capping thickness. The dry density of the capping materials also plays an important role in preventing radon emanation. The measurement results show that utilizing high densities of red soils as capping materials can significantly decrease the required thickness of the capping. The analytical results from borehole red soil samples show that uranium, thorium, and radium contents are consistent with the regional environmental radioactivity level. The studies of the mineralogical composition indicate that the local red soils are rich in clay minerals, e.g. kaolinite, illite and mica vermiculite mixed-layer minerals, which would play an active role in preventing radionuclide release to the surrounding environment. A conceptual model for remediation of south China's uranium mill tailing has been developed
76 FR 59173 - Standard Format and Content of License Applications for Conventional Uranium Mills
2011-09-23
... NUCLEAR REGULATORY COMMISSION [NRC-2008-0302] Standard Format and Content of License Applications for Conventional Uranium Mills AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide..., ``Standard Format and Content of License Applications for Conventional Uranium Mills.'' DG- 3024 was a...
Health effects of uranium mining and milling for commercial nuclear power
International Nuclear Information System (INIS)
Branagan, E.F. Jr.; Gotchy, R.L.
1980-01-01
Radiological health effects potentially associated with uranium mining and milling have been estimated on both a regional and continental basis. Estimates of radon releases from mining were taken from testimony presented in licensing hearings during 1978. Estimates of the health effects from milling were derived from a draft NRC document titled Draft Generic Environmental Impact Statement on Uranium Milling. Health effects per annual fuel requirement (AFR) were presented on both a cumulative and continuous basis. In general, potential health effects to the general public because of both the mining and milling of one AFR are a very small fraction of the health effects caused by background radiation, on either a cumulative basis or a continuous basis. On a cumulative basis (from 1978 to the year 3000), potential health effects due to milling are about an order of magnitude less than those due to mining
Long-term stabilization of uranium mill tailings
International Nuclear Information System (INIS)
Voorhees, L.D.; Sale, M.J.; Webb, J.W.; Mulholland, P.J.
1983-01-01
The primary hazard associated with uranium mill tailings is exposure to a radioactive gas, radon-222, the concentration of which has been correlated with the occurrence of lung cancer. Previous studies on radon attenuation conclude that the placement of earthen cover materials over the tailings is the most effective technique for reducing radioactive emissions and dispersal of tailings. The success of such a plan, however, is dependent on ensuring the long-term integrity of these cover materials. Soil erosion from water and wind is the major natural cause of destabilizing earthen cover materials. Field data related to the control of soil loss are limited and only indirectly apply to the problem of isolation of uranium mill tailings over very long time periods (up to 80,000 a). However, sufficient information is available to determine benefits that will result from the changes in specific design variables and to evaluate the need for different design strategies among potential disposal sites. The three major options available for stabilization of uranium mill tailings are: rock cover, soil and revegetation, or a combination of both on different portions of the tailings cover. The optimal choice among these alternatives depends on site-specific characteristics such as climate and local geomorphology and soils, and on design variables such as embankment, heights and slopes, modification of upstream drainage, and revegetation practices. Generally, geomorphic evidence suggests that use of soil and vegetation alone will not be adequate to reduce erosion on slopes greater than about 5 to 9%
Bioaccessibility of U, Th and Pb in particulate matter from an abandoned uranium mine
Millward, Geoffrey; Foulkes, Michael; Henderson, Sam; Blake, William
2016-04-01
Currently, there are approximately 150 uranium mines in Europe at various stages of either operation, development, decommissioning, restoration or abandonment (wise-uranium.com). The particulate matter comprising the mounds of waste rock and mill tailings poses a risk to human health through the inadvertent ingestion of particles contaminated with uranium and thorium, and their decay products, which exposes recipients to the dual toxicity of heavy elements and their radioactive emissions. We investigated the bioaccessibility of 238U, 232Th and 206,214,210Pb in particulate samples taken from a contaminated, abandoned uranium mine in South West England. Sampling included a mine shaft, dressing floor and waste heap, as well as soils from a field used for grazing. The contaminants were extracted using the in-vitro Unified Bioaccessibility Research Group of Europe Method (UBM) in order to mimic the digestion processes in the human stomach (STOM) and the combined stomach and gastrointestinal tract (STOM+INT). Analyses of concentrations of U, Th and Pb in the extracts were by ICP-MS and the activity concentrations of radionuclides were determined on the same particles, before and after extraction, using gamma spectroscopy. 'Total' concentrations of U, Th and Pb for all samples were in the range 57 to 16,200, 0.28 to 3.8 and 69 to 4750 mg kg-1, respectively. For U and Pb the concentrations in the STOM fraction were lower than the total and STOM+INT fractions were even lower. However, for Th the STOM+INT fractions were higher than the STOM due to the presence of Th carbonate species within the gastrointestinal fluid. Activity concentrations for 214Pb and 210Pb, including total, STOM and STOM+INT, were in the range 180 to samples were 39% and 8% in the STOM and STOM+INT, respectively, whereas the respective BAFs for 232Th were 3% and 9%. For stable 206Pb the STOM and STOM+INT BAFs were 16% and 3% for the most contaminated samples, whereas those from the field had 44% in the
Evaluation of flexible membrane liners as long-term barriers for uranium mill tailings
International Nuclear Information System (INIS)
1984-07-01
The National Uranium Tailings Program has commissioned a study to evaluate flexible membrane liners (geomembranes) as long-term barriers for Canadian uranium mill tailings. This study reviews the common liner type and addresses flexible liners (polymeric membranes and asphalt) in detail. Liner fabrication, design, installation, and performance are reviewed. Conceptual designs are presented for basins to accommodate 20 years accumulation of uranium tailings from mills in Elliot Lake and southeastern Athabasca. Nine polymeric and three asphalt liner types have been considered with respect to the physical and chemical environment in the uranium producing areas of Canada. All materials indicate good chemical resistance to uranium wastes but are subject to installation problems
Issues on management, stabilization and environmental impacts of uranium mill tailings
International Nuclear Information System (INIS)
Cunningham, R.E.
1978-01-01
Management and stabilization of uranium mill tailings has been controversial for over two decades. There are two basic issues: the nature of the risk to the public from tailings and what must be done to mitigate that risk. This paper provides an overview of the issues and sets some goals to be accomplished at the 1978 NEA Seminar on Management, Stabilization and Environmental Impacts of Uranium Mill Tailings that could be helpful in resolving the issues
Decommissioning and disposal of foreign uranium mine and mill facilities
International Nuclear Information System (INIS)
Pan Yingjie; Xue Jianxin; Yuan Baixiang; Xu Lechang
2012-01-01
Disposal techniques in decommissioning of foreign uranium mine and mill facilities are systematically discussed, including covering of uranium tailing impoundment, drainaging and consolidation of uranium tailing, and treatment of mining waste water and polluted groundwater, and the costs associated with disposal are analyzed. The necessity of strengthening the decommissioning disposal technology research and international exchanges and cooperation is emphasized. (authors)
Scientific basis for risk assessment and management of uranium mill tailings
Energy Technology Data Exchange (ETDEWEB)
1986-01-01
A National Research Council study panel, convened by the Board on Radioactive Waste Management, has examined the scientific basis for risk assessment and management of uranium mill tailings and issued this final report containing a number of recommendations. Chapter 1 provides a brief introduction to the problem. Chapter 2 examines the processes of uranium extraction and the mechanisms by which radionuclides and toxic chemicals contained in the ore can enter the environment. Chapter 3 is devoted to a review of the evidence on health risks associated with radon and its decay products. Chapter 4 provides a consideration of conventional and possible new technical alternatives for tailings management. Chapter 5 explores a number of issues of comparative risk, provides a brief history of uranium mill tailings regulation, and concludes with a discussion of choices that must be made in mill tailing risk management. 211 refs., 30 figs., 27 tabs.
Scientific basis for risk assessment and management of uranium mill tailings
International Nuclear Information System (INIS)
1986-01-01
A National Research Council study panel, convened by the Board on Radioactive Waste Management, has examined the scientific basis for risk assessment and management of uranium mill tailings and issued this final report containing a number of recommendations. Chapter 1 provides a brief introduction to the problem. Chapter 2 examines the processes of uranium extraction and the mechanisms by which radionuclides and toxic chemicals contained in the ore can enter the environment. Chapter 3 is devoted to a review of the evidence on health risks associated with radon and its decay products. Chapter 4 provides a consideration of conventional and possible new technical alternatives for tailings management. Chapter 5 explores a number of issues of comparative risk, provides a brief history of uranium mill tailings regulation, and concludes with a discussion of choices that must be made in mill tailing risk management. 211 refs., 30 figs., 27 tabs
Abandoned Uranium Mine (AUM) Surface Areas, Navajo Nation, 2016, US EPA Region 9
U.S. Environmental Protection Agency — This GIS dataset contains polygon features that represent all Abandoned Uranium Mines (AUMs) on or within one mile of the Navajo Nation. Attributes include mine...
Accelerated aging tests of liners for uranium mill tailings disposal
International Nuclear Information System (INIS)
Barnes, S.M.; Buelt, J.L.; Hale, V.Q.
1981-11-01
This document describes the results of accelerated aging tests to determine the long-term effectiveness of selected impoundment liner materials in a uranium mill tailings environment. The study was sponsored by the US Department of Energy under the Uranium Mill Tailings Remedial Action Project. The study was designed to evaluate the need for, and the performance of, several candidate liners for isolating mill tailings leachate in conformance with proposed Environmental Protection Agency and Nuclear Regulatory Commission requirements. The liners were subjected to conditions known to accelerate the degradation mechanisms of the various liners. Also, a test environment was maintained that modeled the expected conditions at a mill tailings impoundment, including ground subsidence and the weight loading of tailings on the liners. A comparison of installation costs was also performed for the candidate liners. The laboratory testing and cost information prompted the selection of a catalytic airblown asphalt membrane and a sodium bentonite-amended soil for fiscal year 1981 field testing
Sandia's activities in uranium mill tailings remedial action
International Nuclear Information System (INIS)
Neuhauser, S.
1980-01-01
The Uranium Mill Tailings Radiation Control Act of 1978 requires that remedial action be taken at over 20 inactive uranium mill tailings sites in the United States. Standards promulgated by the EPA under this act are to be the operative standards for this activity. Proposed standards must still undergo internal review, public comment, and receive Nuclear Regulatory Commission concurrence before being finalized. Briefly reviewed, the standards deal separately with new disposal sites (Part A) and cleanup of soil and contaminated structures at existing locations (Part B). In several cases, the present sites are felt to be too close to human habitations or to be otherwise unacceptably located. These tailings will probably be relocated. New disposal sites for relocated tailings must satisfy certain standards. The salient features of these standards are summarized
International Nuclear Information System (INIS)
Wang, J.; Liu, J.; Zhu, L.; Qi, J. Y.; Chen, Y. H.; Xiao, T. F.; Fu, S. M.; Wang, C. L.; Li, J. W.
2012-01-01
The paper focused on the leaching behaviour of uranium (U) and thorium (Th) from uranium mill tailing collected from the Uranium Mill Plant in Northern Guangdong Province (CN)). Distilled water (pH 6) and sulphuric acid solution (pH 4 and 3) were used as solvent for the leaching over 22 weeks. It was found that the cumulative leach fraction from the mill tailing was 0.1, 0.1 and 0.7 % for U release, and overall 0.01 % for Th release, using distilled water, sulphuric acid solution of pH 4 and pH 3 as leaching agents, respectively. The results indicate that (1) the release of U and Th in uranium mill tailing is a slow and long-term process; (2) surface dissolution is the main mechanism for the release of U and Th when sulphuric acid solution of pH 3 is employed as the leaching agent; (3) both U and Th are released by diffusion when using sulphuric acid solution of pH 4 as the leaching agent and (4) U is released by surface dissolution, while Th is released by diffusion when using distilled water as the leaching agent. The implication for radiological risk in the real environment was also discussed. (authors)
Reclamation plans at uranium mill tailings sites
International Nuclear Information System (INIS)
Abt, S.R.; Nelson, J.D.
1990-01-01
Long-term stability of waste impoundments is of concern because of the long time periods over which various types of waste may remain active. Over the past decade much technology has been developed specifically for reclamation of uranium mill tailings impoundments. Aspects of this technology will be discussed here and is presented as also being directly applicable to reclamation of industrial waste impoundments in general. The paper discusses Title I and Title II sites which represent two different generations in uranium tailings impoundment construction. The comparison between the two represent differences in philosophies as well as in impoundment type. Reclamation of uranium mill tailings impoundments in the U.S. is controlled by Federal legislation, which has set forth the regulatory framework for reclamation plan approval. Title I requirements govern government owned inactive sites and Title II requirements govern active tailings impoundments or those operated by private industries. While the Title I and Title II designation may result in a slightly different regulatory process, reclamation of uranium tailings sites has the same. Differences between Title I and Title II reclamation plans to achieve surface stability relate primarily to the embankment and surface covers. The differences in the cover designs result from site-specific conditions, rather than from differences in engineering approaches or the regulatory process. This paper discusses the site-specific conditions that affect the selection of cover designs, and provides a comparative example to illustrate the effect of this condition
Evaluation of chemical stabilizers and windscreens for wind erosion control of uranium mill tailings
International Nuclear Information System (INIS)
Elmore, M.R.; Hartley, J.N.
1984-08-01
Potential wind erosion of uranium mill tailings is a concern for the surface disposal of tailings at uranium mills. Wind-blown tailings may subsequently be redeposited on areas outside the impoundment. Pacific Northwest Laboratory (PNL) is investigating techniques for fugitive dust control at uranium mill tailings piles. Laboratory tests, including wind tunnel studies, were conducted to evaluate the relative effectiveness of 43 chemical stabilizers. Seventeen of the more promising stabilizers were applied to test plots on a uranium tailings pile at the American Nuclear Corporation-Gas Hills Project mill site in central Wyoming. The durabilities of these materials under actual site conditions were evaluated over time. In addition, field testing of commercially available windscreens was conducted. Test panels were constructed of eight different materials at the Wyoming test site to compare their durability. A second test site was established near PNL to evaluate the effectiveness of windscreens at reducing wind velocity, and thereby reduce the potential for wind erosion of mill tailings. Results of the laboratory land field tests of the chemical stabilizers and windscreens are presented, along with costs versus effectiveness of these techniques for control of wind erosion at mill tailings piles. 12 references, 4 figures, 6 tables
Regulatory challenges of historic uranium mines in Canada
International Nuclear Information System (INIS)
Clement, C.H.; Stenson, R.E.
2002-01-01
The radium and uranium mining industry began in Canada in 1930 with the discovery of the Port Radium deposit in the Northwest Territories. During the 1950s more uranium mines opened across Canada. Most of these mines ceased operation by the end of the 1960s. Some were remediated by their owners, while others were abandoned. The Atomic Energy Control Board (AECB), predecessor to the Canadian Nuclear Safety Commission (CNSC), was created in 1946. However, it was not until the mid-1970s that the AECB took an active role in regulating health, safety and environmental aspects of uranium mining; so many of the older mines have never been licensed. With the coming into force of the Nuclear Safety and Control Act (NSCA) in May 2000, this situation has been reviewed. The NSCA requires a licence for the possession of nuclear substances (including uranium mine tailings), or the decommissioning of nuclear facilities (including uranium mines and mills). Furthermore, governments (federal and provincial) are also subject to the NSCA, a change from the previous legislation. The CNSC has an obligation to assess these sites, regardless of ownership, and to proceed with licensing or other appropriate regulatory action. The CNSC has reviewed the status of the twenty sites in Canada where uranium milling took place historically. Eight are already licensed. Licensing actions are being pursued at the other sites. A review of nearly 100 small uranium mining or exploration sites is also underway to determine the most appropriate regulatory approach. This paper focuses on regulatory issues surrounding the historic mining and milling sites, and the regulatory approach being taken, including licensing provincial and federal government bodies who own some of the sites, and ensuring the safe management of sites that were abandoned. (author)
Annual status report on the Uranium Mill Tailings Remedial Action Program
International Nuclear Information System (INIS)
1989-12-01
This eleventh annual status report summarizes activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project undertaken during Fiscal Year (FY) 1989 by the US Department of Energy (DOE) and other agencies. Project goals for FY 1990 are also presented. An annual report of this type was a statutory requirement through January 1, 1986, pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95--604. The DOE will continue to submit an annual report through project completion in order to inform the public of yearly project status. Title I of the UMTRCA authorizes the DOE, in cooperation with affected states and Indian tribes within whose boundaries designated uranium processing sites are located, to provide a program of assessment and remedial action at such sites. The purpose of the remedial action is to stabilize and control the tailings and other residual radioactive materials located on the inactive uranium processing sites in a safe and environmentally sound manner and to minimize or eliminate potential radiation health hazards. Commercial and residential properties in the vicinity of designated processing sites that are contaminated with material from the sites, herein referred to as ''vicinity properties,'' are also eligible for remedial action. Included in the UMTRA Project are 24 inactive uranium processing sites and associated vicinity properties located in 10 states, and the vicinity properties associated with Edgemont, South Dakota, an inactive uranium mill currently owned by the Tennessee Valley Authority (TVA)
Annual status report on the Uranium Mill Tailings Remedial Action Program
Energy Technology Data Exchange (ETDEWEB)
1989-12-01
This eleventh annual status report summarizes activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project undertaken during Fiscal Year (FY) 1989 by the US Department of Energy (DOE) and other agencies. Project goals for FY 1990 are also presented. An annual report of this type was a statutory requirement through January 1, 1986, pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95--604. The DOE will continue to submit an annual report through project completion in order to inform the public of yearly project status. Title I of the UMTRCA authorizes the DOE, in cooperation with affected states and Indian tribes within whose boundaries designated uranium processing sites are located, to provide a program of assessment and remedial action at such sites. The purpose of the remedial action is to stabilize and control the tailings and other residual radioactive materials located on the inactive uranium processing sites in a safe and environmentally sound manner and to minimize or eliminate potential radiation health hazards. Commercial and residential properties in the vicinity of designated processing sites that are contaminated with material from the sites, herein referred to as vicinity properties,'' are also eligible for remedial action. Included in the UMTRA Project are 24 inactive uranium processing sites and associated vicinity properties located in 10 states, and the vicinity properties associated with Edgemont, South Dakota, an inactive uranium mill currently owned by the Tennessee Valley Authority (TVA).
An overview of the regulation of uranium mining, milling, refining and fuel fabrication
International Nuclear Information System (INIS)
Smythe, W.D.
1980-07-01
The mining, milling, refining and fabrication of uranium into nuclear fuel are activities that have in common the handling of natural uranium. The occupational and environmental hazards resulting from these activities vary widely. Uranium presents a radiological hazard throughout, but the principal culprit is radium which creates an occupational hazard in the mine and mill and an environmental hazard in the waste products produced in both the mill and the refinery. The chemicals used in both these latter processes also present hazards. Fuel fabrication presents the least potential for occupational and environmental hazards. The Canadian Atomic Energy Control Board licenses eight plants, and one plant for the extraction of uranium from phosphoric acid. The licensing process is characterised by approval in stages, the placing of the burden of proof on the applicant, inspection at all stages, and joint review by all regulatory agencies involved
Consolidation theory and its applicability to the dewatering and covering of uranium-mill tailings
International Nuclear Information System (INIS)
Gates, T.E.
1982-11-01
This report is a review and evaluation of soil consolidation theories applicable for evaluating settlement during dewatering and subsequent covering of uranium-mill tailings. Such theories may be used to predict both consolidation and water flow related effects in uranium-mill tailings during drainage, following sluicing into burial pits. A consolidation theory to be useful must consider the effect of time-dependent loads, nonhomogeneous soil mass, nonlinear variation of soil properties with the stress-state parameters, large strain, and saturated and unsaturated flow. Constitutive relations linking the stress-deformation-state variables with void ratio should be adopted for predicting both consolidation and fluid-flow interaction in unsaturated uranium-mill tailings
Management, stabilisation and environmental impact of uranium mill tailings
Energy Technology Data Exchange (ETDEWEB)
1978-01-01
These proceedings deal with the sources of radioactivity arising from uranium mill wastes, the environmental aspects, the management and stabilisation of radioactive wastes and the policies and regulatory aspects.
Management, stabilisation and environmental impact of uranium mill tailings
International Nuclear Information System (INIS)
1978-01-01
These proceedings deal with the sources of radioactivity arising from uranium mill wastes, the environmental aspects, the management and stabilisation of radioactive wastes and the policies and regularoty aspects
Abandoned Uranium Mines (AUM) Site Screening Map Service, 2016, US EPA Region 9
U.S. Environmental Protection Agency — As described in detail in the Five-Year Report, US EPA completed on-the-ground screening of 521 abandoned uranium mine areas. US EPA and the Navajo EPA are using the...
The problem of abandoned uranium tailings in northern Saskatchewan
International Nuclear Information System (INIS)
Swanson, S.; Abouguendia, Z.
1981-11-01
Two Saskatchewan tailings sites, Lorado and Gunnar, covering approximately 89 ha., were abandoned in the early 1960s leaving untreated tailings in lakes and depressions. This report reviews the literature on environmental conditions in abandoned uranium tailings and available managmenet and mitigation options, and identifies research requirements essential for proper treatment of these two sites. The recommended management plan includes isolation of the exposed tailings area from surface waters, stabilization of the exposed tailings surfaces, diversion of runoff around tailings, treatment of overflow water before release, and implementation of an environmental monitoring program. Revegetation appears to be a promising stabilization measure, but research is needed into propagation methods of appropriate native species. Studies of the existing geological and hydrological conditions at both sites, detailed characterization of the wastes, field testing of different surface treatment methods, and nutrient cycling investigations are also needed
Evaluation of environmental impacts of uranium mining and milling operations in Spain
International Nuclear Information System (INIS)
Morales, M.; Lopez Romero, A.
1996-01-01
Uranium mining and production activities have been carried out by ENUSA since 1973. This report describes the evaluation of environmental aspects connected with uranium mining and milling. (author). 7 figs, 3 tabs
Probabilistic calculation of dose commitment from uranium mill tailings
International Nuclear Information System (INIS)
1983-10-01
The report discusses in a general way considerations of uncertainty in relation to probabilistic modelling. An example of a probabilistic calculation applied to the behaviour of uranium mill tailings is given
The U.S. regulatory framework for long-term management of uranium mill tailings
International Nuclear Information System (INIS)
Smythe, C.; Bierley, D.; Bradshaw, M.
1995-01-01
The US established the regulatory structure for the management, disposal, and long-term care of uranium mill tailings in 1978 with the passage of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (Pub. L. 95-604). This legislation has governed the cleanup and disposal of uranium tailings at both inactive and active sites. The passage of the UMTRCA established a federal regulatory program for the cleanup and disposal of uranium mill tailings in the US. This program involves the DOE, the NRC, the EPA, various states and tribal governments, private licensees, and the general public. The DOE has completed surface remediation at 14 sites, with the remaining sites either under construction or in planning. The DOE's UMTRA Project has been very successful in dealing with public and agency demands, particularly regarding disposal site selection and transportation issues. The active sites are also being cleaned up, but at a slower pace than the inactive sites, with the first site tentatively scheduled for completion in 1996
International Nuclear Information System (INIS)
Bastias, J.G.
1987-01-01
A number of uranium mines were operated during the fifties and sixties by mining companies, on behalf of the Commonwealth Government, in the Northern Territory, including the Alligator Rivers Region. As no legislation requiring rehabilitation of mines existed at that time, mining works, tailings dumps and mill facilities were just abandoned at the end of operations. Since Self-Government in 1978, the Northern Territory Government, through the Department of Mines and Energy, has been involved in studies leading to the rehabilitation of these abandoned uranium operations with funds provided by the Commonwealth. The first and most extensive example of this type of rehabilitation was the Rum Jungle Project which was completed in June 1986 at a cost of $18.2 million. The sites of the Rockhole and Moline mills and tailings dumps, worked between 1959 and 1972, are also uranium operations considered for rehabilitation by the Northern Territory Government
Abandoned Uranium Mine (AUM) Priority Mine Areas, Navajo Nation, 2016, US EPA Region 9
U.S. Environmental Protection Agency — This GIS dataset contains polygon features representing priority abandoned uranium mines in Navajo Nation, as determined by the US EPA and the Navajo Nation. USEPA...
International Nuclear Information System (INIS)
Dreesen, D.R.; Cokal, E.J.; Thode, E.F.; Wangen, L.E.; Williams, J.M.
1983-06-01
A method of conditioning uranium mill tailings has been devised to greatly reduce radon emanation and contaminant leachability by using high-temperature treatments, i.e., thermal stabilization. The thermally stabilized products appear resistant to weathering as measured by the effects of grinding and water leaching. The technical feasibility of the process has been partially verified in pilot-scale experiments. A conceptual thermal stabilization process has been designed and the economics of the process show that the thermal stabilization of tailings can be cost competitive compared with relocation of tailings during remedial action. The alteration of morphology, structure, and composition during thermal treatment would indicate that this stabilization method may be a long-lasting solution to uranium mill tailings disposal problems
Abandoned Uranium Mine (AUM) Priority Mine Points, Navajo Nation, 2016, US EPA Region 9
U.S. Environmental Protection Agency — This GIS dataset contains point features representing priority abandoned uranium mines in Navajo Nation, as determined by the US EPA and the Navajo Nation. USEPA and...
Benefit-cost aspects of long-term isolation of uranium mill tailings
International Nuclear Information System (INIS)
Van Dyke, J.
1983-11-01
The Uranium Mill Tailings Radiation Control Act of 1978 provides for regulations for control of radon diffusion from uranium mill tailings to protect the public welfare. In developing these regulations, the Office of Nuclear Material Safety and Safeguards of the Nuclear Regulatory Commission has sought to establish the benefits and costs for alternative regulatory criteria. This report provides a perspective on some economic issues associated with long-term radiation effects from disposal of uranium mill tailings. The general problem of developing an economic rationale for regulating this activity is complicated by the very long-term and widespread effects which could result from radon gas diffusion associated with tailings piles. The economic issues are also complex because of the trade-offs between costs of disposal and intangible social values. When intergenerational implications were considered the traditional basis for discounting in a benefit-cost framework was found to shift. The appropriate rate of discount was found to depend on ethical assumptions and expectations about the relative welfare of future generations. 30 references, 1 figure, 2 tables
Benefit-cost aspects of long-term isolation of uranium mill tailings
Energy Technology Data Exchange (ETDEWEB)
Van Dyke, J.
1983-11-01
The Uranium Mill Tailings Radiation Control Act of 1978 provides for regulations for control of radon diffusion from uranium mill tailings to protect the public welfare. In developing these regulations, the Office of Nuclear Material Safety and Safeguards of the Nuclear Regulatory Commission has sought to establish the benefits and costs for alternative regulatory criteria. This report provides a perspective on some economic issues associated with long-term radiation effects from disposal of uranium mill tailings. The general problem of developing an economic rationale for regulating this activity is complicated by the very long-term and widespread effects which could result from radon gas diffusion associated with tailings piles. The economic issues are also complex because of the trade-offs between costs of disposal and intangible social values. When intergenerational implications were considered the traditional basis for discounting in a benefit-cost framework was found to shift. The appropriate rate of discount was found to depend on ethical assumptions and expectations about the relative welfare of future generations. 30 references, 1 figure, 2 tables.
In-situ grouting of uranium-mill-tailings piles: an assessment
International Nuclear Information System (INIS)
Tamura, T.; Boegly, W.J. Jr.
1983-05-01
Passage in 1978 of the Uranium Mill Tailings Radiation Control Act (UMTRCA) initiated a program of remedial action for 22 existing mill tailings piles generated in the period 1940 to 1970 as part of the nation's defense and nuclear power programs. The presence of these piles poses potential health and environmental contamination concerns. Possible remedial actions proposed include multilayer covers over the piles to reduce water infiltration, reduce radon gas releases, and reduce airborne transport of tailings fines. In addition, suggested remedial actions include (1) the use of liners to prevent groundwater contamination by leachates from the piles and (2) chemical stabilization of the tailings to retain the radioactive and nonradioactive sources of contamination. Lining of the piles would normally be applicable only to piles that are to be moved from their present location such that the liner could be placed between the tailings and the groundwater. However, by using civil engineering techniques developed for grouting rocks and soils for strength and water control, it may be possible to produce an in situ liner for piles that are not to be relocated. The Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project Office requested that ORNL assess the potential application of grouting as a remedial action. This report examines the types of grouts, the equipment available, and the costs, and assesses the possibility of applying grouting technology as a remedial action alternative for uranium mill tailings piles
In-situ grouting of uranium-mill-tailings piles: an assessment
Energy Technology Data Exchange (ETDEWEB)
Tamura, T.; Boegly, W.J. Jr.
1983-05-01
Passage in 1978 of the Uranium Mill Tailings Radiation Control Act (UMTRCA) initiated a program of remedial action for 22 existing mill tailings piles generated in the period 1940 to 1970 as part of the nation's defense and nuclear power programs. The presence of these piles poses potential health and environmental contamination concerns. Possible remedial actions proposed include multilayer covers over the piles to reduce water infiltration, reduce radon gas releases, and reduce airborne transport of tailings fines. In addition, suggested remedial actions include (1) the use of liners to prevent groundwater contamination by leachates from the piles and (2) chemical stabilization of the tailings to retain the radioactive and nonradioactive sources of contamination. Lining of the piles would normally be applicable only to piles that are to be moved from their present location such that the liner could be placed between the tailings and the groundwater. However, by using civil engineering techniques developed for grouting rocks and soils for strength and water control, it may be possible to produce an in situ liner for piles that are not to be relocated. The Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project Office requested that ORNL assess the potential application of grouting as a remedial action. This report examines the types of grouts, the equipment available, and the costs, and assesses the possibility of applying grouting technology as a remedial action alternative for uranium mill tailings piles.
Environmental restoration. Stabilization of mining tailing and uranium mineral
International Nuclear Information System (INIS)
Perez, C.; Carboneras, P.
1998-01-01
ENRESA has dismantling a uranium mill facility and restored the site since 1991 to 1994. Since 1997, 19 uranium mines are being re mediated. The Andujar uranium mill was operational since 1959 to 1981. The remedial action plan performed in the Andujar mill site involved stabilizing and consolidating the uranium mill tailings and contaminated materials in place. Mill equipment, building and process facilities have been dismantled and demolished and the resulting metal wastes and debris have been placed in the pile. The tailings mass has been reshape by flattening the side slopes and cover system was placed over the pile. The uranium mines are located in Extremadura and Andalucia. There is a great diversity among the mines in terms of the magnitude of the disturbed areas by mining work and the effects on the environment, including excavations, waste rock piles, abandoned shafts and galleries, and remaining of surface structures and facilities. Remedial measures include the sealing for shafts and openings to prevent collapse of mine workings and subsidence, the dewatering and the open-pit excavation and the treatment of the contaminated waters, the disposal and the stabilization of mining debris piles to prevent dispersion, the placement of a re vegetated cover over the piles to control dust and erosion, and the restoration of the site. (Author)
Management and control of radioactive wastes from uranium-milling operations
International Nuclear Information System (INIS)
Kennedy, R.H.; Deal, L.J.; Haywood, F.F.; Goldsmith, W.A.
1977-01-01
Of the 39 privately owned mills that produced and sold uranium to the U.S. Government during 1948 to 1971, 22 have closed down either due to exhaustion of reserves or lack of market. On the inactive mill sites there remains 24 million metric tons of tailings containing 14,000 curies of radium. Success in stabilization has been variable. In the past, theoretical models have had to be used in estimation of the environmental effects of uranium milling for lack of a sufficient factual base. ERDA in cooperation with the Environmental Protection Agency and the states involved is undertaking a comprehensive radiological assessment at each site. The results of this assessment should provide valuable basic information on the environmental impact of uranium ore processing. The current studies reveal that the inactive sites are a cause of small public exposure to radiation, primarily from radon-222 from the tailings piles. This paper reviews radioactivity management in uranium ore processing to control spread of radioactive materials, including methods used for stabilization to prevent wind and water erosion. Recent measurements of radioactivity levels in soils, ground and surface waters, and in air near tailings piles are summarized, and public health implications are evaluated. Guidelines have been developed for land decontamination, and procedures evaluated for long-term management of contaminated material to minimize future human exposure. Alternative methods for long-term tailings stabilization, their costs and benefits in terms of serious health effects avoided are presented
Uranium Mill Tailings Remedial Action Project Vicinity Property Program
International Nuclear Information System (INIS)
Little, L.E.; Potter, R.F.; Arpke, P.W.
1988-01-01
The Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Grand Junction Project Vicinity Property Program is a $165 million program for the removal and disposal of uranium mill tailings that were used in the construction of approximately 4,000 residences, commercial buildings, and institutional facilities in the City of Grand Junction and surrounding Mesa County, Colorado. This paper discusses the UMTRA Vicinity Property Program and the economic benefits of this program for the City of Grand Junction and Mesa County, Colorado. The Bureau of Reclamation Economic Assessment Model (BREAM) was used to estimate the increases in employment and increases in personal income in Mesa County that result from the Vicinity Property Program. The effects of program-related changes in income and taxable expenditures on local and state tax revenue are also presented
International Nuclear Information System (INIS)
1994-10-01
This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site
Energy Technology Data Exchange (ETDEWEB)
1994-10-01
This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site.
Uranium and thorium mining and milling: material security and risk assessment
International Nuclear Information System (INIS)
Steinhaeusler, F.; Zaitseva, L.
2005-01-01
Full text: At present physical protection for the front end of the nuclear fuel cycle is typically at a significantly lower level than at any other part of the nuclear fuel cycle. In view of past experiences (Israel, South Africa, Pakistan, India) it is feasible to take into consideration some generic threat scenarios, potentially resulting in loss of control over uranium or thorium, respectively their concentrates, such as: illegal mining of an officially closed uranium- or thorium mine; covert diversion of uranium- or thorium ore whilst officially mining another ore; covert transport of radioactive ore or product, using means of public rail, road, ship, or air transport; covert en route diversion of an authorized uranium- or thorium transport; covert removal of uranium-or thorium ore or concentrate from an abandoned facility. The Stanford-Salzburg database on nuclear smuggling, theft, and orphan radiation sources (DSTO) contains information on trafficking incidents involving mostly uranium, but also some thorium, from 30 countries in five continents with altogether 113 incidents in the period 1991 to 2004. These activities range from uranium transported in backpacks by couriers in Afghanistan, to a terrorist organization purchasing land in order to mine covertly for uranium in Australia, and the clandestine shipment of almost two tons of uranium hexafluoride from Asia to Africa, using the services of a national airline. Potential participants in such illegal operations range from entrepreneurs to members of organized crime, depending on the level of sophistication of the operation. End-users and 'customers' of such illegal operations are suspected to be non-state actors, organizations or governments involved in a covert operation with the ultimate aim to acquire a sufficient amount of nuclear material for a nuclear device. The actual risk for these activities to succeed in the acquisition of an adequate amount of suitable radioactive material depends on one or
Domestic uranium mining and milling industry: 1986 viability assessment
International Nuclear Information System (INIS)
1987-01-01
This report presents the fourth annual assessment of the domestic uranium mining and milling industry's resource capability, supply response capability, financial capability, and import commitment dependency. The data and analysis in support of this assessment and the report itself have been developed pursuant to Public Law 97-415, the Nuclear Regulatory Commission (NRC) Authorization Act of 1982. The report provides information on recent uranium supply, demand, and marketing conditions, as well as projections of the domestic uranium industry's ability to continue to supply the needs of the domestic nuclear power industry through the year 2000. Industry capability is assessed under a variety of assumed conditions with respect to hypothetical disruptions of uranium imports. 13 refs., 26 figs., 37 tabs
Biogeochemistry of uranium mill wastes program overview and conclusions
International Nuclear Information System (INIS)
Dreesen, D.R.
1981-05-01
The major findings and conclusions are summarized for research on uranium mill tailings for the US Department of Energy and the US Nuclear Regulatory Commission. An overview of results and interpretations is presented for investigations of 222 Rn emissions, revegetation of tailings and mine spoils, and trace element enrichment, mobility, and bioavailability. A brief discussion addresses the implications of these findings in relation to tailings disposal technology and proposed uranium recovery processes
Sustainability of uranium mining and milling: toward quantifying resources and eco-efficiency.
Mudd, Gavin M; Diesendorf, Mark
2008-04-01
The mining of uranium has long been a controversial public issue, and a renewed debate has emerged on the potential for nuclear power to help mitigate against climate change. The central thesis of pro-nuclear advocates is the lower carbon intensity of nuclear energy compared to fossil fuels, although there remains very little detailed analysis of the true carbon costs of nuclear energy. In this paper, we compile and analyze a range of data on uranium mining and milling, including uranium resources as well as sustainability metrics such as energy and water consumption and carbon emissions with respect to uranium production-arguably the first time for modern projects. The extent of economically recoverable uranium resources is clearly linked to exploration, technology, and economics but also inextricably to environmental costs such as energy/water/chemicals consumption, greenhouse gas emissions, and social issues. Overall, the data clearly show the sensitivity of sustainability assessments to the ore grade of the uranium deposit being mined and that significant gaps remain in complete sustainability reporting and accounting. This paper is a case study of the energy, water, and carbon costs of uranium mining and milling within the context of the nuclear energy chain.
International Nuclear Information System (INIS)
Parker, G.B.
1982-09-01
As part of a Nuclear Regulatory Commission (NRC) study to assess the long-term protection of retired uranium mill tailings, the Pacific Northwest Laboratory (PNL) is developing a Handbook to guide the design, selection, and construction of a rock cover (riprap) for decommissioned and reclaimed uranium-mill tailings. The rock cover is designed for long-term protection of mill tailings from wind and water erosion. The purpose of the Handbook is twofold. First, it can be used as a manual by the uranium mill operators for designing, selecting, and constructing a rock cover. Second, the Handbook can be used as a guide to help the NRC evaluate the decommissioning and reclamation plans submitted to them by mill operators. Although the Handbook is not site-specific, it is structured to allow the design of a rock cover for any NRC-licensed tailings impoundment
The remediation of abandoned workings of a mining area in Ningxiang uranium mine
International Nuclear Information System (INIS)
Liu Yaochi; Zhou Xinghuo; Liu Bing
2004-01-01
The typical mining under buildings and river was used in a mining area of Ningxiang uranium mine. After the mining ended, 32.1% of the 2.68 m 3 abandoned workings did not fill because of limitation of the cut-and-fill mining method at that time. To remedy this, the mine used new filling methods. After the remedial action, the filling coefficient of pits reached 100%, and that of tunnels reached 86%. It can be proved by the monitoring data that the subsiding of surface has been effectively controlled at the abandoned workings
Abandoned Uranium Mine (AUM) Enforcement Action Mine Points, Navajo Nation, 2016, US EPA Region 9
U.S. Environmental Protection Agency — This GIS dataset contains point features that represent abandoned uranium mines with EPA enforcement actions as of March 2016 in Navajo Nation. Attributes include...
Abandoned Uranium Mine (AUM) Enforcement Action Mine Areas, Navajo Nation, 2016, US EPA Region 9
U.S. Environmental Protection Agency — This GIS dataset contains polygon features that represent abandoned uranium mines with EPA enforcement actions as of March 2016 in the Navajo Nation. Attributes...
Water-quality aspects of uranium mining and milling in New Mexico
International Nuclear Information System (INIS)
Gallaher, B.M.; Goad, M.S.
1981-01-01
Since 1977 the New Mexico Environmental Improvement Division has been implementing a systematic program for the regular collection of water-quality data relevant to the uranium mining and milling industry in New Mexico. This program has had two parts: (1) regular sampling of effluents discharged to ponds or to watercourses from all active uranium mills in the State and from all water-producing mines, whether active or under development; and (2) establishment and gradual expansion of a regional water-quality monitoring network in the Grants mineral belt (the region of principal uranium activity) to characterize hydraulic relationships and to trace contaminant migration within and between surface water and shallow ground-water flow systems. Based on information collected to date, some general observations are that the quality of water pumped from uranium mines varies considerably from area to area with much of it meeting most New Mexico ground-water standards and Federal NPDES (National Pollutant Discharge Elimination System) permit guidelines after treatment; that mill-tailings water is of much worse quality than mine water, containing concentrations of numerous contaminants far in excess of the above-mentioned standards; that surface waters and shallow ground-water systems in the Grants mineral belt usually are in hydraulic connection; that both surface and ground waters show some degradation downgradient from uranium industry areas, especially with respect to heavy metals; that the relative importance of various contaminant sources in contributing to this degradation is very difficult to determine at present; and that much more data is needed, especially data on the contribution of nonpoint sources
A top-down assessment of energy, water and land use in uranium mining, milling, and refining
International Nuclear Information System (INIS)
Schneider, E.; Carlsen, B.; Tavrides, E.; Hoeven, C. van der; Phathanapirom, U.
2013-01-01
Land, water and energy use are key measures of the sustainability of uranium production into the future. As the most attractive, accessible deposits are mined out, future discoveries may prove to be significantly, perhaps unsustainably, more intensive consumers of environmental resources. A number of previous attempts have been made to provide empirical relationships connecting these environmental impact metrics to process variables such as stripping ratio and ore grade. These earlier attempts were often constrained by a lack of real world data and perform poorly when compared against data from modern operations. This paper conditions new empirical models of energy, water and land use in uranium mining, milling, and refining on contemporary data reported by operating mines. It shows that, at present, direct energy use from uranium production represents less than 1% of the electrical energy produced by the once-through fuel cycle. Projections of future energy intensity from uranium production are also possible by coupling the empirical models with estimates of uranium crustal abundance, characteristics of new discoveries, and demand. The projections show that even for the most pessimistic of scenarios considered, by 2100, the direct energy use from uranium production represents less than 3% of the electrical energy produced by the contemporary once-through fuel cycle. - Highlights: • We present environmental impacts of conventional uranium (U) mining and milling technologies. • Impacts include direct energy consumption, land use and water use. • Contemporary mine and mill data is used, updating published estimates that relied on 1970s-era data. • The direct energy used to mine and mill uranium is below 1% of the electrical energy ultimately produced by the uranium. • Even if U demand growth is strong, the direct energy return on investment of U mining and milling will remain well above 1
Nuclear Avenue: “Cyclonic Development”, Abandonment, and Relations in Uranium City, Canada
Directory of Open Access Journals (Sweden)
Robert Boschman
2018-01-01
Full Text Available The rise and abandonment of Uranium City constitutes an environmental history yet to be fully evaluated by humanities scholars. 1982 marks the withdrawal of the Eldorado Corporation from the town and the shuttering of its uranium mines. The population declined to approximately 50 from its pre-1982 population of about 4000. This article is inspired by findings from the authors’ initial field visit. As Uranium City is accessible only by air or by winter roads across Lake Athabasca, the goal of the visit in May 2017 was to gather information and questions through photographic assessment and through communication and interviews with residents. This paper in part argues that the cyclonic development metaphor used to describe single-commodity communities naturalizes environmental damage and obscures a more complicated history involving human agency. Apart from the former mines that garner remedial funding and action, the town site of Uranium City is also of environmental concern. Its derelict suburbs and landfill, we also argue, could benefit from assessment, funding, and remediation. Canada’s 2015 Truth and Reconciliation Commission Report provides a way forward in healing this region, in part by listening to the voices of those most affected by environmental impacts caused not by a metaphorical cyclone but by other humans’ decisions. As descendants of European immigrants to Turtle Island (the Indigenous term referring to North America, the authors are also subjects of the very terms—cyclonic development, abandonment, remediation—used to describe the history of the land itself: in this case, a mining town in the far northern boreal forests and Precambrian Shield.
Screening of plant species as ground cover on uranium mill tailings
International Nuclear Information System (INIS)
Venu Babu, P.; Eapen, S.
2012-01-01
The concept of construction of dams or holding areas for uranium mill tailings is relatively new in India and to date there is only one such facility being maintained by Uranium Corporation of India Limited (UCIL) at Jaduguda in Jharkhand. Due to the residual nature of radionuclides, chiefly uranium and its daughter products, special emphasis is given to the engineering aspects of the mill tailings ponds so as to ensure safety to general public for at least 200 years. Once a mill tailings pond reaches to its full capacity, creation of barrier layers over the mill tailings to prevent seepage of rain water and also erosion of mill tailings due to wind and water are advocated and a number of procedures are followed worldwide. Taking the extraordinary period of public safety to be assured, providing soil covers along with contouring and appropriate slopes over which vegetation is grown is gaining popularity. The vegetation not only reduces the impact of rain water hitting the soil cover, thereby reducing the soil erosion, but also lowers the moisture in the soil cover by extensive evapotranspiration, ensuring long term hydrological separation of the mill tailings underneath. Based on set criteria, applicable to the field scenario of mill tailings, a screening experiment was conducted under pot culture conditions to evaluate the survival and growth of different plant species. The plants after germination and hardening were transplanted into beakers containing mill tailings and periodical measurements on appropriate morphological characteristics such as plant height, length of twiners, number of tillers and number of leaves were recorded and evaluated. Of the twenty species tested in mill tailings, significant differences were noticed in the vigour of growth and several plant species could indeed establish well completing their life cycle including flowering and seed setting. Further, several leguminous species could also produce root nodules. It appears that the
Domestic uranium mining and milling industry. 1984 viability assessment
International Nuclear Information System (INIS)
1985-01-01
This report presents the second annual assessment of the domestic uranium mining and milling industry's resource capability, supply response capability, financial capability, and import commitment dependency. The data and analysis in support of this assessment and the report itself have been developed pursuant to requirements set forth in Section 23(b) of Public Law 97-415, the Nuclear Regulatory Commission (NRC) Authorization Act, which was enacted on January 4, 1983. The report provides information on recent uranium supply, demand, and marketing conditions and projections of the domestic uranium industry's ability to continue to supply the needs of the domestic nuclear power industry through the year 2000. Industry capability is assessed under a variety of assumed conditions with respect to hypothetical disruptions of uranium imports
Derived surface contamination limits for the uranium mining and milling industry
International Nuclear Information System (INIS)
Ching, S.H.
1984-10-01
Derived Surface Contamination Limits (DSCL) are proposed for the control of surface contamination at the work place for the uranium mining and milling industry. They have been derived by a method incorporating recent ICRP recommendations and consideration of the radiation exposure pathways of ingestion, inhalation and external irradiation of the basal layer of skin. A generalized DSCL of 10 5 Bq/m 2 of beta activity is recommended for all contaminants likely to be found in uranium mine and mill workplaces except for fresh uranium concentrates. In the latter case, the DSCL is expressed in terms of alpha activity because the ratio of beta to alpha activities for fresh uranium concentrates is variable; the beta activity increases with the ingrowth of U-238 daughter products (Th-234 and Pa-234m) until secular equilibrium is re-established in about six months. A surface contamination limit of 10 4 Bq/m 2 of beta activity is proposed for the release of non-porous materials and equipment with no detectable loose contamination to the public domain
Radiological survey of the inactive uranium-mill tailings at Green River, Utah
International Nuclear Information System (INIS)
Haywood, F.F.; Christian, D.J.; Ellis, B.S.; Hubbard, H.M. Jr.; Lorenzo, D.; Shinpaugh, W.H.
1980-03-01
The uranium-mill tailings at Green River, Utah, are relatively low in 226 Ra content and concentration (20 Ci and 140 pCi/g, respectively) because the mill was used to upgrade the uranium ore by separating the sand and slime fractions; most of the radium was transported along with the slimes to another mill site. Spread of tailings was observed in all directions, but near-background gamma exposure rates were reached at distances of 40 to 90 m from the edge of the pile. Water erosion of the tailings is evident and, since a significant fraction of the tailings pile lies in Brown's Wash, the potential exists for repetition of the loss of a large quantity of tailings such as occurred during a flood in 1959. In general, the level of surface contamination was low at this site, but some areas in the mill site, which were being used for nonuranium work, have gamma-ray exposure rates up to 143 μR/hr
Environmental impact of uranium mining and milling
International Nuclear Information System (INIS)
Dory, A.B.
1981-08-01
The Atomic Energy Control Board is now involved from the early planning stages in the development of uranium mine/mill facilities. As a result, new facilities (including tailings management areas) are designed and developed to meet a high standard. The impact of the mines and tailings areas in the Elliot Lake area on ground and surface waters and air quality is discussed in detail
Long-term stabilization of uranium mill tailings
International Nuclear Information System (INIS)
Voorhees, L.D.; Sale, M.J.; Webb, J.W.; Mulholland, P.J.
1984-01-01
The primary hazard associated with uranium mill tailings is exposure to a radioactive gas, radon-222, the concentration of which has been correlated with the occurrence of lung cancer. Previous studies on radon attenuation conclude that the placement of earthen cover materials over the tailings is the most effective technique for reducing radioactive emissions and dispersal of tailings. The success of such a plan, however, is dependent on ensuring the long-term integrity of these cover materials. Soil erosion from water and wind is the major natural cause of destabilizing earthen cover materials. Field data related to the control of soil loss are limited and only indirectly apply to the problem of isolation of uranium mill tailings over very long time periods (up to 80,000 a). However, sufficient information is available to determine benefits that will result from changes in specific design variables and to evaluate the need for different design strategies among potential disposal sites. The three major options available for stabilization of uranium mill tailings are (1) rock cover, (2) soil and revegetation, or (3) a combination of both on different portions of the tailings cover. The optimal choice among these alternatives depends on site-specific characteristics such as climate and local geomorphology and soils, and on design variables such as embankment heights and slopes, modification of upstream drainage, and revegetation practices. Generally, geomorphic evidence suggests that use of soil and vegetation alone will not be adequate to reduce erosion on slopes greater than about 5 to 9%. For these steeper slopes, the use of rock talus or riprap will be necessary to maximize the probability of long-term stability. The use of vegetation to control erosion on the flatter portions of the site may be practicable in regions of the USA with sufficient rainfall and suitable soil types, but revegetation practices must be carefully evaluated to ensure that long
International Nuclear Information System (INIS)
Barnekow, U.; Paul, M.
2002-01-01
The paper presents the use of recently developed special oedometer tests for designing the remediation of large uranium tailings ponds at WISMUT, Germany. Uranium ore mining and milling in eastern Germany by the former Soviet-German WISMUT company lasted from 1946 to 1990. Wastes from the hydrometallurgical uranium extraction processes were discharged into large tailings impoundments covering a total area of 5.5 km 2 and containing about 150 x 10 6 m 3 of uranium mill tailings. Tailings pond remediation is ongoing by in-place decommissioning with dewatering by technical means. Geotechnical properties and the most suitable so-called non-linear finite strain consolidation behaviour of fine uranium mill tailings are described. Decommissioning techniques comprise, among others, interim covering of under consolidated fine tailings, contouring of tailings surfaces and final covering. Contouring, in particular, has a huge potential for optimization in terms of cost reduction. For contouring total settlement portions, the spatial distribution of differential settlement portions and the time-dependent settlement rates, especially of the cohesive fine uranium mill tailings are of critical importance. A new special oedometer KD 314 S has been developed to generate all the input data needed to derive the fundamental geotechnical relationships of void ratio vs. effective stress and of permeability coefficient vs. void ratio for consolidation calculations. Since December 1999 the new special oedometer KD 314 S has been working successfully on fine uranium mill tailings from both acid and from soda alkaline milling. Results coincide with non-linear finite strain consolidation theory. The geotechnical functions derived were used as input parameters for consolidation modelling. An example of the consolidation modelling on Helmsdorf tailings pond is presented. (author)
Estimated dose to man from uranium milling via the terrestrial food-chain pathway
Energy Technology Data Exchange (ETDEWEB)
Rayno, D.R.
1982-01-01
One of the major pathways of radiological exposure to man from uranium milling operations is through the terrestrial food chain. Studies by various investigators have shown the extent of uptake and distribution of U-238, U-234, Th-230, Ra-226, Pb-210, and Po-210 in plants and animals. These long-lived natural radioisotopes, all nuclides of the uranium decay series, are found in concentrated amounts in uranium mill tailings. Data from these investigations are used to estimate the dose to man from consumption of beef and milk contaminated by the tailings. This dose estimate from this technologically enhanced source is compared with that from average normal dietary intake of these radionuclides from natural sources.
Estimated dose to man from uranium milling via the terrestrial food-chain pathway
International Nuclear Information System (INIS)
Rayno, D.R.
1982-01-01
One of the major pathways of radiological exposure to man from uranium milling operations is through the terrestrial food chain. Studies by various investigators have shown the extent of uptake and distribution of U-238, U-234, Th-230, Ra-226, Pb-210, and Po-210 in plants and animals. These long-lived natural radioisotopes, all nuclides of the uranium decay series, are found in concentrated amounts in uranium mill tailings. Data from these investigations are used to estimate the dose to man from consumption of beef and milk contaminated by the tailings. This dose estimate from this technologically enhanced source is compared with that from average normal dietary intake of these radionuclides from natural sources
International Nuclear Information System (INIS)
1991-01-01
This document assesses the environmental impacts of stabilization on site of the contaminated materials at the Lowman uranium mill tailings site. The Lowman site is 0.5 road mile northeast of the unincorporated village of Lowman, Idaho, and 73 road miles from Boise, Idaho. The Lowman site consists of piles of radioactive sands, an ore storage area, abandoned mill buildings, and windblown/waterborne contaminated areas. A total of 29.5 acres of land are contaminated and most of this land occurs within the 35-acre designated site boundary. The proposed action is to stabilize the tailings and other contaminated materials on the site. A radon barrier would be constructed over the consolidated residual radioactive materials and various erosion control measures would be implemented to ensure the long-term stability of the disposal cell. Radioactive constituents and other hazardous constituents were not detected in the groundwater beneath the Lowman site. The groundwater beneath the disposal cell would not become contaminated during or after remedial action so the maximum concentration limits or background concentrations for the contaminants listed in the draft EPA groundwater protection standards would be met at the point of compliance. No significant impacts were identified as a result of the proposed remedial action at the Lowman site
Architecture and environmental restoration: Remediating uranium mill tailings from buildings
International Nuclear Information System (INIS)
Teply, J.D.
1991-01-01
The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) manages the Uranium Mill Tailings Remedial Action (UMTRA) Program in Grand Junction, Colorado. This program is a congressionally mandated clean up of by-product waste that resulted from the extraction of yellow cake from uranium ore. The by-product waste, a fine sand commonly called open-quotes mill tailingclose quotes is contaminated with low-level radioactivity. These mill tailings were available to the community for use as construction material from approximately 1952 to 1966; their use as bedding material for concrete slabs, utilities, backfill materials, concrete sand, and mortar created unique remediation problems that required innovative solutions. This paper describes how design personnel approach the remediation of structures, the evaluation of the buildings, and the factors that must be considered in completing the remediation design. This paper will not address the health risks of the tailings in an inhabited space, the remediation of exterior areas, or the process of determining where the tailings exist in the building
International Nuclear Information System (INIS)
Whicker, F.W.; Ibrahim, S.A.
1987-01-01
This document is the final report on studies of the integrity and transport of uranium and radioactive progeny in active and reclaimed uranium mill tailings. The overall program was designed to provide basic information on the radioecology of 238 U, 230 Th, 226 Ra, 210 Pb and 210 Po, responses of plants and animals to the landscape disruptions associated with uranium production, and guidance for impact analysis, mitigation and regulation of the uranium industry. The studies reported were conducted at the Shirley Basin Uranium Mine, which is operated by the Pathfinder Mines Corporation. The mine/mill operation, located in southeastern Wyoming, is typical in terms of the ore body, mill process, and ecological setting of many uranium production centers in the western United States. The research was motivated originally by the general lack of knowledge on the transport of uranium and its radioactive daughter products through the environment, particularly through food chains in the immediate environs of uranium production operations. The work was also motivated by the relatively high contribution of uranium mining and milling to the radiation exposure of the general population from the nuclear fuel cycle
Acute and chronic toxicity of effluent water from an abandoned uranium mine.
Antunes, S C; Pereira, R; Gonçalves, F
2007-08-01
Inactive or abandoned mines represent a significant source of environmental, chemical, physical, and aesthetic impact. Among concerning situations, the occurrence of abandoned or semi-abandoned mine-associated ponds (for sedimentation of solids, for effluent neutralization, or for washing the ore) is a common feature in this type of system. These ponds are a source of contamination for the groundwater resources and adjacent soils, because they lack appropriate impermeabilization. The use of this water for agriculture may also pose chronic risks to humans. In Portugal, these problems have been diagnosed and some remediation projects have been developed. The purpose of our study was to evaluate the acute and chronic toxicity of water samples collected from the aquatic system surrounding an abandoned uranium mine (Cunha Baixa, Mangualde, Central Portugal). The present study focuses on the water compartment, whose toxicity was evaluated by means of standard toxicity assays using two Daphnia species (D. longispina and D. magna). Three different ponds were used in the characterization of the aquatic system from Cunha Baixa mine: a reference pond (Ref), a mine effluent treatment pond (T), and a mine pit pond (M). Metal analyses performed in the water samples from these ponds showed values that, in some cases, were much higher than maximum recommendable values established (especially Al, Mn) by Portuguese legislation for waters for crop irrigation. Acute toxicity was only observed in the mine pit pond, with EC(50) values of 28.4% and 50.4% for D. longispina and D. magna, respectively. The significant impairment of chronic endpoints, translated in reductions in the population growth rate for both species, gives rise to concerns regarding the potential risks for aquatic zooplanktonic communities, from local receiving waters, potentially exposed to point source discharges of the treated and nontreated effluent from Cunha Baixa uranium mine.
Closeout of uranium mines and mills: A review of current practices
International Nuclear Information System (INIS)
1997-04-01
The present report is a first step in gathering information on the assessment and control of the long term (over a few centuries) impact of uranium mining and milling waste. Its intention is to outline several examples of worldwide experience. It contains summaries of current closeout practices which have not previously been presented in a singly publication. It is expected to provide necessary information to Member States to formulate meaningful decisions for adequately controlling impacts resulting from uranium mines and mills waste materials. The information contained herein may also be valuable as background material for developing relevant guidance in this subject area, for example within the IAEA Safety Standards Programme. Refs, figs, tabs
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-03-01
Pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, the U.S. Department of Energy (DOE) is proposing to conduct remedial action to clean up the residual radioactive materials (RRM) at the Naturita uranium processing site in Colorado. The Naturita site is in Montrose County, Colorado, and is approximately 2 miles (mi) (3 kilometer [km]) from the unincorporated town of Naturita. The proposed remedial action is to remove the RRM from the Naturita site to the Upper Burbank Quarry at the Uravan disposal site. To address the potential impacts of the remedial action on threatened and endangered species, the DOE prepared this biological assessment. Informal consultations with the U.S. Department of the Interior, Fish and Wildlife Service (FWS) were initiated in 1986, and the FWS provided a list of the threatened and endangered species that may occur in the Naturita study area. This list was updated by two FWS letters in 1988 and by verbal communication in 1990. A biological assessment was included in the environmental assessment (EA) of the proposed remedial action that was prepared in 1990. This EA addressed the impacts of moving the Naturita RRM to the Dry Flats disposal site. In 1993, the design for the Dry Flats disposal alternative was changed. The FWS was again consulted in 1993 and provided a new list of threatened and endangered species that may occur in the Naturita study area. The Naturita EA and the biological assessment were revised in response to these changes. In 1994, remedial action was delayed because an alternate disposal site was being considered. The DOE decided to move the FIRM at the Naturita site to the Upper Burbank Quarry at the Uravan site. Due to this delay, the FWS was consulted in 1995 and a list of threatened and endangered species was provided. This biological assessment is a revision of the assessment attached to the Naturita EA and addresses moving the Naturita RRM to the Upper Burbank Quarry disposal site.
Uranium mill tailings remediation in the USA. A history and lessons learned - 59407
International Nuclear Information System (INIS)
Rima, Steve
2012-01-01
Document available in abstract form only. Full text of publication follows: Since the 1940's uranium ores have been processed at various locations in the United States to extract and produce uranium and other concentrated materials, first for government (weapons) research and production, and then for nuclear power production. The tailings residue from the uranium milling process contained radioactive (primarily Ra-226) and hazardous chemicals. Large volumes of tailings were produced during the milling process. In the early history of this process the tailings were not recognized as hazardous and were released to the general public for a wide variety of uses, resulting in significant spread of contamination in the vicinity of many operating mills. In the late 1960's and early 1970's laws were enacted at the state and federal level to begin to deal with the legacy of this contamination. Over the course of the next several decades various regulatory agencies were responsible for remediating these sites. Different approaches were used, different end points and definitions of clean were used, and very large sums of public funding were spent on remediating these sites. Rarely was the cost commensurate with the risk reduction obtained through remediation. This paper will present an overview of the history of the uranium mill tailings regulatory and remediation program in the United States, the cost of the program compared to risk reduction, successes and failures, and important lessons learned that should be applied to future efforts in this area. (author)
An ecological approach to the assessment of vegetation cover on inactive uranium mill tailings sites
International Nuclear Information System (INIS)
Kalin, M.; Caza, C.
1982-01-01
Vascular plants have been collected from abandoned or inactive uranium mill tailings in three mining areas in Canada. The collection was evaluated to determine some characteristics of vegetation development and to identify the plants which will persist on the sites. A total of 170 species were identified. Many of the species are widely distributed in North America, none has been reported as rare in any of the locations from which they were collected. Species richness was highest on Bancroft sites and lowest on Uranium City sites, though values were variable between sites. Forty-four per cent of the total number of species were found on only a single site. Only seven species occurred on more than half of the tailings sites and in all three mining areas. There was no difference between amended and unamended sites in terms of either species richness or species composition. There was no apparent relationship between species richness and either site size, site age or amendment history. The results of this survey suggest that the uranium mill tailings sites are at an early stage of colonization where the seed input from surrounding areas and the heterogeneity of the sites are factors determining species composition and species richness. The fate of an individual once it has reached the site will be determined by its ability to establish on the sites. A perennial growth habit and the ability to expand clonally are important characteristics of the species on the tailings. The species on the tailings are commonly found in a variety of habitats. Consistent with the observation that the tailings sites are at a stage of early colonization, we find that the few species widely distributed across sites are all characteristic pioneering species with wide environmental tolerances. These species included Populus tremuloides, P. balsamifera, Scirpus cyperinus, Equisetum arvense, Betula papyrifera, Achillea millefolium and Typha spp. The vegetation on the tailings is likely to be
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Timing of Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. 23.8 Section 23.8 Protection of Environment... Administrator's action under Uranium Mill Tailings Radiation Control Act of 1978. Unless the Administrator...
Review of fugitive dust control for uranium mill tailings
International Nuclear Information System (INIS)
Li, C.T.; Elmore, M.R.; Hartley, J.N.
1983-01-01
An immediate concern associated with the disposal of uranium mill tailings is that wind erosion of the tailings from an impoundment area will subsequently deposit tailings on surrounding areas. Pacific Northwest Laboratory (PNL), under contract to the U.S. Nuclear Regulatory Commission, is investigating the current technology for fugitive dust control. Different methods of fugitive dust control, including chemical, physical, and vegetative, have been used or tested on mill tailings piles. This report presents the results of a literature review and discussions with manufacturers and users of available stabilization materials and techniques
Review of fugitive dust control for uranium mill tailings
Energy Technology Data Exchange (ETDEWEB)
Li, C.T.; Elmore, M.R.; Hartley, J.N.
1983-01-01
An immediate concern associated with the disposal of uranium mill tailings is that wind erosion of the tailings from an impoundment area will subsequently deposit tailings on surrounding areas. Pacific Northwest Laboratory (PNL), under contract to the U.S. Nuclear Regulatory Commission, is investigating the current technology for fugitive dust control. Different methods of fugitive dust control, including chemical, physical, and vegetative, have been used or tested on mill tailings piles. This report presents the results of a literature review and discussions with manufacturers and users of available stabilization materials and techniques.
Remediation of former uranium mining and milling activities in Central Asia
International Nuclear Information System (INIS)
Waggitt, Peter
2007-01-01
Available in abstract form only. Full text of publication follows: Several of the Central Asian countries of the former Soviet Union were involved in the uranium mining and milling industry from about 1945 for varying periods until the break up of the Soviet Union in 1991 and beyond. Some facilities are still producing in Uzbekistan and Kazakhstan. However, before the break up, many facilities had been abandoned and in only a few cases had any remediation been undertaken. Since 1991 the newly independent states of the region have been seeking assistance for the remediation of the multitude of tailings piles, waste rock stockpiles and abandoned, and often semi dismantled, production facilities that may be found throughout the region. Many of these sites are close to settlements that were established as service towns for the mines. Most towns still have populations, although the mining industry has departed. In some instances there are cases of pollution and contamination and in many locations there is a significant level of public concern. The IAEA has been undertaking a number of Technical Cooperation (TC) projects throughout the region for some time to strengthen the institutions in the relevant states and assist them to establish monitoring and surveillance programs as an integral part of the long term remediation process. The IAEA is liaising with other agencies and donors who are also working on these problems to optimise the remediation effort. The paper describes the objectives and operation of the main TC regional program, liaison efforts with other agencies, the achievements so far and the long term issues for remediation of these legacies of the 'cold war' era. (authors)
Uranium mining and milling work force characteristics in the western US
International Nuclear Information System (INIS)
Rapp, D.A.
1980-12-01
This report presents the results of a survey of the socioeconomic characteristics associated with 11 uranium mine and mill operations in 5 Western States. Comparisons are made with the socioeconomic characteristics of construction and operating crews for coal mines and utility plants in eight Western States. Worker productivity also is compared with that in similar types of coal and uranium mining operations. We found that there existed no significant differences between the socioeconomic characteristics of construction and operating crews and the secondary employment impacts associated with uranium mines and mills when compared with those associated with coal mines and utility plants requiring similar skills at comparable locations. In addition, our survey includes a comparison of several characteristics associated with the households of basic and nonbasic work forces and concludes that significant changes have occurred in the last 5 yr. Accordingly, we recommend additional monitoring and updating of data used in several economic forecasting models to avoid unwarranted delays in achieving national energy goals
Noller, B N
1991-10-01
Protection from the hazards from radioactivity is of prime importance in the management of uranium mine and mill wastes. Such wastes also contain non-radiological contaminants (heavy metals, acids and neutralising agents) which give rise to potential long-term health and environmental hazards and short-term hazards to the aquatic ecosystem, e.g. as a result of release of waste water. This study seeks to identify non-radiological contaminants (elements) transferred to waste water at the Ranger uranium mine/mill complex at Jabiru, which are likely to hazardous to the aquatic environment.The two principal sources of contaminants are: (i) ore and waste rock mobilised from mining; and (ii) process reagents used in the milling and mineral extraction process. These substances may or may not already be present in the natural environment but may lead to deleterious effects on the aquatic environment if increased above threshold levels.Rhenium, derived from the ore body, was found to be significantly enriched in waste water from Ranger, indicating its suitability as an indicator element for water originating from the mining and milling process, but only uranium, likewise derived from the ore, and magnesium, manganese and sulfur (as sulfate) from the milling process were found to be significant environmental contaminants.
Uranium Mill Tailings Radiation Control Act of 1978
International Nuclear Information System (INIS)
Magee, J.
1980-01-01
The long-term environmental effects of the Uranium Mill Tailings Radiation Control Act of 1978 address the public health hazards of radioactive wastes and recognize the significance of this issue to public acceptance of nuclear energy. Title I of the Act deals with stabilizing and controlling mill tailings at inactive sites and classifies the sites by priority. It represents a major Federal commitment. Title II changes and strengthens Nuclear Regulatory Commission authority, but it will have little overall impact. It is not possible to assess the Act's effect because there is no way to know if current technology will be adequate for the length of time required. 76 references
Chapter 2: uranium mines and mills
International Nuclear Information System (INIS)
O'Connell, W.J.
1983-03-01
This chapter will be included in a larger ASCE Committee Report. Uranium mining production is split between underground and open pit mines. Mills are sized to produce yellowcake concentrate from hundreds to thousands of tons of ore per day. Miner's health and safety, and environmental protection are key concerns in design. Standards are set by the US Mine Safety and Health Administration, the EPA, NRC, DOT, the states, and national standards organizations. International guidance and standards are extensive and based on mining experience in many nations
Containment systems for uranium-mill tailings
International Nuclear Information System (INIS)
Hartley, J.N.; Buelt, J.L.
1982-11-01
Cover and liner systems for uranium mill tailings in the United States must satisfy stringent requirements regarding long-term stability, radon control, and radionuclide and hazardous chemical migration. The cover and liner technology discussed in this paper involves: (1) single and multilayer earthen cover systems; (2) asphalt emulsion radon barrier systems; and (3) asphalt, clay, and synthetic liner systems. These systems have been field tested at the Grand Junction, Colorado, tailings pile, where they have been shown to effectively reduce radon releases and radionuclide and chemical migration
Implementation of the Additional Protocol: Verification activities at uranium mines and mills
International Nuclear Information System (INIS)
Bragin, V.; Carlson, J.; Leslie, R.
2001-01-01
Full text: The mining and milling of uranium is the first in a long chain of processes required to produce nuclear materials in a form suitable for use in nuclear weapons. Misuse of a declared uranium mining/milling facility, in the form of understatement of production, would be hard to detect with the same high level of confidence as afforded by classical safeguards on other parts of the nuclear fuel cycle. For these reasons, it would not be cost-effective to apply verification techniques based on classical safeguards concepts to a mining/milling facility in order to derive assurance of the absence of misuse. Indeed, these observations have been recognised in the Model Protocol (INFCIRC/540): 'the Agency shall not mechanistically or systematically seek to verify' information provided to it by States (Article 4.a.). Nevertheless, complementary access to uranium mining/milling sites 'on a selective basis in order to assure the absence of undeclared nuclear material and activities' (Article 4.a.(i)) is provided for. On this basis, therefore, this paper will focus predominantly on options other than site access, which are available to the Agency for deriving assurance that declared mining/milling operations are not misused. Such options entail the interpretation and analysis of information provided to the Agency including, for example, from declarations, monitoring import/export data, open source reports, commercial satellite imagery, aerial photographs, and information provided by Member States. Uranium mining techniques are diverse, and the inventories, flows and uranium assays which arise at various points in the process will vary considerably between mines, and over the operating cycle of an individual mine. Thus it is essentially impossible to infer any information, which can be used precisely to confirm, or otherwise, declared production by measuring or estimating any of those parameters at points within the mining/milling process. The task of attempting to
Recycling and disposal of FUSRAP materials from the Ashland 2 site at a licensed uranium mill
International Nuclear Information System (INIS)
Howard, B.; Conboy, D.; Rehmann, M.; Roberts, H.
1999-01-01
During World War II the Manhattan Engineering District (MED) used facilities near Buffalo, N.Y. to extract natural uranium from ores. Some of the byproduct material left from the ores (MED byproduct), containing low levels of uranium, thorium, and radium, was deposited on a disposal site known as Ashland 2, located in Tonawanda, NY. On behalf of the United States Army Corps of Engineers (USACE, or the Corps), ICF Kaiser Engineers (ICFKE) was tasked to provide the best value clean-up results that meet all of the criteria established in the Record of Decision for the site. International Uranium (USA) Corporation (IUC), the operator of the White Mesa Uranium Mill, a Nuclear Regulatory Commission (NRC)-licensed mill near Blanding, Utah, was selected to perform uranium extraction on the excavated materials, therefore giving the best value as it provided beneficial use of the material consistent with the Resource Conservation and Recovery Act (RCRA) intent to encourage recycling and recovery, while also providing the most cost-effective means of disposal. Challenges overcome to complete this project included (1) identifying the best-value location to accept the material; (2) meeting regulatory requirements with IUC obtaining an NRC license amendment to accept and process the material as an alternate feed; (3) excavating and preparing the material for shipment, then shipping the material to the Mill for uranium recovery; and (4) processing the material, followed by disposal of tailings from the process in the Mill's licensed uranium tailings facility. Excavation from Ashland 2 and processing of the Ashland 2 material at the White Mesa Mill resulted in a cleaner environment at Tonawanda, a cost avoidance of up to $16 million, beneficial recovery of source material, and environmentally protective disposal of byproduct material. (author)
Critical management issues for the Uranium Mill Tailings Remedial Action (UMTRA) Project
International Nuclear Information System (INIS)
Themelis, J.G.; Krishnan, K.R.
1985-01-01
The Uranium Mill Tailings Radiation Control Act of 1978 (PL95-604) authorized the Secretary of Energy to enter into cooperative agreements with certain states and Indian Tribes to clean up 24 inactive uranium mill tailing sites and associated vicinity properties. The Uranium Mill Tailings Remedial Action (UMTRA) Project includes the three Federal agencies (EPA, DOE, and NRC), eleven state, Indian Tribes, and at least four major contractors. The UMTRA Project extends over a period of ten years. The standards for the Project require a design life of 1000 years with a minimum performance period of 200 years. This paper discusses the critical management issues in dealing with the UMTRA Project and identifies the development of solutions for many of those issues. The highlights to date are promulgation of EPA standards, continued support from Congress and participating states and Indian Tribes, significant leadership shown at all levels, establishment of credibility with the public, and continued motivation of the team. The challenge for tomorrow is making certain NRC will license the sites and maintaining the high level of coordination exhibited to date to assure Project completion on schedule
Canadian experience with uranium tailings disposal
International Nuclear Information System (INIS)
Culver, K.B.
1982-06-01
During the first years of uranium production in Canada uranium tailings were discharged directly into valleys or lakes near the mill. Treatment with barium chloride to precipitate radium began in 1965 at the Nordic Mine at Elliot Lake, Ontario. In the mid-60s and early 70s water quality studies indicated that discharges from uranium tailings areas were causing degradation to the upper part of the Serpent River water system. Studies into acid generation, revegetation, and leaching of radium were initiated by the mining companies and resulted in the construction of treatment plants at a number of sites. Abandoned tailings sites were revegetated. At hearings into the expansion of the Elliot Lake operations the issue of tailings management was a major item for discussion. As a result federal and provincial agencies developed guidelines for the siting and development of urnaium tailings areas prior to issuing operating licences. Western Canadian uranium producers do not have the acid generation problem of the Elliot Lake operations. The Rabbit Lake mill uses settling ponds followed by filtration. High-grade tailings from Cluff Lake are sealed in concrete and buried. Uranium producers feel that the interim criteria developed by the Atomic Energy Control Board, if adopted, would have a harmful effect on the viability of the Canadian uranium industry
Management of radioactive wastes from uranium mining and milling
International Nuclear Information System (INIS)
Fry, R.M.
1983-11-01
Basic goals for the disposal of uranium mill tailings and criteria for judgement of the acceptability of waste management practices are considered. The discussion covers the nature of tailings and their radiological hazards, both local and remote, individual and collective, as well as health codes and engineering implications
Update of NRC uranium mill licensing activities
International Nuclear Information System (INIS)
Martin, J.B.
1978-01-01
Increased vigilance must be given to controlling emissions from active milling operations, particularly windblown tailings, to assure that the soon-to-be-effective EPA Fuel Cycle Standard is met. Comprehensive environmental monitoring programs will have to be developed to confirm that, in fact, the limit is met. Just as was the case last year, tailings management and disposal is still the major item of concern relating to uranium milling operations. As stated earlier, the NRC feels that below-grade disposal is the preferred method of tailings disposal in that it provides the greatest assurances of long-term isolation. In any event, tailings must be disposed of in such a way that no active care is required of disposal sites, to avoid committing future generations to a significant, lingering obligation to care for wastes generated to produce benefits which they will only indirectly receive, if at all. While the primary means of providing long-term isolation of tailings must be by physical barriers, as a prudent, supplementary measure of control, we are concluding in the GEIS on Uranium Milling that ownership of disposal sites by a Government agency is desirable. We expect a low level of continued surveillance at disposal sites with small expense involved. We are concluding that requiring operators to contribute on the order of $100,000 per disposal site to cover ongoing expenses would be the most apropriate means of conforming to the principle that the waste generator should pay full costs of waste disposal. We feel such an arrangement would be fair, simple, and efficient, favoring it over complicated schemes involving such things as taxes on product or tailings generated and continued management of ear-marked funds. Legislation is now pending in the Congress which would give NRC direct regulatory control over mill tailings and put into place the authorities needed to implement the long-term control and funding arrangements discussed above
Environmental problems relating to uranium mining and milling
International Nuclear Information System (INIS)
Friedman, F.B.
1979-01-01
The regulations of the mining and milling of uranium as they relate to the environment are discussed. The industry is primarily under the jurisdiction of the federal government and administered by the Nuclear Regulatory Commission (NRC). This authority can in some instances be relegated to the states. Certain areas of jurisdiction have been given over to Environmental Protection Agency (EPA) by the courts. The Safe Drinking Water Act is discussed as it relates to in situ leach mining. The role of the Department of Interior in the regulating of uranium mining, as described in the Federal Land Policy Management Act of 1976, is discussed. The requirement for environmental impact statements prior to licensing by the NRC or the individual states is also discussed. Air quality and radioactive waste disposal as they relate to uranium mining are also discussed
Energy Technology Data Exchange (ETDEWEB)
1993-12-01
This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.
International Nuclear Information System (INIS)
1993-12-01
This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium
Summary of the engineering assessment of inactive uranium mill tailings
International Nuclear Information System (INIS)
1981-07-01
The Grand Junction site has been reevaluated in order to revise the october 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Grand Junction, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Grand Junction site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented herein range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Option II through VIII). Cost estimates for the eight options range from about $10,200,000 for stabilization in-place to about $39,500,000 for disposal in the DeBeque area, at a distance of about 35 mi, using transportation by rail. If transportation to DeBeque were by truck, the cost is estimated to be about $41,900,000. Three prinicpal alternatives for the reprocessing of the Grand Junction tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $150/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery appears not to be economically attractive
Environmental impact of uranium mining and milling: an American view
International Nuclear Information System (INIS)
Momeni, M.H.
1981-01-01
The radiation dose rates to man from uranium milling activities are discussed. The sources of radiation, the radioisotopes involved, and the environmental exposure pathways are described. Risks of cancer to exposed individuals are presented and recommendations made for mitigation of contamination
WISMUT AG: Past, present and future of the largest uranium producer in Europe
International Nuclear Information System (INIS)
Madel, J.
1990-01-01
The author gives a brief summary of WISMUT AG the largest uranium producer operating in Europe. The jointly owned German-Soviet company operates its production facilities in the southern part of the former German Democratic Republic. Given the new political and economic frame in Germany and the Soviet Union WISMUT AG will receive due recognition. Uranium exploration, mining, and milling activities are summarized from 1946-1989, and a summary of present activities and projections of future activities in the area of decontamination, restoration, and recultivation of present and abandoned mining and milling sites are noted. A statement of WISMUT AG's projected role in the international nuclear fuels market is made
Radiation hazards of uranium mining and milling
International Nuclear Information System (INIS)
Fry, R.M.
1975-09-01
This paper examines each of the radiological problems that arise in these processes and explains their scientific background. The major operational requirement is to ensure that exposure of miners over their working lives to radon and its daughter products does not lead to an unacceptable increase in their chance of contracting lung cancer. Studies on the incidence of lung cancer amongst underground uranium miners indicate that this risk will be small if lifetime exposures are kept below about 120 'working level months', even amongst underground miners who smoke cigarettes. The risk is much smaller again for miners who do not smoke cigarettes. Other hazards that must be controlled are exposure of miners and mill workers to external radiation and to dusts containing long-lived radioactive alpha emitting isotopes. Finally, the solid waste products from the mill (the tailings) which contain most of the naturally occurring radioactivity, must be properly impounded and after closure of the mill, stabilized to ensure long-term containment. Access by the public to the stabilized tailings must be controlled and habitation within the controlled area prohibited. (author)
Landa, Edward
1980-01-01
Uranium mining and milling is an expanding activity in the. Western United States. Although the milling process yields a uranium concentrate, the large volume of tailings remaining contains about 85 percent of the radioactivity originally associated with the ore. By virtue of the physical and chemical processing of the ore and the redistribution of the contained radionuclides at the Earth's surface, these tailings constitute a technologically enhanced source of natural radiation exposure. Sources of potential human radiation exposure from uranium mill tailings include the emanation of radon gas, the transport of particles by wind and water, and the transport of soluble radionuclides, seeping from disposal areas, by ground water. Due to the 77,000 year half-life of thorium-230, the parent of radium-226, the environmental effects associated with radionuclides contained in these railings must be conceived of within the framework of geologic processes operating over geologic time. The magnitude of erosion of cover materials and tailings and the extent of geochemical mobilization of the contained radionuclides to the atmosphere and hydrosphere should be considered in the evaluation of the potential, long-term consequences of all proposed uranium mill tailings management plans.
Liner evaluation for uranium mill tailings. Final report
International Nuclear Information System (INIS)
Buelt, J.L.
1983-09-01
The Liner Evaluation for Uranium Mill Tailings Program was conducted to evaluate the need for and performance of prospective lining materials for the long-term management of inactive uranium mill tailings piles. On the basis of program results, two materials have been identified: natural foundation soil amended with 10% sodium bentonite; catalytic airblown asphalt membrane. The study showed that, for most situations, calcareous soils typical of Western US sites adequately buffer tailings leachates and prevent groundwater contamination without additional liner materials or amendments. Although mathematical modeling of disposal sites is recommended on a site-specific basis, there appears to be no reason to expect significant infiltration through the cover for most Western sites. The major water source through the tailings would be groundwater movement at sites with shallow groundwater tables. Even so column leaching studies showed that contaminant source terms were reduced to near maximum contaminant levels (MCL's) for drinking water within one or two pore volumes; thus, a limited source term for groundwater contamination exists. At sites where significant groundwater movement or infiltration is expected and the tailings leachates are alkaline, however, the sodium bentonite or asphalt membrane may be necessary
International Nuclear Information System (INIS)
1983-03-01
Preliminary tests and evaluations of existing bio-analytical techniques for identifying uptakes and measuring retention of uranium in mill workers were made at two uranium mills. Urinalysis tests were found to be more reliable indicators of uranium uptakes than personal air sampling. Static air samples were not found to be good indicators of personal uptakes. In vivo measurements of uranium in lung were successfully carried out in the presence of high and fluctuating background radiation. Interference from external contamination was common during end of shift measurements. A full scale study to evaluate model parameters for the uptake, retention and elimination of uranium should include, in addition to the above techniques, particle size determination of airborne uranium, solubility in simulated lung fluid, uranium analysis in faeces and bone and minute volume measurements for each subject
Procedure of uranium mine and mill facilities decommissioning work
International Nuclear Information System (INIS)
Li Renjie
1995-01-01
The procedure of decommissioning work of uranium mine and mill facilities includes three stages: preparation, on-the-spot construction and acceptance after being completed. The first stage, preparation, is discussed in detail, and it is presented to take the measures of strengthening leadership and improving leading body to conduct the decommissioning work best
International Nuclear Information System (INIS)
Vandenhove, H.; Vandecasteele, C.M.; Collard, G.
2002-01-01
The SCOPE-RADSITE Project provides a unique international scientific forum where the radioactive wastes generated in the development of nuclear weapons, including their potential impact on the environment and human populations, are studied and reviewed. At the present SCOPE-RADSITE workshop a team of experts presented the current status of uranium mining and milling operations in the United States, in the former Soviet Union (FSU) and in Central and Eastern Europe. The effect of radiocontaminants resulting from the uranium mining and milling operations to species other than humans and the combined effects of environmental radiation and other agents were discussed. Finally, three cases of remediation projects were presented: remediation at COGEMA sites in France, the WISMUT rehabilitation project in Germany and uranium mine reclamation in Texas and remediation achievements were described. Finally the workshop discussed important issues and recommendations to be considered when approaching remediation of past legacies resulting from uranium mining and milling. (author)
Research on clay covering experiment in a abandoned uranium mining area
International Nuclear Information System (INIS)
Zhang Xueli; Xu Lechang; Zhang Wei
2014-01-01
The clay covering experiment was designed in a abandoned uranium mining area, including experiment principle, determining size of experimental site, experiment method, choosing cover materials and determining cover thickness. According to the experiment results, the relationship between the radon exhalation rate and cover thickness, the diffusion coefficient of radon in clay were fully discussed. Also, the corresponding function expressions were established. The linear correlation coefficient test results showed that the relationship between the radon exhalation rate and cover thickness was significantly correlated. According to the correlation function expression between the radon exhalation rate and the cover thickness, the cover thickness of the decommissioning sites can be determined, in order to provide a scientific basis for the design and environmental impact assessment on decommissioning disposal project of a uranium mine. (authors)
Energy Technology Data Exchange (ETDEWEB)
Thomas, P.A.
2000-06-01
Food chain transfer through the soil-vegetation-small mammal food chain was measured by concentration ratios (CRs) for uranium, {sup 226}Ra, {sup 210}Pb, and {sup 210}Po at three sites near the Key Lake uranium mill in northern Saskatchewan. Plant/soil CRs, animal carcass/GI tract CRs, and animal/soil CRs were depressed at sites impacted by mill and tailings dusts relative to a nearby control site. Thus, radionuclides associated with large particulates in tailings and/or ore dusts may be less bioavailable to terrestrial plants and animals than natural sources of radioactive dust. These results show that reliance on default food chain transfer parameters, obtained from uncontaminated terrestrial ecosystems, may overpredict impacts at uranium mine and mill sites. Given the omnivorous diet of small mammals and birds, animal/soil CRs are recommended as the most cost-effective and robust means of predicting animal concentrations from environmental monitoring data at uranium mill facilities.
International Nuclear Information System (INIS)
Thomas, P.A.
2000-01-01
Food chain transfer through the soil-vegetation-small mammal food chain was measured by concentration ratios (CRs) for uranium, 226 Ra, 210 Pb, and 210 Po at three sites near the Key Lake uranium mill in northern Saskatchewan. Plant/soil CRs, animal carcass/GI tract CRs, and animal/soil CRs were depressed at sites impacted by mill and tailings dusts relative to a nearby control site. Thus, radionuclides associated with large particulates in tailings and/or ore dusts may be less bioavailable to terrestrial plants and animals than natural sources of radioactive dust. These results show that reliance on default food chain transfer parameters, obtained from uncontaminated terrestrial ecosystems, may overpredict impacts at uranium mine and mill sites. Given the omnivorous diet of small mammals and birds, animal/soil CRs are recommended as the most cost-effective and robust means of predicting animal concentrations from environmental monitoring data at uranium mill facilities
Problems of restoration disturbed areas in the conduction uranium mining and milling
International Nuclear Information System (INIS)
Isakin, V.S.; Konev, G.V.
1996-01-01
State-holding company Tselinnyj Mining Chemical Company (TMCC) is headed enterprise for mining and milling uranium ore in North Kazakstan was at five main areas (ore's direction). Mining was a traditional forms. Currently, the main problems of restoration disturbed areas in the conditions of uranium mining and milling are: economic insolvency of conversion enterprises, with has not own means for exude restoration and decontamination. TMCC has urgent need of State Programme, that provides finance of restoration work. Problem of radioactive contamination shall be insolvable, if company will go bankrupt. This programme should contained an item for elaboration regulative, normative and methodological documents if low level radioactive waste in Kazakstan. Program must take into consideration progressive domestic and foreign experience
Interior drains for open pit disposal of uranium mill tailings
International Nuclear Information System (INIS)
Staub, W.P.
1978-01-01
A conceptualized interior drainage system is presented for reducing the environmental impact on natural groundwater by disposal of uranium mill tailings in the mined-out open pit. The evaporation/seepage ratio can be increased through the use of interior drains, long-term monitoring of groundwater quality can be eliminated, and the open pit will not require an extensive liner. Other advantages not related to groundwater are: control of fugitive dust and radon emanation during mill operations and timely reclamation after the impoundment is filled with tailings
International Nuclear Information System (INIS)
1985-07-01
The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) was enacted based upon findings by Congress ''that uranium mill tailings located at active and inactive hazard to the public, and that protection of the public health, safety and welfare, and the regulations of interstate commerce, require that every reasonable effort be made to provide for the stabilization, disposal, and control in a safe and environmentally sound manner of such tailings in order to prevent or minimize radon diffusion into the environment and to prevent or minimize other environmental hazards from such tailings.'' A general understanding of the steps leading to elimination of the hazards associated with designated uranium mill tailings sites, and the parties involved in that effort, are presented in this document. A representative schedule is also presented in this document to show both program sequence and activity interdependence. Those activities that have the most potential to influence program duration, because of the significant amount of additional time that may be required, include identification and selection of a suitable site, field data collection delays due to weather, actual acquisition of the designated or alternate disposal site, construction delays due to weather, and site licensing. This document provides an understanding of the steps, the sequence, the parties involved, and a representative duration of activities leading to remedial action and cleanup at the designated inactive uranium mill tailings sites. 10 refs., 5 figs., 1 tab
Engineering assessment of inactive uranium mill tailings: Maybell Site, Maybell, Colorado
International Nuclear Information System (INIS)
1981-09-01
Ford, Bacon and Davis Utah Inc. has reevaluated the Maybell site in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Maybell, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Maybell site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The two alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to disposal of the tailings in a nearby open pit mine and decontamination of the tailings site (Option II). Cost estimates for the two options are about $11,700,000 for stabilization in-place and about $22,700,000 for disposal within a distance of 2 mi. Three principal alternatives for the reprocessing of the Maybell tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $125 and $165/lb of U 3 O 8 by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present
International developments in uranium mining and mill site remediation
International Nuclear Information System (INIS)
Quarch, H.; Kuhlmann, J.; Daroussin, J.L.; Poyser, R.W.
1993-01-01
At the end of production, mine sites, mill sites, tailings ponds, heap leaching residues in uranium mining districts world-wide have to be remediated in a responsible and sustainable manner in order to minimize long term environmental impacts. Current practice, regulatory environments and rehabilitation objectives in some of the most important uranium producing countries are briefly characterized as well as applicable radioprotection and geotechnical criteria. Important local and regional variables are outlined which determine optimal site specific solutions. Examples from Europe and North America are shown. Monitoring and control requirements as well as areas of current and necessary research and development are identified
Safe management of wastes from the mining and milling of uranium and thorium ores
International Nuclear Information System (INIS)
1987-01-01
Wastes from the mining and milling of uranium and thorium ores pose potential environmental and public health problems because of their radioactivity and chemical composition. This document consists of two parts: a Code of Practice (Part I) and a Guide to the Code (Part II). The Code sets forth the requirements for the safe and responsible handling of the wastes resulting from the mining and milling of uranium and thorium ores, while the Guide presents further guidance in the use of the Code together with some discussion of the technology and concepts involved
1981 radon barrier field test at Grand Junction uranium mill tailings pile
International Nuclear Information System (INIS)
Hartley, J.N.; Gee, G.W.; Baker, E.G.; Freeman, H.D.
1983-04-01
Technologies to reduce radon released from uranium mill tailings are being investigated by Pacific Northwest Laboratory as part of the Department of Energy's Uranium Mill Tailings Remedial Action Project (UMTRAP) Technology development program. These technologies include: (1) earthen cover systems, (2) multilayer cover systems, and (3) asphalt emulsion radon barrier systems. During the summer of 1981, a field test was initiated at the Grand Junction, Colorado, uranium tailings pile to evaluate and compare the effectiveness of each radon barrier system. Test plots cover about 1.2 ha (3 acres). The field test has demonstrated the effectiveness of all three cover systems in reducing radon release to near background levels ( 2 s - 1 ). In conjunction with the field tests, column tests (1.8 m diameter) were initiated with cover systems similar to those in the larger field test plots. The column tests allow a direct comparison of the two test procedures and also provide detailed information on radon transport
Estimated dose to man from uranium milling via the beef/milk food-chain pathway
Energy Technology Data Exchange (ETDEWEB)
Rayno, D R
1983-12-01
One of the major pathways of radiological exposure to man from uranium milling operations is through the beef/milk food chain. Studies by various investigators have shown the extent of uptake and distribution of 238U, 234U, 230Th, 226Ra, 210Pb, and 210Po in plants and cattle. These long-lived natural radioisotopes, all nuclides of the uranium decay series, are found in concentrated amounts in uranium mill tailings. In this paper, data from these investigations are used to estimate the dose to man from consumption of beef and milk from cattle that have fed on forage contaminated with the tailings. The estimated doses from this technologically enhanced source are compared with those resulting from average dietary intake of these radionuclides from natural sources.
International Nuclear Information System (INIS)
1985-03-01
This Environmental Report (ER) examines the environmental consequences of implementing a remedial action that would remove radioactive uranium mill tailings and associated contaminated materials from 394 vicinity properties near 14 inactive uranium processing sites included in the Uranium Mill Tailings Remedial Action (UMTRA) Project pursuant to Public Law 95--604, the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. Vicinity properties are those properties in the vicinity of the UMTRA Project inactive mill sites, either public or private, that are believed to be contaminated by residual radioactive material originating from one of the 14 inactive uranium processing sites, and which have been designated under Section 102(a)(1) of UMTRCA. The principal hazard associated with the contaminated properties results from the production of radon, a radioactive decay product of the radium contained in the tailings. Radon, a radioactive gas, can diffuse through the contaminated material and be released into the atmosphere where it and its radioactive decay products may be inhaled by humans. A second radiation exposure pathway results from the emission of gamma radiation from uranium decay products contained in the tailings. Gamma radiation emitted from contaminated material delivers an external exposure to the whole body. If the concentration of radon and its decay products is high enough and the exposure time long enough, or if the exposure to direct gamma radiation is long enough, cancers (i.e., excess health effects) may develop in persons living and working at the vicinity properties. 3 refs., 7 tabs
Radiation exposure of uranium mill workers
International Nuclear Information System (INIS)
Jha, Giridhar; Saha, S.C.
1982-01-01
The uranium mill workers at Jaduguda were covered by a regular film badge service from 1969 onwards. Since the log normal plot is useful in interpreting occupational exposure, a statistical analysis of the radiation exposure data was attempted. Exposure data for each year has been plotted as cumulative percentage and worker's population with exposure levels in different class intervals. The plot for each of the year under investigation shows an occupational exposure distribution more or less consistent with the log normal distribution function. The analysis shows that more than 98% of radiation workers received less than 200 mrem (2 mSv). (author)
Uranium mill tailings stabilization
International Nuclear Information System (INIS)
Hartley, J.N.; Koehmstedt, P.L.; Esterl, D.J.; Freeman, H.D.
1980-02-01
Uranium mill tailings pose a potential radiation health hazard to the public. Therefore, stabilization or disposal of these tailings in a safe and environmentally sound way is needed to minimize radon exhalation and other environmental hazards. One of the most promising concepts for stabilizing U tailings is the use of asphalt emulsion to contain radon and other hazardous materials within uranium tailings. This approach is being investigated at the Pacific Northwest Laboratory. Results of these studies indicate that a radon flux reduction of greater than 99% can be obtained using either a poured-on/sprayed-on seal (3.0 to 7.0 mm thick) or an admixture seal (2.5 to 12.7 cm thick) containing about 18 wt % residual asphalt. A field test was carried out in June 1979 at the Grand Junction tailings pile in order to demonstrate the sealing process. A reduction in radon flux ranging from 4.5 to greater than 99% (76% average) was achieved using a 15.2-cm (6-in.) admix seal with a sprayed-on top coat. A hydrostatic stabilizer was used to apply the admix. Following compaction, a spray coat seal was applied over the admix as the final step in construction of a radon seal. Overburden was applied to provide a protective soil layer over the seal. Included in part of the overburden was a herbicide to prevent root penetration
Measurements of 234U, 238U and 230Th in excreta of uranium-mill crushermen
International Nuclear Information System (INIS)
Fisher, D.R.; Jackson, P.O.; Brodacynski, G.G.; Scherpelz, R.I.
1982-07-01
Uranium and thorium levels in excreta of uranium mill crushermen who are routinely exposed to airborne uranium ore dust were measured. The purpose was to determine whether 230 Th was preferentially retained over either 234 U or 238 U in the body. Urine and fecal samples were obtained from fourteen active crushermen with long histories of exposure to uranium ore dust, plus four retired crushermen and three control individuals for comparison. Radiochemical procedures were used to separate out the uranium and thorium fractions, which were then electroplated on stainless steel discs and assayed by alpha spectrometry. Significantly greater activity levels of 234 U and 238 U were measured in both urine and fecal samples obtained from uranium mill crushermen, indicating that uranium in the inhaled ore dust was cleared from the body with a shorter biological half-time than the daughter product 230 Th. The measurements also indicated that uranium and thorium separate in vivo and have distinctly different metabolic pathways and transfer rates in the body. The appropriateness of current ICRP retention and clearance parameters for 230 Th in ore dust is questioned
International Nuclear Information System (INIS)
Whicker, F.W.; Ibrahim, S.A.
1985-01-01
This report provides a status report on studies of the integrity and transport of several radionuclides in active and reclaimed uranium mill tailings. The program is designed to provide basic information on the radioecology of uranium and progeny, responses of native biota to the landscape disruptions associated with uranium production, and guidance for impact analysis, mitigation and regulation of the uranium industry. The studies reported are being conducted at the Shirley Basin Uranium Mine, which is operated by the Pathfinder Mines Corporation. The mine/mill operation, located in southeastern Wyoming, is typical in terms of the ore body, mill process, and ecological setting of many uranium production centers in the western United States. The intent has been to quantitatively evaluate the release of important radionuclides from active and reclaimed uranium mill tailings and their entry into the food chain. An experimental plot was developed in which a uniform slab of tailings was covered with various depths of earthen materials and seeded with native range vegetation. Performance of this vegetation is monitored annually. The ability of roots to function in or near buried tailings is under long-term study as well. Experiments on radon flux versus overburden depth have been conducted and these are continuing with emphasis on understanding the role of soil moisture and climatic variables. Experimental colonies of prairie dogs were introduced to the tailings reclamation plot. The resulting disruptive effects in terms of soil movement, transport of radionuclides and the impact on radon emanation have been studied and reported
International Nuclear Information System (INIS)
Wang Yongping; Zheng Yuhui; Shi Xiangjun
2001-01-01
Nuclear power progress has triggered the development and innovation of nuclear fuel industries in China. At present the Chinese government has put more emphasis on industrial readjustment and technical innovation in uranium mining and milling in order to fuel the nuclear power development, satisfy environmental protection and improve economic efficiency of the industry. The current organizations and approval procedure for establishing regulations and the implementation and consequences of the regulations, technical polices and development strategies concerning uranium mining, milling, treatment of waste ores and mill tailings, and reduction of the workers' suffered exposure dose etc. in China are discussed and the economic, health and environmental impacts of the uranium mining and metallurgy with reformation achievement and the introduction of advanced technologies such as the in-situ leaching and heap leaching mining technologies are assessed in this paper. (author)
Asphalt emulsion sealing of uranium mill tailings. 1979 annual report
International Nuclear Information System (INIS)
Hartley, J.N.; Koehmstedt, P.L.; Esterl, D.J.; Freeman, H.D.
1980-06-01
Uranium mill tailings are a source of low-level radiation and radioactive materials that may be released into the environment. Stabilization or disposal of these tailings in a safe and environmentally sound way is necessary to minimize radon exhalation and other radioactive releases. One of the most promising concepts for stabilizing uranium tailings is being investigated at the Pacific Northwest Laboratory: the use of asphalt emulsion to contain radon and other potentially hazardous materials in uranium tailings. Results of these studies indicate that radon flux from uranium tailings can be reduced by greater than 99% by covering the tailings with an asphalt emulsion that is poured on or sprayed on (3.0 to 7.0 mm thick), or mixed with some of the tailings and compacted to form an admixture seal (2.5 to 15.2 cm) containing 18 wt % residual asphalt
International Nuclear Information System (INIS)
Coleman, R.B.
1980-01-01
Basic process flowsheets are reviewed for conventional milling of US ores. Capital costs are presented for various mill capacities for one of the basic processes. Operating costs are shown for various mill capacities for all of the basic process flowsheets. The number of mills using, or planning to use, a particular process is reviewed. A summary of the estimated average milling costs for all operating US mills is shown
International Nuclear Information System (INIS)
Costello, J.M.
1977-01-01
The procedures and controls to achieve safe management of wastes containing radioactivity during the mining and processing of uranium ores are mainly site-specific depending on the nature, location and distribution of the ore and gangue material. Waste rock and below-ore-grade material containing low levels of radioactivity require disposal at the mine site. In open-cut mining the material is generally stockpiled above ground, with revegetation and collection of run-off water. Some material may be used to backfill open cuts. Management of these wastes requires a thorough investigation of groundwater hydrology and surface soil characteristics to control dissipation of radioactive material. Dust containing radon and radioactive particulate is produced during ore milling, and dusts of ore concentrate are generated during calcination and packaging of the yellowcake product. These dusts are managed by ventilation and filtration systems; working conditions and discharges to atmosphere will be according to the Australian Code of Practice on Radiation Protection during Mining and Milling of Uranium Ores. The chemical waste stream from leaching and processing of the uranium ores contains most of the radioactivity resulting from radium and its decay products. Neutralized effluent is discharged into holding ponds for settling solids. The paper describes the nature of wastes containing radioactivity resulting from the mining and milling of uranium, and illustrates modern engineering practices and monitoring procedures to manage the wastes, as described in the Environmental Impact Statement produced by Ranger Uranium Mines Pty Ltd (RUM) for public hearings. (author)
Energy Technology Data Exchange (ETDEWEB)
1994-09-01
This document evaluates potential impacts to public health and the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1989 by the US DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, UMTRA Project is evaluating ground water contamination in this risk assessment.
International Nuclear Information System (INIS)
1994-09-01
This document evaluates potential impacts to public health and the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1989 by the US DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, UMTRA Project is evaluating ground water contamination in this risk assessment
Alternative management techniques for the uranium mill tailings site at Salt Lake City, UT
International Nuclear Information System (INIS)
Rogers, V.C.; Goldsmith, W.A.; Haywood, F.F.; Gantner, G.K.
1976-01-01
The concentrations of 226 Ra and other uranium-chain radionuclides present in tailings piles at uranium-milling sites are on the order of 10 3 times higher than those usually found in soil-surface minerals. The public radiation exposure attributable to these sites is primarily due to inhalation of 222 Rn progeny. This paper presents the radiological assessment of the uranium-milling site at Salt Lake City, Utah. Adverse health effects are estimated from present and projected public radiation exposures. Three alternative remedial action measures can be used to reduce radiation exposures: (1) decontamination of offsite areas contaminated by tailings materials; (2) covering the tailings with contamination-free material; and (3) removal of the tailings to a more remote location. These three measures are examined in terms of costs incurred and serious health effects avoided
International Nuclear Information System (INIS)
Sanders, D.R.; Lommler, J.C.
1995-01-01
Engineering solutions to the safe and environmentally protective disposal and isolation of uranium mill tailings in the US include many factors. Cover design, materials selection, civil engineering, erosive forces, and cost effectiveness are only a few of those factors described in this paper. The systems approach to the engineering solutions employed in the US is described, with emphasis on the standards prescribed for the Uranium Mill Tailings Remedial Action Project. Stabilization and isolation of the tailings from humans and the environment are the primary goals of the US uranium mill tailings control standards. The performance of cover designs with respect to water infiltration, radon exhalation, geotechnical stability, erosion protection, human and animal intrusion prevention, and longevity are addressed. The need for and frequency of surveillance efforts to ensure continued disposal system performance are also assessed
International Nuclear Information System (INIS)
Thorne, P.D.
1992-05-01
Guidelines and acceptance criteria were developed for reviewing certain aspects of groundwater protection plans for uranium mill tailing sites. The aspects covered include: (1) leaching and long-term releases of hazardous and radioactive constituents from tailings and other contaminated materials, (2) attenuation of hazardous and radioactive constituents in groundwater under saturated and unsaturated conditions, (3) design and implementation of groundwater monitoring programs, (4) design and construction of groundwater protection barriers, and (5) efficiency and effectiveness of groundwater cleanup programs. The objective of these guidelines is to assist the US Nuclear Regulatory Commission staff in reviewing Remedial Action Plans for inactive waste sites and licensing application documents for active commercial uranium and thorium mills
Radiological survey of the inactive uranium-mill tailings at Slick Rock, Colorado
International Nuclear Information System (INIS)
Haywood, F.F.; Perdue, P.T.; Chou, K.D.; Ellis, B.S.
1980-06-01
Results of a radiological survey of two inactive mill sites near Slick Rock, Colorado, in April 1976 are presented. One mill, referred to in this report as North Continent (NC), was operated primarily for recovery of radium and vanadium and, only briefly, uranium. The Union Carbide Corporation (UCC) mill produced a uranium concentrate for processing elsewhere and, although low-level contamination with 226 Ra was widespread at this site, the concentration of this nuclide in tailings was much lower than at the NC site. The latter site also has an area with a high above-ground gamma dose rate (2700 μR/hr) and a high-surface 226 Ra concentration (5800 pCi/g). This area, which is believed to have been a liquid disposal location during plant operations, is contained within a fence. A solid disposal area outside the present fence contains miscellaneous contaminated debris. The estimated concentration of 226 Ra as a function of depth, based on gamma hole-logging data, is presented for 27 holes drilled at the two sites
Radon emanation characteristics of uranium mill tailings
International Nuclear Information System (INIS)
Nielson, K.K.; Freeman, H.D.; Hartley, J.N.; Mauch, M.L.; Rogers, V.C.
1982-01-01
Radon emanation from uranium mill tailings was examined with respect to the mechanisms of emanation and the physical properties of the tailings which affect emanation. Radon emanation coefficients were measured at ambient moisture on 135 samples from the 1981 field test site at the Grand Junction tailings pile. These coefficients showed a similar trend with moisture to those observed previously with uranium ores, and averaged 0.10 + or - 0.02 at dryness and 0.38 + or - 0.04 for all samples having greater than five weight-percent moisture. Small differences were noted between the maximum values of the coefficients for the sand and slime fractions of the tailings. Separate measurements on tailings from the Vitro tailings pile exhibited much lower emanation coefficients for moist samples, and similar coefficients for dry samples. Alternative emanation measurement techniques were examined and procedures are recommended for use in future work
Biogeochemical aspects of uranium mineralization, mining, milling, and remediation
Campbell, Kate M.; Gallegos, Tanya J.; Landa, Edward R.
2015-01-01
Natural uranium (U) occurs as a mixture of three radioactive isotopes: 238U, 235U, and 234U. Only 235U is fissionable and makes up about 0.7% of natural U, while 238U is overwhelmingly the most abundant at greater than 99% of the total mass of U. Prior to the 1940s, U was predominantly used as a coloring agent, and U-bearing ores were mined mainly for their radium (Ra) and/or vanadium (V) content; the bulk of the U was discarded with the tailings (Finch et al., 1972). Once nuclear fission was discovered, the economic importance of U increased greatly. The mining and milling of U-bearing ores is the first step in the nuclear fuel cycle, and the contact of residual waste with natural water is a potential source of contamination of U and associated elements to the environment. Uranium is mined by three basic methods: surface (open pit), underground, and solution mining (in situ leaching or in situ recovery), depending on the deposit grade, size, location, geology and economic considerations (Abdelouas, 2006). Solid wastes at U mill tailings (UMT) sites can include both standard tailings (i.e., leached ore rock residues) and solids generated on site by waste treatment processes. The latter can include sludge or “mud” from neutralization of acidic mine/mill effluents, containing Fe and a range of coprecipitated constituents, or barium sulfate precipitates that selectively remove Ra (e.g., Carvalho et al., 2007). In this chapter, we review the hydrometallurgical processes by which U is extracted from ore, the biogeochemical processes that can affect the fate and transport of U and associated elements in the environment, and possible remediation strategies for site closure and aquifer restoration.This paper represents the fourth in a series of review papers from the U.S. Geological Survey (USGS) on geochemical aspects of UMT management that span more than three decades. The first paper (Landa, 1980) in this series is a primer on the nature of tailings and radionuclide
International Nuclear Information System (INIS)
Kiselev, Mikhail; Romanov, Vladimir; Shandala, Nataliya; Gneusheva, Galina; Titov, Alex; Novikova, Natalia; Smith, Graham
2008-01-01
As part of the program of nuclear power development, the Russia Federation plans to increase uranium production and to improve supply from existing uranium mining and milling facilities. Moreover, development of new uranium ore deposits is also envisaged. A corollary of these developments is the placing of a high priority on environmental and human health protection Special attention should be paid to assurance of health protection both of workers and of the public living nearby such facilities. This paper reviews the status and development of understanding of facilities in the Russian Federation from a regulatory perspective. (author)
Decommissioning of facilities for mining and milling or radioactive ores and closeout of residues
International Nuclear Information System (INIS)
1994-01-01
The purpose of this report is to provide information to Member States in order to assist in planning and implementing the decommissioning/closeout of uranium mine/mill facilities, mines, tailings impoundments, mining debris piles, leach residues and unprocessed ore stockpiles. The report presents an overview of the factors involved in planning and implementing the decommissioning/closeout of uranium mine/mill facilities. The information applies to mines, mills, tailings piles, mining debris piles and leach residues that are present as operational, mothballed or abandoned projects, as well as to future mining and milling projects. The report identifies the major factors that need to be considered in the decommissioning/closeout activities, including regulatory considerations; decommissioning of the mine/mill buildings, structures and facilities; decommissioning/closeout of open pit and underground mines; decommissioning/closeout of tailings impoundments; decommissioning/closeout of mining debris piles, unprocessed ore and other contaminated material such as heap leach piles, in situe leach facilities and contaminated soils; restoration of the site, vicinity properties and groundwater; radiation protection and health and safety considerations; and an assessment of costs and post-decommissioning or post-closeout maintenance and monitoring needs. 55 refs, figs and tabs
Identification of geobacter populations in the uranium mill tailings Shiprock
International Nuclear Information System (INIS)
Radeva, G.; Selenska-Pobell, S.
2006-01-01
Geobacter - specific primers were used for construction of a 16S rDNA library for a water sample collected from uranium mill tailings near Shiprock (Sh853) in the USA . Most of the retrieved sequences were affiliated with different Geobacter species, however sequences related to other δ -Proteobacteria were identified as well. (authors)
Engineering assessment of inactive uranium mill tailings: Maybell Site, Maybell, Colorado. Summary
International Nuclear Information System (INIS)
1981-09-01
Ford, Bacon and Davis Utah Inc. has reevaluated the Maybell site in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Maybell, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Maybell site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The two alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to disposal of the tailings in a nearby open pit mine and decontamination of the tailings site (Option II). Cost estimates for the two options are about $11,700,000 for stabilization in-place and about $22,700,000 for disposal within a distance of 2 mi. Three principal alternatives for the reprocessing of the Maybell tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $125 and $165/lb of U 3 O 8 by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present
Engineering assessment of inactive uranium mill tailings, Shiprock site, Shiprock, New Mexico
International Nuclear Information System (INIS)
1981-07-01
Ford, Bacon and Davis Utah Inc. has reevaluated the Shiprock site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Shiprock, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.5 million dry tons of tailings at the Shiprock site constitutes the most significant environental impact, although windblown tailings and external gamma radiation also are factors. The eight alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $13,400,000 for stabilization in place to about $37,900,000 for disposal at a distance of about 16 miles. Three principal alternatives for the reprocessing of the Shiprock tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $230/lb by heap leach and $250/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive
International Nuclear Information System (INIS)
Hartmann, G.L.; Arp, S.; Hempill, H.
1993-01-01
At two uranium mill sites in Rifle, Colorado, the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is removing uranium mill tailings and contaminated subgrade soils. This remediation activity will result in the production of groundwater contaminated with uranium, heavy metals, ammonia, sulfates, and total dissolved solids (TDS). The initial remediation plan called for a wastewater treatment plant for removal of the uranium, heavy metals, and ammonia, with disposal of the treated water, which still includes the sulfates and TDSS, to the Colorado River. The National Pollutant Discharge Elimination (NPDES) permit issued by the Colorado Department of Health for the two Rifle sites contained more restrictive discharge limits than originally anticipated. During the detailed review of alternate treatment systems to meet these more restrictive limits, the proposed construction procedures were reviewed emphasizing the methods to minimize groundwater production to reduce the size of the water treatment facility, or to eliminate it entirely. It was determined that with changes to the excavation procedures and use of the contaminated groundwater for use in dust suppression at the disposal site, discharge to the river could be eliminated completely
Continued care of uranium mill sites: some economic considerations
International Nuclear Information System (INIS)
Harrington, W.; Sawyer, J.W. Jr.
1978-01-01
A critique of recently enacted legislation authorizing the New Mexico Environmental Improvement Agency to regulate uranium mills in the state is presented. Under this new legislation, the Agency is authorized to require payment of up to 10 cents per pound of yellowcake from each licensed mill in the state until a total of $1 million has been deposited by that mill. The continued care fund thus created will provide for maintenance in perpetuity of mill sites after being decommissioned. Arguments are presented, based on calculations for a typical 5,000 ton per day mill, that even the maximum amount is not likely to generate sufficient income to support an adequate maintenance program. The matter is further aggravated by the rate of inflation which will increase costs beyond the coverage provided by a fixed funding system. To correct this situation, it is proposed that (1) the fund should generate an income stream sufficient to meet all maintenance costs based on currently available information on costs, interest, and inflation rates, and (2) the terms of the continued care contribution should be readily alterable as new information becomes available. The latter condition should be coupled with removal of the upper statutory limit now established for the fund
International Nuclear Information System (INIS)
1993-07-01
The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium milling sites (EPA, 1987). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 Public Law (PL) 95-604 (PL 95-604), the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined that for Slick Rock, this assessment shall include hydrogeologic site characterization for two separate uranium processing sites, the Union Carbide (UC) site and the North Continent (NC) site, and for the proposed Burro Canyon disposal site
Correlation analysis of first phase monitoring results for uranium mill workers
International Nuclear Information System (INIS)
Davis, M.W.
1983-05-01
This report describes the determination of the existence and extent of correlations in data obtained during the first phase study of urinalysis, personal air sampling and lung burden measurements of uranium mill workers. It was shown that uranium excretions in urine as determined from spot urine samples at the end of the shift were correlated with intakes calculated from personal air sampling data at the 90 percent confidence level. When there are large variations in the rate of urine production, the time rate or uranium elimination was shown to be a more reliable indicator of uranium excretion than the uranium concentration in urine. Based on correlations between phantom and subject lung burden measurements in the presence of changing background radiation levels, a comparative lung burden measurement technique was developed. The sensitivity and accuracy of the method represent a significant improvement and the method is as applicable to females as to males
International Nuclear Information System (INIS)
1995-01-01
The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-01-01
The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project.
Uranium exploration, mining and milling proposal, Navajo Indian Reservation, New Mexico
International Nuclear Information System (INIS)
Babby, W.D.
1974-01-01
The Secretary of the Interior has been requested to approve an exploration permit and mining lease which are part of a uranium exploration, mining, and milling Agreement, negotiated between the Navajo Tribe and the Exxon Corporation. The exploration area is a 400,000 acre tract located on the Navajo Reservation in San Juan County, New Mexico. If uranium ore in sufficient quantities to warrant development is discovered, Exxon is authorized to take a total of 51,200 acres to lease for mining, of which only 5,120 surface acres may be used for mining and milling purposes. While all exploration and predevelopment costs prior to mining must be borne by Exxon, the Navajo Tribe has reserved the right to participate in the venture on either a royalty basis or as a partner holding up to a 40 percent working interest. Impacts resulting from exploration will include disturbance of soils and vegetation and air quality degradation resulting from the vehicular movement and the operation of drilling equipment. If mining and milling takes place significant environmental impacts include: sub-surface water depletion, soils and vegetation disturbance, air quality degradation, interruption of the wildlife habitat, population increases, increased demands on community services and facilities, and disruption of established lifestyles and social patterns. Low levels of radioactive emissions will be found at mine and mill sites. Income and employment opportunities from the project to the Navajo Tribe, Navajo people, and the entire San Juan County community will be significant
Uranium mill tailings neutralization: contaminant complexation and tailings leaching studies
International Nuclear Information System (INIS)
Opitz, B.E.; Dodson, M.E.; Serne, R.J.
1985-05-01
Laboratory experiments were performed to compare the effectiveness of limestone (CaCO 3 ) and hydrated lime [Ca(OH) 2 ] for improving waste water quality through the neutralization of acidic uranium mill tailings liquor. The experiments were designed to also assess the effects of three proposed mechanisms - carbonate complexation, elevated pH, and colloidal particle adsorption - on the solubility of toxic contaminants found in a typical uranium mill waste solution. Of special interest were the effects each of these possible mechanisms had on the solution concentrations of trace metals such as Cd, Co, Mo, Zn, and U after neutralization. Results indicated that the neutralization of acidic tailings to a pH of 7.3 using hydrated lime provided the highest overall waste water quality. Both the presence of a carbonate source or elevating solution pH beyond pH = 7.3 resulted in a lowering of previously achieved water quality, while adsorption of contaminants onto colloidal particles was not found to affect the solution concentration of any constituent investigated. 24 refs., 8 figs., 19 tabs
Measurement and calculation of radon releases from uranium mill tailings
International Nuclear Information System (INIS)
1992-01-01
The mining and milling of uranium ores produces large quantities of radioactive wastes. Although relatively small in magnitude compared to tailings from metal mining and extraction processes, the present worldwide production of such tailings exceeds 20 million tonnes annually. There is thus a need to ensure that the environmental and health risks from these materials are reduced to an acceptable level. This report has been written as a complement to another publication entitled Current Practices for the Management and Confinement of Uranium Mill Tailings, IAEA Technical Reports Series No. 335, which provides a general overview of all the important factors in the siting, design and construction of tailings impoundments, and in the overall management of tailings with due consideration give to questions of the release of pollutants from tailings piles. The present report provides a comprehensive overview of the release, control and monitoring of radon, including computational methods. The report was first drafted in 1989 and was then reviewed at an Advisory Group meeting in 1990. 42 refs, 9 figs, 3 tabs
Energy Technology Data Exchange (ETDEWEB)
1994-09-01
This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.
International Nuclear Information System (INIS)
1994-09-01
This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site
Environmental control technology for mining and milling low-grade uranium resources
International Nuclear Information System (INIS)
Weakley, S.A.; Blahnik, D.E.; Long, L.W.; Bloomster, C.H.
1981-04-01
This study examined the type and level of wastes that would be generated in the mining and milling of U 3 O 8 from four potential domestic sources of uranium. The estimated costs of the technology to control these wastes to different degrees of stringency are presented
International Nuclear Information System (INIS)
Costello, J.M.
1977-01-01
The procedures and controls to achieve safe management of wastes containing radioactivity during the mining and processing of uranium ores are mainly site specific depending on the nature, location and distribution of the ore and gangue material. Waste rock and below-ore-grade material containing low levels of radioactivity require disposal at the mine site. In open cut mining the material is generally stockpiled above ground, with revegetation and collection of run-off water. Some material may be used to backfill open cuts. Management of these wastes requires a thorough investigation of ground water hydrology and surface soil characteristics to control dissipation of radioactive material. Dust containing radon and radioactive particulate is produced during ore milling, and dusts of ore concentrate are generated during calcination and packaging of the yellowcake product. These dusts are managed by ventilation and filtration systems, working conditions, and discharges to atmosphere will be according to the Australian Code of Practice on Radiation Protection during Mining and Milling of Uranium Ores. The chemical waste stream from leaching and processing of the uranium ores contains the majority of the radioactivity resulting from radium and its decay products. Neutralised effluent is discharged into holding ponds for settling of solids. This paper describes the nature of wastes containing radioactivity resulting from the mining and milling of uranium, and illustrates modern engineering practices and monitoring procedures to manage the wastes, as described in the Environmental Impact statement produced by Ranger Uranium Mines Proprietary Limited for public hearings
Innovations over old plant techniques in Jaduguda Uranium Mill expansion
Energy Technology Data Exchange (ETDEWEB)
Siddique, S; Verma, R P; Beri, K K [Uranium Corporation of India Limited, Jaduguda Mines, Singhbhum (India)
1994-06-01
India`s first Uranium Mines and Mills was commissioned at Jaduguda in 1968. The plant`s flowsheet was developed at BARC after extensive tests, for extraction of uranium as yellow cake from the ore. The designed capacity of the process plant was initially 1000 MT/day of ore treatment supplied from nearby mines. Subsequently, due to growing demand of uranium fuel, opening of Bhatin mines and setting up of three plants for recovery of uranium mineral from copper tailings of Hindustan Copper Ltd. was perceived. The capacity of the Jaduguda Plant was increased to 1400 MT/day in 1987 to meet this requirement. A new mine at Narwapahar is under development which will necessitate augmentation of the capacity of the Jaduguda plant by 700 MT/day. Major changes are contemplated in equipment selection for the expansion besides incorporation of a high degree of automation based on microprocessor technology which are discussed in this paper. (author). 4 refs., 5 figs.
Project licensing plan for UMTRA [Uranium Mill Tailings Remedial Action] sites
International Nuclear Information System (INIS)
1984-07-01
The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Project Licensing Plan is to establish how a disposal site will be licensed, and to provide responsibilities of participatory agencies as legislated by the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (Public Law 95-604). This Plan has been developed to ensure that the objectives of licensing are met by identifying the necessary institutional controls, participatory agency responsibilities, and key milestones in the licensing process. The Plan contains the legislative basis for and a description of the licensing process (''Process'') for UMTRA sites. This is followed by a discussion of agency responsibilities, and milestones in the Process. The Plan concludes with a generic timeline of this Process. As discussed in Section 2.1, a custodial maintenance and surveillance plan will constitute the basis for a site license. The details of maintenance and surveillance are discussed in the Project Maintenance and Surveillance Plan (AL-350124.0000). 5 refs., 4 figs
Radium and heavy metal transport beneath an abandoned uranium tailings dam
International Nuclear Information System (INIS)
Jeffery, J.J.; Sinclair, G.; Lowson, R.T.
1988-09-01
An abandoned uranium tailings dam at Moline in the Northern Territory of Australia was the site of a study to assess the movement of potentially toxic elements from tailings into subsoil. The tailings at Moline were first laid down in 1959 and have since been leached by prevailing rainfall. Sixteen sampling sites were selected to give a good representation of the dam. At each site, a trench was excavated through the tailings and into the subsoil, then samples of subsoil were taken at 10 cm intervals down to a depth of 50 cm. A sample of the tailings overlying the tailings-subsoil interface was also taken. Samples were analysed for radium, uranium, copper, zinc, and lead. At most sites there was only minor accumulation of these elements in the 0-10 cm subsoil layer immediately below the interface, with concentrations typically one or two orders of magnitude less than the concentrations in overlying tailings. Below 10 cm, the concentrations were typically at or close to background concentrations
Current practices for the management and confinement of uranium mill tailings
International Nuclear Information System (INIS)
1992-01-01
This report discusses the current practices used in the design siting, construction and closeout of impoundment facilities for uranium mill tailings. The objective is to present an integrated overview of the technological, safety and radiation protection aspects of these topics in order to ensure that the potential radiological and non-radiological risks associated with the management of uranium mill tailings are minimized now and in the future. The report: identifies the nature and source of radioactive and non-radioactive pollutants in uranium mill tailings; identifies the important mechanisms by which pollutants can be released from the tailings impoundment; reviews radiation protection aspects of these mechanisms; describes the pathways by which the pollutants may reach humans; describes some of the site selection and design options and considerations for final stabilization and rehabilitation of tailings impoundments; describes the methods of assessing closure strategies; describes long term responsibilities for tailings management and financial assurance to ensure these responsibilities; and reviews the magnitude and probability of occurrence of the hazards arising, with the aim of ensuring that the risks presented are acceptable. Because of the complexity of the pollutant release mechanisms and the site specific nature of the design and management controls that can be used, it is not possible for a report of this nature to be either exhaustive or detailed in all respects. The methods of confinement employed for any particular tailings impoundment will depend on the country, its climate, demography and its site specific performance criteria which should be defined by the relevant competent authorities. Both operating and post-operating conditions are considered. After shutdown of the mill and stabilization of the tailings, continuing surveillance and maintenance should be considered until the integrity and durability of the tailings impoundment have been
Derivation of release limits for a typical uranium mining and milling facility
International Nuclear Information System (INIS)
1985-09-01
This report develops guidelines for calculating derived release limits (DRLs) for releases of each radionuclide belonging to the uranium-238 and thorium-232 decay chains to atmosphere, surface water and groundwater from uranium mining and milling operations in Canada. DRLs are defined as calculated limits on releases from the facility that result in radiation exposures through all environmental pathways equal to the annual effective dose equivalent limit of 0.005 Sv for stochastic effects or the annual dose equivalent limit of 0.05 Sv for non-stochastic effects in the critical group. By definition, DRLs apply to controllable radionuclide emissions which occur during the operational phase of mine/mill facilities. The report develops a steady-state environmental transfer model to determine environmental dilution and dispersion in atmosphere, surface water and groundwater between the sources at the mine and mill and the critical group receptor. Exposure pathways incorporated in the model include external exposure from immersion in the airborne plume, immersion in water, contaminated ground and contaminated shoreline sediments. Internal exposure pathways include inhalation of contaminated air and ingestion of contaminated water and terrestrial and aquatic foods
Mortality among residents of Uravan, Colorado who lived near a uranium mill, 1936-84
International Nuclear Information System (INIS)
Boice, John D Jr.; Cohen, Sarah S; Mumma, Michael T; Chadda, Bandana; Blot, William J
2007-01-01
A cohort mortality study was conducted of all adult residents who ever lived in Uravan, Colorado, a company town built around a uranium mill. Vital status was determined through 2004 and standardised mortality analyses conducted for 1905 men and women alive after 1978 who lived for at least 6 months between 1936 and 1984 in Uravan. Overall, mortality from all causes (standardised mortality ratio (SMR) 0.90) and all cancers (SMR 1.00) was less than or as expected based on US mortality rates. Among the 459 residents who had worked in underground uranium mines, a significant increase in lung cancer was found (SMR 2.00; 95% CI 1.39-2.78). No significant elevation in lung cancer was seen among the 767 female residents of Uravan or the 622 uranium mill workers. No cause of death of a priori interest was significantly increased in any group, i.e. cancers of the kidney, liver, breast, lymphoma or leukaemia or non-malignant respiratory disease, renal disease or liver disease. This community cohort study revealed a significant excess of lung cancer among males who had been employed as underground miners. We attribute this excess to the historically high levels of radon in uranium mines of the Colorado Plateau, coupled with the heavy use of tobacco products. There was no evidence that environmental radiation exposures above natural background associated with the uranium mill operations increased the risk of cancer. Although the population studied was relatively small, the follow-up was long, extending up to 65 years after first residence in Uravan, and nearly half of the study subjects had died
Asphalt emulsion radon barrier systems for uranium mill tailings: an overview of the technology
International Nuclear Information System (INIS)
Baker, E.G.; Hartley, J.N.; Freeman, H.D.; Gates, T.E.; Nelson, D.A.; Dunning, R.L.
1984-03-01
Pacific Northwest Laboratory (PNL), under contract to the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP) office, has developed an asphalt emulsion cover system to reduce the release of radon from uranium mill tailings. The system has been field tested at Grand Junction, Colorado. Results from laboratory and field tests indicate that this system is effective in reducing radon release to near-background levels ( -2 s -1 ) and has the properties required for long-term effectiveness and stability. Engineering specifications have been developed, and analysis indicates that asphalt emulsion covers are cost-competitive with other cover systems. This report summarizes the technology for asphalt emulsion radon barrier systems. 59 references, 45 figures, 36 tables
International Nuclear Information System (INIS)
Guillaume, B.; Charron, S.
2000-01-01
Understanding public perceptions of risks is increasingly considered to be important in order to make sound policy decisions. For many years, social scientists have been working to understand why the public is so concerned about nuclear energy and radioactive waste. Indeed, risk perception studies have essentially focused on high-level nuclear waste. As a result, there is now a fair understanding of what determines public support or opposition to high-level nuclear waste storage and disposal facilities. However, to date, little research has been conducted into radioactive waste from mining and milling of uranium ores. In France, such waste have a much debated legal status, which illustrates their ambiguous origin (natural versus artificial) and the manner people can perceive them. Therefore, it seems relevant to explore the individual judgements, attitudes and beliefs towards risk associated with uranium mill tailings. The present study provides a structural model based on both the identification and analysis of implicit dimensions underlying risk perception (psychological, cultural, moral...) applied to the case of french uranium mill tailings. One objective of the research has been to develop an interview grid based on this conceptual model in order to elicit social demand beyond public attitudes. Semi-structured interviews have been conducted on site in french uranium bearing areas. The relationships inferred between identified risk characteristics and contextual risk perceptions suggest that five majors thematics (time, space, nature, ethics and trust) build determinants of the public's perceptions of risk related to waste from mining and milling of uranium ores. (author)
Settlement of uranium mill tailings
International Nuclear Information System (INIS)
Chen, P.K.; Guros, F.B.; Keshian, B.
1988-01-01
Two test embankments were constructed on top of an old tailings deposit near Ambrosia Lake, New Mexico to determine settlement characteristics of hydraulically- deposited uranium mill tailings. Before construction of the embankments, properties of in-situ tailings and foundation soils were determined using data from boreholes, piezocone soundings, and laboratory tests. These properties were used to estimate post-construction settlement of a planned disposal embankment to be constructed on the tailings. However, excessive uncertainty existed in the following: field settlement rates of saturated and unsaturated tailings, degree of preconsolidation of the upper 15 feet of tailings, and the ability of an underlying silty sand foundation layer to facilitate drainage. Thus, assurance could not be provided that differential settlements of the radon barrier and erosion protection layers would be within allowable limits should the planned disposal embankment be constructed in a single-stage
International Nuclear Information System (INIS)
Young, J.K.; Long, L.W.; Reis, J.W.
1982-04-01
Pacific Northwest Laboratory is investigating the use of a rock armoring blanket (riprap) to mitigate wind and water erosion of an earthen radon suppression cover applied to uranium mill tailings. To help determine design stresses for the tailings piles, environmental parameters are characterized for the five active uranium-producing regions on a site-specific basis. Only conventional uranium mills that are currently operating or that are scheduled to open in the mid 1980s are considered. Available data indicate that flooding has the most potential for disrupting a tailings pile. The arid regions of the Wyoming Basins and the Colorado Plateau are subject to brief storms of high intensity. The Texas Gulf Coast has the highest potential for extreme precipitation from hurricane-related storms. Wind data indicate average wind speeds from 3 to 6 m/sec for the sites, but extremes of 40 m/sec can be expected. Tornado risks range from low to moderate. The Colorado Plateau has the highest seismic potential, with maximum acceleration caused by earthquakes ranging from 0.2 to 0.4 g. Any direct effect from volcanic eruption is negligible, as all mills are located 90 km or more from an igneous or hydrothermal system
International Nuclear Information System (INIS)
Ruiz, M.; Molina, G.; Angeles C, A.; Cruz G, S.; Lizacano C, D.; Reyes, J.; Rojas, V.
1996-01-01
In the process of decontamination, transport and disposal of uranium mill tailings, in the state of Chihuahua, Mexico, was necessary the multidisciplinary and multi institutional task to select mainly the site for the final disposal. The uranium mill tailings content Ra-226 which half live time is 1600 years, therefore the site should be adequately stable, a remote place of population, and which containment will survive for thousand of years. The decontamination of site where the uranium mill tailings were 25 years ago, required the application of norms from regulator organism. For the transport of uranium mill tailings was necessary that the vehicles had devices to reduce the dispersion of material in the road. The selection of the site was product of balance between the cost of transport and the final disposal. To typify the site, studies of hydrology, meteorology, ecology, geology and seismology were performed. On the other hand, the decision to locate the deposit in the site was due to dispersion of material by the rain, wind and bowls. (authors). 3 refs., 1 fig., 1 tab
Removal of radioactivity and mineral values from uranium mill tailings
International Nuclear Information System (INIS)
Williams, J.M.; Cokal, E.J.; Dreesen, D.R.
1981-01-01
One possible approach to remedial action on uranium mill tailings involves the removal of the components that are responsible for the environmental concern (notably radon releases) posed by these materials. Removing mineral values at the same time can defray much of the cost. This paper presents laboratory results on sulfuric acid leachings and their effectiveness in accomplishing these aims. 9 figures, 4 tables
Energy Technology Data Exchange (ETDEWEB)
1979-02-01
Impacts from Morton Ranch Uranium Mill will result in: alterations of up to 270 acres occupied by the mill facilities; increase in the existing background radiation levels; socioeconomic effects on Glenrock and Douglas, Wyoming. Solid waste material (tailings solids) from the mill will be deposited onsite in exhausted surface mine pits. Any license issued for the Morton Ranch mill will be subject to conditions for the protection of the environment.
International Nuclear Information System (INIS)
1979-02-01
Impacts from Morton Ranch Uranium Mill will result in: alterations of up to 270 acres occupied by the mill facilities; increase in the existing background radiation levels; socioeconomic effects on Glenrock and Douglas, Wyoming. Solid waste material (tailings solids) from the mill will be deposited onsite in exhausted surface mine pits. Any license issued for the Morton Ranch mill will be subject to conditions for the protection of the environment
International Nuclear Information System (INIS)
Dreesen, D.R.; Marple, M.L.; Kelley, N.E.
1978-01-01
The stabilization of inactive uranium mill tailings piles is presently under study. These studies have included investigations of stabilizing tailings by attempting to establish native vegetation without applying irrigation. Examination of processes which transport tailings or associated contaminants into the environment has been undertaken to better understand the containment provided by various stabilization methods. The uptake of toxic trace elements and radionuclides by vegetation has been examined as a mechanism of contaminant transport. The source terms of 222 Rn from inactive piles have been determined as well as the attenuation of radon flux provided by shallow soil covers. The possibility of shallow ground water contamination around an inactive pile has been examined to determine the significance of ground water transport as a mode of contaminant migration. The rationale in support of trace element studies related to uranium milling activities is presented including the enrichment, migration, and toxicities of trace elements often associated with uranium deposits. Some concepts for the stabilization of inactive piles are presented to extrapolate from research findings to practical applications. 25 references, 8 tables
Engineering assessment of inactive uranium mill tailings: Slick Rock sites, Slick Rock, Colorado
International Nuclear Information System (INIS)
1981-09-01
Ford, Bacon and Davis Utah, Inc., has reevaluated the Slick Rock sites in order to revise the October 1977 engineering radioactive uranium mill tailings at Slick Rock, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 387,000 tons of tailings at the Slick Rock sites constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The five alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material, consolidation of the piles, and removal of the tailings to remote disposal sites and decontamination of the tailings sites. Cost estimates for the five options range from about $6,800,000 for stabilization in-place, to about $11,000,000 for disposal at a distance of about 6.5 mi. Three principal alternatives for the reprocessing of the Slick Rock tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be over $800/lb of U 3 O 8 whether by conventional or heap leach plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present, nor for the foreseeable future
Engineering assessment of inactive uranium mill tailings: Slick Rock sites, Slick Rock, Colorado
Energy Technology Data Exchange (ETDEWEB)
None
1981-09-01
Ford, Bacon and Davis Utah, Inc., has reevaluated the Slick Rock sites in order to revise the October 1977 engineering radioactive uranium mill tailings at Slick Rock, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 387,000 tons of tailings at the Slick Rock sites constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The five alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material, consolidation of the piles, and removal of the tailings to remote disposal sites and decontamination of the tailings sites. Cost estimates for the five options range from about $6,800,000 for stabilization in-place, to about $11,000,000 for disposal at a distance of about 6.5 mi. Three principal alternatives for the reprocessing of the Slick Rock tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be over $800/lb of U/sub 3/O/sub 8/ whether by conventional or heap leach plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present, nor for the foreseeable future.
Engineering assessment of inactive uranium mill tailings. Vitro site, Salt Lake City, Utah
International Nuclear Information System (INIS)
1981-04-01
Ford, Bacon and Davis Utah Inc. has reevaluated the Vitro site in order to revise the April 1976 assessment of the problems resulting from the existence of radioactive uranium mill tailings at Salt Lake City, Utah. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Vitro site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites, and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $36,400,000 for stabilization in-place, to about $91,000,000 for disposal at a distance of about 85 mi. Three principal alternatives for the reprocessing of the Vitro tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $130/lb by conventional plant processes. Spot market price for uranium was $28.00 in November 1980. Therefore, reprocessing the tailings for uranium recovery appears to be economically unattractive at present
Engineering assessment of inactive uranium mill tailings: Mexican Hat Site, Mexican Hat, Utah
International Nuclear Information System (INIS)
1981-09-01
Ford, Bacon and Davis Utah Inc. has reevaluated the Mexican Hat site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Mexican Hat, Utah. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.2 million tons of tailings at the Mexican Hat site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $15,200,000 for stabilization in place, to about $45,500,000 for disposal at a distance of about 16 mi. Three principal alternatives for the reprocessing of the Mexican Hat tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $115/lb of U 3 O 8 whether by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Mexican Hat tailings for uranium recovery is not economically attractive under present conditions
Uranium Mill Tailings Remedial Action Program. Annual status report
International Nuclear Information System (INIS)
1983-12-01
The FY 1983 project accomplishments are: completed the Remedial Action Plan and Phase I engineering design for the Canonsburg processing site; completed remedial action on an additional 52 vicinity properties and the inclusion of an additional 303 properties in the Uranium Mill Tailings Remedial Action Project; executed cooperative agreements with four states and the Navajo Nation; published the draft environmental impact statement for Salt Lake City site; and issued the approved Project Plan
International Nuclear Information System (INIS)
1994-11-01
This baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado, evaluates potential public health and environmental impacts resulting from ground water contamination at the former North Continent (NC) and Union Carbide (UC) uranium mill processing sites. The tailings at these sites will be placed in a disposal cell at the proposed Burro Canyon, Colorado, site. The US Department of Energy (DOE) anticipates the start of the first phase remedial action by the spring of 1995 under the direction of the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project will evaluate ground water contamination. This baseline risk assessment is the first site-specific document for these sites under the Ground Water Project. It will help determine the compliance strategy for contaminated ground water at the site. In addition, surface water and sediment are qualitatively evaluated in this report
Energy Technology Data Exchange (ETDEWEB)
1994-11-01
This baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado, evaluates potential public health and environmental impacts resulting from ground water contamination at the former North Continent (NC) and Union Carbide (UC) uranium mill processing sites. The tailings at these sites will be placed in a disposal cell at the proposed Burro Canyon, Colorado, site. The US Department of Energy (DOE) anticipates the start of the first phase remedial action by the spring of 1995 under the direction of the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project will evaluate ground water contamination. This baseline risk assessment is the first site-specific document for these sites under the Ground Water Project. It will help determine the compliance strategy for contaminated ground water at the site. In addition, surface water and sediment are qualitatively evaluated in this report.
International Nuclear Information System (INIS)
LeClair, J.; Ashley, F.
2006-01-01
The regulation of uranium mining in Canada has changed over time as our understanding and concern for impacts on both human and non-human biota has evolved. Since the mid-1970s and early 1980s, new uranium mine and mill developments have been the subject of environmental assessments to assess and determine the significance of environmental effects throughout the project life cycle including the post-decommissioning phase. Water treatment systems have subsequently been improved to limit potential effects by reducing the concentration of radiological and non-radiological contaminants in the effluent discharge and the total loadings to the environment. This paper examines current regulatory requirements and expectations and how these impact uranium mining/milling practices. It also reviews current water management and effluent treatment practices and performance. Finally, it examines the issues and challenges for existing effluent treatment systems and identifies factors to be considered in optimizing current facilities and future facility designs. (author)
Cancer mortality in a Texas county with prior uranium mining and milling activities, 1950-2001
International Nuclear Information System (INIS)
Boice, John D Jr; Mumma, Michael; Schweitzer, Sarah; Blot, William J
2003-01-01
Uranium was discovered in Karnes County, Texas, in 1954 and the first uranium mill began operating in 1961 near Falls City. Uranium milling and surface and in situ mining continued in Karnes County until the early 1990s. Remediation of uranium tailings ponds was completed in the 1990s. There were three mills and over 40 mines operating in Karnes County over these years and potential exposure to the population was from possible environmental releases into the air and ground water. From time to time concerns have been raised in Karnes County about potential increased cancer risk from these uranium mining and milling activities. To evaluate the possibility of increased cancer deaths associated with these uranium operations, a mortality survey was conducted. The numbers and rates of cancer deaths were determined for Karnes County and for comparison for four 'control' counties in the same region with similar age, race, urbanisation and socioeconomic distributions reported in the 1990 US Census. Comparisons were also made with US and Texas general population rates. Following similar methods to those used by the National Cancer Institute, standardised mortality ratios (SMRs) were computed as the ratio of observed numbers of cancers in the study and control counties compared to the expected number derived from general population rates for the United States. Relative risks (RRs) were computed as the ratios of the SMRs for the study and the control counties. Overall, 1223 cancer deaths occurred in the population residing in Karnes County from 1950 to 2001 compared with 1392 expected based on general population rates for the US. There were 3857 cancer deaths in the four control counties during the same 52 year period compared with 4389 expected. There was no difference between the total cancer mortality rates in Karnes County and those in the control counties (RR = 1.0; 95% confidence interval 0.9-1.1). There were no significant increases in Karnes County for any cancer when
Radiological survey of the inactive uranium-mill tailings at Rifle, Colorado
International Nuclear Information System (INIS)
Haywood, F.F.; Jacobs, D.J.; Ellis, B.S.; Hubbard, H.M. Jr.; Shinpaugh, W.H.
1980-06-01
Results of radiological surveys of two inactive uranium-mill sites near Rifle, Colorado, in May 1976 are presented. These sites are referred to as Old Rifle and New Rifle. The calculated 226 Ra inventory of the latter site is much higher than at the older mill location. Data on above-ground measurements of gamma exposure rates, surface and near-surface concentration of 226 Ra in soil and sediment samples, concentration of 226 Ra in water, calculated subsurface distribution of 226 Ra, and particulate radionuclide concentrations in air samples are given. The data serve to define the extent of contamination in the vicinity of the mill sites and their immediate surrounding areas with tailings particles. Results of these measurements were utilized as technical input for an engineering assessment of these two sites
International Nuclear Information System (INIS)
1981-04-01
This report is a summary of a parent report (issued under separate cover) entitled Engineering Assessment of Inactive Uranium Mill Tailings for Vitro Site, Salt Lake City, Utah. Bacon and Davis Utah Inc. has reevaluated the Vitro site in order to revise the April 1976 assessment of the problems resulting from the existence of radioactive uranium mill tailings at Salt Lake City, Utah. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Vitro site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option 1), to removal of the tailings to remote disposal sites, and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $36,400,000 for stabilization in-place, to about $91,000,000 for disposal at a distance of about 85 mi. Three principal alternatives for the reprocessing of the Vitro tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $130/lb by conventional plant processes. Spot market price for uranium was $28.00 in November 1980. Therefore, reprocessing the tailings for uranium recovery appears to be economically unattractive at present
Denitrification in groundwater at uranium mill tailings sites
International Nuclear Information System (INIS)
Goering, Timothy J.; Groffman, Armando; Thomson, Bruce
1992-01-01
Nitrates are a major contaminant in groundwater at many Uranium Mill Tailings Remedial Action (UMTRA) sites. Microbial denitrification, the transformation of nitrate to nitrogen gas, may be occurring in groundwater at several UMTRA sites. Denitrification is a biologically mediated process whereby facultative anaerobes use nitrate for respiration under anaerobic conditions. Denitrifying bacteria are ubiquitous in soils, sediments, and water. Denitrification requires nitrate, organic carbon, oxygen-limiting conditions, and trace nutrients, especially phosphorus. The lack of organic carbon is the most common limiting factor for denitrification. Denitrification occurs under a limited range of temperature and pH. The uranium milling processes used at UMTRA sites provided a readily available source of carbon and nitrates for denitrifying bacteria. At the Maybell, Colorado, site, the denitrifying organisms Pseudomonas, Flavobacterium and Acinetobacter were identified in core samples of materials from beneath the tailings. In addition, microcosm experiments simulating aquifer conditions beneath the tailings pile showed an average 40 percent decrease in nitrate concentrations over 13 days. At the New Rifle, Colorado, site, aquifer conditions appear favorable for denitrification. Nitrate and organic carbon are readily available in the groundwater, and redox conditions beneath and downgradient of the tailings pile are relatively anoxic. Downgradient from the tailings, total nitrogen is being removed from the groundwater system at a greater rate than the geochemically conservative anion, chloride. This removal may be due to denitrification and adsorption of ammonium onto clay and silt particles. (author)
Denitrification in groundwater at uranium mill tailings sites
Energy Technology Data Exchange (ETDEWEB)
Goering, Timothy J [Jacobs Engineering Group, Inc., Albuquerque, NM (United States); Groffman, Armando [Roy F. Weston, Inc., Albuquerque, NM (United States); Thomson, Bruce [University of New Mexico, Albuquerque, NM (United States)
1992-07-01
Nitrates are a major contaminant in groundwater at many Uranium Mill Tailings Remedial Action (UMTRA) sites. Microbial denitrification, the transformation of nitrate to nitrogen gas, may be occurring in groundwater at several UMTRA sites. Denitrification is a biologically mediated process whereby facultative anaerobes use nitrate for respiration under anaerobic conditions. Denitrifying bacteria are ubiquitous in soils, sediments, and water. Denitrification requires nitrate, organic carbon, oxygen-limiting conditions, and trace nutrients, especially phosphorus. The lack of organic carbon is the most common limiting factor for denitrification. Denitrification occurs under a limited range of temperature and pH. The uranium milling processes used at UMTRA sites provided a readily available source of carbon and nitrates for denitrifying bacteria. At the Maybell, Colorado, site, the denitrifying organisms Pseudomonas, Flavobacterium and Acinetobacter were identified in core samples of materials from beneath the tailings. In addition, microcosm experiments simulating aquifer conditions beneath the tailings pile showed an average 40 percent decrease in nitrate concentrations over 13 days. At the New Rifle, Colorado, site, aquifer conditions appear favorable for denitrification. Nitrate and organic carbon are readily available in the groundwater, and redox conditions beneath and downgradient of the tailings pile are relatively anoxic. Downgradient from the tailings, total nitrogen is being removed from the groundwater system at a greater rate than the geochemically conservative anion, chloride. This removal may be due to denitrification and adsorption of ammonium onto clay and silt particles. (author)
UMTRA [Uranium Mill Tailings Remedial Action] Project site management manual
International Nuclear Information System (INIS)
1990-10-01
The purpose of this manual is to summarize the organizational interfaces and the technical approach used to manage the planning, design development, National Environmental Policy Act (NEPA) compliance, engineering, and remedial action required to stabilize and control the designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites. This manual describes the Project's objective, participants' roles and responsibilities, technical approach for accomplishing the objective, and planning and managerial controls to be used in performing the site work. The narrative follows the flow of activities depicted in Figure 1.1, which provides the typical sequence of key Project activities. A list of acronyms used is presented at the end of the manual. The comparable manual for UMTRA Project vicinity properties is the ''Vicinity Properties Management and Implementation Manual'' (VPMIM) (UMTRA-DOE/AL-050601). Together, the two manuals cover the remedial action activities associated with UMTRA Project sites. The UMTRA Project's objective is to stabilize and control the uranium mill tailings, vicinity property materials, and other residual radioactive materials at the designated sites (Figure 1.2) in a safe and environmentally sound manner in order to minimize radiation health hazards to the public. 26 figs., 6 tabs
International Nuclear Information System (INIS)
Rudy, C.
1997-01-01
Uranium exploration activities in Ukraine were initiated in 1946. So far 21 uranium reserves have been identified in the Southern regions of Ukraine. Industrial scale mining has been undertaken in two main areas -ZhovtiVody (Dnipropetrovsk region) and more recently - near the city of Kirovograd. Uranium milling capabilities were created in ZhovtiVody and Dniprodzerzhinsk. At Dniprodzerzhinsk Prydniprovsky Chemical Plant uranium milling started in the late 40's, initially using ores from the countries of Central Europe. Lack of relevant environmental standards and appropriate technologies for uranium extraction contributed to contamination of both industrial and residential areas. As a result, about 1340 ha of industrial areas were contaminated and ecologically affected. Extensive utilization of waste rock pile for road and building construction in the 50's and 60's resulted in contamination of residential areas in the region. To provide a comprehensive solution to the radioecological problems of the ZhovtiVody area a State Programme of Actions up to the year 2005 was adopted by the Ukrainian government in 1995. A timely methodological and information support for national activities on environmental restoration in Ukraine was provided by IAEA regional project RER/9/022. In April 1996 under the framework of the RER/9/022 project, seminar on environmental restoration in regions of uranium mining and milling took place in the town of Zhovti Vody, that allowed involvement of local experts and organizations into the project activities directly. The proposed paper is based on the vast amount of data accumulated in Ukraine during RER/9/022 covering the period 1993-1996. Severe lack of finance adversely affected all activities within the nuclear sector, environmental restoration implementation being the most affected. In such circumstances RER/9/022 remained as one of the most valuable contributing factors in the development of regulations, guidance and practices in the
Uranium mill tailings storage, use, and disposal problems
International Nuclear Information System (INIS)
Hendricks, D.W.
1977-01-01
Solid and liquid residues (tailings) containing substantial quantities of naturally occurring radionuclides are produced and stored at all US uranium mill sites. These radioactive wastes are a potential health hazard with the degree of hazard depending largely on the tailings management practices at the individual sites. The principal pathways of potential radiation exposure to man are discussed. A description is presented of some past and current tailings storage practices together with a description of some of the possible problems associated with various stabilization and disposal options. 16 figures
Asphalt emulsion radon barrier systems for uranium mill tailings: an overview of the technology
Energy Technology Data Exchange (ETDEWEB)
Baker, E.G.; Hartley, J.N.; Freeman, H.D.; Gates, T.E.; Nelson, D.A.; Dunning, R.L.
1984-03-01
Pacific Northwest Laboratory (PNL), under contract to the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP) office, has developed an asphalt emulsion cover system to reduce the release of radon from uranium mill tailings. The system has been field tested at Grand Junction, Colorado. Results from laboratory and field tests indicate that this system is effective in reducing radon release to near-background levels (<2.5 pCi m/sup -2/s/sup -1/) and has the properties required for long-term effectiveness and stability. Engineering specifications have been developed, and analysis indicates that asphalt emulsion covers are cost-competitive with other cover systems. This report summarizes the technology for asphalt emulsion radon barrier systems. 59 references, 45 figures, 36 tables.
Reformation and utilization of complicated topography for a uranium mill
International Nuclear Information System (INIS)
Liu Taoan; Zhou Xinghuo; Lv Junwen
2004-01-01
It is successful for how to reform and utilized complicated topography in the design of general plan and transport for technological reformation of a uranium mill. The unfavorable factors of complicated topography are turned into favorable ones. The general plan is designed compactly and the land is economized. The transport is designed simply and directly. the leaching liquid flows by gravity so that the power is economical
Study on environmental impact assessment of uranium mining and milling base planning
International Nuclear Information System (INIS)
Liu Xiaochao; Song Liquan
2008-01-01
Environmental impact assessment (EIA) of project planning is part of strategic EIA, which provides full consideration and evaluation of the potential environmental impact on tiered basis in the process of plan implementation. With account being taken of EIA of uranium mining/milling base and the current situation of mining/milling industry, this paper determined environmental protection objectives of EIA, screened assessment indexes and identified weighting factors. Based on the characteristics of mines planned, restrictive score values are estimated each for EIA weighting factor. Finally some suggestions were made for adjusting the plan. (authors)
Application of nanofiltration to the treatment of uranium mill effluents
International Nuclear Information System (INIS)
Macnaughton, S.J.; McCulloch, J.K.; Marshall, K.; Ring, R.J.
2002-01-01
Nanofiltration is widely used in water treatment due to the lower energy requirements and higher yields than reverse osmosis. Separation characteristics are dependent on both the molecular size and charge of the dissolved species in the feed solution as well as membrane properties. In this investigation the potential of nanofiltration to remove dissolved species from uranium mill effluent has been studied. The background behind the application is discussed and the results of the first testwork programme are presented. An initial screening of seventeen commercially available membranes was completed and it was found that uranium rejections of greater than 75% were consistently achieved. Selected membranes also showed potential for the separation of radium, sulfate and manganese. (author)
International Nuclear Information System (INIS)
1995-11-01
For the UMTRA Project site located near Canonsburg, Pennsylvania (the Canonsburg site), the Surface Project cleanup occurred from 1983 to 1985, and involved removing the uranium processing mill tailings and radioactively contaminated soils and materials from their original locations and placing them in a disposal cell located on the former Canonsburg uranium mill site. This disposal cell is designed to minimize radiation emissions and further contamination of ground water beneath the site. The Ground Water Project will evaluate the nature and the extent of ground water contamination resulting from uranium processing at the former Canonsburg uranium mill site, and will determine a ground water strategy for complying with the US Environmental Protection Agency's (EPA) ground water standards established for the UMTRA Project. For the Canonsburg site, an evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people's health. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Canonsburg site. The results of this report and further site characterization of the Canonsburg site will be used to determine how to protect public health and the environment, and how to comply with the EPA standards
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-11-01
For the UMTRA Project site located near Canonsburg, Pennsylvania (the Canonsburg site), the Surface Project cleanup occurred from 1983 to 1985, and involved removing the uranium processing mill tailings and radioactively contaminated soils and materials from their original locations and placing them in a disposal cell located on the former Canonsburg uranium mill site. This disposal cell is designed to minimize radiation emissions and further contamination of ground water beneath the site. The Ground Water Project will evaluate the nature and the extent of ground water contamination resulting from uranium processing at the former Canonsburg uranium mill site, and will determine a ground water strategy for complying with the US Environmental Protection Agency`s (EPA) ground water standards established for the UMTRA Project. For the Canonsburg site, an evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Canonsburg site. The results of this report and further site characterization of the Canonsburg site will be used to determine how to protect public health and the environment, and how to comply with the EPA standards.
Summary report on reprocessing evaluation of selected inactive uranium mill tailings sites
International Nuclear Information System (INIS)
1983-09-01
Sandia National Laboratories has been assisting the Department of Energy in the Uranium Mill Tailings Remedial Actions Program (UMTRAP) the purpose of which is to implement the provisions of Title I of Public Law 95-604, ''Uranium Mill Tailings Radiation Control Act of 1978.'' As part of this program, there was a need to evaluate the mineral concentration of the residual radioactive materials at some of the designated processing sites to determine whether mineral recovery would be practicable. Accordingly, Sandia contracted Mountain States Research and Development (MSRD), a division of Mountain States Mineral Enterprises, to drill, sample, and test tailings at 12 sites to evaluate the cost of and the revenue that could be derived from mineral recovery. UMTRAP related environmental and engineering sampling and support activities were performed in conjunction with the MSRD operations. This summary report presents a brief description of the various activities in the program and of the data and information obtained and summarizes the results. 8 refs., 9 tabs
Review of the environmental impact of mining and milling of uranium ores
International Nuclear Information System (INIS)
Costello, J.M.; Davy, D.R.; Cattell, F.C.R.; Cook, J.E.
1980-01-01
This review examines some of the environmental impacts of uranium mining and milling including use of natural resources, resulting effluents and the health of uranium workers and the general public. Impacts are expressed in terms of a gigawatt year of electricity (GWe y) generated in a light water reactor (LWR) using the uranium in a once-through fuel cycle. Conclusions of this study are: the actual environmental effects from uranium mining and milling will be site specific; the number of premature deaths from occupational causes is estimated to be between 0.3 and 0.7 per GWe y of energy produced in an LWR with a once through fuel cycle, and of this number between 0.03 and 0.12 per GWe y may arise from cancer associated with radiation exposure and between 0.25 and 0.48 from accidents, and the remainder may result from exposure to siliceous dusts; the number of premature deaths among the general public per GWe y is estimated to be between 0.02 and 0.12 from cancer associated with radiation exposure; and by way of comparison, exposure to a natural background radiation level of 1 mSv y -1 (100 mrem y -1 ) for one year may ultimately lead to an inferred 7 to 30 premature deaths from cancer per million of population, using the same limits of proportionality. In the US, at present rates of consumption, 1 million people use about 1.2 GWe y annually
Converting the Caetité Mill Process to Enhance Uranium Recovery and Expand Production
Energy Technology Data Exchange (ETDEWEB)
Gomiero, L. A.; Scassiotti Filho, W.; Veras, A., E-mail: gomiero@inb.gov.br [Indústrias Nucleares do Brasil S/A — INB, Caetité, BA (Brazil); Cunha, J. W. [Instituto de Engenharia Nuclear-IEN/CNEN, Rio de Janeiro, RJ (Brazil); Morais, C. A. [Centro do Desenvolvimento da Tec. Nuclear-CDTN/CNEN, Belo Horizonte, MG (Brazil)
2014-05-15
The Caetité uranium mill was commissioned in 2000 to produce about 340 t U per year from an uranium ore averaging 0.29% U{sub 3}O{sub 8}. This production is sufficient to supply the two operating nuclear power plants in the country. As the Brazilian government has recently confirmed its plan to start building another ones from 2009, the uranium production will have to expand its capacity in the next two years. This paper describes the changes in the milling process that are being evaluated in order to not only increase the production but also the uranium recovery, to fulfil the increasing local demand. The heap leaching process will be changed to conventional tank agitated leaching of ground ore slurry in sulphuric acid medium. Batch and pilot plant essays have shown that the uranium recovery can increase from the 77% historical average to about 93%. As the use of sodium chloride as the stripping agent has presented detrimental effects in the extraction and stripping process, two alternatives are being evaluated for the uranium recovery from the PLS: (a) uranium peroxide precipitation at controlled pH from a PLS that was firstly neutralized and filtered. Batch essays have shown good results with a final calcined precipitate averaging 99% U{sub 3}O{sub 8}. Conversely the results obtained at the first pilot plant essay has shown that the precipitation conditions of the continuous process calls for further evaluation. The pilot plant is being improved and another essay will be carried out. (b) uranium extraction with a tertiary amine followed by stripping with concentrated sulphuric acid solution. Efforts are being made to recover the excess sulphuric acid from the pregnant stripping solution to enhance the economic viability of the process and to avoid the formation of a large quantity of gypsum in the pre-neutralization step before the uranium peroxide precipitation. (author)
Energy Technology Data Exchange (ETDEWEB)
Blacklaw, J.; Robertson, G.; Stoffel, D.; Ahmad, J.; Fordham, E. [Washington State Dept. of Health, Olympia, WA (United States)] [and others
1997-08-01
The Washington State Department of Health (WDOH) has licensed two medium sized uranium mills with tailings impoundments covering 28 and 40 hectares (70 and 100 acres), respectively, The uranium mill licensees have submitted closure and reclamation plans to the state, and site-specific conditions have determined the closure design features, Conventional uranium mill cover designs usually incorporate an overall cap of one to three meters, which includes a low-permeability clay barrier layer. A technical evaluation of several uranium mill facilities that used this design was published in the fall of 1994 and reported that unexpected vegetation root damage had occurred in the low-permeability clay (or bentonite amended) barrier layers. The technical report suggested that the low-permeability design feature at some sites could be compromised within a very short time and the regulatory goal of 1,000 years performance might not be achieved. In October 1994, WDOH sponsored a technical forum meeting to consider design alternatives to address these reliability concerns. Representatives from the federal government, nuclear industry, licensees, engineering firms, and state regulatory agencies attended the workshop. Risk factors considered in the evaluation of the uranium mill reclamation plans include: (1) radon gas emanation through the cover (the air pathway), and (2) migration of hazardous and/or radioactive constituents (the groundwater pathway). Additional design considerations include site structural stability, longevity of 1,000 years, and no active (ongoing) maintenance. 9 refs.
Energy Technology Data Exchange (ETDEWEB)
1994-09-01
This baseline risk assessment of ground water contamination of the uranium mill tailings site near Falls City, Texas, evaluates potential impact to public health and the environment resulting from ground water contamination at the former Susquehanna Western, Inc. (SWI), uranium mill processing site. This document fulfills the following objectives: determine if the site presents immediate or potential future health risks, determine the need for interim institutional controls, serve as a key input to project planning and prioritization, and recommend future data collection efforts to more fully characterize risk. The Uranium Mill Tailings Remedial Action (UMTRA) Project has begun its evaluation of ground water contamination at the Falls City site. This risk assessment is one of the first documents specific to this site for the Ground Water Project. The first step is to evaluate ground water data collected from monitor wells at or near the site. Evaluation of these data show the main contaminants in the Dilworth ground water are cadmium, cobalt, fluoride, iron, nickel, sulfate, and uranium. The data also show high levels of arsenic and manganese occur naturally in some areas.
International Nuclear Information System (INIS)
1994-09-01
This baseline risk assessment of ground water contamination of the uranium mill tailings site near Falls City, Texas, evaluates potential impact to public health and the environment resulting from ground water contamination at the former Susquehanna Western, Inc. (SWI), uranium mill processing site. This document fulfills the following objectives: determine if the site presents immediate or potential future health risks, determine the need for interim institutional controls, serve as a key input to project planning and prioritization, and recommend future data collection efforts to more fully characterize risk. The Uranium Mill Tailings Remedial Action (UMTRA) Project has begun its evaluation of ground water contamination at the Falls City site. This risk assessment is one of the first documents specific to this site for the Ground Water Project. The first step is to evaluate ground water data collected from monitor wells at or near the site. Evaluation of these data show the main contaminants in the Dilworth ground water are cadmium, cobalt, fluoride, iron, nickel, sulfate, and uranium. The data also show high levels of arsenic and manganese occur naturally in some areas
The use of geochemical barriers for reducing contaminants emanating from uranium mill tailings
International Nuclear Information System (INIS)
Groffman, A.R.; Longmire, P.; Mukhopadhyay, B.; Downs, W.
1991-01-01
A problem facing the Department of Energy's Uranium Mill Tailings Remediation Action (UMTRA) Project is the contamination of local ground water by leachate emanating form the tailings piles. These fluids have a low pH and contain heavy metals and trace elements such as arsenic, molybdenum, nitrate, selenium, and uranium. In order to meet ground water standards low hydraulic conductivity covers are installed over the tailings embankment. in some cases it may be necessary to install a geochemical barrier down gradient from the tailings embankment in order to remove the hazardous constituents. By using geochemical barriers to reduce undesirable species form a contaminant plume, fluids emanating form beneath a repository can in effect be scrubbed before entering the water table. Materials containing adsorbing clays, iron oxyhydroxides and zeolites, and reducing materials such as coal and peat, are being used effectively to attenuate contaminants form uranium mill tailings. Experiments to directly determine attenuation capacities of selected buffer/adsorption materials were conducted in the laboratory. Batch leach tests were conducted in lieu of column tests when the hydraulic conductivity of materials was too low to use in columns and shales
Liu, Bo; Peng, Tongjiang; Sun, Hongjuan
2017-06-01
Pollution by the release of heavy metals from tailings constitutes a potential threat to the environment. To characterize the processes governing the release of Mn, Sr, Pb, and U from the uranium mill tailings, a dynamic leaching test was applied for different size of uranium mill tailings samples. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) were performed to determine the content of Mn, Sr, Pb, and U in the leachates. The release of mobile Mn, Sr, Pb, and U fraction was slow, being faster in the initial stage and then attained a near steady-state condition. The experimental results demonstrate that the release of Mn, Sr, Pb, and U from uranium mill tailings with different size fractions is controlled by a variety of mechanisms. Surface wash-off is the release mechanism for Mn. The main release mechanism of Sr and Pb is the dissolution in the initial leaching stage. For U, a mixed process of wash-off and diffusion is the controlling mechanism.
International Nuclear Information System (INIS)
1981-09-01
Ford, Bacon and Davis Utah Inc. has reevaluated the Mexican Hat site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Mexican Hat, Utah. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.2 million tons of tailings at the Mexican Hat site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $15,200,000 for stabilization in place, to about $45,500,000 for disposal at a distance of about 16 mi. Three principal alternatives for the reprocessing of the Mexican Hat tailings were examined: (a) heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $115/lb of U 3 O 8 whether by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Mexican Hat tailings for uranium recovery is not economically attractive under present conditions
International Nuclear Information System (INIS)
1981-08-01
Ford, Bacon, and Davis Utah Inc. has reevaluated the Riverton site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Riverton, Wyoming. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 900,000 tons of tailings materials at the Riverton site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The nine alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontaminations of the tailings site (Options II through IX). Cost estimates for the nine options range from about $16,600,000 for stabilization in-place, to about $23,200,000 for disposal at a distance of 18 to 25 mi. Three principal alternatives for the reprocessing of the Riverton tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $260 and $230/lb of U 3 O 8 by heap leach and conventional plant processes respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery does not appear to be economically attractive
Volume II investigates the potential radiogenic risks from abandoned uranium mines and evaluates which may pose the greatest hazards to members of the public and to the environment. The intent of this report is to identify who may be most likely to be exposed to wastes at small a...
Environmental planning in uranium milling
International Nuclear Information System (INIS)
Bertello, L.F.
1987-01-01
Effluents from uranium milling in the Achala region in the province of Cordoba are studied. Liquids from lixiviation-recovery and from precipitation-washing of yellow-cake were analyzed. Separation of both liquids before treatment and disposal is recommended. Data of the hydric environment are presented specially for volumes of flow. The disposal criteria established by the provincial authorities are presented, and discussed. Calculations to define the effects on the environment of two types of effluents (the leaching effluent without treatment and the same after treating it) on two points of the rivers net, are given and the results discussed. A disposal policy for a treated effluent of mean composition is presented, based on two different amounts for the two phases of the river flux; the possible effects on two points of the net were also calculated. In the author's opinion, such policy will result in a disposal without a sensible damage in the receptor. (Author) [es
International Nuclear Information System (INIS)
1994-06-01
This document evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium mill site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1990 by the US Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine what remedial actions are necessary for contaminated ground water at the site
International Nuclear Information System (INIS)
1991-12-01
The uranium mill tailings site near Durango, Colorado, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's Remedial Action Plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which has been developed to serve a two-fold purpose. First, it describes the activities that have been conducted by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium mill processing site near Durango, Colorado. Secondly, this document and the rest of the RAP, upon concurrence and execution by the DOE, the State of Colorado, and the NRC, become Appendix B of the Cooperative Agreement between the DOE and the State of Colorado
International Nuclear Information System (INIS)
1995-04-01
The US Department of Energy (DOE) is responsible for performing remedial action to bring surface and ground water contaminant levels at 24 inactive uranium processing sites into compliance with the US Environmental Protection Agency (EPA) standards. DOE is accomplishing this through the Uranium Mill Tailings Remedial Action (UMTRA) Surface and Ground Water Projects. Remedial action will be conducted with the concurrence of the US Nuclear Regulatory Commission (NRC) and the full participation of affected states and Indian tribes. Uranium processing activities at most of 24 the inactive mill sites resulted in the contamination of ground water beneath and, in some cases, downgradient of the sites. This contaminated ground water often has elevated levels of constituents such as uranium and nitrate. The purpose of the UMTRA Ground Water Project is to eliminate, or reduce to acceptable levels, the potential health and the environmental consequences of milling activities by meeting the EPA standards in areas where ground water has been contaminated. The first step in the UMTRA Ground Water Project is the preparation of this programmatic environmental impact statement (PEIS). This document analyzes potential impacts of four programmatic alternatives, including the proposed action. The alternatives do not address site-specific ground water compliance strategies. Rather, the PEIS is a planning document that provides a framework for conducting the Ground Water Project; assesses the potential programmatic impacts of conducting the Ground Water Project; provides a method for determining the site-specific ground water compliance strategies; and provides data and information that can be used to prepare site-specific environmental impacts analyses more efficiently
Energy Technology Data Exchange (ETDEWEB)
Beedlow, P.A.
1984-05-01
Guidelines for using vegetation and rock to protect inactive uranium mill tailings from erosion were developed by Pacific Northwest Laboratory as part of the Department of Energy's Uranium Mill Tailings Remedial Action Project (UMTRAP) Technology Development program. Information on soils, climate, and vegetation were collected for 20 inactive tailings sites in the western United States. Sites were grouped according to similarities in climate and vegetation. Soil loss for those sites was characterized using the Universal Soil Loss Equation. Test plots were used to evaluate (1) the interaction between vegetation and sealant barrier systems and (2) the effects of surface rock on soil water and vegetation. Lysimeter and simulation studies were used to direct and support field experiments. 49 references, 17 figures, 16 tables.
International Nuclear Information System (INIS)
Beedlow, P.A.
1984-05-01
Guidelines for using vegetation and rock to protect inactive uranium mill tailings from erosion were developed by Pacific Northwest Laboratory as part of the Department of Energy's Uranium Mill Tailings Remedial Action Project (UMTRAP) Technology Development program. Information on soils, climate, and vegetation were collected for 20 inactive tailings sites in the western United States. Sites were grouped according to similarities in climate and vegetation. Soil loss for those sites was characterized using the Universal Soil Loss Equation. Test plots were used to evaluate (1) the interaction between vegetation and sealant barrier systems and (2) the effects of surface rock on soil water and vegetation. Lysimeter and simulation studies were used to direct and support field experiments. 49 references, 17 figures, 16 tables
Uranium Mill Tailings Remedial Action Project. 1995 Environmental Report
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-06-01
In accordance with U.S. Department of Energy (DOE) Order 23 1. 1, Environment, Safety and Health Reporting, the DOE prepares an annual report to document the activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring program. This monitoring must comply with appropriate laws, regulations, and standards, and it must identify apparent and meaningful trends in monitoring results. The results of all monitoring activities must be communicated to the public. The UMTRA Project has prepared annual environmental reports to the public since 1989.
Uranium Mill Tailings Remedial Action Project. 1995 Environmental Report
International Nuclear Information System (INIS)
1996-06-01
In accordance with U.S. Department of Energy (DOE) Order 23 1. 1, Environment, Safety and Health Reporting, the DOE prepares an annual report to document the activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring program. This monitoring must comply with appropriate laws, regulations, and standards, and it must identify apparent and meaningful trends in monitoring results. The results of all monitoring activities must be communicated to the public. The UMTRA Project has prepared annual environmental reports to the public since 1989
Directory of Open Access Journals (Sweden)
DIANA M. BANU
2016-10-01
Full Text Available The mining exploration and exploitation, especially the activity of uranium mineralization exploration and exploitation has a negative impact on the environment by the alterations of the landscape and the degradation of the environmental factors' quality. The principal environmental factors that could be affected by mining operations resulting from uranium exploitation are: water, air, soil, population, fauna, and flora. The aim of this study is, first, to identify the sources of pollution (natural radionuclides - natural radioactive series of uranium, radium, thorium, potassium and heavy metals that are accompanying the mineralizations for two of the most important environmental factors: rocks and soils: and, second, to assess the pollution impact on those two environmental factors. In order to identify this pollutants and their impact assessment it was selected as a study case an abandoned uranium mining perimeter named the Zimbru perimeter located in Arad County, Romania.
Leak detection systems for uranium mill tailings impoundments with synthetic liners
International Nuclear Information System (INIS)
Myers, D.A.; Tyler, S.W.; Gutknecht, P.J.; Mitchell, D.H.
1983-09-01
This study evaluated the performance of existing and alternative leak detection systems for lined uranium mill tailings ponds. Existing systems for detecting leaks at uranium mill tailings ponds investigated in this study included groundwater monitoring wells, subliner drains, and lysimeters. Three alternative systems which demonstrated the ability to locate leaks in bench-scale tests included moisture blocks, soil moisture probes, and a soil resistivity system. Several other systems in a developmental stage are described. For proper performance of leak detection systems (other than groundwater wells and lysimeters), a subgrade is required which assures lateral dispersion of a leak. Methods to enhance dispersion are discussed. Cost estimates were prepared for groundwater monitoring wells, subliner drain systems, and the three experimental systems. Based on the results of this report, it is suggested that groundwater monitoring systems be used as the primary means of leak detection. However, if a more responsive system is required due to site characteristics and groundwater quality criteria, subliner drains are applicable for ponds with uncovered liners. Leak-locating systems for ponds with covered liners require further development. Other recommendations are discussed in the report
Engineering assessment of inactive uranium mill tailings, Gunnison Site, Gunnison, Colorado: summary
International Nuclear Information System (INIS)
1981-09-01
Ford, Bacon and Davis Utah Inc. has reevaluated the Gunnison site in order to revise the November 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Gunnison, Colorado. This evaluation has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the ivnvestigations of site hydrology and meteorology, and the evaluation and costing of alternative remedial actions. Radon gas released from the combined 540,000 dry tons of tailings and the 435,400 tons of contaminated waste at the Gunnison site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The 10 alternative actions presented in this engineering assessment range from stabilization of the site in its present location with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to disposal sites along with decontamination of the Gunnison site (Options II through X). Cost estimates for the 10 options range from about $8,900,000 for stabilization in-place, to about $14,000,000 for disposal in the North Alkali Creek area at a distance of about 18 mi. Truck haulage would be used to transport the tailings and contaminated materials from the Gunnison site to the selected disposal site. Three principal alternatives for the reprocessing of the Gunnison tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocesssing. The cost of the uranium recovered would be about $250 and $230/lb of U 3 O 8 by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981
International Nuclear Information System (INIS)
Anon.
1988-01-01
The Committee on Energy and Natural Resources reported favorably on the Uranium Mill Tailings Remedial Action Amendments Act of 1987 (S.1991) with some amendments, the principal one being to change the 1987 date to 1988. The purpose of this bill is to authorize the Secretary of the Interior to transfer lands under the jurisdiction of the Bureau of Land Management to the Department of Energy for permanent surveillance and maintenance of remediated mill tailings as required by the Uranium Mill Tailings Radiation Control Act of 1978. The bill also extends the authority of the Secretary of Energy to perform remedial action at designated uranium mill tailings sites and vicinity properties until 30 September 1994. The authority to perform groundwater restoration activities is extended without limitation
Geochemical behavior of uranium mill tailings leachate in the subsurface
International Nuclear Information System (INIS)
Brookins, D.G.
1993-01-01
Leachate generated from surface disposal of acidic uranium mill tailings at Maybell, CO has impacted groundwater quality within the underlying mineralized Browns Park Formation. The extent of groundwater contamination, however, is located directly beneath the tailings impoundment. The milling process consisted of sulfuric acid extraction of uranium from the feed ore by a complex chemical leaching and precipitation process. Tailings leachate at the site contains elevated concentrations of Al, As, Cd, Mo, Ni, NO 3 , Se, U, and other solutes. From column leach tests, the concentrations of contaminants within tailings pore fluid are SO 4 >NH 4 >NO 3 >U>Se>Ni>As>Cd at pH 4.0. The carbonate buffering capacity of the tailings subsoil has decreased because of calcite dissolution in the presence of acidic leachate. Groundwater quality data, mineralogical and microbiological studies, and geochemical modeling suggest that As, NO 3 , Se, U and other solutes are being removed from solution through precipitation, adsorption, and denitrification processes under reducing conditions. Presence of hydrogen sulfide, liquid and gaseous hydrocarbons, dissolved organic, and abundant pyrite within the Browns Park Formations have maintained reducing conditions subjacent to the tailings impoundment. Groundwater is in close equilibrium with coffinite and uraninite, the primary U(IV) minerals extracted from the Browns Parks Formation. Denitrifying bacteria identified in this study catalyze redox reactions involving NO 3 . Subsequently, contaminant distributions of NO 3 decrease 1000 times beneath the tailings impoundment. Applying geochemical and biochemical processes occurring at Maybell provides an excellent model for in situ aquifer restoration programs considered at other uranium tailings and heavy-metal-mixed waste contaminated sites. (author) 4 figs., 4 tabs., 27 refs
Evolution of uranium distribution and speciation in mill tailings, COMINAK Mine, Niger
International Nuclear Information System (INIS)
Déjeant, Adrien; Galoisy, Laurence; Roy, Régis; Calas, Georges; Boekhout, Flora; Phrommavanh, Vannapha; Descostes, Michael
2016-01-01
This study investigated the evolution of uranium distribution and speciation in mill tailings from the COMINAK mine (Niger), in production since 1978. A multi-scale approach was used, which combined high resolution remote sensing imagery, ICP-MS bulk rock analyses, powder X-ray diffraction, Scanning Electron Microscopy, Focused Ion Beam — Transmission Electron Microscopy and X-ray Absorption Near Edge Spectroscopy. Mineralogical analyses showed that some ore minerals, including residual uraninite and coffinite, undergo alteration and dissolution during tailings storage. The migration of uranium and other contaminants depends on (i) the chemical stability of secondary phases and sorbed species (dissolution and desorption processes), and (ii) the mechanical transport of fine particles bearing these elements. Uranium is stabilized after formation of secondary uranyl sulfates and phosphates, and adsorbed complexes on mineral surfaces (e.g. clay minerals). In particular, the stock of insoluble uranyl phosphates increases with time, thus contributing to the long-term stabilization of uranium. At the surface, a sulfate-cemented duricrust is formed after evaporation of pore water. This duricrust limits water infiltration and dust aerial dispersion, though it is enriched in uranium and many other elements, because of pore water rising from underlying levels by capillary action. Satellite images provided a detailed description of the tailings pile over time and allow monitoring of the chronology of successive tailings deposits. Satellite images suggest that uranium anomalies that occur at deep levels in the pile are most likely former surface duricrusts that have been buried under more recent tailings. - Highlights: • The evolution of U distribution and speciation in mill tailings is investigated. • High resolution satellite images provide useful information on tailings evolution. • U and many other elements are enriched in a sulfate-rich duricrust. • Formation of
Evolution of uranium distribution and speciation in mill tailings, COMINAK Mine, Niger
Energy Technology Data Exchange (ETDEWEB)
Déjeant, Adrien, E-mail: adrien.dejeant@normalesup.org [Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Case 115, 4 place Jussieu, 75005 Paris (France); Université Paris Diderot — Paris VII, 5 rue Thomas Mann, 75013 Paris (France); Galoisy, Laurence [Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Case 115, 4 place Jussieu, 75005 Paris (France); Université Pierre et Marie Curie — Paris VI, 4 place Jussieu, 75005 Paris (France); Roy, Régis [AREVA Mines — Geoscience Department, Tour AREVA, 1 place Jean Millier, 92084 Paris, La Défense (France); Calas, Georges; Boekhout, Flora [Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Case 115, 4 place Jussieu, 75005 Paris (France); Université Pierre et Marie Curie — Paris VI, 4 place Jussieu, 75005 Paris (France); Phrommavanh, Vannapha; Descostes, Michael [AREVA Mines — R& D Department, BAL 0414C-2, Tour AREVA, 1 place Jean Millier, 92084 Paris, La Défense (France)
2016-03-01
This study investigated the evolution of uranium distribution and speciation in mill tailings from the COMINAK mine (Niger), in production since 1978. A multi-scale approach was used, which combined high resolution remote sensing imagery, ICP-MS bulk rock analyses, powder X-ray diffraction, Scanning Electron Microscopy, Focused Ion Beam — Transmission Electron Microscopy and X-ray Absorption Near Edge Spectroscopy. Mineralogical analyses showed that some ore minerals, including residual uraninite and coffinite, undergo alteration and dissolution during tailings storage. The migration of uranium and other contaminants depends on (i) the chemical stability of secondary phases and sorbed species (dissolution and desorption processes), and (ii) the mechanical transport of fine particles bearing these elements. Uranium is stabilized after formation of secondary uranyl sulfates and phosphates, and adsorbed complexes on mineral surfaces (e.g. clay minerals). In particular, the stock of insoluble uranyl phosphates increases with time, thus contributing to the long-term stabilization of uranium. At the surface, a sulfate-cemented duricrust is formed after evaporation of pore water. This duricrust limits water infiltration and dust aerial dispersion, though it is enriched in uranium and many other elements, because of pore water rising from underlying levels by capillary action. Satellite images provided a detailed description of the tailings pile over time and allow monitoring of the chronology of successive tailings deposits. Satellite images suggest that uranium anomalies that occur at deep levels in the pile are most likely former surface duricrusts that have been buried under more recent tailings. - Highlights: • The evolution of U distribution and speciation in mill tailings is investigated. • High resolution satellite images provide useful information on tailings evolution. • U and many other elements are enriched in a sulfate-rich duricrust. • Formation of
Energy Technology Data Exchange (ETDEWEB)
1994-09-01
This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site.
International Nuclear Information System (INIS)
1994-09-01
This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site
International Nuclear Information System (INIS)
1993-06-01
The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VP) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the groundwater from further degradation. Remedial actions at the Slick Rock sites must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC)
Gunnar uranium mine environmental remediation - Northern Saskatchewan
Energy Technology Data Exchange (ETDEWEB)
Muldoon, Joe; Yankovich, Tamara; Schramm, Laurier L. [Saskatchewan Research Council, Saskatoon, SK (Canada)
2013-07-01
The Gunnar Mine and mill site was the largest of some 38 now-abandoned uranium mines that were developed and operated in Northern Saskatchewan, Canada, during the Cold War years. During their operating lifetimes these mines produced large quantities of ore and tailings. The Gunnar mine (open pit and underground) produced over 5 million tonnes of uranium ore and nearly 4.4 million tonnes of mine tailings during its operations from 1955 through 1963. An estimated 2.2 to 2.7 million m{sup 3} of waste rock that was generated during the processing of the ore abuts the shores of Lake Athabasca, the 22. largest lake in the world. After closure in the 1960's, the Gunnar site was abandoned with little to no decommissioning being done. The Saskatchewan Research Council has been contracted to manage the clean-up of these abandoned northern uranium mine and mill sites. The Gunnar Mine, because of the magnitude of tailings and waste rock, is subject to an environmental site assessment process regulated by both provincial and federal governments. This process requires a detailed study of the environmental impacts that have resulted from the mining activities and an analysis of projected impacts from remediation efforts. The environmental assessment process, specific site studies, and public involvement initiatives are all now well underway. Due to the many uncertainties associated with an abandoned site, an adaptive remediation approach, utilizing a decision tree, presented within the environmental assessment documents will be used as part of the site regulatory licensing. A critical early task was dealing with major public safety hazards on the site. The site originally included many buildings that were remnants of a community of approximately 800 people who once occupied the site. These buildings, many of which contained high levels of asbestos, had to be appropriately abated and demolished. Similarly, the original mine head frame and mill site buildings, many of which
International Nuclear Information System (INIS)
Sarjan Singh; Jha, V.N.; Sethy, N.K.; Rout, S.; Ravi, P.M.; Jha, S.K.; Tripathi, R.M.
2018-01-01
After recovery of economically viable portion of the ore remaining solid slurry or tailings from uranium ore processing industry is discharged into an engineered system called tailings pond. Among the radio-nuclides quantitative content of residual uranium is highest in the tailings pond and various environmental interactions such as precipitation, change in pH, redox potential, microbial activities, organic associations has a potential to fix (precipitate) or solubilise it. The chemical fractionation of 'U' in mill tailings of both operational and non operational tailing ponds of Jaduguda uranium mining and ore processing site has been part of present study. Also, the role of various physicochemical parameters (pH, Eh, TC etc) on the mobility of uranium has been investigated
International Nuclear Information System (INIS)
Narasimhan, T.N.; White, A.F.; Tokunaga, T.
1985-02-01
In Part I of this series of two reports the observed fluid potential and geochemical characteristics in and around the inactive uranium mill tailings pile at Riverton, Wyoming were presented. The prupose of the present work is to attempt to simulate field observations using mathematical models. The results of the studies have not only helped identify the physicochemical mechanisms govering contaminant migration around the inactive mill tailings pile in Riverton, but also have indicated the feasibility of quantifying these mechanisms with the help of newly developed mathematical models. Much work needs to be done to validate and benchmark these models. The history-matching effort on hand involves the mathematical simulation of the observed fluid potentials within the tailings, and the observed distribution of various chemical species within and around the inactive uranium mill tailings. The simulation problem involves consideration of transient fluid flow and transient, reactive chemical transport in a variably saturated ground water system with time-dependent boundary conditions. 15 refs., 30 figs., 3 tabs
International Nuclear Information System (INIS)
1980-02-01
The proposed action is the renewal of Source Material License SUA-56 (with amendments) issued to Western Nuclear, Inc. (WNI), for the operation of the Split Rock Uranium Mill near Jeffrey City and the Green Mountain Ion-Exchange Facility, both in Fremont County, Wyoming. The license also permits possession of material from past operations at four ancillary facilities in the Gas Hills mining area - the Bullrush, Day-Loma, Frazier-Lamac, and Rox sites (Docket No. 40-1162). However, although heap leaching operations were previously authorized at Frazier-Lamac, there has never been any processing of material at this site. The Split Rock mill is an acid-leach, ion-exchange and solvent-extraction uranium-ore processing mill with a design capacity of 1540 MT (1700 tons) of ore per day. WNI has proposed by license amendment request to increase the storage capacity of the tailings ponds in order to permit the continuation of present production rates of U 3 O 8 through 1996 using lower-grade ores
International Nuclear Information System (INIS)
Reed, A.K.; Meeks, H.C.; Pomeroy, S.E.; Hale, V.Q.
1976-12-01
This research program was initiated with the basic objective of making a preliminary assessment of the potential environmental impacts associated with the mining and milling of domestic uranium ores. All forms of pollution except radiation were considered. The program included a review of the characteristics and locations of domestic uranium ore reserves and a review of the conventional methods for mining and milling these ores. Potential environmental impacts associated with the entire cycle from exploration and mining to recovery and production of yellowcake are identified and discussed. Land reclamation aspects are also discussed. The methods currently used for production of yellowcake were divided into four categories - open pit mining-acid leach process, underground mining-acid leach process, underground mining-alkaline leach process, and in-situ mining. These are discussed from the standpoint of typical active mills which were visited during the program. Flowsheets showing specific environmental impacts for each category are provided
Uranium mill tailings remedial action project real estate management plan
International Nuclear Information System (INIS)
1994-09-01
This plan summarizes the real estate requirements of the US Department of Energy's (DOE) Uranium Mill Tailings Action (UMTRA) Project, identifies the roles and responsibilities of project participants involved in real estate activities, and describes the approaches used for completing these requirements. This document is intended to serve as a practical guide for all project participants. It is intended to be consistent with all formal agreements, but if a conflict is identified, the formal agreements will take precedence
Uranium mill tailings remedial action project real estate management plan
Energy Technology Data Exchange (ETDEWEB)
1994-09-01
This plan summarizes the real estate requirements of the US Department of Energy`s (DOE) Uranium Mill Tailings Action (UMTRA) Project, identifies the roles and responsibilities of project participants involved in real estate activities, and describes the approaches used for completing these requirements. This document is intended to serve as a practical guide for all project participants. It is intended to be consistent with all formal agreements, but if a conflict is identified, the formal agreements will take precedence.
Draft environment statement related to operation of Moab uranium mill (Grand County, Utah)
International Nuclear Information System (INIS)
1977-11-01
This draft environmental impact statement was prepared by the staff of the U.S. Nuclear Regulatory Commission and issued by the Commission's Office of Nuclear Material Safety and Safeguards. The proposed action is the continuation of Source Material License SUA-917 issued to Atlas Corporation for the operation of the Atlas Uranium Mill in Grand County, Utah, near Moab (Docket No. 40-3453). This authorizes a 600-ton (450-MT) per day acid leach circuit (for recovery of vanadium as well as uranium) and a 600-ton (450-MT) per day alkaline leach circuit
International Nuclear Information System (INIS)
Rakshit, A.K.
1991-01-01
Mining and milling of uranium ores comprise multiple operations such as developement, drilling, blasting, handling, crushing, grinding, leaching of the ore and concentration, drying, packaging and storing of the concentrate product. Apart from the hazards of any metal mining and milling operations due to dust, noise, chemicals, accidents etc there are radiation risks also resulting from exposure to airborne radioactivity and external radiation. The inhalation risk is of more concern in underground mines than in open pit mines. The objective of a Medical Surveillance Programme (an occupational Health Programme) is to ensure a healthy work force. It should ultimately lead to health maintenance and improvement, less absenteeism increased productivity and the achievement of worker and corporate goals. The programme includes prevention, acute care, counselling and rehabilitation. Radiological workers require special monitoring for their work-related radiation exposure effect by film monitoring service, whole body counting and bioassay. Radiation protection in the mining and milling of Uranium ores include the use of personal protective equipment, work station protection, personal hygiene and house keeping. (author). 15 refs
Engineering assessment of inactive uranium mill tailings, Durango Site, Durango, Colorado
International Nuclear Information System (INIS)
1981-06-01
Ford, Bacon and Davis Utah Inc. has reevaluated the Durango site in order to revise the November 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Durango, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the nearly 1.6 million tons of tailings at the Durango site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the seven options range from about $10,700,000 for stabilization in-place, to about $21,800,000 for disposal at a distance of about 10 mi. Three principal alternatives for the reprocessing of the Durango tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $30/lb U 3 O 8 by either heap leach or conventional plant processes
Determination of aerosol size distributions at uranium mill tailings remedial action project sites
International Nuclear Information System (INIS)
Newton, G.J.; Reif, R.H.; Hoover, M.D.
1994-01-01
The U.S. Department of Energy (DOE) has an ongoing program, the Uranium Mill Tailings Remedial Action (UMTRA) Project, to stabilize piles of uranium mill tailings in order to reduce the potential radiological hazards to the public. Protection of workers and the general public against airborne radioactivity during remedial action is a top priority at the UMTRA Project. The primary occupational radionuclides of concern are 230 Th, 226 Ra, 210 Pb, 210 Po, and the short-lived decay products of 222 Rn with 230 Th causing the majority of the committed effective dose equivalent (CEDE) from inhaling uranium mill tailings. Prior to this study, a default particle size of 1.0 μm activity median aerodynamic diameter (AMAD) was assumed for airborne radioactive tailings dust. Because of recent changes in DOE requirements, all DOE operations are now required to use the CEDE methodology, instead of the annual effective dose equivalent (AEDE) methodology, to evaluate internal radiation exposures. Under the transition from AEDE to CEDE, with a 1.0 μm AMAD particle size, lower bioassay action levels would be required for the UMTRA Project. This translates into an expanded internal dosimetry program where significantly more bioassay monitoring would be required at the UMTRA Project sites. However, for situations where the particle size distribution is known to differ significantly from 1.0 μm AMAD, the DOE allows for corrections to be made to both the estimated dose to workers and the derived air concentration (DAC) values. For particle sizes larger than 1.0 μm AMAD, the calculated CEDE from inhaling tailings would be relatively lower
International Nuclear Information System (INIS)
1977-12-01
An engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings was performed at the Spook Site, Converse County, Wyoming. Data are presented from soil, water and other sample analyses, radiometric measurements to determine areas with radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site geology, hydrology, and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas release from the 187,000 tons of tailings at the Spook Site constitutes the main environmental impact, which is negligible. The two alternative actions presented are better fencing of the site in its present state and placing tailings and contaminated on-site materials and soil in the open-pit mine and covering the resulting pile with 2 ft of overburden material. The cost estimates for the options are $81,000 and $142,000, respectively. Reprocessing the tailings for uranium at a nearby operating uranium mill is worthy of economic consideration at this time
International Nuclear Information System (INIS)
1981-07-01
Ford, Bacon and Davis Utah Inc. has reevaluated the Shiprock site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Shiprock, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.5 million dry tons of tailings at the Shiprock site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The eight alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of the stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $13,400,000 for stabilization in place to about $37,900,000 for disposal at a distance of about 16 miles. Three principal alternatives for the reprocessing of the Shiprock tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and(c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $230/lb by heap leach and $250/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive
International Nuclear Information System (INIS)
Yan, Xun; Luo, Xuegang
2015-01-01
Objective: To collect the radioactive contamination data for environmental rehabilitation in uranium mill tailings in southeastern China. Method: The sample areas were divided into high, moderate and low concentration areas, according to the uranium concentration. For every area, 3 soil samples were collected at 0–15 cm, 15–30 cm and 30–45 cm depth respectively, with 5 repetitions for each. Total 45 (3 × 5 × 3) soil samples were collected. Physicochemical properties and enzyme activities of soils were determined as described by references. The concentrations of the radionuclides 238 U, 232 Th, 226 Ra and 40 K in soils were determined by using HPGe gamma-ray spectrometer. Soil microbial diversity was analyzed via denaturing gradient gel electrophoresis (DGGE). Results: Soil samples were all acidic. Physicochemical properties, like pH, content of total/available N, P and K, as well as enzyme activities were all increased along with decreased uranium concentration. The 232 Th concentration was increased with the decreased uranium concentration and was not influenced by the depth of sample sites. However, uranium concentration and depth of sample showed no significant influence on the concentrations of 226 Ra and 40 K. The concentration of 232 Th was significantly correlated with that of 226 Ra and 40 K, while the concentrations of 226 Ra and 40 K were significantly correlated. However, Pearson correlation coefficients between 238 U and other radionuclides were not significant. The microbial population in different concentration areas was different with four domain strains in low area, and two for both moderate and high areas. Furthermore, in each sample site, Proteobacteria was the most dominant flora, while environmental samples were the second according to GenBank database. Moreover, Serratia sp. of Proteobacteria was the dominant strain. Conclusion: Radionuclides distribution in the uranium mill tailing showed a profound influence on soil properties and
International Nuclear Information System (INIS)
Price, J.B.
1986-01-01
Laws and regulations concerning remedial actions at inactive uranium mills explicitly recognize radiological and nonradiological hazards and may implicitly recognize the potential presence of hazardous wastes at these mill sites. Ground-water studies at the sites have placed an increasing emphasis on screening for priority pollutants. The Grand Junction, Colorado, mill site was deemed to have a high potential for the presence of organic compounds in ground water, and was chosen as a prototype for assessing the presence of organic compounds in ground water at inactive sites. Lessons learned from the assessment of organics at the Grand Junction site were used to develop a screening procedure for other inactive mill sites
Manual on radiological safety in uranium and thorium mines and mills
International Nuclear Information System (INIS)
1976-01-01
The manual describes the personnel radiation hazards in uranium and thorium mines and mills. Measures which should be taken in order to protect the workers are outlined. The problems of air born radioactivity, external radiation, surface contamination and radioactive waste are treated. Safety standards in relation to the above mentioned subjects are given. An outline is given for monitoring programme. Monitoring methods, control methods and means of medical control are given
Energy Technology Data Exchange (ETDEWEB)
Wang, Jin; Song, Gang; Chen, Yongheng; Zhu, Li [Key Laboratory of Waters Safety and Protection in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou (China); Liu, Juan [Key Laboratory of Waters Safety and Protection in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou (China); Department of Geosciences, National Taiwan University, Taipei (China); Li, Hongchun [Department of Geosciences, National Taiwan University, Taipei (China); Xiao, Tangfu [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang (China); Qi, Jianying [South China Institute of Environmental Science, Ministry of Environmental Protection, Guangzhou (China)
2012-12-15
The northern region of Guangdong Province, China, has suffered from the extensive mining/milling of uranium for several decades. In this study, surface waters in the region were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) for the concentrations of uranium (U), thorium (Th), and non-radioactive metals (Fe, Mn, Mg, Li, Co, Cu, Ni, and Zn). Results showed highly elevated concentrations of the studied radionuclides and metals in the discharged effluents and the tailing seepage of the U mining/milling sites. Radionuclide and heavy metal concentrations were also observed to be overall enhanced in the recipient stream that collected the discharged effluents from the industrial site, compared to the control streams, and rivers with no impacts from the U mining/milling sites. They displayed significant spatial variations and a general decrease downstream away from upper point-source discharges of the industrial site. In addition, obvious positive correlations were found between U and Th, Fe, Zn, Li, and Co (R{sup 2} > 0.93, n = 28) in the studied water samples, which suggest for an identical source and transport pathway of these elements. In combination with present surface water chemistry and chemical compositions of uraniferous minerals, the elevation of the analyzed elements in the recipient stream most likely arose from the liquid effluents, processing water, and acid drainage from the U mining/milling facilities. The dispersion of radionuclides and hazardous metals is actually limited to a small area at present, but some potential risk should not be negligible for local ecosystem. The results indicate that environmental remediation work is required to implement and future cleaner production technology should be oriented to avoid wide dispersion of radioactivity and non-radioactive hazards in U mining/milling sites. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Background report for the uranium-mill-tailings-sites remedial-action program
International Nuclear Information System (INIS)
1981-04-01
The Uranium Mill Tailings Radiation Control Act of 1978, Public Law 95-604, mandates remedial action responsibilities to the Department of Energy for designated inactive uranium processing sites. To comply with the mandates of the Act, a program to survey and evaluate the radiological conditions at inactive uranium processing sites and at vicinity properties containing residual radioactive material derived from the sites is being conducted; the Remedial Action Program Office, Office of the Assistant Secretary for Nuclear Energy is implementing remedial actions at these processing sites. This report provides a brief history of the program, a description of the scope of the program, and a set of site-specific summaries for the 22 locations specified in the Act and three additional locations designated in response to Federal Register notices issued on August 17 and September 5, 1979. It is designed to be a quick source of background information on sites covered by the implementation program for Public Law 95-604
International Nuclear Information System (INIS)
1993-09-01
This report evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1986 by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This risk assessment is the first document specific to this site for the Groundwater Project. This risk assessment follows the approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the floodplain groundwater are arsenic, magnesium, manganese, nitrate, sodium, sulfate, and uranium. The complete list of contaminants associated with the terrace groundwater could not be determined due to the lack of the background groundwater quality data. However, uranium, nitrate, and sulfate are evaluated since these chemicals are clearly associated with uranium processing and are highly elevated compared to regional waters. It also could not be determined if the groundwater occurring in the terrace is a usable water resource, since it appears to have originated largely from past milling operations. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if a drinking well were installed in the contaminated groundwater or if there were exposure to surface expressions of contaminated water. Potential exposures to surface water include incidental contact with contaminated water or sediments by children playing on the floodplain and consumption of meat and milk from domestic animals grazed and watered on the floodplain
International Nuclear Information System (INIS)
1981-10-01
Ford, Bacon and Davis Utah Inc. has reevaluated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching, treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be more than $500/lb of U 3 O 8 by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is economically unattractive
Thermal stabilization of uranium mill tailings
International Nuclear Information System (INIS)
Dreesen, D.R.; Williams, J.M.; Cokal, E.J.
1981-01-01
The sintering of tailings at high temperatures (1200 0 C) has shown promise as a conditioning approach that greatly reduces the 222 Rn emanation of uranium mill tailings. The structure of thermally stabilized tailings has been appreciably altered producing a material that will have minimal management requirements and will be applicable to on-site processing and disposal. The mineralogy of untreated tailings is presented to define the structure of the original materials. Quartz predominates in most tailings samples; however, appreciable quantities of gypsum, clay, illite, or albites are found in some tailings. Samples from the Durango and Shiprock sites have plagioclase-type aluminosilicates and non-aluminum silicates as major components. The iron-rich vanadium tailings from the Salt Lake City site contain appreciable quantities of α-hematite and chloroapatite. The reduction in radon emanation power and changes in mineralogy as a function of sintering temperature are presented
International Nuclear Information System (INIS)
1993-09-01
This baseline risk assessment evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site near Monument Valley, Arizona. The tailings and other contaminated material at this site are being relocated and stabilized in a disposal cell at Mexican Hat, Utah, through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The tailings removal is planned for completion by spring 1994. After the tailings are removed, groundwater contamination at the site will continue to be evaluated. This risk assessment is the first document specific to this site for the Groundwater Project. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site
Uranium Mill Tailings Remedial Action Project 1993 Environmental Report
Energy Technology Data Exchange (ETDEWEB)
1994-10-01
This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.
Uranium Mill Tailings Remedial Action Project 1993 Environmental Report
International Nuclear Information System (INIS)
1994-10-01
This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments
Progress report on a study of contamination of the human food chain by uranium mill tailings piles
International Nuclear Information System (INIS)
Holtzman, R.B.; Urnezis, P.W.; Padova, A.; Bobula, C.M. III.
1978-01-01
A study is in progress to estimate the contamination of the human food chain by uranium, 230 Th, 226 Ra, 210 Pb, and 210 Po originating from tailing piles associated with uranium ore processing mills. Rabbits, cattle, vegetables, and grass were collected on or near two uranium mill sites. For controls, similar samples were obtained from areas 20 km or more from the mining and milling operations. For the on-site rabbits the mean 226 Ra concentrations in muscle, lung, and kidney of 5.5, 14, and 15 pCi/kg wet, respectively, were substantially higher than those in the respective tissues of control animals (0.4, 1.5, and 0.2 pCi/kg). The levels in liver did not differ significantly between the groups. The concentrations in bone (femur and vertebra) were about 9000 and 350 pCi/kg ash for the on- and off-site animals, respectively. The levels of 210 Pb and 210 Po did not differ significantly for a given tissue between the two groups. For cattle the existing data indicate that the concentrations of radionuclides do not differ greatly between those grazed near the pile and the controls, except that the 210 Pb concentration in the liver of an exposed animal is greater than that of the control. Vegetables from a residential area on a mill site contained substantially greater concentrations of 226 Ra and 210 Pb than those reported for standard New York City diets
International Nuclear Information System (INIS)
Eidson, A.F.
1982-01-01
Uranium aerosols generated during normal yellowcake packaging operations were sampled at four uranium mills. Samplers located in the packaging area were operated before, during and after drums of dried yellowcake were filled and sealed. Mediar aerosol concentrations ranged from 0.04 μg U/l to 0.34 μg U/1 during the routine packaging operations at the four mills. The aerosols were heterogeneous and included a broad range of particle sizes. Both the concentrations and particle size distributions varied with time. Aerosol characteristics could often be related to individual packaging steps. Sampling of yellowcake by hand from a filled open drum to measure the yellowcake moisture content need not pose a unique hazard to the operator. The combined results show that appreciable amounts of airborne uranium would be expected to deposit in the nasopharyngeal compartment of the respiratory tract if inhaled by a worker not wearing respiratory protection
International Nuclear Information System (INIS)
Eidson, A.F.
1984-05-01
The problems addressed are the protection of uranium mill workers from occupational exposure to uranium through routine bioassay programs and the assessment of accidental worker exposures. Comparisons of chemical properties and the biological behavior of refined uranium ore (yellowcake) are made to identify important properties that influence uranium distribution patterns among organs. These studies will facilitate calculations of organ doses for specific exposures and associated health risk estimates and will identify important bioassay procedures to improve evaluations of human exposures. A quantitative analytical method for yellowcake was developed based on the infrared absorption of ammonium diuranate and U 3 O 8 mixtures in KBr. The method was applied to yellowcake samples obtained from six operating mills. The composition of yellowcake from the six mills ranged from nearly pure ammonium diuranate to nearly pure U 3 O 8 . The composition of yellowcake samples taken from lots from the same mill was only somewhat less variable. Because uranium mill workers might be exposed to yellowcake either by contamination of a wound or by inhalation, a study of retention and translocation of uranium after subcutaneous implantation in rats was done. The results showed that 49% of the implanted yellowcake cleared from the body with a half-time (T sub 1/2) in the body of 0.3 days, and the remainder was cleared with a T sub 1/2 of 11 to 30 days. Exposures of Beagle dogs by nose-only inhalation to aerosols of commercial yellowcake were completed. Biochemical indicators of kidney dysfunction that appeared in blood and urine 4 to 8 days after exposure to the more soluble yellowcake showed significant changes in dogs, but levels returned to normal by 16 days after exposure. No biochemical evidence of kidney dysfunction was observed in dogs exposed to the less soluble yellowcake form. 18 figures, 9 tables
International Nuclear Information System (INIS)
Dory, A.B.
1982-01-01
This presentation is divided into two main sections. In the first, the author explores the issues of radiation and tailings disposal, and then examines the Canadian nuclear regulatory process from the point of view of jurisdiction, objectives, philosophy and mechanics. The compliance inspection program is outlined, and the author discussed the relationships between the AECB and other regulatory agencies, the public and uranium mine-mill workers. The section concludes with an examination of the stance of the medical profession on nuclear issues. In part two, the radiological hazards for uranium miners are examined: radon daughters, gamma radiation, thoron daughters and uranium dust. The author touches on new regulations being drafted, the assessment of past exposures in mine atmospheres, and the regulatory approach at the surface exploration stage. The presentation concludes with the author's brief observations on the findings of other uranium mining inquiries and on future requirements in the industry's interests
Energy Technology Data Exchange (ETDEWEB)
NONE
1993-06-01
The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VP) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the groundwater from further degradation. Remedial actions at the Slick Rock sites must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC).
International Nuclear Information System (INIS)
1979-01-01
The proposed action is the continuation of Source Material License SUA-917 issued to Atlas Corporation for the operation of the Atlas Uranium Mill in Grand County, Utah, near Moab (Docket No. 40-3453). The present mill was designed for an 1100 MT (1200 ton) per day processing rate with 0.25% uranium ore feed. The actual ore processing rate may vary up to 1450 MT (1600 ton) per day if lower grade ores are processed, but the annual production rate of 836 MT (921 tons) U 3 O 8 will not be exceeded. Possible environmental impacts and adverse effects are identified. Conditions for the protection of the environment are set forth before the license can be renewed
Energy Technology Data Exchange (ETDEWEB)
1981-10-01
Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.
International Nuclear Information System (INIS)
1981-10-01
Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive
International Nuclear Information System (INIS)
1981-10-01
Ford, Bacon and Davis Utah, Inc., has reevaluated the Phillips/United Nuclear site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Ambrosia Lake, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from 2.6 million dry tons of tailings at the Phillips/United Nuclear site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material, to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $21,500,000 for stabilization in-place, to about $45,200,000 for disposal at a distance of about 15 mi. Three principal alternatives for the reprocessing of the Phillips/United Nuclear tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing.The cost of the uranium recovered would be about $87/lb of U 3 O 8 by either heap leach or conventional plant process. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Phillips/United Nuclear tailings for uranium recovery does not appear to be economically attractive under present or foreseeable market conditions
Dutch nuclear power and the environmental implications of uranium mining and milling
International Nuclear Information System (INIS)
Thornton, S.J.
1986-04-01
This report is aimed at furthering the understanding of some of the international impacts of Dutch nuclear power generation. It has two principle objectives: 1. To clarify the connection between nuclear power generation in the Netherlands and environmental degradation elsewhere as a result of the mining and milling of uranium. 2. To establish the relevance of this environmental degradation to the formulation of Dutch energy policy. (Auth.)
International Nuclear Information System (INIS)
1985-06-01
The report is organized into five main sections. The conclusions of the effort are summarized in Chapter 2. A general description of current milling and tailings management practices and a summary of the site-specific characteristics of operating and standby uranium mills are contained in Chapter-3. The sources and emission rates of radon-222 at licensed mills and their associated tailings piles are contained in Chapter 4 along with the results of an effort to develop generic procedures to estimate radon-222 emissions for milling operations and tailings disposal. Control practices that are being or could be applied to the milling operation and tailings disposal areas and their estimated cost and effectiveness in reducing radon-222 emissions are presented in Chapter 5. The appendices contain detailed information on mill site data and emission estimates
International Nuclear Information System (INIS)
McConnell, M.A.; Ramanujam, V.M.S.; Alcock, N.W.; Gabehart, G.J.; Au, W.W.
1998-01-01
The northern region of Karnes County, Texas, USA, has been the site of extensive mining/milling of uranium for over 30 years. A previous study in their laboratory indicates that residents living near these facilities have increased chromosomal aberrations and a reduced DNA repair capacity. In this study, the long-lived radionuclides uranium-238 ( 238 U) and thorium-232 ( 232 Th) were measured in order to evaluate the extent of contamination from mining/milling facilities. 232 Th was quantified simultaneously and served as a reference. Soil samples were collected from the yards of previously studied households and adjacent areas near former mining and mining/milling sites at the surface and 30 cm subsurface. Additionally, samples from drinking water wells were collected from selected households. Sites located over 14 km from the study area with no known history of mining/milling served as the control. In the control area, 238 U concentrations in soil were consistent between surface (0.13--0.26 mg/kg) and subsurface samples. Near mining/milling sites, 238 U in surface soil was found to be consistently and statistically higher than corresponding subsurface samples. Near mining-only areas, 238 U in surface soil, however, was not significantly increased over subsurface soil. As expected, 238 U was much higher overall in the mining/milling and mining-only areas compared to the control sites. No trends were detected in the distribution of 232 Th. The concentration of 238 U was up to six times higher in a drinking water well near a former mining/milling operation, indicating possible leaching into the groundwater, while 232 Th concentrations were low and uniform. Furthermore, lead isotope ratio analysis indicates contamination from the interstate shipping of ore by rail to and from a mining/milling facility. These data indicate contamination of the environment by the mining/milling activities in a residential area
International Nuclear Information System (INIS)
Chernoff, A.R.; Lacker, D.K.
1992-09-01
The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas
International Nuclear Information System (INIS)
1995-01-01
The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0347) on the proposed surface remediation of the Maybell uranium mill processing site in Moffat County, Colorado. The mill site contains radioactively contaminated materials from processing uranium ore that would be stabilized in place at the existing tailings pile location. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, Public Law 91-190 (42 U.S.C. section 4321 et seq.), as amended. Therefore, preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI)
International Nuclear Information System (INIS)
1994-04-01
This report evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells to determine the potential for immediate human health and environmental impacts. This risk assessment evaluates the most contaminated groundwater that flows beneath the processing site towards the Gunnison River. The monitor wells that have consistently shown the highest concentration of most contaminants are used in this risk assessment. This risk assessment will be used in conjunction with additional activities and documents to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium
International Nuclear Information System (INIS)
1995-02-01
This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site's contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determine what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination
Energy Technology Data Exchange (ETDEWEB)
1995-02-01
This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site`s contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determine what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination.
International Nuclear Information System (INIS)
1981-09-01
Ford, Bacon and Davis Utah, Inc., has reevaluated the Slick Rock sites in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Slick Rock, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 387,000 tons of tailings at the Slick Rock sites constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The five alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material, consolidation of the piles, and removal of the tailings to remote disposal sites and decontamination of the tailings sites. Cost estimates for the five options range from about $6,800,000 for stabilization in-place, to about $11,000,000 for disposal at a distance of about 6.5 mi. Three principal alternatives for the reprocessing of the Slick Rock tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be over $800/lb of U 3 O 8 whether by conventional or heap leach plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present, nor for the foreseeable future
International Nuclear Information System (INIS)
1996-10-01
The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project is to eliminate, reduce, or address to acceptable levels the potential health and environmental consequences of milling activities. One of the first steps in the UMTRA Ground Water Project is the preparation of the Programmatic Environmental Impact Statement (PEIS). This report contains the comments and responses received on the draft PEIS
Energy Technology Data Exchange (ETDEWEB)
1993-09-01
This report evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1986 by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This risk assessment is the first document specific to this site for the Groundwater Project. This risk assessment follows the approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the floodplain groundwater are arsenic, magnesium, manganese, nitrate, sodium, sulfate, and uranium. The complete list of contaminants associated with the terrace groundwater could not be determined due to the lack of the background groundwater quality data. However, uranium, nitrate, and sulfate are evaluated since these chemicals are clearly associated with uranium processing and are highly elevated compared to regional waters. It also could not be determined if the groundwater occurring in the terrace is a usable water resource, since it appears to have originated largely from past milling operations. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if a drinking well were installed in the contaminated groundwater or if there were exposure to surface expressions of contaminated water. Potential exposures to surface water include incidental contact with contaminated water or sediments by children playing on the floodplain and consumption of meat and milk from domestic animals grazed and watered on the floodplain.
Energy Technology Data Exchange (ETDEWEB)
1993-09-01
This baseline risk assessment evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site near Monument Valley, Arizona. The tailings and other contaminated material at this site are being relocated and stabilized in a disposal cell at Mexican Hat, Utah, through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The tailings removal is planned for completion by spring 1994. After the tailings are removed, groundwater contamination at the site will continue to be evaluated. This risk assessment is the first document specific to this site for the Groundwater Project. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site.
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-09-01
The Technical Committee Meeting on Planning and Management of Uranium Mine and Mill Closures was held in Liberec, Czech Republic from 3 to 6 May 1994. A total of 30 participants from nine countries attended the meeting. Nineteen papers were presented. Most of these papers dealt with the concept of and experiences in planning for and the subsequent decommissioning and rehabilitation of uranium mines and mills in Australia, Canada, Czech Republic, Germany, Romania, Slovenia, Spain and the USA. Two papers discussed the government`s role and relevant regulations related to the closures, decommissioning and remediation of uranium production facilities. Of particular interest to the participants was a non-technical paper presented by the Mayor of the city of Andujar, Spain, describing the negative political and socio-economic impacts associated with closure and decommissioning of an uranium mine/mill facility. The highlights of the meeting were the field visits to the uranium production facilities and rehabilitation programme sites of DIAMO and WISMUT companies, located respectively in Straz, Czech Republic and Koenigstein, Germany. Refs, figs and tabs.
International Nuclear Information System (INIS)
Haywood, F.F.; Goldsmith, W.A.; Jacobs, D.G.; Perdue, P.T.; Ellis, B.S.; Hubbard, H.M. Jr.; Shinpaugh, W.H.
1980-04-01
Results of a radiological survey of the inactive uranium-mill site at Grand Junction, Colorado, made in May and June 1976, are presented along with descriptions of techniques and equipment used to obtain the data and an assessment of increased risk of health effects attributable to radiation and radionuclides from the tailings. An estimate of potential health effects of exposure to gamma rays around a former mill building and to radon daughters produced by radon dispersed from the tailings has been made for occupants of the site
Nuclear safety, environmental and community impacts of uranium mining - Canada
International Nuclear Information System (INIS)
Scissons, Kevin H.
2009-01-01
The Canadian Nuclear Safety Commission (CNSC) is mandated under the Nuclear Safety and Control Act (NSCA, the CNSC's mandate is set out in Section 9 of the Nuclear Safety and Control Act.) for regulating all nuclear facilities and nuclear-related activities in Canada. Before any person or company can prepare a site, construct, operate, decommission or abandon a nuclear facility, or possess, use, transport or store nuclear substances, they must obtain a licence issued by the CNSC. This paper provides an overview of the licensing of uranium mines and mills in Canada, taking into consideration the requirements of the NSCA and associated regulations concerning the environment, the people and the communities we protect. Describing the role of the CNSC and our regulatory framework will form a key foundation to this paper. This paper will also explain the different licensing phases and their focus for uranium mines and mills. It will conclude with an overview of our community involvement (social, public aspects) and our joint regulatory approach for defence in depth. (orig.)
238U, and its decay products, in grasses from an abandoned uranium mine
Childs, Edgar; Maskall, John; Millward, Geoffrey
2016-04-01
Bioaccumulation of radioactive contaminants by plants is of concern particularly where the sward is an essential part of the diet of ruminants. The abandoned South Terras uranium mine, south west England, had primary deposits of uraninite (UO2) and pitchblende (U3O8), which contained up to 30% uranium. When the mine was active uranium and radium were extracted but following closure it was abandoned without remediation. Waste rock and gangue, consisting of inefficiently processed minerals, were spread around the site, including a field where ruminants are grazed. Here we report the activity concentrations of 238U, 235U 214,210Pb, and the concentrations of selected metals in the soils, roots and leaves of grasses taken from the contaminated field. Soil samples were collected at the surface, and at 30 cm depth, using an auger along a 10-point transect in the field from the foot of a waste heap. Whole, individual grass plants were removed with a spade, ensuring that their roots were intact. The soils and roots and grass leaves were freeze-dried. Activity concentrations of the radionuclides were determined by gamma spectroscopy, following 30 days incubation for development of secular equilibrium. Dried soils, roots and grasses were also digested in aqua regia and the concentrations of elements determined by ICP techniques. Maximum activity concentrations of 238U, 235U, 214Pb and 210Pb surface soils were 63,300, 4,510, 23,300 and 49,400 Bq kg-1, respectively. The mean 238U:235U ratio was 11.8 ± 1.8, an order of magnitude lower than the natural value of 138, indicating disequilibrium within the decay chain due to mineral processing. Radionuclides in the roots had 5 times lower concentration and only grass leaves in the vicinity of the waste heap had measureable values. The mean soil to root transfer factor for 238U was 36%, the mean root to leaf was 3% and overall only 0.7% of 238U was transferred from the soil to the leaves. The roots contained 0.8% iron, possibly as
Radiological survey of the inactive uranium-mill tailings at Ambrosia Lake, New Mexico
International Nuclear Information System (INIS)
Haywood, F.F.; Christian, D.J.; Ellis, B.S.; Hubbard, H.M. Jr.; Lorenzo, D.; Shinpaugh, W.H.
1980-06-01
The inactive uranium-mill tailings pile at Ambrosia Lake, New Mexico, contains approximately 1520 Ci of 226 Ra in 2.4 million metric tons of tailings covering an area of 43 hectares. All of the former mill buildings were intact and, at the time of this survey, several were in use. The tailings have not been stabilized, but the crusty surface is reported to be resistant to wind erosion. The average gamma-ray exposure rate 1 m above the tailings is 720 μR/h while the average rate in the former mill area is 150 μR/h. The adjacent area, between the mill site, ponds, and tailings pile, has an average exposure rate of 230 μR/h. Gamma radiation measurements outside these areas, as well as the results of analyses of surface or near-surface sediment and soil samples, show fairly wide dispersion of contamination around the site. The subsurface distribution of 226 Ra in 18 holes drilled at the site, calculated from gamma-ray monitoring data, is presented graphically and compared with measured concentrations in two holes
Domestic uranium mining and milling industry 1989
International Nuclear Information System (INIS)
1990-01-01
Section 170B of the Atomic Energy Act of 1954, as amended by Public Law 97-415, requires that the Secretary of Energy submit to Congress an annual assessment of the viability of the domestic uranium mining and milling industry. The Energy Information Administration (EIA) of the Department of Energy (DOE) was assigned the responsibility to develop the criteria for use in estimating the viability of the industry. These criteria include four major attributes of industry viability - resource capability, supply response capability, financial capability, and import commitment dependency. Having established these criteria, the Secretary of Energy is required to monitor the industry and make an annual assessment of its viability for 1983 through 1992. The first six assessments were issued in the years 1984 through 1989 based on information available for 1983 through 1988, respectively. The current report provides the data and analyses, based on the information available through the end of the calendar year 1989, supporting the seventh annual assessment of the uranium industry's viability. It presents information on the four major attributes. Data on past and present industry behavior, as well as projections of the future status of the industry (assuming current market conditions), were used to examine the industry's ability to respond, over a 10-year period, to two hypothetical supply disruption scenarios. 20 figs., 23 tabs
International Nuclear Information System (INIS)
Logsdon, M.J.; Verma, T.R.; Martin, D.E.
1984-01-01
Public Law 95-604, the Uranium Mill Tailings Radiation Control Act of 1978, provides the Department of Energy with authority to perform remedial actions at designated inactive uranium-mill sites. The Environmental Protection Agency promulgated radiological and non-radiological standards (40 CFR 192) for remedial actions at inactive uranium-mill sites. All remedial actions require the concurrence of the Nuclear Regulatory Commission. Subpart C of 40 CFR 192 addresses the control of pollutants in groundwater at sites for which remedial action is proposed pursuant to P.L 95-604. As the authors interpret the regulation, it is essentially an admonition to carefully evaluate what is useful and practicable to deal with existing contamination and to control potential future contamination. In reviewing groundwater aspects of Uranium Mill Tailings Remedial Action documents, current NRC experience shows that the reports should address the following information needs: (1) The need to identify the physical and chemical nature of the present groundwater flow system in sufficient detail to provide a reasonable expectation that the extent and value of the groundwater resource to be protected is understood adequately; (2) The need to identify reasonable foreseeable events, both natural and man-made, that could alter the present groundwater flow system and the effects of such changes on the definition of the protected zone; (3) The need to identify current groundwater use within the protected zone; (4) The need to identify site-specific models, boundary conditions, and representative values of system parameters to predict with reasonable assurance that the proposed actions will protect groundwater and surface water resources for the design period of 200 - 1000 years
International Nuclear Information System (INIS)
Ibrahim, S.A.; Church, S.L.; Whicker, F.W.
1985-01-01
The purpose of this laboratory study was to investigate the effectiveness of barium chloride treatment of uranium ore on 222 Rn emanation from mill tailings, 226 Ra level in waste-water, and the leachability of radium from tailings. It has been shown that barium sulfate is an excellent carrier for radium and that barium sulfate crystals have high retention capacity for radon gas produced by radium trapped within the lattice. Ground uranium ore from a mine in Wyoming was mixed with water to form a 1:1 ratio before barium and potassium chlorides were added at concentrations of 0, 10, 25, 50, and 100 mg per liter of slurry. The ore was then subjected to a simulated mill process using sulfuric acid leaching. The liquid representing tailings pond water was separated and analyzed for 226 Ra and the solid fraction, representing mill tailings, was tested for radon emanation and the leachability of radium by deionized water. This study suggests that barium treatment of uranium ore prior to sulfuric acid leaching could be effective in reducing radon emanation from tailings and also in reducing the 226 Ra concentration of waste-water. Leachability of radium from treated tailings was markedly reduced
Processes for extracting radium from uranium mill tailings
International Nuclear Information System (INIS)
Nirdosh, I.; Baird, M.H.; Muthuswami, S.V.
1987-01-01
This patent describes a process for the extraction of radium from uranium mill tailings solids including the steps of contacting the tailings with a liquid leaching agent, leaching the tailings therewith and subsequently separating the leachate liquid and the leached solids. The improvement described here is wherein the leaching agent comprises: (a) a complexing agent in an amount of from 2 to 10 times the stoichiometric amount needed to complex the metal ions to be removed thereby from the tailings; and (b) a reducing agent reducing the hydrolysable ions of the metal ions to be removed to their lower oxidation states, the reduction agent being present in an amount from 2 to 10 times the stoichiometric amount needed for reducing the hydrolysable metals present in the tailings
International Nuclear Information System (INIS)
1994-04-01
This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water
International Nuclear Information System (INIS)
1983-07-01
This report describes the development and use of a diagnostic model designed to improve our understanding of the release of radionuclides to the natural environment from uranium mill tailings management areas. The study first developed the characteristics of a hypothetical tailings management area such that a variety of management alternatives could be studied using simulation modelling techniques. Factors describing climate and the surrounding environment were fixed and the simulation model was run to predict releases from the tailings site over time periods of thousands of years. Simulation runs were carried out for a series of six major management alternatives ranging from old abandoned practices through currently accepted practices to as yet to be proven management techniques. This summary report describes the major aspects of the diagnostic model and the findings obtained through its use. The report does not attempt to predict doses or radionuclide dispersal patterns for any specific site, existing or planned. A more complete technical discussion of the model may be found in the two technical appendices associated with this report INFO--0097 (app.A.) and INFO--0097 (app.B)
International Nuclear Information System (INIS)
1980-09-01
The Final Generic Environmental Impact Statement (GEIS) on Uranium Milling focuses primarily upon the matter of mill tailings disposal. It evaluates both the costs and benefits of alternative tailings disposal modes and draws conclusions about criteria which should be incorporated into regulations. Both institutional and technical controls are evaluated. Health impacts considered were both short and long term. Restatement and resolution of all public comments received on the draft (GEIS) are presented. There are three volumes: Volume I is the main text and Volumes II and III are supporting appendices
Chevron's Panna Maria mill process description
International Nuclear Information System (INIS)
Anon.
1979-01-01
Key features of Chevron's Uranium Mill located near Panna Maria, Texas, are described. The mill is designed to process a nominal 2500 dry tons/day of uranium bearing ore containing 15% uncombined moisture. The following operations at the mill are highlighted: ore receiving, grinding, leaching, countercurrent decantation and tailings disposal, filtering, solvent extraction, solvent stripping, precipitation, drying, and packaging
International Nuclear Information System (INIS)
2002-06-01
Effluent treatment is an important aspect of uranium mining and milling operations that continues through decommissioning and site rehabilitation. During the life of a mine, effluent treatment is an integral part of the operation with all effluent either being recycled to the mill or processed through a water treatment plant before being released into the environment. During decommissioning and rehabilitation, effluent treatment must continue either through a water treatment plant of by using passive treatment techniques. Because of the recent closing of several uranium mines or mining districts, particularly in eastern Europe, effluent treatment is becoming an ever increasing concern. Therefore the IAEA convened a technical committee meeting (TCM) so that experts from different countries could discuss information and knowledge on effluent treatment processes and methods. The papers presented at the meeting describe techniques for treatment of effluents from uranium production operations - both past and present. This publication contains ten papers presented at the meeting; each of the papers was indexed separately
International Nuclear Information System (INIS)
Ring, R.J.; Woods, P.H.; Muller, H.B.
2001-01-01
This paper discusses the environmental and safety related changes that have recently occurred, or are about to be implemented in the Australian uranium milling industry. There are several drivers for these changes. The most important are the significant expansions to the Ranger and Olympic Dam uranium mills, the mining of a new orebody at Ranger and Government permission for the development of the Jabiluka deposit. The major changes in the operation of mines relate to the conservation and recycle of water, an important environmental issue in the arid country surrounding the Olympic Dam deposit, and tailings disposal strategies recently adopted or under consideration. These strategies include methods such as central thickened discharge, and cemented paste-fill for both underground and above ground disposal. The new ICRP 60 recommendations concerning radiation exposure have not been of major concern to the Australian industry, as dose rates have been historically less than the new limits. Current and expected dose rates are discussed in the context of these recommendations. (author)
International Nuclear Information System (INIS)
1988-07-01
The inactive Green River uranium mill tailings site is one mile southeast of Green River, Utah. The existing tailings pile is within the floodplain boundaries of the 100-year and 500-year flood events. The 48-acre designated site contains eight acres of tailings, the mill yard and ore storage area, four main buildings, a water tower, and several small buildings. Dispersion of the tailings has contaminated an additional 24 acres surrounding the designated site. Elevated concentrations of molybdenum, nitrate, selenium, uranium, and gross alpha activity exceed background levels and the proposed US Environmental Protection Agency (EPA) maximum concentration limits in the groundwater in the unconsolidated alluvium and in the shallow shales and limestones beneath the alluvium at the mill tailings site. The contamination is localized beneath, and slightly downgradient of, the tailings pile. The proposed action is to relocate the tailings and associated contaminated materials to an area 600 feet south of the existing tailings pile where they would be consolidated into one, below-grade disposal cell. A radon/infiltration barrier would be constructed to cover the stabilized pile and various erosion control measures would be taken to ensure the long-term stability of the stabilized pile. 88 refs., 12 figs., 20 tabs
International Nuclear Information System (INIS)
Gillen, D.M.
1985-01-01
To reduce potential health hazards associated with inactive uranium mill tailings sites, the Department of Energy (DOE) is presently investigating and implementing remedial actions at 24 sites in the Uranium Mill Tailings Remedial Action Program (UMTRAP). All remedial actions must be selected and performed with the concurrence of the Nuclear Regulatory Commission (NRC). This paper provides a discussion of geotechnical engineering considerations during the NRC's preconcurrence review of proposed remedial action plans. In order for the NRC staff to perform an adequate geotechnical engineering review, DOE documents must contain a presentation of the properties and stability of all in-situ and engineered soil and rock which may affect the ability of the remedial action plans to meet EPA standards for long-term stability and control. Site investigations, laboratory testing, and remedial action designs must be adequate in scope and technique to provide sufficient data for the NRC staff to independently evaluate static and dynamic stability, settlement, radon attenuation through the soil cover, durability of rock for erosion protection, and other geotechnical engineering factors
Energy Technology Data Exchange (ETDEWEB)
1994-06-01
This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.
International Nuclear Information System (INIS)
1994-06-01
This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site
Ground and surface water in New Mexico: are they protected against uranium mining and milling
International Nuclear Information System (INIS)
Townsend, K.K.
1978-01-01
Inadequate funds to allow New Mexico to collect data on the effects of uranium mining and milling on ground and surface water resources and vigorous opposition by the uranium companies have made the Environmental Protection Agency reluctant to adopt the state's request for control of discharges. The state is unable to monitor for the presence of toxic materials and questions have been raised over EPA's jurisdiction over groundwater. Federal and state water pollution regulations are reviewed and weaknesses noted, particularly the effect of terrain and the limitations on regulation of navigable waters
Tree growth studies on uranium mill tailings
International Nuclear Information System (INIS)
Murray, D.R.; Turcotte, M.
1982-01-01
Coniferous trees planted in 1974 and deciduous species that have volunteered since 1970 on uranium mill tailings that had been stabilized to varying degrees using limestone and vegetation were evaluated. Their survival and growth rates were compared with those from other investigations. Competition for light appears to be a major contributor to mortality. Differences in soil moisture conditions under a tree stand as compared to those under a grass sward are potentially significant enough to affect the tailings hydrology and effluent contamination. Recommendations include planting seeds of deciduous species or deciduous and coniferous seedlings on strips of freshly disturbed tailings. The disturbed strips would provide reduced competition for the initial year and assist in tree survival. The planting of block stands of coniferous or deciduous trees would be useful for evaluating the hydrological impact of the trees as compared to the present grass sward
Uranium Mill Tailings Remedial Action Project environmental protection implementation plan
International Nuclear Information System (INIS)
1994-10-01
The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies
Uranium Mill Tailings Remedial Action Project environmental protection implementation plan
Energy Technology Data Exchange (ETDEWEB)
1994-10-01
The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.
Methodologies for evaluating long-term stabilization designs of uranium mill tailings impoundments
International Nuclear Information System (INIS)
Nelson, J.D.; Abt, S.R.; Volpe, R.L.; Van Zye, D.; Hinkle, N.E.; Staub, W.P.
1986-06-01
Uranium mill tailings impoundments require long-term (200 to 1000 years) stabilization. This report reviews currently available methodologies for evaluating factors that can have a significant influence on tailings stabilization and develops methodologies in technical areas where none presently exist. Mill operators can use these methodologies to assist with (1) the selection of sites for mill tailings impoundments, (2) the design of stable impoundments, and (3) the development of reclamation plans for existing impoundments. These methodologies would also be useful for regulatory agency evaluations of proposals in permit or license applications. Methodologies were reviewed or developed in the following technical areas: (1) prediction of the Probable Maximum Precipitation (PMP) and an accompanying Probable Maximum Flood (PMF); (2) prediction of the stability of local and regional fluvial systems; (3) design of impoundment surfaces resistant to gully erosion; (4) evaluation of the potential for surface sheet erosion; (5) design of riprap for protecting embankments from channel flood flow and overland flow; (6) selection of riprap with appropriate durability for its intended use; and (7) evaluation of oversizing required for marginal quality riprap
International Nuclear Information System (INIS)
Carvalho, F.
2014-01-01
Uranium legacy sites in the country contain large amounts of milling tailings, mining waste, old infrastructures and acid mine drainage with high radioactivity concentrations. Radioactivity surveillance of these sites has been maintained for many years and institutional control kept beyond cessation of Portuguese uranium mining in 2001. A research programme (2003-2006) requested by the government to assess environmental contamination and public health risks in these regions advised implementing environmental remediation measures. A national programme was approved for remediation of abandoned mine sites, including radioactive and non-radioactive mines, that started in 2005 and since has completed significant remediation works in several old uranium mines. One amongst these sites, the Urgeiriça mine and milling site, was re-engineered, tailings were covered, the mine was closed, the area of mine and milling facilities cleaned, and an automated contaminated water treatment plant installed. Environmental radioactivity surveys carried out in this region showed reduced ambient radiation doses, lower radon concentrations in surface air, return to background radioactivity in surface air aerosols, and decrease of radionuclide concentrations in the river receiving water discharges from the mine site, resulting in a reduced radiation exposure to members of the public. Other legacy uranium mines without milling tailings, were mainly remediated for landscape engineering and the adopted solutions included, for example, preservation of non-contaminated ponds for public leisure. Although not completed yet in many sites, the remediation works implemented contributed already to a significant abatement of radiation exposure allowing for safer implementation of activities, such as agriculture and cattle grazing, in the surroundings of legacy sites. Environmental remediation and abatement of radiation exposure contributed to revitalize socio-economic activities of the region and
From Rum Jungle to Wismut - Reducing the environmental impact of uranium mining and milling
International Nuclear Information System (INIS)
Zuk, W.M.; Jeffree, R.A.; Levins, D.M.; Lowson, R.T.; Ritchie, A.I.M.
1994-01-01
Australia has a long history of uranium mining. In the early days, little attention was given to environmental matters and considerable pollution occurred. ANSTO has been involved in rehabilitation of a number of the early uranium mining sites, from Rum Jungle in Australia's Northern Territory to Wismut in Germany, and is working with current producers to minimise the environmental impact of their operations. ANSTO's expertise in amelioration of acid mine drainage, radon measurements and control, treatment of mill wastes, management of tailings, monitoring of seepage plumes, mathematical modelling of pollutant transport and biological impacts in a tropical environment are summarized. 17 refs., 3 figs
Decommissioning of uranium mines and mills - Canadian regulatory approach and experience
International Nuclear Information System (INIS)
Whitehead, W.
1986-09-01
At the time of the recent closures of the Agnew Lake, Beaverlodge and Madawaska Mines Limited uranium mining and milling facilities, several relevant regulatory initiatives, including the development of decommissioning criteria, were underway, or contemplated. In the absence of precedents, the regulatory agencies and companies involved adopted approaches to the decommissioning of these facilities that reflected site specific circumstances, federal and provincial regulatory requirements, and generally accepted principles of good engineering practice and environmental protection. This paper summarizes related historical and current regulatory policies, requirements and guidelines; including those implemented at the three decommissioned sites
International Nuclear Information System (INIS)
Xiao Jiayuan
1998-01-01
The eliminating radium procedure, barium chloride-sodium carbonate-sand filtering, being used, radium can be eliminated to 3.7 x 10 -2 Bq/L order of magnitude from uranium mill acid effluents which contain 3.7 Bq/L Ra and pH 6∼9 when Ba 2+ is added by 3∼5 mg per litre, Na 2 CO 3 5mg. The radium elimination rate is more than 90%
Long-term radiological aspects of management of wastes from uranium mining and milling
International Nuclear Information System (INIS)
1984-09-01
Due to the contamination of uranium mill tailings by long-lived natural radionuclides, their management presents specific radiation protection aspects in the long term. This report presents several examples of the application of the International Commission of Radiological Protection (ICRP) methodology for the optimisation of radiation protection to these types of waste. The advantages and disadvantages of such an approach are discussed and several important limitations are identified
International Nuclear Information System (INIS)
Bachrach, A.; Hoopes, J.; Morycz, D.; Bone, M.; Cox, S.; Jones, D.; Lechel, D.; Meyer, C.; Nelson, M.; Peel, R.; Portillo, R.; Rogers, L.; Taber, B.; Zelle, P.; Rice, G.
1984-12-01
This document assesses and compares the environmental impacts of various alternatives for remedial action at the Gunnison uranium of mill tailings site located 0.5 miles south of Gunnison, Colorado. The site covers 56 acres and contains 35 acres of tailings, 2 of the original mill buildings and a water tower. The Uranium Mill Tailings Radiation Control of Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated [vicinity] properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the occurrence of the Nuclear Regulatory Commission. Four alternatives have been addressed in this document. The first alternative is to consolidate the tailings and associated contaminated soils into a recontoured pile on the southern portion of the existing site. A radon barrier of silty clay would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Two other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a location farther from the city of Gunnison. The no action alternative is also assessed
Long-Term Stewardship at a Former Uranium Mill Tailings Site in Riverton, Wyoming WM2017-17090
Energy Technology Data Exchange (ETDEWEB)
Dam, William [USDOE Office of Legacy Management, Washington, DC (United States); Gil, Dr. April [USDOE Office of Legacy Management, Washington, DC (United States); Johnson, Raymond H. [Navarro Research and Engineering, Oak Ridge, TN (United States); Campbell, Sam [Navarro Research and Engineering, Oak Ridge, TN (United States)
2017-03-01
The US Department of Energy Office of Legacy Management (LM) is responsible for maintaining protective public health and environmental conditions at former uranium mill tailings sites nationwide via long-term stewardship. One of these sites, a former uranium mill near Riverton, Wyoming, is within the boundary of the Wind River Indian Reservation and operated from 1958 to 1963. Tailings and contaminated material associated with mill operations were removed and transported to an offsite disposal cell in 1989. The remedial action was completed under Title I of the Uranium Mill Tailings Radiation Control Act of 1978. Milling operations, which included an unlined tailings impoundment and an unlined evaporation pond, contaminated the shallow groundwater, resulting in a downgradient groundwater plume that discharges to the Little Wind River. A natural flushing compliance strategy was implemented in 1998. This strategy allows contaminants of concern to naturally flush from the groundwater, provided that contaminants flush below US Environmental Protection Agency maximum concentration limits within 100 years. As part of the compliance strategy, LM has implemented a groundwater monitoring program along with institutional controls that include the installation of an alternate water supply, continued sampling of private wells, and restrictions on well drilling and gravel pit construction. LM works closely with local stakeholders and community members to ensure that these institutional controls are in place and maintained. The Riverton site provides an interesting case study where contaminant remobilization due to river flooding prompted a reevaluation of the conceptual site model to verify if the current compliance strategy would remain protective of human health and the environment. Concentrations of groundwater contaminants, which include sulfate, molybdenum, and uranium, were transiently elevated following flooding of the Little Wind River in 2010 and 2016. These flood
1996 monitoring report for the Gunnison, Colorado, wetlands mitigation plan
International Nuclear Information System (INIS)
1996-12-01
The US Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project to clean up uranium mill tailings and other surface contamination at 24 abandoned uranium mill sites in 10 states. One of these abandoned mill sites was near the town of Gunnison, Colorado. Surface remediation was completed at the Gunnison site in December 1995. Remedial action resulted in the elimination of 4.3 acres of wetlands and mitigation of this loss is through the enhancement of 17.8 acres of riparian plant communities in six spring-fed areas on US Bureau of Land Management mitigation sites. A five-year monitoring program was then implemented to document the response of vegetation and wildlife to the exclusion of livestock. This report provides the results of the third year of the monitoring program
226Ra and 210Pb relationship in solid wastes and plants at Uranium mill tailing
International Nuclear Information System (INIS)
Madruga, M.J.; Faria, I.; Brogueira, A.
2002-01-01
After the uranium extraction from the ore, the waste residues (tailings) contain several radionuclides in elevated levels comparing to normal soils. Nearly all of the uranium progenies (2 30T h, 2 26R a, 2 10P b and 2 10P o) and the unextracted uranium fraction are present in tailings. These large quantities of tailings may provide a significant source of environmental and food chain contamination. The transfer of radioisotopes between different ecological compartments is frequently evaluated using ratios which relate the radionuclide content in one ecosystem compartment to that of another. For instance, the concentration ratio (CR), i.e., the ratio between radionuclide concentrations in tailings and plants can be evaluated. Radium-226, a long-lived alfa emitter, is a chemical analog of calcium. The 2 26R a uptake is similar to calcium in biological and ecological systems. The uptake of 2 10P b will follow the same pattern as natural lead. Plants do not require lead but in contrast they require the Ra/Ca group elements. The uptake of lead is mainly a function of the lead tolerance of the plant and the hydrogen ion concentration of the soil. Kalin and Sharma (1982) reported that 2 26R a and 2 10P b uptake by indigenous species from inactive uranium mill tailings in Canada differ from the uptake of the elements by the same plants growing in soil. Ibrahim and Whicker (1992) reported that tailing acidity tends to enhance radionuclide availability for plant uptake. The transport of radionuclides to foliage and subsequent retention and absorption may play a role in plant contamination. The main goal of this study is to evaluate the 2 26R a and 2 10P b relationship in tailings and plants growing at uranium mill tailings
Tailings treatment techniques for uranium mill waste: a review of existing information
International Nuclear Information System (INIS)
Sherwood, D.R.; Serne, R.J.
1983-07-01
Of primary concern at uranium mill sites in the United States is the potential of ground-water contamination from mill wastes that are disposed in tailings impoundments. Although many systems have been used to control seepage from tailings impoundments, most of these systems are limited in their ability to handle an excess of tailings solution. Three general amelioration methods were identified: neutralization, fixation and specific constituent removal. During neutralization, a reagent is added to the tailings solution to neutralize the acidity and raise the pH to reduce the solubility of various pH sensitive contaminants. Fixation processes add materials such as lime, cement or asphalt to the waste to produce a physically stable composition that resists leaching of hazardous constituents. Specific constituent removal encompasses varying techniques, such as alternate ore leaching processes, effluent treatment with sorption, or ion exchange agents or selected precipitation that reduce specific constituent concentrations in tailings solution. Neutralization processes appear to be best suited for treating uranium mill tailings because they can, at a reasonable cost, limit the solution concentration of many contaminants. The effectiveness of the process depends on the reagent used as well as the waste being treated. Of the six reagents studied (lime, limestone, caustic soda, soda ash, combined limestone/lime and combined alumina/lime/soda), a combined treatment of limestone and lime seems best, especially for tailings containing ferric iron as the limestone economically buffers the solution acidity while the lime takes the pH to 8.0, an optimum level for heavy metal removal. For those tailings containing ferrous iron, lime alone works best. The costs for the lime/limestone or lime processes range from $0.20 to $1.00 per 1000 gal of treated water, excluding capital equipment costs
Analysis of potential radiation-induced genetic and somatic effects to man from milling of uranium
International Nuclear Information System (INIS)
Momeni, M.H.
1984-01-01
Potential mortality from natural causes and from radiation exposure conditions typical of those in the vicinity of uranium mills in the western USA was calculated. The exposure conditions were those assumed to exist in the vicinity of a hypothetical model mill. Dose rates to organs at risk were calculated as a function of time using the Uranium Dispersion and Dosimetry Code (Momeni et al. 1979). The changes in population size, birth rates, and radiation-induced and natural mortalities were calculated using the PRIM code (Momeni 1983). The population of the region within a radius of 80 km from the model mill is projected to increase from 57 428 to 75 638.6 during the 85 years of this analysis. Within the same period, the average birth rates for five-year periods increase from 5067.8 to 7436.1. The cumulative deaths within the five-year periods increase from 724 and 3501.8 from spontaneously induced neoplasms and all causes, respectively, to 1538.2 and 6718.2. In comparison to natural causes, radiation-induced mortality is negligible. The highest rate of death from radiation in any five-year period is only 0.2, compared with 1538.2 deaths attributable to spontaneous incidence. The total radiation-induced genetic disorders were much less than unity for the 85-year period of analysis, in contrast with the 10.7% natural incidence of these disorders
Evolution of uranium distribution and speciation in mill tailings, COMINAK Mine, Niger.
Déjeant, Adrien; Galoisy, Laurence; Roy, Régis; Calas, Georges; Boekhout, Flora; Phrommavanh, Vannapha; Descostes, Michael
2016-03-01
This study investigated the evolution of uranium distribution and speciation in mill tailings from the COMINAK mine (Niger), in production since 1978. A multi-scale approach was used, which combined high resolution remote sensing imagery, ICP-MS bulk rock analyses, powder X-ray diffraction, Scanning Electron Microscopy, Focused Ion Beam--Transmission Electron Microscopy and X-ray Absorption Near Edge Spectroscopy. Mineralogical analyses showed that some ore minerals, including residual uraninite and coffinite, undergo alteration and dissolution during tailings storage. The migration of uranium and other contaminants depends on (i) the chemical stability of secondary phases and sorbed species (dissolution and desorption processes), and (ii) the mechanical transport of fine particles bearing these elements. Uranium is stabilized after formation of secondary uranyl sulfates and phosphates, and adsorbed complexes on mineral surfaces (e.g. clay minerals). In particular, the stock of insoluble uranyl phosphates increases with time, thus contributing to the long-term stabilization of uranium. At the surface, a sulfate-cemented duricrust is formed after evaporation of pore water. This duricrust limits water infiltration and dust aerial dispersion, though it is enriched in uranium and many other elements, because of pore water rising from underlying levels by capillary action. Satellite images provided a detailed description of the tailings pile over time and allow monitoring of the chronology of successive tailings deposits. Satellite images suggest that uranium anomalies that occur at deep levels in the pile are most likely former surface duricrusts that have been buried under more recent tailings. Copyright © 2015 Elsevier B.V. All rights reserved.
Uranium Mill Tailings Remedial Action Project fiscal year 1997 annual report to stakeholders
International Nuclear Information System (INIS)
1997-01-01
The fiscal year (FY) 1997 annual report is the 19th report on the status of the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. In 1978, Congress directed the DOE to assess and clean up contamination at 24 designated former uranium processing sites. The DOE is also responsible for cleaning up properties in the vicinity of the sites where wind and water erosion deposited tailings or people removed them from the site for use in construction or landscaping. Cleanup has been undertaken in cooperation with state governments and Indian tribes within whose boundaries the sites are located. It is being conducted in two phases: the surface project and the groundwater project. This report addresses specifics about the UMTRA surface project
Fiscal year 1996 annual report to stakeholders, Uranium Mill Tailings Remedial Action Project
International Nuclear Information System (INIS)
1996-01-01
This is the Fiscal Year (FY) 1996 annual report on the status of the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. In 1978, Congress directed the DOE to assess and clean up contamination at 24 designated former uranium processing sites. The DOE is also responsible for cleaning up properties in the vicinity of the sites where wind and water erosion deposited tailings or people removed them from the site for use in construction of landscaping. Cleanup is being undertaken in cooperation with state governments and Indian tribes within whose boundaries the sites are located. It is being conducted in two phases: the surface project and the ground water project. This report addresses specifics about the surface phase of the UMTRA Project
Energy Technology Data Exchange (ETDEWEB)
1994-04-01
This report evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells to determine the potential for immediate human health and environmental impacts. This risk assessment evaluates the most contaminated groundwater that flows beneath the processing site towards the Gunnison River. The monitor wells that have consistently shown the highest concentration of most contaminants are used in this risk assessment. This risk assessment will be used in conjunction with additional activities and documents to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.
International Nuclear Information System (INIS)
Whicker, F.W.
1980-01-01
The initial 13 months of this program have been devoted to staffing, development of a radiochemistry capability, development of a mill tailings reclamation study, studies on hydraulic properties of soils, initiation of plant uptake studies, preparation for metabolic studies with deer and antelope, and sample collections. Through the addition of new personnel and equipment, we are rapidly developing analytical capabilities for 238 U, 230 Th, 226 Ra, 210 Pb and 210 Po in matrices such as soil, water, plant material, and animal tissues. A 4 acre study site was developed in cooperation with the Pathfinder Mines Corp. at the Shirley Basin Uranium Mine in Wyoming. The study site is designed for investigations on the influence of various kinds and thicknesses of mill tailings soil covers on the integrity of reclaimed tailings and inherent radionuclides. Studies on the hydraulic properties of various soil materials were conducted and data analysis is in progress. Plots and procedures for conducting plant uptake studies on uranium and progeny were established and long-term investigations have been initiated. A colony of tame mule deer and pronghorn antelope has been developed for studies on the uptake and retention of 210 Pb and 210 Po. Numerous collections of soil, vegetation and water from the Shirley Basin Uranium Mine environs were conducted and radiochemical assay is in progress
Application of controlled release technology to uranium mill tailings stabilization
International Nuclear Information System (INIS)
Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.
1981-01-01
A trifluralin (herbicide) releasing device was developed with a theoretical effective lifetime in excess of 100 years. When placed in a layer in soil, the PCD system will prevent root penetration through that layer without harming the overlying vegetation. Equilibrium concentrations of trifluralin in soil can be adjusted (along with the theoretical life of the device) to suit specific needs. The present system was designed specifically to protect the asphalt layer or clay/aggregate barriers on uranium mill tailings piles; PCD devices composed of pellets could also be implanted over burial sites for radioactive and/or toxic materials, preventing translocation of those materials to plant shoots, and thence into the biosphere
International Nuclear Information System (INIS)
1996-05-01
This document for the final remedial action plan and site design has been prepared for US Department of Energy Environmental Restoration Division as part of the Uranium Mill Tailings Remedial Action plan. Comments and responses are included for the site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado
Environmental remediation for the upstream of Yotsugi Mill Tailings Pond, Ningyo-toge Uranium Mine
International Nuclear Information System (INIS)
Saito, Hiroshi; Torikai, Kazuyoshi; Fukushima, Shigeru; Sakao, Ryota; Taki, Tomihiro; Sato, Yasushi; Sakamoto, Atsushi
2016-03-01
Ningyo-toge Environmental Engineering Center has been conducting environmental remediation of the Ningyo-toge Uranium Mine, after decades of mine-related activities including uranium exploration, mining and test milling were terminated. The main purposes of the remediation are to take measures to ensure safety and radiation protection from the exposure pathways to humans in future, and to prevent the occurrence of mining pollution. As part of the remediation, upstream part of the Yotsugi Mill Tailings Pond, the highest prioritized facility among all of the mine-related facilities, has been remediated to fiscal year 2012. In the remediation, multi-layered capping has been constructed using natural material on ground surface, after specifications and whole remediation procedure being examined in terms of long-term stability, radiation protection, economics, and other aspects. Monitoring has been carried out to confirm the effectiveness of the capping, in terms of settlement, underground temperature, dose-rate and radon exhalation rate. Monitoring of drainage volume of penetrated rainwater is planned to begin in future. Accumulated data will be examined and its result will be used for remediation of downstream part of the Pond. (author)
International Nuclear Information System (INIS)
Hamp, S.; Dotson, P.W.
1995-01-01
Past operations at uranium processing sites throughout the US have resulted in local contamination of soils and ground water by radionuclides, toxic metals, or both. Understanding the origin of contamination and how the constituents are distributed is a basic element for planning remedial action decisions. This report describes the radiological and nonradiological species found in ground water at a typical US uranium milling facility. The report will provide the audience with an understanding of the vast spectrum of contaminants that must be controlled in planning solutions to the long-term management of these waste materials
International Nuclear Information System (INIS)
1981-10-01
Ford, Bacon and Davis Utah Inc. has reevaluated the Falls City site in order to update the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranum mill tailings at Falls City, Texas. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrolgy and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.5 million tons of tailings at the Falls City site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material, to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $21,700,000 for stabilization in place, to about $35,100,000 for disposal at a distance of about 15 mi. Three principal alternatives for the reprocessing of the Falls City tailings were examined: heap leaching; treatment at an existing mill; reprocessing at a new conventional mill constructed for tailings reprocessing. The tailings piles are presently being rewashed for uranium recovery by Solution Engineering, Inc. The cost for further reprocessing would be about $250/lb of U 3 O 8 . The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery does not appear to be economically attractive for the foreseeable future
International Nuclear Information System (INIS)
1992-10-01
The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium milling sites (40 CFR 192). The US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined this assessment shall include information on hydrogeologic site characterization. This document contains appendices to Attachment 3, Groundwater Hydrology Report included are calculations
International Nuclear Information System (INIS)
Sazykina, T.G.; Kryshev, I.I.
2002-01-01
The sources of wastes and levels of radioactive contamination are considered in the areas of uranium ore mining and milling. Assessments of doses to the population are made using the methodology of multiple sources and pathways of exposure, including calculations of inhalation dose and doses from consumption of contaminated agricultural and natural products, as well as external exposure from the radioactive cloud and soil. On the local (0-100 km) spatial scale, the dose from uranium mining and processing is, on average, about 0.7 man Sv (GWa) -1 . The most significant pathway of the population exposure is inhalation of radon. The impact of uranium ore mining and processing on natural flora and fauna is determined by specific characteristics of the production at uranium mining enterprises and has both radiation and non-radiation components. The estimates of external and internal exposures to the natural biota in the vicinity of hydro-metallurgical works and tailing dumps are presented. (author)
Energy Technology Data Exchange (ETDEWEB)
1994-08-01
This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.
International Nuclear Information System (INIS)
1994-08-01
This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site's tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site
International Nuclear Information System (INIS)
1994-07-01
The purpose of this plan is to establish a waste minimization and pollution prevention awareness (WM/PPA) program for the U.S. Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The program satisfies DOE requirements mandated by DOE Order 5400.1. This plan establishes planning objectives and strategies for conserving resources and reducing the quantity and toxicity of wastes and other environmental releases
Assessment of the radiological impact of the inactive uranium-mill tailings at Mexican Hat, Utah
Energy Technology Data Exchange (ETDEWEB)
Haywood, F.F.; Goldsmith, W.A.; Ellis, B.S.; Hubbard, H.M. Jr.; Fox, W.F.; Shinpaugh, W.H.
1980-03-01
High surface soil concentrations of /sup 226/Ra and high above-ground measurements of gamma-ray intensity in the vicinity of the inactive uranium-mill tailings at Mexican Hat show both wind and water erosion of the tailings. The former mill area, occupied by a trade school at the time of this survey, shows a comparatively high level of contamination, probably from unprocessed ore on the surface of the ore storage area near the location of the former mill buildings. However, the estimated health effect of exposure to gamma rays during a 2000-hr work year in the area represents an increase of 0.1% in the risk of death from cancer. Exposure of less than 600 persons within 1.6 km of the tailings to radon daughters results in an estimated 0.2%/year increase in risk of lung cancer.
Assessment of the radiological impact of the inactive uranium-mill tailings at Mexican Hat, Utah
International Nuclear Information System (INIS)
Haywood, F.F.; Goldsmith, W.A.; Ellis, B.S.; Hubbard, H.M. Jr.; Fox, W.F.; Shinpaugh, W.H.
1980-03-01
High surface soil concentrations of 226 Ra and high above-ground measurements of gamma-ray intensity in the vicinity of the inactive uranium-mill tailings at Mexican Hat show both wind and water erosion of the tailings. The former mill area, occupied by a trade school at the time of this survey, shows a comparatively high level of contamination, probably from unprocessed ore on the surface of the ore storage area near the location of the former mill buildings. However, the estimated health effect of exposure to gamma rays during a 2000-hr work year in the area represents an increase of 0.1% in the risk of death from cancer. Exposure of less than 600 persons within 1.6 km of the tailings to radon daughters results in an estimated 0.2%/year increase in risk of lung cancer
NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY
International Nuclear Information System (INIS)
Rajamani, Raj K.; Latchireddi, Sanjeeva; Devrani, Vikas; Sethi, Harappan; Henry, Roger; Chipman, Nate
2003-01-01
DOE has initiated numerous activities to focus on identifying material management strategies to disposition various excess fissile materials. In particular the INEEL has stored 1,700 Kg of offspec HEU at INTEC in CPP-651 vault facility. Currently, the proposed strategies for dispositioning are (a) aqueous dissolution and down blending to LEU via facilities at SRS followed by shipment of the liquid LEU to NFS for fabrication into LWR fuel for the TVA reactors and (b) dilution of the HEU to 0.9% for discard as a waste stream that would no longer have a criticality or proliferation risk without being processed through some type of enrichment system. Dispositioning this inventory as a waste stream via aqueous processing at SRS has been determined to be too costly. Thus, dry blending is the only proposed disposal process for the uranium oxide materials in the CPP-651 vault. Isotopic dilution of HEU to typically less than 20% by dry blending is the key to solving the dispositioning issue (i.e., proliferation) posed by HEU stored at INEEL. RM-2 mill is a technology developed and successfully tested for producing ultra-fine particles by dry grinding. Grinding action in RM-2 mill produces a two million-fold increase in the number of particles being blended in a centrifugal field. In a previous study, the concept of achieving complete and adequate blending and mixing (i.e., no methods were identified to easily separate and concentrate one titanium compound from the other) in remarkably short processing times was successfully tested with surrogate materials (titanium dioxide and titanium mono-oxide) with different particle sizes, hardness and densities. In the current project, the RM-2 milling technology was thoroughly tested with mixtures of natural uranium oxide (NU) and depleted uranium oxide (DU) stock to prove its performance. The effects of mill operating and design variables on the blending of NU/DU oxides were evaluated. First, NU and DU both made of the same oxide
Spatial distribution of environmental risk associated to a uranium abandoned mine (Central Portugal)
Antunes, I. M.; Ribeiro, A. F.
2012-04-01
The abandoned uranium mine of Canto do Lagar is located at Arcozelo da Serra, central Portugal. The mine was exploited in an open pit and produced about 12430Kg of uranium oxide (U3O8), between 1987 and 1988. The dominant geological unit is the porphyritic coarse-grained two-mica granite, with biotite>muscovite. The uranium deposit consists of two gaps crushing, parallel to the coarse-grained porphyritic granite, with average direction N30°E, silicified, sericitized and reddish jasperized, with a width of approximately 10 meters. These gaps are accompanied by two thin veins of white quartz, 70°-80° WNW, ferruginous and jasperized with chalcedony, red jasper and opal. These veins are about 6 meters away from each other. They contain secondary U-phosphates phases such as autunite and torbernite. Rejected materials (1000000ton) were deposited on two dumps and a lake was formed in the open pit. To assess the environmental risk of the abandoned uranium mine of Canto do Lagar, were collected and analysed 70 samples on stream sediments, soils and mine tailings materials. The relation between samples composition were tested using the Principal Components Analysis (PCA) (multivariate analysis) and spatial distribution using Kriging Indicator. The spatial distribution of stream sediments shows that the probability of expression for principal component 1 (explaining Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Hf, Th and U contents), decreases along SE-NW direction. This component is explained by the samples located inside mine influence. The probability of expression for principal component 2 (explaining Be, Na, Al, Si, P, K, Ca, Ti, Mn, Fe, Co, Ni, Cu, As, Rb, Sr, Mo, Cs, Ba, Tl and Bi contents), increases to middle stream line. This component is explained by the samples located outside mine influence. The spatial distribution of soils, shows that the probability of expression for principal component 1 (explaining Mg, P, Ca, Ge, Sr, Y, Zr, La, Ce, Pr
Optimum condition determination of Rirang uranium ores grinding using ball mill
International Nuclear Information System (INIS)
Affandi, Kosim; Waluyo, Sugeng; Sarono, Budi; Sujono; Muhammad
2002-01-01
The grinding experiment on Rirang Uranium ore has been carried out with the aim is to find out the optimum condition of wet grinding using ball mill to produce particle size -325, -200 and -100 mesh. This will be used for decomposition feed the test was done by examine the parameters comparison of ore's weight against ball's weight and time of grinding. The test shown that the product of particle size -325 meshes was achieved optimum condition at the comparison ore's weight: ball = 1:3, grinding time 150 minutes, % solid 60, speed rotation of ball mill 60 rpm and recovery of grinding was 93.51 % of -325 mesh. The product of particle size -200 mesh was achieved optimum condition at comparison ore's weight: ball = 1:2, time of grinding 60 minutes, the fraction of + 200 mesh was regrind, the recovery of grinding 6.82% at particle size of (-200 + 250) mesh, 5.75 % at (-250 + 325)m mesh and, 47.93 % -325 mesh. The product of particle size -100 mesh was achieved the optimum condition at comparison ore's weight: ball = 1:2, time of grinding at 30 minutes particle size +100 mesh regrinding using mortar grinder, recovery of grinding 30.10% at particle size (-100 + 150) m, 12.28 % at (-150 + 200) mesh, 15.92 % at (-200 + 250) mesh, 12.44 % at (-250 + 325) mesh and 29.26 % -325 mesh. The determination of specific gravity of Rirang uranium ore was between 4.15 - 4.55 g/cm 3
International Nuclear Information System (INIS)
Yan, Xun
2016-01-01
Highlights: • Screen dominant plants grown in uranium mill tailings soils. • Quantify the content of "2"3"2Th of soil samples from uranium mill tailings. • Quantify the transfer factor, bioconcentration factor and phytoremediation factor. • Screen out the plant species capable of remediating radionuclide contaminated soils. • Guide the reuse of study area in future. - Abstract: The concentrations of thorium ("2"3"2Th) in soil from a uranium mill tailings repository in South China were analyzed. The results showed that all the soil samples were acidic and the concentrations of "2"3"2Th in all the soil samples were more than the natural radionuclide content in soil of China. Through the field investigation, twelve kinds of dominant plants were discovered. The total quantity of "2"3"2Th in the whole plant is highest in rice flat sedge. We also found that Miscanthus floridulus has the greatest transfer factor (TF) for "2"3"2Th, rice flat sedge has the greatest bioconcentration factor (BF) for "2"3"2Th. At the mean time, M. floridulus has the greatest phytoremediation factor (PF) for "2"3"2Th. On the basis of the above conclusions and the definition for hyperaccumulator, rice flat sedge and M. floridulus could be the candidates of phytoremediation for radionuclide "2"3"2Th in the soil.
Energy Technology Data Exchange (ETDEWEB)
1994-04-01
This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water.
Energy Technology Data Exchange (ETDEWEB)
Yan, Xun, E-mail: m13836295186@163.com
2016-08-01
Highlights: • Screen dominant plants grown in uranium mill tailings soils. • Quantify the content of {sup 232}Th of soil samples from uranium mill tailings. • Quantify the transfer factor, bioconcentration factor and phytoremediation factor. • Screen out the plant species capable of remediating radionuclide contaminated soils. • Guide the reuse of study area in future. - Abstract: The concentrations of thorium ({sup 232}Th) in soil from a uranium mill tailings repository in South China were analyzed. The results showed that all the soil samples were acidic and the concentrations of {sup 232}Th in all the soil samples were more than the natural radionuclide content in soil of China. Through the field investigation, twelve kinds of dominant plants were discovered. The total quantity of {sup 232}Th in the whole plant is highest in rice flat sedge. We also found that Miscanthus floridulus has the greatest transfer factor (TF) for {sup 232}Th, rice flat sedge has the greatest bioconcentration factor (BF) for {sup 232}Th. At the mean time, M. floridulus has the greatest phytoremediation factor (PF) for {sup 232}Th. On the basis of the above conclusions and the definition for hyperaccumulator, rice flat sedge and M. floridulus could be the candidates of phytoremediation for radionuclide {sup 232}Th in the soil.
International Nuclear Information System (INIS)
1991-12-01
The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium milling sites. According to the Uranium Mill Tailings Radiation Control Act of 1978, (UMTRCA) the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined this assessment shall include information on hydrogeologic site characterization. The water resources protection strategy that describes how the proposed action will comply with the EPA groundwater protection standards is presented in Attachment 4. Site characterization activities discussed in this section include: Characterization of the hydrogeologic environment; characterization of existing groundwater quality; definition of physical and chemical characteristics of the potential contaminant source; and description of local water resources
Radiation exposure assessment following the 1978 Church Rock uranium mill tailings spill
International Nuclear Information System (INIS)
Ruttenber, A.J. Jr.; Kreiss, K.
1981-01-01
Early in the morning of July 16, 1979, there was a breach in the earthen retaining dam of a tailings pond at the United Nuclear Corporation's (UNC's) Church Rock uranium mill. The acidified liquid and tailings slurry spilled through the damaged portion of the retaining wall into an arroyo that is a tributary to the Rio Puerco river system. This paper summarizes postspill monitoring efforts and relates the assessment of this spill to the general question of evaluating the health effects of nuclear fuel-cycle wastes
Energy Technology Data Exchange (ETDEWEB)
None
1996-10-01
This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings " ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings." Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are
International Nuclear Information System (INIS)
1996-01-01
This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings ' ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings.' Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are in
Characterization of long-lived radioactive dust clouds generated in uranium mill operations
International Nuclear Information System (INIS)
Bigu, J.
1987-01-01
The characteristics of long-lived radioactive dust clouds generated in several mechanical and physico-chemical operations in a uranium mill have been investigated. The study consisted of the determination of dust size distribution, and of the radionuclides contained in the particles of each dimension class ranging from <0.1 to 26 μm in diameter. Experiments were conducted using several cascade impactors operating at different sample flow rates. Two different types of cascade impactors were used. Radionuclide identification was done using α-spectrometry and γ-spectrometry. Long-lived and short-lived radionuclides were identified in dust samples. The characteristics of the dust clouds depended on the mill operation. The following operations were studied: crushing (vibrating grizzly, jaw crusher, cone crusher); screening; ore transportation; grinding; acid leaching; counter-current decantation; yellowcake precipitation and drying; and yellowcake packaging. In addition, other dust and radioactivity measurements have been carried out
Robertson, Andrew J.; Ranalli, Anthony J.; Austin, Stephen A.; Lawlis, Bryan R.
2016-04-21
The Shiprock Disposal Site is the location of the former Navajo Mill (Mill), a uranium ore-processing facility, located on a terrace overlooking the San Juan River in the town of Shiprock, New Mexico. Following the closure of the Mill, all tailings and associated materials were encapsulated in a disposal cell built on top of the former Mill and tailings piles. The milling operations, conducted at the site from 1954 to 1968, created radioactive tailings and process-related wastes that are now found in the groundwater. Elevated concentrations of constituents of concern—ammonium, manganese, nitrate, selenium, strontium, sulfate, and uranium—have also been measured in groundwater seeps in the nearby Many Devils Wash arroyo, leading to the inference that these constituents originated from the Mill. These constituents have also been reported in groundwater that is associated with Mancos Shale, the bedrock that underlies the site. The objective of this report is to increase understanding of the source of water and solutes to the groundwater beneath Many Devils Wash and to establish the background concentrations for groundwater that is in contact with the Mancos Shale at the site. This report presents evidence on three working hypotheses: (1) the water and solutes in Many Devils Wash originated from the operations at the former Mill, (2) groundwater in deep aquifers is upwelling under artesian pressure to recharge the shallow groundwater beneath Many Devils Wash, and (3) the groundwater beneath Many Devils Wash originates as precipitation that infiltrates into the shallow aquifer system and discharges to Many Devils Wash in a series of springs on the east side of the wash. The solute concentrations in the shallow groundwater of Many Devils Wash would result from the interaction of the water and the Mancos Shale if the source of water was upwelling from deep aquifers or precipitation.In order to compare the groundwater from various wells to groundwater that has been
International Nuclear Information System (INIS)
Page, G.B.
1980-04-01
The report contained in this volume considers the availability of electric power to supply uranium mines and mills. The report, submited to Sandia Laboratories by the New Mexico Department of Energy and Minerals (EMD), is reproduced without modification. The state concludes that the supply of power, including natural gas-fueled production, will not constrain uranium production
International Nuclear Information System (INIS)
1981-10-01
Ford, Bacon and Davis Utah, Inc., has reevaluated the Phillips/United Nuclear site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Ambrosia Lake, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Phillips/United Nuclear site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material, to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $21,500,000 for stabilization in-place, to about $45,200,000 for disposal at a distance of about 15 mi. Three principal alternatives for the reprocessing of the Phillips/United Nuclear tailings were examined: heap leaching; treatment at an existing mill; reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $87/lb of U 3 O 8 by either heap leach or conventional plant process. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Phillips/United Nuclear tailings for uranium recovery does not appear to be economically attractive under present or foreseeable market conditions
The determination of radium-226 in uranium ores and mill products by alpha energy spectrometry
International Nuclear Information System (INIS)
Zimmerman, J.B.; Armstrong, V.C.
1975-12-01
A reliable routine procedure for determining 226 Ra by alpha energy spectrometry is described. Radium is isolated as sulphate from the sample matrix by co-precipitation with a small mass of barium and analysed using a ruggedized silicon surface barrier detector. The method is capable of providing high accuracy over a large 226 Ra concentration range and is applicable to materials such as uranium ores, uranium mill products and effluent streams. Samples resulting from nitric acid leach experiments with Elliot Lake ores were examined using the procedure. The distribution of 223 Ra, 224 Ra and 226 Ra between the leach products, (residue and leach liquor), is discussed. (author)
Derived limits for occupational exposure to uranium mine and mill dusts in the air and on surfaces
International Nuclear Information System (INIS)
Carter, M.W.
1983-01-01
Limits are derived for the concentration of uranium mine and mill dusts in the air based on ICRP30 and assumptions regarding the isotopic make up of the dusts. From these limits using a resuspension factor, limits for surface contamination are derived. Calculations are presented of the dose to the basal layer of the skin from mine and mill dusts on the skin. From these calculations limits for skin contamination are derived. A calculation of a limit based on direct ingestion is also presented. Exposure limits for the public are not considered
Lourenço, Joana; Pereira, Ruth; Gonçalves, Fernando; Mendo, Sónia
2013-01-15
Genotoxic effects caused by the exposure to wastes containing metals and radionuclides were investigated in the European wood mice (Apodemus sylvaticus). The animals were captured in the surroundings of an abandoned uranium mining site. DNA damage was assessed by comet assay; gene expression and single nucleotide polymorphisms (SNPs) were assessed, respectively, by Real-Time PCR and melt curve analysis. The bioaccumulation of metals in the liver, kidney and bones was also determined to help clarify cause-effect relationships. Results confirmed the bioaccumulation of cadmium and uranium in organisms exposed to uranium mining wastes. P53 gene was found to be significantly up-regulated in the liver of those organisms and SNPs in the Rb gene were also detected in the kidney. Our results showed that uranium mining wastes caused serious DNA damage resulting in genomic instability, disclosed by the significant increase in DNA strand breaks and P53 gene expression disturbance. These effects can have severe consequences, since they may contribute for the emergence of serious genetic diseases. The fact that mice are often used as bioindicator species for the evaluation of risks of environmental exposure to humans, raises concerns on the risks for human populations living near uranium mining areas. Copyright © 2012 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
1992-02-01
This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.
Water balance modelling of a uranium mill effluent management system
Plagnes, Valérie; Schmid, Brad; Mitchell, Brett; Judd-Henrey, Ian
2017-06-01
A water balance model was developed to forecast the management strategy of a uranium mill effluent system, located in northern Saskatchewan, Canada. Mining and milling operations, such as pit dewatering or treated effluent release, can potentially influence the hydrology and the water quality downstream of the operations. This study presents the methodology used to predict water volumes and water quality discharging downstream in surface water bodies. A compartment model representing the three subsequent lakes included in the management system was set up using the software GoldSim®. The water balance allows predicting lake volumes at the daily time step. A mass balance model developed for conservative elements was also developed and allows validating the proportions of inputs and outputs issued from the water balance model. This model was then used as predictive tool to evaluate the impact of different scenarios of effluents management on volumes and chemistry of surface water for short and longer time periods. An additional significant benefit of this model is that it can be used as an input for geochemical modelling to predict the concentrations of all constituents of concern in the receiving surface water.
Uranium Mill Tailings Remedial Action Project Safety Advancement Field Effort (SAFE) Program
Energy Technology Data Exchange (ETDEWEB)
1994-02-01
In 1992, the Uranium Mill Tailings Remedial Action (UMTRA) Project experienced several health and safety related incidents at active remediation project sites. As a result, the U.S. Department of Energy (DOE) directed the Technical Assistance Contractor (TAC) to establish a program increasing the DOE`s overall presence at operational remediation sites to identify and minimize risks in operations to the fullest extent possible (Attachments A and B). In response, the TAC, in cooperation with the DOE and the Remedial Action Contractor (RAC), developed the Safety Advancement Field Effort (SAFE) Program.
Uranium Mill Tailings Remedial Action Project Safety Advancement Field Effort (SAFE) Program
International Nuclear Information System (INIS)
1994-02-01
In 1992, the Uranium Mill Tailings Remedial Action (UMTRA) Project experienced several health and safety related incidents at active remediation project sites. As a result, the U.S. Department of Energy (DOE) directed the Technical Assistance Contractor (TAC) to establish a program increasing the DOE's overall presence at operational remediation sites to identify and minimize risks in operations to the fullest extent possible (Attachments A and B). In response, the TAC, in cooperation with the DOE and the Remedial Action Contractor (RAC), developed the Safety Advancement Field Effort (SAFE) Program
Gulson, Brian L; Mizon, Karen J; Dickson, Bruce L; Korsch, Michael J
2005-03-01
Potential exposure during mining and milling of uranium ore has resulted in the industry being highly regulated. Exposure can arise from inhalation of the daughter product radioactive gas radon (222Rn), inhalation of radioactive dust particles from mining and milling, direct irradiation from outside the body, and ingestion of radionuclides (e.g. uranium or radium) in food or water. Making use of the highly unusual lead isotopic signature for uranium ores (high 206Pb/204Pb from the high uranium content, low 208Pb/204Pb from the low Th/U ratio), we undertook a pilot study of nine male mine employees and three controls from the Ranger uranium mine in the Northern Territory Australia to determine if it was feasible to use lead isotopes in blood to identify exposure to uranium-derived materials. The lead isotopic data for the mine employees and controls plot in two distinct fields which are consistent with predicted isotopic patterns. Assuming retention of 10% of the ingested lead, then the increases seen in 206Pb represent intakes of between 0.9 and 15 mg, integrated over the years of exposure. The small amount of lead does not affect blood lead concentrations, but appears to be sufficient to be detectable with sensitive isotopic methods. Further studies, including those on urine, should be undertaken to confirm the veracity of the lead isotope method in monitoring exposure of uranium industry employees.
International Nuclear Information System (INIS)
Gulson, Brian L.; Mizon, Karen J.; Dickson, Bruce L.; Korsch, Michael J.
2005-01-01
Potential exposure during mining and milling of uranium ore has resulted in the industry being highly regulated. Exposure can arise from inhalation of the daughter product radioactive gas radon ( 222 Rn), inhalation of radioactive dust particles from mining and milling, direct irradiation from outside the body, and ingestion of radionuclides (e.g. uranium or radium) in food or water. Making use of the highly unusual lead isotopic signature for uranium ores (high 206 Pb/ 204 Pb from the high uranium content, low 208 Pb/ 204 Pb from the low Th/U ratio), we undertook a pilot study of nine male mine employees and three controls from the Ranger uranium mine in the Northern Territory Australia to determine if it was feasible to use lead isotopes in blood to identify exposure to uranium-derived materials. The lead isotopic data for the mine employees and controls plot in two distinct fields which are consistent with predicted isotopic patterns. Assuming retention of 10% of the ingested lead, then the increases seen in 206 Pb represent intakes of between 0.9 and 15 mg, integrated over the years of exposure. The small amount of lead does not affect blood lead concentrations, but appears to be sufficient to be detectable with sensitive isotopic methods. Further studies, including those on urine, should be undertaken to confirm the veracity of the lead isotope method in monitoring exposure of uranium industry employees
International Nuclear Information System (INIS)
Madruga, M.J.; Faria, I.
2006-01-01
The objective of this study is to correlate the uptake of the natural radionuclides 226 Ra and 210 Pb with the essential elements, potassium, calcium and magnesium in the pines growing at the 'Urgeirica uranium mill tailings. It can be concluded that the potassium, calcium and magnesium mean concentration ratio values are, about two to three orders of magnitude, higher than the values obtained to 226 Ra and 210 Pb for pines growing on the Urgeirica uranium mill tailings. The concentration ratio values higher than 1 obtained to the potassium, calcium and magnesium elements indicate that pines are behaving as accumulators to these elements. Contrarily, the 226 Ra and 210 Pb concentration ratio values lower than 1 indicates that pines are behaving as excluders to these radionuclides. So, it can be concluded that this kind of plants is not suitable to a phyto remediation strategy. In general, a marginally significant correlation was observed between the potassium, calcium and magnesium concentrations, the cation-exchange capacity and the ph in the tailings and the 226 Ra and 210 Pb pines/tailings concentration ratios. (N.C.)
International Nuclear Information System (INIS)
1977-12-01
Results are reported from an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Ray Point, Texas. The Phase II--Title I services generally include the preparation of topographic maps, the performance of soil sampling and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. About 490,000 tons of ore were processed at this mill with all of the uranium sold on the commercial market. None was sold to the AEC; therefore, this report focuses on a physical description of the site and the identification of radiation pathways. No remedial action options were formulated for the site, inasmuch as none of the uranium was sold to the AEC and Exxon Corporation has agreed to perform all actions required by the State of Texas. Radon gas release from the tailings at the Ray Point site constitutes the most significant environmental impact. Windblown tailings, external gamma radiation and localized contamination of surface waters are other environmental effects. Exxon is also studying the feasibility of reprocessing the tailings
Finding and evaluating potential radiological problems in the vicinity of uranium milling sites
International Nuclear Information System (INIS)
Goldsmith, W.A.; Yates, W.G.
1982-01-01
The Oak Ridge National Laboratory (ORNL) has been performing radiological surveys at former uranium and thorium milling and processing sites since 1975. Tailings at inactive milling sites usually have a low frequency of human occupancy but continuously generate 222 Rn into the atmosphere. Thus, independent 222 Rn surveys are conducted at the inactive mill sites and their environs by the Mound Facility. Measurements of airborne 222 Rn and 222 Rn flux are made on the sites to define the tailings source term. Concurrently with these measurements, an ambient 222 Rn monitoring network is established off-site and a meteorological station is established at or near the mill site. Unfortunately, tailings are not always confined to the milling site. Radioactivity can migrate to areas outside of site boundaries by wind and water erosion, groundwater transport, spillage of incoming ore, and removal of tailings or other material for private purposes. In order to identify and assess off-site radioactivity on properties in the vicinity of milling sites, a combination of aerial and ground-level radiological monitoring techniques are used. The ground mobile gamma-ray scan is conducted using a vehicle equipped with sensitive gamma-ray detectors. The detectors are shielded so that gamma radiation input is viewed through only one side of the vehicle. This system is capable of precisely locating properties which have anomalously high gamma radiation levels caused by the presence of tailings. Subsequently, these properties are identified as candidate vicinity properties and are scheduled for radiological surveys subject to the property owner's consent. The comprehensive radiological surveys conducted at these vicinity properties determine the amount, type, and location of tailings materials
Engineering assessment of inactive uranium mill tailings: Lakeview site, Lakeview, Oregon
International Nuclear Information System (INIS)
1981-10-01
This assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The three alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material (Option I) and removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II and III). Cost estimates range from about $6,000,000 for stabilization in-place, to about $7,500,000 for disposal at a distance of about 10 miles. Three alternatives for reprocessing the Lakeview tailings were examined: heap leaching, treatment at an existing mill, and reprocessing at a new conventional mill. The cost of the uranium recovered would be over $450/lb of U 3 O 8 and hence reprocessing is not economical
Engineering assessment of inactive uranium mill tailings: Lakeview site, Lakeview, Oregon
Energy Technology Data Exchange (ETDEWEB)
None
1981-10-01
This assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The three alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material (Option I) and removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II and III). Cost estimates range from about $6,000,000 for stabilization in-place, to about $7,500,000 for disposal at a distance of about 10 miles. Three alternatives for reprocessing the Lakeview tailings were examined: heap leaching, treatment at an existing mill, and reprocessing at a new conventional mill. The cost of the uranium recovered would be over $450/lb of U/sub 3/O/sub 8/ and hence reprocessing is not economical.
Energy Technology Data Exchange (ETDEWEB)
Popp, C.J.; Dehn, M. (New Mexico Inst. of Mining and Tech., Socorro (United States)); Hawley, J.W.; Love, D.W. (New Mexico Bureau of Mines and Mineral Resources, Socorro (United States))
1988-06-01
In the absence of historic geochemical baseline data for the Grants uranium region, environmental changes resulting from uranium mine-mill activities can be determined only by indirect methods. A methodology for determining the age of recent sediments in streams draining the region has been established based on combined geomorphic, stratigraphic, and radiometric dating techniques. Because clay-rich sediments retain possible radionuclides and heavy metals derived from mineralization and mined sources, sample sites which contain fine-grained deposits that both predate and postdate mine-mill activity were located in abandoned-channel segments (oxbows) of major streams draining the eastern Grants uranium region. Aerial photographs (and derivative maps) taken between 1935 and 1971 provided the historical and geomorphic documentation of approximate dates of oxbow formation and ages of alluvial fills in the abandoned-channel segments. Pits were dug at these oxbow sites to determine stratigraphy and composition of the deposits. Samples collected from pit walls and auger holes below the pits were subjected to radiometric analysis by gamma ray spectrometry for the artificial radionuclide Cs-137 and the natural radionuclide Pb-210 as well as other U-238 and Th-232 daughters. Because of the dynamic nature of the system, absolute dating with Cs-137 was not possible but samples could be dated as either pre- or post-1950. The 1950 date is important because it marked the beginning of the uranium exploitation in the region. The Pb-210 dating was not possible because background Pb-210 was very high relative to fallout Pb-210.
Engineering assessment of inactive uranium mill tailings. Canonsburg Site, Canonsburg, Pennsylvania
International Nuclear Information System (INIS)
1982-04-01
Ford, Bacon and Davis Utah Inc. has evaluated the Canonsburg site in order to assess the problems resulting from the existence of radioactive residues at Canonsburg, Pennsylvania. This engineering assessment has included the preparation of topographic maps, radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative remedial actions. Radon gas released from the approximately 300,000 tons of tailings and contaminated soil at the Canonsburg site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings and contaminated materials to a remote disposal site and decontamination of the Canonsburg site (Options II through IV). Cost estimates for the four options range from $23,244,000 for stabilization in-place, to $27,052,000 for disposal at a distance of about 17 mi. Three principal alternatives for the reprocessing of the Canonsburg tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. As required by Public Law 95-604, under whose auspices this project is conducted, the US Department of Energy has solicited expressions of interest in reprocessng the tailings and residues at the Canonsburg site for uranium recovery. Since no such interest was demonstrated, no effort has been made to estimate the value of the residual uranium resource at the Canonsburg site
Forage uptake of uranium series radionuclides in the vicinity of the anaconda uranium mill
International Nuclear Information System (INIS)
Rayno, D.R.; Momeni, M.H.; Sabau, C.
1980-01-01
Radiochemical analysis was performed on samples of soil and eight species of common vegetation growing on the Anaconda uranium mill site, located in New Mexico. The concentrations of the long-lived radionuclides U-238, U-234, Th-230, Ra-226, and Pb-210 in these forage plants were determined. The sampling procedures and analytical laboratory methods used are described. The highest radionuclide concentration found in a forage species was 130 pCi of Ra-226 per gram dry weight for grass growing on the main tailings pile at Anaconda, where the surface soil activity of Ra-226 was 236 pCi/g. A comparison of shoots activity with that of roots and soil was used to determine a distribution index and uptake coefficient for each species. The distribution index, the ratio of root activity to shoot activity, ranged from 0.30 (Th-230) in galleta grass (Hilaria jamesii) to 38.0 (Ra-226) in Indian ricegrass (Oryzopsis hymenoides). In nearly all instances, the roots contained higher radionuclide concentrations. The uptake coefficient, the ratio of vegetation activity to soil activity, ranged from 0.69 (U-238) in Indian ricegrass roots to 0.01 (U-238) in four-wing saltbush (Atriplex canescans) shoots. The range of radionuclide concentrations in plants growing on the Anaconda mill site is compared to that in vegetation from a control site 20 km away
Hydrology of an abandoned uranium mine waste rock dump, Northern Territory
International Nuclear Information System (INIS)
Evans, K.G.; Moliere, D.R.; Saynor, M.J.
1999-01-01
Field studies were conducted on an abandoned, degraded uranium mine in Kakadu National Park to obtain waste rock dump runoff data to test the ability of a landform evolution model to predict gullying caused by concentrated flow. Runoff data were collected from natural rainfall events on a concentrated flow site and an overland flow erosion site on the waste rock dump at Scinto 6 mine. The data were used to fit parameters to a rainfall/runoff model using a non-linear regression package (NLFIT-DISTFW) which allows a single set of parameters to be fitted to four discharge hydrographs simultaneously. The model generally predicted peak discharge and the rising stage of the observed hydrographs well but there was some lag in the falling stage of the predicted hydrographs. Kinematic wave parameters are dependent on each other and the concentrated flow parameter set was not significantly different from the overland flow set. The infiltration parameter sets were statistically different and difference in cumulative infiltration between sites is controlled by sorptivity
International Nuclear Information System (INIS)
1981-01-01
Personnel employed in the mining, milling and refining of uranium ores must, according to Atomic Energy Control Board regulations, be medically examined before beginning employment, at appropriate intervals during their employment, and upon termination. These guidelines are provided for the use of occupational physicians and give advice on procedures to be performed at each type of examination and on the maintenance of medical records. (L.L.)
Energy Technology Data Exchange (ETDEWEB)
1994-09-01
This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site.
International Nuclear Information System (INIS)
1994-09-01
This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site
Long term population dose due to radon (Rn-222) released from uranium mill tailings
International Nuclear Information System (INIS)
Chambers, D.B.; Lower, L.M.; Stager, R.H.
2001-01-01
The results of a study undertaken by the European Commission on the external costs (environmental and social) of various energy production systems is likely to be influential in determining how the European Union will develop its energy supply systems. The estimated costs for nuclear power from the study will be based on the findings of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), with the costs being dominated by the estimated long term (10,000 y) population doses due to radon (Rn-222) released from mill tailings. UNSCEAR developed a central estimate of 150 person-Sv per GW y and a range of 1 to 1,000 person-Sv per GW y. However, the generic data available to and being used by UNSCEAR are dated and are not appropriate for the current and planned future conditions in the uranium production industry, with the result that the estimated external costs of nuclear power (specifically, the doses due to radon emitted from mill tailings) are overestimated. The Uranium Institute sponsored a study to estimate long term population doses based on the most recent 1993 UNSCEAR methodology, but using data that would be more appropriate to the current major uranium production facilities. Site-specific information obtained from the owners/operators and the Uranium Institute included: present and proposed tailings management plans; tailings volumes and areas; ore grades and reserves; measurements and estimates of radon emission rates; and population densities. Tailings at closed facilities that no longer contribute to uranium production were not evaluated since it was assumed that these radon sources need not be considered in evaluating the external costs of current and future nuclear power production. Based on the same approach as UNSCEAR, but using a more sophisticated air dispersion model, and more site-specific data relative to existing sites and proposed tailings management practices, radon emission rates and population densities (that
Energy Technology Data Exchange (ETDEWEB)
Lourenço, Joana, E-mail: joanalourenco@ua.pt [Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); CESAM, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Pereira, Ruth [Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); CESAM, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Gonçalves, Fernando; Mendo, Sónia [Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); CESAM, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal)
2013-01-15
Genotoxic effects caused by the exposure to wastes containing metals and radionuclides were investigated in the European wood mice (Apodemus sylvaticus). The animals were captured in the surroundings of an abandoned uranium mining site. DNA damage was assessed by comet assay; gene expression and single nucleotide polymorphisms (SNPs) were assessed, respectively, by Real-Time PCR and melt curve analysis. The bioaccumulation of metals in the liver, kidney and bones was also determined to help clarify cause–effect relationships. Results confirmed the bioaccumulation of cadmium and uranium in organisms exposed to uranium mining wastes. P53 gene was found to be significantly up-regulated in the liver of those organisms and SNPs in the Rb gene were also detected in the kidney. Our results showed that uranium mining wastes caused serious DNA damage resulting in genomic instability, disclosed by the significant increase in DNA strand breaks and P53 gene expression disturbance. These effects can have severe consequences, since they may contribute for the emergence of serious genetic diseases. The fact that mice are often used as bioindicator species for the evaluation of risks of environmental exposure to humans, raises concerns on the risks for human populations living near uranium mining areas. - Highlights: ► Long term effects of chronic pollution in natural population of rodents. ► Bioaccumulation of cadmium and uranium by organisms exposed to uranium wastes. ► P53 upregulation in the liver and SNPs in the Rb gene detected in the kidney. ► Significant DNA damages detected by the comet assay. ► Concerns on the risks of human populations living nearby uranium mining areas.
Systematic approach to designing surface covers for uranium-mill tailings
International Nuclear Information System (INIS)
Beedlow, P.A.; Cadwell, L.L.; McShane, M.C.
1982-01-01
The wide range of environmental conditions present at uranium mill tailings sites precludes the use of a single type of surface cover. Surface covers must be designed on a site-specific basis. To facilitate site specific designs the UMTRA program is developing guidelines for designing surface covers. This paper presents a systematic approach to designing surface covers for tailings that can be applied under any site condition. The approach consists of three phases: (1) An assessment during which the degree of surface protection is determined. (2) A preliminary design that facilitates interaction with those designing other containment system elements. (3) A final design where the cost and effectiveness of the surface cover are determined. The types of information required to apply this approach are discussed
Landa, Edward R.
2004-01-01
Uranium mill tailings (UMT) are a high volume, low specific activity radioactive waste typically disposed in surface impoundments. This review focuses on research on UMT and related earth materials during the past decade relevant to the assessment of: (1) mineral hosts of radionuclides; (2) the use of soil analogs in predicting long-term fate of radionuclides; (3) microbial and diagenetic processes that may alter radionuclide mobility in the surficial environment; (4) waste-management technologies to limit radionuclide migration; and (5) the impact of UMT on biota.
International Nuclear Information System (INIS)
Dreesen, D.R.; Cokal, E.J.; Thode, E.F.; Wangen, L.E.; Williams, J.M.
1981-01-01
Conditioning of uranium mill tailings is being investigated as an alternative remedial action for inactive tailings piles to be stabilized by the US Department of Energy. Tailings from high priority sites have been characterized for elemental composition, mineralogy, aqueous leachable contaminants, and radon emanation power to provide a baseline to determine the environmental hazard control produced by conditioning. Thermal stabilization of tailings at high temperatures and removal of contaminants by sulfuric acid leaching are being investigated for technical merit as well as economic and engineering feasibility
Energy Technology Data Exchange (ETDEWEB)
None
1986-11-01
This document assesses and compares the environmental impacts of various alternatives for remedial action at the Tuba City uranium mill tailings site located approximately six miles east of Tuba City, Arizona. The site covers 105 acres and contains 25 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR Part 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at a more remote location. The no action alternative is also assessed in this document.
Energy Technology Data Exchange (ETDEWEB)
Bachrach, A.; Hoopes, J.; Morycz, D. (Jacobs Engineering Group, Inc., Pasadena, CA (USA)); Bone, M.; Cox, S.; Jones, D.; Lechel, D.; Meyer, C.; Nelson, M.; Peel, R.; Portillo, R.; Rogers, L.; Taber, B.; Zelle, P. (Weston (Roy F.), Inc., Washington, DC (USA)); Rice, G. (Sergent, Hauskins and Beckwith (USA))
1984-12-01
This document assesses and compares the environmental impacts of various alternatives for remedial action at the Gunnison uranium of mill tailings site located 0.5 miles south of Gunnison, Colorado. The site covers 56 acres and contains 35 acres of tailings, 2 of the original mill buildings and a water tower. The Uranium Mill Tailings Radiation Control of Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated (vicinity) properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the occurrence of the Nuclear Regulatory Commission. Four alternatives have been addressed in this document. The first alternative is to consolidate the tailings and associated contaminated soils into a recontoured pile on the southern portion of the existing site. A radon barrier of silty clay would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Two other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a location farther from the city of Gunnison. The no action alternative is also assessed.
International Nuclear Information System (INIS)
1986-11-01
This document assesses and compares the environmental impacts of various alternatives for remedial action at the Tuba City uranium mill tailings site located approximately six miles east of Tuba City, Arizona. The site covers 105 acres and contains 25 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR Part 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at a more remote location. The no action alternative is also assessed in this document
International Nuclear Information System (INIS)
1994-05-01
The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC section 7901 et seq.), hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miquel County. Contaminated materials cover an estimated 63 acres of the Union Carbide (UC) processing site and 15 ac of the North Continent (NC) processing site. The sites are within 1 mile of each other and are adjacent to the Dolores River. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The total estimated volume of contaminated materials is approximately 621,300 cubic yards (yd 3 ). In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designing site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi northeast of the sites on land administered by the Bureau of Land Management (BLM)
Environmental impact assessment for uranium mine, mill and in situ leach projects
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-11-01
Environmental impact assessments and/or statements are an inherent part of any uranium mining project and are a prerequisite for the future opening of an exploitation and its final closure and decommissioning. Since they contain all information related to the physical, biological, chemical and economic condition of the areas where industrial projects are proposed or planned, they present invaluable guidance for the planning and implementation of environmental mitigation as well as environmental restoration after the mine is closed. They further yield relevant data on the socio-economic impacts of a project. The present report provides guidance on the environmental impact assessment of uranium mining and milling projects, including in situ leach projects which will be useful for companies in the process of planning uranium developments as well as for the regional or national authorities who will assess such developments. Additional information and advice is given through environmental case histories from five different countries. Those case histories are not meant to be prescriptions for conducting assessments nor even firm recommendations, but should serve as examples for the type and extent of work involved in assessments. A model assessment and licensing process is recommended based on the experience of the five countries. 1 fig., 5 tabs.
Environmental impact assessment for uranium mine, mill and in situ leach projects
International Nuclear Information System (INIS)
1997-11-01
Environmental impact assessments and/or statements are an inherent part of any uranium mining project and are a prerequisite for the future opening of an exploitation and its final closure and decommissioning. Since they contain all information related to the physical, biological, chemical and economic condition of the areas where industrial projects are proposed or planned, they present invaluable guidance for the planning and implementation of environmental mitigation as well as environmental restoration after the mine is closed. They further yield relevant data on the socio-economic impacts of a project. The present report provides guidance on the environmental impact assessment of uranium mining and milling projects, including in situ leach projects which will be useful for companies in the process of planning uranium developments as well as for the regional or national authorities who will assess such developments. Additional information and advice is given through environmental case histories from five different countries. Those case histories are not meant to be prescriptions for conducting assessments nor even firm recommendations, but should serve as examples for the type and extent of work involved in assessments. A model assessment and licensing process is recommended based on the experience of the five countries
Technico-economic analysis of uranium-mill-tailings conditioning alternatives
International Nuclear Information System (INIS)
Thode, E.F.; Dreesen, D.R.
1981-01-01
An analysis of practicable conditioning technologies for uranium mill tailings and their estimated costs has been conducted for two conditioning alternatives, thermal stabilization and leaching (sulfuric acid). Among the four high priority remedial action sites, Canonsburg, Pennsylvania, and Shiprock, New Mexico appear to be very good candidates for thermal stabilization. At Shiprock, thermal stabilization appears to be less expensive ($16.01/ton) than moving the pile more than five miles and covering with 15 feet of earth. At Canonsburg costs of other alternatives are not presently available. Given the radiological monitoring and protection expenses attendant upon moving these tailings in a highly populated area, it is likely that thermal stabilization, on site, at $41.25/ton would be an attractive remedial action approach. Cost data on the Salt Lake City, Utah site are presented for comparison purposes. Thermal stabilization is not favorable at this site because of high fuel and labor costs, as well as other factors. A conceptual design for a thermal stabilization operation is described. Sufficient information to assess the leaching alternative is available only for the Durango, Colorado site. Because of the large amount of vanadium and uranium in the pile, the income from the sale of these strategic minerals could pay for as much as 58% of the expense of removing, transporting, and covering the pile
Effects of uranium mining and milling on surface water in New Mexico
International Nuclear Information System (INIS)
Brandvold, L.L.; Brandvold, D.K.; Popp, C.J.
1980-01-01
Currently, there are 35 active mines, 5 mills and 4 ion exchange plants in the Grants area. There was a general increase in uranium and vanadium with time over the San Jose and Puerco System. This doesn't appear to be related to any individual discharge but most likely reflects the general increase in activity in the area. As mining continues, this increase is expected to continue. The project reported here involved determining physical and chemical parameters of the water in the San Jose-Puerco system in New Mexico between March 1978 and September 1980. 14 refs
Energy Technology Data Exchange (ETDEWEB)
1987-06-01
This document assesses and compares the environmental impacts of various alternatives for remedial action at the Ambrosia Lake uranium mill tailings site located near Ambrosia Lake, New Mexico. The designated site covers 196 acres and contains 111 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for th remedial action (40 CFR Part 192). Remedial action must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion protection measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at an undeveloped location. The no action alternative is also assessed in this document.
International Nuclear Information System (INIS)
1987-06-01
This document assesses and compares the environmental impacts of various alternatives for remedial action at the Ambrosia Lake uranium mill tailings site located near Ambrosia Lake, New Mexico. The designated site covers 196 acres and contains 111 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for th remedial action (40 CFR Part 192). Remedial action must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion protection measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at an undeveloped location. The no action alternative is also assessed in this document
Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Mikelic, Ivanka Lovrencic; Kollar, Iris
2011-01-01
The purpose of this research was the characterization and improvement of the quality of water used for human consumption of unregulated/regulated water sources located in the Cameron/Tuba City abandoned uranium mining area (NE Arizona, western edge of the Navajo Nation). Samples were collected at six water sources which included regulated sources: Wind Mill (Tank 3T-538), Badger Springs and Paddock Well as well as unregulated sources: Willy Spring, Water Wall and Water Hole. Samples taken from Wind Mill, Water Wall and Water Hole were characterized with high turbidity and color as well as high level of manganese, iron and nickel and elevated value of molybdenum. High level of iron was also found in Badger Spring, Willy Spring, and Paddock Well. These three water sources were also characterized with elevated values of fluoride and vanadium. Significant amounts of zinc were found in Water Wall and Water Hole samples. Water Wall sample was also characterized with high level of Cr(VI). Compared to primary or secondary Navajo Nation Environmental Protection Agency (NNEPA) water quality standard the highest enrichment was found for turbidity (50.000 times), color (up to 1.796 times) and manganese (71 times), Cr(VI) (17.5 times), iron (7.4 times) and arsenic (5.2 times). Activities of (226)Ra and (238)U in water samples were still in agreement with the maximum contaminant levels. In order to comply with NNEPA water quality standard water samples were subjected to electrochemical treatment. This method was selected due to its high removal efficiency for heavy metals and uranium, lower settlement time, production of smaller volume of waste mud and higher stability of waste mud compared to physico-chemical treatment. Following the treatment, concentrations of heavy metals and activities of radionuclides in all samples were significantly lower compared to NNEPA or WHO regulated values. The maximum removal efficiencies for color, turbidity, arsenic, manganese, molybdenum and
International Nuclear Information System (INIS)
Kerouanton, David; Delgove, Laure
2008-01-01
A methodology is elaborated in order to evaluate the long term radiological impact of remediated uranium mill tailings storage. Different scenarios are chosen and modelled to cover future evolution of the tailings storages. Radiological impact is evaluated for different population such as adults and children living in the immediate vicinity or directly on the storage, road workers or walkers on the storage. Equation and methods are detailed. (author)
Energy Technology Data Exchange (ETDEWEB)
Nelson, R.A. (Jacobs Engineering, Albuquerque, NM (United States)); Chernoff, A.R. (Department of Energy, Albuquerque, NM (United States). Albuquerque Operations Office); Mager, D. (Federal Ministry of Economics, Bonn (Germany)); Goldammer, W. (Brenk Systemplanung, Aachen (Germany))
1994-02-01
Many parallels can be drawn between the environmental legacy left from uranium production in the USA and the former German Democratic Republic, but there are differences in the approaches being taken to clean up. The US programme (both Title I and Title II) emphasises compliance with prescriptive standards whereas the German initiative strives to establish more risk-based regulatory structure for mine and mill restoration as in other uranium-producing countries. (author).
International Nuclear Information System (INIS)
Whillans, R.T.
1981-01-01
Events in the Canadian uranium industry during 1980 are reviewed. Mine and mill expansions and exploration activity are described, as well as changes in governmental policy. Although demand for uranium is weak at the moment, the industry feels optimistic about the future. (LL)
A state-of-the-art methodology for impact assessment of covered uranium mill tailings
International Nuclear Information System (INIS)
Mallants, D.; Dierckx, A.; Wang, L.; Volckaert, G.; Zeevaert, Th.
2002-01-01
An impact assessment methodology is being developed that integrates several advanced modelling and characterisation techniques for the purpose of assessing the current and future environmental and health impact of a surface repository containing wastes from uranium milling and radium processing. The former radium processing plant at Olen, Belgium, accumulated during nearly half a century considerable amounts of radium-containing wastes. Also present at the site are uranium mill tailings. These wastes were disposed of in a heavily engineered surface repository at the occasion of a remediation plan carried out in the mid eighties. The repository contains several concrete bunkers covered with a multi-layer hydraulic barrier. In the current impact assessment study the only exposure pathway discussed is by contamination of groundwater. For this purpose we calculated variably-saturated water flow in the multi-layer barrier and the underlying waste zones and used geochemical modelling to estimate the chemical species and their solubility's in the aqueous phase of the various waste forms. The assessment further includes modelling of contaminant leaching from the tailings towards the groundwater, contaminant transport in the surrounding groundwater towards a water well, and evaluation of the doses for ingestion, inhalation and external irradiation resulting from use of groundwater from the well. Details of the waste and site characterisation as well as contaminant modelling are discussed. (author)
International Nuclear Information System (INIS)
Mkandawire, Martin; Dudel, E. Gert
2005-01-01
Accumulation of arsenic in Lemna gibba L. was investigated in tailing waters of abandoned uranium mine sites, following the hypothesis that arsenic poses contamination risks in post uranium mining in Saxony, Germany. Consequently, macrophytes growing in mine tailing waters accumulate high amounts of arsenic, which might be advantageous for biomonitoring arsenic transfer to higher trophic levels, and for phytoremediation. Water and L. gibba sample collected from pond on tailing dumps of abandoned mine sites at Lengenfeld and Neuensalz-Mechelgruen were analysed for arsenic. Laboratory cultures in nutrient solutions modified with six arsenic and three PO 4 3- concentrations were conducted to gain insight into the arsenic-L. gibba interaction. Arsenic accumulation coefficients in L. gibba were 10 times as much as the background concentrations in both tailing waters and nutrient solutions. Arsenic accumulations in L. gibba increased with arsenic concentration in the milieu but they decreased with phosphorus concentration. Significant reductions in arsenic accumulation in L. gibba were observed with the addition of PO 4 3- at all six arsenic test concentrations in laboratory experiments. Plant samples from laboratory trials had on average twofold higher bioaccumulation coefficients than tailing water at similar arsenic concentrations. This would be attributed to strong interaction among chemical components, and competition among ions in natural aquatic environment. The results of the study indicate that L. gibba can be a preliminary bioindicator for arsenic transfer from substrate to plants and might be used to monitor the transfer of arsenic from lower to higher trophic levels in the abandoned mine sites. There is also the potential of using L. gibba L. for arsenic phytoremediation of mine tailing waters because of its high accumulation capacity as demonstrated in this study. Transfer of arsenic contamination transported by accumulations in L. gibba carried with flowing
International Nuclear Information System (INIS)
Nelson, R.A.; Chernoff, A.R.; Mager, D.; Goldammer, W.
1993-01-01
The former Soviet Union demands for uranium feed materials were primarily met by the East German Republic. A small area 200 km long and 50 km wide in the provinces of Saxony and Thuringia provided more than half of the uranium concentrate processed by the Soviet Union, and used for nuclear weapons development and power generation. With the majority of the ore processed in Germany of an average lower grade than a number of deposits found around the world, the mining and milling resulted in an enormous scale of surface disturbance and quantities of mill tailings concentrated in a relatively small densely populated geographical area. As a result of the re-unification of the two Germanies, all uranium extraction and processing activities were suddenly brought to a halt for economic reasons. The former soviet-East German corporation responsible for the uranium concentrate production was changed into a German state-operated company tasked with the facility decommissioning and environmental restoration. Code-named WISMUT (the German word for Bismuth) during the cold war, this organization was literally changed overnight from a self-sufficient, autonomously operating and state controlled effort into a public works, environmentally conscious corporation
International Nuclear Information System (INIS)
Hollenbach, M.H.
1988-01-01
The Technical Measurements Center (TMC) was established to support the environmental measurement needs of the various DOE remedial action programs. A laboratory intercomparison study conducted by the TMC, using soil and water samples from sites contaminated by uranium mill tailings, indicated large discrepancies in analytical results reported by participating laboratories for arsenic, selenium, molybdenum, and vanadium. The present study was undertaken to investigate the most commonly used analytical techniques for measuring these four elements, ascertain routine and reliable quantification, and assess problems and successes of analysts. Based on a survey of the technical literature, the analytical technique of atomic absorption spectroscopy was selected for detailed study. The application of flame atomic absorption, graphite furnace atomic absorption, and hydride generation atomic absorption to the analysis of tailings-contaminated samples is discussed. Additionally, laboratory sample preparation methods for atomic absorption spectroscopy are presented. The conclusion of this report is that atomic absorption can be used effectively for the determination of arsenic, selenium, molybdenum, and vanadium in water and soil samples if the analyst understands the measurement process and is aware of potential problems. The problem of accurate quantification of arsenic, selenium, molybdenum, and vanadium in water and soil contaminated by waste products from uranium milling operations affects all DOE remedial action programs [Surplus Facilities Management Program (SFMP), Formerly Utilized Site Remedial Action Program (FUSRAP), and Uranium Mill Tailings Remedial Action Program (UMTRAP)], since all include sites where uranium was processed. 96 refs., 9 figs
Identification of poorly crystalline scorodite in uranium mill tailings
International Nuclear Information System (INIS)
Frey, R.; Rowson, J.; Hughes, K.; Rinas, C.; Warner, J.
2010-01-01
The McClean Lake mill, located in northern Saskatchewan, processes a variety of uranium ore bodies to produce yellowcake. A by-product of this process is an acidic waste solution enriched in arsenic, referred to as raffinate. The raffinate waste stream is treated in the tailings preparation circuit, where arsenic is precipitated as a poorly crystalline scorodite phase. Raffinate neutralization studies have successfully identified poorly crystalline scorodite using XRD, SEM, EM, XANES and EXAFS methods, but to date, scorodite has not been successfully identified within the whole tailing solids. During the summer of 2008, a drilling program sampled the in situ tailings within the McClean Lake tailings management facility. Samples from this drilling campaign were sent to the Canadian Light Source Inc. for EXAFS analysis. The sample spectra positively identify a poorly crystalline scorodite phase within the McClean tailings management facility. (author)
Guidelines for cleanup of uranium tailings from inactive mills
International Nuclear Information System (INIS)
Goldsmith, W.A.; Haywood, F.F.; Jacobs, D.G.
1975-01-01
Recent experiences in Grand Junction, Colorado, have indicated the significance of uranium tailings as sources of nonoccupational exposure and suggest that current methods for perpetual care and isolation of the large areas covered by tailings piles at inactive mill locations may be inadequate for minimizing human exposure. This paper presents the rationale and the procedures used in reviewing the adequacy of proposed criteria for remedial action at these sites. Exposures due to aquatic, terrestrial, airborne, and direct contamination pathways were compared to determine the most important radionuclides in the pile and their pathways to man. It is shown that the most hazardous components of the tailings are 226 Ra and 230 Th. The long half-lives of these radionuclides require the consideration of continuous occupancy of the vacated site at some future time, even if the immediately projected land use does not anticipate maximum exposure
Uranium Mill Tailings Remedial Action Program. Annual status report
International Nuclear Information System (INIS)
1984-12-01
The Uranium Mill Tailings Remedial Action (UMTRA) Project FY 1984 major accomplishments are summarized. Twenty-five percent of the processing site remedial actions at Canonsburg, PA, were completed. Remedial action on 118 vicinity properties at four designated locations were initiated and survey and inclusion activities on a total of 420 vicinity properties were completed. The Environmental Impact Statement (EIS) for Salt Lake City, UT, and the Environmental Assessment (EA) for Shiprock, NM were published, and the preliminary draft EIS for Durango, CO, was prepared. Remedial Action Plans (RAPs) for Salt Lake City, UT, and Shiprock, NM were completed, and draft RAPs for Gunnison, CO, and Riverton, WY were prepared. Cooperative agreements with Oregon, Wyoming, and South Dakota were executed, and the Utah cooperative agreement was modified to assign the construction management responsibility to the state. An Interagency Agreement with TVA for disposal of the Edgemont vicinity property material was executed
Energy Technology Data Exchange (ETDEWEB)
1991-12-01
The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium milling sites. According to the Uranium Mill Tailings Radiation Control Act of 1978, (UMTRCA) the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined this assessment shall include information on hydrogeologic site characterization. The water resources protection strategy that describes how the proposed action will comply with the EPA groundwater protection standards is presented in Attachment 4. Site characterization activities discussed in this section include: Characterization of the hydrogeologic environment; characterization of existing groundwater quality; definition of physical and chemical characteristics of the potential contaminant source; and description of local water resources.
International Nuclear Information System (INIS)
1997-02-01
This report assesses the environmental impacts of the Uranium Mill Tailings Site at Spook, Wyoming on ground water. DOE previously characterized the site and monitoring data were collected during the surface remediation. The ground water compliance strategy is to perform no further remediation at the site since the ground water in the aquifer is neither a current nor potential source of drinking water. Under the no-action alternative, certain regulatory requirements would not be met
International Nuclear Information System (INIS)
1994-04-01
The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service (FWS)
Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan
International Nuclear Information System (INIS)
Vollmer, A.T.
1993-10-01
The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1. The UMTRA EPIP covers the time period of November 9, 1993, through November 8, 1994. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies. Contents of this report are: (1) general description of the UMTRA project environmental protection program; (2) notifications; (3) planning and reporting; (4) special programs; (5) environmental monitoring programs; (6) quality assurance and data verification; and (7) references
Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan
Energy Technology Data Exchange (ETDEWEB)
Vollmer, A.T.
1993-10-01
The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1. The UMTRA EPIP covers the time period of November 9, 1993, through November 8, 1994. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies. Contents of this report are: (1) general description of the UMTRA project environmental protection program; (2) notifications; (3) planning and reporting; (4) special programs; (5) environmental monitoring programs; (6) quality assurance and data verification; and (7) references.
International Nuclear Information System (INIS)
1994-09-01
The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC section 7901 et seq.), hereafter referred to as the UMTRCA, authorized the U.S. Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VPs) associated with the sites. Contaminated materials cover an estimated 55 acres of the Union Carbide (UC) processing site and 12 ac of the North Continent (NC) processing site. The total estimated volume of contaminated materials is approximately 61 8,300 cubic yards. In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the sites on land administered by the Bureau of Land Management (BLM). Remediation would be performed by the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. All solid contaminated materials would be buried under 5 feet (ft) of rock and soil materials. The proposed disposal site area is currently used by ranchers for cattle grazing over a 7-month period. The closest residence to the proposed disposal site is 2 air mi. An estimated 44 ac of land would be permanently transferred from the BLM to the DOE and restricted from future use
Energy Technology Data Exchange (ETDEWEB)
1994-09-01
The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section} 7901 et seq.), hereafter referred to as the UMTRCA, authorized the U.S. Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VPs) associated with the sites. Contaminated materials cover an estimated 55 acres of the Union Carbide (UC) processing site and 12 ac of the North Continent (NC) processing site. The total estimated volume of contaminated materials is approximately 61 8,300 cubic yards. In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the sites on land administered by the Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. All solid contaminated materials would be buried under 5 feet (ft) of rock and soil materials. The proposed disposal site area is currently used by ranchers for cattle grazing over a 7-month period. The closest residence to the proposed disposal site is 2 air mi. An estimated 44 ac of land would be permanently transferred from the BLM to the DOE and restricted from future use.
International Nuclear Information System (INIS)
Narashimhan, T.N.; White, A.F.; Tokunaga, T.
1986-01-01
At Riverton, Wyoming, low pH process waters from an abandoned uranium mill tailings pile have been infiltrating into and contaminating the shallow water table aquifer. The contamination process has been governed by transient infiltration rates, saturated-unsaturated flow, as well as transient chemical reactions between the many chemical species present in the mixing waters and the sediments. In the first part of this two-part series the authors presented field data as well as an interpretation based on a static mixing models. As an upper bound, the authors estimated that 1.7% of the tailings water had mixed with the native groundwater. In the present work they present the results of numerical investigation of the dynamic mixing process. The model, DYNAMIX (DYNamic MIXing), couples a chemical speciation algorithm, PHREEQE, with a modified form of the transport algorithm, TRUMP, specifically designed to handle the simultaneous migration of several chemical constituents. The overall problem of simulating the evolution and migration of the contaminant plume was divided into three sub problems that were solved in sequential stages. These were the infiltration problem, the reactive mixing problem, and the plume-migration problem. The results of the application agree reasonably with the detailed field data. The methodology developed in the present study demonstrates the feasibility of analyzing the evolution of natural hydrogeochemical systems through a coupled analysis of transient fluid flow as well as chemical reactions. It seems worthwhile to devote further effort toward improving the physicochemical capabilities of the model as well as to enhance its computational efficiency
International Nuclear Information System (INIS)
Narasimhan, T.N.; Tokunaga, T.; White, A.F.; Smith, A.R.
1984-01-01
The ultimate objective of the Uranium Mill Tailings Remedial Action Project (UMTRAP) is to minimize the potential environmental hazards due to the existing inactive uranium mill tailing piles. One of these sites, at Riverton, Wyoming, is located on the flood plain of the Wind River, with the water table lying within a few meters of the bottom of the tailings. Field data clearly indicates that contaminants, both radioactive and non-radioactive, are mobile within the tailings as well as in the adjacent ground water system. From the point of view of remedial action, the following important questions arise: At what rates and quantities will the contaminants continue to migrate in the ground water system over the next several hundred years. What will be the soil-water regime in the upper part of the tailings which controls the migration of radon gas to the atmosphere. In view of the projected system behavior, what are the economically viable and environmentally acceptable engineering solutions for remedy. The purpose of the mathematical modeling efforts at the Riverton site is to address the question of prediction; the transport of contaminants in the ground water system as well as the dynamic soil-water regime near the upper boundary. The use of mathematical models for the above purpose is dictated by the following questions: Do adequate computational models exist that can simulate the physico-chemical processes that characterize the mill tailings. Can these models reasonably explain the chemical evolution of the system since the beginning of the tailings emplacement. If so, can the historical behavior be used as the basis for predicting the behavior over the next several hundred years
International Nuclear Information System (INIS)
Ramos, S.J.; Berven, B.A.; Little, C.A.
1986-08-01
The Radiological Survey Activities (RASA) program at Oak Ridge National Laboratory (ORNL) is responsible for surveying designated sites in the vicinity of 24 inactive mill sites involved in the Department of Energy's (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP). The purpose of these surveys is to provide a recommendation to DOE whether to include or exclude the site from UMTRAP based on whether the onsite residual radioactive material (if any) originated from the former mill sites, and radiation levels onsite are in excess of appropriate Environmental Protection Agency (EPA) criteria. This report describes the quality assurance program plan for the RASA program in conducting all activities related to the UMTRA project. All quality assurance provisions given by the DOE, DOE/UMTRA, and ORNL organizations are integrated into this plan. Specifically, this report identifies the policies and procedures followed in accomplishing the RASA/UMTRAP QA program, identifies those organizational units involved in the implementation of these procedures, and outlines the respective responsibilities of those groups