WorldWideScience

Sample records for abandoned underground coal

  1. Management of mining-related damages in abandoned underground coal mine areas using GIS

    International Nuclear Information System (INIS)

    Lee, U.J.; Kim, J.A.; Kim, S.S.; Kim, W.K.; Yoon, S.H.; Choi, J.K.

    2005-01-01

    The mining-related damages such as ground subsidence, acid mine drainage (AMD), and deforestation in the abandoned underground coal mine areas become an object of public concern. Therefore, the system to manage the mining-related damages is needed for the effective drive of rehabilitation activities. The management system for Abandoned Underground Coal Mine using GIS includes the database about mining record and information associated with the mining-related damages and application programs to support mine damage prevention business. Also, this system would support decision-making policy for rehabilitation and provide basic geological data for regional construction works in abandoned underground coal mine areas. (authors)

  2. Groundwater-quality data associated with abandoned underground coal mine aquifers in West Virginia, 1973-2016: Compilation of existing data from multiple sources

    Science.gov (United States)

    McAdoo, Mitchell A.; Kozar, Mark D.

    2017-11-14

    This report describes a compilation of existing water-quality data associated with groundwater resources originating from abandoned underground coal mines in West Virginia. Data were compiled from multiple sources for the purpose of understanding the suitability of groundwater from abandoned underground coal mines for public supply, industrial, agricultural, and other uses. This compilation includes data collected for multiple individual studies conducted from July 13, 1973 through September 7, 2016. Analytical methods varied by the time period of data collection and requirements of the independent studies.This project identified 770 water-quality samples from 294 sites that could be attributed to abandoned underground coal mine aquifers originating from multiple coal seams in West Virginia.

  3. Estimating Limits for the Geothermal Energy Potential of Abandoned Underground Coal Mines: A Simple Methodology

    Directory of Open Access Journals (Sweden)

    Rafael Rodríguez Díez

    2014-07-01

    Full Text Available Flooded mine workings have good potential as low-enthalpy geothermal resources, which could be used for heating and cooling purposes, thus making use of the mines long after mining activity itself ceases. It would be useful to estimate the scale of the geothermal potential represented by abandoned and flooded underground mines in Europe. From a few practical considerations, a procedure has been developed for assessing the geothermal energy potential of abandoned underground coal mines, as well as for quantifying the reduction in CO2 emissions associated with using the mines instead of conventional heating/cooling technologies. On this basis the authors have been able to estimate that the geothermal energy available from underground coal mines in Europe is on the order of several thousand megawatts thermal. Although this is a gross value, it can be considered a minimum, which in itself vindicates all efforts to investigate harnessing it.

  4. Hydrogeology, groundwater flow, and groundwater quality of an abandoned underground coal-mine aquifer, Elkhorn Area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; McCoy, Kurt J.; Britton, James Q.; Blake, B.M.

    2017-01-01

    The Pocahontas No. 3 coal seam in southern West Virginia has been extensively mined by underground methods since the 1880’s. An extensive network of abandoned mine entries in the Pocahontas No. 3 has since filled with good-quality water, which is pumped from wells or springs discharging from mine portals (adits), and used as a source of water for public supplies. This report presents results of a three-year investigation of the geology, hydrology, geochemistry, and groundwater flow processes within abandoned underground coal mines used as a source of water for public supply in the Elkhorn area, McDowell County, West Virginia. This study focused on large (> 500 gallon per minute) discharges from the abandoned mines used as public supplies near Elkhorn, West Virginia. Median recharge calculated from base-flow recession of streamflow at Johns Knob Branch and 12 other streamflow gaging stations in McDowell County was 9.1 inches per year. Using drainage area versus mean streamflow relationships from mined and unmined watersheds in McDowell County, the subsurface area along dip of the Pocahontas No. 3 coal-mine aquifer contributing flow to the Turkey Gap mine discharge was determined to be 7.62 square miles (mi2), almost 10 times larger than the 0.81 mi2 surface watershed. Results of this investigation indicate that groundwater flows down dip beneath surface drainage divides from areas up to six miles east in the adjacent Bluestone River watershed. A conceptual model was developed that consisted of a stacked sequence of perched aquifers, controlled by stress-relief and subsidence fractures, overlying a highly permeable abandoned underground coal-mine aquifer, capable of substantial interbasin transfer of water. Groundwater-flow directions are controlled by the dip of the Pocahontas No. 3 coal seam, the geometry of abandoned mine workings, and location of unmined barriers within that seam, rather than surface topography. Seven boreholes were drilled to intersect

  5. Characterization and effectiveness of remining abandoned coal mines in Pennsylvania

    International Nuclear Information System (INIS)

    Hawkins, J.W.

    1995-01-01

    Under an approved remining program, mine operators can remine abandoned coal mines without assuming legal responsibility for treatment of the previously degraded water, as long as the discharging waters are not further degraded and other regulatory requirements are satisfied. A US Bureau of Mines review of 105 remining permits in Pennsylvania indicates that remining results in substantial reclamation of abandoned mine lands, utilization of significant quantities of coal, and reduction of contaminant loads (acidity and iron) from degraded mine drainage discharges. Normality tests performed on the water quality and flow data indicate generally nonnormal distributions and extreme right-skewness tending toward lower values. The water quality of underground coal mines was observed to be more highly degraded in terms of acidity, iron, and sulfate than that of surface coal mines. The optimum baseline sampling scenario is 12 months in duration at a frequency of one sample per month. Analysis of water quality and flow rates before and after remining indicates that a majority of the mines exhibited either no change or a significant decrease in pollution rate because of remining. The discharge flow rate was the dominant controlling factor when the post-remining contaminant load was significantly better or worse than the baseline (pre-mining) load

  6. Groundwater and underground coal gasification in Alberta

    International Nuclear Information System (INIS)

    Haluszka, A.; MacMillan, G.; Maev, S.

    2010-01-01

    Underground coal gasification has potential in Alberta. This presentation provided background information on underground coal gasification and discussed groundwater and the Laurus Energy demonstration project. A multi-disciplined approach to project assessment was described with particular reference to geologic and hydrogeologic setting; geologic mapping; and a hydrogeologic numerical model. Underground coal gasification involves the conversion of coal into synthesis gas or syngas. It can be applied to mined coal at the surface or applied to non-mined coal seams using injection and production wells. Underground coal gasification can effect groundwater as the rate of water influx into the coal seams influences the quality and composition of the syngas. Byproducts created include heat as well as water with dissolved concentrations of ammonia, phenols, salts, polyaromatic hydrocarbons, and liquid organic products from the pyrolysis of coal. A process overview of underground coal gasification was also illustrated. It was concluded that underground coal gasification has the potential in Alberta and risks to groundwater could be minimized by a properly designed project. refs., figs.

  7. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines.

    Science.gov (United States)

    Lee, Saro; Park, Inhye

    2013-09-30

    Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events. Copyright © 2013. Published by Elsevier Ltd.

  8. Hydrologic and water quality characteristics of a partially-flooded, abandoned underground coal mine

    International Nuclear Information System (INIS)

    Aljoe, W.W.

    1994-01-01

    The hydrologic and water quality characteristics of a partially flooded, abandoned underground coal mine near Latrobe, PA, were studied to support the development of techniques for in situ abatement of its acidic discharge. A quantitative understanding of the conditions affecting discharge flow was considered to be very important in this regard. Statistical analysis of hydrologic data collected at the site shows that the flow rate of the main discharge (a borehole that penetrates the mine workings just behind a set of portal seals) is a linear function of the height of the mine pool above the borehole outlet. Seepage through or around the portal seals is collected by a set of french drains whose discharge rate is largely independent of the mine pool elevation. This seepage was enhanced after a breakthrough that occurred during a period of unusually high pool levels. The mine pool recharge rate during winter is about 2.5 times greater than that of any other season; recharge rates during spring, summer, and fall are approximately equal. Mine pool and discharge water quality information, along with bromide tracer tests, suggest that the original main entries discharge primarily to the french drains, while the borehole carries the discharge from an unmonitored set of entries northwest of the mains. The water quality of the east french drain discharge may have been improved substantially after seepage through the alkaline materials used to construct the portal seals

  9. Geophysical void detection at the site of an abandoned limestone quarry and underground mine in southwestern Pennsylvania

    International Nuclear Information System (INIS)

    Cohen, K.K.; Trevits, M.A.

    1992-01-01

    Locating underground voids, tunnels, and buried collapse structures continues to present a difficult problem for engineering geoscientists charged with this responsibility for a multitude of different studies. Solutions used and tested for void detection have run the gamut of surface geophysical and remote sensing techniques, to invasive trenching and drilling on closely-spaced centers. No where is the problem of locating underground voids more ubiquitous than in abandoned mined lands, and the U.S. Bureau of Mines continues to investigate this problem for areas overlying abandoned coal, metal, and nonmetal mines. Because of the great diversity of resources mined, the problem of void detection is compounded by the myriad of geologic conditions which exist for abandoned mined lands. At a control study site in southwestern Pennsylvania at the Bureau's Lake Lynn Laboratory, surface geophysical techniques, including seismic and other methods, were tested as a means to detect underground mine voids in the rather simple geologic environment of flat-lying sedimentary strata. The study site is underlain by an abandoned underground limestone mine developed in the Wymps Gap Limestone member of the Mississippian Mauch Chunk Formation. Portals or entrances into the mine, lead to drifts or tunnels driven into the limestone; these entries provided access to the limestone where it was extracted by the room-and-pillar method. The workings lie less than 300 ft from the surface, and survey lines or grids were positioned over the tunnels, the room-and-pillar zones, and the areas not mined. Results from these geophysical investigations are compared and contrasted. The application of this control study to abandoned mine void detection is apparent, but due to the carbonate terrain of the study site, the results may also have significance to sinkhole detection in karst topography

  10. An overview of the geological controls in underground coal gasification

    Science.gov (United States)

    Mohanty, Debadutta

    2017-07-01

    Coal’s reign will extend well into this millennium as the global demand for coal is expected to increase on average by 2-1% per year through 2019. Enhanced utilization of the domestic coal resource through clean coal technologies is necessary to meet the energy needs while achieving reduced emissions. Underground coal gasification (UCG) is one of such potential technologies. Geology of the area plays decisive role throughout the life of a UCG project and imperative for every phase of the project cycle starting from planning, site selection, design to cessation of operations and restoration of the site. Impermeable over/underlying strata with low porosity and less deformation are most suitable for UCG processes as they act as seal between the coal seam and the surrounding aquifers while limiting the degree of subsidence. Inrush of excess water into the gasification chamber reduces the efficacy of the process and may even quench the reactions in progress. Presence of fresh water aquifer in the vicinity of target coal seam should be abandoned in order to avoid groundwater contamination. UCG is not a proven technology that is still evolving and there are risks that need to be monitored and managed. Effective shutdown programme should intend at minimising the post-burn contaminant generation by flushing out potential organic and inorganic contaminants from the underground strata and treating contaminants, and to restore ground water quality to near baseline conditions.

  11. Evaluation of a Compact Coaxial Underground Coal Gasification System Inside an Artificial Coal Seam

    Directory of Open Access Journals (Sweden)

    Fa-qiang Su

    2018-04-01

    Full Text Available The Underground Coal Gasification (UCG system is a clean technology for obtaining energy from coal. The coaxial UCG system is supposed to be compact and flexible in order to adapt to complicated geological conditions caused by the existence of faults and folds in the ground. In this study, the application of a coaxial UCG system with a horizontal well is discussed, by means of an ex situ model UCG experiment in a large-scale simulated coal seam with dimensions of 550 × 600 × 2740 mm. A horizontal well with a 45-mm diameter and a 2600-mm length was used as an injection/production well. During the experiment, changes in temperature field and product gas compositions were observed when changing the outlet position of the injection pipe. It was found that the UCG reactor is unstable and expands continuously due to fracturing activity caused by coal crack initiation and extension under the influence of thermal stress. Therefore, acoustic emission (AE is considered an effective tool to monitor fracturing activities and visualize the gasification zone of coal. The results gathered from monitoring of AEs agree with the measured data of temperatures; the source location of AE was detected around the region where temperature increased. The average calorific value of the produced gas was 6.85 MJ/Nm3, and the gasification efficiency, defined as the conversion efficiency of the gasified coal to syngas, was 65.43%, in the whole experimental process. The study results suggest that the recovered coal energy from a coaxial UCG system is comparable to that of a conventional UCG system. Therefore, a coaxial UCG system may be a feasible option to utilize abandoned underground coal resources without mining.

  12. Alternative utilization of underground spaces with abandoned mine openings

    Energy Technology Data Exchange (ETDEWEB)

    Chung, So Keul; Cho, Won Jai; Han, Kong Chang; Choi, Sung Oong [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Utilization of the openings of the abandoned mines could be planned by the principal parameters such as location and geotechnical impact. The local governments have not only to lead the each stage of the utilization project from the very beginning of conceptual design up to the construction stage, but also to promote the project for the development of public purpose. The possible tentative candidates for the utilization of the abandoned mine openings which are supported by the local governments could be summarized as follows. a. The Gahak mine of Kwangmyung, Kyunggi: The mine caverns which have been served as the storage of the pickled fishes, could be reexcavated by taking into consideration the geotechnical parameters for the public use such as: 1) Training center for the youth, 2) Fermentation and storehouse of marine products, 3) Sightseeing resort, 4) Sports and leisure complex, 5) Underground parking lot, 6) Underground shopping mall and chilled room storage, 7) Library, concert hall and museum. b. Hamtae mine of Taebaek, Kangwon: The Hambaek main haulage way and its shaft should be investigated in detail in order to find out a possible use as the underground challenging park of the coal mining operation. c. Mines of Boryung and Hongsung, Chungnam: Lots of mine caverns have been used as the storehouse for the pickled shrimp. However, they have to be promoted to a large scale industries. d. Imgok mine of Kwangju and Palbong mine of Jeongeup, Chunbuk: Mine caverns which have been used as the storehouse of pickles, need a detailed investigation for alternative promotion. e. Yongho mine of Pusan Dalsung mine of Taegu: Both of the mines are located near metropolitan communities. Reconstruction of the old mine caverns of the Yongho mine is highly recommended for a public use. The caverns of the Dalsung mine could be utilized as the storage facilities. Detailed geotechnical survey and sit investigation could be suggested to design the recommended facilities for both

  13. Injection of FGD Grout to Abate Acid Mine Drainage in Underground Coal Mines

    Energy Technology Data Exchange (ETDEWEB)

    Mafi, S.; Damian, M.T.; Senita, R.E.; Jewitt, W.C.; Bair, S.; Chin, Y.C.; Whitlatch, E.; Traina, S.; Wolfe, W.

    1997-07-01

    Acid Mine Drainage (AMD) from abandoned underground coal mines in Ohio is a concern for both residents and regulatory agencies. Effluent from these mines is typically characterized by low pH and high iron and sulfate concentrations and may contaminate local drinking-water supplies and streams. The objective of this project is to demonstrate the technical feasibility of injecting cementitious alkaline materials, such as Flue Gas Desulfurization (FGD) material to mitigate current adverse environmental impacts associated with AMD in a small, abandoned deep mine in Coshocton County Ohio. The Flue Gas Desulfurization material will be provided from American Electric Power`s (AEP) Conesville Plant. It will be injected as a grout mix that will use Fixated Flue Gas Desulfurization material and water. The subject site for this study is located on the border of Coshocton and Muskingum Counties, Ohio, approximately 1.5 miles south-southwest of the town of Wills Creek. The study will be performed at an underground mine designated as Mm-127 in the Ohio Department of Natural Resources register, also known as the Roberts-Dawson Mine. The mine operated in the mid-1950s, during which approximately 2 million cubic feet of coal was removed. Effluent discharging from the abandoned mine entrances has low pH in the range of 2.8-3.0 that drains directly into Wills Creek Lake. The mine covers approximately 14.6 acres. It is estimated that 26,000 tons of FGD material will be provided from AEP`s Conesville Power Plant located approximately 3 miles northwest of the subject site.

  14. Injection of FGD Grout to Abate Acid Mine Drainage in Underground Coal Mines

    International Nuclear Information System (INIS)

    Mafi, S.; Damian, M.T.; Senita, R.E.; Jewitt, W.C.; Bair, S.; Chin, Y.C.; Whitlatch, E.; Traina, S.; Wolfe, W.

    1997-07-01

    Acid Mine Drainage (AMD) from abandoned underground coal mines in Ohio is a concern for both residents and regulatory agencies. Effluent from these mines is typically characterized by low pH and high iron and sulfate concentrations and may contaminate local drinking-water supplies and streams. The objective of this project is to demonstrate the technical feasibility of injecting cementitious alkaline materials, such as Flue Gas Desulfurization (FGD) material to mitigate current adverse environmental impacts associated with AMD in a small, abandoned deep mine in Coshocton County Ohio. The Flue Gas Desulfurization material will be provided from American Electric Power's (AEP) Conesville Plant. It will be injected as a grout mix that will use Fixated Flue Gas Desulfurization material and water. The subject site for this study is located on the border of Coshocton and Muskingum Counties, Ohio, approximately 1.5 miles south-southwest of the town of Wills Creek. The study will be performed at an underground mine designated as Mm-127 in the Ohio Department of Natural Resources register, also known as the Roberts-Dawson Mine. The mine operated in the mid-1950s, during which approximately 2 million cubic feet of coal was removed. Effluent discharging from the abandoned mine entrances has low pH in the range of 2.8-3.0 that drains directly into Wills Creek Lake. The mine covers approximately 14.6 acres. It is estimated that 26,000 tons of FGD material will be provided from AEP's Conesville Power Plant located approximately 3 miles northwest of the subject site

  15. 78 FR 73471 - Refuge Alternatives for Underground Coal Mines

    Science.gov (United States)

    2013-12-06

    ... Refuge Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor... Agency's Request for Information (RFI) on Refuge Alternatives for Underground Coal Mines. This extension...), MSHA published a Request for Information on Refuge Alternatives for Underground Coal Mines. The RFI...

  16. 78 FR 58264 - Refuge Alternatives for Underground Coal Mines

    Science.gov (United States)

    2013-09-23

    ... Refuge Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor... Agency's Request for Information (RFI) on Refuge Alternatives for Underground Coal Mines. This extension... Alternatives for Underground Coal Mines. The RFI comment period had been scheduled to close on October 7, 2013...

  17. Are underground coal miners satisfied with their work boots?

    Science.gov (United States)

    Dobson, Jessica A; Riddiford-Harland, Diane L; Bell, Alison F; Steele, Julie R

    2018-01-01

    Dissatisfaction with work boot design is common in the mining industry. Many underground coal miners believe their work boots contribute to the high incidence of lower limb injuries they experience. Despite this, the most recent research to examine underground coal mining work boot satisfaction was conducted over a decade ago. This present study aimed to address this gap in the literature by assessing current mining work boot satisfaction in relation to the work-related requirements for underground coal mining. 358 underground coal miners (355 men; mean age = 39.1 ± 10.7 years) completed a 54-question survey regarding their job details, work footwear habits, foot problems, lower limb and lower back pain history, and work footwear fit and comfort. Results revealed that underground coal miners were not satisfied with their current mining work boots. This was evident in the high incidence of reported foot problems (55.3%), lower back pain (44.5%), knee pain (21.5%), ankle pain (24.9%) and foot pain (42.3%). Over half of the underground coal miners surveyed believed their work boots contributed to their lower limb pain and reported their work boots were uncomfortable. Different working roles and environments resulted in differences in the incidence of foot problems, lower limb pain and comfort scores, confirming that one boot design cannot meet all the work-related requirements of underground coal mining. Further research examining the interaction of a variety of boot designs across the different underground surfaces and the different tasks miners perform is paramount to identify key boot design features that affect the way underground coal miners perform. Enhanced work boot design could improve worker comfort and productivity by reducing the high rates of reported foot problems and pain amongst underground coal miners. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. 78 FR 48591 - Refuge Alternatives for Underground Coal Mines

    Science.gov (United States)

    2013-08-08

    ... Administration 30 CFR Parts 7 and 75 Refuge Alternatives for Underground Coal Mines; Proposed Rules #0;#0;Federal... Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Limited reopening of the... for miners to deploy and use refuge alternatives in underground coal mines. The U.S. Court of Appeals...

  19. 78 FR 68783 - Refuge Alternatives for Underground Coal Mines

    Science.gov (United States)

    2013-11-15

    ... Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Reopen... coal mines. The U.S. Court of Appeals for the District of Columbia Circuit remanded a training... for refuge alternatives in underground coal mines. On January 13, 2009, the United Mine Workers of...

  20. An injection technique for in-situ remediation of abandoned underground coal mines

    International Nuclear Information System (INIS)

    Canty, G.A.; Everett, J.W.

    1998-01-01

    Remediation of underground mines can prove to be a difficult task, given the physical constraints associated with introducing amendments to a subterranean environment. An acid mine abatement project involving in-situ chemical treatment method was conducted by the University of Oklahoma. The treatment method involved the injection of an alkaline coal combustion by-product (CCB) slurry into a flooded mine void (pH 4.4) to create a buffered zone. Injection of the CCB slurry was possible through the use of equipment developed by the petroleum industry for grouting recovery wells. This technology was selected because the CCB slurry could be injected under significant pressure and at a high rate. With higher pressure and rates of injection, a large quantity of slurry can be introduced into the mine within a limited amount of time. Theoretically, the high pressure and rate would improve dispersal of the slurry within the void. In addition, the high pressure is advantageous in fracturing or breaking-down obstructions to injection. During the injection process, a total of 418 tons of CCB was introduced within 15 hours. The mine did not refuse any of the material, and it is likely that a much larger mass could have been added. One injection well was drilled into a pillar of coal. Normally this would pose a problem when introducing a slurry; however, the coal pillar was easily fractured during the injection process. Currently, the pH of the mine discharge is above 6.5 and the alkalinity is approximately 100 mg/L as CACO 3

  1. The feasibility of underground coal gasification in developing countries with abundant coal reserves

    International Nuclear Information System (INIS)

    Lakay, P.; Van Den Panhuyzen, W.

    1993-01-01

    The feasibility of underground coal gasification is evaluated on the basis of a case study for India. India has immense coal reserves at relatively shallow depths compared to Europe, has low wages, an urgent need to expand its power capacity, a strongly rising energy demand and has shown interest in underground coal gasification. Three scenarios including the cases of continued, declining and a strong economic growth were considered. Model calculations allow to compare the cost of the electric power generated by the combustion of the gas produced by underground coal gasification with the cost of the power produced by classic thermal power plants in India for -the reference year 2000. (A.S.) 4 figs. 1 tab

  2. 77 FR 56717 - Specifications for Medical Examinations of Underground Coal Miners

    Science.gov (United States)

    2012-09-13

    ... CFR Part 37 Specifications for Medical Examinations of Underground Coal Miners; Final Rule #0;#0... 0920-AA21 Specifications for Medical Examinations of Underground Coal Miners AGENCY: Centers for... medical examinations of underground coal miners. Existing regulations established specifications for...

  3. Public views of reclaiming an abandoned coal mine: the Macoupin County project

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, J. R.

    1980-07-01

    An abandoned underground coal mine waste area in Macoupin County, Illinois, has been reclaimed for demonstration and research purposes near the city of Staunton. According to federal law, end uses of reclaimed coal mines must be determined in part by local concerns. This study examined local residents' preferences for land uses and their social and economic evaluations of reclamation at the Macoupin County site. Personal interviews with 119 residents revealed preferences for recreational use of the demonstration area; however, responses were probably influenced by prior awareness of land-use intentions. Generally, very positive evaluations of the reclamation were received. Willingness to pay for reclamation appears to be linked to fulfillment of desired recreational uses on the site and socioeconomic status of the respondent. In general, the research results provide further evidence that the value of abatement of environmental damage from mining is recognized and supported in economic terms at the public level.

  4. Using tracers to understand the hydrology of an abandoned underground coal mine

    International Nuclear Information System (INIS)

    Canty, G.A.; Everett, J.W.

    1998-01-01

    Flooded underground mines pose a difficult problem for remediation efforts requiring hydrologic information. Mine environments are hydraulically complicated due to sinuous travel paths and variable hydraulic gradients. For an acidic mine remediation project, conducted by the University of Oklahoma in conjunction with the Oklahoma Conservation Commission, a tracer study was undertaken to identify basic hydrologic properties of a flooded coal mine. The study was conducted to investigate the possibility of in-situ remediation of acidic mine water with the use of alkaline coal combustion by-products. Information on the rate of flow and ''connectiveness'' of injection wells with the discharge point was needed to develop a treatment strategy. Fluorescent dyes are not typically used in mine tracer studies because of the low pH values associated with certain mines and a tendency to adsorb ferric iron precipitates. However, Rhodamine WT was used in one tracer test because it can be detected at low concentrations. Due to poor recovery, a second tracer test was undertaken using a more conservative tracer-chloride. Each tracer produced similar travel time results. Findings from this study suggest that Rhodamine WT can be used under slightly acidic conditions, with mixed results. The more conservative tracer provided somewhat better results, but recovery was still poor. Use of these tracers has provided some valuable information with regard to mine hydrology, but additional questions have been raised

  5. Blasting as a method for abandoned mine land reclamation

    International Nuclear Information System (INIS)

    Workman, J.L.; Fletcher, L.R.

    1991-01-01

    Blasting methods have been proposed for reclaiming abandoned underground coal mine sites having unstable conditions. The objective of blasting is twofold: the permanent stabilization of an area by the collapse of underground workings to prevent any future subsidence, and the use of blasting to close existing sinkholes. This paper presents the results of two research projects funded by the Bureau of Mines Abandoned Mine Land Research Program to investigate the feasibility of blasting to assist in the reclamation of shallow abandoned coal mine sites. Blasting tests were conducted at Beulah, North Dakota and at Scobey, Montana, involving different configurations. The first test was a 10-acre site where blasting was used to collapse regular room and pillar panels for which good mine layout information was available. The second test involved a one acre site containing very irregular workings for which there was little available information. Finally, blasting techniques were used to close 13 individual vertical openings. The depths to the coal seams were 60 feet or less at all sites. When blasting for Abandoned Mine Land Reclamation, material must be cast downward into the abandoned developments or laterally into the sinkhole. Designs based on cratering concepts and spherical charges worked well. The blasting techniques successfully collapsed and stabilized the test areas. Cost of reclamation for the two test sites are presented. Data from blast vibration monitoring are presented because control of vibrations is of concern when mitigation efforts are conducted near homes

  6. Strength Reduction of Coal Pillar after CO2 Sequestration in Abandoned Coal Mines

    Directory of Open Access Journals (Sweden)

    Qiuhao Du

    2017-02-01

    Full Text Available CO2 geosequestration is currently considered to be the most effective and economical method to dispose of artificial greenhouse gases. There are a large number of coal mines that will be scrapped, and some of them are located in deep formations in China. CO2 storage in abandoned coal mines will be a potential option for greenhouse gas disposal. However, CO2 trapping in deep coal pillars would induce swelling effects of coal matrix. Adsorption-induced swelling not only modifies the volume and permeability of coal mass, but also causes the basic physical and mechanical properties changing, such as elastic modulus and Poisson ratio. It eventually results in some reduction in pillar strength. Based on the fractional swelling as a function of time and different loading pressure steps, the relationship between volumetric stress and adsorption pressure increment is acquired. Eventually, this paper presents a theory model to analyze the pillar strength reduction after CO2 adsorption. The model provides a method to quantitatively describe the interrelation of volumetric strain, swelling stress, and mechanical strength reduction after gas adsorption under the condition of step-by-step pressure loading and the non-Langmuir isothermal model. The model might have a significantly important implication for predicting the swelling stress and mechanical behaviors of coal pillars during CO2 sequestration in abandoned coal mines.

  7. Development of mechanization of extraction in underground coal mining (part I)

    Energy Technology Data Exchange (ETDEWEB)

    Strzeminski, J

    1984-01-01

    The history of underground coal mining and history of mechanizing underground operations of cutting, strata control, mine haulage, hoisting and ventilation are discussed. The following development periods are characterized: until 1769 (date of steam engine invention by J. Watt), from 1769 to 1945 (period of partial mechanization of operations in underground coal mining), from 1945 (period of comprehensive mechanization and automation). A general description of mining in the first development period is given. Evaluation of the second development period concentrates on mechanization in underground coal mining. The following equipment types are described: cutting (pneumatic picks and pneumatic drills, coal saws developed by Eickhoff, coal cutters developed after 1870, cutter loaders patented in 1925-1927, coal plows and coal cutter loaders), mine haulage (mine cars, conveyors developed in the United Kingdom, Germany and Russia, Poland), strata control at working faces (timber props, steel friction props, roof bars), strata control in the goaf (room and pillar mining, stowing, minestone utilization for stowing in Upper Silesia, hydraulic stowing in Upper Silesia). 5 references.

  8. 75 FR 17529 - High-Voltage Continuous Mining Machine Standard for Underground Coal Mines

    Science.gov (United States)

    2010-04-06

    ... High-Voltage Continuous Mining Machine Standard for Underground Coal Mines AGENCY: Mine Safety and... of high-voltage continuous mining machines in underground coal mines. It also revises MSHA's design...-- Underground Coal Mines III. Section-by-Section Analysis A. Part 18--Electric Motor-Driven Mine Equipment and...

  9. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Science.gov (United States)

    2010-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As of...

  10. 77 FR 4834 - Proposed Extension of Existing Information Collection; Refuge Alternatives for Underground Coal...

    Science.gov (United States)

    2012-01-31

    ... Extension of Existing Information Collection; Refuge Alternatives for Underground Coal Mines AGENCY: Mine... Underground Coal Mines DATES: Submit comments on or before April 2, 2012. ADDRESSES: Comments must be.... Title: Refuge Alternatives for Underground Coal Mines. OMB Number: 1219-0146. Affected Public: Business...

  11. 76 FR 70075 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Science.gov (United States)

    2011-11-10

    ... Detection Systems for Continuous Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health... proposed rule addressing Proximity Detection Systems for Continuous Mining Machines in Underground Coal... Detection Systems for Continuous Mining Machines in Underground Coal Mines. MSHA conducted hearings on...

  12. Reclamation planning for abandoned mining subsidence lands in eastern China: a case study

    International Nuclear Information System (INIS)

    Hu, Z.; Gu, H.

    1995-01-01

    China has a long history of coal mining and more than 96% of coal output is taken from underground mines each year. With the excavation of coal from underground, severe subsidence often results, which produces many subsidence lands. This paper explores the principle and methods of reclamation planning for abandoned mining subsidence lands and presents a case study in eastern China. A 373 ha of abandoned mining subsidence land in Anhui province was selected as an experiment site. Since China is a developing country and land shortage is severe in this area, the high economic benefits from the reclaimed land was the final reclamation goal. Based on the topography of subsidence lands, some parts of the abandoned lands were lands or lake-like troughs, restoring farmlands and fishponds were chosen as post-reclamation land uses. The elevation of reclaimed lands was the key for restoring farmland successfully because of the high underground water level in this area, and the optimum fishpond size and side-slope design were the keys to reach high reclamation income. The HDP (Hydraulic Dredge Pump) reclamation technique was used for restoring farmland and creating fishpond. A farming and aquaculture plan for high economic benefits was also designed. This project will make farmers, who own the lands, richer through reclamation. 3 refs., 5 figs., 1 tab

  13. The public health effects of abandoned coal mine workings on residents in South Wellington, Nanaimo

    Energy Technology Data Exchange (ETDEWEB)

    Biagioni, K [Victoria Univ., BC (Canada)

    2005-07-01

    Abandoned coal mine groundwater frequently contains depressed pH levels and elevated levels of hydrogen sulphide, iron, aluminium and nitrates. Abandoned coal mine groundwater is also usually high in copper, zinc, mercury, and lead. Groundwater from abandoned mines can seriously affect public health through the discharge of non-point source pollution. This paper presents information on a research project regarding the possible impacts of abandoned coal mines and its effects on groundwater as it relates to the health of residents in South Wellington, Nanaimo, British Columbia. The purpose of the project is to determine which illnesses are more common in South Wellington, Nanaimo and in the control area. The paper provides a discussion of the Nanaimo coal field and three major seams; the Wellington, Newcastle and Douglas which are most likely to have a significant impact on groundwater in South Wellington. 27 refs.

  14. The public health effects of abandoned coal mine workings on residents in South Wellington, Nanaimo

    International Nuclear Information System (INIS)

    Biagioni, K.

    2005-01-01

    Abandoned coal mine groundwater frequently contains depressed pH levels and elevated levels of hydrogen sulphide, iron, aluminium and nitrates. Abandoned coal mine groundwater is also usually high in copper, zinc, mercury, and lead. Groundwater from abandoned mines can seriously affect public health through the discharge of non-point source pollution. This paper presents information on a research project regarding the possible impacts of abandoned coal mines and its effects on groundwater as it relates to the health of residents in South Wellington, Nanaimo, British Columbia. The purpose of the project is to determine which illnesses are more common in South Wellington, Nanaimo and in the control area. The paper provides a discussion of the Nanaimo coal field and three major seams; the Wellington, Newcastle and Douglas which are most likely to have a significant impact on groundwater in South Wellington. 27 refs

  15. High radon exposure in a Brazilian underground coal mine

    International Nuclear Information System (INIS)

    Veiga, L H S; Melo, V; Koifman, S; Amaral, E C S

    2004-01-01

    The main source of radiation exposure in most underground mining operations is radon and radon decay products. The situation of radon exposure in underground mining in Brazil is still unknown, since there has been no national regulation regarding this exposure. A preliminary radiological survey in non-uranium mines in Brazil indicated that an underground coal mine in the south of Brazil had high radon concentration and needed to be better evaluated. This paper intends to present an assessment of radon and radon decay product exposure in the underground environment of this coal mining industry and to estimate the annual exposure to the workers. As a product of this assessment, it was found that average radon concentrations at all sampling campaign and excavation sites were above the action level range for workplaces of 500-1500 Bq m -3 recommended by the International Commission on Radiological Protection-ICRP 65. The average effective dose estimated for the workers was almost 30 times higher than the world average dose for coal miners

  16. Feasibility of CO2 Sequestration as a Closure Option for Underground Coal Mine

    Science.gov (United States)

    Ray, Sutapa; Dey, Kaushik

    2018-01-01

    The Kyoto Protocol, 1998, was signed by member countries to reduce greenhouse gas (GHG) emissions to a minimum acceptable level. India agreed to Kyoto Protocol since 2002 and started its research on GHG mitigation. Few researchers have carried out research work on CO2 sequestration in different rock formations. However, CO2 sequestration in abandoned mines has yet not drawn its attention largely. In the past few years or decades, a significant amount of research and development has been done on Carbon Capture and Storage (CCS) technologies, since it is a possible solution for assuring less emission of CO2 to the atmosphere from power plants and some other major industrial plants. CCS mainly involves three steps: (a) capture and compression of CO2 from source (power plants and industrial areas), (b) transportation of captured CO2 to the storage mine and (c) injecting CO2 into underground mine. CO2 is stored at an underground mine mainly in three forms: (1) adsorbed in the coals left as pillars of the mine, (2) absorbed in water through a chemical process and (3) filled in void with compressed CO2. Adsorption isotherm is a graph developed between the amounts of adsorbate adsorbed on the surface of adsorbent and the pressure at constant temperature. Various types of adsorption isotherms are available, namely, Freundlich, Langmuir and BET theory. Indian coal is different in origin from most of the international coal deposits and thus demands isotherm experiments of the same to arrive at the right adsorption isotherm. To carry out these experiments, adsorption isotherm set up is fabricated in the laboratory with a capacity to measure the adsorbed volume up to a pressure level of 100 bar. The coal samples are collected from the pillars and walls of the underground coal seam using a portable drill machine. The adsorption isotherm experiments have been carried out for the samples taken from a mine. From the adsorption isotherm experiments, Langmuir Equation is found to be

  17. Feasibility of CO2 Sequestration as a Closure Option for Underground Coal Mine

    Science.gov (United States)

    Ray, Sutapa; Dey, Kaushik

    2018-04-01

    The Kyoto Protocol, 1998, was signed by member countries to reduce greenhouse gas (GHG) emissions to a minimum acceptable level. India agreed to Kyoto Protocol since 2002 and started its research on GHG mitigation. Few researchers have carried out research work on CO2 sequestration in different rock formations. However, CO2 sequestration in abandoned mines has yet not drawn its attention largely. In the past few years or decades, a significant amount of research and development has been done on Carbon Capture and Storage (CCS) technologies, since it is a possible solution for assuring less emission of CO2 to the atmosphere from power plants and some other major industrial plants. CCS mainly involves three steps: (a) capture and compression of CO2 from source (power plants and industrial areas), (b) transportation of captured CO2 to the storage mine and (c) injecting CO2 into underground mine. CO2 is stored at an underground mine mainly in three forms: (1) adsorbed in the coals left as pillars of the mine, (2) absorbed in water through a chemical process and (3) filled in void with compressed CO2. Adsorption isotherm is a graph developed between the amounts of adsorbate adsorbed on the surface of adsorbent and the pressure at constant temperature. Various types of adsorption isotherms are available, namely, Freundlich, Langmuir and BET theory. Indian coal is different in origin from most of the international coal deposits and thus demands isotherm experiments of the same to arrive at the right adsorption isotherm. To carry out these experiments, adsorption isotherm set up is fabricated in the laboratory with a capacity to measure the adsorbed volume up to a pressure level of 100 bar. The coal samples are collected from the pillars and walls of the underground coal seam using a portable drill machine. The adsorption isotherm experiments have been carried out for the samples taken from a mine. From the adsorption isotherm experiments, Langmuir Equation is found to be

  18. Mechanization of operations in underground workings in coal mines and research project trends. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Reich, K; Skoczynski, W; Sikora, W

    1985-01-01

    Structure of black coal reserves of Poland, imported and Polish made equipment for underground mining, prospects for mechanization of selected operations in underground mines and research programs of the KOMAG Center for Mechanization of Mining are evaluated. Prospects for longwall mining with caving or stowing in thick coal seams (slice mining), thin (0.8 to 1.2 m), level or inclined coal seams and steep seams are analyzed. The following equipment for mechanization of underground mining is evaluated: integrated face systems, shearer loaders, chain conveyors, belt conveyors, coal plows, equipment for mine drivage, hoists, drive systems for mining equipment. The following research programs of the KOMAG Center are reviewed: modernization of face systems for coal seams with uncomplicated mining conditions, development of equipment for thin seam mining, development of types of mining equipment for coal seams from 1.5 to 3.0 m thick with dip angles to 25 degrees, modernization of equipment for thick seam mining, increasing efficiency of mine drivage (new types of heading machines, materials handling equipment for mine drivage), mechanization of auxiliary operations in underground coal mines, improving quality of mining equipment, development of equipment for coal preparation, increasing occupational safety in underground mining.

  19. Fast and safe gas detection from underground coal fire by drone fly over

    International Nuclear Information System (INIS)

    Dunnington, Lucila; Nakagawa, Masami

    2017-01-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. - Graphical abstract: Concluding Figure for Gas Ratios: Plotted points and ranges of adjusted literature data. Stars represent bituminous and subbituminous coal types; Ovals represent lignite. - Highlights: • Recognize underground coal fire as a potential source of energy. • Developed a creative, safe, reliable and fast gas detection method. • Developed a concept of gas ratio measurement method that can provide more accurate description of underground burning coal resource.

  20. Application of Paste Backfill in Underground Coal Fires

    Science.gov (United States)

    Masniyom, M.; Drebenstedt, C.

    2009-04-01

    Coal fires are known from different coalfields worldwide. China, India, USA, Australia, Indonesia and South Africa are the main countries affected by coal fires. The fires is thermally intensive and cause numerous sinkholes, large-scale subsidence, air pollution, global warming, loss of mining productivity and increasing safety risk. The Wuda Inner Mongolia coalfield has been selected as a possible test area for paste backfill. The traditional methods, executed by fire fighting teams, by covering the coalfire areas with soil, blasting burning coal outcrops and injecting water in the subsurface fire pockets are continuously improved and extended. Initiatives to introduce modern techniques, such as backfill placement at fracture and borehole, to cool down the burning coal and cut off the air supply. This study is to investigate backfill materials and techniques suited for underground coal fires. Laboratory tests were carried out on physical, chemical and mechanical properties of different backfill materials and mixtures thereof. Special attention was paid to materials generated as by-products and other cheaply available materials e.g. fly ash from power plants. There is a good chance that one of the different material mixtures investigated can be used as a technically and economically viable backfill for underground coal fires.

  1. Clean coal technology - Study on the pilot project experiment of underground coal gasification

    International Nuclear Information System (INIS)

    Yang Lanhe; Liang Jie; Yu Li

    2003-01-01

    In this paper, the gasification conditions, the gasifier structure, the measuring system and the gasification rationale of a pilot project experiment of underground coal gasification (UCG) in the Liuzhuang Colliery, Tangshan, are illustrated. The technique of two-phase underground coal gasification is proposed. The detection of the moving speed and the length of the gasification working face is made using radon probing technology. An analysis of the experiment results indicates that the output of air gas is 3000 m 3 /h with a heating value of about 4.18 MJ/m 3 , while the output of water gas is 2000 m 3 /h with a heating value of over 11.00 MJ/m 3 , of which H 2 content is above 40% with a maximum of 71.68%. The cyclical time of two-phase underground gasification is 16 h, with 8 h for each phase. This prolongs the time when the high-heating value gas is produced. The moving speed of the gasification working face in two alternative gasifiers is identified, i.e. 0.204 and 0.487 m/d, respectively. The success of the pilot project experiment of the underground gasification reveals the strides that have been made toward the commercialization of the UCG in China. It also further justifies the reasonability and feasibility of the new technology of long channel, big section, two-phase underground gasification. A conclusion is also drawn that the technology of the pilot project experiment can be popularized in old and discarded coal mines

  2. Injection of alkaline ashes into underground coal mines for acid mine drainage abatement

    International Nuclear Information System (INIS)

    Aljoe, W.W.

    1996-01-01

    The injection of alkaline coal combustion waste products into abandoned underground coal mines for acid mine drainage (AMD) abatement has obvious conceptual appeal. This paper summarizes the findings of the baseline hydrogeologic and water quality evaluations at two sites--one in West Virginia and one in Maryland--where field demonstrations of the technique are being pursued in cooperative efforts among State and Federal agencies and/or private companies. The West Virginia site produces severe AMD from three to seven AMD sources that are spaced over about a 1.2 km stretch of the down-dip side of the mine workings. By completely filling the most problematic portion of the mine workings with coal combustion ashes, the State expects that the costs and problems associated with AMD treatment will be greatly reduced. At the Maryland site, it is expected that the AMD from a relatively small target mine will be eliminated completely by filling the entire mine void with a grout composed of a mixture of fly ash, fluidized-bed combustion ash, and flue gas desulfurization sludge. This project will also demonstrate the potential cost-effectiveness of the technique at other sites, both for the purpose of AMD remediation and control of land subsidence

  3. Underground coal mining technology - the future

    Energy Technology Data Exchange (ETDEWEB)

    Lama, R P [Kembla Coal and Coke Pty Limited, Wollongong, NSW (Australia)

    1989-01-01

    Discusses development of underground coal mining in Australia in the last four decades. The following aspects are reviewed: technology for underground mining (longwall mining, unidirectional cutting, bidirectional cutting, operation of more than one shearer on a working face, optimum dimensions of longwall blocks), longwall productivity (productivity increase will depend on increasing the availability factor of equipment, reducing failures due to human errors, organizational models, improving on-site decision making, improving monitoring, maintenance, planning and scheduling, concept of 'Transparent Mine'), roadway development systems (types of heading machines, standard systems for mine drivage and roof bolting and their productivity), size of coal mines, man and material transport systems (20,000-30,000 t/d from a single longwall face, mine shafts with a diameter 9-10 m), mine layout design (layout of longwall blocks, main intakes and returns situated in rock layers), mine environmental systems (ventilation systems, gas control), management, training and interpersonal relationships. Future coal mines will be developed with an integral capacity of 8-10 Mt/a from a single longwall operation with main development arteries placed in rocks. Development of gate roadways will require novel solutions with continuous cutting, loading and bolting. Information technology, with the concept of 'transparent mine', will form the backbone of decision making.

  4. Sixth underground coal-conversion symposium

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The sixth annual underground coal conversion symposium was held at Shangri-la near Afton, Oklahoma, July 13 to 17, 1980. Sessions were developed to: Doe Field Programs, Major Industry Activity, Mathematical Modeling, Laboratory Studies, Environmental Studies, Economics, Instruments and Controls, and General Topics. Fifty-two papers from the proceedings have been entered individually into EDB and ERA. Thirteen papers had been entered previously from other sources. (LTN)

  5. Management of dry flue gas desulfurization by-products in underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Sevim, H.

    1997-06-01

    Disposal of coal combustion by-products (CCBs) in an environmentally sound manner is a major issue facing the coal and utility industries in the US today. Disposal into abandoned sections of underground coal mines may overcome many of the surface disposal problems along with added benefits such as mitigation of subsidence and acid mine drainage. However, many of the abandoned underground coal mines are located far from power plants, requiring long distance hauling of by-products which will significantly contribute to the cost of disposal. For underground disposal to be economically competitive, the transportation and handling cost must be minimized. This requires careful selection of the system and optimal design for efficient operation. The materials handling and system economics research addresses these issues. Transportation and handling technologies for CCBs were investigated from technical, environmental and economic points of view. Five technologies were found promising: (1) Pneumatic Trucks, (2) Pressure Differential Rail Cars, (3) Collapsible Intermodal Containers, (4) Cylindrical Intermodal Tanks, and (5) Coal Hopper Cars with Automatic Retractable Tarping. The first two technologies are currently being utilized in transporting by-products from power plants to disposal sites, whereas the next three are either in development or in conceptualization phases. In this research project, engineering design and cost models were developed for the first four technologies. The engineering design models are in the form of spreadsheets and serve the purpose of determining efficient operating schedules and sizing of system components.

  6. 77 FR 58170 - Proposed Renewal of Existing Information Collection; Fire Protection (Underground Coal Mines)

    Science.gov (United States)

    2012-09-19

    ... Renewal of Existing Information Collection; Fire Protection (Underground Coal Mines) AGENCY: Mine Safety... INFORMATION: I. Background Fire protection standards for underground coal mines are based on section 311(a) of the Federal Mine Safety and Health Act of 1977 (Mine Act). 30 CFR 75.1100 requires that each coal mine...

  7. Performance of underground coal mines during the 1976 Tangshan earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.F.

    1987-01-01

    The Tangshan earthquake of 1976 costs 242 000 lives and was responsible for 164 000 serious injuries and structural damage of immense proportion. The area has eight coal mines, which together form the largest underground coal mining operation in China. Approximately 10 000 miners were working underground at the time of the earthquake. With few exceptions they survived and returned safely to the surface, only to find their families and belongings largely destroyed. Based on a comprehensive survey of the miners' observations, subsurface intensity profiles were drawn up. The profiles clearly indicated that seismic damage in the underground mines was far less severe than at the surface. 16 refs., 4 figs., 2 tabs.

  8. Hydrogeology, water chemistry, and subsidence of underground coal mines at Huntsville, Missouri, July 1987 to December 1988. Water Resources Investigation

    International Nuclear Information System (INIS)

    Blevins, D.W.; Ziegler, A.C.

    1992-01-01

    Underground coal mining in and near Huntsville, in Randolph County in north-central Missouri, began soon after 1831. Mining in the Huntsville area was at its peak during 1903 and continued until 1966 when the last underground mine was closed and the economically recoverable coals under Huntsville had been mostly, if not completely, removed. The now abandoned mines are of concern to the public and to various State and Federal agencies for two reasons: (1) mine drainage acidifies streams and leaves large, soft, dangerous deposits of iron oxyhydroxides at mine springs and on streambeds (data on file at the Missouri Department of Natural Resources, Land Reclamation Commission), and (2) collapse of mine cavities sometimes causes surface subsidence resulting in property damage or personal injury. To address these concerns, the U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, in 1987 initiated a study to: determine the location of mine springs, the seasonal variation of stream-water chemistry, and the effects of underground-mine water on flow and water quality of nearby ground water and receiving streams; and identify areas susceptible to surface subsidence because of mine collapse. The purpose of the report is to present the findings and data collected for the study

  9. Underground coal gasification: An overview of groundwater contamination hazards and mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    Camp, David W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Joshua A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-13

    Underground coal gasification is the in situ conversion of coal into an energy-rich product gas. It takes place deep underground, using chemical reactions to consume the coal and grow a cavity. Gas wells, drilled into the coal seam, inject reactant air, oxygen, and/or steam to sustain the reactions. Production wells then extract the product gas. Careful analysis and understanding of likely failure modes will help prevent and minimize impacts. This document provides a general description of the relevant processes, potential failure modes, and practical mitigation strategies. It can guide critical review of project design and operations.

  10. Virginia big-eared bats (Corynorhinus townsendii virginianus) roosting in abandoned coal mines in West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.B.; Edwards, J.W.; Wood, P.B. [West Virginia University, Morgantown, WV (US). Wildlife & Fisheries Resources Programme

    2005-07-01

    We surveyed bats at 36 abandoned coal mines during summer 2002 and 47 mines during fall 2002 at New River Gorge National River and Gauley River National Recreation Area, WV. During summer, we captured three federally endangered Virginia big-eared bats at two mine entrances, and 25 were captured at 12 mine entrances during fall. These represent the first documented captures of this species at coal mines in West Virginia. Future survey efforts conducted throughout the range of the Virginia big-eared bat should include abandoned coal mines.

  11. Prevalence and Associated Factors of Depressive Symptoms among Chinese Underground Coal Miners

    Directory of Open Access Journals (Sweden)

    Li Liu

    2014-01-01

    Full Text Available Although underground coal miners are quite susceptible to depressive symptoms due to a highly risky and stressful working environment, few studies have focused on this issue. The purpose of the study was to evaluate the prevalence of depressive symptoms and to explore its associated factors in this population. A cross-sectional survey was conducted in a coal-mining population in northeast China. A set of self-administered questionnaires was distributed to 2500 underground coal miners (1,936 effective respondents. Depressive symptoms, effort-reward imbalance (ERI, overcommitment (OC, perceived physical environment (PPE, work-family conflict (WFC, and some demographic and working characteristics were measured anonymously. The prevalence of depressive symptoms was 62.8%, and the mean level was 20.00 (9.99. Hierarchical linear regression showed that marital status, education, monthly income, and weekly working time were significantly associated with depressive symptoms. A high level of depressive symptoms was significantly associated with high ERI, PPE, WFC, and OC. Accordingly, most Chinese underground coal miners probably have depressive symptoms that are mainly predicted by some occupational psychosocial factors. Efforts should be made to develop strategies to reduce ERI and OC, improve physical working environment, and care for workers’ family well-being, thereby mitigating the risk of depression among Chinese underground coal miners.

  12. Underground gasification of coal. [Newman Spinney

    Energy Technology Data Exchange (ETDEWEB)

    1950-06-16

    This article gives an account of the experimental work on underground gasification at Newman Spinney near Sheffield, England. An attempt was made to develop the percolation technique in flat coal seams but to demonstrate first that gas can be made underground. A borehole system was created on an opencast site where an exposed seam face would allow horizontal drilling to be carried out. Details of trails are given, and drilling techniques, electromagnetic device developed by the Great Britain Post Office Research Branch and radioactive location developed by the Anglo-Iranian Oil Company. An account is given of the inauguration of a series of experiments on May 22, 1950.

  13. Possible strategies in development of highly productive underground coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Djoric, M

    1980-01-01

    This paper explains the basic strategies which may be applied in the exploitation of coal deposits by underground mining. It outlines the importance of combinations of extensive (non-mechanized) and intensive (mechanized) exploitation and their dependence on coal demand, available financial means, requirements concerning the protection of environment, unemployment of the population, availability of mechanical and electrical equipment, technical staff, etc. It is suggested that the applied strategy be revised and adapted to the current situation. Postponement of exploitation until the future when the demand and price of coal may be higher is criticized. The possibility of applying extensive underground mining in areas where unemployment and lack of capital speak against the application of fully mechanized working methods is also dealt with. (In Serbo-Croatian)

  14. Damage to underground coal mines caused by surface blasting

    International Nuclear Information System (INIS)

    Fourie, A.B.; Green, R.W.

    1993-01-01

    An investigation of the potential damage to underground coal workings as a result of surface blasting at an opencast coal mine is described. Seismometers were installed in a worked out area of an underground mine, in the eastern Transvaal region of South Africa, and the vibration caused by nearby surface blasting recorded. These measurements were used to derive peak particle velocities. These velocities were correlated with observed damage underground in order to establish the allowable combination of the two blasting parameters of charge mass per relay, and blast-to-gage point distance. An upper limit of 110mm/sec peak particle velocity was found to be sufficient to ensure that the damage to the particular workings under consideration was minimal. It was further found that a cube-root scaling law provided a better fit to the field data than the common square-root law. 11 refs., 6 figs., 5 tabs

  15. Booster fans : some considerations for their usage in underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Gillies, S.; Slaughter, C. [Missouri Univ. of Science and Technology, Rolla, MO (United States); Calizaya, F. [Utah Univ., Salt Lake City, UT (United States); Wu, H.W. [Gillies Wu Mining Technology Pty Ltd., Brisbane, QLD (Australia)

    2010-07-01

    This paper reported on a study that investigated the conditions under which booster fans can be used safely and efficiently in underground coal mines. Booster fans are installed in series with a main surface fan and are used to boost the air pressure of the ventilation air passing through it. Several coal mining countries use booster fans, but in the United States, they are only used in metal/non-metal mines due to concerns of uncontrolled recirculation. This study investigated installations of booster fans in non-US underground coal mines where safe and efficient atmospheric conditions are achieved. The purpose was to collect reliable information on airway resistances and flow requirements typical in large US coal mines. The study showed that safe booster fan installations are found in both high and low gas conditions, and sometimes where workings are located at great depths. The interlocking systems within the booster fan can control the underground fans and avoid recirculation when surface fans are unexpectedly turned off. Another purpose of the study was to determine when booster fans become a more viable solution in coal mines due to increases in air requirements at higher production rates. It was concluded that a new fan selection algorithm to produce recirculation-free ventilation designs will be developed to enable US coal mine operators to develop ventilation designs to extract coal seams from depths greater than 1000 m. 17 refs., 1 fig.

  16. Fast and safe gas detection from underground coal fire by drone fly over.

    Science.gov (United States)

    Dunnington, Lucila; Nakagawa, Masami

    2017-10-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Detection and control of fires and heatings in shallow, abandoned coal mines

    International Nuclear Information System (INIS)

    Sullivan, P.

    1991-01-01

    Heatings and fires in shallow, abandoned coal mines create an environmentally undesirable hazard in the Witbank area in South Africa, as well as locations in Europe and North America. A research program was set up in South Africa to detect and control the occurrence and extent of subsurface heatings and fires. Prior to any remedial action being taken to control or extinguish a heating or fire, it is essential to evaluate underground conditions in order to determine the most effective control method. Normally, such workings cannot physically be entered due to poor ground conditions and the presence of heat and toxic gases. Two novel detection methods have been developed by the Chamber of Mines Research Organization (COMRO) for the purpose of identifying the nature and extent of such heatings remotely, via surface boreholes. Temperature monitoring allows for the detection of heating intensity and location. To determine areas of uncontrolled air infiltration into the workings, tracer gas technology is used. In addition, a method for controlling a fire which has been successfully used in South Africa is described

  18. 76 FR 63238 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Science.gov (United States)

    2011-10-12

    ... Detection Systems for Continuous Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health... Agency's proposed rule addressing Proximity Detection Systems for Continuous Mining Machines in... proposed rule for Proximity Detection Systems on Continuous Mining Machines in Underground Coal Mines. Due...

  19. 76 FR 54163 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Science.gov (United States)

    2011-08-31

    ... Detection Systems for Continuous Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health... (except full-face continuous mining machines) with proximity detection systems. Miners working near..., each underground coal mine operator would be required to install proximity detection systems on...

  20. Underground coal gasification technology impact on coal reserves in Colombia

    Directory of Open Access Journals (Sweden)

    John William Rosso Murillo

    2013-12-01

    Full Text Available In situ coal gasification technology (Underground Coal Gasification–UCG– is an alternative to the traditional exploitation, due to it allows to reach the today’s inaccessible coal reserves’ recovery, to conventional mining technologies. In this article I answer the question on how the today’s reserves available volume, can be increased, given the possibility to exploit further and better the same resources. Mining is an important wealth resource in Colombia as a contributor to the national GDP. According with the Energy Ministry (Ministerio de Minas y Energía [1] mining has been around 5% of total GDP in the last years. This is a significant fact due to the existence of a considerable volume of reserves not accounted for (proved reserves at year 2010 were 6.700 million of tons. Source: INGEOMINAS and UPME, and the coal future role’s prospect, in the world energy production.

  1. A Wireless LAN and Voice Information System for Underground Coal Mine

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2014-06-01

    Full Text Available In this paper we constructed a wireless information system, and developed a wireless voice communication subsystem based on Wireless Local Area Networks (WLAN for underground coal mine, which employs Voice over IP (VoIP technology and Session Initiation Protocol (SIP to achieve wireless voice dispatching communications. The master control voice dispatching interface and call terminal software are also developed on the WLAN ground server side to manage and implement the voice dispatching communication. A testing system for voice communication was constructed in tunnels of an underground coal mine, which was used to actually test the wireless voice communication subsystem via a network analysis tool, named Clear Sight Analyzer. In tests, the actual flow charts of registration, call establishment and call removal were analyzed by capturing call signaling of SIP terminals, and the key performance indicators were evaluated in coal mine, including average subjective value of voice quality, packet loss rate, delay jitter, disorder packet transmission and end-to- end delay. Experimental results and analysis demonstrate that the wireless voice communication subsystem developed communicates well in underground coal mine environment, achieving the designed function of voice dispatching communication.

  2. Design Criteria for Wireless Mesh Communications in Underground Coal Mines

    OpenAIRE

    Griffin, Kenneth Reed

    2009-01-01

    The Mine Improvement and New Emergency Response (MINER) Act of 2006 was enacted in response to several coal mining accidents that occurred in the beginning of 2006. The MINER Act does not just require underground mines to integrate wireless communication and tracking systems, but aims to overall enhance health and safety in mining at both surface and underground operations. In 2006, the underground communication technologies available to the mining industry had inherent problems that limited ...

  3. Burnout, Depression and Proactive Coping in Underground Coal Miners in Serbia - Pilot Project

    Directory of Open Access Journals (Sweden)

    Manić Saška

    2017-03-01

    Full Text Available Mining is unsurprisingly considered a high-risk occupation because it involves continuous hard labour under highly demanding and stressful conditions. Many of these work stressors can impair individuals’ well-being in both a physiological and psychological sense. The aims of this study were to assess the prevalence of burnout and depressive symptoms and to evaluate aspects of proactive coping among underground coal miners in Serbia. The study involved 46 male underground coal miners. Burnout was measured with the Copenhagen Burnout Inventory, depression was assessed with the Patient Health Questionnaire-9, and level of proactive coping was measured with the Proactive Coping Inventory. The results showed a low level of burnout syndrome among the underground coal miners (12.46±4.879. Depression was slightly above the minimum (1.2±2.094, and the majority of the participants had no symptoms of depression (93.5%. Overall, the underground coal miners’ ability to proactively cope with work stress was very good (42.17±6.567. This is in contrast to the findings of the few previous international studies and is a good basis for further research using a larger sample in Serbia.

  4. Underground gasification of coal - possibilities and trends

    International Nuclear Information System (INIS)

    Dushanov, D.; Minkova, V.

    1994-01-01

    A detailed historical review is given on the problem of underground coal gasification (UCG) with emphasis on its physical, chemical, technological and financial aspects. The experience of USA, Japan, former USSR, Belgium, UK and France is described. The feasibility of UCG in the Dobrudzhan Coal Bed in Bulgaria is discussed. The deposit has reserves of about 1.5 billion tones at relatively shallow depths. Almost the whole scale from long flame to dry coal is covered. According to its coalification degree the bed belongs to gas coal - V daf 35-40%; C daf 80-83%, eruption index = 1. Enriched samples has low sulfur content - 0.6-1.5% and low mineral content - 6-12%. Having in mind the lack of domestic natural gas and petroleum resources, the authors state that the utilisation of the bed will alleviate the energy problems in Bulgaria. 24 refs., 5 figs., 1 tab

  5. Restoration of abandoned mine lands through cooperative coal resource evaluations

    International Nuclear Information System (INIS)

    Hoskins, D.M.; Smith, M.

    1996-01-01

    The public reclamation cost of reclaiming all of Pennsylvania's abandoned mine lands is estimated at $15 billion. Drainage from abandoned mines poses another $5 billion water pollution clean-up problem. Although it is unlikely that public reclamation alone could ever tackle these problems, much can be done to alleviate the nuisances through the remining of previously mined areas to recover remaining reserves, restore the land and improve water quality in the same process. Remining of priority areas is encouraged through a new Pennsylvania policy which provides incentives to mining companies. One incentive, initiated under Pennsylvania's comprehensive mine reclamation strategy, is to identify and geologically map reminable coal resources in selected watersheds, and then to expedite mine permitting in these watersheds. At present, two such priority watersheds, Little Toby Creek in Elk County and Tangascootak Creek in Clinton County, are the focus of geologic map compilation based on recent quadrangle mapping, or new, directed, geologic mapping, including new research core drilling to establish the geologic stratigraphic framework. In order to maximize environmental benefits the comprehensive mine reclamation strategy identifies watersheds which are affected by acid mine drainage (AMD), but that are reasonably capable of restoration, if sufficient coal reserves remain. Pennsylvania's geochemical quality database of rock overburden, in combination with detailed coal resource mapping by the Pennsylvania Geological Survey, and the cooperation of coal companies and leaseholders, is being used by the Department of Environmental Protection (DEP) to identify and design remining projects which will not only allow the recovery of coal resources, but will also improve the water quality through a variety of innovative mining techniques

  6. Tenth annual underground coal gasification symposium: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Burwell, E.; Docktor, L.; Martin, J.W. (eds.)

    1984-12-01

    The Tenth Annual Underground Coal Gasification Symposium was cosponsored by the Fossil Energy Division of the US Department of Energy and the Morgantown Energy Technology Center's Laramie Projects Office. The purpose of the symposium was to provide a forum for presenting research results and for determining additional research needs in underground coal gasification. This years' meeting was held in Williamsburg, Virginia, during the week of August 12 through 15, 1984. Approximately 120 attendees representing industry, academia, national laboratories, Government, and eight foreign countries participated in the exchange of ideas, results, and future research plans. International representatives included participants from Belgium, Brazil, France, the Netherlands, New Zealand, Spain, West Germany, and Yugoslavia. During the three-day symposium, sixty papers were presented and discussed in four formal presentation sessions and two informal poster sessions. The papers describe interpretation of field test data, results of environmental research, and evaluations of laboratory, modeling, and economic studies. All papers in this Proceedings have been processed for inclusion in the Energy Data Base.

  7. Underground coal mining - methods, equipment developments and trends

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, R

    1988-12-01

    Underground mines are truly beginning to accept the so-called 'high tech' technology evident in other industries. Automation, remote control and robotics have taken an added significance. Wireless communication, mine-wide equipment health and performance monitoring, and transmission of data from deeper levels to surface is moving towards becoming the norm. There is emphasis on developing and applying continuous mining systems, as well as on modifying cyclical discontinuous methods to continuous systems. Multi-purpose equipment is also being developed. Technology transfer is playing its role - equipment and systems from surface coal mining are being applied to underground mining and vice-versa. At the American Mining Congress Exhibition held in Chicago in April 1988, a variety of equipment for underground mining was displayed including coal face equipment such as shearer loaders, conveyors and powered supports, and equipment for room-and-pillar coal mining. The trend continues to be towards high power machines equipped with a variety of electronics and sensors, safety devices, and alarm systems. Ancillary equipment on display covered a variety of cutting drums, cutting tools, conveying equipment and so on. In room-and-pillar mining, the overall emphasis was on moving away from the cyclical nature of the work. Transportation by shuttle cars must be replaced by continuous transport systems such as conveyors. Experience from Australia has shown that the application of continuous haulage and breaker line supports has permitted a doubling of production from room-and-pillar systems. Production levels of 3,000tpd have already been achieved, and 4,000tpd is considered achievable.

  8. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Science.gov (United States)

    2010-07-01

    ... water underground, treatment of water if released to surface streams, and the effect on the hydrologic... the regulatory authority and the Mine Safety and Health Administration under 30 CFR 817.81(f). (b... of the mine void to be filled, method of constructing underground retaining walls, influence of the...

  9. Structural implications of underground coal mining in the Mesaverde Group in the Somerset Coal Field, Delta and Gunnison Counties, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Carroll; Eric Robeck; Greg Hunt; Wendell Koontz [Colorado Geological Survey, Denver, CO (United States)

    2004-07-01

    Paleogene and Neogene faults and fractures on the eastern edge of the Colorado Plateau are present in Mesaverde Group coal and sandstone beds. Recent observations of coal cleat orientation in relation to faults in coal mines have significant impacts for mine planning in the area. Faults, coal cleats, and natural fractures are interpreted to show a structural evolution of the Mesaverde Group through time. This field trip included a visit to two active underground coal mines, the Bowie Resources' Bowie No. 2 Mine, and Mountain Coal's West Elk Mine. Mine geologists discussed structural styles including fault orientations and timing, cleat development, and rotation. Geologic encounters ranging from fault flooding, subsidence, mine fires, methane gas problems, and land use restrictions were also discussed. Coal cleat development and open-mode fractures in adjacent sandstones were observed on outcrops and compared to underground measurements in coal mines in the Somerset Coal Field, Colorado's most productive. Coal cleat orientations along a reverse fault in one mine showed rotation in relation to possible Neogene age displacement.

  10. Integrated engineering and cost model for management of coal combustion byproducts

    Energy Technology Data Exchange (ETDEWEB)

    Sevim, H. [Department of Mining Engineering, Southern Illinois University at Carbondale, Carbondale, Illinois (United States); Renninger, S. [US Department of Energy, Morgantown Energy Technology Center, Morgantown, West Virginia (United States)

    1998-07-01

    An integrated engineering and cost model has been developed as a part of an overall research project for exploring the technical, environmental and economic feasibility of disposing coal combustion byproducts and flue gas desulfurisation products in underground coal mines in Illinois. The features of the model have been keyed in user-friendly software. In this paper, the purpose and the structure of the model are described. The capabilities of the software are illustrated through an example involving transportation of byproducts in containers from a power plant to a mine site, and subsequent placement of the byproducts in a abandoned underground coal mine using a hydraulic injection system. 3 refs.

  11. Water pollution control for underground coal gasification

    International Nuclear Information System (INIS)

    Humenick, M.J.

    1984-01-01

    Water pollution arising from underground gasification of coal is one of the important considerations in the eventual commercialization of the process. Because many coal seams which are amenable to in situ gasification are also ground-water aquifers, contaminants may be released to these ground waters during and after gasification. Also, when product gas is processed above ground for use, wastewater streams are generated which are too polluted to be discharged. The purpose of this paper is to characterize the nature of the groundwater and above-ground pollutants, discuss the potential long and short-term effects on ground water, propose control and restoration strategies, and to identify potential wastewater treatment schemes

  12. Ground engineering principles and practices for underground coal mining

    CERN Document Server

    Galvin, J M

    2016-01-01

    This book teaches readers ground engineering principles and related mining and risk management practices associated with underground coal mining. It establishes the basic elements of risk management and the fundamental principles of ground behaviour and then applies these to the essential building blocks of any underground coal mining system, comprising excavations, pillars, and interactions between workings. Readers will also learn about types of ground support and reinforcement systems and their operating mechanisms. These elements provide the platform whereby the principles can be applied to mining practice and risk management, directed primarily to bord and pillar mining, pillar extraction, longwall mining, sub-surface and surface subsidence, and operational hazards. The text concludes by presenting the framework of risk-based ground control management systems for achieving safe workplaces and efficient mining operations. In addition, a comprehensive reference list provides additional sources of informati...

  13. VRLane: a desktop virtual safety management program for underground coal mine

    Science.gov (United States)

    Li, Mei; Chen, Jingzhu; Xiong, Wei; Zhang, Pengpeng; Wu, Daozheng

    2008-10-01

    VR technologies, which generate immersive, interactive, and three-dimensional (3D) environments, are seldom applied to coal mine safety work management. In this paper, a new method that combined the VR technologies with underground mine safety management system was explored. A desktop virtual safety management program for underground coal mine, called VRLane, was developed. The paper mainly concerned about the current research advance in VR, system design, key techniques and system application. Two important techniques were introduced in the paper. Firstly, an algorithm was designed and implemented, with which the 3D laneway models and equipment models can be built on the basis of the latest mine 2D drawings automatically, whereas common VR programs established 3D environment by using 3DS Max or the other 3D modeling software packages with which laneway models were built manually and laboriously. Secondly, VRLane realized system integration with underground industrial automation. VRLane not only described a realistic 3D laneway environment, but also described the status of the coal mining, with functions of displaying the run states and related parameters of equipment, per-alarming the abnormal mining events, and animating mine cars, mine workers, or long-wall shearers. The system, with advantages of cheap, dynamic, easy to maintenance, provided a useful tool for safety production management in coal mine.

  14. 3D representation of geological observations in underground mine workings of the Upper Silesian Coal Basin

    Directory of Open Access Journals (Sweden)

    Marek Marcisz

    Full Text Available The purpose of the paper is to present the possibilities of the three-dimensional representation of geological strata in underground (access workings in a hard coal deposit in the SW part of the Upper Silesian Coal Basin, using CAD software and its flagship program AutoCAD. The 3D visualization of the results of underground workings’ mapping is presented and illustrated on two opening out workings (descending galleries. The criteria for choosing these workings were based on their length and the complexity of geological settings observed while they were driven. The described method may be applied in spatial visualization of geological structures observed in other deposits, mines and existing workings (it is not applicable for designing mine workings, also beyond the area of the Upper Silesian Coal Basin (USCB. The method presented describes the problem of the visualization of underground mine workings in a typical geological aspect, considering (aimed at detailed visualization of geological settings revealed on the side walls of workings cutting the deposit. Keywords: Upper silesian coal basin, Hard coal, Underground mine workings, 3D visualization, CAD

  15. An integrated environment monitoring system for underground coal mines--Wireless Sensor Network subsystem with multi-parameter monitoring.

    Science.gov (United States)

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-07-21

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.

  16. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    Science.gov (United States)

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected. PMID:25051037

  17. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2014-07-01

    Full Text Available Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs. We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.

  18. Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1994--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Y.P.; Dutta, D.; Esling, S. [and others

    1995-10-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues (CCBs) in abandoned coal mines, and will assess the environmental impact of such underground CCB placement. This report describes progress in the following areas: environmental characterization, mix development and geotechnical characterization, material handling and system economics, underground placement, and field demonstration.

  19. Underground Coal Gasification - Experience of ONGC

    Science.gov (United States)

    Jain, P. K.

    2017-07-01

    Underground Coal Gasification (UCG) is expected to be game changer for nation like ours that requires large amounts of energy but have few natural resources other than coal. ONGC, being an integrated energy company and due to synergy between E & P operations and UCG, envisaged opportunities in UCG business. Its first campaign on UCG started in 1980s. With its initiative, a National Committee for UCG was constituted with representatives from Ministry of Petroleum, Dept. of Coal, CSIR, CMPDIL, State of Gujarat and ONGC for experimenting a pilot. It was decided in mid-1986 to carry out a UCG pilot in Sobhasan area of Mehsana district which was to be funded by OIDB. Two information wells were drilled to generate geological, geophysical, geo-hydrological data and core/coal samples. 3-D seismic survey data of Mehsana area was processed and interpreted and geological model was prepared. Basic designing of pilot project, drilling and completion, strategy of process wells and designing of surface facilities were carried out. The project could not be pursued further due to escalation in cost and contractual difficulty with design consultant. ONGC second UCG campaign commenced with signing of an agreement of collaboration (AOC) with Skochinsky Institute of Mining (SIM), Russia on 25th November 2004 for Underground Coal Gasification (UCG). In parallel, MOUs were signed with major coal and power companies, namely, Gujarat Industries Power Company Ltd (GIPCL), Gujarat Mineral Development Corporation Ltd (GMDC), Coal India Ltd (CIL), Singareni Colliery Company Ltd (SCCL) and NLC India Ltd. Under the AOC, suitability study was carried out for different sites belonging to MOU companies. Only Vastan mine block, Nani Naroli, Surat, Gujarat was found to be suitable for UCG. Therefore, subsequent stages of detailed characterization & pilot layout, detailed engineering design were taken up for Vastan site. After enormous efforts for quite long since 2006, in the absence of UCG policy

  20. Global Development of Commercial Underground Coal Gasification

    Science.gov (United States)

    Blinderman, M. S.

    2017-07-01

    Global development of Underground Coal Gasification (UCG) is considered here in light of latest trends of energy markets and environmental regulations in the countries that have been traditional proponents of UCG. The latest period of UCG development triggered by initial success of the Chinchilla UCG project (1997-2006) has been characterized by preponderance of privately and share-market funded developments. The deceleration of UCG commercialization has been in part caused by recent significant decrease of world oil, gas and coal prices. Another substantial factor was lack of necessary regulations governing extraction and conversion of coal by UCG method in the jurisdictions where the UCG projects were proposed and developed. Along with these objective causes there seem to have been more subjective and technical reasons for a slowdown or cancelation of several significant UCG projects, including low efficiency, poor environmental performance, and inability to demonstrate technology at a sufficient scale and/or at a competitive cost. Latest proposals for UCG projects are briefly reviewed.

  1. Gallium-67 citrate imaging in underground coal miners

    International Nuclear Information System (INIS)

    Kanner, R.E.; Barkman, H.W. Jr.; Rom, W.N.; Taylor, A.T. Jr.

    1985-01-01

    Twenty-two underground coal workers with 27 or more years of coal dust exposure were studied with gallium-67 citrate (Ga-67) imaging. Radiographic evidence of coal workers indicates that pneumoconiosis (CWP) was present in 12 subjects. The Ga-67 scan was abnormal in 11 of 12 with, and 9 of 10 without, CWP. The Ga-67 uptake index was significantly correlated with total dust exposure (p less than 0.01) and approached significant correlation with the radiographic profusion of the nodules (0.10 greater than p greater than 0.05). There was no correlation between Ga-67 uptake and spirometric function, which was normal in this group of patients; furthermore, increased lung uptake of gallium did not indicate a poor prognosis in subjects no longer exposed to coal dust. While coal dust exposure may be associated with positive Ga-67 lung scan in coal miners with many years of coal dust exposure, the scan provided no information not already available from a careful exposure history and a chest radiograph. Since Ga-67 scanning is a relatively expensive procedure the authors would recommend that its use in subjects with asymptomatic CWP be limited to an investigative role and not be made part of a routine evaluation

  2. Early detection of spontaneous combustion of coal in underground coal mines with development of an ethylene enriching system

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jun; Xue, Sheng [CSIRO Earth Science and Resource Engineering, Kenmore (Australia); Cheng, Weimin; Wang, Gang [Shandong University of Science and Technology, Qingdao (China)

    2011-01-01

    Spontaneous combustion of coal (sponcom) is a major hazard in underground coal mining operations. If not detected early and managed properly, it can seriously affect mine safety and productivity. Gaseous products of sponcom, such as carbon monoxide, ethylene and hydrogen, are commonly used in coal mines as indicators to reflect the state of the sponcom. Studies have shown that ethylene starts to occur when sponcom reaches a characteristic temperature. However, due to dilution of ventilation air and detection limits of the instruments used for gas analysis at coal mines, ethylene cannot be detected until the sponcom has developed past its early stage, missing an optimum opportunity for mine operators to control the hazard. To address the issue, an ethylene-enriching system, based on its physical adsorption and desorption properties, has been developed to increase detection sensitivity of the ethylene concentration in mine air by about 10 times. This system has successfully been applied in a number of underground coal mines in China to detect sponcom at its early stage and enable mine operators to take effective control measures. This paper describes the ethylene enriching system and its application. (author)

  3. Analysis on the Initial Cracking Parameters of Cross-Measure Hydraulic Fracture in Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Yiyu Lu

    2015-07-01

    Full Text Available Initial cracking pressure and locations are important parameters in conducting cross-measure hydraulic fracturing to enhance coal seam permeability in underground coalmines, which are significantly influenced by in-situ stress and occurrence of coal seam. In this study, stress state around cross-measure fracturing boreholes was analyzed using in-situ stress coordinate transformation, then a mathematical model was developed to evaluate initial cracking parameters of borehole assuming the maximum tensile stress criterion. Subsequently, the influences of in-situ stress and occurrence of coal seams on initial cracking pressure and locations in underground coalmines were analyzed using the proposed model. Finally, the proposed model was verified with field test data. The results suggest that the initial cracking pressure increases with the depth cover and coal seam dip angle. However, it decreases with the increase in azimuth of major principle stress. The results also indicate that the initial cracking locations concentrated in the second and fourth quadrant in polar coordinate, and shifted direction to the strike of coal seam as coal seam dip angle and azimuth of maximum principle stress increase. Field investigation revealed consistent rule with the developed model that the initial cracking pressure increases with the coal seam dip angle. Therefore, the proposed mathematical model provides theoretical insight to analyze the initial cracking parameters during cross-measure hydraulic fracturing for underground coalmines.

  4. Modeling of Contaminant Migration through Porous Media after Underground Coal Gasification in Shallow Coal Seam

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Hejtmánek, Vladimír; Čapek, P.; Stanczyk, K.; Šolcová, Olga

    2015-01-01

    Roč. 140, DEC (2015), s. 188-197 ISSN 0378-3820 Grant - others:RFCS(XE) RFCR-CT-2011-00002 Institutional support: RVO:67985858 Keywords : underground coal gasification * transport phenomena modeling * transport parameters Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.847, year: 2015

  5. A Look into Miners' Health in Prevailing Ambience of Underground Coal Mine Environment

    Science.gov (United States)

    Dey, N. C.; Pal, S.

    2012-04-01

    Environmental factors such as noise, vibration, illumination, humidity, temperature and air velocity, etc. do play a major role on the health, comfort and efficient performance of underground coal miners at work. Ergonomics can help to promote health, efficiency and well being of miners and to make best use of their capabilities within the ambit of underground coal mine environment. Adequate work stretch and work-rest scheduling have to be determined for every category of miners from work physiology point of view so as to keep better health of the miners in general and to have their maximum efficiency at work in particular.

  6. 76 FR 11187 - Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety...

    Science.gov (United States)

    2011-03-01

    ... DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Part 75 RIN 1219-AB75 Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety Standards... rule addressing Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health...

  7. Underground Coal Gasification: Rates of Post Processing Gas Transport

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Hejtmánek, Vladimír; Stanczyk, K.; Šolcová, Olga

    2014-01-01

    Roč. 68, č. 12 (2014), s. 1707-1715 ISSN 0366-6352 R&D Projects: GA MŠk 7C12017 Grant - others:RFCS(XE) RFCR-CT-2011-00002 Institutional support: RVO:67985858 Keywords : underground coal gas ification * gas transport * textural properties Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  8. A Fiber Bragg Grating-Based Monitoring System for Roof Safety Control in Underground Coal Mining

    Directory of Open Access Journals (Sweden)

    Yiming Zhao

    2016-10-01

    Full Text Available Monitoring of roof activity is a primary measure adopted in the prevention of roof collapse accidents and functions to optimize and support the design of roadways in underground coalmines. However, traditional monitoring measures, such as using mechanical extensometers or electronic gauges, either require arduous underground labor or cannot function properly in the harsh underground environment. Therefore, in this paper, in order to break through this technological barrier, a novel monitoring system for roof safety control in underground coal mining, using fiber Bragg grating (FBG material as a perceived element and transmission medium, has been developed. Compared with traditional monitoring equipment, the developed, novel monitoring system has the advantages of providing accurate, reliable, and continuous online monitoring of roof activities in underground coal mining. This is expected to further enable the prevention of catastrophic roof collapse accidents. The system has been successfully implemented at a deep hazardous roadway in Zhuji Coal Mine, China. Monitoring results from the study site have demonstrated the advantages of FBG-based sensors over traditional monitoring approaches. The dynamic impacts of progressive face advance on roof displacement and stress have been accurately captured by the novel roadway roof activity and safety monitoring system, which provided essential references for roadway support and design of the mine.

  9. Underground roadway drivage with heading machines in Indian coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, T.K.

    1983-03-01

    Heading machines have assumed a very important place in underground roadway drivage. They are not only a compromise between ''drill-and-blast'' technique and full-face machines, but are also an economic and versatile form of mechanised roadway drivage. Since the advantages gained by heading machines are considerable, the use of these machines is becoming popular in underground roadway drivage. Experience with continuous miner and heading machines in Indian coal mines is very limited compared to that of Western countries. In 1964-65, for the first time, two units of Lee Norse Miner were used at Kunostoria Colliery of Bengal Coal Company. In 1966, two units of Joy Continuous Miner were introduced at Chalkari Colliery of National Coal Development Corporation, but had to be adandoned because of heavy make of water at the installation site. A Russian PK-3 heading machine was used limitedly during the development of Banki Colliery, Madhya Pradesh. A Demag Unicorn VS-1 machine operated for the development of roadways at Jitpur and Chasnala Collieries of IISCO between 1967-70. With this machine, progress of 7 m per day was attained in level roadways and of about 2 m per day in steep raises.

  10. Proceedings of the 5th underground coal conversion symposium

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    The 5th underground coal conversion symposium was held at Alexandria, Virginia, June 18--21, 1979. Thirty-three papers have been entered individually into EDB and ERA. Seven papers were also abstracted for Energy Abstracts for Policy Analysis. Seven papers had been entered previously from other sources. The symposium was sponsored by the US Department of Energy, Division of Fossil Fuel Extraction. (LTN)

  11. Hydrologic conditions in the coal mining district of Indiana and implications for reclamation of abandoned mine lands

    International Nuclear Information System (INIS)

    Olyphant, G.A.; Harper, D.

    1998-01-01

    Bedrock strata of the mining district of Indiana (Indiana Coal Mining District, ICMD) include numerous coalbeds of economic importance, together with underclays, roof shales, limestones, and sandstones of Pennsylvanian age. These are typically poor aquifers with low hydraulic conductivities and specific yields. Surficial materials include loess, till, alluvium, and other deposits of pleistocene age. The loess and till also have low hydraulic conductivities, so that very few shallow aquifers exist in the vicinities of abandoned mine land (AML) sites, except where they are close to the alluvial fill of large bedrock valleys. The hydrologic cascade at AML sites in Indiana is strongly conditioned by the existence of elevated deposits of coarse-grained coal-preparation refuse and flooded underground mine workings. Flooded mines are the principal conduits of groundwater flow in the area, but their boundaries, flowpaths, and mechanisms of recharge and discharge are very different from those of natural aquifers and are poorly understood. Acidic mine drainage often emerges as seepages and springs on the edges of the elevated refuse deposits, but the low permeability of the natural surficial materials and bedrock inhibits the development of off-site groundwater contaminant plumes. The water balance across the surface of the refuse deposits is critical to reclamation planning and success. Enhancing runoff through reduction of infiltration capacity has the beneficial effect of reducing recharge through the acid-generating refuse, but the excess runoff may be accompanied by soil erosion that can lead to reclamation failure. Furthermore, during cool seasons and stormy periods, a well vegetated surface promotes recharge through increased infiltration, resulting in greater rates of acidic baseflow seepage. Passive Anoxic Limestone Drains (PALDs) have been successfully coupled with wetland treatment systems to improve surface waters that discharge from AML sites. Storm runoff from

  12. Proceedings of the third annual underground coal conversion symposium

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Third Annual Underground Coal Conversion Symposium was held at Fallen Leaf Lake, CA, June 6--9, 1977. It was sponsored by the U.S. Department of Energy and hosted by Lawrence Livermore Laboratory. Forty-one papers have been entered individually into EDB and ERA; ten papers had been entered previously from other sources. The papers cover the in-situ gasification of lignite, subbituminous coal and bituminous coal, in flat lying seams and a steeply dipping beds, at moderate and at greater depths, and describe various technologies of (borehole linking, well spacings, gasifying agents (air, oxygen, steam, hydrogen, including mixtures). Measuring instruments for diagnostic and process control purposes are described. Environmental impacts (ground subsidence and possible groundwater pollution) are the subject of several papers. Finally, mathematical modelling and projected economics of the process are developed. (LTN)

  13. Investigation of the feasibility of underground coal gasification in North Dakota, United States

    International Nuclear Information System (INIS)

    Pei, Peng; Nasah, Junior; Solc, Jaroslav; Korom, Scott F.; Laudal, Daniel; Barse, Kirtipal

    2016-01-01

    Highlights: • A four-year feasibility study of underground coal gasification is presented. • A test site was selected for feasibility investigation. • Gasification test, a hydrogeological study and geomechanical study were performed. • Results suggest favorable conditions for UCG development at the selected site. - Abstract: Underground coal gasification (UCG) is a promising technology that has the potential to recover currently-unmineable coal resources. The technical feasibility and economic success of a UCG project is highly site specific. Any risks associated with UCG, such as subsidence, groundwater contamination, and syngas quality, should be sufficiently evaluated through a feasibility study. This paper presents a four-year UCG feasibility study utilizing lignite seams in North Dakota, United States. Four wells were drilled through the lignite seams at a selected site, and lignite and strata cores were recovered. A geological model of the formation was built, coal and rock properties were analyzed, and field hydrogeological tests and laboratory gasification tests were performed. This work provided valuable insights in rock mechanics, hydrogeology, and coal properties. The study results show that the selected site is suitable for development of a UCG plant because there are minimal induced subsidence risks, there is hydrological isolation from major aquifers and the coal produces desirable syngas quality for liquid fuel production. Methodologies developed in this study will benefit the design, optimization and management of the UCG process.

  14. Proceedings of second annual underground coal gasification symposium

    Energy Technology Data Exchange (ETDEWEB)

    Shuck, L Z [ed.

    1976-01-01

    The Second Annual Underground Coal Gasification Symposium was sponsored by the Morgantown Energy Research Center of the US Energy Research and Development Administration and held at Morgantown, WV, August 10-12, 1976. Fifty papers of the proceedings have been entered individually into EDB and ERA. While the majority of the contribution involved ERDA's own work in this area, there were several papers from universities, state organizations, (industrial, engineering or utility companies) and a few from foreign countries. (LTN)

  15. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research

    Science.gov (United States)

    2015-01-01

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining. PMID:26549926

  16. Prevention and protection against propagation of explosionsin underground coal mines

    Directory of Open Access Journals (Sweden)

    Л. М. Пейч

    2017-06-01

    Full Text Available Over the past century, the coal mining industry experienced a large number of explosions leading to a considerable loss of life. The objective of this study is preventing the propagation of methane and/or coal dust explosions through the use of passive water barriers and its implementation to the Spanish coal mining industry. Physical and chemical properties, flammability and explosibility parameters of typical Spanish coals are presented. In this paper,   a flexible approach to meet the requirements of the EN-14591-2:2007 standard is presented for the very specific local conditions, characterized by small cross-sections galleries, vertical seem, use of explosives, etc. Authors have proven the viability of standard requirements to the typical roadway from Spanish underground mines, considering realistic roadway lengths as well as available cross-sections taking into account ubiquitous obstacles such as: locomotives, conveyor belt, ventilation ducts, etc.

  17. Working group report: methane emissions from coal mining

    International Nuclear Information System (INIS)

    Kruger, D.

    1993-01-01

    The process of coalification inherently generates methane and other byproducts. The amount of methane released during coal mining is a function of coal rank and depth, gas content, and mining methods, as well as other factors such as moisture. In most underground mines, methane is removed by drawing large quantities of air through the mine releasing the air into the atmosphere. In surface mines, exposed coal faces and surfaces, as well as areas of coal rubble created by blasting operations are believed to be the major sources of methane. A portion of the methane emitted from coal mining comes from post-mining activities such as coal processing, transportation, and utilisation. Some methane is also released from coal waste piles and abandoned mines. This paper highlights difficulties with previous methane emission studies namely: absence of data on which to base estimates; use of national data to develop global estimates; failure to include all possible emission sources; overreliance on statistical estimation methodologies. It recommends a 'tiered' approach for the estimation of emissions from underground mines, surface mines and post-mining activities. For each source, two or more approaches (or 'tiers') are presented, with the first tier requiring basic and readily available data and higher tiers requiring additional data. 29 refs., 3 tabs

  18. Underground coal gasification with integrated carbon dioxide mitigation supports Bulgaria's low carbon energy supply

    Science.gov (United States)

    Nakaten, Natalie; Kempka, Thomas; Azzam, Rafig

    2013-04-01

    Underground coal gasification allows for the utilisation of coal reserves that are economically not exploitable due to complex geological boundary conditions. The present study investigates underground coal gasification as a potential economic approach for conversion of deep-seated coals into a high-calorific synthesis gas to support the Bulgarian energy system. Coupling of underground coal gasification providing synthesis gas to fuel a combined cycle gas turbine with carbon capture and storage is considered to provide substantial benefits in supporting the Bulgarian energy system with a competitive source of energy. In addition, underground voids originating from coal consumption increase the potential for geological storage of carbon dioxide resulting from the coupled process of energy production. Cost-effectiveness, energy consumption and carbon dioxide emissions of this coupled process are investigated by application of a techno-economic model specifically developed for that purpose. Capital (CAPEX) and operational expenditure (OPEX) are derived from calculations using six dynamic sub-models describing the entire coupled process and aiming at determination of the levelised costs of electricity generation (COE). The techno-economic model is embedded into an energy system-modelling framework to determine the potential integration of the introduced low carbon energy production technology into the Bulgarian energy system and its competitiveness at the energy market. For that purpose, boundary conditions resulting from geological settings as well as those determined by the Bulgarian energy system and its foreseeable future development have to be considered in the energy system-modelling framework. These tasks comprise integration of the present infrastructure of the Bulgarian energy production and transport system. Hereby, the knowledge on the existing power plant stock and its scheduled future development are of uttermost importance, since only phasing-out power

  19. Overall requirements for an advanced underground coal extraction system. [environment effects, miner health and safety, production cost, and coal conservation

    Science.gov (United States)

    Goldsmith, M.; Lavin, M. L.

    1980-01-01

    Underground mining systems suitable for coal seams expoitable in the year 2000 are examined with particular relevance to the resources of Central Appalachia. Requirements for such systems may be summarized as follows: (1) production cost; (2)miner safety; (3) miner health; (4) environmental impact; and (5) coal conservation. No significant trade offs between production cost and other performance indices were found.

  20. The estimation of the number of underground coal miners and normalization collective dose at present in China

    International Nuclear Information System (INIS)

    Liu, Fu-dong; Chen, Lu; Pan, Zi-qiang; Liu, Sen-lin; Chen, Ling; Wang, Chun-hong

    2017-01-01

    Due to the improvement of production technology and the adjustment of energy structure, as well as the town-ownership and private-ownership coal mines (TPCM) were closed or merged by national policy, the number of underground miner has changed comparing with 2004 in China, so collective dose and normalization collective dose in different type of coal mine should be changed at the same time. In this paper, according to radiation exposure by different ventilation condition and the annual output, the coal mines in China are divided into three types, which are named as national key coal mines (NKCM), station-owned local coal mines (SLCM) and TPCM. The number of underground coal miner, collective dose and normalization collective dose are estimated at present base on surveying annual output and production efficiency of raw coal in 2005-2014. The typical total value of the underground coal miners recommended in China is 5.1 million in 2005-2009, and in which there are respectively included 1 million, 0.9 million and 3.2 million for NKCM, SLCM and TPCM. There are total of 4.7 million underground coal miner in 2010-2014, and the respectively number for NKCM, SLCM and TPCM are 1.4 million, 1.2 million and 2.1 million. The collective dose in 2005-2009 is 11 335 man.Sv.y"-"1, and in which there are respectively included 280, 495 and 10 560 man.Sv.y"-"1 for NKCM, SLCM and TPCM. As far as 2010-2014, there are total of 7982 man.Sv.y"-"1, and 392, 660 and 6930 man.Sv.y"-"1 for each type of coal mines. Therefore, the main contributor of collective dose is from TPCM. The normalization collective dose in 2005-2009 is 0.0025, 0.015 and 0.117 man.Sv per 10 kt for NKCM, SLCM and TPCM, respectively. As far as 2010-2014, there are 0.0018, 0.010 and 0.107 man.Sv per 10 kt for each type of coal mines. The trend of normalization collective dose is decreased year by year. (authors)

  1. Locating and defining underground goaf caused by coal mining from space-borne SAR interferometry

    Science.gov (United States)

    Yang, Zefa; Li, Zhiwei; Zhu, Jianjun; Yi, Huiwei; Feng, Guangcai; Hu, Jun; Wu, Lixin; Preusse, Alex; Wang, Yunjia; Papst, Markus

    2018-01-01

    It is crucial to locate underground goafs (i.e., mined-out areas) resulting from coal mining and define their spatial dimensions for effectively controlling the induced damages and geohazards. Traditional geophysical techniques for locating and defining underground goafs, however, are ground-based, labour-consuming and costly. This paper presents a novel space-based method for locating and defining the underground goaf caused by coal extraction using Interferometric Synthetic Aperture Radar (InSAR) techniques. As the coal mining-induced goaf is often a cuboid-shaped void and eight critical geometric parameters (i.e., length, width, height, inclined angle, azimuth angle, mining depth, and two central geodetic coordinates) are capable of locating and defining this underground space, the proposed method reduces to determine the eight geometric parameters from InSAR observations. Therefore, it first applies the Probability Integral Method (PIM), a widely used model for mining-induced deformation prediction, to construct a functional relationship between the eight geometric parameters and the InSAR-derived surface deformation. Next, the method estimates these geometric parameters from the InSAR-derived deformation observations using a hybrid simulated annealing and genetic algorithm. Finally, the proposed method was tested with both simulated and two real data sets. The results demonstrate that the estimated geometric parameters of the goafs are accurate and compatible overall, with averaged relative errors of approximately 2.1% and 8.1% being observed for the simulated and the real data experiments, respectively. Owing to the advantages of the InSAR observations, the proposed method provides a non-contact, convenient and practical method for economically locating and defining underground goafs in a large spatial area from space.

  2. An Event Reporting and Early-Warning Safety System Based on the Internet of Things for Underground Coal Mines: A Case Study

    Directory of Open Access Journals (Sweden)

    Byung Wan Jo

    2017-09-01

    Full Text Available Fatal accidents associated with underground coal mines require the implementation of high-level gas monitoring and miner’s localization approaches to promote underground safety and health. This study introduces a real-time monitoring, event-reporting and early-warning platform, based on cluster analysis for outlier detection, spatiotemporal statistical analysis, and an RSS range-based weighted centroid localization algorithm for improving safety management and preventing accidents in underground coal mines. The proposed platform seamlessly integrates monitoring, analyzing, and localization approaches using the Internet of Things (IoT, cloud computing, a real-time operational database, application gateways, and application program interfaces. The prototype has been validated and verified at the operating underground Hassan Kishore coal mine. Sensors for air quality parameters including temperature, humidity, CH4, CO2, and CO demonstrated an excellent performance, with regression constants always greater than 0.97 for each parameter when compared to their commercial equivalent. This framework enables real-time monitoring, identification of abnormal events (>90%, and verification of a miner’s localization (with <1.8 m of error in the harsh environment of underground mines. The main contribution of this study is the development of an open source, customizable, and cost-effective platform for effectively promoting underground coal mine safety. This system is helpful for solving the problems of accessibility, serviceability, interoperability, and flexibility associated with safety in coal mines.

  3. The three-dimensional shapes of underground coal miners' feet do not match the internal dimensions of their work boots.

    Science.gov (United States)

    Dobson, Jessica A; Riddiford-Harland, Diane L; Bell, Alison F; Steele, Julie R

    2018-04-01

    Mining work boots provide an interface between the foot and the ground, protecting and supporting miners' feet during lengthy coal mining shifts. Although underground coal miners report the fit of their work boots as reasonable to good, they frequently rate their boots as uncomfortable, suggesting that there is a mismatch between the shape of their feet and their boots. This study aimed to identify whether dimensions derived from the three-dimensional scans of 208 underground coal miners' feet (age 38.3 ± 9.8 years) differed from the internal dimensions of their work boots. The results revealed underground coal miners wore boots that were substantially longer than their feet, possibly because boots available in their correct length were too narrow. It is recommended boot manufacturers reassess the algorithms used to create boot lasts, focusing on adjusting boot circumference at the instep and heel relative to increases in foot length. Practitioner Summary: Fit and comfort ratings suggest a mismatch between the shape of underground coal miners' feet and their boots exists. This study examined whether three-dimensional scans of 208 miners' feet differed from their boot internal dimensions. Miners wore boots substantially longer than their feet, possibly due to inadequate width.

  4. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    OpenAIRE

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between t...

  5. Productivity Improvement in Underground Coal Mines - A Case Study

    Directory of Open Access Journals (Sweden)

    Devi Prasad Mishra

    2013-01-01

    Full Text Available Improvement of productivity has become an important goal for today's coal industry in the race to increase price competitiveness. The challenge now lying ahead for the coal industry is to identify areas of waste, meet the market price and maintain a healthy profit. The only way to achieve this is to reduce production costs by improving productivity, efficiency and the effectiveness of the equipment. This paper aims to identify the various factors and problems affecting the productivity of underground coal mines adopting the bord and pillar method of mining and to propose suitable measures for improving them. The various key factors affecting productivity, namely the cycle of operations, manpower deployment, machine efficiency, material handling and management of manpower are discussed. In addition, the problem of side discharge loader (SDL cable handling resulting in the wastage of precious manpower resources and SDL breakdown have also been identified and resolved in this paper.

  6. Geological and Rock Mechanics Perspectives for Underground Coal Gasification in India

    Science.gov (United States)

    Singh, Ajay K.; Singh, Rajendra

    2017-07-01

    The geological resources of coal in India are more than 308 billion tonnes upto a depth of 1200 m, out of which proved reserve has been reported at around 130 billion tonnes. There is an increasing requirement to increase the energy extraction efficiency from coal as the developmental prospects of India increase. Underground coal gasification (UCG) is a potential mechanism which may be utilized for extraction of deep-seated coal reserves. Some previous studies suggest that lignites from Gujarat and Rajasthan, along with tertiary coals from northeastern India can be useful from the point of view of UCG. We discuss some geological literature available for these areas. Coming to the rock mechanics perspectives, during UCG the rock temperature is considerable high. At this temperature, most empirical models of rock mechanics may not be applied. In this situation, the challenges for numerical modelling of UCG sites increases manifold. We discuss some of the important modelling geomechanical issues related to UCG in India.

  7. Evaluating the costs and achievable benefits of extending technologies for uneconomical coal resources in South Africa: the case of underground coal gasification

    CSIR Research Space (South Africa)

    Zieleniewski, M

    2008-11-01

    Full Text Available -3433. Shoko, E., McLellan, B., Dicks, A.L., Diniz da Costa, J.C., 2006. Hydrogen from coal: Production and utilisation technologies. International Journal of Coal Geology, 65(3-4): 213-222. Simeons, C., 1978. Coal: Its role in tomorrow’s technol- ogy... the consideration of other, alternative solutions to the energy shortage problem. Underground coal gasifi- cation (UCG) is among the most promising tech- nologies and, to an acceptable degree, the proven feasible one (Walker et al., 2001; Ergo Exergy, 2005...

  8. Geomechanical Analysis of Underground Coal Gasification Reactor Cool Down for Subsequent CO2 Storage

    Science.gov (United States)

    Sarhosis, Vasilis; Yang, Dongmin; Kempka, Thomas; Sheng, Yong

    2013-04-01

    Underground coal gasification (UCG) is an efficient method for the conversion of conventionally unmineable coal resources into energy and feedstock. If the UCG process is combined with the subsequent storage of process CO2 in the former UCG reactors, a near-zero carbon emission energy source can be realised. This study aims to present the development of a computational model to simulate the cooling process of UCG reactors in abandonment to decrease the initial high temperature of more than 400 °C to a level where extensive CO2 volume expansion due to temperature changes can be significantly reduced during the time of CO2 injection. Furthermore, we predict the cool down temperature conditions with and without water flushing. A state of the art coupled thermal-mechanical model was developed using the finite element software ABAQUS to predict the cavity growth and the resulting surface subsidence. In addition, the multi-physics computational software COMSOL was employed to simulate the cavity cool down process which is of uttermost relevance for CO2 storage in the former UCG reactors. For that purpose, we simulated fluid flow, thermal conduction as well as thermal convection processes between fluid (water and CO2) and solid represented by coal and surrounding rocks. Material properties for rocks and coal were obtained from extant literature sources and geomechanical testings which were carried out on samples derived from a prospective demonstration site in Bulgaria. The analysis of results showed that the numerical models developed allowed for the determination of the UCG reactor growth, roof spalling, surface subsidence and heat propagation during the UCG process and the subsequent CO2 storage. It is anticipated that the results of this study can support optimisation of the preparation procedure for CO2 storage in former UCG reactors. The proposed scheme was discussed so far, but not validated by a coupled numerical analysis and if proved to be applicable it could

  9. Critical Analysis of Underground Coal Gasification Models. Part II: Kinetic and Computational Fluid Dynamics Models

    Directory of Open Access Journals (Sweden)

    Alina Żogała

    2014-01-01

    Originality/value: This paper presents state of art in the field of coal gasification modeling using kinetic and computational fluid dynamics approach. The paper also presents own comparative analysis (concerned with mathematical formulation, input data and parameters, basic assumptions, obtained results etc. of the most important models of underground coal gasification.

  10. An overview of underground coal gasification and its applicability for Turkish lignite

    Energy Technology Data Exchange (ETDEWEB)

    Pekpak, E.; Yoncaci, S.; Kilic, M.G. [Middle East Technical Univ., Ankara (Turkey). Dept. of Mining Engineering

    2010-07-01

    Coal is expected to maintain its significance as an energy source for a longer time period than oil and natural gas. Environmental concerns have led to the development of clean coal technologies, such as coal gasification. Coal gasification can be used at either at surface or in underground coal gasification (UCG). UCG has several advantages over surface gasification and conventional mining such as rank low calorific value coals. Coal gasification also has the potential to contribute to the energy supply of a country. Most Turkish coals are lignite and UCG may enable diversification of energy sources of Turkey and may help decrease external dependency on energy. This paper presented a study that matched a UCG technique to the most appropriate (Afsin Elbistan) lignite reserve in Turkey. Two UCG techniques were presented, including the linked vertical well method, and the directional drilling-controlled retractable injection point (CRIP) method. The properties of coal seams and coal properties were also outlined. It was concluded that Cobanbey is the most preferable sector in the Elbistan Lignite Reserve for a pilot study, and that the linked vertical well method could be considered as a candidate method. 17 refs., 6 tabs., 1 fig.

  11. Investigation of the long-term behaviour of residues of brown coal upgrading processes in an underground deposit in the geogenic conditions of potassium and rock salt mining. Text volume. Final report

    International Nuclear Information System (INIS)

    1994-01-01

    Residues of brown coal upgrading processes are problematic substances that require extensive monitoring. In East Germany, these residues were usually stored above ground in abandoned open pits and industrial waste dumps. In the Land of Thuringia, the most urgent poblems are posed by the ''Neue Sorge'' abandoned open pit near Rositz and the Rusendorf industrial waste dump. In both cases, large volumes of highly polluted waste materials must be disposed of. The method of choice recommended for disposal is the combustion in a hazardous-waste incinerator in accordance with the specifications of the Waste Management Technical Guide (TA Abfall). Preliminary studies are currently being made for the construction of a waste incinerating plant in this region. An alternative option for disposal would be underground storage in an abandoned salt mine. Thuringia has a number of abandoned potassium mines that appear to be well suited for this purpose. On the other hand, there have been no systematic investigations so far on the long-term behaviour of hazardous waste under the geogenic conditions of potassium and rock salt mining, so that further studies will be necessary. (orig.)

  12. Feasibility of using the water from the abandoned and flooded coal mines as an energy resource for space heating

    OpenAIRE

    Athresh, AP

    2017-01-01

    This research project aims to study the feasibility of using the water from the abandoned and flooded coal mines for space heating applications using a Ground Source Heat Pump (GSHP) in open loop configuration and take a conceptual idea to a commercial deployment level. The flooded coal mines are the legacy that has been left behind after the three centuries of continuous operations by the coal mining industry. The closure of all coal mines in the UK has led to the flooding of all those aband...

  13. Overcoming the pitfalls of abandoned mine workings in the Sydney coalfield

    Energy Technology Data Exchange (ETDEWEB)

    Forrester, D.; Noble, B. [AECOM, Sydney, NS (Canada)

    2010-07-01

    Previous coal mining activities in Sydney, Nova Scotia (NS) have included the creation of shallow, unrecorded underground coal extraction sites known as bootleg pits. The sites are a public safety hazard and can also impact groundwater flow. This paper presented an outline of the remediation strategies used to mitigate the hazards associated with the bootleg pits as part of a mine site closure and reclamation program currently being completed by the Cape Breton Corporation (ECBC). The strategies included the use of sinkhole subsidence hazard maps. Long-term visual monitoring is also being used in areas associated with sinkhole development. Larger abandoned areas have been cleared, backfilled and re-graded while including provisions for the ongoing drainage of mine waters. Gas monitoring and safety procedures were also reviewed. 2 refs., 4 figs.

  14. Modelling Underground Coal Gasification—A Review

    Directory of Open Access Journals (Sweden)

    Md M. Khan

    2015-11-01

    Full Text Available The technical feasibility of underground coal gasification (UCG has been established through many field trials and laboratory-scale experiments over the past decades. However, the UCG is site specific and the commercialization of UCG is being hindered due to the lack of complete information for a specific site of operation. Since conducting UCG trials and data extraction are costly and difficult, modeling has been an important part of UCG study to predict the effect of various physical and operating parameters on the performance of the process. Over the years, various models have been developed in order to improve the understanding of the UCG process. This article reviews the approaches, key concepts, assumptions, and limitations of various forward gasification UCG models for cavity growth and product gas recovery. However, emphasis is given to the most important models, such as packed bed models, the channel model, and the coal slab model. In addition, because of the integral part of the main models, various sub-models such as drying and pyrolysis are also included in this review. The aim of this study is to provide an overview of the various simulation methodologies and sub-models in order to enhance the understanding of the critical aspects of the UCG process.

  15. Moving up down in the mine: Sex segregation in underground coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Tallichet, S.E.

    1991-01-01

    This study employs both individualist theories of human capital and sex-role spillover and structuralist theories from the socialist feminist perspective, emphasizing the formal and informal organizational factors operating within a patriarchal capitalist society to explain job-level sex segregation among underground coal miners. Both quantitative and qualitative data on women in coal mining are used to evaluate these theories. A logistic regression analysis performed on data obtained in 1986 by the US Bureau of Mines demonstrates that while human capital variables are predictive of a miner's job rank, variation in job rank attributed to gender is even greater. For men, training and experience in mining combine to increase the probability of being in a more skilled job in a coal mine. Age and seniority are curvilinearly related to the variation in men's job rank. For women, only age accounts for their advancement such that younger, not older women who have slightly more mining experience, occupy the more skilled positions in the work place. These findings suggest that, in terms of job advancement, men enjoy a greater return on their human capital investments than women, and that factors other than those representing a miner's human capital are affecting women's positions underground more than men's.

  16. Moving up down in the mine: Sex segregation in underground coal mining

    International Nuclear Information System (INIS)

    Tallichet, S.E.

    1991-01-01

    This study employs both individualist theories of human capital and sex-role spillover and structuralist theories from the socialist feminist perspective, emphasizing the formal and informal organizational factors operating within a patriarchal capitalist society to explain job-level sex segregation among underground coal miners. Both quantitative and qualitative data on women in coal mining are used to evaluate these theories. A logistic regression analysis performed on data obtained in 1986 by the US Bureau of Mines demonstrates that while human capital variables are predictive of a miner's job rank, variation in job rank attributed to gender is even greater. For men, training and experience in mining combine to increase the probability of being in a more skilled job in a coal mine. Age and seniority are curvilinearly related to the variation in men's job rank. For women, only age accounts for their advancement such that younger, not older women who have slightly more mining experience, occupy the more skilled positions in the work place. These findings suggest that, in terms of job advancement, men enjoy a greater return on their human capital investments than women, and that factors other than those representing a miner's human capital are affecting women's positions underground more than men's

  17. Influence of surface water accumulations of the Stupnica creek on underground coal mining in the Durdevic coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Valjarevic, R; Urosevic, V

    1986-01-01

    Discusses hydrological, geological and mining conditions at the Durdevic underground coal mine. A landslide at a spoil bank dammed the creek flowing above the mine. Two exploratory boreholes (62 m and 68 m) were drilled for hydrological investigations. Water coloring techniques, chemical water analysis, measurement of underground water level and water flow were used to determine whether a sudden inrush of rainfall and accumulated surface water could endanger the mine. Underground water inflow to mine rooms varies from 110-200 m/sup 3//min, depending on the season. Diversion of the creek bed with the accumulated water and accumulation and subsequent drainage of surface water via large diameter concrete pipes were considered as possible ways of improving safety in the mine. Details of these projects are included. 4 refs.

  18. Effectiveness of underground coal extraction. Effektivnost' podzemnoy dobychi uglya

    Energy Technology Data Exchange (ETDEWEB)

    Pirskiy, A A

    1982-01-01

    This book examines the possibility of improving the efficiency of underground coal extraction based on the solution to the scientific-technical problem of monitoring and controlling concentration and intensifying mining operations. The problem has been resolved as applied to conditions of working coal fields of the Lvov-Volynskiy basin, West Donbass and other regions which are similar in relation to mining-geological conditions. The main conclusions and recommendations consist of the following: synthesized concept ''concentration of mining operations'' is determined by regulation and concentration, intensification of mining operations by using progressive technology, mechanization and organization of production in order to increase extraction, improve productivity of labor and reduce the net cost of coal. The structure of concentration of mining operations is based on the synthesis of natural, technical and organizational conditions for working coal seams. The problem of monitoring and control of the concentration of mining operations was realized by using the systems method based on the laws of development, principles of comprehensive evaluation and optimization of the level of concentration based on economic-mathematical modeling. The use of the systems approach guarantees a comprehensive solution to the problem. In definite periods of development of the coal industry, between the organizational-technical potentialities, natural conditions and trends determined in the sector for the change in the level of mining operation concentration, disproportions develop. The level of work concentration goes beyond the limits of optimal values, and the effectiveness of coal extraction is reduced. In order to predict and eliminate this phenomenon, it is recommended that the level of mining concentration be controlled.

  19. Some Influences of Underground Coal Gasification on the Environment

    Directory of Open Access Journals (Sweden)

    Karol Kostúr

    2018-05-01

    Full Text Available Increasing energy costs and energy demand have renewed global interest in clean coal technologies. Underground Coal Gasification (UCG is an industrial process that converts coal into product gas. UCG is a promising technology with a lot of health, safety and environmental advantages over conventional mining techniques. UCG carries risks to human health, agriculture and the environment. This article briefly analyzes the advantages and negative environmental impacts of UCG. It describes experimental objects, mathematical models as tools for simulation cases and it used coal from UCG experiments in Cigel, Barbara and Wieczorek mines to analyze the environmental impacts of UCG. The gasification converts the carbon in the coal to syngas and heat. We carried out a numerical simulation of the two-dimensional unstable heat conduction in the coal and overburden, with the aim of judging the influence of this heat source on the surroundings, including the surface. The results show that the temperature in the surrounding rock first increases and then decreases with time, the peak of the temperature curve decreases gradually, and its position moves inside the surrounding rock from the ignition point. A small amount of potentially dangerous syngas leaks from the UCG cavity and channels into vulnerable areas depending on working pressures. The danger of explosion and poisoning in vulnerable zones was evaluated by the simulation model. The results show that the danger is real but by monitoring and controlling the air in the vulnerable area it is possible to reduce this risk.

  20. High resolution seismic survey (of the) Rawlins, Wyoming underground coal gasification area. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Youngberg, A.D.; Berkman, E.; Orange, A.S.

    1983-01-01

    In October 1982, a high resolution seismic survey was conducted at the Gulf Research and Development Company's underground coal gasification test site near Rawlins, Wyoming. The objectives of the survey were to utilize high resolution seismic technology to locate and characterize two underground coal burn zones. Seismic data acquisition and processing parameters were specifically designed to emphasize reflections at the shallow depths of interest. A three-dimensional grid of data was obtained over the Rawlins burn zones. Processing included time varying filters, trace composition, and two-dimensional areal stacking of the data in order to identify burn zone anomalies. An anomaly was discernable resulting from the rubble-collapse cavity associated with the burn zone which was studied in detail at the Rawlins 1 and 2 test sites. 21 refs., 20 figs.

  1. Minerals in the Ash and Slag from Oxygen-Enriched Underground Coal Gasification

    Directory of Open Access Journals (Sweden)

    Shuqin Liu

    2016-03-01

    Full Text Available Underground coal gasification (UCG is a promising option for the recovery of low-rank and inaccessible coal resources. Detailed mineralogical information is essential to understand underground reaction conditions far from the surface and optimize the operation parameters during the UCG process. It is also significant in identifying the environmental effects of UCG residue. In this paper, with regard to the underground gasification of lignite, UCG slag was prepared through simulation tests of oxygen-enriched gasification under different atmospheric conditions, and the minerals were identified by X-Ray diffraction (XRD and a scanning electron microscope coupled to an energy-dispersive spectrometer (SEM-EDS. Thermodynamic calculations performed using FactSage 6.4 were used to help to understand the transformation of minerals. The results indicate that an increased oxygen concentration is beneficial to the reformation of mineral crystal after ash fusion and the resulting crystal structures of minerals also tend to be more orderly. The dominant minerals in 60%-O2 and 80%-O2 UCG slag include anorthite, pyroxene, and gehlenite, while amorphous substances almost disappear. In addition, with increasing oxygen content, mullite might react with the calcium oxide existed in the slag to generate anorthite, which could then serve as a calcium source for the formation of gehlenite. In 80%-O2 UCG slag, the iron-bearing mineral is transformed from sekaninaite to pyroxene.

  2. Industrial Internet of Things: (IIoT) applications in underground coal mines.

    Science.gov (United States)

    Zhou, C; Damiano, N; Whisner, B; Reyes, M

    2017-12-01

    The Industrial Internet of Things (IIoT), a concept that combines sensor networks and control systems, has been employed in several industries to improve productivity and safety. U.S. National Institute for Occupational Safety and Health (NIOSH) researchers are investigating IIoT applications to identify the challenges of and potential solutions for transferring IIoT from other industries to the mining industry. Specifically, NIOSH has reviewed existing sensors and communications network systems used in U.S. underground coal mines to determine whether they are capable of supporting IIoT systems. The results show that about 40 percent of the installed post-accident communication systems as of 2014 require minimal or no modification to support IIoT applications. NIOSH researchers also developed an IIoT monitoring and control prototype system using low-cost microcontroller Wi-Fi boards to detect a door opening on a refuge alternative, activate fans located inside the Pittsburgh Experimental Mine and actuate an alarm beacon on the surface. The results of this feasibility study can be used to explore IIoT applications in underground coal mines based on existing communication and tracking infrastructure.

  3. Mapping and monitoring coal mine subsidence using LiDAR and InSAR

    Energy Technology Data Exchange (ETDEWEB)

    Froese, C.R.; Mei, S. [Alberta Geological Survey, Edmonton, AB (Canada). Energy Resources Conservation Board

    2008-07-01

    In the early 1900s, the abandonment of coal mines in Alberta was not regulated and closure documentation was poor. Although the general locations of mines are known, the locations of the specific adits and shafts are not. As such, there are many cases in southwestern Alberta where infrastructure was built on top of old coal mine workings without any detailed records of the abandoned mine or displacement monitoring. The crowns of these workings have been subject to ongoing strain that is reflected at the surface. The rate at which the strain is progressing prior to collapse is not well understood. Mitigation of collapse events is site specific and reactive. This paper demonstrated that airborne LiDAR and spaceborne InSAR technologies can provide valuable information on the distribution of abandoned underground coal mine workings. Both remote sensing techniques were used on Turtle Mountain in the Crowsnest Pass to obtain quantitative information on landslide mechanics, including the patterns and rate of ground movement and subsidence. These techniques can be used to map the location of surface collapse and delineate the location of the coal mine workings that were not previously documented. It was concluded that these technologies will likely become more readily available in the future and incorporated into geo-engineering practices for use in ground hazard detection, monitoring and management. 8 refs., 6 figs.

  4. A novel method for estimating methane emissions from underground coal mines: The Yanma coal mine, China

    Science.gov (United States)

    Ji, Zhong-Min; Chen, Zhi-Jian; Pan, Jie-Nan; Niu, Qing-He

    2017-12-01

    As the world's largest coal producer and consumer, China accounts for a relatively high proportion of methane emissions from coal mines. Several estimation methods had been established for the coal mine methane (CMM) emission. However, with large regional differences, various reservoir formation types of coalbed methane (CBM) and due to the complicated geological conditions in China, these methods may be deficient or unsuitable for all the mining areas (e.g. Jiaozuo mining area). By combing the CMM emission characteristics and considering the actual situation of methane emissions from underground coal mine, we found that the methane pre-drainage is a crucial reason creating inaccurate evaluating results for most estimation methods. What makes it so essential is the extensive pre-drainage quantity and its irrelevance with annual coal production. Accordingly, the methane releases were divided into two categories: methane pre-drainage and methane release during mining. On this basis, a pioneering method for estimating CMM emissions was proposed. Taking the Yanma coal mine in the Jiaozuo mining area as a study case, the evaluation method of the pre-drainage methane quantity was established after the correlation analysis between the pre-drainage rate and time. Thereafter, the mining activity influence factor (MAIF) was first introduced to reflect the methane release from the coal and rock seams around where affected by mining activity, and the buried depth was adopted as the predictor of the estimation for future methane emissions. It was verified in the six coal mines of Jiaozuo coalfield (2011) that the new estimation method has the minimum errors of 12.11%, 9.23%, 5.77%, -5.20%, -8.75% and 4.92% respectively comparing with other methods. This paper gives a further insight and proposes a more accurate evaluation method for the CMM emissions, especially for the coal seams with low permeability and strong tectonic deformation in methane outburst coal mines.

  5. 75 FR 39735 - Mandatory Reporting of Greenhouse Gases From Magnesium Production, Underground Coal Mines...

    Science.gov (United States)

    2010-07-12

    ... sectors of the economy, including fossil fuel suppliers, industrial gas suppliers, and direct emitters of... Part II Environmental Protection Agency 40 CFR Part 98 Mandatory Reporting of Greenhouse Gases From Magnesium Production, Underground Coal Mines, Industrial Wastewater Treatment, and Industrial...

  6. Coal mine subsidence and structures

    International Nuclear Information System (INIS)

    Gray, R.E.

    1988-01-01

    Underground coal mining has occurred beneath 32 x 10 9 m 2 (8 million acres) of land in the United States and will eventually extend beneath 162 x 10 9 m 2 (40 million acres). Most of this mining has taken place and will take place in the eastern half of the United States. In areas of abandoned mines where total extraction was not achieved, roof collapse, crushing of coal pillars, or punching of coal pillars into softer mine floor or roof rock is now resulting in sinkhole or trough subsidence tens or even hundreds of years after mining. Difference in geology, in mining, and building construction practice between Europe and the United States preclude direct transfer of European subsidence engineering experience. Building damage cannot be related simply to tensile and compressive strains at the ground surface. Recognition of the subsidence damage role played by ground-structure interaction and by structural details is needed

  7. 75 FR 20918 - High-Voltage Continuous Mining Machine Standard for Underground Coal Mines

    Science.gov (United States)

    2010-04-22

    ... DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Parts 18 and 75 RIN 1219-AB34 High-Voltage Continuous Mining Machine Standard for Underground Coal Mines Correction In rule document 2010-7309 beginning on page 17529 in the issue of Tuesday, April 6, 2010, make the following correction...

  8. LLNL Underground-Coal-Gasification Project. Quarterly progress report, July-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, D.R.; Clements, W. (eds.)

    1981-11-09

    We have continued our laboratory studies of forward gasification in small blocks of coal mounted in 55-gal drums. A steam/oxygen mixture is fed into a small hole drilled longitudinally through the center of the block, the coal is ignited near the inlet and burns toward the outlet, and the product gases come off at the outlet. Various diagnostic measurements are made during the course of the burn, and afterward the coal block is split open so that the cavity can be examined. Development work continues on our mathematical model for the small coal block experiments. Preparations for the large block experiments at a coal outcrop in the Tono Basin of Washington State have required steadily increasing effort with the approach of the scheduled starting time for the experiments (Fall 1981). Also in preparation is the deep gasification experiment, Tono 1, planned for another site in the Tono Basin after the large block experiments have been completed. Wrap-up work continues on our previous gasification experiments in Wyoming. Results of the postburn core-drilling program Hoe Creek 3 are presented here. Since 1976 the Soviets have been granted four US patents on various aspects of the underground coal gasification process. These patents are described here, and techniques of special interest are noted. Finally, we include ten abstracts of pertinent LLNL reports and papers completed during the quarter.

  9. Remote control of safety and technological mining processes in underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Marjanovic, D. (Elektronska Industrija RO IRI OOUR Razvoj, Nis (Yugoslavia))

    1989-02-01

    Discusses importance of data relevant to remote monitoring of production and safety at work in underground coal mines. The EI PS 2000 multi-purpose system developed by Elektronska Industrija, Nis, for use with AP-X1 and AP-X2 microcomputers in Serbian mines is described. Component parts include the CUM-8 central unit, the CIP-8 communication interface processor, the SNM-64 disjunction unit, the NM-64 energy supply unit and the CRT alarm monitor. This system is designed to warn of mine fires, methane and coal dust explosions, to help in evacuating mine crews, to control production processes and mine management and other functions. 8 refs

  10. The Increase of Power Efficiency of Underground Coal Mining by the Forecasting of Electric Power Consumption

    Science.gov (United States)

    Efremenko, Vladimir; Belyaevsky, Roman; Skrebneva, Evgeniya

    2017-11-01

    In article the analysis of electric power consumption and problems of power saving on coal mines are considered. Nowadays the share of conditionally constant costs of electric power for providing safe working conditions underground on coal mines is big. Therefore, the power efficiency of underground coal mining depends on electric power expense of the main technological processes and size of conditionally constant costs. The important direction of increase of power efficiency of coal mining is forecasting of a power consumption and monitoring of electric power expense. One of the main approaches to reducing of electric power costs is increase in accuracy of the enterprise demand in the wholesale electric power market. It is offered to use artificial neural networks to forecasting of day-ahead power consumption with hourly breakdown. At the same time use of neural and indistinct (hybrid) systems on the principles of fuzzy logic, neural networks and genetic algorithms is more preferable. This model allows to do exact short-term forecasts at a small array of input data. A set of the input parameters characterizing mining-and-geological and technological features of the enterprise is offered.

  11. A Wireless LAN and Voice Information System for Underground Coal Mine

    OpenAIRE

    Yu Zhang; Wei Yang; Dongsheng Han; Young-Il Kim

    2014-01-01

    In this paper we constructed a wireless information system, and developed a wireless voice communication subsystem based on Wireless Local Area Networks (WLAN) for underground coal mine, which employs Voice over IP (VoIP) technology and Session Initiation Protocol (SIP) to achieve wireless voice dispatching communications. The master control voice dispatching interface and call terminal software are also developed on the WLAN ground server side to manage and implement the voice dispatching co...

  12. Radon as a tracer of daily, seasonal and spatial air movements in the Underground Tourist Route "Coal Mine" (SW Poland).

    Science.gov (United States)

    Tchorz-Trzeciakiewicz, Dagmara Eulalia; Parkitny, Tomasz

    2015-11-01

    The surveys of radon concentrations in the Underground Tourist Route "Coal Mine" were carried out using passive and active measurement techniques. Passive methods with application of Solid State Nuclear Track Detectors LR115 were used at 4 points in years 2004-2007 and at 21 points in year 2011. These detectors were exchanged at the beginning of every season in order to get information about seasonal and spatial changes of radon concentrations. The average radon concentration noted in this facility was 799 Bq m(-3) and is consistent with radon concentrations noted in Polish coal mines. Seasonal variations, observed in this underground tourist route, were as follows: the highest radon concentrations were noted during summers, the lowest during winters, during springs and autumns intermediate but higher in spring than in autumn. The main external factor that affected seasonal changes of radon concentrations was the seasonal variation of outside temperature. No correlation between seasonal variations of radon concentrations and seasonal average atmospheric pressures was found. Spatial variations of radon concentrations corresponded with air movements inside the Underground Tourist Route "Coal Mine". The most vivid air movements were noted along the main tunnel in adit and at the place located near no blinded (in the upper part) shaft. Daily variations of radon concentrations were recorded in May 2012 using RadStar RS-230 as the active measurement technique. Typical daily variations of radon concentrations followed the pattern that the highest radon concentrations were recorded from 8-9 a.m. to 7-8 p.m. and the lowest during nights. The main factor responsible for hourly variations of radon concentrations was the daily variation of outside temperatures. No correlations were found between radon concentration and other meteorological parameters such as atmospheric pressure, wind velocity or precipitation. Additionally, the influence of human factor on radon

  13. Evaluation of the mortality standard of a miners cohort exposed to radon in an underground coal mining, Parana, Brazil

    International Nuclear Information System (INIS)

    Veiga, Lene H.S.; Amaral, Eliana C.S.; Koifman, Sergio

    2005-01-01

    This study aims to to evaluate the possible health effects on workers in a underground coal mining that were exposed to radon and its decay products without the knowledge of the exposure risk. We established a historical cohort of workers in this mining which included 2856 workers, 1946 underground workers and 910 surface workers, and was carried out a retrospective tracking of mortality in this cohort between 1979 and 2002. Through multiple strategies for monitoring, involving several national institutions, was possible to trace the vital status of 92% of the cohort and 100% of the causes of deaths. The results showed that employees of underground coal mining in Parana had a risk of mortality from lung cancer higher than might be expected to the male population of the state of Parana, observing an increase in risk with the time of underground service. However, this increase in mortality from lung cancer was not observed for surface workers. Among several carcinogenic agents present in the mine environment, radon gas and its decay products can be identified as the major cause for this increase in risk of lung cancer for these workers, once other epidemiological studies in coal mining, which have no risk of exposure to radon, do not present an increased of mortality risk from lung cancer

  14. Human health and safety risks management in underground coal mines using fuzzy TOPSIS

    Energy Technology Data Exchange (ETDEWEB)

    Mahdevari, Satar, E-mail: satar.mahdevari@aut.ac.ir [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shahriar, Kourosh [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Esfahanipour, Akbar [Industrial Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2014-08-01

    The scrutiny of health and safety of personnel working in underground coal mines is heightened because of fatalities and disasters that occur every year worldwide. A methodology based on fuzzy TOPSIS was proposed to assess the risks associated with human health in order to manage control measures and support decision-making, which could provide the right balance between different concerns, such as safety and costs. For this purpose, information collected from three hazardous coal mines namely Hashouni, Hojedk and Babnizu located at the Kerman coal deposit, Iran, were used to manage the risks affecting the health and safety of their miners. Altogether 86 hazards were identified and classified under eight categories: geomechanical, geochemical, electrical, mechanical, chemical, environmental, personal, and social, cultural and managerial risks. Overcoming the uncertainty of qualitative data, the ranking process is accomplished by fuzzy TOPSIS. After running the model, twelve groups with different risks were obtained. Located in the first group, the most important risks with the highest negative effects are: materials falling, catastrophic failure, instability of coalface and immediate roof, firedamp explosion, gas emission, misfire, stopping of ventilation system, wagon separation at inclines, asphyxiation, inadequate training and poor site management system. According to the results, the proposed methodology can be a reliable technique for management of the minatory hazards and coping with uncertainties affecting the health and safety of miners when performance ratings are imprecise. The proposed model can be primarily designed to identify potential hazards and help in taking appropriate measures to minimize or remove the risks before accidents can occur. - Highlights: • Risks associated with health and safety of coal miners were investigated. • A reliable methodology based on Fuzzy TOPSIS was developed to manage the risks. • Three underground mines in Kerman

  15. Human health and safety risks management in underground coal mines using fuzzy TOPSIS

    International Nuclear Information System (INIS)

    Mahdevari, Satar; Shahriar, Kourosh; Esfahanipour, Akbar

    2014-01-01

    The scrutiny of health and safety of personnel working in underground coal mines is heightened because of fatalities and disasters that occur every year worldwide. A methodology based on fuzzy TOPSIS was proposed to assess the risks associated with human health in order to manage control measures and support decision-making, which could provide the right balance between different concerns, such as safety and costs. For this purpose, information collected from three hazardous coal mines namely Hashouni, Hojedk and Babnizu located at the Kerman coal deposit, Iran, were used to manage the risks affecting the health and safety of their miners. Altogether 86 hazards were identified and classified under eight categories: geomechanical, geochemical, electrical, mechanical, chemical, environmental, personal, and social, cultural and managerial risks. Overcoming the uncertainty of qualitative data, the ranking process is accomplished by fuzzy TOPSIS. After running the model, twelve groups with different risks were obtained. Located in the first group, the most important risks with the highest negative effects are: materials falling, catastrophic failure, instability of coalface and immediate roof, firedamp explosion, gas emission, misfire, stopping of ventilation system, wagon separation at inclines, asphyxiation, inadequate training and poor site management system. According to the results, the proposed methodology can be a reliable technique for management of the minatory hazards and coping with uncertainties affecting the health and safety of miners when performance ratings are imprecise. The proposed model can be primarily designed to identify potential hazards and help in taking appropriate measures to minimize or remove the risks before accidents can occur. - Highlights: • Risks associated with health and safety of coal miners were investigated. • A reliable methodology based on Fuzzy TOPSIS was developed to manage the risks. • Three underground mines in Kerman

  16. 75 FR 57849 - Maintenance of Incombustible Content of Rock Dust in Underground Coal Mines

    Science.gov (United States)

    2010-09-23

    ... correlation between higher job risk and higher wages, suggesting that employees demand monetary compensation... DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Part 75 RIN 1219-AB76 Maintenance of Incombustible Content of Rock Dust in Underground Coal Mines AGENCY: Mine Safety and Health...

  17. Underground Pumped Storage Hydropower using abandoned open pit mines: influence of groundwater seepage on the system efficiency

    Science.gov (United States)

    Pujades, Estanislao; Bodeux, Sarah; Orban, Philippe; Dassargues, Alain

    2016-04-01

    Pumped Storage Hydropower (PSH) plants can be used to manage the production of electrical energy according to the demand. These plants allow storing and generating electricity during low and high demand energy periods, respectively. Nevertheless, PSH plants require a determined topography because two reservoirs located at different heights are needed. At sites where PSH plants cannot be constructed due to topography requirements (flat regions), Underground Pumped Storage Hydropower (UPSH) plants can be used to adjust the electricity production. These plants consist in two reservoirs, the upper one is located at the surface (or at shallow depth) while the lower one is underground (or deeper). Abandoned open pit mines can be used as lower reservoirs but these are rarely isolated. As a consequence, UPSH plants will interact with surrounding aquifers exchanging groundwater. Groundwater seepage will modify hydraulic head inside the underground reservoir affecting global efficiency of the UPSH plant. The influence on the plant efficiency caused by the interaction between UPSH plants and aquifers will depend on the aquifer parameters, underground reservoir properties and pumping and injection characteristics. The alteration of the efficiency produced by the groundwater exchanges, which has not been previously considered, is now studied numerically. A set of numerical simulations are performed to establish in terms of efficiency the effects of groundwater exchanges and the optimum conditions to locate an UPSH plant.

  18. Water pollution - control of pollution regulations: water pollution from abandoned mines; pre-notification of mine abandonment consultation paper and draft regulations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The paper contains proposals to specify the content of the pre-abandonment notices which UK mine operators will be required to give in the future. The proposals are designed to enhance the Environment Agency`s ability to tackle water pollution from abandoned mines. They set out the precise contents of the notification, which mine operators will have to send to the Agency at least six months in advance of any intended abandonment. The regulations will cover coal and non-coal mines. Estimated compliance costs to business have been drawn up following consultation with the Department of Trade and Industry, the Health and Safety Executive, the Coal Authority and the Environment Agency. The regulations are due in late spring 1998.

  19. Radium balance in discharge waters from coal mines in Poland the ecological impact of underground water treatment

    International Nuclear Information System (INIS)

    Chalupnik, S.; Wysocka, M.

    2008-01-01

    Saline waters from underground coal mines in Poland often contain natural radioactive isotopes, mainly 226 Ra from the uranium decay series and 228 Ra from the thorium series. More than 70% of the total amount of radium remains underground as radioactive deposits due to spontaneous co-precipitation or water treatment technologies, but several tens of MBq of 226 Ra and even higher activity of 228 Ra are released daily into the rivers along with the other mine effluents from all Polish coal mines. Mine waters can have a severe impact on the natural environment, mainly due to its salinity. Additionally high levels of radium concentration in river waters, bottom sediments and vegetation were also observed. Sometimes radium concentrations in rivers exceeded 0.7 kBq/m 3 , which was the permitted level for wastewaters under Polish law. The investigations described here were carried out for all coal mines and on this basis the total radium balance in effluents has been calculated. Measurements in the vicinity of mine settling ponds and in rivers have given an opportunity to study radium behaviour in river waters and to assess the degree of contamination. For removal of radium from saline waters a method of purification has been developed and implemented in full technical scale in two of Polish coal mines. The purification station in Piast Colliery was unique, the first underground installation for the removal of radium isotopes from saline waters. Very good results have been achieved - approximately 6 m 3 /min of radium-bearing waters were treated there, more than 100 MBq of 226 Ra and 228 Ra remained underground each day. Purification has been started in 1999, therefore a lot of experiences have been gathered during this period. Since year 2006, a new purification station is working in another colliery, Ziemowit, at the level -650 meters. Barium chloride is used as a cleaning , agent, and amount of water to be purified is reaching 9 m 3 /min. Technical measures such as

  20. Radioactivity of dumps in mining areas of the Upper Silesian Coal Basin in Poland

    Directory of Open Access Journals (Sweden)

    Dorda J.

    2012-04-01

    Full Text Available Underground coal mining is associated with large quantities of gangue. In the past, the majority of gangue was not utilized but was placed in the vicinity of the coalmines forming cone-shaped dumps. Some of them contained even millions of tons of rock. Nowadays, environmental precautions extort larger utilization of any kind of waste materials, for example in road construction, civil engineering or as stowing in underground abandoned workings. Examination of the composition of waste dumps, including radioactivity, is thus an important issue. The paper presents results of a radiological survey carried out in several dumps located in the Upper Silesian Coal Basin in the south of Poland. Measurements of samples were carried out with the use of a gamma-ray spectrometer. Activity concentration results for the uranium and thorium decay chains are discussed.

  1. Rebirth of a 100-year-old technology: underground coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Young, B.C.; Harju, J.A.; Schmit, C.R.; Solc, J. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center; Boysen, J.E. [B.C. Technologies Ltd. (Country unknown/Code not available); Kuehnel, R.A. [International Institute for Aerospace Survey and Earth Sciences (Netherlands); Walker, L.K. [Innisfree Pty. Ltd. (Country unknown/Code not available); Komsartra, C. [Electricity Generating Authority of Thailand, Nonthaburi (Thailand)

    1997-04-01

    Underground coal gasification (UCG) is a clean coal technology that was first conceived by Mendeleev in Russia over 100 years ago. It involves the conversion of coal in situ to a low-to-medium grade product gas, avoiding the expense of mining and reclamation. The successful application of UCG is critically dependent on both judicious site selection and process design specific to that site. It requires a detailed knowledge and understanding of those geologic, hydrogeologic, and other site characteristics critical to the technical success and environmental acceptability of the process. This paper addresses the development and key features of UCG and describes a UCG feasibility project now under way in Southern Thailand on a lignite deposit. The relevance of the technology to the long-term supply of gas to the Eastern States of Australia is also discussed. It is concluded that the lack of acceptance of the technology to date follows from a confusion in the interpretation of test results from the different hydrogeologic settings of previous UCG test sites. Successful development of the technology requires the careful assembly of an integrated design team with hydrogeologic, geologic mineralogic, chemical and engineering expertise. (author). 1 fig., 11 refs.

  2. Continuous dust monitoring in headings in underground coal mines

    Directory of Open Access Journals (Sweden)

    Kazimierz Lebecki

    2016-01-01

    Full Text Available The article presents hazardous conditions of airborne dust based on the results of measurements of dust concentration taken at work-places at a underground rock-coal face drilled by a heading machine with combined ventilation (suction and forced ventilation with dust collector. The measurements were taken using three methods in order to examine and assess the actual conditions within the excavation subject to the study. The measurement results and conclusions show major difficulties in achieving MAC levels. Research conclusions indicate the low efficiency of collective and personal measures applied to protect against dust harmful to health as well as the need to improve them.

  3. Modelling of Gas Flow in the Underground Coal Gasification Process and its Interactions with the Rock Environment

    Directory of Open Access Journals (Sweden)

    Tomasz Janoszek

    2013-01-01

    Full Text Available The main goal of this study was the analysis of gas flow in the underground coal gasification process and interactions with the surrounding rock mass. The article is a discussion of the assumptions for the geometric model and for the numerical method for its solution as well as assumptions for modelling the geochemical model of the interaction between gas-rock-water, in terms of equilibrium calculations, chemical and gas flow modelling in porous mediums. Ansys-Fluent software was used to describe the underground coal gasification process (UCG. The numerical solution was compared with experimental data. The PHREEQC program was used to describe the chemical reaction between the gaseous products of the UCG process and the rock strata in the presence of reservoir waters.

  4. Utilization of underground coal gasification to provide electric power and emerging nations

    International Nuclear Information System (INIS)

    Boysen, J.E.; Beaver, F.W.; Schmit, C.R.; Daly, D.J.; Groenewold, G.H.

    1992-01-01

    Underground coal gasification (UCG) is a process conceived over a hundred years ago and used successfully, since the 1940s, to generate low-Btu gas for electric power production. The process is applicable to many coal resources that cannot, for a variety of reasons, be economically produced. While UCG cannot compete economically with conventional oil gas, and coal reserves, emerging nations requiring electric power for development of an industrial infrastructure may provide the niche market that is necessary for the commercial development of UCG. Recent UCG field testing, conducted in the United States, demonstrated that UCG could be successfully conducted without adverse environmental impact. This testing also resulted in increased understanding of the interactions between the UCG process and the local hydrogeological environment. With this knowledge, the probability of successful commercial UCG development can be increased by selecting a UCG site with hydrogeologically and economically favorable properties. And approach for commercial UCG development for producing electric power in emerging nations is presented

  5. Hoe Creek II field experiment on underground coal gasification, preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Aiman, W.R.; Thorsness, C.B.; Hill, R.W.; Rozsa, R.B.; Cena, R.; Gregg, D.W.; Stephens, D.R.

    1978-02-27

    A second in-situ coal gasification experiment was performed by Lawrence Livermore Laboratory at Hoe Creek in Wyoming. The Linked Vertical Wells scheme for in-situ coal gasification was used. The experiment took 100 days for air flow testing, reverse combustion linking, forward combustion gasification, and post-burn steam flow. Air was used for gasification except for a 2-day test with oxygen and steam. Reverse combustion linking took 14 days at 1.6 m/day. Air requirements for linking were 0.398 Mgmol per meter of link assuming a single direct link. The coal pyrolysed during linking was 17 m/sup 3/, which corresponds to a single link 1.0 m in diameter. There was, however, strong evidence of at least two linkage paths. The detected links stayed below the 3 m level in the 7.6 coal seam; however, the product flow from the forward-burn gasification probably followed the coal-overburden interface not the reverse burn channels at the 3 m level. A total of 232 Mgmols (194 Mscf) of gas was produced with heating value above 125 kJ/mol (140 Btu/scf) for significant time periods and an average of 96 kJ/mol (108 Btu/scf). During the oxygen-steam test the heating value was above 270 kJ/gmol (300 Btu/scf) twice and averaged 235 kJ/gmol (265 Btu/scf). The coal recovery was 1310 m/sup 3/ (1950 ton). Gasification was terminated because of decreasing product quality not because of burn through. The product quality decreased because of increasing underground heat loss.

  6. Problems of underground gasification of coal. Les Problemes que pose une gazeification souterraine des charbons

    Energy Technology Data Exchange (ETDEWEB)

    Doumenc, R A.M.

    1948-11-01

    Underground gasification is examined in collaboration with Socogaz of Brussels. The USSR has been successful and claims to have produced gas of 1,000 cal per cu m at the rate of 30,000 cu m per hr at Gorlovka (Donets). Results of the American, Belgian, and Italian experiments show that the gas produced contains much CO/sub 2/ and only 5 percent CO. The coal has been burned but not gasified. If the main problem to be solved should be production of a rich gas for burning or a sufficiently hot gas for direct heating, many difficulties would need to be overcome, such as remote control of the fire, choice of suitable coal seams, etc. The underground process is attractive because of the great saving in labor. As it is impossible to reproduce conditions on a laboratory scale, the time and expenditure required for these lengthy experiments seem to be amply justified.

  7. Liquid hydrocarbons from coal beds – risk factor for the underground work environment - Case study

    Directory of Open Access Journals (Sweden)

    Tomescu Cristian

    2017-01-01

    Full Text Available Liquid hydrocarbons from the coal bed and surrounding rocks, besides the stored gases, methane, carbon dioxide, carbon oxide, generate the increase of the risk factor from the occupational health and safety point of view. If for reducing the gas concentrations level and the methane emissions in order to increase the safety in exploitation exist well-known solutions and methods, the oxidation or self-oxidation of the hydrocarbons from the coal bed generate a series of compounds, reaction products over maximum admitted concentrations which give birth to a toxic atmosphere and which is hazardous for workers, at the same time inducing an error in noting the occurrence of a spontaneous combustion phenomena, a major risk for the workers and for the mineral resource. This paper represents a case study performed in one underground mine unit from Jiu Valley and presents the analysis for underground environment factors monitoring and for solutions for diminishing the OHS risk factors.

  8. Studies of significant properties of filter-type self rescuer for its use in underground coal mine in carbon monoxide exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.; Mondal, P.C. [Central Institute of Mining and Fuel Research, Dhanbad (India)

    2007-07-01

    CO is a highly toxic gas; it is the outcome of fire or explosion in underground coal mines. It combines with hemoglobin of coal mine workers and carboxyhemoglobin forms, which reduces the oxygen carrying capacity of blood. A little intake of CO gas, even 0.1% in atmosphere, causes respiratory failure. Filter-type self rescuers (FSR) are a life-saving gas mask breathing apparatus against CO exposure in underground coal mine. The quality of FSR was evaluated in respect of its duration for use, CO conversion by hopcalite, breathing resistance, leak tightness properties, and so on. A scope of improvement is observed in cartridge of self rescuer as well as in the clauses of BIS 9563-1980 in order to increase the duration and improvement in the quality of self rescuers. 12 refs., 2 tabs.

  9. The exergy underground coal gasification technology for power generation and chemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Blinderman, M.S. [Ergo Exergy Technologies Inc., Montreal, PQ (Canada)

    2006-07-01

    Underground coal gasification (UCG) is a gasification process carried out in non-mined coal seams using injection and production wells drilled from the surface, converting coal in situ into a product gas usable for chemical processes and power generation. The UCG process developed, refined and practised by Ergo Exergy Technologies is called the Exergy UCG Technology or {epsilon}UCG{trademark} technology. This paper describes the technology and its applications. The {epsilon}UCG technology is being applied in numerous power generation and chemical projects worldwide, some of which are described. These include power projects in South Africa, India, Pakistan and Canada, as well as chemical projects in Australia and Canada. A number of {epsilon}UCG{trademark} based industrial projects are now at a feasibility usage in India, New Zealand, USA and Europe. An {epsilon}UCG{trademark} IGCC power plant will generate electricity at a much lower cost than existing fossil fuel power plants. CO{sub 2} emissions of the plant can be reduced to a level 55% less than those of a supercritical coal-fired plant and 25% less than the emissions of NG CC. 10 refs., 8 figs.

  10. COAL OF THE FUTURE (Supply Prospects for Thermal Coal by 2030-2050)

    OpenAIRE

    2007-01-01

    The report, produced by Messrs. Energy Edge Ltd. (the U.K.) for the JRC Institute for Energy, aims at making a techno-economic analysis of novel extraction technologies for coal and their potential contribution to the global coal supply. These novel extraction technologies include: advanced coal mapping techniques, improved underground coal mining, underground coal gasification and utilisation of coalmine methane gas.

  11. Underground Coal Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Deo, M. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Sarofim, A. [Univ. of Utah, Salt Lake City, UT (United States); Gueishen, K. [Univ. of Utah, Salt Lake City, UT (United States); Hradisky, M. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States); Mandalaparty, P. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, H. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  12. Radon as a tracer of daily, seasonal and spatial air movements in the Underground Tourist Route “Coal Mine” (SW Poland)

    International Nuclear Information System (INIS)

    Tchorz-Trzeciakiewicz, Dagmara Eulalia; Parkitny, Tomasz

    2015-01-01

    The surveys of radon concentrations in the Underground Tourist Route “Coal Mine” were carried out using passive and active measurement techniques. Passive methods with application of Solid State Nuclear Track Detectors LR115 were used at 4 points in years 2004–2007 and at 21 points in year 2011. These detectors were exchanged at the beginning of every season in order to get information about seasonal and spatial changes of radon concentrations. The average radon concentration noted in this facility was 799 Bq m"−"3 and is consistent with radon concentrations noted in Polish coal mines. Seasonal variations, observed in this underground tourist route, were as follows: the highest radon concentrations were noted during summers, the lowest during winters, during springs and autumns intermediate but higher in spring than in autumn. The main external factor that affected seasonal changes of radon concentrations was the seasonal variation of outside temperature. No correlation between seasonal variations of radon concentrations and seasonal average atmospheric pressures was found. Spatial variations of radon concentrations corresponded with air movements inside the Underground Tourist Route “Coal Mine”. The most vivid air movements were noted along the main tunnel in adit and at the place located near no blinded (in the upper part) shaft. Daily variations of radon concentrations were recorded in May 2012 using RadStar RS-230 as the active measurement technique. Typical daily variations of radon concentrations followed the pattern that the highest radon concentrations were recorded from 8–9 a.m. to 7–8 p.m. and the lowest during nights. The main factor responsible for hourly variations of radon concentrations was the daily variation of outside temperatures. No correlations were found between radon concentration and other meteorological parameters such as atmospheric pressure, wind velocity or precipitation. Additionally, the influence of human factor on

  13. Emerging risk issues in underground storage of bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Sipila, J.

    2013-11-01

    This thesis aims to address the root causes and means of prevention, mitigation and other improvements to the challenges from smouldering fires, coal freezing and occupational risk in an underground storage silo built into granite bedrock. In addition, appropriate performance indicators are suggested, and the benefits of the recommended or adopted actions are estimated. The issues and observed incidents demonstrate hazards that are largely classified to represent issues of emerging risk. To reduce the fire risk, successful measures included bottom maintenance door sealing and modified design of silo filling and discharge. The assessed benefits of these actions suggest a payback period of only about 10 days, assuming that, without these measures, a fire like the one in 2008 could occur once in four years. Additional recommendations are made to reduce air flow through the coal bed and near the silo ceiling, and to improve nitrogen purging at the hoppers. Filling with subzero coal can freeze silo drains, resulting in water inflow and further freezing to hamper discharge. As the heat flow is unlike any previously known cases of coal freezing, conventional mitigation e.g. by freeze conditioning agents, would not help. After implementing modified filling procedures for cold coal, no severe freezing cases have occurred. Safety advantages from the automated and remotely controlled operation do not necessarily apply under exceptional circumstances requiring human involvement. As preventive measures, protection has been sought from additional technical barriers and training effort. The rarity of serious incidents is a challenge in demonstrating success, but also emphasizes the importance of using leading (not only lagging) safety performance indicators for measurable safety promotion. In contrast, suitable leading performance indicators of the fire risk have been suggested for deliveries as an index of coal properties and for storage (gas emissions and temperature

  14. Proceedings of the ninth annual underground coal gasification symposium

    Energy Technology Data Exchange (ETDEWEB)

    Wieber, P.R.; Martin, J.W.; Byrer, C.W. (eds.)

    1983-12-01

    The Ninth Underground Coal Gasification Symposium was held August 7 to 10, 1983 at the Indian Lakes Resort and Conference Center in Bloomingdale, Illinois. Over one-hundred attendees from industry, academia, National Laboratories, State Government, and the US Government participated in the exchange of ideas, results and future research plans. Representatives from six countries including France, Belgium, United Kingdom, The Netherlands, West Germany, and Brazil also participated by presenting papers. Fifty papers were presented and discussed in four formal sessions and two informal poster sessions. The presentations described current and future field testing plans, interpretation of field test data, environmental research, laboratory studies, modeling, and economics. All papers were processed for inclusion in the Energy Data Base.

  15. Coal reserves and resources as well as potentials for underground coal gasification in connection with carbon capture and storage (CCS)

    Science.gov (United States)

    Ilse, Jürgen

    2010-05-01

    . However, these otherwise unprofitable coal deposits can be mined economically by means of underground coal gasification, during which coal is converted into a gaseous product in the deposit. The synthesis gas can be used for electricity generation, as chemical base material or for the production of petrol. This increases the usability of coal resources tremendously. At present the CCS technologies (carbon capture and storage) are a much discussed alternative to other CO2 abatement techniques like efficiency impovements. The capture and subsequent storage of CO2 in the deposits created by the actual underground gasification process seem to be technically feasible.

  16. Profitability and occupational injuries in U.S. underground coal mines.

    Science.gov (United States)

    Asfaw, Abay; Mark, Christopher; Pana-Cryan, Regina

    2013-01-01

    Coal plays a crucial role in the U.S. economy yet underground coal mining continues to be one of the most dangerous occupations in the country. In addition, there are large variations in both profitability and the incidence of occupational injuries across mines. The objective of this study was to examine the association between profitability and the incidence rate of occupational injuries in U.S. underground coal mines between 1992 and 2008. We used mine-specific data on annual hours worked, geographic location, and the number of occupational injuries suffered annually from the employment and accident/injury databases of the Mine Safety and Health Administration, and mine-specific data on annual revenue from coal sales, mine age, workforce union status, and mining method from the U.S. Energy Information Administration. A total of 5669 mine-year observations (number of mines×number of years) were included in our analysis. We used a negative binomial random effects model that was appropriate for analyzing panel (combined time-series and cross-sectional) injury data that were non-negative and discrete. The dependent variable, occupational injury, was measured in three different and non-mutually exclusive ways: all reported fatal and nonfatal injuries, reported nonfatal injuries with lost workdays, and the 'most serious' (i.e. sum of fatal and serious nonfatal) injuries reported. The total number of hours worked in each mine and year examined was used as an exposure variable. Profitability, the main explanatory variable, was approximated by revenue per hour worked. Our model included mine age, workforce union status, mining method, and geographic location as additional control variables. After controlling for other variables, a 10% increase in real total revenue per hour worked was associated with 0.9%, 1.1%, and 1.6% decrease, respectively, in the incidence rates of all reported injuries, reported injuries with lost workdays, and the most serious injuries reported

  17. Profitability and occupational injuries in U.S. underground coal mines☆

    Science.gov (United States)

    Asfaw, Abay; Mark, Christopher; Pana-Cryan, Regina

    2015-01-01

    Background Coal plays a crucial role in the U.S. economy yet underground coal mining continues to be one of the most dangerous occupations in the country. In addition, there are large variations in both profitability and the incidence of occupational injuries across mines. Objective The objective of this study was to examine the association between profitability and the incidence rate of occupational injuries in U.S. underground coal mines between 1992 and 2008. Data and method We used mine-specific data on annual hours worked, geographic location, and the number of occupational injuries suffered annually from the employment and accident/injury databases of the Mine Safety and Health Administration, and mine-specific data on annual revenue from coal sales, mine age, workforce union status, and mining method from the U.S. Energy Information Administration. A total of 5669 mine-year observations (number of mines × number of years) were included in our analysis. We used a negative binomial random effects model that was appropriate for analyzing panel (combined time-series and cross-sectional) injury data that were non-negative and discrete. The dependent variable, occupational injury, was measured in three different and non-mutually exclusive ways: all reported fatal and nonfatal injuries, reported nonfatal injuries with lost workdays, and the ‘most serious’ (i.e. sum of fatal and serious nonfatal) injuries reported. The total number of hours worked in each mine and year examined was used as an exposure variable. Profitability, the main explanatory variable, was approximated by revenue per hour worked. Our model included mine age, workforce union status, mining method, and geographic location as additional control variables. Results After controlling for other variables, a 10% increase in real total revenue per hour worked was associated with 0.9%, 1.1%, and 1.6% decrease, respectively, in the incidence rates of all reported injuries, reported injuries with lost

  18. CHANGE OF PARADIGM IN UNDERGROUND HARD COAL MINING THROUGH EXTRACTION AND CAPITALIZATION OF METHANE FOR ENERGY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Valeriu PLESEA

    2014-05-01

    Full Text Available Besides oil and gas, coal is the most important fossil fuel for energy production. Of the energy mixture of our country, the internal production gas share is 80% of the required annual consumption, of about 14 billion cubic meters, the rest of 20% being insured by importing, by the Russian company Gazprom. The share of coal in the National Power System (NPS is of 24% and is one of the most profitable energy production sources, taking into account the continuous increase of gas price and its dependence on external suppliers. Taking into account the infestation of the atmosphere and global warming as effect of important release of greenhouse gas and carbon dioxide as a result of coal burning for energy production in thermal power plants, there is required to identify new solutions for keeping the environment clean. Such a solution is presented in the study and analysis shown in the paper and is the extraction and capitalization of methane from the coal deposits and the underground spaces remaining free after mine closures. Underground methane extraction is considered even more opportune because, during coal exploitation, large quantities of such combustible gas are released and exhausted into the atmosphere by the degasification and ventilation stations from the surface, representing and important pollution factor for the environment, as greenhouse gas with high global warming potential (high GWP of about 21 times higher than carbon dioxide.

  19. Was it a mistake to abandon the revision clause? Assessment of entrepreneurial flexibility in the German coal mining industry on the basis of real options; War die Aufgabe der Revisionsklausel ein Fehler? Beurteilung unternehmerischer Flexibilitaet im deutschen Steinkohlebergbau auf Basis von Realoptionen

    Energy Technology Data Exchange (ETDEWEB)

    Bendiek, Ansgar

    2012-07-15

    The author analyzes the decision to abandon the revision clause, i.e. to abandon entrepreneurial flexibility on the basis of the option price theory and the use of derivatives in coal trading. The focus is on subventionless continuation of coal mining. It is found that the abandoning of the revision clause will involve a loss of value of the real option of about 819 million Euros. Politicians and the coal industry are advised to revise the subventionless continuation of coal mining by the end of 2015.

  20. Material and Energy Flow Analysis (Mefa of the Unconventional Method of Electricity Production Based on Underground Coal Gasification

    Directory of Open Access Journals (Sweden)

    Krystyna Czaplicka-Kolarz

    2014-01-01

    Originality/value: This is the first approach which contains a whole chain of electricity production from Underground Coal Gasification, including stages of gas cleaning, electricity production and the additional capture of carbon dioxide.

  1. Underground gasification and combustion brown with the use of groundwater

    Directory of Open Access Journals (Sweden)

    Zholudyev S.V.

    2011-11-01

    Full Text Available The problems of coal excavation and environement protection are priority for Ukraine. Underground coal gasification (UCG and underground coal incineration (UCI are combining excavation with simultaneous underground processing in entire technological process, capable to solve this problem. Using an intermediate heat carrier - ground water may optimisating of these processes.

  2. 77 FR 25205 - Proposed Extension of Existing Information Collection; Roof Control Plans for Underground Coal Mines

    Science.gov (United States)

    2012-04-27

    ... collections of information in accordance with the Paperwork Reduction Act of 1995. This program helps to assure that requested data can be provided in the desired format, reporting burden (time and financial... Information Collection; Roof Control Plans for Underground Coal Mines AGENCY: Mine Safety and Health...

  3. Deformation properties of sedimentary rocks in the process of underground coal gasification

    Directory of Open Access Journals (Sweden)

    Mirosława Bukowska

    2015-01-01

    Full Text Available The article presents results of research into changes in deformation properties of rocks, under influence of temperature, during the process of underground coal gasification. Samples of carboniferous sedimentary rocks (claystones and sandstones, collected in different areas of Upper Silesian Coal Basin (GZW, were heated at the temperature of between 100 and 1000–1200 °C, and then subjected to uniaxial compression tests to obtain a full stress-strain curves of the samples and determine values of residual strain and Poisson's ratio. To compare the obtained values of deformation parameters of rocks, tested in dry-air state and after heating in a given range of temperature, normalised values of residual strain and Poisson's ratio were determined. Based on them, coefficient of influence of temperature on tested deformation parameters was determined. The obtained values of the coefficient can be applied in mining practice to forecast deformability of gangue during underground coal gasification, when in the direct surrounding of a georeactor there are claystones or sandstones. The obtained results were analysed based on classification of uniaxial compression strength of GZW gangue, which formed the basis for dividing claystones and sandstones into very low, low, medium and high uniaxial compression strength rocks. Based on the conducted tests it was concluded that the influence of uniaxial compression strength on the value of residual strain, unlike the influence of grain size of sandstones, is unambiguous within the range of changes in the parameter. Among claystones changes in the value of Poisson's ratio depending on their initial strength were observed. Sandstones of different grain size either increased or decreased the value of Poisson's ratio in comparison with the value determined at room temperature in dry-air conditions.

  4. Reducing rock fall injuries in underground US coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, S.B.; Molinda, G.M.; Pappas, D.M. [Pittsburgh Research Laboratory, Pittsburgh, PA (United States)

    2005-07-01

    A continuing risk to underground US coal miners is rock falling from the mine roof. Almost 99% of injuries caused by rock falls are not from a major roof collapse, but from smaller rock that fall from between roof bolts. Installing roof screen provides excellent overhead roof coverage and dramatically reduces the potential for rock fall injuries, especially to roof bolted operators. The National Institute for Occupational Safety and Health (NIOSH) has explored different installation techniques and roof screening options along with machine design innovations that make roof screening easier and safer. Applying ergonomic principles to roof screening will offer insight and direction for better material handling. Other techniques for controlling rock falls and roof falls for long-term stability include the application of surface support liners and polyurethane (PUR) injection. An ongoing study at the NIOSH Lake Lynn Laboratory of various types of spray-on liner and shotcrete materials is providing a unique opportunity to evaluate the long-term behaviour of liners in an underground environment. In-mine studies of PUR have involved pre- and post-injection core drilling and video borecole logging. The results have provided insights into how PUR penetrates and reinforces weak and highly fractured rock. 11 refs., 8 figs., 1 tab.

  5. 30 CFR 75.811 - High-voltage underground equipment; grounding.

    Science.gov (United States)

    2010-07-01

    ...-voltage equipment supplying power to such equipment receiving power from resistance grounded systems shall... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage underground equipment; grounding... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage...

  6. Development of science and technology in underground coal mining in Czechoslovakia during the 7th 5 year plan

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, M.

    1982-01-01

    Reviews main tasks of underground coal mining in Czechoslovakia from 1981 to 1985 in the following basins: Ostrava-Karvina, Kladno, Prievidza, Most and Sokolov. The planned increase of brown and black coal output in each of the basins is discussed. Selected problems associated with mining are evaluated: significant increase of mining depth, rock burst hazards, methane hazards and water influx in the Ostrava-Karvina basin. Investment program in the current 5 year plan as well as until the year 2000 is analyzed: sinking of 38.8 km of mine shafts and 4.4 km of blind shafts. Equipment for shaft sinking produced in the USA (by Robins the 241 SB-184) and in the USSR (the Uralmash Sk-1U system) is compared. Design and technical specifications of the two systems are given. Equipment for mine drivage is also reviewed. The following machines are described: the TVM-55H by Demag (FRG), the TBS V-600E/Sch by Wirth (FRG), the TBM ser. 18a781 by Robins (USA) and the MARK-18T by JARVA (USA). Selected types of powered supports which will be widely used in coal mines in the current 5 year plan are evaluated. Research programs in underground coal mining are reviewed (safety, mining thin coal seams, slice mining of thick coal seams in the Namurian B series, mining extremely thick seams with stowing of the top slice and mining with caving the 4.5 m thick bottom slice). (4 refs.) (In Czech)

  7. Logistics background study: underground mining

    Energy Technology Data Exchange (ETDEWEB)

    Hanslovan, J. J.; Visovsky, R. G.

    1982-02-01

    Logistical functions that are normally associated with US underground coal mining are investigated and analyzed. These functions imply all activities and services that support the producing sections of the mine. The report provides a better understanding of how these functions impact coal production in terms of time, cost, and safety. Major underground logistics activities are analyzed and include: transportation and personnel, supplies and equipment; transportation of coal and rock; electrical distribution and communications systems; water handling; hydraulics; and ventilation systems. Recommended areas for future research are identified and prioritized.

  8. Debilitating lung disease among surface coal miners with no underground mining tenure.

    Science.gov (United States)

    Halldin, Cara N; Reed, William R; Joy, Gerald J; Colinet, Jay F; Rider, James P; Petsonk, Edward L; Abraham, Jerrold L; Wolfe, Anita L; Storey, Eileen; Laney, A Scott

    2015-01-01

    To characterize exposure histories and respiratory disease among surface coal miners identified with progressive massive fibrosis from a 2010 to 2011 pneumoconiosis survey. Job history, tenure, and radiograph interpretations were verified. Previous radiographs were reviewed when available. Telephone follow-up sought additional work and medical history information. Among eight miners who worked as drill operators or blasters for most of their tenure (median, 35.5 years), two reported poor dust control practices, working in visible dust clouds as recently as 2012. Chest radiographs progressed to progressive massive fibrosis in as few as 11 years. One miner's lung biopsy demonstrated fibrosis and interstitial accumulation of macrophages containing abundant silica, aluminum silicate, and titanium dust particles. Overexposure to respirable silica resulted in progressive massive fibrosis among current surface coal miners with no underground mining tenure. Inadequate dust control during drilling/blasting is likely an important etiologic factor.

  9. State-of-the-art study of resource characterization and planning for underground coal mining. Final technical report as of June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Walton, D.; Ingham, W.; Kauffman, P.

    1980-06-01

    With the rapid developments taking place in coal mining technology and due to high investment costs, optimization of the structure of underground coal mines is crucial to the success of the mining project. The structure of a mine, once it is developed, cannot be readily changed and has a decisive influence on the productivity, safety, economics, and production capacity of the mine. The Department of Energy desires to ensure that the resource characterization and planning activity for underground coal mining will focus on those areas that offer the most promise of being advanced. Thus, this project was undertaken by Management Engineers Incorporated to determine the status in all aspects of the resource characterization and planning activities for underground coal mining as presently performed in the industry. The study team conducted a comprehensive computerized literature search and reviewed the results. From this a selection of the particularly relevant sources were annotated and a reference list was prepared, catalogued by resource characterization and mine planning activity. From this data, and discussions with industry representatives, academia, and research groups, private and federal, an assessment and evaluation was made of the state-of-the-art of each element in the resource characterization and mine planning process. The results of this analysis lead to the identifcation of areas requiring research and, specifically, those areas where DOE research efforts may be focused.

  10. Coal Mines, Abandoned - AML Polygons Feature

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set portrays the approximate location of Abandoned Mine Land Problem Areas containing public health, safety, and public welfare problems created by past...

  11. Coal Mines, Abandoned - AML Points Feature

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set portrays the approximate location of Abandoned Mine Land Problem Areas containing public health, safety, and public welfare problems created by past...

  12. Determining origin of underground water in coal mines by means of natural isotopes and other geochemical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Dolenec, T; Pezdic, J; Herlec, U; Kuscer, D; Mitrevski, G [Institut Josef Stefan, Ljubljana (Yugoslavia)

    1989-07-01

    Presents a preliminary report on origin of water in Slovenian brown coal mines. Water, coal and strata samples from the Hrastnik and Ojstro mines were analyzed for changes in chemical composition. Water samples were also analyzed for changes in isotopic composition and inorganic carbon and sulfur contents. Chemical, isotopic and geochemical techniques are described and results are presented with 21 diagrams. An attempt is made to explain the origin and age of water flowing from mine aquifers into mine rooms, and to explain the interdependence of surface and underground water flow. 10 refs.

  13. Finite element modeling of surface subsidence induced by underground coal mining

    International Nuclear Information System (INIS)

    Su, D.W.H.

    1992-01-01

    The ability to predict the effects of longwall mining on topography and surface structures is important for any coal company in making permit applications and anticipating potential mining problems. The sophisticated finite element model described and evaluated in this paper is based upon five years of underground and surface observations and evolutionary development of modeling techniques and attributes. The model provides a very powerful tool to address subsidence and other ground control questions. The model can be used to calculate postmining stress and strain conditions at any horizon between the mine and the ground surface. This holds the promise of assisting in the prediction of mining-related hydrological effects

  14. Citation-related reliability analysis for a pilot sample of underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Kinilakodi, H.; Grayson, R.L. [Penn State University, University Park, PA (United States)

    2011-05-15

    The scrutiny of underground coal mine safety was heightened because of the disasters that occurred in 2006-2007, and more recently in 2010. In the aftermath of the 2006 incidents, the U.S. Congress passed the Mine Improvement and New Emergency Response Act of 2006 (MINER Act), which strengthened the existing regulations and mandated new laws to address various issues related to emergency preparedness and response, escape from an emergency situation, and protection of miners. The National Mining Association-sponsored Mine Safety Technology and Training Commission study highlighted the role of risk management in identifying and controlling major hazards, which are elements that could come together and cause a mine disaster. In 2007 MSHA revised its approach to the 'Pattern of Violations' (POV) process in order to target unsafe mines and then force them to remediate conditions in their mines. The POV approach has certain limitations that make it difficult for it to be enforced. One very understandable way to focus on removing threats from major-hazard conditions is to use citation-related reliability analysis. The citation reliability approach, which focuses on the probability of not getting a citation on a given inspector day, is considered an analogue to the maintenance reliability approach, which many mine operators understand and use. In this study, the citation reliability approach was applied to a stratified random sample of 31 underground coal mines to examine its potential for broader application. The results clearly show the best-performing and worst-performing mines for compliance with mine safety standards, and they highlight differences among different mine sizes.

  15. Women and men coal miners: coping with gender integration underground

    Energy Technology Data Exchange (ETDEWEB)

    Yount, K.R.

    1986-01-01

    The central purpose of this research is to initiate a theoretical understanding of the integration of women into traditionally-male, physical-labor jobs. The primary sources of data consist of in depth interviews with women and men underground coal miners and company personnel, and field notes collected during participant observation work in mining communities. Part I addresses the relationship between conditions of production and modes of interaction in underground mines. Personality traits conceived as aspects of masculinity are traced to efforts to cope with the stressors of engaging in physical labor in a work setting characterized by lack of work autonomy, a high degree of threat, and a high degree of interdependence for task accomplishment. Part II focuses on situational and individual factors affecting the integration of women in the workplace. Although most women miners are satisfied with their work, a gender based division of labor has arisen in which women are concentrated in low-prestige laborer positions. The processes involved in undermining a woman's work reputation and self-concept are summarized and forms of discrimination that recreate aspects of the female sterotype and lead to the development of sex segregation in the workplace are to the development of sex segregation in the workplace are discussed.

  16. A practical application of photogrammetry to performing rib characterization measurements in an underground coal mine using a DSLR camera.

    Science.gov (United States)

    Slaker, Brent A; Mohamed, Khaled M

    2017-01-01

    Understanding coal mine rib behavior is important for inferring pillar loading conditions as well as ensuring the safety of miners who are regularly exposed to ribs. Due to the variability in the geometry of underground openings and ground behavior, point measurements often fail to capture the true movement of mine workings. Photogrammetry is a potentially fast, cheap, and precise supplemental measurement tool in comparison to extensometers, tape measures, or laser range meters, but its application in underground coal has been limited. The practical use of photogrammetry was tested at the Safety Research Coal Mine, National Institute for Occupational Safety and Health (NIOSH). A commercially available, digital single-lens reflex (DSLR) camera was used to perform the photogrammetric surveys for the experiment. Several experiments were performed using different lighting conditions, distances to subject, camera settings, and photograph overlaps, with results summarized as follows: the lighting method was found to be insignificant if the scene was appropriately illuminated. It was found that the distance to the subject has a minimal impact on result accuracy, and that camera settings have a significant impact on the photogrammetric quality of images. An increasing photograph resolution was preferable when measuring plane orientations; otherwise a high point cloud density would likely be excessive. Focal ratio (F-stop) changes affect the depth of field and image quality in situations where multiple angles are necessary to survey cleat orientations. Photograph overlap is very important to proper three-dimensional reconstruction, and at least 60% overlap between photograph pairs is ideal to avoid unnecessary post-processing. The suggestions and guidelines proposed are designed to increase the quality of photogrammetry inputs and outputs as well as minimize processing time, and serve as a starting point for an underground coal photogrammetry study.

  17. Tritium in the underground waters of the Karazheera coal deposit

    International Nuclear Information System (INIS)

    Panin, M.S.; Artamonova, H.N.

    2001-01-01

    Full text: The Karazheera coal deposit is the unique geological object due to it's location on the Balapan site of the former Semipalatinsk nuclear polygon (SNP) with its wide range of underground nuclear tests fulfilled here (more than 130 explosions). That is why some radiological problems may appear with the geological ones which take place in the open mining work of the deposit. The radio-active pollution of SNP has been actively discussed in scientific literature for a long time. The present report evaluates the radio-active tritium pollution ( 3 H) of the deposit's underground waters. That very component of nature is subjected to radiation pollution in large extent after underground nuclear tests. 3 H radio-active isotope with 12-13 year period of half-decay. 3 H is generated in the result of nuclear reactions caused by cosmic radiation and nuclear reactions of explosions. The total number of 3 H on the globe comes to 12 kg. The content of 3 H has been studied in underground waters of self-pouring wells number 76, 82, springs and dipholes of the deposit. It has been fixed that concentration of 3 H in the deposit is fluctuating within 0.4-37.9 tritium units (TU) while the average content 10.3 TU (1 TU - 3.2x10 -12 Curie/liter). The analysis of 3 H decay shows that its maximum concenliaiion has been fixed in the deposit 82 (37.9 TU) and in diphole (32.3 TU). The background content of 3 H in water was evaluated on the level of 1-8 TU till 1945. In the result of nuclear weapon tests the background has been considerably increased and according to First data (1994) it is corresponded to 23 TU. The average content of the 3 H in underground waters of Karazheera is half the size of this index (10.3 TU). It comprises 3.3x10 -11 and it is more lower than quota 4x10 -6 Ci/l. It is considered that the content of more than 10 TU in waters is caused by thermal nuclear test. Precipitations fallen after 1961 are presented in subsoil waters containing of 20 TU or more

  18. 77 FR 20700 - Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety...

    Science.gov (United States)

    2012-04-06

    ... DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Part 75 RIN 1219-AB75 Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety Standards AGENCY: Mine Safety and Health Administration, Labor. ACTION: Final rule. SUMMARY: The Mine Safety and...

  19. 77 FR 43721 - Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety...

    Science.gov (United States)

    2012-07-26

    ... DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Part 75 RIN 1219-AB75 Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety Standards AGENCY: Mine Safety and Health Administration, Labor. ACTION: Notice of OMB approval of information...

  20. Data Mining Mining Data: MSHA Enforcement Efforts, Underground Coal Mine Safety, and New Health Implications

    OpenAIRE

    Kniesner, Thomas J.; Leeth, John D.

    2003-01-01

    Studies of industrial safety regulations, OSHA in particular, often find little effect on worker safety. Critics of the regulatory approach argue that safety standards have little to do with industrial injuries, and defenders of the regulatory approach cite infrequent inspections and low penalties for violating safety standards. We use recently assembled data from the Mine Safety and Health Administration (MSHA) concerning underground coal mine production, safety regulatory activities, and wo...

  1. 30 CFR 75.804 - Underground high-voltage cables.

    Science.gov (United States)

    2010-07-01

    ... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground high-voltage cables. 75.804 Section...

  2. High resolution microgravity investigations for the detection and characterisation of subsidence associated with abandoned, coal, chalk and salt mines

    Energy Technology Data Exchange (ETDEWEB)

    Styles, P.; Toon, S.; Branston, M.; England, R. [Keele Univ., Applied And Environmental Geophysics Group, School of Physical and Geographical Sciences (United Kingdom); Thomas, E.; Mcgrath, R. [Geotechnology, Neath (United Kingdom)

    2005-07-01

    The closure and decay of industrial activity involving mining has scarred the landscape of urban areas and geo-hazards posed by subsurface cavities are ubiquitous throughout Europe. Features of concern consist of natural solution cavities (e.g. swallow holes and sinkholes in limestone gypsum and chalk) and man-made cavities (mine workings, shafts) in a great variety of post mining environments, including coal, salt, gypsum, anhydrite, tin and chalk. These problems restrict land utilisation, hinder regeneration, pose a threat to life, seriously damage property and services and blight property values. This paper outlines the application of microgravity techniques to characterise abandoned mining hazard in case studies from Coal, Chalk and Salt Mining environments in the UK. (authors)

  3. High resolution microgravity investigations for the detection and characterisation of subsidence associated with abandoned, coal, chalk and salt mines

    International Nuclear Information System (INIS)

    Styles, P.; Toon, S.; Branston, M.; England, R.; Thomas, E.; Mcgrath, R.

    2005-01-01

    The closure and decay of industrial activity involving mining has scarred the landscape of urban areas and geo-hazards posed by subsurface cavities are ubiquitous throughout Europe. Features of concern consist of natural solution cavities (e.g. swallow holes and sinkholes in limestone gypsum and chalk) and man-made cavities (mine workings, shafts) in a great variety of post mining environments, including coal, salt, gypsum, anhydrite, tin and chalk. These problems restrict land utilisation, hinder regeneration, pose a threat to life, seriously damage property and services and blight property values. This paper outlines the application of microgravity techniques to characterise abandoned mining hazard in case studies from Coal, Chalk and Salt Mining environments in the UK. (authors)

  4. Acidity decay of above-drainage underground mines in West Virginia.

    Science.gov (United States)

    Mack, B; McDonald, L M; Skousen, J

    2010-01-01

    Acidity of water from abandoned underground mines decreases over time, and the rate of decrease can help formulate remediation approaches and treatment system designs. The objective of this study was to determine an overall acidity decay rate for above-drainage underground mines in northern West Virginia from a large data set of mines that were closed 50 to 70 yr ago. Water quality data were obtained from 30 Upper Freeport and 7 Pittsburgh coal seam mines in 1968, 1980, 2000, and 2006, and acidity decay curves were calculated. The mean decay constant, k, for Upper Freeport mines was 2.73 x 10(-2) yr(-1), with a 95% confidence interval of +/- 0.0052, whereas the k value for Pittsburgh mines was not significantly different at 4.26 x 10(-2) yr(-1) +/- 0.017. Acidity from the T&T mine, which was closed 12 yr ago, showed a k value of 11.25 x 10(-2) yr(-1). This higher decay rate was likely due to initial flushing of accumulated metal salts on reaction surfaces in the mine, rapid changes in mine hydrology after closure, and treatment. Although each site showed a specific decay rate (varying from 0.04 x 10(-2) yr(-1) to 13.1 x 10(-2) yr(-1)), the decay constants of 2.7 x 10(-2) yr(-1) to 4.3 x 10(-2) yr(-1) are useful for predicting water quality trends and overall improvements across a wide spectrum of abandoned underground mines. We found first-order decay models improve long-term prediction of acidity declines from above-drainage mines compared with linear or percent annual decrease models. These predictions can help to select water treatment plans and evaluate costs for these treatments over time.

  5. Hydrology of Alkali Creek and Castle Valley Ridge coal-lease tracts, central Utah, and potential effects of coal mining

    Science.gov (United States)

    Seiler, R.L.; Baskin, R.L.

    1988-01-01

    The Alkali Creek coal-lease tract includes about 2,150 acres in the Book Cliffs coal field in central Utah, and the Castle Valley Ridge coal-lease tract includes about 3,360 acres in the Wasatch Plateau coal field, also in central Utah. Both the Alkali Creek and Castle Valley Ridge coal-lease tracts are near areas where coal is currently (1987) mined by underground methods from the Cretaceous Blackhawk Formation. The Alkali Creek and Castle Valley Ridge areas have intermittent streams in which flow after snowmelt runoff is locally sustained into midsummer by springflow. The only perennial stream is South Fork Corner Canyon Creek in the Castle Valley Ridge area. Peak flow in both areas generally is from snowmelt runoff; however, peak flow from thunderstorm runoff in the Alkali Creek area can exceed that from snowmelt runoff. Estimated annual source-area sediment yield was 0.5 acre-ft/sq mi in the Alkali Creek lease tract and it was 0.3 acre-ft/sq mi in the Castle Valley Ridge lease tract. Groundwater in the Alkali Creek area occurs in perched aquifers in the Flagstaff Limestone and in other formations above the coal-bearing Blackhawk Formation. The principal source of recharge to the aquifers is snowmelt on outcrops. Faults may be major conduits and control the movement of groundwater. Groundwater discharges at formation contacts, between zones of differing permeability within a formation, near faults and into mines. Water sampled from 13 springs in the Alkali Creek area contained dissolved solids at concentrations ranging from 273 to 5,210 mg/L. Water sampled from 17 springs in the Castle Valley Ridge area contained dissolved solids at concentrations ranging from 208 to 579 mg/L. The composition of water from a recently abandoned part of an active mine the Wasatch Plateau closely resembles that of water discharging from a nearby mine that has been abandoned for more than 30 years. Mining of the Alkali Creek and Castle Valley Ridge coal-lease tracts likely will

  6. Absenteeism and accidents in a dangerous environment: empirical analysis of underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, P.S.; Garber, S.

    1988-02-01

    The study examined the effects or consequences of absenteeism on accidents. Data were gathered from production crews in five underground coal mines. A unique data set was created that traced on a daily basis the absence event, the company's policy on replacement, and the occurrence of an accident. The concept of familiarity was introduced to explain the impact of absenteeism on accidents. The basic data showed that absenteeism increased the chances for accidents in certain categories of unfamiliarity. Implications for manpower policy and absentee research are discussed. 4 tabs., 6 refs.

  7. Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data

    Energy Technology Data Exchange (ETDEWEB)

    Cena, R. J.; Thorsness, C. B.

    1981-08-21

    The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

  8. Underground coal gasification (UCG: A new trend of supply-side economics of fossil fuels

    Directory of Open Access Journals (Sweden)

    Fei Mao

    2016-10-01

    Full Text Available China has a huge demand for energy. Under the present energy structure of rich coal, lean oil, less gas, limited and low-rising rate renewable energy, discussion focus is now on the high-efficient mining of coal as well as its clean-and-low-carbon use. In view of this, based on an analysis of the problems in the coal chemical industry and the present coal utilization ways such as Integrated Gasification Combined Cycle (IGCC, this paper proposes that underground coal gasification (UCG technology is a realistic choice. By virtue of its advantages in many aspects such as safety & environment, integrated use of superior resources, economic feasibility, etc. this technology can serve as the front-end support and guarantee for coal chemical industry and IGCC. Under the present situation, the following proposals were presented to promote the development of this technology. First, R&D of technical products should be strengthened, a comprehensive feasibility study assessment system should be established, and the relevant criteria in the industry should be formulated. Second, precise market positioning of UCG products should be made with much concern on the integrated economic indicators of each product's complete flow scheme, following the principle of “Technical Feasibility First, Economic Optimization Followed”. Third, a perfect operation and management pattern should be established with strict control over high-efficient, environmentally-friendly, safe, harmonious & compact objectives in the whole industry chain. In conclusion, to realize the large-scale UCG commercial production will strongly promote the optimization and innovation of fossil fuels supply-side economics in China.

  9. Underground coal mine subsidence impacts on surface water

    International Nuclear Information System (INIS)

    Stump, D.E. Jr.

    1992-01-01

    This paper reports that subsidence from underground coal mining alters surface water discharge and availability. The magnitude and areal extent of these impacts are dependent on many factors, including the amount of subsidence, topography, geology, climate, surface water - ground water interactions, and fractures in the overburden. There alterations may have positive and/or negative impacts. One of the most significant surface water impacts occurred in July 1957 near West Pittston, Pennsylvania. Subsidence in the Knox Mine under the Coxton Yards of the Lehigh Valley Railroad allowed part of the discharge in the Susquehanna River to flow into the mine and create a crater 200 feet in diameter and 300 feet deep. Fourteen railroad gondola cars fell into the hole which was eventually filled with rock, sand, and gravel. Other surface water impacts from subsidence may include the loss of water to the ground water system, the gaining of water from the ground water system, the creation of flooded subsidence troughs, the increasing of impoundment storage capacity, the relocation of water sources (springs), and the alteration of surface drainage patterns

  10. Use of abandoned coal/lignite open pits for waste disposal in selected European countries

    International Nuclear Information System (INIS)

    Libicki, J.S.

    1989-01-01

    The use of abandoned coal/lignite pits as disposal sites for solid waste appears to be a reasonable approach to a difficult problem, especially if they are located close to the waste source. However, a potential for groundwater and soil pollution exists. This issue was discussed by a Group of Experts on Opencast Mining of the UN Economic Commission for Europe because most of the sites are operated by mining companies. This paper contains the major topics of discussion including the significance of the problem, legal aspects, characteristics of the open pits, waste intended for disposal, investigations required to obtain a disposal permit, disposal techniques, protection measures, monitoring environmental impacts, and research trends. A few countries are used as examples

  11. Data Mining Mining Data: MSHA Enforcement Efforts, Underground Coal Mine Safety, and New Health Policy Implications

    OpenAIRE

    Thomas J. Kniesner; John D. Leeth

    2003-01-01

    Studies of industrial safety regulations, Occupational Safety and Health Administration (OSHA) in particular, often find little effect on worker safety. Critics of the regulatory approach argue that safety standards have little to do with industrial injuries and defenders of the regulatory approach cite infrequent inspections and low fines for violating safety standards. We use recently assembled data from the Mine Safety and Health Administration (MSHA) concerning underground coal mine produ...

  12. The Video Collaborative Localization of a Miner's Lamp Based on Wireless Multimedia Sensor Networks for Underground Coal Mines.

    Science.gov (United States)

    You, Kaiming; Yang, Wei; Han, Ruisong

    2015-09-29

    Based on wireless multimedia sensor networks (WMSNs) deployed in an underground coal mine, a miner's lamp video collaborative localization algorithm was proposed to locate miners in the scene of insufficient illumination and bifurcated structures of underground tunnels. In bifurcation area, several camera nodes are deployed along the longitudinal direction of tunnels, forming a collaborative cluster in wireless way to monitor and locate miners in underground tunnels. Cap-lamps are regarded as the feature of miners in the scene of insufficient illumination of underground tunnels, which means that miners can be identified by detecting their cap-lamps. A miner's lamp will project mapping points on the imaging plane of collaborative cameras and the coordinates of mapping points are calculated by collaborative cameras. Then, multiple straight lines between the positions of collaborative cameras and their corresponding mapping points are established. To find the three-dimension (3D) coordinate location of the miner's lamp a least square method is proposed to get the optimal intersection of the multiple straight lines. Tests were carried out both in a corridor and a realistic scenario of underground tunnel, which show that the proposed miner's lamp video collaborative localization algorithm has good effectiveness, robustness and localization accuracy in real world conditions of underground tunnels.

  13. Test of the Drainage Installation for coal in the Underground; Ensayo de Instalacion Desaguadora de Interior para Carbon Bruto

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The Sociedad Anonima Hullera Vasco-Leonesa (HVL) is working in Pastora Coal Bassin, Near the village called Santa Lucia in Leon (Spain). As a whole, the underground coal produced contains a big proportion of refined and ultrarefined grains with very changeable amounts of water. The coal is evacuated from the working place by a system consisting of panzer, channels and conveyor belts, with a water content which is sometimes inadequate for the system itself. Based on that system a wet coal treatment test was carried out on a drainage sieve, to separate the biggest amount of water. The rejected material coming from the sieve passed directly to the evacuation panzer and the gathered water was separated with the help of a cyclone, where the overflow (clear water) was pumped out and the underflow (ultra refined coal grains) was carried to the panzer. Some basic conclusions have been found as a result from the test: The performance of the sieve and the obtained results on the moisture of the product must be estimated as acceptable within the previsions of the project. The separation capacity of the cyclone reached a reasonable value, about 70%, although it had a low thickening factor. The working regularity of the cyclone was almost non-existent, as the supply (flow and concentration) was too heterogeneous. The mining functioning of the installation did not fulfill the previsions of the project. To conclude it must be stated that the complexity of the underground level and the regulation difficulties of the sieves seem out of proportion for the drainage aim of the project which, as a whole, can be defined as a non-satisfactory result.

  14. Joint European project on underground coal gasification in Spain; Proyecto europeo conjunto de gasificacion subterranea de carbon en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.M.; Obis, A.; Menendez, E.; Albeniz, M.A.; Chandelle, V.; Mostade, M.; Bailey, A.C. [ITGE, Madrid (Spain)

    1992-09-01

    Organizations from Spain, Belgium and the United Kingdom are collaborating in a field test of underground coal gasification which is being implemented in the north of Teruel Province (Spain). The test is first phase of a European development programme on in-situ coal gasification, being carried out with financial help from the Commission of the European Communities. This paper covers a forecast of the future energy demand for Europe, the potential of in-situ coal gasification, and a summary of the recent development of in-situ coal gasification. The circumstances which led to the formation of a European organisation (UEE) which will implement the project are described, and its objectives are presented. The geological characteristics of the proposed region are detailed, together with the test programme, and its successive phases in realising the principle parameters of the operations.

  15. Coal Mines, Abandoned - AML Inventory Sites 201601

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set portrays the approximate location of Abandoned Mine Land Problem Areas containing public health, safety, and public welfare problems created by past...

  16. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Jingjing Xu

    2015-08-01

    Full Text Available In this paper, a wireless sensor network (WSN technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD algorithm with particle swarm optimization (PSO, namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.

  17. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines.

    Science.gov (United States)

    Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao

    2015-08-27

    In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.

  18. Development of thermodynamically-based models for simulation of hydrogeochemical processes coupled to channel flow processes in abandoned underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, N.A., E-mail: natalie.kruse@ncl.ac.uk [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Younger, P.L. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2009-07-15

    Accurate modeling of changing geochemistry in mine water can be an important tool in post-mining site management. The Pollutant Sources and Sinks in Underground Mines (POSSUM) model and Pollutant Loadings Above Average Pyrite Influenced Geochemistry POSSUM (PLAYING POSSUM) model were developed using object-oriented programming techniques to simulate changing geochemistry in abandoned underground mines over time. The conceptual model was created to avoid significant simplifying assumptions that decrease the accuracy and defensibility of model solutions. POSSUM and PLAYING POSSUM solve for changes in flow rate and depth of flow using a finite difference hydrodynamics model then, subsequently, solve for geochemical changes at distinct points along the flow path. Geochemical changes are modeled based on a suite of 28 kinetically controlled mineral weathering reactions. Additional geochemical transformations due to reversible sorption, dissolution and precipitation of acid generating salts and mineral precipitation are also simulated using simplified expressions. Contaminant transport is simulated using a novel application of the Random-Walk method. By simulating hydrogeochemical changes with a physically and thermodynamically controlled model, the 'state of the art' in post-mining management can be advanced.

  19. The underground coal gasification First step of community collaboration; Gasification Subterranea del Carbon. Primer Intento en el Ambito de una Colaboracion Comunitaria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The objective of the project was to demonstrate the technical feasibility of underground coal gasification in coal seams at 600 metre depth, in order to asses its potential as a means of energy exploitation in Europe. The trial was based on the use of deviated boreholes and a retractable injection system techniques, which have both been developed by the oil and gas industries. One borehole, the injection well, was drilled in the coal seam. The other, the vertical production well, was run to intercept it in the lower part of the coal seam as closely as possible, in order to construct a continuous channel for gasification. The well were completed with casing and concentric tubing to provide the necessary paths for production, injection, purging gas and cooling water flows. A coiled tubing located in the injection well was used to execute the retraction (or CRIP) manoeuvre, which is a process in which the injector head for the gasification agents, i. e. oxygen and water, and the ignitor, are directed to a specific section of the coal seam. The gasification products passes to a surface production line for flow measurement and sampling of gas and condensate products. Production gases were either flared or incinerated, while the liquids were collected for appropriate disposal. The first trial achieved its principal objectives of in seam drilling, channel communication, the CRIP manoeuvres and the gasification of significant quantity of coal. The post-gasification study also identified the shape and extent of the cavity. The study has demonstrated the technical feasibility of underground coal gasification at the intermediate depths of European coal and proposals are made for further development and semi-commercial exploitation of this promising extraction technology. (Author) 11 refs.

  20. Energy and exergy analysis of alternating injection of oxygen and steam in the low emission underground gasification of deep thin coal

    DEFF Research Database (Denmark)

    Eftekhari, Ali Akbar; Wolf, Karl Heinz; Rogut, Jan

    2017-01-01

    Recent studies have shown that by coupling the underground coal gasification (UCG) with the carbon capture and storage (CCS), the coal energy can be economically extracted with a low carbon footprint. To investigate the effect of UCG and CCS process parameters on the feasibility of the UCG-CCS pr....... Additionally, we show that the zero-emission conversion of unmineable deep thin coal resources in a coupled UCG-CCS process, that is not practical with the current state of technology, can be realized by increasing the energy efficiency of the carbon dioxide capture process.......-CCS process, we utilize a validated mathematical model, previously published by the same authors, that can predict the composition of the UCG product, temperature profile, and coal conversion rate for alternating injection of air and steam for unmineable deep thin coal layers. We use the results of the model...

  1. Study on the Effect of Frequency on Conductivity of Underground Strata in Coal Mine Through-the-earth Wireless Communication

    Directory of Open Access Journals (Sweden)

    Jinyi TAO

    2014-09-01

    Full Text Available The relationship of conductivity and the frequency, which is of decisive significance in through-the-earth wireless communication in coal mine, is closely related to the options of frequency range in coal mine wireless communication. When through-the-earth wireless communication is applied, the electromagnetic waves need to spread in the semi-conductive medium rocks. The main factors affecting the electromagnetic wave propagation in rocks is the rock strata electromagnetic parameters. These parameters are magnetic permeability m (H/m, dielectric constant e (F/m and electrical conductivity s (S/m. In these parameters, electrical conductivity is not constant. Under the influence of various factors, it will be great changes. This paper, for the specific circumstances of coal mine rock, discuses and conduct dada mining the effect frequency on the electrical conductivity of underground rock in coal mine with through-the-earth wireless communication.

  2. 30 CFR 49.20 - Requirements for all coal mines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine rescue...

  3. The Video Collaborative Localization of a Miner’s Lamp Based on Wireless Multimedia Sensor Networks for Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Kaiming You

    2015-09-01

    Full Text Available Based on wireless multimedia sensor networks (WMSNs deployed in an underground coal mine, a miner’s lamp video collaborative localization algorithm was proposed to locate miners in the scene of insufficient illumination and bifurcated structures of underground tunnels. In bifurcation area, several camera nodes are deployed along the longitudinal direction of tunnels, forming a collaborative cluster in wireless way to monitor and locate miners in underground tunnels. Cap-lamps are regarded as the feature of miners in the scene of insufficient illumination of underground tunnels, which means that miners can be identified by detecting their cap-lamps. A miner’s lamp will project mapping points on the imaging plane of collaborative cameras and the coordinates of mapping points are calculated by collaborative cameras. Then, multiple straight lines between the positions of collaborative cameras and their corresponding mapping points are established. To find the three-dimension (3D coordinate location of the miner’s lamp a least square method is proposed to get the optimal intersection of the multiple straight lines. Tests were carried out both in a corridor and a realistic scenario of underground tunnel, which show that the proposed miner’s lamp video collaborative localization algorithm has good effectiveness, robustness and localization accuracy in real world conditions of underground tunnels.

  4. The Video Collaborative Localization of a Miner’s Lamp Based on Wireless Multimedia Sensor Networks for Underground Coal Mines

    Science.gov (United States)

    You, Kaiming; Yang, Wei; Han, Ruisong

    2015-01-01

    Based on wireless multimedia sensor networks (WMSNs) deployed in an underground coal mine, a miner’s lamp video collaborative localization algorithm was proposed to locate miners in the scene of insufficient illumination and bifurcated structures of underground tunnels. In bifurcation area, several camera nodes are deployed along the longitudinal direction of tunnels, forming a collaborative cluster in wireless way to monitor and locate miners in underground tunnels. Cap-lamps are regarded as the feature of miners in the scene of insufficient illumination of underground tunnels, which means that miners can be identified by detecting their cap-lamps. A miner’s lamp will project mapping points on the imaging plane of collaborative cameras and the coordinates of mapping points are calculated by collaborative cameras. Then, multiple straight lines between the positions of collaborative cameras and their corresponding mapping points are established. To find the three-dimension (3D) coordinate location of the miner’s lamp a least square method is proposed to get the optimal intersection of the multiple straight lines. Tests were carried out both in a corridor and a realistic scenario of underground tunnel, which show that the proposed miner’s lamp video collaborative localization algorithm has good effectiveness, robustness and localization accuracy in real world conditions of underground tunnels. PMID:26426023

  5. Coal plows in underground mines in Czechoslovakia

    Energy Technology Data Exchange (ETDEWEB)

    Vasek, J.; Klimek, M.

    1980-05-01

    This article discusses factors which influence the possibility of using coal plows for mining black coal seams in Czechoslovakia. Seams inclined at angles up to 40 degrees can be mined by plows. Another factor which influences plow work is ease of separating coal seam from the direct roof: the plow can be used in seams with good or average separation, and can not be used in seams with roofs difficult to separate from the seam. Quality of rocks surrounding the coal seam: If the stability of the roof is low and strength of rock is low and roof falls occur easily coal plows can not be used. From among three classes of rock in Czechoslovakia plows can be used only in the class characterized by the highest strength. Intense seam dislocations are one of the most important difficulties in using coal plows. Plows can be used if height of seam dislocations is not greater than 40% of the seam thickness. Further factors which influence the possibility of using coal plows (coal resistance to cutting, features of cutting elements of the plow, specific features of the plow mechanism etc.) are also discussed. A method for assessing advantages and disadvantages of using coal plows in given circumstances is presented. (10 refs.) (In Czech)

  6. 78 FR 28242 - Proposed Information Collection; Cleanup Program for Accumulations of Coal and Float Coal Dusts...

    Science.gov (United States)

    2013-05-14

    ... Program for Accumulations of Coal and Float Coal Dusts, Loose Coal, and Other Combustibles AGENCY: Mine... collection for developing and updating a cleanup program for accumulations of coal and float coal dusts, loose coal, and other combustibles in underground coal mines. DATES: All comments must be postmarked or...

  7. Interference immunity of blasting circuits in underground coal mining; Zur Stoerfestigkeit von Sprengzuendsystemen im untertaegigen Steinkohlenbergbau

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiler, C.

    1995-02-14

    Blasting technique with electric detonators is a standard instrument e.g. for drift heading in underground coal mining. The simultaneous increase of compactness and efficiency of electrical devices especially in underground mining calls for a careful consideration of susceptibility problems. As an interference of an inadmissible high level might cause a hazardous ignition limiting values and technical parameters of interference to electrical blasting circuits are evaluated. The sources of interference are classified into communication and power technique devices. Typical interference field strengths are determined by exemplary measurements and a model of wave propagation in underground galleries. An equivalent circuit of the impedance of typical electro-explosive devices used in German coal mining is evaluated and extended by an electro-thermal part based on the `Rosenthal equation`. By this means it is possible to determine a feasible ignition during a simulation using the calculated bridge wire temperature. (orig.) [Deutsch] Fuer den untertaegigen Steinkohlenbergbau ist die Sprengtechnik sowohl im Bereich der Streckenauffahrung als auch beim Schachtabteufen heute noch ein wichtiges Arbeitsinstrument. Dabei wird ausschliesslich die elektrische Zuendung eingesetzt. Durch den Trend zu kompakteren elektrischen Systemen bei gleichzeitiger Leistungssteigerung in Verbindung mit den geringen raeumlichen Abstaenden unter Tage gewinnen Phaenomene der elektromagnetischen Beeinflussung auch im Steinkohlenbergbau an Bedeutung. Eine unzulaessig hohe Beeinflussung des elektrischen Zuendsystems kann eine unerwuenschte Fruehzuendung verursachen. Dieses Gefahrenpotential erfordert eine gesonderte Untersuchung der Stoerfestigkeit elektrischer Zuendsysteme, zumal die Normen fuer den uebertaegigen Sprengbetrieb unter Tage aufgrund der unterschiedlichen Randbedingungen der Ausbreitung elektromagnetischer Wellen nicht uneingeschraenkt angewendet werden koennen. Die Stoerquellen der

  8. Deeper underground

    Energy Technology Data Exchange (ETDEWEB)

    Brearley, D. [Pantek Ltd. (United Kingdom)

    2005-12-01

    The paper describes how efficient data gathering has led to production and uptime improvements in UK Coal's Daw Mill colliery in Warwickshire. Software called FactorySuite A{sup 2} from Wonderware is being used to control and monitor all underground production and conveying. 3 photos.

  9. Abandoned coal mine refuse areas: their reclamation and use

    Energy Technology Data Exchange (ETDEWEB)

    Zellmer, S. D.; Carter, R. P.

    1977-01-01

    There are over 4,000 abandoned deep coal mine refuse areas in Illinois ranging in size from a few acres to as large as 160 acres. These sites produce quantities of pollutants which affect the environment, have no real land value, and are a scar on the landscape. The Staunton 1 Site Reclamation Demonstration Project addressess these problems. It also is developing and evaluating new cost-effective methods for reclaiming refuse areas of this type. The program involved determining the final land use for the site, development of detailed engineering plans and specifications for the reclamation effort, a prereclamation environmental inventory, and implementation. Post-construction evaluation is now in process to determine the effectiveness of the reclamation effort. Detailed investigations are being conducted to determine surface water quality improvement, the amount of suitable surface cover and amendments required for revegetation, and field evaluation of candidate vegetation species for revegetation. Other research is examining soil microbial populations, soil fauna reactions, and changes in surface material characteristics at the reclamation site. Surveys are being conducted on groundwater quality, effects on the aquatic ecosystem, and wildlife use of the area. An economic evaluation is underway to determine the cost effectiveness of the total effort and of individual reclamation procedures. Preliminary results from the first year's environmental evaluation of various method tested will be described in detail. An economic assessment, including cost effectiveness, of the first year's work is given.

  10. Economic competitiveness of underground coal gasification combined with carbon capture and storage in the Bulgarian energy network

    Energy Technology Data Exchange (ETDEWEB)

    Nakaten, Natalie Christine

    2014-11-15

    Underground coal gasification (UCG) allows for exploitation of deep-seated coal seams not economically exploitable by conventional coal mining. Aim of the present study is to examine UCG economics based on coal conversion into a synthesis gas to fuel a combined cycle gas turbine power plant (CCGT) with CO2 capture and storage (CCS). Thereto, a techno-economic model is developed for UCG-CCGT-CCS costs of electricity (COE) determination which, considering sitespecific data of a selected target area in Bulgaria, sum up to 72 Euro/MWh in total. To quantify the impact of model constraints on COE, sensitivity analyses are undertaken revealing that varying geological model constraints impact COE with 0.4% to 4%, chemical with 13%, technical with 8% to 17% and market-dependent with 2% to 25%. Besides site-specific boundary conditions, UCG-CCGT-CCS economics depend on resources availability and infrastructural characteristics of the overall energy system. Assessing a model based implementation of UCG-CCGT-CCS and CCS power plants into the Bulgarian energy network revealed that both technologies provide essential and economically competitive options to achieve the EU environmental targets and a complete substitution of gas imports by UCG synthesis gas production.

  11. Economic competitiveness of underground coal gasification combined with carbon capture and storage in the Bulgarian energy network

    International Nuclear Information System (INIS)

    Nakaten, Natalie Christine

    2014-01-01

    Underground coal gasification (UCG) allows for exploitation of deep-seated coal seams not economically exploitable by conventional coal mining. Aim of the present study is to examine UCG economics based on coal conversion into a synthesis gas to fuel a combined cycle gas turbine power plant (CCGT) with CO2 capture and storage (CCS). Thereto, a techno-economic model is developed for UCG-CCGT-CCS costs of electricity (COE) determination which, considering sitespecific data of a selected target area in Bulgaria, sum up to 72 Euro/MWh in total. To quantify the impact of model constraints on COE, sensitivity analyses are undertaken revealing that varying geological model constraints impact COE with 0.4% to 4%, chemical with 13%, technical with 8% to 17% and market-dependent with 2% to 25%. Besides site-specific boundary conditions, UCG-CCGT-CCS economics depend on resources availability and infrastructural characteristics of the overall energy system. Assessing a model based implementation of UCG-CCGT-CCS and CCS power plants into the Bulgarian energy network revealed that both technologies provide essential and economically competitive options to achieve the EU environmental targets and a complete substitution of gas imports by UCG synthesis gas production.

  12. Concentration of arsenic in underground and drinking water in Kostolac coal basin (northern-east Serbia, Yugoslavia)

    International Nuclear Information System (INIS)

    Panic, Lj.; Vlajkovic, M.

    2002-01-01

    Arsenic is a widespread element in nature. Increased amounts of arsenic in drinking water are appearing in regions and areas with intensive exploitation of coal ant it's combustion in thermoelectrical power plants (China, Taiwan). That is why we studied containment of arsenic in flood, drainage and underground waters from ash deposits of Kostolac thermoelectrical power plants, wells and local water system in Kostolac and four surrounding villages. Increased amounts of arsenic in ash (19-33 mg/kg), which is hydraulically transported from thermoelectrical power plants are causing contamination of underground waters under and near ash deposits (0.1-0.08 mg/l). However, increased amount of arsenic in those underground waters don't pollute wells for water supplying population with drinking water, because in these causes, amount's of arsenic found in examined areas are under 0.05 mg/l. We have concluded that despite increased amounts of arsenic in the ashes of thermoelectrical power plants, contamination of residents water supplying wells has not occurred for the last few decades, but the risk of that still exists. Therefore we suggest regular controls of arsenic containment in drinking water and further construction of regional water supply system. (author)

  13. Methane emissions from coal mining

    International Nuclear Information System (INIS)

    Boyer, C.M.; Kelafant, J.R.; Kuuskraa, V.A.; Manger, K.C.; Kruger, D.

    1990-09-01

    The report estimates global methane emissions from coal mining on a country specific basis, evaluates the technologies available to degasify coal seams and assesses the economics of recovering methane liberated during mining. 33 to 64 million tonnes were liberated in 1987 from coal mining, 75 per cent of which came from China, the USSR, Poland and the USA. Methane emissions from coal mining are likely to increase. Emission levels vary between surface and underground mines. The methane currently removed from underground mines for safety reasons could be used in a number of ways, which may be economically attractive. 55 refs., 19 figs., 24 tabs

  14. Colour and toxic characteristics of metakaolinite–hematite pigment for integrally coloured concrete, prepared from iron oxide recovered from a water treatment plant of an abandoned coal mine

    International Nuclear Information System (INIS)

    Sadasivam, Sivachidambaram; Thomas, Hywel Rhys

    2016-01-01

    A metakaolinite-hematite (KH) red pigment was prepared using an ocherous iron oxide sludge recovered from a water treatment plant of an abandoned coal mine. The KH pigment was prepared by heating the kaolinite and the iron oxide sludge at kaolinite's dehydroxylation temperature. Both the raw sludge and the KH specimen were characterised for their colour properties and toxic characteristics. The KH specimen could serve as a pigment for integrally coloured concrete and offers a potential use for the large volumes of the iron oxide sludge collected from mine water treatment plants. - Graphical abstract: A kaolinite based red pigment was prepared using an ocherous iron oxide sludge recovered from an abandoned coal mine water treatment plant. Display Omitted - Highlights: • A red pigment was prepared by heating a kaolinite and an iron oxide sludge. • The iron oxide and the pigment were characterised for their colour properties. • The red pigment can be a potential element for integrally coloured concrete.

  15. Utilization of coal ash/coal combustion products for mine reclamation

    International Nuclear Information System (INIS)

    Dolence, R.C.; Giovannitti, E.

    1997-01-01

    Society's demand for an inexpensive fuel, combined with ignorance of the long term impacts, has left numerous scars on the Pennsylvania landscape. There are over 250,000 acres of abandoned surface mines with dangerous highwalls and water filled pits. About 2,400 miles of streams do not meet water quality standards because of drainage from abandoned mines. There are uncounted households without an adequate water supply due to past mining practices. Mine fires and mine subsidence plague many Pennsylvania communities. The estimated cost to reclaim these past scars is over $15 billion. The beneficial use of coal ash in Pennsylvania for mine reclamation and mine drainage pollution abatement projects increased during the past ten years. The increase is primarily due to procedural and regulatory changes by the Department of Environmental Protection (DEP). Prior to 1986, DEP required a mining permit and a separate waste disposal permit for the use of coal ash in backfilling and reclaiming a surface mine site. In order to eliminate the dual permitting requirements and promote mine reclamation, procedural changes now allow a single permit which authorize both mining and the use of coal ash in reclaiming active and abandoned pits. The actual ash placement, however, must be conducted in accordance with the technical specifications in the solid waste regulations

  16. Principles of integrated modeling of coal seam mining

    Energy Technology Data Exchange (ETDEWEB)

    Magda, R

    1983-01-01

    Mathematical modeling of underground coal mining is discussed. Construction of a mathematical model of an underground mine is analyzed. The model is based on integrating the elementary units (modules). A so-called elementary mining field is defined with the example of a longwall face. A model of an elementary coal seam zone is constructed by integrating the elementary mining fields (in time and space) and supplementing them with a suitable model of mine roadway structure. By integrating the elementary coal seam zones a model of mining level is constructed. Such a mathematical model is used for optimizing the selected mining parameters e.g. structure of mine roadways, size of a coal mine, and organizational scheme of underground mining in a mine or in a mine section using the standardized optimization criterion e.g. investment. Use of the integration model of underground mining for optimizing coal mine construction is evaluated. The following elements of investment and operating cost are considered: shaft excavation, shaft equipment, investment in mining sections, ventilation, mine draining etc. 1 reference.

  17. A national strategy for identification, prioritisation and management of pollution from abandoned non-coal mine sites in England and Wales. I. Methodology development and initial results.

    Science.gov (United States)

    Mayes, W M; Johnston, D; Potter, H A B; Jarvis, A P

    2009-10-15

    In regions affected by historic non-coal (principally metal) mining activity, government agencies are often faced with the challenge of deploying limited remedial resources at abandoned mine sites to achieve maximum improvements in the chemical and ecological quality of impacted ground and surface waters. As such, strategies for the defensible allocation of public funds require comprehensive and systematic frameworks by which to identify and prioritise polluting sites for remediation. This paper describes the development and initial findings of such a national initiative in England and Wales which allies catchment-scale environmental impact assessments using existing public archive data, with recognition of the uncertainty in impact appraisals arising from disparities in data availability between sites and regions. The methodology identifies polluting sites and takes account not only of the chemical and ecological impacts of mine water discharges on receiving watercourses, but also of socio-economic factors such as conservation and heritage concerns, which can both impede or complement efforts to remediate mine sites. Using a Geographic Information System database and a suite of spatial analyses employing Boolean operators, both the extent of the pollution problem from abandoned non-coal mines in England and Wales (6% of 7815 surface water bodies are affected nationally) and the insight that can be gleaned from systematic analyses of existing archive data are highlighted. The results of the nationwide survey can be used as a dynamic database to inform future remedial planning, in terms of prioritising impacted river basins and abandoned non-coal mine sites themselves for either remediation or future monitoring efforts. As the assessment framework is built upon existing water quality and ecological data and mine site/geological data, there is considerable scope for the approach to be applied elsewhere where the legacy of historic mining persists through the

  18. Was abandonment of the review clause a mistake? Evaluation of management flexibility in the German coal mining industry on the basis of real options; War die Aufgabe der Revisionsklausel ein Fehler? Beurteilung unternehmerischer Flexibilitaet im deutschen Steinkohlenbergbau auf Basis von Realoptionen

    Energy Technology Data Exchange (ETDEWEB)

    Bendiek, Ansgar [Hochtief Concessions AG, Essen (Germany)

    2012-07-01

    The author analyses the decision to abandon the co called ''review clause'' (which was the right to revisit the decision to close German hard coal mines in 2012), and thus management flexibility on the basis of the option price theory and use of hedging instruments (derivatives) in coal trading. Only the case of coal production without any subsidies will be taken into account. The original intention of the review clause to subsidise coal production for further years will be left aside. Abandonment of the review clause destroyed a value of the real option of approx. 819 Mio. EUR. It should be agreed with the politicians that the decision concerning potential extension of coal production without subsidies should be made at the end of 2015. At this point in time the coal price for 2019 to 2021 can be locked in by forward contracts. A prerequisite for coal mining without subsidies would be an increase in the coal price of 3.1% p.a., which is only slightly above the inflation rate and seems to be realistic against the background of rising oil prices and increased scarcity of natural resources. (orig.)

  19. ENVIRONMENTAL IMPACT ON PHYSIOLOGICAL RESPONSES OF UNDERGROUND COAL MINERS IN THE EASTERN PART OF INDIA.

    Science.gov (United States)

    Dey, Netai Chandra; Nath, Suva; Sharma, Gourab Dhara; Mallik, Avijit

    2014-12-01

    Coal in India is extracted generally by semi-mechanized and mechanized underground mining methods. The Bord and Pillar (B & P) mining method still continues to be popular where deployment of manual miners is more than that of other mining methods. The study is conducted at haulage based mine of Eastern Coalfields of West Bengal. Underground miners confront with a lot of hazards like extreme hostile environment, awkward working posture, dust, noise as well as low luminosity. It is difficult to delay the onset of fatigue. In order to study the physiological responses of trammers, various parameters like working heart rates, net cardiac cost and relative cardiac cost including recovery heart rate patterns are recorded during their work at site. Workload classification of trammers has been done following various scales of heaviness. The effect of environment on the physiological responses has been observed and suitable recommendations are made. The work tasks are bound to induce musculoskeletal problems and those problems could be better managed through rationalizing the work-rest scheduling.

  20. Australian coal

    Energy Technology Data Exchange (ETDEWEB)

    1985-11-01

    Total export shipments of coal in Australia in the year ending June 30 1985 reached a record of 83.8 Mt. The export trade is expected to bring in an income of 4 billion Australian dollars in the current year making coal Australia's biggest revenue-earning export commodity. This article presents a brief overview of the Australian coal industry with production and export statistics and information on major open pit and underground mines.

  1. Research on and Design of a Self-Propelled Nozzle for the Tree-Type Drilling Technique in Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Yiyu Lu

    2015-12-01

    Full Text Available Due to the increasing depths of coal mines and the low permeability of some coal seams, conventional methods of gas drainage in underground mines are facing many problems. To improve gas extraction, a new technique using water jets to drill tree-type boreholes in coal seams is proposed. A self-propelled water-jet drilling nozzle was designed to drill these boreholes. The configuration of the self-propelled nozzle was optimized by conducting drilling experiments and self-propelling force measurements. Experimental results show that the optimal self-propelled nozzle has a forward orifice axial angle at 25°, a radial angle at 90°, a center distance of 1.5 mm, and backward pointing orifices with an axial angle of 25°. The self-propelling force generated by the jets of the nozzle with 30 MPa pump pressure can reach 29.8 N, enough to pull the hose and the nozzle forward without any external forces. The nozzle can drill at speeds up to 41.5 m/h with pump pressures at 30 MPa. The radial angles of the forward orifices improve the rock breaking performance of the nozzle and, with the correct angle, the rock breaking area of the orifices overlap to produce a connecting hole. The diameter of boreholes drilled by this nozzle can reach 35.2 mm. The nozzle design can be used as the basis for designing other self-propelled nozzles. The drilling experiments demonstrate the feasibility of using the tree-type drilling technique in underground mines.

  2. Underground aboveground. Technology and market of coal mining in Dutch Limburg during the eighteenth and nineteenth centuries

    International Nuclear Information System (INIS)

    Gales, B.P.A.

    2002-01-01

    This book considers the development of coal mining in the Dutch province of Limburg during the eighteenth and nineteenth centuries. It is focused on the technical development and its economic background. Within the Dutch borders, as defined at the Congress of Vienna and the Dutch-Prussian negotiations of 1815 and 1816, the mining industry was small. In fact, it only consisted of two mines. (Earlier, more companies of miners had been working in the area since the Middle Ages). The two mines, however, had a certain symbolic importance for contemporaries. Most telling was the stubborn refusal to cede coal-ground to Prussia, ending in a remarkable compromise. The new national frontier was different above and underground. Underground the old borders were maintained. Thus it came about that in matters of mining, the Dutch were locally sovereign under a foreign surface. This fact itself shows that the political divisions of the nineteenth and twentieth centuries were rather artificial constructions. Dutch coal-strata were a continuation of the seams of the Worm-basin or the Aachen coal field. The Dutch collieries were just the most north-western ones of a whole series, the Worm-mines, until new pits were constructed around the turn of the nineteenth and into the twentieth centuries and modem mining in the Dutch-Limburg field took off. This is also the more general perspective taken in this book. Developments on the Dutch side of the border are contrasted with those on the German side. Furthermore, the evolution of the mines between Aachen in Germany and the Dutch town Kerkrade are considered in the light of what happened in the neighbourhood of Liege (Belgium) and the mining districts further south in Belgium, the north of France and both the Ruhr and Saar districts in Germany. In short, the Austrasian field, the concept framed by Wrigley in 1962, is the locus of reference. The symbolic importance of Dutch coal mining stimulated a series of experiments in bringing the

  3. Investigation into the potential for dust and gas explosions in underground coal mines with reference to pick tip geometry

    International Nuclear Information System (INIS)

    Dawood, Albert D.

    2011-01-01

    In underground coal mines, methane gas, if present in sufficient concentration, may be ignited by sparks from hot spots on the picks of coal cutting machines striking hard bands of rock. During the coal cutting, wear-flat areas develop on the trailing side of the tips of picks. As pick wear progresses, the generation of frictional heat and coal dust increases and the development of hot spots at the cutting tips may lead to an explosion of methane gas. Field experience and research work over the last few years have facilitated excellent cutting performance for certain picks through the optimisation of the cutting parameters. Such performance improvements show great promise in preventing the incidence of gas or dust explosions occurring at the coal face area. This study sets out some of the fundamentals of pick geometry and cutting parameters and the methods which have been employed to achieve improvements in reducing the hazards of gas or dust explosions. It is based on the comparative trial results of two types of picks with different designs and on a range of available research information on the subject. My investigation looked at the fundamentals of pick geometry and cutting parameters and the current suppression techniques in place to control the dust and gas explosions on the coal operating face.

  4. Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

  5. Environmental Geochemistry and Acid Mine Drainage Evaluation of an Abandoned Coal Waste Pile at the Alborz-Sharghi Coal Washing Plant, NE Iran

    Energy Technology Data Exchange (ETDEWEB)

    Jodeiri Shokri, Behshad, E-mail: b.jodeiri@hut.ac.ir [Hamedan University of Technology (HUT), Department of Mining Engineering (Iran, Islamic Republic of); Doulati Ardejani, Faramarz [University of Tehran, School of Mining, College of Engineering (Iran, Islamic Republic of); Ramazi, Hamidreza [Amirkabir University of Technology (Tehran Polytechnic), Department of Mining and Metallurgical Engineering (Iran, Islamic Republic of)

    2016-09-15

    In this paper, an abandoned waste coal pile, which is resulted from Alborz-Sharghi coal washing plant, NE of Iran was mineralogically and geochemically characterized to evaluate pyrite oxidation, acid mine drainage (AMD) generation, and trace element mobility. After digging ten trenches and vertical sampling, a quantitative method including the atomic absorption test, and the quality-based methods including optical study were carried out for determination of pyrite fractions in the waste pile. The geochemical results revealed that the fraction of remaining pyrite increased with depth, indicating that pyrite oxidation is limited to the shallower depths of the pile which were confirmed by variations of sulfate, pH, EC, and carbonate with depth of the pile. To evaluate the trend of trace elements and mineralogical constituents of the waste particles, the samples were analyzed by using XRD, ICP-MS, and ICP-OES methods. The results showed the secondary and neutralizing minerals comprising gypsum have been formed below the oxidation zone. Besides, positive values of net neutralization potential indicated that AMD generation has not taken in the waste pile. In addition, variations of trace elements with depth reveal that Pb and Zn exhibited increasing trends from pile surface toward the bottom sampling trenches while another of them such as Cu and Ni had decreasing trends with increasing depth of the waste pile.

  6. Revival of coal. [France and USA

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    This edition is devoted to the production and consumption of coal in France. It presents a study of the main topics involved, discusses the position of coal in France - under what form should it beused, and deals with coal consumption in cement works role of coal for urban district heating, future of coal gasification in France, France's coal policy, coal industry in the USA, underground gasification of coal, France's coal reserves, etc.. (In French)

  7. A method for analyzing low statistics high resolution spectra from 210Pb in underground coal miners from Brazil

    International Nuclear Information System (INIS)

    Dantas, A.L.A.; Dantas, B.M.; Lipsztein, J.L.; Spitz, H.B.

    2006-01-01

    A survey conducted by the IRD-CNEN determined that some workers from an underground coal mine in the south of Brazil were exposed to elevated airborne concentrations of 222 Rn. Because inhalation of high airborne concentrations of 222 Rn can lead to an increase of 210 Pb in bone, in vivo measurements of 210 Pb in the skeleton were performed in selected underground workers from this mine. Measurements were performed using an array of high-resolution germanium detectors positioned around the head and knee to detect the low abundant 46.5 keV photon emitted by 210 Pb. The gamma-ray spectra were analyzed using a moving median smoothing function to detect the presence of a photopeak at 46.5 keV. The minimum detectable activity of 210 Pb in the skeleton using this methodology was 50 Bq. (author)

  8. Reflection on the efficiency criteria for a long duration disposal with respect to temporary abandonment situations

    International Nuclear Information System (INIS)

    Heriard-Dubreuil, G.; Gadbois, S.; Chieber, C.; Schneider, Th.

    2002-08-01

    A study carried out by Mutadis and CEPN, on request of the CEA, aimed at supplying some elements allowing to elaborate some performance criteria for a long-term management system in front of situations of temporary abandonment of radioactive waste disposal facilities. The first part of the study has been the identification of case studies illustrating situations of loss of maintenance or temporary abandonment. The second phase has been the selection and analysis of 4 case studies (the ancient underground cavities in Ile-de-France, the regulation relative to new underground quarries, the abandoned mines in Loraine basin, and Unesco's approach for the protection of mankind world patrimony). These cases have been analysed with respect to various aspects: actors involved, construction management and memory preservation, liabilities in time and space, prevention means, scheduling, and resumption strategies. The concepts of abandonment, scheduling and resumption have been precised and analysed in a third part according to the case studies. Three goals - avoiding abandonment, encouraging scheduling and resumption - and eight characteristics are drawn from this analysis, which are indicators of the robustness of the system implemented to fulfill these 3 goals. These characteristics appear as strongly interdependent. (J.S.)

  9. 77 FR 17099 - Proposed Extension of Existing Information Collection; Diesel-Powered Equipment for Underground...

    Science.gov (United States)

    2012-03-23

    ... to underground coal miners who work in mines that use diesel-powered equipment. Diesel equipment can... provide important safety protections to underground coal miners who work in mines that use diesel-powered... maintenance of fire suppression systems on the equipment and at fueling stations; exhaust gas sampling...

  10. Is there an association of circulatory hospitalizations independent of mining employment in coal-mining and non-coal-mining counties in west virginia?

    Science.gov (United States)

    Talbott, Evelyn O; Sharma, Ravi K; Buchanich, Jeanine; Stacy, Shaina L

    2015-04-01

    Exposures associated with coal mining activities, including diesel fuel exhaust, products used in coal processing, and heavy metals and other forms of particulate matter, may impact the health of nearby residents. We investigated the relationships between county-level circulatory hospitalization rates (CHRs) in coal and non-coal-mining communities of West Virginia, coal production, coal employment, and sociodemographic factors. Direct age-adjusted CHRs were calculated using West Virginia hospitalizations from 2005 to 2009. Spatial regressions were conducted to explore associations between CHR and total, underground, and surface coal production. After adjustment, neither total, nor surface, nor underground coal production was significantly related to rate of hospitalization for circulatory disease. Our findings underscore the significant role sociodemographic and behavioral factors play in the health and well-being of coal mining communities.

  11. Mercury and trace element contents of Donbas coals and associated mine water in the vicinity of Donetsk, Ukraine

    Science.gov (United States)

    Kolker, A.; Panov, B.S.; Panov, Y.B.; Landa, E.R.; Conko, K.M.; Korchemagin, V.A.; Shendrik, T.; McCord, J.D.

    2009-01-01

    Mercury-rich coals in the Donets Basin (Donbas region) of Ukraine were sampled in active underground mines to assess the levels of potentially harmful elements and the potential for dispersion of metals through use of this coal. For 29 samples representing c11 to m3 Carboniferous coals, mercury contents range from 0.02 to 3.5 ppm (whole-coal dry basis). Mercury is well correlated with pyritic sulfur (0.01 to 3.2 wt.%), with an r2 of 0.614 (one outlier excluded). Sulfides in these samples show enrichment of minor constituents in late-stage pyrite formed as a result of interaction of coal with hydrothermal fluids. Mine water sampled at depth and at surface collection points does not show enrichment of trace metals at harmful levels, indicating pyrite stability at subsurface conditions. Four samples of coal exposed in the defunct open-cast Nikitovka mercury mines in Gorlovka have extreme mercury contents of 12.8 to 25.5 ppm. This coal was formerly produced as a byproduct of extracting sandstone-hosted cinnabar ore. Access to these workings is unrestricted and small amounts of extreme mercury-rich coal are collected for domestic use, posing a limited human health hazard. More widespread hazards are posed by the abandoned Nikitovka mercury processing plant, the extensive mercury mine tailings, and mercury enrichment of soils extending into residential areas of Gorlovka.

  12. Application of underground microseismic monitoring for ground failure and secure longwall coal mining operation: A case study in an Indian mine

    Science.gov (United States)

    Ghosh, G. K.; Sivakumar, C.

    2018-03-01

    Longwall mining technique has been widely used around the globe due to its safe mining process. However, mining operations are suspended when various problems arise like collapse of roof falls, cracks and fractures propagation in the roof and complexity in roof strata behaviors. To overcome these colossal problems, an underground real time microseismic monitoring technique has been implemented in the working panel-P2 in the Rajendra longwall underground coal mine at South Eastern Coalfields Limited (SECL), India. The target coal seams appears at the panel P-2 within a depth of 70 m to 76 m. In this process, 10 to 15 uniaxial geophones were placed inside a borehole at depth range of 40 m to 60 m located over the working panel-P2 with high rock quality designation value for better seismic signal. Various microseismic events were recorded with magnitude ranging from -5 to 2 in the Richter scale. The time-series processing was carried out to get various seismic parameters like activity rate, potential energy, viscosity rate, seismic moment, energy index, apparent volume and potential energy with respect to time. The used of these parameters helped tracing the events, understanding crack and fractures propagation and locating both high and low stress distribution zones prior to roof fall occurrence. In most of the cases, the events were divided into three stage processes: initial or preliminary, middle or building, and final or falling. The results of this study reveal that underground microseismic monitoring provides sufficient prior information of underground weighting events. The information gathered during the study was conveyed to the mining personnel in advance prior to roof fall event. This permits to take appropriate action for safer mining operations and risk reduction during longwall operation.

  13. Underground coal gasification with extended CO2 utilization as economic and carbon neutral approach to address energy and fertilizer supply shortages in Bangladesh

    Science.gov (United States)

    Nakaten, Natalie; Islam, Rafiqul; Kempka, Thomas

    2014-05-01

    The application of underground coal gasification (UCG) with proven carbon mitigation techniques may provide a carbon neutral approach to tackle electricity and fertilizer supply shortages in Bangladesh. UCG facilitates the utilization of deep-seated coal seams, not economically exploitable by conventional coal mining. The high-calorific synthesis gas produced by UCG can be used for e.g. electricity generation or as chemical raw material for hydrogen, methanol and fertilizer production. Kempka et al. (2010) carried out an integrated assessment of UCG operation, demonstrating that about 19 % of the CO2 produced during UCG may be mitigated by CO2 utilization in fertilizer production. In the present study, we investigated an extension of the UCG system by introducing excess CO2 storage in the gas deposit of the Bahkrabad gas field (40 km east of Dhaka, Bangladesh). This gas field still holds natural gas resources of 12.8 million tons of LNG equivalent, but is close to abandonment due to a low reservoir pressure. Consequently, applying enhanced gas recovery (EGR) by injection of excess carbon dioxide from the coupled UCG-urea process may mitigate carbon emissions and support natural gas production from the Bahkrabad gas field. To carry out an integrated techno-economic assessment of the coupled system, we adapted the techno-economic UCG-CCS model developed by Nakaten et al. (2014) to consider the urea and EGR processes. Reservoir simulations addressing EGR in the Bakhrabad gas field by utilization of excess carbon dioxide from the UCG process were carried out to account for the induced pressure increase in the reservoir, and thus additional gas recovery potentials. The Jamalganj coal field in Northwest Bangladesh provides favorable geological and infrastructural conditions for a UCG operation at coal seam depths of 640 m to 1,158 m. Excess CO2 can be transported via existing pipeline networks to the Bahkrabad gas field (about 300 km distance from the coal deposit) to be

  14. Regional-scale geomechanical impact assessment of underground coal gasification by coupled 3D thermo-mechanical modeling

    Science.gov (United States)

    Otto, Christopher; Kempka, Thomas; Kapusta, Krzysztof; Stańczyk, Krzysztof

    2016-04-01

    Underground coal gasification (UCG) has the potential to increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce site-specific environmental impacts such as fault reactivation, induced seismicity and ground subsidence, potentially inducing groundwater pollution. Changes overburden hydraulic conductivity resulting from thermo-mechanical effects may introduce migration pathways for UCG contaminants. Due to the financial efforts associated with UCG field trials, numerical modeling has been an important methodology to study coupled processes considering UCG performance. Almost all previous UCG studies applied 1D or 2D models for that purpose, that do not allow to predict the performance of a commercial-scale UCG operation. Considering our previous findings, demonstrating that far-field models can be run at a higher computational efficiency by using temperature-independent thermo-mechanical parameters, representative coupled simulations based on complex 3D regional-scale models were employed in the present study. For that purpose, a coupled thermo-mechanical 3D model has been developed to investigate the environmental impacts of UCG based on a regional-scale of the Polish Wieczorek mine located in the Upper Silesian Coal Basin. The model size is 10 km × 10 km × 5 km with ten dipping lithological layers, a double fault and 25 UCG reactors. Six different numerical simulation scenarios were investigated, considering the transpressive stress regime present in that part of the Upper Silesian Coal Basin. Our simulation results demonstrate that the minimum distance between the UCG reactors is about the six-fold of the coal seam thickness to avoid hydraulic communication between the single UCG

  15. Safety Research and Experimental Coal Mines

    Data.gov (United States)

    Federal Laboratory Consortium — Safety Research and Experimental Coal MinesLocation: Pittsburgh SiteThe Safety Research Coal Mine and Experimental Mine complex is a multi-purpose underground mine...

  16. Proceedings of the 6th underground operators conference

    International Nuclear Information System (INIS)

    Golosinski, T.S.

    1995-01-01

    This conference presents recent development in underground mining operations. A large number of papers reported on underground mining practice in the Eastern Goldfields area of Western Australia and in the traditional mining centres of Mount Isa and Broken Hill. These are supplemented by papers reporting on other underground mining developments all throughout Australia and in several overseas countries known for advanced mining expertise. Apart from papers dealing with metalliferous mining, a number of papers related to coal mining present recent developments related to the topic. The papers are grouped into sessions relating to ground control, rock mechanics, management and human resources, mining methods, mining equipment, control and communications, mine backfill, mining operations, drilling and blasting and coal mining. Relevant papers have been individually indexed/abstracted. Tabs., figs., refs

  17. Forming the Composition of Underground Coal Gasification Products in the Simulation of Various Heat and Mass Transfer Conditions in the Coal Seam

    Directory of Open Access Journals (Sweden)

    Masanik A.S.

    2016-01-01

    Full Text Available The mathematical model describing the heat and mass transfer processes in underground coal gasification is proposed. Numerical studies have allowed to determine the composition of gases depending on the temperature, pressure products of gasification, and the composition of the heated oxidant injected. Relations the composition of the concentration of combustible gas component of the oxidant injected: dry air, a mixture of oxygen, nitrogen and water vapor in different proportions were prepared. It is found that, depending on the oxygen content in the oxidizer low-temperature gasification mode is implemented (up to 15%. At higher values of the oxygen concentration in the oxidizer the high-temperature mode is realized, in which the fuel gas output increases significantly.

  18. Mitigating soil contamination at abandoned Moroccan mine sites ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-02-09

    Feb 9, 2018 ... Abandoned mines are putting people and ecosystems at risk in ... environmental and health concerns to surrounding communities. .... carbon-rich phosphate mine waste from the neighboring Youssoufia ... The research team is testing the development of lightweight ceramics by mixing the coal tailings with ...

  19. Environmental problems in Russian coal industry

    International Nuclear Information System (INIS)

    Kharchenko, V.; Oumnov, V.

    1996-01-01

    The state of the Russian coal industry is complicated both economically and environmentally. Most mines are unprofitable. Several coal mines are intended to be closed. So, under existing conditions, coal mines are unable to give much attention to environmental protection problems. At the same time, coal mining is one of the most polluting industries. The main trends in this industry's negative influence upon the environment are: land spoilage and immobilization to lay out open-pit mines and mineral waste dump areas and tailing piles as well as with industrial waste water runoff; atmospheric pollution with the air coming from underground and substances blown off from dumps, hydrogeological regime intervention in coal mining areas, etc. One way to solve environmental problems in coal mining is a more rational utilization of the accompanying natural coal resources. Such measures make it possible to obtain complementary profits not only at the expense of reducing environmental destruction but producing new kinds of goods or services as well. Examples of similar solutions are solid mineral wastes utilization, underground space utilization, coal gas utilization and other issues

  20. Mine-fire diagnostics applied to the Carbondale, Pennsylvania mine-fire site. Rept. of Investigations/1992

    International Nuclear Information System (INIS)

    Kim, A.G.; Justin, T.R.; Miller, J.F.

    1992-01-01

    The U.S. Bureau of Mines applied its mine fire diagnostic method to an abandoned anthracite mine fire site in Carbondale, Lackawanna County, PA. The technique to locate fires in abandoned coal mines and coal refuse piles includes the determination of hydrocarbon concentrations in mine gases, the imposition of an underground gas flow direction, and use of a surface mapping method, to define heated and cold zones in underground coal strata. The heated zones at Carbondale were characterized by elevated methane concentrations. The results of 25 communication tests were analyzed to define 2 large (approximately 100 by 250 ft) and 5 small, isolated heated zones. An approximate correlation existed between the location of the heated zones and areas of anomalous snow melt. The correlation between the results of the diagnostic test and subsurface temperatures was not significant

  1. Proposed underground gasification. [United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    An underground coal gasification experiment which could provide the key to recovering the energy in millions of tonnes of otherwise inaccessible undersea coal reserves is proposed by the NCB. The Board's Headquarters Technical Department hope to carry out a field trial in a six foot thick coal seam about 2000 feet beneath a former wartime airfield near the hamlet of Ossington near Newark, Notts, UK. This paper describes briefly the proposed project, which could cost up to 15 million pounds over five years. It has the backing and financial support of the European Economic Community.

  2. Techno-Economic Comparison of Onshore and Offshore Underground Coal Gasification End-Product Competitiveness

    Directory of Open Access Journals (Sweden)

    Natalie Christine Nakaten

    2017-10-01

    Full Text Available Underground Coal Gasification (UCG enables the utilisation of coal reserves that are currently not economically exploitable due to complex geological boundary conditions. Hereby, UCG produces a high-calorific synthesis gas that can be used for generation of electricity, fuels and chemical feedstock. The present study aims to identify economically competitive, site-specific end-use options for onshore and offshore produced UCG synthesis gas, taking into account the capture and storage (CCS and/or utilisation (CCU of resulting CO 2 . Modelling results show that boundary conditions that favour electricity, methanol and ammonia production expose low costs for air separation, high synthesis gas calorific values and H 2 /N 2 shares as well as low CO 2 portions of max. 10%. Hereby, a gasification agent ratio of more than 30% oxygen by volume is not favourable from economic and environmental viewpoints. Compared to the costs of an offshore platform with its technical equipment, offshore drilling costs are negligible. Thus, uncertainties related to parameters influenced by drilling costs are also negligible. In summary, techno-economic process modelling results reveal that scenarios with high CO 2 emissions are the most cost-intensive ones, offshore UCG-CCS/CCU costs are twice as high as the onshore ones, and yet all investigated scenarios except from offshore ammonia production are competitive on the European market.

  3. Highly-productive mechanization systems for coal mining in the Polish coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1985-01-01

    Effects of mechanization on underground coal mining in Poland from 1960 to 1980 and mining equipment used in Poland is reviewed. In 1983 black coal output increased to 191.1 Mt. There were 765 working faces, 442 of which with powered supports. Six hundred thirty-four shearer loaders were in use. About 82.7% of coal output fell on faces mined by sets of mining equipment (shearer loaders, powered supports and chain conveyors). The average coal output per working face amounted to 889 t/d. About 50% of mine roadways was driven by heading machines (346 heading machines were in use). The average coal output per face mined by a set of mining equipment amounted to 1248 t/d. About 86% of shearer loaders fell on double drum shearer loaders. Types of mining equipment used in underground mining are reviewed: powered supports (Pioma, Fazos, Glinik and the SOW), shearer loaders (drum shearer loaders and double-drum shearer loaders with chain haulage and chainless haulage systems for unidirectional and bi-directional mining), chain conveyors (Samson, Rybnik). Statistical data on working faces with various sets of equipment are given. 3 references.

  4. Underground risk management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, S.; Inoue, M.; Sakai, T.

    2006-03-15

    JCOAL has conducted Joint Research on an Underground Communication and Risk Management Information System with CSIRO of Australia under a commissioned study project for the promotion of coal use starting in fiscal 2002. The goal of this research project is the establishment of a new Safety System focusing on the comprehensive risk management information system by the name of Nexsys. The main components of the system are the Ethernet type underground communication system that represents the data communication base, and the risk management information system that permits risk analysis in real-time and provides decision support based on the collected data. The Nexsys is an open system and is a core element of the underground monitoring system. Using a vast amount of underground data, it is capable of accommodating a wide range of functions that were not available in the past. Because of it, it is possible to construct an advanced underground safety system. 14 figs., 4 tabs.

  5. Zoning method for environmental engineering geological patterns in underground coal mining areas.

    Science.gov (United States)

    Liu, Shiliang; Li, Wenping; Wang, Qiqing

    2018-09-01

    Environmental engineering geological patterns (EEGPs) are used to express the trend and intensity of eco-geological environment caused by mining in underground coal mining areas, a complex process controlled by multiple factors. A new zoning method for EEGPs was developed based on the variable-weight theory (VWT), where the weights of factors vary with their value. The method was applied to the Yushenfu mining area, Shaanxi, China. First, the mechanism of the EEGPs caused by mining was elucidated, and four types of EEGPs were proposed. Subsequently, 13 key control factors were selected from mining conditions, lithosphere, hydrosphere, ecosphere, and climatic conditions; their thematic maps were constructed using ArcGIS software and remote-sensing technologies. Then, a stimulation-punishment variable-weight model derived from the partition of basic evaluation unit of study area, construction of partition state-variable-weight vector, and determination of variable-weight interval was built to calculate the variable weights of each factor. On this basis, a zoning mathematical model of EEGPs was established, and the zoning results were analyzed. For comparison, the traditional constant-weight theory (CWT) was also applied to divide the EEGPs. Finally, the zoning results obtained using VWT and CWT were compared. The verification of field investigation indicates that VWT is more accurate and reliable than CWT. The zoning results are consistent with the actual situations and the key of planning design for the rational development of coal resources and protection of eco-geological environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Underground gasification in Britain

    Energy Technology Data Exchange (ETDEWEB)

    1952-08-29

    A report of the discussion held on the paper Underground Gasification in Britain, by C.A. Masterman (Iron and Coal Trades Rev., Vol. 165, Aug. 22, 1952, pp. 413-422). The water question, preheating the air, controlling the gas, using the product, choosing the site, thickness of seam and faulted areas are discussed.

  7. Use of electrical resistivity to detect underground mine voids in Ohio

    Science.gov (United States)

    Sheets, Rodney A.

    2002-01-01

    Electrical resistivity surveys were completed at two sites along State Route 32 in Jackson and Vinton Counties, Ohio. The surveys were done to determine whether the electrical resistivity method could identify areas where coal was mined, leaving air- or water-filled voids. These voids can be local sources of potable water or acid mine drainage. They could also result in potentially dangerous collapse of roads or buildings that overlie the voids. The resistivity response of air- or water-filled voids compared to the surrounding bedrock may allow electrical resistivity surveys to delineate areas underlain by such voids. Surface deformation along State Route 32 in Jackson County led to a site investigation, which included electrical resistivity surveys. Several highly resistive areas were identified using axial dipole-dipole and Wenner resistivity surveys. Subsequent drilling and excavation led to the discovery of several air-filled abandoned underground mine tunnels. A site along State Route 32 in Vinton County, Ohio, was drilled as part of a mining permit application process. A mine void under the highway was instrumented with a pressure transducer to monitor water levels. During a period of high water level, electrical resistivity surveys were completed. The electrical response was dominated by a thin, low-resistivity layer of iron ore above where the coal was mined out. Nearby overhead powerlines also affected the results.

  8. Prospects for coal and clean coal technologies in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Baruya, P. [IEA Clean Coal Centre, London (United Kingdom)

    2010-02-15

    Vietnam's energy economy is largely served by traditional biofuels and oil products. Within the power generating sector, hydropower and gas-fired power dominate. However, Vietnam still maintains a 40 Mt/y coal industry, parts of which have recently undergone a long overdue programme of renovation and expansion. Vietnam has been a successful exporter of anthracite, with more than half of the country's production being shipped or barged to steel mills in Japan or power stations in southern China, as well as most other Far Eastern coal importers. The industry is due to take a different form. Opencast mining has recently accounted for around 60% of production but this mining method could be phased out as reserves become more difficult and costly to extract. A shift to underground mining is expected, with a greater emphasis on more modern and mechanised production techniques. Coal is located mainly in the coalfields in Quang Ninh in the north easternmost province of Vietnam. The lower rank reserves located within the Red River coalfields, close to the existing anthracite operations, may yield many more millions of tonnes of coal for exploitation. Underground coal gasification could possibly be exploited in the deeper reserves of the Red River Basin. While coal production could rapidly change in future years, the power generation sector is also transforming with the country's 12,000 MWe development programme for new coal-fired power capacity. The economy suffers from a threat of power shortages due to a lack of generating and transmission capacity, while inefficiencies blight both energy production and end-users. Delivering power to the regions of growth remains difficult as the economy and the demand for power outpaces power generation. While hydroelectric power is being pursued, coal is therefore becoming a growing factor in the future prosperity of the Vietnamese economy. 111 refs., 33 figs., 11 tabs.

  9. The impact of abandoned coal gasification plants on groundwater and remediation strategies

    International Nuclear Information System (INIS)

    Werner, P.; Stieber, M.

    1997-01-01

    Areas of abandoned coal gasification-, cokeovenplants and town gasworks normally contain hazardous contaminants as there are among others PAHs, cyanides, mono aromatic compounds and phenols. Therefore a strong impact on the groundwater can be expected. In the thousands of sites existing in Germany a complete remediation is almost impossible. Combustion is the only safe way to eliminate the contaminants by mineralization; but is to expensive and not applicable for the large amount of soil to be treated. Soil washing and bio-remediation is limited by the composition of the contaminants on the one side and by the soil structure on the other. Therefore the success of the mentioned remediation techniques is normally weak and only in some selected cases efficient enough. A combination of different methods according the site characteristics might help to increase the efficiency. On the other hand it it obvious, that there are natural barriers integrated between the contaminants and the groundwater as there are e.g solubility adsorbability and biodegradability of the hazardous compounds and the distance to the groundwater. Recently developed methods for downstream groundwater remediation are presented and discussed for the application in gas work contaminations. Those so called 'passive systems' are said to be very economic and might help to prevent further distribution of the contaminants into the environment. (au)

  10. South Blackwater Coal`s maintenance program

    Energy Technology Data Exchange (ETDEWEB)

    Nash, J. [South Blackwater Coal Limited, Blackwater, Qld. (Australia)

    1998-09-01

    The South Blackwater operation consists of two opencut mining areas and two underground mines (Laleham and Kenmure) near Blackwater in central Queensland, all of which supply coal to a central coal preparation plant. South Blackwater Coal Ltd. recently developed a maintenance improvement programme, described in this article. The programme involved implementation systems of key performance indicators (KPIs), benchmaking, condition monitoring, work planning and control, failure analysis and maintenance audit. Some improvements became almost immediately apparent, others were quite gradual. Major results included: improved availability (and reliability) of all opencast fleets, improvements in rear dump availability; reduced maintenance man-hours for opencast fleets; and increased availability of the coal handling and preparation plant. The paper is an edited version of that presented at the `Maintenance in mining conference` 16-19 March 1998, held in Bali, Indonesia. 4 figs., 2 photos.

  11. Determination of enrichment processes and radon concentration in underground mines of fluorite and coal in Santa Catarina state: criteria for radiation risk assessment

    International Nuclear Information System (INIS)

    Santos, Carlos Eduardo Lima dos

    2008-01-01

    The inhalation of radon present in underground mines can imply in the deposition of its descendants in the lungs, which may cause harm to the lungs tissues and induce cancer. Concentration of radon not greater than 500 Bq/m 3 in the environment of underground mines is considered to be acceptable internationally and concentrations above 1500 Bq/m 3 require protective measures for the miners. The objectives of this research work are to determine the enrichment processes and the concentrations of radon in air, as well as the resulting doses due to the presence of this radionuclide in three underground mines of fluorite and three underground mines of coal in the State of Santa Catarina. The concentration of radon was measured employing two types of detectors of nuclear tracks (SSNTD), the LEXAN and the CR-39. This detection method consists in counting, with the help of a microscope, tracks resulting from the interaction of alpha particles with the film, due to the penetration of Rn-222 in the interior of the detector chamber and its decaying process. Contents of radium in collected samples of rocks, minerals and underground water were determined and compared with the corresponding radon concentration found in the underground air. It was observed that the coal mines showed low concentrations of radon, which can be explained by the low concentration of radium in rocks (sandstones and siltites in the foot wall and hang wall) and in the coal that composes the mining environment or, yet still, due to the good ventilation system. The average dose to the workers of the coal mines was estimated as 0.7 mSv/a, value inferior to the limit of 1 mSv/a established by the Brazilian Nuclear Energy Commission (CNEN) for members of the public, and corresponding to a risk of fatal cancer after 50 years of work under this condition of 0.2%. On the other hand, the fluorite mines showed much higher concentrations of radon and superior to 1000 Bq/m 3 . The inefficiency of the ventilation

  12. Underground communications and tracking technology advances

    Energy Technology Data Exchange (ETDEWEB)

    Fiscor, S

    2007-03-15

    As the June 2009 deadline set by the MINER Act grows near, several technologies have emerged as possible options for communicating and tracking underground coal miners in the event of an emergency or disaster. NIOSH is currently deciding how best to invest $10 million assigned by Congress under an Emergency Supplementary Appropriations Act (ESA) to research and develop mine safety technology. Medium and ultra high frequency (UHF) systems seem to be leading the pack with radio frequency identification (RFID) tags serving as the tracking system. Wireless mesh systems can serve as a communications infrastructure and they can do much more. Even more technologies continue to emerge, such as inertial navigation tracking systems. Mines are discovering the wonders of modern voice and data communications underground. Still no one know if it is economically practical to design a system that will function after a coal mine explosion. From the nineteen systems submitted to MSHA's request for information (RFI), six systems were selected that represented most of the technologies that had been proposed: the Rajant Breadcrumb, Innovative Wireless, Concurrent Technologies/Time Domain, Transtek, Gamma Services, and the Kutta Consulting systems. They were tested at CONSOL Energy's McElroy mine in April 2006. MSHA felt that all of those systems needed a significant amount of work before they were ready for use in a underground coal mining environment. The agency continues to work with these, and other manufacturers, to assist in arranging for field demonstration and then to gain MSHA approval.

  13. Detecting voids in coal seams in surface mining by means of a biophysical method

    Energy Technology Data Exchange (ETDEWEB)

    Bek, E.

    1985-07-01

    Soviet research institutes, in cooperation with research intitutes from other countries, developed the Radar 1 system for detecting abandoned workings in coal seams in surface mines. The system will be used for detecting voids in seams at depths to 50 m. The Academy of Sciences of Czechoslovakia tested use of dowsing for detecting abandoned workings in the Pohranicni straz, the Brezova and the Medard coal surface mines. The workings were situated at depths from 2 to 12 m from the ground surface (dowser position). The dowser was not informed of position or dimensions of the workings. Accuracy of determining position of abandoned workings in coal seams was high. Results of dowsing were checked by drilling. 4 references.

  14. Gas production strategy of underground coal gasification based on multiple gas sources.

    Science.gov (United States)

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  15. Safety explosives in coal mining. Explosivos de seguridad en la mineria de carbon

    Energy Technology Data Exchange (ETDEWEB)

    (Union Espanola de Explosivos y Rio Blast, S.A., Madrid (Spain))

    1990-06-01

    The use of explosives in underground coal mining is essential for two reasons. The first is the highly resistant nature of the rock surrounding coal which requires explosives to remove it during development work. The second is that certain types of coal need to be blasted in order to achieve a higher output in coal winning operations. This article examines the characteristics, the types and the conditions under which safety or ion exchange explosives are used in underground coal mines where explosive atmospheres are sometimes encountered. 3 tabs. 2 pts.

  16. Coal industry statistics for 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    In 1977 Belgian coal production reached 7,068,000 t, a drop of 170,000 t (2.3%) on the previous year. Production from the Campine coalfield had risen by 160,000 t while in the South, where two pits had been shut down during the year, there was a fall in output of 330,000 t. On 31st December 1977 the number of underground personnel totalled 17,681 as against 19,154 at the same time in 1976. Underground output continued to decline in the South while in the Campine there was an increase of 7.6%. Pit-head stocks fell by 400,000 t, to 721,000 t, 658,000 t of this being held in the Campine collieries. As regards Belgian coal disposals, the only increase (+52.0%) was in coal sent to power stations. Import figures stood at 6,592,000 t, a drop of 10.5% over the previous year. Includes figures for apparent coal consumption, a com parison of coal figures for 1976 and 1977 and the mined-coal production. Shows how coal production has evolved in the various coalfields and the number of pits in operation. Production is classified into coal types. Also covers the shutting-down of production capacities; manpower and OMS; coal briquette production; briquette output and disposals; end-of-year pit-head stocks according to coalfields, grades and types of coal. Figures for apparent consumption of coal and coal briquettes; exports and imports 1973-77 and countries of origin. Gives delivery figures for Belgian and imported coal to the domestic market. (In French)

  17. Behaviors of overlying strata in extra-thick coal seams using top-coal caving method

    Directory of Open Access Journals (Sweden)

    Bin Yu

    2016-04-01

    Full Text Available Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos. 3–5 in Datong coal mine with top-coal caving method, which significantly hampers the mine's normal production. To understand the mechanism of strata failure, this paper presented a structure evolution model with respect to strata behaviors. Then the behaviors of strata overlying the extra-thick coal seams were studied with the combined method of theoretical analysis, physical simulation, and field measurement. The results show that the key strata, which are usually thick-hard strata, play an important role in overlying movement and may influence the mining-induced strata behaviors in the working face using top-coal caving method. The structural model of far-field key strata presents a “masonry beam” type structure when “horizontal O-X” breakage type happens. The rotational motion of the block imposed radial compressive stress on the surrounding rock mass of the roadway. This can induce excessive deformation of roadway near the goaf. Besides, this paper proposed a pre-control technology for the hard roof based on fracture holes and underground roof pre-splitting. It could effectively reduce stress concentration and release the accumulated energy of the strata, when mining underground coal resources with top-coal caving method.

  18. Main economic characteristics of new plant for underground gasification of coal. [5 planned USSR commercial installations

    Energy Technology Data Exchange (ETDEWEB)

    Leshchinskii, B F; Markman, L M

    1957-01-01

    As a result of experimental investigations, the erection of five large-capacity, industrial, underground gasification stations is planned. The locations and chief customers of the five stations are listed and their characteristics are as follows: 1. North Tula Station will use brown coal that averages 30 percent moisture and 23.1 percent ash. The coalbed, 1.5 meters thick, is horizontal and lies at a depth of 50 meters. Total reserves are estimated at 10.7 million tons and industrial reserves at 7 million tons. 2. Gorlovsky Station will use brown coal, averaging 30 percent water and 21 to 27.3 percent ash. The coalbed, 2.1 to 2.7 meters thick, is horizontal and lies at a depth of 35 to 60 meters. Total reserves are 105.4 million tons; industrial reserves are 73.5 million tons. 3. South Abinsk Station will use hard coal in beds 0.83 to 20 meters thick and contain 38 percent water and 9.4 percent ash. The angle of dip ranges from 60 to 70/sup 0/. The coal averages 330 meters from the surface. Total reserves are 98 million tons; industrial reserves are 58.5 million tons. 4. Stalinsk Station will use a semianthracite containing 12 to 15 percent ash and 7.7 to 12 percent volatile matter. The beds are 0.8 to 8.3 meters thick; the angle of dip ranges from 35 to 75/sup 0/. Total reserves are 287.6 million tons; reserves for gasification are 74.5 million tons. Depth from surface is 290 to 460 meters. 5. South Kuzbass Station will use hard coal that contains 4 to 19 percent ash and 8 to 15 percent volatiles. The beds are from 0.62 to 5.64 meters thick; the angle of dip ranges from 15 to 70/sup 0/. Total reserves are 156.9 million tons; industrial reserves are 105.5 million tons. The basic economic and technical figures for all five stations are listed. Capital investment costs and costs per unit of fuel are compared with those of conventional coal mines.

  19. Tasks in development of the USSR coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Bratchenko, B F

    1981-08-01

    Minister of the Soviet coal industry evaluates social and economic development plan of the Soviet coal industry from 1981 to 1985. Planned coal production should increase to 770-800 Mt, exceeding coal production in 1980 by 53 to 83 Mt. Proportion of coal mined by surface methods will further increase. Investment program concentrates on: construction of the Kansk-Achinsk fuel and energy basin, construction of the South Yakut coal basin and further development of surface mines in the Ehkibastuz basin. Proportion of coal mined in the Kuzbass will increase to 45% of the total coal output. Construction of the Kansk-Achinsk basin has the highest priority among the investment projects. Investment projects (construction of new coal mines and modernization of existing mines) in major coal basins in 1981 are analyzed. Mining machines and equipment for underground and surface black and brown coal mining are evaluated. Plans for developing new mining systems are described (e.g. narrow web coal cutter with chainless haulage system for thin and medium coal seams with drive system with power ranging from 110 to 315 kW). The following types of machines are discussed: coal cutters, shearer loaders, heading machines, belt conveyors, loaders. Selected social problems associated with manpower shortages for underground mining and for coal mines operating under extreme climatic conditions are also discussed.

  20. Coal chemistry and technology. Komur Kimyasi ve Teknolojisi

    Energy Technology Data Exchange (ETDEWEB)

    Kural, O [ed.

    1988-01-01

    The 18 chapters cover the following topics: mining in Turkey; formation, petrography and classification of coal; chemical and physical properties of coal; mechanical properties of coal; spontaneous combustion of coal and the methods of prevention; sampling of coal; coal preparation and plants; desulfurization of coal; bituminous coal and its consumption; lignite and its consumption; world coal trade and transportation; other important carbon fuels; briquetting of coal; carbonization and coking formed coke; liquefaction of coal; gasification of coal; underground gasification of coal; and combustion models, fluidized-bed combustion, furnaces. An English-Turkish coal dictionary is included. 641 refs., 244 figs., 108 tabs.

  1. Improving underground ventilation conditions in coal mines

    CSIR Research Space (South Africa)

    Meyer, CF

    1993-11-01

    Full Text Available projects could be initiated by miningtek in co-operation with different mines. This report deals with the findings of this project and also deals with the future of research within Miningtek with regard to underground ventilation....

  2. 30 CFR 780.27 - Reclamation plan: Surface mining near underground mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Reclamation plan: Surface mining near underground mining. 780.27 Section 780.27 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL...

  3. Polymers for combatting sudden outbursts in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Gadzhiev, G P; Sukhanov, V V

    1988-02-01

    Describes investigations in coal mines in the Donetsk basin (hazardous because of the high methane presence, the risk of outbursts of coal and gas, underground fires and the high dust levels) with the aim of studying the toxic emissions of formaldehyde and methanol produced when a urea formaldehyde resin binder is applied to the coal seam. The measurements taken led to the following recommendations: the amount of free formaldehyde in the binder should be limited to 0.5%; the use of concentrated (50%) solutions should be limited to 10 l per ton of coal in areas where there are geologic faults; underground workings need ventilation of at least 200 m/sup 3//min; the binder should be introduced to the borehole separately from the water and hardener; individual protection measures and wet dusting should be used during coal extraction; a period of not less than 4 months should elapse between application of the resin and commencement of coal extraction; there should be at least 80 m between the point where the binder is applied and the coal face.

  4. Reclamation of abandoned underground mines in the United Kingdom

    International Nuclear Information System (INIS)

    Brook, D.

    1994-01-01

    Since 1980, the Derelict Land Grant program has supported reclamation of abandoned mines in the United Kingdom. The stabilization of large-scale limestone mines in the West Midlands has stimulated the development of new methods of bulk infilling using waste materials as thick pastes. Colliery spoil rock paste develops strengths of 10 to 20 kPa to support roof falls and prevent crown hole collapse. Pulverized fuel ash rock paste develops strengths over 1 MPa where lateral support to pillars is required. Smaller scale mine workings in the West Midlands and elsewhere have been stabilized using conventional grouting techniques, hydraulic and pneumatic stowing, foamed-concrete infill, bulk excavation with controlled backfill, and structural support using bolts, mesh, and shotcrete

  5. A study of natural recovery in an aquatic ecosystem affected by mining: the Rodrigatos stream (El Bierzo, Leon, Spain)

    International Nuclear Information System (INIS)

    Lacal, M.; Herrero, T.; Rodriguez, V.; Alberruche, E.; Vadillo, L.

    2009-01-01

    This work takes place into the Bierzo Region, located in northeast of the province of Leon (Spain). In this area numerous open-pit and underground coal mines exist. Some of them are still in activity but almost have been abandoned. In any case, mining implies the presence of coal adits, spoil dumps, tailing dams, and coal-washing plants at the river bank. Most of them persist when mining have finished. (Author)

  6. Lightweight monitoring and control system for coal mine safety using REST style.

    Science.gov (United States)

    Cheng, Bo; Cheng, Xin; Chen, Junliang

    2015-01-01

    The complex environment of a coal mine requires the underground environment, devices and miners to be constantly monitored to ensure safe coal production. However, existing coal mines do not meet these coverage requirements because blind spots occur when using a wired network. In this paper, we develop a Web-based, lightweight remote monitoring and control platform using a wireless sensor network (WSN) with the REST style to collect temperature, humidity and methane concentration data in a coal mine using sensor nodes. This platform also collects information on personnel positions inside the mine. We implement a RESTful application programming interface (API) that provides access to underground sensors and instruments through the Web such that underground coal mine physical devices can be easily interfaced to remote monitoring and control applications. We also implement three different scenarios for Web-based, lightweight remote monitoring and control of coal mine safety and measure and analyze the system performance. Finally, we present the conclusions from this study and discuss future work. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  7. A case of slope slide induced by underground coal mining - analysis for landslide genesis in Hancheng power plant

    Energy Technology Data Exchange (ETDEWEB)

    Xun, Gu

    1988-01-01

    The Hancheng power plant landslide is a super-scale landslide, which consists of 7 landslides of various sizes. Among them the volume of No. 6 landslide is up to 10,000,000 m/sup 3/. The serious deformations and damages of power plant buildings have been caused by landslide. At present, the landslide is in a condition of slow deformation and creeping. Since the slope angle (30 degrees - 20 degrees) and dip (6 degrees - 8 degrees) of the rock formations are quite gentle, therefore, its movement should be slow all the time and no rapid slipping will occur. The characteristics of the No. 6 landslide mainly are the focus of the analysis and discussion in this paper. The landslide is transformed from the rock formation slipping of slope induced by coal mining beneath Hengshan slope. In this paper, the relationships between occurrence of the landslide and underground coal mining are analysed and proved in detail, and the problems, which should be paid attention to in harnessing the landslide, are put forward. 10 figs.

  8. Underground gasification in Russia

    Energy Technology Data Exchange (ETDEWEB)

    1956-11-21

    A paper in Pravda by the Deputy Chief Engineer of the Underground Gasification Department indicates that there are at least three or four pilot plants in operation; one plant near Moscow has operated for 14 years and one in the Donbas for 8 years. The first plant has a daily output of gas corresponding to 400 tons of coal a day and produces a gas of low calorific value. A plant opened in 1956 in the Kuzbas to produce gas of a higher quality. A plant, being built near Moscow in conjunction with a gas turbine electrical power station, will produce gas equivalent in heating value to 220,000 tons of coal a year. A larger plant, being built at Angren in central Asia, will produce gas equivalent in heating value to 700,000 tons of coal a year.

  9. Coal refuse reclamation project

    Energy Technology Data Exchange (ETDEWEB)

    Zellmer, S.D.

    1979-04-06

    A 13.8 ha abandoned coal refuse site in southwestern Illinois was reclaimed by recontouring the refuse material and covering it with a minimum 30 cm of soil. The reclamation procedure included determination of the site's final land use, collection of preconstruction environmental data, and development and implementation of engineering plans. The project is demonstrating methods that can be used to reclaim abandoned coal refuse sites, and a multidisciplinary approach is being used to evaluate postconstruction environmental and economic effects of the reclamation effort. Surface water quality has shown significant improvement and plant cover is becoming established on the site. Soil microbial populations are developing and wildlife habitats are forming. The economic value of the site and adjacent properties has increased substantially and the area's aesthetic value has been enhanced. This project is providing valuable design data for future reclamation efforts of this type.

  10. Applications of radio frequency identification systems in underground mining

    Energy Technology Data Exchange (ETDEWEB)

    Knights, P F; Kairouz, J; Daneshmend, L K; Pathak, J [McGill University, Montreal, PQ (Canada). Canadian Centre for Automation and Robotics in Mining

    1994-12-31

    The paper describes the application of Radio Frequency Identification (RFID) systems in underground hardrock mines. The operating principles and some of the applications of RDIF systems are described. The system operates by the exchange of information between transponder tags and an antenna and controller device. The suitability of RFID systems for process control, inventory control, materials handling, control of access, security, and transportation in underground coal and hardrock mines is discussed. An ore tonnage tracking system is under development that uses RDIF transponder tags to locate vehicles in an underground mine. 6 refs., 4 figs.

  11. Thermal expansion of coking coals

    Energy Technology Data Exchange (ETDEWEB)

    Orlik, M.; Klimek, J. (Vyzkumny a Zkusebni Ustav Nova Hut, Ostrava (Czechoslovakia))

    1992-12-01

    Analyzes expansion of coal mixtures in coke ovens during coking. Methods for measuring coal expansion on both a laboratory and pilot plant scale are comparatively evaluated. The method, developed, tested and patented in Poland by the Institute for Chemical Coal Processing in Zabrze (Polish standard PN-73/G-04522), is discussed. A laboratory device developed by the Institute for measuring coal expansion is characterized. Expansion of black coal from 10 underground mines in the Ostrava-Karvina coal district and from 9 coal mines in the Upper Silesia basin in Poland is comparatively evaluated. Investigations show that coal expansion reaches a maximum for coal types with a volatile matter ranging from 20 to 25%. With increasing volatile matter in coal, its expansion decreases. Coal expansion increases with increasing swelling index. Coal expansion corresponds with coal dilatation. With increasing coal density its expansion increases. Coal mixtures should be selected in such a way that their expansion does not cause a pressure exceeding 40 MPa. 11 refs.

  12. A comparison of physiological strain of carriers in underground manual coal mines in India

    Energy Technology Data Exchange (ETDEWEB)

    Saha, R.; Dey, N.C.; Samanta, A.; Biswas, R. [University College of Medical Science, Lumbini (Nepal). Dept. of Physics

    2008-07-15

    Thirty nine healthy carriers (23-57 years of age) were investigated in underground manual coal mines in West Bengal, India during two different work spells of a single work shift. We compared physiological strain of workers <40 and {ge} 40 years of age. For both groups, mean heart rate was 124-133 beats/min, with a mean corresponding relative cardiac cost of 50-66%. Maximum aerobic capacities were estimated indirectly, following a standard step test protocol. Average oxygen consumption was 1.07-1.1 l/min, with an energy expenditure of 5.35-5.5 kcal/min among both age groups. Acceptable levels of physiological strain were well encroached, and older workers faced the maximum burden. The tasks studied were heavy to very heavy in nature. The weight of load carriage at a spontaneously chosen speed and the prevailing environmental conditions merit serious attention. There is extreme need of ergonomic interventions in reducing the postural load and musculoskeletal discomforts in this population.

  13. Application and Development of an Environmentally Friendly Blast Hole Plug for Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Donghui Yang

    2018-01-01

    Full Text Available Drilling and blasting technology is one of the main methods for pressure relief in deep mining. The traditional method for blasting hole blockage with clay stemming has many problems, which include a large volume of transportation, excess loading time, and high labor intensity. An environmentally friendly blast hole plug was designed and developed. This method is cheap, closely blocks the hole, is quickly loaded, and is convenient for transportation. The impact test on the plug was carried out using an improved split Hopkinson pressure bar test system, and the industrial test was carried out in underground tunnel of coal mine. The tests results showed that, compared with clay stemming, the new method proposed in this paper could prolong the action time of the detonation gas, prevent premature detonation gas emissions, reduce the unit consumption of explosives, improve the utilization ratio, reduce the labor intensity of workers, and improve the effect of rock blasting with low cost of rock breaking.

  14. Gas Production Strategy of Underground Coal Gasification Based on Multiple Gas Sources

    Directory of Open Access Journals (Sweden)

    Duan Tianhong

    2014-01-01

    Full Text Available To lower stability requirement of gas production in UCG (underground coal gasification, create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  15. Disposing of coal combustion residues in inactive surface mines: Effects on water quality

    International Nuclear Information System (INIS)

    Kim, A.G.; Ackman, T.E.

    1994-01-01

    The disposal of coal combustion residues (CCR) in surface and underground coal mines can provide a stable, low-maintenance alternative to landfills, benefiting the mining and electric power industries. The material may be able to improve water quality at acid generating abandoned or reclaimed coal mine sites. Most combustion residues are alkaline, and their addition to the subsurface environment could raise the pH, limiting the propagation of pyrite oxidizing bacteria and reducing the rate of acid generation. Many of these CCR are also pozzolanic, capable of forming cementitious grouts. Grouts injected into the buried spoil may decrease its permeability and porosity, diverting water away from the pyritic material. Both mechanisms, alkaline addition and water diversion, are capable of reducing the amount of acid produced at the disposal site. The US Bureau of Mines is cooperating in a test of subsurface injection of CCR into a reclaimed surface mine. Initially, a mixture of fly ash, lime, and acid mine drainage (AMD) sludge was injected. Lime was the source of calcium for the formation of the pozzolanic grout. Changes in water quality parameters (pH, acidity, anions, and trace metals) in water samples from wells and seeps indicate a small but significant improvement after CCR injection. Changes in the concentration of heavy metals in the water flowing across the site were apparently influenced by the presence of flyash

  16. Thermal surface characteristics of coal fires 1 results of in-situ measurements

    Science.gov (United States)

    Zhang, Jianzhong; Kuenzer, Claudia

    2007-12-01

    Natural underground coal fires are fires in coal seams occurring subsurface. The fires are ignited through a process named spontaneous combustion, which occurs based on a natural reaction but is usually triggered through human interaction. Coal mining activities expose coal to the air. This leads to the exothermal oxidation of the carbon in the coal with the air's oxygen to CO 2 and - under certain circumstances - to spontaneous combustion. Coal fires occur in many countries world wide - however, currently the Chinese coal mining industry faces the biggest problems with coal fires. Coal fires destroy the valuable resource coal and furthermore lead to many environmental degradation phenomena such as the deterioration of surrounding vegetation, land subsidence and the emission of toxic gasses (CO, N 2O). They additionally contribute to the emission of green house relevant gasses such as CO 2 and CH 4 to the atmosphere. In this paper we present thermal characteristics of coal fires as measured in-situ during a field campaign to the Wuda coal fire area in south-central Inner Mongolia, China. Thermal characteristics include temperature anomaly measurements at the surface, spatial surface temperature profiles of fire areas and unaffected background areas, diurnal temperature profiles, and temperature measurements inside of coal fire induced cracks in the overlying bedrock. For all the measurements the effects of uneven solar heating through influences of slope and aspect are considered. Our findings show that coal fires result in strong or subtle thermal surface anomalies. Especially the latter can easily be influenced by heating of the surrounding background material through solar influences. Temperature variation of background rocks with different albedo, slope, aspect or vegetation cover can substantially influence the detectability of thermal anomalies. In the worst case coal fire related thermal anomalies can be completely masked by solar patterns during the daytime

  17. 30 CFR 49.30 - Requirements for small coal mines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Requirements for small coal mines. 49.30 Section 49.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.30 Requirements for small coal...

  18. 30 CFR 49.40 - Requirements for large coal mines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Requirements for large coal mines. 49.40 Section 49.40 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.40 Requirements for large coal...

  19. Wireless device for activation of an underground shock wave absorber

    Science.gov (United States)

    Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.

    2011-10-01

    The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.

  20. Recovery of oil from underground drill sites

    International Nuclear Information System (INIS)

    Streeter, W.S.; Hutchinson, T.S.; Ameri, S.; Wasson, J.A.; Aminian, K.

    1991-01-01

    This paper reports that a significant quantity of oil is left in reservoirs after conventional oil recovery techniques have been applied. In West Virginia and Pennsylvania alone, this oil has been estimated at over 4.5 billion barrels (0.72 billion m 3 ). Conventional recovery methods are already being used when applicable. But a new recovery method is needed for use in reservoirs that have been abandoned. One alternative method for recovery of the residual oil is known as oil recovery from underground drill sites. This recovery technology is a combination of proven methods and equipment from the petroleum, mining, and civil construction industries. Underground oil recovery can be an economically viable method of producing oil. This has been shown in producing fields, field tests, and feasibility, studies. Faced with decreasing domestic oil production, the petroleum industry should give serious consideration to the use of oil recovery from underground drill sites as a safe, practical, and environmentally sensitive alternative method of producing oil from many reservoirs

  1. Monitoring of Underground Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wagoner, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ramirez, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-08-31

    For efficient and responsible UCG operations, a UCG process must be monitored in the following three categories: 1) process parameters such as injection and product gas flow rates, temperature, pressure and syngas content and heating value; 2) geomechanical parameters, e.g., cavity and coal seam pressures, cavity development, subsidence and ground deformation; and 3) environmental parameters, e.g., groundwater chemistry and air quality. This report focuses on UCG monitoring with geophysical techniques that can contribute to monitoring of subsurface temperature, cavity development, burn front, subsidence and deformation.

  2. Determination of enrichment processes and the concentrations of radon in underground mines of fluorite and coal in Santa Catarina state: criteria for evaluation of radiological risks

    International Nuclear Information System (INIS)

    Santos, Carlos Eduardo Lima dos

    2008-01-01

    The inhalation of radon present in underground mines can imply in the deposition of its descendent in the lungs, which may cause harm to the lungs tissues and induce cancer. Concentration of radon not greater than 500 Bq/m3 in the environment of underground mines is considered to be acceptable internationally and concentrations above 1500 Bq/m3 require protective measures for the miners. The objectives of this research work are to determine the enrichment processes and the concentrations of radon in air, as well as the resulting doses due to the presence of this radionuclide in three underground mines of fluorite and three underground mines of coal in the State of Santa Catarina. The concentration of radon was measured employing two types of detectors of nuclear tracks (SSNTD), the LEXAN and the CR-39. This detection method consists in counting, with the help of a microscope, tracks resulting from the interaction of alpha particles with the film, due to the penetration of Rn-222 in the interior of the detector chamber and its decaying process. Contents of radium in collected samples of rocks, minerals and underground water were determined and compared with the corresponding radon concentration found in the underground air. It was observed that the coal mines showed low concentrations of radon, which can be explained by the low concentration of radium in rocks (sandstones and siltites in the footwall and hang wall) and in the coal that composes the mining environment or, yet still, due to the good ventilation system. The average dose to the workers of the coal mines was estimated as 0.7 mSv/a, value inferior to the limit of 1 mSv/a established by the Brazilian Nuclear Energy Commission (CNEN) for members of the public, and corresponding to a risk of fatal cancer after 50 years of work under this condition of 0.2%. On the other hand, the fluorite mines showed much higher concentrations of radon and superior to 1000 Bq/m3. The inefficiency of the ventilation system

  3. Selected problems of coal mining mechanization in the coal industry of Poland

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, J; Sikora, W [Politechnika Slaska, Gliwice (Poland)

    1987-01-01

    Discusses conditions for underground coal mining in Poland, types of equipment for coal cutting, mine haulage and strata control and development trends of mining technologies. In 1985, black coal output was 191.6 Mt; 85.3% came from longwall faces mined by sets of mining equipment (coal cutters, chain conveyors and powered supports). The average coal output per longwall face was 881 t/d, output per face mined by sets for mining equipment was 1,134 t/d. In 1985, 653 shearer loaders and 77 coal plows were used in Polish coal mines. Number of shearer loaders is increasing. Shearer loaders with chainless haulage system were safest and most economic. The shearer loaders were equipped with the POLTRAK chainless haulage system developed in Poland. Research programs concentrate on development of new mining equipment for thin seam mining, steep seam mining, longwall mining with hydraulic stowing, efficient strata control by powered or shield supports under conditions of increased stresses or rock burst hazards. 4 refs.

  4. Summary of coal production data

    International Nuclear Information System (INIS)

    Kuhn, E.A.

    1992-01-01

    The paper contains two tables which give data on coal production for both 1990 and 1991. The states included are: Arizona, Colorado, Montana, New Mexico, North Dakota, Texas, Utah, and Wyoming. Data on the following are given: number of active mines (total, underground, surface, and auger mines), average number of men working, man hours, total production, number of fatalities, and average value per ton of coal

  5. The largest US coal acquisition takes shape

    International Nuclear Information System (INIS)

    Carter, R.A.

    1998-01-01

    The midyear purchase of Arco's US coal properties for 1.14 billion dollars gave Arch coal, Inc. (ACI) a string of surface and underground mines stretching from Wyoming's Powder River Basin to the coalfields of central Utah. The transaction created a new entity, Arch Western Resources LLC. The article describes operations at Black Thunder and Coal Creek surface mines and SUFCO, Skyline, Dugout Canyon and West Elk longwall mines. 4 photos

  6. Effect of structural discontinuities on coal pillar strength as a basis for improving safety in the design of coal pillar systems.

    CSIR Research Space (South Africa)

    Esterhuizen, GS

    1998-12-01

    Full Text Available The stability of underground coal mines depends on the integrity of the pillars which are required to support the overlying strata. Should the pillars collapse, the safety of the persons in the workings will be threatened. The strength of a coal...

  7. Roles of Benthic Algae in the Structure, Function, and Assessment of Stream Ecosystems Affected by Acid Mine Drainage

    Science.gov (United States)

    Tens of thousands of stream kilometers around the world are degraded by a legacy of environmental impacts and acid mine drainage (AMD) caused by abandoned underground and surface mines, piles of discarded coal wastes, and tailings. Increased acidity, high concentrations of metals...

  8. In-seam seismics for coal

    Energy Technology Data Exchange (ETDEWEB)

    Saviron Cidon, L [OCICARBON, Madrid (Spain)

    1989-11-01

    The project objective is to assess the degree of applicability of in-seam seismic technology in Spanish coal mines for use as a tool to predict the presence of irregularities in coal seams. By the very nature of coal mining, a large number of in-seam seismic research results are put directly to the test by the ensuing underground operations. The statistics from this continuous process of verification in other countries show this method to be extremely successful. Indeed, the use of the method has become habitual and it is recognised as an efficient instrument for aiding the location of faults and other irregularities in coal seams. 3 figs., 2 tabs.

  9. Analysis of participation in the federally mandated coal workers' health-surveillance program

    International Nuclear Information System (INIS)

    Nickolaus, M.E.

    1987-01-01

    The Federal Coal Mine Health and Safety Act of 1969 required that periodic chest radiographs be offered to underground coal miners to protect the miners from the development of Coal Workers' Pneumoconiosis (CWP) and progression of the disease to progressive massive fibrosis (PMF). These examinations are administered by the National Institute for Occupational Safety and Health (NIOSH) through the Coal Workers' Health Surveillance Program (CWHSP). This study developed rates of participation for each of 558 West Virginia underground coal mines who submitted or had NIOSH assigned plans for making chest radiographs available during the third round, July 1978 through December 1980. These rates were analyzed in relation to desired levels of participation and to reinforcing, predisposing and enabling factors presumed to affect rates of participation in disease prevention and surveillance programs

  10. Colour and toxic characteristics of metakaolinite-hematite pigment for integrally coloured concrete, prepared from iron oxide recovered from a water treatment plant of an abandoned coal mine

    Science.gov (United States)

    Sadasivam, Sivachidambaram; Thomas, Hywel Rhys

    2016-07-01

    A metakaolinite-hematite (KH) red pigment was prepared using an ocherous iron oxide sludge recovered from a water treatment plant of an abandoned coal mine. The KH pigment was prepared by heating the kaolinite and the iron oxide sludge at kaolinite's dehydroxylation temperature. Both the raw sludge and the KH specimen were characterised for their colour properties and toxic characteristics. The KH specimen could serve as a pigment for integrally coloured concrete and offers a potential use for the large volumes of the iron oxide sludge collected from mine water treatment plants.

  11. Radon in an underground excavation site in Helsinki

    International Nuclear Information System (INIS)

    Venelampi, E.

    2004-01-01

    The paper reports on radon measurements and actions taken in a large underground excavation site in Helsinki, where a coal store was excavated underneath an existing power plant. The measurements were carried out by taking grab samples using Lucas type scintillation cells. Large variations in radon concentrations were observed during the three-year study. The reasons for variations are discussed and recommendations are given for radon monitoring procedures in underground excavation sites. The importance of ventilation to reduce the radon level is stressed. (P.A.)

  12. Analysis and Optimization of Entry Stability in Underground Longwall Mining

    Directory of Open Access Journals (Sweden)

    Yubing Gao

    2017-11-01

    Full Text Available For sustainable utilization of limited coal resources, it is important to increase the coal recovery rate and reduce mine accidents, especially those occurring in the entry (gateroad. Entry stabilities are vital for ventilation, transportation and other essential services in underground coal mining. In the present study, a finite difference model was built to investigate stress evolutions around the entry, and true triaxial tests were carried out at the laboratory to explore entry wall stabilities under different mining conditions. The modeling and experimental results indicated that a wide coal pillar was favorable for entry stabilities, but oversize pillars caused a serious waste of coal resources. As the width of the entry wall decreased, the integrated vertical stress, induced by two adjacent mining panels, coupled with each other and experienced an increase on the entry wall, which inevitably weakened the stability of the entry. Therefore, mining with coal pillars always involves a tradeoff between economy and safety. To address this problem, an innovative non-pillar mining technique by optimizing the entry surrounding structures was proposed. Numerical simulation showed that the deformation of the entry roof decreased by approximately 66% after adopting the new approach, compared with that using the conventional mining method. Field monitoring indicated that the stress condition of the entry was significantly improved and the average roof pressure decreased by appropriately 60.33% after adopting the new technique. This work provides an economical and effective approach to achieve sustainable exploitation of underground coal resources.

  13. Test of the drainage installation for coal in the underground; Ensayo de Instalacion Desaguadora de Interior para Carbon Bruto

    Energy Technology Data Exchange (ETDEWEB)

    1999-09-01

    The Sociedad Anonima Hullera Vasco-Leonesa (HVL) is working in Pastora Coal Bassin, near the village called Santa Lucia in Leon (Spain). As a whole, the with very changeable amounts of water. The coal is evacuated from the working place by a system consisting of panzers, channels and conveyor belts, with a water content which is sometimes inadequate for the system itself. Based on that system a wet coal treatment test was carried out on a drainage sieve, to separate the biggest amount of water. The rejected material coming from the sieve passed directly to the evacuation panzer and the gathered water was separated with the help of a cyclone, where the overflow (clear water) was pumped out and the under flow (ultra refined coal grains) was carried to the panzer. Some basic conclusions have been found as a result from the test: The performance of the sieve and the obtained results on the moisture of the product must be estimated as acceptable within the previsions of the project. The separation capacity of the cyclone reached a reasonable value, about 70%, although it had a low thickening factor. The working regularity of the cyclone was almost non-existent, as the supply (flow and concentration) was too heterogeneous. The mining functioning of the installation did not fulfill the previsions of the project. To conclude it must be stated that the complexity of the underground level and the regulation difficulties of the sieves seem out of proportion for the drainage aim of the project which, as a whole, can be defined as a non-satisfactory result. (Author)

  14. Black coal. Australian statistics for 1984-85

    Energy Technology Data Exchange (ETDEWEB)

    1986-06-01

    According to the Joint Coal Board, production of raw black coal in Australia in 1984-85 was 145,137,000 tonnes - 12.1% more than in 1983-84. Saleable coal production was 118,261,000 tonnes, 12% more than the previous year. Raw coal production from open cut mines rose by 20.3% to 96,523,000 tonnes, whilst underground mine production fell by 1.1% to 48,614,000 tonnes. As in the previous year, the growth in coal production was the result of further strong expansion of exports of both metallurgical and steaming coals. Significant production increases were achieved for the year in both coal exporting states: New South Wales and Queensland.

  15. An investigation into radiation exposures in underground non-uranium mines in Western Australia

    International Nuclear Information System (INIS)

    Hewson, G.S.; Ralph, M.I.

    1994-01-01

    A preliminary investigation into the radiological conditions in underground non-uranium mines in Western Australia has been undertaken. Measurements of radon concentration by passive track etch monitors and absorbed gamma dose-rate by thermoluminescent dosimetry were undertaken in 27 mines. These mines employed 2173 workers which represented nearly 80% of the underground workforce at the time of the survey. Radon progeny concentration by both grab sampling and automatic devices were undertaken at selected mines. Radiological conditions in all surveyed underground workplaces were such that it was estimated that most underground workers should not exceed an annual effective dose of 5 mSv. The average annual effective dose across all mines was estimated to be 1.4±1.0 mSv, ranging from 0.4 mSv for a nickel mine to 4.2 mSv for a coal mine. Radon progeny exposure contributed approximately 70% of the total effective dose. The estimated average annual effective dose in three coal mines (employing 297 workers) was 2.9±1.5 mSv. On the basis of this preliminary investigation it was concluded that no regulatory controls are specifically required to limit radiation exposures in Western Australian underground mines. (author)

  16. Seventh symposium on coal mine drainage research. NCA/BCR coal conference and Expo IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Seventh Symposium on Coal Mine Drainage Research, sponsored by the National Coal Association and Bituminous Coal Research, Inc., was held at the Kentucky Fair and Exposition Center, Louisville, Kentucky, October 18-20, 1977. Seventeen papers from the proceedings have been entered individually into EDB and ERA. Topics covered include chemical reactions of pyrite oxidation and acid formation in spoil banks, abandoned mines, etc., formation of small acid lakes from the drainage and their neutralization by natural and other neutralization measures, trace elements in acid mine drainage, ground water contamination, limnology, effects of surface mined ground reclamation and neutralization, water purification and treatment, mining and coal preparation plant waste disposal, ash and fly ash disposal (to minimize leaching from the wastes), runoff from large coal storage stockpiles during storms (prevention of environmental effects by collection and neutralization by passing through an ash pond). (LTN)

  17. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  18. Evaluation of ecological consequences of coal mine closure in Kuzbass coal region

    International Nuclear Information System (INIS)

    Schastlivcev, E.L.; Barannic, L.P.; Ovdenko, B.I.; Bykov, A.A.

    2000-01-01

    Kemerovo region (otherwise called Kuzbass) is the most industrially developed and urbanized region of Siberia, Russia. The main industrial branch of Kuzbass is coal output. Open pits and underground mines of Kuzbass produce about 40% of total amount of coal in Russia and more than 70% of coking coal. In the current process of the coal industry's restructuring, the closing of many unprofitable coal enterprises is associated with radical changes in their influence on the environment. The task to provide a probable forecast of ecological consequence of mine closure is both practically significant and complicated. In order to find some scientific approach to solve named problem the authors made in the paper the first attempts to analyze of accessible closed mines data in Kuzbass, to classify coal mines (working and closed) with respect to there negative influence on soil, water and atmosphere and to obtain some numerical estimates of possible bounds of this influence. 7 refs

  19. 30 CFR 75.1106 - Welding, cutting, or soldering with arc or flame underground.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, or soldering with arc or... Protection § 75.1106 Welding, cutting, or soldering with arc or flame underground. [Statutory Provisions] All welding, cutting, or soldering with arc or flame in all underground areas of a coal mine shall, whenever...

  20. Environmental impact assessment for steeply dipping coal beds: North Knobs site

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-08

    The US Department of Energy is funding an underground coal gasification (UCG) project in steeply dipping coal beds (SDB), at North Knobs, about 8 miles west of Rawlins, Carbon County, Wyoming. The project is being conducted to determine the technical, economic and environmental viability of such a technology. The development of SDB is an interesting target for UCG since such beds contain coals not normally mineable economically by ordinary techniques. Although the underground gasification of SDB has not been attempted in the US, Soviet experience and theoretical work indicate that the gasification of SDB in place offers all the advantages of underground gasification of horizontal coal seams plus some unique characteristics. The steep angle of dip helps to channel the produced gases up dip to offtake holes and permits the ash and rubble to fall away from the reaction zone helping to mitigate the blocking of the reaction zone in swelling coals. The intersection of SDB with the surface makes the seam accessible for drilling and other preparation. The tests at the North Knobs site will consist of three tests, lasting 20, 80 and 80 days, respectively. A total of 9590 tons of coal is expected to be gasified, with surface facilities utilizing 15 acres of the total section of land. The environmental effects of the experiment are expected to be very small. The key environmental impact is potential groundwater contamination by reaction products from coal gasification. There is good evidence that the surrounding coal effectively blocks the migration of these contaminants.

  1. Costs of abandoned coal mine reclamation and associated recreation benefits in Ohio.

    Science.gov (United States)

    Mishra, Shruti K; Hitzhusen, Frederick J; Sohngen, Brent L; Guldmann, Jean-Michel

    2012-06-15

    Two hundred years of coal mining in Ohio have degraded land and water resources, imposing social costs on its citizens. An interdisciplinary approach employing hydrology, geographic information systems, and a recreation visitation function model, is used to estimate the damages from upstream coal mining to lakes in Ohio. The estimated recreational damages to five of the coal-mining-impacted lakes, using dissolved sulfate as coal-mining-impact indicator, amount to $21 Million per year. Post-reclamation recreational benefits from reducing sulfate concentrations by 6.5% and 15% in the five impacted lakes were estimated to range from $1.89 to $4.92 Million per year, with a net present value ranging from $14.56 Million to $37.79 Million. A benefit costs analysis (BCA) of recreational benefits and coal mine reclamation costs provides some evidence for potential Pareto improvement by investing limited resources in reclamation projects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Identifying sources of respirable quartz and silica dust in underground coal mines in southern West Virginia, western Virginia, and eastern Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Schatzel, Steven J. [National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory, 626 Cochrans Mill Road, PO Box 18070, Pittsburgh, PA 15236 (United States)

    2009-04-01

    Prior research has suggested that the source of respirable silica dust in underground coal mines is typically the immediate top or bottom lithology adjacent to the mined seam, not mineral matter bound within the mined coal bed. Geochemical analyses were applied in an effort to identify the specific source rock of respirable quartz dust in coal mines. The analyses also demonstrate the compositional changes that take place in the generation of the respirable dust fraction from parent rock material. All six mine sites were mining coal with relatively low mineral matter content, although two mines were operating in the Fire Clay coal bed which contains a persistent tonstein. Interpretations of Ca, Mg, Mn, Na, and K concentrations strongly suggest that the top strata above the mined seam is the primary source of mineral dust produced during mining. One site indicates a mixed or bottom source, possibly due to site specific conditions. Respirable dust compositional analyses suggest a direct relationship between the quantity of mineral Si and the quantity of quartz Si. A similar relationship was not found in either the top or bottom rocks adjacent to the mined seam. An apparent loss of elemental Al was noted in the respirable dust fraction when compared to potential parent rock sources. Elemental Al is present in top and bottom rock strata within illite, kaolinite, feldspar, and chlorite. A possible explanation for loss of Al in the respirable dust samples is the removal of clays and possibly chlorite minerals. It is expected that removal of this portion of the Al bearing mineral matter occurs during rock abrasion and dust transport prior to dust capture on the samplers. (author)

  3. Opencast coal mining and site restoration in Britain today

    Energy Technology Data Exchange (ETDEWEB)

    Whitworth, K.

    1981-05-07

    Production of opencast coal in Great Britain totalled around 13 million tons in 1980. Compared with underground coal, average profits are high and production costs low. Opencast mines thus make an important contribution to high-grade coal supply in Great Britain and to the financial situation of the National Coal Board. Former open-cast mines in Great Britain have been restored into leisure and pleasure regions that have become part of the rural scene.

  4. Methane emissions from coal mining

    International Nuclear Information System (INIS)

    Williams, A.; Mitchell, C.

    1993-01-01

    This paper outlines some of the problems associated with the prediction of levels of methane emission from underground and surface coal mines. Current knowledge of coal mining emissions sources is outlined. On the basis of this information the methodology proposed by the IPCC/OECD Programme on National Inventories is critically examined and alternatives considered. Finally, the technical options for emissions control are examined together with their feasibility. 8 refs., 6 figs., 2 tabs

  5. Development of a fire detector for underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Hemingway, M.A.; Walsh, P.T.; Hunneyball, S.R.; Williams, M.; Jobling, S.; Pell, B.; West, N.G. [Health and Safety Laboratory, Buxton (United Kingdom)

    2005-07-01

    Current fire detectors in use in UK coal mines, based on semiconductor sensors which detect gaseous products of combustion, are under-utilised, are not user-friendly, have performance limitations due to interferences and are obsolete. A joint research project was therefore instigated to develop an improved fire detector. This paper describes tests performed in an experimental mine roadway on various types of sensor. The sensors were exposed to smouldering conveyor belt, coal, wood, oil and grease, and diesel exhaust fume. A potential advanced detector is based on the combination of blue and infrared optical smoke sensors which distinguish fires and diesel exhaust from coal dust, nitric oxide or nitrogen dioxide sensors to distinguish smoulderi8ng fires form diesel exhaust, and carbon monoxide sensors for general body monitoring. 6 refs., 5 figs.

  6. Coal mine safety achievements in the USA and the contribution of NIOSH research

    Energy Technology Data Exchange (ETDEWEB)

    Esterhuizen, G.S.; Gurtunca, R.G. [NIOSH, Washington, DC (United States)

    2006-12-15

    Over the past century coal miner safety and health have seen tremendous improvements: the fatality and injury rates continue to decrease while productivity continues to increase. Many of the hazards that plagued miners in the past, such as coal bumps, methane and coal dust explosions, ground fall accidents and health issues have been significantly reduced. The contribution of NIOSH research includes products for prevention and survival of mine fires, methane control measures, design procedure for underground coal mines, methods for excavation surface controls, methods and procedures for blasting, laser usage in underground mines and prevention of electrocution from overhead power lines that have reduced accidents and injuries in underground coal mines. Health research has produced products such as the personal dust monitor, noise abating technologies and ergonomic solutions for equipment operators. Research priorities at NIOSH are set by considering surveillance statistics, stakeholder inputs and loss control principles. Future research in coal mining is directed towards respiratory diseases, noise-induced hearing loss, repetitive musculoskeletal injuries, traumatic injuries, falls of ground and mine disasters. The recent spate of accidents in coal mines resulted in the Miner Act of 2006, which includes a specific role for NIOSH in future mine safety research and development. The mine safety achievements in the USA reflect the commitment of industry, labour, government and research organizations to improving the safety of the mine worker.

  7. The risk of collapse in abandoned mine sites: the issue of data uncertainty

    Science.gov (United States)

    Longoni, Laura; Papini, Monica; Brambilla, Davide; Arosio, Diego; Zanzi, Luigi

    2016-04-01

    Ground collapses over abandoned underground mines constitute a new environmental risk in the world. The high risk associated with subsurface voids, together with lack of knowledge of the geometric and geomechanical features of mining areas, makes abandoned underground mines one of the current challenges for countries with a long mining history. In this study, a stability analysis of Montevecchia marl mine is performed in order to validate a general approach that takes into account the poor local information and the variability of the input data. The collapse risk was evaluated through a numerical approach that, starting with some simplifying assumptions, is able to provide an overview of the collapse probability. The final results is an easy-accessible-transparent summary graph that shows the collapse probability. This approach may be useful for public administrators called upon to manage this environmental risk. The approach tries to simplify this complex problem in order to achieve a roughly risk assessment, but, since it relies on just a small amount of information, any final user should be aware that a comprehensive and detailed risk scenario can be generated only through more exhaustive investigations.

  8. The risk of collapse in abandoned mine sites: the issue of data uncertainty

    Directory of Open Access Journals (Sweden)

    Longoni Laura

    2016-04-01

    Full Text Available Ground collapses over abandoned underground mines constitute a new environmental risk in the world. The high risk associated with subsurface voids, together with lack of knowledge of the geometric and geomechanical features of mining areas, makes abandoned underground mines one of the current challenges for countries with a long mining history. In this study, a stability analysis of Montevecchia marl mine is performed in order to validate a general approach that takes into account the poor local information and the variability of the input data. The collapse risk was evaluated through a numerical approach that, starting with some simplifying assumptions, is able to provide an overview of the collapse probability. The final results is an easy-accessible-transparent summary graph that shows the collapse probability. This approach may be useful for public administrators called upon to manage this environmental risk. The approach tries to simplify this complex problem in order to achieve a roughly risk assessment, but, since it relies on just a small amount of information, any final user should be aware that a comprehensive and detailed risk scenario can be generated only through more exhaustive investigations.

  9. Coal Mining vis-â-vis Agriculture in India: A Question of Sustainability

    Directory of Open Access Journals (Sweden)

    Sribas Goswami

    2015-01-01

    Full Text Available Coal mining adversely affects the eco-system as a whole. It is important to conduct suitable assessment studies to learn the potential adverse impact of mining on agriculture. In the subsequent discussions an attempt has been made to clarify the coal mining activities and its residual impact on environment and agricultural activities.The leaseholds for the underground mines are procured from the land lords who grant mining authority the right for underground coal mining. The land for houses, dwellings and the associated activities are purchased piecemeal from different sources while large portion of the surface right remained under the control of farmers and landlords. Underground mining in these areas is conducted with full responsibility of the surface protection by the operators who normally maintain pillars as the natural support to the surface features. Increasing demand for open caste mining process requires huge land. These lands sometime are acquired at the cost of cultivable land. Coal mining has direct impact over agriculture in the study region and residual impacts of mining bring far reaching consequences. The present study is explanatory in nature based on empirical facts collected from various formal sources from Coal India office. The task is to bring out the issues related to coal mining activities and their impact on vegetation and agriculture in adjoining areas in Raniganj and Jharia coalfields in India through this study.

  10. Construction and maintenance of underground mine roads

    Energy Technology Data Exchange (ETDEWEB)

    Logan, A.S.; Seedsman, R.W. [Coffey Partners International Pty. Ltd. (Australia)

    1995-12-31

    Good roads are essential in moving men and materials to and from the underground workplace. An underground coal industry funded project was recently completed on underground mine road construction and maintenance. This paper discusses practical approaches to construction and maintenance of underground mine roads using transferable civil technologies and innovative techniques. Mine pavements are generally low-cost (relative to civil roads), constructed to varying standards using locally available materials to best meet the mobility needs of the mine. Performance of pavements is thus largely dependent on the environmental conditions, quality of the available road making materials, maintenance policies and available resources. This paper explains the causes of bad roads in various underground environments. It details available management strategies, construction and water control techniques, road maintenance and vehicle considerations. It concludes that the trend to larger rubber tires mining equipment needs to be matched with construction and maintenance of high quality road surfaces. For large operations, the total cost due to poor roads may equate to in excess of $A1 million per annum. The strategies outlined in this paper provide the basis for construction and maintenance of underground mine roads to help achieve desired production targets. (author). 2 tabs., 4 figs., 7 refs.

  11. Evidence of Human Health Impacts from Uncontrolled Coal Fires in Jharia, India

    Science.gov (United States)

    Dhar, U.; Balogun, A. H.; Finkelman, R.; Chakraborty, S.; Olanipekun, O.; Shaikh, W. A.

    2017-12-01

    Uncontrolled coal fires and burning coal waste piles have been reported from dozens of countries. These fires can be caused by spontaneous combustion, sparks from machinery, lightning strikes, grass or forest fires, or intentionally. Both underground and surface coal fires mobilize potentially toxic elements such as sulfur, arsenic, selenium, fluorine, lead, and mercury as well as dangerous organic compounds such as benzene, toluene, xylene, ethylbenzene and deadly gases such as CO2 and CO. Despite the serious health problems that can be caused by uncontrolled coal fires it is rather surprising that there has been so little research and documentation of their health impacts. Underground coal fires in the Jharia region of India where more than a million people reside, have been burning for 100 years. Numerous villages exist above the underground fires exposing the residents daily to dangerous emissions. Local residents near the fire affected areas do their daily chores without concern about the intensity of nearby fires. During winter children enjoy the heat of the coal fires oblivious to the potentially harmful emissions. To determine if these uncontrolled coal fires have caused health problems we developed a brief questionnaire on general health indices and administered it to residents of the Jharia region. Sixty responses were obtained from residents of two villages, one proximal to the coal fires and one about 5 miles away from the fires. The responses were statistically analyzed using SAS 9.4. It was observed that at a significance level of 5%, villagers who lived more than 5 miles away from the fires had a 98.3% decreased odds of having undesirable health outcomes. This brief survey indicates the risk posed by underground coal fires and how it contributes to the undesirable health impacts. What remains is to determine the specific health issues, what components of the emissions cause the health problems, and what can be done to minimize these problems

  12. Study of environmental pollution and mineralogical characterization of sediment rivers from Brazilian coal mining acid drainage

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luis F.O., E-mail: felipeqma@hotmail.com [Environmental Science and Nanotechnology Department, Institute of Environmental Research and Human Development – IPADH, Capivari de Baixo, Santa Catarina (Brazil); Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Fdez- Ortiz de Vallejuelo, Silvia; Martinez-Arkarazo, Irantzu; Castro, Kepa [Department of Analytical Chemistry, University of the Basque Country (EHU/UPV), P.O. Box 644, 48080 Bilbao, Basque Country (Spain); Oliveira, Marcos L.S. [Environmental Science and Nanotechnology Department, Institute of Environmental Research and Human Development – IPADH, Capivari de Baixo, Santa Catarina (Brazil); Sampaio, Carlos H.; Brum, Irineu A.S. de [Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Metalurgia, Centro de Tecnologia, Av. Bento Gonçalves, 9500, Bairro Agronomia, CEP: 91501-970, Porto Alegre, RS (Brazil); Leão, Felipe B. de; Taffarel, Silvio R. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Madariaga, Juan M. [Department of Analytical Chemistry, University of the Basque Country (EHU/UPV), P.O. Box 644, 48080 Bilbao, Basque Country (Spain)

    2013-03-01

    Acid drainage from coal mines and metal mining is a major source of underground and surface water contamination in the world. The coal mining acid drainage (CMAD) from mine contains large amount of solids in suspension and a high content of sulphate and dissolved metals (Al, Mn, Zn, Cu, Pb, Fe, etc.) that finally are deposited in the rivers. Since this problem can persist for centuries after mine abandonment, it is necessary to apply multidisciplinary methods to determine the potential risk in a determinate area. These multidisciplinary methods must include molecular and elemental analysis and finally all information must be studied statistically. This methodology was used in the case of coal mining acid drainage from the Tubarao River (Santa Catarina, Brazil). During molecular analysis, Raman Spectroscopy, electron bean, and X-ray diffraction (XRD) have been proven very useful for the study of minerals present in sediment rivers near this CMAD. The obtained spectra allow the precise identification of the minerals as jarosite, quartz, clays, etc. The elemental analysis (Al, As, Fe, K, Na, Ba, Mg, Mn, Ti, V, Zn, Ag, Co, Li, Mo, Ni, Se, Sn, W, B, Cr, Cu, Pb and Sr) was realised by inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis (Principal Component Analysis) of these dates of concentration reveals the existence of different groups of samples with specific pollution profiles in different areas of the Tubarao River. Highlights: ► Increasing coal drainage sediments geochemical information will increase human health information in this area. ► Brazilian coal mining information will increase recuperation planning information. ► The nanominerals showed strong sorption ability to aqueous hazardous elements.

  13. Study of environmental pollution and mineralogical characterization of sediment rivers from Brazilian coal mining acid drainage

    International Nuclear Information System (INIS)

    Silva, Luis F.O.; Fdez- Ortiz de Vallejuelo, Silvia; Martinez-Arkarazo, Irantzu; Castro, Kepa; Oliveira, Marcos L.S.; Sampaio, Carlos H.; Brum, Irineu A.S. de; Leão, Felipe B. de; Taffarel, Silvio R.; Madariaga, Juan M.

    2013-01-01

    Acid drainage from coal mines and metal mining is a major source of underground and surface water contamination in the world. The coal mining acid drainage (CMAD) from mine contains large amount of solids in suspension and a high content of sulphate and dissolved metals (Al, Mn, Zn, Cu, Pb, Fe, etc.) that finally are deposited in the rivers. Since this problem can persist for centuries after mine abandonment, it is necessary to apply multidisciplinary methods to determine the potential risk in a determinate area. These multidisciplinary methods must include molecular and elemental analysis and finally all information must be studied statistically. This methodology was used in the case of coal mining acid drainage from the Tubarao River (Santa Catarina, Brazil). During molecular analysis, Raman Spectroscopy, electron bean, and X-ray diffraction (XRD) have been proven very useful for the study of minerals present in sediment rivers near this CMAD. The obtained spectra allow the precise identification of the minerals as jarosite, quartz, clays, etc. The elemental analysis (Al, As, Fe, K, Na, Ba, Mg, Mn, Ti, V, Zn, Ag, Co, Li, Mo, Ni, Se, Sn, W, B, Cr, Cu, Pb and Sr) was realised by inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis (Principal Component Analysis) of these dates of concentration reveals the existence of different groups of samples with specific pollution profiles in different areas of the Tubarao River. Highlights: ► Increasing coal drainage sediments geochemical information will increase human health information in this area. ► Brazilian coal mining information will increase recuperation planning information. ► The nanominerals showed strong sorption ability to aqueous hazardous elements

  14. Underground structure characterization using motor vehicles as passive seismic sources

    Science.gov (United States)

    Kuzma, H. A.; Liu, Y.; Zhao, Y.; Rector, J.; Vaidya, S.

    2009-12-01

    The ability to detect and characterize underground voids will be critical to the success of On-Site Inspections (OSI) as mandated by the nuclear Comprehensive Test Ban Treaty (CTBT). OSIs may be conducted in order to successfully locate the Ground Zero of underground tests as well as infrastructure related to testing. Recently, our team has shown the potential of a new technique to detect underground objects using the amplitude of seismic surface waves generated by motor vehicles. In an experiment conducted in June, 2009 we were able to detect an abandoned railroad tunnel by recognizing a clear pattern in the surface waves scattered by the tunnel, using a signal generated by driving a car on a dirt road across the tunnel. Synthetic experiments conducted using physically realistic wave-equation models further suggest that the technique can be readily applied to detecting underground features: it may be possible to image structures of importance to OSI simply by laying out an array of geophones (or using an array already in place for passive listening for event aftershocks) and driving vehicles around the site. We present evidence from a set of field experiments and from synthetic modeling and inversion studies to illustrate adaptations of the technique for OSI. Signature of an abandoned underground railroad tunnel at Donner Summit, CA. To produce this image, a line of geophones was placed along a dirt road perpendicular to the tunnel (black box) and a single car was driven along the road. A normalized mean power-spectrum is displayed on a log scale as a function of meters from the center of the tunnel. The top of the tunnel was 18m below ground surface. The tunnel anomaly is made up of a shadow (light) directly above the tunnel and amplitude build-up (dark) on either side of the tunnel. The size of the anomaly (6 orders of magnitude) suggests that the method can be extended to find deep structures at greater distances from the source and receivers.

  15. Coal, energy of the future

    International Nuclear Information System (INIS)

    Lepetit, V.; Guezel, J.Ch.

    2006-01-01

    Coal is no longer considered as a 'has been' energy source. The production and demand of coal is growing up everywhere in the world because it has some strategic and technological advantages with respect to other energy sources: cheap, abundant, available everywhere over the world, in particular in countries with no geopolitical problems, and it is independent of supplying infrastructures (pipelines, terminals). Its main drawback is its polluting impact (dusts, nitrogen and sulfur oxides, mercury and CO 2 ). The challenge is to develop clean and high efficiency coal technologies like supercritical steam power plants or combined cycle coal gasification plants with a 50% efficiency, and CO 2 capture and sequestration techniques (post-combustion, oxy-combustion, chemical loop, integrated gasification gas combined cycle (pre-combustion)). Germany, who will abandon nuclear energy by 2021, is massively investing in the construction of high efficiency coal- and lignite-fired power plants with pollution control systems (denitrification and desulfurization processes, dust precipitators). (J.S.)

  16. Human action quality evaluation based on fuzzy logic with application in underground coal mining.

    Science.gov (United States)

    Ionica, Andreea; Leba, Monica

    2015-01-01

    The work system is defined by its components, their roles and the relationships between them. Any work system gravitates around the human resource and the interdependencies between human factor and the other components of it. Researches in this field agreed that the human factor and its actions are difficult to quantify and predict. The objective of this paper is to apply a method of human actions evaluation in order to estimate possible risks and prevent possible system faults, both at human factor level and at equipment level. In order to point out the importance of the human factor influence on all the elements of the working systems we propose a fuzzy logic based methodology for quality evaluation of human actions. This methodology has a multidisciplinary character, as it gathers ideas and methods from: quality management, ergonomics, work safety and artificial intelligence. The results presented refer to a work system with a high degree of specificity, namely, underground coal mining and are valuable for human resources risk evaluation pattern. The fuzzy logic evaluation of the human actions leads to early detection of possible dangerous evolutions of the work system and alarm the persons in charge.

  17. Pilot abandonment test of a very deep gas storage salt cavern

    International Nuclear Information System (INIS)

    Durup, J.G.; Vidal, F.; Rolin, C.

    2007-01-01

    As a result of knowledge gained initially from a series of succinct sealed well and cavern field tests performed in the late 1980's and early 1990's by Gaz de France (EZ58; EZ53), issues related to the long term abandonment of salt caverns became more focused. The tests were performed in cooperation with Ecole Polytechnique (France) and were partially funded by the Solution Mining Research Institute (USA). The long-term abandonment (sealing or plugging) of a solution-mined cavern in a salt formation that has been used for mineral production, hydrocarbon storage, or waste disposal has been a contemporary topic for many years. Sealing and abandonment of caverns in salt formations differs from sealing of an oil and gas well principally for two reasons: - cavern wells are generally completed with much larger casings than oil and gas exploration and production wells; - the cavern fluid pressure rises after sealing. The first difference is not a significant deterrent to effective cavern sealing and abandonment. Essentially all of the uncertainties and complexities associated with cavern sealing and abandonment are a direct result of the second difference - the fact that the cavern fluid pressure rises through time. After a short introduction to solution mining of salt caverns and their use as underground gas storages, the paper will first discuss the factors affecting cavern fluid pressure increase after sealing. The second part of the paper will highlight the practical impacts of these factors on a deep salt cavern abandonment experiment (Cavern TE02; 1500 meters deep), currently being performed on the natural gas storage of Tersanne operated for over 35 years by Gaz de France. (authors)

  18. 30 CFR 75.1107-11 - Extinguishing agents; requirements on mining equipment employed in low coal.

    Science.gov (United States)

    2010-07-01

    ... equipment employed in low coal. 75.1107-11 Section 75.1107-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES... § 75.1107-11 Extinguishing agents; requirements on mining equipment employed in low coal. On mining...

  19. Infilling Littleton Street Mine, Wallsall, with colliery spoil rock paste

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, S.T.; Braithwaite, P.A. [Ove Arup and Partners, Birmingham (United Kingdom)

    1993-12-31

    Describes the filling of an abandoned underground mine with low strength (12-20 kPa) paste made of coal mining waste. With a volume of 550,000 m{sup 3}, it was the largest mine to be filled with rock paste to date. The abandoned mine, flooded with underground water, consists of room and pillar workings at shallow depth of 35 to 60 m. Height of the underground mine cavity varies between 4 and 8 m. The process of infilling and tests and systems for monitoring infilling completeness and strength are described. Benefits of rock paste over other forms of infilling are discussed. Land reclamation work at the source sites is also described. Mineral waste source sites and specifications of the materials are given. After work completion, about 18 ha of derelict urban land were released for redevelopment. 6 refs.

  20. Coal mining in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Mills, L J

    1981-12-01

    In 1959 black coal production in Australia totalled some 21.9 million tonnes per annum, 70% of this being produced from underground mines in the coalfields of New South Wales. By 1980 output levels had increased by nearly 350% to 75.4 million tonnes per annum (54% of which was exported) compared with 5% some 20 years earlier. Because it is blessed with large reserves of coal and other forms of energy, it is inevitable that the Australian coal mining industry will be required to play a major role in the development of the international coal market through to the end of the present century. Experts now predict a need for the black coal output in Australia to be developed from its present level to a minimum of 293 million tonnes per annum by the year 2000. This paper examines the present circumstances in the Australian coal industry and attempts to outline the development which has to be undertaken in order to meet the needs of an energy hungry world.

  1. Greening coal: breakthroughs and challenges in carbon capture and storage.

    Science.gov (United States)

    Stauffer, Philip H; Keating, Gordon N; Middleton, Richard S; Viswanathan, Hari S; Berchtold, Kathryn A; Singh, Rajinder P; Pawar, Rajesh J; Mancino, Anthony

    2011-10-15

    Like it or not, coal is here to stay, for the next few decades at least. Continued use of coal in this age of growing greenhouse gas controls will require removing carbon dioxide from the coal waste stream. We already remove toxicants such as sulfur dioxide and mercury, and the removal of CO₂ is the next step in reducing the environmental impacts of using coal as an energy source (i.e., greening coal). This paper outlines some of the complexities encountered in capturing CO₂ from coal, transporting it large distances through pipelines, and storing it safely underground.

  2. Wind versus coal: Comparing the local economic impacts of energy resource development in Appalachia

    International Nuclear Information System (INIS)

    Collins, Alan R.; Hansen, Evan; Hendryx, Michael

    2012-01-01

    Two energy development scenarios were compared for the Coal River Mountain in Raleigh County, West Virginia: (1) mountaintop mining (MTM) of coal, and (2) wind energy plus underground mining of coal. Economic impact computations over the life of each energy development scenario were made on a county basis for output of goods and services, the number of jobs created, and local earnings. Externality costs were assigned monetary values for coal mining and subtracted from earnings. Premature mortality within the general population due to additional coal mining accounted for 96% of these external cost computations. The results showed that economic output over the life of each scenario was twice as high for MTM mining as wind energy plus underground coal mining. Over the short term, employment and earnings were higher for MTM mining, but towards the end of the scenario, cumulative employment and earnings became higher under scenario (2). When local externality costs were subtracted from local earnings, MTM coal production had an overall negative net social impact on the citizens of Raleigh County. The external costs of MTM coal production provide an explanation of the existence of a “resource curse” and the conflicting results of output versus income provide insights into why coal-producing counties are underdeveloped. - Highlights: ► Mountaintop mining (MTM) was compared to wind plus underground mining. ► Economic output was twice as high for MTM. ► Employment and earnings were cumulatively higher for wind energy. ► Including local externality costs, MTM had an overall negative net social impact. ► Results provide insights into why coal-producing counties are underdeveloped.

  3. Study on the quality of site in the mining district gangue of abandoned place

    Institute of Scientific and Technical Information of China (English)

    LU Guo-bin; LI Ying; WU Xiang-yun

    2008-01-01

    Being as an example of Fuxin, gangue abandoned place was classified gangue hill and dump. It was built 68 piece of temporary standard fields, which physical and chemical character of soil were researched and analyzed. The quality of district site was estimated, and five type abandoned place were gotten. Stopping draining cash less than 7 a and draining cash gangue hill was regarded as Ⅰ gangue hill. Stopping draining gangue age limit 7-15 a and herbage abundance being CO1p level was regarded as Ⅱ gangue hill.Stopping draining gangue age limit 15~25 a and herbage abundance CO2p level was re-garded as Ⅲ gangue hill. Stopping draining cash gangue age limit over 25 a and herbage abundance CO3p level was regarded as Ⅳ gangue hill. Dump being formed the under-ground layer dug up and stacked in the course of mining was regarded asVgangue hill.The results show that every typical abandoned place can plant vegetable.

  4. Computer-aided system for fire fighting in an underground mine

    Energy Technology Data Exchange (ETDEWEB)

    Rosiek, F; Sikora, M; Urbanski, J [Politechnika Wroclawska (Poland). Instytut Gornictwa

    1989-01-01

    Discusses structure of an algorithm for computer-aided planning of fire fighting and rescue in an underground coal mine. The algorithm developed by the Mining Institute of the Wroclaw Technical University consists of ten options: regulations on fire fighting, fire alarm for miners working underground (rescue ways, fire zones etc.), information system for mine management, movements of fire fighting teams, distribution of fire fighting equipment, assessment of explosion hazards of fire gases, fire gas temperature control of blower operation, detection of endogenous fires, ventilation control. 2 refs.

  5. Underground disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-08-15

    Disposal of low- and intermediate-level radioactive wastes by shallow land burial, emplacement in suitable abandoned mines, or by deep well injection and hydraulic fracturing has been practised in various countries for many years. In recent years considerable efforts have been devoted in most countries that have nuclear power programmes to developing and evaluating appropriate disposal systems for high-level and transuranium-bearing waste, and to studying the potential for establishing repositories in geological formations underlaying their territories. The symposium, organized jointly by the IAEA and OECD's Nuclear Energy Agency in cooperation with the Geological Survey of Finland, provided an authoritative account of the status of underground disposal programmes throughout the world in 1979. It was evidence of the experience that has been gained and the comprehensive investigations that have been performed to study various options for the underground disposal of radioactive waste since the last IAEA/NEA symposium on this topic (Disposal of Radioactive Waste into the Ground) was held in 1967 in Vienna. The 10 sessions covered the following topics: National programme and general studies, Disposal of solid waste at shallow depth and in rock caverns, underground disposal of liquid waste by deep well injection and hydraulic fracturing, Disposal in salt formations, Disposal in crystalline rocks and argillaceous sediments, Thermal aspects of disposal in deep geological formations, Radionuclide migration studies, Safety assessment and regulatory aspects.

  6. The research on magnetic exploring abandoned chemical weapons by Japanese

    International Nuclear Information System (INIS)

    Wang Luoguo; Li Jingyue; Wang Zezhong

    2007-01-01

    During Word war II, a lot of chemical weapons were left by Japanese on our land. It is very difficult to explore because its complicated states underground. There is no document about the details of this. Few of the research work have been done. In order to destroy completely abandoned chemical weapons by Japanese, the paper has given a serious study on the means to explore the chemical weapons for the purpose to protect our environment and benefit our people. After plenty of research and test, we get good results. (authors)

  7. Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA.

    Science.gov (United States)

    Engle, Mark A; Radke, Lawrence F; Heffern, Edward L; O'Keefe, Jennifer M K; Hower, James C; Smeltzer, Charles D; Hower, Judith M; Olea, Ricardo A; Eatwell, Robert J; Blake, Donald R; Emsbo-Mattingly, Stephen D; Stout, Scott A; Queen, Gerald; Aggen, Kerry L; Kolker, Allan; Prakash, Anupma; Henke, Kevin R; Stracher, Glenn B; Schroeder, Paul A; Román-Colón, Yomayra; ter Schure, Arnout

    2012-03-15

    Ground-based surveys of three coal fires and airborne surveys of two of the fires were conducted near Sheridan, Wyoming. The fires occur in natural outcrops and in abandoned mines, all containing Paleocene-age subbituminous coals. Diffuse (carbon dioxide (CO(2)) only) and vent (CO(2), carbon monoxide (CO), methane, hydrogen sulfide (H(2)S), and elemental mercury) emission estimates were made for each of the fires. Additionally, gas samples were collected for volatile organic compound (VOC) analysis and showed a large range in variation between vents. The fires produce locally dangerous levels of CO, CO(2), H(2)S, and benzene, among other gases. At one fire in an abandoned coal mine, trends in gas and tar composition followed a change in topography. Total CO(2) fluxes for the fires from airborne, ground-based, and rate of fire advancement estimates ranged from 0.9 to 780mg/s/m(2) and are comparable to other coal fires worldwide. Samples of tar and coal-fire minerals collected from the mouth of vents provided insight into the behavior and formation of the coal fires. Published by Elsevier B.V.

  8. Automated Coal-Mine Shuttle Car

    Science.gov (United States)

    Collins, E. R., Jr.

    1984-01-01

    Cable-guided car increases efficiency in underground coal mines. Unmanned vehicle contains storage batteries in side panels for driving traction motors located in wheels. Batteries recharged during inactive periods or slid out as unit and replaced by fresh battery bank. Onboard generator charges batteries as car operates.

  9. Water management issues in the underground gasification of coal and the subsequent use of the voids for long-term carbon dioxide storage

    Energy Technology Data Exchange (ETDEWEB)

    Younger, P.L. [Newcastle Univ., Newcastle Upon Tyne (United Kingdom). Newcastle Inst. for Research on Sustainability; Gonzalez, G. [Newcastle Univ., Newcastle Upon Tyne (United Kingdom). Sir Joseph Swan Inst. for Energy Research; Amezaga, J.M. [Newcastle Univ., Newcastle Upon Tyne (United Kingdom). School of Civil Engineering and Geosciences, Hydrogeochemical Engineering Research and Outreach

    2010-07-01

    A coupled underground coal gasification (UCG) and carbon capture and storage (CCS) technology was discussed. The technologies can be coupled so that voids created by mining can be uses as carbon dioxide (CO{sub 2}) storage sites. UCG involves the in-situ gasification of coal using directionally-drilled wells. The gasification is achieved by spontaneous combustion initiated by the injection of steam and oxygen. The rate of UCG is controlled by varying the availability of oxygen. The syngas produced during the process is drawn to the surface via neighbouring production boreholes where it can then be transported by pipeline for use in range of applications. Voids created by the UCG process will collapse, leaving high permeability zones isolated from the surface by low permeability superincumbent strata. The UCG goaf and relaxed roof strata will have permeabilities 1 to 3 orders of magnitude greater than the permeabilities of deep saline aquifers or hydrocarbon reservoirs. The void volume needed to store the CO{sub 2} produced from the syngas can be 4 or 5 times the volume occupied by the extracted coal. Risks for groundwater arising from UCG are groundwater depletion, contamination, and gas leakage. Prudent site selection and the use of an effective risk assessment framework are needed to ensure the successful implementation of UCG-CCS processes. 11 refs., 2 figs.

  10. Characteristics of coal mine ventilation air flows.

    Science.gov (United States)

    Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng

    2008-01-01

    Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.

  11. Immediate assessment of in situ gas content using underground manometric desorbometer

    Energy Technology Data Exchange (ETDEWEB)

    Lunaezewski, L.W.; Mahoney, M.R. [Lunagas Pty. Ltd., Newcastle, NSW (Australia)

    1995-12-31

    An underground assessment of gas content (within 30 minutes) can be used as a complementary method for the immediate establishment of the magnitudes of in situ gas content at a distance of 5 to 6 metres ahead of a heading face. The indirect method of in situ gas content measurement, using a manometric desorbometer, can be used to establish the direct relationship between underground desorbometer readings and corresponding in situ gas content values for a selected coal seam. 3 refs., 3 figs.

  12. No Increased Risk of Cancer after Coal Tar Treatment in Patients with Psoriasis or Eczema

    NARCIS (Netherlands)

    Roelofzen, Judith H. J.; Aben, Katja K. H.; Oldenhof, Ursula T. H.; Coenraads, Pieter-Jan; Alkemade, Hans A.; van de Kerkhof, Peter C. M.; van der Valk, Pieter G. M.; Kiemeney, Lambertus A. L. M.

    Coal tar is an effective treatment for psoriasis and eczema, but it contains several carcinogenic compounds. Occupational and animal studies have shown an increased risk of cancer after exposure to coal tar. Many dermatologists have abandoned this treatment for safety reasons, although the risk of

  13. Application of fractal theory to top-coal caving

    International Nuclear Information System (INIS)

    Xie, H.; Zhou, H.W.

    2008-01-01

    The experiences of underground coal mining in China show that coal in a thick hard coal seam with a hard roof, the so-called 'double hard coal seam', is difficult to be excavated by top-coal caving technique. In order to solve the problem, a top-coal weakening technique is proposed in this paper. In the present study, fractal geometry provides a new description of the fracture mechanism for blasting. By means of theoretical analysis of the relationship between the fractal dimension of blasting fragments and the dynamite specific energy, a mechanical model for describing the size distribution of top-coal and the dissipation of blasting energy is proposed. The theoretical results are in agreement with laboratory and in situ test results. Moreover, it is shown that the fractal dimension of coal fragments can be used as an index for optimizing the blasting parameters for a top-coal weakening technique

  14. Determination of Kinetic Parameters of Coal Pyrolysis to Simulate the Process of Underground Coal Gasification (UCG

    Directory of Open Access Journals (Sweden)

    Beata Urych

    2014-01-01

    Originality/value: The devolatilization of a homogenous lump of coal is a complex issue. Currently, the CFD technique (Computational Fluid Dynamics is commonly used for the multi-dimensional and multiphase phenomena modelling. The mathematical models, describing the kinetics of the decomposition of coal, proposed in the article can, therefore, be an integral part of models based on numerical fluid mechanics.

  15. Determining the friction factors for underground colliery bord and pillar workings

    CSIR Research Space (South Africa)

    Meyer, CF

    1998-05-01

    Full Text Available This project was mainly proposed to make available, to the coal mining industry a set of default friction values that could be used with more confidence in network simulation programs, during the project use was made of both underground...

  16. What differences does age make? Coal mining injuries

    Energy Technology Data Exchange (ETDEWEB)

    Mallett, L.; Schwerha, D.J. [National Institute for Occupational Safety and Health, Pittsburgh, PA (United States). Research Laboratory

    2007-02-15

    The US Bureau of Labor Statistics says that in 2002 the coal mine workforce in the USA had a higher medium age than the workforce in any other sector of mining. Many older miners are part of the generation group known as Baby Boomers. The article gives figures for injuries received in underground coal mining, surface coal mining and coal preparation plant workers, analysed by age groups (Nexters, {lt}22; Generation Xers, 22-41; Baby Boomers, 42-59; Veterans, 60 and above), and also by job title. In all generation groups, more injuries were recorded in miners with less than two years experience. 4 refs., 3 tabs., 6 charts.

  17. Models for electromagnetic coupling of lightning onto multiconductor cables in underground cavities

    Science.gov (United States)

    Higgins, Matthew Benjamin

    This dissertation documents the measurements, analytical modeling, and numerical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy onto multiconductor cables in an underground cavity. Measurements were performed at the Sago coal mine located near Buckhannon, WV. These transfer functions, coupled with mathematical representations of lightning strokes, are then used to predict electric fields within the mine and induced voltages on a cable that was left abandoned in the sealed area of the Sago mine. If voltages reached high enough levels, electrical arcing could have occurred from the abandoned cable. Electrical arcing is known to be an effective ignition source for explosive gas mixtures. Two coupling mechanisms were measured: direct and indirect drive. Direct coupling results from the injection or induction of lightning current onto metallic conductors such as the conveyors, rails, trolley communications cable, and AC power shields that connect from the outside of the mine to locations deep within the mine. Indirect coupling results from electromagnetic field propagation through the earth as a result of a cloud-to-ground lightning stroke or a long, low-altitude horizontal current channel from a cloud-to-ground stroke. Unlike direct coupling, indirect coupling does not require metallic conductors in a continuous path from the surface to areas internal to the mine. Results from the indirect coupling measurements and analysis are of great concern. The field measurements, modeling, and analysis indicate that significant energy can be coupled directly into the sealed area of the mine. Due to the relatively low frequency content of lightning (extremely well with analytical and computational models developed for the Sago site which take into account measured soil properties.

  18. Detection of abandoned mines/caves using airborne LWIR hyperspectral data

    Science.gov (United States)

    Shen, Sylvia S.; Roettiger, Kurt A.

    2012-09-01

    The detection of underground structures, both natural and man-made, continues to be an important requirement in both the military/intelligence and civil communities. There are estimates that as many as 70,000 abandoned mines/caves exist across the nation. These mines represent significant hazards to public health and safety, and they are of concern to Government agencies at the local, state, and federal levels. NASA is interested in the detection of caves on Mars and the Moon in anticipation of future manned space missions. And, the military/ intelligence community is interested in detecting caves, mines, and other underground structures that may be used to conceal the production of weapons of mass destruction or to harbor insurgents or other persons of interest by the terrorists. Locating these mines/caves scattered over millions of square miles is an enormous task, and limited resources necessitate the development of an efficient and effective broad area search strategy using remote sensing technologies. This paper describes an internally-funded research project of The Aerospace Corporation (Aerospace) to assess the feasibility of using airborne hyperspectral data to detect abandoned cave/mine entrances in a broad-area search application. In this research, we have demonstrated the potential utility of using thermal contrast between the cave/mine entrance and the ambient environment as a discriminatory signature. We have also demonstrated the use of a water vapor absorption line at12.55 μm and a quartz absorption feature at 9.25 μm as discriminatory signatures. Further work is required to assess the broader applicability of these signatures.

  19. Pathological study of the prevalence of silicosis among coal miners in Iran: A case history

    Science.gov (United States)

    Zare Naghadehi, Masoud; Sereshki, Farhang; Mohammadi, F.

    2014-02-01

    One of the most hazardous diseases that is commonly associated with the coal mining industry is Silicosis which caused by dust inhalation. This disease occurs as a result of prolonged breathing of dust containing silica (quartz). The generation of coal mine dust during underground and surface coal mining is the most significant source of coal dust exposure. Silica dust develops scar tissue inside the lungs which reduces the lungs ability to extract oxygen from the air. All miners working in underground and surface coal mines are at risk of being exposed to mine dust containing silica. In this study, cases with pathologic diagnosis of silicosis during seven years period between 2000 and 2007 were retrieved, from the pathologic file of Department of Pathology, Massih Daneshvary Hospital in Iran. Results of this case study showed the great effects of dust exposure and inhalation from the viewpoint of symptoms especially between the miners.

  20. Changing organizational structures and management systems in coal industry with special consideration of the economic sphere. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Szaflik, J.

    1985-01-01

    Organizational models are analyzed for underground black coal mining in Poland from 1945 to 1984. From 1945 to 1949 organizational model of coal mining was based on selected solutions successfully tested in pre-war Poland. Coal mining was supervised by the Central Board of the Coal Industry. Coal mines were grouped in 8 and later in 10 mine associations. In 1949 the Central Board was dissolved and replaced by the Ministry of Mining and Power Generation. Role of Mine Associations was modified. Further changes were introduced in 1957. Power of Mine Associations in relation to individual coal mines increased. From 1972 to 1975 plans for a structural reform in the coal industry were developed but never realized. From 1980 to 1981 a program of structural changes in management of coal industry (in particular, underground coal mining) was developed. From 1982 to 1984 provisions of the economic reform in relation to coal mines were temporarily suspended. In 1984 a new organizational structure of the coal industry was introduced. The structure is similar to traditional structures used in previous decades (stronger position of mine associations, which since 1984 have been called Mine Unions, etc.). 9 references.

  1. Experience and prospects of using the pneumatic designs in underground mining

    Energy Technology Data Exchange (ETDEWEB)

    Rakhutin, V.S. [National Mining University of Ukraine, Dnipropetrovsk (Ukraine)

    1999-07-01

    The article reviews the experience of application of pneumatic designs ('flexible shells') in coal mines (pneumatic cogs and supports), ore mines (pneumatic cofferdams and partitions in filling), and in the construction of mines and underground constructions (pneumatic casings, temporary (pilot) supports). 2 refs.

  2. Biogeochemical interactions between of coal mine water and gas well cement

    Science.gov (United States)

    Gulliver, D. M.; Gardiner, J. B.; Kutchko, B. G.; Hakala, A.; Spaulding, R.; Tkach, M. K.; Ross, D.

    2017-12-01

    Unconventional natural gas wells drilled in Northern Appalachia often pass through abandoned coal mines before reaching the Marcellus or Utica formations. Biogeochemical interactions between coal mine waters and gas well cements have the potential to alter the cement and compromise its sealing integrity. This study investigates the mineralogical, geochemical, and microbial changes of cement cores exposed to natural coal mine waters. Static reactors with Class H Portland cement cores and water samples from an abandoned bituminous Pittsburgh coal mine simulated the cement-fluid interactions at relevant temperature for time periods of 1, 2, 4, and 6 weeks. Fluids were analyzed for cation and anion concentrations and extracted DNA was analyzed by 16S rRNA gene sequencing and shotgun sequencing. Cement core material was evaluated via scanning electron microscope. Results suggest that the sampled coal mine water altered the permeability and matrix mineralogy of the cement cores. Scanning electron microscope images display an increase in mineral precipitates inside the cement matrix over the course of the experiment. Chemistry results from the reaction vessels' effluent waters display decreases in dissolved calcium, iron, silica, chloride, and sulfate. The microbial community decreased in diversity over the 6-week experiment, with Hydrogenophaga emerging as dominant. These results provide insight in the complex microbial-fluid-mineral interactions of these environments. This study begins to characterize the rarely documented biogeochemical impacts that coal waters may have on unconventional gas well integrity.

  3. 10th international conference on ground control in mining - proceedings

    International Nuclear Information System (INIS)

    Peng, S.S.

    1991-01-01

    36 papers are presented covering topics that include longwall pillar design, assessment of underground structural design, load and convergence measurements in longwall faces, shield strata interaction, longwall shield recovery, roof control in longwall mining, anchor resin system, thrust bolting, roof bolts, cable slings, roof support in retreat mining, coal bump prediction, delineation of abandoned workings, stability of coal mine openings, mining under rivers, rock strength determination, subsidence prediction and measurement, drag picks, measuring roof convergence, and finite element modelling of subsidence

  4. Underground nuclear power station using self-regulating heat-pipe controlled reactors

    International Nuclear Information System (INIS)

    Hampel, V.E.

    1989-01-01

    The author presents a nuclear reactor for generating electricity disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor

  5. Underground nuclear power station using self-regulating heat-pipe controlled reactors

    Science.gov (United States)

    Hampel, Viktor E.

    1989-01-01

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

  6. Protective and control relays as coal-mine power-supply ACS subsystem

    Science.gov (United States)

    Kostin, V. N.; Minakova, T. E.

    2017-10-01

    The paper presents instantaneous selective short-circuit protection for the cabling of the underground part of a coal mine and central control algorithms as a Coal-Mine Power-Supply ACS Subsystem. In order to improve the reliability of electricity supply and reduce the mining equipment down-time, a dual channel relay protection and central control system is proposed as a subsystem of the coal-mine power-supply automated control system (PS ACS).

  7. 77 FR 26046 - Proposed Extension of Existing Information Collection; Ground Control for Surface Coal Mines and...

    Science.gov (United States)

    2012-05-02

    ... Extension of Existing Information Collection; Ground Control for Surface Coal Mines and Surface Work Areas of Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Request for... inspections and investigations in coal or other mines shall be made each year for the purposes of, among other...

  8. Causes of coal degradation at working faces

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1985-01-01

    Coal comminution by shearer loaders at working faces and factors influencing it are analyzed. Three groups of factors are evaluated: coal mechanical properties, design and specifications of shearer loaders and mining schemes. On the basis of analyses, recommendations for increasing proportion of coarse coal and reducing coal comminution in underground coal mines in Poland are made. Increasing output of coarse coal in coal seams with a high proportion of dull coal is most economic. Increasing power of drive systems for shearer loaders to 500 kW or more decisively influences grain size distribution of coal and increases proportion of coarse coal, especially in seams of dull coal. Gradually increasing cutting depth of a shearer loader negatively influences haulage speed and coarse coal output. Replacing gradual cutting depth increase by attack at the full cutting depth increases proportion of coarse coal. When medium or thick coal seams are mined a coal bench from 0.3 to 0.5 m thick should be left in the roof or between 2 benches cut by 2 cutting drums. The coal bench left in the face disintegrates under the influence of gravity and the proportion of coarse coal increases. Optimizing yield strength of powered supports at a working face is a further method for improving grain size distribution of coal and increasing proportion of coarse coal. 2 references.

  9. Water budgets and groundwater volumes for abandoned underground mines in the Western Middle Anthracite Coalfield, Schuylkill, Columbia, and Northumberland Counties, Pennsylvania-Preliminary estimates with identification of data needs

    Science.gov (United States)

    Goode, Daniel J.; Cravotta,, Charles A.; Hornberger, Roger J.; Hewitt, Michael A.; Hughes, Robert E.; Koury, Daniel J.; Eicholtz, Lee W.

    2011-01-01

    This report, prepared in cooperation with the Pennsylvania Department of Environmental Protection (PaDEP), the Eastern Pennsylvania Coalition for Abandoned Mine Reclamation, and the Dauphin County Conservation District, provides estimates of water budgets and groundwater volumes stored in abandoned underground mines in the Western Middle Anthracite Coalfield, which encompasses an area of 120 square miles in eastern Pennsylvania. The estimates are based on preliminary simulations using a groundwater-flow model and an associated geographic information system that integrates data on the mining features, hydrogeology, and streamflow in the study area. The Mahanoy and Shamokin Creek Basins were the focus of the study because these basins exhibit extensive hydrologic effects and water-quality degradation from the abandoned mines in their headwaters in the Western Middle Anthracite Coalfield. Proposed groundwater withdrawals from the flooded parts of the mines and stream-channel modifications in selected areas have the potential for altering the distribution of groundwater and the interaction between the groundwater and streams in the area. Preliminary three-dimensional, steady-state simulations of groundwater flow by the use of MODFLOW are presented to summarize information on the exchange of groundwater among adjacent mines and to help guide the management of ongoing data collection, reclamation activities, and water-use planning. The conceptual model includes high-permeability mine voids that are connected vertically and horizontally within multicolliery units (MCUs). MCUs were identified on the basis of mine maps, locations of mine discharges, and groundwater levels in the mines measured by PaDEP. The locations and integrity of mine barriers were determined from mine maps and groundwater levels. The permeability of intact barriers is low, reflecting the hydraulic characteristics of unmined host rock and coal. A steady-state model was calibrated to measured groundwater

  10. Utilization of stable isotopes for characterizing an underground gas generator

    International Nuclear Information System (INIS)

    Pirard, J.P.; Antenucci, D.; Renard, X.; Letolle, R.

    1994-01-01

    The principles of isotopic exchange and isotope ratio result interpretation are first reviewed; then, in the framework of an underground coal gasification project in Belgium, experiments and modelling of the underground gas generator have been carried out: isotopic abundances of carbon, hydrogen and oxygen have been measured in the gasifying agent (O 2 , H 2 O) and in the effluent (CO 2 , CO, H 2 , H 2 O, CH 4 , O 2 , heavy oils and various organic and mineral substances). Gasification kinetics and temperatures have been evaluated and isotope application to thermometry is discussed. 1 fig., 9 refs

  11. Growth and elemental content of two tree species growing on abandoned coal fly ash basins

    International Nuclear Information System (INIS)

    Carlson, C.L.; Adriano, D.C.

    1991-01-01

    Differences in aboveground tissue concentrations of trace elements were assessed for sweetgum (Liquidambar styraciflua L.) and sycamore (Plantanus occidentalis L.) growing on two abandoned coal fly ash basins and a control soil. The wet basin (pH = 5.58) had originally received precipitator ash in an ash-water slurry, while the dry basin (pH = 8.26) had received both precipitator and bottom ash in dry form. In general, trees from the wet basin exhibited elevated trace element concentrations in comparison to the controls, while the dry basin trees exhibited reduced concentrations. On eof the most striking differenced in elemental concentrations among the ash basin and control trees was observed for Mn, with the control trees exhibiting concentrations orders of magnitude greater than the ash basin trees. Differences in foliar trace element concentrations among the sites can generally be explained by differences in substrate trace element concentrations and/or substrate pH. While trees from the wet ash basin generally had the highest trace element concentrations, these trees also attained the greatest height and diameter growth, suggesting that the elevated trace element concentrations in the wet basin substrate are not limiting the establishment of these two species. The greater height and diameter growth of the wet basin trees is presumably a result of the greater water-holding capacity of the substrate on this site. Differences in growth and tissue concentrations between sweetgum and sycamore highlight the importance of using more than one species when assessing metal toxicity or deficiency on a given substrate

  12. Key Technologies and Applications of Gas Drainage in Underground Coal Mine

    Science.gov (United States)

    Zhou, Bo; Xue, Sheng; Cheng, Jiansheng; Li, Wenquan; Xiao, Jiaping

    2018-02-01

    It is the basis for the long-drilling directional drilling, precise control of the drilling trajectory and ensuring the effective extension of the drilling trajectory in the target layer. The technology can be used to complete the multi-branch hole construction and increase the effective extraction distance of the coal seam. The gas drainage and the bottom grouting reinforcement in the advanced area are realized, and the geological structure of the coal seam can be proved accurately. It is the main technical scheme for the efficient drainage of gas at home and abroad, and it is applied to the field of geological structure exploration and water exploration and other areas. At present, the data transmission method is relatively mature in the technology and application, including the mud pulse and the electromagnetic wave. Compared with the mud pulse transmission mode, the electromagnetic wave transmission mode has obvious potential in the data transmission rate and drilling fluid, and it is suitable for the coal mine. In this paper, the key technologies of the electromagnetic wave transmission mode are analyzed, including the attenuation characteristics of the electromagnetic transmission channel, the digital modulation scheme, the channel coding method and the weak signal processing technology. A coal mine under the electromagnetic wave drilling prototype is developed, and the ground transmission experiments and down hole transmission test are carried out. The main work includes the following aspects. First, the equivalent transmission line method is used to establish the electromagnetic transmission channel model of coal mine drilling while drilling, and the attenuation of the electromagnetic signal is measured when the electromagnetic channel measured. Second, the coal mine EM-MWD digital modulation method is developed. Third, the optimal linear block code which suitable for EM-MWD communication channel in coal mine is proposed. Fourth, the noise characteristics

  13. Natural radionuclides in coal and waste material originating from coal fired power plant

    International Nuclear Information System (INIS)

    Marovic, Gordana; Franic, Zdenko; Sencar, Jasminka; Petrinec, Branko; Bituh, Tomislav; Kovac, Jadranka

    2008-01-01

    This paper presents long-term investigations of natural radioactivity in coal, used for power production in the coal-fired power plant (CFPP) situated on the Adriatic coast, and resulting slag and ash. Activity concentrations of 40 K, 232 Th, 226 Ra and 238 U in used coal and resulting waste material have been measured for 25 years. As expected, it was demonstrated that the content of radionuclides in deposited bottom and filter ash material are closely related with radionuclide activity concentrations and mineral matter fraction in used coals. The external hazard index has been calculated and discussed for the slag and ash depository. During the first decade of operation of the CFPP has been used domestic coal produced in nearby area characterized by higher background radiation compared with the rest of Croatia. Therefore, the coal itself had relatively high 226 Ra and 238 U activity concentrations while potassium and thorium content was very low, 40 K activity concentrations being 2-9% and those of 232 Th 1-3% of total activity. As, in addition, the sulphur concentrations in coal were very high use of domestic coal was gradually abandoned till it was completely substituted by imported coal originated from various sources and of low natural radioactivity. Upon this, activity concentrations of uranium series radionuclides in deposited waste materials decreased significantly. Consequently, waste material i.e., slag and ash, generated in the last several years of coal fired power plant operation could be readily used in cement industry and as additive to other building materials, without any special restrictions according to the Croatian regulations dealing with building materials and European directives. (author)

  14. Summary of coal production data

    International Nuclear Information System (INIS)

    1999-01-01

    Data are presented on the productivity of surface and underground coal mining from Arizona, Colorado, Montana, New Mexico, North Dakota, Texas, Utah, and Wyoming, and remaining US states. Productivity data are given as tons per employee-hour as well as total tons for 1989 through 1998. The number of fatal accidents is also given

  15. Summary of coal production data

    International Nuclear Information System (INIS)

    1998-01-01

    Data are presented on the productivity of surface and underground coal mining from Arizona, Colorado, Montana, New Mexico, North Dakota, Texas, Utah, and Wyoming, and remaining US states. Productivity data are given as tons per employee-hour as well as total tons for 1990 through 1997. The number of fatal accidents is also given

  16. Remote thermal IR surveying to detect abandoned mineshafts in former mining areas

    Energy Technology Data Exchange (ETDEWEB)

    Gunn, D.A.; Marsh, S.H.; Gibson, A.; Ager, G.J.; McManus, K.B.; Caunt, S.; Culshaw, M.G. [British Geological Survey, Nottingham (United Kingdom)

    2008-08-15

    In former mining areas it is critical to locate unknown, abandoned mineshafts prior to the development of a site. Abandoned mineshafts are ground disturbances that have very localized effects on the morphology and the physical, chemical, drainage and moisture properties of the surface geological materials and thus thermo-physical properties. Remotely sensed thermal IR surveys provide the potential for a rapid, inexpensive and non-intrusive technique for mineshaft detection. The key parameters of thermal IR radiation and the application of remote thermal IR surveys to planning are described, using case histories from former mining areas in Lancashire, Yorkshire and Nottinghamshire. Field-measured IR temperature differences correlated well with different ground conditions caused by changes in vegetation, disturbance, compaction and moisture-drainage regimes. A thermal anomaly over an area of c. 6 m{sup 2} above a known mineshaft was characterized by traces of methane and temperatures higher by 0.5-1{sup o}C than those of the adjacent ground surface. Using thermal IR images, collected with the Daedalus 1260 Airborne Thematic Mapper, a scheme was developed to classify and map mineshafts with and without any observed visual characteristics. When applied using thermal imagery obtained from commercial flights the scheme identified several potential sites of abandoned mineshafts in an area designated for the redevelopment of the Nottingham Business Park, East Midlands. The thermal anomalies were associated with minor topographic features such as mounds, depressions and dereliction, as well as compositional features caused by coal enrichment and Coal Measures mudstone infill. These features had very little surface expression and were confirmed only using soil stripping.

  17. Oxidation and carbonisation of coals: a case study of coal fire affected coals from the Wuda coalfield, Inner Mongolia, China

    Science.gov (United States)

    Kus, Jolanta; Meyer, Uwe; Ma, Jianwei; Chen-Brauchler, Dai

    2010-05-01

    At the coalfield of Wuda (Inner Mongolia, PR China) extensive underground coal fires cause widespread thermal and oxidative effects in coal seams. Within phase B of the Coal Fire Research Project of the Sino-German Initiative, methods for innovative fire-extinguishing technologies were investigated in multifaceted research approaches. Extensive investigations of oxidative and thermally affected coal seams in coal fire zone 18 were conducted in 2008 prior to application of new fire-extinguishing methods. We present results from the outcrop of coal seam No. 4 in the fire zone 18. The coal of seam No. 4 is of Early Permian age and belongs stratigraphically to the Shanxi Formation. The unaffected coal displays a high volatile bituminous A rank with a background value of random vitrinite reflectance ranging from 0.90 to 0.96 % Rr. Coal channel samples were coallected at actively extracted coal faces along multiple profiles with surface temperatures ranging from about 50° to 600°C. Microscopic examinations revealed a variety of products of coal exposure to the fire. Within coal samples, a marked rise in vitrinite reflectance from background values to 5.55% Rr (6.00 % Rmax) is encountered. In addition, a number of coal samples showed suppressed vitrinite reflectances ranging between 0.82 to 0.88% Rr. Further, seemingly heat unaffected coal samples display intensive development of oxidations rims at coal grain edges and cracks as well as shrinkage cracks and formation of iron oxides/hydroxides. Instead, thermally affected coal samples with higher coalification grade are further characterised by development of macropores (devolatilisation pores) in vitrinitic streaks, transformation of liptinite to meta-liptinite and micrinite as well as by natural coke particles of mostly porous nature and fine to coarse grained anisotropic mosaic. Coal petrographic investigations confirmed a hypothesis that both, oxidations as well as low temperature carbonisation govern the thermal

  18. Adaptation policy in hard coal mining. Die Anpassungspolitik im Steinkohlenbergbau

    Energy Technology Data Exchange (ETDEWEB)

    Brink, H J; Haas, H; Jochum, E; Muellendorff, R; Rolshoven, H

    1981-01-01

    The book points out the necessity of balancing the output of hard coal mines. Detailed analyses of marketing conditions serve as a decision aid for business policy. Production and sales trends in German hard coal mining, instruments of adaptation to quantitative changes in sales, and empirical investigations of adaptation instruments in the underground part of the Goettelborn mine are reviewed.

  19. Indian Creek-AML: Coal slurry reclamation (Kansas case history)

    International Nuclear Information System (INIS)

    Witthar, S.R.

    1998-01-01

    Black and Veatch, assisted by Jack Nawrot, developed conceptual and final designs and provided construction assistance to create grasslands and wetlands in order to reclaim an abandoned coal mine for the state of Kansas. The mine included spoils, a coal refuse dump, and slurry pond in the Indian Creek drainage basin in east central Kansas. The Indian Creek flowed from an off-site abandoned mine and through the coal slurry pond where its waters became more polluted. The intent of the reclamation project was to improve water quality and create a wildlife refuge. The coal refuse was covered and seeded with a diversity of vegetation including several grasses and legume. The slurry pond was developed into a series of large wetland cells to improve water quality. Prior to reclamation, the water leaving the site had a typical pH of 3.3, ranging from 2.4 to 5.6, an iron content which typically over 22 mg/L and ranging over 100 mg/L, and contained large amounts of coal slurry. The acid sediment in the slurry killed fish and caused visible damage to a new large concrete box culvert several miles downstream of the site. Post-reclamation water quality leaving the Indian Creek site showed immediate improvement even before vegetation was reestablished. The existing wetland treatment systems have been successfully treating water for over seven years with the pH of the water leaving the wetlands above 7 and soluble iron content less than 1 mg/L. Fish in the constructed wetlands support waterfowl which now nest onsite

  20. Microbial ecology of coal mine refuse

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R. E.; Miller, R. M.

    1977-01-01

    Baseline microbial and ecological studies of samples obtained from two abandoned coal mine refuse sites in the State of Illinois indicate that the unfavorable nature of refuse materials can be a very limiting factor for survival and growth of organisms. Despite the ''foothold'' obtained by some microorganisms, especially acidophilic fungi and some acidotolerant algae, the refuse materials should be amended or ameliorated to raise the pH, provide needed nutrients, especially nitrogen, and provide biodegradable organic matter, both for physical and biological purposes. Finally, the role of microbial populations, responses, and interactions in acid mine wastes must be put into larger perspective. Acid mine drainage amounts to over 4 million tons per year of acidity from active and abandoned mines. Microorganisms appear to be significantly responsible for this problem, but they also can play a beneficial and significant role in the amelioration or alleviation of this detrimental effect as abandoned mines are reclaimed and returned to useful productivity.

  1. High-temperature reactors for underground liquid-fuels production with direct carbon sequestration

    International Nuclear Information System (INIS)

    Forsberg, C. W.

    2008-01-01

    The world faces two major challenges: (1) reducing dependence on oil from unstable parts of the world and (2) minimizing greenhouse gas emissions. Oil provides 39% of the energy needs of the United States, and oil refineries consume over 7% of the total energy. The world is running out of light crude oil and is increasingly using heavier fossil feedstocks such as heavy oils, tar sands, oil shale, and coal for the production of liquid fuels (gasoline, diesel, and jet fuel). With heavier feedstocks, more energy is needed to convert the feedstocks into liquid fuels. In the extreme case of coal liquefaction, the energy consumed in the liquefaction process is almost twice the energy value of the liquid fuel. This trend implies large increases in carbon dioxide releases per liter of liquid transport fuel that is produced. It is proposed that high-temperature nuclear heat be used to refine hydrocarbon feedstocks (heavy oil, tar sands, oil shale, and coal) 'in situ ', i.e., underground. Using these resources for liquid fuel production would potentially enable the United States to become an exporter of oil while sequestering carbon from the refining process underground as carbon. This option has become potentially viable because of three technical developments: precision drilling, underground isolation of geological formations with freeze walls, and the understanding that the slow heating of heavy hydrocarbons (versus fast heating) increases the yield of light oils while producing a high-carbon solid residue. Required peak reactor temperatures are near 700 deg. C-temperatures within the current capabilities of high-temperature reactors. (authors)

  2. Thermal load at workstations in the underground coal mining: Results of research carried out in 6 coal mines

    Directory of Open Access Journals (Sweden)

    Krzysztof Słota

    2016-08-01

    Full Text Available Background: Statistics shows that almost half of Polish extraction in underground mines takes place at workstations where temperature exceeds 28°C. The number of employees working in such conditions is gradually increasing, therefore, the problem of safety and health protection is still growing. Material and Methods: In the present study we assessed the heat load of employees at different workstations in the mining industry, taking into account current thermal conditions and work costs. The evaluation of energy cost of work was carried out in 6 coal mines. A total of 221 miners employed at different workstations were assessed. Individual groups of miners were characterized and thermal safety of the miners was assessed relying on thermal discomfort index. Results: The results of this study indicate considerable differences in the durations of analyzed work processes at individual workstations. The highest average energy cost was noted during the work performed in the forehead. The lowest value was found in the auxiliary staff. The calculated index of discomfort clearly indicated numerous situations in which the admissible range of thermal load exceeded the parameters of thermal load safe for human health. It should be noted that the values of average labor cost fall within the upper, albeit admissible, limits of thermal load. Conclusions: The results of the study indicate that in some cases work in mining is performed in conditions of thermal discomfort. Due to high variability and complexity of work conditions it becomes necessary to verify the workers’ load at different workstations, which largely depends on the environmental conditions and work organization, as well as on the performance of workers themselves. Med Pr 2016;67(4:477–498

  3. Strata control in deep coal mines. Control de estratos en tajos subteraneos de la mineria del carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Oyanguren, P.; De la Cuadra, L.

    1985-01-01

    The six chapters cover the following subjects: mining methods used in Spanish coal mines; rock movement and pressure around a longwall face; roof bed study; underground support systems; gas dynamic phenomena; and instrumentation for underground mine monitoring.

  4. Consequences of coal mining and burning in the North Bohemian Brown Coal Basin (2). Territorial consequences of coal mining

    International Nuclear Information System (INIS)

    Stahlik, Z.

    1992-01-01

    Out of the 1450 km 2 of the North Bohemian Brown Coal Basin, the area of the coal-bearing territory is 850 km 2 . The area occupied by the open pits, spoil banks and mines is nearly 27O km 2 , out of which over 90 km 2 have already been recultivated. Predicted mining development scenarios for the region till 2035 are outlined. The extent of mining will decrease gradually, and land will be reclaimed. The abandoned pits will be filled with water and employed for recreation purposes. The specific features of the individual open pit mines are given. The ways to reduce the adverse environmental impacts of mining are outlined; these include, in particular, desulfurization of existing power plants on the one hand, and energy savings associated with a reduction in mining and power generation activities on the other hand. (J.B.)

  5. An underground nuclear power station using self-regulating heat-pipe controlled reactors

    Science.gov (United States)

    Hampel, V.E.

    1988-05-17

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

  6. Reflection on the efficiency criteria for a long duration disposal with respect to temporary abandonment situations; Reflexion sur les criteres de performance d'un entreposage de longue duree (ELD) vis-a-vis des situations de delaissement temporaire

    Energy Technology Data Exchange (ETDEWEB)

    Heriard-Dubreuil, G; Gadbois, S [Mutadis, 75 - Paris (France); Chieber, C; Schneider, Th [Centre d' Etude sur l' Evaluation de la Protection dans le Domaine Nucleaire, 92 - Fontenay aux Roses (France)

    2002-08-15

    A study carried out by Mutadis and CEPN, on request of the CEA, aimed at supplying some elements allowing to elaborate some performance criteria for a long-term management system in front of situations of temporary abandonment of radioactive waste disposal facilities. The first part of the study has been the identification of case studies illustrating situations of loss of maintenance or temporary abandonment. The second phase has been the selection and analysis of 4 case studies (the ancient underground cavities in Ile-de-France, the regulation relative to new underground quarries, the abandoned mines in Loraine basin, and Unesco's approach for the protection of mankind world patrimony). These cases have been analysed with respect to various aspects: actors involved, construction management and memory preservation, liabilities in time and space, prevention means, scheduling, and resumption strategies. The concepts of abandonment, scheduling and resumption have been precised and analysed in a third part according to the case studies. Three goals - avoiding abandonment, encouraging scheduling and resumption - and eight characteristics are drawn from this analysis, which are indicators of the robustness of the system implemented to fulfill these 3 goals. These characteristics appear as strongly interdependent. (J.S.)

  7. Coal geology and assessment of coal resources and reserves in the Powder River Basin, Wyoming and Montana

    Science.gov (United States)

    Luppens, James A.; Scott, David C.

    2015-01-01

    This report presents the final results of the first assessment of both coal resources and reserves for all significant coal beds in the entire Powder River Basin, northeastern Wyoming and southeastern Montana. The basin covers about 19,500 square miles, exclusive of the part of the basin within the Crow and Northern Cheyenne Indian Reservations in Montana. The Powder River Basin, which contains the largest resources of low-sulfur, low-ash, subbituminous coal in the United States, is the single most important coal basin in the United States. The U.S. Geological Survey used a geology-based assessment methodology to estimate an original coal resource of about 1.16 trillion short tons for 47 coal beds in the Powder River Basin; in-place (remaining) resources are about 1.15 trillion short tons. This is the first time that all beds were mapped individually over the entire basin. A total of 162 billion short tons of recoverable coal resources (coal reserve base) are estimated at a 10:1 stripping ratio or less. An estimated 25 billion short tons of that coal reserve base met the definition of reserves, which are resources that can be economically produced at or below the current sales price at the time of the evaluation. The total underground coal resource in coal beds 10–20 feet thick is estimated at 304 billion short tons.

  8. Prospecting for coal in China with remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Ke-long Tan; Yu-qing Wan; Sun-xin Sun; Gui-bao Bao; Jing-shui Kuang [Aerophotogrammetry and Remote Sensing Center of China Coal, Xi' an (China)

    2008-12-15

    In China it is important to explore coal prospecting by taking advantage of modern remote sensing and geographic information system technologies. Given a theoretical basis for coal prospecting by remote sensing, the methodologies and existing problems are demonstrated systematically by summarizing past practices of coal prospecting with remote sensing. A new theory of coal prospecting with remote sensing is proposed. In uncovered areas, coal resources can be prospected by direct interpretation. In coal bearing strata of developed areas covered by thin Quaternary strata or vegetation, prospecting for coal can be carried out by indirect interpretation of geomorphology and vegetation. For deeply buried underground deposits, coal prospecting can rely on tectonic structures, interpretation and analysis of new tectonic clues and regularity of coal formation and preservation controlled by tectonic structures. By applying newly hyper-spectral, multi-polarization, multi-angle, multi-temporal and multi-resolution remote sensing data and carrying out integrated analysis of geographic attributes, ground attributes, geophysical exploration results, geochemical exploration results, geological drilling results and remote sensing data by GIS tools, coal geology resources and mineralogical regularities can be explored and coal resource information can be acquired with some confidence. 12 refs., 4 figs., 3 tabs.

  9. Three-dimensional time-lapse velocity tomography of an underground longwall panel

    Energy Technology Data Exchange (ETDEWEB)

    Luxbacher, K.; Westman, E.; Swanson, P.; Karfakis, M. [Virginia Tech., Blacksburg, VA (United States). Dept. of Mining & Minerals Engineering

    2008-06-15

    Three-dimensional velocity tomograms were generated to image the stress redistribution around an underground coal longwall panel to produce a better understanding of the mechanisms that lead to ground failure, especially rockbursts. Mining-induced microseismic events provided passive sources for the three-dimensional velocity tomography. Surface-mounted geophones monitored microseismic activity for 18 days. Eighteen tomograms were generated and high-velocity regions correlated with high abutment stresses predicted by numerical modeling. Additionally, the high-velocity regions were observed to redistribute as the longwall face retreated, indicating that velocity tomography may be an appropriate technology for monitoring stress redistribution in underground mines.

  10. Simulating the Various Subsystems of a Coal Mine

    Directory of Open Access Journals (Sweden)

    V. Okolnishnikov

    2016-06-01

    Full Text Available A set of simulation models of various subsystems of a coal mine was developed with the help of a new visual interactive simulation system of technological processes. This paper contains a brief description of this simulation system and its possibilities. The main possibilities provided by the simulation system are: the quick construction of models from library elements, 3D representation, and the communication of models with actual control systems. These simulation models were developed for the simulation of various subsystems of a coal mine: underground conveyor network subsystems, pumping subsystems and coal face subsystems. These simulation models were developed with the goal to be used as a quality and reliability assurance tool for new process control systems in coal mining.

  11. Reflection on the efficiency criteria for a long duration disposal with respect to temporary abandonment situations; Reflexion sur les criteres de performance d'un entreposage de longue duree (ELD) vis-a-vis des situations de delaissement temporaire

    Energy Technology Data Exchange (ETDEWEB)

    Heriard-Dubreuil, G.; Gadbois, S. [Mutadis, 75 - Paris (France); Chieber, C.; Schneider, Th. [Centre d' Etude sur l' Evaluation de la Protection dans le Domaine Nucleaire, 92 - Fontenay aux Roses (France)

    2002-08-15

    A study carried out by Mutadis and CEPN, on request of the CEA, aimed at supplying some elements allowing to elaborate some performance criteria for a long-term management system in front of situations of temporary abandonment of radioactive waste disposal facilities. The first part of the study has been the identification of case studies illustrating situations of loss of maintenance or temporary abandonment. The second phase has been the selection and analysis of 4 case studies (the ancient underground cavities in Ile-de-France, the regulation relative to new underground quarries, the abandoned mines in Loraine basin, and Unesco's approach for the protection of mankind world patrimony). These cases have been analysed with respect to various aspects: actors involved, construction management and memory preservation, liabilities in time and space, prevention means, scheduling, and resumption strategies. The concepts of abandonment, scheduling and resumption have been precised and analysed in a third part according to the case studies. Three goals - avoiding abandonment, encouraging scheduling and resumption - and eight characteristics are drawn from this analysis, which are indicators of the robustness of the system implemented to fulfill these 3 goals. These characteristics appear as strongly interdependent. (J.S.)

  12. CoalVal-A coal resource valuation program

    Science.gov (United States)

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined

  13. Post-mining safety implementations and environmental aspects of abandoned mine sites in Limousin. 2006 status (and perspectives 2007)

    International Nuclear Information System (INIS)

    2007-01-01

    This document summarizes the actions carried out in 2006 at some French abandoned mine sites: 1 - safety implementations and risks abatement in the framework of post-mining actions: coal mines of Ahun (23) and Argentat (19), antimony mines of Biard (87); 2 - remedial actions at the tin/tungsten mine of Puy-les-Vignes (87) and at the gold mine of Chatelet (23); 3 - 2007 post-mining perspectives; 4 - environmental aspects of abandoned mine sites: gold mines of Chatelet (23), Cheni and Bourneix (87), uranium mines of Haute-Vienne (expertise, control of effluents, financial warranties about tailings storage sites maintenance). (J.S.)

  14. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines

    Science.gov (United States)

    Chang, Qingliang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application. PMID:25258737

  15. Assessment, water-quality trends, and options for remediation of acidic drainage from abandoned coal mines near Huntsville, Missouri, 2003-2004

    Science.gov (United States)

    Christensen, Eric D.

    2005-01-01

    Water from abandoned underground coal mines acidifies receiving streams in the Sugar Creek Basin and Mitchell Mine Basin near Huntsville, Missouri. A 4.35-kilometer (2.7-mile) reach of Sugar Creek has been classified as impaired based on Missouri's Water Quality Standards because of small pH values [mine drainage (AMD) from two mine springs as well as small and diffuse seeps were observed to have an effect on water quality in Sugar Creek. Metal and sulfate loads increased and pH decreased immediately downstream from Sugar Creek's confluence with the Calfee Slope and Huntsville Gob drainages that discharge AMD into Sugar Creek. Similar effects were observed in the Mitchell Mine drainage that receives AMD from a large mine spring. Comparisons of water-quality samples from this study and two previous studies by the U.S. Geological Survey in 1987-1988 and the Missouri Department of Natural Resources in 2000-2002 indicate that AMD generation in the Sugar Creek Basin and Mitchell Mine Basin is declining, but the data are insufficient to quantify any trends or time frame. AMD samples from the largest mine spring in the Calfee Slope subbasin indicated a modest but significant increase in median pH from 4.8 to 5.2 using the Wilcoxan rank-sum test (p mine spring in the Mitchell Mine Basin indicated an increase in median pH values from 5.6 to 6.0 and a decrease in median specific conductance from 3,050 to 2,450 ?S/cm during the same period. Remediation of AMD at or near the sites of the three largest mine springs is geochemically feasible based on alkalinity addition rates and increased pH determined by cubitainer experiments and geochemical mixing experiments using the computer model PHREEQCI. Alkalinity values for seven cubitainer experiments conducted to simulate anoxic treatment options exceeded the targeted value for alkalinity [90 mg/L as calcium carbonate (CaCO3)] specified in Missouri's Total Maximum Daily Load program by 18 percent or more, but maximum pH values were

  16. Intensive use of diesels underground

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, R W

    1980-07-01

    At a US mine, coal is extracted by room and pillar mining. Tyred diesel vehicles are used to transport men and materials, to spread gravel on the roadway, and to tow and provide hydraulic power to rock dusting machines. Hydraulic power take-offs from the vehicles are used to operate equipment such as drills and chain saws. A deisel ambulance is kept underground, and diesel lubrication units and maintenance tracks are used. A diesel generator provides electrical power when or where no permanent electricity supply is available e.g. for tramming continuous miners in to or out of the mine.

  17. Coal mine subsidence

    International Nuclear Information System (INIS)

    Rahall, N.J.

    1991-05-01

    This paper examines the efficacy of the Department of the Interior's Office of Surface Mining Reclamation and Enforcement's (OSMRE) efforts to implement the federally assisted coal mine subsidence insurance program. Coal mine subsidence, a gradual settling of the earth's surface above an underground mine, can damage nearby land and property. To help protect property owners from subsidence-related damage, the Congress passed legislation in 1984 authorizing OSMRE to make grants of up to $3 million to each state to help the states establish self-sustaining, state-administered insurance programs. Of the 21 eligible states, six Colorado, Indiana, Kentucky, Ohio, West Virginia, and Wyoming applied for grants. This paper reviews the efforts of these six states to develop self-sustaining insurance programs and assessed OSMRE's oversight of those efforts

  18. Hybrid Technology of Hard Coal Mining from Seams Located at Great Depths

    Science.gov (United States)

    Czaja, Piotr; Kamiński, Paweł; Klich, Jerzy; Tajduś, Antoni

    2014-10-01

    Learning to control fire changed the life of man considerably. Learning to convert the energy derived from combustion of coal or hydrocarbons into another type of energy, such as steam pressure or electricity, has put him on the path of scientific and technological revolution, stimulating dynamic development. Since the dawn of time, fossil fuels have been serving as the mankind's natural reservoir of energy in an increasingly great capacity. A completely incomprehensible refusal to use fossil fuels causes some local populations, who do not possess a comprehensive knowledge of the subject, to protest and even generate social conflicts as an expression of their dislike for the extraction of minerals. Our times are marked by the search for more efficient ways of utilizing fossil fuels by introducing non-conventional technologies of exploiting conventional energy sources. During apartheid, South Africa demonstrated that cheap coal can easily satisfy total demand for liquid and gaseous fuels. In consideration of current high prices of hydrocarbon media (oil and gas), gasification or liquefaction of coal seems to be the innovative technology convergent with contemporary expectations of both energy producers as well as environmentalists. Known mainly from literature reports, underground coal gasification technologies can be brought down to two basic methods: - shaftless method - drilling, in which the gasified seam is uncovered using boreholes drilled from the surface, - shaft method, in which the existing infrastructure of underground mines is used to uncover the seams. This paper presents a hybrid shaft-drilling approach to the acquisition of primary energy carriers (methane and syngas) from coal seams located at great depths. A major advantage of this method is the fact that the use of conventional coal mining technology requires the seams located at great depths to be placed on the off-balance sheet, while the hybrid method of underground gasification enables them to

  19. Report of investigation on underground limestone mines in the Ohio region

    International Nuclear Information System (INIS)

    Byerly, D.W.

    1976-06-01

    The following is a report of investigation on the geologic setting of several underground limestone mines in Ohio other than the PPG mine at Barberton, Ohio. Due to the element of available time, the writer is only able to deliver a brief synopsis of the geology of three sites visited. These three sites and the Barberton, Ohio site are the only underground limestone mines in Ohio to the best of the writer's knowledge. The sites visited include: (1) the Jonathan Mine located near Zanesville, Ohio, and currently operated by the Columbia Cement Corporation; (2) the abandoned Alpha Portland Cement Mine located near Ironton, Ohio; and (3) the Lewisburg Mine located at Lewisburg, Ohio, and currently being utilized as an underground storage facility. Other remaining possibilities where limestone is being mined underground are located in middle Ordovician strata near Carntown and Maysville, Kentucky. These are drift mines into a thick sequence of carbonates. The writer predicts, however, that these mines would have some problems with water due to the preponderance of carbonate rocks and the proximity of the mines to the Ohio River. None of the sites visited nor the sites in Kentucky have conditions comparable to the deep mine at Barberton, Ohio

  20. In situ monitoring of primary roofbolts at underground coal mines in the USA

    OpenAIRE

    Spearing, A.J.S.; Hyett, A.

    2014-01-01

    Primary roof support represents the first line of defence against rock-related falls of ground in underground mines, and improper utilization or misunderstanding of the applicability and behaviour of primary support can be costly from a safety standpoint. This is a major concern for underground mines, as roof support is the single most costly expense from a mining operational perspective. This is further backed by the evidence that, in the USA, hundreds of injuries and fatalities still occur ...

  1. An account of tolerant plant species growing on coal mine wastes of Talcher, Orissa

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, R.K.; Deo, B.; Mallick, U.C.; Maharana, R.C.

    1989-02-20

    The present study describes a specialized vegetation tolerant to nutrient-deficient and trace-metal-enriched soil of coal mine waste at Talcher, Orissa. A total of 105 species, belonging to 40 families, have been reported, and two species with morphological abnormalities have been detected. The importance of such floristic studies for revegetation of abandoned coal mine sites has been suggested. 4 refs., 1 fig., 2 tabs.

  2. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, Chad [Univ. of Illinois, Champaign, IL (United States); Dastgheib, Seyed A. [Univ. of Illinois, Champaign, IL (United States); Yang, Yaning [Univ. of Illinois, Champaign, IL (United States); Ashraf, Ali [Univ. of Illinois, Champaign, IL (United States); Duckworth, Cole [Univ. of Illinois, Champaign, IL (United States); Sinata, Priscilla [Univ. of Illinois, Champaign, IL (United States); Sugiyono, Ivan [Univ. of Illinois, Champaign, IL (United States); Shannon, Mark A. [Univ. of Illinois, Champaign, IL (United States); Werth, Charles J. [Univ. of Illinois, Champaign, IL (United States)

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO2 enhanced oil recovery (CO2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter

  3. Inertisation strategies and practices in underground coal mines.

    CSIR Research Space (South Africa)

    Du Plessis, JJL

    2002-01-01

    Full Text Available of the BVS triggered barrier system.....................................64 Figure 7.1e: Mobile automatic multiple-extinguisher system (BVS) .............................65 Figure 7.1f: Sensors evaluated for the development of a ‘European triggered barrier....e. large proportion of the employees are exposed to these hazards; • it may consist of numerous headings without effective through ventilation i.e. “blind headings”; • headings advance intermittently albeit rapidly with time; • coal fragmentation...

  4. Solutions Network Formulation Report. Landsat Data Continuity Mission Simulated Data Products for Bureau of Land Management and Environmental Protection Agency Abandoned Mine Lands Decision Support

    Science.gov (United States)

    Estep, Leland

    2007-01-01

    Presently, the BLM (Bureau of Land Management) has identified a multitude of abandoned mine sites in primarily Western states for cleanup. These sites are prioritized and appropriate cleanup has been called in to reclaim the sites. The task is great in needing considerable amounts of agency resources. For instance, in Colorado alone there exists an estimated 23,000 abandoned mines. The problem is not limited to Colorado or to the United States. Cooperation for reclamation is sought at local, state, and federal agency level to aid in identification, inventory, and cleanup efforts. Dangers posed by abandoned mines are recognized widely and will tend to increase with time because some of these areas are increasingly used for recreation and, in some cases, have been or are in the process of development. In some cases, mines are often vandalized once they are closed. The perpetrators leave them open, so others can then access the mines without realizing the danger posed. Abandoned mine workings often fill with water or oxygen-deficient air and dangerous gases following mining. If the workings are accidentally entered into, water or bad air can prove fatal to those underground. Moreover, mine residue drainage negatively impacts the local watershed ecology. Some of the major hazards that might be monitored by higher-resolution satellites include acid mine drainage, clogged streams, impoundments, slides, piles, embankments, hazardous equipment or facilities, surface burning, smoke from underground fires, and mine openings.

  5. International mining forum 2004, new technologies in underground mining, safety in mines proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Jerzy Kicki; Eugeniusz Sobczyk (eds.)

    2004-01-15

    The book comprises technical papers that were presented at the International Mining Forum 2004. This event aims to bring together scientists and engineers in mining, rock mechanics, and computer engineering, with a view to explore and discuss international developments in the field. Topics discussed in this book are: trends in the mining industry; new solutions and tendencies in underground mines; rock engineering problems in underground mines; utilization and exploitation of methane; prevention measures for the control of rock bursts in Polish mines; and current problems in Ukrainian coal mines.

  6. Long-hole destress blasting for rockburst control during deep underground coal mining

    Czech Academy of Sciences Publication Activity Database

    Koníček, Petr; Souček, Kamil; Staš, Lubomír; Singh, R.

    -, č. 61 (2013), s. 141-153 ISSN 1365-1609 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : Ostrava - Karvina Coal basin * longwall mining * rockbursts * destress blasting Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 1.424, year: 2013 http://www.sciencedirect.com/science/article/pii/S1365160913000348

  7. Geology in coal resource utilization

    International Nuclear Information System (INIS)

    Peters, D.C.

    1991-01-01

    The 37 papers in this book were compiled with an overriding theme in mind: to provide the coal industry with a comprehensive source of information on how geology and geologic concepts can be applied to the many facets of coal resource location, extraction, and utilization. The chapters have been arranged to address the major coal geology subfields of Exploration and Reserve Definition, Reserve Estimation, Coalbed Methane, Underground Coal Gasification, Mining, Coal Quality Concerns, and Environmental Impacts, with papers distributed on the basis of their primary emphasis. To help guide one through the collection, the author has included prefaces at the beginning of each chapter. They are intended as a brief lead-in to the subject of the chapter and an acknowledgement of the papers' connections to the subject and contributions to the chapter. In addition, a brief cross-reference section has been included in each preface to help one find papers of interest in other chapters. The subfields of coal geology are intimately intertwined, and investigations in one area may impact problems in another area. Some subfields tend to blur at their edges, such as with reserve definition and reserve estimation. Papers have been processed separately for inclusion on the data base

  8. Technogenic effect of liquidation of coal mines on earth’s entrails: hydrogeochemical aspect

    Science.gov (United States)

    Tarasenko, I. A.; Zinkov, A. V.; Chudaev, O. V.; Vetoshkina, A. V.; Holodilov, I. I.

    2017-10-01

    The authors of the paper have established the geochemical features of the composition of underground waters and regularities of their formation in the areas of the liquidated coal mines of Russia and Ukraine. It is shown that the mine flood resulted in the formation of technogenic waters which geochemical specificity originates in the feeding field and is transformed in the direction of the filtration flow. It depends on the geological structure of sedimentary basins and the presence in the coal and supra-coal beds of the marine, salt-bearing and freshwater groups of geological formations. The water types are distinguished characterizing the conditions and processes of their formation that may be the regional markers in the hydrochemical and geological constructions. The technogenic waters influenced the safety of the underground waters, sources of water supply of the regions, and surface water channels. The pollutions are of local character in space.

  9. Comparison of Methane Control Methods in Polish and Vietnamese Coal Mines

    Science.gov (United States)

    Borowski, Marek; Kuczera, Zbigniew

    2018-03-01

    Methane hazard often occurs in hard coal mines and causes very serious accidents and can be the reason of methane or methane and coal dust explosions. History of coal mining shows that methane released from the rock mass to the longwall area was responsible for numerous mining disasters. The main source of methane are coal deposits because it is autochthonous gas and is closely related with carbonification and forming of coal deposits. Degree of methane saturation in coal deposits depends on numerous factors; mainly on presence or lack of insulating layers in cover deposit that allow or do not on degasification and easily methane outflow into surroundings. Hence in coal mining there are coal deposits that contain only low degree of methane saturation in places where is lack of insulating layers till high in methane coal deposits occurring in insulating claystones or in shales. Conducting mining works in coal deposits of high methane hazard without using of special measures to combat (ventilation, methane drainage) could be impossible. Control of methane hazard depends also on other co-occuring natural dangers for which used preventive actions eliminate methane hazard. Safety in mines excavating coal deposits saturated with methane depends on the correct estimation of methane hazard, drawn up forecasts, conducted observations, hazard control as well as undertaken prevention measures. Methane risk prevention includes identification and control methods of methane hazards as well as means of combating the explosive accumulation of methane in longwall workings. The main preventive actions in underground coal mines are: effective ventilation that prevents forming of methane fuses or placed methane accumulation in headings ventilated by airflow created by main fans and in headings with auxiliary ventilation, methane drainage using drain holes that are drilled from underground headings or from the surface, methanometry control of methane concentration in the air; location

  10. Comparison of Methane Control Methods in Polish and Vietnamese Coal Mines

    Directory of Open Access Journals (Sweden)

    Borowski Marek

    2018-01-01

    Full Text Available Methane hazard often occurs in hard coal mines and causes very serious accidents and can be the reason of methane or methane and coal dust explosions. History of coal mining shows that methane released from the rock mass to the longwall area was responsible for numerous mining disasters. The main source of methane are coal deposits because it is autochthonous gas and is closely related with carbonification and forming of coal deposits. Degree of methane saturation in coal deposits depends on numerous factors; mainly on presence or lack of insulating layers in cover deposit that allow or do not on degasification and easily methane outflow into surroundings. Hence in coal mining there are coal deposits that contain only low degree of methane saturation in places where is lack of insulating layers till high in methane coal deposits occurring in insulating claystones or in shales. Conducting mining works in coal deposits of high methane hazard without using of special measures to combat (ventilation, methane drainage could be impossible. Control of methane hazard depends also on other co-occuring natural dangers for which used preventive actions eliminate methane hazard. Safety in mines excavating coal deposits saturated with methane depends on the correct estimation of methane hazard, drawn up forecasts, conducted observations, hazard control as well as undertaken prevention measures. Methane risk prevention includes identification and control methods of methane hazards as well as means of combating the explosive accumulation of methane in longwall workings. The main preventive actions in underground coal mines are: effective ventilation that prevents forming of methane fuses or placed methane accumulation in headings ventilated by airflow created by main fans and in headings with auxiliary ventilation, methane drainage using drain holes that are drilled from underground headings or from the surface, methanometry control of methane concentration in

  11. 3D Geological Modeling of CoalBed Methane (CBM) Resources in the Taldykuduk Block Karaganda Coal Basin, Kazakhstan

    Science.gov (United States)

    Sadykov, Raman; Kiponievich Ogay, Evgeniy; Royer, Jean-Jacques; Zhapbasbayev, Uzak; Panfilova, Irina

    2015-04-01

    Coal Bed Methane (CBM) is gas stored in coal layers. It can be extracted from wells after hydraulic fracturing and/or solvent injection, and secondary recovery techniques such as CO2 injection. Karaganda Basin is a very favorable candidate region to develop CBM production for the following reasons: (i) Huge gas potential; (ii) Available technologies for extracting and commercializing the gas produced by CBM methods; (iii) Experience in degassing during underground mining operations for safety reasons; (iv) Local needs in energy for producing electricity for the industrial and domestic market. The objectives of this work are to model the Taldykuduk block coal layers and their properties focusing on Coal Bed Methane production. It is motivated by the availability of large coal bed methane resources in Karaganda coal basin which includes 4 300 Bm3 equivalent 2 billion tons of coal (B = billion = 109) with gas content 15-25 m3/t of coal (for comparison San Juan basin (USA) has production in a double porosity model considering two domains: the matrix (m) and the fracture (f) for which the initial and boundary conditions are different. The resulting comprehensive 3D models had helped in better understanding the tectonic structures of the region, especially the relationships between the fault systems.

  12. Report on the achievements in the Sunshine Project in investigations and studies on treatment technologies for coals used in coal gasification. A report on coal type investigation; Sekitan gas ka yotan no shori gijutsu ni kansuru chosa kenkyu. Tanshu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    This paper reports the investigation on coal types for coal gasification in the Sunshine Project. With regard to the status of existence, production and dressing of coals as the material for coal gasification and liquefaction, summarized site investigations and sampling were performed on underground mining coal mines being operated in Japan. Test sample coals are put into a data file as the important fundamental data for gasification and liquefaction characteristics tests at the Japan Coal Energy Center. The sampling investigation is planned to start in fiscal 1988. The coal mines having been investigated to date include: Taiheiyo Coal Mine (Kushiro), Mitsui Coal Mining Industry (Miike), Matsushima Coal Mine (Ikejima), Mitsubishi Coal Mining Industry (Minami O-Yubari), Sumitomo Coal Akabira Coal Mine (Akabira), Mitsui Coal Mining Industry (Ashibetsu), and Sorachi Coal Mine (Sorachi). Coal beds subjected to the sampling were selected upon carefully discussing with the site engineers on the current status of the coal mine, and the coal beds that could be operated in the future. The sampling method was such that the whole coal bed from the upper bed to the lower bed at the facing was sampled and put into vinyl sampling bags each at about 2 kg as the target. (NEDO)

  13. Environmental impact of coal mining on the natural environment in Poland

    International Nuclear Information System (INIS)

    Wysocka, M.; Chalupnik, S.; Michalik, B.; Skowronek, J.; Skubacz, K.

    2002-01-01

    Saline waters occurring in underground coal mines in Poland often contain natural radioactive isotopes, mainly 226 Ra from uranium series and 228 Ra from thorium series. Approximately 40% of total amount of radium remains underground in a form of radioactive deposits, but 225 MBq of 226 Ra and 400 MBq of 228 Ra are released daily to the rivers with mine effluents. Technical measures as spontaneous precipitation of radium in gobs, decreasing of amounts of water inflows into underground working etc. have been undertaken in several coal mines and as the result total amount of radium released to the surface waters diminished of about 60% during last 5-6 years. Mine waters can cause a severe impact on the natural environment, mainly due to its salinity. But also the enhancement of radium concentration in river waters, bottom sediments and vegetation is observed. Sometimes radium concentration in rivers exceeds 0.7 kBq/m 3 , which is due to Polish law a permissible level for waste waters. The extended investigations were performed in all coal mines and on this basis the radium balance in effluents has been calculated. Measurements done in the vicinity of mine water's settling ponds and in rivers gave us an opportunity to survey radium behaviour in river waters and the range of contamination. Solid waste materials with enhanced natural radioactivity have been produced in huge amounts in power and coal industries in Poland. There are two main sources of these waste products. As a result of combustion of coal in power plants low radioactive waste materials are produced, with 226 Ra concentration seldom exceeding few hundreds of Bq/kg. Different situation is observed in coal mines, where as a result of precipitation of radium from radium-bearing waters radioactive deposits are formed. Sometimes natural radioactivity of such materials is very high, in case of scaling from coal mines radium concentration may reach 400 000 Bq/kg - similar activity as for 3% uranium ore

  14. Rapid decompression and desorption induced energetic failure in coal

    Directory of Open Access Journals (Sweden)

    Shugang Wang

    2015-06-01

    Full Text Available In this study, laboratory experiments are conducted to investigate the rapid decompression and desorption induced energetic failure in coal using a shock tube apparatus. Coal specimens are recovered from Colorado at a depth of 610 m. The coal specimens are saturated with the strong sorbing gas CO2 for a certain period and then the rupture disc is suddenly broken on top of the shock tube to generate a shock wave propagating upwards and a rarefaction wave propagating downwards through the specimen. This rapid decompression and desorption has the potential to cause energetic fragmentation in coal. Three types of behaviors in coal after rapid decompression are found, i.e. degassing without fragmentation, horizontal fragmentation, and vertical fragmentation. We speculate that the characteristics of fracture network (e.g. aperture, spacing, orientation and stiffness and gas desorption play a role in this dynamic event as coal can be considered as a dual porosity, dual permeability, dual stiffness sorbing medium. This study has important implications in understanding energetic failure process in underground coal mines such as coal gas outbursts.

  15. Hydrology of coal-lease areas near Durango, Colorado

    Science.gov (United States)

    Brooks, Tom

    1985-01-01

    The U.S. Bureau of Land Management leases Federal lands and minerals for coal mining near Durango, Colorado. This report addresses the hydrologic suitability of those lands for coal leasing; the report describes the general hydrology of the Durango area and, more specifically, the hydrology of the Stollsteimer Creek study area 32 miles east of the Durango and the Hay Gulch study area, 12 miles southwest of Durango. The most productive aquifers in the Durango study area are Quaternary alluvium and the tertiary Animas Formation. Water wells completed in alluvium typically yield 5 to 20 gallons/min; wells completed is the Animas Formation yield as much as 50 gallons/min. Water quality in these aquifers is variable, but it generally is suitable for domestic use. The coal-bearing Cretaceous Fruitland and Menefee Formations are mined by surface methods at the Chimney Rock Mine in the Stollsteimer Creek study area and by underground methods at the National King Coal Mine in the Hay Gulch study area. Effects of surface mining in the Stollsteimer Creek area are: (1) Dewatering of an alluvial aquifer; and (2) Local degradation of alluvium water quality by spoil-pile effluent. Effects of underground mining in the Hay Gulch area are: (1) Introduction of water with greater dissolved-solids concentrations into the upper Hay Gulch alluvium from mine runoff; (2) Subsidence fracturing which could dewater streams and the alluvial aquifer. (USGS)

  16. Development a solid state sensor based on SnO_2 nanoparticles for underground coal mine methane detection using zeolites as filter

    International Nuclear Information System (INIS)

    Abruzzi, R.C.; Dedavid, B.A.; Pires, M.J.R.; Luvizon, N.S.

    2016-01-01

    Aiming the monitoring of methane (CH_4) in underground coal mines, the tin oxide (SnO_2) was synthesis and applied to the development of a MOS sensor (metal oxide semiconductor). Zeolite have been tested as a filter of carbon dioxide (CO_2) to ensure the selectivity in the detection of CH_4. Analysis of Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD) indicated a synthesis of nanoscaled structures. The energy band gap showed characteristic values for a potential application of SnO_2 in CH_4 sensors. Analysis of surface area by BET isotherms showed high values for the zeolite 13X and Y, while adsorption tests indicated that the zeolite 13X presents greater adsorption efficiency of CO_2. The sputtering technique for deposition of the electrodes, as well as the method of drop coating for deposition of SnO_2, proved effective in developing the sensor. (author)

  17. Interdependence between natural conditions and mining in causes of landslides in the vicinity of a coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, R; Rybicki, S; Palki, J

    1983-01-01

    This paper discusses effects of underground black coal mining in the Rybnik coal region in Upper Silesia on landslides. Geologic structures of a mine situated in the southern section of the Chwalowice trough are analyzed. Several landslides and events which could have influenced them are discussed. The following data on landslides are given: date, season of the year, dimensions and range of a landslide, angle of slope inclination, angle of slope inclination after a landslide, water conditions, type of soil and its mechanical properties. Investigation results are given in 7 tables. Analyses show that only some landslides were caused by underground coal mining and the remaining ones were caused by natural factors. There is a close correlation between landslide number and atmospheric precipitation (between landslides and seasons characterized by a level of atmospheric precipitation far exceeding the average). Landslides are more frequent in the case of slopes with angle of inclination exceeding 30 degrees and under conditions of soils characterized by low stability (cohesion). Underground mining is only a supplementary factor which reduces soil stability and increases water infiltration. (8 refs.)

  18. Development of world coal reserves, their registration and their utilization

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, H

    1979-10-01

    This paper examines statistics on world coal production and world coal reserves with figures from 1860 to 1974 provided in tables and graphs. Eighty percent of the total world coal reserves (92% of world brown coal reserves) lie in the USA and USSR. The recent increase in total coal reserve estimates is due to exploration in western USA and in the USSR east of the Urals. Depth and thickness of the world's coal seams are shown in graphs and variations in coal quality are discussed. Problems associated with the anticipated substantial increase in coal production up to the year 2000 are considered. Encouraging higher coal production is the successful development of highly mechanized underground mining techniques and highly productive heavy surface mining equipment which allows excavation at increased depths. Surface mining is expected to make up 50% of total world mining operations in the near future. More complete deposit exploitation also contributes to higher coal production. Low international ship freight rates would facilitate future world coal trade. Obstacles are seen as: high, long term investments due to the fact that coal reserves lie far from populated and industrialized areas; opening new mines; transportation costs and infrastructure development.

  19. Development and application of the Safe Performance Index as a risk-based methodology for identifying major hazard-related safety issues in underground coal mines

    Science.gov (United States)

    Kinilakodi, Harisha

    The underground coal mining industry has been under constant watch due to the high risk involved in its activities, and scrutiny increased because of the disasters that occurred in 2006-07. In the aftermath of the incidents, the U.S. Congress passed the Mine Improvement and New Emergency Response Act of 2006 (MINER Act), which strengthened the existing regulations and mandated new laws to address the various issues related to a safe working environment in the mines. Risk analysis in any form should be done on a regular basis to tackle the possibility of unwanted major hazard-related events such as explosions, outbursts, airbursts, inundations, spontaneous combustion, and roof fall instabilities. One of the responses by the Mine Safety and Health Administration (MSHA) in 2007 involved a new pattern of violations (POV) process to target mines with a poor safety performance, specifically to improve their safety. However, the 2010 disaster (worst in 40 years) gave an impression that the collective effort of the industry, federal/state agencies, and researchers to achieve the goal of zero fatalities and serious injuries has gone awry. The Safe Performance Index (SPI) methodology developed in this research is a straight-forward, effective, transparent, and reproducible approach that can help in identifying and addressing some of the existing issues while targeting (poor safety performance) mines which need help. It combines three injury and three citation measures that are scaled to have an equal mean (5.0) in a balanced way with proportionate weighting factors (0.05, 0.15, 0.30) and overall normalizing factor (15) into a mine safety performance evaluation tool. It can be used to assess the relative safety-related risk of mines, including by mine-size category. Using 2008 and 2009 data, comparisons were made of SPI-associated, normalized safety performance measures across mine-size categories, with emphasis on small-mine safety performance as compared to large- and

  20. Urinary bladder cancer risk factors in an area of former coal, iron, and steel industries in Germany.

    Science.gov (United States)

    Krech, Eugen; Selinski, Silvia; Blaszkewicz, Meinolf; Bürger, Hannah; Kadhum, Thura; Hengstler, Jan G; Truss, Michael C; Golka, Klaus

    2017-01-01

    This study was performed to investigate the frequency of bladder cancer in patients with an occupational history such as underground hard coal mining and/or painting after the structural change in the local industry. A total of 206 patients with bladder cancer and 207 controls were enlisted regarding occupational and nonoccupational bladder cancer risk factors by questionnaire. The phase II enzymes N-acetyltransferase 2 (NAT2), glutathione S-transferases M1 (GSTM1), and T1 (GSTT1) and the single nucleotide polymorphism (SNP) rs11892031[A/C] reported to be associated with bladder cancer in genome-wide association studies were genotyped. The bladder cancer risk in varnishers and underground hard coal miners was increased as previously shown in a study in this area performed in the 1980s. The occupation of a car mechanic was associated with a significantly elevated bladder cancer risk and higher in the case of underground hard coal miners even though the mine was closed in 1987. The frequency of GSTM1 negative genotype was comparable in cases and controls (53% versus 54%). In the case of NAT2, the slow NAT2 genotype was more frequent (62% versus 58%) and ultra-slow NAT2 genotype (NAT2*6A and/or *7B alleles only) was 23% versus 15%. An occupational history of a varnisher or an underground hard coal miner remains a risk factor for bladder cancer occurrence. Data indicate that in the case of bladder cancer, GSTM1 is a susceptibility factor related to environmental and/or occupational exposure.

  1. Sasol Coal`s `better brick` for colliery ventilation walls

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-01

    Sasol coal has developed a better brick for construction of ventilation walls underground. It has proven to be a speedy and cost-saving alternative to the standard concrete block used for the purpose. The brick has an interlocking design ensuring that it is laid correctly. Unlike the conventional concrete block, the ventilation walls built for the new brick do not have to be plastered to achieve airtightness. The skills required to build such walls are minimal as the design of the brick makes it virtually impossible to lay it badly or unevenly - further facilitated by the absence of mortar. While introducing the new method Sasol Coal took the opportunity to introduce a purpose-made trailer for transporting the bricks, with the trailer doubling as a building platform on site. This has further contributed to the efficiency and speed of the operation. It has also reduced to a minimum the number of times the bricks are handled, thus cutting down on breakages. 1 fig.

  2. Report on the FY 1999 project for training coal engineers. Advanced course; 1999 nendo sekitan gijutsusha yosei jigyo hokokusho. Jokyusha course

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This is a report on the training for coal technology which two Japanese engineers received in Australia. In Chapter 3 (Outline of Australia), they studied the national land, constitution of the national land, population, history, politics, economy and trade. In Chapter 4 (Coal geology), they read lecture data of university. In Chapter 5 (Outline of coal supply/demand), the coal export amount from Australia is 167 million tons. Steam coal of a little less than 50% is exported to Japan. In Chapter 6 (Coal mining technology), 100 million tons of NSW state and 100 million and 570 thousand tons of QLD state are mined by underground mining and open pit mining. Training was conducted on overburden/drilling/transportation of the open pit mining coal. As coal mining methods of underground mining, they learned the board and pillar coal mining and high wall mining as an extension of open pit mining. In Chapter 7 (Coal preparation), they observed/studied the jig, heavy media separator, heavy media cyclone separator, flotation equipment, spiral ore dressing equipment, fine powder centrifugal dewatering equipment, thickener, sieve, etc. They studied by data or by observation in Chapters 8 (Outline of coal mine), 9 (Outline of export port), 10 (Outline of railroad transportation), and 11 (Quality management). (NEDO)

  3. Sources of coal-mine drainage and their effects on surface-water chemistry in the Claybank Creek basin and vicinity, north-central Missouri, 1983-84

    Science.gov (United States)

    Blevins, Dale W.

    1989-01-01

    Eighteen sources of drainage related to past coal-mining activity were identified in the Claybank Creek, Missouri, study area, and eight of them were considered large enough to have detectable effects on receiving streams. However, only three sources (two coal-waste sites and one spring draining an underground mine) significantly affected the chemistry of water in receiving streams. Coal wastes in the Claybank Creek basin contributed large quantities of acid drainage to receiving streams during storm runoff. The pH of coal-waste runoff ranged from 2.1 to 2.8. At these small pH values, concentrations of some dissolved metals and dissolved sulfate were a few to several hundred times larger than Federal and State water-quality standards established for these constituents. Effects of acid storm runoff were detected near the mouth of North Fork Claybank Creek where the pH during a small storm was 3.9. Coal wastes in the streambeds and seepage from coal wastes also had significant effects on receiving streams during base flows. The receiving waters had pH values between 2.8 and 3.5, and concentrations of some dissolved metals and dissolved sulfate were a few to several hundred times larger than Federal and State water-quality standards. Most underground mines in the North Fork Claybank Creek basin seem to be hydraulically connected, and about 80 percent of their discharge surfaced at one site. Drainage from the underground mines contributed most of the dissolved constituents in North Fork Claybank Creek during dry weather. Underground-mine water always had a pH near 5.9 and was well-buffered. It had a dissolved-sulfate concentration of about 2,400 milligrams per liter, dissolved-manganese concentrations ranging from 4.0 to 5.3 milligrams per liter, and large concentrations of ferrous iron. Iron was in the ferrous state because of reducing conditions in the mines. When underground-mine drainage reached the ground surface, the ferrous iron was oxidized and precipitated to

  4. Improvements in electric power supply in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Minovskii, Yu.P.; Nabokov, Eh.P.; Savel' ev, G.P.

    1985-01-01

    Reviews measures taken by major coal producing countries to increase output levels. Discusses research carried out into advance design of equipment in FRG, UK, USA and France and proposes establishment of central automatic control of electric power supply system in Soviet mines, improvement in underground power supply equipment, increase in reliability, stabilization of standby capacity in low voltage circuits, maintenance-free electrical equipment, and efficient spare part storage in underground workings. States that introduction of the proposed system (details are given) will ensure that Soviet mines will eventually reach the development level of foreign mines. 2 refs.

  5. Coal mining and water quality: Criciuma's case

    International Nuclear Information System (INIS)

    Fernandes, Lincoln

    1999-01-01

    abandoned mines (mainly after 1990, year of the implantation of the free trade for the coal sector), that did not finish their reclamation works. These sites are still producing acid drainage; n the sub-basins of the rivers Mae Luzia and Sangao there are several dumping tailings, probably connected to abandoned mines. These tailings are permanent fonts of sulfuric acid; even the mines in operation, in accordance with the official regulations, drain to the rivers, eventually, acid mine drainage, with no previous treatment. (author)

  6. A Critical Study on the Underground Environment of Coal Mines in India-an Ergonomic Approach

    Science.gov (United States)

    Dey, Netai Chandra; Sharma, Gourab Dhara

    2013-04-01

    Ergonomics application on underground miner's health plays a great role in controlling the efficiency of miners. The job stress in underground mine is still physically demanding and continuous stress due to certain posture or movement of miners during work leads to localized muscle fatigue creating musculo-skeletal disorders. A good working environment can change the degree of job heaviness and thermal stress (WBGT values) can directly have the effect on stretch of work of miners. Out of many unit operations in underground mine, roof bolting keeps an important contribution with regard to safety of the mine and miners. Occupational stress of roof bolters from ergonomic consideration has been discussed in the paper.

  7. Tube bundle system: for monitoring of coal mine atmosphere.

    Science.gov (United States)

    Zipf, R Karl; Marchewka, W; Mohamed, K; Addis, J; Karnack, F

    2013-05-01

    A tube bundle system (TBS) is a mechanical system for continuously drawing gas samples through tubes from multiple monitoring points located in an underground coal mine. The gas samples are drawn via vacuum pump to the surface and are typically analyzed for oxygen, methane, carbon dioxide and carbon monoxide. Results of the gas analyses are displayed and recorded for further analysis. Trends in the composition of the mine atmosphere, such as increasing methane or carbon monoxide concentration, can be detected early, permitting rapid intervention that prevents problems, such as a potentially explosive atmosphere behind seals, fire or spontaneous combustion. TBS is a well-developed technology and has been used in coal mines around the world for more than 50 years. Most longwall coal mines in Australia deploy a TBS, usually with 30 to 40 monitoring points as part of their atmospheric monitoring. The primary uses of a TBS are detecting spontaneous combustion and maintaining sealed areas inert. The TBS might also provide mine atmosphere gas composition data after a catastrophe occurs in an underground mine, if the sampling tubes are not damaged. TBSs are not an alternative to statutory gas and ventilation airflow monitoring by electronic sensors or people; rather, they are an option to consider in an overall mine atmosphere monitoring strategy. This paper describes the hardware, software and operation of a TBS and presents one example of typical data from a longwall coal mine.

  8. Numerical Assessment of the Influences of Gas Pressure on Coal Burst Liability

    Directory of Open Access Journals (Sweden)

    Haochen Zhao

    2018-01-01

    Full Text Available When coal mines exploit deep seams with high-gas content, risks are encountered due to the additional high likelihood of rock bursting potential problems. The bursts of coal pillars usually lead to severe fatalities, injuries, and destruction of property, including impeding access to active mine workings underground. The danger exists given that conditions in the already highly brittle coal material can be exacerbated by high stress and high gas pressure conditions. It is thus critical to develop methods that improve current understanding about bursting liability, and techniques to forecast or prevent coal bursting in underground coal mines. This study uses field data from a deep coal mine, and numerical modeling to investigate the effects of gas pressure and mechanical compressive stresses on coal bursting liability in high gas content coal seams. The bursting energy index is adopted to determine the coal bursting liability under high gas pressure conditions. The adopted methodology uses a two-staged approach comprising investigating the influence of gas pressure on the bursting liability of coal pillar, and the influence of the gas pressure on the resulting pillar failure mode. Based on numerical simulations of coal pillars, correlations are observed between the magnitudes of gas pressures and the bursting energy index. Irrespective of pillar size, failure time is shortest when the gas pressure achieves a threshold value between 50 kPa to 70 kPa. At 50 kPa, the value of the BEI increases by 50% going from the 4 m pillar to the 6 m pillar. The value of the BEI increases by 43% going from the 6 m high pillar to the 8 m high pillar at 50 kPa. When pillars fail there is a degree of stress relief leading to a reduction in bursting liability. The results suggest that before 50 kPa, pillar failure is largely due to mechanical loading. After 50 kPa, pillar failure is largely due to excessive gas pressures.

  9. Developments in the application of underground battery vehicles in the UK coal mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Fortune, J A.B.; Crawshaw, S A.M. [Long-Airdox International Ltd. (United Kingdom)

    1996-10-01

    Trackless battery powered haulage vehicles have been in operation in British coal mines principally for longwall face transfer and personnel transportation. Changes within the industry have resulted in the introduction of room and pillar coal mining methods and the introduction of increasingly heavier longwall roof supports. This has resulted in the introduction of: battery powered coal haulage machines, which, without the need for trailing cables, increase productivity within room and pillar mining; and battery powered longwall shield haulers which are capable of carrying the heaviest shield supports currently being utilised within the British coal mining industry. The conventional machines have been adapted from an American design to meet the requirements of European legislation. This has seen the emphasis being placed upon the supplier with the European Machinery Directive being introduced, necessitating the assigning of a `CE` mark to each vehicle. Battery vehicle technology has advanced to meet the demands of the ever changing market and will no doubt be further adapted to meet the requirement of the British coal mining industry. 1 ref., 12 figs., 3 tabs.

  10. The economics of coal power generation in China

    International Nuclear Information System (INIS)

    Zhao, Changhong; Zhang, Weirong; Wang, Yang; Liu, Qilin; Guo, Jingsheng; Xiong, Minpeng; Yuan, Jiahai

    2017-01-01

    The Chinese government recently released the 13th FYP (five-year plan) power development plan and proposed a capacity installation target of 1100 GW for coal power. Considering the weak demand growth of coal power since 2014, continuous decline in the annual utilisation hour and the coming market competition, such a planning target is unwelcome and could further the economic deterioration of coal power. In this paper, we employ LCOE (levelised cost of electricity) and project evaluation models to conduct a nationwide survey on the economics of coal power. The economic analysis has clearly indicated that the recent boom of coal power investment in China, which is absurd in many perspectives, is largely the aftermath of uncompleted market reform in the power sector. However, the fundamentals of electricity demand and supply are changing at a speed beyond the imagination of power generators and have foreboded a gloomy prospect for coal power. Our study shows that by 2020, with several exceptions, in most provinces the internal rate of return for coal power will drop below the social average return rate or will even be negative. In this regard, the 13th FYP capacity planning target for coal power is economically untenable and requires radical revision. - Highlights: • Conduct a first-of-its-kind nationwide economic analysis for coal power in China. • Distorted price by improper regulation is the root of investment bubble since 2014. • Cost uplift and market competition foretell a gloomy prospect of coal power. • The 1100 GW capacity planning target for coal power should be abandoned.

  11. Optimal location of emergency stations in underground mine networks using a multiobjective mathematical model.

    Science.gov (United States)

    Lotfian, Reza; Najafi, Mehdi

    2018-02-26

    Background Every year, many mining accidents occur in underground mines all over the world resulting in the death and maiming of many miners and heavy financial losses to mining companies. Underground mining accounts for an increasing share of these events due to their special circumstances and the risks of working therein. Thus, the optimal location of emergency stations within the network of an underground mine in order to provide medical first aid and transport injured people at the right time, plays an essential role in reducing deaths and disabilities caused by accidents Objective The main objective of this study is to determine the location of emergency stations (ES) within the network of an underground coal mine in order to minimize the outreach time for the injured. Methods A three-objective mathematical model is presented for placement of ES facility location selection and allocation of facilities to the injured in various stopes. Results Taking into account the radius of influence for each ES, the proposed model is capable to reduce the maximum time for provision of emergency services in the event of accident for each stope. In addition, the coverage or lack of coverage of each stope by any of the emergency facility is determined by means of Floyd-Warshall algorithm and graph. To solve the problem, a global criterion method using GAMS software is used to evaluate the accuracy and efficiency of the model. Conclusions 7 locations were selected from among 46 candidates for the establishment of emergency facilities in Tabas underground coal mine. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Shaft barriers for underground waste repositories in abandoned salt mines. Preparatory project. Vol. 2. Annex; Schachtverschluesse fuer untertaegige Deponien in Salzbergwerken. Vorprojekt. Bd. 2. Anhang

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, M W [GSF - Forschungszentrum fuer Umwelt und Gesundheit, Remlingen (Germany). Forschungsbergwerk Asse; Fruth, R [GSF - Forschungszentrum fuer Umwelt und Gesundheit, Remlingen (Germany). Forschungsbergwerk Asse; Stockmann, N [GSF - Forschungszentrum fuer Umwelt und Gesundheit, Remlingen (Germany). Forschungsbergwerk Asse; Birthler, H [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH Greece, Braunschweig (Germany). Fachbereich Endlagersicherheitsforschung; Boese, B [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH Greece, Braunschweig (Germany). Fachbereich Endlagersicherheitsforschung; Storck, R [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH Greece, Braunschweig (Germany). Fachbereich Endlagersicherheitsforschung; Sitz, P [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Bergbau; Krausse, A [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Bergbau; Eulenberger, K H [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Bergbau; Schleinig, J P [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Bergbau; Duddeck, H [Technische Univ. Braunschweig (Germany). Inst. fuer Statik; Ahrens, H [Technische Univ. Braunschweig (Germany). Inst. fuer Statik; Menzel, W [IfG Inst. fuer Gebirgsmechanik GmbH, Leipzig (Germany); Salzer, K [IfG Inst. fuer Gebirgsmechanik GmbH, Leipzig (Germany); Minkley, W [IfG Inst. fuer Gebirgsmechanik GmbH, Leipzig (Germany); Busche, H [Kali und Salz AG, Kassel (Germany); Lindloff, U [Kali und Salz AG, Kassel (Germany); Gierenz, S [Kali und Salz AG, Kassel (Germany)

    1996-12-31

    This preparatory study, ``Shaft barriers for underground waste repositories in abandoned salt mines``, was to demonstrate the current scientific and technological know-how based on a comprehensive analysis of the barrier design concepts or established structures intended to serve as barriers in abandoned shafts of potash or rock salt mines. Taking as a basis the current regulatory regime and the available know-how on barrier systems in underground waste repositories taken into account so far in plan approval and licensing procedures, as well as the state of the art, concepts are developed as technical guides and models of barrier systems for mine shafts. The required research work for the various components of a shaft barrier is shown, particularly relating to aspects such as materials suitability and technical realisation. Immediate demand for research activities is shown with regard to the available potentials of mathematic and numeric geotechnical and hydrogeologic calculation models required in order to give proof of the long-term workability of shaft barriers. The authors are of the opinion that the following activities are required in order to meet the research demand quantified: (1) Laboratory and bench-scale experiments for determination of the efficiency of various sealing materials and backfilling materials, and (2) an in-situ, large-scale experiment in order to demonstrate the suitability of low-consolidation shotter columns, or constructional technologies. The laboratory work can be done in the facilities of the GSF research mine of Asse, the Freiburg Mining Academy, and the Institut fuer Gebirgsmechanik in Leipzig, and the benchmark experiments also at the Asse site in the research mine. The Kali und Salz Beteiligungs AG is prepared to offer its mine Salzdetfurth II as a site for the large-scale experiment. (orig.) [Deutsch] Im Rahmen der Vorstudie ``Schachtverschluesse fuer Untertagedeponien in Salzbergwerken`` wird ausgehend von einer umfangreichen

  13. Shaft barriers for underground waste repositories in abandoned salt mines. Preparatory project. Vol. 2. Annex; Schachtverschluesse fuer untertaegige Deponien in Salzbergwerken. Vorprojekt. Bd. 2. Anhang

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, M.W. [GSF - Forschungszentrum fuer Umwelt und Gesundheit, Remlingen (Germany). Forschungsbergwerk Asse; Fruth, R. [GSF - Forschungszentrum fuer Umwelt und Gesundheit, Remlingen (Germany). Forschungsbergwerk Asse; Stockmann, N. [GSF - Forschungszentrum fuer Umwelt und Gesundheit, Remlingen (Germany). Forschungsbergwerk Asse; Birthler, H. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH Greece, Braunschweig (Germany). Fachbereich Endlagersicherheitsforschung; Boese, B. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH Greece, Braunschweig (Germany). Fachbereich Endlagersicherheitsforschung; Storck, R. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH Greece, Braunschweig (Germany). Fachbereich Endlagersicherheitsforschung; Sitz, P. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Bergbau; Krausse, A. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Bergbau; Eulenberger, K.H. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Bergbau; Schleinig, J.P. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Bergbau; Duddeck, H. [Technische Univ. Braunschweig (Germany). Inst. fuer Statik; Ahrens, H. [Technische Univ. Braunschweig (Germany). Inst. fuer Statik; Menzel, W. [IfG Inst. fuer Gebirgsmechanik GmbH, Leipzig (Germany); Salzer, K. [IfG Inst. fuer Gebirgsmechanik GmbH, Leipzig (Germany); Minkley, W. [IfG Inst. fuer Gebirgsmechanik GmbH, Leipzig (Germany); Busche, H. [Kali und Salz AG, Kassel (Germany); Lindloff, U. [Kali und Salz AG, Kassel (Germany); Gierenz, S. [Kali und Salz AG, Kassel (Germany)

    1995-12-31

    This preparatory study, ``Shaft barriers for underground waste repositories in abandoned salt mines``, was to demonstrate the current scientific and technological know-how based on a comprehensive analysis of the barrier design concepts or established structures intended to serve as barriers in abandoned shafts of potash or rock salt mines. Taking as a basis the current regulatory regime and the available know-how on barrier systems in underground waste repositories taken into account so far in plan approval and licensing procedures, as well as the state of the art, concepts are developed as technical guides and models of barrier systems for mine shafts. The required research work for the various components of a shaft barrier is shown, particularly relating to aspects such as materials suitability and technical realisation. Immediate demand for research activities is shown with regard to the available potentials of mathematic and numeric geotechnical and hydrogeologic calculation models required in order to give proof of the long-term workability of shaft barriers. The authors are of the opinion that the following activities are required in order to meet the research demand quantified: (1) Laboratory and bench-scale experiments for determination of the efficiency of various sealing materials and backfilling materials, and (2) an in-situ, large-scale experiment in order to demonstrate the suitability of low-consolidation shotter columns, or constructional technologies. The laboratory work can be done in the facilities of the GSF research mine of Asse, the Freiburg Mining Academy, and the Institut fuer Gebirgsmechanik in Leipzig, and the benchmark experiments also at the Asse site in the research mine. The Kali und Salz Beteiligungs AG is prepared to offer its mine Salzdetfurth II as a site for the large-scale experiment. (orig.) [Deutsch] Im Rahmen der Vorstudie ``Schachtverschluesse fuer Untertagedeponien in Salzbergwerken`` wird ausgehend von einer umfangreichen

  14. Chemical and mineralogical characterization of highly and less reactive coal from Northern Natal and Venda-Pafuri coalfields in South Africa

    Science.gov (United States)

    Kataka, M. O.; Matiane, A. R.; Odhiambo, B. D. O.

    2018-01-01

    Spontaneous combustion of coal is a major hazard associated with the coal mining industry over centuries. It also a major cause of underground fires in South African collieries and in opencast operations, spoil heaps and stockpiles. Spontaneous combustion incidents are manifested in all major aspects of coal mining namely, underground mining, surface mining, including during sea-borne transportation, storage and waste disposal. Previous studies indicate that there are various factors (both intrinsic and extrinsic) that influence the spontaneous combustion of coals. This paper characterizes highly reactive coal from the Vryheid coalfields and less reactive coal from at Venda-Pafuri coalfield, to identify and delineate some intrinsic coal parameters that are considered to be most critical in terms of heat 'generation' and relationships between the two coals types by tracing their similarities and differences in their spontaneous combustion parameters. Various tests were carried out to characterize these coals in terms of their intrinsic properties, namely: ultimate, proximate, petrographic analysis and Glasser spontaneous tests. The ultimate and proximate analysis showed that spontaneous coal has high contents of carbon, oxygen, and volatile matter as compared to non-spontaneous coal, making it more susceptible to spontaneous combustion. Non-spontaneous coal has higher ash content than the spontaneous coal. Furthermore, the petrographic analysis showed that spontaneous coal has high total reactivity compared to the non-spontaneous coal. Results from Glasser spontaneous test indicate that spontaneous coal absorbs more oxygen than non-spontaneous coal, which explains why spontaneous coal is more susceptible to spontaneous combustion. High reactive coal has low values of critical self-heating temperature (CSHT), indicating that this coal has potential of spontaneous ignition.

  15. A sequential approach to control gas for the extraction of multi-gassy coal seams from traditional gas well drainage to mining-induced stress relief

    International Nuclear Information System (INIS)

    Kong, Shengli; Cheng, Yuanping; Ren, Ting; Liu, Hongyong

    2014-01-01

    Highlights: • The gas reservoirs characteristics are measured and analyzed. • A sequential approach to control gas of multi-gassy coal seams is proposed. • The design of gas drainage wells has been improved. • The utilization ways of different concentrations of gas production are shown. - Abstract: As coal resources become exhausted in shallow mines, mining operations will inevitably progress from shallow depth to deep and gassy seams due to increased demands for more coal products. However, during the extraction process of deeper and gassier coal seams, new challenges to current gas control methods have emerged, these include the conflict between the coal mine safety and the economic benefits, the difficulties in reservoirs improvement, as well as the imbalance between pre-gas drainage, roadway development and coal mining. To solve these problems, a sequential approach is introduced in this paper. Three fundamental principles are proposed: the mining-induced stress relief effect of the first-mined coalbed should be sufficient to improve the permeability of the others; the coal resource of the first-mined seams must be abundant to guarantee the economic benefits; the arrangement of the vertical wells must fit the underground mining panel. Tunlan coal mine is taken as a typical example to demonstrate the effectiveness of this approach. The approach of integrating surface coalbed methane (CBM) exploitation with underground gas control technologies brings three major benefits: the improvement of underground coal mining safety, the implementation of CBM extraction, and the reduction of greenhouse gas emissions. This practice could be used as a valuable example for other coal mines having similar geological conditions

  16. A Review of Underground Coal Gasification Research and Development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Camp, D. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-26

    An intense and productive period of research and development on underground coal gasification (UCG) took place in the United States from the mid-1970’s through the late 1980’s. It began with the translation and review of Soviet literature and ended with the Rocky Mountain 1 field test. This demonstrated the feasibility of newly-developed technologies that form the basis of many UCG projects around the world today. This period began with little domestic understanding of UCG and ended with an accurate observation-based conceptual model and a corresponding predictive multi-physics mathematical model of the process. The many accomplishments of this period form the main content of this report. This report also covers recent U.S. activities and accomplishments during the period 2004-2015, and touches briefly on the Bureau of Mines efforts between 1948 and 1963. Most of the activities were funded by the United States Department of Energy and its predecessors. While private/commercially-funded activities are reviewed here, the emphasis is on government-funded work. It has a much greater extent of publicly available reports and papers, and they generally contain much greater technical detail. Field tests were the marquis activities around which an integrated multi-faceted program was built. These are described in detail in Section 4. Highlights from modeling efforts are briefly covered, as the program was integrated and well-rounded, with field results informing models and vice-versa. The primary goal of this report is to review what has been learned about UCG from the U.S. experience in aggregate. This includes observations, conclusions, lessons-learned, phenomena understood, and technology developed. The latter sections of this report review these things.

  17. Abandoned works program

    International Nuclear Information System (INIS)

    Arnott, A.

    2007-01-01

    Thousands of improperly abandoned or decommissioned oil and gas wells are threatening the purity of Ontario's source water. This presentation discussed an abandoned works program developed by the Ontario Ministry of Natural Resources. The abandoned works program was established in 2005 in order to plug old oil and gas wells. The program was designed to create a list of abandoned wells, develop a coherent policy, and formulate procurement and contracting protocols. Abandoned wells are defined as wells drilled prior to 1963 with no operator other than the current landowner. There are currently over 200 prioritized wells on the list. Twenty-six contracts have been issued for a total of 33 wells, and 19 wells have been plugged since the program's field operations began in 2006. However, the program is often challenged by the difficulties associated with determining where the wells are located. Many of the wells have been cut off and buried, and access is often dependent on weather conditions and road restrictions. There is also a shortage of contractors who have experience working with older wells. It was concluded that the program will expand by obtaining further funding and modifying its qualification criteria. tabs., figs

  18. Sahara Coal: the fine art of collecting fines for profit

    Energy Technology Data Exchange (ETDEWEB)

    Schreckengost, D.; Arnold, D.

    1984-09-01

    Because of a change in underground mining methods that caused a considerable increase in the amount of fine sizes in the raw coal, Sahara Coal Co. designed and constructed a unique and simple fine coal system at their Harrisburg, IL prep plant. Before the new system was built, the overload of the fine coal circuit created a cost crunch due to loss of salable coal to slurry ponds, slurry pond cleaning costs, and operating and maintenance costs--each and every one excessive. Motivated by these problems, Sahara designed a prototype system to dewater the minus 28 mesh refuse. The success of the idea permitted fine refuse to be loaded onto the coarse refuse belt. Sahara also realized a large reduction in pond cleaning costs. After a period of testing, an expanded version of the refuse system was installed to dewater and dry the 28 mesh X 0 clean coal. Clean coal output increased about 30 tph. Cost savings justified the expenditures for the refuse and clean coal systems. These benefits, combined with increased coal sales revenue, paid back the project costs in less than a year.

  19. FY 1999 survey report on the survey of the trend of the development of CO2 underground sequestration; 1999 nendo CO{sub 2} chichu kakuri gijutsu ni kansuru kaihatsu doko chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Paying attention to the CO2 sequestration technology, especially underground sequestration technology, this survey proposed a model case of the CO2 underground project including CO2 emission sources, means of transportation and CO2 injection equipment in terms of economical efficiency, environmental loads and technology in Japan and in other areas, and also studied projects on underground sequestration which are viable under CTI and other frameworks. The sequestration technology is classified into ocean sequestration, biological sequestration, underground sequestration and material sequestration. The underground sequestration is classified into the enhanced oil recovery, enhanced coal bed methane recovery, depleted oil/gas reservoir sequestration, and deep aquifer sequestration. The cost of sequestration is $100-300 per 1 ton of CO2, and is low in competitiveness at present. However, in the tertiary oil recovery and coal bed methane recovery, it costs nothing for CO2 reduction. As to the enhanced oil recovery, 66 projects were carried out in 1998 in the U.S. As to the enhanced coal bed methane recovery, projects in Canada, the U.S., and the U.K. As to the deep aquifer sequestration, one project in Norway. Concerning NEDO's project, there are great possibilities in aquifer and depleted oil/gas reservoir sequestration. (NEDO)

  20. Effects of radiation on coal mine environment -a critical review

    International Nuclear Information System (INIS)

    Singh, A.K.; Varma, N.K.; Sahay, N.; Ahmad, I.

    2001-01-01

    Due to mass-scale industrialization, world's environment is being polluted every day endangering the existence of living beings on the earth. This has attracted the attention of environmental engineers, medical practitioners, planners and researchers throughout the world. Attempts are being made to make air, water and atmosphere clean and to prevent likely hazards arising out of various industrial activities. In addition, the radiation from natural sources is all around us and has been here since time immemorial. Coal miners have small occupational radiation which arise from naturally occurring radioactive substance(s) underground. The predominant source of natural radiation present in coal mines is the radon gas. This paper describes the origin of radon and its radiological hazards. An attempt has been made to review the status of the problem likely to be caused by the different radioactive elements present in Indian coal, coal ash and allied coal-based industries. (author)

  1. Underground storage touted as CO2 solution

    International Nuclear Information System (INIS)

    Kishewitsch, S.

    2000-01-01

    As power generating companies weigh the merits of switching from coal to natural gas in order to reduce carbon dioxide emissions into the atmosphere, energy analysts predict that coal will remain a major contributor to world energy supplies well into the 21st century. For example, the Electric Power Institute estimates that a new 1,000 MW power plant need to be built somewhere in the world every two days for the next fifty years to meet the global demand for energy, and that in major emerging economies such as India and China, many of those plants will be fueled by coal. Various methods already are being tried to safely contain the carbon dioxide resulting from this vastly carbon-intensive economy. One of the more promising approaches involves burying the gas deep in the ground where it will stay safely for hundreds, if not thousands of years. Burial underground may take the form of burial in deep exhausted oil or gas formations, or burial in the deep ocean. Injection into exhausted oil and gas formations is favoured because of the ready availability of thousands of gigatonnes of underground formations and because of the extensive knowledge base already in existence regarding the size and geological properties of oil and gas reservoirs and the behaviour of carbon dioxide under these conditions. Injecting carbon dioxide into unmineable coal seams could replace methane bound to the coal; it is already being done in Alberta as one of the two pilot projects in North America, the other being in Mexico. Carbon dioxide injection to stimulate enhanced oil recovery is also being experimented with, among others by PanCanadian Resources Ltd at its Weyburn reservoir in Saskatchewan. Injection into salt domes and deep saline aquifers is another alternative. Sequestration in the ocean in a variety of forms is also the subject of several experiments. To illustrate the attractiveness of deep ocean storage, it is stated that the ocean contains at least 50 times more carbon than the

  2. A Review of Mine Rescue Ensembles for Underground Coal Mining in the United States.

    Science.gov (United States)

    Kilinc, F Selcen; Monaghan, William D; Powell, Jeffrey B

    The mining industry is among the top ten industries nationwide with high occupational injury and fatality rates, and mine rescue response may be considered one of the most hazardous activities in mining operations. In the aftermath of an underground mine fire, explosion or water inundation, specially equipped and trained teams have been sent underground to fight fires, rescue entrapped miners, test atmospheric conditions, investigate the causes of the disaster, or recover the dead. Special personal protective ensembles are used by the team members to improve the protection of rescuers against the hazards of mine rescue and recovery. Personal protective ensembles used by mine rescue teams consist of helmet, cap lamp, hood, gloves, protective clothing, boots, kneepads, facemask, breathing apparatus, belt, and suspenders. While improved technology such as wireless warning and communication systems, lifeline pulleys, and lighted vests have been developed for mine rescuers over the last 100 years, recent research in this area of personal protective ensembles has been minimal due to the trending of reduced exposure of rescue workers. In recent years, the exposure of mine rescue teams to hazardous situations has been changing. However, it is vital that members of the teams have the capability and proper protection to immediately respond to a wide range of hazardous situations. Currently, there are no minimum requirements, best practice documents, or nationally recognized consensus standards for protective clothing used by mine rescue teams in the United States (U.S.). The following review provides a summary of potential issues that can be addressed by rescue teams and industry to improve potential exposures to rescue team members should a disaster situation occur. However, the continued trending in the mining industry toward non-exposure to potential hazards for rescue workers should continue to be the primary goal. To assist in continuing this trend, the mining industry

  3. Large blastholes in coal mining, canal effects. Barrenos largos en la mineria del carbon, efecto canal

    Energy Technology Data Exchange (ETDEWEB)

    Muniz Hevia, E.; Legorburu Zuazva, V.; Blanco Gonzalez, R. (Union Explosivos Rio Tinto SA, Madrid (Spain))

    1988-01-01

    The 'canal effect' has been known for a long time. It appears only in underground workings. It may be said that the coal industry has suffered from it less than other sectors, perhaps because of its rigorous safety legislation. The Spanish coal mining industry has now been without this phenomenon for many years. 3 refs., 3 figs.

  4. The Study of Cross-layer Optimization for Wireless Rechargeable Sensor Networks Implemented in Coal Mines

    Science.gov (United States)

    Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting

    2016-01-01

    Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes’ placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper. PMID:26828500

  5. Behaviour of radium isotopes released with brines and sediments from coal mines in Poland

    International Nuclear Information System (INIS)

    Wysocka, M.; Chalupnik, S.; Mielnikow, A.; Lebecka, J.; Skubacz, K.

    1998-01-01

    Saline waters occurring in underground coal mines in Poland often contain natural radioactive isotopes, mainly 226 Ra from uranium series and 228 Ra from thorium series. Approximately 40% of total amount of radium remains underground in a form of radioactive deposits, but 225 MBq of 226 Ra and 380 MBq of 228 Ra are released daily to the rivers with mine effluents. Technical measures as spontaneous precipitation of radium in gobs, decreasing of amounts of water inflowing into underground working etc. have been undertaken in several coal mines and in the result total amount of radium released to the surface waters diminished by about 60% during last 5-6 years. Mine waters can cause a severe impact on the natural environment. The enhancement of radium concentration in river waters, bottom sediments and vegetation is observed. Sometimes radium concentration in rivers exceeds 0.7 kBq/m 3 , which is due to Polish law a permissible level for liquid radioactive waste. It was necessary to undertake investigations for development the methods of the purification of mine waters from radium. The radium balance in effluents has been calculated and a map of radioactive contamination of river waters have been prepared. Solid wastes with enhanced natural radioactivity have been produced in huge amounts in energy and coal industries in Poland. There are two main sources of these waste products. As a result of combustion of coal in power plants low radioactive waste materials are produced, with 226 Ra concentration seldom exceeding few hundreds of Bq/kg. Different situation is be observed in coal mines, where as a result of precipitation of radium from radium-bearing waters radioactive deposits are formed. Sometimes natural radioactivity of such materials is very high, in case of scaling from coal mines radium concentration may reach 4x10 5 Bq/kg - similar activity as for 3% uranium ore. Therefore maintenance of solid waste with technologically enhanced natural radioactivity (TENR

  6. Remining to reclaim abandoned mined lands: Virginia's initiative

    International Nuclear Information System (INIS)

    Zipper, C.E.; Lambert, B.

    1998-01-01

    Abandoned Mined Lands (AML) are lands that were mined prior to implementation of the federal Surface Mining Control and Reclamation Act (SMCRA) in 1977, but were inadequately reclaimed. Re-mining of AML is being conducted on a routine basis by coal-mining operations in eastern states such as Virginia. Re-mining is a potentially important means of reclaiming AML. However, under current policies, re-mining operations often fail to permit and reclaim priority 1, 2, and 3 AML, especially those areas which present the most severe environmental problems. This paper describes policy issues which affect the potential for AML reclamation by re-mining operations in mountainous mining areas, such as Virginia; efforts underway in Virginia which seek to resolve those issues; and progress achieved to date under that initiative

  7. Evaluation of natural amelioration of acidic deep mine discharges in Western Pennsylvania

    International Nuclear Information System (INIS)

    Lambert, D.C.; Dzombak, D.A.; Aljoe, W.W.

    1999-01-01

    Abandoned mine drainage (AMD) has long been the most serious water quality and watershed degradation problem in the Appalachian region of the U.S. and in some other areas of the nation. In several areas of western Pennsylvania, deep mine discharges that were reliably described as highly acidic in the 1960s and 1970s have shown natural amelioration of CO 2 acidity. A number of different factors, including mine flooding and overburden chemistry, may cause improvement in mine water quality. The authors are studying the hydrologic and geochemical factors responsible for improvements over time in the quality of water discharges from abandoned deep mines. The project is focused on the study of a set of mine water discharges associated with abandoned, interconnected deep mines in the Uniontown Syncline of Western Pennsylvania. This area was studied extensively under Pennsylvania's Operation Scarlift in the early 1970s, and one year of monthly water quality data are available from 1974-75. The mined-out coal basin of the Uniontown Syncline is unique in that different mining methods were employed in the same coal seam over the basin. The resulting discharges are from flooded, unflooded, and partially flooded abandoned underground coal mines. This paper presents an overview of the hydraulic system in the mine network of the Uniontown Syncline along with a summary of selected data from the 1974-75 and 1998-99 studies. Preliminary interpretations of these data in relation to the Scarlift data are also presented

  8. Complete biocycle for solar energy conversion, storage, fuel and power generation, and coal conservation for future use

    International Nuclear Information System (INIS)

    Srivastava, S.C.

    1993-01-01

    A complete carbon biocycle has been described, starting from coal in in situ condition in coal seams underground. Various steps involved are: (i) Biogasification of coal to methane, using a consortia of bacteria, has been reported. A group of bacteria degrades complex structure of coal to simpler structure. This simpler structure of coal, is then converted to methane by methanogens; (ii) Biophotolysis of methane and associated biodegradation, results in products, such as hydrogen and oxygen for use in fuel cells for power generation; (iii) Bioconversion of products so obtained is carried out to produce methanol or methane that could be used as fuel or recycled; (iv) In complete biocycle some methane is converted to biomass. In order to replace this methane, coal is converted to methane using group of bacteria, only to the extent methane has been converted to biomass; (v) The biomass so produced could be dumped underground from where coal has been gasified. Alternatively it could be burnt as fuel or else used as substitute of protein in animal food. Detailed concept of proposed technology for: (a) an alternative to conventional coal mining, (b) generation of power using products of bioconversion in fuel cell, and (c) conversation of solar energy for generation of alternative source of fuel and power, has been discussed. Possibility of developing a biofuel cell for conversion of solar energy through bioelectrochemical route has been suggested. (author). 48 refs., 3 figs

  9. Technological possibilities for increasing coarse coal yield in the Staszic mine

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Major, M

    1985-06-01

    Experiments carried out in the Staszic underground black coal mine in Upper Silesia showed that there is a correlation of coarse coal yield and yield strength of shield supports used at longwall faces. The faces were equipped with Pioma 25-45, Fazos 15-31 and Fazos 19-32 shield supports, KWB 3RDU shearer loaders and Rybnik chain conveyors. Pressure of oil in water emulsion used in the Pioma 25/45 shield supports was reduced from the recommended 30 MPa to 15 MPa or to 10 MPa. Reducing emulsion pressure (and support yield strength) caused an increase in coarse coal yield. Coarse coal yield was also increased by use of Fazos 19/32 shield supports with reduced yield strength. During the tests coarse coal yield increased 1.68% and 2.65%. Test results are shown in 3 diagrams. Investigations carried out in the Staszic mine in 1983 showed that by optimizing yield strength of shield supports coarse coal yield could be increased 2 to 8%. 6 references.

  10. SIMPL: A Simplified Model-Based Program for the Analysis and Visualization of Groundwater Rebound in Abandoned Mines to Prevent Contamination of Water and Soils by Acid Mine Drainage

    Directory of Open Access Journals (Sweden)

    Sung-Min Kim

    2018-05-01

    Full Text Available Cessation of dewatering following underground mine closure typically results in groundwater rebound, because mine voids and surrounding strata undergo flooding up to the levels of the decant points, such as shafts and drifts. SIMPL (Simplified groundwater program In Mine workings using the Pipe equation and Lumped parameter model, a simplified lumped parameter model-based program for predicting groundwater levels in abandoned mines, is presented herein. The program comprises a simulation engine module, 3D visualization module, and graphical user interface, which aids data processing, analysis, and visualization of results. The 3D viewer facilitates effective visualization of the predicted groundwater level rebound phenomenon together with a topographic map, mine drift, goaf, and geological properties from borehole data. SIMPL is applied to data from the Dongwon coal mine and Dalsung copper mine in Korea, with strong similarities in simulated and observed results. By considering mine workings and interpond connections, SIMPL can thus be used to effectively analyze and visualize groundwater rebound. In addition, the predictions by SIMPL can be utilized to prevent the surrounding environment (water and soil from being polluted by acid mine drainage.

  11. Preliminary report on LLNL mine seismicity deployment at the Twentymile Coal Mine

    International Nuclear Information System (INIS)

    Walter, W.R.; Hunter, S.L.; Glenn, L.A.

    1996-01-01

    This report summarizes the preliminary results of a just completed experiment at the Twentymile Coal Mine, operated by the Cyprus Amax Coal Company near Oak Creek, CO. The purpose of the experiment was to obtain local and regional seismic data from roof caves associated with long-wall mining activities and to use this data to help determine the effectiveness with which these events can be discriminated from underground nuclear explosions under a future Comprehensive Test Ban Treaty

  12. Hazard mitigation in coal mines

    Science.gov (United States)

    Rashmi, R. V.; Devalal, Shilpa; Jacob, Anjali; Vidhyapathi, C. M.

    2017-11-01

    Today’s world witnesses increased number of mine accidents caused due to explosion and fire. When the methane gas concentration goes high, it causes fire leading to explosion. In this paper, an IoT based system is proposed to ensure safety to the mine workers in underground collieries. The proposed system consists of DHT-11 sensor to monitor the temperature and humidity of coal mines. When the gas sensor detects high methane gas level, blower is activated so that the atmospheric air can be pumped in from outside to dilute the gas concentration. The smoke sensor is also used to detect the fire. In case of any abnormality in any of these parameters the buzzer sounds. All these parameters are uploaded to the cloud directly so that the people at the control station can be well informed of the underground mines.

  13. Anchor-Free Localization Method for Mobile Targets in Coal Mine Wireless Sensor Networks

    OpenAIRE

    Pei, Zhongmin; Deng, Zhidong; Xu, Shuo; Xu, Xiao

    2009-01-01

    Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes’ location. Fi...

  14. BARZAS DEPOSIT SAPROPELITE COALS: PROSPECTS OF INTEGRATED DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    L. V. Kuznetsova

    2018-03-01

    Full Text Available The urgency of the problem. Sapropelite coals of the Barzas deposit of Kuzbass are good raw materials for producing liquid fuel, lubricating oils, paraffin, etc. Apart from that, they are enriched with molybdenum, niobium, rubidium, yttrium and titanium. The content of these deposits is higher than the minimal content, which determines the industrial importance of coal as a source of ore raw materials. However, until now, the field is not being developed because of the economic inexpediency and the lack of a solution to the problem of recycling of incineration and semi-coking waste, which have high ash content and a large volume. The purpose of the study: to develop the concept of integrated development of the Barzas sapropelite coal deposit on the basis of creating efficient, environmentally friendly and low-waste production. Research methodology. The analysis of geological and mining conditions of the formation, which is called the Main, the results of its geochemical studies of existing technologies of mining and processing the high-ash solid fuels. The promising areas of their development were also considered. Cluster approach to the development of sapropelite coal deposits. Results. Coal mining at the sites with different geological conditions can be carried out with openly-underground mobile means of mechanization. The First mine field can be developed by the underground way on the development system called “Long poles along the strike”. This can be attained by means of the comprehensive mechanization of the Second mine field. Also, “Long poles along strike, take out the strips by the drop” are combined sections of a mechanized roof support with mobile means of cutting and transportation of coal – the Third mine field. The energy-chemical cluster of the Barzas deposit of sapropelite coals is a complex of the enterprises, which are technologically connected among them. They are concentrated on the same territory, which includes

  15. Queensland coal sets new records in 2001

    International Nuclear Information System (INIS)

    Smith, R.; Coffey, D.; Abbott, E.

    2002-01-01

    In 2001 the Queensland coal industry consolidated on record expansion in the export market over the past two years and again, increased its sales to overseas customers. New sales records were set in both the export and domestic markets. Unprecedented international demand for Queensland metallurgical coals coupled with improved prices and a favourable A$-US$ exchange rate created strong market conditions for the Queensland coal export industry, boosting confidence for further expansion and new developments. Australian coal exports in 2001 amounted to 194 Mt and are forecast to reach 275 million tonnes per annum (Mtpa) in 2020. The Queensland coal industry is poised to capture a significant share of this market growth. Queensland's large inventory of identified coal, currently estimated at more than 37 billion tonnes (raw coal m situ), is adequate to sustain the industry for many years and allow new opencut and underground mines to develop according to future market demand. Recent coal exploration successes are expected to add significant tonnage to the inventory (Coxhead, Smith and Coffey, 2002). Most of the coal exported from Queensland is mined in the Bowen Basin of central Queensland and additional tonnage of Walloon coal is exported by mines in the Moreton Basin and Surat Basin in south-east Queensland. The Walloon Coal Measures and its equivalents contain large resources of undeveloped opencut, high volatile, clean-burning thermal coal. The environmental advantages in the utilisation of these coals are now recognised and strong growth in production is expected in the near future for supply to both the domestic and export markets. Establishment of new rail transport and civil infrastructure will however, be required to support the development of large scale mining operations in this region

  16. Low back pain and lumbar angles in Turkish coal miners

    Energy Technology Data Exchange (ETDEWEB)

    Sarikaya, S.; Ozdolap, S.; Gumustas, S.; Koc, U. [Zonguldak Karaelmas University, Zonguldak (Turkey). Faculty of Medicine

    2007-02-15

    This study was designed to assess the incidence of low back pain among Turkish coal miners and to investigate the relationship between angles of the lumbar spine and low back pain in coal miners. Fifty underground workers (Group I) and 38 age-matched surface workers (Group II) were included in the study. All the subjects were asked about low back pain in the past 5 years. The prevalence of low back pain was higher in Group I than in Group II (78.0%, 32.4%, respectively, P {lt} 0.001). The results of the study showed that low back pain occurred in 78.0% of Turkish coal miners. Although the nature of the occupation may have influenced coal miners' lumbar spinal curvature, lumbar angles are not a determinant for low back pain in this population. Further extensive studies involving ergonomic measurements are needed to validate our results for Turkish coal mining industry.

  17. Hydrologic analysis for ecological risk assessment of watersheds with abandoned mine lands

    International Nuclear Information System (INIS)

    Gallagher, D.; Babendreier, J.; Cherry, D.

    1999-01-01

    As part of on-going study of acid mine drainage (AMD), a comprehensive ecological risk assessment was conducted in the Leading Creek Watershed in southeast Ohio. The watershed is influenced by agriculture and active and abandoned coal-mining operations. This work presents a broad overview of several quantitative measures of hydrology and hydraulic watershed properties available for in risk assessment and evaluates their relation to metrics of ecology. Data analysis included statistical comparisons of metrics of ecology, ecotoxicology, water quality, and physically based parameters describing land use, geomorphology, flow, velocity, and particle size. A multiple regression analysis indicated that abandoned mining operations dominated impacts upon aquatic ecology. It also indicated low flow velocity measurements and a ratio of maximum velocity to average velocity at low flow where helpful in describing variation in macroinvertebrate Total Taxa scores. Other key parameters also identified strong impact relationships with biodiversity trends and included pH, simple knowledge of any mining upstream, calculated % of the subshed covered by strip mines, and the measured depth of streambed sediments from site to site

  18. Development of an advanced fire detector for underground coalmines - final report

    Energy Technology Data Exchange (ETDEWEB)

    Hemingway, M.; Walsh, P.

    2005-07-01

    A joint HSE/UK Coal research project was instigated to develop an improved fire detector. This paper describes tests performed in an experimental mine roadway on various types of sensor. The sensors were exposed to smouldering conveyor belt, coal, wood, oil and grease, and diesel exhaust fume. It is not recommended that products of combustion (POC) semiconductor sensors, ionisation smoke detectors, single wavelength optical smoke sensors, thermal imaging camera systems and video smoke detection systems should be used in an advanced fire detection system for coalmines. It is recommended that an advanced mine fire detector system should be based on a combination of a high sensitivity optical smoke detector fitted with a cyclone to remove coal dust; and nitric oxide or nitrogen dioxide electrochemical sensors to distinguish smoke from diesel exhaust. If such a system proves to be too expensive then an alternative could be based upon a combination of blue/infrared optical smoke detector, which distinguish fires and diesel exhaust from coal dust, and a nitric oxide or nitrogen dioxide electrochemical sensor. Further work is required underground to assess a high sensitivity optical smoke detector at typical coal dust levels in likely installation areas. 14 refs., 24 figs., 3 tabs., 3 apps.

  19. [Changes in the interleukin-6 and interleukin-10 concentrations in the blood plasma of miners working in deep coal mines].

    Science.gov (United States)

    Plotkin, V Ia; Rebrov, B A; Belkina, E B

    2000-03-01

    Blood plasma levels of interleukin-6 (IL-6) and interleukin-10 (IL-10) were measured in 45 miners working in a deep coal mine immediately after work shift using an immunoenzyme technique. The highest IL-6 level was recorded in those miners engaged in hard work under most adverse conditions of underground workings--it was found to exceed the control values. The same group of workers demonstrated the lowest level of IL-10 that differed from the control value. Miners aged between 41 to 50 years working in a coal mine, their underground service duration 16 to 20 years, displayed a decline in the level of IL-6. The coal mine miners with the 11- to 15-year service duration revealed an increase in the level of IL-10.

  20. Underground coal gasification: Development of theory, laboratory experimentation, interpretation, and correlation with the Hanna field tests: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gunn, R.D.; Krantz, W.B.

    1987-03-01

    The following report is a description of a 7 year effort to develop a theoretical understanding of the underground coal gasification process. The approach used is one of the mathematical model development from known chemical and principles, simplification of the models to isolate important effects, and through validation of models to isolate important effects, and through validation of models with laboratory experiments and field test data. Chapter I contains only introductory material. Chapter II describes the development of two models for reverse combustion: a combustion model and a linearized model for combustion front instability. Both models are required for realistic field predictions. Chapter III contains a discussion of a successful forward gasification model. Chapter IV discusses the spalling-enhanced-drying model is applicable to prediction of cavity growth and subsidence. Chapter VI decribes the correct use of energy and material balances for the analysis of UCG field test data. Chapter VII shows how laboratory experiments were used to validate the models for reverse combustion and forward gasification. It is also shown that laboratory combustion tube experiments can be used to simulate gas compositions expected from field tests. Finally, Chapter VII presents results from a comprehensive economic analysis of UCG involving 1296 separate cases. 37 refs., 49 figs., 12 tabs.

  1. Contamination of settling ponds and rivers as a result of discharge of radium-bearing waters from Polish coal mines.

    Science.gov (United States)

    Chalupnik, S; Michalik, B; Wysocka, M; Skubacz, K; Mielnikow, A

    2001-01-01

    Saline waters from underground coal mines in Poland often contain natural radioactive isotopes, mainly 226Ra from the uranium decay series and 228Ra from the thorium series. Approximately 40% of the total amount of radium remains underground as radioactive deposits, but 225 MBq of 226Ra and 400 MBq of 228Ra are released daily into the rivers along with the other mine effluents from all Polish coal mines. Technical measures such as inducing the precipitation of radium in gobs, decreasing the amount of meteoric inflow water into underground workings, etc. have been undertaken in several coal mines, and as a result of these measures, the total amount of radium released to the surface waters has diminished by about 60% during the last 5-6 years. Mine water can have a severe impact on the natural environment, mainly due to its salinity. However, associated high levels of radium concentration in river waters, bottom sediments and vegetation have also been observed. Sometimes radium concentrations in rivers exceed 0.7 kBq/m3, which is the permitted level for waste waters under Polish law. The extensive investigations described here were carried out for all coal mines and on this basis the total radium balance in the effluents has been calculated. Measurements in the vicinity of mine settling ponds and in rivers have given us an opportunity to study radium behaviour in river waters and to assess the degree of contamination. Solid waste materials with enhanced natural radioactivity have been produced in huge amounts in the power and coal industries in Poland. As a result of the combustion of coal in power plants, low-radioactive waste materials are produced, with 226Ra concentration seldom exceeding a few hundreds of Bq/kg. A different situation is observed in coal mines, where, as a result of precipitation of radium from radium-bearing waters, highly radioactive deposits are formed. Sometimes the radioactivity of such materials is extremely high; precipitates from coal

  2. Feasibility of underground storage/disposal of noble gas fission products

    International Nuclear Information System (INIS)

    Winar, R.M.; Trevorrow, L.E.; Steindler, M.J.

    1979-08-01

    The quantities of 85 Kr that can be released to the environment from nuclear energy production are to be limited after 1983 by Federal regulations. Although procedures for collecting the 85 Kr released in the nuclear fuel cycle have been developed to the point that they are commercially available, procedures for terminal disposal of the collected gas are still being examined for their feasibility. In this work, the possibilities of underground disposal of 85 Kr by several techniques were evaluated. It was concluded that (1) disposal of 85 Kr as a solution in water or other solvents in deep wells would have the major disadvantages of liquid migration and the requirement of extremely large volumes of solvent; (2) disposal as bubbles entrained in cement grout injected underground presents the uncertainty of gaseous migration through permeable solid grout; (3) disposal by injection into abandoned oil fields would be favored by solubility of krypton in residual hydrocarbons, but has the disadvantages that such fields contain numerous shafts offering avenues of escape and also that the fields may be reworked in the future for their hydrocarbon residues; (4) underground retention of 85 Kr injected as a gas may be promising, given the right lithology, through entrapment in interstices between fine sand grains held together by the interfacial tension of wetted surfaces. 9 figures, 5 tables

  3. Application of ergonomics principles in underground mines through the Occupational Safety and Health Management System--OSHMS OHSAS 18.001:2007.

    Science.gov (United States)

    de Arruda, Agnaldo Fernando Vieira; Gontijo, Leila Maral

    2012-01-01

    The underground mining activity is regarded as one of the activities that cause most accidents, deaths and illnesses in the world, highlighting the coal mines. This study examined how ergonomics principles can help improve this environment, reduce the number of accidents and occupational diseases, train and empower workers and leaders and humanize the activities of the duty cycle of an underground mine. For this, it was developed a conceptual model of safety managing and health at work for the underground mining through the incorporation of ergonomics principles in the Occupational Safety and Health Management System and OHSAS 18001 (2007). The elaboration of the model was based on analysis of the environments and stages of work in underground mines and the PDCA cycle to ensure continuous improvement.

  4. Comprehensive Technical Support for High-Quality Anthracite Production: A Case Study in the Xinqiao Coal Mine, Yongxia Mining Area, China

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-12-01

    Full Text Available The effective production of high-quality anthracite has attracted increasing global attention. Based on the coal occurrence in Yongxia Mining Area and mining conditions of a coalface in Xinqiao Coal Mine, we proposed a systematic study on the technical support for the production of high-quality anthracite. Six key steps were explored, including coal falling at the coalface, transport, underground bunker storage, main shaft hoisting, coal preparation on the ground, and railway wagon loading. The study resulted in optimized running parameters for the shearers, and the rotating patterns of the shearer drums was altered (one-way cutting was employed. Mining height and roof supporting intensity were reduced. Besides, loose presplitting millisecond blasting and mechanized mining were applied to upgrade the coal quantity and the lump coal production rate. Additionally, the coalface end transloading, coalface crush, transport systems, underground storage, and main shaft skip unloading processes were improved, and fragmentation-prevention techniques were used in the washing and railway wagon loading processes. As a result, the lump coal production rate was maintained at a high level and fragmentation was significantly reduced. Because of using the parameters and techniques determined in this research, high-quality coal production and increased profits were achieved. The research results could provide theoretical guidance and methodology for other anthracite production bases.

  5. Using underground mine Karst water to solve water supply problem in underground mine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W. [Wanbei Mining Administration (China). Liuqiao No. 2 Mine

    1995-05-01

    There is a very rich karst water resource under the Liuqiao No. 2 underground mine. Under normal mining conditions the drainage is 546 m{sup 3}/h while the maximum drainage is up to 819 m{sup 3}/h. If water inrush occurred from a broken zone of a fault or a sinkhole of the karst, the flow could be up to 3269 m{sup 3}/h. The karst water is of good quality and high in pressure. The water head pressure at -400 m level is about 3.5 MPa. To save mine construction cost, it was decided that the water supply for coal production equipment, mining operation and mine fire control was to be changed from the surface to the underground by drilling a water well to tap the karst water resource. A water well with a depth of 63.3 m was drilled in the -400 m transportation roadway. The diameter of the well is 127 mm and it has a casing pipe with a diameter of 108 mm which is connected to the water supply pipeline. The pressure of the water supply is measured at 23.5 MPa and the water flow rate is 252 m{sup 3}/h. The establishment of the water supply system has achieved great cost saving for Liuqiao No. 2 Mine. 2 figs.

  6. An overview of the western Maryland coal combustion by-products/acid mine drainage initiative, Part 1 of 3

    International Nuclear Information System (INIS)

    Petzrick, P.; Rafalko, L.G.; Lyons, C.

    1996-01-01

    The western Maryland coal combustion by-products (CCB)/acid mine drainage (AMD) initiative (the Initiative) is a public-private partnership exploring the use of CCBs to eliminate AMD from Maryland's abandoned coal mines. This dynamic partnership will sponsor a series of large scale experiments and demonstrations addressing the engineering problems that characterize the beneficial application of CCBs to prevent acid formation on a scale that is consistent with the large quantity of these materials that will be produced by power plants in or near western Maryland. The initial demonstration is the filling and sealing of a small hand dug mine (the Frazee Mine) under approximately ninety feet of overburden on Winding Ridge near Friendsville, Maryland. A second demonstration is being planned for the Kempton mine complex. Subsequent demonstrations will focus on reducing the cost of materials handling and mine injection and solving the engineering problems characteristic of filling abandoned mines in Maryland. The Initiative is the flagship activity in Maryland's overall Ash Utilization Program, the goal of which is to promote beneficial use of all coal combustion by-products

  7. Use of natural gamma radiation in the coal mining industry

    International Nuclear Information System (INIS)

    Wykes, J.S.; Adsley, I.; Cooper, L.R.

    1982-01-01

    The technique of delineating coal seams by the use of natural gamma borehole logging sondes has been known for many years. The principle of the technique is that the gamma fluxes in shales are higher than in coals as the abundance of naturally occurring radionuclides is some twenty times greater in the former. This paper discusses other applications where the differeing natural gamma properties of coals and shales can be used. These are: (a) To distinguish between stone (shale) and run-of-mine coal on conveyor belts. A common situation underground is one in which stone from development headings and normal run-of-mine coal have to be batched along the same conveyor system. A natural gamma device capable of distinguishing between such batches of material, and thus allowing suitable mechanical separation, will be described. (b) To provide an accurate measurement of roof coal thickness by measuring the natural gamma flux penetrating the roof coal. To illustrate this examples will be given where this technique is used to provide automatic controlled steering of Long Wall Shearers and to provide manually assisted steering of In-seam Heading Machines

  8. Feeder Type Optimisation for the Plain Flow Discharge Process of an Underground Hopper by Discrete Element Modelling

    Directory of Open Access Journals (Sweden)

    Jan Nečas

    2017-09-01

    Full Text Available This paper describes optimisation of a conveyor from an underground hopper intended for a coal transfer station. The original solution was designed with a chain conveyor encountered operational problems that have limited its continuous operation. The Discrete Element Modeling (DEM was chosen to optimise the transport. DEM simulations allow device design modifications directly in the 3D CAD model, and then the simulation makes it possible to evaluate whether the adjustment was successful. By simulating the initial state of coal extraction using a chain conveyor, trouble spots were identified that caused operational failures. The main problem has been the increased resistance during removal of material from the underground hopper. Revealed resistances against material movement were not considered in the original design at all. In the next step, structural modifications of problematic nodes were made. For example, the following changes have been made: reduction of storage space or installation of passive elements into the interior of the underground hopper. These modifications made were not effective enough, so the type of the conveyor was changed from a drag chain conveyor to a belt conveyor. The simulation of the material extraction using a belt conveyor showed a significant reduction in resistance parameters while maintaining the required transport performance.

  9. Interim report on Tanjung Enim IV coal exploration project. South Arahan area (1998/1999)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The exploration project in Indonesia covered geological mapping, drilling, geophysical logging, underground water pumping tests, vertical seismic profiling (VSP), and seismic reflection survey. Ten boreholes were drilled. Moreover, coal property analysis, geotechnical rock test, geochemical analysis, and the like were conducted by examining core specimens sampled from the boreholes. It was found that there are three main coal beds which continuously extend to the two ends of the synclinic structure. It was also found that there is a 6m-thick coal bed 200m further below the three main coal beds, and it is estimated to produce approximately 6,000kcal/kg. Coal from two of the three beds produces 5,000kcal/kg, containing but a little ash and sulfur. Coal from the third includes 1.17% of sulfur. Coal in all the beds is summed up, and then it is estimated that there is approximately 1,054-million tons of coal in reserve in the South Arahan area. (NEDO)

  10. Evaluation of Structural Changes in the Coal Specimen Heating Process and UCG Model Experiments for Developing Efficient UCG Systems

    Directory of Open Access Journals (Sweden)

    Gota Deguchi

    2013-05-01

    Full Text Available In the underground coal gasification (UCG process, cavity growth with crack extension inside the coal seam is an important phenomenon that directly influences gasification efficiency. An efficient and environmentally friendly UCG system also relies upon the precise control and evaluation of the gasification zone. This paper presents details of laboratory studies undertaken to evaluate structural changes that occur inside the coal under thermal stress and to evaluate underground coal-oxygen gasification simulated in an ex-situ reactor. The effects of feed temperature, the direction of the stratified plane, and the inherent microcracks on the coal fracture and crack extension were investigated using some heating experiments performed using plate-shaped and cylindrical coal specimens. To monitor the failure process and to measure the microcrack distribution inside the coal specimen before and after heating, acoustic emission (AE analysis and X-ray CT were applied. We also introduce a laboratory-scale UCG model experiment conducted with set design and operating parameters. The temperature profiles, AE activities, product gas concentration as well as the gasifier weight lossess were measured successively during gasification. The product gas mainly comprised combustible components such as CO, CH4, and H2 (27.5, 5.5, and 17.2 vol% respectively, which produced a high average calorific value (9.1 MJ/m3.

  11. Prospects of land-use planning in two mining sectors of Jharia coal field

    International Nuclear Information System (INIS)

    Ghosh, Rekha; Sinha, R.K.

    1996-01-01

    Coal mining in Jharia coal field and other industrial activities in and around the coal field in Dhanbad district have significantly altered the land use pattern in the coal field. Other related activities in the district have also made their impressions on the quality of land by generating barren lands, fire areas, subsided areas, overburden dumps, abandoned quarries, scarcity of water and soil nutrients. Not much effort has been made to rationalize the land-use in the coal field. People are living in households having no sanitation or drainage system. A proper land-use planning procedure with development of multi-crop system with due care in land-use planning and water management, would considerably help in improving the overall land-use pattern. Strategies for this have suggested after a thorough analysis of the data from the area and recommendations have been made for further work. (author). 4 refs., 1 tab., 1 fig

  12. Analysis of US underground thin seam mining potential. Volume 1. Text. Final technical report, December 1978. [In thin seams

    Energy Technology Data Exchange (ETDEWEB)

    Pimental, R. A; Barell, D.; Fine, R. J.; Douglas, W. J.

    1979-06-01

    An analysis of the potential for US underground thin seam (< 28'') coal mining is undertaken to provide basic information for use in making a decision on further thin seam mining equipment development. The characteristics of the present low seam mines and their mining methods are determined, in order to establish baseline data against which changes in mine characteristics can be monitored as a function of time. A detailed data base of thin seam coal resources is developed through a quantitative and qualitative analysis at the bed, county and state level. By establishing present and future coal demand and relating demand to production and resources, the market for thin seam coal has been identified. No thin seam coal demand of significance is forecast before the year 2000. Current uncertainty as to coal's future does not permit market forecasts beyond the year 2000 with a sufficient level of reliability.

  13. Strength Restoration of Cracked Sandstone and Coal under a Uniaxial Compression Test and Correlated Damage Source Location Based on Acoustic Emissions

    Science.gov (United States)

    Feng, Xiaowei; Zhang, Nong; Zheng, Xigui; Pan, Dongjiang

    2015-01-01

    Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE) testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three-dimensional damage source

  14. Strength Restoration of Cracked Sandstone and Coal under a Uniaxial Compression Test and Correlated Damage Source Location Based on Acoustic Emissions.

    Directory of Open Access Journals (Sweden)

    Xiaowei Feng

    Full Text Available Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three

  15. Recent advances in remote coal mining machine sensing, guidance, and teleoperation

    Energy Technology Data Exchange (ETDEWEB)

    Ralston, J C; Hainsworth, D W; Reid, D C; Anderson, D L; McPhee, R J [CSIRO Exploration & Minerals, Kenmore, Qld. (Australia)

    2001-10-01

    Some recent applications of sensing, guidance and telerobotic technology in the coal mining industry are presented. Of special interest is the development of semi or fully autonomous systems to provide remote guidance and communications for coal mining equipment. The use of radar and inertial based sensors are considered in an attempt to solve the horizontal and lateral guidance problems associated with mining equipment automation. Also described is a novel teleoperated robot vehicle with unique communications capabilities, called the Numbat, which is used in underground mine safety and reconnaissance missions.

  16. Optimizing wireless LAN for longwall coal mine automation

    Energy Technology Data Exchange (ETDEWEB)

    Hargrave, C.O.; Ralston, J.C.; Hainsworth, D.W. [Exploration & Mining Commonwealth Science & Industrial Research Organisation, Pullenvale, Qld. (Australia)

    2007-01-15

    A significant development in underground longwall coal mining automation has been achieved with the successful implementation of wireless LAN (WLAN) technology for communication on a longwall shearer. WIreless-FIdelity (Wi-Fi) was selected to meet the bandwidth requirements of the underground data network, and several configurations were installed on operating longwalls to evaluate their performance. Although these efforts demonstrated the feasibility of using WLAN technology in longwall operation, it was clear that new research and development was required in order to establish optimal full-face coverage. By undertaking an accurate characterization of the target environment, it has been possible to achieve great improvements in WLAN performance over a nominal Wi-Fi installation. This paper discusses the impact of Fresnel zone obstructions and multipath effects on radio frequency propagation and reports an optimal antenna and system configuration. Many of the lessons learned in the longwall case are immediately applicable to other underground mining operations, particularly wherever there is a high degree of obstruction from mining equipment.

  17. Abandonment (field decommissioning): The legal requirements

    International Nuclear Information System (INIS)

    Roberts, M.

    1994-01-01

    The main areas to be considered in relation to the abandonment of offshore installations are: (1) the legal requirements to be imposed in relation to abandonment, this will include consideration of English, Norwegian and Dutch law as well as international law; (2) how licensees may protect themselves against joint and several liability for performance of their legal obligations in relation to abandonment by the provision of security; and (3) consideration of practical examples of abandonment such as the abandonment of the Piper Alpha platform on the UK continental shelf and the K13-D platform on the Dutch continental shelf. This paper considers only abandonment of offshore installations as very different considerations apply onshore and applies only to Europe, though the international treaties will also apply elsewhere

  18. 77 FR 1359 - Specifications for Medical Examinations of Underground Coal Miners

    Science.gov (United States)

    2012-01-09

    ... ionizing radiation associated with the radiograph. Proposed Sec. 37.42(h) would require the use of... potential for higher ionizing radiation exposures using digital radiography systems, we have included... resulted in no coal miners employed by a non-compliant operator participating in the Program. NIOSH is...

  19. Looking into the coal option. [Highlights from IIASA/USSR Academy of Science conference, late 1977

    Energy Technology Data Exchange (ETDEWEB)

    Grenon, M.

    A report on the 1977 Energy Resources Conference held in Moscow focuses on the technical and economic aspects of coal as they relate to global resource policy problems. Estimates of untouched reserved continue to rise, including those in developing countries, although the Soviet Union, China and the U.S. continue to dominate. Underground mining will be applied, with new approaches in hydraulic bore hole mining, robots, microbiological attack, in-situ liquefaction, underground gasification, and others being explored and developed. Surface mining is expected to account for most of the increased production in the near term with equipment that tends toward gigantism. The major issue with coal, however, is its dependence on inexpensive transportation and the possibility of using pipelines. The conference reviewed the role of coal in meeting increasing energy demand and concluded that power generation and metallurgical applications will absorb the increase in production. Combustion products and their effects on global climatic and atmospheric conditions were discussed with the consensus that more work is needed to quantify carbon dioxide risk.

  20. Application of ERTS-1 imagery to fracture related mine safety hazards in the coal mining industry. [Indiana

    Science.gov (United States)

    Wier, C. E.; Wobber, F. J. (Principal Investigator); Russell, O. R.; Amato, R. V.; Leshendok, T. V.

    1974-01-01

    The author has identified the following significant results. New fracture detail of Indiana has been observed and mapped from ERTS-1 imagery. Studies so far indicate a close relationship between the directions of fracture traces mapped from the imagery, fractures measured on bedrock outcrops, and fractures measured in the underground mines. First hand observations and discussions with underground mine operators indicate good correlation of mine hazard maps prepared from ERTS-1/aircraft imagery and actual roof falls. The inventory of refuse piles/slurry ponds of the coal field of Indiana has identified over 225 such sites from past mining operations. These data will serve the State Legislature in making tax decisions on coal mining which take on increased importance because of the energy crisis.

  1. Experimental Research on the Impactive Dynamic Effect of Gas-Pulverized Coal of Coal and Gas Outburst

    Directory of Open Access Journals (Sweden)

    Haitao Sun

    2018-03-01

    Full Text Available Coal and gas outburst is one of the major serious natural disasters during underground coal, and the shock air flow produced by outburst has a huge threat on the mine safety. In order to study the two-phase flow of a mixture of pulverized coal and gas of a mixture of pulverized coal and gas migration properties and its shock effect during the process of coal and gas outburst, the coal samples of the outburst coal seam in Yuyang Coal Mine, Chongqing, China were selected as the experimental subjects. By using the self-developed coal and gas outburst simulation test device, we simulated the law of two-phase flow of a mixture of pulverized coal and gas in the roadway network where outburst happened. The results showed that the air in the roadway around the outburst port is disturbed by the shock wave, where the pressure and temperature are abruptly changed. For the initial gas pressure of 0.35 MPa, the air pressure in different locations of the roadway fluctuated and eventually remain stable, and the overpressure of the outburst shock wave was about 20~35 kPa. The overpressure in the main roadway and the distance from the outburst port showed a decreasing trend. The highest value of temperature in the roadway increased by 0.25 °C and the highest value of gas concentration reached 38.12% during the experiment. With the action of shock air flow, the pulverized coal transportation in the roadway could be roughly divided into three stages, which are the accelerated movement stage, decelerated movement stage and the particle settling stage respectively. Total of 180.7 kg pulverized coal of outburst in this experiment were erupted, and most of them were accumulated in the main roadway. Through the analysis of the law of outburst shock wave propagation, a shock wave propagation model considering gas desorption efficiency was established. The relationships of shock wave overpressure and outburst intensity, gas desorption rate, initial gas pressure, cross

  2. Prevention of Child Abandonment

    OpenAIRE

    Gaia, A.

    2011-01-01

    The aim of this work is to analyze the determinants of child abandonment in the city of Bra ov. The research is based on a new dataset collected on the field on mothers and pregnant women at risk of abandoning their child.

  3. Policy Brief: India's coal reserves are vastly overstated. Is anyone listening?

    Energy Technology Data Exchange (ETDEWEB)

    Batra, R.K.; Chand, S.K.

    2011-03-15

    In India's energy sector, coal accounts for over 50% of primary commercial energy supply. With the economy poised to grow at the rate of 8-10% per annum, energy requirements will also rise at a level of 6% (approx.). Coal will continue to be a dominant commercial fuel two decades from now and beyond, despite our nuclear energy programme, development of natural gas supplies, increased hydropower generation, and emphasis on renewables. There are many issues with regard to domestic coal production, including its quality, beneficiation of lower grades, transportation to distant consumers, environment impacts (both in mining and burning of coal), efficiency of thermal power plants, and so on. This policy brief, however, focuses on our domestic coal inventories. In other words, how much coal is there underground, how much of it can be extracted, how much do we need to import, and what are the associated energy security implications?.

  4. Earth Conductivity Estimation from Through-the-Earth Measurements of 94 Coal Mines Using Different Electromagnetic Models

    OpenAIRE

    Yan, Lincan; Waynert, Joseph; Sunderman, Carl

    2014-01-01

    Through-the-Earth (TTE) communication systems require minimal infrastructure to operate. Hence, they are assumed to be more survivable and more conventional than other underground mine communications systems. This survivability is a major advantage for TTE systems. In 2006, Congress passed the Mine Improvement and New Emergency Response Act (MINER Act), which requires all underground coal mines to install wireless communications systems. The intent behind this mandate is for trapped miners to...

  5. Web of Things-Based Remote Monitoring System for Coal Mine Safety Using Wireless Sensor Network

    OpenAIRE

    Bo, Cheng; Xin, Cheng; Zhongyi, Zhai; Chengwen, Zhang; Junliang, Chen

    2014-01-01

    Frequent accidents have occurred in coal mine enterprises; therefore, raising the technological level of coal mine safety monitoring systems is an urgent problem. Wireless sensor networks (WSN), as a new field of research, have broad application prospects. This paper proposes a Web of Things- (WoT-) based remote monitoring system that takes full advantage of wireless sensor networks in combination with the CAN bus communication technique that abstracts the underground sensor data and capabili...

  6. Diesel aftertreatment control technologies in underground mines : the NO{sub 2} issue

    Energy Technology Data Exchange (ETDEWEB)

    Cauda, E.G.; Bugarski, A.D.; Patts, L. [National Inst. for Occupational Safety and Health, Pittsburgh, PA (United States). Office of Mine Safety and Health Research

    2010-07-01

    Diesel engines are the main source of exposure for underground miners to nitric oxide (NO) and nitrogen dioxide (NO{sub 2}). The exposure of underground miners to both these pollutants is regulated by the Mine Safety and Health Administration. Improvements have been made in mine ventilation in an attempt to meet more stringent emission limits. In coal mines in the United States, the exposure limits of underground miners to pollutant concentrations determine the ventilation rate specific for certified diesel engines. The ventilation rates are based on the amount of fresh air needed to dilute CO, CO{sub 2}, NO, NO{sub 2} in the undiluted exhaust gas to the threshold limit values (TLV). This presentation described the other options available to mine operators to reduce diesel particulate matter emissions. More advanced engine technologies, aftertreatment control strategies and the use of biodiesel fuels can reduce the mass concentrations of diesel particulate matter (DPM). However, these strategies can also alter tailpipe emissions of NO{sub 2} and an increase in ventilation rate may be required if the concentration of NO{sub 2} exceeds the regulatory enforced limit. The effects of different exhaust aftertreatment technologies were reviewed in this presentation along with ventilation control strategies for underground mining. 43 refs., 3 figs.

  7. Disordering fantasies of coal and technology: Carbon capture and storage in Australia

    International Nuclear Information System (INIS)

    Marshall, Jonathan Paul

    2016-01-01

    One of the main ways that continued use of coal is justified, and compensated for, is through fantasies of technology. This paper explores the politics of 'Carbon Capture and Storage' (CCS) technologies in Australia. These technologies involve capturing CO 2 emissions, usually to store them 'safely' underground in a process called 'geo-sequestration'. In Australia the idea of 'clean coal' has been heavily promoted, and is a major part of CO 2 emissions reduction plans, despite the technological difficulties, the lack of large scale working prototypes, the lack of coal company investment in such research, and the current difficulties in detecting leaks. This paper investigates the ways that the politics of 'clean coal' have functioned as psycho-social defence mechanisms, to prolong coal usage, assuage political discomfort and anxiety, and increase the systemic disturbance produced by coal power. - Highlights: • Clean coal and geological sequestration is part of Australian climate policy. • Governments have offered much to carbon capture and storage (CCS) projects. • Coal, and coal power, industries have been relatively uninterested. • Progress with CCS is problematic and has not lived up to expectations. • CCS defends against tackling the connection between coal and climate.

  8. Pilot research projects for underground disposal of radioactive wastes in the United States of America

    International Nuclear Information System (INIS)

    Stein, R.; Collyer, P.L.

    1984-01-01

    Disposal of commercial radioactive waste in the United States of America in a deep underground formation will ensure permanent isolation from the biosphere with minimal post-closure surveillance and maintenance. The siting, design and development, performance assessment, operation, licensing, certification and decommissioning of an underground repository have stimulated the development of several pilot research projects throughout the country. These pilot tests and projects, along with their resulting data base, are viewed as important steps in the overall location and construction of a repository. Beginning in the 1960s, research at pilot facilities has progressed from underground spent fuel tests in an abandoned salt mine to the production of vitrified nuclear waste in complex borosilicate glass logs. Simulated underground repository experiments have been performed in the dense basalts of Washington State, the volcanic tuffaceous rock of Nevada and both domal and bedded salts of Louisiana and Kansas. In addition to underground pilot in situ tests, other facilities have been constructed or modified to monitor the performance of spent fuel in dry storage wells and self-shielded concrete casks. As the National Waste Terminal Storage (NWTS) programme advances to the next stage of underground site characterization for each of three different geological sites, additional pilot facilities are under consideration. These include a Test and Evaluation Facility (TEF) for site verification and equipment performance and testing, as well as a salt testing facility for verification of in situ simulation equipment. Although not associated with the NWTS programme, the construction of the Waste Isolation Pilot Plant (WIPP) in the bedded salts of New Mexico is well under way for deep testing and experimentation with the defence programme's transuranic nuclear waste. (author)

  9. Energy analysis of the coal fuel cycle: Community health and resource change in an Appalachian coal county

    International Nuclear Information System (INIS)

    Watson, A.P.

    1982-01-01

    In spite of steadily expanding coal development in this decade in the USA, there has been little systematic assessment of occupational and public health implications of increased production in specific regions of the USA. Preliminary analysis of a prototype Appalachian area is presented. Anderson County, Tennessee, the prototype area chosen for evaluation, lies in the Upper East Tennessee Coalfield. This county is uniquely suited for study since every process of the coal fuel cycle (extraction, transport, combustion, power production and waste disposal) takes place within the county boundary. By extensive exploitation of both surface and underground methods of extraction, this county has maintained a leading position in Tennessee's coal production for several years. Concepts of energy analysis and systematized data presentation were used to convert information gathered from diverse sources into comparable energy units (kcal). Concepts and methodology implemented in the analysis can be applied most appropriately to existing conditions in other counties of the Appalachian Coal Basin. Findings are presented for calendar year 1978. For the year of study, the major energy loss to the county was depletion of the coal resource base by use of inefficient mining techniques (a loss of 10.5x10 12 kcal fuel equivalents). Another loss is to community health, which is depleted by lost productivity of, and compensation payments to, victims of mining accidents and occupational disease such as 'black lung' (15x10 9 kcal). Another countywide depletion process is roadbed and bridge deterioration caused by large volumes of heavy coal-haul vehicular traffic (10x10 9 kcal). These losses are being borne mainly by residents of the Appalachian host region, with little systematic compensation by consumers of the coal resource. It is expected that these losses will increase in magnitude as national coal use increases. (author)

  10. Possibilities of using pulverized non coking coals in ironmaking

    Energy Technology Data Exchange (ETDEWEB)

    Wijk, Olle; Mathiesen, Mihkel; Eketorp, Sven

    1977-08-01

    The use of pulverized coal in iron making suggests solutions to the mounting problems created by the increasing scarcity of coking coals, and other fossil fuels such as oil and natural gas. The unavailability of coke can be met with two principally different measures. Blast furnace coke rates can be decreased by substituting injected pulverized coal or other carbon containing fuels for part of the coke burden, and the coke itself may be substituted by formed coke. A more radical solution is to abandon the blast furnace process, and instead produce the raw iron in processes not requiring coke. Two such processes are discussed in the paper, the Inred process, developed by Boliden Kemi AB, Sweden, and the smelting reduction process by means of injection, currently being developed at the Royal Institute of Technology in Stockholm. Both processes have potential advantages over the coke oven/sintering plant/blast furnace-complex especially concerning energy requirements and structure, but also in economical terms. The injection process seems to present a further advantage in the possibility of gasifying coal in the process, thus yielding a synthesis gas for methanol production in addition to the raw iron.

  11. Hydrological conceptual model characterisation of an abandoned mine site in semiarid climate. The Sierra de Cartagena-La Unión (SE Spain)

    OpenAIRE

    ROBLES ARENAS, V.M.; CANDELA, L.

    2010-01-01

    A comprehensive study at Sierra de Cartagena-La Unión (SE Spain) abandoned mine site was carried out to characterise the regime and water quality of the groundwater system after the mine closure. The system consists of five geologic fractured blocks belonging to the Alpujarride and Nevado-Filabride complexes. The aquifer units are composed of limestone and dolostone materials. Recharge is mainly controlled by the N-130 fault system, man-made induced fractures, open-pits and underground workin...

  12. A study of trends in occupational risks associated with coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Amoundru, C.

    1980-10-01

    The occupational risks associated with underground coal mining can be categorized as either industrial accidents or occupational diseases. Since 1957, the number of fatal accidents per million tons of coal produced has dropped by a factor of four. The number of industrial accidents in general decreased by 30% during 1967-75. The main occupational diseases affecting miners are arthrosis, deafness, and pneumoconiosis. To make an objective comparison with the health hazards from other sources of energy, the probable risks facing workers in a modern mine should be compared with those currently confronting workers in other industries.

  13. Use of wet FGD material for revegetation of an abandoned acidic coal refuse pile

    International Nuclear Information System (INIS)

    Mafi, S.; Stehouwer, R.C.

    1996-01-01

    Wet FGD material has a neutralizing potential of 15% CaCO 3 . These properties may make it a beneficial amendment for revegetation of hyper-acidic coal refuse. In greenhouse and field experiments, coal refuse (pH = 2.5) was amended with wet FGD (300, 500, and 700 tons/acre). Amendment with FGD was as effective as agricultural lime (AL) in increasing refuse pH and decreasing soluble Al and Fe. Addition of compost to the FGD further increased pH and decreased soluble Al and Fe. Downward transport of Ca was greater with FGD than AL, but FGD did not increase leachate concentrations of S. Amendment with FGD increased refuse, leachate and plant tissue concentrations of B. Other trace elements were not increased by FGD. In the greenhouse, plant growth was similar with AL and FGD except during the first three months when AL produced more growth than FGD. The initial growth suppression by FGD was likely due to high soluble salts, and possibly by high B concentrations. During the first year of the field experiment plant growth was greater with FGD than with AL. In both the field and greenhouse experiments compost increased plant growth when combined with FGD. These experiments show revegetation of toxic coal refuse and improvement in drainage water quality is possible by amendment with FGD. Revegetation success will be improved by combined amendment with FGD and compost

  14. Sinkhole development induced by underground quarrying, and the related hazard

    Science.gov (United States)

    Parise, M.; Delle Rose, M.

    2009-04-01

    Sinkholes are extremely widespread in Apulia, a very flat and carbonate region, that acted as the foreland during the phases of building up of the Southern Apenninic Chain in Miocene time. This is due to the presence of soluble rocks throughout the region, that highly predispose the area to this very subtle natural hazard. In addition to the natural setting, which favours their development, sinkholes may also be induced by anthropogenic activities. In the latter sense, underground quarrying represents one of the most dangerous activities in karst areas. Apulia has a long history of quarrying. Since the roman time, the local rocks, from the Cretaceous micritic limestones to the Quaternary calcarenites, have been intensely quarried and used as building and ornamental materials. In several settings of the region, the rocks with the best petrographic characteristics are located at depths ranging from a few to some tens of meters. This caused the opening of many underground quarries, and the development of a complex network of subterranean galleries. Underground quarrying had a great impulse at the turn between the XIX and the XX century, when a large number of quarries was opened. Later on, after the Second World War, most of the quarries were progressively abandoned, even because of the first signs of instability, both underground and at the ground surface. With time, the memory of the presence and development of the underground quarries was progressively lost, with severe repercussions on the safety of the land above the excavated areas. Lack of knowledge of the subterranean pattern of galleries, combined with the expansion of the built-up areas at the surface, resulted in increasing significantly the vulnerability of exposed elements at risk. Events such as the 29 March, 2007, at Gallipoli only by chance did not result in any casualties, when a 15-mt wide and 5-mt deep sinkhole opened in a few hours at a road crossing, above the site of an old underground quarry

  15. The coal cleat system: A new approach to its study

    Directory of Open Access Journals (Sweden)

    C.F. Rodrigues

    2014-06-01

    Full Text Available After a general analysis regarding the concept of coal “cleat system”, its genetic origin and practical applications to coalbed methane (CBM commercial production and to CO2 geological sequestration projects, the authors have developed a method to answer, quickly and accurately in accordance with the industrial practice and needs, the following yet unanswered questions: (1 how to define the spatial orientation of the different classes of cleats presented in a coal seam and (2 how to determine the frequency of their connectivites. The new available and presented techniques to answer these questions have a strong computer based tool (geographic information system, GIS, able to build a complete georeferentiated database, which will allow to three-dimensionally locate the laboratory samples in the coalfield. It will also allow to better understand the coal cleat system and consequently to recognize the best pathways to gas flow through the coal seam. Such knowledge is considered crucial for understanding what is likely to be the most efficient opening of cleat network, then allowing the injection with the right spatial orientation, of pressurized fluids in order to directly drain the maximum amount of gas flow to a CBM exploitation well. The method is also applicable to the CO2 geological sequestration technologies and operations corresponding to the injection of CO2 sequestered from industrial plants in coal seams of abandoned coal mines or deep coal seams.

  16. The evaluation and quantification of respirable coal and silica dust concentrations: a task-based approach.

    Science.gov (United States)

    Grové, T; Van Dyk, T; Franken, A; Du Plessis, J

    2014-01-01

    Silicosis and coal worker's pneumoconiosis are serious occupational respiratory diseases associated with the coal mining industry and the inhalation of respirable dusts containing crystalline silica. The purpose of this study (funded by the Mine Health and Safety Council of South Africa) was to evaluate the individual contributions of underground coal mining tasks to the respirable dust and respirable silica dust concentrations in an underground section by sampling the respirable dust concentrations at the intake and return of each task. The identified tasks were continuous miner (CM) cutting, construction, transfer of coal, tipping, and roof bolting. The respirable dust-generating hierarchy of the tasks from highest to lowest was: transfer of coal > CM right cutting > CM left cutting > CM face cutting > construction > roof bolting > tipping; and for respirable silica dust: CM left cutting > construction > transfer of coal > CM right cutting. Personal exposure levels were determined by sampling the exposures of workers performing tasks in the section. Respirable dust concentrations and low concentrations of respirable silica dust were found at the intake air side of the section, indicating that air entering the section is already contaminated. The hierarchy for personal respirable dust exposures was as follows, from highest to lowest: CM operator > cable handler > miner > roof bolt operator > shuttle car operator, and for respirable silica dust: shuttle car operator > CM operator > cable handler > roof bolt operator > miner. Dust control methods to lower exposures should include revision of the position of workers with regard to the task performed, positioning of the tasks with regard to the CM cutting, and proper use of the line curtains to direct ventilation appropriately. The correct use of respiratory protection should also be encouraged.

  17. MB-OFDM-UWB Based Wireless Multimedia Sensor Networks for Underground Coalmine: A Survey

    Science.gov (United States)

    Han, Ruisong; Yang, Wei; You, Kaiming

    2016-01-01

    Safety production of coalmines is a task of top priority which plays an important role in guaranteeing, supporting and promoting the continuous development of the coal industry. Since traditional wireless sensor networks (WSNs) cannot fully meet the requirements of comprehensive environment monitoring of underground coalmines, wireless multimedia sensor networks (WMSNs), enabling the retrieval of multimedia information, are introduced to realize fine-grained and precise environment surveillance. In this paper, a framework for designing underground coalmine WMSNs based on Multi-Band Orthogonal Frequency-Division Multiplexing Ultra-wide Band (MB-OFDM-UWB) is presented. The selection of MB-OFDM-UWB wireless transmission solution is based on the characteristics of underground coalmines. Network structure and design challenges are analyzed first, which is the foundation for further discussion. Then, key supporting technologies and open research areas in different layers are surveyed, and we provide a detailed literature review of the state of the art strategies, algorithms and general solutions in these issues. Finally, other research issues like localization, information processing, and network management are discussed. PMID:27999258

  18. MB-OFDM-UWB Based Wireless Multimedia Sensor Networks for Underground Coalmine: A Survey.

    Science.gov (United States)

    Han, Ruisong; Yang, Wei; You, Kaiming

    2016-12-16

    Safety production of coalmines is a task of top priority which plays an important role in guaranteeing, supporting and promoting the continuous development of the coal industry. Since traditional wireless sensor networks (WSNs) cannot fully meet the requirements of comprehensive environment monitoring of underground coalmines, wireless multimedia sensor networks (WMSNs), enabling the retrieval of multimedia information, are introduced to realize fine-grained and precise environment surveillance. In this paper, a framework for designing underground coalmine WMSNs based on Multi-Band Orthogonal Frequency-Division Multiplexing Ultra-wide Band (MB-OFDM-UWB) is presented. The selection of MB-OFDM-UWB wireless transmission solution is based on the characteristics of underground coalmines. Network structure and design challenges are analyzed first, which is the foundation for further discussion. Then, key supporting technologies and open research areas in different layers are surveyed, and we provide a detailed literature review of the state of the art strategies, algorithms and general solutions in these issues. Finally, other research issues like localization, information processing, and network management are discussed.

  19. Surveys for promoting development of overseas coals in fiscal 1999. Surveys on international coal situation; 1999 nendo kaigaitan kaihatsu kodoka nado chosa (kaigaitan kaihatsu sokushin chosa). Kokusai sekitan jijo chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Detailed surveys were performed on Britain, Germany and Spain being the major coal producing countries in Europe with regard to a general view on the status of energy demand and supply, the status of demand and supply of coal, business institutions, and related policies in each country. The status of demand and supply of coal, and related policies in the three countries may be summarized as follows: In Britain, the ratio of coal accounted for in the primary energy supply is 18.0% in 1998, and the coal production amounted to 35.5 mill.TCE/year; closure of underground mining coal mines is discussed recently; the congress is deliberating re-introduction of the subsidy system which had been once discontinued; in Germany, the ratio of coals accounted for in the primary energy supply in 1997 was 14% in bituminous coal and 11% in brown coal; the quantities of production of bituminous coal and brown coal in 1998 were 41.8 and 50.6 mill.TCE/year, respectively; the number of mines has decreased because of the unification; the subsidy policy is in continuation; in Spain, the ratio of coal accounted for in the primary energy supply was 13.5% in 1997 and the quantity of coal production in 1998 was 12.5 mill.TCE/year; unification of coal operators has not been advanced as far as in Germany; and the subsidy is provided as in Germany. (NEDO)

  20. Effect of catalysts on heterogeneous oxidation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Glazkova, A P; Kazarova, Yu A; Suslov, A V

    1978-01-01

    Analyzes the effects of catalysts on the heterogeneous oxidation of coal in deflagration processes of stoichiometric mixtures. The following substances are studied as catalysts: alkali and alkaline-earth metals, and compounds of copper, lead, chromium, iron, and sulfur. In the first case the catalysts are used in the form of nitrates and the nitrate simultaneously plays the role of an oxidizer. In the second case the catalysts are added to stoichiometric mixtures of ammonium nitrate with carbon. It is shown that during carbon oxidation by nitrates the catalytic efficiency of the metals studied forms the following order: sodium > lead > potassium > barium > aluminium > calcium > magnesium > copper. The calculated and experimental parameters of combustion are given. The problem of dependence of combustion rate on combustion heat, the mechanism of the combustion reaction and the catalytic effects of the additives are discussed. Features of heterogeneous catalysis in the oxidation process of carbon by various oxidizers are analyzed. The investigations on the combustion process are important as the process takes place during explosion of coal dust in underground coal mines and during burning of coal in industrial furnaces. (34 refs.) (In Russian)

  1. Gas Transport Through Porous Strata from Underground Reaction Source; the Influence of the Gas Kind, Temperature and Transport-Pore Size

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Olga; Soukup, Karel; Rogut, J.; Stanczyk, K.; Schneider, Petr

    2009-01-01

    Roč. 90, č. 12 (2009), s. 1495-1501 ISSN 0378-3820 Grant - others:RFCR(XE) CT/2007/00006 Institutional research plan: CEZ:AV0Z40720504 Keywords : underground coal gas ification * diffusion * permeation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.321, year: 2009

  2. Application Research on Testing Efficiency of Main Drainage Pump in Coal Mine Using Thermodynamic Theories

    OpenAIRE

    Shang, Deyong

    2017-01-01

    The efficiency of a drainage pump should be tested at regular intervals to master the status of the drainage pump in real time and thus achieve the goal of saving energy. The ultrasonic flowmeter method is traditionally used to measure the flow of the pump. But there are some defects in this kind of method of underground coal mine. This paper first introduces the principle of testing the main drainage pump efficiency in coal mine using thermodynamic theories, then analyzes the energy transfor...

  3. Analytical study on U/G coal mine CPT and inferences

    Energy Technology Data Exchange (ETDEWEB)

    Dey, N.C.; Mukhopadhyay, S. [Bengal Engineering College, Howrath (India). Dept. of Mining and Geology

    1999-08-01

    The analytical aspects of underground CPT (coal mine cost per tonne), which varies from mine to mine due to the different weightages of various contributing factors, are described. The CPT is not only dictated by the increasing wages but also by the availability of man-hour and accountability of machine utilization. An optimal blend of labour-intensive and machine-intensive methods involving least investment and operating cost, is a challenge for the coal industry. Technology upgradation and implementation, higher skill and morale, excellence in planning and monitoring, optimization in capacity utilization, and better consumer acceptability of coal will consistently improve the financial health of the coal mining sector. Other factors which will help improve the financial health of coal mining industries are (1) cost propaganda like safety week celebration; (2) cost consciousness at all levels; (3) noticeboard comprising the cost of man-hour and machine- hour; (4) no idle time for men as well as machine; (5) care to increase the life of machines; (6) scope of target amendment in a year; (7) prior to introducing costly machines, due weightage to be given on coal grade, mine life, geo-mining conditions; and (8) award to most economic mine and punishment to others rated below the BEP (break- even point). 2 refs., 3 figs.

  4. Physical simulation and theoretical evolution for ground fissures triggered by underground coal mining.

    Science.gov (United States)

    Yang, Jing-Hu; Yu, Xiang; Yang, Yi; Yang, Zeng-Qiang

    2018-01-01

    Underground coal mining activities are prone to cause movement and breakage in geological strata and also lead to mining subsidence and even ground fissures. Along the direction working panel advancing, ground fissures may occur in roof in front and/or behind working panel. However, the investigations of previous similarity tests in lab only emphasize on the region behind working panel. By improving strata material property in construction and mounting artificial pressure devices, two physical simulation tests were conducted and successfully investigated the simulated results. Then, the mechanical model of "cantilever beam and elastic foundation beam" was proposed to calculate the stress distribution and the crack initiation angle in overlying strata and it well explains the mechanisms of ground fissures generation and propagation. Results show that, the maximum internal force in roof always occurred in front of working panel. However, because the void space in gob due to excavation is large enough to cause the bend and rotation of roof strata, compare to the triaxially compressed region in front of working panel, the roof always broke off at some positions above gob since the stress concentration resulting from such bend and rotation of strata could easily reach the limit strength of strata rocks. Also, the length of cantilever beam changed dynamically as respect to the panel advancing and the breakage intervals. Thus, the breakage position where the internal force first reached the limit tensile strength is not fixed and there will be two different kinds of relative positions between the crack initiation point and the working panel. The crack initiation direction is always perpendicular to the internal force, and the crack propagation direction is affected by the initiation angle, overburden-separation degree and the position of the hydraulic shields. If there is no overburden-separation or less, the roofs will break off as a composite beam and the propagation

  5. Physical simulation and theoretical evolution for ground fissures triggered by underground coal mining

    Science.gov (United States)

    Yu, Xiang; Yang, Yi; Yang, Zeng-Qiang

    2018-01-01

    Underground coal mining activities are prone to cause movement and breakage in geological strata and also lead to mining subsidence and even ground fissures. Along the direction working panel advancing, ground fissures may occur in roof in front and/or behind working panel. However, the investigations of previous similarity tests in lab only emphasize on the region behind working panel. By improving strata material property in construction and mounting artificial pressure devices, two physical simulation tests were conducted and successfully investigated the simulated results. Then, the mechanical model of “cantilever beam and elastic foundation beam” was proposed to calculate the stress distribution and the crack initiation angle in overlying strata and it well explains the mechanisms of ground fissures generation and propagation. Results show that, the maximum internal force in roof always occurred in front of working panel. However, because the void space in gob due to excavation is large enough to cause the bend and rotation of roof strata, compare to the triaxially compressed region in front of working panel, the roof always broke off at some positions above gob since the stress concentration resulting from such bend and rotation of strata could easily reach the limit strength of strata rocks. Also, the length of cantilever beam changed dynamically as respect to the panel advancing and the breakage intervals. Thus, the breakage position where the internal force first reached the limit tensile strength is not fixed and there will be two different kinds of relative positions between the crack initiation point and the working panel. The crack initiation direction is always perpendicular to the internal force, and the crack propagation direction is affected by the initiation angle, overburden-separation degree and the position of the hydraulic shields. If there is no overburden-separation or less, the roofs will break off as a composite beam and the

  6. 3D numerical modeling of longwall mining with top-coal caving

    Energy Technology Data Exchange (ETDEWEB)

    Yasitli, N.E.; Unver, B. [Hacettepe University, Ankara (Turkey). Dept. of Mining Engineering

    2005-02-01

    Top-coal caving is the key factor affecting the efficiency of production at thick-coal seams. During production of top coal by caving behind the face not only a significant amount of coal is lost in the goaf but the coal drawn by means of caving is diluted considerably with surrounding rock. Therefore, it is not possible to carry out an efficient production operation unless caving of top coal behind the face is optimized. In this paper, results of 3D modeling of the top-coal-caving mechanism by using the finite difference code FLAC3{sup D} at the M3 longwall panel of the Omerler Underground Mine located at Tuncbilek (Turkey) are presented. According to the modeling results, maximum vertical abutment stresses were formed at a distance of 7m in front of the face. An analysis of the conditions of top coal has revealed that a 1.5 m thick layer of coal just above the shield supports is well fractured. However, a 3.5 m thick layer of coal above the fractured part is either not fractured or is fractured in the form of large blocks leading to obstruction of windows of shields during coal drawing. It is concluded that, in order to decrease dilution and increase extraction ratio and efficiency of operation, top coal should be as uniformly fractured as possible. Hence, an efficient and continuous coal flowing behind the face can be maintained. A special pre-fracture blasting strategy just sufficient enough to form cracks in the top coal is suggested by means of comparing with the results of numerical modeling.

  7. Coal mining technologies possible for use in the Polish hard coal mining sector ensuring its sustainable development; Technologie eksploatacji wegla mozliwe do zastosowania w polskim gornictwie wegla kamiennego zapewniajace jego zrownowazony rozwoj

    Energy Technology Data Exchange (ETDEWEB)

    Dubinski, J. [Central Mining Institute, Katowice (Poland)

    2004-07-01

    The paper presents a prediction of the developments in hard coal mining technologies both in Poland and in the world. The longwall and the room-and-pillar systems will be realised. In Poland longwall equipment must be made more reliable and be better monitored, and more use made of roof bolting and means of controlling methane and rockbursts. Methods of underground gasification of coal seams need further development to realise the potential of this resource at reasonable production cost and with minimal environmental impact. 38 refs., 6 figs., 4 tabs.

  8. 77 FR 24673 - Grand Mesa, Uncompahgre and Gunnison National Forests; Colorado; Federal Coal Lease Modifications...

    Science.gov (United States)

    2012-04-25

    ..., topography, hydrogeology, and hydrology identified in the baseline assessment to mining activities in the... coal estate managed by the BLM. The proposed action deals primarily with underground mining. It is assumed that longwall mining practices would be used. Surface disturbance may include soil subsidence due...

  9. Fiscal 2000 survey of geological structures overseas. Exchange of engineers with Indonesia (Coal mining technology); 2000 nendo kaigai chishitsu kozo nado chosa hokokusho. Gijutsusha koryu jigyo (tanko gijutsu bun'ya) Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Indonesia rich in coal resources consumed 70-million tons of coal in 1999, which covered 17% of its total energy demand. It is estimated that as much as 120-million tons will be produced in 2005, and it is expected that underground mining will increase. Under such circumstances, Indonesia strongly desires that Japan's underground mining technologies be transferred to Indonesia. For the transfer of technologies especially involving production control and management out of Japan's underground mining technologies, Japan dispatched engineers to Indonesia under a mining engineer exchange project, and received and trained Indonesian engineers. Under the engineer exchange project, five engineers were dispatched to Indonesia and gave lectures and on-site training in the period July 9 through August 5, 2000. Japan received seven engineers, who were given lectures and training at the Ikeshima mining field of Matsushima Coal Mining Company in the period November 12 through December 12, 2000. (NEDO)

  10. Transient behaviour of deep underground salt caverns

    International Nuclear Information System (INIS)

    Karimi-Jafari, M.

    2007-11-01

    This work deals with the transient behaviour of deep underground salt caverns. It has been shown that a cavern is a complex system, in which there are mechanical, thermal, chemical and hydraulic evolutions. The importance of the transient evolutions, particularly the role of the 'reverse' creep in the interpretation of the tightness test in a salt cavern is revealed. Creep is characterized by a formulation of the behaviour law which presents the advantage, in a practical point of view, to only have a reduced number of parameters while accounting of the essential of what it is observed. The initiation of the rupture in the effective traction in a salt cavern rapidly pressurized is discussed. A model fitted to a very long term behaviour (after abandonment) is developed too. In this case too, a lot of phenomena, more or less coupled, occur, when the existing literature took only into account some phenomena. (O.M.)

  11. 75 FR 81165 - Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety...

    Science.gov (United States)

    2010-12-27

    ..., face or ribs and coal or rock bursts. Sec. 75.220(a)(1). Each mine operator shall develop and follow a... materials, ventilation and roof control plans, and maintenance of incombustible content of rock dust are the... the mine * * *. Sec. 75.400. Coal dust, including float coal dust deposited on rock-dusted surfaces...

  12. Geomechanics of subsidence above single and multi-seam coal mining

    Directory of Open Access Journals (Sweden)

    A.M. Suchowerska Iwanec

    2016-06-01

    Full Text Available Accurate prediction of surface subsidence due to the extraction of underground coal seams is a significant challenge in geotechnical engineering. This task is further compounded by the growing trend for coal to be extracted from seams either above or below previously extracted coal seams, a practice known as multi-seam mining. In order to accurately predict the subsidence above single and multi-seam longwall panels using numerical methods, constitutive laws need to appropriately represent the mechanical behaviour of coal measure strata. The choice of the most appropriate model is not always straightforward. This paper compares predictions of surface subsidence obtained using the finite element method, considering a range of well-known constitutive models. The results show that more sophisticated and numerically taxing constitutive laws do not necessarily lead to more accurate predictions of subsidence when compared to field measurements. The advantages and limitations of using each particular constitutive law are discussed. A comparison of the numerical predictions and field measurements of surface subsidence is also provided.

  13. Care of the abandoned child.

    Science.gov (United States)

    Raghunath, M

    1991-01-01

    Care of abandoned children in India is discussed in terms of reasons for abandonment, the physical condition of the children, and legal categories. The options available currently are the cottage system, sponsorship programs, foster care, or adoption. Child-care and rehabilitation that may be necessary is specified as is the importance of maintaining records. The gaps in child-care are exposed. The role of nongovernmental organization (NGOs) and new legislation in closing the gaps is presented. Abandonment is usually a direct result of poverty, but it can also be caused by mental or physical handicaps or illegitimacy. The numbers of abandoned children may reach 2 million. 40-60% of abandoned infants die during monsoons and summers. The legal categories are privately abandoned, children on remand, or court-committed children. The cottage system emphasizes deinstitutionalization, but there remains a great demand for care. Sponsorship aims to strengthen the family unit to prevent abandonment. Foster care provides an alternative family substitute, but is known only theoretically. Childcare may involve instant hospitalization, care is an institution, or foster care with a suitable family. Nursery care requires discipline in hygiene, sanitation, maintenance of individual medical records, and a general cheerful atmosphere. Records are important for the child in later life and for adoption. Rehabilitation is a sociolegal process which must be done properly or it can jeopardize a child's future security. Despite the Supreme Court guidelines of 1984, there is no uniform system of adoption practices, and the child's interests are overlooked when adoptions are promoted. NGOs play an important role in making social welfare programs work. However their efforts are of limited help without government support and legislation. There is a lack of proper legislation which is outside the control of political and religious interests; e.g., Hindu law only permits adoption of one child of

  14. Physical Experiments on the Deformation of Strata with Different Properties Induced by Underground Mining

    Directory of Open Access Journals (Sweden)

    Haifeng Hu

    2016-03-01

    Full Text Available Underground mining can cause ground and strata movements, which in turn cause damage to houses and the landscape. The different characteristics and properties of the strata encountered during mining can also result in corresponding deformation. In order to study the deformation and damage rules of strata which are composed of unconsolidated soil and bedrock induced by underground coal mining, a physical model that employs material sand, lime, and gypsum with water was utilized firstly to simulate strata and ground movements. Then overlying strata with different properties were created according to the corresponding ratio of the mixed material, physical models under two conditions (i.e., thick soil layer and thin bedrock, and thin soil layer and thick bedrock were set up. Lastly underground coal extraction was conducted using the proposed models. Results show that the proportion of unconsolidated soil layer in the overlying strata is the key factor that determines the significant differences in the movement of strata under the two special conditions. When the ratio of the soil layer is large, the unconsolidated soil layer is loaded on the bedrock; the bedrock is thus forced to move down, and the compression rate of the broken strata is increased. The soil layer follows the bedrock as an integral movement to subsidence. When the ratio of the soil layer is small, the load on the strata is small, but the structural function of the strata is obvious and the fraction degree in the strata is developed. The obtained results in this study can be applied to support mine planning in the aspect of ground damage evaluation.

  15. A study of trends in occupational risks associated with coal mining

    International Nuclear Information System (INIS)

    Amoudru, C.

    1980-01-01

    The coal industry is well known as a major source of specific types of risk and harmful effects including, for instance, harm to the environment, pollution from various surface installations and hazards associated with the actual task of mining. We shall confine our attention to the third group and discuss only the occupational risks facing miners and ex-miners. Unlike the nuclear and oil industries, coal-mines employ very large work-forces, and the risks associated with mining therefore have a considerable impact. Mining is also a highly integrated industry: a mine's own work-force carries out all the underground engineering work (preparatory excavations, installation work, etc.) as well as maintenance. In this narrow field, a distinction should immediately be drawn between two main areas: industrial accidents; and occupational diseases, which include silicosis or, more precisely, coal-miner's pneumoconiosis

  16. Evaluation of the effect of macerals on coal permeability in Tazareh and Parvadeh mines

    Directory of Open Access Journals (Sweden)

    Farhang Sereshki

    2016-08-01

    Full Text Available In recent decades, the subject of gas emission in underground coal mines in many countries is an important subject. Many factors affect in gas emissions in coal seams. Geological and physical structures of coal are affecting on gas emissions'. Also, composition and mineralization of coal, affect in coal permeability for different gases. In this study, the relationship between maceral composition and coal permeability in Tazareh and Parvadeh mines has been studied. Accordingly, a laboratory studies to investigate the relationship between coal composition and coal permeability was done. In coal samples, with MFORR equipment the permeability test was done. With microscopic analysis, the maceral contents of coal such as Inertinite and Vitrinite have been measured. Accordingly, many coal samples of Parvadeh and Tazareh coal mines have the pyrite as the dominant mineral matter. Parvadeh coal samples has the average percentage of Vitrinite equal 81.34% and 10.52% Inertinite. Also, in the Tazareh coal samples in Eastern Alborz coal mines, the average percentage of Vitrinite is 69.31% and inertinite is 22.47%. The average percentage of Pyrite content in Parvadeh coal samples in Tabas coal mines is 2.38% and in the Tazareh coal samples in Eastern Alborz coal mines is 2.62%.  The permeability test results have been shown, which, with increase of Inertinite contents, the permeability of coal is increasing. Also, test results have been shown, there was a reduction in the coal permeability with increasing of mineral contents and carbonate contents of the coal. So, the coal permeability in Tabas coal samples is more than Eastern Alborz coal samples.

  17. Fiscal 1998 overseas geological structure survey report on the engineer interchange project (coal mine technology field), Indonesia; 1998 nendo kaigai chishitsu kozo nado chosa gijutsusha koryu jigyo (tanko gijutsu bun'ya), Indonesia hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project aims at improvement of coal mining technology and productivity in Indonesia by Japanese production control technology and business management technology for underground coal mining, through interchange of coal engineers between Japan and Indonesia. This project is composed of the short- term and long-term dispatch project of engineers to Indonesia, and the training project of Indonesian engineers in Japan. In fiscal 1998, the short-term dispatch was made for the training in Indonesia on underground coal mine development (development planning, pit mouth selection, main gallery design, mining system selection, transport planning, ventilation planning, under-river mining, mine water proofing, drainage). The long-term dispatch was made for contact and negotiation with concerned Indonesian organizations, support of the training project, and collection of information on the trend of Indonesian economy and energy, and the present and trend of the coal industry for conducting smooth and effective engineer interchange. (NEDO)

  18. Reducing of CO2 emissions and its depositing into underground

    Directory of Open Access Journals (Sweden)

    Jaroslava Koudelková

    2005-11-01

    Full Text Available Increasing CO2 emissions caused especially by the combustion of fossil fuels rises a question of how this can be problem solved in the long term. There is several solutions which differ technically and financially. This paper deals with the CO2 capture from combustion processes or power plant processes, (CO2 can be captured from the flue gas, after combustion in oxygen and recirculated flue gas or from a synthesis gas before combustion. This paper presents possibilities of CO2 storagex captured in this way into underground (deep ocean, oil and gas fields, coal bed, aquifers.

  19. acme: The Amendable Coal-Fire Modeling Exercise. A C++ Class Library for the Numerical Simulation of Coal-Fires

    Science.gov (United States)

    Wuttke, Manfred W.

    2017-04-01

    At LIAG, we use numerical models to develop and enhance understanding of coupled transport processes and to predict the dynamics of the system under consideration. Topics include geothermal heat utilization, subrosion processes, and spontaneous underground coal fires. Although the details make it inconvenient if not impossible to apply a single code implementation to all systems, their investigations go along similar paths: They all depend on the solution of coupled transport equations. We thus saw a need for a modular code system with open access for the various communities to maximize the shared synergistic effects. To this purpose we develop the oops! ( open object-oriented parallel solutions) - toolkit, a C++ class library for the numerical solution of mathematical models of coupled thermal, hydraulic and chemical processes. This is used to develop problem-specific libraries like acme( amendable coal-fire modeling exercise), a class library for the numerical simulation of coal-fires and applications like kobra (Kohlebrand, german for coal-fire), a numerical simulation code for standard coal-fire models. Basic principle of the oops!-code system is the provision of data types for the description of space and time dependent data fields, description of terms of partial differential equations (pde), their discretisation and solving methods. Coupling of different processes, described by their particular pde is modeled by an automatic timescale-ordered operator-splitting technique. acme is a derived coal-fire specific application library, depending on oops!. If specific functionalities of general interest are implemented and have been tested they will be assimilated into the main oops!-library. Interfaces to external pre- and post-processing tools are easily implemented. Thus a construction kit which can be arbitrarily amended is formed. With the kobra-application constructed with acme we study the processes and propagation of shallow coal seam fires in particular in

  20. Development of tools for managing the impacts on surface due to changing hydrological regimes surrounding closed underground coal mines (ECSC Coal RTD programme, contract 7220-PR-136)

    International Nuclear Information System (INIS)

    Veschkens, M.; Unland, W.; Kories, H.

    2005-01-01

    This paper demonstrates how box model approach and FE and box mixed model approach allow to better understand and model water flows in complex mined coal measures and interactions between shallow aquifers and flooded coal measures. Benefits of these approaches are illustrated on the basis of case studies in Liege and Ruhr coal basins. (authors)