WorldWideScience

Sample records for abacc

  1. Bilateral system. The ABACC system

    International Nuclear Information System (INIS)

    Nicolas, Ruben O.

    2001-01-01

    After relating the antecedents of the creation of the Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials (ABACC), the paper describes the common system of accounting and control set up by Argentina and Brazil. The organization of ABACC is also outlined

  2. ABACC laboratories quality assurance through Secondary Standards Exchange Program

    International Nuclear Information System (INIS)

    Guidicini, Olga Mafra; Thompson, Jay; Soriano, Michael

    2003-01-01

    In September 1999, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), with assistance from the New Brunswick Laboratory (NBL) of the U.S. Department of Energy, started a new cooperative activity with, among other objectives, the production and characterization of a traceable uranium secondary standard and the performance of the Third Round Robin for ABACC's laboratory network. Brazil and Argentina have fabricated UO 2 pellets for use as a secondary standard. Samples from the two batches were sent to NBL for the determination of the reference values for both uranium concentration (%U) and isotopic composition for each batch. ABACC and NBL then organized the Third ABACC Round Robin for Brazilian and Argentine laboratories that are part of the ABACC network. The laboratories comprising the network can be used to analyze real samples collected during the ABACC inspections. The Brazilian and Argentine pellets were distributed to all the laboratories together with the protocol to be followed for the uranium concentration analysis, the forms for reporting the measurement results, and natural UO 2 pellets (CETAMA OU1) to be used as reference material. For the laboratories with capability of measuring isotopics, NBL reference material CRM 125-A was provided. Several laboratories from each country provided results. As soon as the measurement results were sent to the organizers, they were statistically evaluated by NBL. During a meeting held at ABACC headquarters with the participation of NBL representatives, the ABACC technical support officer, and representatives of all the participant laboratories, the results were discussed and compared with the reference values. All the laboratories had the occasion, in an open discussion, to explain and show the difficulties and problems they faced during the exercise. ABACC had the opportunity not only to judge the quality of the measurements these laboratories performed, but also to determine

  3. Twenty years of ABACC: Accomplishments, lessons learnt and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Orpet J.M. [ABACC- Brazilian Argentine Agency for Accounting and Control of Nuclear Materials, Rio de Janeiro (Brazil)

    2012-06-15

    From the inception of the implementation of the Quadripartite Agreement (INFCIRC/435), in 1991, ABACC has had an important role at the non-proliferation agenda and has also been an active player in the international safeguards. It was necessary for ABACC to develop a technical capacity to face the challenges to be a safeguards agency and to gain credibility in the nuclear safeguards world. This capacity means to develop and implement safeguards systems in the technical area, in the inspection framework, in the conceptual analysis of processes and approaches and in the political scenario. These tasks conducted the strategic plan of ABACC on the last 20 years. Among the accomplishments, ABACC has been involved in the application of safeguards to sensitive and complex installations, in developing safeguards instrumentation, in establishing a technical and trained inspectorate, in constructing a cooperative and coordinate environment with IAEA for safeguards application. Other challenges as R and D of equipment and quality assurance systems were also managed during all these years. ESARDA is one forum that ABACC is involved and always shares experience and ideas. On July 18th, 2011 ABACC will formally complete 20 years. This paper summarizes the accomplishments, lessons learnt and future actions for strengthen the ABACC safeguards role. It also addresses the collaboration of ABACC with other organizations in the non-proliferation and international safeguards arena.

  4. DOE/ABACC safeguards cooperation

    International Nuclear Information System (INIS)

    Whitaker, J.M.; Toth, P.; Rubio, J.

    1995-01-01

    In 1994, the US Department of Energy (DOE) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) signed a safeguards cooperation agreement. The agreement provides for cooperation in the areas of nuclear material control, accountancy, verification, and advanced containment and surveillance technologies for international safeguards applications. ABACC is an international safeguards organization responsible for verifying the commitments of a 1991 bilateral agreement between Argentina and Brazil in which both countries agreed to submit all nuclear material in all nuclear activities to a Common System of Accounting and Control of Nuclear Materials (SCCC). DOE provides critical assistance (including equipment and training) through the Office of Nonproliferation and National Security to countries and international organizations to enhance their capabilities to control and verify nuclear material inventories. Specific activities initiated under the safeguards agreement include: (1) active US participation in ABACC's safeguards training courses, (2) joint development of specialized measurement training workshops, (3) characterization of laboratory standards, and (4) development and application of an extensive analytical laboratory comparison program. The results realized from these initial activities have been mutually beneficial in regard to strengthening the application of international safeguards in Argentina and Brazil

  5. ABACC's nuclear accounting area

    International Nuclear Information System (INIS)

    Nicolas, Ruben O.

    2001-01-01

    The functions and activities of the Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials (ABACC) accounting area is outlined together with a detailed description of the nuclear accounting system used by the bilateral organization

  6. Nuclear safeguards in Brazil and Argentina: 25 years of ABACC

    Science.gov (United States)

    Kassenova, Togzhan

    2017-11-01

    As possessors of advanced nuclear technology, Brazil and Argentina bear special responsibility for helping the international community and neighbors in their region feel confident that their nuclear programs are peaceful, secure, and safe. Over the past 25 years, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) has played an indispensable role in strengthening such confidence by implementing nuclear safeguards in the two countries. Today, ABACC carries out safeguards inspections at a total of 76 nuclear facilities in Brazil and Argentina. This article describes how Brazil and Argentina view trends in the global nonproliferation regime and international nuclear safeguards, and explains how these trends relate to unique challenges and opportunities facing Brazil, Argentina, and ABACC.

  7. Annual report 2013 - ABACC - Brazilian-Argentina agency for accounting and control of nuclear materials; Relatorio anual 2013 - ABACC - Agencia Brasileiro-Argentina de Contabilidade e Controle de Materiais Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The document reports the activities of the commission and all technical activities. Shows the presence of ABACC at events; the strengthening technical capability; technical cooperation, institutional and administrative and financial activities; an outlook for 2014. Gives a list of the ABACC inspectors and presents the facilities under the Quadripartite Agreement.

  8. The importance of a regional organism (ABACC) on the application of a modern safeguard

    International Nuclear Information System (INIS)

    Raffo, Ana Claudia; Palacios, Elias

    1997-01-01

    As an safeguards regional mechanism, the ABACC is part of Brazil-Argentina wide cooperation context. This work describes the importance of the ABACC as a control regional agency and the role played in the context of modern safeguard

  9. Annual report 2013 - ABACC - Brazilian-Argentina agency for accounting and control of nuclear materials

    International Nuclear Information System (INIS)

    2013-01-01

    The document reports the activities of the commission and all technical activities. Shows the presence of ABACC at events; the strengthening technical capability; technical cooperation, institutional and administrative and financial activities; an outlook for 2014. Gives a list of the ABACC inspectors and presents the facilities under the Quadripartite Agreement

  10. The Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) as safeguard regional agency

    International Nuclear Information System (INIS)

    Alvim, C.F.

    1994-01-01

    The Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials - ABACC applies regional safeguards on nuclear materials in Brazil and Argentina. The framework of international agreements concerning ABACC is presented, and the characteristics and requirements that a regional nuclear safeguards organization must fulfill are discussed. (author). 2 refs, 1 tab

  11. Twenty Years of Regional Safeguards: the ABACC System and the Synergy with the National Nuclear Material Control Systems

    International Nuclear Information System (INIS)

    Dias, Fabio C.; Palhares, Lilia C.; De Mello, Luiz A.; Vicens, Hugo E.; Maceiras, Elena; Terigi, Gabriel

    2011-01-01

    As result of the nuclear integration between Brazil and Argentina, in July 1991 the Agreement for Peaceful Uses of the Nuclear Energy (Bilateral Agreement) was signed and the Brazilian Argentine Agency for Accountancy and Control of Nuclear Material (ABACC) was created [1]. The main role assigned to ABACC was the implementation and administration of the regional control system and the coordination with the International Atomic Energy Agency (IAEA) in order to apply safeguards to all nuclear material in all nuclear activities of Argentina and Brazil. In December 1991 the IAEA, ABACC, Argentina and Brazil signed the Quadripartite Agreement (INFCIRC/435) [2]. The agreement establishes obligations similar to those established by model INFCIRC/153 comprehensive agreements. The Bilateral Agreement establishes that the Parties should make available financial and technical capabilities to support ABACC activities. In order to accomplish this challenge, the National Systems had to improve their structure and capabilities. Through the close interaction with the IAEA and ABACC, the national systems have been enriched by adopting new methodologies, implementing innovative safeguards approaches and providing specialized training to the regional inspectors. All of this also resulted in relevant technical improvements to the regional system as a whole. The approach of both neighborhoods controlling each other increased the confidence between the partners and permitted a better knowledge of their potentialities. The recognized performance of the regional system in the implementation of innovative, efficient and credible safeguards measures increased the confidence of the international community on the implementation of nuclear safeguards in Argentina and Brazil. In this paper, after twenty years of the creation of the ABACC System, the view of the Brazilian and Argentine National Authorities is presented. (authors)

  12. Annual Report ABACC 2003 - Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials

    International Nuclear Information System (INIS)

    2003-01-01

    This Report describes the actions of the Brazil-Argentine of Accounting and Control of Nuclear Materials (ABACC), during the year of 2003. The developed work allowed to concluded that there is no event indicating that any nuclear material non-accounted for were deviated for non permitted activities by the Agreement for Peaceful Use of Nuclear Energy between Argentine and Brazil and by the Four Parties Agreement among these countries, the ABACC and the International Atomic Energy Agency (IAEA)

  13. 1993 Annual report of the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials - ABACC

    International Nuclear Information System (INIS)

    1994-01-01

    The 1993 annual report of the Brazilian Argentine Agency for Accounting and Control of Nuclear Materials, (ABACC), describes the activities regarding the administration and application of the Control and Accounting Common System (SCCC) established by the bilateral agreement between the Republic of Argentine and Federative Republic of Brazil for exclusive peaceful use of the nuclear energy. The main goal to verify practically all the installations which were not subjected to the international safeguards, before the agreement, was reached. Considering the safeguards application under implementation in both countries, the ABACC is preparing itself technically for the quadripartite agreement to be into force and signed among Argentine, Brazil, IAEA and ABACC. On checking the procedures established by the SCCC and controlled material, nothing was detected that could indicate nuclear material diversion either for nuclear weapon or for other explosive nuclear device. (B.C.A.)

  14. ABACC: A regional safeguards agency

    International Nuclear Information System (INIS)

    Palacios, E.

    1998-01-01

    Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) was created as a common system of accounting and control. It is based on Bilateral Agreement between the two countries and the agreement with the IAEA. After a few years of experience it might be concluded that a regional system may contribute in many ways to enhance the safeguards system. The most relevant are: to improve the effectiveness and efficiency of safeguards by sending as professionals who are experts in the process involved in installations that are to be inspected; to have much more information on nuclear activities in each of the two countries than available to the IAEA; and to maintain formal and informal channels of communication

  15. Development of low-level environmental sampling capabilities for uranium at Brazilian and Argentine laboratories by ABACC

    International Nuclear Information System (INIS)

    Guidicini, Olga Mafra; Hembree Junior, Doyle M.; Carter, Joel A.; Hayes, Susan; Whitaker, Michael; Olsen, Khris

    2003-01-01

    The Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) with assistance from the U.S. Department of Energy (DOE) began a program to evaluate environmental sampling capabilities at laboratories in Argentina and Brazil in June 1998. The program included staff training conducted in South America and the United States. Several laboratory evaluation exercises were also conducted using standard swipe samples prepared by the International Atomic Energy Agency (IAEA) and a National Institute of Standards and Technology Standard Reference Material 1547, Peach Leaves. The results of these exercises demonstrated that several laboratories were capable of accurately determining the total uranium and uranium isotopic distribution in the peach leaves. To build on these successes, another exercise using standard swipe samples prepared by the IAEA was conducted. A total of 8 sets of 15 swipe samples were prepared and distributed to the six ABACC support laboratories and to two of DOE's Network of Analytical Laboratories (NWAL) that support IAEA's environmental sampling program Throughout this project, the ABACC laboratories have shown steady progress in contamination control and improvements to the accuracy and precision of their measurements. The results of the latest exercises demonstrate that ABACC now has support laboratories in both Argentina and Brazil that have the capability to measure both the amount and isotopic composition of uranium at levels expected in typical environmental samples (i.e., sub-microgram quantities). This presentation will discuss the final results for the exercise with uranium swipe samples and discuss future activities to develop measurement capabilities for total and isotopic plutonium in environmental samples. (author)

  16. Implementation of a Strengthened International Safeguards System. ABACC 15 Years

    International Nuclear Information System (INIS)

    Vicens, H.R.; Maceiras, E.; Dominguez, C.A.

    2011-01-01

    The purpose of the paper is to explain how the system of a regional safeguard has been operating and developing in the framework of the Brazilian-Argentine Agency of Accounting and control of nuclear Materials (ABACC), and how the international recommendations of radiological protection must be taken into account in the safeguards implementation and its impact in the international context.

  17. The experience of ABACC after ten years applying safeguards

    International Nuclear Information System (INIS)

    Feu Alvim, Carlos A.; Palacios, Elias; Esteves dos Santos, Jose M.; Oliveira, Antonio

    2001-01-01

    Full text: During the second half of this century, Argentina and Brazil shared a common ambition: to gain knowledge on and develop the technology required for attaining a full command of the nuclear fuel cycle. Until mid-1990's, neither of these countries had fully adhered to the Tlatelolco Treaty, nor had they signed the Non-Proliferation Treaty (NPT), as a way to protect themselves towards the development of such technology. The discriminatory nature of the NPT was the argument used to resist the international pressure for its signature. On the other hand, the text of the Tlatelolco Treaty involved special inspections to non-declared facilities that meant a threat of industrial espionage which Argentina and Brazil wanted to avoid. This position -maintained for almost two decades - led the international community to view these countries as competing for nuclear supremacy. As of 1985, both Argentina and Brazil, by means of joint declarations, expressed their decision to provide transparency to their nuclear programs. Consequently, they undertook several commitments concerning the exclusively peaceful purposes in their use of nuclear energy and in their respective nuclear programs. This process of joint declarations led to the signature of a Bilateral Agreement for the Exclusively Peaceful Uses of Nuclear Energy in July 1991. Through this agreement, they formally established their Common System of Accounting and Control of Nuclear Materials (SCCC) and created the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) in order to implement the established verification system. Also at that time, the decision was made to start negotiations with the International Atomic Energy Agency (IAEA) towards a joint agreement on safeguards based on the SCCC. In March 1994, the Quadripartite Agreement between Argentina, Brazil, the ABACC and the IAEA entered into force. The experience in the application of SCCC during its first ten years and the

  18. Annual report 2000. ABACC - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, RJ, Brazil

    International Nuclear Information System (INIS)

    2000-01-01

    This document reports the general activities of the ABACC - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials during the year of 2000, covering safeguards, accounting and control of nuclear materials

  19. ABACC's laboratory intercomparison program

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Esteban, Adolfo; Almeida, Silvio G. de; Araujo, Radier M. de; Rocha, Zildete

    1996-01-01

    A Laboratory Intercomparison Program involving Brazilian and Argentine laboratories, with the special participation of New Brunswick Laboratory - DOE and IAEA Seibersdorf Safeguards Laboratory, was implanted by ABACC having as main purpose to qualify a network to provide analytical services to this Agency on its role as administrator of the Common System of Accountability and Control of Nuclear Materials. For the first round robin of this Program, 15 laboratories were invited to perform elemental analysis on UO 2 samples, by using any desired method. Thirteen confirmed the participation and 10 reported the results. After an evaluation of the results by using a Two-Way Variance Analysis applied to a nested error model, it was found that 5 of them deviate less than 0.1% from the reference value established for the UO 2 uranium contents, being thus situated within the limits adopted for the target values, while the remaining ones reach a maximal deviation of 0.44%. The outcome of this evaluation, was sent to the laboratories, providing them with a feedback to improve their performance by applying corrective actions to the detected sources of errors or bias related to the methods techniques and procedures. (author)

  20. Annual report 2004 of ABACC - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, RJ, Brazil

    International Nuclear Information System (INIS)

    2004-01-01

    This document reports the general activities of the ABACC - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials during the year of 2004, covering safeguards, accounting and control of nuclear materials

  1. The Development of Low-Level Measurement Capabilities for Total and Isotopic Uranium in Environmental Samples at Brazilian and Argentine Laboratories by ABACC

    International Nuclear Information System (INIS)

    Guidicini, Olga M.; Olsen, Khris B.; Hembree, Doyle M.; Carter, Joel A.; Whitaker, Michael; Hayes, Susan M.

    2005-01-01

    In June 1998, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), with assistance from the U.S. Department of Energy (DOE), began a program to assess environmental sampling and analysis capabilities at laboratories in Argentina and Brazil. The program began with staff training conducted in South America and the United States by Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL). Both laboratories are participating members of DOE's Network of Analytical Laboratories (NWAL) that support IAEA's environmental sampling program. During the initial planning meeting, representatives from ABACC and all the participating analytical laboratories supporting ABACC were briefed on how the first exercise would be managed and on key aspects necessary to analyze low-level environmental samples for uranium. Subsequent to this training, a laboratory evaluation exercise (Exercise 1) was conducted using standard swipe samples prepared for this exercise by the International Atomic Energy Agency (IAEA). The results of Exercise 1 determined that sample contamination was a major factor in the analysis, and a thorough review of laboratory procedures was required to reduce the level of contamination to acceptable levels. Following modification of sample preparation procedures, the laboratories performed Exercise 2, an analysis of a National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1547, Peach Leaves. The results of Exercise 2 demonstrated that several laboratories were capable of accurately determining the total uranium and uranium isotopic distribution in the peach leaves. To build on these successes, Exercise 3 was performed using a series of standard swipe samples prepared by the IAEA and distributed to laboratories supporting ABACC and to PNNL and ORNL. The results of Exercise 3 demonstrate that ABACC now has support laboratories in both Argentina and Brazil, which are capable of

  2. Annual report 2001. ABACC 10 years - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, RJ, Brazil

    International Nuclear Information System (INIS)

    2001-01-01

    This document represents the 2001 Annual report. ABACC 10 years - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials during the year of 2000, covering safeguards, accounting and control of nuclear materials

  3. ABACC - Brazil-Argentina Agency for Accounting and Control of Nuclear Materials, a model of integration and transparence; ABACC - Agencia Brasileno-Argentina de Contabilidad y Control de Materiales Nucleares, un ejemplo de integracion y transparencia

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Antonio A.; Do Canto, Odilon Marcusso, E-mail: oliveira@abacc.org.br, E-mail: odilon@abacc.org.br [Agencia Brasileno Argentina de Contabilidad y Control de Materiales Nucleares (ABACC), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Argentina and Brazil began its activities in the nuclear area about the same time, in the 50 century past. The existence of an international nuclear nonproliferation treaty-TNP-seen by Brazil and Argentina as discriminatory and prejudicial to the interests of the countries without nuclear weapons, led to the need for a common system of control of nuclear material between the two countries to somehow provide assurances to the international community of the exclusively peaceful purpose of its nuclear programs. The creation of a common system, assured the establishment of uniform procedures to implement safeguards in Argentina and Brazil, so the same requirements and safeguards procedures took effect in both countries, and the operators of nuclear facilities began to follow the same rules of control of nuclear materials and subjected to the same type of verification and control. On July 18, 1991, the Bilateral Agreement for the Exclusively Peaceful Use of Nuclear Energy created a binational body, the Argentina-Brazil Agency for Accounting and Control of Nuclear Materials-ABACC-to implement the so-called Common System of Accounting and Control of Nuclear materials - SCCC. The deal provided, permanently, a clear commitment to use exclusively for peaceful purposes all material and nuclear facilities under the jurisdiction or control of the two countries. The Quadripartite Agreement, signed in December of that year, between the two countries, ABACC and IAEA completed the legal framework for the implementation of comprehensive safeguards system. The 'model ABACC' now represents a paradigmatic framework in the long process of economic, political, technological and cultural integration of the two countries. Argentina and Brazil were able to establish a guarantee system that is unique in the world today and that consolidated and matured over more than twenty years, has earned the respect of the international community.

  4. ABACC - Brazil-Argentina Agency for Accounting and Control of Nuclear Materials, a model of integration and transparence

    International Nuclear Information System (INIS)

    Oliveira, Antonio A.; Do Canto, Odilon Marcusso

    2013-01-01

    Argentina and Brazil began its activities in the nuclear area about the same time, in the 50 century past. The existence of an international nuclear nonproliferation treaty-TNP-seen by Brazil and Argentina as discriminatory and prejudicial to the interests of the countries without nuclear weapons, led to the need for a common system of control of nuclear material between the two countries to somehow provide assurances to the international community of the exclusively peaceful purpose of its nuclear programs. The creation of a common system, assured the establishment of uniform procedures to implement safeguards in Argentina and Brazil, so the same requirements and safeguards procedures took effect in both countries, and the operators of nuclear facilities began to follow the same rules of control of nuclear materials and subjected to the same type of verification and control. On July 18, 1991, the Bilateral Agreement for the Exclusively Peaceful Use of Nuclear Energy created a binational body, the Argentina-Brazil Agency for Accounting and Control of Nuclear Materials-ABACC-to implement the so-called Common System of Accounting and Control of Nuclear materials - SCCC. The deal provided, permanently, a clear commitment to use exclusively for peaceful purposes all material and nuclear facilities under the jurisdiction or control of the two countries. The Quadripartite Agreement, signed in December of that year, between the two countries, ABACC and IAEA completed the legal framework for the implementation of comprehensive safeguards system. The 'model ABACC' now represents a paradigmatic framework in the long process of economic, political, technological and cultural integration of the two countries. Argentina and Brazil were able to establish a guarantee system that is unique in the world today and that consolidated and matured over more than twenty years, has earned the respect of the international community

  5. ABACC: annual report 2012 - Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials

    International Nuclear Information System (INIS)

    2012-01-01

    This document reports the actives during the year 2012 related to: technical activities as safeguards application and advances in application of safeguards; main activities conducted in Brazil and main activities developed at ABACC headquarters; management of the Quadripartite Agreement and of the SCCC - Common System for Accounting and Control of Nuclear Materials; training; technical cooperation; institutional, administrative and financial activities; perspectives for 2013; list of inspectors; list of Brazilian and Argentine facilities subject to the Quadripartite Agreement

  6. The SSAC (State System of Accounting and Control) of Argentina: possible areas to increase co-operation with ABACC and IAEA

    International Nuclear Information System (INIS)

    Castro, Laura B.; Vicens, Hugo E.; Maceiras, Elena; Saavedra, Analia D.; Valentino, Lucia I.; Llacer, Carlos D.; Mairal, Maria L.; Fernandez Moreno, Sonia

    2000-01-01

    This paper deals with one of the measures identified in the program 93+2 to enhance international safeguards effectiveness and efficiency. This measure is related to increase co-operation between the IAEA and the SSAC in the implementation of safeguards. It is recognized that an effective SSAC could contribute to better safeguards. During the discussion to strengthen the safeguards system different levels of co-operation between the IAEA and SSAC were identified, depending on their features and capabilities. To start assessing the possibility of increasing this co-operation, a 'SSAC Questionnaire' was submitted by the IAEA to Member States, EURATOM and ABACC. At present, those questionnaires are being assessed by the IAEA in order to identify areas for further co-operation. One important aspect is the increased co-operation level that might be achieved when the Additional Protocol becomes an integral part of the safeguard agreements. Another one refers to the methodology that IAEA might employ to audit the quality and performance of the SSAC regarding the different levels of such co-operation. This paper will also describe the features of the SSAC of Argentina emphasizing its capabilities and the various areas that might be considered to increase further co-operation with ABACC and the IAEA. (author)

  7. Qualification for Safeguards Purposes of UF6 Sampling using Alumina – Results of the Evaluation Campaign of ABACC-Cristallini Method

    OpenAIRE

    ESTAEBAN ADOLFO; GAUTIER EDUARDO; MACHADO DA SILVA LUIS; FERNANDEZ MORENO SONIA; RENHA JR GERALDO; DIAS FABIO; PEREIRA DE OLIVEIRA JUNIOR OLIVIO; AMMARAGGI DAVID; MASON PETER; SORIANO MICHAEL; CROATTO PAUL; ZULEGER EVELYN; GIAQUINTO JOSEPH; HEXEL COLE; VERCOUTER THOMAS

    2017-01-01

    The procedure currently used to sample material from process lines in uranium enrichment plants consists of collecting the uranium hexafluoride (UF6) in gaseous phase by desublimation inside a metal sampling cylinder cooled with liquid nitrogen or in certain facilities in a fluorothene P-10 tube type. The ABACC-Cristallini method (A-C method) has been proposed to collect the UF6 (gas) by adsorption in alumina (Al2O3) in the form of uranyl fluoride (UO2F2) (solid). This method uses a fluor...

  8. Role of a national system of accounting and control of nuclear material under ABACC's (Brazilian-Argentine Agency) regional system

    International Nuclear Information System (INIS)

    Fernandez Moreno, Sonia; Estrada Oyuela, Miguel E.

    2000-01-01

    The Brazilian-Argentine Agency (ABACC) and the 'Common System of Accounting and Control of Nuclear Materials' (SCCC) are the result of a process started with nuclear cooperation between Argentina and Brazil. The SCCC reflects a common policy of transparency established by a Bilateral Agreement. Its insertion in the global context was made through a Quadripartite Agreement (Argentina, Brazil, ABBAC, IAEA). This paper describes the role of the State System of Accounting and Control (SSAC) in the framework established in the Bilateral and the Quadripartite Safeguards Agreements and in the context of new trends and perspectives in international safeguards. It could also serve as a example for initiatives in other regions. (author)

  9. Uranium determination in natural U O2 samples for the laboratory intercomparison program of Agencia Brasileiro-Argentina de Contabilidade e Controle de Materiais Nucleares (ABACC)

    International Nuclear Information System (INIS)

    Avelar, Marta M.; Palmieri, Helena E.L.; Reis Fagundes, Oliene dos

    1997-01-01

    The modified Davies and Gray method for uranium titration to analyse nuclear materials is the procedure used by the CDTN's chemical laboratory. Its analytical performance was evaluated through the participation in the intercomparison program with the Brazilian - Argentine Agency for Accountability and Control of Nuclear Materials (ABACC). One sample of natural uranium dioxide was analysed. The precision and accuracy of the measurements are reported and discussed in this paper. (author). 7 refs., 1 fig., 2 tabs

  10. Secure Video Surveillance System (SVSS) for unannounced safeguards inspections

    International Nuclear Information System (INIS)

    Galdoz, Erwin G.; Pinkalla, Mark

    2010-01-01

    The Secure Video Surveillance System (SVSS) is a collaborative effort between the U.S. Department of Energy (DOE), Sandia National Laboratories (SNL), and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC). The joint project addresses specific requirements of redundant surveillance systems installed in two South American nuclear facilities as a tool to support unannounced inspections conducted by ABACC and the International Atomic Energy Agency (IAEA). The surveillance covers the critical time (as much as a few hours) between the notification of an inspection and the access of inspectors to the location in facility where surveillance equipment is installed. ABACC and the IAEA currently use the EURATOM Multiple Optical Surveillance System (EMOSS). This outdated system is no longer available or supported by the manufacturer. The current EMOSS system has met the project objective; however, the lack of available replacement parts and system support has made this system unsustainable and has increased the risk of an inoperable system. A new system that utilizes current technology and is maintainable is required to replace the aging EMOSS system. ABACC intends to replace one of the existing ABACC EMOSS systems by the Secure Video Surveillance System. SVSS utilizes commercial off-the shelf (COTS) technologies for all individual components. Sandia National Laboratories supported the system design for SVSS to meet Safeguards requirements, i.e. tamper indication, data authentication, etc. The SVSS consists of two video surveillance cameras linked securely to a data collection unit. The collection unit is capable of retaining historical surveillance data for at least three hours with picture intervals as short as 1sec. Images in .jpg format are available to inspectors using various software review tools. SNL has delivered two SVSS systems for test and evaluation at the ABACC Safeguards Laboratory. An additional 'proto-type' system remains

  11. Implementation of a Strengthened International Safeguards System ABBAC 15 years

    International Nuclear Information System (INIS)

    Vicens, Hugo; Maceiras, Elena; Dominguez, Cristina A.

    2008-01-01

    The purpose of the paper is to explain how the system of a regional safeguard has been operating and developing in the framework of the Brazilian Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), and how the international recommendation of radiological protection must be taken into account in the safeguards implementation and its impact in the international context. The ABACC has been a dynamic system, which contributes worldwide in the application of the regional and international safeguard. In 2006, the ABACC celebrated its 15th anniversary. The ABBAC was created in 1991 in the framework of a Bilateral Agreement for the Exclusively Peaceful use of Nuclear Energy, the ABBAC was created in order to apply the aforementioned system called 'Common System for Accounting and Control of Nuclear Materials' (SCCC). During this time, the ABBAC has grown in its implementation and has become a model in the application of regional safeguards that is recognized internationally. The ABBAC was the pillar to signed an Agreement between Argentina, Brazil, the ABBAC and the International Atomic Energy Agency, called 'Quadripartite Agreement', committed themselves to accept the application of safeguards to all nuclear materials in all the nuclear activities performed in both countries. The ABACC and the relevant implementing and supplementary agreements, set forth the conditions for the peaceful use of nuclear energy, the exchange of technical staff, the transfer of knowledge and international cooperation in a strong commitment to non-proliferation of nuclear weapons. This introduction provides an overview of political, legal and technical aspects implemented in the ABACC, which will be developed later in the paper. (author)

  12. Remote monitoring in safeguards: Security of information and enhanced cooperation

    International Nuclear Information System (INIS)

    Galdoz, Erwin; Calzetta, Osvaldo; Fernández Moreno, Sonia; Llacer, Carlos; Díaz, Gustavo; Vigile, Sebastián; Brunhuber, Christoph

    2011-01-01

    Unattended systems with remote transmission capabilities (RM) have the potential to improve safeguards efficiency. Moreover, the evolution of technology and the steady growing of nuclear materials subject to control, lead modern safeguards increasingly utilizing unattended equipment with the capability to store relevant data for long periods of time coupled with the option of being remotely accessed and checked. Remote inspection is still a concept under development, but it may end to be a powerful more efficient verification modality in medium term future. An important part of drawing meaningful safeguards conclusions rests on authenticity and reliability of the information on nuclear material and facilities acquired through the various verification activities and measures applied by IAEA and regional safeguards organizations, like ABACC. The increasing utilization of such technology to further optimize safeguards responds to a multifaceted environment where security of information for all relevant parties is of utmost importance. From the point of view of the IAEA and ABACC, the use of any technology for safeguards application, and specially the use of RM, requires to ensure the security of data collected to guarantee the validity and veracity of such information throughout the whole process (e.g., from collecting to reviewing). This is also valid to the SSAC involved in the process. Information security is also relevant for States and Operators. Assurance should be given that the information could not be withdrawn by non-authorized entities and that facility data is also fully secured. Another important aspect related to RM that may also fall in the security aspect of safeguards relevant information that merits further consideration, is the sharing of information between organizations like ABACC and the IAEA as well as the possibility to make this data available for States authorities purposes. This paper discusses three main themes related to RM: (i) the extent

  13. Preserving technological secrets vs. proliferation risks

    International Nuclear Information System (INIS)

    Palacios, E.

    2004-01-01

    In July of 1991 Argentina and Brazil assume the commitment exclusively for the pacific use of the nuclear energy and of their respective nuclear programs through a Bilateral agreement. This Agreement also believes the ABACC, for monitoring the execution of the assumed commitments. From their beginnings, the Agency was involved in the application of safeguards in plants of ultra-centrifugation being this a so much topic of relevance for ABACC like for the IAEA. To preserve technological secrets, for demand of the operator, the cascades of centrifuges find hidden behind of panels. ABACC understanding this necessity, it has explored alternatives that allow to reconcile the interests of all the involved parts. A focus of safeguards based on the control of the perimeter one has come using in the plants of small installed capacity and in the first two cascades of a commercial plant in construction. In the work the efficiency of this focus is discussed as increases the capacity of the plant and with it concludes that it will be necessary to begin a dialogue on the future implementation of methods more standardized of control in the commercial plant, giving time so that the designs are adapted to the new reality. (Author)

  14. Preserving technological secrets vs. proliferation risks; Preservar secretos tecnologicos vs. riesgo de proliferacion

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, E. [Agencia Brasileno-Argentina de Contabilidad y Control de Materiales Nucleares, ABACC, Av. Rio Branco, 123, G 515, Centro, 20040-005 Rio de Janeiro (Brazil)

    2004-07-01

    In July of 1991 Argentina and Brazil assume the commitment exclusively for the pacific use of the nuclear energy and of their respective nuclear programs through a Bilateral agreement. This Agreement also believes the ABACC, for monitoring the execution of the assumed commitments. From their beginnings, the Agency was involved in the application of safeguards in plants of ultra-centrifugation being this a so much topic of relevance for ABACC like for the IAEA. To preserve technological secrets, for demand of the operator, the cascades of centrifuges find hidden behind of panels. ABACC understanding this necessity, it has explored alternatives that allow to reconcile the interests of all the involved parts. A focus of safeguards based on the control of the perimeter one has come using in the plants of small installed capacity and in the first two cascades of a commercial plant in construction. In the work the efficiency of this focus is discussed as increases the capacity of the plant and with it concludes that it will be necessary to begin a dialogue on the future implementation of methods more standardized of control in the commercial plant, giving time so that the designs are adapted to the new reality. (Author)

  15. ABACC ten years applying safeguards

    International Nuclear Information System (INIS)

    Palacios, Elias

    2001-01-01

    The Argentinian-Brazilian Agency for Accounting and Control of nuclear special materials has been in operations for ten years. The rational behind the creation and the work performed by the Agency during the last decade is described. (author)

  16. Strengthening regional safeguards

    International Nuclear Information System (INIS)

    Palhares, L.; Almeida, G.; Mafra, O.

    1996-01-01

    Nuclear cooperation between Argentina and Brazil has been growing since the early 1980's and as it grew, so did cooperation with the US Department of Energy (DOE). The Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) was formed in December 1991 to operate the Common System of Accounting and Control of Nuclear Materials (SCCC). In April 1994, ABACC and the DOE signed an Agreement of Cooperation in nuclear material safeguards. This cooperation has included training safeguards inspectors, exchanging nuclear material measurement and containment and surveillance technology, characterizing reference materials, and studying enrichment plant safeguards. The goal of the collaboration is to exchange technology, evaluate new technology in Latin American nuclear facilities, and strengthen regional safeguards. This paper describes the history of the cooperation, its recent activities, and future projects. The cooperation is strongly supported by all three governments: the Republics of Argentina and Brazil and the United States

  17. Safeguards organizational system at Centro de Desenvolvimento da Tecnologia Nuclear/CNEN-Br

    International Nuclear Information System (INIS)

    Oliveira, Cleber Lopes de; Stasiulevicius, Roberto

    1996-01-01

    Since 1960, the CDTN is working according to a safeguards system, which has been updated in 1992, after the quadripartite agreement involving the government of Brazil and Argentina and the organizations IAEA and ABACC. In this work is presented the SS-CDTN and the acquired experience with the implantation of this system. (author)

  18. Regional training course on state systems of accounting for and control of nuclear material

    International Nuclear Information System (INIS)

    2001-01-01

    The publication is an outline of the subjects that are included in a regional training course organized in Buenos Aires (Argentina) by the IAEA with the cooperation of the Argentine Government and the Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials (ABACC) from September 24 to October 5, 2001

  19. Communication received from the Resident Representatives of Argentina and Brazil

    International Nuclear Information System (INIS)

    1993-01-01

    The document reproduces the communication received by the Director General from the Resident Representatives of Argentina and Brazil to the Agency to inform him about the official inauguration on 9 December 1992 of the headquarters of the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) in Rio de Janeiro

  20. Experience of Brazilian safeguards analytical laboratory in DA analysis

    International Nuclear Information System (INIS)

    Bezerra, J.H.B.; Araujo, R.M.S.; Pereira, J.C.A.

    2001-01-01

    Full text: The Brazilian Safeguards Analytical Laboratory, inaugurated in September 1983, performs uranium analysis in samples of nuclear materials taken during national safeguards inspections as well as in samples taken during ABACC's inspections performed in Argentina. The Laboratory analyzes Intercomparison samples provided by IAEA, NBL, ABACC, CEN and EQRAIN. The method used to perform uranium analysis is the Davies and Gray/NBL. All the steps of the analytical procedures, such as chemical kinetics of the reactions and instrumental parameters, are rigorously controlled. An internal Quality Control of the measurements is made by means of analysis of Certified Reference Materials and the performance of the results meets the ESARDA's Target Values for Random and Systematic Components both in Intercomparison Samples and in samples taken during inspections. The typical precision, expressed as relative standard deviation, and accuracy obtained in a routine basis for nuclear grade materials is 0.1% and 0.14% respectively. The performance of the results obtained are comparable to the best international laboratories which perform uranium analysis in nuclear materials for safeguards purposes. (author)

  1. Alternatives to reach safeguards goals at Atucha I nuclear power plant

    International Nuclear Information System (INIS)

    Palacios, E.; Orpet, P.; Marzo, M.; Valentino, L.; Vicens, H.

    2001-01-01

    Full text: This paper describes the main features of Atucha I Nuclear Power Plant and the current safeguards' approach applied to this installation by the International Atomic Energy Agency (IAEA) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC). The reasons for not completely fulfilling the IAEA safeguards criteria with the current approach are also described and a conceptual proposal of an unattended system developed jointly by ABACC and the Nuclear Regulatory Authority of Argentina (ARN) is presented. Finally, the paper addresses an alternative proposal to the previous one aiming at fulfilling the above mentioned objectives. Atucha I Nuclear Power Plant (NPP) was built in the 70's and has been under operation since 1974, This is an On Load Reactor, moderated and refrigerated with heavy water (PHWR). From its starting up to about a year ago, this NPP operated with natural uranium fuel assemblies but presently the reactor core is fed with slightly enriched uranium fuel assemblies (0,85 %). This Plant generates up to 357 Mwe. An outstanding operating characteristic of this power reactor is that low burn-up fuels assemblies already discharged into the pond may be re-used when necessary upon neutron flux requirements (re-shuffling). This installation has a pond storage capacity of about 10,000 fuel assemblies. At the highest power rate, the reactor core must be fed with a frequency of about 0,72 fuel assemblies per day. Before the application of the Agency Safeguards Criteria (IAEA-SC) in (1991), Atucha l had always satisfied the IAEA safeguards goals. Since 1991 the IAEA-SC demanded for On Load Reactors the control of the flow of irradiated fuel assemblies that leave or enter into the core (re-shuffling). By that time, Atucha I had been working for about seventeen years and there was no possibilities to install specific safeguards equipment without making significant construction modifications on this installation. Under the

  2. Validation of Cristallini Sampling Method for UF6 by High Precision Double-Spike Measurements Collaboration between JRC-G.2, Team METRO and SGAS/IAEA

    OpenAIRE

    RICHTER Stephan; HIESS Joe; JAKOBSSON Ulf

    2016-01-01

    The so-called "Cristallini Method" for sampling of UF6 by adsorption and hydrolysis in alumina pellets inside a fluorothene P-10 tube has been developed by the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) several years ago [1]. This method has several advantages compared to the currently used sampling method, for which UF6 is distilled into a stainless steel tube for transportation, with hydrolysis and isotopic analysis being performed after shipping to t...

  3. Validation of the Cristallini Sampling Method for UF6 by High Precision Double-Spike Measurements

    OpenAIRE

    RICHTER STEPHAN; JAKOBSSON ULF; HIESS JOE; AMARAGGI D.

    2017-01-01

    The so-called "Cristallini Method" for sampling of UF6 by adsorption and hydrolysis in alumina pellets inside a fluorothene P-10 tube was developed by the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) several years ago. This method has several advantages compared to the currently used sampling method, for which UF6 is distilled into a stainless steel tube for transportation, with hydrolysis and isotopic analysis being performed after shipping to the analyt...

  4. Developments of solid materials for UF6 sampling

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Nicholas [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hebden, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Savina, Joseph [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-11-15

    This project demonstrated that a device using majority Commercial Off the Shelf (COTS) components could be used to collect uranium hexafluoride samples safely from gaseous or solid sources. The device was based on the successful Cristallini method developed by ABACC over the past 10 years. The system was designed to capture and store the UF6 as an inert fluoride salt to ease transportation regulations. In addition, the method was considerably faster than traditional cryogenic methods, collected enough material to perform analyses without undue waste, and could be used either inside a facility or in the storage yard.

  5. Regional safeguards arrangements: The Argentina-Brazil experience

    International Nuclear Information System (INIS)

    Marzo, M.; Gonzales, H.L.; Iskin, M.C.L.; Vicens, H.

    1997-01-01

    A Common System of Accounting and Control of Nuclear Material (SCCC) was established by Argentina and Brazil in July 1992. It is a full scope safeguard's system in both countries. The Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) was created to apply the SCCC. The main elements of the SCCC are presented. The main safeguards' procedures are described. A brief discussion of the inspection methodology and its impact for facility operators is performed. The safeguard's implementation from the operator's point of view is commented, taking as example a fuel fabrication plant in Argentina and a uranium enrichment plant in Brazil. (author)

  6. The nuclear safeguards system and the process of global governance accountability

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, Roberto Salles, E-mail: xavier@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao Geral de Planejamento e Avaliacao

    2011-07-01

    Due to rising energy costs and climate concerns, nuclear energy is again being seriously considered as an energy source for several countries. Along with the resurgence of nuclear energy comes the concern of the world if these countries will develop their programs for the peaceful use of nuclear energy. If on one hand the growth potential of nuclear energy should not be stifled, on the other hand it is imperative that a climate of mutual trust is developed, respecting the right of each country to develop its nuclear program without taking a climate of mistrust to a possible 'intention' behind the pursuit of peaceful use of nuclear energy. Therefore, it is essential that appropriate mechanisms of accountability of global governance are institutionalized at the institutional architecture of the international process of nuclear safeguards, more specifically to the nuclear fuel cycle, so that abuses of power in this sphere does not happen, both by countries that aspire to develop projects nuclear, and by the suppliers of technology. In this context, the case study of Brazil and Argentina gained importance, because these two countries have a single binational organization of nuclear safeguards in the world: Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials - ABACC. In the theoretical question, the paper tries to understand what happens with the process of legitimacy and authority of the organizations of global governance by analyzing the degree of publicness and constrictiveness. This work intends to focus on the role of ABACC as an interstate institution of accountability, which has a key role to control the nation States of Brazil and Argentina regarding the appropriate use of nuclear material used in their programs, and analyze how this Agency behaves within of tension legitimacy-authority, taking into account existing studies on accountability in global governance. (author)

  7. The nuclear safeguards system and the process of global governance accountability

    International Nuclear Information System (INIS)

    Xavier, Roberto Salles

    2011-01-01

    Due to rising energy costs and climate concerns, nuclear energy is again being seriously considered as an energy source for several countries. Along with the resurgence of nuclear energy comes the concern of the world if these countries will develop their programs for the peaceful use of nuclear energy. If on one hand the growth potential of nuclear energy should not be stifled, on the other hand it is imperative that a climate of mutual trust is developed, respecting the right of each country to develop its nuclear program without taking a climate of mistrust to a possible 'intention' behind the pursuit of peaceful use of nuclear energy. Therefore, it is essential that appropriate mechanisms of accountability of global governance are institutionalized at the institutional architecture of the international process of nuclear safeguards, more specifically to the nuclear fuel cycle, so that abuses of power in this sphere does not happen, both by countries that aspire to develop projects nuclear, and by the suppliers of technology. In this context, the case study of Brazil and Argentina gained importance, because these two countries have a single binational organization of nuclear safeguards in the world: Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials - ABACC. In the theoretical question, the paper tries to understand what happens with the process of legitimacy and authority of the organizations of global governance by analyzing the degree of publicness and constrictiveness. This work intends to focus on the role of ABACC as an interstate institution of accountability, which has a key role to control the nation States of Brazil and Argentina regarding the appropriate use of nuclear material used in their programs, and analyze how this Agency behaves within of tension legitimacy-authority, taking into account existing studies on accountability in global governance. (author)

  8. Review of the Korean SSAC According to Changes in the Nuclear Environment

    International Nuclear Information System (INIS)

    Kim, Min Su; Yoon, Wan Ki; Choe, Kwan Kyoo; Jo, Seong Youn; Park, Jae Bum

    2005-01-01

    Korea has been maintaining efficient and systematic State System for Accounting and Control of nuclear materials (SSAC) for elevation of our nuclear transparency and reliability to international society. So far, Korean SSAC had been considered as a good example of SSAC together with Euratom, Japan, ABACC. But, owing to changing environment such as a series trial due to the KAERI's past nuclear material experiments, strengthened international nonproliferation scheme, advent of integrated safeguards and technology development in nuclear fields, voices of demand for changes in Korean SSAC are being brought up. Therefore, this study grasped and analyzed international nuclear environment and direction of changes in nuclear control regime, besides re-examine the roles of Korean SSAC and proposed the direction where Korean SSAC should be shifted

  9. Annual report - ABACC (accounting and nuclear materials control Brazil-Argentina agency) - 1998

    International Nuclear Information System (INIS)

    1999-01-01

    The annual activities report of 1998 of accounting and nuclear materials control Brazil-Argentina agency introduces the next main topics: institutional activities - safeguards agreements implementation and administration; technical activities - planning and evaluation, operation, technical support, information accounting and treatment, technical cooperation, technical capacity invigoration; administrative and financial activities

  10. Annual Report 2007 - ABACC - Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials

    International Nuclear Information System (INIS)

    2007-01-01

    This document reports activities during the year 2007 related to: technical activities as application of safeguards; management of the Quadripartite Agreement and the SCCC - Common System for Accounting and Control of Nuclear Materials; training; technical cooperation; outlook for 2008 and; institutional, administrative and financial activities; technical glossary; list of brazilian facilities; list of argentine facilities and a list of institution of nuclear area

  11. International Remote Monitoring Project Embalse Nuclear Power Station, Argentina Embalse Remote Monitoring System

    International Nuclear Information System (INIS)

    Schneider, Sigfried L.; Glidewell, Donnie D.; Bonino, Anibal; Bosler, Gene; Mercer, David; Maxey, Curt; Vones, Jaromir; Martelle, Guy; Busse, James; Kadner, Steve; White, Mike; Rovere, Luis

    1999-01-01

    The Autoridad Regulatoria Nuclear of Argentina (ARN), the International Atomic Energy Agency (IAEA), ABACC, the US Department of Energy, and the US Support Program POTAS, cooperated in the development of a Remote Monitoring System for nuclear nonproliferation efforts. This system was installed at the Embalse Nuclear Power Station last year to evaluate the feasibility of using radiation sensors in monitoring the transfer of spent fuel from the spent fuel pond to dry storage. The key element in this process is to maintain continuity of knowledge throughout the entire transfer process. This project evaluated the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguard efficiency. New technology has been developed to enhance the design of the system to include storage capability on board sensor platforms. This evaluation has led to design enhancements that will assure that no data loss will occur during loss of RF transmission of the sensors

  12. Annual Report ABACC 2009 - Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials

    International Nuclear Information System (INIS)

    2009-01-01

    This document reports the actives during the year 2009 related to: technical activities as application of safeguards; management of the Quadripartite Agreement and the SCCC - Common System for Accounting and Control of Nuclear Materials; training; technical cooperation; institutional, administrative and financial activities; perspectives for 2010; list of inspectors; list of Brazilian and Argentine facilities subject to the Quadripartite Agreement

  13. Dealing with the regional challenge of physical protection of nuclear materials

    International Nuclear Information System (INIS)

    Paschoa, A.S.

    2002-01-01

    ) methodologies, technologies and guides for detection of and response to illegal activities involving nuclear and other radioactive materials. In addition there were projects on provision of consolidated information an illicit trafficking, and an international cooperation on the security of nuclear and other radioactive materials. Voluntary contributions by member states were required to implement most of those activities. However, despite the generous contributions of some countries, the IAEA's International Physical Protection Advisory Service (IPPAS) has experienced serious limitation of funds to advise a number of countries. One possible avenue to be followed to make the IPPAS more effective is to take advantage of the expertise already developed by regional systems of accounting for and control of nuclear materials, for example, ABACC in the Latin American region. Of course, changes would have to be made in the ABACC's chart in order to expand its role, and face today's challenge concerning potential nuclear terrorism. (author)

  14. International nuclear safeguards 1994: Vision for the future. V.1

    International Nuclear Information System (INIS)

    1994-01-01

    Since the last IAEA symposium on this subject, held eight years ego in 1986, the world of safeguards has experienced a number of momentous changes which have opened a new period of intensive development in safeguards. The important events were: The discoveries in Iraq during activities under United Nations Security Council resolutions, South Africa's decision to become a party to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), the IAEA-Argentina-Brazil-ABACC Quadripartite Safeguards Agreement, the break-up of the former USSR into newly independent States, and the problems encountered in the implementation of NPT safeguards in the Democratic People's Republic of Korea. The consequences for international safeguards of these events were presented in papers at this symposium, with special emphasis on verification of a State's declaration as well as on detection of undeclared activities. Other fundamental changes stem from converging relationships between nuclear arms reductions and the civil use of plutonium, and the international debate on the associated issues. Furthermore, the review and extension of the NPT is due in 1995. Events have opened the possibility for ambitious new concepts for verification regimes. These matters were addressed at the symposium in the opening session and in the closing panel discussion. Refs, figs and tabs

  15. Considerations on safeguards approach for small centrifuge enrichment facilities

    International Nuclear Information System (INIS)

    Vicens, Hugo E.; Marzo, Marco A.; Nunes, Vitorio E.

    2004-01-01

    The safeguards' objectives for enrichment facilities encompass the detection of the diversion of declared nuclear material and of facility misuse. The safeguard's approach presently applied for commercial centrifuge enrichment facilities is based on the Hexa partite Project and seems not to be directly applicable to cases of small plants. Since ABACC started its operation one of the main problems faced was the application of safeguards to small centrifuge enrichment plants for testing centrifuges in cascade mode or for small LEU production. These plants consist of a few fully independent cascades, does not operate in a routine basis and panels prevent visual access to the centrifuges and their surroundings for preserving sensitive information. For such plants misuse scenarios seems to dominate, particularly those associated with feeding the plant with undeclared LEU. This paper presents a concise analysis of misuse strategies in small centrifuge facility and alternative safeguard's approach, describing the main control elements to be applied. The particularities arising from the existence of panels or boxes covering the centrifuges are specifically addressed. Two alternatives approaches based on the application of a transitory perimeter control to increase the effectiveness of unannounced inspection and on the application of permanent perimeter control are presented. (author)

  16. New Brunswick Laboratory. Progress report, October 1995--September 1996

    International Nuclear Information System (INIS)

    1997-04-01

    Fiscal year (FY) 1996 was a very good year for New Brunswick Laboratory (NBL), whose major sponsor is the Office of Safeguards and Security (NN-51) in the US Department of Energy (DOE), Office of Nonproliferation and National Security, Office of Security Affairs. Several projects pertinent to the NBL mission were completed, and NBL's interactions with partners and customers were encouraging. Among the partners with which NBL interacted in this report period were the International Atomic Energy Agency (IAEA), NN-51. Environmental Program Group of the DOE Chicago Operations Office, International Safeguards Project Office, Waste Isolation Pilot Plant (WIPP), Ukraine Working Group, Fissile Materials Assurance Working Group, National Institute of Standards and Technology (NIST), Nuclear Regulatory Commission (NRC), Institute for Reference Materials and Measurements (IRMM) in Belgium, Brazilian/Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), Lockheed Idaho Technologies Company, and other DOE facilities and laboratories. NBL staff publications, participation in safeguards assistance and other nuclear programs, development of new reference materials, involvement in the updating and refinement of DOE documents, service in enhancing the science education of others, and other related activities enhanced NBL's status among DOE laboratories and facilities. Noteworthy are the facts that NBL's small inventory of nuclear materials is accurately accounted for, and, as in past years, its materials and human resources were used in peaceful nuclear activities worldwide

  17. Nuclear safety

    International Nuclear Information System (INIS)

    2014-01-01

    The Program on Nuclear Safety comprehends Radioprotection, Radioactive Waste Management and Nuclear Material Control. These activities are developed at the Nuclear Safety Directory. The Radioactive Waste Management Department (GRR) was formally created in 1983, to promote research and development, teaching and service activities in the field of radioactive waste. Its mission is to develop and employ technologies to manage safely the radioactive wastes generated at IPEN and at its customer’s facilities all over the country, in order to protect the health and the environment of today's and future generations. The Radioprotection Service (GRP) aims primarily to establish requirements for the protection of people, as workers, contractors, students, members of the general public and the environment from harmful effects of ionizing radiation. Furthermore, it also aims to establish the primary criteria for the safety of radiation sources at IPEN and planning and preparing for response to nuclear and radiological emergencies. The procedures about the management and the control of exposures to ionizing radiation are in compliance with national standards and international recommendations. Research related to the main activities is also performed. The Nuclear Material Control has been performed by the Safeguard Service team, which manages the accountability and the control of nuclear material at IPEN facilities and provides information related to these activities to ABACC and IAEA. (author)

  18. New Brunswick Laboratory. Progress report, October 1995--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Fiscal year (FY) 1996 was a very good year for New Brunswick Laboratory (NBL), whose major sponsor is the Office of Safeguards and Security (NN-51) in the US Department of Energy (DOE), Office of Nonproliferation and National Security, Office of Security Affairs. Several projects pertinent to the NBL mission were completed, and NBL`s interactions with partners and customers were encouraging. Among the partners with which NBL interacted in this report period were the International Atomic Energy Agency (IAEA), NN-51. Environmental Program Group of the DOE Chicago Operations Office, International Safeguards Project Office, Waste Isolation Pilot Plant (WIPP), Ukraine Working Group, Fissile Materials Assurance Working Group, National Institute of Standards and Technology (NIST), Nuclear Regulatory Commission (NRC), Institute for Reference Materials and Measurements (IRMM) in Belgium, Brazilian/Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), Lockheed Idaho Technologies Company, and other DOE facilities and laboratories. NBL staff publications, participation in safeguards assistance and other nuclear programs, development of new reference materials, involvement in the updating and refinement of DOE documents, service in enhancing the science education of others, and other related activities enhanced NBL`s status among DOE laboratories and facilities. Noteworthy are the facts that NBL`s small inventory of nuclear materials is accurately accounted for, and, as in past years, its materials and human resources were used in peaceful nuclear activities worldwide.

  19. INIS Progress and Activity Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-05-15

    Highlights of INIS Activities 2006: INIS, the International Nuclear Information System, is an established nuclear information resource operated by the IAEA on behalf of its Members. Its primary mission is to foster an open information exchange for the scientific benefit of its Members. In 2006, four new members joined INIS: the Central African Republic, Namibia, Luxembourg, and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC). This brings the total number of INIS members to 140. 2006 saw a significant increase in the support provided to INIS Member States through the IAEA Technical Co-operation Department. INIS Database: With the successful completion of volume 37 of the INIS Bibliographic Database, a total of 122 412 records were added in 2006, which is the best result in INIS history and corresponds to a 100% increase compared to 1999 when INIS started the Computer-Assistance-Indexing (CAI) project. This very impressive result was achieved with the competent work of the INIS team and in cooperation with Member States. The total number of records in the INIS Database has reached 2 778 427. INIS NCL Collection: In 2006, the electronic full-text of 14 610 NCL documents were processed and added to the INIS NCL collection and a total of 47 NCL CDs were produced and distributed to designated Document Delivery Centres in INIS Member States.

  20. INIS Progress and Activity Report 2006

    International Nuclear Information System (INIS)

    2007-05-01

    Highlights of INIS Activities 2006: INIS, the International Nuclear Information System, is an established nuclear information resource operated by the IAEA on behalf of its Members. Its primary mission is to foster an open information exchange for the scientific benefit of its Members. In 2006, four new members joined INIS: the Central African Republic, Namibia, Luxembourg, and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC). This brings the total number of INIS members to 140. 2006 saw a significant increase in the support provided to INIS Member States through the IAEA Technical Co-operation Department. INIS Database: With the successful completion of volume 37 of the INIS Bibliographic Database, a total of 122 412 records were added in 2006, which is the best result in INIS history and corresponds to a 100% increase compared to 1999 when INIS started the Computer-Assistance-Indexing (CAI) project. This very impressive result was achieved with the competent work of the INIS team and in cooperation with Member States. The total number of records in the INIS Database has reached 2 778 427. INIS NCL Collection: In 2006, the electronic full-text of 14 610 NCL documents were processed and added to the INIS NCL collection and a total of 47 NCL CDs were produced and distributed to designated Document Delivery Centres in INIS Member States

  1. Nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Nuclear Safety comprehends Radioprotection, Radioactive Waste Management and Nuclear Material Control. These activities are developed at the Nuclear Safety Directory. The Radioactive Waste Management Department (GRR) was formally created in 1983, to promote research and development, teaching and service activities in the field of radioactive waste. Its mission is to develop and employ technologies to manage safely the radioactive wastes generated at IPEN and at its customer’s facilities all over the country, in order to protect the health and the environment of today's and future generations. The Radioprotection Service (GRP) aims primarily to establish requirements for the protection of people, as workers, contractors, students, members of the general public and the environment from harmful effects of ionizing radiation. Furthermore, it also aims to establish the primary criteria for the safety of radiation sources at IPEN and planning and preparing for response to nuclear and radiological emergencies. The procedures about the management and the control of exposures to ionizing radiation are in compliance with national standards and international recommendations. Research related to the main activities is also performed. The Nuclear Material Control has been performed by the Safeguard Service team, which manages the accountability and the control of nuclear material at IPEN facilities and provides information related to these activities to ABACC and IAEA. (author)

  2. Model of a Generic Natural Uranium Conversion Plant ? Suggested Measures to Strengthen International Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Raffo-Caiado, Ana Claudia [ORNL; Begovich, John M [ORNL; Ferrada, Juan J [ORNL

    2009-11-01

    This is the final report that closed a joint collaboration effort between DOE and the National Nuclear Energy Commission of Brazil (CNEN). In 2005, DOE and CNEN started a collaborative effort to evaluate measures that can strengthen the effectiveness of international safeguards at a natural uranium conversion plant (NUCP). The work was performed by DOE s Oak Ridge National Laboratory and CNEN. A generic model of a NUCP was developed and typical processing steps were defined. Advanced instrumentation and techniques for verification purposes were identified and investigated. The scope of the work was triggered by the International Atomic Energy Agency s 2003 revised policy concerning the starting point of safeguards at uranium conversion facilities. Prior to this policy only the final products of the uranium conversion plant were considered to be of composition and purity suitable for use in the nuclear fuel cycle and therefore, subject to the IAEA safeguards control. DOE and CNEN have explored options for implementing the IAEA policy, although Brazil understands that the new policy established by the IAEA is beyond the framework of the Quadripartite Agreement of which it is one of the parties, together with Argentina, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) and the IAEA. Two technical papers on this subject were published at the 2005 and 2008 INMM Annual Meetings.

  3. International remote monitoring project Argentina Nuclear Power Station Spent Fuel Transfer Remote Monitoring System

    International Nuclear Information System (INIS)

    Schneider, S.; Lucero, R.; Glidewell, D.

    1997-01-01

    The Autoridad Regulataria Nuclear (ARN) and the United States Department of Energy (DOE) are cooperating on the development of a Remote Monitoring System for nuclear nonproliferation efforts. A Remote Monitoring System for spent fuel transfer will be installed at the Argentina Nuclear Power Station in Embalse, Argentina. The system has been designed by Sandia National Laboratories (SNL), with Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) providing gamma and neutron sensors. This project will test and evaluate the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguards efficiency. This paper provides a description of the monitoring system and its functions. The Remote Monitoring System consists of gamma and neutron radiation sensors, RF systems, and video systems integrated into a coherent functioning whole. All sensor data communicate over an Echelon LonWorks Network to a single data logger. The Neumann DCM 14 video module is integrated into the Remote Monitoring System. All sensor and image data are stored on a Data Acquisition System (DAS) and archived and reviewed on a Data and Image Review Station (DIRS). Conventional phone lines are used as the telecommunications link to transmit on-site collected data and images to remote locations. The data and images are authenticated before transmission. Data review stations will be installed at ARN in Buenos Aires, Argentina, ABACC in Rio De Janeiro, IAEA Headquarters in Vienna, and Sandia National Laboratories in Albuquerque, New Mexico. 2 refs., 2 figs

  4. O Brasil, a AIEA e o Regime de Não Proliferação Nuclear (1957-2014: entre a cooperação e a desconfiança.

    Directory of Open Access Journals (Sweden)

    Edson José Perosa

    2014-10-01

    Full Text Available A AIEA foi criada em 1957 após a proposta ‘‘átomos para paz’’ do presidente estadunidense Eisenhower, apresentada na ONU em 1953. A Agência deveria promover o uso pacífico da energia nuclear e coibir seu uso militar. O Tratado de Não Proliferação Nuclear (TNP, por sua vez, foi aprovado em 1968 e entrou em vigor em 1970. Os países que aderissem a esse tratado se comprometiam em não desenvolver armas nucleares e, por sua vez, os que já dispunham desses armamentos se comprometiam em reduzir seus arsenais. Esses são dois dos principais instrumentos do regime de não proliferação nuclear. O Brasil adotou uma postura crítica em relação ao TNP, criticando-o como sendo discriminatório. Com relação à AIEA, o governo brasileiro manteve contatos com a Agência e firmou tratados com ela – como o tratado tripartite Brasil-RFA-AIEA e o tratado quadripartite Brasil-Argentina-AIEA-ABACC.  Diferentemente de outros atores do regime de não proliferação, o Brasil pareceu mais disposto a aceitar a tutela da AIEA, ainda que não aderisse integralmente às salvaguardas da Agência. Ademais, a Agência – por meio dos tratados assinados com ela – pode ter sido um meio para o Brasil tentar legitimar seu programa nuclear como pacífico.

  5. Development of solid materials for UF6 sampling: FY16 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Nicholas [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Savina, Joseph [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hebden, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-10-31

    A handheld implementation of the ABACC-developed Cristallini method, which captures uranium hexafluoride samples as an inert salt, was organized in FY17 and succeeded in demonstrating the handheld sampler concept with reactive hexafluoride gases. The Cristallini method relies on the use of a hydrated substrate to react the incoming hexafluoride resulting in the formation of a stable uranyl fluoride salt. The Cristallini method has been demonstrated as a facility modification installed near the sampling tap of a gas centrifuge enrichment plant. While very successful in reducing the hazards of uranium hexafluoride sample, the method still takes a considerable amount of time and can only be used in facilities where the apparatus has been installed; this arrangement generally prohibits the sampling of filled cylinders that have already exited the facility and have been deposited in the on-site tank storage yard. The handheld unit under development will allow the use of the Cristallini method at facilities that have not been converted as well as tanks in the storage yard. The handheld system utilizes an active vacuum system, rather than a passive vacuum system in the facility setup, to drive the uranium hexafluoride onto the adsorbing media. The handheld unit will be battery operated for fully autonomous operation and will include onboard pressure sensing and flushing capability. To date, the system concept of operations was demonstrated with tungsten hexafluoride that showed the active vacuum pump with multiple cartridges of adsorbing media was viable. Concurrently, the hardened prototype system was developed and tested; removable sample cartridges were developed (the only non-COTS component to date); and preparations were made for uranium tests and a domestic field test.

  6. The national law on nuclear activity: some consequences

    International Nuclear Information System (INIS)

    Gonzalez Acosta, G.

    1997-01-01

    This article describes the contents of the new National Law on Nuclear Activities of the Argentine Republic, analysing the functions of the National Atomic Energy Commission (CNEA), the Nuclear Regulatory Authority (ARN) (former National Board of Nuclear Regulation -ENREN) and the privatisation of the nuclear power generation performed by the enterprise Nucleoelectrica Argentina S.A. (NASA). It also includes some comments about political and legislative records of the Law in the framework of the Nation's reorganization undertaken by the National Government for the privatisation of the rendering of public services, such as the production of energy and related activities. The Law was approved by Law 24.804 of April 2, 1997, and published in the Official Bulletin of the Argentine Republic on April 25, 1997. In accordance with the provisions of this Law, the National Government, through the above mentioned organisations, will fix the nuclear policy and the functions of research, development, surveillance and control of the nuclear activity. Also, as part of the execution of the nuclear policy, all the obligations accepted by Argentina as signatory party to the Treaty for the Prohibition of Nuclear Weapons in Latin America and the Caribbean (Tlatelolco Treaty), the Treaty on Non-Proliferation of Nuclear Weapons (TNP), the Agreement between the Argentine Republic and the Federative Republic of Brazil through the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) and the International Atomic Energy Agency (IAEA) to enforce Safeguards, in addition to the commitments signed by Argentina as a member of the Suppliers Group and the National Control System for Sensitive Exports, shall be met [es

  7. Material integrity verification radar

    International Nuclear Information System (INIS)

    Koppenjan, S.K.

    1999-01-01

    The International Atomic Energy Agency (IAEA) has the need for verification of 'as-built' spent fuel-dry storage containers and other concrete structures. The IAEA has tasked the Special Technologies Laboratory (STL) to fabricate, test, and deploy a stepped-frequency Material Integrity Verification Radar (MIVR) system to nondestructively verify the internal construction of these containers. The MIVR system is based on previously deployed high-frequency, ground penetrating radar (GPR) systems that have been developed by STL for the U.S. Department of Energy (DOE). Whereas GPR technology utilizes microwave radio frequency energy to create subsurface images, MTVR is a variation for which the medium is concrete instead of soil. The purpose is to nondestructively verify the placement of concrete-reinforcing materials, pipes, inner liners, and other attributes of the internal construction. The MIVR system underwent an initial field test on CANDU reactor spent fuel storage canisters at Atomic Energy of Canada Limited (AECL), Chalk River Laboratories, Ontario, Canada, in October 1995. A second field test at the Embalse Nuclear Power Plant in Embalse, Argentina, was completed in May 1996. The DOE GPR also was demonstrated at the site. Data collection and analysis were performed for the Argentine National Board of Nuclear Regulation (ENREN). IAEA and the Brazilian-Argentine Agency for the Control and Accounting of Nuclear Material (ABACC) personnel were present as observers during the test. Reinforcing materials were evident in the color, two-dimensional images produced by the MIVR system. A continuous pattern of reinforcing bars was evident and accurate estimates on the spacing, depth, and size were made. The potential uses for safeguard applications were jointly discussed. The MIVR system, as successfully demonstrated in the two field tests, can be used as a design verification tool for IAEA safeguards. A deployment of MIVR for Design Information Questionnaire (DIQ

  8. The emergence of internet-based virtual private networks in international safeguards

    International Nuclear Information System (INIS)

    Smartt, Heidi Anne

    2001-01-01

    Full text: The costs associated with secure data transmission can be an obstacle to International Safeguards. Typical communication methods are priced by distance and may include telephone lines, frame relay, and ISDN. It is therefore costly to communicate globally. The growth of the Internet has provided an extensive backbone for global communications; however, the Internet does not provide intrinsic security measures. Combining the Internet with Virtual Private Network technology, which encrypts and authenticates data, creates a secure and potentially cost-effective data transmission path, as well as achieving other benefits such as reliability and scalability. Access to the Internet can be achieved by connecting to a local Internet Service Provider, which can be preferable to installing a static link between two distant points. The cost-effectiveness of the Internet-based Virtual Private Network is dependent on such factors as data amount, current operational costs, and the specifics of the Internet connection, such as user proximity to an Internet Service Provider or existing access to the Internet. This paper will introduce Virtual Private Network technology, the benefits of Internet communication, and the emergence of Internet-based Virtual Private Networks throughout the International Safeguards community. Specific projects to be discussed include: The completed demonstration of secure remote monitoring data transfer via the Internet between STUK in Helsinki, Finland, and the IAEA in Vienna, Austria; The demonstration of secure remote access to IAEA resources by traveling inspectors with Virtual Private Network software loaded on laptops; The proposed Action Sheets between ABACC/DOE and ARN/DOE, which will provide a link between Rio de Janeiro and Buenos Aires; The proposed use at the HIFAR research reactor, located in Australia, to provide remote monitoring data to the IAEA; The use of Virtual Private Networks by JRC, Ispra, Italy. (author)

  9. The ‘Landscape’ of Nuclear Safeguards: A Comparative Analysis of the International and Regional Systems

    International Nuclear Information System (INIS)

    Colussi, I.A.

    2015-01-01

    The notion of “nuclear non-proliferation” is twofold. It refers to: (a) reduction of the number of existing arsenals (vertical non-proliferation), and (b) containment of the number of States that possess nuclear weapons, or control of non-state actors (horizontal non-proliferation). At the international law level, as vertical non-proliferation, there are bilateral or multilateral agreements that ban weapons of mass destruction in certain areas (e.g.: Nuclear–Weapon– Free Zones treaties). With respect to horizontal non-proliferation, beyond the Nuclear-Weapon-Free Zones approach, the main legal text for addressing the issue is the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). For the implementation of the principles contained in the NPT, a “nuclear safeguards” system has been created, and the International Atomic Energy Agency (IAEA) has been assigned the role of the nuclear “watchdog” for the NPT. However, along with this international system of safeguards, there are regional safeguards bodies: (a) the European Atomic Energy Community (EURATOM) model is the cornerstone of non-proliferation in the EU, while (b) the Brazilian-Argentine Agency for Accounting for and Control of Nuclear Materials (ABACC) controls nuclear activities in Brazil and Argentina. Moreover, the existing nuclear weapons free-zone treaties contain safeguards provisions that are additional or complementary to IAEA safeguards. For instance, (a) the Agency for the Prohibition of Nuclear Weapons in Latin America and the Caribbean (OPANAL) works for the implementation of Tlatelolco Treaty, (b) the African Commission on Nuclear Energy relates to Pelindaba Treaty, and (c) a Consultative Committee of the Parties is appointed in the context of Raratonga Treaty. The paper aims at critically analysing the different safeguards systems adopted at the international and regional level, through the adoption of a comparative approach. (author)

  10. International target values 2010 for achievable measurement uncertainties in nuclear material accountancy

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Fabio C., E-mail: fabio@ird.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Almeida, Silvio G. de; Renha Junior, Geraldo, E-mail: silvio@abacc.org.b, E-mail: grenha@abacc.org.b [Agencia Brasileiro-Argentina de Contabilidade e Controle de Materiais Nucleares (ABACC), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The International Target Values (ITVs) are reasonable uncertainty estimates that can be used in judging the reliability of measurement techniques applied to industrial nuclear and fissile materials subject to accountancy and/or safeguards verification. In the absence of relevant experimental estimates, ITVs can also be used to select measurement techniques and calculate sample population during the planning phase of verification activities. It is important to note that ITVs represent estimates of the 'state-of-the-practice', which should be achievable under routine measurement conditions affecting both facility operators and safeguards inspectors, not only in the field, but also in laboratory. Tabulated values cover measurement methods used for the determination of volume or mass of the nuclear material, for its elemental and isotopic assays, and for its sampling. The 2010 edition represents the sixth revision of the International Target Values (ITVs), issued by the International Atomic Energy Agency (IAEA) as a Safeguards Technical Report (STR-368). The first version was released as 'Target Values' in 1979 by the Working Group on Techniques and Standards for Destructive Analysis (WGDA) of the European Safeguards Research and Development Association (ESARDA) and focused on destructive analytical methods. In the latest 2010 revision, international standards in estimating and expressing uncertainties have been considered while maintaining a format that allows comparison with the previous editions of the ITVs. Those standards have been usually applied in QC/QA programmes, as well as qualification of methods, techniques and instruments. Representatives of the Brazilian Nuclear Energy Commission (CNEN) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) participated in previous Consultants Group Meetings since the one convened to establish the first list of ITVs released in 1993 and in subsequent revisions

  11. Third International Meeting on Next Generation Safeguards: Safeguards-by-Design at Enrichment Facilities

    International Nuclear Information System (INIS)

    Long, Jon D.; McGinnis, Brent R.; Morgan, James B.; Whitaker, Michael; Lockwood, Dunbar; Shipwash, Jacqueline L.

    2011-01-01

    The Third International Meeting on Next Generation Safeguards (NGS3) was hosted by the U.S. Department of Energy (DOE)/National Nuclear Security Administration's (NNSA) Office of Nonproliferation and International Security (NIS) in Washington, D.C. on 14-15 December 2010; this meeting focused on the Safeguards-by-Design (SBD) concept. There were approximately 100 participants from 13 countries, comprised of safeguards policy and technical experts from government and industry. Representatives also were present from the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), the European Atomic Energy Agency (Euratom), and the International Atomic Energy Agency (IAEA). The primary objective of this meeting was to exchange views and provide recommendations on implementation of the SBD concept for four specific nuclear fuel cycle facility types: gas centrifuge enrichment plants (GCEPs), GEN III and GEN IV reactors, aqueous reprocessing plants, and mixed oxide fuel fabrication facilities. The general and facility-specific SBD documents generated from the four working groups, which were circulated for comment among working group participants, are intended to provide a substantive contribution to the IAEA's efforts to publish SBD guidance for these specific types of nuclear facilities in the near future. The IAEA has described the SBD concept as an approach in which 'international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and decommissioning.' As part of the Next Generation Safeguards Initiative (NGSI), the DOE is working to establish SBD as a global norm through DOE laboratory studies, international workshops, engagement with industry and the IAEA, and setting an example through its use in new nuclear facilities in the United States. This paper describes the discussion topics and final recommendations of the Enrichment Facilities Working

  12. International target values 2010 for achievable measurement uncertainties in nuclear material accountancy

    International Nuclear Information System (INIS)

    Dias, Fabio C.; Almeida, Silvio G. de; Renha Junior, Geraldo

    2011-01-01

    The International Target Values (ITVs) are reasonable uncertainty estimates that can be used in judging the reliability of measurement techniques applied to industrial nuclear and fissile materials subject to accountancy and/or safeguards verification. In the absence of relevant experimental estimates, ITVs can also be used to select measurement techniques and calculate sample population during the planning phase of verification activities. It is important to note that ITVs represent estimates of the 'state-of-the-practice', which should be achievable under routine measurement conditions affecting both facility operators and safeguards inspectors, not only in the field, but also in laboratory. Tabulated values cover measurement methods used for the determination of volume or mass of the nuclear material, for its elemental and isotopic assays, and for its sampling. The 2010 edition represents the sixth revision of the International Target Values (ITVs), issued by the International Atomic Energy Agency (IAEA) as a Safeguards Technical Report (STR-368). The first version was released as 'Target Values' in 1979 by the Working Group on Techniques and Standards for Destructive Analysis (WGDA) of the European Safeguards Research and Development Association (ESARDA) and focused on destructive analytical methods. In the latest 2010 revision, international standards in estimating and expressing uncertainties have been considered while maintaining a format that allows comparison with the previous editions of the ITVs. Those standards have been usually applied in QC/QA programmes, as well as qualification of methods, techniques and instruments. Representatives of the Brazilian Nuclear Energy Commission (CNEN) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) participated in previous Consultants Group Meetings since the one convened to establish the first list of ITVs released in 1993 and in subsequent revisions, including the latest one

  13. Inter-relations between regional and global approaches to nuclear non-proliferation

    International Nuclear Information System (INIS)

    Simpson, J.

    1995-01-01

    It is now becoming evident that the end of the East-West conflict has had a significant effect upon both global and regional security structures. From a situation where regional arrangements were, in the main, determined and driven by pressures arising from the bipolar division which permeated all aspects of the global political system, they increasingly have an independent existence. This has enabled such arrangements to be tailored to local circumstances in a manner which is not possible with global agreements. In particular, it has become apparent that enhanced constraints on peaceful nuclear activities and much more intrusive inspection and monitoring procedures, can more easily be negotiated on a regional basis than a global one. It also appears that nuclear weapon states are prepared to make unconditional commitments about nuclear weapon use on a regional basis, whereas they may not be prepared to do so on a global one. In short, regional approaches enable fine-tuning of the international non-proliferation regime to occur, and for measures to be taken on a regional level that would be politically unacceptable on the global level, due to their discriminatory nature. In the years ahead additional Nuclear-Weapon-Free Zone (NWFZ) agreements may be negotiated, covering more of the land area of the globe. In parallel, regional nuclear cooperation and safeguarding agreements might also be expected to develop along the lines of EURATOM and ABACC. This in turn may move the states which remain outside of the NPT to a similar position to Argentina and Brazil at the moment: to an acceptance that whatever their opposition in principle to the NPT and the system of supplier export guidelines, the commitments they have already accepted on a regional level are more intrusive and constraining than those they would incur if they were to have acceded to the Treaty. In these circumstances, accession to the NPT becomes a distinct possibility, and thus the regional approach to non

  14. What next for the NPT? Facing the moment of truth

    International Nuclear Information System (INIS)

    Timerbaev, Roland

    2005-01-01

    For over 30 years, the Nuclear Non-Proliferation Treaty (NPT) has been the center and foundation of an interlocking network of agreements, organizations and international arrangements. They were designed to slow down, if not effectively bring to an end, the further spread of nuclear weapons. The regime was intended to include all the nations of the world - those that had nuclear weapons and those that might wish to acquire them in future. Though this goal has never been fully achieved, the NPT, over the years, has been a reasonable success. If there had been no NPT, the total number of nuclear-weapon States (NWS) might have reached 30 or 40 by now. But today we have only eight, with one or two still trying to reach nuclear-weapon status. Since the conclusion of the NPT many more countries have given up nuclear weapon programs than have started them. There are fewer nuclear weapons in the world and fewer States with nuclear weapons programs than there were twenty or thirty years ago. This unquestionable success could never have been achieved without long-term cooperation among many States, and primarily between the United States and the Russian Federation. Since then, the international treaty regime has been consistently improved, updated and extended. To name only a few additional non-proliferation measures, one should mention the IAEA comprehensive system of safeguards (INFCIRC/153); the Zangger Committee; the Nuclear Suppliers Group (NSG); the Tlatelolco, Rarotonga, Bangkok and Pelindaba Treaties establishing nuclear-weapon-free zones in their respective regions of the world; the Brazil-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC); and the IAEA additional protocol to comprehensive safeguards agreements of 1997 (INFCIRC/540). Among the most recent additions to the regime are the global partnership against the spread of weapons and materials of mass destruction agreed among the G-8 nations in 2002; the US-led Proliferation Security

  15. International target values 2000 for measurement uncertainties in safeguarding nuclear materials

    International Nuclear Information System (INIS)

    Aigner, H.; Binner, R.; Kuhn, E.

    2001-01-01

    The IAEA has prepared a revised and updated version of International Target Values (ITVs) for uncertainty components in measurements of nuclear material. The ITVs represent uncertainties to be considered in judging the reliability of analytical techniques applied to industrial nuclear and fissile material subject to safeguards verification. The tabulated values represent estimates of the 'state of the practice' which ought to be achievable under routine conditions by adequately equipped, experienced laboratories. The ITVs 2000 are intended to be used by plant operators and safeguards organizations as a reference of the quality of measurements achievable in nuclear material accountancy, and for planning purposes. The IAEA prepared a draft of a technical report presenting the proposed ITVs 2000, and in April 2000 the chairmen or officers of the panels or organizations listed below were invited to co- author the report and to submit the draft to a discussion by their panels and organizations. Euratom Safeguards Inspectorate, ESAKDA Working Group on Destructive Analysis, ESARDA Working Group on Non Destructive Analysis, Institute of Nuclear Material Management, Japanese Expert Group on ITV-2000, ISO Working Group on Analyses in Spent Fuel Reprocessing, ISO Working Group on Analyses in Uranium Fuel Fabrication, ISO Working Group on Analyses in MOX Fuel Fabrication, Agencia Brasileno-Argentina de Contabilidad y Control de Materiales Nucleares (ABACC). Comments from the above groups were received and incorporated into the final version of the document, completed in April 2001. The ITVs 2000 represent target standard uncertainties, expressing the precision achievable under stipulated conditions. These conditions typically fall in one of the two following categories: 'repeatability conditions' normally encountered during the measurements done within one inspection period; or 'reproducibility conditions' involving additional sources of measurement variability such as