WorldWideScience

Sample records for aba-induced stomatal closure

  1. ABA-Induced Stomatal Closure Involves ALMT4, a Phosphorylation-Dependent Vacuolar Anion Channel of Arabidopsis[OPEN

    Science.gov (United States)

    Baetz, Ulrike; Huck, Nicola V.; Zhang, Jingbo

    2017-01-01

    Stomatal pores are formed between a pair of guard cells and allow plant uptake of CO2 and water evaporation. Their aperture depends on changes in osmolyte concentration of guard cell vacuoles, specifically of K+ and Mal2−. Efflux of Mal2− from the vacuole is required for stomatal closure; however, it is not clear how the anion is released. Here, we report the identification of ALMT4 (ALUMINUM ACTIVATED MALATE TRANSPORTER4) as an Arabidopsis thaliana ion channel that can mediate Mal2− release from the vacuole and is required for stomatal closure in response to abscisic acid (ABA). Knockout mutants showed impaired stomatal closure in response to the drought stress hormone ABA and increased whole-plant wilting in response to drought and ABA. Electrophysiological data show that ALMT4 can mediate Mal2− efflux and that the channel activity is dependent on a phosphorylatable C-terminal serine. Dephosphomimetic mutants of ALMT4 S382 showed increased channel activity and Mal2− efflux. Reconstituting the active channel in almt4 mutants impaired growth and stomatal opening. Phosphomimetic mutants were electrically inactive and phenocopied the almt4 mutants. Surprisingly, S382 can be phosphorylated by mitogen-activated protein kinases in vitro. In brief, ALMT4 likely mediates Mal2− efflux during ABA-induced stomatal closure and its activity depends on phosphorylation. PMID:28874508

  2. Aquaporins Contribute to ABA-Triggered Stomatal Closure through OST1-Mediated Phosphorylation

    Science.gov (United States)

    Grondin, Alexandre; Rodrigues, Olivier; Verdoucq, Lionel; Merlot, Sylvain; Leonhardt, Nathalie; Maurel, Christophe

    2015-01-01

    Stomatal movements in response to environmental stimuli critically control the plant water status. Although these movements are governed by osmotically driven changes in guard cell volume, the role of membrane water channels (aquaporins) has remained hypothetical. Assays in epidermal peels showed that knockout Arabidopsis thaliana plants lacking the Plasma membrane Intrinsic Protein 2;1 (PIP2;1) aquaporin have a defect in stomatal closure, specifically in response to abscisic acid (ABA). ABA induced a 2-fold increase in osmotic water permeability (Pf) of guard cell protoplasts and an accumulation of reactive oxygen species in guard cells, which were both abrogated in pip2;1 plants. Open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6), a protein kinase involved in guard cell ABA signaling, was able to phosphorylate a cytosolic PIP2;1 peptide at Ser-121. OST1 enhanced PIP2;1 water transport activity when coexpressed in Xenopus laevis oocytes. Upon expression in pip2;1 plants, a phosphomimetic form (Ser121Asp) but not a phosphodeficient form (Ser121Ala) of PIP2;1 constitutively enhanced the Pf of guard cell protoplasts while suppressing its ABA-dependent activation and was able to restore ABA-dependent stomatal closure in pip2;1. This work supports a model whereby ABA-triggered stomatal closure requires an increase in guard cell permeability to water and possibly hydrogen peroxide, through OST1-dependent phosphorylation of PIP2;1 at Ser-121. PMID:26163575

  3. A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops.

    Directory of Open Access Journals (Sweden)

    Réka Albert

    2017-09-01

    Full Text Available Stomata, microscopic pores in leaf surfaces through which water loss and carbon dioxide uptake occur, are closed in response to drought by the phytohormone abscisic acid (ABA. This process is vital for drought tolerance and has been the topic of extensive experimental investigation in the last decades. Although a core signaling chain has been elucidated consisting of ABA binding to receptors, which alleviates negative regulation by protein phosphatases 2C (PP2Cs of the protein kinase OPEN STOMATA 1 (OST1 and ultimately results in activation of anion channels, osmotic water loss, and stomatal closure, over 70 additional components have been identified, yet their relationships with each other and the core components are poorly elucidated. We integrated and processed hundreds of disparate observations regarding ABA signal transduction responses underlying stomatal closure into a network of 84 nodes and 156 edges and, as a result, established those relationships, including identification of a 36-node, strongly connected (feedback-rich component as well as its in- and out-components. The network's domination by a feedback-rich component may reflect a general feature of rapid signaling events. We developed a discrete dynamic model of this network and elucidated the effects of ABA plus knockout or constitutive activity of 79 nodes on both the outcome of the system (closure and the status of all internal nodes. The model, with more than 1024 system states, is far from fully determined by the available data, yet model results agree with existing experiments in 82 cases and disagree in only 17 cases, a validation rate of 75%. Our results reveal nodes that could be engineered to impact stomatal closure in a controlled fashion and also provide over 140 novel predictions for which experimental data are currently lacking. Noting the paucity of wet-bench data regarding combinatorial effects of ABA and internal node activation, we experimentally confirmed

  4. A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops.

    Science.gov (United States)

    Albert, Réka; Acharya, Biswa R; Jeon, Byeong Wook; Zañudo, Jorge G T; Zhu, Mengmeng; Osman, Karim; Assmann, Sarah M

    2017-09-01

    Stomata, microscopic pores in leaf surfaces through which water loss and carbon dioxide uptake occur, are closed in response to drought by the phytohormone abscisic acid (ABA). This process is vital for drought tolerance and has been the topic of extensive experimental investigation in the last decades. Although a core signaling chain has been elucidated consisting of ABA binding to receptors, which alleviates negative regulation by protein phosphatases 2C (PP2Cs) of the protein kinase OPEN STOMATA 1 (OST1) and ultimately results in activation of anion channels, osmotic water loss, and stomatal closure, over 70 additional components have been identified, yet their relationships with each other and the core components are poorly elucidated. We integrated and processed hundreds of disparate observations regarding ABA signal transduction responses underlying stomatal closure into a network of 84 nodes and 156 edges and, as a result, established those relationships, including identification of a 36-node, strongly connected (feedback-rich) component as well as its in- and out-components. The network's domination by a feedback-rich component may reflect a general feature of rapid signaling events. We developed a discrete dynamic model of this network and elucidated the effects of ABA plus knockout or constitutive activity of 79 nodes on both the outcome of the system (closure) and the status of all internal nodes. The model, with more than 1024 system states, is far from fully determined by the available data, yet model results agree with existing experiments in 82 cases and disagree in only 17 cases, a validation rate of 75%. Our results reveal nodes that could be engineered to impact stomatal closure in a controlled fashion and also provide over 140 novel predictions for which experimental data are currently lacking. Noting the paucity of wet-bench data regarding combinatorial effects of ABA and internal node activation, we experimentally confirmed several predictions

  5. Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signaling components in Arabidopsis.

    Science.gov (United States)

    Zhao, Chenchen; Cai, Shengguan; Wang, Yizhou; Chen, Zhong-Hua

    2016-06-02

    Nitrate reductases NIA1 and NIA2 determine NO production in plants and are critical to abscisic acid (ABA)-induced stomatal closure. However, the role for NIA1 and NIA2 in ABA signaling has not been paid much attention in nitrate reductase loss-of-function mutant nia1nia2. Recently, we have demonstrated that ABA-inhibited K(+)in current and ABA-enhanced slow anion current were absent in nia1nia2. Exogenous NO restored regulation of these channels for stomatal closure in nia1nia2. In this study, we found that mutating NIA1 and NIA2 impaired nearly all the key components of guard cell ABA signaling pathway in Arabidopsis. We also propose a simplified model for ABA signaling in the nia1nia2 mutant.

  6. Ethylene limits abscisic acid- or soil drying-induced stomatal closure in aged wheat leaves.

    Science.gov (United States)

    Chen, Lin; Dodd, Ian C; Davies, William J; Wilkinson, Sally

    2013-10-01

    The mechanism of age-induced decreased stomatal sensitivity to abscisic acid (ABA) and soil drying has been explored here. Older, fully expanded leaves partly lost their ability to close stomata in response to foliar ABA sprays, and soil drying which stimulated endogenous ABA production, while young fully expanded leaves closed their stomata more fully. However, ABA- or soil drying-induced stomatal closure of older leaves was partly restored by pretreating plants with 1-methylcyclopropene (1-MCP), which can antagonize ethylene receptors, or by inoculating soil around the roots with the rhizobacterium Variovorax paradoxus 5C-2, which contains 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase. ACC (the immediate biosynthetic precursor of ethylene) sprays revealed higher sensitivity of stomata to ethylene in older leaves than younger leaves, despite no differences in endogenous ACC concentrations or ethylene emission. Taken together, these results indicate that the relative insensitivity of stomatal closure to ABA and soil drying in older leaves is likely due to altered stomatal sensitivity to ethylene, rather than ethylene production. To our knowledge, this is the first study to mechanistically explain diminished stomatal responses to soil moisture deficit in older leaves, and the associated reduction in leaf water-use efficiency. © 2013 John Wiley & Sons Ltd.

  7. Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure.

    Science.gov (United States)

    Rodrigues, Olivier; Reshetnyak, Ganna; Grondin, Alexandre; Saijo, Yusuke; Leonhardt, Nathalie; Maurel, Christophe; Verdoucq, Lionel

    2017-08-22

    Stomatal movements are crucial for the control of plant water status and protection against pathogens. Assays on epidermal peels revealed that, similar to abscisic acid (ABA), pathogen-associated molecular pattern (PAMP) flg22 requires the At PIP2;1 aquaporin to induce stomatal closure. Flg22 also induced an increase in osmotic water permeability ( P f ) of guard cell protoplasts through activation of At PIP2;1. The use of HyPer, a genetic probe for intracellular hydrogen peroxide (H 2 O 2 ), revealed that both ABA and flg22 triggered an accumulation of H 2 O 2 in wild-type but not pip2;1 guard cells. Pretreatment of guard cells with flg22 or ABA facilitated the influx of exogenous H 2 O 2 Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) and open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6) were both necessary to flg22-induced P f and both phosphorylated At PIP2;1 on Ser121 in vitro. Accumulation of H 2 O 2 and stomatal closure as induced by flg22 was restored in pip2;1 guard cells by a phosphomimetic form (Ser121Asp) but not by a phosphodeficient form (Ser121Ala) of At PIP2;1. We propose a mechanism whereby phosphorylation of At PIP2;1 Ser121 by BAK1 and/or OST1 is triggered in response to flg22 to activate its water and H 2 O 2 transport activities. This work establishes a signaling role of plasma membrane aquaporins in guard cells and potentially in other cellular context involving H 2 O 2 signaling.

  8. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca(2+-permeable channels and stomatal closure.

    Directory of Open Access Journals (Sweden)

    Izumi C Mori

    2006-10-01

    Full Text Available Abscisic acid (ABA signal transduction has been proposed to utilize cytosolic Ca(2+ in guard cell ion channel regulation. However, genetic mutants in Ca(2+ sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca(2+-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell-expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca(2+ activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca(2+-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca(2+-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca(2+ oscillation experiments revealed that Ca(2+-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca(2+-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca(2+-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling.

  9. The BIG protein distinguishes the process of CO2 -induced stomatal closure from the inhibition of stomatal opening by CO2.

    Science.gov (United States)

    He, Jingjing; Zhang, Ruo-Xi; Peng, Kai; Tagliavia, Cecilia; Li, Siwen; Xue, Shaowu; Liu, Amy; Hu, Honghong; Zhang, Jingbo; Hubbard, Katharine E; Held, Katrin; McAinsh, Martin R; Gray, Julie E; Kudla, Jörg; Schroeder, Julian I; Liang, Yun-Kuan; Hetherington, Alistair M

    2018-04-01

    We conducted an infrared thermal imaging-based genetic screen to identify Arabidopsis mutants displaying aberrant stomatal behavior in response to elevated concentrations of CO 2 . This approach resulted in the isolation of a novel allele of the Arabidopsis BIG locus (At3g02260) that we have called CO 2 insensitive 1 (cis1). BIG mutants are compromised in elevated CO 2 -induced stomatal closure and bicarbonate activation of S-type anion channel currents. In contrast with the wild-type, they fail to exhibit reductions in stomatal density and index when grown in elevated CO 2 . However, like the wild-type, BIG mutants display inhibition of stomatal opening when exposed to elevated CO 2 . BIG mutants also display wild-type stomatal aperture responses to the closure-inducing stimulus abscisic acid (ABA). Our results indicate that BIG is a signaling component involved in the elevated CO 2 -mediated control of stomatal development. In the control of stomatal aperture by CO 2 , BIG is only required in elevated CO 2 -induced closure and not in the inhibition of stomatal opening by this environmental signal. These data show that, at the molecular level, the CO 2 -mediated inhibition of opening and promotion of stomatal closure signaling pathways are separable and BIG represents a distinguishing element in these two CO 2 -mediated responses. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  10. Nitric oxide in guard cells as an important secondary messenger during stomatal closure

    Directory of Open Access Journals (Sweden)

    Gunja eGayatri

    2013-10-01

    Full Text Available he modulation of guard cell function is the basis of stomatal closure, essential for optimizing water use and CO2 uptake by leaves. Nitric oxide (NO in guard cells plays a very important role as a secondary messenger during stomatal closure induced by effectors, including hormones. For example, exposure to abscisic acid (ABA triggers a marked increase in NO of guard cells, well before stomatal closure. In guard cells of multiple species, like Arabidopsis, Vicia and pea, exposure to ABA or methyl jasmonate or even microbial elicitors (e.g. chitosan induces production of NO as well as reactive oxygen species (ROS. The role of NO in stomatal closure has been confirmed by using NO donors (e.g. SNP and NO scavengers (like cPTIO and inhibitors of NOS (L-NAME or NR (tungstate. Two enzymes: a L-NAME-sensitive, nitric oxide synthase (NOS-like enzyme and a tungstate-sensitive nitrate reductase (NR, can mediate ABA-induced NO rise in guard cells. However, the existence of true NOS in plant tissues and its role in guard cell NO-production are still a matter of intense debate. Guard cell signal transduction leading to stomatal closure involves the participation of several components, besides NO, such as cytosolic pH, ROS, free Ca2+ and phospholipids. Use of fluorescent dyes has revealed that the rise in NO of guard cells occurs after the increase in cytoplasmic pH and ROS. The rise in NO causes an elevation in cytosolic free Ca2+ and promotes the efflux of cations as well as anions from guard cells. Stomatal guard cells have become a model system to study the signalling cascade mechanisms in plants, particularly with NO as a dominant component. The interrelationships and interactions of NO with cytosolic pH, ROS, and free Ca2+ are quite complex and need further detailed examination. While assessing critically the available literature, the present review projects possible areas of further work related to NO-action in stomatal guard cells.

  11. ABA-Mediated Stomatal Response in Regulating Water Use during the Development of Terminal Drought in Wheat

    Directory of Open Access Journals (Sweden)

    Renu Saradadevi

    2017-07-01

    Full Text Available End-of-season drought or “terminal drought,” which occurs after flowering, is considered the most significant abiotic stress affecting crop yields. Wheat crop production in Mediterranean-type environments is often exposed to terminal drought due to decreasing rainfall and rapid increases in temperature and evapotranspiration during spring when wheat crops enter the reproductive stage. Under such conditions, every millimeter of extra soil water extracted by the roots benefits grain filling and yield and improves water use efficiency (WUE. When terminal drought develops, soil dries from the top, exposing the top part of the root system to dry soil while the bottom part is in contact with available soil water. Plant roots sense the drying soil and produce signals, which on transmission to shoots trigger stomatal closure to regulate crop water use through transpiration. However, transpiration is linked to crop growth and productivity and limiting transpiration may reduce potential yield. While an early and high degree of stomatal closure affects photosynthesis and hence biomass production, a late and low degree of stomatal closure exhausts available soil water rapidly which results in yield losses through a reduction in post-anthesis water use. The plant hormone abscisic acid (ABA is considered the major chemical signal involved in stomatal regulation. Wheat genotypes differ in their ability to produce ABA under drought and also in their stomatal sensitivity to ABA. In this viewpoint article we discuss the possibilities of exploiting genotypic differences in ABA response to soil drying in regulating the use of water under terminal drought. Root density distribution in the upper drying layers of the soil profile is identified as a candidate trait that can affect ABA accumulation and subsequent stomatal closure. We also examine whether leaf ABA can be designated as a surrogate characteristic for improved WUE in wheat to sustain grain yield under

  12. Rice Stomatal Closure Requires Guard Cell Plasma Membrane ATP-Binding Cassette Transporter RCN1/OsABCG5.

    Science.gov (United States)

    Matsuda, Shuichi; Takano, Sho; Sato, Moeko; Furukawa, Kaoru; Nagasawa, Hidetaka; Yoshikawa, Shoko; Kasuga, Jun; Tokuji, Yoshihiko; Yazaki, Kazufumi; Nakazono, Mikio; Takamure, Itsuro; Kato, Kiyoaki

    2016-03-07

    Water stress is one of the major environmental stresses that affect agricultural production worldwide. Water loss from plants occurs primarily through stomatal pores. Here, we report that an Oryza sativa half-size ATP-binding cassette (ABC) subfamily G protein, RCN1/OsABCG5, is involved in stomatal closure mediated by phytohormone abscisic acid (ABA) accumulation in guard cells. We found that the GFP-RCN1/OsABCG5-fusion protein was localized at the plasma membrane in guard cells. The percentage of guard cell pairs containing both ABA and GFP-RCN1/OsABCG5 increased after exogenous ABA treatment, whereas they were co-localized in guard cell pairs regardless of whether exogenous ABA was applied. ABA application resulted in a smaller increase in the percentage of guard cell pairs containing ABA in rcn1 mutant (A684P) and RCN1-RNAi than in wild-type plants. Furthermore, polyethylene glycol (drought stress)-inducible ABA accumulation in guard cells did not occur in rcn1 mutants. Stomata closure mediated by exogenous ABA application was strongly reduced in rcn1 mutants. Finally, rcn1 mutant plants had more rapid water loss from detached leaves than the wild-type plants. These results indicate that in response to drought stress, RCN1/OsABCG5 is involved in accumulation of ABA in guard cells, which is indispensable for stomatal closure. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  13. Overexpression of StNF-YB3.1 reduces photosynthetic capacity and tuber production, and promotes ABA-mediated stomatal closure in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Xuanyuan, Guochao; Lu, Congming; Zhang, Ruofang; Jiang, Jiming

    2017-08-01

    Nuclear factor Y (NF-Y) is one of the most ubiquitous transcription factors (TFs), comprising NF-YA, NF-YB and NF-YC subunits, and has been identified and reported in various aspects of development for plants and animals. In this work, StNF-YB3.1, a putative potato NF-YB subunit encoding gene, was isolated from Solanum tuberosum by rapid amplification of cDNA ends (RACE). Overexpression of StNF-YB3.1 in potato (cv. Atlantic) resulted in accelerated onset of flowering, and significant increase in leaf chlorophyll content in field trials. However, transgenic potato plants overexpressing StNF-YB3.1 (OEYB3.1) showed significant decreases in photosynthetic rate and stomatal conductance both at tuber initiation and bulking stages. OEYB3.1 lines were associated with significantly fewer tuber numbers and yield reduction. Guard cell size and stomatal density were not changed in OEYB3.1 plants, whereas ABA-mediated stomatal closure was accelerated compared to that of wild type plants because of the up-regulation of genes for ABA signaling, such as StCPK10-like, StSnRK2.6/OST1-like, StSnRK2.7-like and StSLAC1-like. We speculate that the acceleration of stomatal closure was a possible reason for the significantly decreased stomatal conductance and photosynthetic rate. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Constitutive activation of a plasma membrane H+-ATPase prevents abscisic acid-mediated stomatal closure

    Science.gov (United States)

    Merlot, Sylvain; Leonhardt, Nathalie; Fenzi, Francesca; Valon, Christiane; Costa, Miguel; Piette, Laurie; Vavasseur, Alain; Genty, Bernard; Boivin, Karine; Müller, Axel; Giraudat, Jérôme; Leung, Jeffrey

    2007-01-01

    Light activates proton (H+)-ATPases in guard cells, to drive hyperpolarization of the plasma membrane to initiate stomatal opening, allowing diffusion of ambient CO2 to photosynthetic tissues. Light to darkness transition, high CO2 levels and the stress hormone abscisic acid (ABA) promote stomatal closing. The overall H+-ATPase activity is diminished by ABA treatments, but the significance of this phenomenon in relationship to stomatal closure is still debated. We report two dominant mutations in the OPEN STOMATA2 (OST2) locus of Arabidopsis that completely abolish stomatal response to ABA, but importantly, to a much lesser extent the responses to CO2 and darkness. The OST2 gene encodes the major plasma membrane H+-ATPase AHA1, and both mutations cause constitutive activity of this pump, leading to necrotic lesions. H+-ATPases have been traditionally assumed to be general endpoints of all signaling pathways affecting membrane polarization and transport. Our results provide evidence that AHA1 is a distinct component of an ABA-directed signaling pathway, and that dynamic downregulation of this pump during drought is an essential step in membrane depolarization to initiate stomatal closure. PMID:17557075

  15. Fern Stomatal Responses to ABA and CO2 Depend on Species and Growth Conditions.

    Science.gov (United States)

    Hõrak, Hanna; Kollist, Hannes; Merilo, Ebe

    2017-06-01

    Changing atmospheric CO 2 levels, climate, and air humidity affect plant gas exchange that is controlled by stomata, small pores on plant leaves and stems formed by guard cells. Evolution has shaped the morphology and regulatory mechanisms governing stomatal movements to correspond to the needs of various land plant groups over the past 400 million years. Stomata close in response to the plant hormone abscisic acid (ABA), elevated CO 2 concentration, and reduced air humidity. Whether the active regulatory mechanisms that control stomatal closure in response to these stimuli are present already in mosses, the oldest plant group with stomata, or were acquired more recently in angiosperms remains controversial. It has been suggested that the stomata of the basal vascular plants, such as ferns and lycophytes, close solely hydropassively. On the other hand, active stomatal closure in response to ABA and CO 2 was found in several moss, lycophyte, and fern species. Here, we show that the stomata of two temperate fern species respond to ABA and CO 2 and that an active mechanism of stomatal regulation in response to reduced air humidity is present in some ferns. Importantly, fern stomatal responses depend on growth conditions. The data indicate that the stomatal behavior of ferns is more complex than anticipated before, and active stomatal regulation is present in some ferns and has possibly been lost in others. Further analysis that takes into account fern species, life history, evolutionary age, and growth conditions is required to gain insight into the evolution of land plant stomatal responses. © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. Separating active and passive influences on stomatal control of transpiration.

    Science.gov (United States)

    McAdam, Scott A M; Brodribb, Timothy J

    2014-04-01

    Motivated by studies suggesting that the stomata of ferns and lycophytes do not conform to the standard active abscisic acid (ABA) -mediated stomatal control model, we examined stomatal behavior in a conifer species (Metasequoia glyptostroboides) that is phylogenetically midway between the fern and angiosperm clades. Similar to ferns, daytime stomatal closure in response to moderate water stress seemed to be a passive hydraulic process in M. glyptostroboides immediately alleviated by rehydrating excised shoots. Only after prolonged exposure to more extreme water stress did active ABA-mediated stomatal closure become important, because foliar ABA production was triggered after leaf turgor loss. The influence of foliar ABA on stomatal conductance and stomatal aperture was highly predictable and additive with the passive hydraulic influence. M. glyptostroboides thus occupies a stomatal behavior type intermediate between the passively controlled ferns and the characteristic ABA-dependent stomatal closure described in angiosperm herbs. These results highlight the importance of considering phylogeny as a major determinant of stomatal behavior.

  17. Separating Active and Passive Influences on Stomatal Control of Transpiration[OPEN

    Science.gov (United States)

    McAdam, Scott A.M.; Brodribb, Timothy J.

    2014-01-01

    Motivated by studies suggesting that the stomata of ferns and lycophytes do not conform to the standard active abscisic acid (ABA) -mediated stomatal control model, we examined stomatal behavior in a conifer species (Metasequoia glyptostroboides) that is phylogenetically midway between the fern and angiosperm clades. Similar to ferns, daytime stomatal closure in response to moderate water stress seemed to be a passive hydraulic process in M. glyptostroboides immediately alleviated by rehydrating excised shoots. Only after prolonged exposure to more extreme water stress did active ABA-mediated stomatal closure become important, because foliar ABA production was triggered after leaf turgor loss. The influence of foliar ABA on stomatal conductance and stomatal aperture was highly predictable and additive with the passive hydraulic influence. M. glyptostroboides thus occupies a stomatal behavior type intermediate between the passively controlled ferns and the characteristic ABA-dependent stomatal closure described in angiosperm herbs. These results highlight the importance of considering phylogeny as a major determinant of stomatal behavior. PMID:24488969

  18. Compound stress response in stomatal closure: a mathematical model of ABA and ethylene interaction in guard cells

    Directory of Open Access Journals (Sweden)

    Beguerisse-Dıaz Mariano

    2012-11-01

    Full Text Available Abstract Background Stomata are tiny pores in plant leaves that regulate gas and water exchange between the plant and its environment. Abscisic acid and ethylene are two well-known elicitors of stomatal closure when acting independently. However, when stomata are presented with a combination of both signals, they fail to close. Results Toshed light on this unexplained behaviour, we have collected time course measurements of stomatal aperture and hydrogen peroxide production in Arabidopsis thaliana guard cells treated with abscisic acid, ethylene, and a combination of both. Our experiments show that stomatal closure is linked to sustained high levels of hydrogen peroxide in guard cells. When treated with a combined dose of abscisic acid and ethylene, guard cells exhibit increased antioxidant activity that reduces hydrogen peroxide levels and precludes closure. We construct a simplified model of stomatal closure derived from known biochemical pathways that captures the experimentally observed behaviour. Conclusions Our experiments and modelling results suggest a distinct role for two antioxidant mechanisms during stomatal closure: a slower, delayed response activated by a single stimulus (abscisic acid ‘or’ ethylene and another more rapid ‘and’ mechanism that is only activated when both stimuli are present. Our model indicates that the presence of this rapid ‘and’ mechanism in the antioxidant response is key to explain the lack of closure under a combined stimulus.

  19. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 - and ABA-induced stomatal closing.

    Science.gov (United States)

    Azoulay-Shemer, Tamar; Palomares, Axxell; Bagheri, Andisheh; Israelsson-Nordstrom, Maria; Engineer, Cawas B; Bargmann, Bastiaan O R; Stephan, Aaron B; Schroeder, Julian I

    2015-08-01

    Stomata mediate gas exchange between the inter-cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2 ]. [CO2 ] in leaves mediates stomatal movements. The role of guard cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll-deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard cell specific enhancer trap line. Our data show that more than 90% of guard cells were chlorophyll-deficient. Interestingly, approximately 45% of stomata had an unusual, previously not-described, morphology of thin-shaped chlorophyll-less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole-leaf photosynthetic parameters (PSII, qP, qN, FV '/FM' ) were comparable with wild-type plants. Time-resolved intact leaf gas-exchange analyses showed a reduction in stomatal conductance and CO2 -assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2 ] shifts. Detailed stomatal aperture measurements of normal kidney-shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2 ] elevation and abscisic acid (ABA), while thin-shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2 ] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard cell CO2 and ABA signal transduction are not directly modulated by guard cell photosynthesis/electron transport. Moreover, the finding that chlorophyll-less stomata cause a 'deflated' thin-shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard cell turgor production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  20. Chlorella induces stomatal closure via NADPH oxidase-dependent ROS production and its effects on instantaneous water use efficiency in Vicia faba.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available Reactive oxygen species (ROS have been established to participate in stomatal closure induced by live microbes and microbe-associated molecular patterns (MAMPs. Chlorella as a beneficial microorganism can be expected to trigger stomatal closure via ROS production. Here, we reported that Chlorella induced stomatal closure in a dose-and time-dependent manner in epidermal peels of Vicia faba. Using pharmacological methods in this work, we found that the Chlorella-induced stomatal closure was almost completely abolished by a hydrogen peroxide (H2O2 scavenger, catalase (CAT, significantly suppressed by an NADPH oxidase inhibitor, diphenylene iodonium chloride (DPI, and slightly affected by a peroxidase inhibitor, salicylhydroxamic acid (SHAM, suggesting that ROS production involved in Chlorella-induced stomatal closure is mainly mediated by DPI-sensitive NADPH oxidase. Additionally, Exogenous application of optimal concentrations of Chlorella suspension improved instantaneous water use efficiency (WUEi in Vicia faba via a reduction in leaf transpiration rate (E without a parallel reduction in net photosynthetic rate (Pn assessed by gas-exchange measurements. The chlorophyll fluorescence and content analysis further demonstrated that short-term use of Chlorella did not influence plant photosynthetic reactions center. These results preliminarily reveal that Chlorella can trigger stomatal closure via NADPH oxidase-dependent ROS production in epidermal strips and improve WUEi in leave levels.

  1. Overexpression of an ABA biosynthesis gene using a stress inducible promoter enhances drought resistance in petunia

    Science.gov (United States)

    Plants respond to drought stress by closing their stomata and reducing transpirational water loss. The plant hormone abscisic acid (ABA) regulates growth and stomatal closure particularly when the plant is under environmental stresses. One of the key enzymes in the ABA biosynthesis of higher plants ...

  2. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence.

    Science.gov (United States)

    Liu, Tie; Longhurst, Adam D; Talavera-Rauh, Franklin; Hokin, Samuel A; Barton, M Kathryn

    2016-10-04

    Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties.

  3. The effect of competition from neighbours on stomatal conductance in lettuce and tomato plants.

    Science.gov (United States)

    Vysotskaya, Lidiya; Wilkinson, Sally; Davies, William J; Arkhipova, Tatyana; Kudoyarova, Guzel

    2011-05-01

    Competition decreased transpiration from young lettuce plants after 2 days, before any reductions in leaf area became apparent, and stomatal conductance (g(s) ) of lettuce and tomato plants was also reduced. Stomatal closure was not due to hydraulic signals or competition for nutrients, as soil water content, leaf water status and leaf nitrate concentrations were unaffected by neighbours. Competition-induced stomatal closure was absent in an abscisic acid (ABA)-deficient tomato mutant, flacca, indicating a fundamental involvement of ABA. Although tomato xylem sap ABA concentrations were unaffected by the presence of neighbours, ABA/pH-based stomatal modulation is still likely to underlie the response to competition, as soil and xylem sap alkalization was observed in competing plants. Competition also modulated leaf ethylene production, and treatment of lettuce plants with an ethylene perception inhibitor (1-methylcyclopropene) diminished the difference in g(s) between single and competing plants grown in a controlled environment room, but increased it in plants grown in the greenhouse: ethylene altered the extent of the stomatal response to competition. Effects of competition on g(s) are discussed in terms of the detection of the absence of neighbours: increases in g(s) and carbon fixation may allow faster initial space occupancy within an emerging community/crop. © 2011 Blackwell Publishing Ltd.

  4. Electrical signaling, stomatal conductance, ABA and Ethylene content in avocado trees in response to root hypoxia

    Science.gov (United States)

    Gurovich, Luis; Schaffer, Bruce; García, Nicolás; Iturriaga, Rodrigo

    2009-01-01

    Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone. PMID:19649181

  5. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana.

    Science.gov (United States)

    Wei, Jian; Li, Dong-Xu; Zhang, Jia-Rong; Shan, Chi; Rengel, Zed; Song, Zhong-Bang; Chen, Qi

    2018-04-27

    Melatonin has been detected in plants in 1995; however, the function and signaling pathway of this putative phytohormone are largely undetermined due to a lack of knowledge about its receptor. Here, we discovered the first phytomelatonin receptor (CAND2/PMTR1) in Arabidopsis thaliana and found that melatonin governs the receptor-dependent stomatal closure. The application of melatonin induced stomatal closure through the heterotrimeric G protein α subunit-regulated H 2 O 2 and Ca 2+ signals. The Arabidopsis mutant lines lacking AtCand2 that encodes a candidate G protein-coupled receptor were insensitive to melatonin-induced stomatal closure. Accordingly, the melatonin-induced H 2 O 2 production and Ca 2+ influx were completely abolished in cand2. CAND2 is a membrane protein that interacts with GPA1 and the expression of AtCand2 was tightly regulated by melatonin in various organs and guard cells. CAND2 showed saturable and specific 125 I-melatonin binding, with apparent K d (dissociation constant) of 0.73 ± 0.10 nmol/L (r 2  = .99), demonstrating this protein is a phytomelatonin receptor (PMTR1). Our results suggest that the phytomelatonin regulation of stomatal closure is dependent on its receptor CAND2/PMTR1-mediated H 2 O 2 and Ca 2+ signaling transduction cascade. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syringae pv. tomato DC3000.

    Directory of Open Access Journals (Sweden)

    Weiqing Zeng

    2011-10-01

    Full Text Available Bacterial infection of plants often begins with colonization of the plant surface, followed by entry into the plant through wounds and natural openings (such as stomata, multiplication in the intercellular space (apoplast of the infected tissues, and dissemination of bacteria to other plants. Historically, most studies assess bacterial infection based on final outcomes of disease and/or pathogen growth using whole infected tissues; few studies have genetically distinguished the contribution of different host cell types in response to an infection. The phytotoxin coronatine (COR is produced by several pathovars of Pseudomonas syringae. COR-deficient mutants of P. s. tomato (Pst DC3000 are severely compromised in virulence, especially when inoculated onto the plant surface. We report here a genetic screen to identify Arabidopsis mutants that could rescue the virulence of COR-deficient mutant bacteria. Among the susceptible to coronatine-deficient Pst DC3000 (scord mutants were two that were defective in stomatal closure response, two that were defective in apoplast defense, and four that were defective in both stomatal and apoplast defense. Isolation of these three classes of mutants suggests that stomatal and apoplastic defenses are integrated in plants, but are genetically separable, and that COR is important for Pst DC3000 to overcome both stomatal guard cell- and apoplastic mesophyll cell-based defenses. Of the six mutants defective in bacterium-triggered stomatal closure, three are defective in salicylic acid (SA-induced stomatal closure, but exhibit normal stomatal closure in response to abscisic acid (ABA, and scord7 is compromised in both SA- and ABA-induced stomatal closure. We have cloned SCORD3, which is required for salicylic acid (SA biosynthesis, and SCORD5, which encodes an ATP-binding cassette (ABC protein, AtGCN20/AtABCF3, predicted to be involved in stress-associated protein translation control. Identification of SCORD5 begins to

  7. Stomatal closure of Pelargonium × hortorum in response to soil water deficit is associated with decreased leaf water potential only under rapid soil drying.

    Science.gov (United States)

    Boyle, Richard K A; McAinsh, Martin; Dodd, Ian C

    2016-01-01

    Soil water deficits applied at different rates and for different durations can decrease both stomatal conductance (gs ) and leaf water potential (Ψleaf ). Understanding the physiological mechanisms regulating these responses is important in sustainable irrigation scheduling. Glasshouse-grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at various fractions of plant evapotranspiration (100, 75 and 50% ET) for 20 days or irrigation was withheld for 4 days. Xylem sap was collected and gs and Ψleaf were measured on days 15 and 20, and on days 16-19 for the respective treatments. Xylem sap pH and NO3 (-) and Ca(2+) concentrations did not differ between irrigation treatments. Xylem abscisic acid (ABA) concentrations ([ABA]xyl ) increased within 24 h of irrigation being withheld whilst gs and Ψleaf decreased. Supplying irrigation at a fraction of daily ET produced a similar relationship between [ABA]xyl and gs , but did not change Ψleaf . Treatment differences occurred independently of whether Ψleaf was measured in whole leaves with a pressure chamber, or in the lamina with a thermocouple psychrometer. Plants that were irrigated daily showed lower [ABA]xyl than plants from which irrigation was withheld, even at comparable soil moisture content. This implies that regular re-watering attenuates ABA signaling due to maintenance of soil moisture in the upper soil levels. Crucially, detached leaves supplied with synthetic ABA showed a similar relationship between [ABA]xyl and gs as intact plants, suggesting that stomatal closure of P. hortorum in response to soil water deficit is primarily an ABA-induced response, independent of changes in Ψleaf . © 2015 Scandinavian Plant Physiology Society.

  8. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells

    Directory of Open Access Journals (Sweden)

    Zhao Zhixin

    2011-05-01

    Full Text Available Abstract Background In the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA. ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs. Following ABA exposure, solute uptake into guard cells is rapidly inhibited and solute loss is promoted, resulting in inhibition of stomatal opening and promotion of stomatal closure, with consequent plant water conservation. There is a wealth of information on the guard cell signaling mechanisms underlying these rapid ABA responses. To investigate ABA regulation of gene expression in guard cells in a systematic genome-wide manner, we analyzed data from global transcriptomes of guard cells generated with Affymetrix ATH1 microarrays, and compared these results to ABA regulation of gene expression in leaves and other tissues. Results The 1173 ABA-regulated genes of guard cells identified by our study share significant overlap with ABA-regulated genes of other tissues, and are associated with well-defined ABA-related promoter motifs such as ABREs and DREs. However, we also computationally identified a unique cis-acting motif, GTCGG, associated with ABA-induction of gene expression specifically in guard cells. In addition, approximately 300 genes showing ABA-regulation unique to this cell type were newly uncovered by our study. Within the ABA-regulated gene set of guard cells, we found that many of the genes known to encode ion transporters associated with stomatal opening are down-regulated by ABA, providing one mechanism for long-term maintenance of stomatal closure during drought. We also found examples of both negative and positive feedback in the transcriptional regulation by ABA of known ABA-signaling genes, particularly with regard to the PYR/PYL/RCAR class of soluble ABA receptors and

  9. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells

    Science.gov (United States)

    2011-01-01

    Background In the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA). ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs. Following ABA exposure, solute uptake into guard cells is rapidly inhibited and solute loss is promoted, resulting in inhibition of stomatal opening and promotion of stomatal closure, with consequent plant water conservation. There is a wealth of information on the guard cell signaling mechanisms underlying these rapid ABA responses. To investigate ABA regulation of gene expression in guard cells in a systematic genome-wide manner, we analyzed data from global transcriptomes of guard cells generated with Affymetrix ATH1 microarrays, and compared these results to ABA regulation of gene expression in leaves and other tissues. Results The 1173 ABA-regulated genes of guard cells identified by our study share significant overlap with ABA-regulated genes of other tissues, and are associated with well-defined ABA-related promoter motifs such as ABREs and DREs. However, we also computationally identified a unique cis-acting motif, GTCGG, associated with ABA-induction of gene expression specifically in guard cells. In addition, approximately 300 genes showing ABA-regulation unique to this cell type were newly uncovered by our study. Within the ABA-regulated gene set of guard cells, we found that many of the genes known to encode ion transporters associated with stomatal opening are down-regulated by ABA, providing one mechanism for long-term maintenance of stomatal closure during drought. We also found examples of both negative and positive feedback in the transcriptional regulation by ABA of known ABA-signaling genes, particularly with regard to the PYR/PYL/RCAR class of soluble ABA receptors and their downstream targets

  10. Evidence That Drought-Induced Stomatal Closure Is Not an Important Constraint on White Spruce Performance Near the Arctic Treeline in Alaska

    Science.gov (United States)

    Sullivan, P.; Brownlee, A.; Ellison, S.; Sveinbjornsson, B.

    2014-12-01

    Tree cores collected from trees growing at high latitudes have long been used to reconstruct past climates, because of close positive correlations between temperature and tree growth. However, in recent decades and at many sites, these relationships have deteriorated and have even become negative in some instances. The observation of declining tree growth in response to rising temperature has prompted many investigators to suggest that high latitude trees may be increasingly exhibiting drought-induced stomatal closure. In the Brooks Range of northern Alaska, the observation of low and declining growth of white spruce is more prevalent in the central and eastern parts of the range, where precipitation is lower, providing superficial support for the drought stress hypothesis. In this study, we investigated the occurrence of white spruce drought-induced stomatal closure in four watersheds along a west to east gradient near the Arctic treeline in the Brooks Range. We obtained a historical perspective on tree growth and water relations by collecting increment cores for analysis of ring widths and carbon isotopes in tree-ring alpha-cellulose. Meanwhile, we made detailed assessments of contemporary water relations at the scales of the whole canopy and the needle. All of our data indicate that drought-induced stomatal closure is probably not responsible for low and declining growth in the central and eastern Brooks Range. Carbon isotope discrimination has generally increased over the past century and our calculations indicate that needle inter-cellular CO2 concentration is much greater now than it was in the early 1900's. Measurements of needle gas exchange are consistent with the tree core record, in the sense that instances of low photosynthesis at our sites are not coincident with similarly low stomatal conductance and low inter-cellular CO2 concentration. Finally, hourly measurements of xylem sap flow indicate that trees at our study sites are able to maintain near

  11. Simultaneous requirement of carbon dioxide and abscisic acid for stomatal closing in Xanthium strumarium L.

    Science.gov (United States)

    Raschke, K

    1975-01-01

    Open stomata of detached leaves of Xanthium strumarium L. closed only when carbon dioxide and abscisic acid (ABA) were presented simultaneously. Three parameters of stomatal closing were determined after additions of ABA to the irrigation water of detached leaves, while the leaves were exposed to various CO2 concentrations ([CO2]s) in the air; a) the delay between addition of ABA and a reduction of stomatal conductance by 5%, b) the velocity of stomatal closing, and c) the new conductance. Changes in all three parameters showed that stomatal responses to ABA were enhanced by CO2; this effect followed saturation kinetics. Half saturation occurred at an estimated [CO2] in the stomatal pore of 200 μl l(-1). With respect to ABA, stomata responded in normal air with half their maximal amplitude at [ABA]s between 10(-6) and 10(-5) M(+-)-ABA. The amounts of ABA taken up by the leaves during the delay increased with a power strumarium.Based on earlier findings and on the results of this investigation it is suggested that stomata close if the cytoplasm of the guard cells contains much malate and H(+). The acid content in turn is determined by the relative rates of production of malic acid (from endogenous as well as exogenous CO2) and its removal (by transport of the anion into the vacuole and exchange of the H(+) for K(+) with the environment of the guard cells). The simultaneous requirement of CO2 and ABA for stomatal closure leads to the inference that ABA inhibits the expulsion of H(+) from guard cells.

  12. ABA signaling in guard cells entails a dynamic protein-protein interaction relay from the PYL-RCAR family receptors to ion channels.

    Science.gov (United States)

    Lee, Sung Chul; Lim, Chae Woo; Lan, Wenzhi; He, Kai; Luan, Sheng

    2013-03-01

    Plant hormone abscisic acid (ABA) serves as an integrator of environmental stresses such as drought to trigger stomatal closure by regulating specific ion channels in guard cells. We previously reported that SLAC1, an outward anion channel required for stomatal closure, was regulated via reversible protein phosphorylation events involving ABA signaling components, including protein phosphatase 2C members and a SnRK2-type kinase (OST1). In this study, we reconstituted the ABA signaling pathway as a protein-protein interaction relay from the PYL/RCAR-type receptors, to the PP2C-SnRK2 phosphatase-kinase pairs, to the ion channel SLAC1. The ABA receptors interacted with and inhibited PP2C phosphatase activity against the SnRK2-type kinase, releasing active SnRK2 kinase to phosphorylate, and activate the SLAC1 channel, leading to reduced guard cell turgor and stomatal closure. Both yeast two-hybrid and bimolecular fluorescence complementation assays were used to verify the interactions among the components in the pathway. These biochemical assays demonstrated activity modifications of phosphatases and kinases by their interaction partners. The SLAC1 channel activity was used as an endpoint readout for the strength of the signaling pathway, depending on the presence of different combinations of signaling components. Further study using transgenic plants overexpressing one of the ABA receptors demonstrated that changing the relative level of interacting partners would change ABA sensitivity.

  13. Natural variation in stomatal response to closing stimuli among Arabidopsis thaliana accessions after exposure to low VPD as a tool to recognize the mechanism of disturbed stomatal functioning.

    Science.gov (United States)

    Aliniaeifard, Sasan; van Meeteren, Uulke

    2014-12-01

    Stomatal responses to closing stimuli are disturbed after long-term exposure of plants to low vapour pressure deficit (VPD). The mechanism behind this disturbance is not fully understood. Genetic variation between naturally occurring ecotypes can be helpful to elucidate the mechanism controlling stomatal movements in different environments. We characterized the stomatal responses of 41 natural accessions of Arabidopsis thaliana to closing stimuli (ABA and desiccation) after they had been exposed for 4 days to moderate VPD (1.17 kPa) or low VPD (0.23 kPa). A fast screening system was used to test stomatal response to ABA using chlorophyll fluorescence imaging under low O2 concentrations of leaf discs floating on ABA solutions. In all accessions stomatal conductance (gs) was increased after prior exposure to low VPD. After exposure to low VPD, stomata of 39 out of 41 of the accessions showed a diminished ABA closing response; only stomata of low VPD-exposed Map-42 and C24 were as responsive to ABA as moderate VPD-exposed plants. In response to desiccation, most of the accessions showed a normal stomata closing response following low VPD exposure. Only low VPD-exposed Cvi-0 and Rrs-7 showed significantly less stomatal closure compared with moderate VPD-exposed plants. Using principle component analysis (PCA), accessions could be categorized to very sensitive, moderately sensitive, and less sensitive to closing stimuli. In conclusion, we present evidence for different stomatal responses to closing stimuli after long-term exposure to low VPD across Arabidopsis accessions. The variation can be a useful tool for finding the mechanism of stomatal malfunctioning. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Surviving a Dry Future: Abscisic Acid (ABA)-Mediated Plant Mechanisms for Conserving Water under Low Humidity

    Science.gov (United States)

    McAdam, Scott A. M.

    2017-01-01

    Angiosperms are able to respond rapidly to the first sign of dry conditions, a decrease in air humidity, more accurately described as an increase in the vapor pressure deficit between the leaf and the atmosphere (VPD), by abscisic acid (ABA)-mediated stomatal closure. The genes underlying this response offer valuable candidates for targeted selection of crop varieties with improved drought tolerance, a critical goal for current plant breeding programs, to maximize crop production in drier and increasingly marginalized environments, and meet the demands of a growing population in the face of a changing climate. Here, we review current understanding of the genetic mechanisms underpinning ABA-mediated stomatal closure, a key means for conserving water under dry conditions, examine how these mechanisms evolved, and discuss what remains to be investigated. PMID:29113039

  15. Modelling of root ABA synthesis, stomatal conductance, transpiration and potato production under water saving irrigation regimes

    DEFF Research Database (Denmark)

    Plauborg, Finn; Abrahamsen, Per; Gjettermann, Birgitte

    2010-01-01

    . Experimental data was compared to simulated results from the new enhanced Daisy model which include modelling 2D soil water flow, abscisic acid (ABA) signalling and its effect on stomatal conductance and hence on transpiration and assimilation, and finally crop yield. The results demonstrated that the enhanced...

  16. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress

    KAUST Repository

    Liu, Junwei; He, Hanzi; Vitali, Marco; Visentin, Ivan; Charnikhova, Tatsiana V.; Haider, Imran; Schubert, Andrea; Ruyter-Spira, Carolien P.; Bouwmeester, Harro J J; Lovisolo, Claudio; Cardinale, Francesca

    2015-01-01

    Main conclusion: Strigolactone changes and cross talk with ABA unveil a picture of root-specific hormonal dynamics under stress.Abstract: Strigolactones (SLs) are carotenoid-derived hormones influencing diverse aspects of development and communication with (micro)organisms, and proposed as mediators of environmental stimuli in resource allocation processes; to contribute to adaptive adjustments, therefore, their pathway must be responsive to environmental cues. To investigate the relationship between SLs and abiotic stress in Lotus japonicus, we compared wild-type and SL-depleted plants, and studied SL metabolism in roots stressed osmotically and/or phosphate starved. SL-depleted plants showed increased stomatal conductance, both under normal and stress conditions, and impaired resistance to drought associated with slower stomatal closure in response to abscisic acid (ABA). This confirms that SLs contribute to drought resistance in species other than Arabidopsis. However, we also observed that osmotic stress rapidly and strongly decreased SL concentration in tissues and exudates of wild-type Lotus roots, by acting on the transcription of biosynthetic and transporter-encoding genes and independently of phosphate abundance. Pre-treatment with exogenous SLs inhibited the osmotic stress-induced ABA increase in wild-type roots and down-regulated the transcription of the ABA biosynthetic gene LjNCED2. We propose that a transcriptionally regulated, early SL decrease under osmotic stress is needed (but not sufficient) to allow the physiological increase of ABA in roots. This work shows that SL metabolism and effects on ABA are seemingly opposite in roots and shoots under stress.

  17. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress

    KAUST Repository

    Liu, Junwei

    2015-02-26

    Main conclusion: Strigolactone changes and cross talk with ABA unveil a picture of root-specific hormonal dynamics under stress.Abstract: Strigolactones (SLs) are carotenoid-derived hormones influencing diverse aspects of development and communication with (micro)organisms, and proposed as mediators of environmental stimuli in resource allocation processes; to contribute to adaptive adjustments, therefore, their pathway must be responsive to environmental cues. To investigate the relationship between SLs and abiotic stress in Lotus japonicus, we compared wild-type and SL-depleted plants, and studied SL metabolism in roots stressed osmotically and/or phosphate starved. SL-depleted plants showed increased stomatal conductance, both under normal and stress conditions, and impaired resistance to drought associated with slower stomatal closure in response to abscisic acid (ABA). This confirms that SLs contribute to drought resistance in species other than Arabidopsis. However, we also observed that osmotic stress rapidly and strongly decreased SL concentration in tissues and exudates of wild-type Lotus roots, by acting on the transcription of biosynthetic and transporter-encoding genes and independently of phosphate abundance. Pre-treatment with exogenous SLs inhibited the osmotic stress-induced ABA increase in wild-type roots and down-regulated the transcription of the ABA biosynthetic gene LjNCED2. We propose that a transcriptionally regulated, early SL decrease under osmotic stress is needed (but not sufficient) to allow the physiological increase of ABA in roots. This work shows that SL metabolism and effects on ABA are seemingly opposite in roots and shoots under stress.

  18. Movement of Abscisic Acid into the Apoplast in Response to Water Stress in Xanthium strumarium L.

    Science.gov (United States)

    Cornish, K; Zeevaart, J A

    1985-07-01

    The effect of water stress on the redistribution of abcisic acid (ABA) in mature leaves of Xanthium strumarium L. was investigated using a pressure dehydration technique. In both turgid and stressed leaves, the ABA in the xylem exudate, the ;apoplastic' ABA, increased before ;bulk leaf' stress-induced ABA accumulation began. In the initially turgid leaves, the ABA level remained constant in both the apoplast and the leaf as a whole until wilting symptoms appeared. Following turgor loss, sufficient quantities of ABA moved into the apoplast to stimulate stomatal closure. Thus, the initial increase of apoplastic ABA may be relevant to the rapid stomatal closure seen in stressed leaves before their bulk leaf ABA levels rise.Following recovery from water stress, elevated levels of ABA remained in the apoplast after the bulk leaf contents had returned to their prestress values. This apoplastic ABA may retard stomatal reopening during the initial recovery period.

  19. Stomatal Closure and SA-, JA/ET-Signaling Pathways Are Essential for Bacillus amyloliquefaciens FZB42 to Restrict Leaf Disease Caused by Phytophthora nicotianae in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Liming Wu

    2018-04-01

    Full Text Available Bacillus amyloliquefaciens FZB42 is a plant growth-promoting rhizobacterium that induces resistance to a broad spectrum of pathogens. This study analyzed the mechanism by which FZB42 restricts leaf disease caused by Phytophthora nicotianae in Nicotiana benthamiana. The oomycete foliar pathogen P. nicotianae is able to reopen stomata which had been closed by the plant innate immune response to initiate penetration and infection. Here, we showed that root colonization by B. amyloliquefaciens FZB42 restricted pathogen-mediated stomatal reopening in N. benthamiana. Abscisic acid (ABA and salicylic acid (SA-regulated pathways mediated FZB42-induced stomatal closure after pathogen infection. Moreover, the defense-related genes PR-1a, LOX, and ERF1, involved in the SA and jasmonic acid (JA/ethylene (ET signaling pathways, respectively, were overexpressed, and levels of the hormones SA, JA, and ET increased in the leaves of B. amyloliquefaciens FZB42-treated wild type plants. Disruption of one of these three pathways in N. benthamiana plants increased susceptibility to the pathogen. These suggest that SA- and JA/ET-dependent signaling pathways were important in plant defenses against the pathogen. Our data thus explain a biocontrol mechanism of soil rhizobacteria in a plant.

  20. Movement of Abscisic Acid into the Apoplast in Response to Water Stress in Xanthium strumarium L. 1

    Science.gov (United States)

    Cornish, Katrina; Zeevaart, Jan A. D.

    1985-01-01

    The effect of water stress on the redistribution of abcisic acid (ABA) in mature leaves of Xanthium strumarium L. was investigated using a pressure dehydration technique. In both turgid and stressed leaves, the ABA in the xylem exudate, the `apoplastic' ABA, increased before `bulk leaf' stress-induced ABA accumulation began. In the initially turgid leaves, the ABA level remained constant in both the apoplast and the leaf as a whole until wilting symptoms appeared. Following turgor loss, sufficient quantities of ABA moved into the apoplast to stimulate stomatal closure. Thus, the initial increase of apoplastic ABA may be relevant to the rapid stomatal closure seen in stressed leaves before their bulk leaf ABA levels rise. Following recovery from water stress, elevated levels of ABA remained in the apoplast after the bulk leaf contents had returned to their prestress values. This apoplastic ABA may retard stomatal reopening during the initial recovery period. PMID:16664294

  1. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis

    Science.gov (United States)

    Kwak, June M.; Mori, Izumi C.; Pei, Zhen-Ming; Leonhardt, Nathalie; Torres, Miguel Angel; Dangl, Jeffery L.; Bloom, Rachel E.; Bodde, Sara; Jones, Jonathan D.G.; Schroeder, Julian I.

    2003-01-01

    Reactive oxygen species (ROS) have been proposed to function as second messengers in abscisic acid (ABA) signaling in guard cells. However, the question whether ROS production is indeed required for ABA signal transduction in vivo has not yet been addressed, and the molecular mechanisms mediating ROS production during ABA signaling remain unknown. Here, we report identification of two partially redundant Arabidopsis guard cell-expressed NADPH oxidase catalytic subunit genes, AtrbohD and AtrbohF, in which gene disruption impairs ABA signaling. atrbohD/F double mutations impair ABA-induced stomatal closing, ABA promotion of ROS production, ABA-induced cytosolic Ca2+ increases and ABA- activation of plasma membrane Ca2+-permeable channels in guard cells. Exogenous H2O2 rescues both Ca2+ channel activation and stomatal closing in atrbohD/F. ABA inhibition of seed germination and root elongation are impaired in atrbohD/F, suggesting more general roles for ROS and NADPH oxidases in ABA signaling. These data provide direct molecular genetic and cell biological evidence that ROS are rate-limiting second messengers in ABA signaling, and that the AtrbohD and AtrbohF NADPH oxidases function in guard cell ABA signal transduction. PMID:12773379

  2. Differential Effects of Phosphatidylinositol 4-Kinase (PI4K and 3-Kinase (PI3K Inhibitors on Stomatal Responses to Environmental Signals

    Directory of Open Access Journals (Sweden)

    Koh Iba

    2017-05-01

    Full Text Available Specific cellular components including products of phosphatidylinositol (PI metabolism play an important role as signaling molecules in stomatal responses to environmental signals. In this study, pharmacological inhibitors of a set of cellular components, including PI4-kinase (PI4K and PI3K, were used to investigate stomatal closure in response to CO2, darkness, and abscisic acid (ABA. Treatment with PAO, a specific inhibitor of PI4K, specifically inhibited the stomatal response to CO2 compared with that to darkness and ABA. In contrast, treatment with LY294002, a PI3K-specific inhibitor, specifically inhibited the stomatal response to darkness compared with that to CO2 and ABA. The specific inhibitory effects of PAO and LY294002 were also observed as changes in the spatial density of dot-like structures labeled by green fluorescent protein-tagged PATROL1, a protein that controls stomatal aperture possibly via regulation of H+-ATPase amount in guard cell plasma membranes. Our results suggest an important role for PI4K and PI3K in the CO2 and darkness signal transduction pathways, respectively, that mediate PATROL1 dynamics.

  3. Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon).

    Science.gov (United States)

    Speirs, Jim; Binney, Allan; Collins, Marisa; Edwards, Everard; Loveys, Brian

    2013-04-01

    The influence of different levels of irrigation and of variation in atmospheric vapour pressure deficit (VPD) on the synthesis, metabolism, and transport of abscisic acid (ABA) and the effects on stomatal conductance were examined in field-grown Cabernet Sauvignon grapevines. Xylem sap, leaf tissue, and root tissue were collected at regular intervals during two seasons in conjunction with measurements of leaf water potential (Ψleaf) and stomatal conductance (gs). The different irrigation levels significantly altered the Ψleaf and gs of the vines across both seasons. ABA abundance in the xylem sap was correlated with gs. The expression of genes associated with ABA synthesis, NCED1 and NCED2, was higher in the roots than in the leaves throughout and highest in the roots in mid January, a time when soil moisture declined and VPD was at its highest. Their expression in roots was also inversely related to the levels of irrigation and correlated with ABA abundance in the roots, xylem sap, and leaves. Three genes encoding ABA 8'-hydroxylases were isolated and their identities confirmed by expression in yeast cells. The expression of one of these, Hyd1, was elevated in leaves when VPD was below 2.0-2.5 kPa and minimal at higher VPD levels. The results provide evidence that ABA plays an important role in linking stomatal response to soil moisture status and that changes in ABA catabolism at or near its site of action allows optimization of gas exchange to current environmental conditions.

  4. A banana NAC transcription factor (MusaSNAC1) impart drought tolerance by modulating stomatal closure and H2O2 content.

    Science.gov (United States)

    Negi, Sanjana; Tak, Himanshu; Ganapathi, T R

    2018-03-01

    MusaSNAC1 function in H 2 O 2 mediated stomatal closure and promote drought tolerance by directly binding to CGT[A/G] motif in regulatory region of multiple stress-related genes. Drought is a abiotic stress-condition, causing reduced plant growth and diminished crop yield. Guard cells of the stomata control photosynthesis and transpiration by regulating CO 2 exchange and water loss, thus affecting growth and crop yield. Roles of NAC (NAM, ATAF1/2 and CUC2) protein in regulation of stress-conditions has been well documented however, their control over stomatal aperture is largely unknown. In this study we report a banana NAC protein, MusaSNAC1 which induced stomatal closure by elevating H 2 O 2 content in guard cells during drought stress. Overexpression of MusaSNAC1 in banana resulted in higher number of stomata closure causing reduced water loss and thus elevated drought-tolerance. During drought, expression of GUS (β-glucuronidase) under P MusaSNAC1 was remarkably elevated in guard cells of stomata which correlated with its function as a transcription factor regulating stomatal aperture closing. MusaSNAC1 is a transcriptional activator belonging to SNAC subgroup and its 5'-upstream region contain multiple Dof1 elements as well as stress-associated cis-elements. Moreover, MusaSNAC1 also regulate multiple stress-related genes by binding to core site of NAC-proteins CGT[A/G] in their 5'-upstream region. Results indicated an interesting mechanism of drought tolerance through stomatal closure by H 2 O 2 generation in guard cells, regulated by a NAC-protein in banana.

  5. Physiological studies on photochemical oxidant injury in rice plants. III. Relationship between abscisic acid (ABA) and water metabolism in water-stressed rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y.H.; Ota, Y.

    1981-12-01

    Several experiments were carried out to determine the effects of exogenously applied ABA on water metabolism, and to clarify the endogenous ABA relationships in ozone-sensitivity under different soil water content in rice plants. The rice plants were cultivated in soil with 60, 80, and 100% of maximum water holding capacity and under submerged condition. The results of the experiments were as follows: ozone injury was reduced with increasing ABA content of which production was increased under water stress conditions. Under water stressed conditions, the rate of water loss was decreased with increasing concentration of ABA applied exogenously. It may be assumed that the ozone-sensitivity is closely related to the stomatal closure caused by the increased ABA content due to water stress. 5 references, 4 tables.

  6. Immunolocalization of IAA and ABA in roots and needles of radiata pine (Pinus radiata) during drought and rewatering.

    Science.gov (United States)

    De Diego, N; Rodríguez, J L; Dodd, I C; Pérez-Alfocea, F; Moncaleán, P; Lacuesta, M

    2013-05-01

    Anatomical, physiological and phytohormonal changes involved in drought tolerance were examined in different Pinus radiata D. Don breeds subjected to soil drying and rewatering. Breeds with the smallest stomatal chamber size had the lowest transpiration rate and the highest intrinsic water-use efficiency. Xylem cell size was positively correlated with leaf hydraulic conductance and needle indole-3-acetic acid (IAA) concentrations, whereas transpiration rate was negatively correlated with needle abscisic acid (ABA) levels. Since these two phytohormones seem important in regulating the P. radiata drought response, they were simultaneously immunolocalized in roots and needles of the most tolerant breed (P. radiata var. radiata × var. cedrosensis) during two sequential drought cycles and after rewatering. During drought, IAA was unequally distributed into the pointed area of the needle cross-section and mainly located in mesophyll and vascular tissue cells of needles, possibly inducing needle epinasty, whereas ABA was principally located in guard cells, presumably to elicit stomata closure. In the roots, at the end of the first drought cycle, while strong IAA accumulation was observed in the cortex, ABA levels decreased probably due to translocation to the leaves. Rewatering modified the distribution of both IAA and ABA in the needles, causing an accumulation principally in vascular tissue, with residual concentrations in mesophyll, likely favouring the acclimatization of the plants for further drought cycles. Contrarily, in the roots IAA and ABA were located in the exodermis, a natural barrier that regulates the phytohormone translocation to other plant tissues and hormone losses to the soil solution after rewatering. These results confirm that immunolocalization is an efficient tool to understand the translocation of IAA and ABA in plants subjected to different water stress situations, and clarify their role in regulating physiological responses such as stomata

  7. Effects of sulfite and pH an abscisic acid (ABA) dependent transpiration and on stomatal opening

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, N.; Maruta, I.; Sugahara, K.

    1980-01-01

    In rice, alday, wheat and tobacco (Nicotiana tabacum l. samsun and samsun nn) plants which contained large amounts of ABA, the transpiration rate decreased rapidly with 2 ppM SO/sub 2/ fumigation and reached 20 to 65% of the initial level after 5- to 30-min exposure depending on their ABAj contents. In the cases of broad bean and tobacco (n. Gutinosa l.) with low ABA contents, the rate slightly increased for 20 and 40 min, respectively, after the start of the fumigation and then decreased gradually. The transpiration rates of corn and sorghum, in spite of their extremely low ABA contents, pronouncedly decreased with SO/sub 2/ fumigation and reached 65 and 50%, respectively, of the initial levels after 40-min exposure. Foliar application of 0.04 N HCL to N. tacum l. samsun nn leaves remarkably depressed the transpiration rate, while the application of 0.04 m NA/sub 2/SO/sub 3/ decreased the rate only to the same level as water treatment. Foliar application of either HCL of Na/sub 2/SO/sub 3/ to N. glutinosa l. leaves exerted little change in the transpiration rate. When 10-4 m ABA was applied to broad bean leaves prior to HCl and Na/sub 2/SO/sub 3/ treatment, their transpiration rate was decreased by HCl, but not by Na/sub 2/SO/sub 3/ application. In sonicated epidermal strips peeled from broad bean leaves, Na/sub 2/SO/sub 3/ produced a slight increase in the stomatal aperture size in the absence of ABA, but showed no effect in the presence of ABA. The aperture size was identical in the pH range of 3.0 to 7.0 in the incubation medium. In the presence of ABA in the medium, the aperture size was small in the acidic region of pH with a minimal value at pH 4.0. ABA decreased the aperture size at concentrations above 10-9 m at pH 4.0 and 10-6 m at pH 7.0 in the medium. ABA uptake by epidermal strips was large in the acidic region, especially at pH 4.0.

  8. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice

    OpenAIRE

    Riaño-Pachón Diego; Gómez-Porras Judith L; Dreyer Ingo; Mayer Jorge E; Mueller-Roeber Bernd

    2007-01-01

    Abstract Background In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with...

  9. The Role of MAPK Modules and ABA during Abiotic Stress Signaling

    KAUST Repository

    Zélicourt, Axel de

    2016-05-01

    To respond to abiotic stresses, plants have developed specific mechanisms that allow them to rapidly perceive and respond to environmental changes. The phytohormone abscisic acid (ABA) was shown to be a pivotal regulator of abiotic stress responses in plants, triggering major changes in plant physiology. The ABA core signaling pathway largely relies on the activation of SnRK2 kinases to mediate several rapid responses, including gene regulation, stomatal closure, and plant growth modulation. Mitogen-activated protein kinases (MAPKs) have also been implicated in ABA signaling, but an entire ABA-activated MAPK module was uncovered only recently. In this review, we discuss the evidence for a role of MAPK modules in the context of different plant ABA signaling pathways. Abiotic stresses impact average yield in agriculture by more than 50% globally.Since ABA is a key regulator of abiotic stress responses, an understanding of its functioning at the molecular level is essential for plant breeding. Although the ABA core signaling pathway has been unraveled, several downstream events are still unclear.MAPKs are involved in most plant developmental stages and in response to stresses. Several members of the MAPK family were shown to be directly or indirectly activated by the ABA core signaling pathway.Recent evidence shows that the complete MAP3K17/18-MKK3-MPK1/2/7/14 module is under the control of ABA, whose members are under the transcriptional and post-translational control of the ABA core signaling pathway. © 2016 Elsevier Ltd.

  10. Functional roles of the pepper RING finger protein gene, CaRING1, in abscisic acid signaling and dehydration tolerance.

    Science.gov (United States)

    Lim, Chae Woo; Hwang, Byung Kook; Lee, Sung Chul

    2015-09-01

    Plants are constantly exposed to a variety of biotic and abiotic stresses, which include pathogens and conditions of high salinity, low temperature, and drought. Abscisic acid (ABA) is a major plant hormone involved in signal transduction pathways that mediate the defense response of plants to abiotic stress. Previously, we isolated Ring finger protein gene (CaRING1) from pepper (Capsicum annuum), which is associated with resistance to bacterial pathogens, accompanied by hypersensitive cell death. Here, we report a new function of the CaRING1 gene product in the ABA-mediated defense responses of plants to dehydration stress. The expression of the CaRING1 gene was induced in pepper leaves treated with ABA or exposed to dehydration or NaCl. Virus-induced gene silencing of CaRING1 in pepper plants exhibited low degree of ABA-induced stomatal closure and high levels of transpirational water loss in dehydrated leaves. These led to be more vulnerable to dehydration stress in CaRING1-silenced pepper than in the control pepper, accompanied by reduction of ABA-regulated gene expression and low accumulation of ABA and H2O2. In contrast, CaRING1-overexpressing transgenic plants showed enhanced sensitivity to ABA during the seedling growth and establishment. These plants were also more tolerant to dehydration stress than the wild-type plants because of high ABA accumulation, enhanced stomatal closure and increased expression of stress-responsive genes. Together, these results suggest that the CaRING1 acts as positive factor for dehydration tolerance in Arabidopsis by modulating ABA biosynthesis and ABA-mediated stomatal closing and gene expression.

  11. Mesophyll conductance decreases in the wild type but not in an ABA-deficient mutant (aba1) of Nicotiana plumbaginifolia under drought conditions.

    Science.gov (United States)

    Mizokami, Yusuke; Noguchi, Ko; Kojima, Mikiko; Sakakibara, Hitoshi; Terashima, Ichiro

    2015-03-01

    Under drought conditions, leaf photosynthesis is limited by the supply of CO2 . Drought induces production of abscisic acid (ABA), and ABA decreases stomatal conductance (gs ). Previous papers reported that the drought stress also causes the decrease in mesophyll conductance (gm ). However, the relationships between ABA content and gm are unclear. We investigated the responses of gm to the leaf ABA content [(ABA)L ] using an ABA-deficient mutant, aba1, and the wild type (WT) of Nicotiana plumbaginifolia. We also measured leaf water potential (ΨL ) because leaf hydraulics may be related to gm . Under drought conditions, gm decreased with the increase in (ABA)L in WT, whereas both (ABA)L and gm were unchanged by the drought treatment in aba1. Exogenously applied ABA decreased gm in both WT and aba1 in a dose-dependent manner. ΨL in WT was decreased by the drought treatment to -0.7 MPa, whereas ΨL in aba1 was around -0.8 MPa even under the well-watered conditions and unchanged by the drought treatment. From these results, we conclude that the increase in (ABA)L is crucial for the decrease in gm under drought conditions. We discuss possible relationships between the decrease in gm and changes in the leaf hydraulics. © 2014 John Wiley & Sons Ltd.

  12. Elevated air movement enhances stomatal sensitivity to abscisic acid in leaves developed at high relative air humidity

    Directory of Open Access Journals (Sweden)

    Dália R.A. Carvalho

    2015-05-01

    Full Text Available High relative air humidity (RH ≥ 85% during growth leads to stomata malfunctioning, resulting in water stress when plants are transferred to conditions of high evaporative demand. In this study, we hypothesized that an elevated air movement (MOV 24 h per day, during the whole period of leaf development would increase abscisic acid concentration ([ABA] enhancing stomatal functioning. Pot rose ‘Toril’ was grown at moderate (61% or high (92% RH combined with a negligible MOV or with a continuous MOV of 0.92 m s-1. High MOV reduced stomatal pore length and aperture in plants developed at high RH. Moreover, stomatal function improved when high MOV-treated plants were subjected to leaflet desiccation and ABA feeding. Endogenous concentration of ABA and its metabolites in the leaves was reduced by 35% in high RH, but contrary to our hypothesis this concentration was not significantly affected by high MOV. Interestingly, in detached leaflets grown at high RH, high MOV increased stomatal sensitivity to ABA since the amount of exogenous ABA required to decrease the transpiration rate was significantly reduced. This is the first study to show that high MOV increases stomatal functionality in leaves developed at high RH by reducing the stomatal pore length and aperture and enhancing stomatal sensitivity to ABA rather than increasing leaf [ABA].

  13. The ABA receptors -- we report you decide.

    Science.gov (United States)

    McCourt, Peter; Creelman, Robert

    2008-10-01

    The plant hormone abscisic acid (ABA) has been implicated in a variety of physiological responses ranging from seed dormancy to stomatal conductance. Recently, three groups have reported the molecular identification of three disparate ABA receptors. Unlike the identification of other hormone receptors, in these three cases high affinity binding to ABA rather than the isolation of ABA insensitive mutants led to these receptor genes. Interestingly, two of the receptors encode genes involved in floral timing and chlorophyll biosynthesis, which are not considered traditional ABA responses. And the third receptor has been clouded in issues of its molecular identity. To clearly determine the roles of these genes in ABA perception it will require placing of these ABA-binding proteins into the rich ABA physiological context that has built up over the years.

  14. Abscisic acid (ABA) and key proteins in its perception and signaling pathways are ancient, but their roles have changed through time.

    Science.gov (United States)

    Sussmilch, Frances C; Atallah, Nadia M; Brodribb, Timothy J; Banks, Jo Ann; McAdam, Scott A M

    2017-09-02

    Homologs of the Arabidopsis core abscisic acid (ABA) signaling component OPEN STOMATA1 (OST1) are best known for their role in closing stomata in angiosperm species. We recently characterized a fern OST1 homolog, GAMETOPHYTES ABA INSENSITIVE ON ANTHERDIOGEN 1 (GAIA1), which is not required for stomatal closure in ferns, consistent with physiologic evidence that shows the stomata of these plants respond passively to changes in leaf water status. Instead, gaia1 mutants reveal a critical role in ABA signaling for spore dormancy and sex determination, in a system regulated by antagonism between ABA and the gibberellin (GA)-derived fern hormone antheridiogen (A CE ). ABA and key proteins, including ABA receptors from the PYR/PYL/RCAR family and negative regulators of ABA-signaling from Group A of the type-2C protein phosphatases (PP2Cs), in addition to OST1 homologs, can be found in all terrestrial land plant lineages, ranging from liverworts that lack stomata, to angiosperms. As land plants have evolved and diversified over the past 450 million years, so too have the roles of this important plant hormone and the genes involved in its signaling and perception.

  15. Improving stomatal functioning at elevated growth air humidity: A review.

    Science.gov (United States)

    Fanourakis, Dimitrios; Bouranis, Dimitrios; Giday, Habtamu; Carvalho, Dália R A; Rezaei Nejad, Abdolhossein; Ottosen, Carl-Otto

    2016-12-01

    Plants grown at high relative air humidity (RH≥85%) are prone to lethal wilting upon transfer to conditions of high evaporative demand. The reduced survival of these plants is related to (i) increased cuticular permeability, (ii) changed anatomical features (i.e., longer pore length and higher stomatal density), (iii) reduced rehydration ability, (iv) impaired water potential sensitivity to leaf dehydration and, most importantly, (v) compromised stomatal closing ability. This review presents a critical analysis of the strategies which stimulate stomatal functioning during plant development at high RH. These include (a) breeding for tolerant cultivars, (b) interventions with respect to the belowground environment (i.e., water deficit, increased salinity, nutrient culture and grafting) as well as (c) manipulation of the aerial environment [i.e., increased proportion of blue light, increased air movement, temporal temperature rise, and spraying with abscisic acid (ABA)]. Root hypoxia, mechanical disturbance, as well as spraying with compounds mimicking ABA, lessening its inactivation or stimulating its within-leaf redistribution are also expected to improve stomatal functioning of leaves expanded in humid air. Available evidence leaves little doubt that genotypic and phenotypic differences in stomatal functioning following cultivation at high RH are realized through the intermediacy of ABA. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000.

    Directory of Open Access Journals (Sweden)

    Marie Desclos-Theveniau

    2012-02-01

    Full Text Available Stomata play an important role in plant innate immunity by limiting pathogen entry into leaves but molecular mechanisms regulating stomatal closure upon pathogen perception are not well understood. Here we show that the Arabidopsis thaliana L-type lectin receptor kinase-V.5 (LecRK-V.5 negatively regulates stomatal immunity. Loss of LecRK-V.5 function increased resistance to surface inoculation with virulent bacteria Pseudomonas syringae pv tomato DC3000. Levels of resistance were not affected after infiltration-inoculation, suggesting that LecRK-V.5 functions at an early defense stage. By contrast, lines overexpressing LecRK-V.5 were more susceptible to Pst DC3000. Enhanced resistance in lecrk-V.5 mutants was correlated with constitutive stomatal closure, while increased susceptibility phenotypes in overexpression lines were associated with early stomatal reopening. Lines overexpressing LecRK-V.5 also demonstrated a defective stomatal closure after pathogen-associated molecular pattern (PAMP treatments. LecRK-V.5 is rapidly expressed in stomatal guard cells after bacterial inoculation or treatment with the bacterial PAMP flagellin. In addition, lecrk-V.5 mutants guard cells exhibited constitutive accumulation of reactive oxygen species (ROS and inhibition of ROS production opened stomata of lecrk-V.5. LecRK-V.5 is also shown to interfere with abscisic acid-mediated stomatal closure signaling upstream of ROS production. These results provide genetic evidences that LecRK-V.5 negatively regulates stomatal immunity upstream of ROS biosynthesis. Our data reveal that plants have evolved mechanisms to reverse bacteria-mediated stomatal closure to prevent long-term effect on CO(2 uptake and photosynthesis.

  17. Anti-transpirant activity in xylem sap from flooded tomato (Lycopersicon esculentum Mill.) plants is not due to pH-mediated redistributions of root- or shoot-sourced ABA.

    Science.gov (United States)

    Else, Mark A; Taylor, June M; Atkinson, Christopher J

    2006-01-01

    In flooded soils, the rapid effects of decreasing oxygen availability on root metabolic activity are likely to generate many potential chemical signals that may impact on stomatal apertures. Detached leaf transpiration tests showed that filtered xylem sap, collected at realistic flow rates from plants flooded for 2 h and 4 h, contained one or more factors that reduced stomatal apertures. The closure could not be attributed to increased root output of the glucose ester of abscisic acid (ABA-GE), since concentrations and deliveries of ABA conjugates were unaffected by soil flooding. Although xylem sap collected from the shoot base of detopped flooded plants became more alkaline within 2 h of flooding, this rapid pH change of 0.5 units did not alter partitioning of root-sourced ABA sufficiently to prompt a transient increase in xylem ABA delivery. More shoot-sourced ABA was detected in the xylem when excised petiole sections were perfused with pH 7 buffer, compared with pH 6 buffer. Sap collected from the fifth oldest leaf of "intact" well-drained plants and plants flooded for 3 h was more alkaline, by approximately 0.4 pH units, than sap collected from the shoot base. Accordingly, xylem [ABA] was increased 2-fold in sap collected from the fifth oldest petiole compared with the shoot base of flooded plants. However, water loss from transpiring, detached leaves was not reduced when the pH of the feeding solution containing 3-h-flooded [ABA] was increased from 6.7 to 7.1 Thus, the extent of the pH-mediated, shoot-sourced ABA redistribution was not sufficient to raise xylem [ABA] to physiologically active levels. Using a detached epidermis bioassay, significant non-ABA anti-transpirant activity was also detected in xylem sap collected at intervals during the first 24 h of soil flooding.

  18. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors.

    Science.gov (United States)

    Kobayashi, Yuhko; Murata, Michiharu; Minami, Hideyuki; Yamamoto, Shuhei; Kagaya, Yasuaki; Hobo, Tokunori; Yamamoto, Akiko; Hattori, Tsukaho

    2005-12-01

    The plant hormone abscisic acid (ABA) induces gene expression via the ABA-response element (ABRE) present in the promoters of ABA-regulated genes. A group of bZIP proteins have been identified as ABRE-binding factors (ABFs) that activate transcription through this cis element. A rice ABF, TRAB1, has been shown to be activated via ABA-dependent phosphorylation. While a large number of signalling factors have been identified that are involved in stomatal regulation by ABA, relatively less is known about the ABA-signalling pathway that leads to gene expression. We have shown recently that three members of the rice SnRK2 protein kinase family, SAPK8, SAPK9 and SAPK10, are activated by ABA signal as well as by hyperosmotic stress. Here we show that transient overexpression in cultured cell protoplasts of these ABA-activated SnRK2 protein kinases leads to the activation of an ABRE-regulated promoter, suggesting that these kinases are involved in the gene-regulation pathway of ABA signalling. We further show several lines of evidence that these ABA-activated SnRK2 protein kinases directly phosphorylate TRAB1 in response to ABA. Kinetic analysis of SAPK10 activation and TRAB1 phosphorylation indicated that the latter immediately followed the former. TRAB1 was found to be phosphorylated not only in response to ABA, but also in response to hyperosmotic stress, which was interpreted as the consequence of phosphorylation of TRAB1 by hyperosmotically activated SAPKs. Physical interaction between TRAB1 and SAPK10 in vivo was demonstrated by a co-immunoprecipitation experiment. Finally, TRAB1 was phosphorylated in vitro by the ABA-activated SnRK2 protein kinases at Ser102, which is phosphorylated in vivo in response to ABA and is critical for the activation function.

  19. Functional Analysis of Cellulose and Xyloglucan in the Walls of Stomatal Guard Cells of Arabidopsis1[OPEN

    Science.gov (United States)

    Rui, Yue; Anderson, Charles T.

    2016-01-01

    Stomatal guard cells are pairs of specialized epidermal cells that control water and CO2 exchange between the plant and the environment. To fulfill the functions of stomatal opening and closure that are driven by changes in turgor pressure, guard cell walls must be both strong and flexible, but how the structure and dynamics of guard cell walls enable stomatal function remains poorly understood. To address this question, we applied cell biological and genetic analyses to investigate guard cell walls and their relationship to stomatal function in Arabidopsis (Arabidopsis thaliana). Using live-cell spinning disk confocal microscopy, we measured the motility of cellulose synthase (CESA)-containing complexes labeled by green fluorescent protein (GFP)-CESA3 and observed a reduced proportion of GFP-CESA3 particles colocalizing with microtubules upon stomatal closure. Imaging cellulose organization in guard cells revealed a relatively uniform distribution of cellulose in the open state and a more fibrillar pattern in the closed state, indicating that cellulose microfibrils undergo dynamic reorganization during stomatal movements. In cesa3je5 mutants defective in cellulose synthesis and xxt1 xxt2 mutants lacking the hemicellulose xyloglucan, stomatal apertures, changes in guard cell length, and cellulose reorganization were aberrant during fusicoccin-induced stomatal opening or abscisic acid-induced stomatal closure, indicating that sufficient cellulose and xyloglucan are required for normal guard cell dynamics. Together, these results provide new insights into how guard cell walls allow stomata to function as responsive mediators of gas exchange at the plant surface. PMID:26729799

  20. Dynamics of spatial heterogeneity of stomatal closure in Tradescantia virginiana altered by growth at high relative air humidity

    NARCIS (Netherlands)

    Rezaei Nejad, A.; Harbinson, J.; Meeteren, van U.

    2006-01-01

    The spatial heterogeneity of stomatal closure in response to rapid desiccation of excised well-watered Tradescantia virginiana leaves grown at moderate (55%) or high (90%) relative air humidity (RH) was studied using a chlorophyll fluorescence imaging system under non-photorespiratory conditions.

  1. Chloroplastic and stomatal aspects of ozone-induced reduction of net photosynthesis in plants

    Energy Technology Data Exchange (ETDEWEB)

    Torsethaugen, Gro

    1998-09-01

    The present thesis relates to ozone-induced reduction of photosynthesis in plants. As a photochemical oxidant O{sub 3} is formed by the interaction of hydrocarbons, nitrogen oxides and oxygen in sunlight. Ozone (O{sub 3}) is the most phytotoxic of all the air pollutants and is known to reduce plant growth and net photosynthesis, cause stomatal closure, induce visible injury, accelerate senescence and induce or inhibit transcription of a variety of genes with a corresponding increase/decrease in protein products. The underlying cellular mechanisms for many of these changes are unknown. Following fields are investigated: Ozone-induced reduction of net photosynthesis; ozone and the photosynthetic apparatus in the chloroplasts; ozone and stomata; ozone effects on plant membranes; protection against ozone injury in plants. 249 refs., 22 figs., 4 tabs.

  2. Closing plant stomata requires a homolog of an aluminum-activated malate transporter.

    Science.gov (United States)

    Sasaki, Takayuki; Mori, Izumi C; Furuichi, Takuya; Munemasa, Shintaro; Toyooka, Kiminori; Matsuoka, Ken; Murata, Yoshiyuki; Yamamoto, Yoko

    2010-03-01

    Plant stomata limit both carbon dioxide uptake and water loss; hence, stomatal aperture is carefully set as the environment fluctuates. Aperture area is known to be regulated in part by ion transport, but few of the transporters have been characterized. Here we report that AtALMT12 (At4g17970), a homolog of the aluminum-activated malate transporter (ALMT) of wheat, is expressed in guard cells of Arabidopsis thaliana. Loss-of-function mutations in AtALMT12 impair stomatal closure induced by ABA, calcium and darkness, but do not abolish either the rapidly activated or the slowly activated anion currents previously identified as being important for stomatal closure. Expressed in Xenopus oocytes, AtALMT12 facilitates chloride and nitrate currents, but not those of organic solutes. Therefore, we conclude that AtALMT12 is a novel class of anion transporter involved in stomatal closure.

  3. ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants.

    Science.gov (United States)

    Xu, Dong-Bei; Gao, Shi-Qing; Ma, You-Zhi; Xu, Zhao-Shi; Zhao, Chang-Ping; Tang, Yi-Miao; Li, Xue-Yin; Li, Lian-Cheng; Chen, Yao-Feng; Chen, Ming

    2014-12-01

    The phytohormone abscisic acid (ABA) plays crucial roles in adaptive responses of plants to abiotic stresses. ABA-responsive element binding proteins (AREBs) are basic leucine zipper transcription factors that regulate the expression of downstream genes containing ABA-responsive elements (ABREs) in promoter regions. A novel ABI-like (ABA-insensitive) transcription factor gene, named TaABL1, containing a conserved basic leucine zipper (bZIP) domain was cloned from wheat. Southern blotting showed that three copies were present in the wheat genome. Phylogenetic analyses indicated that TaABL1 belonged to the AREB subfamily of the bZIP transcription factor family and was most closely related to ZmABI5 in maize and OsAREB2 in rice. Expression of TaABL1 was highly induced in wheat roots, stems, and leaves by ABA, drought, high salt, and low temperature stresses. TaABL1 was localized inside the nuclei of transformed wheat mesophyll protoplast. Overexpression of TaABL1 enhanced responses of transgenic plants to ABA and hastened stomatal closure under stress, thereby improving tolerance to multiple abiotic stresses. Furthermore, overexpression of TaABL1 upregulated or downregulated the expression of some stress-related genes controlling stomatal closure in transgenic plants under ABA and drought stress conditions, suggesting that TaABL1 might be a valuable genetic resource for transgenic molecular breeding.

  4. VvWRKY13 enhances ABA biosynthesis in Vitis vinifera

    Directory of Open Access Journals (Sweden)

    JIe Hao

    2017-06-01

    Full Text Available Abscisic acid (ABA plays critical roles in plant growth and development as well as in plants’ responses to abiotic stresses. We previously isolated VvWRKY13, a novel transcription factor, from Vitis vinifera (grapevine, and here we present evidence that VvWRKY13 may regulate ABA biosynthesis in plants. When VvWRKY13 was ectopically expressed in Arabidopsis, the transgenic lines showed delayed seed germination, smaller stomatal aperture size, and several other phenotypic changes, indicating elevated ABA levels in these plants. Sequence analysis of several genes that are involved in grapevine ABA synthetic pathway identified WRKY-specific binding elements (W-box or W-like box in the promoter regions. Indeed, transient overexpression of VvWRKY13 in grapevine leaves significantly increased the transcript levels of ABA synthetic pathway genes. Taken together, we conclude that VvWRKY13 may promote ABA production by activating genes in the ABA synthetic pathway.

  5. Abscisic Acid Induces Rapid Reductions in Mesophyll Conductance to Carbon Dioxide.

    Directory of Open Access Journals (Sweden)

    Giuseppe Sorrentino

    Full Text Available The rate of photosynthesis (A of plants exposed to water deficit is a function of stomatal (gs and mesophyll (gm conductance determining the availability of CO2 at the site of carboxylation within the chloroplast. Mesophyll conductance often represents the greatest impediment to photosynthetic uptake of CO2, and a crucial determinant of the photosynthetic effects of drought. Abscisic acid (ABA plays a fundamental role in signalling and co-ordination of plant responses to drought; however, the effect of ABA on gm is not well-defined. Rose, cherry, olive and poplar were exposed to exogenous ABA and their leaf gas exchange parameters recorded over a four hour period. Application with ABA induced reductions in values of A, gs and gm in all four species. Reduced gm occurred within one hour of ABA treatment in three of the four analysed species; indicating that the effect of ABA on gm occurs on a shorter timescale than previously considered. These declines in gm values associated with ABA were not the result of physical changes in leaf properties due to altered turgor affecting movement of CO2, or caused by a reduction in the sub-stomatal concentration of CO2 (Ci. Increased [ABA] likely induces biochemical changes in the properties of the interface between the sub-stomatal air-space and mesophyll layer through the actions of cooporins to regulate the transport of CO2. The results of this study provide further evidence that gm is highly responsive to fluctuations in the external environment, and stress signals such as ABA induce co-ordinated modifications of both gs and gm in the regulation of photosynthesis.

  6. Cyclic monoterpene mediated modulations of Arabidopsis thaliana phenotype

    Science.gov (United States)

    Kriegs, Bettina; Jansen, Marcus; Hahn, Katrin; Peisker, Helga; Šamajová, Olga; Beck, Martina; Braun, Silvia; Ulbrich, Andreas; Baluška, František

    2010-01-01

    Monoterpenes at high atmospheric concentrations are strong growth inhibitors in allelopathic interactions. Effects depend on dose, molecular structure of the monoterpene and on the species of the receiver plant. Stomata are among the first targets affected by camphor and menthol. Previously, it could be demonstrated that the compounds induce swelling of the protoplasts, prevent stomatal closure and enhance transpiration. In this study, we show that the block of stomatal closure is accompanied by changes to the cytoskeleton, which has a direct role in stomatal movements. Although MPK3 (MAP3 kinase) and ABF4 gene expressions are induced within six hours, stomatal closure is prevented. In contrast to ABF4, ABF2 (both transcription factors) is not induced. MPK3 and ABF4 both encode for proteins involved in the process of stomatal closure. The expression of PEPCase, an enzyme important for stomatal opening, is downregulated. The leaves develop stress symptoms, mirrored by transient changes in the expression profile of additional genes: lipoxygenase 2 (LOX2), CER5, CER6 (both important for wax production) and RD29B (an ABA inducible stress protein). Non-invasive methods showed a fast response of the plant to camphor fumigations both in a rapid decrease of the quantum yield and in the relative growth rate. Repeated exposures to the monoterpenes resulted finally in growth reduction and a stress related change in the phenotype. It is proposed that high concentrations or repeated exposure to monoterpenes led to irreversible damages, whereas low concentrations or short-term fumigations may have the potential to strengthen the plant fitness. PMID:20484979

  7. Virus-induced down-regulation of GmERA1A and GmERA1B genes enhances the stomatal response to abscisic acid and drought resistance in soybean.

    Directory of Open Access Journals (Sweden)

    Takuya Ogata

    Full Text Available Drought is a major threat to global soybean production. The limited transformation potential and polyploid nature of soybean have hindered functional analysis of soybean genes. Previous research has implicated farnesylation in the plant's response to abscisic acid (ABA and drought tolerance. We therefore used virus-induced gene silencing (VIGS to evaluate farnesyltransferase genes, GmERA1A and GmERA1B (Glycine max Enhanced Response to ABA1-A and -B, as potential targets for increasing drought resistance in soybean. Apple latent spherical virus (ALSV-mediated GmERA1-down-regulated soybean leaves displayed an enhanced stomatal response to ABA and reduced water loss and wilting under dehydration conditions, suggesting that GmERA1A and GmERA1B negatively regulate ABA signaling in soybean guard cells. The findings provide evidence that the ALSV-VIGS system, which bypasses the need to generate transgenic plants, is a useful tool for analyzing gene function using only a single down-regulated leaf. Thus, the ALSV-VIGS system could constitute part of a next-generation molecular breeding pipeline to accelerate drought resistance breeding in soybean.

  8. GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice.

    Science.gov (United States)

    Du, Hao; Chang, Yu; Huang, Fei; Xiong, Lizhong

    2015-11-01

    Plant responses to abiotic stresses are coordinated by arrays of growth and developmental programs. Gibberellic acid (GA) and abscisic acid (ABA) play critical roles in the developmental programs and environmental responses, respectively, through complex signaling and metabolism networks. However, crosstalk between the two phytohormones in stress responses remains largely unknown. In this study, we report that GIBBERELLIN-INSENSITIVE DWARF 1 (GID1), a soluble receptor for GA, regulates stomatal development and patterning in rice (Oryza sativa L.). The gid1 mutant showed impaired biosynthesis of endogenous ABA under drought stress conditions, but it exhibited enhanced sensitivity to exogenous ABA. Scanning electron microscope and infrared thermal image analysis indicated an increase in the stomatal conductance in the gid1 mutant under drought conditions. Interestingly, the gid1 mutant had increased levels of chlorophyll and carbohydrates under submergence conditions, and showed enhanced reactive oxygen species (ROS)-scavenging ability and submergence tolerance compared with the wild-type. Further analyses suggested that the function of GID1 in submergence responses is partially dependent on ABA, and GA signaling by GID1 is involved in submergence tolerance by modulating carbohydrate consumption. Taken together, these findings suggest GID1 plays distinct roles in stomatal response and submergence tolerance through both the ABA and GA signaling pathways in rice. © 2014 Institute of Botany, Chinese Academy of Sciences.

  9. Abscisic Acid Content, Transpiration, and Stomatal Conductance As Related to Leaf Age in Plants of Xanthium strumarium L.

    Science.gov (United States)

    Raschke, K; Zeevaart, J A

    1976-08-01

    Among the four uppermost leaves of greenhouse-grown plants of Xanthium strumarium L. the content of abscisic acid per unit fresh or dry weight was highest in the youngest leaf and decreased gradually with increasing age of the leaves. Expressed per leaf, the second youngest leaf was richest in ABA; the amount of ABA per leaf declined only slightly as the leaves expanded. Transpiration and stomatal conductance were negatively correlated with the ABA concentration in the leaves; the youngest leaf lost the least amount of water. This correlation was always very good if the youngest leaf was compared with the older leaves but not always good among the older leaves. Since stomatal sensitivity to exogenous (+/-)-ABA was the same in leaves of all four age groups ABA may be in at least two compartments in the leaf, one of which is isolated from the guard cells.The ability to synthesize ABA in response to wilting or chilling was strongly expressed in young leaves and declined with leaf age. There was no difference between leaves in their content of the metabolites of ABA, phaseic, and dihydrophaseic acid, expressed per unit weight.

  10. Abscisic Acid Content, Transpiration, and Stomatal Conductance As Related to Leaf Age in Plants of Xanthium strumarium L. 1

    Science.gov (United States)

    Raschke, Klaus; Zeevaart, Jan A. D.

    1976-01-01

    Among the four uppermost leaves of greenhouse-grown plants of Xanthium strumarium L. the content of abscisic acid per unit fresh or dry weight was highest in the youngest leaf and decreased gradually with increasing age of the leaves. Expressed per leaf, the second youngest leaf was richest in ABA; the amount of ABA per leaf declined only slightly as the leaves expanded. Transpiration and stomatal conductance were negatively correlated with the ABA concentration in the leaves; the youngest leaf lost the least amount of water. This correlation was always very good if the youngest leaf was compared with the older leaves but not always good among the older leaves. Since stomatal sensitivity to exogenous (±)-ABA was the same in leaves of all four age groups ABA may be in at least two compartments in the leaf, one of which is isolated from the guard cells. The ability to synthesize ABA in response to wilting or chilling was strongly expressed in young leaves and declined with leaf age. There was no difference between leaves in their content of the metabolites of ABA, phaseic, and dihydrophaseic acid, expressed per unit weight. PMID:16659640

  11. Effect of root pruning and irrigation regimes on leaf water relations and xylem ABA and ionic concentrations in pear trees

    DEFF Research Database (Denmark)

    Wang, Yufei; Bertelsen, Marianne G.; Petersen, Karen Koefoed

    2014-01-01

    relation characteristics, stomatal conductance and xylem sap abscisic acid (ABA) and ionic concentrations. Results showed that leaf water potential, leaf turgor and stomatal conductance of root pruning (RP) treatment was significantly lower than those of non-root pruning (NP) treatment indicating that root...

  12. Overexpression of Grain Amaranth (Amaranthus hypochondriacus) AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms

    Science.gov (United States)

    Massange-Sánchez, Julio A.; Palmeros-Suárez, Paola A.; Espitia-Rangel, Eduardo; Rodríguez-Arévalo, Isaac; Sánchez-Segura, Lino; Martínez-Gallardo, Norma A.; Alatorre-Cobos, Fulgencio; Tiessen, Axel; Délano-Frier, John P.

    2016-01-01

    Two grain amaranth transcription factor (TF) genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII) conferred tolerance to water-deficit stress (WS) in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA)-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS). WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI) provided salt-stress (SS) tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms. PMID:27749893

  13. Overexpression of Grain Amaranth (Amaranthus hypochondriacus AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms.

    Directory of Open Access Journals (Sweden)

    Julio A Massange-Sánchez

    Full Text Available Two grain amaranth transcription factor (TF genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII conferred tolerance to water-deficit stress (WS in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS. WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI provided salt-stress (SS tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms.

  14. Does Size Matter? Atmospheric CO2 May Be a Stronger Driver of Stomatal Closing Rate Than Stomatal Size in Taxa That Diversified under Low CO2.

    Science.gov (United States)

    Elliott-Kingston, Caroline; Haworth, Matthew; Yearsley, Jon M; Batke, Sven P; Lawson, Tracy; McElwain, Jennifer C

    2016-01-01

    One strategy for plants to optimize stomatal function is to open and close their stomata quickly in response to environmental signals. It is generally assumed that small stomata can alter aperture faster than large stomata. We tested the hypothesis that species with small stomata close faster than species with larger stomata in response to darkness by comparing rate of stomatal closure across an evolutionary range of species including ferns, cycads, conifers, and angiosperms under controlled ambient conditions (380 ppm CO2; 20.9% O2). The two species with fastest half-closure time and the two species with slowest half-closure time had large stomata while the remaining three species had small stomata, implying that closing rate was not correlated with stomatal size in these species. Neither was response time correlated with stomatal density, phylogeny, functional group, or life strategy. Our results suggest that past atmospheric CO2 concentration during time of taxa diversification may influence stomatal response time. We show that species which last diversified under low or declining atmospheric CO2 concentration close stomata faster than species that last diversified in a high CO2 world. Low atmospheric [CO2] during taxa diversification may have placed a selection pressure on plants to accelerate stomatal closing to maintain adequate internal CO2 and optimize water use efficiency.

  15. Unraveling the involvement of ABA in the water deficit-induced modulation of nitrogen metabolism in Medicago truncatula seedlings.

    Science.gov (United States)

    Planchet, Elisabeth; Rannou, Olivier; Ricoult, Claudie; Limami, Anis M

    2011-07-01

    Effects of water deficit and/or abscisic acid (ABA) were investigated on early seedling growth of Medicago truncatula, and on glutamate metabolism under dark conditions. Water deficit (simulated by polyethylene glycol, PEG), ABA and their combination resulted in a reduction in growth rate of the embryo axis, and also in a synergistic increase of free amino acid (AA) content. However, the inhibition of water uptake retention induced by water deficit seemed to occur in an ABA-independent manner. Expression of several genes involved in glutamate metabolism was induced during water deficit, whereas ABA, in combination or not with PEG, repressed them. The only exception came from a gene encoding 1-pyrroline-5-carboxylate synthetase (P5CS) which appeared to be induced in an ABA-dependent manner under water deficit. Our results demonstrate clearly the involvement of an ABA-dependent and an ABA-independent regulatory system, governing growth and glutamate metabolism under water deficit.

  16. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels.

    Science.gov (United States)

    Cohen, Ana C; Bottini, Rubén; Pontin, Mariela; Berli, Federico J; Moreno, Daniela; Boccanlandro, Hernán; Travaglia, Claudia N; Piccoli, Patricia N

    2015-01-01

    Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth-promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress-related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col-0 and aba2-1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro-grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild-type Col-0 and on the mutant aba2-1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col-0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought. © 2014 Scandinavian Plant Physiology Society.

  17. The effect of strobilurins on leaf gas exchange, water use efficiency and ABA content in grapevine under field conditions.

    Science.gov (United States)

    Diaz-Espejo, Antonio; Cuevas, María Victoria; Ribas-Carbo, Miquel; Flexas, Jaume; Martorell, Sebastian; Fernández, José Enrique

    2012-03-01

    Strobilurins are one of the most important classes of agricultural fungicides. In addition to their anti-fungal effect, strobilurins have been reported to produce simultaneous effects in plant physiology. This study investigated whether the use of strobilurin fungicide improved water use efficiency in leaves of grapevines grown under field conditions in a Mediterranean climate in southern Spain. Fungicide was applied three times in the vineyard and measurements of leaf gas exchange, plant water status, abscisic acid concentration in sap ([ABA]), and carbon isotope composition in leaves were performed before and after applications. No clear effect on stomatal conductance, leaf water potential and intrinsic water use efficiency was found after three fungicide applications. ABA concentration was observed to increase after fungicide application on the first day, vanishing three days later. Despite this transient effect, evolution of [ABA] matched well with the evolution of leaf carbon isotope ratio, which can be used as a surrogate for plant water use efficiency. Morning stomatal conductance was negatively correlated to [ABA]. Yield was enhanced in strobilurin treated plants, whereas fruit quality remained unaltered. Published by Elsevier GmbH.

  18. Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration.

    Science.gov (United States)

    Lugassi, Nitsan; Kelly, Gilor; Fidel, Lena; Yaniv, Yossi; Attia, Ziv; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Raveh, Eran; Carmi, Nir; Granot, David

    2015-01-01

    Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1) under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.

  19. Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance

    Science.gov (United States)

    Lu, Kai; Liang, Shan; Wu, Zhen; Bi, Chao; Yu, Yong-Tao; Wang, Xiao-Fang; Zhang, Da-Peng

    2016-01-01

    Receptor-like kinases (RLKs) have been reported to regulate many developmental and defense process, but only a few members have been functionally characterized. In the present study, our observations suggest that one of the RLKs, a membrane-localized cysteine-rich receptor-like protein kinase, CRK5, is involved in abscisic acid (ABA) signaling in Arabidopsis thaliana. Overexpression of CRK5 increases ABA sensitivity in ABA-induced early seedling growth arrest and promotion of stomatal closure and inhibition of stomatal opening. Interestingly, and importantly, overexpression of CRK5 enhances plant drought tolerance without affecting plant growth at the mature stages and plant productivity. Transgenic lines overexpressing a mutated form of CRK5, CRK5 K372E with the change of the 372nd conserved amino acid residue from lysine to glutamic acid in its kinase domain, result in wild-type ABA and drought responses, supporting the role of CRK5 in ABA signaling. The loss-of-function mutation of the CRK5 gene does not affect the ABA response, while overexpression of two homologs of CRK5, CRK4 and CRK19, confers ABA responses, suggesting that these CRK members function redundantly. We further showed that WRKY18, WRKY40 and WRKY60 transcription factors repress the expression of CRK5, and that CRK5 likely functions upstream of ABI2 in ABA signaling. These findings help in understanding the complex ABA signaling network. PMID:27406784

  20. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Riaño-Pachón Diego

    2007-08-01

    Full Text Available Abstract Background In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs, ABRE and CE3, in thale cress (Arabidopsis thaliana and rice (Oryza sativa. Results Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Conclusion Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of

  1. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice.

    Science.gov (United States)

    Gómez-Porras, Judith L; Riaño-Pachón, Diego Mauricio; Dreyer, Ingo; Mayer, Jorge E; Mueller-Roeber, Bernd

    2007-08-01

    In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs), ABRE and CE3, in thale cress (Arabidopsis thaliana) and rice (Oryza sativa). Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE) associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs) in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of interacting with transcription factors. Further studies will be

  2. Expression of Arabidopsis hexokinase in citrus guard cells controls stomatal aperture and reduces transpiration

    Directory of Open Access Journals (Sweden)

    Nitsan eLugassi

    2015-12-01

    Full Text Available Hexokinase (HXK is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1 under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.

  3. A method to identify important dynamical states in Boolean models of regulatory networks: application to regulation of stomata closure by ABA in A. thaliana.

    Science.gov (United States)

    Bugs, Cristhian A; Librelotto, Giovani R; Mombach, José C M

    2011-12-22

    We introduce a method to analyze the states of regulatory Boolean models that identifies important network states and their biological influence on the global network dynamics. It consists in (1) finding the states of the network that are most frequently visited and (2) the identification of variable and frozen nodes of the network. The method, along with a simulation that includes random features, is applied to the study of stomata closure by abscisic acid (ABA) in A. thaliana proposed by Albert and coworkers. We find that for the case of study, that the dynamics of wild and mutant networks have just two states that are highly visited in their space of states and about a third of all nodes of the wild network are variable while the rest remain frozen in True or False states. This high number of frozen elements explains the low cardinality of the space of states of the wild network. Similar results are observed in the mutant networks. The application of the method allowed us to explain how wild and mutants behave dynamically in the SS and determined an essential feature of the activation of the closure node (representing stomata closure), i.e. its synchronization with the AnionEm node (representing anion efflux at the plasma membrane). The dynamics of this synchronization explains the efficiency reached by the wild and each of the mutant networks. For the biological problem analyzed, our method allows determining how wild and mutant networks differ 'phenotypically'. It shows that the different efficiencies of stomata closure reached among the simulated wild and mutant networks follow from a dynamical behavior of two nodes that are always synchronized. Additionally, we predict that the involvement of the anion efflux at the plasma membrane is crucial for the plant response to ABA. The algorithm used in the simulations is available upon request.

  4. Hormonal regulation of floret closure of rice (Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Youming Huang

    Full Text Available Plant hormones play important roles in regulating every aspect of growth, development, and metabolism of plants. We are interested in understanding hormonal regulation of floret opening and closure in plants. This is a particularly important problem for hybrid rice because regulation of flowering time is vitally important in hybrid rice seed production. However, little was known about the effects of plant hormones on rice flowering. We have shown that jasmonate and methyl jasmonate play significant roles in promoting rice floret opening. In this study, we investigated the effects of auxins including indole-3-acidic acid (IAA, indole-3-butyric acid (IBA, 1-naphthalene-acetic acid (NAA, 2,4-dichlorophenoxy acetic acid (2,4-D and 3,6-dichloro-2-methoxybenzoic acid (DIC and abscisic acid (ABA on floret closure of four fertile and three sterile varieties of rice. The results from field studies in three growing seasons in 2013-2015 showed that the percentages of closed florets were significantly lower in plants treated with IAA, IBA, 2,4-D, DIC and NAA and that the durations of floret opening were significantly longer in plants treated with the same auxins. The auxins exhibited time- and concentration-dependant effects on floret closure. ABA displayed opposite effects of auxins because it increased the percentages of floret closure and decreased the length of floret opening of rice varieties. The degree of auxin-inhibiting and ABA-promoting effects on floret closure was varied somewhat but not significantly different among the rice varieties. Endogenous IAA levels were the highest in florets collected shortly before opening followed by a sharp decline in florets with maximal angles of opening and a significant jump of IAA levels shortly after floret closure in both fertile and sterile rice plants. ABA levels showed an opposite trend in the same samples. Our results showed that auxins delayed but ABA promoted the closure of rice floret regardless of

  5. Hormonal regulation of floret closure of rice (Oryza sativa)

    Science.gov (United States)

    Huang, Youming; Zeng, Xiaochun

    2018-01-01

    Plant hormones play important roles in regulating every aspect of growth, development, and metabolism of plants. We are interested in understanding hormonal regulation of floret opening and closure in plants. This is a particularly important problem for hybrid rice because regulation of flowering time is vitally important in hybrid rice seed production. However, little was known about the effects of plant hormones on rice flowering. We have shown that jasmonate and methyl jasmonate play significant roles in promoting rice floret opening. In this study, we investigated the effects of auxins including indole-3-acidic acid (IAA), indole-3-butyric acid (IBA), 1-naphthalene-acetic acid (NAA), 2,4-dichlorophenoxy acetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (DIC) and abscisic acid (ABA) on floret closure of four fertile and three sterile varieties of rice. The results from field studies in three growing seasons in 2013–2015 showed that the percentages of closed florets were significantly lower in plants treated with IAA, IBA, 2,4-D, DIC and NAA and that the durations of floret opening were significantly longer in plants treated with the same auxins. The auxins exhibited time- and concentration-dependant effects on floret closure. ABA displayed opposite effects of auxins because it increased the percentages of floret closure and decreased the length of floret opening of rice varieties. The degree of auxin-inhibiting and ABA-promoting effects on floret closure was varied somewhat but not significantly different among the rice varieties. Endogenous IAA levels were the highest in florets collected shortly before opening followed by a sharp decline in florets with maximal angles of opening and a significant jump of IAA levels shortly after floret closure in both fertile and sterile rice plants. ABA levels showed an opposite trend in the same samples. Our results showed that auxins delayed but ABA promoted the closure of rice floret regardless of the varieties

  6. Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance.

    Science.gov (United States)

    Lu, Kai; Liang, Shan; Wu, Zhen; Bi, Chao; Yu, Yong-Tao; Wang, Xiao-Fang; Zhang, Da-Peng

    2016-09-01

    Receptor-like kinases (RLKs) have been reported to regulate many developmental and defense process, but only a few members have been functionally characterized. In the present study, our observations suggest that one of the RLKs, a membrane-localized cysteine-rich receptor-like protein kinase, CRK5, is involved in abscisic acid (ABA) signaling in Arabidopsis thaliana Overexpression of CRK5 increases ABA sensitivity in ABA-induced early seedling growth arrest and promotion of stomatal closure and inhibition of stomatal opening. Interestingly, and importantly, overexpression of CRK5 enhances plant drought tolerance without affecting plant growth at the mature stages and plant productivity. Transgenic lines overexpressing a mutated form of CRK5, CRK5 (K372E) with the change of the 372nd conserved amino acid residue from lysine to glutamic acid in its kinase domain, result in wild-type ABA and drought responses, supporting the role of CRK5 in ABA signaling. The loss-of-function mutation of the CRK5 gene does not affect the ABA response, while overexpression of two homologs of CRK5, CRK4 and CRK19, confers ABA responses, suggesting that these CRK members function redundantly. We further showed that WRKY18, WRKY40 and WRKY60 transcription factors repress the expression of CRK5, and that CRK5 likely functions upstream of ABI2 in ABA signaling. These findings help in understanding the complex ABA signaling network. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Enhancing tolerance of rice (Oryza sativa) to simulated acid rain by exogenous abscisic acid.

    Science.gov (United States)

    Wu, Xi; Liang, Chanjuan

    2017-02-01

    Abscisic acid (ABA) regulates much important plant physiological and biochemical processes and induces tolerance to different stresses. Here, we studied the regulation of exogenous ABA on adaptation of rice seedlings to simulated acid rain (SAR) stress by measuring biomass dry weight, stomatal conductance, net photosynthesis rate, nutrient elements, and endogenous hormones. The application of 10 μM ABA alleviated the SAR-induced inhibition on growth, stomatal conductance, net photosynthesis rate, and decreases in contents of nutrient (K, Mg, N, and P) and hormone (auxin, gibberellins, and zeatin). Moreover, 10 μM ABA could stimulate the Ca content as signaling molecules under SAR stress. Contrarily, the application of 100 μM ABA aggravated the SAR-induced inhibition on growth, stomatal conductance, net photosynthesis rate, and contents of nutrient and hormone. The results got after a 5-day recovery (without SAR) show that exogenous 10 μM ABA can promote self-restoration process in rice whereas 100 μM ABA hindered the restoration by increasing deficiency of nutrients and disturbing the balance of hormones. These results confirmed that exogenous ABA at proper concentration could enhance the tolerance of rice to SAR stress.

  8. Salicaceae Endophytes Modulate Stomatal Behavior and Increase Water Use Efficiency in Rice

    Directory of Open Access Journals (Sweden)

    Hyungmin Rho

    2018-03-01

    Full Text Available Bacterial and yeast endophytes isolated from the Salicaceae family have been shown to promote growth and alleviate stress in plants from different taxa. To determine the physiological pathways through which endophytes affect plant water relations, we investigated leaf water potential, whole-plant water use, and stomatal responses of rice plants to Salicaceae endophyte inoculation under CO2 enrichment and water deficit. Daytime stomatal conductance and stomatal density were lower in inoculated plants compared to controls. Leaf ABA concentrations increased with endophyte inoculation. As a result, transpirational water use decreased significantly with endophyte inoculation while biomass did not change or slightly increased. This response led to a significant increase in cumulative water use efficiency at harvest. Different endophyte strains produced the same results in host plant water relations and stomatal responses. These stomatal responses were also observed under elevated CO2 conditions, and the increase in water use efficiency was more pronounced under water deficit conditions. The effect on water use efficiency was positively correlated with daily light integrals across different experiments. Our results provide insights on the physiological mechanisms of plant-endophyte interactions involving plant water relations and stomatal functions.

  9. The Dynamics of Embolism Refilling in Abscisic Acid (ABA-Deficient Tomato Plants

    Directory of Open Access Journals (Sweden)

    Francesca Secchi

    2012-12-01

    Full Text Available Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant’s refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant’s capacity for refilling.

  10. Production of ABA responses requires both the nuclear and cytoplasmic functional involvement of PYR1

    International Nuclear Information System (INIS)

    Park, EunJoo; Kim, Tae-Houn

    2017-01-01

    Abscisic acid (ABA) enhances stress tolerant responses in plants against unfavorable environmental conditions. In Arabidopsis, ABA promotes interactions between PYR/PYL/RCARs and PP2C, thereby allowing SnRK2s to phosphorylate downstream components required for the regulation of gene expression or for gating ion channels. Because PYR1 is known to localize to nucleus and cytoplasm it is a question whether nuclear or cytoplasmic PYR1 confer different functions to the ABA signaling pathway, as has been previously shown for regulatory proteins. In order to answer this question, transgenic lines expressing nuclear PYR1 were generated in an ABA insensitive mutant background. Enforced nuclear expression of PYR1 was examined by confocal microscopy and western blot analysis. Physiological analyses of the transgenic lines demonstrated that nuclear PYR1 is sufficient to generate ABA responses, such as, the inhibition of seed germination, root growth inhibition, the induction of gene expression, and stomatal closing movement. However, for the full recovery of ABA responses in the mutant background cytoplasmic PYR1 was required. The study suggests both nuclear and cytoplasmic PYR1 participate in the control of ABA signal transduction. - Highlights: • Nuclear and cytoplasmic functions of PYR1 were studied in the mutant which lacked majority of ABA responses. • Nuclear PYR1 reconstituted partially the ABA responses during seed germination, root growth, and guard cell movement. • Both the nuclear and cytoplasmic functions of PYR1 were required for the full generation of ABA responses.

  11. A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap.

    Science.gov (United States)

    Escalante-Pérez, María; Krol, Elzbieta; Stange, Annette; Geiger, Dietmar; Al-Rasheid, Khaled A S; Hause, Bettina; Neher, Erwin; Hedrich, Rainer

    2011-09-13

    Venus flytrap's leaves can catch an insect in a fraction of a second. Since the time of Charles Darwin, scientists have struggled to understand the sensory biology and biomechanics of this plant, Dionaea muscipula. Here we show that insect-capture of Dionaea traps is modulated by the phytohormone abscisic acid (ABA) and jasmonates. Water-stressed Dionaea, as well as those exposed to the drought-stress hormone ABA, are less sensitive to mechanical stimulation. In contrast, application of 12-oxo-phytodienoic acid (OPDA), a precursor of the phytohormone jasmonic acid (JA), the methyl ester of JA (Me-JA), and coronatine (COR), the molecular mimic of the isoleucine conjugate of JA (JA-Ile), triggers secretion of digestive enzymes without any preceding mechanical stimulus. Such secretion is accompanied by slow trap closure. Under physiological conditions, insect-capture is associated with Ca(2+) signaling and a rise in OPDA, Apparently, jasmonates bypass hapto-electric processes associated with trap closure. However, ABA does not affect OPDA-dependent gland activity. Therefore, signals for trap movement and secretion seem to involve separate pathways. Jasmonates are systemically active because application to a single trap induces secretion and slow closure not only in the given trap but also in all others. Furthermore, formerly touch-insensitive trap sectors are converted into mechanosensitive ones. These findings demonstrate that prey-catching Dionaea combines plant-specific signaling pathways, involving OPDA and ABA with a rapidly acting trigger, which uses ion channels, action potentials, and Ca(2+) signals.

  12. Mechanistic Basis for Plant Responses to Drought Stress : Regulatory Mechanism of Abscisic Acid Signaling

    Science.gov (United States)

    Miyakawa, Takuya; Tanokura, Masaru

    The phytohormone abscisic acid (ABA) plays a key role in the rapid adaptation of plants to environmental stresses such as drought and high salinity. Accumulated ABA in plant cells promotes stomatal closure in guard cells and transcription of stress-tolerant genes. Our understanding of ABA responses dramatically improved by the discovery of both PYR/PYL/RCAR as a soluble ABA receptor and inhibitory complex of a protein phospatase PP2C and a protein kinase SnRK2. Moreover, several structural analyses of PYR/PYL/RCAR revealed the mechanistic basis for the regulatory mechanism of ABA signaling, which provides a rational framework for the design of alternative agonists in future.

  13. RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack

    DEFF Research Database (Denmark)

    Liu, Jun; Elmore, James M.; Fuglsang, Anja Thoe

    2009-01-01

    Abstract Pathogen perception by the plant innate immune system is of central importance to plant survival and productivity. The Arabidopsis protein RIN4 is a negative regulator of plant immunity. In order to identify additional proteins involved in RIN4- mediated immune signal transduction, we...... purified components of the RIN4 protein complex. We identified six novel proteins that had not previously been implicated in RIN4 signaling, including the plasma membrane (PM) H+-ATPases AHA1 and/or AHA2. RIN4 interacts with AHA1 and AHA2 both in vitro and in vivo. RIN4 overexpression and knockout lines...... exhibit differential PM H+-ATPase activity. PM H+-ATPase activation induces stomatal opening, enabling bacteria to gain entry into the plant leaf; inactivation induces stomatal closure thus restricting bacterial invasion. The rin4 knockout line exhibited reduced PM H+-ATPase activity and, importantly, its...

  14. Inhibition by acrolein of light-induced stomatal opening through inhibition of inward-rectifying potassium channels in Arabidopsis thaliana.

    Science.gov (United States)

    Islam, Md Moshiul; Ye, Wenxiu; Matsushima, Daiki; Khokon, Md Atiqur Rahman; Munemasa, Shintaro; Nakamura, Yoshimasa; Murata, Yoshiyuki

    2015-01-01

    Acrolein is a reactive α,β-unsaturated aldehyde derived from lipid peroxides, which are produced in plants under a variety of stress. We investigated effects of acrolein on light-induced stomatal opening using Arabidopsis thaliana. Acrolein inhibited light-induced stomatal opening in a dose-dependent manner. Acrolein at 100 μM inhibited plasma membrane inward-rectifying potassium (Kin) channels in guard cells. Acrolein at 100 μM inhibited Kin channel KAT1 expressed in a heterologous system using Xenopus leaves oocytes. These results suggest that acrolein inhibits light-induced stomatal opening through inhibition of Kin channels in guard cells.

  15. Contrasting dynamics of leaf potential and gas exchange during progressive drought cycles and recovery in Amorpha fruticosa and Robinia pseudoacacia.

    Science.gov (United States)

    Yan, Weiming; Zheng, Shuxia; Zhong, Yangquanwei; Shangguan, Zhouping

    2017-06-30

    Leaf gas exchange is closely associated with water relations; however, less attention has been given to this relationship over successive drought events. Dynamic changes in gas exchange and water potential in the seedlings of two woody species, Amorpha fruticosa and Robinia pseudoacacia, were monitored during recurrent drought. The pre-dawn leaf water potential declined in parallel with gas exchange in both species, and sharp declines in gas exchange occurred with decreasing water potential. A significant correlation between pre-dawn water potential and gas exchange was observed in both species and showed a right shift in R. pseudoacacia in the second drought. The results suggested that stomatal closure in early drought was mediated mainly by elevated foliar abscisic acid (ABA) in R. pseudoacacia, while a shift from ABA-regulated to leaf-water-potential-driven stomatal closure was observed in A. fruticosa. After re-watering, the pre-dawn water potential recovered quickly, whereas stomatal conductance did not fully recover from drought in R. pseudoacacia, which affected the ability to tightly control transpiration post-drought. The dynamics of recovery from drought suggest that stomatal behavior post-drought may be restricted mainly by hydraulic factors, but non-hydraulic factors may also be involved in R. pseudoacacia.

  16. Silencing the SpMPK1, SpMPK2, and SpMPK3 Genes in Tomato Reduces Abscisic Acid—Mediated Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Yan Liang

    2013-11-01

    Full Text Available Drought is a major threat to agriculture production worldwide. Mitogen-activated protein kinases (MAPKs play a pivotal role in sensing and converting stress signals into appropriate responses so that plants can adapt and survive. To examine the function of MAPKs in the drought tolerance of tomato plants, we silenced the SpMPK1, SpMPK2, and SpMPK3 genes in wild-type plants using the virus-induced gene silencing (VIGS method. The results indicate that silencing the individual genes or co-silencing SpMPK1, SpMPK2, and SpMPK3 reduced the drought tolerance of tomato plants by varying degrees. Co-silencing SpMPK1 and SpMPK2 impaired abscisic acid (ABA-induced and hydrogen peroxide (H2O2-induced stomatal closure and enhanced ABA-induced H2O2 production. Similar results were observed when silencing SpMPK3 alone, but not when SpMPK1 and SpMPK2 were individually silenced. These data suggest that the functions of SpMPK1 and SpMPK2 are redundant, and they overlap with that of SpMPK3 in drought stress signaling pathways. In addition, we found that SpMPK3 may regulate H2O2 levels by mediating the expression of CAT1. Hence, SpMPK1, SpMPK2, and SpMPK3 may play crucial roles in enhancing tomato plants’ drought tolerance by influencing stomatal activity and H2O2 production via the ABA-H2O2 pathway.

  17. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells

    KAUST Repository

    Hu, Honghong

    2009-12-13

    The continuing rise in atmospheric CO2 causes stomatal pores in leaves to close and thus globally affects CO2 influx into plants, water use efficiency and leaf heat stress. However, the CO2-binding proteins that control this response remain unknown. Moreover, which cell type responds to CO2, mesophyll or guard cells, and whether photosynthesis mediates this response are matters of debate. We demonstrate that Arabidopsis thaliana double-mutant plants in the beta-carbonic anhydrases betaCA1 and betaCA4 show impaired CO2-regulation of stomatal movements and increased stomatal density, but retain functional abscisic-acid and blue-light responses. betaCA-mediated CO2-triggered stomatal movements are not, in first-order, linked to whole leaf photosynthesis and can function in guard cells. Furthermore, guard cell betaca-overexpressing plants exhibit instantaneous enhanced water use efficiency. Guard cell expression of mammalian alphaCAII complements the reduced sensitivity of ca1 ca4 plants, showing that carbonic anhydrase-mediated catalysis is an important mechanism for betaCA-mediated CO2-induced stomatal closure and patch clamp analyses indicate that CO2/HCO3- transfers the signal to anion channel regulation. These findings, together with ht1-2 (ref. 9) epistasis analysis demonstrate that carbonic anhydrases function early in the CO2 signalling pathway, which controls gas-exchange between plants and the atmosphere.

  18. Abscisic (ABA)-aldehyde is a precursor to, and 1',4'-trans-ABA-diol a catabolite of, ABA in apple

    International Nuclear Information System (INIS)

    Rock, C.D.; Zeevaart, J.A.D.

    1990-01-01

    Previous 18 O labeling studies of abscisic acid (ABA) have shown that apple (Malus domestica Borkh. cv Granny Smith) fruits synthesize a majority of [ 18 O]ABA with the label incorporated in the 1'-hydroxyl position and unlabeled in the carboxyl group (JAD Zeevaart, TG Heath, DA Gage [1989] Plant Physiol 91: 1594-1601). It was proposed that exchange of 18 O in the side chain with the medium occurred at an aldehyde intermediate stage of ABA biosynthesis. We have isolated ABA-aldehyde and 1'-4'-trans-ABA-diol (ABA-trans-diol) from 18 O-labeled apple fruit tissue and measured the extent and position of 18 O incorporation by tandem mass spectrometry. 18 O-Labeling patterns of ABA-aldehyde, ABA-trans-diol, and ABA indicate that ABA-aldehyde is a precursor to, and ABA-trans-diol a catabolite of, ABA. Exchange of 18 O in the carbonyl of ABA-aldehyde can be the cause of loss of 18 O from the side chain of [ 18 O]ABA. Results of feeding experiments with deuterated substrates provide further support for the precursor-product relationship of ABA-aldehyde → ABAABA-trans-diol. The ABA-aldehyde and ABA-trans-diol contents of fruits and leaves were low, approximately 1 and 0.02 nanograms per gram fresh weight for ABA-aldehyde and ABA-trans-diol, respectively, while ABA levels in fruits ranged from 10 to 200 nanograms per gram fresh weight. ABA biosynthesis was about 10-fold lower in fruits than in leaves. In fruits, the majority of ABA was conjugated to β-D-glucopyranosyl abscisate, whereas in leaves ABA was mainly hydroxylated to phaseic acid. Parallel pathways for ABA and trans-ABA biosynthesis and conjugation in fruits and leaves are proposed

  19. A fast method to detect the occurrence of nonhomogeneous distribution of stomatal aperture in heterobaric plant leaves : Experiments with Arbutus unedo L. during the diurnal course.

    Science.gov (United States)

    Beyschlag, W; Pfanz, H

    1990-01-01

    Pressure infiltration of water into a leaf via the stomatal pores can be used to quickly determine whether all stomata are open, or as recently described for several mesophytic and xerophytic species, whether there is a non-homogeneous distribution of stomatal opening (stomatal patchiness) on the leaf surface. Information about this phenomenon is important since the commonly used algorithms for calculation of leaf conductance from water vapor exchange measurements imply homogeneously open stomata, which in the occurrence of stomatal patchiness will lead to erroneous results. Infiltration experiments in a growth chamber with leaves of the Mediterranean evergreen shrub Arbutus unedo, carried out under simulated Mediterranean summer day conditions, where the species typically exhibits a strong midday stomatal closure, revealed a temporary occurrence of stomatal patchiness during the phase of stomatal closure in the late morning and during the stomatal reopening in the afternoon. Leaves were, however, found to be fully (i.e. homogeneously) infiltratable in the morning and in the evening. At midday during maximum stomatal closure, leaves were almost non-infiltratable. During the day, the infiltrated amount of water was found to be linearly correlated with porometer measurements of leaf conductance of the same leaves, carried out with the attached leaves immediately before infiltration.

  20. Species climate range influences hydraulic and stomatal traits in Eucalyptus species.

    Science.gov (United States)

    Bourne, Aimee E; Creek, Danielle; Peters, Jennifer M R; Ellsworth, David S; Choat, Brendan

    2017-07-01

    Plant hydraulic traits influence the capacity of species to grow and survive in water-limited environments, but their comparative study at a common site has been limited. The primary aim of this study was to determine whether selective pressures on species originating in drought-prone environments constrain hydraulic traits among related species grown under common conditions. Leaf tissue water relations, xylem anatomy, stomatal behaviour and vulnerability to drought-induced embolism were measured on six Eucalyptus species growing in a common garden to determine whether these traits were related to current species climate range and to understand linkages between the traits. Hydraulically weighted xylem vessel diameter, leaf turgor loss point, the water potential at stomatal closure and vulnerability to drought-induced embolism were significantly ( P Eucalyptus trees has important implications for the limits of species responses to changing environmental conditions and thus for species survival and distribution into the future, and yields new information for physiological models. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. The effect of denture stability, occlusion, oral hygiene and smoking on denture-induced stomatitis

    International Nuclear Information System (INIS)

    Nimri, Gadeer Mukatash

    2008-01-01

    This longitudinal clinical investigation was undertaken to find out the effect of denture wearing habit (day versus day and night), denture hygiene and cigarette smoking habit on the frequency of denture induced stomatitis. Comparisons were made between 240 complete denture wearers, half of whom were asked to wear their dentures at the daytime only and the other half to wear the denture day and night. All these participants were male patients with a mean age of 57.6 years who had received maxillary complete acrylic dentures for the first time. Fifty percent of the samples were smokers. A standard method for examination of the mouth and denture construction, insertion and follow up were employed. Putative risk factors (denture wearing habits, denture hygiene and smoking) were investigated. Subjects were recalled 12 months after insertion to examine the quality of the denture and the condition of the maxillary mucosa. No significant correlation was found between deterioration of stability or occlusion and type of habitual use of the dentures (P > 0.05). Fourteen percent of the cases reported with inflamed maxillary mucosa. Deterioration of retention or occlusion separately showed no correlation with the condition of the mucosa. However, associated deterioration of both stability and occlusion proved to be significantly correlated with the occurrence of denture stomatitis (P < 0.05). Denture stomatitis was significantly more frequently with subjects wearing their dentures overnight compared with those who removed them (P < 0.05). A significant correlation was also found between cigarette smoking, poor oral hygiene and the presence of denture induced stomatitis (P < 0.05). Nocturnal denture wearing habit, deficient oral and denture hygiene, and cigarette smoking are all important predisposing factors to denture-induced stomatitis, however, none of these factors was the sole cause of mucosal inflammation. (author)

  2. ABFs, a family of ABA-responsive element binding factors.

    Science.gov (United States)

    Choi, H; Hong, J; Ha, J; Kang, J; Kim, S Y

    2000-01-21

    Abscisic acid (ABA) plays an important role in environmental stress responses of higher plants during vegetative growth. One of the ABA-mediated responses is the induced expression of a large number of genes, which is mediated by cis-regulatory elements known as abscisic acid-responsive elements (ABREs). Although a number of ABRE binding transcription factors have been known, they are not specifically from vegetative tissues under induced conditions. Considering the tissue specificity of ABA signaling pathways, factors mediating ABA-dependent stress responses during vegetative growth phase may thus have been unidentified so far. Here, we report a family of ABRE binding factors isolated from young Arabidopsis plants under stress conditions. The factors, isolated by a yeast one-hybrid system using a prototypical ABRE and named as ABFs (ABRE binding factors) belong to a distinct subfamily of bZIP proteins. Binding site selection assay performed with one ABF showed that its preferred binding site is the strong ABRE, CACGTGGC. ABFs can transactivate an ABRE-containing reporter gene in yeast. Expression of ABFs is induced by ABA and various stress treatments, whereas their induction patterns are different from one another. Thus, a new family of ABRE binding factors indeed exists that have the potential to activate a large number of ABA/stress-responsive genes in Arabidopsis.

  3. Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall.

    Science.gov (United States)

    Amsbury, Sam; Hunt, Lee; Elhaddad, Nagat; Baillie, Alice; Lundgren, Marjorie; Verhertbruggen, Yves; Scheller, Henrik V; Knox, J Paul; Fleming, Andrew J; Gray, Julie E

    2016-11-07

    Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape [1]. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils [2], our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in un-esterified pectins. We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomatal function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomatal opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomatal function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO 2 , substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomatal function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomatal function and plant physiology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. A distal ABA responsive element in AtNCED3 promoter is required for positive feedback regulation of ABA biosynthesis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Yan-Zhuo Yang

    Full Text Available The plant hormone abscisic acid (ABA plays a crucial role in plant development and responses to abiotic stresses. Recent studies indicate that a positive feedback regulation by ABA exists in ABA biosynthesis in plants under dehydration stress. To understand the molecular basis of this regulation, we analyzed the cis-elements of the AtNCED3 promoter in Arabidopsis. AtNCED3 encodes the first committed and highly regulated dioxygenase in the ABA biosynthetic pathway. Through delineated and mutagenesis analyses in stable-transformed Arabidopsis, we revealed that a distal ABA responsive element (ABRE: GGCACGTG, -2372 to -2364 bp is required for ABA-induced AtNCED3 expression. By analyzing the AtNCED3 expression in ABRE binding protein ABF3 over-expression transgenic plants and knock-out mutants, we provide evidence that the ABA feedback regulation of AtNCED3 expression is not mediated by ABF3.

  5. A distal ABA responsive element in AtNCED3 promoter is required for positive feedback regulation of ABA biosynthesis in Arabidopsis.

    Science.gov (United States)

    Yang, Yan-Zhuo; Tan, Bao-Cai

    2014-01-01

    The plant hormone abscisic acid (ABA) plays a crucial role in plant development and responses to abiotic stresses. Recent studies indicate that a positive feedback regulation by ABA exists in ABA biosynthesis in plants under dehydration stress. To understand the molecular basis of this regulation, we analyzed the cis-elements of the AtNCED3 promoter in Arabidopsis. AtNCED3 encodes the first committed and highly regulated dioxygenase in the ABA biosynthetic pathway. Through delineated and mutagenesis analyses in stable-transformed Arabidopsis, we revealed that a distal ABA responsive element (ABRE: GGCACGTG, -2372 to -2364 bp) is required for ABA-induced AtNCED3 expression. By analyzing the AtNCED3 expression in ABRE binding protein ABF3 over-expression transgenic plants and knock-out mutants, we provide evidence that the ABA feedback regulation of AtNCED3 expression is not mediated by ABF3.

  6. Overexpression of AtEDT1/HDG11 in Chinese Kale (Brassica oleracea var. alboglabra) Enhances Drought and Osmotic Stress Tolerance.

    Science.gov (United States)

    Zhu, Zhangsheng; Sun, Binmei; Xu, Xiaoxia; Chen, Hao; Zou, Lifang; Chen, Guoju; Cao, Bihao; Chen, Changming; Lei, Jianjun

    2016-01-01

    Plants are constantly challenged by environmental stresses, including drought and high salinity. Improvement of drought and osmotic stress tolerance without yield decrease has been a great challenge in crop improvement. The Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a protein of the class IV HD-Zip family, has been demonstrated to significantly improve drought tolerance in Arabidopsis, rice, and pepper. Here, we report that AtEDT1/HDG11 confers drought and osmotic stress tolerance in the Chinese kale. AtEDT1/HDG11-overexpression lines exhibit auxin-overproduction phenotypes, such as long hypocotyls, tall stems, more root hairs, and a larger root system architecture. Compared with the untransformed control, transgenic lines have significantly reduced stomatal density. In the leaves of transgenic Chinese kale plants, proline (Pro) content and reactive oxygen species-scavenging enzyme activity was significantly increased after drought and osmotic stress, particularly compared to wild kale. More importantly, AtEDT1/HDG11-overexpression leads to abscisic acid (ABA) hypersensitivity, resulting in ABA inhibitor germination and induced stomatal closure. Consistent with observed phenotypes, the expression levels of auxin, ABA, and stress-related genes were also altered under both normal and/or stress conditions. Further analysis showed that AtEDT1/HDG11, as a transcription factor, can target the auxin biosynthesis gene YUCC6 and ABA response genes ABI3 and ABI5. Collectively, our results provide a new insight into the role of AtEDT1/HDG11 in enhancing abiotic stress resistance through auxin- and ABA-mediated signaling response in Chinese kale.

  7. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination

    Directory of Open Access Journals (Sweden)

    Erwann eArc

    2013-03-01

    Full Text Available Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8’-hydroxylation. The hormonal balance between ABA and gibberellins (GAs has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8’-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination.

  8. Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L) and cabbage (Brassica campestris).

    Science.gov (United States)

    Zhu, Su-Qin; Chen, Ming-Wei; Ji, Ben-Hua; Jiao, De-Mao; Liang, Jian-Sheng

    2011-08-01

    Changes in actual efficiency of PS II photochemistry, non-photochemical quenching (NPQ), content of xanthophylls and kinetics of de-epoxidation were studied in ABA-fed and non-ABA-fed leaves of rice and cabbage under NaCl stress. Salt stress induced more progressive decrease in actual efficiency of PS II photochemistry (ФPS II), higher reduction state of PS II, and a small significant increase in NPQ in NaCl-sensitive rice plants as compared with NaCl-tolerant cabbage plants, whereas exogenously supplied ABA alleviated the decrease in actual efficiency of PS II photochemistry (ФPS II), induced a lower reduction state of PS II, and caused higher capacity of NPQ in ABA-fed plants than in non-ABA-fed plants. As a result, there were higher activities of photosynthetic electron transport, higher capacity of energy dissipation, and lower cumulation of excess light in cabbage than in rice plants, and in ABA-fed leaves than in non-ABA-fed leaves. The effect of ABA was more efficient in cabbage than in rice plants. Addition of exogenous ABA resulted in enhancement of the size of the xanthophyll cycle pool, promotion of de-epoxidation of the xanthophyll cycle components, and a rise in the level of NPQ by altering the kinetics of de-epoxidation of the xanthophyll cycle. Protection from photodamage appears to be achieved by coordinated contributions by exogenous ABA and xanthophyll cycle-mediated NPQ. This variety of photoprotective mechanisms may be essential for conferring photodamage tolerance under NaCl stress. © The Author [2011]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved.

  9. Arabidopsis DREB2C modulates ABA biosynthesis during germination.

    Science.gov (United States)

    Je, Jihyun; Chen, Huan; Song, Chieun; Lim, Chae Oh

    2014-09-12

    Plant dehydration-responsive element binding factors (DREBs) are transcriptional regulators of the APETELA2/Ethylene Responsive element-binding Factor (AP2/ERF) family that control expression of abiotic stress-related genes. We show here that under conditions of mild heat stress, constitutive overexpression seeds of transgenic DREB2C overexpression Arabidopsis exhibit delayed germination and increased abscisic acid (ABA) content compared to untransformed wild-type (WT). Treatment with fluridone, an inhibitor of the ABA biosynthesis abrogated these effects. Expression of an ABA biosynthesis-related gene, 9-cis-epoxycarotenoid dioxygenase 9 (NCED9) was up-regulated in the DREB2C overexpression lines compared to WT. DREB2C was able to trans-activate expression of NCED9 in Arabidopsis leaf protoplasts in vitro. Direct and specific binding of DREB2C to a complete DRE on the NCED9 promoter was observed in electrophoretic mobility shift assays. Exogenous ABA treatment induced DREB2C expression in germinating seeds of WT. Vegetative growth of transgenic DREB2C overexpression lines was more strongly inhibited by exogenous ABA compared to WT. These results suggest that DREB2C is a stress- and ABA-inducible gene that acts as a positive regulator of ABA biosynthesis in germinating seeds through activating NCED9 expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells

    Science.gov (United States)

    Brandt, Benjamin; Munemasa, Shintaro; Wang, Cun; Nguyen, Desiree; Yong, Taiming; Yang, Paul G; Poretsky, Elly; Belknap, Thomas F; Waadt, Rainer; Alemán, Fernando; Schroeder, Julian I

    2015-01-01

    A central question is how specificity in cellular responses to the eukaryotic second messenger Ca2+ is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca2+-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca2+-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca2+-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruple mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca2+-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca2+-dependent and Ca2+-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca2+-signaling on a cellular, genetic, and biochemical level. DOI: http://dx.doi.org/10.7554/eLife.03599.001 PMID:26192964

  11. Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth.

    Science.gov (United States)

    Wang, Yin; Noguchi, Ko; Ono, Natsuko; Inoue, Shin-ichiro; Terashima, Ichiro; Kinoshita, Toshinori

    2014-01-07

    Stomatal pores surrounded by a pair of guard cells in the plant epidermis control gas exchange between plants and the atmosphere in response to light, CO2, and the plant hormone abscisic acid. Light-induced stomatal opening is mediated by at least three key components: the blue light receptor phototropin (phot1 and phot2), plasma membrane H(+)-ATPase, and plasma membrane inward-rectifying K(+) channels. Very few attempts have been made to enhance stomatal opening with the goal of increasing photosynthesis and plant growth, even though stomatal resistance is thought to be the major limiting factor for CO2 uptake by plants. Here, we show that transgenic Arabidopsis plants overexpressing H(+)-ATPase using the strong guard cell promoter GC1 showed enhanced light-induced stomatal opening, photosynthesis, and plant growth. The transgenic plants produced larger and increased numbers of rosette leaves, with ∼42-63% greater fresh and dry weights than the wild type in the first 25 d of growth. The dry weights of total flowering stems of 45-d-old transgenic plants, including seeds, siliques, and flowers, were ∼36-41% greater than those of the wild type. In addition, stomata in the transgenic plants closed normally in response to darkness and abscisic acid. In contrast, the overexpression of phototropin or inward-rectifying K(+) channels in guard cells had no effect on these phenotypes. These results demonstrate that stomatal aperture is a limiting factor in photosynthesis and plant growth, and that manipulation of stomatal opening by overexpressing H(+)-ATPase in guard cells is useful for the promotion of plant growth.

  12. Anion channels: master switches of stress responses.

    Science.gov (United States)

    Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar

    2012-04-01

    During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. WRKY transcription factors: key components in abscisic acid signalling.

    Science.gov (United States)

    Rushton, Deena L; Tripathi, Prateek; Rabara, Roel C; Lin, Jun; Ringler, Patricia; Boken, Ashley K; Langum, Tanner J; Smidt, Lucas; Boomsma, Darius D; Emme, Nicholas J; Chen, Xianfeng; Finer, John J; Shen, Qingxi J; Rushton, Paul J

    2012-01-01

    WRKY transcription factors (TFs) are key regulators of many plant processes, including the responses to biotic and abiotic stresses, senescence, seed dormancy and seed germination. For over 15 years, limited evidence has been available suggesting that WRKY TFs may play roles in regulating plant responses to the phytohormone abscisic acid (ABA), notably some WRKY TFs are ABA-inducible repressors of seed germination. However, the roles of WRKY TFs in other aspects of ABA signalling, and the mechanisms involved, have remained unclear. Recent significant progress in ABA research has now placed specific WRKY TFs firmly in ABA-responsive signalling pathways, where they act at multiple levels. In Arabidopsis, WRKY TFs appear to act downstream of at least two ABA receptors: the cytoplasmic PYR/PYL/RCAR-protein phosphatase 2C-ABA complex and the chloroplast envelope-located ABAR-ABA complex. In vivo and in vitro promoter-binding studies show that the target genes for WRKY TFs that are involved in ABA signalling include well-known ABA-responsive genes such as ABF2, ABF4, ABI4, ABI5, MYB2, DREB1a, DREB2a and RAB18. Additional well-characterized stress-inducible genes such as RD29A and COR47 are also found in signalling pathways downstream of WRKY TFs. These new insights also reveal that some WRKY TFs are positive regulators of ABA-mediated stomatal closure and hence drought responses. Conversely, many WRKY TFs are negative regulators of seed germination, and controlling seed germination appears a common function of a subset of WRKY TFs in flowering plants. Taken together, these new data demonstrate that WRKY TFs are key nodes in ABA-responsive signalling networks. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  14. Characterization of Plant Growth under Single-Wavelength Laser Light Using the Model Plant Arabidopsis Thaliana

    KAUST Repository

    Ooi, Amanda

    2016-12-01

    Indoor horticulture offers a promising solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available lighting is suboptimal, therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. Lasers are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Besides, laser beams can be tailored to match the absorption profiles of different plants. We have developed a prototype laser growth chamber and demonstrate that laser-grown plants can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteomic data show that the singlewavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture. Furthermore, stomatal movement partly determines the plant productivity and stress management. Abscisic acid (ABA) induces stomatal closure by promoting net K+-efflux from guard cells through outwardrectifying K+ (K+ out) channels to regulate plant water homeostasis. Here, we show that the Arabidopsis thaliana guard cell outward-rectifying K+ (ATGORK) channel is a direct target for ABA in the regulation of stomatal aperture and hence gas exchange and transpiration. Addition of (±)-ABA, but not the biologically inactive (−)-isomer, increases K+ out channel activity in Vicia faba guard cell protoplast. A similar ABA

  15. Open or close the gate – stomata action under the control of phytohormones in drought stress conditions

    Directory of Open Access Journals (Sweden)

    Agata eDaszkowska-Golec

    2013-05-01

    Full Text Available Two highly specialized cells, the guard cells that surround the stomatal pore, are able to integrate environmental and endogenous signals in order to control the stomatal aperture and thereby the gas exchange. The uptake of CO2 is associated with a loss of water by leaves. Control of the size of the stomatal aperture optimizes the efficiency of water use through dynamic changes in the turgor of the guard cells. The opening and closing of stomata is regulated by the integration of environmental signals and endogenous hormonal stimuli. The various different factors to which the guard cells respond translates into the complexity of the network of signaling pathways that control stomatal movements. The perception of an abiotic stress triggers the activation of signal transduction cascades that interact with or are activated by phytohormones. Among these, abscisic acid (ABA, is the best-known stress hormone that closes the stomata, although other phytohormones, such as jasmonic acid, brassinosteroids, cytokinins or ethylene are also involved in the stomatal response to stresses. As a part of the drought response, ABA may interact with jasmonic acid and nitric oxide in order to stimulate stomatal closure. In addition, the regulation of gene expression in response to ABA involves genes that are related to ethylene, cytokinins and auxin signaling. In this paper, recent findings on phytohormone crosstalk, changes in signaling pathways including the expression of specific genes and their impact on modulating stress response through the closing or opening of stomata, together with the highlights of gaps that need to be elucidated in the signaling network of stomatal regulation, are reviewed.

  16. Conifer species adapt to low-rainfall climates by following one of two divergent pathways.

    Science.gov (United States)

    Brodribb, Timothy J; McAdam, Scott A M; Jordan, Gregory J; Martins, Samuel C V

    2014-10-07

    Water stress is one of the primary selective forces in plant evolution. There are characters often cited as adaptations to water stress, but links between the function of these traits and adaptation to drying climates are tenuous. Here we combine distributional, climatic, and physiological evidence from 42 species of conifers to show that the evolution of drought resistance follows two distinct pathways, both involving the coordinated evolution of tissues regulating water supply (xylem) and water loss (stomatal pores) in leaves. Only species with very efficient stomatal closure, and hence low minimum rates of water loss, inhabit dry habitats, but species diverged in their apparent mechanism for maintaining closed stomata during drought. An ancestral mechanism found in Pinaceae and Araucariaceae species relies on high levels of the hormone abscisic acid (ABA) to close stomata during water stress. A second mechanism, found in the majority of Cupressaceae species, uses leaf desiccation rather than high ABA levels to close stomata during sustained water stress. Species in the latter group were characterized by xylem tissues with extreme resistance to embolism but low levels of foliar ABA after 30 d without water. The combination of low levels of ABA under stress with cavitation-resistant xylem enables these species to prolong stomatal opening during drought, potentially extending their photosynthetic activity between rainfall events. Our data demonstrate a surprising simplicity in the way conifers evolved to cope with water shortage, indicating a critical interaction between xylem and stomatal tissues during the process of evolution to dry climates.

  17. The rose (Rosa hybrida) NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis.

    Science.gov (United States)

    Jiang, Guimei; Jiang, Xinqiang; Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing

    2014-01-01

    Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein

  18. The rose (Rosa hybrida NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Guimei Jiang

    Full Text Available Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida, RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose Rh

  19. Manipulation of the apoplastic pH of intact plants mimics stomatal and growth responses to water availability and microclimatic variation.

    Science.gov (United States)

    Wilkinson, Sally; Davies, William J

    2008-01-01

    The apoplastic pH of intact Forsythiaxintermedia (cv. Lynwood) and tomato (Solanum lycopersicum) plants has been manipulated using buffered foliar sprays, and thereby stomatal conductance (g(s)), leaf growth rate, and plant water loss have been controlled. The more alkaline the pH of the foliar spray, the lower the g(s) and/or leaf growth rate subsequently measured. The most alkaline pH that was applied corresponds to that measured in sap extracted from shoots of tomato and Forsythia plants experiencing, respectively, soil drying or a relatively high photon flux density (PFD), vapour pressure deficit (VPD), and temperature in the leaf microclimate. The negative correlation between PFD/VPD/temperature and g(s) determined in well-watered Forsythia plants exposed to a naturally varying summer microclimate was eliminated by spraying the plants with relatively alkaline but not acidic buffers, providing evidence for a novel pH-based signalling mechanism linking the aerial microclimate with stomatal aperture. Increasing the pH of the foliar spray only reduced g(s) in plants of the abscisic acid (ABA)-deficient flacca mutant of tomato when ABA was simultaneously sprayed onto leaves or injected into stems. In well-watered Forsythia plants exposed to a naturally varying summer microclimate (variable PFD, VPD, and temperature), xylem pH and leaf ABA concentration fluctuated but were positively correlated. Manipulation of foliar apoplastic pH also affected the response of g(s) and leaf growth to ABA injected into stems of intact Forsythia plants. The techniques used here to control physiology and water use in intact growing plants could easily be applied in a horticultural context.

  20. Ecophysiological response to seasonal variations in water availability in the arborescent, endemic plant Vellozia gigantea.

    Science.gov (United States)

    Morales, Melanie; Garcia, Queila S; Munné-Bosch, Sergi

    2015-03-01

    The physiological response of plants growing in their natural habitat is strongly determined by seasonal variations in environmental conditions and the interaction of abiotic and biotic stresses. Here, leaf water and nutrient contents, changes in cellular redox state and endogenous levels of stress-related phytohormones (abscisic acid (ABA), salicylic acid and jasmonates) were examined during the rainy and dry season in Vellozia gigantea, an endemic species growing at high elevations in the rupestrian fields of the Espinhaço Range in Brazil. Enhanced stomatal closure and increased ABA levels during the dry season were associated with an efficient control of leaf water content. Moreover, reductions in 12-oxo-phytodienoic acid (OPDA) levels during the dry season were observed, while levels of other jasmonates, such as jasmonic acid and jasmonoyl-isoleucine, were not affected. Changes in ABA and OPDA levels correlated with endogenous concentrations of iron and silicon, hydrogen peroxide, and vitamin E, thus indicating complex interactions between water and nutrient contents, changes in cellular redox state and endogenous hormone concentrations. Results also suggested crosstalk between activation of mechanisms for drought stress tolerance (as mediated by ABA) and biotic stress resistance (mediated by jasmonates), in which vitamin E levels may serve as a control point. It is concluded that, aside from a tight ABA-associated regulation of stomatal closure during the dry season, crosstalk between activation of abiotic and biotic defences, and nutrient accumulation in leaves may be important modulators of plant stress responses in plants growing in their natural habitat. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. The Arabidopsis guard cell outward potassium channel GORK is regulated by CPK33.

    Science.gov (United States)

    Corratgé-Faillie, Claire; Ronzier, Elsa; Sanchez, Frédéric; Prado, Karine; Kim, Jeong-Hyeon; Lanciano, Sophie; Leonhardt, Nathalie; Lacombe, Benoît; Xiong, Tou Cheu

    2017-07-01

    A complex signaling network involving voltage-gated potassium channels from the Shaker family contributes to the regulation of stomatal aperture. Several kinases and phosphatases have been shown to be crucial for ABA-dependent regulation of the ion transporters. To date, the Ca 2+ -dependent regulation of Shaker channels by Ca 2+ -dependent protein kinases (CPKs) is still elusive. A functional screen in Xenopus oocytes was launched to identify such CPKs able to regulate the three main guard cell Shaker channels KAT1, KAT2, and GORK. Seven guard cell CPKs were tested and multiple CPK/Shaker couples were identified. Further work on CPK33 indicates that GORK activity is enhanced by CPK33 and unaffected by a nonfunctional CPK33 (CPK33-K102M). Furthermore, Ca 2+ -induced stomatal closure is impaired in two cpk33 mutant plants. © 2017 Federation of European Biochemical Societies.

  2. Arabidopsis C3HC4-RING finger E3 ubiquitin ligase AtAIRP4 positively regulates stress-responsive abscisic acid signaling.

    Science.gov (United States)

    Yang, Liang; Liu, Qiaohong; Liu, Zhibin; Yang, Hao; Wang, Jianmei; Li, Xufeng; Yang, Yi

    2016-01-01

    Degradation of proteins via the ubiquitin system is an important step in many stress signaling pathways in plants. E3 ligases recognize ligand proteins and dictate the high specificity of protein degradation, and thus, play a pivotal role in ubiquitination. Here, we identified a gene, named Arabidopsis thaliana abscisic acid (ABA)-insensitive RING protein 4 (AtAIRP4), which is induced by ABA and other stress treatments. AtAIRP4 encodes a cellular protein with a C3HC4-RING finger domain in its C-terminal side, which has in vitro E3 ligase activity. Loss of AtAIRP4 leads to a decrease in sensitivity of root elongation and stomatal closure to ABA, whereas overexpression of this gene in the T-DNA insertion mutant atairp4 effectively recovered the ABA-associated phenotypes. AtAIRP4 overexpression plants were hypersensitive to salt and osmotic stresses during seed germination, and showed drought avoidance compared with the wild-type and atairp4 mutant plants. In addition, the expression levels of ABA- and drought-induced marker genes in AtAIRP4 overexpression plants were markedly higher than those in the wild-type and atairp4 mutant plants. Hence, these results indicate that AtAIRP4 may act as a positive regulator of ABA-mediated drought avoidance and a negative regulator of salt tolerance in Arabidopsis. © 2015 The Authors. Journal of Integrative Plant Biology published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  3. A rate equation model of stomatal responses to vapour pressure deficit and drought

    Directory of Open Access Journals (Sweden)

    Shanahan ST

    2002-08-01

    Full Text Available Abstract Background Stomata respond to vapour pressure deficit (D – when D increases, stomata begin to close. Closure is the result of a decline in guard cell turgor, but the link between D and turgor is poorly understood. We describe a model for stomatal responses to increasing D based upon cellular water relations. The model also incorporates impacts of increasing levels of water stress upon stomatal responses to increasing D. Results The model successfully mimics the three phases of stomatal responses to D and also reproduces the impact of increasing plant water deficit upon stomatal responses to increasing D. As water stress developed, stomata regulated transpiration at ever decreasing values of D. Thus, stomatal sensitivity to D increased with increasing water stress. Predictions from the model concerning the impact of changes in cuticular transpiration upon stomatal responses to increasing D are shown to conform to experimental data. Sensitivity analyses of stomatal responses to various parameters of the model show that leaf thickness, the fraction of leaf volume that is air-space, and the fraction of mesophyll cell wall in contact with air have little impact upon behaviour of the model. In contrast, changes in cuticular conductance and membrane hydraulic conductivity have significant impacts upon model behaviour. Conclusion Cuticular transpiration is an important feature of stomatal responses to D and is the cause of the 3 phase response to D. Feed-forward behaviour of stomata does not explain stomatal responses to D as feedback, involving water loss from guard cells, can explain these responses.

  4. Analysis of Mining-induced Valley Closure Movements

    Science.gov (United States)

    Zhang, C.; Mitra, R.; Oh, J.; Hebblewhite, B.

    2016-05-01

    Valley closure movements have been observed for decades in Australia and overseas when underground mining occurred beneath or in close proximity to valleys and other forms of irregular topographies. Valley closure is defined as the inward movements of the valley sides towards the valley centreline. Due to the complexity of the local geology and the interplay between several geological, topographical and mining factors, the underlying mechanisms that actually cause this behaviour are not completely understood. A comprehensive programme of numerical modelling investigations has been carried out to further evaluate and quantify the influence of a number of these mining and geological factors and their inter-relationships. The factors investigated in this paper include longwall positional factors, horizontal stress, panel width, depth of cover and geological structures around the valley. It is found that mining in a series passing beneath the valley dramatically increases valley closure, and mining parallel to valley induces much more closure than other mining orientations. The redistribution of horizontal stress and influence of mining activity have also been recognised as important factors promoting valley closure, and the effect of geological structure around the valley is found to be relatively small. This paper provides further insight into both the valley closure mechanisms and how these mechanisms should be considered in valley closure prediction models.

  5. Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo.

    Science.gov (United States)

    Paoletti, Elena

    2005-04-01

    The effect of a 90-d ozone exposure (charcoal-filtered air or 110 nmol mol(-1) O3) on stomatal conductance (gs) was investigated in the Mediterranean evergreen broadleaf Arbutus unedo L. Ozone did not significantly reduce midday steady-state gs compared to controls. However, it slowed stomatal response to abrupt reduction of light intensity and to increasing water stress, applied by severing the leaf midrib. Ozone slowed stomatal closure, rather than aperture. Nevertheless, vein-cutting did not allow ozonated leaves to reach the pre-injury gs levels, like controls did, suggesting re-opening was still, slowly in progress. The sluggish behaviour was recorded 10 days after cessation of O3 exposure ("memory effect") and may affect stomatal control in response to sunflecks and leaf wounding. Mediterranean evergreen broadleaves are regarded as tolerant to O3 exposure. Nevertheless, measurements of steady-state gs at midday may not account for altered stomatal responses to stressors.

  6. Stomatal Blue Light Response Is Present in Early Vascular Plants.

    Science.gov (United States)

    Doi, Michio; Kitagawa, Yuki; Shimazaki, Ken-ichiro

    2015-10-01

    Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss with the ability to rapidly open and close stomata. We surveyed the stomatal opening in response to strong red light (RL) and weak BL under the RL with gas exchange technique in a diverse selection of plant species from euphyllophytes, including spermatophytes and monilophytes, to lycophytes. We showed the presence of RL-induced stomatal opening in most of these species and found that the BL responses operated in all euphyllophytes except Polypodiopsida. We also confirmed that the stomatal opening in lycophytes, the early vascular plants, is driven by plasma membrane proton-translocating adenosine triphosphatase and K(+) accumulation in guard cells, which is the same mechanism operating in stomata of angiosperms. These results suggest that the early vascular plants respond to both RL and BL and actively regulate stomatal aperture. We also found three plant species that absolutely require BL for both stomatal opening and photosynthetic CO2 fixation, including a gymnosperm, C. revoluta, and the ferns Equisetum hyemale and Psilotum nudum. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. Oral cryotherapy for the prevention of high-dose melphalan-induced stomatitis in allogeneic hematopoietic stem cell transplant recipients.

    Science.gov (United States)

    Aisa, Yoshinobu; Mori, Takehiko; Kudo, Masumi; Yashima, Tomoko; Kondo, Sakiko; Yokoyama, Akihiro; Ikeda, Yasuo; Okamoto, Shinichiro

    2005-04-01

    The purpose of this study was to evaluate the efficacy of oral cryotherapy to prevent high-dose melphalan-induced stomatitis. Eighteen consecutive recipients of allogeneic hematopoietic stem cell transplant conditioned with high-dose melphalan (140 mg/m2) in combination with fludarabine alone or with fludarabine and additional chemotherapy or radiation were enrolled. The severity of stomatitis was graded according to the National Cancer Institute Common Toxicity Criteria. Patients were kept on oral cryotherapy using ice chips and ice-cold water shortly before, during, and for additional 90 min after completion of melphalan administration. Only two of 18 patients (11.1%) developed grade 2 or 3 stomatitis while six of seven patients in the historical control developed it (85.7%; P=0.001). These results suggested that oral cryotherapy could effectively prevent stomatitis caused by high-dose melphalan, and we recommend that it should be incorporated into the conditioning regimen with high-dose melphalan.

  8. The dilemma of saving water or being cool: What determines the stomatal response under a changing climate?

    Science.gov (United States)

    Haghighi, Erfan; Kirchner, James W.; Entekhabi, Dara

    2017-04-01

    Stomata play a critical role in terrestrial water and carbon cycles, regulating the trade-off between photosynthetic carbon gain and water loss in leaves. They adjust their aperture in response to a number of physiological and environmental factors, yet the mechanisms driving this response, particularly under climate extremes, remain poorly understood. Partial or complete stomatal closure reduces plant water stress under water-limited or high atmospheric evaporative demand conditions, but at the cost of reduced productivity, elevated heat, leaf shedding, and mortality. A proper account of such complex stomatal behavior is of particular importance for current ecosystem models that poorly capture observed vegetation responses in the context of climate change which is predicted to cause more frequent and intense temperature extremes along with an increase in the frequency of drought in many regions in the future. This study seeks to explore stomatal responses to environmental change accounted for by a varying soil-plant resistance under different atmospheric and soil moisture conditions. To this end, we developed a physically based transpiration model that couples stomatal control of leaf gas exchange to the leaf surface energy balance and the entire plant hydraulic system by considering the interdependence of the guard cell water potential (or turgor pressure) and transpiration rates. Model simulations of diurnal variations in transpiration rates were in good agreement with field observations, and facilitated quantitative prediction of stomatal and xylem flow regulation under a wide range of environmental conditions. Preliminary results demonstrate how soil and plant hydraulic conductances regulating stomatal opening and closure can help mitigate climatic water deficit (e.g., at midday) by boosting evaporative cooling. Our results are expected to advance physical understanding of the water cycle in the soil-plant-atmosphere continuum, and shed light on observed

  9. Lipid profiling demonstrates that suppressing Arabidopsis phospholipase Dδ retards ABA-promoted leaf senescence by attenuating lipid degradation.

    Directory of Open Access Journals (Sweden)

    Yanxia Jia

    Full Text Available Senescence is the last phase of the plant life cycle and has an important role in plant development. Degradation of membrane lipids is an essential process during leaf senescence. Several studies have reported fundamental changes in membrane lipids and phospholipase D (PLD activity as leaves senesce. Suppression of phospholipase Dα1 (PLDα1 retards abscisic acid (ABA-promoted senescence. However, given the absence of studies that have profiled changes in the compositions of membrane lipid molecules during leaf senescence, there is no direct evidence that PLD affects lipid composition during the process. Here, we show that application of n-butanol, an inhibitor of PLD, and N-Acylethanolamine (NAE 12∶0, a specific inhibitor of PLDα1, retarded ABA-promoted senescence to different extents. Furthermore, phospholipase Dδ (PLDδ was induced in leaves treated with ABA, and suppression of PLDδ retarded ABA-promoted senescence in Arabidopsis. Lipid profiling revealed that detachment-induced senescence had different effects on plastidic and extraplastidic lipids. The accelerated degradation of plastidic lipids during ABA-induced senescence in wild-type plants was attenuated in PLDδ-knockout (PLDδ-KO plants. Dramatic increases in phosphatidic acid (PA and decreases in phosphatidylcholine (PC during ABA-induced senescence were also suppressed in PLDδ-KO plants. Our results suggest that PLDδ-mediated hydrolysis of PC to PA plays a positive role in ABA-promoted senescence. The attenuation of PA formation resulting from suppression of PLDδ blocks the degradation of membrane lipids, which retards ABA-promoted senescence.

  10. Effects of stomatal development on stomatal conductance and on stomatal limitation of photosynthesis in Syringa oblata and Euonymus japonicus Thunb.

    Science.gov (United States)

    Wu, Bing-Jie; Chow, Wah Soon; Liu, Yu-Jun; Shi, Lei; Jiang, Chuang-Dao

    2014-12-01

    During leaf development, the increase in stomatal conductance cannot meet photosynthetic demand for CO2, thus leading to stomatal limitation of photosynthesis (Ls). Considering the crucial influences of stomatal development on stomatal conductance, we speculated whether stomatal development limits photosynthesis to some extent. To test this hypothesis, stomatal development, stomatal conductance and photosynthesis were carefully studied in both Syringa oblata (normal greening species) and Euonymus japonicus Thunb (delayed greening species). Our results show that the size of stomata increased gradually with leaf expansion, resulting in increased stomatal conductance up to the time of full leaf expansion. During this process, photosynthesis also increased steadily. Compared to that in S. oblata, the development of chloroplasts in E. japonicus Thunb was obviously delayed, leading to a delay in the improvement of photosynthetic capacity. Further analysis revealed that before full leaf expansion, stomatal limitation increased rapidly in both S. oblata and E. japonicus Thunb; after full leaf expansion, stomatal limitation continually increased in E. japonicus Thunb. Accordingly, we suggested that the enhancement of photosynthetic capacity is the main factor leading to stomatal limitation during leaf development but that stomatal development can alleviate stomatal limitation with the increase of photosynthesis by controlling gas exchange. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo

    Energy Technology Data Exchange (ETDEWEB)

    Paoletti, Elena [Istituto Protezione Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano, I-50019 Sesto Fiorentino (Italy)]. E-mail: e.paoletti@ipp.cnr.it

    2005-04-01

    The effect of a 90-d ozone exposure (charcoal-filtered air or 110 nmol mol{sup -1} O{sub 3}) on stomatal conductance (g{sub s}) was investigated in the Mediterranean evergreen broadleaf Arbutus unedo L. Ozone did not significantly reduce midday steady-state g{sub s} compared to controls. However, it slowed stomatal response to abrupt reduction of light intensity and to increasing water stress, applied by severing the leaf midrib. Ozone slowed stomatal closure, rather than aperture. Nevertheless, vein-cutting did not allow ozonated leaves to reach the pre-injury g{sub s} levels, like controls did, suggesting re-opening was still, slowly in progress. The sluggish behaviour was recorded 10 days after cessation of O{sub 3} exposure ('memory effect') and may affect stomatal control in response to sunflecks and leaf wounding. Mediterranean evergreen broadleaves are regarded as tolerant to O{sub 3} exposure. Nevertheless, measurements of steady-state g{sub s} at midday may not account for altered stomatal responses to stressors. - In response to ozone exposure, stomata were slower in closing rather than in opening.

  12. Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo

    International Nuclear Information System (INIS)

    Paoletti, Elena

    2005-01-01

    The effect of a 90-d ozone exposure (charcoal-filtered air or 110 nmol mol -1 O 3 ) on stomatal conductance (g s ) was investigated in the Mediterranean evergreen broadleaf Arbutus unedo L. Ozone did not significantly reduce midday steady-state g s compared to controls. However, it slowed stomatal response to abrupt reduction of light intensity and to increasing water stress, applied by severing the leaf midrib. Ozone slowed stomatal closure, rather than aperture. Nevertheless, vein-cutting did not allow ozonated leaves to reach the pre-injury g s levels, like controls did, suggesting re-opening was still, slowly in progress. The sluggish behaviour was recorded 10 days after cessation of O 3 exposure ('memory effect') and may affect stomatal control in response to sunflecks and leaf wounding. Mediterranean evergreen broadleaves are regarded as tolerant to O 3 exposure. Nevertheless, measurements of steady-state g s at midday may not account for altered stomatal responses to stressors. - In response to ozone exposure, stomata were slower in closing rather than in opening

  13. Inhibition of tomato shoot growth by over-irrigation is linked to nitrogen deficiency and ethylene.

    Science.gov (United States)

    Fiebig, Antje; Dodd, Ian C

    2016-01-01

    Although physiological effects of acute flooding have been well studied, chronic effects of suboptimal soil aeration caused by over-irrigation of containerized plants have not, despite its likely commercial significance. By automatically scheduling irrigation according to soil moisture thresholds, effects of over-irrigation on soil properties (oxygen concentration, temperature and moisture), leaf growth, gas exchange, phytohormone [abscisic acid (ABA) and ethylene] relations and nutrient status of tomato (Solanum lycopersicum Mill. cv. Ailsa Craig) were studied. Over-irrigation slowly increased soil moisture and decreased soil oxygen concentration by 4%. Soil temperature was approximately 1°C lower in the over-irrigated substrate. Over-irrigating tomato plants for 2 weeks significantly reduced shoot height (by 25%) and fresh weight and total leaf area (by 60-70%) compared with well-drained plants. Over-irrigation did not alter stomatal conductance, leaf water potential or foliar ABA concentrations, suggesting that growth inhibition was not hydraulically regulated or dependent on stomatal closure or changes in ABA. However, over-irrigation significantly increased foliar ethylene emission. Ethylene seemed to inhibit growth, as the partially ethylene-insensitive genotype Never ripe (Nr) was much less sensitive to over-irrigation than the wild type. Over-irrigation induced significant foliar nitrogen deficiency and daily supplementation of small volumes of 10 mM Ca(NO3 )2 to over-irrigated soil restored foliar nitrogen concentrations, ethylene emission and shoot fresh weight of over-irrigated plants to control levels. Thus reduced nitrogen uptake plays an important role in inhibiting growth of over-irrigated plants, in part by stimulating foliar ethylene emission. © 2015 Scandinavian Plant Physiology Society.

  14. Solar-induced chlorophyll fluorescence tracks the trend of canopy stomatal conductance and transpiration at diurnal and seasonal scales

    Science.gov (United States)

    Zhang, Y.; Shan, N.; Ju, W.; Chen, J.

    2017-12-01

    Transpiration is the process of plant water loss through the stomata on the leaf surface and plays a key role in the energy and water balance of the land surface. Plant stomata function as a control interface for regulating photosynthetic uptake of CO2 and transpiration, strongly linked to plant productivity. Stomatal conductance is fundamental to larger-scale regional prediction of carbon-water cycles and their feedbacks to climate. The widely used Ball-Berry model coupled photosynthesis to a semi-empirical model of stomatal conductance. However large uncertainties remain in simulation of carbon assimilation rate in ecosystem and regional scales. The strong correlations of solar-induced fluorescence (SIF) and GPP have been demonstrated and provides an important opportunity to accurately monitor photosynthetic activity and water exchange. In this presentation, we compared both canopy-observed SIF and satellite-derived SIF with tower-based canopy stomatal conductance from hourly to 8-day scales in forest and cropland ecosystem. Using the model of stomatal conductance based on SIF, the transpiration was estimated at hourly and daily scales and compared with flux tower measurements. The results showed that the seasonal pattern of canopy stomatal conductance agreed better with SIF compared to NDVI and their relationship was higher during sunny days for forest ecosystem. Canopy stomatal conductance correlated with both tower-observed SIF and SIF from the Global Ozone Monitoring Experiment-2. Estimation of transpiration from SIF performed well in both forest and cropland ecosystem. This remotely sensed approaches from SIF for modelling stomatal conductance opens a new era to analysis and simulation of coupled carbon and water cycles under climate change.

  15. Investigation of the effect of the rebamipide mouthwash on the crisis of the stomatitis induced by the cancer chemotherapy and/or radiotherapy

    International Nuclear Information System (INIS)

    Kawata, Keishi; Hanawa, Takehisa; Hanawa, Kazumi

    2001-01-01

    Stomatitis is well-known as one of the undesirable side effects induced by high and/or multiple dosing of cytotoxic drugs such as 5-fluorouracil (5-FU). Stomatitis causes pain in the oral cavity, impaired swallowing or loss of appetite, and finally, lowering of the quality of life (QOL) of patients. In this study, we attempted to apply a new mouthwash containing rebamipide (REB) which is known as the anti-activated oxygen agent. Rebamipide mouthwash (REB-M) showed the effectiveness to the crisis of the stomatitis during the cancer chemotherapy and/or radiotherapy. (author)

  16. Abscisic acid analogs as chemical probes for dissection of abscisic acid responses in Arabidopsis thaliana.

    Science.gov (United States)

    Benson, Chantel L; Kepka, Michal; Wunschel, Christian; Rajagopalan, Nandhakishore; Nelson, Ken M; Christmann, Alexander; Abrams, Suzanne R; Grill, Erwin; Loewen, Michele C

    2015-05-01

    Abscisic acid (ABA) is a phytohormone known to mediate numerous plant developmental processes and responses to environmental stress. In Arabidopsis thaliana, ABA acts, through a genetically redundant family of ABA receptors entitled Regulatory Component of ABA Receptor (RCAR)/Pyrabactin Resistant 1 (PYR1)/Pyrabactin Resistant-Like (PYL) receptors comprised of thirteen homologues acting in concert with a seven-member set of phosphatases. The individual contributions of A. thaliana RCARs and their binding partners with respect to specific physiological functions are as yet poorly understood. Towards developing efficacious plant growth regulators selective for specific ABA functions and tools for elucidating ABA perception, a panel of ABA analogs altered specifically on positions around the ABA ring was assembled. These analogs have been used to probe thirteen RCARs and four type 2C protein phosphatases (PP2Cs) and were also screened against representative physiological assays in the model plant Arabidopsis. The 1'-O methyl ether of (S)-ABA was identified as selective in that, at physiologically relevant levels, it regulates stomatal aperture and improves drought tolerance, but does not inhibit germination or root growth. Analogs with the 7'- and 8'-methyl groups of the ABA ring replaced with bulkier groups generally retained the activity and stereoselectivity of (S)- and (R)-ABA, while alteration of the 9'-methyl group afforded an analog that substituted for ABA in inhibiting germination but neither root growth nor stomatal closure. Further in vitro testing indicated differences in binding of analogs to individual RCARs, as well as differences in the enzyme activity resulting from specific PP2Cs bound to RCAR-analog complexes. Ultimately, these findings highlight the potential of a broader chemical genetics approach for dissection of the complex network mediating ABA-perception, signaling and functionality within a given species and modifications in the future design

  17. A Microsomal Proteomics View of H2O2- and ABA-Dependent Responses

    KAUST Repository

    Alquraishi, May Majed; Thomas, Ludivine; Gehring, Chris; Marondedze, Claudius

    2017-01-01

    The plant hormone abscisic acid (ABA) modulates a number of plant developmental processes and responses to stress. In planta, ABA has been shown to induce reactive oxygen species (ROS) production through the action of plasma membrane-associated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases. Although quantitative proteomics studies have been performed to identify ABA- or hydrogen peroxide (H₂O₂)-dependent proteins, little is known about the ABA- and H₂O₂-dependent microsomal proteome changes. Here, we examined the effect of 50 µM of either H₂O₂ or ABA on the Arabidopsis microsomal proteome using tandem mass spectrometry and identified 86 specifically H₂O₂-dependent, and 52 specifically ABA-dependent proteins that are differentially expressed. We observed differential accumulation of proteins involved in the tricarboxylic acid (TCA) cycle notably in response to H₂O₂. Of these, aconitase 3 responded to both H₂O₂ and ABA. Additionally, over 30 proteins linked to RNA biology responded significantly to both treatments. Gene ontology categories such as 'response to stress' and 'transport' were enriched, suggesting that H₂O₂ or ABA directly and/or indirectly cause complex and partly overlapping cellular responses. Data are available via ProteomeXchange with identifier PXD006513.

  18. A Microsomal Proteomics View of H2O2- and ABA-Dependent Responses

    KAUST Repository

    Alquraishi, May Majed

    2017-08-21

    The plant hormone abscisic acid (ABA) modulates a number of plant developmental processes and responses to stress. In planta, ABA has been shown to induce reactive oxygen species (ROS) production through the action of plasma membrane-associated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases. Although quantitative proteomics studies have been performed to identify ABA- or hydrogen peroxide (H₂O₂)-dependent proteins, little is known about the ABA- and H₂O₂-dependent microsomal proteome changes. Here, we examined the effect of 50 µM of either H₂O₂ or ABA on the Arabidopsis microsomal proteome using tandem mass spectrometry and identified 86 specifically H₂O₂-dependent, and 52 specifically ABA-dependent proteins that are differentially expressed. We observed differential accumulation of proteins involved in the tricarboxylic acid (TCA) cycle notably in response to H₂O₂. Of these, aconitase 3 responded to both H₂O₂ and ABA. Additionally, over 30 proteins linked to RNA biology responded significantly to both treatments. Gene ontology categories such as \\'response to stress\\' and \\'transport\\' were enriched, suggesting that H₂O₂ or ABA directly and/or indirectly cause complex and partly overlapping cellular responses. Data are available via ProteomeXchange with identifier PXD006513.

  19. Reactive oxygen species signaling and stomatal movement: Current updates and future perspectives

    Directory of Open Access Journals (Sweden)

    Rachana Singh

    2017-04-01

    Full Text Available Reactive oxygen species (ROS, a by-product of aerobic metabolism were initially studied in context to their damaging effect but recent decades witnessed significant advancements in understanding the role of ROS as signaling molecules. Contrary to earlier views, it is becoming evident that ROS production is not necessarily a symptom of cellular dysfunction but it might represent a necessary signal in adjusting the cellular machinery according to the altered conditions. Stomatal movement is controlled by multifaceted signaling network in response to endogenous and environmental signals. Furthermore, the stomatal aperture is regulated by a coordinated action of signaling proteins, ROS-generating enzymes, and downstream executors like transporters, ion pumps, plasma membrane channels, which control the turgor pressure of the guard cell. The earliest hallmarks of stomatal closure are ROS accumulation in the apoplast and chloroplasts and thereafter, there is a successive increase in cytoplasmic Ca2+ level which rules the multiple kinases activity that in turn regulates the activity of ROS-generating enzymes and various ion channels. In addition, ROS also regulate the action of multiple proteins directly by oxidative post translational modifications to adjust guard cell signaling. Notwithstanding, an active progress has been made with ROS signaling mechanism but the regulatory action for ROS signaling processes in stomatal movement is still fragmentary. Therefore, keeping in view the above facts, in this mini review the basic concepts and role of ROS signaling in the stomatal movement have been presented comprehensively along with recent highlights.

  20. NH4+ protects tomato plants against Pseudomonas syringae by activation of systemic acquired acclimation.

    Science.gov (United States)

    Fernández-Crespo, Emma; Scalschi, Loredana; Llorens, Eugenio; García-Agustín, Pilar; Camañes, Gemma

    2015-11-01

    NH4 (+) nutrition provokes mild toxicity by enhancing H2O2 accumulation, which acts as a signal activating systemic acquired acclimation (SAA). Until now, induced resistance mechanisms in response to an abiotic stimulus and related to SAA were only reported for exposure to a subsequent abiotic stress. Herein, the first evidence is provided that this acclimation to an abiotic stimulus induces resistance to later pathogen infection, since NH4 (+) nutrition (N-NH4 (+))-induced resistance (NH4 (+)-IR) against Pseudomonas syringae pv tomato DC3000 (Pst) in tomato plants was demonstrated. N-NH4 (+) plants displayed basal H2O2, abscisic acid (ABA), and putrescine (Put) accumulation. H2O2 accumulation acted as a signal to induce ABA-dependent signalling pathways required to prevent NH4 (+) toxicity. This acclimatory event provoked an increase in resistance against later pathogen infection. N-NH4 (+) plants displayed basal stomatal closure produced by H2O2 derived from enhanced CuAO and rboh1 activity that may reduce the entry of bacteria into the mesophyll, diminishing the disease symptoms as well as strongly inducing the oxidative burst upon Pst infection, favouring NH4 (+)-IR. Experiments with inhibitors of Put accumulation and the ABA-deficient mutant flacca demonstrated that Put and ABA downstream signalling pathways are required to complete NH4 (+)-IR. The metabolic profile revealed that infected N-NH4 (+) plants showed greater ferulic acid accumulation compared with control plants. Although classical salicylic acid (SA)-dependent responses against biotrophic pathogens were not found, the important role of Put in the resistance of tomato against Pst was demonstrated. Moreover, this work revealed the cross-talk between abiotic stress acclimation (NH4 (+) nutrition) and resistance to subsequent Pst infection. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. ABA-alcohol is an intermediate in abscisic acid biosynthesis

    International Nuclear Information System (INIS)

    Rock, C.D.; Zeevaart, J.A.D.

    1990-01-01

    It has been established that ABA-aldehyde is a precursor to ABA. The ABA-deficient flacca and sitiens mutants of tomato are blocked in the conversion of ABA-aldehyde to ABA, and accumulate trans-ABA-alcohol. 18 O-Labeling studies of ABA in flacca and sitiens show that these mutants synthesize a large percentage of [ 18 O]ABA which contains two 18 O atoms in the carboxyl group. Furthermore, the mutants synthesize much greater amounts of trans-ABA-glucose ester (t-ABA-GE) compared with the wild type, and this [ 18 O]t-ABA-GE is also double labeled in the carboxyl group. Our interpretation of these data is that the 18 O in ABA-aldehyde is trapped in the side chain by reduction to [ 18 O]ABA-alcohol, followed by isomerization to [ 18 O]t-ABA-alcohol and oxidation with 18 O 2 to [ 18 O]t-ABA. The [ 18 O]t-ABA is then rapidly converted to [ 18 O]t-ABA-GE. Because [ 18 O]ABA doubly labeled in the carboxyl group has been observed in small amounts in labeling experiments with several species, and various species have been shown to convert ABA-aldehyde to ABA-alcohol and t-ABA-alcohol, we propose that ABA-alcohol is an ABA intermediate in a shunt pathway

  2. Deficiência hídrica e aplicação de ABA nas trocas gasosas e no acúmulo de flavonoides em calêndula (Calendula officinalis L. = Water deficit and ABA application on leaf gas exchange and flavonoid content in marigold (Calendula officinalis L..

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Pacheco

    2011-04-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos da deficiencia hidrica e aplicacao de acido abscisico (ABA sobre aspectos fisiologicos e teor de flavonoides em plantas de calendula. Oexperimento foi instalado em condicoes de casa-de-vegetacao com plantas envasadas. No inicio do florescimento de plantas de calendula, foram aplicados quatro intervalos de suspensao da irrigacao (irrigacao diaria; tres; seis e nove dias sem irrigar, acompanhados por tres doses de ABA (0, 10 e 100 ƒÊM. Avaliou-se o conteudo relativo de agua na folha (CRA e as trocas gasosas, utilizando-se um analisador portatil por infravermelho (A: fotossintese liquida, gs: condutancia estomatica, E: transpiracao, Ci: concentracao intercelular de CO2 e EUA: eficiencia de uso daagua. Aos nove dias sem irrigacao ocorreram reducoes significativas em todas as variaveis de trocas gasosas analisadas, independente da aplicacao de ABA. Concluiu-se que o efeito principal do ABA foi o de causar diminuicao na gs, a qual foi acompanhada de reducao em A somente quando as plantas estavam desidratadas. As intensidades de deficiencia hidrica testadas nao causaram interferencia no acumulo de flavonoides nas inflorescencias. Entretanto, o ABA restringiu a biossintese de flavonoides, tanto nas plantas-controle como nas plantas submetidas a deficiencia hidrica.The goal of this study was to evaluate the effects of water deficit and abscisic acid (ABA application on physiological parameters and flavonoid production in marigold plant. The experiment was performed under nursery conditions with potted plants. It was tested water deficit by withholding water (control . diary irrigation, 3, 6 and9 days without irrigation followed by 3 ABA concentrations (0, 10 e 100 ƒÊM applied in the beginning of blooming. It was evaluated the relative water content and the leaf gas exchange using a portable infrared gas analyzer (A: net photosynthesis, gs: stomatal conductance, E: transpiration, Ci: CO2 intercellular

  3. Brief oral cryotherapy for the prevention of high-dose melphalan-induced stomatitis in allogeneic hematopoietic stem cell transplant recipients.

    Science.gov (United States)

    Mori, Takehiko; Yamazaki, Rie; Aisa, Yoshinobu; Nakazato, Tomonori; Kudo, Masumi; Yashima, Tomoko; Kondo, Sakiko; Ikeda, Yasuo; Okamoto, Shinichiro

    2006-04-01

    We previously reported the efficacy of oral cryotherapy for the prevention of high-dose melphalan-induced stomatitis. The purpose of this study was to evaluate whether the further shortening of the duration of oral cryotherapy could minimize its side effects while sparing its efficacy. Seventeen consecutive recipients of allogeneic hematopoieic stem cell transplant conditioned with high-dose melphalan in combination with fludarabine alone or with fludarabine and additional radiation were enrolled in the study. The severity of stomatitis was graded according to the National Cancer Institute-Common Toxicity Criteria. Patients were kept on oral cryotherapy shortly before, during, and for additional 30 min after the completion of melphalan administration (60-min oral cryotherapy). Patients who were also enrolled in our previous study received the same type of oral cryotherapy but for additional 90 min after the completion of melphalan administration (120-min oral cryotherapy), and they served as controls. Only 2 (11.8%) of 17 patients receiving 60-min oral cryotherapy and 2 (11.1%) of 18 patients receiving 120-min oral cryotherapy developed grade 2 or 3 stomatitis, respectively. The difference between groups was not statistically significant (P = 0.677). The incidence of unpleasant symptoms such as chills and nausea during oral cryotherapy decreased significantly with 60-min oral cryotherapy, as compared with that associated with 120-min oral cryotherapy (P cryotherapy is as effective as 120-min oral cryotherapy at preventing high-dose melphalan-induced stomatitis, and shorter treatment might have contributed to relieve patient discomfort during oral cryotherapy.

  4. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio.

    Science.gov (United States)

    Shuai, Haiwei; Meng, Yongjie; Luo, Xiaofeng; Chen, Feng; Zhou, Wenguan; Dai, Yujia; Qi, Ying; Du, Junbo; Yang, Feng; Liu, Jiang; Yang, Wenyu; Shu, Kai

    2017-10-03

    Auxin is an important phytohormone which mediates diverse development processes in plants. Published research has demonstrated that auxin induces seed dormancy. However, the precise mechanisms underlying the effect of auxin on seed germination need further investigation, especially the relationship between auxins and both abscisic acid (ABA) and gibberellins (GAs), the latter two phytohormones being the key regulators of seed germination. Here we report that exogenous auxin treatment represses soybean seed germination by enhancing ABA biosynthesis, while impairing GA biogenesis, and finally decreasing GA 1 /ABA and GA 4 /ABA ratios. Microscope observation showed that auxin treatment delayed rupture of the soybean seed coat and radicle protrusion. qPCR assay revealed that transcription of the genes involved in ABA biosynthetic pathway was up-regulated by application of auxin, while expression of genes involved in GA biosynthetic pathway was down-regulated. Accordingly, further phytohormone quantification shows that auxin significantly increased ABA content, whereas the active GA 1 and GA 4 levels were decreased, resulting insignificant decreases in the ratiosGA 1 /ABA and GA 4 /ABA.Consistent with this, ABA biosynthesis inhibitor fluridone reversed the delayed-germination phenotype associated with auxin treatment, while paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Altogether, exogenous auxin represses soybean seed germination by mediating ABA and GA biosynthesis.

  5. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana

    KAUST Repository

    Danquah, Agyemang

    2015-04-01

    Summary Abscisic acid (ABA) is a major phytohormone involved in important stress-related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA-triggered phosphoproteins as putative mitogen-activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA-activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3-1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA-dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR-SnRK2-PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA-induced MAPK pathway in plant stress signalling. Significance Statement We report in this article the identification of a complete MAPK module, composed of MAP3K17/18, MKK3 and MPK1/2/7/14, which is activated by ABA through the ABA core signalling complex. We showed that the activation of this module requires the MAP3K protein synthesis which occurs after hours of stress treatment, suggesting that the pathway is involved in a delayed wave of cellular responses to ABA and drought. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  6. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana

    KAUST Repository

    Danquah, Agyemang; Zé licourt, Axel de; Boudsocq, Marie; Neubauer, Jorinde; Frei Dit Frey, Nicolas; Leonhardt, Nathalie; Pateyron, Sté phanie; Gwinner, Frederik; Tamby, Jean Philippe; Ortiz-Masià , Dolores; Marcote, Marí a Jesú s; Hirt, Heribert; Colcombet, Jean

    2015-01-01

    Summary Abscisic acid (ABA) is a major phytohormone involved in important stress-related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA-triggered phosphoproteins as putative mitogen-activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA-activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3-1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA-dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR-SnRK2-PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA-induced MAPK pathway in plant stress signalling. Significance Statement We report in this article the identification of a complete MAPK module, composed of MAP3K17/18, MKK3 and MPK1/2/7/14, which is activated by ABA through the ABA core signalling complex. We showed that the activation of this module requires the MAP3K protein synthesis which occurs after hours of stress treatment, suggesting that the pathway is involved in a delayed wave of cellular responses to ABA and drought. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  7. ABA signaling in stress-response and seed development.

    Science.gov (United States)

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2013-07-01

    KEY MESSAGE : We review the recent progress on ABA signaling, especially ABA signaling for ABA-dependent gene expression, including the AREB/ABF regulon, SnRK2 protein kinase, 2C-type protein phosphatases and ABA receptors. Drought negatively impacts plant growth and the productivity of crops. Drought causes osmotic stress to organisms, and the osmotic stress causes dehydration in plant cells. Abscisic acid (ABA) is produced under osmotic stress conditions, and it plays an important role in the stress response and tolerance of plants. ABA regulates many genes under osmotic stress conditions. It also regulates gene expression during seed development and germination. The ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. ABRE-binding protein (AREB)/ABRE-binding factor (ABF) transcription factors (TFs) regulate ABRE-dependent gene expression. Other TFs are also involved in ABA-responsive gene expression. SNF1-related protein kinases 2 are the key regulators of ABA signaling including the AREB/ABF regulon. Recently, ABA receptors and group A 2C-type protein phosphatases were shown to govern the ABA signaling pathway. Moreover, recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress-response and seed development. The control of the expression of ABA signaling factors may improve tolerance to environmental stresses.

  8. Abscisic acid protects bean leaves from ozone-induced phytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, R.A.; Adedipe, N.O.; Ormrod, D.P.

    1972-01-01

    Abscisic acid treatment of primary bean leaves caused a partial closure of stomates and thus considerably reduced the phytotoxicity of ozone. The symptoms of ozone-induced phytotoxicity in the water-treated leaves are a marked decrease in chlorophyll and slight decreases in the levels of protein and RNA. The evidence indicates that ozone injury to leaves is not metabolically related to normal leaf senescence.

  9. RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis

    KAUST Repository

    Ren, Zhonghai

    2010-03-08

    Soil salinity limits agricultural production and is a major obstacle for feeding the growing world population. We used natural genetic variation in salt tolerance among different Arabidopsis accessions to map a major quantitative trait locus (QTL) for salt tolerance and abscisic acid (ABA) sensitivity during seed germination and early seedling growth. A recombinant inbred population derived from Landsberg erecta (Ler; salt and ABA sensitive) x Shakdara (Sha; salt and ABA resistant) was used for QTL mapping. High-resolution mapping and cloning of this QTL, Response to ABA and Salt 1 (RAS1), revealed that it is an ABA- and salt stress-inducible gene and encodes a previously undescribed plant-specific protein. A premature stop codon results in a truncated RAS1 protein in Sha. Reducing the expression of RAS1 by transfer-DNA insertion in Col or RNA interference in Ler leads to decreased salt and ABA sensitivity, whereas overexpression of the Ler allele but not the Sha allele causes increased salt and ABA sensitivity. Our results suggest that RAS1 functions as a negative regulator of salt tolerance during seed germination and early seedling growth by enhancing ABA sensitivity and that its loss of function contributes to the increased salt tolerance of Sha.

  10. Role of abscisic acid (aba) in modulating the responses of two apple rootstocks to drought stress

    International Nuclear Information System (INIS)

    Zhang, L.; Li, X.; Li, B.; Han, M.; Liu, F.; Zhang, L.; Zheng, P.

    2014-01-01

    Drought stress is considered as the main limiting factor for apple (Malus domestica L.) production in some semi-arid areas of China. In this study, we investigated the modulation role of abscisic acid (ABA) and fluridone (ABA synthesis inhibitor) on water relations and antioxidant enzyme system in 2-year-old seedlings of two apple rootstocks i.e. Malus sieversii (Ledeb.) Roem. (MS) and Malus hupehensis (Pamp.) Rehd. (MH). Drought stress induced ion leakage, accumulation of malondiadehyde (MDA) and decreases in leaf water potential and relative water content (RWC) in both rootstocks, which were significantly alleviated by exogenous ABA application. Drought stress also induced markedly increases in endogenous ABA content and activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR), to a greater magnitude in MS as compared to MH rootstock. Concentration of 100 mol/L and 50 mol/L ABA had the most positive effects on drought-stressed rootstocks of MS and MH, respectively. Spraying optimum exogenous ABA contributed to enhancement in most of the above antioxidant enzymes activities but reduction in content of MDA and maintained the appropriate leaf water potential and RWC in both rootstocks. Pretreatment with fluridone aggravated ion leakage and the accumulation of MDA in two apple rootstocks under drought stress, which was overcome by exogenous ABA application to some extent. In conclusion, the endogenous ABA was probably involved in the regulation of two apple rootstocks in responses to drought stress. (author)

  11. Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (Ocimum basilicum L.).

    Science.gov (United States)

    Barbieri, Giancarlo; Vallone, Simona; Orsini, Francesco; Paradiso, Roberta; De Pascale, Stefania; Negre-Zakharov, Florence; Maggio, Albino

    2012-11-15

    Increasing salinity tolerance and water-use efficiency in crop plants are two major challenges that agriculture must face in the next decades. Many physiological mechanisms and molecular components mediating crop response to environmental stresses have been identified. However, the functional inter-links between stress adaptation responses have not been completely understood. Using two basil cultivars (Napoletano and Genovese) with contrasting ability to respond to salt stress, here we demonstrate that reduced stomatal density, high ascorbate level and polyphenol oxidase (PPO) activity coordinately contribute to improve basil adaptation and water use efficiency (WUE) in saline environment. The constitutively reduced stomatal density was associated with a "delayed" accumulation of stress molecules (and growth inhibiting signals) such as abscisic acid (ABA) and proline, in the more tolerant Genovese. Leaf volatile profiling also revealed cultivar-specific patterns, which may suggest a role for the volatile phenylpropanoid eugenol and monoterpenes in conferring stress tolerance via antioxidant and signalling functions. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. Effects of ABA application on cessation of shoot elongation in long-day grown Norway spruce seedlings.

    Science.gov (United States)

    Heide, O M

    1986-06-01

    Abscisic acid (ABA) was applied in lanolin to apical buds of Norway spruce (Picea abies (L.) Karst.) seedlings actively growing in a 24 h photoperiod. At a rate of 100 microg per plant, ABA suspended shoot elongation for about three weeks in the majority of plants but failed to induce normal winter buds. The role of ABA in the induction of dormancy is thus uncertain in conifers as well as in deciduous woody plants.

  13. Regulation of carotenoid and ABA accumulation during the development and germination of Nicotiana plumbaginifolia seeds.

    Science.gov (United States)

    Frey, Anne; Boutin, Jean-Pierre; Sotta, Bruno; Mercier, Raphaël; Marion-Poll, Annie

    2006-08-01

    Abscisic acid (ABA) is derived from epoxycarotenoid cleavage and regulates seed development and maturation. A detailed carotenoid analysis was undertaken to study the contribution of epoxycarotenoid synthesis to the regulation of ABA accumulation in Nicotiana plumbaginifolia developing seeds. Maximal accumulation of xanthophylls occurred at mid-development in wild type seeds, when total ABA levels also peaked. In contrast, in ABA-deficient mutants xanthophyll synthesis was delayed, in agreement with the retardation in seed maturation. Seed dormancy was restored in mutants impaired in the conversion of zeaxanthin into violaxanthin by zeaxanthin epoxidase (ZEP), by the introduction of the Arabidopsis AtZEP gene under the control of promoters inducing expression during later stages of seed development compared to wild type NpZEP, and in dry and imbibed seeds. Alterations in the timing and level of ZEP expression did not highly affect the temporal regulation of ABA accumulation in transgenic seeds, despite notable perturbations in xanthophyll accumulation. Therefore, major regulatory control of ABA accumulation might occur downstream of epoxycarotenoid synthesis.

  14. The role of the atypical kinases ABC1K7 and ABC1K8 in abscisic acid responses

    Directory of Open Access Journals (Sweden)

    Anna eManara

    2016-03-01

    Full Text Available The ABC1K family of atypical kinases (activity of bc1 complex kinase is represented in bacteria, archaea and eukaryotes. In plants they regulate diverse physiological processes in the chloroplasts and mitochondria, but their precise functions are poorly defined. ABC1K7 and ABC1K8 are probably involved in oxidative stress responses, isoprenyl lipid synthesis and distribution of iron within chloroplasts. Because reactive oxygen species take part in abscisic acid (ABA-mediated processes, we investigated the functions of ABC1K7 and ABC1K8 during germination, stomatal movement and leaf senescence. Both genes were upregulated by ABA treatment and some ABA-responsive physiological processes were affected in abc1k7 and abc1k8 mutants. Germination was more severely affected by ABA, osmotic stress and salt stress in the single and double mutants; the stomatal aperture was smaller in the mutants under standard growth conditions and was not further reduced by exogenous ABA application; ABA-induced senescence symptoms were more severe in the leaves of the single and double mutants compared to wild type leaves. Taken together, our results suggest that ABC1K7 and ABC1K8 might be involved in the cross-talk between ABA and ROS signaling.

  15. Dissecting molecular and physiological response mechanisms to high solar radiation in cyanic and acyanic leaves: a case study on red and green basil.

    Science.gov (United States)

    Tattini, Massimiliano; Sebastiani, Federico; Brunetti, Cecilia; Fini, Alessio; Torre, Sara; Gori, Antonella; Centritto, Mauro; Ferrini, Francesco; Landi, Marco; Guidi, Lucia

    2017-04-01

    Photosynthetic performance and the expression of genes involved in light signaling and the biosynthesis of isoprenoids and phenylpropanoids were analysed in green ('Tigullio', TIG) and red ('Red Rubin', RR) basil. The aim was to detect the physiological and molecular response mechanisms to high sunlight. The attenuation of blue-green light by epidermal anthocyanins was shown to evoke shade-avoidance responses with consequential effects on leaf morpho-anatomical traits and gas exchange performance. Red basil had a lower mesophyll conductance, partially compensated by the less effective control of stomatal movements, in comparison with TIG. Photosynthesis decreased more in TIG than in RR in high sunlight, because of larger stomatal limitations and the transient impairment of PSII photochemistry. The methylerythritol 4-phosphate pathway promoted above all the synthesis and de-epoxidation of violaxanthin-cycle pigments in TIG and of neoxanthin and lutein in RR. This enabled the green leaves to process the excess radiant energy effectively, and the red leaves to optimize light harvesting and photoprotection. The greater stomatal closure observed in TIG than in RR was due to enhanced abscisic acid (ABA) glucose ester deglucosylation and reduced ABA oxidation, rather than to superior de novo ABA synthesis. This study shows a strong competition between anthocyanin and flavonol biosynthesis, which occurs at the level of genes regulating the oxidation of the C2-C3 bond in the dihydro-flavonoid skeleton. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. ROS signaling and stomatal movement in plant responses to drought stress and pathogen attack.

    Science.gov (United States)

    Qi, Junsheng; Song, Chun-Peng; Wang, Baoshan; Zhou, Jianmin; Kangasjärvi, Jaakko; Zhu, Jian-Kang; Gong, Zhizhong

    2018-04-16

    Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO 2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors including water status, light, CO 2 levels and pathogen attack, as well as endogenous signals such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO 2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli. This article is protected by copyright. All rights reserved.

  17. A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in arabidopsis.

    Directory of Open Access Journals (Sweden)

    M Águila Ruiz-Sola

    Full Text Available Abscisic acid (ABA is a hormone that plays a vital role in mediating abiotic stress responses in plants. Salt exposure induces the synthesis of ABA through the cleavage of carotenoid precursors (xanthophylls, which are found at very low levels in roots. Here we show that de novo ABA biosynthesis in salt-treated Arabidopsis thaliana roots involves an organ-specific induction of the carotenoid biosynthetic pathway. Upregulation of the genes encoding phytoene synthase (PSY and other enzymes of the pathway producing ABA precursors was observed in roots but not in shoots after salt exposure. A pharmacological block of the carotenoid pathway substantially reduced ABA levels in stressed roots, confirming that an increase in carotenoid accumulation contributes to fuel hormone production after salt exposure. Treatment with exogenous ABA was also found to upregulate PSY expression only in roots, suggesting an organ-specific feedback regulation of the carotenoid pathway by ABA. Taken together, our results show that the presence of high concentrations of salt in the growth medium rapidly triggers a root-specific activation of the carotenoid pathway, probably to ensure a proper supply of ABA precursors required for a sustained production of the hormone.

  18. OsPRX2 contributes to stomatal closure and improves potassium deficiency tolerance in rice.

    Science.gov (United States)

    Mao, Xiaohui; Zheng, Yanmei; Xiao, Kaizhuan; Wei, Yidong; Zhu, Yongsheng; Cai, Qiuhua; Chen, Liping; Xie, Huaan; Zhang, Jianfu

    2018-01-01

    Peroxiredoxins (Prxs) which are thiol-based peroxidases have been implicated in the toxic reduction and intracellular concentration regulation of hydrogen peroxide. In Arabidopsis thaliana At2-CysPrxB (At5g06290) has been demonstrated to be essential in maintaining the water-water cycle for proper H 2 O 2 scavenging. Although the mechanisms of 2-Cys Prxs have been extensively studied in Arabidopsis thaliana, the function of 2-Cys Prxs in rice is unclear. In this study, a rice homologue gene of At2-CysPrxB, OsPRX2 was investigated aiming to characterize the effect of 2-Cys Prxs on the K + -deficiency tolerance in rice. We found that OsPRX2 was localized in the chloroplast. Overexpressed OsPRX2 causes the stomatal closing and K + -deficiency tolerance increasing, while knockout of OsPRX2 lead to serious defects in leaves phenotype and the stomatal opening under the K + -deficiency tolerance. Detection of K + accumulation, antioxidant activity of transgenic plants under the starvation of potassium, further confirmed that OsPRX2 is a potential target for engineering plants with improved potassium deficiency tolerance. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Bilateral Acute Angle-Closure Glaucoma Induced By Escitalopram

    Directory of Open Access Journals (Sweden)

    Dilbade Yıldız Ekinci

    2014-10-01

    Full Text Available Escitalopram is an antidepressant of the selective serotonin reuptake inhibitor(SSRI class. In this manuscript, we report the case of a female patient who developed bilateral acute angle-closure glaucoma induced by escitalopram. A 46-year-old female patient was admitted to our ophthalmology clinic with complaints of severe pain around the both eyes, headache, nausea, and vomiting for two days. In her past medical history, she was using escitalopram for depression for two years. Visual acuity was at hand movement level in both eyes. Anterior segment examination showed bilateral diffuse conjunctival hyperemia, corneal edema, shallow anterior chamber, and fixed dilated pupils. Intraocular pressure was 47 mmHg in the right and 68 mmHg in the left eye. The diagnosis was acute angle-closure glaucoma, and the escitalopram medication was discontinued. She was treated with topical and systemic antiglaucomatous medication. After the cornea become clear, bilateral peripheral laser iridotomy was done. In the following year, she did not begin escitalopram medication again and no other acute angle-closure attack was seen. (Turk J Ophthalmol 2014; 44:396-9

  20. Midday stomatal closure in Mediterranean type sclerophylls under simulated habitat conditions in an environmental chamber : II. Effect of the complex of leaf temperature and air humidity on gas exchange of Arbutus unedo and Quercus ilex.

    Science.gov (United States)

    Tenhunen, J D; Lange, O L; Braun, M

    1981-08-01

    Shrubs of the Mediterranean sclerophyllous species Arbutus unedo and Quercus ilex were studied under simulated habitat conditions in an environmental chamber. Temperature, humidity, and light intensity were altered stepwise to simulate diurnal changes in conditions similar to those measured in an evergreen macchia in Sobreda, Portugal. Leaves were enclosed in cuvettes which reproduced the growth chamber climate and which allowed measurement of gas exchange. Increasing atmospheric stress in the form of higher temperature and lower humidity on successive days gradually results in midday depression of transpiration rate and net photosynthesis rate of leaves due to midday stomatal closure.

  1. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds.

    Science.gov (United States)

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Doron-Faigenboim, Adi; Blumwald, Eduardo; Sadka, Avi

    2014-07-01

    Many fruit trees undergo cycles of heavy fruit load (ON-Crop) in one year, followed by low fruit load (OFF-Crop) the following year, a phenomenon known as alternate bearing (AB). The mechanism by which fruit load affects flowering induction during the following year (return bloom) is still unclear. Although not proven, it is commonly accepted that the fruit or an organ which senses fruit presence generates an inhibitory signal that moves into the bud and inhibits apical meristem transition. Indeed, fruit removal from ON-Crop trees (de-fruiting) induces return bloom. Identification of regulatory or metabolic processes modified in the bud in association with altered fruit load might shed light on the nature of the AB signalling process. The bud transcriptome of de-fruited citrus trees was compared with those of ON- and OFF-Crop trees. Fruit removal resulted in relatively rapid changes in global gene expression, including induction of photosynthetic genes and proteins. Altered regulatory mechanisms included abscisic acid (ABA) metabolism and auxin polar transport. Genes of ABA biosynthesis were induced; however, hormone analyses showed that the ABA level was reduced in OFF-Crop buds and in buds shortly following fruit removal. Additionally, genes associated with Ca(2+)-dependent auxin polar transport were remarkably induced in buds of OFF-Crop and de-fruited trees. Hormone analyses showed that auxin levels were reduced in these buds as compared with ON-Crop buds. In view of the auxin transport autoinhibition theory, the possibility that auxin distribution plays a role in determining bud fate is discussed. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. ARA-aldehyde and ABA-trans-diol in apple fruits

    International Nuclear Information System (INIS)

    Rock, C.D.; Zeevaart, J.A.D.

    1989-01-01

    We have isolated ABA-aldehyde and ABA-t-diol from postharvest apple fruits, cv. Granny Smith and confirmed their structure by GC-MS. These putative ABA biosynthetic precursors incorporate 18 O to a similar degree as ABA during 48 hours under 18 O 2 atmospheres. The presence of significant amounts of ABA-aldehyde can explain the unique 18 O labeling pattern of ABA in this tissue, where a majority of ABA molecules containing 18 O is labeled in the 1'-hydroxyl group and not in the side chain carboxyl group, the primary site of incorporation for stressed leaves. Exchange of the carbonyl oxygen of ABA-aldehyde with water would decrease 18 O enrichment in the side chain. Results of 18 O 2 experiments and feeding studies using hexadeutero-ABA-aldehyde will be presented and the biosynthetic relationship of these compounds discussed

  3. GhCAX3 gene, a novel Ca(2+/H(+ exchanger from cotton, confers regulation of cold response and ABA induced signal transduction.

    Directory of Open Access Journals (Sweden)

    Lian Xu

    Full Text Available As a second messenger, Ca(2+ plays a major role in cold induced transduction via stimulus-specific increases in [Ca(2+]cyt, which is called calcium signature. During this process, CAXs (Ca(2+/H(+ exchangers play critical role. For the first time, a putative Ca(2+/H(+ exchanger GhCAX3 gene from upland cotton (Gossypium hirsutum cv. 'YZ-1' was isolated and characterized. It was highly expressed in all tissues of cotton except roots and fibers. This gene may act as a regulator in cotton's response to abiotic stresses as it could be up-regulated by Ca(2+, NaCl, ABA and cold stress. Similar to other CAXs, it was proved that GhCAX3 also had Ca(2+ transport activity and the N-terminal regulatory region (NRR through yeast complementation assay. Over-expression of GhCAX3 in tobacco showed less sensitivity to ABA during seed germination and seedling stages, and the phenotypic difference between wild type (WT and transgenic plants was more significant when the NRR was truncated. Furthermore, GhCAX3 conferred cold tolerance in yeast as well as in tobacco seedlings based on physiological and molecular studies. However, transgenic plant seeds showed more sensitivity to cold stress compared to WT during seed germination, especially when expressed in N-terminal truncated version. Finally, the extent of sensitivity in transgenic lines was more severe than that in WT line under sodium tungstate treatment (an ABA repressor, indicating that ABA could alleviate cold sensitivity of GhCAX3 seeds, especially in short of its NRR. Meanwhile, we also found that overexpression of GhCAX3 could enhance some cold and ABA responsive marker genes. Taken together, these results suggested that GhCAX3 plays important roles in the cross-talk of ABA and cold signal transduction, and compared to full-length of GhCAX3, the absence of NRR could enhance the tolerance or sensitivity to cold stress, depending on seedling's developmental stages.

  4. Changes in transpiration rate of SO/sub 2/-resistant and -sensitive plants with SO/sub 2/ fumigation and the participation of abscisic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, N.; Sugahara, K.

    1978-01-01

    Peanut and tomato plants were resistant to 2.0 ppm SO/sub 2/, while radish, perilla and spinach plants were sensitive. The amounts of SO/sub 2/ absorbed by peanut and tomato were obviously less than those absorbed by radish, perilla and spinach. Transpiration rates of peanut and tomato began to decrease within 5 min after the commencement of SO/sub 2/ fumigation and reached minimum levels, i.e., 10 and 50% for the initial levels, respectively, after initiation of fumigation, then declined. Those of radish and spinach did not change for about 20 and 30 min, then decreased gradually. The content of abscisic acid (ABA) was highest in peanut. The content in tomato was also high, but low in radish, perilla and spinach. Radish supplied with exogenous ABA began to decrease its transpiration rate immediately after SO/sub 2/ fumigation and was markedly resistant to SO/sub 2/. ABA in leaves may control the rapid stomatal closure following SO/sub 2/ fumigation. 26 references.

  5. Arabidopsis CPR5 independently regulates seed germination and postgermination arrest of development through LOX pathway and ABA signaling.

    Directory of Open Access Journals (Sweden)

    Guilan Gao

    Full Text Available The phytohormone abscisic acid (ABA and the lipoxygenases (LOXs pathway play important roles in seed germination and seedling growth and development. Here, we reported on the functional characterization of Arabidopsis CPR5 in the ABA signaling and LOX pathways. The cpr5 mutant was hypersensitive to ABA in the seed germination, cotyledon greening and root growth, whereas transgenic plants overexpressing CPR5 were insensitive. Genetic analysis demonstrated that CPR5 gene may be located downstream of the ABI1 in the ABA signaling pathway. However, the cpr5 mutant showed an ABA independent drought-resistant phenotype. It was also found that the cpr5 mutant was hypersensitive to NDGA and NDGA treatment aggravated the ABA-induced delay in the seed germination and cotyledon greening. Taken together, these results suggest that the CPR5 plays a regulatory role in the regulation of seed germination and early seedling growth through ABA and LOX pathways independently.

  6. Stomatal and Non-Stomatal Turbulent Deposition Flux of Ozone to a Managed Peatland

    Directory of Open Access Journals (Sweden)

    Tarek S. El-Madany

    2017-09-01

    Full Text Available Ozone is a key trace gas in the troposphere; because it is a greenhouse gas, it is very reactive, and it is potentially toxic to humans, fauna, and vegetation. The main sink processes for ozone are chemical reactions and the turbulent deposition flux to the earth’s surface. The deposition process itself is rather complex: The interactions between co-varying drivers such as the tropospheric ozone concentration, turbulence, and chemical reactions are not well understood. In the case of ozone deposition to vegetation, another aspect that must be studied is the role of stomatal regulation for a wide range of conditions. Therefore, we measured turbulent deposition fluxes of ozone with the eddy covariance technique during the peak of the growing season in 2014 over a managed, rewetted peatland in NW Germany. The deposition flux was large during the day (up to −15 nmol m−2 s−1 and relatively small during the night (between −1 and −2 nmol m−2 s−1. Flux partitioning by applying the surface resistance analogy and further analysis showed that the stomatal uptake was smaller than non-stomatal deposition. The correction of stomatal conductance with the gross primary production (GPP improved the estimation of day- and nighttime stomatal deposition fluxes. Statistical analysis confirmed that the friction velocity (u* was the single most important driver of non-stomatal ozone deposition and that relationships with other environmental drivers are not linear and highly variable. Further research is needed to develop a better process understanding of non-stomatal ozone deposition, to quantify the role of surface deposition to the ozone budget of the atmospheric boundary layer, and to estimate uncertainties associated with the partitioning of ozone deposition into stomatal and non-stomatal fluxes.

  7. Alterations in Rubisco activity and in stomatal behavior induce a daily rhythm in photosynthesis of aerial leaves in the amphibious-plant Nuphar lutea.

    Science.gov (United States)

    Snir, Ainit; Gurevitz, Michael; Marcus, Yehouda

    2006-12-01

    Nuphar lutea is an amphibious plant with submerged and aerial foliage, which raises the question how do both leaf types perform photosynthetically in two different environments. We found that the aerial leaves function like terrestrial sun-leaves in that their photosynthetic capability was high and saturated under high irradiance (ca. 1,500 mumol photons m(-2) s(-1)). We show that stomatal opening and Rubisco activity in these leaves co-limited photosynthesis at saturating irradiance fluctuating in a daily rhythm. In the morning, sunlight stimulated stomatal opening, Rubisco synthesis, and the neutralization of a night-accumulated Rubisco inhibitor. Consequently, the light-saturated quantum efficiency and rate of photosynthesis increased 10-fold by midday. During the afternoon, gradual closure of the stomata and a decrease in Rubisco content reduced the light-saturated photosynthetic rate. However, at limited irradiance, stomatal behavior and Rubisco content had only a marginal effect on the photosynthetic rate, which did not change during the day. In contrast to the aerial leaves, the photosynthesis rate of the submerged leaves, adapted to a shaded environment, was saturated under lower irradiance. The light-saturated quantum efficiency of these leaves was much lower and did not change during the day. Due to their low photosynthetic affinity for CO(2) (35 muM) and inability to utilize other inorganic carbon species, their photosynthetic rate at air-equilibrated water was CO(2)-limited. These results reveal differences in the photosynthetic performance of the two types of Nuphar leaves and unravel how photosynthetic daily rhythm in the aerial leaves is controlled.

  8. SvABA

    DEFF Research Database (Denmark)

    Wala, Jeremiah A; Bandopadhayay, Pratiti; Greenwald, Noah

    2018-01-01

    Structural variants (SVs), including small insertion and deletion variants (indels), are challenging to detect through standard alignment-based variant calling methods. Sequence assembly offers a powerful approach to identifying SVs, but is difficult to apply at scale genome-wide for SV detection...... due to its computational complexity and the difficulty of extracting SVs from assembly contigs. We describe SvABA, an efficient and accurate method for detecting SVs from short-read sequencing data using genome-wide local assembly with low memory and computing requirements. We evaluated Sv...... complex somatic rearrangements with chains of short (applied SvABA to 344 cancer genomes from 11 cancer types and found that short templated-sequence insertions occur in ∼4% of all somatic rearrangements. Finally, we...

  9. Kaolin modulates ABA and IAA dynamics and physiology of grapevine under Mediterranean summer stress.

    Science.gov (United States)

    Dinis, L-T; Bernardo, S; Luzio, A; Pinto, G; Meijón, M; Pintó-Marijuan, M; Cotado, A; Correia, C; Moutinho-Pereira, J

    2018-01-01

    The foliar exogenous application of kaolin, a radiation-reflecting inert mineral, has proven to be an effective short-term climate change mitigation strategy for Mediterranean vineyards. In this work, we address the hypothesis that kaolin could improve both the hormonal dynamics and physiological responses of grapevines growing in Douro Region, northern Portugal. For this purpose, the leaf water potential, gas exchange and chlorophyll a fluorescence parameters were monitored, as well as the abscisic acid (ABA) and indole-3-acetic acid (IAA) quantification and immunolocalization were assessed. The study revealed a slight decrease in ABA and an increase in IAA in the kaolin treatment, which in turn were associated with the improvement of physiological performance. A month after spraying, kaolin improves the water potential respectively, 30% and 17% in the predawn and midday periods. Besides, plants treated with kaolin showed higher values of stomatal conductance, net CO 2 assimilation rate and intrinsic water use efficiency. Kaolin also ameliorates the effective PSII efficiency (67%), as well as the maximum quantum efficiency of photosystem II and the photosynthetic electron transport rate (>73%). These results were consistent with the higher photochemical quenching and the lower non-photochemical quenching observed in treated leaves and with the better performance obtained by the JIP test parameters. Physiological and hormonal analysis confirmed that kaolin effectively enhance grapevine summer stress tolerance. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Interplay between ABA and phospholipases A(2) and D in the response of citrus fruit to postharvest dehydration.

    Science.gov (United States)

    Romero, Paco; Gandía, Mónica; Alférez, Fernando

    2013-09-01

    The interplay between abscisic acid (ABA) and phospholipases A2 and D (PLA2 and PLD) in the response of citrus fruit to water stress was investigated during postharvest by using an ABA-deficient mutant from 'Navelate' orange named 'Pinalate'. Fruit from both varieties harvested at two different maturation stages (mature-green and full-mature) were subjected to prolonged water loss inducing stem-end rind breakdown (SERB) in full-mature fruit. Treatment with PLA2 inhibitor aristolochic acid (AT) and PLD inhibitor lysophosphatidylethanolamine (LPE) reduced the disorder in both varieties, suggesting that phospholipid metabolism is involved in citrus peel quality. Expression of CsPLDα and CsPLDβ, and CssPLA2α and CssPLA2β was studied by real-time RT-PCR during water stress and in response to ABA. CsPLDα expression increased in mature-green fruit from 'Navelate' but not in 'Pinalate' and ABA did not counteract this effect. ABA enhanced repression of CsPLDα in full-mature fruit. CsPLDβ gene expression decreased in mature-green 'Pinalate', remained unchanged in 'Navelate' and was induced in full-mature fruit from both varieties. CssPLA2α expression increased in mature-green fruit from both varieties whereas in full-mature fruit only increased in 'Navelate'. CssPLA2β expression increased in mature-green flavedo from both varieties, but in full-mature fruit remained steady in 'Navelate' and barely increased in 'Pinalate' fruit. ABA reduced expression in both after prolonged storage. Responsiveness to ABA increased with maturation. Our results show interplay between PLA2 and PLD and suggest that ABA action is upstream phospholipase activation. Response to ABA during water stress in citrus is regulated during fruit maturation and involves membrane phospholipid degradation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Positive feedback regulation of a Lycium chinense-derived VDE gene by drought-induced endogenous ABA, and over-expression of this VDE gene improve drought-induced photo-damage in Arabidopsis.

    Science.gov (United States)

    Guan, Chunfeng; Ji, Jing; Zhang, Xuqiang; Li, Xiaozhou; Jin, Chao; Guan, Wenzhu; Wang, Gang

    2015-03-01

    Violaxanthin de-epoxidase (VDE) plays an important role in protecting the photosynthetic apparatus from photo-damage by dissipating excessively absorbed light energy as heat, via the conversion of violaxanthin (V) to intermediate product antheraxanthin (A) and final product zeaxanthin (Z) under light stress. We have cloned a VDE gene (LcVDE) from Lycium chinense, a deciduous woody perennial halophyte, which can grow in a large variety of soil types. The amino acid sequence of LcVDE has high homology with VDEs in other plants. Under drought stress, relative expression of LcVDE and the de-epoxidation ratio (Z+0.5A)/(V+A+Z) increased rapidly, and non-photochemical quenching (NPQ) also rose. Interestingly, these elevations induced by drought stress were reduced by the topical administration of abamine SG, a potent ABA inhibitor via inhibition of NCED in the ABA synthesis pathway. Until now, little has been done to explore the relationship between endogenous ABA and the expression of VDE genes. Since V serves as a common precursor for ABA, these data support the possible involvement of endogenous ABA in the positive feedback regulation of LcVDE gene expression in L. chinense under drought stress. Moreover, the LcVDE may be involved in modulating the level of photosynthesis damage caused by drought stress. Furthermore, the ratio of (Z+0.5A)/(V+A+Z) and NPQ increased more in transgenic Arabidopsis over-expressing LcVDE gene than the wild types under drought stress. The maximum quantum yield of primary photochemistry of PSII (Fv/Fm) in transgenic Arabidopsis decreased more slowly during the stressed period than that in wild types under the same conditions. Furthermore, transgenic Arabidopsis over-expressing LcVDE showed increased tolerance to drought stress. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Root-to-shoot signal transduction in rice under salt stress

    International Nuclear Information System (INIS)

    Bano, A.

    2010-01-01

    This paper describes the impact of salt stress on changes in the level of Abscisic acid (ABA) and cytokinins as signal molecules communicated through root-to-shoot in rice. The study focus to investigate the time related changes in the salt induced ABA and cytokinins accumulation concomitant with the changes in water potential and stomatal conductance of salt stressed plants. Seeds of 3 rice varieties were grown in plastic pots in phytotron. The changes in the level of abscisic acid (ABA), transzeatin riboside (t-zr) and 2-isopentyl adenine (2-ipa) were monitored in xylem sap and leaves of three rice varieties viz. BAS-385 (salt-sensitive), BG-402 (moderately tolerant) and NIAB-6 (tolerant). The salt solution (NaCl,1.2 dS m-1) was added to the rooting medium after transplanting when plants were 50 d old. There was delay in response of stomata to salt treatment in BAS-385 as opposed to earlier increase in leaf resistance in BG-402 and NIAB-6. The stem water potential increased sharply in all the varieties following salt treatment but the decrease in stomatal conductance of leaves preceded the decrease in stem water potential. The concentration of xylem ABA increased significantly greatly reaching a peak in BAS-385 much earlier (24 h of salt treatment) than that of other varieties. The ABA accumulation was delayed and the magnitude of ABA accumulation was greater in BG-402 and NIAB-6.The xylem flux of ABA followed a similar pattern. The concentration of xylem t-zr showed a short- term increase in all the varieties but the magnitude of increase was greater in BAS-385 at all the measurements till 96h of salt treatment .The concentration of xylem 2-ipa was higher in BAS-385 till 48 h of salt treatment . The flux of both the t-zr and 2ipa was greater in the tolerant variety 96h after salt treatment. The basal level of ABA and cytokinin appears to play important role in determining the response of a variety to salt stress. The xylem flux of ABA and cytokinin (2-ipa and t

  13. Stomatal responses to CO2 during a diel Crassulacean acid metabolism cycle in Kalanchoe daigremontiana and Kalanchoe pinnata.

    Science.gov (United States)

    von Caemmerer, Susanne; Griffiths, Howard

    2009-05-01

    To investigate the diurnal variation of stomatal sensitivity to CO2, stomatal response to a 30 min pulse of low CO2 was measured four times during a 24 h time-course in two Crassulacean acid metabolism (CAM) species Kalanchoe daigremontiana and Kalanchoe pinnata, which vary in the degree of succulence, and hence, expression and commitment to CAM. In both species, stomata opened in response to a reduction in pCO2 in the dark and in the latter half of the light period, and thus in CAM species, chloroplast photosynthesis is not required for the stomatal response to low pCO2. Stomata did not respond to a decreased pCO2 in K. daigremontiana in the light when stomata were closed, even when the supply of internal CO2 was experimentally reduced. We conclude that stomatal closure during phase III is not solely mediated by high internal pCO2, and suggest that in CAM species the diurnal variability in the responsiveness of stomata to pCO2 could be explained by hypothesizing the existence of a single CO2 sensor which interacts with other signalling pathways. When not perturbed by low pCO2, CO2 assimilation rate and stomatal conductance were correlated both in the light and in the dark in both species.

  14. The small ethylene response factor ERF96 is involved in the regulation of the abscisic acid response in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Xiaoping eWang

    2015-11-01

    that water loss in ERF96 overexpression plants was slower than that in Col wild type plants. Stomatal closure assays indicated that ERF96 overexpression plants had reduced stomatal aperture in the presence of ABA. Taken together, our results suggest that AtERF96 positively regulates ABA responses in Arabidopsis.

  15. Stomatal and non-stomatal factors regulated the photosynthesis of soybean seedlings in the present of exogenous bisphenol A.

    Science.gov (United States)

    Jiao, Liya; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2017-11-01

    Bisphenol A (BPA) is an emerging environmental endocrine disruptor that has toxic effects on plants growth. Photosynthesis supplies the substances and energy required for plant growth, and regulated by stomatal and non-stomatal factors. Therefore, in this study, to reveal how BPA affects photosynthesis in soybean seedlings (Glycine max L.) from the perspective of stomatal and non-stomatal factors, the stomatal factors (stomatal conductance and behaviours) and non-stomatal factors (Hill reaction, apparent quantum efficiency, Rubisco activity, carboxylation efficiency, the maximum Rubisco carboxylation velocity, ribulose-1,5-bisphospate regeneration capacities mediated by maximum electron transport rates, and triose phosphate utilization rate) were investigated using a portable photosynthesis system. Moreover, the pollution of BPA in the environment was simulated. The results indicate that low-dose BPA enhanced net photosynthetic rate (P n ) primarily by promoting stomatal factors, resulting in increased relative growth rates and accelerated soybean seedling growth. High-dose BPA decreases the P n by simultaneously inhibiting stomatal and non-stomatal factors, and this inhibition decreases the relative growth rates further reducing soybean seedling growth. Following the withdrawal of BPA, all of the indices were restored to varying degrees. In conclusion, low-dose BPA increased the P n by promoting stomatal factors while high-dose BPA decreased the P n by simultaneously inhibiting stomatal and non-stomatal factors. These findings provide a model (or, hypothesis) for the effects of BPA on plant photosynthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation.

    Science.gov (United States)

    Yoshida, Takuya; Fujita, Yasunari; Sayama, Hiroko; Kidokoro, Satoshi; Maruyama, Kyonoshin; Mizoi, Junya; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2010-02-01

    A myriad of drought stress-inducible genes have been reported, and many of these are activated by abscisic acid (ABA). In the promoter regions of such ABA-regulated genes, conserved cis-elements, designated ABA-responsive elements (ABREs), control gene expression via bZIP-type AREB/ABF transcription factors. Although all three members of the AREB/ABF subfamily, AREB1, AREB2, and ABF3, are upregulated by ABA and water stress, it remains unclear whether these are functional homologs. Here, we report that all three AREB/ABF transcription factors require ABA for full activation, can form hetero- or homodimers to function in nuclei, and can interact with SRK2D/SnRK2.2, an SnRK2 protein kinase that was identified as a regulator of AREB1. Along with the tissue-specific expression patterns of these genes and the subcellular localization of their encoded proteins, these findings clearly indicate that AREB1, AREB2, and ABF3 have largely overlapping functions. To elucidate the role of these AREB/ABF transcription factors, we generated an areb1 areb2 abf3 triple mutant. Large-scale transcriptome analysis, which showed that stress-responsive gene expression is remarkably impaired in the triple mutant, revealed novel AREB/ABF downstream genes in response to water stress, including many LEA class and group-Ab PP2C genes and transcription factors. The areb1 areb2 abf3 triple mutant is more resistant to ABA than are the other single and double mutants with respect to primary root growth, and it displays reduced drought tolerance. Thus, these results indicate that AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent gene expression for ABA signaling under conditions of water stress.

  17. ABA signaling is necessary but not sufficient for RD29B transcriptional memory during successive dehydration stresses in Arabidopsis thaliana.

    Science.gov (United States)

    Virlouvet, Laetitia; Ding, Yong; Fujii, Hiroaki; Avramova, Zoya; Fromm, Michael

    2014-07-01

    Plants subjected to a prior dehydration stress were seen to have altered transcriptional responses during a subsequent dehydration stress for up to 5 days after the initial stress. The abscisic acid (ABA) inducible RD29B gene of Arabidopsis thaliana was strongly induced after the first stress and displayed transcriptional memory with transcript levels nine-fold higher during the second dehydration stress. These increased transcript levels were due to an increased rate of transcription and are associated with an altered chromatin template during the recovery interval between the dehydration stresses. Here we use a combination of promoter deletion/substitutions, mutants in the trans-acting transcription factors and their upstream protein kinases, and treatments with exogenous ABA or dehydration stress to advance our understanding of the features required for transcriptional memory of RD29B. ABA Response Elements (ABREs) are sufficient to confer transcriptional memory on a minimal promoter, although there is a context effect from flanking sequences. Different mutations in Snf1 Related Protein Kinase 2 (SnRK2) genes positively and negatively affected the response, suggesting that this effect is important for transcriptional memory. Although exogenous ABA treatments could prime transcriptional memory, a second ABA treatment was not sufficient to activate transcriptional memory. Therefore, we concluded that transcriptional memory requires ABA and an ABA-independent factor that is induced or activated by a subsequent dehydration stress and directly or indirectly results in a more active RD29B chromatin template. These results advance our knowledge of the cis- and trans-acting factors that are required for transcriptional memory of RD29B. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  18. The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration.

    Science.gov (United States)

    Romero, Paco; Lafuente, María T; Rodrigo, María J

    2012-08-01

    The abscisic acid (ABA) signalling core in plants include the cytosolic ABA receptors (PYR/PYL/RCARs), the clade-A type 2C protein phosphatases (PP2CAs), and the subclass III SNF1-related protein kinases 2 (SnRK2s). The aim of this work was to identify these ABA perception system components in sweet orange and to determine the influence of endogenous ABA on their transcriptional regulation during fruit development and ripening, taking advantage of the comparative analysis between a wild-type and a fruit-specific ABA-deficient mutant. Transcriptional changes in the ABA signalosome during leaf dehydration were also studied. Six PYR/PYL/RCAR, five PP2CA, and two subclass III SnRK2 genes, homologous to those of Arabidopsis, were identified in the Citrus genome. The high degree of homology and conserved motifs for protein folding and for functional activity suggested that these Citrus proteins are bona fide core elements of ABA perception in orange. Opposite expression patterns of CsPYL4 and CsPYL5 and ABA accumulation were found during ripening, although there were few differences between varieties. In contrast, changes in expression of CsPP2CA genes during ripening paralleled those of ABA content and agreeed with the relevant differences between wild-type and mutant fruit transcript accumulation. CsSnRK2 gene expression continuously decreased with ripening and no remarkable differences were found between cultivars. Overall, dehydration had a minor effect on CsPYR/PYL/RCAR and CsSnRK2 expression in vegetative tissue, whereas CsABI1, CsAHG1, and CsAHG3 were highly induced by water stress. The global results suggest that responsiveness to ABA changes during citrus fruit ripening, and leaf dehydration was higher in the CsPP2CA gene negative regulators than in the other ABA signalosome components.

  19. Disruption of a Guard Cell–Expressed Protein Phosphatase 2A Regulatory Subunit, RCN1, Confers Abscisic Acid Insensitivity in Arabidopsis

    Science.gov (United States)

    Kwak, June M.; Moon, Ji-Hye; Murata, Yoshiyuki; Kuchitsu, Kazuyuki; Leonhardt, Nathalie; DeLong, Alison; Schroeder, Julian I.

    2002-01-01

    Pharmacological studies have led to a model in which the phytohormone abscisic acid (ABA) may be positively transduced via protein phosphatases of the type 1 (PP1) or type 2A (PP2A) families. However, pharmacological evidence also exists that PP1s or PP2As may function as negative regulators of ABA signaling. Furthermore, recessive disruption mutants in protein phosphatases that function in ABA signal transduction have not yet been identified. A guard cell–expressed PP2A gene, RCN1, which had been characterized previously as a molecular component affecting auxin transport and gravity response, was isolated. A T-DNA disruption mutation in RCN1 confers recessive ABA insensitivity to Arabidopsis. The rcn1 mutation impairs ABA-induced stomatal closing and ABA activation of slow anion channels. Calcium imaging analyses show a reduced sensitivity of ABA-induced cytosolic calcium increases in rcn1, whereas mechanisms downstream of cytosolic calcium increases show wild-type responses, suggesting that RCN1 functions in ABA signal transduction upstream of cytosolic Ca2+ increases. Furthermore, rcn1 shows ABA insensitivity in ABA inhibition of seed germination and ABA-induced gene expression. The PP1 and PP2A inhibitor okadaic acid phenocopies the rcn1 phenotype in wild-type plants both in ABA-induced cytosolic calcium increases and in seed germination, and the wild-type RCN1 genomic DNA complements rcn1 phenotypes. These data show that RCN1 functions as a general positive transducer of early ABA signaling. PMID:12417706

  20. Involvement of NADPH oxidase isoforms in the production of O2- manipulated by ABA in the senescing leaves of early-senescence-leaf (esl) mutant rice (Oryza sativa).

    Science.gov (United States)

    Li, Zhaowei; Wang, Fubiao; Zhao, Qian; Liu, Jianchao; Cheng, Fangmin

    2018-01-01

    In this study, the differences in reactive oxygen species (ROS) generation and abscisic acid (ABA) accumulation in senescing leaves were investigated by early-senescence-leaf (esl) mutant and its wild type, to clarify the relationship among ABA levels, ROS generation, and NADPH oxidase (Nox) in senescing leaves of rice (Oryza sativa). The temporal expression levels of OsNox isoforms in senescing leaves and their expression patterns in response to ABA treatment were determined through quantitative real-time reverse transcription PCR (qRT-PCR). Results showed that the flag leaf of the esl mutant generated more O2- concentrations and accumulated higher ABA levels than the wild-type cultivar did in the grain-filling stage. Exogenous ABA treatment induced O2- generation; however, it was depressed by diphenyleneiodonium chloride (DPI) pretreatment in the detached leaf segments. This finding suggested the involvement of NADPH oxidase in ABA-induced O2- generation. The esl mutant exhibited significantly higher expression of OsNox2, OsNox5, OsNox6, and OsNox7 in the initial of grain-filling stage, followed by sharply decrease. The transcriptional levels of OsNox1, OsNox3, and OsFR07 in the flag leaf of the esl mutant were significantly lower than those in the wild-type cultivar. The expression levels of OsNox2, OsNox5, OsNox6, and OsNox7 were significantly enhanced by exogenous ABA treatments. The enhanced expression levels of OsNox2 and OsNox6 were dependent on the duration of ABA treatment. The inducible expression levels of OsNox5 and OsNox7 were dependent on ABA concentrations. By contrast, exogenous ABA treatment severely repressed the transcripts of OsNox1, OsNox3, and OsFR07 in the detached leaf segments. Therefore, OsNox2, OsNox5, OsNox6, and OsNox7 were probably involved in the ABA-induced O2- generation in the initial stage of leaf senescence. Subsequently, other oxidases activated in deteriorating cells were associated with ROS generation and accumulation in the

  1. Identification and mechanism of ABA receptor antagonism

    KAUST Repository

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M.; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric

    2010-01-01

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands. © 2010 Nature America, Inc. All rights reserved.

  2. Identification and mechanism of ABA receptor antagonism

    KAUST Repository

    Melcher, Karsten

    2010-08-22

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands. © 2010 Nature America, Inc. All rights reserved.

  3. A NAP-AAO3 Regulatory Module Promotes Chlorophyll Degradation via ABA Biosynthesis in Arabidopsis Leaves[W][OPEN

    Science.gov (United States)

    Yang, Jiading; Worley, Eric

    2014-01-01

    Chlorophyll degradation is an important part of leaf senescence, but the underlying regulatory mechanisms are largely unknown. Excised leaves of an Arabidopsis thaliana NAC-LIKE, ACTIVATED BY AP3/PI (NAP) transcription factor mutant (nap) exhibited lower transcript levels of known chlorophyll degradation genes, STAY-GREEN1 (SGR1), NON-YELLOW COLORING1 (NYC1), PHEOPHYTINASE (PPH), and PHEIDE a OXYGENASE (PaO), and higher chlorophyll retention than the wild type during dark-induced senescence. Transcriptome coexpression analysis revealed that abscisic acid (ABA) metabolism/signaling genes were disproportionately represented among those positively correlated with NAP expression. ABA levels were abnormally low in nap leaves during extended darkness. The ABA biosynthetic genes 9-CIS-EPOXYCAROTENOID DIOXYGENASE2, ABA DEFICIENT3, and ABSCISIC ALDEHYDE OXIDASE3 (AAO3) exhibited abnormally low transcript levels in dark-treated nap leaves. NAP transactivated the promoter of AAO3 in mesophyll cell protoplasts, and electrophoretic mobility shift assays showed that NAP can bind directly to a segment (−196 to −162 relative to the ATG start codon) of the AAO3 promoter. Exogenous application of ABA increased the transcript levels of SGR1, NYC1, PPH, and PaO and suppressed the stay-green phenotype of nap leaves during extended darkness. Overexpression of AAO3 in nap leaves also suppressed the stay-green phenotype under extended darkness. Collectively, the results show that NAP promotes chlorophyll degradation by enhancing transcription of AAO3, which leads to increased levels of the senescence-inducing hormone ABA. PMID:25516602

  4. Amplification of ABA biosynthesis and signaling through a positive feedback mechanism in seeds.

    Science.gov (United States)

    Nonogaki, Mariko; Sall, Khadidiatou; Nambara, Eiji; Nonogaki, Hiroyuki

    2014-05-01

    Abscisic acid is an essential hormone for seed dormancy. Our previous study using the plant gene switch system, a chemically induced gene expression system, demonstrated that induction of 9-cis-epoxycarotenoid dioxygenase (NCED), a rate-limiting ABA biosynthesis gene, was sufficient to suppress germination in imbibed Arabidopsis seeds. Here, we report development of an efficient experimental system that causes amplification of NCED expression during seed maturation. The system was created with a Triticum aestivum promoter containing ABA responsive elements (ABREs) and a Sorghum bicolor NCED to cause ABA-stimulated ABA biosynthesis and signaling, through a positive feedback mechanism. The chimeric gene pABRE:NCED enhanced NCED and ABF (ABRE-binding factor) expression in Arabidopsis Columbia-0 seeds, which caused 9- to 73-fold increases in ABA levels. The pABRE:NCED seeds exhibited unusually deep dormancy which lasted for more than 3 months. Interestingly, the amplified ABA pathways also caused enhanced expression of Arabidopsis NCED5, revealing the presence of positive feedback in the native system. These results demonstrated the robustness of positive feedback mechanisms and the significance of NCED expression, or single metabolic change, during seed maturation. The pABRE:NCED system provides an excellent experimental system producing dormant and non-dormant seeds of the same maternal origin, which differ only in zygotic ABA. The pABRE:NCED seeds contain a GFP marker which enables seed sorting between transgenic and null segregants and are ideal for comparative analysis. In addition to its utility in basic research, the system can also be applied to prevention of pre-harvest sprouting during crop production, and therefore contributes to translational biology. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  5. Type 2C Phosphatase 1 of Artemisia annua L. Is a Negative Regulator of ABA Signaling

    Directory of Open Access Journals (Sweden)

    Fangyuan Zhang

    2014-01-01

    Full Text Available The phytohormone abscisic acid (ABA plays an important role in plant development and environmental stress response. Additionally, ABA also regulates secondary metabolism such as artemisinin in the medicinal plant Artemisia annua L. Although an earlier study showed that ABA receptor, AaPYL9, plays a positive role in ABA-induced artemisinin content improvement, many components in the ABA signaling pathway remain to be elucidated in Artemisia annua L. To get insight of the function of AaPYL9, we isolated and characterized an AaPYL9-interacting partner, AaPP2C1. The coding sequence of AaPP2C1 encodes a deduced protein of 464 amino acids, with all the features of plant type clade A PP2C. Transcriptional analysis showed that the expression level of AaPP2C1 is increased after ABA, salt, and drought treatments. Yeast two-hybrid and bimolecular fluorescence complementation assays (BiFC showed that AaPYL9 interacted with AaPP2C1. The P89S, H116A substitution in AaPYL9 as well as G199D substitution or deletion of the third phosphorylation site-like motif in AaPP2C1 abolished this interaction. Furthermore, constitutive expression of AaPP2C1 conferred ABA insensitivity compared with the wild type. In summary, our data reveals that AaPP2C1 is an AaPYL9-interacting partner and involved in the negative modulation of the ABA signaling pathway in A. annua L.

  6. Physiological and molecular responses to drought in Petunia: the importance of stress severity

    Science.gov (United States)

    Kim, Jongyun

    2012-01-01

    Plant responses to drought stress vary depending on the severity of stress and the stage of drought progression. To improve the understanding of such responses, the leaf physiology, abscisic acid (ABA) concentration, and expression of genes associated with ABA metabolism and signalling were investigated in Petunia × hybrida. Plants were exposed to different specific substrate water contents (θ = 0.10, 0.20, 0.30, or 0.40 m3·m–3) to induce varying levels of drought stress. Plant responses were investigated both during the drying period (θ decreased to the θ thresholds) and while those threshold θ were maintained. Stomatal conductance (gs) and net photosynthesis (A) decreased with decreasing midday leaf water potential (Ψleaf). Leaf ABA concentration increased with decreasing midday Ψleaf and was negatively correlated with gs (r = –0.92). Despite the increase in leaf ABA concentration under drought, no significant effects on the expression of ABA biosynthesis genes were observed. However, the ABA catabolism-related gene CYP707A2 was downregulated, primarily in plants under severe drought (θ = 0.10 m3∙m–3), suggesting a decrease in ABA catabolism under severe drought. Expression of phospholipase Dα (PLDα), involved in regulating stomatal responses to ABA, was enhanced under drought during the drying phase, but there was no relationship between PLDα expression and midday Ψleaf after the θ thresholds had been reached. The results show that drought response of plants depends on the severity of drought stress and the phase of drought progression. PMID:23077204

  7. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence.

    Science.gov (United States)

    Lü, Peitao; Zhang, Changqing; Liu, Jitao; Liu, Xiaowei; Jiang, Guimei; Jiang, Xinqiang; Khan, Muhammad Ali; Wang, Liangsheng; Hong, Bo; Gao, Junping

    2014-05-01

    Rose (Rosa hybrida) is one of the most important ornamental plants worldwide; however, senescence of its petals terminates the ornamental value of the flower, resulting in major economic loss. It is known that the hormones abscisic acid (ABA) and ethylene promote petal senescence, while gibberellins (GAs) delay the process. However, the molecular mechanisms underlying the antagonistic effects amongst plant hormones during petal senescence are still unclear. Here we isolated RhHB1, a homeodomain-leucine zipper I transcription factor gene, from rose flowers. Quantitative RT-PCR and GUS reporter analyses showed that RhHB1 was strongly expressed in senescing petals, and its expression was induced by ABA or ethylene in petals. ABA or ethylene treatment clearly accelerated rose petal senescence, while application of the gibberellin GA3 delayed the process. However, silencing of RhHB1 delayed the ABA- or ethylene-mediated senescence, and resulted in higher petal anthocyanin levels and lower expression of RhSAG12. Moreover, treatment with paclobutrazol, an inhibitor of GA biosynthesis, repressed these delays. In addition, silencing of RhHB1 blocked the ABA- or ethylene-induced reduction in expression of the GA20 oxidase encoded by RhGA20ox1, a gene in the GA biosynthetic pathway. Furthermore, RhHB1 directly binds to the RhGA20ox1 promoter, and silencing of RhGA20ox1 promoted petal senescence. Eight senescence-related genes showed substantial differences in expression in petals after treatment with GA3 or paclobutrazol. These results suggest that RhHB1 mediates the antagonistic effect of GAs on ABA and ethylene during rose petal senescence, and that the promotion of petal senescence by ABA or ethylene operates through an RhHB1-RhGA20ox1 regulatory checkpoint. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  8. A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Jarvis, Andrew J.; Boegh, Eva

    2014-01-01

    The use of Penman–Monteith (PM) equation in thermal remote sensing based surface energy balance modeling is not prevalent due to the unavailability of any direct method to integrate thermal data into the PM equation and due to the lack of physical models expressing the surface (or stomatal......) and boundary layer conductances (gS and gB) as a function of surface temperature. Here we demonstrate a new method that physically integrates the radiometric surface temperature (TS) into the PM equation for estimating the terrestrial surface energy balance fluxes (sensible heat, H and latent heat, λ......E). The method combines satellite TS data with standard energy balance closure models in order to derive a hybrid closure that does not require the specification of surface to atmosphere conductance terms. We call this the Surface Temperature Initiated Closure (STIC), which is formed by the simultaneous solution...

  9. Understanding the Posttranscriptional Regulation of Plant Responses to Abiotic Stress

    KAUST Repository

    AlShareef, Sahar A.

    2017-06-01

    Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and biotic and abiotic stresses. Recent work showed that AS is pervasive across plant species, with more than 60% of intron-containing genes producing different isoforms. Mammalian cell-based assays have discovered various AS small-molecule inhibitors that perturb splicing and thereby provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Here, I show that the macrolide Pladienolide B (PB) and herboxidiene (GEX1A) inhibits both constitutive and alternative splicing, mimics an abiotic stress signal, and activates the abscisic acid (ABA) pathway in plants. Moreover, PB and GEX1A activate genome-wide transcriptional patterns involved in abiotic stress responses in plants. PB and GEX1A treatment triggered the ABA signaling pathway, activated ABA-inducible promoters, and led to stomatal closure. Interestingly, PB and GEX1A elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. This work establishes PB and GEX1A as potent splicing inhibitors in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  10. Involvement of NADPH oxidase isoforms in the production of O2− manipulated by ABA in the senescing leaves of early-senescence-leaf (esl) mutant rice (Oryza sativa)

    Science.gov (United States)

    Wang, Fubiao; Zhao, Qian; Liu, Jianchao; Cheng, Fangmin

    2018-01-01

    In this study, the differences in reactive oxygen species (ROS) generation and abscisic acid (ABA) accumulation in senescing leaves were investigated by early-senescence-leaf (esl) mutant and its wild type, to clarify the relationship among ABA levels, ROS generation, and NADPH oxidase (Nox) in senescing leaves of rice (Oryza sativa). The temporal expression levels of OsNox isoforms in senescing leaves and their expression patterns in response to ABA treatment were determined through quantitative real-time reverse transcription PCR (qRT-PCR). Results showed that the flag leaf of the esl mutant generated more O2- concentrations and accumulated higher ABA levels than the wild-type cultivar did in the grain-filling stage. Exogenous ABA treatment induced O2- generation; however, it was depressed by diphenyleneiodonium chloride (DPI) pretreatment in the detached leaf segments. This finding suggested the involvement of NADPH oxidase in ABA-induced O2- generation. The esl mutant exhibited significantly higher expression of OsNox2, OsNox5, OsNox6, and OsNox7 in the initial of grain-filling stage, followed by sharply decrease. The transcriptional levels of OsNox1, OsNox3, and OsFR07 in the flag leaf of the esl mutant were significantly lower than those in the wild-type cultivar. The expression levels of OsNox2, OsNox5, OsNox6, and OsNox7 were significantly enhanced by exogenous ABA treatments. The enhanced expression levels of OsNox2 and OsNox6 were dependent on the duration of ABA treatment. The inducible expression levels of OsNox5 and OsNox7 were dependent on ABA concentrations. By contrast, exogenous ABA treatment severely repressed the transcripts of OsNox1, OsNox3, and OsFR07 in the detached leaf segments. Therefore, OsNox2, OsNox5, OsNox6, and OsNox7 were probably involved in the ABA-induced O2- generation in the initial stage of leaf senescence. Subsequently, other oxidases activated in deteriorating cells were associated with ROS generation and accumulation in the

  11. Functional mechanisms of drought tolerance in subtropical maize (Zea mays L.) identified using genome-wide association mapping.

    Science.gov (United States)

    Thirunavukkarasu, Nepolean; Hossain, Firoz; Arora, Kanika; Sharma, Rinku; Shiriga, Kaliyugam; Mittal, Swati; Mohan, Sweta; Namratha, Pottekatt Mohanlal; Dogga, Sreelatha; Rani, Tikka Shobha; Katragadda, Sumalini; Rathore, Abhishek; Shah, Trushar; Mohapatra, Trilochan; Gupta, Hari Shankar

    2014-12-24

    Earlier studies were focused on the genetics of temperate and tropical maize under drought. We identified genetic loci and their association with functional mechanisms in 240 accessions of subtropical maize using a high-density marker set under water stress. Out of 61 significant SNPs (11 were false-discovery-rate-corrected associations), identified across agronomic traits, models, and locations by subjecting the accessions to water stress at flowering stage, 48% were associated with drought-tolerant genes. Maize gene models revealed that SNPs mapped for agronomic traits were in fact associated with number of functional traits as follows: stomatal closure, 28; flowering, 15; root development, 5; detoxification, 4; and reduced water potential, 2. Interactions of these SNPS through the functional traits could lead to drought tolerance. The SNPs associated with ABA-dependent signalling pathways played a major role in the plant's response to stress by regulating a series of functions including flowering, root development, auxin metabolism, guard cell functions, and scavenging reactive oxygen species (ROS). ABA signalling genes regulate flowering through epigenetic changes in stress-responsive genes. ROS generated by ABA signalling are reduced by the interplay between ethylene, ABA, and detoxification signalling transductions. Integration of ABA-signalling genes with auxin-inducible genes regulates root development which in turn, maintains the water balance by regulating electrochemical gradient in plant. Several genes are directly or indirectly involved in the functioning of agronomic traits related to water stress. Genes involved in these crucial biological functions interacted significantly in order to maintain the primary as well as exclusive functions related to coping with water stress. SNPs associated with drought-tolerant genes involved in strategic biological functions will be useful to understand the mechanisms of drought tolerance in subtropical maize.

  12. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway.

    Science.gov (United States)

    Kizis, Dimosthenis; Pagès, Montserrat

    2002-06-01

    The abscisic acid-responsive gene rab17 of maize is expressed during late embryogenesis, and is induced by ABA and desiccation in embryo and vegetative tissues. ABRE and DRE cis-elements are involved in regulation of the gene by ABA and drought. Using yeast one-hybrid screening, we isolated two cDNAs encoding two new DRE-binding proteins, designated DBF1 and DBF2, that are members of the AP2/EREBP transcription factor family. Analysis of mRNA accumulation profiles showed that DBF1 is induced during maize embryogenesis and after desiccation, NaCl and ABA treatments in plant seedlings, whereas the DBF2 mRNA is not induced. DNA-binding preferences of DBFs were analysed by electrophoretic mobility shift assays, and showed that both DBF1 and DBF2 bound to the wild-type DRE2 element, but not to the DRE2 mutant or to the DRE1 element which differs only in a single nucleotide. Transactivation activity using particle bombardment showed that DBF1 functioned as activator of DRE2-dependent transcription of rab17 promoter by ABA, whereas DBF2 overexpression had a repression action downregulating not only the basal promoter activity, but also the ABA effect. These results show that ABA plays a role in the regulation of DBF activity, and suggests the existence of an ABA-dependent pathway for the regulation of genes through the C-repeat/DRE element.

  13. Overexpression of Arachis hypogaea AREB1 Gene Enhances Drought Tolerance by Modulating ROS Scavenging and Maintaining Endogenous ABA Content

    Directory of Open Access Journals (Sweden)

    Ling Li

    2013-06-01

    Full Text Available AhAREB1 (Arachis hypogaea Abscisic-acid Response Element Binding Protein 1 is a member of the basic domain leucine zipper (bZIP-type transcription factor in peanut. Previously, we found that expression of AhAREB1 was specifically induced by abscisic acid (ABA, dehydration and drought. To understand the drought defense mechanism regulated by AhAREB1, transgenic Arabidopsis overexpressing AhAREB1 was conducted in wild-type (WT, and a complementation experiment was employed to ABA non-sensitivity mutant abi5 (abscisic acid-insensitive 5. Constitutive expression of AhAREB1 confers water stress tolerance and is highly sensitive to exogenous ABA. Microarray and further real-time PCR analysis revealed that drought stress, reactive oxygen species (ROS scavenging, ABA synthesis/metabolism-related genes and others were regulated in transgenic Arabidopsis overexpressing AhAREB1. Accordingly, low level of ROS, but higher ABA content was detected in the transgenic Arabidopsis plants’ overexpression of AhAREB1. Taken together, it was concluded that AhAREB1 modulates ROS accumulation and endogenous ABA level to improve drought tolerance in transgenic Arabidopsis.

  14. Abscisic Acid (ABA) Regulation of Arabidopsis SR Protein Gene Expression

    Science.gov (United States)

    Cruz, Tiago M. D.; Carvalho, Raquel F.; Richardson, Dale N.; Duque, Paula

    2014-01-01

    Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses. PMID:25268622

  15. Abscisic Acid Is a Major Regulator of Grape Berry Ripening Onset: New Insights into ABA Signaling Network

    Science.gov (United States)

    Pilati, Stefania; Bagagli, Giorgia; Sonego, Paolo; Moretto, Marco; Brazzale, Daniele; Castorina, Giulia; Simoni, Laura; Tonelli, Chiara; Guella, Graziano; Engelen, Kristof; Galbiati, Massimo; Moser, Claudio

    2017-01-01

    Grapevine is a world-wide cultivated economically relevant crop. The process of berry ripening is non-climacteric and does not rely on the sole ethylene signal. Abscisic acid (ABA) is recognized as an important hormone of ripening inception and color development in ripening berries. In order to elucidate the effect of this signal at the molecular level, pre-véraison berries were treated ex vivo for 20 h with 0.2 mM ABA and berry skin transcriptional modulation was studied by RNA-seq after the treatment and 24 h later, in the absence of exogenous ABA. This study highlighted that a small amount of ABA triggered its own biosynthesis and had a transcriptome-wide effect (1893 modulated genes) characterized by the amplification of the transcriptional response over time. By comparing this dataset with the many studies on ripening collected within the grapevine transcriptomic compendium Vespucci, an extended overlap between ABA- and ripening modulated gene sets was observed (71% of the genes), underpinning the role of this hormone in the regulation of berry ripening. The signaling network of ABA, encompassing ABA metabolism, transport and signaling cascade, has been analyzed in detail and expanded based on knowledge from other species in order to provide an integrated molecular description of this pathway at berry ripening onset. Expression data analysis was combined with in silico promoter analysis to identify candidate target genes of ABA responsive element binding protein 2 (VvABF2), a key upstream transcription factor of the ABA signaling cascade which is up-regulated at véraison and also by ABA treatments. Two transcription factors, VvMYB143 and VvNAC17, and two genes involved in protein degradation, Armadillo-like and Xerico-like genes, were selected for in vivo validation by VvABF2-mediated promoter trans-activation in tobacco. VvNAC17 and Armadillo-like promoters were induced by ABA via VvABF2, while VvMYB143 responded to ABA in a VvABF2-independent manner. This

  16. Nitric Oxide (NO) Measurements in Stomatal Guard Cells.

    Science.gov (United States)

    Agurla, Srinivas; Gayatri, Gunja; Raghavendra, Agepati S

    2016-01-01

    The quantitative measurement of nitric oxide (NO) in plant cells acquired great importance, in view of the multifaceted function and involvement of NO as a signal in various plant processes. Monitoring of NO in guard cells is quite simple because of the large size of guard cells and ease of observing the detached epidermis under microscope. Stomatal guard cells therefore provide an excellent model system to study the components of signal transduction. The levels and functions of NO in relation to stomatal closure can be monitored, with the help of an inverted fluorescence or confocal microscope. We can measure the NO in guard cells by using flouroprobes like 4,5-diamino fluorescein diacetate (DAF-2DA). This fluorescent dye, DAF-2DA, is cell permeable and after entry into the cell, the diacetate group is removed by the cellular esterases. The resulting DAF-2 form is membrane impermeable and reacts with NO to generate the highly fluorescent triazole (DAF-2T), with excitation and emission wavelengths of 488 and 530 nm, respectively. If time-course measurements are needed, the epidermis can be adhered to a cover-glass or glass slide and left in a small petri dishes. Fluorescence can then be monitored at required time intervals; with a precaution that excitation is done minimally, only when a fluorescent image is acquired. The present method description is for the epidermis of Arabidopsis thaliana and Pisum sativum and should work with most of the other dicotyledonous plants.

  17. Hormonal and Hydroxycinnamic Acids Profiles in Banana Leaves in Response to Various Periods of Water Stress

    Directory of Open Access Journals (Sweden)

    Jalel Mahouachi

    2014-01-01

    Full Text Available The pattern of change in the endogenous levels of several plant hormones and hydroxycinnamic acids in addition to growth and photosynthetic performance was investigated in banana plants (Musa acuminata cv. “Grand Nain” subjected to various cycles of drought. Water stress was imposed by withholding irrigation for six periods with subsequent rehydration. Data showed an increase in abscisic acid (ABA and indole-3-acetic acid (IAA levels, a transient increase in salicylic acid (SA concentration, and no changes in jasmonic acid (JA after each period of drought. Moreover, the levels of ferulic (FA and cinnamic acids (CA were increased, and plant growth and leaf gas exchange parameters were decreased by drought conditions. Overall, data suggest an involvement of hormones and hydroxycinnamic acids in plant avoidance of tissue dehydration. The increase in IAA concentration might alleviate the senescence of survival leaves and maintained cell elongation, and the accumulation of FA and CA could play a key role as a mechanism of photoprotection through leaf folding, contributing to the effect of ABA on inducing stomatal closure. Data also suggest that the role of SA similarly to JA might be limited to a transient and rapid increase at the onset of the first period of stress.

  18. Hormonal and hydroxycinnamic acids profiles in banana leaves in response to various periods of water stress.

    Science.gov (United States)

    Mahouachi, Jalel; López-Climent, María F; Gómez-Cadenas, Aurelio

    2014-01-01

    The pattern of change in the endogenous levels of several plant hormones and hydroxycinnamic acids in addition to growth and photosynthetic performance was investigated in banana plants (Musa acuminata cv. "Grand Nain") subjected to various cycles of drought. Water stress was imposed by withholding irrigation for six periods with subsequent rehydration. Data showed an increase in abscisic acid (ABA) and indole-3-acetic acid (IAA) levels, a transient increase in salicylic acid (SA) concentration, and no changes in jasmonic acid (JA) after each period of drought. Moreover, the levels of ferulic (FA) and cinnamic acids (CA) were increased, and plant growth and leaf gas exchange parameters were decreased by drought conditions. Overall, data suggest an involvement of hormones and hydroxycinnamic acids in plant avoidance of tissue dehydration. The increase in IAA concentration might alleviate the senescence of survival leaves and maintained cell elongation, and the accumulation of FA and CA could play a key role as a mechanism of photoprotection through leaf folding, contributing to the effect of ABA on inducing stomatal closure. Data also suggest that the role of SA similarly to JA might be limited to a transient and rapid increase at the onset of the first period of stress.

  19. Effect of drought and abscisic acid application on the osmotic adjustment of four wheat cultivars

    International Nuclear Information System (INIS)

    Iqbal, S.; Bano, A.

    2010-01-01

    The accumulation of osmolytes in leaf tissues and the abscisic acid-induced stomatal closure are well-recognized mechanisms associated with drought tolerance in crop plants. We determine the response in terms of osmotic potential and the contents of leaf proline, glycine betaine and soluble sugar at booting and grain filling stages of four wheat (Triticum aestivum L.) cultivars to drought and exogenously applied abscisic acid (ABA) in a pot study. Leaf sample were collected 3, 6 and 9 days after drought induction and at 48 and 72 h of re-watering (recovery). Marked decreases in osmotic potential associated with the accumulation of proline, glycine betaine and soluble sugars occurred under conditions of drought stress Accession 011320 was most sensitive to drought and showed the largest decrease in osmotic potential and least accumulation of proline, sugar and glycine betaine The inhibitory effects of drought stress were ameliorated by exogenous application of ABA. This ameliorating effect was more pronounced at the booting than at grain filling stage particularly in the sensitive accession 011320. Upon rewatering the recovery from drought stress was found to be greater in case of abscisic acid application. The leaf praline content is seen to be a suitable indicator for selecting drought-tolerant genotypes. (author)

  20. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rock, C.D.; Zeevaart, J.A.D. (Michigan State Univ., East Lansing (United States))

    1991-09-01

    The three mutant alleles of the ABA locus of Arabidopsis thaliana result in plants that are deficient in the plant growth regulator abscisic acid (ABA). The authors have used {sup 18}O{sub 2} to label ABA in water-stressed leaves of mutant and wild-type Arabidopsis. Analysis by selected ion monitoring and tandem mass spectrometry of ({sup 18}O)ABA and its catabolites, phaseic acid and ABA-glucose ester ({beta}-D-glucopyranosyl abscisate), indicates that the aba genotypes are impaired in ABA biosynthesis and have a small ABA precursor pool of compounds that contain oxygens on the rings, presumably oxygenated carotenoids (xanthophylls). Quantitation of the carotenoids form mutant and wild-type leaves establishes that the aba alleles cause a deficiency of the epoxy-carotenoids violaxanthin and neoxanthin and an accumulation of their biosynthetic precursor, zeaxanthin. These results provide evidence that ABA is synthesized by oxidative cleavage of epoxy-carotenoids (the indirect pathway). Furthermore the carotenoid mutant they describe undergoes normal greening. Thus the aba alleles provide an opportunity to study the physiological roles of epoxy-carotenoids in photosynthesis in a higher plants.

  1. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress.

    Science.gov (United States)

    Roychoudhury, Aryadeep; Paul, Saikat; Basu, Supratim

    2013-07-01

    Salinity, drought and low temperature are the common forms of abiotic stress encountered by land plants. To cope with these adverse environmental factors, plants execute several physiological and metabolic responses. Both osmotic stress (elicited by water deficit or high salt) and cold stress increase the endogenous level of the phytohormone abscisic acid (ABA). ABA-dependent stomatal closure to reduce water loss is associated with small signaling molecules like nitric oxide, reactive oxygen species and cytosolic free calcium, and mediated by rapidly altering ion fluxes in guard cells. ABA also triggers the expression of osmotic stress-responsive (OR) genes, which usually contain single/multiple copies of cis-acting sequence called abscisic acid-responsive element (ABRE) in their upstream regions, mostly recognized by the basic leucine zipper-transcription factors (TFs), namely, ABA-responsive element-binding protein/ABA-binding factor. Another conserved sequence called the dehydration-responsive element (DRE)/C-repeat, responding to cold or osmotic stress, but not to ABA, occurs in some OR promoters, to which the DRE-binding protein/C-repeat-binding factor binds. In contrast, there are genes or TFs containing both DRE/CRT and ABRE, which can integrate input stimuli from salinity, drought, cold and ABA signaling pathways, thereby enabling cross-tolerance to multiple stresses. A strong candidate that mediates such cross-talk is calcium, which serves as a common second messenger for abiotic stress conditions and ABA. The present review highlights the involvement of both ABA-dependent and ABA-independent signaling components and their interaction or convergence in activating the stress genes. We restrict our discussion to salinity, drought and cold stress.

  2. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses1[OPEN

    Science.gov (United States)

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A.; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A.; Kay, Steve A.; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R.; Schroeder, Julian I.

    2015-01-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  3. Escherichia coli O157:H7 induces stronger plant immunity than Salmonella enterica Typhimurium SL1344.

    Science.gov (United States)

    Roy, Debanjana; Panchal, Shweta; Rosa, Bruce A; Melotto, Maeli

    2013-04-01

    Consumption of fresh produce contaminated with bacterial human pathogens has resulted in various, sometimes deadly, disease outbreaks. In this study, we assessed plant defense responses induced by the fully pathogenic bacteria Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium SL1344 in both Arabidopsis thaliana and lettuce (Lactuca sativa). Unlike SL1344, O157:H7 induced strong plant immunity at both pre-invasion and post-invasion steps of infection. For instance, O157:H7 triggered stomatal closure even under high relative humidity, an environmental condition that generally weakens plant defenses against bacteria in the field and laboratory conditions. SL1344 instead induced a transient stomatal immunity. We also observed that PR1 gene expression was significantly higher in Arabidopsis leaves infected with O157:H7 compared with SL1344. These results suggest that plants may recognize and respond to some human pathogens more effectively than others. Furthermore, stomatal immunity can diminish the penetration of human pathogens through the leaf epidermis, resulting in low bacterial titers in the plant apoplast and suggesting that additional control measures can be employed to prevent food contamination. The understanding of how plant responses can diminish bacterial contamination is paramount in preventing outbreaks and improving the safety of food supplies.

  4. Reduced ABA Accumulation in the Root System is Caused by ABA Exudation in Upland Rice (Oryza sativa L. var. Gaoshan1) and this Enhanced Drought Adaptation.

    Science.gov (United States)

    Shi, Lu; Guo, Miaomiao; Ye, Nenghui; Liu, Yinggao; Liu, Rui; Xia, Yiji; Cui, Suxia; Zhang, Jianhua

    2015-05-01

    Lowland rice (Nipponbare) and upland rice (Gaoshan 1) that are comparable under normal and moderate drought conditions showed dramatic differences in severe drought conditions, both naturally occurring long-term drought and simulated rapid water deficits. We focused on their root response and found that enhanced tolerance of upland rice to severe drought conditions was mainly due to the lower level of ABA in its roots than in those of the lowland rice. We first excluded the effect of ABA biosynthesis and catabolism on root-accumulated ABA levels in both types of rice by monitoring the expression of four OsNCED genes and two OsABA8ox genes. Next, we excluded the impact of the aerial parts on roots by suppressing leaf-biosynthesized ABA with fluridone and NDGA (nordihydroguaiaretic acid), and measuring the ABA level in detached roots. Instead, we proved that upland rice had the ability to export considerably more root-sourced ABA than lowland rice under severe drought, which improved ABA-dependent drought adaptation. The investigation of apoplastic pH in root cells and root anatomy showed that ABA leakage in the root system of upland rice was related to high apoplastic pH and the absence of Casparian bands in the sclerenchyma layer. Finally, taking some genes as examples, we predicted that different ABA levels in rice roots stimulated distinct ABA perception and signaling cascades, which influenced its response to water stress. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Cerato-platanin induces resistance in Arabidopsis leaves through stomatal perception, overexpression of salicylic acid- and ethylene-signalling genes and camalexin biosynthesis.

    Science.gov (United States)

    Baccelli, Ivan; Lombardi, Lara; Luti, Simone; Bernardi, Rodolfo; Picciarelli, Piero; Scala, Aniello; Pazzagli, Luigia

    2014-01-01

    Microbe-associated molecular patterns (MAMPs) lead to the activation of the first line of plant defence. Few fungal molecules are universally qualified as MAMPs, and proteins belonging to the cerato-platanin protein (CPP) family seem to possess these features. Cerato-platanin (CP) is the name-giving protein of the CPP family and is produced by Ceratocystis platani, the causal agent of the canker stain disease of plane trees (Platanus spp.). On plane tree leaves, the biological activity of CP has been widely studied. Once applied on the leaf surface, CP acts as an elicitor of defence responses. The molecular mechanism by which CP elicits leaves is still unknown, and the protective effect of CP against virulent pathogens has not been clearly demonstrated. In the present study, we tried to address these questions in the model plant Arabidopsis thaliana. Our results suggest that stomata rapidly sense CP since they responded to the treatment with ROS signalling and stomatal closure, and that CP triggers salicylic acid (SA)- and ethylene (ET)-signalling pathways, but not the jasmonic acid (JA)-signalling pathway, as revealed by the expression pattern of 20 marker genes. Among these, EDS1, PAD4, NPR1, GRX480, WRKY70, ACS6, ERF1a/b, COI1, MYC2, PDF1.2a and the pathogenesis-related (PR) genes 1-5. CP rapidly induced MAPK phosphorylation and induced the biosynthesis of camalexin within 12 hours following treatment. The induction of localised resistance was shown by a reduced susceptibility of the leaves to the infection with Botrytis cinerea and Pseudomonas syringae pv. tomato. These results contribute to elucidate the key steps of the signalling process underlying the resistance induction in plants by CP and point out the central role played by the stomata in this process.

  6. Cerato-platanin induces resistance in Arabidopsis leaves through stomatal perception, overexpression of salicylic acid- and ethylene-signalling genes and camalexin biosynthesis.

    Directory of Open Access Journals (Sweden)

    Ivan Baccelli

    Full Text Available Microbe-associated molecular patterns (MAMPs lead to the activation of the first line of plant defence. Few fungal molecules are universally qualified as MAMPs, and proteins belonging to the cerato-platanin protein (CPP family seem to possess these features. Cerato-platanin (CP is the name-giving protein of the CPP family and is produced by Ceratocystis platani, the causal agent of the canker stain disease of plane trees (Platanus spp.. On plane tree leaves, the biological activity of CP has been widely studied. Once applied on the leaf surface, CP acts as an elicitor of defence responses. The molecular mechanism by which CP elicits leaves is still unknown, and the protective effect of CP against virulent pathogens has not been clearly demonstrated. In the present study, we tried to address these questions in the model plant Arabidopsis thaliana. Our results suggest that stomata rapidly sense CP since they responded to the treatment with ROS signalling and stomatal closure, and that CP triggers salicylic acid (SA- and ethylene (ET-signalling pathways, but not the jasmonic acid (JA-signalling pathway, as revealed by the expression pattern of 20 marker genes. Among these, EDS1, PAD4, NPR1, GRX480, WRKY70, ACS6, ERF1a/b, COI1, MYC2, PDF1.2a and the pathogenesis-related (PR genes 1-5. CP rapidly induced MAPK phosphorylation and induced the biosynthesis of camalexin within 12 hours following treatment. The induction of localised resistance was shown by a reduced susceptibility of the leaves to the infection with Botrytis cinerea and Pseudomonas syringae pv. tomato. These results contribute to elucidate the key steps of the signalling process underlying the resistance induction in plants by CP and point out the central role played by the stomata in this process.

  7. Canopy Transpiration and Stomatal Responses to Prolonged Drought by a Dominant Desert Species in Central Asia

    Directory of Open Access Journals (Sweden)

    Daxing Gu

    2017-06-01

    Full Text Available In arid and semiarid lands, canopy transpiration and its dynamics depend largely on stomatal sensitivity to drought. In this study, the sap flow of a dominant species, Haloxylon ammodendron growing in Central Asian deserts, was monitored using Granier-type sensors, from which the canopy stomatal conductance was derived. The responses of canopy transpiration and stomatal conductance to environmental variables during the second half of the growing season, when annual prolonged drought occurred, was analyzed for four continuous years, from 2013 to 2016. A soil water content (SWC of 3% was identified as the lower soil water threshold for this species, below which the plant lost the ability for stomatal regulation on water loss and suffered the risk of mortality. Above this threshold, the sensitivity of canopy transpiration to vapor pressure deficit, VPD (K, was linearly correlated with SWC, which mainly resulted from different stomatal behaviors at varying drought intensities. Stomatal sensitivity to VPD (m/Gsref increased linearly with soil moisture deficit, inducing a shift from more anisohydric to a more isohydric stomatal behavior. The flexibility of stomatal behavior regarding soil drought was one key element facilitating the survival of H. ammodendron in such an extreme dry environment.

  8. Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp hordei in Arabidopsis

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Hagedorn, Peter; De Torres-Zabala, Marta

    2008-01-01

    -representation of abscisic acid (ABA)-responsive genes, including the ABA biosynthesis gene AAO3, which is significantly induced in ataf1 plants compared to wild-type plants following inoculation with Bgh. Additionally, we show that Bgh inoculation results in decreased endogenous ABA levels in an ATAF1-dependent manner...

  9. N. plumbaginifolia zeaxanthin epoxidase transgenic lines have unaltered baseline ABA accumulations in roots and xylem sap, but contrasting sensitivities of ABA accumulation to water deficit.

    Science.gov (United States)

    Borel, C; Audran, C; Frey, A; Marion-Poll, A; Tardieu, F; Simonneau, T

    2001-03-01

    A series of transgenic lines of Nicotiana plumbaginifolia with modified expression of zeaxanthin epoxidase gene (ZEP) provided contrasting ABA accumulation in roots and xylem sap. For mild water stress, concentration of ABA in the xylem sap ([ABA](xylem)) was clearly lower in plants underexpressing ZEP mRNA (complemented mutants and antisense transgenic lines) than in wild-type. In well-watered conditions, all lines presented similar [ABA](xylem) and similar ABA accumulation rates in detached roots. Plants could, therefore, be grown under normal light intensities and evaporative demand. Both ZEP mRNA abundance and ABA accumulation rate in roots increased with water deficit in all transgenic lines, except in complemented aba2-s1 mutants in which the ZEP gene was controlled by a constitutive promoter which does not respond to water deficit. These lines presented no change in root ABA content either with time or dehydration. The increase in ZEP mRNA abundance in roots with decreasing RWC was more pronounced in detached roots than in whole plants, suggesting a difference in mechanism. In all transgenic lines, a linear relationship was observed between predawn leaf water potential and [ABA](xylem), which could be reproduced in several experiments in the greenhouse and in the growth chamber. It is therefore possible to represent the effect of the transformation by a single parameter, thereby allowing the use of a quantitative approach to assist understanding of the behaviour of transgenic lines.

  10. Cross-talk in abscisic acid signaling

    Science.gov (United States)

    Fedoroff, Nina V.

    2002-01-01

    "Cross-talk" in hormone signaling reflects an organism's ability to integrate different inputs and respond appropriately, a crucial function at the heart of signaling network operation. Abscisic acid (ABA) is a plant hormone involved in bud and seed dormancy, growth regulation, leaf senescence and abscission, stomatal opening, and a variety of plant stress responses. This review summarizes what is known about ABA signaling in the control of stomatal opening and seed dormancy and provides an overview of emerging knowledge about connections between ABA, ethylene, sugar, and auxin synthesis and signaling.

  11. Overexpression of Pyrabactin Resistance-Like Abscisic Acid Receptors Enhances Drought, Osmotic, and Cold Tolerance in Transgenic Poplars

    Directory of Open Access Journals (Sweden)

    Jingling Yu

    2017-10-01

    Full Text Available Abscisic acid (ABA has been known participate in a wider range of adaptive responses to diverse environmental abiotic stresses such as drought, osmosis, and low temperatures. ABA signaling is initiated by its receptors PYR/PYL/RCARs, a type of soluble proteins with a conserved START domain which can bind ABA and trigger the downstream pathway. Previously, we discovered that poplar (Populus trichocarpa genome encodes 14 PYR/PYL/RCAR orthologs (PtPYRLs, and two of them, PtPYRL1 and PtPYRL5 have been functionally characterized to positively regulate drought tolerance. However, the physiological function of these ABA receptors in poplar remains uncharacterized. Here, we generated transgenic poplar plants overexpressing PtPYRL1 and PtPYRL5 and found that they exhibited more vigorous growth and produced greater biomass when exposed to drought stress. The improved drought tolerance was positively correlated with the key physiological responses dictated by the ABA signaling pathway, including increase in stomatal closure and decrease in leaf water loss. Further analyses revealed that overexpression lines showed improved capacity in scavenging reactive oxygen species and enhanced the activation of antioxidant enzymes under drought stress. Moreover, overexpression of PtPYRL1 or PtPYRL5 significantly increased the poplar resistance to osmotic and cold stresses. In summary, our results suggest that constitutive expression of PtPYRL1 and PtPYRL5 significantly enhances the resistance to drought, osmotic and cold stresses by positively regulating ABA signaling in poplar.

  12. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy.

    Science.gov (United States)

    Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang

    2015-01-01

    The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ).

  13. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5 is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy.

    Directory of Open Access Journals (Sweden)

    Jian eWu

    2015-11-01

    Full Text Available The phytohormone abscisic acid (ABA regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5, which is a basic leucine zipper motif transcriptional factor (TF. GhABI5 is expressed in dormant vegetative organs (corm, cormel and stolon as well as in reproductive organs (stamen, and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6 and RD29B. Down-regulation of GhABI5 in dormant cormels via Virus Induced Gene Silence (VIGS promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B. The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ.

  14. ABA Is Involved in Regulation of Cold Stress Response in Bermudagrass

    Directory of Open Access Journals (Sweden)

    Xuebing Huang

    2017-10-01

    Full Text Available As a representative warm-season grass, Bermudagrass [Cynodon dactylon (L. Pers.] is widely used in turf systems. However, low temperature remarkably limits its growth and distribution. ABA is a crucial phytohormone that has been reported to regulate much important physiological and biochemical processes in plants under abiotic stress. Therefore, the objective of this study was to figure out the effects of ABA on the cold-sensitive (S and cold-resistant (R Bermudagrass genotypes response to cold stress. In this study, the plants were treated with 100 μM ABA solution and exposed to 4°C temperature. After 7 days of cold treatment, the electrolyte leakage (EL, malonaldehyde (MDA and H2O2 content were significantly increased in both genotypes compared with control condition, and these values were higher in R genotype than those of S genotype, respectively. By contrast, exogenous ABA application decreased the electrolyte leakage (EL, MDA and H2O2 content in both genotypes compared with those plants without ABA treatment under cold treatment condition. In addition, exogenous ABA application increased the levels of chlorophyll a fluorescence transient curve for both genotypes, and it was higher in R genotype than that of S genotype. Analysis of photosynthetic fluorescence parameters revealed that ABA treatment improved the performance of photosystem II under cold condition, particularly for the R genotype. Moreover, cold stress significantly increased δ13C values for both genotypes, while it was alleviated by exogenous ABA. Additionally, exogenous ABA application altered the expression of ABA- or cold related genes, including ABF1, CBF1, and LEA. In summary, exogenous ABA application enhanced cold resistance of both genotypes by maintaining cell membrane stability, improving the process of photosystem II, increasing carbon isotopic fractionation under cold stress, and more prominently in R genotype compared with S genotype.

  15. ABA receptors: The START of a new paradigm in phytohormone signalling

    KAUST Repository

    Klingler, John

    2010-06-03

    The phytohormone abscisic acid (ABA) plays a central role in plant development and in plant adaptation to both biotic and abiotic stressors. In recent years, knowledge of ABA metabolism and signal transduction has advanced rapidly to provide detailed glimpses of the hormone\\'s activities at the molecular level. Despite this progress, many gaps in understanding have remained, particularly at the early stages of ABA perception by the plant cell. The search for an ABA receptor protein has produced multiple candidates, including GCR2, GTG1, and GTG2, and CHLH. In addition to these candidates, in 2009 several research groups converged on a novel family of Arabidopsis proteins that bind ABA, and thereby interact directly with a class of protein phosphatases that are well known as critical players in ABA signal transduction. The PYR/PYL/RCAR receptor family is homologous to the Bet v 1-fold and START domain proteins. It consists of 14 members, nearly all of which appear capable of participating in an ABA receptor-signal complex that responds to the hormone by activating the transcription of ABA-responsive genes. Evidence is provided here that PYR/PYL/RCAR receptors can also drive the phosphorylation of the slow anion channel SLAC1 to provide a fast and timely response to the ABA signal. Crystallographic studies have vividly shown the mechanics of ABA binding to PYR/PYL/RCAR receptors, presenting a model that bears some resemblance to the binding of gibberellins to GID1 receptors. Since this ABA receptor family is highly conserved in crop species, its discovery is likely to usher a new wave of progress in the elucidation and manipulation of plant stress responses in agricultural settings. © 2010 The Author(s).

  16. Importance of Abscisic Acid (ABA in the In Vitro Conservation of Cassava (Manihot esculenta Crantz Importancia del Ácido Abscísico (ABA en la Conservación In Vitro de la Yuca (Manihot esculenta Crantz

    Directory of Open Access Journals (Sweden)

    L. Pedro Barrueto Cid

    2008-09-01

    Full Text Available The conventional technology for in vitro plant conservation for cassava (Manihot esculenta Crantz germplasm collections is laborious due to the need for several sub-culturing procedures per year. This practice implies high costs for medium preparation, tissue culture tubes, time-consuming labor, risks of contamination, mislabeling of accession, and the need for large growth chambers. We have developed a new procedure using in vitro cultivated nodal axillary buds treated with different abscisic acid (ABA concentrations to reduce the time for recycling transplants cultivated in a SP basic nutritive medium. Nodal explants were stored for three months with ABA. Plants were obtained after nodal axillary buds were placed in SP medium without ABA. Results indicated that 20 and 30 mM ABA induced bud dormancy and delayed sprouting without affecting subsequent growth of plants after treatment.La tecnología usual para conservación in vitro de colecciones de germoplasma de yuca (Manihotesculenta Crantz es corrientemente laboriosa y emplea varias transferencias por año. Este procedimiento envuelve altos costos en preparación de medios, consumo de tiempo, riesgos de manipulación y necesidad de mucho espacio para la mantención de colecciones en cámaras de cultivos. Se desarrolló un nuevo procedimiento usando yemas axilares nodales cultivadas in vitro con diferentes concentraciones de ácido abscísico (ABA, con el objetivo de reducir los ciclos de transferencia de los cultivos mantenidos en un medio nutritivo básico tal como el SP. Los segmentos nodales fueron almacenados por tres meses en presencia de ABA. Las plantas fueron obtenidas después que los segmentos nodales fueron transferidos al medio SP sin ABA. Los resultados indican que 20 y 30 mM de ABA indujeron una completa dormancia de yemas, sin afectar el desarrollo posterior de las yemas nodales y su consecuente conversión en planta.

  17. Arabidopsis PCaP2 Functions as a Linker Between ABA and SA Signals in Plant Water Deficit Tolerance

    Directory of Open Access Journals (Sweden)

    Xianling Wang

    2018-05-01

    Full Text Available Water stress has a major influence on plant growth, development, and productivity. However, the cross-talk networks involved in drought tolerance are not well understood. Arabidopsis PCaP2 is a plasma membrane-associated Ca2+-binding protein. In this study, we employ qRT-PCR and β-glucuronidase (GUS histochemical staining to demonstrate that PCaP2 expression was strongly induced in roots, cotyledons, true leaves, lateral roots, and whole plants under water deficit conditions. Compared with the wild type (WT plants, PCaP2-overexpressing (PCaP2-OE plants displayed enhanced water deficit tolerance in terms of seed germination, seedling growth, and plant survival status. On the contrary, PCaP2 mutation and reduction via PCaP2-RNAi rendered plants more sensitive to water deficit. Furthermore, PCaP2-RNAi and pcap2 seedlings showed shorter root hairs and lower relative water content compared to WT under normal conditions and these phenotypes were exacerbated under water deficit. Additionally, the expression of PCaP2 was strongly induced by exogenous abscisic acid (ABA and salicylic acid (SA treatments. PCaP2-OE plants showed insensitive to exogenous ABA and SA treatments, in contrast to the susceptible phenotypes of pcap2 and PCaP2-RNAi. It is well-known that SNF1-related kinase 2s (SnRK2s and pathogenesis-related (PRs are major factors that influence plant drought tolerance by ABA- and SA-mediated pathways, respectively. Interestingly, PCaP2 positively regulated the expression of drought-inducible genes (RD29A, KIN1, and KIN2, ABA-mediated drought responsive genes (SnRK2.2, -2.3, -2.6, ABF1, -2, -3, -4, and SA-mediated drought responsive genes (PR1, -2, -5 under water deficit, ABA, or SA treatments. Taken together, our results showed that PCaP2 plays an important and positive role in Arabidopsis water deficit tolerance by involving in response to both ABA and SA signals and regulating root hair growth. This study provides novel insights into the

  18. The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28.

    Science.gov (United States)

    Pla, M; Vilardell, J; Guiltinan, M J; Marcotte, W R; Niogret, M F; Quatrano, R S; Pagès, M

    1993-01-01

    The maize gene rab28 has been identified as ABA-inducible in embryos and vegetative tissues. It is also induced by water stress in young leaves. The proximal promoter region contains the conserved cis-acting element CCACGTGG (ABRE) reported for ABA induction in other plant genes. Transient expression assays in rice protoplasts indicate that a 134 bp fragment (-194 to -60 containing the ABRE) fused to a truncated cauliflower mosaic virus promoter (35S) is sufficient to confer ABA-responsiveness upon the GUS reporter gene. Gel retardation experiments indicate that nuclear proteins from tissues in which the rab28 gene is expressed can interact specifically with this 134 bp DNA fragment. Nuclear protein extracts from embryo and water-stressed leaves generate specific complexes of different electrophoretic mobility which are stable in the presence of detergent and high salt. However, by DMS footprinting the same guanine-specific contacts with the ABRE in both the embryo and leaf binding activities were detected. These results indicate that the rab28 promoter sequence CCACGTGG is a functional ABA-responsive element, and suggest that distinct regulatory factors with apparent similar affinity for the ABRE sequence may be involved in the hormone action during embryo development and in vegetative tissues subjected to osmotic stress.

  19. A quantitative approach to developing more mechanistic gas exchange models for field grown potato

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Andersen, Mathias Neumann; Poulsen, Rolf Thostrup

    2009-01-01

    In this study we introduce new gas exchange models that are developed under natural conditions of field grown potato. The new models could explain about 85% of the stomatal conductance variations, which was much higher than the well-known gas exchange models such as the Ball-Berry model [Ball...... of chemical and hydraulic signalling on stomatal conductance as exp(-β[ABA])exp(-δ|ψ|) in which [ABA] and |ψ| are xylem ABA concentration and absolute value of leaf or stem water potential. In this study we found that stem water potential could be a very reliable indicator of how plant water status affects...

  20. ABA, GA(3), and nitrate may control seed germination of Crithmum maritimum (Apiaceae) under saline conditions.

    Science.gov (United States)

    Atia, Abdallah; Debez, Ahmed; Barhoumi, Zouhaier; Smaoui, Abderrazak; Abdelly, Chedly

    2009-08-01

    Impaired germination is common among halophyte seeds exposed to salt stress, partly resulting from the salt-induced reduction of the growth regulator contents in seeds. Thus, the understanding of hormonal regulation during the germination process is a main key: (i) to overcome the mechanisms by which NaCl-salinity inhibit germination; and (ii) to improve the germination of these species when challenged with NaCl. In the present investigation, the effects of ABA, GA(3), NO(-)(3), and NH(+)(4) on the germination of the oilseed halophyte Crithmum maritimum (Apiaceae) were assessed under NaCl-salinity (up to 200 mM NaCl). Seeds were collected from Tabarka rocky coasts (N-W of Tunisia). The exogenous application of GA(3), nitrate (either as NaNO(3) or KNO(3)), and NH(4)Cl enhanced germination under NaCl salinity. The beneficial impact of KNO(3) on germination upon seed exposure to NaCl salinity was rather due to NO(-)(3) than to K(+), since KCl failed to significantly stimulate germination. Under optimal conditions for germination (0 mM NaCl), ABA inhibited germination over time in a dose dependent manner, but KNO(3) completely restored the germination parameters. Under NaCl salinity, the application of fluridone (FLU) an inhibitor of ABA biosynthesis, stimulated substantially seed germination. Taken together, our results point out that NO(-)(3) and GA(3) mitigate the NaCl-induced reduction of seed germination, and that NO(-)(3) counteracts the inhibitory effect of ABA on germination of C. maritimum.

  1. The Ecophysiology Of A Pinus Ponderosa Ecosystem Exposed To High Tropospheric Ozone: Implications For Stomatal And Non-Stomatal Ozone Fluxes

    Science.gov (United States)

    Fares, S.; McKay, M.; Goldstein, A.

    2008-12-01

    Ecosystems remove ozone from the troposphere through both stomatal and non-stomatal deposition. The portion of ozone taken up through stomata has an oxidative effect causing damage. We used a multi-year dataset to assess the physiological controls over ozone deposition. Environmental parameters, CO2 and ozone fluxes were measured continuously from January 2001 to December 2006 above a ponderosa pine plantation near Blodgett Forest, Georgetown, California. We studied the dynamic of NEE (Net Ecosystem Exchange, -838 g C m-2 yr-1) and water evapotranspiration on an annual and daily basis. These processes are tightly coupled to stomatal aperture which also controlled ozone fluxes. High levels of ozone concentrations (~ 100 ppb) were observed during the spring-summer period, with corresponding high levels of ozone fluxes (~ 30 μmol m-2 h-1). During the summer season, a large portion of the total ozone flux was due to non-stomatal processes, and we propose that a plant physiological control, releasing BVOC (Biogenic Volatile Organic Compounds), is mainly responsible. We analyzed the correlations of common ozone exposure metrics based on accumulation of concentrations (AOT40 and SUM0) with ozone fluxes (total, stomatal and non-stomatal). Stomatal flux showed poorer correlation with ozone concentrations than non-stomatal flux during summer and fall seasons, which largely corresponded to the growing period. We therefore suggest that AOT40 and SUM0 are poor predictors of ozone damage and that a physiologically based metric would be more effective.

  2. Positive and negative peptide signals control stomatal density.

    Science.gov (United States)

    Shimada, Tomoo; Sugano, Shigeo S; Hara-Nishimura, Ikuko

    2011-06-01

    The stoma is a micro valve found on aerial plant organs that promotes gas exchange between the atmosphere and the plant body. Each stoma is formed by a strict cell lineage during the early stages of leaf development. Molecular genetics research using the model plant Arabidopsis has revealed the genes involved in stomatal differentiation. Cysteine-rich secretory peptides of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family play crucial roles as extracellular signaling factors. Stomatal development is orchestrated by the positive factor STOMAGEN/EPFL9 and the negative factors EPF1, EPF2, and CHALLAH/EPFL6 in combination with multiple receptors. EPF1 and EPF2 are produced in the stomatal lineage cells of the epidermis, whereas STOMAGEN and CHALLAH are derived from the inner tissues. These findings highlight the complex cell-to-cell and intertissue communications that regulate stomatal development. To optimize gas exchange, particularly the balance between the uptake of carbon dioxide (CO(2)) and loss of water, plants control stomatal activity in response to environmental conditions. The CO(2) level and light intensity influence stomatal density. Plants sense environmental cues in mature leaves and adjust the stomatal density of newly forming leaves, indicating the involvement of long-distance systemic signaling. This review summarizes recent research progress in the peptide signaling of stomatal development and discusses the evolutionary model of the signaling machinery.

  3. Plant water potential improves prediction of empirical stomatal models.

    Directory of Open Access Journals (Sweden)

    William R L Anderegg

    Full Text Available Climate change is expected to lead to increases in drought frequency and severity, with deleterious effects on many ecosystems. Stomatal responses to changing environmental conditions form the backbone of all ecosystem models, but are based on empirical relationships and are not well-tested during drought conditions. Here, we use a dataset of 34 woody plant species spanning global forest biomes to examine the effect of leaf water potential on stomatal conductance and test the predictive accuracy of three major stomatal models and a recently proposed model. We find that current leaf-level empirical models have consistent biases of over-prediction of stomatal conductance during dry conditions, particularly at low soil water potentials. Furthermore, the recently proposed stomatal conductance model yields increases in predictive capability compared to current models, and with particular improvement during drought conditions. Our results reveal that including stomatal sensitivity to declining water potential and consequent impairment of plant water transport will improve predictions during drought conditions and show that many biomes contain a diversity of plant stomatal strategies that range from risky to conservative stomatal regulation during water stress. Such improvements in stomatal simulation are greatly needed to help unravel and predict the response of ecosystems to future climate extremes.

  4. Stomatal characteristics of Eucalyptus grandis clonal hybrids in ...

    African Journals Online (AJOL)

    This study describes the stomatal response occurring during water stress and subsequent recovery of three Eucalyptus grandis clonal hybrids. The aim was to investigate the degree to which stomatal conductance (gs) and stomatal density differ between the clonal hybrids across seasons and in response to water stress.

  5. Role of plasticity-induced crack closure in fatigue crack growth

    Directory of Open Access Journals (Sweden)

    Jesús Toribio

    2013-07-01

    Full Text Available The premature contact of crack surfaces attributable to the near-tip plastic deformations under cyclic loading, which is commonly referred to as plasticity induced crack closure (PICC, has long been focused as supposedly controlling factor of fatigue crack growth (FCG. Nevertheless, when the plane-strain near-tip constraint is approached, PICC lacks of straightforward evidence, so that its significance in FCG, and even the very existence, remain debatable. To add insights into this matter, large-deformation elastoplastic simulations of plane-strain crack under constant amplitude load cycling at different load ranges and ratios, as well as with an overload, have been performed. Modeling visualizes the Laird-Smith conceptual mechanism of FCG by plastic blunting and re-sharpening. Simulation reproduces the experimental trends of FCG concerning the roles of stress intensity factor range and overload, but PICC has never been detected. Near-tip deformation patterns discard the filling-in a crack with material stretched out of the crack plane in the wake behind the tip as supposed PICC origin. Despite the absence of closure, load-deformation curves appear bent, which raises doubts about the trustworthiness of closure assessment from the compliance variation. This demonstrates ambiguities of PICC as a supposedly intrinsic factor of FCG and, by implication, favors the stresses and strains in front of the crack tip as genuine fatigue drivers.

  6. Physiological and Molecular Processes Associated with Long Duration of ABA Treatment

    Directory of Open Access Journals (Sweden)

    Mei Wang

    2018-02-01

    Full Text Available Plants need to respond to various environmental stresses such as abiotic stress for proper development and growth. The responses to abiotic stress can be biochemically demanding, resulting in a trade-off that negatively affects plant growth and development. Thus, plant stress responses must be fine-tuned depending on the stress severity and duration. Abscisic acid, a phytohormone, plays a key role in responses to abiotic stress. Here, we investigated time-dependent physiological and molecular responses to long-term ABA treatment in Arabidopsis as an approach to gain insight into the plant responses to long-term abiotic stress. Upon ABA treatment, the amount of cellular ABA increased to higher levels, reaching to a peak at 24 h after treatment (HAT, and then gradually decreased with time whereas ABA-GE was maintained at lower levels until 24 HAT and then abruptly increased to higher levels at 48 HAT followed by a gradual decline at later time points. Many genes involved in dehydration stress responses, ABA metabolism, chloroplast biogenesis, and chlorophyll degradation were strongly expressed at early time points with a peak at 24 or 48 HAT followed by gradual decreases in induction fold or even suppression at later time points. At the physiological level, long-term ABA treatment caused leaf yellowing, reduced chlorophyll levels, and inhibited chloroplast division in addition to the growth suppression whereas short-term ABA treatment did not affect chlorophyll levels. Our results indicate that the duration of ABA treatment is a crucial factor in determining the mode of ABA-mediated signaling and plant responses: active mobilization of cellular resources at early time points and suppressive responses at later time points.

  7. Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana.

    Science.gov (United States)

    Mekonnen, Dereje Worku; Flügge, Ulf-Ingo; Ludewig, Frank

    2016-04-01

    A rapid accumulation of γ-aminobutyric acid (GABA) during biotic and abiotic stresses is well documented. However, the specificity of the response and the primary role of GABA under such stress conditions are hardly understood. To address these questions, we investigated the response of the GABA-depleted gad1/2 mutant to drought stress. GABA is primarily synthesized from the decarboxylation of glutamate by glutamate decarboxylase (GAD) which exists in five copies in the genome of Arabidopsis thaliana. However, only GAD1 and GAD2 are abundantly expressed, and knockout of these two copies dramatically reduced the GABA content. Phenotypic analysis revealed a reduced shoot growth of the gad1/2 mutant. Furthermore, the gad1/2 mutant was wilted earlier than the wild type following a prolonged drought stress treatment. The early-wilting phenotype was due to an increase in stomata aperture and a defect in stomata closure. The increase in stomata aperture contributed to higher stomatal conductance. The drought oversensitive phenotype of the gad1/2 mutant was reversed by functional complementation that increases GABA level in leaves. The functionally complemented gad1/2 x pop2 triple mutant contained more GABA than the wild type. Our findings suggest that GABA accumulation during drought is a stress-specific response and its accumulation induces the regulation of stomatal opening thereby prevents loss of water. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Relating Stomatal Conductance to Leaf Functional Traits.

    Science.gov (United States)

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  9. Towards the Identification of New Genes Involved in ABA-Dependent Abiotic Stresses Using Arabidopsis Suppressor Mutants of abh1 Hypersensitivity to ABA during Seed Germination

    Directory of Open Access Journals (Sweden)

    Iwona Szarejko

    2013-06-01

    Full Text Available Abscisic acid plays a pivotal role in the abiotic stress response in plants. Although great progress has been achieved explaining the complexity of the stress and ABA signaling cascade, there are still many questions to answer. Mutants are a valuable tool in the identification of new genes or new alleles of already known genes and in elucidating their role in signaling pathways. We applied a suppressor mutation approach in order to find new components of ABA and abiotic stress signaling in Arabidopsis. Using the abh1 (ABA hypersensitive 1 insertional mutant as a parental line for EMS mutagenesis, we selected several mutants with suppressed hypersensitivity to ABA during seed germination. Here, we present the response to ABA and a wide range of abiotic stresses during the seed germination and young seedling development of two suppressor mutants—soa2 (suppressor of abh1 hypersensitivity to ABA 2 and soa3 (suppressor of abh1 hypersensitivity to ABA 3. Generally, both mutants displayed a suppression of the hypersensitivity of abh1 to ABA, NaCl and mannitol during germination. Both mutants showed a higher level of tolerance than Columbia-0 (Col-0—the parental line of abh1 in high concentrations of glucose. Additionally, soa2 exhibited better root growth than Col-0 in the presence of high ABA concentrations. soa2 and soa3 were drought tolerant and both had about 50% fewer stomata per mm2 than the wild-type but the same number as their parental line—abh1. Taking into account that suppressor mutants had the same genetic background as their parental line—abh1, it was necessary to backcross abh1 with Landsberg erecta four times for the map-based cloning approach. Mapping populations, derived from the cross of abh1 in the Landsberg erecta background with each suppressor mutant, were created. Map based cloning in order to identify the suppressor genes is in progress.

  10. Ozone exposure and stomatal sluggishness in different plant physiognomic classes

    Energy Technology Data Exchange (ETDEWEB)

    Paoletti, Elena, E-mail: e.paoletti@ipp.cnr.i [IPP-CNR, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence (Italy); Grulke, Nancy E. [US Forest Service, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States)

    2010-08-15

    Gas exchange responses to static and variable light were tested in three species: snap bean (Phaseolus vulgaris, two cultivars), California black oak (Quercus kelloggii), and blue oak (Q. douglasii). The effects of 1-month (snap beans) and 2-month (oaks) O{sub 3} (ozone) exposure (70 ppb over 8 h per day in open-top chambers) were investigated. A delay in stomatal responses (i.e., 'sluggish' responses) to variable light was found to be both an effect of O{sub 3} exposure and a reason for increased O{sub 3} sensitivity in snap bean cultivars, as it implied higher O{sub 3} uptake during times of disequilibrium. Sluggishness increased the time to open (thus limiting CO{sub 2} uptake) and close stomata (thus increasing transpirational water loss) after abrupt changes in light level. Similar responses were shown by snap beans and oaks, suggesting that O{sub 3}-induced stomatal sluggishness is a common trait among different plant physiognomic classes. - Sluggish stomatal responses are suggested to be both an effect of O{sub 3} exposure and a reason of increased O{sub 3} sensitivity in plants.

  11. Abscisic Acid Metabolism in Relation to Water Stress and Leaf Age in Xanthium strumarium1

    Science.gov (United States)

    Cornish, Katrina; Zeevaart, Jan A.D.

    1984-01-01

    Intact plants of Xanthium strumarium L. were subjected to a water stress-recovery cycle. As the stress took effect, leaf growth ceased and stomatal resistance increased. The mature leaves then wilted, followed by the half expanded ones. Water, solute, and pressure potentials fell steadily in all leaves during the rest of the stress period. After 3 days, the young leaves lost turgor and the plants were rewatered. All the leaves rapidly regained turgor and the younger ones recommenced elongation. Stomatal resistance declined, but several days elapsed before pre-stress values were attained. Abscisic acid (ABA) and phaseic acid (PA) levels rose in all the leaves after the mature ones wilted. ABA-glucose ester (ABA-GE) levels increased to a lesser extent, and the young leaves contained little of this conjugate. PA leveled off in the older leaves during the last 24 hours of stress, and ABA levels declined slightly. The young leaves accumulated ABA and PA throughout the stress period and during the 14-hour period immediately following rewatering. The ABA and PA contents, expressed per unit dry weight, were highest in the young leaves. Upon rewatering, large quantities of PA appeared in the mature leaves as ABA levels fell to the pre-stress level within 14 hours. In the half expanded and young leaves, it took several days to reach pre-stress ABA values. ABA-GE synthesis ceased in the mature leaves, once the stress was relieved, but continued in the half expanded and young leaves for 2 days. Mature leaves, when detached and stressed, accumulated an amount of ABA similar to that in leaves on the intact plant. In contrast, detached and stressed young leaves produced little ABA. Detached mature leaves, and to a lesser extent the half expanded ones, rapidly catabolized ABA to PA and ABA-GE, but the young leaves did not. Studies with radioactive (±)-ABA indicated that in young leaves the conversion of ABA to PA took place at a much lower rate than in mature ones. Leaves of all

  12. Abscisic Acid Metabolism in Relation to Water Stress and Leaf Age in Xanthium strumarium.

    Science.gov (United States)

    Cornish, K; Zeevaart, J A

    1984-12-01

    Intact plants of Xanthium strumarium L. were subjected to a water stress-recovery cycle. As the stress took effect, leaf growth ceased and stomatal resistance increased. The mature leaves then wilted, followed by the half expanded ones. Water, solute, and pressure potentials fell steadily in all leaves during the rest of the stress period. After 3 days, the young leaves lost turgor and the plants were rewatered. All the leaves rapidly regained turgor and the younger ones recommenced elongation. Stomatal resistance declined, but several days elapsed before pre-stress values were attained.Abscisic acid (ABA) and phaseic acid (PA) levels rose in all the leaves after the mature ones wilted. ABA-glucose ester (ABA-GE) levels increased to a lesser extent, and the young leaves contained little of this conjugate. PA leveled off in the older leaves during the last 24 hours of stress, and ABA levels declined slightly. The young leaves accumulated ABA and PA throughout the stress period and during the 14-hour period immediately following rewatering. The ABA and PA contents, expressed per unit dry weight, were highest in the young leaves. Upon rewatering, large quantities of PA appeared in the mature leaves as ABA levels fell to the pre-stress level within 14 hours. In the half expanded and young leaves, it took several days to reach pre-stress ABA values. ABA-GE synthesis ceased in the mature leaves, once the stress was relieved, but continued in the half expanded and young leaves for 2 days.Mature leaves, when detached and stressed, accumulated an amount of ABA similar to that in leaves on the intact plant. In contrast, detached and stressed young leaves produced little ABA. Detached mature leaves, and to a lesser extent the half expanded ones, rapidly catabolized ABA to PA and ABA-GE, but the young leaves did not. Studies with radioactive (+/-)-ABA indicated that in young leaves the conversion of ABA to PA took place at a much lower rate than in mature ones. Leaves of all

  13. Combining sap flow and eddy covariance approaches to derive stomatal and non-stomatal O3 fluxes in a forest stand

    International Nuclear Information System (INIS)

    Nunn, A.J.; Cieslik, S.; Metzger, U.; Wieser, G.; Matyssek, R.

    2010-01-01

    Stomatal O 3 fluxes to a mixed beech/spruce stand (Fagus sylvatica/Picea abies) in Central Europe were determined using two different approaches. The sap flow technique yielded the tree-level transpiration, whereas the eddy covariance method provided the stand-level evapotranspiration. Both data were then converted into stomatal ozone fluxes, exemplifying this novel concept for July 2007. Sap flow-based stomatal O 3 flux was 33% of the total O 3 flux, whereas derivation from evapotranspiration rates in combination with the Penman-Monteith algorithm amounted to 47%. In addition to this proportional difference, the sap flow-based assessment yielded lower levels of stomatal O 3 flux and reflected stomatal regulation rather than O 3 exposure, paralleling the daily courses of canopy conductance for water vapor and eddy covariance-based total stand-level O 3 flux. The demonstrated combination of sap flow and eddy covariance approaches supports the development of O 3 risk assessment in forests from O 3 exposure towards flux-based concepts. - Combined tree sap flow and eddy covariance-based methodologies yield stomatal O 3 flux as 33% in total stand flux.

  14. Optimal stomatal behaviour around the world

    DEFF Research Database (Denmark)

    Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.

    2015-01-01

    , a globalscale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here,we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour diers among...

  15. Analysis of Stomatal Patterning in Selected Mutants of MAPK Pathways

    KAUST Repository

    Felemban, Abrar

    2016-05-01

    Stomata are cellular valves in plants that play an essential role in the regulation of gas exchange and are distributed in the epidermis of aerial organs. In Arabidopsis thaliana, stomatal production and development are coordinated by the mitogen-activated protein kinase (MAPK) signalling pathway, which modulates a variety of other processes, including cell proliferation, regulation of cytokinesis, programed cell death, and response to abiotic and biotic stress. The environment also plays a role in stomatal development, by influencing the frequency at which stomata develop in leaves. This thesis presents an analysis of stomatal development in Arabidopsis mutants in two MAPK pathways: MEKK1-MKK1/MKK2-MPK4, and MAP3K17/18-MKK3. Obtained results demonstrate the effect of stress conditions on stomatal development and specify the involvement of analysed MAPK in stomatal patterning. First, both analysed pathways modulate stomatal patterning in Arabidopsis cotyledons. Second, plant growth-promoting bacteria tested enhance stomatal density and affect guard cell morphology. Third, the sucrose or mannitol treatment increases defects in stomatal patterning. Finally, salt stress or high temperature can suppress stomatal defects in mutants of the MEKK1-MKK1/MKK2-MPK4 pathway.

  16. Transcriptome Analysis of ABA/JA-Dual Responsive Genes in Rice Shoot and Root.

    Science.gov (United States)

    Kim, Jin-Ae; Bhatnagar, Nikita; Kwon, Soon Jae; Min, Myung Ki; Moon, Seok-Jun; Yoon, In Sun; Kwon, Taek-Ryoun; Kim, Sun Tae; Kim, Beom-Gi

    2018-01-01

    The phytohormone abscisic acid (ABA) enables plants to adapt to adverse environmental conditions through the modulation of metabolic pathways and of growth and developmental programs. We used comparative microarray analysis to identify genes exhibiting ABA-dependent expression and other hormone-dependent expression among them in Oryza sativa shoot and root. We identified 854 genes as significantly up- or down-regulated in root or shoot under ABA treatment condition. Most of these genes had similar expression profiles in root and shoot under ABA treatment condition, whereas 86 genes displayed opposite expression responses in root and shoot. To examine the crosstalk between ABA and other hormones, we compared the expression profiles of the ABA-dependently regulated genes under several different hormone treatment conditions. Interestingly, around half of the ABA-dependently expressed genes were also regulated by jasmonic acid based on microarray data analysis. We searched the promoter regions of these genes for cis-elements that could be responsible for their responsiveness to both hormones, and found that ABRE and MYC2 elements, among others, were common to the promoters of genes that were regulated by both ABA and JA. These results show that ABA and JA might have common gene expression regulation system and might explain why the JA could function for both abiotic and biotic stress tolerance.

  17. Partial Root-Zone Drying of Olive (Olea europaea var. 'Chetoui' Induces Reduced Yield under Field Conditions.

    Directory of Open Access Journals (Sweden)

    Soumaya Dbara

    indicate the absence of a hormonal root-to-shoot signal. Rain-fed and PRD50 treatments induced increased stem water potential and increased foliar concentrations of ABA, proline and soluble sugars. The stomata of the olive trees were relatively insensitive to super-ambient increases in [CO2] and higher [ABA]. These characteristics of 'hydro-passive' stomatal behaviour indicate that the 'Chetoui' variety of olive tree used in this study lacks the physiological responses required for the successful exploitation of PRD techniques to increase yield and water productivity. Alternative irrigation techniques such as partial deficit irrigation may be more suitable for 'Chetoui' olive production.

  18. Partial Root-Zone Drying of Olive (Olea europaea var. 'Chetoui') Induces Reduced Yield under Field Conditions.

    Science.gov (United States)

    Dbara, Soumaya; Haworth, Matthew; Emiliani, Giovani; Ben Mimoun, Mehdi; Gómez-Cadenas, Aurelio; Centritto, Mauro

    2016-01-01

    absence of a hormonal root-to-shoot signal. Rain-fed and PRD50 treatments induced increased stem water potential and increased foliar concentrations of ABA, proline and soluble sugars. The stomata of the olive trees were relatively insensitive to super-ambient increases in [CO2] and higher [ABA]. These characteristics of 'hydro-passive' stomatal behaviour indicate that the 'Chetoui' variety of olive tree used in this study lacks the physiological responses required for the successful exploitation of PRD techniques to increase yield and water productivity. Alternative irrigation techniques such as partial deficit irrigation may be more suitable for 'Chetoui' olive production.

  19. β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.).

    Science.gov (United States)

    Shaw, Arun K; Bhardwaj, Pardeep K; Ghosh, Supriya; Roy, Sankhajit; Saha, Suman; Sherpa, Ang R; Saha, Samir K; Hossain, Zahed

    2016-02-01

    The present study highlights the role of β-aminobutyric acid (BABA) in alleviating drought stress effects in maize (Zea mays L.). Chemical priming was imposed by pretreating 1-week-old plants with 600 μM BABA prior to applying drought stress. Specific activities of key antioxidant enzymes and metabolites (ascorbate and glutathione) levels of ascorbate-glutathione cycle were studied to unravel the priming-induced modulation of plant defense system. Furthermore, changes in endogenous ABA and JA concentrations as well as mRNA expressions of key genes involved in their respective biosynthesis pathways were monitored in BABA-primed (BABA+) and non-primed (BABA-) leaves of drought-challenged plants to better understand the mechanistic insights into the BABA-induced hormonal regulation of plant response to water-deficit stress. Accelerated stomatal closure, high relative water content, and less membrane damage were observed in BABA-primed leaves under water-deficit condition. Elevated APX and SOD activity in non-primed leaves found to be insufficient to scavenge all H2O2 and O2 (·-) resulting in oxidative burst as evident after histochemical staining with NBT and DAB. A higher proline accumulation in non-primed leaves also does not give much protection against drought stress. Increased GR activity supported with the enhanced mRNA and protein expressions might help the BABA-primed plants to maintain a high GSH pool essential for sustaining balanced redox status to counter drought-induced oxidative stress damages. Hormonal analysis suggests that in maize, BABA-potentiated drought tolerance is primarily mediated through JA-dependent pathway by the activation of antioxidant defense systems while ABA biosynthesis pathway also plays an important role in fine-tuning of drought stress response.

  20. Optimal stomatal behaviour around the world

    Science.gov (United States)

    Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.; Prentice, I. Colin; Wang, Han; Baig, Sofia; Eamus, Derek; de Dios, Victor Resco; Mitchell, Patrick; Ellsworth, David S.; de Beeck, Maarten Op; Wallin, Göran; Uddling, Johan; Tarvainen, Lasse; Linderson, Maj-Lena; Cernusak, Lucas A.; Nippert, Jesse B.; Ocheltree, Troy W.; Tissue, David T.; Martin-Stpaul, Nicolas K.; Rogers, Alistair; Warren, Jeff M.; de Angelis, Paolo; Hikosaka, Kouki; Han, Qingmin; Onoda, Yusuke; Gimeno, Teresa E.; Barton, Craig V. M.; Bennie, Jonathan; Bonal, Damien; Bosc, Alexandre; Löw, Markus; Macinins-Ng, Cate; Rey, Ana; Rowland, Lucy; Setterfield, Samantha A.; Tausz-Posch, Sabine; Zaragoza-Castells, Joana; Broadmeadow, Mark S. J.; Drake, John E.; Freeman, Michael; Ghannoum, Oula; Hutley, Lindsay B.; Kelly, Jeff W.; Kikuzawa, Kihachiro; Kolari, Pasi; Koyama, Kohei; Limousin, Jean-Marc; Meir, Patrick; Lola da Costa, Antonio C.; Mikkelsen, Teis N.; Salinas, Norma; Sun, Wei; Wingate, Lisa

    2015-05-01

    Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model and the leaf and wood economics spectrum. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.

  1. Forced eye closure-induced reflex seizure and non-ketotic hyperglycemia

    International Nuclear Information System (INIS)

    Tiras, Raziye; Mutlu, Aytul; Ozben, Serkan; Aydemir Tuba; Ozerab, Feriha

    2009-01-01

    We report an uncommon case of 53-year-old female patient with partial seizure induced by forced voluntary eye closure due to non-ketotic hyperglycemia. The initial laboratory tests showed an elevated blood glucose level of 550 mg/dL but no evidence of ketosis. Brain magnetic resonance imaging was normal. When the blood glucose levels decreased slowly to about 150 mg/dL in five days, the seizures ended completely. No anticonvulsants were used. Since seizures are generally refractory to antiepileptic medication, control of blood glucose is essential. (author)

  2. Spontaneous mutation 7B-1 in tomato impairs blue light-induced stomatal opening

    Czech Academy of Sciences Publication Activity Database

    Hlavinka, J.; Nauš, J.; Fellner, Martin

    2013-01-01

    Roč. 209, č. 2013 (2013), s. 75-80 ISSN 0168-9452 R&D Projects: GA ČR GD522/08/H003 Grant - others:GA ČR(CZ) GAP501/10/0785 Program:GA Institutional research plan: CEZ:AV0Z50380511 Keywords : ABA * Anion-channel blocker * Blue light Subject RIV: ED - Physiology Impact factor: 4.114, year: 2013

  3. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Dong-bei Xu

    Full Text Available Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2 was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1, were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44, were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade.

  4. Ascophyllum nodosum Seaweed Extract Alleviates Drought Stress in Arabidopsis by Affecting Photosynthetic Performance and Related Gene Expression

    Directory of Open Access Journals (Sweden)

    Antonietta Santaniello

    2017-08-01

    Full Text Available Drought represents one of the most relevant abiotic stress affecting growth and yield of crop plants. In order to improve the agricultural productivity within the limited water and land resources, it is mandatory to increase crop yields in presence of unfavorable environmental stresses. The use of biostimulants, often containing seaweed extracts, represents one of the options for farmers willing to alleviate abiotic stress consequences on crops. In this work, we investigated the responses of Arabidopsis plants treated with an extract from the brown alga Ascophyllum nodosum (ANE, under drought stress conditions, demonstrating that ANE positively influences Arabidopsis survival. Pre-treatment with ANE induced a partial stomatal closure, associated with changes in the expression levels of genes involved in ABA-responsive and antioxidant system pathways. The pre-activation of these pathways results in a stronger ability of ANE-treated plants to maintain a better photosynthetic performance compared to untreated plants throughout the dehydration period, combined with a higher capacity to dissipate the excess of energy as heat in the reaction centers of photosystem II. Our results suggest that drought stressed plants treated with ANE are able to maintain a strong stomatal control and relatively higher values of both water use efficiency (WUE and mesophyll conductance during the last phase of dehydration. Simultaneously, the activation of a pre-induced antioxidant defense system, in combination with a more efficient energy dissipation mechanism, prevents irreversible damages to the photosynthetic apparatus. In conclusion, pre-treatment with ANE is effective to acclimate plants to the incoming stress, promoting an increased WUE and dehydration tolerance.

  5. Abscinazole-F1, a conformationally restricted analogue of the plant growth retardant uniconazole and an inhibitor of ABA 8'-hydroxylase CYP707A with no growth-retardant effect.

    Science.gov (United States)

    Todoroki, Yasushi; Kobayashi, Kyotaro; Shirakura, Minaho; Aoyama, Hikaru; Takatori, Kokichi; Nimitkeatkai, Hataitip; Jin, Mei-Hong; Hiramatsu, Saori; Ueno, Kotomi; Kondo, Satoru; Mizutani, Masaharu; Hirai, Nobuhiro

    2009-09-15

    To develop a specific inhibitor of abscisic acid (ABA) 8'-hydroxylase, a key enzyme in the catabolism of ABA, a plant hormone involved in stress tolerance, seed dormancy, and other various physiological events, we designed and synthesized conformationally restricted analogues of uniconazole (UNI), a well-known plant growth retardant, which inhibits a biosynthetic enzyme (ent-kaurene oxidase) of gibberellin as well as ABA 8'-hydroxylase. Although most of these analogues were less effective than UNI in inhibition of ABA 8'-hydroxylase and rice seedling growth, we found that a lactol-bridged analogue with an imidazole is a potent inhibitor of ABA 8'-hydroxylase but not of plant growth. This compound, abscinazole-F1, induced drought tolerance in apple seedlings upon spray treatment with a 10 microM solution.

  6. Ordering phenomena in ABA triblock copolymer gels

    DEFF Research Database (Denmark)

    Reynders, K.; Mischenko, N.; Kleppinger, R.

    1997-01-01

    Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network). The lat......Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network...

  7. Antibodies to the CFTR modulate the turgor pressure of guard cell protoplasts via slow anion channels.

    Science.gov (United States)

    Leonhardt, N; Bazin, I; Richaud, P; Marin, E; Vavasseur, A; Forestier, C

    2001-04-06

    The plasma membrane guard cell slow anion channel is a key element at the basis of water loss control in plants allowing prolonged osmolite efflux necessary for stomatal closure. This channel has been extensively studied by electrophysiological approaches but its molecular identification is still lacking. Recently, we described that this channel was sharing some similarities with the mammalian ATP-binding cassette protein, cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel [Leonhardt, N. et al. (1999) Plant Cell 11, 1141-1151]. Here, using the patch-clamp technique and a bioassay, consisting in the observation of the change in guard cell protoplasts volume, we demonstrated that a functional antibody raised against the mammalian CFTR prevented ABA-induced guard cell protoplasts shrinking and partially inhibited the slow anion current. Moreover, this antibody immunoprecipitated a polypeptide from guard cell protein extracts and immunolabeled stomata in Vicia faba leaf sections. These results indicate that the guard cell slow anion channel is, or is closely controlled by a polypeptide, exhibiting one epitope shared with the mammalian CFTR.

  8. Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling

    KAUST Repository

    Kim, Tae-Houn

    2010-05-04

    Stomatal pores are formed by pairs of specialized epidermal guard cells and serve as major gateways for both CO2 influx into plants from the atmosphere and transpirational water loss of plants. Because they regulate stomatal pore apertures via integration of both endogenous hormonal stimuli and environmental signals, guard cells have been highly developed as a model system to dissect the dynamics and mechanisms of plant-cell signaling. The stress hormone ABA and elevated levels of CO2 activate complex signaling pathways in guard cells that are mediated by kinases/phosphatases, secondary messengers, and ion channel regulation. Recent research in guard cells has led to a new hypothesis for how plants achieve specificity in intracellular calcium signaling: CO2 and ABA enhance (prime) the calcium sensitivity of downstream calcium-signaling mechanisms. Recent progress in identification of early stomatal signaling components are reviewed here, including ABA receptors and CO2-binding response proteins, as well as systems approaches that advance our understanding of guard cell-signaling mechanisms.

  9. Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling

    KAUST Repository

    Kim, Tae-Houn; Bö hmer, Maik; Hu, Honghong; Nishimura, Noriyuki; Schroeder, Julian I.

    2010-01-01

    Stomatal pores are formed by pairs of specialized epidermal guard cells and serve as major gateways for both CO2 influx into plants from the atmosphere and transpirational water loss of plants. Because they regulate stomatal pore apertures via integration of both endogenous hormonal stimuli and environmental signals, guard cells have been highly developed as a model system to dissect the dynamics and mechanisms of plant-cell signaling. The stress hormone ABA and elevated levels of CO2 activate complex signaling pathways in guard cells that are mediated by kinases/phosphatases, secondary messengers, and ion channel regulation. Recent research in guard cells has led to a new hypothesis for how plants achieve specificity in intracellular calcium signaling: CO2 and ABA enhance (prime) the calcium sensitivity of downstream calcium-signaling mechanisms. Recent progress in identification of early stomatal signaling components are reviewed here, including ABA receptors and CO2-binding response proteins, as well as systems approaches that advance our understanding of guard cell-signaling mechanisms.

  10. Arabidopsis YAK1 regulates abscisic acid response and drought resistance.

    Science.gov (United States)

    Kim, Dongjin; Ntui, Valentine Otang; Xiong, Liming

    2016-07-01

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. © 2016 Federation of European Biochemical Societies.

  11. Arabidopsis YAK1 regulates abscisic acid response and drought resistance

    KAUST Repository

    Kim, Dongjin

    2016-06-06

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. © 2016 Federation of European Biochemical Societies.

  12. Transmission and pathogenesis of vesicular stomatitis viruses

    Science.gov (United States)

    Vesicular Stomatitis (VS) is caused by the Vesicular Stomatitis Virus (VSV), a negative single stranded RNA arthropod-borne virus member of the Family Rhabdoviridae. The virion is composed of the host derived plasma membrane, the envelope, and an internal ribonucleoprotein core. The envelope contain...

  13. Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants.

    Science.gov (United States)

    Fares, S; Loreto, F; Kleist, E; Wildt, J

    2008-01-01

    Volatile isoprenoids were reported to protect plants against ozone. To understand whether this could be the result of a direct scavenging of ozone by these molecules, the stomatal and non-stomatal uptake of ozone was estimated in plants emitting isoprene or monoterpenes. Ozone uptake by holm oak (Quercus ilex, a monoterpene emitter) and black poplar (Populus nigra, an isoprene emitter) was studied in whole plant enclosures (continuously stirred tank reactors, CSTR). The ozone uptake by plants was estimated measuring ozone concentration at the inlet and outlet of the reactors, after correcting for the uptake of the enclosure materials. Destruction of ozone at the cuticle or at the plant stems was found to be negligible compared to the ozone uptake through the stomata. For both plant species, a relationship between stomatal conductance and ozone uptake was found. For the poplar, the measured ozone losses were explained by the uptake of ozone through the stomata only, and ozone destruction by gas phase reactions with isoprene was negligible. For the oak, gas phase reactions of ozone with the monoterpenes emitted by the plants contributed significantly to ozone destruction. This was confirmed by two different experiments showing a) that in cases of high stomatal conductance but under low CO(2) concentration, a reduction of monoterpene emission was still associated with reduced O(3) uptake; and b) that ozone losses due to the gas phase reactions only can be measured when using the exhaust from a plant chamber to determine the gas phase reactivity in an empty reaction chamber. Monoterpenes can therefore relevantly scavenge ozone at leaf level contributing to protection against ozone.

  14. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition.

    Science.gov (United States)

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-04-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development. © The Author 2016. Published by

  15. UV-induced cross-linking of abscisic acid to binding proteins

    International Nuclear Information System (INIS)

    Cornelussen, M.H.M.; Karssen, C.M.; Loon, L.C. van

    1995-01-01

    Conditions for UV-induced cross-linking of abscisic acid (ABA) through its enone chromophore to binding proteins were evaluated. The effects of a UV-light band between 260 and 530 nm on both unconjugated and protein-conjugated ABA, as well as on anti-ABA antibodies as models of ABA-binding proteins were determined. UV irradiation caused both isomerization and photolysis of ABA, but increasing the lower irradiation boundary to 345 nm strongly reduced photolysis and largely prevented isomerization. When conjugated to alkaline phosphatase (AP), ABA remained stable when using either a 320 or a 345 nm filter. At these wavelengths both binding of ABA to antibodies as well as AP enzymatic activity were maintained. UV-induced cross-linking of monoclonal anti-ABA antibodies to immobilized ABA was analysed by immunoassays. Optimal cross-linking was achieved after a 5 min irradiation period at 0°, using a long pass, cut-on filter to quench wavelengths below 290 nm. This cross-linking faithfully reflected cognate binding activity. (author)

  16. Anthropogenic impacts on the water quality of Aba River, southeast ...

    African Journals Online (AJOL)

    Anthropogenic impacts on the water quality of Aba River, southeast Nigeria. ... Ethiopian Journal of Environmental Studies and Management ... of Aba River, southeast Nigeria was studied in four stations from November 2014 to August 2015 to identify the major anthropogenic activities and their impact on the water quality.

  17. The transport and distribution of 3H-ABA affected by al sress on soybean seedig

    International Nuclear Information System (INIS)

    Chen Guang; Sun Yang; Pang Jinduo

    2010-01-01

    A hydroponic experiment combining radioisotope techniques was carried out to understand the effect of Al stress on the transport and the distribution of 3 H-ABA by using Jilin70, a soybean variety of Al resistance. The transport and distribution of ABA affected by Al stress on soybean seedling were studied with radioisotope technique. The results showed that ABA could be transported up or down in soybean seedling. The stress of Al accelerated the transport of ABA and enhanced the distribution of ABA in the roots by Al stress. The paper present the foundation for the mechanisms of ABA under Al stress in plant. (authors)

  18. Assessment of burnout among health workers and bankers in Aba ...

    African Journals Online (AJOL)

    Aim: To determine the prevalence of burnout among health workers and bankers in Aba South Local Government Area in Abia State. Materials and Methods: A cross.sectional, descriptive study was carried out in 2013 among health workers and bankers in Aba metropolis. By multistage sampling method, proportionate ...

  19. Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: a comparison of dormant and non-dormant rice cultivars.

    Science.gov (United States)

    Liu, Yang; Fang, Jun; Xu, Fan; Chu, Jinfang; Yan, Cunyu; Schläppi, Michael R; Wang, Youping; Chu, Chengcai

    2014-06-20

    Seed dormancy is an important agronomic trait in cereals. Using deep dormant (N22), medium dormant (ZH11), and non-dormant (G46B) rice cultivars, we correlated seed dormancy phenotypes with abscisic acid (ABA) and gibberellin (GA) metabolism gene expression profiles and phytohormone levels during seed development and imbibition. A time course analysis of ABA and GA content during seed development showed that N22 had a high ABA level at early and middle seed developmental stages, while at late developmental stage it declined to the level of ZH11; however, its ABA/GA ratio maintained at a high level throughout seed development. By contrast, G46B had the lowest ABA content during seed development though at early developmental stage its ABA level was close to that of ZH11, and its ABA/GA ratio peaked at late developmental stage that was at the same level of ZH11. Compared with N22 and G46B, ZH11 had an even and medium ABA level during seed development and its ABA/GA ratio peaked at the middle developmental stage. Moreover, the seed development time-point having high ABA/GA ratio also had relatively high transcript levels for key genes in ABA and GA metabolism pathways across three cultivars. These indicated that the embryo-imposed dormancy has been induced before the late developmental stage and is determined by ABA/GA ratio. A similar analysis during seed imbibition showed that ABA was synthesized in different degrees for the three cultivars. In addition, water uptake assay for intact mature seeds suggested that water could permeate through husk barrier into seed embryo for all three cultivars; however, all three cultivars showed distinct colors by vanillin-staining indicative of the existence of flavans in their husks, which are dormancy inhibition compounds responsible for the husk-imposed dormancy. Copyright © 2014. Published by Elsevier Ltd.

  20. Auxin and ABA act as central regulators of developmental networks associated with paradormancy in Canada thistle (Cirsium arvense)

    KAUST Repository

    Anderson, James V.

    2012-05-13

    Abstract Dormancy in underground vegetative buds of Canada thistle, an herbaceous perennial weed, allows escape from current control methods and contributes to its invasive nature. In this study, ∼65 % of root sections obtained from greenhouse propagated Canada thistle produced new vegetative shoots by 14 days post-sectioning. RNA samples obtained from sectioned roots incubated 0, 24, 48, and 72 h at 25°C under 16:8 h light-dark conditions were used to construct four MID-tagged cDNA libraries. Analysis of in silico data obtained using Roche 454 GS-FLX pyrosequencing technologies identified molecular networks associated with paradormancy release in underground vegetative buds of Canada thistle. Sequencing of two replicate plates produced ∼2.5 million ESTs with an average read length of 362 bases. These ESTs assembled into 67358 unique sequences (21777 contigs and 45581 singlets) and annotation against the Arabidopsis database identified 15232 unigenes. Among the 15232 unigenes, we identified processes enriched with transcripts involved in plant hormone signaling networks. To follow-up on these results, we examined hormone profiles in roots, which identified changes in abscisic acid (ABA) and ABA metabolites, auxins, and cytokinins post-sectioning. Transcriptome and hormone profiling data suggest that interaction between auxin- and ABA-signaling regulate paradormancy maintenance and release in underground adventitious buds of Canada thistle. Our proposed model shows that sectioning-induced changes in polar auxin transport alters ABA metabolism and signaling, which further impacts gibberellic acid signaling involving interactions between ABA and FUSCA3. Here we report that reduced auxin and ABA-signaling, in conjunction with increased cytokinin biosynthesis post-sectioning supports a model where interactions among hormones drives molecular networks leading to cell division, differentiation, and vegetative outgrowth. ©Springer-Verlag (outside the USA) 2012.

  1. The biological activity of ABA-1-like protein from Ascaris lumbricoides

    OpenAIRE

    武藤, 理穂; 今井, 伸二郎; 手塚, 裕之; 古橋, 裕子; 藤田, 紘一郎

    2001-01-01

    The elevation of non-specific IgE (total IgE) in Ascaris infection can be seen one week after infection, and reaches a peak after approximately two weeks. It has been reported that ABA-1 protein is the main constituent in the pseudocoelomic fluid of Ascaris suum. To investigate the effect of the ABA-1-like protein from Ascaris lumbricoides (ALB), the cDNA was cloned by reverse transcriptase polymerase chain reaction, using original primers based on the consensus sequences of ABA-1 and TBA-1, ...

  2. Influence of fatigue crack wake length and state of stress on crack closure

    Science.gov (United States)

    Telesman, Jack; Fisher, Douglas M.

    1988-01-01

    The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.

  3. Ecology of Candida-associated Denture Stomatitis

    OpenAIRE

    Budtz-Jørgensen, Ejvind

    2011-01-01

    Introduction of a prosthesis into the oral cavity results in profound alterations of the environmental conditions as the prosthesis and the underlying mucosa become colonized with oral microorganisms, including Candida spp. This may lead to denture stomatitis, a non-specific inflammatory reaction against microbial antigens, toxins and enzymes produced by the colonizing microorganisms. The role of Candida in the etiology of denture stomatitis is indicated by an increased number of yeasts on th...

  4. Cyclic ADP-ribose and IP3 mediate abscisic acid-induced isoflavone accumulation in soybean sprouts

    International Nuclear Information System (INIS)

    Jiao, Caifeng; Yang, Runqiang; Gu, Zhenxin

    2016-01-01

    In this study, the roles of ABA-cADPR-Ca 2+ and ABA-IP3-Ca 2+ signaling pathways in UV-B-induced isoflavone accumulation in soybean sprouts were investigated. Results showed that abscisic acid (ABA) up regulated cyclic ADP-ribose (cADPR) and inositol 1,4,5-trisphosphate (IP3) levels in soybean sprouts under UV-B radiation. Furthermore, cADPR and IP3, as second messengers of UV-B-triggered ABA, induced isoflavone accumulation by up-regulating proteins and genes expression and activity of isoflavone biosynthetic-enzymes (chalcone synthase, CHS; isoflavone synthase, IFS). After Ca 2+ was chelated by EGTA, isoflavone content decreased. Overall, ABA-induced cADPR and IP3 up regulated isoflavone accumulation which was mediated by Ca 2+ signaling via enhancing the expression of proteins and genes participating in isoflavone biosynthesis in soybean sprouts under UV-B radiation. - Highlights: • UV-B-induced cADPR and IP3 synthesis was mediated by ABA. • cADPR and IP3 were involved in UV-B-ABA-induced isoflavone accumulation. • cADPR and IP3-induced isoflavone accumulation may be mediated by Ca 2+ . • ABA, cADPR, IP3 and Ca 2+ could activate proteins expression of CHS and IFS.

  5. Dual DNA binding property of ABA insensitive 3 like factors targeted to promoters responsive to ABA and auxin.

    Science.gov (United States)

    Nag, Ronita; Maity, Manas Kanti; Dasgupta, Maitrayee

    2005-11-01

    The ABA responsive ABI3 and the auxin responsive ARF family of transcription factors bind the CATGCATG (Sph) and TGTCTC core motifs in ABA and auxin response elements (ABRE and AuxRE), respectively. Several evidences indicate ABI3s to act downstream to auxin too. Because DNA binding domain of ABI3s shows significant overlap with ARFs we enquired whether auxin responsiveness through ABI3s could be mediated by their binding to canonical AuxREs. Investigations were undertaken through in vitro gel mobility shift assays (GMSA) using the DNA binding domain B3 of PvAlf (Phaseolus vulgaris ABI3 like factor) and upstream regions of auxin responsive gene GH3 (-267 to -141) and ABA responsive gene Em (-316 to -146) harboring AuxRE and ABRE, respectively. We demonstrate that B3 domain of PvAlf could bind AuxRE only when B3 was associated with its flanking domain B2 (B2B3). Such strict requirement of B2 domain was not observed with ABRE, where B3 could bind with or without being associated with B2. This dual specificity in DNA binding of ABI3s was also demonstrated with nuclear extracts of cultured cells of Arachis hypogea. Supershift analysis of ABRE and AuxRE bound nuclear proteins with antibodies raised against B2B3 domains of PvAlf revealed that ABI3 associated complexes were detectable in association with both cis elements. Competition GMSA confirmed the same complexes to bind ABRE and AuxRE. This dual specificity of ABI3 like factors in DNA binding targeted to natural promoters responsive to ABA and auxin suggests them to have a potential role in conferring crosstalk between these two phytohormones.

  6. Transpiration and stomatal conductance in a young secondary tropical montane forest: contrasts between native trees and invasive understorey shrubs.

    Science.gov (United States)

    Ghimire, Chandra Prasad; Bruijnzeel, L Adrian; Lubczynski, Maciek W; Zwartendijk, Bob W; Odongo, Vincent Omondi; Ravelona, Maafaka; van Meerveld, H J Ilja

    2018-04-21

    It has been suggested that vigorous secondary tropical forests can have very high transpiration rates, but sap flow and stomatal conductance dynamics of trees and shrubs in these forests are understudied. In an effort to address this knowledge gap, sap flow (thermal dissipation method, 12 trees) and stomatal conductance (porometry, six trees) were measured for young (5-7 years) Psiadia altissima (DC.) Drake trees, a widely occurring species dominating young regrowth following abandonment of swidden agriculture in upland eastern Madagascar. In addition, stomatal conductance (gs) was determined for three individuals of two locally common invasive shrubs (Lantana camara L. and Rubus moluccanus L.) during three periods with contrasting soil moisture conditions. Values of gs for the three investigated species were significantly higher and more sensitive to climatic conditions during the wet period compared with the dry period. Further, gs of the understorey shrubs was much more sensitive to soil moisture content than that of the trees. Tree transpiration rates (Ec) were relatively stable during the dry season and were only affected somewhat by soil water content at the end of the dry season, suggesting the trees had continued access to soil water despite drying out of the topsoil. The Ec exhibited a plateau-shaped relation with vapour pressure deficit (VPD), which was attributed to stomatal closure at high VPD. Vapour pressure deficit was the major driver of variation in Ec, during both the wet and the dry season. Overall water use of the trees was modest, possibly reflecting low site fertility after three swidden cultivation cycles. The observed contrast in gs response to soil water and climatic conditions for the trees and shrubs underscores the need to take root distributions into account when modelling transpiration from regenerating tropical forests.

  7. 77 FR 36231 - Americans With Disabilities Act (ADA) and Architectural Barriers Act (ABA) Accessibility...

    Science.gov (United States)

    2012-06-18

    ...-0004] RIN 3014-AA39 Americans With Disabilities Act (ADA) and Architectural Barriers Act (ABA... (ADA) and Architectural Barriers Act (ABA) Accessibility Guidelines to specifically address emergency... ensure that newly constructed and altered emergency transportable housing units covered by the ADA or ABA...

  8. ABA receptors: The START of a new paradigm in phytohormone signalling

    KAUST Repository

    Klingler, John; Batelli, Georgia; Zhu, Jian-Kang

    2010-01-01

    detailed glimpses of the hormone's activities at the molecular level. Despite this progress, many gaps in understanding have remained, particularly at the early stages of ABA perception by the plant cell. The search for an ABA receptor protein has produced

  9. Involvement of ABA in induction of secondary dormancy in barley (Hordeum vulgare L.) seeds.

    Science.gov (United States)

    Leymarie, Juliette; Robayo-Romero, Maria Emilia; Gendreau, Emmanuel; Benech-Arnold, Roberto L; Corbineau, Françoise

    2008-12-01

    At harvest, barley seeds are dormant because their germination is difficult above 20 degrees C. Incubation of primary dormant seeds at 30 degrees C, a temperature at which they do not germinate, results in a loss of their ability to germinate at 20 degrees C. This phenomenon which corresponds to an induction of a secondary dormancy is already observed after a pre-treatment at 30 degrees C as short as 4-6 h, and is optimal after 24-48 h. It is associated with maintenance of a high level of embryo ABA content during seed incubation at 30 degrees C, and after seed transfer at 20 degrees C, while ABA content decreases rapidly in embryos of primary dormant seeds placed directly at 20 degrees C. Induction of secondary dormancy also results in an increase in embryo responsiveness to ABA at 20 degrees C. Application of ABA during seed treatment at 30 degrees C has no significant additive effect on the further germination at 20 degrees C. In contrast, incubation of primary dormant seeds at 20 degrees C for 48 and 72 h in the presence of ABA inhibits further germination on water similarly to 24-48 h incubation at 30 degrees C. However fluridone, an inhibitor of ABA synthesis, applied during incubation of the grains at 30 degrees C has only a slight effect on ABA content and secondary dormancy. Expression of genes involved in ABA metabolism (HvABA8'OH-1, HvNCED1 and HvNCED2) was studied in relation to the expression of primary and secondary dormancies. The results presented suggest a specific role for HvNCED1 and HvNCED2 in regulation of ABA synthesis in secondary seed dormancy.

  10. Optimal Stomatal Behaviour Around the World: Synthesis of a Global Stomatal Conductance Database and Scaling from Leaf to Ecosystem

    Science.gov (United States)

    Lin, Y. S.; Medlyn, B. E.; Duursma, R.; Prentice, I. C.; Wang, H.

    2014-12-01

    Stomatal conductance (gs) is a key land surface attribute as it links transpiration, the dominant component of global land evapotranspiration and a key element of the global water cycle, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycles, a global scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. We present a unique database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We employed a model of optimal stomatal conductance to assess differences in stomatal behaviour, and estimated the model slope coefficient, g1, which is directly related to the marginal carbon cost of water, for each dataset. We found that g1 varies considerably among PFTs, with evergreen savanna trees having the largest g1 (least conservative water use), followed by C3 grasses and crops, angiosperm trees, gymnosperm trees, and C4 grasses. Amongst angiosperm trees, species with higher wood density had a higher marginal carbon cost of water, as predicted by the theory underpinning the optimal stomatal model. There was an interactive effect between temperature and moisture availability on g1: for wet environments, g1 was largest in high temperature environments, indicated by high mean annual temperature during the period when temperature above 0oC (Tm), but it did not vary with Tm across dry environments. We examine whether these differences in leaf-scale behaviour are reflected in ecosystem-scale differences in water-use efficiency. These findings provide a robust theoretical framework for understanding and predicting the behaviour of stomatal conductance across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of productivity and ecohydrological processes in a future changing climate.

  11. Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3.

    Science.gov (United States)

    Finkelstein, Ruth; Gampala, Srinivas S L; Lynch, Tim J; Thomas, Terry L; Rock, Christopher D

    2005-09-01

    Abscisic acid-responsive gene expression is regulated by numerous transcription factors, including a subgroup of basic leucine zipper factors that bind to the conserved cis-acting sequences known as ABA-responsive elements. Although one of these factors, ABA-insensitive 5 (ABI5), was identified genetically, the paucity of genetic data for the other family members has left it unclear whether they perform unique functions or act redundantly to ABI5 or each other. To test for potential redundancy with ABI5, we identified the family members with most similar effects and interactions in transient expression systems (ABF3 and ABF1), then characterized loss-of-function lines for those loci. The abf1 and abf3 monogenic mutant lines had at most minimal effects on germination or seed-specific gene expression, but the enhanced ABA- and stress-resistance of abf3 abi5 double mutants revealed redundant action of these genes in multiple stress responses of seeds and seedlings. Although ABI5, ABF3, and ABF1 have some overlapping effects, they appear to antagonistically regulate each other's expression at specific stages. Consequently, loss of any one factor may be partially compensated by increased expression of other family members.

  12. An ABA-responsive element in the AtSUC1 promoter is involved in the regulation of AtSUC1 expression.

    Science.gov (United States)

    Hoth, Stefan; Niedermeier, Matthias; Feuerstein, Andrea; Hornig, Julia; Sauer, Norbert

    2010-09-01

    Abscisic acid (ABA) and sugars regulate many aspects of plant growth and development, and we are only just beginning to understand the complex interactions between ABA and sugar signaling networks. Here, we show that ABA-dependent transcription factors bind to the promoter of the Arabidopsis thaliana AtSUC1 (At1g71880) sucrose transporter gene in vitro. We present the characterization of a cis-regulatory element by truncation of the AtSUC1 promoter and by electrophoretic mobility shift assays that is identical to a previously characterized ABA-responsive element (ABRE). In yeast 1-hybrid analyses we identified ABI5 (AtbZIP39; At2g36270) and AREB3 (AtbZIP66; At3g56850) as potential interactors. Analyses of plants expressing the beta-glucuronidase reporter gene under the control of ABI5 or AREB3 promoter sequences demonstrated that both transcription factor genes are co-expressed with AtSUC1 in pollen and seedlings, the primary sites of AtSUC1 action. Mutational analyses of the identified cis-regulatory element verified its importance for AtSUC1 expression in young seedlings. In abi5-4 seedlings, we observed an increase of sucrose-dependent anthocyanin accumulation and AtSUC1 mRNA levels. This suggests that ABI5 prevents an overshoot of sucrose-induced AtSUC1 expression and confirmed a novel cross-link between sugar and ABA signaling.

  13. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones

    Science.gov (United States)

    Kang, Sang-Mo; Shahzad, Raheem; Seo, Chang-Woo; Kim, Ah-Yeong; Lee, Sang-Uk; Oh, Kyeong Yeol; Lee, Dong Yeol; Lee, In-Jung; Yun, Byung-Wook

    2017-01-01

    Plant growth promoting rhizobacteria (PGPR) are diverse, naturally occurring bacteria that establish a close association with plant roots and promote the growth and immunity of plants. Established mechanisms involved in PGPR-mediated plant growth promotion include regulation of phytohormones, improved nutrient availability, and antagonistic effects on plant pathogens. In this study, we isolated a bacterium from the rhizospheric soil of a soybean field in Chungcheong buk-do, South Korea. Using 16S rRNA sequencing, the bacterium was identified as Bacillus aryabhattai strain SRB02. Here we show that this strain significantly promotes the growth of soybean. Gas chromatography—mass spectrometry analysis showed that SRB02 produced significant amounts of abscisic acid, indole acetic acid, cytokinin and different gibberellic acids in culture. SRB02-treated soybean plants showed significantly better heat stress tolerance than did untreated plants. These plants also produced consistent levels of ABA under heat stress and exhibited ABA-mediated stomatal closure. High levels of IAA, JA, GA12, GA4, and GA7, were recorded in SRB02-treated plants. These plants produced longer roots and shoots than those of control plants. B. aryabhattai SRB02 was found to be highly tolerant to oxidative stress induced by H2O2 and MV potentiated by high catalase (CAT) and superoxide dismutase (SOD) activities. SRB02 also tolerated high nitrosative stress induced by the nitric oxide donors GSNO and CysNO. Because of these attributes, B. aryabhattai SRB02 may prove to be a valuable resource for incorporation in biofertilizers and other soil amendments that seek to improve crop productivity. PMID:28282395

  14. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones.

    Directory of Open Access Journals (Sweden)

    Yeon-Gyeong Park

    Full Text Available Plant growth promoting rhizobacteria (PGPR are diverse, naturally occurring bacteria that establish a close association with plant roots and promote the growth and immunity of plants. Established mechanisms involved in PGPR-mediated plant growth promotion include regulation of phytohormones, improved nutrient availability, and antagonistic effects on plant pathogens. In this study, we isolated a bacterium from the rhizospheric soil of a soybean field in Chungcheong buk-do, South Korea. Using 16S rRNA sequencing, the bacterium was identified as Bacillus aryabhattai strain SRB02. Here we show that this strain significantly promotes the growth of soybean. Gas chromatography-mass spectrometry analysis showed that SRB02 produced significant amounts of abscisic acid, indole acetic acid, cytokinin and different gibberellic acids in culture. SRB02-treated soybean plants showed significantly better heat stress tolerance than did untreated plants. These plants also produced consistent levels of ABA under heat stress and exhibited ABA-mediated stomatal closure. High levels of IAA, JA, GA12, GA4, and GA7, were recorded in SRB02-treated plants. These plants produced longer roots and shoots than those of control plants. B. aryabhattai SRB02 was found to be highly tolerant to oxidative stress induced by H2O2 and MV potentiated by high catalase (CAT and superoxide dismutase (SOD activities. SRB02 also tolerated high nitrosative stress induced by the nitric oxide donors GSNO and CysNO. Because of these attributes, B. aryabhattai SRB02 may prove to be a valuable resource for incorporation in biofertilizers and other soil amendments that seek to improve crop productivity.

  15. Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status.

    Science.gov (United States)

    Meinzer, Frederick C; Smith, Duncan D; Woodruff, David R; Marias, Danielle E; McCulloh, Katherine A; Howard, Ava R; Magedman, Alicia L

    2017-08-01

    Species' differences in the stringency of stomatal control of plant water potential represent a continuum of isohydric to anisohydric behaviours. However, little is known about how quasi-steady-state stomatal regulation of water potential may relate to dynamic behaviour of stomata and photosynthetic gas exchange in species operating at different positions along this continuum. Here, we evaluated kinetics of light-induced stomatal opening, activation of photosynthesis and features of quasi-steady-state photosynthetic gas exchange in 10 woody species selected to represent different degrees of anisohydry. Based on a previously developed proxy for the degree of anisohydry, species' leaf water potentials at turgor loss, we found consistent trends in photosynthetic gas exchange traits across a spectrum of isohydry to anisohydry. More anisohydric species had faster kinetics of stomatal opening and activation of photosynthesis, and these kinetics were closely coordinated within species. Quasi-steady-state stomatal conductance and measures of photosynthetic capacity and performance were also greater in more anisohydric species. Intrinsic water-use efficiency estimated from leaf gas exchange and stable carbon isotope ratios was lowest in the most anisohydric species. In comparisons between gas exchange traits, species rankings were highly consistent, leading to species-independent scaling relationships over the range of isohydry to anisohydry observed. © 2017 John Wiley & Sons Ltd.

  16. ABA pretreatment can alter the distribution of polysomes in salt-stressed barley sprouts

    Directory of Open Access Journals (Sweden)

    Szypulska Ewa

    2016-12-01

    Full Text Available The study analyzed caryopses of barley (Hordeum vulgare cv. Stratus. Caryopses were germinated in darkness at 20°C in three experimental setups: (a in distilled water for 24 hours, followed by 100 mM NaCl for another 24 hours (salinity stress, SS, (b in 100 μM of abscisic acid for the first 24 hours, followed by rinsing with distilled water to remove residual ABA, and in 100 mM NaCl for another 24 hours (ABA pretreatment + salinity stress, ABAS, (c in distilled water only (control, C. Changes in the content of free polysomes (FP, membrane-bound polysomes (MBP, cytoskeleton-bound polysomes (CBP and cytomatrix-bound polysomes (CMBP were examined in barley sprouts germinated in SS and ABAS treatments for 48 hours. In salt-stressed barley sprouts, the concentrations of membrane-bound and cytoskeleton-bound polysomes (MBP, CBP and CMBP decreased significantly, whereas an increase was noted only in the free polysome (FP fraction. ABA pretreatment altered the distribution of polysomes in stressed plants. The content of cytoskeletonbound polysomes (CBP and CMBP increased, FP levels decreased, whereas no changes in MBP content were observed in response to ABA treatment. Our results suggest that plants respond to salt stress by increasing the concentrations of free polysomes that are probably released from damaged cell structures, mainly membranes. Our present and previous findings indicate that ABA could inhibit the release of FP in stressed plants by enhancing polysome binding to the cytoskeleton.

  17. Membrane fusion activity of vesicular stomatitis virus glycoprotein G is induced by low pH but not by heat or denaturant

    International Nuclear Information System (INIS)

    Yao Yi; Ghosh, Kakoli; Epand, Raquel F.; Epand, Richard M.; Ghosh, Hara P.

    2003-01-01

    The fusogenic envelope glycoprotein G of the rhabdovirus vesicular stomatitis virus (VSV) induces membrane fusion at acidic pH. At acidic pH the G protein undergoes a major structural reorganization leading to the fusogenic conformation. However, unlike other viral fusion proteins, the low-pH-induced conformational change of VSV G is completely reversible. As well, the presence of an α-helical coiled-coil motif required for fusion by a number of viral and cellular fusion proteins was not predicted in VSV G protein by using a number of algorithms. Results of pH dependence of the thermal stability of G protein as determined by intrinsic Trp fluorescence and circular dichroism (CD) spectroscopy show that the G protein is equally stable at neutral or acidic pH. Destabilization of G structure at neutral pH with either heat or urea did not induce membrane fusion or conformational change(s) leading to membrane fusion. Taken together, these data suggest that the mechanism of VSV G-induced fusion is distinct from the fusion mechanism of fusion proteins that involve a coiled-coil motif

  18. Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant.

    Science.gov (United States)

    Romero, Paco; Rodrigo, María J; Alférez, Fernando; Ballester, Ana-Rosa; González-Candelas, Luis; Zacarías, Lorenzo; Lafuente, María T

    2012-04-01

    Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate orange (Citrus sinesis L. Osbeck) and its spontaneous ABA-deficient mutant Pinalate, which is more prone to dehydration and to developing peel damage. Major changes in gene expression occurring in the wild-type line were impaired in the mutant fruit. Gene ontology analysis revealed the ability of Navelate fruits to induce the response to water deprivation and di-, tri-valent inorganic cation transport biological processes, as well as repression of the carbohydrate biosynthesis process in the mutant. Exogenous ABA triggered relevant transcriptional changes and repressed the protein ubiquitination process, although it could not fully rescue the physiological behaviour of the mutant. Overall, the results indicated that dehydration responsiveness requires ABA-dependent and -independent signals, and highlight that the ability of citrus fruits to trigger molecular responses against dehydration is an important factor in reducing their susceptibility to developing peel damage.

  19. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice

    NARCIS (Netherlands)

    Zhang, S.; Kohlen, W.; Jiang, L.; Bouwmeester, H.J.; Meijer, A.H.; Schluepmann, H.; Liu, C.M.; Ouwerkerk, P.B.F.

    2012-01-01

    Oshox22 belongs to the homeodomain-leucine zipper (HD-Zip) family I of transcription factors, most of which have unknown functions. Here we show that the expression of Oshox22 is strongly induced by salt stress, abscisic acid (ABA), and polyethylene glycol treatment (PEG), and weakly by cold stress.

  20. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange.

    Science.gov (United States)

    Martorell, Sebastià; Diaz-Espejo, Antonio; Medrano, Hipólito; Ball, Marilyn C; Choat, Brendan

    2014-03-01

    In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought-induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re-watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6 h after re-watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10 d of re-watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non-hydraulic factors influenced stomatal behaviour post drought. © 2013 John Wiley & Sons Ltd.

  1. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    International Nuclear Information System (INIS)

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M.H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2012-01-01

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

  2. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M.H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric (Van Andel); (Scripps); (NWU); (Purdue); (UCR); (Chinese Aca. Sci.); (NU Singapore)

    2014-10-02

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

  3. Quantitative Evaluation of Stomatal Cytoskeletal Patterns during the Activation of Immune Signaling in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Masaki Shimono

    Full Text Available Historically viewed as primarily functioning in the regulation of gas and water vapor exchange, it is now evident that stomata serve an important role in plant immunity. Indeed, in addition to classically defined functions related to cell architecture and movement, the actin cytoskeleton has emerged as a central component of the plant immune system, underpinning not only processes related to cell shape and movement, but also receptor activation and signaling. Using high resolution quantitative imaging techniques, the temporal and spatial changes in the actin microfilament array during diurnal cycling of stomatal guard cells has revealed a highly orchestrated transition from random arrays to ordered bundled filaments. While recent studies have demonstrated that plant stomata close in response to pathogen infection, an evaluation of stimulus-induced changes in actin cytoskeletal dynamics during immune activation in the guard cell, as well as the relationship of these changes to the function of the actin cytoskeleton and stomatal aperture, remains undefined. In the current study, we employed quantitative cell imaging and hierarchical clustering analyses to define the response of the guard cell actin cytoskeleton to pathogen infection and the elicitation of immune signaling. Using this approach, we demonstrate that stomatal-localized actin filaments respond rapidly, and specifically, to both bacterial phytopathogens and purified pathogen elicitors. Notably, we demonstrate that higher order temporal and spatial changes in the filament array show distinct patterns of organization during immune activation, and that changes in the naïve diurnal oscillations of guard cell actin filaments are perturbed by pathogens, and that these changes parallel pathogen-induced stomatal gating. The data presented herein demonstrate the application of a highly tractable and quantifiable method to assign transitions in actin filament organization to the activation of

  4. Synthetic, spectroscopic and structural studies on 4-aminobenzoate complexes of divalent alkaline earth metals: x-ray crystal structures of [[Mg(H2O)6] (4-aba)2].2H2O and [Ca(H2O)2(4-aba)2] (4-aba=4-aminobenzoate)

    International Nuclear Information System (INIS)

    Murugavel, Ramaswamy; Karambelkar, Vivek V.; Anantharaman, Ganapathi

    2000-01-01

    Reactions between MCl 2 .nH 2 O (M = Mg, Ca, Sr, and Ba) and 4-aminobenzoic acid (4-abaH) result in the formation of complexes [(Mg(H 2 O) 6 )(4-aba) 2 ) .2H 2 O (I), [Ca(4-aba) 2 (H2 O ) 2 ] (2), [Sr(4-aba) 2 (H2 O ) 2 ] (3), and [Ba(4-aba) 2 Cl] (4), respectively. The new compounds 1 and 2, as well as the previously reported 3 and 4 form an extended intra- and intermolecular hydrogen bonded network in the solid-state. The compounds have been characterized by elemental analysis, pH measurements, thermogravimetric studies, and IR, NMR, and UV-Vis spectroscopy. The solid state structures of the molecules 1 and 2 have been determined by single crystal x-ray diffraction studies. In the case of magnesium complex 1, the dipositively charged Mg cation is surrounded by six water molecules and the two 4-aminobenzoate ligands show no direct bonding to the metal ion. The calcium ion in 2 is octa-coordinated with direct coordination of the 4-aminobenzoate ligands to the metal ion. The Ca-Ca separation in the polymeric chain of 2 is 3.9047(5) A. (author)

  5. mechanisms of drought resistance in grain ii:.stomatal regulation

    African Journals Online (AJOL)

    Preferred Customer

    STOMATAL REGULATION AND ROOT GROWTH ... maintenance of high plant water potential in common bean under stress was the function of stomatal regulation and/or root ... disadvantage since it will reduce CO2 fixation and hence may ...

  6. ABA-Cloud: support for collaborative breath research.

    Science.gov (United States)

    Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton

    2013-06-01

    This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step toward the definition of conceptualized terms commonly used by the international community of breath researchers. They build the basis for the development of an ontology (a concept from computer science used for communication between machines and/or humans and representation and reuse of knowledge) dedicated to breath research.

  7. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    Science.gov (United States)

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M. H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2013-01-01

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites. PMID:22116026

  8. Reciprocal Regulation of the TOR Kinase and ABA Receptor Balances Plant Growth and Stress Response.

    Science.gov (United States)

    Wang, Pengcheng; Zhao, Yang; Li, Zhongpeng; Hsu, Chuan-Chih; Liu, Xue; Fu, Liwen; Hou, Yueh-Ju; Du, Yanyan; Xie, Shaojun; Zhang, Chunguang; Gao, Jinghui; Cao, Minjie; Huang, Xiaosan; Zhu, Yingfang; Tang, Kai; Wang, Xingang; Tao, W Andy; Xiong, Yan; Zhu, Jian-Kang

    2018-01-04

    As sessile organisms, plants must adapt to variations in the environment. Environmental stress triggers various responses, including growth inhibition, mediated by the plant hormone abscisic acid (ABA). The mechanisms that integrate stress responses with growth are poorly understood. Here, we discovered that the Target of Rapamycin (TOR) kinase phosphorylates PYL ABA receptors at a conserved serine residue to prevent activation of the stress response in unstressed plants. This phosphorylation disrupts PYL association with ABA and with PP2C phosphatase effectors, leading to inactivation of SnRK2 kinases. Under stress, ABA-activated SnRK2s phosphorylate Raptor, a component of the TOR complex, triggering TOR complex dissociation and inhibition. Thus, TOR signaling represses ABA signaling and stress responses in unstressed conditions, whereas ABA signaling represses TOR signaling and growth during times of stress. Plants utilize this conserved phospho-regulatory feedback mechanism to optimize the balance of growth and stress responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses.

    Science.gov (United States)

    Narusaka, Yoshihiro; Nakashima, Kazuo; Shinwari, Zabta K; Sakuma, Yoh; Furihata, Takashi; Abe, Hiroshi; Narusaka, Mari; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2003-04-01

    Many abiotic stress-inducible genes contain two cis-acting elements, namely a dehydration-responsive element (DRE; TACCGACAT) and an ABA-responsive element (ABRE; ACGTGG/TC), in their promoter regions. We precisely analyzed the 120 bp promoter region (-174 to -55) of the Arabidopsis rd29A gene whose expression is induced by dehydration, high-salinity, low-temperature, and abscisic acid (ABA) treatments and whose 120 bp promoter region contains the DRE, DRE/CRT-core motif (A/GCCGAC), and ABRE sequences. Deletion and base substitution analyses of this region showed that the DRE-core motif functions as DRE and that the DRE/DRE-core motif could be a coupling element of ABRE. Gel mobility shift assays revealed that DRE-binding proteins (DREB1s/CBFs and DREB2s) bind to both DRE and the DRE-core motif and that ABRE-binding proteins (AREBs/ABFs) bind to ABRE in the 120 bp promoter region. In addition, transactivation experiments using Arabidopsis leaf protoplasts showed that DREBs and AREBs cumulatively transactivate the expression of a GUS reporter gene fused to the 120 bp promoter region of rd29A. These results indicate that DRE and ABRE are interdependent in the ABA-responsive expression of the rd29A gene in response to ABA in Arabidopsis.

  10. Regional neural tube closure defined by the Grainy head-like transcription factors.

    Science.gov (United States)

    Rifat, Yeliz; Parekh, Vishwas; Wilanowski, Tomasz; Hislop, Nikki R; Auden, Alana; Ting, Stephen B; Cunningham, John M; Jane, Stephen M

    2010-09-15

    Primary neurulation in mammals has been defined by distinct anatomical closure sites, at the hindbrain/cervical spine (closure 1), forebrain/midbrain boundary (closure 2), and rostral end of the forebrain (closure 3). Zones of neurulation have also been characterized by morphologic differences in neural fold elevation, with non-neural ectoderm-induced formation of paired dorso-lateral hinge points (DLHP) essential for neural tube closure in the cranial and lower spinal cord regions, and notochord-induced bending at the median hinge point (MHP) sufficient for closure in the upper spinal region. Here we identify a unifying molecular basis for these observations based on the function of the non-neural ectoderm-specific Grainy head-like genes in mice. Using a gene-targeting approach we show that deletion of Grhl2 results in failed closure 3, with mutants exhibiting a split-face malformation and exencephaly, associated with failure of neuro-epithelial folding at the DLHP. Loss of Grhl3 alone defines a distinct lower spinal closure defect, also with defective DLHP formation. The two genes contribute equally to closure 2, where only Grhl gene dosage is limiting. Combined deletion of Grhl2 and Grhl3 induces severe rostral and caudal neural tube defects, but DLHP-independent closure 1 proceeds normally in the upper spinal region. These findings provide a molecular basis for non-neural ectoderm mediated formation of the DLHP that is critical for complete neuraxis closure. (c) 2010 Elsevier Inc. All rights reserved.

  11. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio

    OpenAIRE

    Shuai, Haiwei; Meng, Yongjie; Luo, Xiaofeng; Chen, Feng; Zhou, Wenguan; Dai, Yujia; Qi, Ying; Du, Junbo; Yang, Feng; Liu, Jiang; Yang, Wenyu; Shu, Kai

    2017-01-01

    Auxin is an important phytohormone which mediates diverse development processes in plants. Published research has demonstrated that auxin induces seed dormancy. However, the precise mechanisms underlying the effect of auxin on seed germination need further investigation, especially the relationship between auxins and both abscisic acid (ABA) and gibberellins (GAs), the latter two phytohormones being the key regulators of seed germination. Here we report that exogenous auxin treatment represse...

  12. 40 CFR 63.1296 - Standards for slabstock flexible polyurethane foam production-HAP ABA equipment leaks.

    Science.gov (United States)

    2010-07-01

    ... polyurethane foam production-HAP ABA equipment leaks. 63.1296 Section 63.1296 Protection of Environment... production—HAP ABA equipment leaks. Each owner or operator of a new or existing slabstock affected source complying with the emission point specific limitation option provided in § 63.1293(a) shall control HAP ABA...

  13. 40 CFR 63.1295 - Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels.

    Science.gov (United States)

    2010-07-01

    ... polyurethane foam production-HAP ABA storage vessels. 63.1295 Section 63.1295 Protection of Environment... production—HAP ABA storage vessels. Each owner or operator of a new or existing slabstock affected source complying with the emission point specific limitation option provided in § 63.1293(a) shall control HAP ABA...

  14. Coping as a Predictor of Burnout and General Health in Therapists Working in ABA Schools

    Science.gov (United States)

    Griffith, G. M.; Barbakou, A.; Hastings, R. P.

    2014-01-01

    Background: Little is known about the work-related well-being of applied behaviour analysis (ABA) therapists who work in school-based contexts and deliver ABA interventions to children with autism. Methods: A questionnaire on work-related stress (burnout), general distress, perceived supervisor support and coping was completed by 45 ABA therapists…

  15. Profiling ABA metabolites in Nicotiana tabacum L. leaves by ultra-performance liquid chromatography-electrospray tandem mass spectrometry.

    Science.gov (United States)

    Turecková, Veronika; Novák, Ondrej; Strnad, Miroslav

    2009-11-15

    We have developed a simple method for extracting and purifying (+)-abscisic acid (ABA) and eight ABA metabolites--phaseic acid (PA), dihydrophaseic acid (DPA), neophaseic acid (neoPA), ABA-glucose ester (ABAGE), 7'-hydroxy-ABA (7'-OH-ABA), 9'-hydroxy-ABA (9'-OH-ABA), ABAaldehyde, and ABAalcohol--before analysis by a novel technique for these substances, ultra-performance liquid chromatography-electrospray ionisation tandem mass spectrometry (UPLC-ESI-MS/MS). The procedure includes addition of deuterium-labelled standards, extraction with methanol-water-acetic acid (10:89:1, v/v), simple purification by Oasis((R)) HLB cartridges, rapid chromatographic separation by UPLC, and sensitive, accurate quantification by MS/MS in multiple reaction monitoring modes. The detection limits of the technique ranged between 0.1 and 1 pmol for ABAGE and ABA acids in negative ion mode, and 0.01-0.50 pmol for ABAGE, ABAaldehyde, ABAalcohol and the methylated acids in positive ion mode. The fast liquid chromatographic separation and analysis of ABA and its eight measured derivatives by UPLC-ESI-MS/MS provide rapid, accurate and robust quantification of most of the substances, and the low detection limits allow small amounts of tissue (1-5mg) to be used in quantitative analysis. To demonstrate the potential of the technique, we isolated ABA and its metabolites from control and water-stressed tobacco leaf tissues then analysed them by UPLC-ESI-MS/MS. Only ABA, PA, DPA, neoPA, and ABAGE were detected in the samples. PA was the most abundant analyte (ca. 1000 pmol/g f.w.) in both the control and water-stressed tissues, followed by ABAGE and DPA, which were both present at levels ca. 5-fold lower. ABA levels were at least 100-fold lower than PA concentrations, but they increased following the water stress treatment, while ABAGE, PA, and DPA levels decreased. Overall, the technique offers substantial improvements over previously described methods, enabling the detailed, direct study of

  16. Involvement of WRKY Transcription Factors in Abscisic-Acid-Induced Cold Tolerance of Banana Fruit.

    Science.gov (United States)

    Luo, Dong-Lan; Ba, Liang-Jie; Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Chen, Jian-Ye

    2017-05-10

    Phytohormone abscisic acid (ABA) and plant-specific WRKY transcription factors (TFs) have been implicated to play important roles in various stress responses. The involvement of WRKY TFs in ABA-mediated cold tolerance of economical fruits, such as banana fruit, however remains largely unknown. Here, we reported that ABA application could induce expressions of ABA biosynthesis-related genes MaNCED1 and MaNCED2, increase endogenous ABA contents, and thereby enhance cold tolerance in banana fruit. Four banana fruit WRKY TFs, designated as MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71, were identified and characterized. All four of these MaWRKYs were nuclear-localized and displayed transactivation activities. Their expressions were induced by ABA treatment during cold storage. More importantly, the gel mobility shift assay and transient expression analysis revealed that MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71 directly bound to the W-box elements in MaNCED1 and MaNCED2 promoters and activated their expressions. Taken together, our findings demonstrate that banana fruit WRKY TFs are involved in ABA-induced cold tolerance by, at least in part, increasing ABA levels via directly activating NECD expressions.

  17. The effect of vapour pressure deficit on stomatal conductance, sap pH and leaf-specific hydraulic conductance in Eucalyptus globulus clones grown under two watering regimes.

    Science.gov (United States)

    Hernandez, Maria Jose; Montes, Fernando; Ruiz, Federico; Lopez, Gustavo; Pita, Pilar

    2016-05-01

    Stomatal conductance has long been considered of key interest in the study of plant adaptation to water stress. The expected increase in extreme meteorological events under a climate change scenario may compromise survival in Eucalyptus globulus plantations established in south-western Spain. We investigated to what extent changes in stomatal conductance in response to high vapour pressure deficits and water shortage are mediated by hydraulic and chemical signals in greenhouse-grown E. globulus clones. Rooted cuttings were grown in pots and submitted to two watering regimes. Stomatal conductance, shoot water potential, sap pH and hydraulic conductance were measured consecutively in each plant over 4 weeks under vapour pressure deficits ranging 0·42 to 2·25 kPa. Evapotranspiration, growth in leaf area and shoot biomass were also determined. There was a significant effect of both clone and watering regime in stomatal conductance and leaf-specific hydraulic conductance, but not in sap pH. Sap pH decreased as water potential and stomatal conductance decreased under increasing vapour pressure deficit. There was no significant relationship between stomatal conductance and leaf-specific hydraulic conductance. Stomata closure precluded shoot water potential from falling below -1·8 MPa. The percentage loss of hydraulic conductance ranged from 40 to 85 %. The highest and lowest leaf-specific hydraulic conductances were measured in clones from the same half-sib families. Water shortage reduced growth and evapotranspiration, decreases in evapotranspiration ranging from 14 to 32 % in the five clones tested. Changes in sap pH seemed to be a response to changes in atmospheric conditions rather than soil water in the species. Stomata closed after a considerable amount of hydraulic conductance was lost, although intraspecific differences in leaf-specific hydraulic conductance suggest the possibility of selection for improved productivity under water-limiting conditions

  18. Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response

    OpenAIRE

    Chen, Li-Ting; Wu, Keqiang

    2010-01-01

    Our recent study revealed the involvement of the Arabidopsis histone deacetylase HDA6 in modulating ABA and salt stress responses. In this report, we further investigated the role of HDA19 in ABA and salt stress responses. The Arabidopsis HDA19 T-DNA insertion mutant, hda19-1, displayed a phenotype that was hypersensitive to ABA and salt stress. Compared with wild-type plants, the expression of ABA responsive genes, ABI1, ABI2, KAT1, KAT2 and RD29B, was decreased in hda19-1 plants when treate...

  19. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    OpenAIRE

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M. H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun

    2011-01-01

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, wh...

  20. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress.

    Science.gov (United States)

    Sun, Xinbo; Sun, Chunyu; Li, Zhigang; Hu, Qian; Han, Liebao; Luo, Hong

    2016-06-01

    Heat shock proteins (HSPs) are molecular chaperones that accumulate in response to heat and other abiotic stressors. Small HSPs (sHSPs) belong to the most ubiquitous HSP subgroup with molecular weights ranging from 12 to 42 kDa. We have cloned a new sHSP gene, AsHSP17 from creeping bentgrass (Agrostis stolonifera) and studied its role in plant response to environmental stress. AsHSP17 encodes a protein of 17 kDa. Its expression was strongly induced by heat in both leaf and root tissues, and by salt and abscisic acid (ABA) in roots. Transgenic Arabidopsis plants constitutively expressing AsHSP17 exhibited enhanced sensitivity to heat and salt stress accompanied by reduced leaf chlorophyll content and decreased photosynthesis under both normal and stressed conditions compared to wild type. Overexpression of AsHSP17 also led to hypersensitivity to exogenous ABA and salinity during germination and post-germinative growth. Gene expression analysis indicated that AsHSP17 modulates expression of photosynthesis-related genes and regulates ABA biosynthesis, metabolism and ABA signalling as well as ABA-independent stress signalling. Our results suggest that AsHSP17 may function as a protein chaperone to negatively regulate plant responses to adverse environmental stresses through modulating photosynthesis and ABA-dependent and independent signalling pathways. © 2015 John Wiley & Sons Ltd.

  1. Mix-and-match: ligand-receptor pairs in stomatal development and beyond.

    Science.gov (United States)

    Torii, Keiko U

    2012-12-01

    Stomata are small valves on the plant epidermis balancing gas exchange and water loss. Stomata are formed according to positional cues. In Arabidopsis, two EPIDERMAL PATTERNING FACTOR (EPF) peptides, EPF1 and EPF2, are secreted from stomatal precursors enforcing proper stomatal patterning. Here, I review recent studies revealing the ligand-receptor pairs and revising the previously predicted relations between receptors specifying stomatal patterning: ERECTA-family and TOO MANY MOUTHS (TMM). Furthermore, EPF-LIKE9 (EPFL9/Stomagen) promotes stomatal differentiation from internal tissues. Two EPFL peptides specify inflorescence architecture, a process beyond stomatal development, as ligands for ERECTA. Thus, broadly expressed receptor kinases may regulate multiple developmental processes through perceiving different peptide ligands, each with a specialized expression pattern. TMM in the epidermis may fine-tune multiple EPF/EPFL signals to prevent signal interference. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. PAISAGEM CULTURAL: AVALIAÇÃO DAS PAISAGENS CÊNICAS DE GUARAQUEÇABA (Cultural landscape: evaluation of scenic landscapes Guaraqueçaba)

    OpenAIRE

    SOUZA, Roberson Miranda; PASSOS, Messias Modesto dos; YAMAKI, Humberto

    2014-01-01

    A Paisagem Cultural do município de Guaraqueçaba que está localizado no Estado do Paraná, na planície costeira, representada no recorte com latitude entre 23º e 26º S e longitude 48º e 54º W, área de difícil acesso. Área de proteção ambiental, sendo Guaraqueçaba situada em uma privilegiada porção preservada de Floresta Tropical Úmida, aproximadamente 500 mil ha, que juntamente com a região Sul do Estado de São Paulo representa a maior área contínua de remanescentes dessa floresta. Deste modo ...

  3. ABA Represses the Expression of Cell Cycle Genes and May Modulate the Development of Endodormancy in Grapevine Buds

    Directory of Open Access Journals (Sweden)

    Ricardo Vergara

    2017-05-01

    Full Text Available Recently, the plant hormone abscisic acid (ABA has been implicated as a key player in the regulation of endodormancy (ED in grapevine buds (Vitis vinifera L. In this study, we show that in the vine, the expression of genes related to the biosynthesis of ABA (VvNCED1; VvNCED2 and the content of ABA are significantly higher in the latent bud than at the shoot apex, while the expression of an ABA catabolic gene (VvA8H3 showed no significant difference between either organ. A negative correlation between the content of ABA and transcript levels of cell cycle genes (CCG was found in both tissues. This result suggested that ABA may negatively regulate the expression of CCG in meristematic tissues of grapevines. To test this proposition, the effect of ABA on the expression of CCG was analyzed in two meristematic tissues of the vine: somatic embryos and shoot apexes. The results indicated that cell cycle progression is repressed by ABA in both organs, since it down-regulated the expression of genes encoding cyclin-dependent kinases (VvCDKB1, VvCDKB2 and genes encoding cyclins of type A (VvCYCA1, VvCYCA2, VvCYCA3, B (VvCYCB, and D (VvCYCD3.2a and up-regulated the expression of VvICK5, a gene encoding an inhibitor of CDKs. During ED, the content of ABA increased, and the expression of CCG decreased. Moreover, the dormancy-breaking compound hydrogen cyanamide (HC reduced the content of ABA and up-regulated the expression of CCG, this last effect was abolished when HC and ABA were co-applied. Taken together, these results suggest that ABA-mediated repression of CCG transcription may be part of the mechanism through which ABA modulates the development of ED in grapevine buds.

  4. Supplementary Material for: Herboxidiene triggers splicing repression and abiotic stress responses in plants

    KAUST Repository

    Alshareef, Sahar; Ling, Yu; Butt, Haroon; Mariappan, Kiruthiga; Benhamed, Moussa; Mahfouz, Magdy

    2017-01-01

    Abstract Background Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and stresses. Small-molecule inhibitors that perturb splicing provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Results Here, we show that herboxidiene (GEX1A) inhibits both constitutive and alternative splicing. Moreover, GEX1A activates genome-wide transcriptional patterns involved in abiotic stress responses in plants. GEX1A treatment -activated ABA-inducible promoters, and led to stomatal closure. Interestingly, GEX1A and pladienolide B (PB) elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. Conclusions Our study establishes GEX1A as a potent splicing inhibitor in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  5. Herboxidiene triggers splicing repression and abiotic stress responses in plants

    KAUST Repository

    Alshareef, Sahar

    2017-03-27

    Background Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and stresses. Small-molecule inhibitors that perturb splicing provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Results Here, we show that herboxidiene (GEX1A) inhibits both constitutive and alternative splicing. Moreover, GEX1A activates genome-wide transcriptional patterns involved in abiotic stress responses in plants. GEX1A treatment -activated ABA-inducible promoters, and led to stomatal closure. Interestingly, GEX1A and pladienolide B (PB) elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. Conclusions Our study establishes GEX1A as a potent splicing inhibitor in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  6. Chronic gingivitis and aphthous stomatitis relationship hypothesis: A neuroimmunobiological approach

    Directory of Open Access Journals (Sweden)

    Chiquita Prahasanti

    2009-03-01

    Full Text Available Background: Traumatic injuries to the oral mucosa in fixed orthodontic patients are common, especially in the first week of bracket placement, and occasionally lead to the development of aphthous stomatitis or ulcers. Nevertheless, these lesions are selflimiting. Purpose: The objective of this study is to reveal the connection between chronic gingivitis and aphthous stomatitis which is still unclear. Case: A patient with a persistent lesion for more than six months. Case Management: RAS was treated with scaling procedure, the gingival inflammation was healed. However, in this case report, despite the appropriate management procedures had been done, the lesion still worsen and became more painful. Moreover, the symptoms did not heal for more than two weeks. Actually, they had been undergone orthodontic treatment more than six months and rarely suffered from aphthous stomatitis. Coincidentally, at that time they also suffered from chronic gingivitis. It was interesting that after scaling procedures, the ulcer subsides in two days. Conclusion: Recently, the neuroimmunobiological researches which involved neurotransmitters and cytokines on cell-nerve signaling, and heat shock proteins in gingivitis and stomatitis are in progress. Nevertheless, they were done separately, thus do not explain the interrelationship. This proposed new concept which based on an integrated neuroimmunobiological approach could explain the benefit of periodontal treatment, especially scaling procedures, for avoiding prolonged painful episodes and unnecessary medications in aphthous stomatitis. However, for widely acceptance of the chronic gingivitis and aphthous stomatitis relationship, further clinical and laboratory study should be done. Regarding to the relatively fast healing after scaling procedures in this case report; it was concluded that the connection between chronic gingivitis and aphthous stomatitis is possible.

  7. Abscisic-acid-induced cellular apoptosis and differentiation in glioma via the retinoid acid signaling pathway.

    Science.gov (United States)

    Zhou, Nan; Yao, Yu; Ye, Hongxing; Zhu, Wei; Chen, Liang; Mao, Ying

    2016-04-15

    Retinoid acid (RA) plays critical roles in regulating differentiation and apoptosis in a variety of cancer cells. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share structural similarities. Here we proposed that ABA may also play a role in cellular differentiation and apoptosis by sharing a similar signaling pathway with RA that may be involved in glioma pathogenesis. We reported for the first time that the ABA levels were twofold higher in low-grade gliomas compared with high-grade gliomas. In glioma tissues, there was a positive correlation between the ABA levels and the transcription of cellular retinoic acid-binding protein 2 (CRABP2) and a negative correlation between the ABA levels and transcription of fatty acid-binding protein 5 (FABP5). ABA treatment induced a significant increase in the expression of CRABP2 and a decrease in the expression of peroxisome proliferator-activated receptor (PPAR) in glioblastoma cells. Remarkably, both cellular apoptosis and differentiation were increased in the glioblastoma cells after ABA treatment. ABA-induced cellular apoptosis and differentiation were significantly reduced by selectively silencing RAR-α, while RAR-α overexpression exaggerated the ABA-induced effects. These results suggest that ABA may play a role in the pathogenesis of glioma by promoting cellular apoptosis and differentiation through the RA signaling pathway. © 2015 UICC.

  8. The potential migration effect of rural hospital closures

    DEFF Research Database (Denmark)

    Sørensen, Jens Fyhn Lykke

    2008-01-01

    to out-migration, although the hypothetical way of questioning leaves uncertainty about the actual scale of out-migration. Child families appear to be the most likely out-migrants. Elderly people may be hardest hit by a hospital closure, being most reliant on health care and least inclined to move away.......Rural hospital closures are high on the current health care agenda in Denmark. One raised concern is that rural hospital closures may further decrease population numbers in rural areas, as closures may induce some residents to move away from affected areas, i.e. closer to health care services...

  9. Crystallization and initial X-ray data of abscisic acid receptor PYL3 in the presence of (−)-ABA

    International Nuclear Information System (INIS)

    Zhang, Xingliang; Zhang, Qi; Wang, Guoqiang

    2013-01-01

    The complex of the abscisic acid receptor PYL3 with (−)-ABA was crystallized and refined to obtain high-quality diffraction data. Diffraction data were collected and processed at 2.65 Å resolution. Abscisic acid (ABA) modulates many complicated developmental processes and responses to environmental stimuli. Recently, several (+)-ABA signalling mechanisms by the RCAR/PYR1/PYL family of proteins (PYLs) have been proposed. However, the mechanism of the recognition and binding of the unnatural ligand (−)-ABA by PYLs has not yet been elucidated. In the present study, the expression, purification and crystallization of PYL3 in complex with (−)-ABA are reported. Diffraction data were refined to 2.65 Å resolution for this complex in space group P6 5 . These findings will help to explain the stereospecificity of PYLs for (−)-ABA and to explore the selective ABA agonists

  10. Microarray Expression Analyses of Arabidopsis Guard Cells and Isolation of a Recessive Abscisic Acid Hypersensitive Protein Phosphatase 2C MutantW⃞

    Science.gov (United States)

    Leonhardt, Nathalie; Kwak, June M.; Robert, Nadia; Waner, David; Leonhardt, Guillaume; Schroeder, Julian I.

    2004-01-01

    Oligomer-based DNA Affymetrix GeneChips representing about one-third of Arabidopsis (Arabidopsis thaliana) genes were used to profile global gene expression in a single cell type, guard cells, identifying 1309 guard cell–expressed genes. Highly pure preparations of guard cells and mesophyll cells were isolated in the presence of transcription inhibitors that prevented induction of stress-inducible genes during cell isolation procedures. Guard cell expression profiles were compared with those of mesophyll cells, resulting in identification of 64 transcripts expressed preferentially in guard cells. Many large gene families and gene duplications are known to exist in the Arabidopsis genome, giving rise to redundancies that greatly hamper conventional genetic and functional genomic analyses. The presented genomic scale analysis identifies redundant expression of specific isoforms belonging to large gene families at the single cell level, which provides a powerful tool for functional genomic characterization of the many signaling pathways that function in guard cells. Reverse transcription–PCR of 29 genes confirmed the reliability of GeneChip results. Statistical analyses of promoter regions of abscisic acid (ABA)–regulated genes reveal an overrepresented ABA responsive motif, which is the known ABA response element. Interestingly, expression profiling reveals ABA modulation of many known guard cell ABA signaling components at the transcript level. We further identified a highly ABA-induced protein phosphatase 2C transcript, AtP2C-HA, in guard cells. A T-DNA disruption mutation in AtP2C-HA confers ABA-hypersensitive regulation of stomatal closing and seed germination. The presented data provide a basis for cell type–specific genomic scale analyses of gene function. PMID:14973164

  11. Reconstructing Atmospheric CO2 Through The Paleocene-Eocene Thermal Maximum Using Stomatal Index and Stomatal Density Values From Ginkgo adiantoides

    Science.gov (United States)

    Barclay, R. S.; Wing, S. L.

    2013-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) was a geologically brief interval of intense global warming 56 million years ago. It is arguably the best geological analog for a worst-case scenario of anthropogenic carbon emissions. The PETM is marked by a ~4-6‰ negative carbon isotope excursion (CIE) and extensive marine carbonate dissolution, which together are powerful evidence for a massive addition of carbon to the oceans and atmosphere. In spite of broad agreement that the PETM reflects a large carbon cycle perturbation, atmospheric concentrations of CO2 (pCO2) during the event are not well constrained. The goal of this study is to produce a high resolution reconstruction of pCO2 using stomatal frequency proxies (both stomatal index and stomatal density) before, during, and after the PETM. These proxies rely upon a genetically controlled mechanism whereby plants decrease the proportion of gas-exchange pores (stomata) in response to increased pCO2. Terrestrial sections in the Bighorn Basin, Wyoming, contain macrofossil plants with cuticle immediately bracketing the PETM, as well as dispersed plant cuticle from within the body of the CIE. These fossils allow for the first stomatal-based reconstruction of pCO2 near the Paleocene-Eocene boundary; we also use them to determine the relative timing of pCO2 change in relation to the CIE that defines the PETM. Preliminary results come from macrofossil specimens of Ginkgo adiantoides, collected from an ~200ka interval prior to the onset of the CIE (~230-30ka before), and just after the 'recovery interval' of the CIE. Stomatal index values decreased by 37% within an ~70ka time interval at least 100ka prior to the onset of the CIE. The decrease in stomatal index is interpreted as a significant increase in pCO2, and has a magnitude equivalent to the entire range of stomatal index adjustment observed in modern Ginkgo biloba during the anthropogenic CO2 rise during the last 150 years. The inferred CO2 increase prior to the

  12. Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings.

    Science.gov (United States)

    Ren, Cheng-Gang; Kong, Cun-Cui; Xie, Zhi-Hong

    2018-05-03

    Strigolactones (SLs) are considered to be a novel class of phytohormone involved in plant defense responses. Currently, their relationships with other plant hormones, such as abscisic acid (ABA), during responses to salinity stress are largely unknown. In this study, the relationship between SL and ABA during the induction of H 2 O 2 - mediated tolerance to salt stress were studied in arbuscular mycorrhizal (AM) Sesbania cannabina seedlings. The SL levels increased after ABA treatments and decreased when ABA biosynthesis was inhibited in AM plants. Additionally, the expression levels of SL-biosynthesis genes in AM plants increased following treatments with exogenous ABA and H 2 O 2 . Furthermore, ABA-induced SL production was blocked by a pre-treatment with dimethylthiourea, which scavenges H 2 O 2 . In contrast, ABA production was unaffected by dimethylthiourea. Abscisic acid induced only partial and transient increases in the salt tolerance of TIS108 (a SL synthesis inhibitor) treated AM plants, whereas SL induced considerable and prolonged increases in salt tolerance after a pre-treatment with tungstate. These results strongly suggest that ABA is regulating the induction of salt tolerance by SL in AM S. cannabina seedlings.

  13. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases

    OpenAIRE

    Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2011-01-01

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the cryst...

  14. Validation of functional fetal autonomic brain age score fABAS in 5 min short recordings

    International Nuclear Information System (INIS)

    Hoyer, Dirk; Kowalski, Eva-Maria; Schmidt, Alexander; Witte, Otto W; Schneider, Uwe; Schleußner, Ekkehard; Hatzmann, Wolfgang; Grönemeyer, Dietrich HW; Van Leeuwen, Peter

    2015-01-01

    With the objective of evaluating the functional maturation age and developmental disturbances we have previously introduced the fetal autonomic brain age score (fABAS) using 30 min fetal magnetocardiographic recordings (fMCG, Jena). The score is based on heart rate pattern indices that are related to universal principles of developmental biology. The present work aims at the validation of the fABAS methodology on 5 min recordings from an independent database (fMCG, Bochum).We found high agreement of fABAS obtained from Jena normal fetuses (5 min subsets, n  =  364) and Bochum recordings (n  =  322, normal fetuses). fABAS of 48 recordings from fetuses with intra-uterine growth restriction (IUGR, Bochum) was reduced in most of the cases, a result consistent with IUGR fetuses from Jena previously reported. fABAS calculated from 5 min snapshots only partly covers the accuracy when compared to fABAS from 30 min recordings. More precise diagnosis requires longer recordings.fABAS obtained from fMCG recordings is a strong candidate for standardized assessment of functional maturation age and developmental disturbances. Even 5 min recordings seem to be valuable for screening for maturation problems. (paper)

  15. 40 CFR 63.1297 - Standards for slabstock flexible polyurethane foam production-HAP ABA emissions from the...

    Science.gov (United States)

    2010-07-01

    ... polyurethane foam production-HAP ABA emissions from the production line. 63.1297 Section 63.1297 Protection of... foam production—HAP ABA emissions from the production line. (a) Each owner or operator of a new or... § 63.1293(a)(1) shall control HAP ABA emissions from the slabstock polyurethane foam production line in...

  16. Mining-induced earthquakes monitored during pit closure in the Midlothian Coalfield

    Energy Technology Data Exchange (ETDEWEB)

    Redmayne, D.W.; Richards, J.A.; Wild, P.W. [British Geological Survey, Edinburgh (United Kingdom). Global Seismology and Geomagnetism Group

    1998-06-01

    The British Geological Survey installed a seismometer network to monitor earthquakes around Rosslyn Chapel in the Midlothian Coalfield from November 1987 until January 1990. Accurate locations were obtained for 247 events and a close spatial and temporal association with concurrent coal mining, with a rapid decay of earthquake activity following pit closure, was demonstrated, indicating a mining-induced cause. Residual stress from past mining appears to have been an important factor in generating seismicity, and observations indicate that limiting the width of the workings or rate of extraction may significantly reduce or eliminate mining-induced earthquake activity. A frequency-magnitude analysis indicates a relatively high abundance of small events in this coalfield area. The maximum magnitude of a mining-induced earthquake likely to have been experienced during the life of the coalfield (maximum credible magnitude) was 3.0 M-L, although an extreme event (maximum possible magnitude) as large as 3.4 M-L was remotely possible. Significant seismic amplification was observed at Rosslyn Chapel, which is founded on sand and gravel, compared with a nearby bedrock site. As a consequence, relatively small magnitude events caused high, and occasionally damaging, seismic intensities at the chapel.

  17. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis.

    Science.gov (United States)

    Shu, Kai; Qi, Ying; Chen, Feng; Meng, Yongjie; Luo, Xiaofeng; Shuai, Haiwei; Zhou, Wenguan; Ding, Jun; Du, Junbo; Liu, Jiang; Yang, Feng; Wang, Qiang; Liu, Weiguo; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Yang, Wenyu

    2017-01-01

    Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN), an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde) level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA 1 , GA 3 , and GA 4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA 1 /ABA, GA 3 /ABA, and GA 4 /ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.

  18. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis

    Directory of Open Access Journals (Sweden)

    Kai Shu

    2017-08-01

    Full Text Available Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA while positively mediating abscisic acid (ABA biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN, an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA1, GA3, and GA4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA1/ABA, GA3/ABA, and GA4/ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.

  19. Intracellular compartimentation of abscisic acid (ABA) in guard cells and mesophyll cells under exposure to SO sub 2. Kompartimentierung von Abscisinsaeure (ABA) in Schliess- und Mesophyllzellen unter SO sub 2 -Belastung

    Energy Technology Data Exchange (ETDEWEB)

    Baier, M.; Daeter, W.; Hartung, W. (Wuerzburg Univ. (Germany, F.R.). Lehrstuhl fuer Botanik 1)

    1989-07-01

    The effect of SO{sub 2} on the intracellular compartimentation of ABA in guard cells and mesophyll cells of Valerianella locusta was investigated, using the efflux compartmental analysis, as described by Behl and Hartung (1986). The cytoplasmic ABA content of the guard cells was reduced drastically by 6 {mu}molxm{sup -3} SO{sub 2} (20% of the controls). The vacuolar content was decreased less dramatically (70% of the controls). The ABA distribution of mesophyll cells remained uneffected by 6 {mu}molxm{sup -3} SO{sub 2}. The SO{sub 2} effects are explained by an acidification of the compartments. (orig.).

  20. ABA-dependent inhibition of the ubiquitin proteasome system during germination at high temperature in Arabidopsis.

    Science.gov (United States)

    Chiu, Rex Shun; Pan, Shiyue; Zhao, Rongmin; Gazzarrini, Sonia

    2016-12-01

    During germination, endogenous and environmental factors trigger changes in the transcriptome, translatome and proteome to break dormancy. In Arabidopsis thaliana, the ubiquitin proteasome system (UPS) degrades proteins that promote dormancy to allow germination. While research on the UPS has focused on the identification of proteasomal substrates, little information is known about the regulation of its activity. Here we characterized the activity of the UPS during dormancy release and maintenance by monitoring protein ubiquitination and degradation of two proteasomal substrates: Suc-LLVY-AMC, a well characterized synthetic substrate, and FUSCA3 (FUS3), a dormancy-promoting transcription factor degraded by the 26S proteasome. Our data indicate that proteasome activity and protein ubiquitination increase during imbibition at optimal temperature (21°C), and are required for seed germination. However, abscisic acid (ABA) and supraoptimal temperature (32°C) inhibit germination by dampening both protein ubiquitination and proteasome activity. Inhibition of UPS function by high temperature is reduced by the ABA biosynthesis inhibitor, fluridone, and in ABA biosynthetic mutants, suggesting that it is ABA dependent. Accordingly, inhibition of FUS3 degradation at 32°C is also dependent on ABA. Native gels show that inhibition of proteasome activity is caused by interference with the 26S/30S ratio as well as free 19S and 20S levels, impacting the proteasome degradation cycle. Transfer experiments show that ABA-mediated inhibition of proteasome activity at 21°C is restricted to the first 2 days of germination, a time window corresponding to seed sensitivity to environmental and ABA-mediated growth inhibition. Our data show that ABA and high temperature inhibit germination under unfavourable growth conditions by repressing the UPS. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  1. Utilization of Dexaltin ointment to radiation stomatitis in patients with cancer of the oral cavity

    International Nuclear Information System (INIS)

    Ohhashi, Yasushi; Abe, Masaki; Ueda, Noboru

    1981-01-01

    Dexaltin ointment (sodium polyactylic acid, containing 0.1% dexamethasone) was used to the patients with stomatitis induced by radiotherapy. Fifteen patients with cancer of the oral cavity, aged from 44 to 77, were exposed to 60 Co γ-rays or electron beams, with the irradiation dose of 2400 to 9000 rad. About 60 g of the ointment was pasted for mean period of 6.6 weeks after meals, before sleep, and whenever the patients wanted. Therapeutic effect was observed in every case and in 87% of the case the pain at meals was decreased. The ointment adhered mostly for 1 - 2 hrs and in some cases, more than 3 hrs. No adverse reaction was observed. Therefore it was suggested that Dexaltin was a promising ointment to the radiation stomatitis. (Nakanishi, T.)

  2. Plant twitter: ligands under 140 amino acids enforcing stomatal patterning.

    Science.gov (United States)

    Rychel, Amanda L; Peterson, Kylee M; Torii, Keiko U

    2010-05-01

    Stomata are an essential land plant innovation whose patterning and density are under genetic and environmental control. Recently, several putative ligands have been discovered that influence stomatal density, and they all belong to the epidermal patterning factor-like family of secreted cysteine-rich peptides. Two of these putative ligands, EPF1 and EPF2, are expressed exclusively in the stomatal lineage cells and negatively regulate stomatal density. A third, EPFL6 or CHALLAH, is also a negative regulator of density, but is expressed subepidermally in the hypocotyl. A fourth, EPFL9 or STOMAGEN, is expressed in the mesophyll tissues and is a positive regulator of density. Genetic evidence suggests that these ligands may compete for the same receptor complex. Proper stomatal patterning is likely to be an intricate process involving ligand competition, regional specificity, and communication between tissue layers. EPFL-family genes exist in the moss Physcomitrella patens, the lycophyte Selaginella moellendorffii, and rice, Oryza sativa, and their sequence analysis yields several genes some of which are related to EPF1, EPF2, EPFL6, and EPFL9. Presence of these EPFL family members in the basal land plants suggests an exciting hypothesis that the genetic components for stomatal patterning originated early in land plant evolution.

  3. Determination of ABA-binding proteins contents in subcellular fractions isolated from cotton seedlings using radioimmunoanalysis

    International Nuclear Information System (INIS)

    Tursunkhodjayeva, F.M.

    2004-01-01

    Full text: Knowledge of plants' hormone receptor sites is essential to understanding of the principles of phytohormone action in cells and tissues. The hormone abscisic acid (ABA) takes part in many important physiological processes of plants, including water balance and resistance to salt stress. The detection of salt tolerance in the early stages of ontogenesis is desirable for effective cultivation of cotton. Usually such characteristics are determined visually after genetic analysis of hybrids over several generations. This classic method of genetics requires a long time to grow several generations of cotton plants. In this connection we study ABA-binding protein contents in subcellular fractions isolated from seedlings of several kinds of cotton with different tolerance to salt stress. The contents of ABA-binding protein in nuclei and chloroplasts fractions isolated from cotton seedlings were determined using radioimmunoanalysis. The subcellular fractions were prepared by ultracentrifugation in 0,25 - 2,2 M sucrose gradient. ABA-binding protein was isolated from cotton seedlings by affinity chromatography. The antibodies against ABA-binding protein of cotton were developed in rabbits according standard protocols. Than the antibodies were labelled by radioisotope J 125 according Greenwood et al. It was shown, that the nuclei and chloroplasts fractions isolated from cotton with high tolerance to salt stress contain ABA-binding protein up to 1,5-1,8 times more, than the same fractions from cotton with low tolerance to salt stress. So, the ABA-binding protein contents in cotton seedlings may be considered as a marker for screening of cotton kinds, which may potentially have high tolerance to salt stress

  4. CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions

    Science.gov (United States)

    Engineer, Cawas; Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Israelsson-Nordstrom, Maria; Azoulay-Shemer, Tamar; Rappel, Wouter-Jan; Iba, Koh; Schroeder, Julian

    2015-01-01

    Guard cells form epidermal stomatal gas exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense CO2 concentration changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in CO2-regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars which perform better in a shifting climate. PMID:26482956

  5. [CORRELATION MATRIX OF CHARACTERISTICS OF CHRONIC RECURRENT APHTHOUS STOMATITIS].

    Science.gov (United States)

    Koridze, Kh; Aladashvili, L; Taboridze, I

    2015-09-01

    The purpose of the present work is to study the correlation between the risk factors of chronic recurrent aphthous stomatitis. The research was conducted on 62 patients between ages of 40 and 70 years at Tbilisi Hospital for Veterans of War. The analysis was carried out by Spearman's Rank Correlation method using the statistical package SPSS 11.5. We investigated: harmful habits, professional factors, background and accompanying illnesses, pathology of teeth, focal infection, emotional stress, genetic factors. Correlation matrix between the significant risk factors of chronic recurrent aphthous stomatitis is defined. Multiple correlations have the following factors: industrial dust, focal infections, emotional stress, anemia. Correlation diagram of etiological factors of chronic recurrent aphthous stomatitis is helpful for providing professional and expert services.

  6. Improvement of herpetic stomatitis therapy in patients with chronic tonsillitis

    Directory of Open Access Journals (Sweden)

    Lepilin А.V.

    2011-12-01

    Full Text Available The research goal is to determine the clinical and pathogenetic efficacy of Cycloferon liniment in the combined therapy in patients with herpetic stomatitis accompanied by chronic tonsillitis. Materials and methods: Medical examination and treatment of 60 patients have been carried out. The marker of endogenous intoxication, infectious severity and immunity has been investigated. Results. It has been established that use of Cycloferon liniment in the combined therapy in patients with herpetic stomatitis accompanied by chronic tonsillitis has allowed to decrease infectious severity in par-odontal recess and evidence of local inflammation, to normalize immunity indices and reduce the level of endogenous intoxication that has been liable for acceleration of recuperation processes and lowering of frequency of stomatitis recurrences. Conclusion. The clinical efficacy of Cycloferon liniment in the therapy in patients with herpetic stomatitis accompanied by chronic tonsillitis conditioned by the decreasing of activity of local inflammatory process according to the reducing of level pro-inflammatory cytokines, infectious burden of the mouth cavity, endogenous intoxication

  7. Hydraulic Function in Australian Tree Species during Drought-Induced Mortality

    Science.gov (United States)

    Tissue, D.; Maier, C.; Creek, D.; Choat, B.

    2016-12-01

    Drought induced tree mortality and decline are key issues facing forest ecology and management. Here, we primarily investigated the hydraulic limitations underpinning drought-induced mortality in three Australian tree species. Using field-based large rainout shelters, three angiosperm species (Casuarina cunninghamiana, Eucalyptus sideroxylon, Eucalyptus tereticornis) were subjected to two successive drought and recovery cycles, prior to a subsequent long and extreme drought to mortality; total duration of experiment was 2.5 years. Leaf gas exchange, leaf and stem hydraulics, and carbon reserves were monitored during the experiment. Trees died as a result of failure in the hydraulic transport system, primarily related to water stress induced embolism. Stomatal closure occurred prior to the induction of significant embolism in the stem xylem of all species. Nonetheless, trees suffered a rapid decline in xylem water potential and increase in embolism during the severe drought treatment. Trees died at water potentials causing greater than 90% loss of hydraulic conductivity in the stem, providing support for the theory that lethal water potential is correlated with complete loss of hydraulic function in the stem xylem of angiosperms.

  8. Synthesis, photostability and bioactivity of 2,3-cyclopropanated abscisic acid.

    Science.gov (United States)

    Wenjian, Liu; Xiaoqiang, Han; Yumei, Xiao; Jinlong, Fan; Yuanzhi, Zhang; Huizhe, Lu; Mingan, Wang; Zhaohai, Qin

    2013-12-01

    The plant hormone abscisic acid (ABA) plays a central role in the regulation of plant development and adaptation to environmental stress. The isomerization of ABA to the biologically inactive 2E-isomer by light considerably limits its applications in agricultural fields. To overcome this shortcoming, an ABA analogue, cis-2,3-cyclopropanated ABA, was synthesized, and its photostability and biological activities were investigated. This compound showed high photostability under UV light exposure, which was 4-fold higher than that of (±)-ABA. cis-2,3-cyclopropanated ABA exhibited high ABA-like activity, including the ability to effectively inhibit seed germination, seedling growth and stomatal movements of Arabidopsis. In some cases, its bioactivity approaches that of (±)-ABA. trans-2,3-cyclopropanated abscisic acid was also prepared, an isomer that was more photostable but which showed weak ABA-like activity. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. The biological activity of ABA-1-like protein from Ascaris lumbricoides.

    Science.gov (United States)

    Muto, R; Imai, S; Tezuka, H; Furuhashi, Y; Fujita, K

    2001-09-01

    The elevation of non-specific IgE (total IgE) in Ascaris infection can be seen one week after infection, and reaches a peak after approximately two weeks. It has been reported that ABA-1 protein is the main constituent in the pseudocoelomic fluid of Ascaris suum. To investigate the effect of the ABA-1-like protein from Ascaris lumbricoides (ALB), the cDNA was cloned by reverse transcriptase polymerase chain reaction, using original primers based on the consensus sequences of ABA-1 and TBA-1, that is an ABA-1-like protein from Toxocara canis. The clone was sequenced, we constructed the recombinant polyprotein of ALB (rALB14 and rALB7) based on the ALB sequence, and rALB was administrated to BALB/c mice. Fourteen days after inoculation with rALB14 which is the full length of ALB, the elevation of total IgE which we supposed to contain non-specific IgE was observed, and the results were as we expected. Furthermore, in an in-vitro experiment, we confirmed that the spleen cells proliferated when stimulated by rALB14 and concanavalin A. Therefore, the whole conformation of ALB is considered to be involved in the elevation of non-specific IgE, and is involved in the activation of T cells.

  10. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    KAUST Repository

    Melcher, Karsten

    2009-12-03

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved ?-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling. © 2009 Macmillan Publishers Limited. All rights reserved.

  11. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    KAUST Repository

    Melcher, Karsten; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Xu, Yong; Suino-Powell, Kelly M.; Park, Sang-Youl; Weiner, Joshua J.; Fujii, Hiroaki; Chinnusamy, Viswanathan; Kovach, Amanda; Li, Jun; Wang, Yonghong; Li, Jiayang; Peterson, Francis C.; Jensen, Davin R.; Yong, Eu-Leong; Volkman, Brian F.; Cutler, Sean R.; Zhu, Jian-Kang; Xu, H. Eric

    2009-01-01

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved ?-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling. © 2009 Macmillan Publishers Limited. All rights reserved.

  12. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana.

    Science.gov (United States)

    Marin, E; Nussaume, L; Quesada, A; Gonneau, M; Sotta, B; Hugueney, P; Frey, A; Marion-Poll, A

    1996-05-15

    Abscisic acid (ABA) is a plant hormone which plays an important role in seed development and dormancy and in plant response to environmental stresses. An ABA-deficient mutant of Nicotiana plumbaginifolia, aba2, was isolated by transposon tagging using the maize Activator transposon. The aba2 mutant exhibits precocious seed germination and a severe wilty phenotype. The mutant is impaired in the first step of the ABA biosynthesis pathway, the zeaxanthin epoxidation reaction. ABA2 cDNA is able to complement N.plumbaginifolia aba2 and Arabidopsis thaliana aba mutations indicating that these mutants are homologous. ABA2 cDNA encodes a chloroplast-imported protein of 72.5 kDa, sharing similarities with different mono-oxigenases and oxidases of bacterial origin and having an ADP-binding fold and an FAD-binding domain. ABA2 protein, produced in Escherichia coli, exhibits in vitro zeaxanthin epoxidase activity. This is the first report of the isolation of a gene of the ABA biosynthetic pathway. The molecular identification of ABA2 opens the possibility to study the regulation of ABA biosynthesis and its cellular location.

  13. Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L

    International Nuclear Information System (INIS)

    Kardel, F.; Wuyts, K.; Babanezhad, M.; Vitharana, U.W.A.; Wuytack, T.; Potters, G.; Samson, R.

    2010-01-01

    This study has evaluated urban habitat quality by studying specific leaf area (SLA) and stomatal characteristics of the common herb Plantago lanceolata L. SLA and stomatal density, pore surface and resistance were measured at 169 locations in the city of Gent (Belgium), distributed over four land use classes, i.e., sub-urban green, urban green, urban and industry. SLA and stomatal density significantly increased from sub-urban green towards more urbanised land use classes, while the reverse was observed for stomatal pore surface. Stomatal resistance increased in the urban and industrial land use class in comparison with the (sub-) urban green, but differences between land use classes were less pronounced. Spatial distribution maps for these leaf characteristics showed a high spatial variation, related to differences in habitat quality within the city. Hence, stomatal density and stomatal pore surface are assumed to be potentially good bio-indicators for urban habitat quality. - Stomatal characteristics of Plantago lanceolata can be used for biomonitoring of urban habitat quality.

  14. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress.

    Science.gov (United States)

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-02-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  15. Abscisic Acid Synthesis and Response

    Science.gov (United States)

    Finkelstein, Ruth

    2013-01-01

    Abscisic acid (ABA) is one of the “classical” plant hormones, i.e. discovered at least 50 years ago, that regulates many aspects of plant growth and development. This chapter reviews our current understanding of ABA synthesis, metabolism, transport, and signal transduction, emphasizing knowledge gained from studies of Arabidopsis. A combination of genetic, molecular and biochemical studies has identified nearly all of the enzymes involved in ABA metabolism, almost 200 loci regulating ABA response, and thousands of genes regulated by ABA in various contexts. Some of these regulators are implicated in cross-talk with other developmental, environmental or hormonal signals. Specific details of the ABA signaling mechanisms vary among tissues or developmental stages; these are discussed in the context of ABA effects on seed maturation, germination, seedling growth, vegetative stress responses, stomatal regulation, pathogen response, flowering, and senescence. PMID:24273463

  16. Preventive effects of Ancer 20 injection against radiation stomatitis

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Naohiko; Nomura, Yasuya; Takano, Shinya (Showa Univ., Tokyo (Japan). School of Medicine) (and others)

    1993-10-01

    Ancer 20 was injected subcutaneously twice a day into 23 patients during the couse of radiation therapy for head and neck cancer, with the aim of preventing radiation stomatitis. Oral mucosa was assessed both subjectively and objectively, in addition to white blood cell counts. Objective findings of oral mucosa revealed grade I in 71%, grade II in 52%, grade III in 14%, and grade IV in 5%. The dose of irradiation needed to produce grade I in 50% was 22.8 Gy. Subjective findings revealed grade I in 67%, grade II in 33%, and grade III in 10%. Irradiation dose needed to produce grade I in 50% was 23.9 Gy. Mucosous damage was slight when the white blood cell count of 6,000/mm[sup 3] was maintained. According to the rate of leukopenia, this drug was effective in 86.4%. These findings showed that Ancer 20 injection is useful in maintaining white blood cell counts and in preventing radiation stomatitis associated with radiation therapy especially to the field of mucous membrane. There was inverse correlation between white blood cell counts and both the occurrence rate and degree of radiation stomatitis. It seemed necessary to maintain white blood cell counts to prevent radiation stomatitis. (N.K.).

  17. Role of thioproline on seed germination: interaction ROS-ABA and effects on antioxidative metabolism.

    Science.gov (United States)

    Barba-Espin, Gregorio; Nicolas, Eduardo; Almansa, Maria Soledad; Cantero-Navarro, Elena; Albacete, Alfonso; Hernández, José Antonio; Díaz-Vivancos, Pedro

    2012-10-01

    In this work we investigate the effect of the imbibition of pea seeds with different thioproline (TP) concentrations on the germination percentage and the early growth of the seedlings. The interaction between TP and hydrogen peroxide (H₂O₂) treatments is also analysed in order to test if any synergy in germination and growth occurs. Although the imbibition of pea seeds in the presence of TP did not significantly improve the germination percentage, TP and/or H₂O₂ pre-treatments increased seedlings growth. This increase in seedling growth was reduced by abscisic acid (ABA) addition. Imbibition of pea seeds in the presence of ABA also reduced the endogenous H₂O₂ contents of pea seedlings in control and TP-treated seeds. The incubation of pea seeds with TP and/or H₂O₂ in presence or absence of ABA decreased the activity of H₂O₂-scavenging enzymes. The increase of the endogenous H₂O₂ contents observed in TP and/or H₂O₂ treatments in absence of ABA could be correlated with the decrease in these activities. Finally, the hormone profile of pea seedlings was investigated. The results show that the increase in seedling growth is correlated with a decrease in ABA in samples pre-treated with H₂O₂ and TP + H₂O₂. Nevertheless, no significant differences in endogenous ABA concentration were observed with the TP pre-treatment. This paper suggests a relationship between endogenous H₂O₂ contents and plant growth, so reinforcing the intricate crosstalk between reactive oxygen species (ROS) and plant hormones in seed germination signalling and early seedling development. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. Hypervitaminosis A-induced premature closure of epiphyses (physeal obliteration) in humans and calves (hyena disease): a historical review of the human and veterinary literature

    International Nuclear Information System (INIS)

    Rothenberg, Alexis B.; Berdon, Walter E.; Woodard, J.C.; Cowles, Robert A.

    2007-01-01

    Vitamin A toxicity in the infant, which now occurs rarely from dietary overdosage, was recognized in the 1940s as painful periostitis with rare progression to premature closure of the lower limb epiphyses. Decades later, most cases of vitamin A-induced premature epiphyseal closure (physeal obliteration) occur in pediatric dermatologic patients given vitamin A analogues. This phenomenon resembles a strange disease discovered in more recent years in calves with closed epiphyses of the hind limbs, known as hyena disease. This was a mystery until proved to be caused by vitamin A toxicity from enriched grain that causes the calves to have short hind limbs that resemble those of a hyena and gait disturbance. This historical review links the human and veterinary literature in terms of vitamin A-induced epiphyseal closure using a case report format of a 16-month-old human infant with closed knee epiphyses and gait disturbance that is reminiscent of hyena disease seen in calves. (orig.)

  19. Spread of carbapenem-resistant Acinetobacter baumannii global clone 2 in Asia and AbaR-type resistance islands.

    Science.gov (United States)

    Kim, Dae Hun; Choi, Ji-Young; Kim, Hae Won; Kim, So Hyun; Chung, Doo Ryeon; Peck, Kyong Ran; Thamlikitkul, Visanu; So, Thomas Man-Kit; Yasin, Rohani M D; Hsueh, Po-Ren; Carlos, Celia C; Hsu, Li Yang; Buntaran, Latre; Lalitha, M K; Song, Jae-Hoon; Ko, Kwan Soo

    2013-11-01

    In this surveillance study, we identified the genotypes, carbapenem resistance determinants, and structural variations of AbaR-type resistance islands among carbapenem-resistant Acinetobacter baumannii (CRAB) isolates from nine Asian locales. Clonal complex 92 (CC92), corresponding to global clone 2 (GC2), was the most prevalent in most Asian locales (83/108 isolates; 76.9%). CC108, or GC1, was a predominant clone in India. OXA-23 oxacillinase was detected in CRAB isolates from most Asian locales except Taiwan. blaOXA-24 was found in CRAB isolates from Taiwan. AbaR4-type resistance islands, which were divided into six subtypes, were identified in most CRAB isolates investigated. Five isolates from India, Malaysia, Singapore, and Hong Kong contained AbaR3-type resistance islands. Of these, three isolates harbored both AbaR3- and AbaR4-type resistance islands simultaneously. In this study, GC2 was revealed as a prevalent clone in most Asian locales, with the AbaR4-type resistance island predominant, with diverse variants. The significance of this study lies in identifying the spread of global clones of carbapenem-resistant A. baumannii in Asia.

  20. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO 2 signal transduction in guard cell

    KAUST Repository

    Xue, Shaowu; Hu, Honghong; Ries, Amber; Merilo, Ebe; Kollist, Hannes; Schroeder, Julian I

    2011-01-01

    Plants respond to elevated CO(2) via carbonic anhydrases that mediate stomatal closing, but little is known about the early signalling mechanisms following the initial CO(2) response. It remains unclear whether CO(2), HCO(3)(-) or a combination activates downstream signalling. Here, we demonstrate that bicarbonate functions as a small-molecule activator of SLAC1 anion channels in guard cells. Elevated intracellular [HCO(3)(-)](i) with low [CO(2)] and [H(+)] activated S-type anion currents, whereas low [HCO(3)(-)](i) at high [CO(2)] and [H(+)] did not. Bicarbonate enhanced the intracellular Ca(2+) sensitivity of S-type anion channel activation in wild-type and ht1-2 kinase mutant guard cells. ht1-2 mutant guard cells exhibited enhanced bicarbonate sensitivity of S-type anion channel activation. The OST1 protein kinase has been reported not to affect CO(2) signalling. Unexpectedly, OST1 loss-of-function alleles showed strongly impaired CO(2)-induced stomatal closing and HCO(3)(-) activation of anion channels. Moreover, PYR/RCAR abscisic acid (ABA) receptor mutants slowed but did not abolish CO(2)/HCO(3)(-) signalling, redefining the convergence point of CO(2) and ABA signalling. A new working model of the sequence of CO(2) signalling events in gas exchange regulation is presented.

  1. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO 2 signal transduction in guard cell

    KAUST Repository

    Xue, Shaowu

    2011-03-18

    Plants respond to elevated CO(2) via carbonic anhydrases that mediate stomatal closing, but little is known about the early signalling mechanisms following the initial CO(2) response. It remains unclear whether CO(2), HCO(3)(-) or a combination activates downstream signalling. Here, we demonstrate that bicarbonate functions as a small-molecule activator of SLAC1 anion channels in guard cells. Elevated intracellular [HCO(3)(-)](i) with low [CO(2)] and [H(+)] activated S-type anion currents, whereas low [HCO(3)(-)](i) at high [CO(2)] and [H(+)] did not. Bicarbonate enhanced the intracellular Ca(2+) sensitivity of S-type anion channel activation in wild-type and ht1-2 kinase mutant guard cells. ht1-2 mutant guard cells exhibited enhanced bicarbonate sensitivity of S-type anion channel activation. The OST1 protein kinase has been reported not to affect CO(2) signalling. Unexpectedly, OST1 loss-of-function alleles showed strongly impaired CO(2)-induced stomatal closing and HCO(3)(-) activation of anion channels. Moreover, PYR/RCAR abscisic acid (ABA) receptor mutants slowed but did not abolish CO(2)/HCO(3)(-) signalling, redefining the convergence point of CO(2) and ABA signalling. A new working model of the sequence of CO(2) signalling events in gas exchange regulation is presented.

  2. Genome-wide targeted prediction of ABA responsive genes in rice based on over-represented cis-motif in co-expressed genes.

    Science.gov (United States)

    Lenka, Sangram K; Lohia, Bikash; Kumar, Abhay; Chinnusamy, Viswanathan; Bansal, Kailash C

    2009-02-01

    Abscisic acid (ABA), the popular plant stress hormone, plays a key role in regulation of sub-set of stress responsive genes. These genes respond to ABA through specific transcription factors which bind to cis-regulatory elements present in their promoters. We discovered the ABA Responsive Element (ABRE) core (ACGT) containing CGMCACGTGB motif as over-represented motif among the promoters of ABA responsive co-expressed genes in rice. Targeted gene prediction strategy using this motif led to the identification of 402 protein coding genes potentially regulated by ABA-dependent molecular genetic network. RT-PCR analysis of arbitrarily chosen 45 genes from the predicted 402 genes confirmed 80% accuracy of our prediction. Plant Gene Ontology (GO) analysis of ABA responsive genes showed enrichment of signal transduction and stress related genes among diverse functional categories.

  3. A novel-type phosphatidylinositol phosphate-interactive, Ca-binding protein PCaP1 in Arabidopsis thaliana: stable association with plasma membrane and partial involvement in stomata closure.

    Science.gov (United States)

    Nagata, Chisako; Miwa, Chika; Tanaka, Natsuki; Kato, Mariko; Suito, Momoe; Tsuchihira, Ayako; Sato, Yori; Segami, Shoji; Maeshima, Masayoshi

    2016-05-01

    The Ca(2+)-binding protein-1 (PCaP1) of Arabidopsis thaliana is a new type protein that binds to phosphatidylinositol phosphates and Ca(2+)-calmodulin complex as well as free Ca(2+). Although biochemical properties, such as binding to ligands and N-myristoylation, have been revealed, the intracellular localization, tissue and cell specificity, integrity of membrane association and physiological roles of PCaP1 are unknown. We investigated the tissue and intracellular distribution of PCaP1 by using transgenic lines expressing PCaP1 linked with a green fluorescence protein (GFP) at the carboxyl terminus of PCaP1. GFP fluorescence was obviously detected in most tissues including root, stem, leaf and flower. In these tissues, PCaP1-GFP signal was observed predominantly in the plasma membrane even under physiological stress conditions but not in other organelles. The fluorescence was detected in the cytosol when the 25-residue N-terminal sequence was deleted from PCaP1 indicating essential contribution of N-myristoylation to the plasma membrane anchoring. Fluorescence intensity of PCaP1-GFP in roots was slightly decreased in seedlings grown in medium supplemented with high concentrations of iron for 1 week and increased in those grown with copper. In stomatal guard cells, PCaP1-GFP was strictly, specifically localized to the plasma membrane at the epidermal-cell side but not at the pore side. A T-DNA insertion mutant line of PCaP1 did not show marked phenotype in a life cycle except for well growth under high CO2 conditions. However, stomata of the mutant line did not close entirely even in high osmolarity, which usually induces stomata closure. These results suggest that PCaP1 is involved in the stomatal movement, especially closure process, in leaves and response to excessive copper in root and leaf as a mineral nutrient as a physiological role.

  4. Carbon and hydrogen isotopic effects of stomatal density in Arabidopsis thaliana

    Science.gov (United States)

    Lee, Hyejung; Feakins, Sarah J.; Sternberg, Leonel da S. L.

    2016-04-01

    Stomata are key gateways mediating carbon uptake and water loss from plants. Varied stomatal densities in fossil leaves raise the possibility that isotope effects associated with the openness of exchange may have mediated plant wax biomarker isotopic proxies for paleovegetation and paleoclimate in the geological record. Here we use Arabidopsis thaliana, a widely used model organism, to provide the first controlled tests of stomatal density on carbon and hydrogen isotopic compositions of cuticular waxes. Laboratory grown wildtype and mutants with suppressed and overexpressed stomatal densities allow us to directly test the isotope effects of stomatal densities independent of most other environmental or biological variables. Hydrogen isotope (D/H) measurements of both plant waters and plant wax n-alkanes allow us to directly constrain the isotopic effects of leaf water isotopic enrichment via transpiration and biosynthetic fractionations, which together determine the net fractionation between irrigation water and n-alkane hydrogen isotopic composition. We also measure carbon isotopic fractionations of n-alkanes and bulk leaf tissue associated with different stomatal densities. We find offsets of +15‰ for δD and -3‰ for δ13C for the overexpressed mutant compared to the suppressed mutant. Since the range of stomatal densities expressed is comparable to that found in extant plants and the Cenozoic fossil record, the results allow us to consider the magnitude of isotope effects that may be incurred by these plant adaptive responses. This study highlights the potential of genetic mutants to isolate individual isotope effects and add to our fundamental understanding of how genetics and physiology influence plant biochemicals including plant wax biomarkers.

  5. An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress.

    Science.gov (United States)

    Li, Cong; Yue, Jing; Wu, Xiaowei; Xu, Cong; Yu, Jingjuan

    2014-10-01

    The DREB (dehydration-responsive element binding)-type transcription factors regulate the expression of stress-inducible genes by binding the DRE/CRT cis-elements in promoter regions. The upstream transcription factors that regulate the transcription of DREB transcription factors have not been clearly defined, although the function of DREB transcription factors in abiotic stress is known. In this study, an abscisic acid (ABA)-responsive DREB-binding protein gene (SiARDP) was cloned from foxtail millet (Setaria italica). The transcript level of SiARDP increased not only after drought, high salt, and low temperature stresses, but also after an ABA treatment in foxtail millet seedlings. Two ABA-responsive elements (ABRE1: ACGTGTC; ABRE2: ACGTGGC) exist in the promoter of SiARDP. Further analyses showed that two ABA-responsive element binding (AREB)-type transcription factors, SiAREB1 and SiAREB2, could physically bind to the ABRE core element in vitro and in vivo. The constitutive expression of SiARDP in Arabidopsis thaliana enhanced drought and salt tolerance during seed germination and seedling development, and overexpression of SiARDP in foxtail millet improved drought tolerance. The expression levels of target genes of SiARDP were upregulated in transgenic Arabidopsis and foxtail millet. These results reveal that SiARDP, one of the target genes of SiAREB, is involved in ABA-dependent signal pathways and plays a critical role in the abiotic stress response in plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Stomatal cell wall composition: distinctive structural patterns associated with different phylogenetic groups.

    Science.gov (United States)

    Shtein, Ilana; Shelef, Yaniv; Marom, Ziv; Zelinger, Einat; Schwartz, Amnon; Popper, Zoë A; Bar-On, Benny; Harpaz-Saad, Smadar

    2017-04-01

    Stomatal morphology and function have remained largely conserved throughout ∼400 million years of plant evolution. However, plant cell wall composition has evolved and changed. Here stomatal cell wall composition was investigated in different vascular plant groups in attempt to understand their possible effect on stomatal function. A renewed look at stomatal cell walls was attempted utilizing digitalized polar microscopy, confocal microscopy, histology and a numerical finite-elements simulation. The six species of vascular plants chosen for this study cover a broad structural, ecophysiological and evolutionary spectrum: ferns ( Asplenium nidus and Platycerium bifurcatum ) and angiosperms ( Arabidopsis thaliana and Commelina erecta ) with kidney-shaped stomata, and grasses (angiosperms, family Poaceae) with dumbbell-shaped stomata ( Sorghum bicolor and Triticum aestivum ). Three distinct patterns of cellulose crystallinity in stomatal cell walls were observed: Type I (kidney-shaped stomata, ferns), Type II (kidney-shaped stomata, angiosperms) and Type III (dumbbell-shaped stomata, grasses). The different stomatal cell wall attributes investigated (cellulose crystallinity, pectins, lignin, phenolics) exhibited taxon-specific patterns, with reciprocal substitution of structural elements in the end-walls of kidney-shaped stomata. According to a numerical bio-mechanical model, the end walls of kidney-shaped stomata develop the highest stresses during opening. The data presented demonstrate for the first time the existence of distinct spatial patterns of varying cellulose crystallinity in guard cell walls. It is also highly intriguing that in angiosperms crystalline cellulose appears to have replaced lignin that occurs in the stomatal end-walls of ferns serving a similar wall strengthening function. Such taxon-specific spatial patterns of cell wall components could imply different biomechanical functions, which in turn could be a consequence of differences in

  7. Organ-specific effects of brassinosteroids on stomatal production coordinate with the action of Too Many Mouths.

    Science.gov (United States)

    Wang, Ming; Yang, Kezhen; Le, Jie

    2015-03-01

    In Arabidopsis, stomatal development initiates after protodermal cells acquire stomatal lineage cell fate. Stomata or their precursors communicate with their neighbor epidermal cells to ensure the "one cell spacing" rule. The signals from EPF/EPFL peptide ligands received by Too Many Mouths (TMM) and ERECTA-family receptors are supposed to be transduced by YODA MAPK cascade. A basic helix-loop-helix transcription factor SPEECHLESS (SPCH) is another key regulator of stomatal cell fate determination and asymmetric entry divisions, and SPCH activity is regulated by YODA MAPK cascade. Brassinosteroid (BR) signaling, one of the most well characterized signal transduction pathways in plants, contributes to the control of stomatal production. But opposite organ-specific effects of BR on stomatal production were reported. Here we confirm that stomatal production in hypocotyls is controlled by BR levels. YODA and CYCD4 are not essential for BR stomata-promoting function. Furthermore, we found that BR could confer tmm hypocotyls clustered stomatal phenotype, indicating that the BR organ-specific effects on stomatal production might coordinate with the TMM organ-specific actions. © 2014 Institute of Botany, Chinese Academy of Sciences.

  8. Relationship between abscisic acid (ABA) concentration and some ...

    African Journals Online (AJOL)

    This work investigated the effects of endogenous abscisic acid (ABA) and physiologic parameters related to yield in two wheat cultivars (Triticum aestivum L.), Marvdasht and Zagros (sensitive and tolerant to terminal season drought, respectively) grown in pots under well watered and water-stressed starting from anthesis ...

  9. Compromised Photosynthetic Electron Flow And H2O2 Generation Correlate with Genotype-Specific Stomatal Dysfunctions During Resistance Against Powdery Mildew In Oats.

    Directory of Open Access Journals (Sweden)

    Javier Sánchez-Martín

    2016-11-01

    Full Text Available Stomatal dysfunction known as locking has been linked to the elicitation of a hypersensitive response (HR following attack of fungal pathogens in cereals. We here assess how spatial and temporal patterns of different resistance mechanisms, such as HR and penetration resistance influence stomatal and photosynthetic parameters in oat (Avena sativa and the possible involvement of hydrogen peroxide (H2O2 in the dysfunctions observed. Four oat cultivars with differential resistance responses (i.e. penetration resistance, early and late HR to powdery mildew (Blumeria graminis f. sp. avenae, Bga were used. Results demonstrated that stomatal dysfunctions were genotype but not response-type dependent since genotypes with similar resistance responses when assessed histologically showed very different locking patterns. Maximum quantum yield (Fv/Fm of photosystem II were compromised in most Bga–oat interactions and photoinhibition increased. However, the extent of the photosynthetic alterations was not directly related to the extent of HR. H2O2 generation is triggered during the execution of resistance responses and can influence stomatal function. Artificially increasing H2O2 by exposing plants to increased light intensity further reduced Fv/Fm ratios and augmented the patterns of stomatal dysfunctions previously observed. The latter results suggest that the observed dysfunctions and hence a cost of resistance may be linked with oxidative stress occurring during defence induced photosynthetic disruption.

  10. Role of phytohormones under induced drought stress in wheat

    International Nuclear Information System (INIS)

    Bano, A.; Yasmeen, S.

    2010-01-01

    The performance of plants (grown in pots) was studied for drought induced at critical stages of grain filling. Furthermore, the effect of abscisic acid (ABA) and benzyladenine (BA), were also studied on the physiology of plants during grain filling. Seeds of two wheat varieties cv Margalla-99 (cv1) and cv Manthar-2003 (cv2) were sown in pots. Stress treatments were imposed immediately after anthesis. Drought stress resulted in maximum decrease in IAA and GA content but proline and ABA content of leaves showed maximum increase at hard dough stage in cv1. With decrease in soil moisture content under induced drought stress, the percentage decrease in IAA and GA and increase in proline and ABA was greater in leaves and spikes of potted plants. All parameters showed greater decrease in cv2 than in cv1. Application of both ABA and BA, each at 10-6 M applied at anthesis stage, was involved in osmoregulation by the production of proline. The adverse effect of drought started at anthesis stage reaching maximum at hard dough stage. ABA was more effective at the later stages of grain filling whereas, BA was more effective at early stages. (author)

  11. Suction Cup Induced Palatal Fistula: Surgical Closure by Palatal ...

    African Journals Online (AJOL)

    1Department of Pediatrics, Pragna Children's Hospital, Hyderabad, ... Eluru, 4Department of Conservative Dentistry and Endodontics, KIMS Dental College and ... The surgical closure of palatal fistula planned under general anesthesia.

  12. Transcriptional regulation of genes encoding ABA metabolism enzymes during the fruit development and dehydration stress of pear 'Gold Nijisseiki'.

    Science.gov (United States)

    Dai, Shengjie; Li, Ping; Chen, Pei; Li, Qian; Pei, Yuelin; He, Suihuan; Sun, Yufei; Wang, Ya; Kai, Wenbin; Zhao, Bo; Liao, Yalan; Leng, Ping

    2014-09-01

    To investigate the contribution of abscisic acid (ABA) in pear 'Gold Nijisseiki' during fruit ripening and under dehydration stress, two cDNAs (PpNCED1 and PpNCED2) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) (a key enzyme in ABA biosynthesis), two cDNAs (PpCYP707A1 and PpCYP707A2) which encode 8'-hydroxylase (a key enzyme in the oxidative catabolism of ABA), one cDNA (PpACS3) which encodes 1-aminocyclopropane-1-carboxylic acid (ACC), and one cDNA (PpACO1) which encodes ACC oxidase involved in ethylene biosynthesis were cloned from 'Gold Nijisseiki' fruit. In the pulp, peel and seed, expressions of PpNCED1 and PpNCED2 rose in two stages which corresponded with the increase of ABA levels. The expression of PpCYP707A1 dramatically declined after 60-90 days after full bloom (DAFB) in contrast to the changes of ABA levels during this period, while PpCYP707A2 stayed low during the whole development of fruit. Application of exogenous ABA at 100 DAFB increased the soluble sugar content and the ethylene release but significantly decreased the titratable acid and chlorophyll contents in fruits. When fruits harvested at 100 DAFB were stored in the laboratory (25 °C, 50% relative humidity), the ABA content and the expressions of PpNCED1/2 and PpCYP707A1 in the pulp, peel and seed increased significantly, while ethylene reached its highest value after the maximum peak of ABA accompanied with the expressions of PpACS3 and PpACO1. In sum the endogenous ABA may play an important role in the fruit ripening and dehydration of pear 'Gold Nijisseiki' and the ABA level was regulated mainly by the dynamics of PpNCED1, PpNCED2 and PpCYP707A1 at the transcriptional level. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Sap fluxes from different parts of the rootzone modulate xylem ABA concentration during partial rootzone drying and re-wetting.

    Science.gov (United States)

    Pérez-Pérez, J G; Dodd, I C

    2015-04-01

    Previous studies with partial rootzone drying (PRD) irrigation demonstrated that alternating the wet and dry parts of the rootzone (PRD-Alternated) increased leaf xylem ABA concentration ([X-ABA]leaf) compared with maintaining the same wet and dry parts of the rootzone (PRD-Fixed). To determine the relative contributions of different parts of the rootzone to this ABA signal, [X-ABA]leaf of potted, split-root tomato (Solanum lycopersicum) plants was modelled by quantifying the proportional water uptake from different soil compartments, and [X-ABA]leaf responses to the entire pot soil-water content (θpot). Continuously measuring soil-moisture depletion by, or sap fluxes from, different parts of the root system revealed that water uptake rapidly declined (within hours) after withholding water from part of the rootzone, but was rapidly restored (within minutes) upon re-watering. Two hours after re-watering part of the rootzone, [X-ABA]leaf was equally well predicted according to θpot alone and by accounting for the proportional water uptake from different parts of the rootzone. Six hours after re-watering part of the rootzone, water uptake by roots in drying soil was minimal and, instead, occurred mainly from the newly irrigated part of the rootzone, thus [X-ABA]leaf was best predicted by accounting for the proportional water uptake from different parts of the rootzone. Contrary to previous results, alternating the wet and dry parts of the rootzone did not enhance [X-ABA]leaf compared with PRD-Fixed irrigation. Further work is required to establish whether altered root-to-shoot ABA signalling contributes to the improved yields of crops grown with alternate, rather than fixed, PRD. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Hydraulic patterns and safety margins, from stem to stomata, in three eastern US tree species

    Science.gov (United States)

    D.M. Johnson; K.A. McCulloh; F.C. Meinzer; D.R. Woodruff; D.M. Eissenstat

    2011-01-01

    Adequate water transport is necessary to prevent stomatal closure and allow for photosynthesis. Dysfunction in the water transport pathway can result in stomatal closure, and can be deleterious to overall plant health and survival. Although much is known about small branch hydraulics, little is known about the coordination of leaf and stem hydraulic function....

  15. Abscisic acid and transpiration rate are involved in the response to boron toxicity in Arabidopsis plants.

    Science.gov (United States)

    Macho-Rivero, Miguel Ángel; Camacho-Cristóbal, Juan José; Herrera-Rodríguez, María Begoña; Müller, Maren; Munné-Bosch, Sergi; González-Fontes, Agustín

    2017-05-01

    Boron (B) is an essential microelement for vascular plant development, but its toxicity is a major problem affecting crop yields in arid and semi-arid areas of the world. In the literature, several genes involved in abscisic acid (ABA) signalling and responses are upregulated in Arabidopsis roots after treatment with excess B. It is known that the AtNCED3 gene, which encodes a crucial enzyme for ABA biosynthesis, plays a key role in the plant response to drought stress. In this study, root AtNCED3 expression and shoot ABA content were rapidly increased in wild-type plants upon B-toxicity treatment. The Arabidopsis ABA-deficient nced3-2 mutant had higher transpiration rate, stomatal conductance and accumulated more B in their shoots than wild-type plants, facts that were associated with the lower levels of ABA in this mutant. However, in wild-type plants, B toxicity caused a significant reduction in stomatal conductance, resulting in a decreased transpiration rate. This response could be a mechanism to limit the transport of excess B from the roots to the leaves under B toxicity. In agreement with the higher transpiration rate of the nced3-2 mutant, this genotype showed an increased leaf B concentration and damage upon exposure to 5 mM B. Under B toxicity, ABA application decreased B accumulation in wild-type and nced3-2 plants. In summary, this work shows that excess B applied to the roots leads to rapid changes in AtNCED3 expression and gas exchange parameters that would contribute to restrain the B entry into the leaves, this effect being mediated by ABA. © 2016 Scandinavian Plant Physiology Society.

  16. Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog?

    Science.gov (United States)

    Hodgson, J G; Sharafi, M; Jalili, A; Díaz, S; Montserrat-Martí, G; Palmer, C; Cerabolini, B; Pierce, S; Hamzehee, B; Asri, Y; Jamzad, Z; Wilson, P; Raven, J A; Band, S R; Basconcelo, S; Bogard, A; Carter, G; Charles, M; Castro-Díez, P; Cornelissen, J H C; Funes, G; Jones, G; Khoshnevis, M; Pérez-Harguindeguy, N; Pérez-Rontomé, M C; Shirvany, F A; Vendramini, F; Yazdani, S; Abbas-Azimi, R; Boustani, S; Dehghan, M; Guerrero-Campo, J; Hynd, A; Kowsary, E; Kazemi-Saeed, F; Siavash, B; Villar-Salvador, P; Craigie, R; Naqinezhad, A; Romo-Díez, A; de Torres Espuny, L; Simmons, E

    2010-04-01

    Genome size is a function, and the product, of cell volume. As such it is contingent on ecological circumstance. The nature of 'this ecological circumstance' is, however, hotly debated. Here, we investigate for angiosperms whether stomatal size may be this 'missing link': the primary determinant of genome size. Stomata are crucial for photosynthesis and their size affects functional efficiency. Stomatal and leaf characteristics were measured for 1442 species from Argentina, Iran, Spain and the UK and, using PCA, some emergent ecological and taxonomic patterns identified. Subsequently, an assessment of the relationship between genome-size values obtained from the Plant DNA C-values database and measurements of stomatal size was carried out. Stomatal size is an ecologically important attribute. It varies with life-history (woody species < herbaceous species < vernal geophytes) and contributes to ecologically and physiologically important axes of leaf specialization. Moreover, it is positively correlated with genome size across a wide range of major taxa. Stomatal size predicts genome size within angiosperms. Correlation is not, however, proof of causality and here our interpretation is hampered by unexpected deficiencies in the scientific literature. Firstly, there are discrepancies between our own observations and established ideas about the ecological significance of stomatal size; very large stomata, theoretically facilitating photosynthesis in deep shade, were, in this study (and in other studies), primarily associated with vernal geophytes of unshaded habitats. Secondly, the lower size limit at which stomata can function efficiently, and the ecological circumstances under which these minute stomata might occur, have not been satisfactorally resolved. Thus, our hypothesis, that the optimization of stomatal size for functional efficiency is a major ecological determinant of genome size, remains unproven.

  17. ABA suppresses Botrytis cinerea elicited NO production in tomato to influence H2O2 generation and increase host susceptibility

    Directory of Open Access Journals (Sweden)

    Anushen eSivakumaran

    2016-05-01

    Full Text Available Abscisic acid (ABA production has emerged a susceptibility factor in plant-pathogen interactions. This work examined the interaction of ABA with NO in tomato following challenge with the ABA-synthesising pathogen, Botrytis cinerea. Trace gas detection using a quantum cascade laser detected NO production within minutes of challenge with B. cinerea whilst photoacoustic laser detection detected ethylene production – an established mediator of defence against this pathogen - occurring after 6 h. Application of the NO generation inhibitor N-Nitro-L-arginine methyl ester (L-NAME suppressed both NO and ethylene production and resistance against B. cinerea. The tomato mutant sitiens fails to accumulate ABA (abscisic acid, shows increased resistance to B. cinerea and we noted exhibited elevated NO and ethylene production. Exogenous application of L-NAME or ABA reduced NO production in sitiens and reduced resistance to B. cinerea. Increased resistance to B. cinerea in sitiens have previously been linked to increased reactive oxygen species (ROS generation but this was reduced in both L-NAME and ABA treated sitiens. Taken together, our data suggests that ABA can decreases resistance to B. cinerea via reduction of NO production which also suppresses both ROS and ethylene production.

  18. A comparison of two stomatal conductance models for ozone flux modelling using data from two Brassica species

    International Nuclear Information System (INIS)

    Op de Beeck, M.; De Bock, M.; Vandermeiren, K.; Temmerman, L. de; Ceulemans, R.

    2010-01-01

    In this study we tested and compared a multiplicative stomatal model and a coupled semi-empirical stomatal-photosynthesis model in their ability to predict stomatal conductance to ozone (g st ) using leaf-level data from oilseed rape (Brassica napus L.) and broccoli (Brassica oleracea L. var. italica Plenck). For oilseed rape, the multiplicative model and the coupled model were able to explain 72% and 73% of the observed g st variance, respectively. For broccoli, the models were able to explain 53% and 51% of the observed g st variance, respectively. These results support the coupled semi-empirical stomatal-photosynthesis model as a valid alternative to the multiplicative stomatal model for O 3 flux modelling, in terms of predictive performance. - A multiplicative stomatal model and a coupled semi-empirical stomatal-photosynthesis model performed equally well when tested against leaf-level data for oilseed rape and broccoli.

  19. Vesicular stomatitis forecasting based on Google Trends.

    Science.gov (United States)

    Wang, JianYing; Zhang, Tong; Lu, Yi; Zhou, GuangYa; Chen, Qin; Niu, Bing

    2018-01-01

    Vesicular stomatitis (VS) is an important viral disease of livestock. The main feature of VS is irregular blisters that occur on the lips, tongue, oral mucosa, hoof crown and nipple. Humans can also be infected with vesicular stomatitis and develop meningitis. This study analyses 2014 American VS outbreaks in order to accurately predict vesicular stomatitis outbreak trends. American VS outbreaks data were collected from OIE. The data for VS keywords were obtained by inputting 24 disease-related keywords into Google Trends. After calculating the Pearson and Spearman correlation coefficients, it was found that there was a relationship between outbreaks and keywords derived from Google Trends. Finally, the predicted model was constructed based on qualitative classification and quantitative regression. For the regression model, the Pearson correlation coefficients between the predicted outbreaks and actual outbreaks are 0.953 and 0.948, respectively. For the qualitative classification model, we constructed five classification predictive models and chose the best classification predictive model as the result. The results showed, SN (sensitivity), SP (specificity) and ACC (prediction accuracy) values of the best classification predictive model are 78.52%,72.5% and 77.14%, respectively. This study applied Google search data to construct a qualitative classification model and a quantitative regression model. The results show that the method is effective and that these two models obtain more accurate forecast.

  20. Vesicular stomatitis forecasting based on Google Trends

    Science.gov (United States)

    Lu, Yi; Zhou, GuangYa; Chen, Qin

    2018-01-01

    Background Vesicular stomatitis (VS) is an important viral disease of livestock. The main feature of VS is irregular blisters that occur on the lips, tongue, oral mucosa, hoof crown and nipple. Humans can also be infected with vesicular stomatitis and develop meningitis. This study analyses 2014 American VS outbreaks in order to accurately predict vesicular stomatitis outbreak trends. Methods American VS outbreaks data were collected from OIE. The data for VS keywords were obtained by inputting 24 disease-related keywords into Google Trends. After calculating the Pearson and Spearman correlation coefficients, it was found that there was a relationship between outbreaks and keywords derived from Google Trends. Finally, the predicted model was constructed based on qualitative classification and quantitative regression. Results For the regression model, the Pearson correlation coefficients between the predicted outbreaks and actual outbreaks are 0.953 and 0.948, respectively. For the qualitative classification model, we constructed five classification predictive models and chose the best classification predictive model as the result. The results showed, SN (sensitivity), SP (specificity) and ACC (prediction accuracy) values of the best classification predictive model are 78.52%,72.5% and 77.14%, respectively. Conclusion This study applied Google search data to construct a qualitative classification model and a quantitative regression model. The results show that the method is effective and that these two models obtain more accurate forecast. PMID:29385198

  1. Vesicular stomatitis forecasting based on Google Trends.

    Directory of Open Access Journals (Sweden)

    JianYing Wang

    Full Text Available Vesicular stomatitis (VS is an important viral disease of livestock. The main feature of VS is irregular blisters that occur on the lips, tongue, oral mucosa, hoof crown and nipple. Humans can also be infected with vesicular stomatitis and develop meningitis. This study analyses 2014 American VS outbreaks in order to accurately predict vesicular stomatitis outbreak trends.American VS outbreaks data were collected from OIE. The data for VS keywords were obtained by inputting 24 disease-related keywords into Google Trends. After calculating the Pearson and Spearman correlation coefficients, it was found that there was a relationship between outbreaks and keywords derived from Google Trends. Finally, the predicted model was constructed based on qualitative classification and quantitative regression.For the regression model, the Pearson correlation coefficients between the predicted outbreaks and actual outbreaks are 0.953 and 0.948, respectively. For the qualitative classification model, we constructed five classification predictive models and chose the best classification predictive model as the result. The results showed, SN (sensitivity, SP (specificity and ACC (prediction accuracy values of the best classification predictive model are 78.52%,72.5% and 77.14%, respectively.This study applied Google search data to construct a qualitative classification model and a quantitative regression model. The results show that the method is effective and that these two models obtain more accurate forecast.

  2. The p450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea

    DEFF Research Database (Denmark)

    Siewers, V.; Smedsgaard, Jørn; Tudzynski, P.

    2004-01-01

    The phytopathogenic ascomycete Botrytis cinerea is known to produce abscisic acid (ABA), which is thought to be involved in host-pathogen interaction. Biochemical analyses had previously shown that, in contrast to higher plants, the fungal ABA biosynthesis probably does not proceed via carotenoids...

  3. Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development.

    Directory of Open Access Journals (Sweden)

    Christopher Hepworth

    Full Text Available Root development is influenced by nutrient and water availabilities. Plants are able to adjust many attributes of their root in response to environmental signals including the size and shape of the primary root, lateral roots and root hairs. Here we investigated the response of roots to changes in the levels of leaf transpiration associated with altered stomatal frequency. We found that plants with high stomatal density and conductance produce a larger rooting area and as a result have enhanced phosphate uptake capacity whereas plants with low stomatal conductance produce a smaller root. Manipulating the growth environment of plants indicated that enhanced root growth is most likely a result of an increased demand for water rather than phosphate. Plants manipulated to have an increase or reduction in root hair growth show a reduction or increase respectively, in stomatal conductance and density. Our results demonstrate that plants can balance their water uptake and loss through coordinated regulation of both stomatal and root development.

  4. Abscisic Acid Induced Changes in Production of Primary and Secondary Metabolites, Photosynthetic Capacity, Antioxidant Capability, Antioxidant Enzymes and Lipoxygenase Inhibitory Activity of Orthosiphon stamineus Benth.

    Directory of Open Access Journals (Sweden)

    Mohd Hafiz Ibrahim

    2013-07-01

    Full Text Available An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2−, phenylalanine ammonia lyase (PAL activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX, catalase (CAT, superoxide dismutase (SOD and Lipoxygenase inhibitory activity (LOX] under four levels of foliar abscisic acid (ABA application (0, 2, 4, 6 µM for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2−, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05 and O2− (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05. This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals.

  5. A steady-state stomatal model of balanced leaf gas exchange, hydraulics and maximal source-sink flux.

    Science.gov (United States)

    Hölttä, Teemu; Lintunen, Anna; Chan, Tommy; Mäkelä, Annikki; Nikinmaa, Eero

    2017-07-01

    Trees must simultaneously balance their CO2 uptake rate via stomata, photosynthesis, the transport rate of sugars and rate of sugar utilization in sinks while maintaining a favourable water and carbon balance. We demonstrate using a numerical model that it is possible to understand stomatal functioning from the viewpoint of maximizing the simultaneous photosynthetic production, phloem transport and sink sugar utilization rate under the limitation that the transpiration-driven hydrostatic pressure gradient sets for those processes. A key feature in our model is that non-stomatal limitations to photosynthesis increase with decreasing leaf water potential and/or increasing leaf sugar concentration and are thus coupled to stomatal conductance. Maximizing the photosynthetic production rate using a numerical steady-state model leads to stomatal behaviour that is able to reproduce the well-known trends of stomatal behaviour in response to, e.g., light, vapour concentration difference, ambient CO2 concentration, soil water status, sink strength and xylem and phloem hydraulic conductance. We show that our results for stomatal behaviour are very similar to the solutions given by the earlier models of stomatal conductance derived solely from gas exchange considerations. Our modelling results also demonstrate how the 'marginal cost of water' in the unified stomatal conductance model and the optimal stomatal model could be related to plant structural and physiological traits, most importantly, the soil-to-leaf hydraulic conductance and soil moisture. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice.

    Science.gov (United States)

    Chen, Yixing; Zhou, Xiaojin; Chang, Shu; Chu, Zhilin; Wang, Hanmeng; Han, Shengcheng; Wang, Yingdian

    2017-12-02

    The calcium-dependent protein kinases (CDPKs) are a class of plant-specific kinase that directly bind Ca 2+ and mediate the calcium-signaling pathways to play important physiological roles in growth and development. The rice genome contains 31 CDPK genes, one of which, OsCPK21, is known to modulate the abscisic acid (ABA) and salt stress responses in this crop; however, the molecular mechanisms underlying this regulation are largely unknown. In the present study, we performed yeast two-hybrid screening, glutathione S-transferase pull-down, co-immunoprecipitation, and bimolecular fluorescence complementation assays to confirm the interaction between OsCPK21 and one of its putative targets, Os14-3-3 (OsGF14e). We used an in vitro kinase assay and site-directed mutagenesis to verify that OsCPK21 phosphorylates OsGF14e at Tyr-138. We used real-time PCR to reveal that several ABA and salt inducible genes were more highly expressed in the OsCPK21-OE and OsGF14e WT-OE plants than in the mutant OsGF14e Y138A-OE and wild-type plants. These results suggest that OsCPK21 phosphorylates OsGF14e to facilitate the response to ABA and salt stress. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion.

    Science.gov (United States)

    Thompson, Andrew J; Andrews, John; Mulholland, Barry J; McKee, John M T; Hilton, Howard W; Horridge, Jon S; Farquhar, Graham D; Smeeton, Rachel C; Smillie, Ian R A; Black, Colin R; Taylor, Ian B

    2007-04-01

    Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cis-epoxycarotenoid dioxygenase, the enzyme that catalyzes a key rate-limiting step in abscisic acid (ABA) biosynthesis. Both lines contained more ABA than the wild type, with sp5 accumulating more than sp12. Both had higher transpiration efficiency because of their lower stomatal conductance, as demonstrated by increases in delta(13)C and delta(18)O, and also by gravimetric and gas-exchange methods. They also had greater root hydraulic conductivity. Under well-watered glasshouse conditions, mature sp5 plants were found to have a shoot biomass equal to the wild type despite their lower assimilation rate per unit leaf area. These plants also had longer petioles, larger leaf area, increased specific leaf area, and reduced leaf epinasty. When exposed to root-zone water deficits, line sp12 showed an increase in xylem ABA concentration and a reduction in stomatal conductance to the same final levels as the wild type, but from a different basal level. Indeed, the main difference between the high ABA plants and the wild type was their performance under well-watered conditions: the former conserved soil water by limiting maximum stomatal conductance per unit leaf area, but also, at least in the case of sp5, developed a canopy more suited to light interception, maximizing assimilation per plant, possibly due to improved turgor or suppression of epinasty.

  8. Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance

    Directory of Open Access Journals (Sweden)

    D. Lombardozzi

    2012-08-01

    Full Text Available Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3 concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM to determine the impacts on gross primary productivity (GPP and transpiration at a constant O3 concentration of 100 parts per billion (ppb. Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.

  9. Transcriptional Responses of Chilean Quinoa (Chenopodium quinoa Willd.) Under Water Deficit Conditions Uncovers ABA-Independent Expression Patterns.

    Science.gov (United States)

    Morales, Andrea; Zurita-Silva, Andres; Maldonado, Jonathan; Silva, Herman

    2017-01-01

    HIGHLIGHTS R49 genotype displayed best performance on selected physiological parameters and highest tolerance to drought.R49 drought over-represented transcripts has exhibited 19% of genes (306 contigs) that presented no homology to published databases.Expression pattern for canonical responses to drought such as ABA biosynthesis and other genes induced in response to drought were assessed by qPCR. Global freshwater shortage is one of the biggest challenges of our time, often associated to misuse, increased consumption demands and the effects of climate change, paralleled with the desertification of vast areas. Chenopodium quinoa (Willd.) represents a very promising species, due to both nutritional content and cultivation under water constraint. We characterized drought tolerance of three Chilean genotypes and selected Genotype R49 (Salares ecotype) based upon Relative Water Content (RWC), Electrolyte Leakage (EL) and maximum efficiency of photosystem II (F v /F m ) after drought treatment, when compared to another two genotypes. Exploratory RNA-Seq of R49 was generated by Illumina paired-ends method comparing drought and control irrigation conditions. We obtained 104.8 million reads, with 54 million reads for control condition and 51 million reads for drought condition. Reads were assembled in 150,952 contigs, were 31,523 contigs have a reading frame of at least 300 nucleotides (100 aminoacids). BLAST2GO annotation showed a 15% of genes without homology to NCBI proteins, but increased to 19% (306 contigs) when focused into drought-induced genes. Expression pattern for canonical drought responses such as ABA biosynthesis and other genes induced were assessed by qPCR, suggesting novelty of R49 drought responses.

  10. Cloning and expression analysis of cDNAs for ABA 8'-hydroxylase during sweet cherry fruit maturation and under stress conditions.

    Science.gov (United States)

    Ren, Jie; Sun, Liang; Wu, Jiefang; Zhao, Shengli; Wang, Canlei; Wang, Yanping; Ji, Kai; Leng, Ping

    2010-11-15

    Abscisic acid (ABA) plays a key role in various aspects of plant growth and development, including adaptation to environmental stress and fruit maturation in sweet cherry fruit. In higher plants, the level of ABA is determined by synthesis and catabolism. In order to gain insight into ABA synthesis and catabolism in sweet cherry fruit during maturation and under stress conditions, four cDNAs of PacCYP707A1 -PacCYP707A4 for 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA, and one cDNA of PacNCED1 for 9-cis-epoxycarotenoid dioxygenase, a key enzyme in the ABA biosynthetic pathway, were isolated from sweet cherry fruit (Prunus avium L.). The timing and pattern of PacNCED1 expression was coincident with that of ABA accumulation, which was correlated to maturation of sweet cherry fruit. All four PacCYP707As were expressed at varying intensities throughout fruit development and appeared to play overlapping roles in ABA catabolism throughout sweet cherry fruit development. The application of ABA enhanced the expression of PacCYP707A1 -PacCYP707A3 as well as PacNCED1, but downregulated the PacCYP707A4 transcript level. Expressions of PacCYP707A1, PacCYP707A3 and PacNCED1 were strongly increased by water stress. No significant differences in PacCYP707A2 and PacCYP707A4 expression were observed between dehydrated and control fruits. The results suggest that endogenous ABA content is modulated by a dynamic balance between biosynthesis and catabolism, which are regulated by PacNCED1 and PacCYP707As transcripts, respectively, during fruit maturation and under stress conditions. Copyright © 2010 Elsevier GmbH. All rights reserved.

  11. Combined Effects of Ozone and Drought on the Physiology and Membrane Lipids of Two Cowpea (Vigna unguiculata (L.) Walp) Cultivars.

    Science.gov (United States)

    Rebouças, Deborah Moura; De Sousa, Yuri Maia; Bagard, Matthieu; Costa, Jose Helio; Jolivet, Yves; De Melo, Dirce Fernandes; Repellin, Anne

    2017-03-03

    The interactive effects of drought and ozone on the physiology and leaf membrane lipid content, composition and metabolism of cowpea (Vigna unguiculata (L.) Walp.) were investigated in two cultivars (EPACE-1 and IT83-D) grown under controlled conditions. The drought treatment (three-week water deprivation) did not cause leaf injury but restricted growth through stomatal closure. In contrast, the short-term ozone treatment (130 ppb 12 h daily during 14 day) had a limited impact at the whole-plant level but caused leaf injury, hydrogen peroxide accumulation and galactolipid degradation. These effects were stronger in the IT83-D cultivar, which also showed specific ozone responses such as a higher digalactosyl-diacylglycerol (DGDG):monogalactosyldiacylglycerol (MGDG) ratio and the coordinated up-regulation of DGDG synthase (VuDGD2) and ω-3 fatty acid desaturase 8 (VuFAD8) genes, suggesting that membrane remodeling occurred under ozone stress in the sensitive cultivar. When stresses were combined, ozone did not modify the stomatal response to drought and the observed effects on whole-plant physiology were essentially the same as when drought was applied alone. Conversely, the drought-induced stomatal closure appeared to alleviate ozone effects through the reduction of ozone uptake.

  12. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes.

    Science.gov (United States)

    Zhao, Yang; Xing, Lu; Wang, Xingang; Hou, Yueh-Ju; Gao, Jinghui; Wang, Pengcheng; Duan, Cheng-Guo; Zhu, Xiaohong; Zhu, Jian-Kang

    2014-06-03

    The phytohormone abscisic acid (ABA) regulates plant growth, development, and abiotic stress responses. ABA signaling is mediated by a group of receptors known as the PYR1/PYL/RCAR family, which includes the pyrabactin resistance 1-like protein PYL8. Under stress conditions, ABA signaling activates SnRK2 protein kinases to inhibit lateral root growth after emergence from the primary root. However, even in the case of persistent stress, lateral root growth eventually recovers from inhibition. We showed that PYL8 is required for the recovery of lateral root growth, following inhibition by ABA. PYL8 directly interacted with the transcription factors MYB77, MYB44, and MYB73. The interaction of PYL8 and MYB77 increased the binding of MYB77 to its target MBSI motif in the promoters of multiple auxin-responsive genes. Compared to wild-type seedlings, the lateral root growth of pyl8 mutant seedlings and myb77 mutant seedlings was more sensitive to inhibition by ABA. The recovery of lateral root growth was delayed in pyl8 mutant seedlings in the presence of ABA, and the defect was rescued by exposing pyl8 mutant seedlings to the auxin IAA (3-indoleacetic acid). Thus, PYL8 promotes lateral root growth independently of the core ABA-SnRK2 signaling pathway by enhancing the activities of MYB77 and its paralogs, MYB44 and MYB73, to augment auxin signaling. Copyright © 2014, American Association for the Advancement of Science.

  13. Les caractéristiques des stomates des feuilles de Ficus benjamina L ...

    African Journals Online (AJOL)

    Objective: The main objective of this study is to assess the potential of Ficus benjamina stomata to be used as indicators of local air pollution. Methodology: Stomatal prints were taken from the species of study in the vicinity of roads, in residential and industrial areas and parks. Density, pore surface and stomatal resistance ...

  14. Physiological acclimation to drought stress in Solidago canadensis.

    Science.gov (United States)

    Nolf, Markus; Pagitz, Konrad; Mayr, Stefan

    2014-04-01

    Solidago canadensis is an invasive species from North America that is spreading across Europe, Australia and temperate Asia. We hypothesized that the species' wide ecological amplitude is also based on its potential in hydraulic acclimation, and analyzed hydraulic and anatomical properties along a transect with decreasing soil humidity. Stem hydraulic conductivity, vulnerability to drought-induced embolism, stomatal closure during dehydration and xylem-anatomical parameters were quantified at three sites. At the humid site, specific hydraulic conductivity of stems (1.0 ± 0.2 kg m(-1)  MPa(-1)  s(-1)) was about twofold higher, and leaf-specific conductivity about 1.5 times higher (3.1 ± 0.5 kg m(-1)  MPa(-1)  s(-1)) than at the dry site. Water potential (Ψ) at 50% loss of conductivity was -3.7 ± 0.1 MPa at the dry site and -3.1 ± 0.2 MPa at the humid site (September). Vulnerability to drought-induced embolism decreased along the transect and over the vegetation period. At drier sites, stomata started closing at lower Ψ while complete stomatal closure was reached at less negative Ψ (12% of maximum stomatal conductance: -2.5 ± 0.0 and -3.0 ± 0.2 MPa at the dry and humid site). The safety margin between stomatal closure and 50% loss of conductivity was 1.2 and 0.2 MPa at the dry and humid sites. The observed variability indicated an efficient acclimation in hydraulic conductivity and safety: plants at dry sites exhibited lower specific hydraulic conductivity, higher embolism resistance and broader safety margins, signifying a trade-off between the hydraulic safety and efficiency. The observed intraspecific plasticity in hydraulic and anatomical traits may help to explain the invasive potential of this species. © 2013 Scandinavian Plant Physiology Society.

  15. Prevalence of falciparum malaria amongst pregnant women in Aba ...

    African Journals Online (AJOL)

    Malaria during pregnancy poses a substantial risk to mother and foetus especially an infection with Plasmodium falciparum. This study was undertaken to assess the prevalence of falciparum malaria among pregnant women in Aba South Local Government Area, Abia State, south-east Nigeria. Blood samples from 432 ...

  16. Closure requirements

    International Nuclear Information System (INIS)

    Hutchinson, I.P.G.; Ellison, R.D.

    1992-01-01

    Closure of a waste management unit can be either permanent or temporary. Permanent closure may be due to: economic factors which make it uneconomical to mine the remaining minerals; depletion of mineral resources; physical site constraints that preclude further mining and beneficiation; environmental, regulatory or other requirements that make it uneconomical to continue to develop the resources. Temporary closure can occur for a period of several months to several years, and may be caused by factors such as: periods of high rainfall or snowfall which prevent mining and waste disposal; economic circumstances which temporarily make it uneconomical to mine the target mineral; labor problems requiring a cessation of operations for a period of time; construction activities that are required to upgrade project components such as the process facilities and waste management units; and mine or process plant failures that require extensive repairs. Permanent closure of a mine waste management unit involves the provision of durable surface containment features to protect the waters of the State in the long-term. Temporary closure may involve activities that range from ongoing maintenance of the existing facilities to the installation of several permanent closure features in order to reduce ongoing maintenance. This paper deals with the permanent closure features

  17. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory.

    Science.gov (United States)

    Novick, Kimberly A; Miniat, Chelcy F; Vose, James M

    2016-03-01

    We merge concepts from stomatal optimization theory and cohesion-tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a 'demand limitation' driven by an assumption of optimal stomatal functioning; (2) 'hydraulic limitation' of water movement from the roots to the leaves; and (3) 'non-stomatal' limitations imposed by declining leaf water status within the leaf. Model results suggest that species-specific 'economics' of stomatal behaviour may play an important role in differentiating species along the continuum of isohydric to anisohydric behaviour; specifically, we show that non-stomatal and demand limitations may reduce stomatal conductance and increase leaf water potential, promoting wide safety margins characteristic of isohydric species. We used model results to develop a diagnostic framework to identify the most likely limiting mechanism to stomatal functioning during drought and showed that many of those features were commonly observed in field observations of tree water use dynamics. Direct comparisons of modelled and measured stomatal conductance further indicated that non-stomatal and demand limitations reproduced observed patterns of tree water use well for an isohydric species but that a hydraulic limitation likely applies in the case of an anisohydric species. Published 2015. This article is a US Government work and is in the public domain in the USA.

  18. Contrasting responses of leaf stomatal characteristics to climate change: a considerable challenge to predict carbon and water cycles.

    Science.gov (United States)

    Yan, Weiming; Zhong, Yangquanwei; Shangguan, Zhouping

    2017-09-01

    Stomata control the cycling of water and carbon between plants and the atmosphere; however, no consistent conclusions have been drawn regarding the response of stomatal frequency to climate change. Here, we conducted a meta-analysis of 1854 globally obtained data series to determine the response of stomatal frequency to climate change, which including four plant life forms (over 900 species), at altitudes ranging from 0 to 4500 m and over a time span of more than one hundred thousand years. Stomatal frequency decreased with increasing CO 2 concentration and increased with elevated temperature and drought stress; it was also dependent on the species and experimental conditions. The response of stomatal frequency to climate change showed a trade-off between stomatal control strategies and environmental factors, such as the CO 2 concentration, temperature, and soil water availability. Moreover, threshold effects of elevated CO 2 and temperature on stomatal frequency were detected, indicating that the response of stomatal density to increasing CO 2 concentration will decrease over the next few years. The results also suggested that the stomatal index may be more reliable than stomatal density for determination of the historic CO 2 concentration. Our findings indicate that the contrasting responses of stomata to climate change bring a considerable challenge in predicting future water and carbon cycles. © 2017 John Wiley & Sons Ltd.

  19. Parents' Experiences of Applied Behaviour Analysis (ABA)-Based Interventions for Children Diagnosed with Autistic Spectrum Disorder

    Science.gov (United States)

    McPhilemy, Catherine; Dillenburger, Karola

    2013-01-01

    Applied behaviour analysis (ABA)-based programmes are endorsed as the gold standard for treatment of children with autistic spectrum disorder (ASD) in most of North America. This is not the case in most of Europe, where instead a non-specified "eclectic" approach is adopted. We explored the social validity of ABA-based interventions with…

  20. Effects of exogenous ABA application on post-anthesis dry matter redistribution and grain starch accumulation of winter wheat with different staygreen characteristics

    Directory of Open Access Journals (Sweden)

    Dongqing Yang

    2014-04-01

    Full Text Available The objective of this study was to investigate whether and how exogenous abscisic acid (ABA is involved in mediating starch accumulation in the grain and redistribution of carbohydrates during grain filling of two wheat cultivars with different staygreen characteristics. At blooming stage, plants of Wennong 6 (a staygreen cultivar and Jimai 20 (control were sprayed with 10 mg L− 1 abscisic acid (ABA for 3 days. The application of ABA significantly (P < 0.05 increased grain filling rate, starch accumulation rate and content, remobilization of dry matters to kernels, and 1000-grain weight of the two cultivars. Exogenous ABA markedly (P < 0.05 increased grain yield at maturity, and Wennong 6 and Jiami 20 showed 14.14% and 4.86% higher compared yield than the control. Dry matter accumulation after anthesis of Wennong 6 was also significantly (P < 0.05 influenced by exogenous ABA, whereas that of Jimai 20 was unchanged. Application of ABA increased endogenous zeatin riboside (ZR content 7 days after anthesis (DAA, and spraying ABA significantly increased endogenous indole-3-acetic acid (IAA and ABA contents from 7 to 21 DAA and decreased gibberellin (GA3 content at 14 DAA, but increased GA3 content from 21 to 35 DAA. The results suggested that increased yield of staygreen was due to greater starch assimilation owing to a higher filling rate and longer grain-filling duration.

  1. Voltage-Dependent Anion Channel 2 of Arabidopsis thaliana (AtVDAC2 Is Involved in ABA-Mediated Early Seedling Development

    Directory of Open Access Journals (Sweden)

    Xufeng Li

    2009-05-01

    Full Text Available The voltage-dependent anion channel (VDAC is the major transport protein in the outer membrane of mitochondria and plays crucial roles in energy metabolism, apoptosis, and metabolites transport. In plants, the expression of VDACs can be affected by different stresses, including drought, salinity and pathogen defense. In this study, we investigated the expression pattern of AtVDAC2 in A. thaliana and found ABA suppressed the accumulation of AtVDAC2 transcripts. Further, phenotype analysis of this VDAC deregulated-expression transgenic Arabidopsis plants indicated that AtVDAC2 anti-sense line showed an ABA-insensitivity phenotype during the early seedling development under ABA treatment. The results suggested that AtVDAC2 might be involved in ABA signaling in A. thaliana.

  2. Expression Analysis of Four Peroxiredoxin Genes from Tamarix hispida in Response to Different Abiotic Stresses and Exogenous Abscisic Acid (ABA

    Directory of Open Access Journals (Sweden)

    Guiyan Yang

    2012-03-01

    Full Text Available Peroxiredoxins (Prxs are a recently discovered family of antioxidant enzymes that catalyze the reduction of peroxides and alkyl peroxides. In this study, four Prx genes (named as ThPrxII, ThPrxIIE, ThPrxIIF, and Th2CysPrx were cloned from Tamarix hispida. Their expression profiles in response to stimulus of NaCl, NaHCO3, PEG, CdCl2 and abscisic acid (ABA in roots, stems and leaves of T. hispida were investigated using real-time RT-PCR. The results showed that the four ThPrxs were all expressed in roots, stems and leaves. Furthermore, the transcript levels of ThPrxIIE and ThPrxII were the lowest and the highest, respectively, in all tissue types. All the ThPrx genes were induced by both NaCl and NaHCO3 and reached their highest expression levels at the onset of stress in roots. Under PEG and CdCl2 stress, the expression patterns of these ThPrxs showed temporal and spatial specificity. The expressions of the ThPrxs were all differentially regulated by ABA, indicating that they are all involved in the ABA signaling pathway. These findings reveal a complex regulation of Prxs that is dependent on the type of Prx, tissue, and the signaling molecule. The divergence of the stress-dependent transcriptional regulation of the ThPrx gene family in T. hispida may provide an essential basis for the elucidation of Prx function in future work.

  3. Expression analysis of four peroxiredoxin genes from Tamarix hispida in response to different abiotic stresses and Exogenous Abscisic Acid (ABA).

    Science.gov (United States)

    Gao, Caiqiu; Zhang, Kaimin; Yang, Guiyan; Wang, Yucheng

    2012-01-01

    Peroxiredoxins (Prxs) are a recently discovered family of antioxidant enzymes that catalyze the reduction of peroxides and alkyl peroxides. In this study, four Prx genes (named as ThPrxII, ThPrxIIE, ThPrxIIF, and Th2CysPrx) were cloned from Tamarix hispida. Their expression profiles in response to stimulus of NaCl, NaHCO(3), PEG, CdCl(2) and abscisic acid (ABA) in roots, stems and leaves of T. hispida were investigated using real-time RT-PCR. The results showed that the four ThPrxs were all expressed in roots, stems and leaves. Furthermore, the transcript levels of ThPrxIIE and ThPrxII were the lowest and the highest, respectively, in all tissue types. All the ThPrx genes were induced by both NaCl and NaHCO(3) and reached their highest expression levels at the onset of stress in roots. Under PEG and CdCl(2) stress, the expression patterns of these ThPrxs showed temporal and spatial specificity. The expressions of the ThPrxs were all differentially regulated by ABA, indicating that they are all involved in the ABA signaling pathway. These findings reveal a complex regulation of Prxs that is dependent on the type of Prx, tissue, and the signaling molecule. The divergence of the stress-dependent transcriptional regulation of the ThPrx gene family in T. hispida may provide an essential basis for the elucidation of Prx function in future work.

  4. Functional Characterization of Cotton GaMYB62L, a Novel R2R3 TF in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Hamama Islam Butt

    Full Text Available Drought stress can trigger the production of ABA in plants, in response to adverse conditions, which induces the transcript of stress-related marker genes. The R2R3 MYB TFs are implicated in regulation of various plants developmental, metabolic and multiple environmental stress responses. Here, a R2R3-MYB cloned gene, GaMYB62L, was transformed in Arabidopsis and was functionally characterized. The GaMYB62L protein contains two SANT domains with a conserved R2R3 imperfect repeats. The GaMYB62L cDNA is 1,017 bp with a CDS of 879, encodes a 292-residue polypeptide with MW of 38.78 kD and a pI value of 8.91. Overexpressed GaMYB62L transgenic Arabidopsis have increased proline and chlorophyll content, superior seed germination rate under salt and osmotic stress, less water loss rate with reduced stomatal apertures, high drought avoidance as compared to WT on water deprivation and also significant plant survival rates at low temperature. In addition, overexpressed GaMYB62L lines were more sensitive to ABA mediated germination and root elongation assay. Moreover, ABA induced GaMYB62L overexpression, enhanced the expression of ABA stress related marker genes like RD22, COR15A, ADH1, and RD29A. Together, overexpression of GaMYB62L suggested having developed better drought, salt and cold tolerance in transgenic Arabidopsis and thus presented it as a prospective candidate gene to achieve better abiotic stress tolerance in cotton crop.

  5. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion.

    Science.gov (United States)

    Li, Yangyang; Wang, Cheng; Liu, Xinye; Song, Jian; Li, Hongjian; Sui, Zhipeng; Zhang, Ming; Fang, Shuang; Chu, Jinfang; Xin, Mingming; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2016-04-01

    Heterosis has been widely used in agriculture, but the underlying molecular principles are still largely unknown. During seed germination, we observed that maize (Zea mays) hybrid B73/Mo17 was less sensitive than its parental inbred lines to exogenous abscisic acid (ABA), and endogenous ABA content in hybrid embryos decreased more rapidly than in the parental inbred lines. ZmABA8ox1b, an ABA inactivation gene, was consistently more highly up-regulated in hybrid B73/Mo17 than in its parental inbred lines at early stages of seed germination. Moreover, ectopic expression of ZmABA8ox1b obviously promoted seed germination in Arabidopsis Remarkably, microscopic observation revealed that cell expansion played a major role in the ABA-mediated maize seed germination heterosis, which could be attributed to the altered expression of cell wall-related genes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. The effect of 2,4-D and ABA on respiration of isolated mitochondria from maize coleoptiles

    Directory of Open Access Journals (Sweden)

    Ewa Raczek

    2014-01-01

    Full Text Available The susceptibility of isolated maize mitochondria to the growth regulators: 2,4-dichlorophenoxyacetic acid (2,4-D and abscisic acid (ABA was studied. It was found that 2,4-D (a herbicide inhibits respiration in mitochondria, as do other herbicides or phenoxy-acids. In the entire range of concentrations used (10-3-10-9 M, 2,4-D introduced into the medium before the respiration reaction was begun, or during it, limited the intensity of succinate oxidation. It did not, however, markedly change phosphorylation properties. Uncoupling of oxidative phosphorylation took place only after preincubation of mitochondria with 2,4-D and was the result of the destruction of mitochondrial membranes. ABA (a growth inhibitor of plants caused a similar response in maize mitochondria. Preincubation of mitochondria with ABA lead to the uncoupling of oxidative phosphorylation. Whereas ABA introduced during respiration (state 4 respiration or before its onset, lowered the oxidative potential of mitochondria, it also changed the pattern of state 4-3-4 transition after addition of ADP (it was especially visible at high concentrations, which indicates that the coupling of oxidative phosphorylation with the respiratory chain has faltered. It seems that this negative effect of 2,4-D and ABA on respiration of isolated maize mitochondria is connected with the inhibitory effect of these growth regulators on the growth of maize coleoptiles. Interference in the organization mitochondrial membranes results in a lowered supply of ATP - a source of energy needed in elongation processes.

  7. Levels of ABA, its precursors and dehydrin-like proteins during ...

    African Journals Online (AJOL)

    2Department of Molecular Biology and Biotechnology, University of Dar es Salaam,. P.O Box 35179, Dar ... to combat stress. Levels of ABA and proteins that cross reacted with an anti – dehydrin ...... Cambridge, Melbourne). Wang, X.-Q., Ullah ...

  8. Induced resistance in tomato by SAR activators during predisposing salinity stress

    Directory of Open Access Journals (Sweden)

    Matthew Francis Pye

    2013-05-01

    Full Text Available Plant activators are chemicals that induce disease resistance. The phytohormone salicylic acid (SA is a crucial signal for systemic acquired resistance (SAR, and SA-mediated resistance is a target of several commercial plant activators, including Actigard (1,2,3-benzothiadiazole-7-thiocarboxylic acid-s-methyl-ester, BTH and Tiadinil (N-(3-chloro-4-methylphenyl-4-methyl-1,2,3-thiadiazole-5-carboxamide, TDL. BTH and TDL were examined for their impact on abscisic acid (ABA-mediated, salt-induced disease predisposition in tomato seedlings. A brief episode of salt stress to roots significantly increased the severity of disease caused by Pseudomonas syringae pv. tomato (Pst and Phytophthora capsici relative to non-stressed plants. Root treatment with TDL induced resistance to Pst in leaves and provided protection in both non-stressed and salt-stressed seedlings in WT and highly susceptible NahG plants. Non-stressed and salt-stressed ABA-deficient sitiens mutants were highly resistant to Pst. Neither TDL nor BTH induced resistance to root infection by P. capsici, nor did they moderate the salt-induced increment in disease severity. Root treatment with these plant activators increased the levels of ABA in roots and shoots similar to levels observed in salt-stressed plants. The results indicate that SAR activators can protect tomato plants from bacterial speck disease under predisposing salt stress, and suggest that some SA-mediated defense responses function sufficiently in plants with elevated levels of ABA.

  9. Seawater spray injury to Quercus acutissima leaves: crystal deposition, stomatal clogging, and chloroplast degeneration.

    Science.gov (United States)

    Kim, Ki Woo; Koo, Kyosang; Kim, Pan-Gi

    2011-05-01

    Effects of seawater spray on leaf structure were investigated in Quercus acutissima by electron microscopy and X-ray microanalysis. Two-year-old seedlings of Q. acutissima were sprayed with seawater and kept in a greenhouse maintained at 25°C. The most recognizable symptoms of seawater-sprayed seedlings included leaf necrosis, crystal deposition, stomatal clogging, and chloroplast degeneration. Field emission scanning electron microscopy revealed that the leaf surface was covered with additional layers of remnants of seawater spray. Composed of sodium and chloride, cube-shaped crystals (halite) were prevalently found on trichomes and epidermis, and formed aggregates. Meanwhile, wedge-shaped crystals were deposited on epidermis and consisted of calcium and sulfur. As a result of stomatal clogging by crystal deposition on the abaxial surface, it was conceivable that plant respiration became severely hampered. Transmission electron microscopy showed degenerated cytoplasm of seawater-sprayed leaves. It was common to observe severe plasmolysis and disrupted chloroplasts with a reduced number of thylakoids in grana. These results indicate that foliar applications of seawater were sufficient to induce necrosis of Q. acutissima seedlings as an abiotic disturbance factor. Copyright © 2010 Wiley-Liss, Inc.

  10. Effects of a Heat Wave on Nocturnal Stomatal Conductance in Eucalyptus camaldulensis

    Directory of Open Access Journals (Sweden)

    Víctor Resco de Dios

    2018-06-01

    Full Text Available Nocturnal transpiration constitutes a significant yet poorly understood component of the global water cycle. Modeling nocturnal transpiration has been complicated by recent findings showing that stomata respond differently to environmental drivers over day- vs. night-time periods. Here, we propose that nocturnal stomatal conductance depends on antecedent daytime conditions. We tested this hypothesis across six genotypes of Eucalyptus camaldulensis Dehnh. growing under different CO2 concentrations (ambient vs. elevated and exposed to contrasting temperatures (ambient vs. heat wave for four days prior to the night of measurements, when all plants experienced ambient temperature conditions. We observed significant effects after the heat wave that led to 36% reductions in nocturnal stomatal conductance. The response was partly driven by changes in daytime stomatal behavior but additional factors may have come into play. We also observed significant differences in response to the heat wave across genotypes, likely driven by local adaptation to their climate of origin, but CO2 played no effect. Stomatal models may need to incorporate the role of antecedent effects to improve projections particularly after drastic changes in the environment such as heat waves.

  11. Stomatal response of Pinus sylvestriformis to elevated CO2 concentrations during the four years of exposure

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-mei; HAN Shi-jie; LIU Ying; JIA Xia

    2005-01-01

    Four-year-old Pinus sylvestriformis were exposed for four growing seasons in open top chambers to ambient CO2 concentration (approx. 350 μmol·mol-1) and high CO2 concentrations (500 and 700 μmol·mol-1) at Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences at Antu Town, Jilin Province, China (42oN, 128oE). Stomatal response to elevated CO2 concentrations was examined by stomatal conductance (gs), ratio of intercellular to ambient CO2 concentration (ci/ca) and stomatal number. Reciprocal transfer experiments of stomatal conductance showed that stomatal conductance in high-[CO2]-grown plants increased in comparison with ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration and at the same measurement CO2 concentration (except a reduction in 700 μmol·mol-1 CO2 grown plants compared with plants on unchambered field when measured at growth CO2 concentration and 350 μmol·mol-1CO2). High-[CO2]-grown plants exhibited lower ci/ca ratios than ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration. However, ci/ca ratios increased for plants grown in high CO2 concentrations compared with control plants when measured at the same CO2 concentration. There was no significant difference in stomatal number per unit long needle between elevated and ambient CO2. However, elevated CO2 concentrations reduced the total stomatal number of whole needle by the decline of stomatal line and changed the allocation pattern of stomata between upper and lower surface of needle.

  12. The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jianjun Guo

    Full Text Available BACKGROUND: The plant hormone abscisic acid (ABA regulates diverse processes of plant growth and development. It has recently been proposed that GCR2 functions as a G-protein-coupled receptor (GPCR for ABA. However, the structural relationships and functionality of GCR2 have been challenged by several independent studies. A central question in this controversy is whether gcr2 mutants are insensitive to ABA, because gcr2 mutants were shown to display reduced sensitivity to ABA under one experimental condition (e.g. 22 degrees C, continuous white light with 150 micromol m(-2 s(-1 but were shown to display wild-type sensitivity under another slightly different condition (e.g. 23 degrees C, 14/10 hr photoperiod with 120 micromol m(-2 s(-1. It has been hypothesized that gcr2 appears only weakly insensitive to ABA because two other GCR2-like genes in Arabidopsis, GCL1 and GCL2, compensate for the loss of function of GCR2. PRINCIPAL FINDINGS: In order to test this hypothesis, we isolated a putative loss-of-function allele of GCL2, and then generated all possible combinations of mutations in each member of the GCR2 gene family. We found that all double mutants, including gcr2 gcl1, gcr2 gcl2, gcl1 gcl2, as well as the gcr2 gcl1 gcl2 triple mutant displayed wild-type sensitivity to ABA in seed germination and early seedling development assays, demonstrating that the GCR2 gene family is not required for ABA responses in these processes. CONCLUSION: These results provide compelling genetic evidence that GCR2 is unlikely to act as a receptor for ABA in the context of either seed germination or early seedling development.

  13. Air pressure-induced iridocornea contact in a patient with primary angle closure observed with a dynamic Scheimpflug analyzer.

    Science.gov (United States)

    Kawashima, Rumi; Matsushita, Kenji; Fujimoto, Hisataka; Maeda, Naoyuki; Nishida, Kohji

    2015-01-01

    To report air pressure-induced corneal deformation and iridocornea contact in eyes with primary angle closure (PAC) during intraocular pressure (IOP) measurement performed using a novel noncontact tonometer. A single case report. We report a patient with bilateral angle closure. One eye had acute PAC and the other had PAC. The latter was evaluated by the movements of the cornea and iris during IOP measurement using a noncontact tonometer. During the examination, the corneal endothelium and the iris came into contact at the mid-peripheral pupillary area in the left eye with PAC during the corneal reaction to an air puff. In contrast, the corneal endothelium in the pupillary area did not come into contact with the iris. Although we observed only 1 case and there could be limitations in its interpretation, IOP measurements using a noncontact tonometer may create mechanical stress on the corneal endothelium in eyes with PAC with a very shallow anterior chamber.

  14. Uncertainty Quantification of Multi-Phase Closures

    Energy Technology Data Exchange (ETDEWEB)

    Nadiga, Balasubramanya T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baglietto, Emilio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-10-27

    In the ensemble-averaged dispersed phase formulation used for CFD of multiphase ows in nuclear reactor thermohydraulics, closures of interphase transfer of mass, momentum, and energy constitute, by far, the biggest source of error and uncertainty. Reliable estimators of this source of error and uncertainty are currently non-existent. Here, we report on how modern Validation and Uncertainty Quanti cation (VUQ) techniques can be leveraged to not only quantify such errors and uncertainties, but also to uncover (unintended) interactions between closures of di erent phenomena. As such this approach serves as a valuable aide in the research and development of multiphase closures. The joint modeling of lift, drag, wall lubrication, and turbulent dispersion|forces that lead to tranfer of momentum between the liquid and gas phases|is examined in the frame- work of validation of the adiabatic but turbulent experiments of Liu and Banko , 1993. An extensive calibration study is undertaken with a popular combination of closure relations and the popular k-ϵ turbulence model in a Bayesian framework. When a wide range of super cial liquid and gas velocities and void fractions is considered, it is found that this set of closures can be validated against the experimental data only by allowing large variations in the coe cients associated with the closures. We argue that such an extent of variation is a measure of uncertainty induced by the chosen set of closures. We also nd that while mean uid velocity and void fraction pro les are properly t, uctuating uid velocity may or may not be properly t. This aspect needs to be investigated further. The popular set of closures considered contains ad-hoc components and are undesirable from a predictive modeling point of view. Consequently, we next consider improvements that are being developed by the MIT group under CASL and which remove the ad-hoc elements. We use non-intrusive methodologies for sensitivity analysis and calibration (using

  15. Hormonal control of seed development in gibberellin- and ABA-deficient tomato (Lycopersicon esculentum Mill. cv. Moneymaker) mutants

    NARCIS (Netherlands)

    Castro, de R.D.; Hilhorst, H.W.M.

    2006-01-01

    Developing seeds of tomato gibberellin (GA)-deficient gib1 and abscisic acid (ABA)-deficient sitw mutants enabled us to analyze the role of GA in the regulation of embryo histo-differentiation, and the role of ABA in the regulation of maturation and quiescence. Our data show that DNA synthesis and

  16. Tertiary-amine-containing thermo- and pH-sensitive hydrophilic ABA triblock copolymers: effect of different tertiary amines on thermally induced sol-gel transitions.

    Science.gov (United States)

    Henn, Daniel M; Wright, Roger A E; Woodcock, Jeremiah W; Hu, Bin; Zhao, Bin

    2014-03-11

    This Article reports on the synthesis of a series of well-defined, tertiary-amine-containing ABA triblock copolymers, composed of a poly(ethylene oxide) (PEO) central block and thermo- and pH-sensitive outer blocks, and the study of the effect of different tertiary amines on thermally induced sol-gel transition temperatures (T(sol-gel)) of their 10 wt % aqueous solutions. The doubly responsive ABA triblock copolymers were prepared from a difunctional PEO macroinitiator by atom transfer radical polymerization of methoxydi(ethylene glycol) methacrylate and ethoxydi(ethylene glycol) methacrylate at a feed molar ratio of 30:70 with ∼5 mol % of either N,N-diethylaminoethyl methacrylate (DEAEMA), N,N-diisopropylaminoethyl methacrylate, or N,N-di(n-butyl)aminoethyl methacrylate. The chain lengths of thermosensitive outer blocks and the molar contents of tertiary amines were very similar for all copolymers. Using rheological measurements, we determined the pH dependences of T(sol-gel) of 10 wt % aqueous solutions of these copolymers in a phosphate buffer. The T(sol-gel) versus pH curves of all polymers exhibited a sigmoidal shape. The T(sol-gel) increased with decreasing pH; the changes were small on both high and low pH sides. At a specific pH, the T(sol-gel) decreased with increasing the hydrophobicity of the tertiary amine, and upon decreasing pH the onset pH value for the T(sol-gel) to begin to increase noticeably was lower for the more hydrophobic tertiary amine-containing copolymer. In addition, we studied the effect of different tertiary amines on the release behavior of FITC-dextran from 10 wt % micellar gels in an acidic medium at 37 and 27 °C. The release profiles for three studied hydrogels at 37 °C were essentially the same, suggesting that the release was dominated by the diffusion of FITC-dextran. At 27 °C, the release was significantly faster for the DEAEMA-containing copolymer, indicating that both diffusion and gel dissolution contributed to the

  17. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yan [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Liaoning Forestry Vocational-Technical College, Shenyang 110101 (China); Wang, Congpeng; Han, Xiao; Tang, Sha; Liu, Sha [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Xia, Xinli, E-mail: xiaxl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Yin, Weilun, E-mail: yinwl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China)

    2014-07-18

    Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth.

  18. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis

    International Nuclear Information System (INIS)

    Dong, Yan; Wang, Congpeng; Han, Xiao; Tang, Sha; Liu, Sha; Xia, Xinli; Yin, Weilun

    2014-01-01

    Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth

  19. Cost and returns analysis of catfish marketing in Aba South Local ...

    African Journals Online (AJOL)

    Cost and returns analysis of catfish marketing in Aba South Local Government Area of Abia State, Nigeria. ... The constraints militating against catfish marketing were also identified. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  20. cost and returns analysis of catfish marketing in aba south local

    African Journals Online (AJOL)

    The study analyzed the cost and returns of catfish marketing in Aba South ... significantly influenced net income should be considered in policy issues. ... entrepreneur/manager at a profit. .... marketers were well experienced in their business.

  1. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric (Van Andel); (Scripps); (Purdue); (NU Singapore)

    2014-10-02

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-{angstrom} resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases.

  2. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yuxiang, E-mail: yuxiangqin@126.com [Department of Biotechnology, University of Jinan, Jinan 250022 (China); Tian, Yanchen [The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100 (China); Han, Lu; Yang, Xinchao [Department of Biotechnology, University of Jinan, Jinan 250022 (China)

    2013-11-15

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway.

  3. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Qin, Yuxiang; Tian, Yanchen; Han, Lu; Yang, Xinchao

    2013-01-01

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway

  4. TRICARE Applied Behavior Analysis (ABA) Benefit: Comparison with Medicaid and Commercial Benefits.

    Science.gov (United States)

    Maglione, Margaret; Kadiyala, Srikanth; Kress, Amii; Hastings, Jaime L; O'Hanlon, Claire E

    2017-01-01

    This study compared the Applied Behavior Analysis (ABA) benefit provided by TRICARE as an early intervention for autism spectrum disorder with similar benefits in Medicaid and commercial health insurance plans. The sponsor, the Office of the Under Secretary of Defense for Personnel and Readiness, was particularly interested in how a proposed TRICARE reimbursement rate decrease from $125 per hour to $68 per hour for ABA services performed by a Board Certified Behavior Analyst compared with reimbursement rates (defined as third-party payment to the service provider) in Medicaid and commercial health insurance plans. Information on ABA coverage in state Medicaid programs was collected from Medicaid state waiver databases; subsequently, Medicaid provider reimbursement data were collected from state Medicaid fee schedules. Applied Behavior Analysis provider reimbursement in the commercial health insurance system was estimated using Truven Health MarketScan® data. A weighted mean U.S. reimbursement rate was calculated for several services using cross-state information on the number of children diagnosed with autism spectrum disorder. Locations of potential provider shortages were also identified. Medicaid and commercial insurance reimbursement rates varied considerably across the United States. This project concluded that the proposed $68-per-hour reimbursement rate for services provided by a board certified analyst was more than 25 percent below the U.S. mean.

  5. A CBL-Interacting Protein Kinase TaCIPK2 Confers Drought Tolerance in Transgenic Tobacco Plants through Regulating the Stomatal Movement.

    Science.gov (United States)

    Wang, Yan; Sun, Tao; Li, Tingting; Wang, Meng; Yang, Guangxiao; He, Guangyuan

    2016-01-01

    In plants, the CBL-CIPK signaling pathways play key roles in the response to abiotic stresses. However, functional studies of CIPKs in the important staple crop wheat are very rare. In this study, we identified a CIPK gene from wheat, designated TaCIPK2. Expression analysis results showed that TaCIPK2 could be up-regulated in wheat leaves by polyethylene glycol, abscisic acid and H2O2 treatments. Subcellular localization analyses revealed that TaCIPK2 was present in whole wheat epidermal cells. A yeast two-hybrid assay indicated that TaCIPK2 interacted with TaCBL1, 2, 3 and 4 in vitro. Transgenic tobacco plants over-expressing TaCIPK2 exhibited increased drought tolerance, indicated by a larger proportion of green cotyledons and higher survival rates under the osmotic and drought stress conditions compared with control plants. Additionally, physiological index analyses revealed that the transgenic tobacco plants had lower water loss rates and ion leakage, accumulated less malondialdehyde and H2O2, and had higher catalase and superoxide dismutase activities than the control plants. The transgenic plants also exhibited faster stomatal closure following exposure to osmotic stress conditions. The seed germination rates and stomatal aperture of TaCIPK2-overexpressing tobacco plants decreased after exogenous abscisic acid treatment was applied, implying that the transgenic tobacco plants were more sensitive to exogenous abscisic acid than the control plants. Our results indicate that TaCIPK2 plays a positive regulatory role in drought stress responses in transgenic tobacco plants.

  6. Novel multiple opioid ligands based on 4-aminobenzazepinone (Aba), azepinoindole (Aia) and tetrahydroisoquinoline (Tic) scaffolds

    Science.gov (United States)

    Ballet, Steven; Marczak, Ewa D.; Feytens, Debby; Salvadori, Severo; Sasaki, Yusuke; Abell, Andrew D.; Lazarus, Lawrence H.; Balboni, Gianfranco; Tourwé, Dirk

    2010-01-01

    The dimerization and trimerization of the Dmt-Tic, Dmt-Aia and Dmt-Aba pharmacophores provided multiple ligands which were evaluated in vitro for opioid receptor binding and functional activity. Whereas the Tic- and Aba multimers proved to be dual and balanced δ/μ antagonists, as determined by the functional [S35]GTPγS binding assay, the dimerization of potent Aia-based ‘parent’ ligands unexpectedly resulted in substantial less efficient receptor binding and non-active dimeric compounds. PMID:20137938

  7. Stomatal design principles in synthetic and real leaves

    DEFF Research Database (Denmark)

    Zwieniecki, Maciej A.; Haaning, Katrine S; Boyce, C. Kevin

    2016-01-01

    Stomata are portals in plant leaves that control gas exchange for photosynthesis, a process fundamental to life on Earth. Gas fluxes and plant productivity depend on external factors such as light, water and CO2 availability and on the geometrical properties of the stoma pores. The link between...... for major trends in stomatal patterning are not well understood. Here, we use a combination of biomimetic experiments and theory to rationalize the observed changes in stoma geometry. We show that the observed correlations between stoma size and density are consistent with the hypothesis that plants favour...... efficient use of space and maximum control of dynamic gas conductivity, and that the capacity for gas exchange in plants has remained constant over at least the last 325 Myr. Our analysis provides a new measure to gauge the relative performance of species based on their stomatal characteristics....

  8. Levels of ABA, its precursors and dehydrin-like proteins during ...

    African Journals Online (AJOL)

    Abstract—Abscisic acid (ABA) and dehydrin proteins are thought to confer tolerance to plant tissue under physiological stress and drought. Rhizophora mucronata, a true mangrove species, is subjected to physiological drought from fluctuating high saline conditions where leaf loss or senescence is considered a possible ...

  9. Histopathological pattern of diseases of the cervix in Aba, South ...

    African Journals Online (AJOL)

    Background: Diseases of the cervix continue to pose a major public health problem in developing countries. Objective: To ascertain the pattern and frequency of cervical lesions in Aba, and the findings compared with the records of other workers elsewhere. Design: A retrospective analysis of hysterectomy, trachelectomy ...

  10. Ulcerative Uremic Stomatitis - Review of the Literature and A Rare Case Report

    Directory of Open Access Journals (Sweden)

    Shantala Arunkumar

    2015-01-01

    Full Text Available Uremic Stomatitis (US represents a comparatively uncommon intraoral complication seen, mostly, in cases of end-stage renal disease or undiagnosed or untreated chronic renal failure. Its frequency has diminished due to the advent of renal dialysis. Clinically uremic stomatitis is characterized by the presence of painful plaques and crusts that are usually distributed on the buccal and labial mucosa, dorsal or ventral surface of the tongue, gingiva, and floor of the mouth. Ultimate treatment consists of improvement of blood urea concentration and underlying renal failure is supported by enhancement of oral hygiene with antiseptic mouthwashes and antimicrobial/antifungal agents, if necessary. Here we report a rare case of ulcerative type of uremic stomatitis occurring in a patient of chronic renal failure due to sudden relapse of uremia and reviewed the possible pathophysiology of oral symptoms of chronic renal failure.

  11. The Role of MAPK Modules and ABA during Abiotic Stress Signaling

    KAUST Repository

    Zé licourt, Axel de; Colcombet, Jean; Hirt, Heribert

    2016-01-01

    To respond to abiotic stresses, plants have developed specific mechanisms that allow them to rapidly perceive and respond to environmental changes. The phytohormone abscisic acid (ABA) was shown to be a pivotal regulator of abiotic stress responses

  12. The Arabidopsis aba4-1 mutant reveals a specific function for neoxanthin in protection against photooxidative stress.

    Science.gov (United States)

    Dall'Osto, Luca; Cazzaniga, Stefano; North, Helen; Marion-Poll, Annie; Bassi, Roberto

    2007-03-01

    The aba4-1 mutant completely lacks neoxanthin but retains all other xanthophyll species. The missing neoxanthin in light-harvesting complex (Lhc) proteins is compensated for by higher levels of violaxanthin, albeit with lower capacity for photoprotection compared with proteins with wild-type levels of neoxanthin. Detached leaves of aba4-1 were more sensitive to oxidative stress than the wild type when exposed to high light and incubated in a solution of photosensitizer agents. Both treatments caused more rapid pigment bleaching and lipid oxidation in aba4-1 than wild-type plants, suggesting that neoxanthin acts as an antioxidant within the photosystem II (PSII) supercomplex in thylakoids. While neoxanthin-depleted Lhc proteins and leaves had similar sensitivity as the wild type to hydrogen peroxide and singlet oxygen, they were more sensitive to superoxide anions. aba4-1 intact plants were not more sensitive than the wild type to high-light stress, indicating the existence of compensatory mechanisms of photoprotection involving the accumulation of zeaxanthin. However, the aba4-1 npq1 double mutant, lacking zeaxanthin and neoxanthin, underwent stronger PSII photoinhibition and more extensive oxidation of pigments than the npq1 mutant, which still contains neoxanthin. We conclude that neoxanthin preserves PSII from photoinactivation and protects membrane lipids from photooxidation by reactive oxygen species. Neoxanthin appears particularly active against superoxide anions produced by the Mehler's reaction, whose rate is known to be enhanced in abiotic stress conditions.

  13. A transcriptional approach to unravel the connection between phospholipases A₂ and D and ABA signal in citrus under water stress.

    Science.gov (United States)

    Romero, Paco; Lafuente, M Teresa; Alférez, Fernando

    2014-07-01

    The effect of water stress on the interplay between phospholipases (PL) A2 and D and ABA signalling was investigated in fruit and leaves from the sweet orange Navelate and its fruit-specific ABA-deficient mutant Pinalate by studying simultaneously expression of 5 PLD and 3 PLA2-encoding genes. In general, expression levels of PLD-encoding genes were higher at harvest in the flavedo (coloured outer part of the peel) from Pinalate. Moreover, a higher and transient increase in expression of CsPLDα, CsPLDβ, CsPLDδ and CsPLDζ was observed in the mutant as compared to Navelate fruit under water stress, which may reflect a mechanism of acclimation to water stress influenced by ABA deficiency. An early induction in CsPLDγ gene expression, when increase in peel damage during fruit storage was most evident, suggested a role for this gene in membrane degradation processes during water stress. Exogenous ABA on mutant fruit modified the expression of all PLD genes and reduced the expression of CsPLDα and CsPLDβ by 1 week to levels similar to those of Navelate, suggesting a repressor role of ABA on these genes. In general, CssPLA2α and β transcript levels were lower in flavedo from Pinalate than from Navelate fruit during the first 3 weeks of storage, suggesting that expression of these genes also depends at least partially on ABA levels. Patterns of expression of PLD and PLA2-encoding genes were very similar in Navelate and Pinalate leaves, which have similar ABA levels, when comparing both RH conditions. Results comparison with other from previous works in the same experimental systems helped to decipher the effect of the stress severity on the differential response of some of these genes under dehydration conditions and pointed out the interplay between PLA2 and PLD families and their connection with ABA signalling in citrus. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Bromodomain proteins GTE9 and GTE11 are essential for specific BT2-mediated sugar and ABA responses in Arabidopsis thaliana.

    Science.gov (United States)

    Misra, Anjali; McKnight, Thomas D; Mandadi, Kranthi K

    2018-03-01

    Global Transcription Factor Group E proteins GTE9 and GTE11 interact with BT2 to mediate ABA and sugar responses in Arabidopsis thaliana. BT2 is a BTB-domain protein that regulates responses to various hormone, stress and metabolic conditions in Arabidopsis thaliana. Loss of BT2 results in plants that are hypersensitive to inhibition of germination by abscisic acid (ABA) and sugars. Conversely, overexpression of BT2 results in resistance to ABA and sugars. Here, we report the roles of BT2-interacting partners GTE9 and GTE11, bromodomain and extraterminal-domain proteins of Global Transcription Factor Group E, in BT2-mediated responses to sugars and hormones. Loss-of-function mutants, gte9-1 and gte11-1, mimicked the bt2-1-null mutant responses; germination of all three mutants was hypersensitive to inhibition by glucose and ABA. Loss of either GTE9 or GTE11 in a BT2 over-expressing line blocked resistance to sugars and ABA, indicating that both GTE9 and GTE11 were required for BT2 function. Co-immunoprecipitation of BT2 and GTE9 suggested that these proteins physically interact in vivo, and presumably function together to mediate responses to ABA and sugar signals.

  15. Daya Hambat Infusum Daun Sirih Terhadap Pertumbuhan Staphylococcus aureus Yang Diisolasi Dari Denture Stomatitis ; Penelitian In Vitro.

    OpenAIRE

    bin Abdullah, Muhammad Naim

    2011-01-01

    Denture Stomatitis merupakan lesi mukosa oral berwarna merah, sakit, dan bengkak, kondisi ini karena kebiasaan jelek pada pemakai gigitiruan yang tidak mumbuka protesa pada malam hari dan jarang dibersihkan. Faktor sistemik yang mendukung terjadinya Denture Stomatitis dapat disebabkan oleh beberapa bakteri, salah satunya Staphylococcus aureus. Pencegahan Denture Stomatitis dapat dilakukan dengan sering membersihkan gigitiruan dan pemakaian obat kumur. Tujuan penelitian ini adalah untuk menguj...

  16. Road Closures

    Data.gov (United States)

    Montgomery County of Maryland — This is an up to date map of current road closures in Montgomery County.This dataset is updated every few minutes from the Department of Transportation road closure...

  17. Cloning and expression profiling of the PacSnRK2 and PacPP2C gene families during fruit development, ABA treatment, and dehydration stress in sweet cherry.

    Science.gov (United States)

    Shen, Xinjie; Guo, Xiao; Zhao, Di; Zhang, Qiang; Jiang, Yuzhuang; Wang, Yantao; Peng, Xiang; Wei, Yan; Zhai, Zefeng; Zhao, Wei; Li, Tianhong

    2017-10-01

    Plant SNF1-related protein kinase 2 (SnRK2) and protein phosphatase 2C (PP2C) family members are core components of the ABA signal transduction pathway. SnRK2 and PP2C proteins have been suggested to play crucial roles in fruit ripening and improving plant tolerance to drought stress, but supporting genetic information has been lacking in sweet cherry (Prunus avium L.). Here, we cloned six full-length SnRK2 genes and three full-length PP2C genes from sweet cherry cv. Hong Deng. Quantitative PCR analysis revealed that PacSnRK2.2, PacSnRK2.3, PacSnRK2.6, and PacPP2C1-3 were negatively regulated in fruits in response to exogenous ABA treatment, PacSnRK2.4 and PacSnRK2.5 were upregulated, and PacSnRK2.1 expression was not affected. The ABA treatment also significantly promoted the accumulation of anthocyanins in sweet cherry fruit. The expression of all PacSnRK2 and PacPP2C genes was induced by dehydration stress, which also promoted the accumulation of drought stress signaling molecules in the sweet cherry fruits, including ABA, soluble sugars, and anthocyanin. Furthermore, a yeast two-hybrid analysis demonstrated that PacPP2C1 interacts with all six PacSnRK2s, while PacPP2C3 does not interact with PacSnRK2.5. PacPP2C2 does not interact with PacSnRK2.1 or PacSnRK2.4. These results indicate that PacSnRK2s and PacPP2Cs may play a variety of roles in the sweet cherry ABA signaling pathway and the fruit response to drought stress. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Method for estimating steam hammer effects on swing-check valves during closure

    International Nuclear Information System (INIS)

    Uram, E.M.

    1976-01-01

    Relationships are developed for estimating the disk impact velocity resulting from a free swing closure of swing-check valves in normal flow and for pipe rupture. They derive from a phase-plane solution of the differential equation for the disk motion that accounts for the nature of the valve pressure drop variation due to steam-hammer effects during closure. For closure in normal flow, the method presented has a more correct foundation than that given in reference where a constant, average valve pressure differential based upon the steady-state pressure drop for the total piping system (which has no real relationship to the steam-hammer-induced valve pressure changes during the closure transient) is used in the valve disk motion equation

  19. The ABA-INSENSITIVE-4 (ABI4) transcription factor links redox, hormone and sugar signaling pathways.

    Science.gov (United States)

    Foyer, Christine H; Kerchev, Pavel I; Hancock, Robert D

    2012-02-01

    The cellular reduction-oxidation (redox) hub processes information from metabolism and the environment and so regulates plant growth and defense through integration with the hormone signaling network. One key pathway of redox control involves interactions with ABSCISIC ACID (ABA). Accumulating evidence suggests that the ABA-INSENSITIVE-4 (ABI4) transcription factor plays a key role in transmitting information concerning the abundance of ascorbate and hence the ability of cells to buffer oxidative challenges. ABI4 is required for the ascorbate-dependent control of growth, a process that involves enhancement of salicylic acid (SA) signaling and inhibition of jasmonic acid (JA) signaling pathways. Low redox buffering capacity reinforces SA- JA- interactions through the mediation of ABA and ABI4 to fine-tune plant growth and defense in relation to metabolic cues and environmental challenges. Moreover, ABI4-mediated pathways of sugar sensitivity are also responsive to the abundance of ascorbate, providing evidence of overlap between redox and sugar signaling pathways.

  20. Evidence-based modelling of diverse plant water use strategies on stomatal and non-stomatal components under drought

    Science.gov (United States)

    zhou, S.; Prentice, C.; Medlyn, B. E.; Sabaté, S.

    2013-12-01

    Models disagree on how to represent effects of drought stress on plant gas exchange. Some models assume drought stress affects the marginal water use efficiency of plants (marginal WUE; i.e. the change in photosynthesis per unit of change in transpiration) whereas others assume drought stress acts directly on photosynthetic capacity. It is not clear whether either of these approaches is sufficient to capture the drought response, or whether the effect of drought varies among species and functional types. A collection of Eucalyptus and Quercus species derived from different hydro-climate habitats, in together with two European riparian species, were conducted with drought treatments respectively in Australia and Spain for three months. Measurements included net CO2 assimilation rate versus substomatal CO2 concentration (A-Ci) curves, fluorescence, and predawn leaf water potential at increasing levels of water stress. The correlations with quantitative plant traits of leaf, stomata, vessel, and wood density, leaf nitrogen content and 13C discrimination were also explored. We analysed the effect of drought effect on leaf gas exchange with a recently developed stomatal model that reconciles the empirical and optimal approaches on predicting optimal stomatal conductance. The model's single parameter g1 is a decreasing function of marginal WUE. The two genera showed consistence on the contrasting response patterns between species derived from mesic and arid habitats, which differed greatly in their estimated g1 values under moist conditions, and in the rate at which g1 declined with water stress. They also differed greatly in the predawn water potential at which apparent carboxylation capacity (apparent Vcmax) and mesophyll conductance (gm) declined most steeply, and in the steepness of this decline. Principal components analysis revealed a gradient in water relation strategies from sclerophyll species to malacophyll species. Malacophylls had higher g1, apparent Vcmax

  1. Interferometric Imaging Directly with Closure Phases and Closure Amplitudes

    Science.gov (United States)

    Chael, Andrew A.; Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy L.; Akiyama, Kazunori; Narayan, Ramesh

    2018-04-01

    Interferometric imaging now achieves angular resolutions as fine as ∼10 μas, probing scales that are inaccessible to single telescopes. Traditional synthesis imaging methods require calibrated visibilities; however, interferometric calibration is challenging, especially at high frequencies. Nevertheless, most studies present only a single image of their data after a process of “self-calibration,” an iterative procedure where the initial image and calibration assumptions can significantly influence the final image. We present a method for efficient interferometric imaging directly using only closure amplitudes and closure phases, which are immune to station-based calibration errors. Closure-only imaging provides results that are as noncommittal as possible and allows for reconstructing an image independently from separate amplitude and phase self-calibration. While closure-only imaging eliminates some image information (e.g., the total image flux density and the image centroid), this information can be recovered through a small number of additional constraints. We demonstrate that closure-only imaging can produce high-fidelity results, even for sparse arrays such as the Event Horizon Telescope, and that the resulting images are independent of the level of systematic amplitude error. We apply closure imaging to VLBA and ALMA data and show that it is capable of matching or exceeding the performance of traditional self-calibration and CLEAN for these data sets.

  2. Personality Traits among Inmates of Aba Prison in Nigeria: Influence ...

    African Journals Online (AJOL)

    Aim: To assess the personality traits of inmates in Aba prison. Methods: Four hundred and six inmates were studied. Each inmate completed a semi-structured sociodemographic questionnaire and personality traits were assessed with the 44-item Big Five Inventory. Results: The majority (72.7%) of the inmates were within ...

  3. Observations of leaf stomatal conductance at the canopy scale: an atmospheric modeling perspective

    International Nuclear Information System (INIS)

    Avissar, R.

    1993-01-01

    Plant stomata play a key role in the redistribution of energy received on vegetated land into sensible and latent heat. As a result, they have a considerable impact on the atmospheric planetary boundary layer, the hydrologic cycle, the climate, and the weather. Current parameterizations of the stomatal mechanism in state-of-the-art atmospheric models are based on empirical relations that are established at the leaf scale between stomatal conductance and environmental conditions. In order to evaluate these parameterizations, an experiment was carried out on a potato field in New Jersey during the summer of 1989. Stomatal conductances were measured within a small homogeneous area in the middle of the potato field and under a relatively broad range of atmospheric conditions. A large variability of stomatal conductances was observed. This variability, which was associated with the variability of micro-environmental and physiological conditions that is found even in a homogeneous canopy, cannot be simulated explicitly on the scale of a single agricultural field and,a fortiori, on the scale of atmospheric models. Furthermore, this variability could not be related to the environmental conditions measured at a height of 2 m above the plant canopy simultaneously with the conductances, reinforcing the concept of scale decoupling suggested by Jarvis and McNaughton (1986) and McNaughton and Jarvis (1991). Thus, for atmospheric modeling purposes, a parameterization of stomatal conductance at the canopy scale using external environmental forcing conditions seems more appropriate than a parameterization based on leaf-scale stomatal conductance, as currently adopted in state-of-the-art atmospheric models. The measured variability was characterized by a lognormal probability density function (pdf) that remained relatively stable during the entire measuring period. These observations support conclusions by McNaughton and Jarvis (1991) that, unlike current parameterizations, a

  4. Observations of leaf stomatal conductance at the canopy scale: an atmospheric modeling perspective

    International Nuclear Information System (INIS)

    Avissar, R.

    1993-01-01

    Plant stomata play a key role in the redistribution of energy received on vegetated land into sensible and latent heat. As a result, they have a considerable impact on the atmospheric planetary boundary layer, the hydrologic cycle, the climate, and the weather. Current parameterizations of the stomatal mechanism in state-of-the-art atmospheric models are based on empirical relations that are established at the leaf scale between stomatal conductance and environmental conditions. In order to evaluate these parameterizations, an experiment was carried out on a potato field in New Jersey during the summer of 1989. Stomatal conductances were measured within a small homogeneous area in the middle of the potato field and under a relatively broad range of atmospheric conditions. A large variability of stomatal conductances was observed. This variability, which was associated with the variability of micro-environmental and physiological conditions that is found even in a homogeneous canopy, cannot be simulated explicitly on the scale of a single agricultural field and, a fortiori, on the scale of atmospheric models. Furthermore, this variability could not be related to the environmental conditions measured at a height of 2 m above the plant canopy simultaneously with the conductances, reinforcing the concept of scale decoupling suggested by Jarvis and McNaughton (1986) and McNaughton and Jarvis (1991). Thus, for atmospheric modeling purposes, a parameterization of stomatal conductance at the canopy scale using external environmental forcing conditions seems more appropriate than a parameterization based on leaf-scale stomatal conductance, as currently adopted in state-of-the-art atmospheric models. The measured variability was characterized by a lognormal probability density function (pdf) that remained relatively stable during the entire measuring period. These observations support conclusions by McNaughton and Jarvis (1991) that, unlike current parameterizations, a

  5. Overlapping and distinct roles of AKIN10 and FUSCA3 in ABA and sugar signaling during seed germination.

    Science.gov (United States)

    Tsai, Allen Yi-Lun; Gazzarrini, Sonia

    2012-10-01

    The Arabidopsis B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed maturation and also a central modulator of hormonal responses during late embryogenesis and germination. Recently, we have identified AKIN10, the Arabidopsis ortholog of Snf1 (Sucrose Non-Fermenting-1)-Related Kinase1 (SnRK1), as a FUS3-interacting protein. We demonstrated that AKIN10 physically interacts with and phosphorylates FUS3 at its N-terminal region, and genetically interacts with FUS3 to regulate developmental phase transition and lateral organ growth. Snf1/AMPK/SnRK1 kinases are important sensors of the cellular energy level, and they are activated in response to starvation and cellular stress. Here we present findings that indicate FUS3 and AKIN10 functionally overlap in ABA signaling, but play different roles in sugar responses during germination. Seeds overexpressing FUS3 and AKIN10 both display ABA-hypersensitivity and delayed germination. The latter is partly dependent on de novo ABA synthesis in both genotypes, as delayed germination can be partially rescued by the ABA biosynthesis inhibitor, fluridone. However, seeds and seedlings overexpressing FUS3 and AKIN10 show different sugar responses. AKIN10-overexpressing seeds and seedlings are hypersensitive to glucose, while those overexpressing FUS3 display overall defects in osmotic stress, primarily during seedling growth, as they show increased sensitivity toward sorbitol and glucose. Hypersensitivity to sugar and/or osmotic stress during germination are partly dependent on de novo ABA synthesis for both genotypes, although are likely to act through distinct pathways. This data suggests that AKIN10 and FUS3 both act as positive regulators of seed responses to ABA, and that AKIN10 regulates sugar signaling while FUS3 mediates osmotic stress responses.

  6. Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yuwei eSong

    2016-02-01

    Full Text Available Many studies have shown that exogenous abscisic acid (ABA promotes leaf abscission and senescence. However, owing to a lack of genetic evidence, ABA function in plant senescence has not been clearly defined. Here, two-leaf early-senescence mutants (eas that were screened by chlorophyll fluorescence imaging and named eas1-1 and eas1-2 showed high photosynthetic capacity in the early stage of plant growth compared with the wild type. Gene mapping showed that eas1-1 and eas1-2 are two novel ABA2 allelic mutants. Under unstressed conditions, the eas1 mutations caused plant dwarf, early germination, larger stomatal apertures, and early leaf senescence compared with those of the wild type. Flow cytometry assays showed that the cell apoptosis rate in eas1 mutant leaves was higher than that of the wild type after day 30. A significant increase in the transcript levels of several senescence-associated genes, especially SAG12, was observed in eas1 mutant plants in the early stage of plant growth. More importantly, ABA-activated calcium channel activity in plasma membrane and induced the increase of cytoplasmic calcium concentration in guard cells are suppressed due to the mutation of EAS1. In contrast, the eas1 mutants lost chlorophyll and ion leakage significant faster than in the wild type under treatment with calcium channel blocker. Hence, our results indicate that endogenous ABA level is an important factor controlling the onset of leaf senescence through Ca2+ signaling.

  7. Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in Aspergillus fumigatus

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kwang-Soo, E-mail: shinks@dju.kr [Division of Life Science, Daejeon University, Daejeon, 300-716 (Korea, Republic of); Kim, Young Hwan [Biomedical Omics Team, Korea Basic Science Institute (KBSI), Ohcang, 368-883 (Korea, Republic of); Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764 (Korea, Republic of); Department of Bio-Analytical Science, University of Science and Technology, Daejeon, 305-333 (Korea, Republic of); Yu, Jae-Hyuk, E-mail: jyu1@wisc.edu [Departments of Bacteriology and Genetics, The University of Wisconsin–Madison, Madison, WI, 53706 (United States)

    2015-07-31

    The opportunistic human pathogenic fungus Aspergillus fumigatus primarily reproduces by forming a large number of asexual spores (conidia). Sequential activation of the central regulators BrlA, AbaA and WetA is necessary for the fungus to undergo asexual development. In this study, to address the presumed roles of these key developmental regulators during proliferation of the fungus, we analyzed and compared the proteomes of vegetative cells of wild type (WT) and individual mutant strains. Approximately 1300 protein spots were detectable from 2-D electrophoresis gels. Among these, 13 proteins exhibiting significantly altered accumulation levels were further identified by ESI-MS/MS. Markedly, we found that the GliM and GliT proteins associated with gliotoxin (GT) biosynthesis and self-protection of the fungus from GT were significantly down-regulated in the ΔabaA and ΔbrlA mutants. Moreover, mRNA levels of other GT biosynthetic genes including gliM, gliP, gliT, and gliZ were significantly reduced in both mutant strains, and no and low levels of GT were detectable in the ΔbrlA and ΔabaA mutant strains, respectively. As GliT is required for the protection of the fungus from GT, growth of the ΔbrlA mutant with reduced levels of GliT was severely impaired by exogenous GT. Our studies demonstrate that AbaA and BrlA positively regulate expression of the GT biosynthetic gene cluster in actively growing vegetative cells, and likely bridge morphological and chemical development during the life-cycle of A. fumigatus. - Highlights: • Proteome analyses of WT and mutants reveal 13 differentially expressed proteins. • The GliT and GliM proteins are significantly down-regulated by ΔabaA and ΔbrlA. • Expression of other gliotoxin biosynthetic genes is lowered by ΔabaA and ΔbrlA. • Growth of ΔbrlA strain lacking GliT is completely inhibited by exogenous gliotoxin. • BrlA and AbaA play key roles in biogenesis of gliotoxin in Aspergillus fumigatus.

  8. Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in Aspergillus fumigatus

    International Nuclear Information System (INIS)

    Shin, Kwang-Soo; Kim, Young Hwan; Yu, Jae-Hyuk

    2015-01-01

    The opportunistic human pathogenic fungus Aspergillus fumigatus primarily reproduces by forming a large number of asexual spores (conidia). Sequential activation of the central regulators BrlA, AbaA and WetA is necessary for the fungus to undergo asexual development. In this study, to address the presumed roles of these key developmental regulators during proliferation of the fungus, we analyzed and compared the proteomes of vegetative cells of wild type (WT) and individual mutant strains. Approximately 1300 protein spots were detectable from 2-D electrophoresis gels. Among these, 13 proteins exhibiting significantly altered accumulation levels were further identified by ESI-MS/MS. Markedly, we found that the GliM and GliT proteins associated with gliotoxin (GT) biosynthesis and self-protection of the fungus from GT were significantly down-regulated in the ΔabaA and ΔbrlA mutants. Moreover, mRNA levels of other GT biosynthetic genes including gliM, gliP, gliT, and gliZ were significantly reduced in both mutant strains, and no and low levels of GT were detectable in the ΔbrlA and ΔabaA mutant strains, respectively. As GliT is required for the protection of the fungus from GT, growth of the ΔbrlA mutant with reduced levels of GliT was severely impaired by exogenous GT. Our studies demonstrate that AbaA and BrlA positively regulate expression of the GT biosynthetic gene cluster in actively growing vegetative cells, and likely bridge morphological and chemical development during the life-cycle of A. fumigatus. - Highlights: • Proteome analyses of WT and mutants reveal 13 differentially expressed proteins. • The GliT and GliM proteins are significantly down-regulated by ΔabaA and ΔbrlA. • Expression of other gliotoxin biosynthetic genes is lowered by ΔabaA and ΔbrlA. • Growth of ΔbrlA strain lacking GliT is completely inhibited by exogenous gliotoxin. • BrlA and AbaA play key roles in biogenesis of gliotoxin in Aspergillus fumigatus

  9. Growth and ABA responses of maple seedlings to aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, A.; Robitaille, G.; Boutin, R. [Canadian Forestry Service, Sainte Foy, PQ (Canada); Nadeau, P. [Agriculture and Agri-Food Canada Research Station, Sainte-Foy, PQ (Canada)

    1995-12-01

    The impacts of low pH and 2.0 mM aluminum (Al) on the growth of sugar maple seedlings was assessed over a 13-week period. The hypothesis was that low pH and high aluminum concentration would lower the vigor of sugar maple seedlings and were contributing factors to sugar maple stand decline. The effects of the stresses were measured in roots and shoots. The concentration of abscisis acid (ABA) in xylem sap in response to Al over time was measured to determine whether it could be used as an indicator of Al stress in sugar maple seedlings. At week 9, total leaf area of Al-treated seedlings was reduced by 27%, but by week 13 leaf area was similar for seedlings in all treatments. None of the other growth parameters examined were negatively affected by the treatments at either week 9 or week 13. ABA concentration in the xylem sap was not affected by any of the treatments. The duration of exposure to Al was found critical when assessing a threshold concentration for Al toxicity because plants can acclimate to an Al concentration previously considered toxic. 36 refs., 1 tab., 6 figs.

  10. Characterization of the Promoter Region of an Arabidopsis Gene for 9-cis-Epoxycarotenoid Dioxygenase Involved in Dehydration-Inducible Transcription

    Science.gov (United States)

    Behnam, Babak; Iuchi, Satoshi; Fujita, Miki; Fujita, Yasunari; Takasaki, Hironori; Osakabe, Yuriko; Yamaguchi-Shinozaki, Kazuko; Kobayashi, Masatomo; Shinozaki, Kazuo

    2013-01-01

    Plants respond to dehydration stress and tolerate water-deficit status through complex physiological and cellular processes. Many genes are induced by water deficit. Abscisic acid (ABA) plays important roles in tolerance to dehydration stress by inducing many stress genes. ABA is synthesized de novo in response to dehydration. Most of the genes involved in ABA biosynthesis have been identified, and they are expressed mainly in leaf vascular tissues. Of the products of such genes, 9-cis-epoxycarotenoid dioxygenase (NCED) is a key enzyme in ABA biosynthesis. One of the five NCED genes in Arabidopsis, AtNCED3, is significantly induced by dehydration. To understand the regulatory mechanism of the early stages of the dehydration stress response, it is important to analyse the transcriptional regulatory systems of AtNCED3. In the present study, we found that an overlapping G-box recognition sequence (5′-CACGTG-3′) at −2248 bp from the transcriptional start site of AtNCED3 is an important cis-acting element in the induction of the dehydration response. We discuss the possible transcriptional regulatory system of dehydration-responsive AtNCED3 expression, and how this may control the level of ABA under water-deficit conditions. PMID:23604098

  11. Light energy dissipation under water stress conditions

    International Nuclear Information System (INIS)

    Stuhlfauth, T.; Scheuermann, R.; Fock, H.P.

    1990-01-01

    Using 14 CO 2 gas exchange and metabolite analyses, stomatal as well as total internal CO 2 uptake and evolution were estimated. Pulse modulated fluorescence was measured during induction and steady state of photosynthesis. Leaf water potential of Digitalis lanata EHRH. plants decreased to -2.5 megapascals after withholding irrigation. By osmotic adjustment, leaves remained turgid and fully exposed to irradiance even at severe water stress. Due to the stress-induced reduction of stomatal conductance, the stomatal CO 2 exchange was drastically reduced, whereas the total CO 2 uptake and evolution were less affected. Stomatal closure induced an increase in the reassimilation of internally evolved CO 2 . This CO 2 -recycling consumes a significant amount of light energy in the form of ATP and reducing equivalents. As a consequence, the metabolic demand for light energy is only reduced by about 40%, whereas net photosynthesis is diminished by about 70% under severe stress conditions. By CO 2 recycling, carbon flux, enzymatic substrate turnover and consumption of light energy were maintained at high levels, which enabled the plant to recover rapidly after rewatering. In stressed D. lanata plants a variable fluorescence quenching mechanism, termed coefficient of actinic light quenching, was observed. Besides water conservation, light energy dissipation is essential and involves regulated metabolic variations

  12. Adaptive Behaviour Assessment System: Indigenous Australian Adaptation Model (ABAS: IAAM)

    Science.gov (United States)

    du Plessis, Santie

    2015-01-01

    The study objectives were to develop, trial and evaluate a cross-cultural adaptation of the Adaptive Behavior Assessment System-Second Edition Teacher Form (ABAS-II TF) ages 5-21 for use with Indigenous Australian students ages 5-14. This study introduced a multiphase mixed-method design with semi-structured and informal interviews, school…

  13. Quantum Hall Effect and Semimetallic Behavior of Dual-Gated ABA-Stacked Trilayer Graphene

    Directory of Open Access Journals (Sweden)

    E. A. Henriksen

    2012-01-01

    Full Text Available The electronic structure of multilayer graphenes depends strongly on the number of layers as well as the stacking order. Here we explore the electronic transport of purely ABA-stacked trilayer graphenes in a dual-gated field-effect device configuration. We find both that the zero-magnetic-field transport and the quantum Hall effect at high magnetic fields are distinctly different from the monolayer and bilayer graphenes, and that they show electron-hole asymmetries that are strongly suggestive of a semimetallic band overlap. When the ABA trilayers are subjected to an electric field perpendicular to the sheet, Landau-level splittings due to a lifting of the valley degeneracy are clearly observed.

  14. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    Science.gov (United States)

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  15. The Arabidopsis aba4-1 Mutant Reveals a Specific Function for Neoxanthin in Protection against Photooxidative Stress[W

    Science.gov (United States)

    Dall'Osto, Luca; Cazzaniga, Stefano; North, Helen; Marion-Poll, Annie; Bassi, Roberto

    2007-01-01

    The aba4-1 mutant completely lacks neoxanthin but retains all other xanthophyll species. The missing neoxanthin in light-harvesting complex (Lhc) proteins is compensated for by higher levels of violaxanthin, albeit with lower capacity for photoprotection compared with proteins with wild-type levels of neoxanthin. Detached leaves of aba4-1 were more sensitive to oxidative stress than the wild type when exposed to high light and incubated in a solution of photosensitizer agents. Both treatments caused more rapid pigment bleaching and lipid oxidation in aba4-1 than wild-type plants, suggesting that neoxanthin acts as an antioxidant within the photosystem II (PSII) supercomplex in thylakoids. While neoxanthin-depleted Lhc proteins and leaves had similar sensitivity as the wild type to hydrogen peroxide and singlet oxygen, they were more sensitive to superoxide anions. aba4-1 intact plants were not more sensitive than the wild type to high-light stress, indicating the existence of compensatory mechanisms of photoprotection involving the accumulation of zeaxanthin. However, the aba4-1 npq1 double mutant, lacking zeaxanthin and neoxanthin, underwent stronger PSII photoinhibition and more extensive oxidation of pigments than the npq1 mutant, which still contains neoxanthin. We conclude that neoxanthin preserves PSII from photoinactivation and protects membrane lipids from photooxidation by reactive oxygen species. Neoxanthin appears particularly active against superoxide anions produced by the Mehler's reaction, whose rate is known to be enhanced in abiotic stress conditions. PMID:17351115

  16. Mechanism of fluridone-induced seed germination of cistanche tubulosa

    International Nuclear Information System (INIS)

    Chen, Q.L.; Tu, P.

    2016-01-01

    Our previous study disclosed that fluridone, a synthesis inhibitor of abscisic acid (ABA), could stimulate seed germination in the holoparasitic plant Cistanche tubulosa . Nonetheless, the underlying mechanisms have not been thoroughly elucidated. In the present study, an attempt was made to reveal the mechanism of fluridone breaking seed dormancy in C. tubulosa and to determine the contribution of hormones in this process. The ABA level in seeds initially decreased following fluridone treatment and was subsequently maintained at a concentration of 31 ng g/sup -1/ DW (dry weight) three days later. The contents of gibberellins (GAs) initially in creased and subsequently were maintained at a level of 40 ng g-1 DW after ten days. However, the increment of seed germination induced by fluridone was inhibited after the introduction of exogenous ABA or paclobutrazol (a synthesis inhibitor of GAs). Furthermore, inhibition from paclobutrazol was reversed by an additional treatment with exogenous GA3. When the ratio of endogenous GAs to ABA reached 4:3, C. tubulosa seeds initiated germination. By contrast, although the ratio of endogenous GAs to ABA content reached 2:1 by cold stratification, C. tubulosa seeds could not germinate unless exogenous GA3 was added. In summary, our current study revealed that (i) GAs and ABA play key roles for the seed germination of C. tubulosa , (ii) fluridone inhibited ABA biosynthesis but increased the concentration of GAs in seeds, and (iii) fluridone might initiate other processes associated with germination. (author)

  17. Mixed allogeneic reconstitution (A+B----A) to induce donor-specific transplantation tolerance. Permanent acceptance of a simultaneous donor skin graft

    International Nuclear Information System (INIS)

    Ildstad, S.T.; Wren, S.M.; Oh, E.; Hronakes, M.L.

    1991-01-01

    Mixed allogeneic reconstitution, in which a mixture of T-cell-depleted bone marrow of syngeneic host and allogeneic donor type is transplanted into a lethally irradiated recipient (A+B----A), results in mixed lymphopoietic chimerism with engraftment of a mixture of both host and donor bone marrow elements. Recipients are specifically tolerant to donor both in vitro and in vivo. Donor-specific skin grafts survive indefinitely when they are placed after full bone marrow repopulation at 28 days, while third-party grafts are rapidly rejected. To determine whether a delay of a month or more for full bone marrow repopulation is required before a donor-specific graft can be placed, we have now examined whether tolerance induction can be achieved if a graft is placed at the time of bone marrow transplantation. Permanent acceptance of donor-specific B10.BR skin grafts occurred when mixed allogeneic chimerism (B10+B10.BR----B10) was induced and a simultaneous allogeneic donor graft placed. In vitro, mixed reconstituted recipients were specifically tolerant to the B10.BR donor lymphoid cells but fully reactive to MHC-disparate third-party (BALB/c; H-2dd) when assessed by mixed lymphocyte reaction (MLR) and cell-mediated lympholysis (CML) assays. These data therefore indicate that a donor-specific graft placed at the time of mixed allogeneic reconstitution is permanently accepted without rejection. To determine whether an allogeneic skin graft alone without allogeneic bone marrow would be sufficient to induce tolerance, syngeneic reconstitution (B10----B10) was carried out, and a simultaneous B10.BR allogeneic skin graft placed. Although skin grafts were prolonged in all recipients, all grafts rejected when full lymphopoietic repopulation occurred at 28 days

  18. Differences in Copper Absorption and Accumulation between Copper-Exclusion and Copper-Enrichment Plants: A Comparison of Structure and Physiological Responses.

    Science.gov (United States)

    Fu, Lei; Chen, Chen; Wang, Bin; Zhou, Xishi; Li, Shuhuan; Guo, Pan; Shen, Zhenguo; Wang, Guiping; Chen, Yahua

    2015-01-01

    Differences in copper (Cu) absorption and transport, physiological responses and structural characteristics between two types of Cu-resistant plants, Oenothera glazioviana (Cu-exclusion type) and Elsholtzia haichowensis (Cu-enrichment type), were investigated in the present study. The results indicated the following: (1) After 50 μM Cu treatment, the Cu ratio in the xylem vessels of E. haichowensis increased by 60%. A Cu adsorption experiment indicated that O. glazioviana exhibited greater resistance to Cu, and Cu absorption and the shoot/root ratio of Cu were significantly lower in O. glazioviana than in E. haichowensis. (2) An analysis of the endogenous abscisic acid (ABA) variance and exogenous ABA treatment demonstrated that the ABA levels of both plants did not differ; exogenous ABA treatment clearly reduced Cu accumulation in both plants. (3) The leaf stomatal density of O. glazioviana was significantly less than that of E. haichowensis. Guard cells in E. haichowensis plants were covered with a thick cuticle layer, the epidermal hair was more numerous and longer, and the number of xylem conduits in the root was small. (4) The transpiration rate and the stomatal conductance of O. glazioviana were both significantly lower than those of E. haichowensis, regardless of whether the plants were treated with Cu. Taken together, these results indicate that the differences in the structural characteristics between these two plant species, particularly in the characteristics related to plant transpiration, are important factors that govern whether plants acquire or exclude Cu.

  19. Differences in Copper Absorption and Accumulation between Copper-Exclusion and Copper-Enrichment Plants: A Comparison of Structure and Physiological Responses

    Science.gov (United States)

    Fu, Lei; Chen, Chen; Wang, Bin; Zhou, Xishi; Li, Shuhuan; Guo, Pan; Shen, Zhenguo; Wang, Guiping; Chen, Yahua

    2015-01-01

    Differences in copper (Cu) absorption and transport, physiological responses and structural characteristics between two types of Cu-resistant plants, Oenothera glazioviana (Cu-exclusion type) and Elsholtzia haichowensis (Cu-enrichment type), were investigated in the present study. The results indicated the following: (1) After 50 μM Cu treatment, the Cu ratio in the xylem vessels of E. haichowensis increased by 60%. A Cu adsorption experiment indicated that O. glazioviana exhibited greater resistance to Cu, and Cu absorption and the shoot/root ratio of Cu were significantly lower in O. glazioviana than in E. haichowensis. (2) An analysis of the endogenous abscisic acid (ABA) variance and exogenous ABA treatment demonstrated that the ABA levels of both plants did not differ; exogenous ABA treatment clearly reduced Cu accumulation in both plants. (3) The leaf stomatal density of O. glazioviana was significantly less than that of E. haichowensis. Guard cells in E. haichowensis plants were covered with a thick cuticle layer, the epidermal hair was more numerous and longer, and the number of xylem conduits in the root was small. (4) The transpiration rate and the stomatal conductance of O. glazioviana were both significantly lower than those of E. haichowensis, regardless of whether the plants were treated with Cu. Taken together, these results indicate that the differences in the structural characteristics between these two plant species, particularly in the characteristics related to plant transpiration, are important factors that govern whether plants acquire or exclude Cu. PMID:26207743

  20. Differences in Copper Absorption and Accumulation between Copper-Exclusion and Copper-Enrichment Plants: A Comparison of Structure and Physiological Responses.

    Directory of Open Access Journals (Sweden)

    Lei Fu

    Full Text Available Differences in copper (Cu absorption and transport, physiological responses and structural characteristics between two types of Cu-resistant plants, Oenothera glazioviana (Cu-exclusion type and Elsholtzia haichowensis (Cu-enrichment type, were investigated in the present study. The results indicated the following: (1 After 50 μM Cu treatment, the Cu ratio in the xylem vessels of E. haichowensis increased by 60%. A Cu adsorption experiment indicated that O. glazioviana exhibited greater resistance to Cu, and Cu absorption and the shoot/root ratio of Cu were significantly lower in O. glazioviana than in E. haichowensis. (2 An analysis of the endogenous abscisic acid (ABA variance and exogenous ABA treatment demonstrated that the ABA levels of both plants did not differ; exogenous ABA treatment clearly reduced Cu accumulation in both plants. (3 The leaf stomatal density of O. glazioviana was significantly less than that of E. haichowensis. Guard cells in E. haichowensis plants were covered with a thick cuticle layer, the epidermal hair was more numerous and longer, and the number of xylem conduits in the root was small. (4 The transpiration rate and the stomatal conductance of O. glazioviana were both significantly lower than those of E. haichowensis, regardless of whether the plants were treated with Cu. Taken together, these results indicate that the differences in the structural characteristics between these two plant species, particularly in the characteristics related to plant transpiration, are important factors that govern whether plants acquire or exclude Cu.

  1. Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice (Oryza sativa L.) Seedlings

    Science.gov (United States)

    He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-01-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development. PMID:25330236

  2. Thermal infrared imaging of the temporal variability in stomatal conductance for fruit trees

    Science.gov (United States)

    Struthers, Raymond; Ivanova, Anna; Tits, Laurent; Swennen, Rony; Coppin, Pol

    2015-07-01

    Repeated measurements using thermal infrared remote sensing were used to characterize the change in canopy temperature over time and factors that influenced this change on 'Conference' pear trees (Pyrus communis L.). Three different types of sensors were used, a leaf porometer to measure leaf stomatal conductance, a thermal infrared camera to measure the canopy temperature and a meteorological sensor to measure weather variables. Stomatal conductance of water stressed pear was significantly lower than in the control group 9 days after stress began. This decrease in stomatal conductance reduced transpiration, reducing evaporative cooling that increased canopy temperature. Using thermal infrared imaging with wavelengths between 7.5 and13 μm, the first significant difference was measured 18 days after stress began. A second order derivative described the average rate of change of the difference between the stress treatment and control group. The average rate of change for stomatal conductance was 0.06 (mmol m-2 s-1) and for canopy temperature was -0.04 (°C) with respect to days. Thermal infrared remote sensing and data analysis presented in this study demonstrated that the differences in canopy temperatures between the water stress and control treatment due to stomata regulation can be validated.

  3. Oral symptoms and salivary findings in oral lichen planus, oral lichenoid lesions and stomatitis

    DEFF Research Database (Denmark)

    Larsen, Kristine Roen; Johansen, Jeanne Duus; Reibel, Jesper

    2017-01-01

    BACKGROUND: To examine if patients with oral lichen planus, oral lichenoid lesions and generalised stomatitis and concomitant contact allergy have more frequent and severe xerostomia, lower unstimulated and chewing-stimulated saliva and citric-acid-stimulated parotid saliva flow rates, and higher...... of xerostomia, clinical examination, sialometry, mucosal biopsy and contact allergy testing. RESULTS: Nineteen patients had oral lichen planus, 19 patients had oral lichenoid lesions and 11 patients had generalised stomatitis. 38.8% had contact allergy. Xerostomia was significantly more common and severe...... in the chewing stimulated saliva samples from patients when compared to healthy controls. The differences were not significant and they were irrespective of the presence of contact allergy. CONCLUSION: Xerostomia is prevalent in patients with oral lichen planus, lichenoid lesions and generalised stomatitis...

  4. Closure The Definitive Guide

    CERN Document Server

    Bolin, Michael

    2010-01-01

    If you're ready to use Closure to build rich web applications with JavaScript, this hands-on guide has precisely what you need to learn this suite of tools in depth. Closure makes it easy for experienced JavaScript developers to write and maintain large and complex codebases -- as Google has demonstrated by using Closure with Gmail, Google Docs, and Google Maps. Author and Closure contributor Michael Bolin has included numerous code examples and best practices, as well as valuable information not available publicly until now. You'll learn all about Closure's Library, Compiler, Templates, tes

  5. Induced magnetism in transition metal intercalated graphitic systems

    KAUST Repository

    Kaloni, Thaneshwor P.; Schwingenschlö gl, Udo; Upadhyay Kahaly, M.

    2011-01-01

    We investigate the structure, chemical bonding, electronic properties, and magnetic behavior of a three-dimensional graphitic network in aba and aaa stacking with intercalated transition metal atoms (Mn, Fe, Co, Ni, and Cu). Using density functional theory, we find induced spin-polarization of the C atoms both when the graphene sheets are aba stacked (forming graphite) and aaa stacked (resembling bi-layer graphene). The magnetic moment induced by Mn, Fe, and Co turns out to vary from 1.38 μB to 4.10 μB, whereas intercalation of Ni and Cu does not lead to a magnetic state. The selective induction of spin-polarization can be utilized in spintronic and nanoelectronic applications.

  6. Induced magnetism in transition metal intercalated graphitic systems

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-10-26

    We investigate the structure, chemical bonding, electronic properties, and magnetic behavior of a three-dimensional graphitic network in aba and aaa stacking with intercalated transition metal atoms (Mn, Fe, Co, Ni, and Cu). Using density functional theory, we find induced spin-polarization of the C atoms both when the graphene sheets are aba stacked (forming graphite) and aaa stacked (resembling bi-layer graphene). The magnetic moment induced by Mn, Fe, and Co turns out to vary from 1.38 μB to 4.10 μB, whereas intercalation of Ni and Cu does not lead to a magnetic state. The selective induction of spin-polarization can be utilized in spintronic and nanoelectronic applications.

  7. ABA renewal involves enhancements in both GluA2-lacking AMPA receptor activity and GluA1 phosphorylation in the lateral amygdala.

    Directory of Open Access Journals (Sweden)

    Kyungjoon Park

    Full Text Available Fear renewal, the context-specific relapse of fear following fear extinction, is a leading animal model of post-traumatic stress disorders (PTSD and fear-related disorders. Although fear extinction can diminish fear responses, this effect is restricted to the context where the extinction is carried out, and the extinguished fear strongly relapses when assessed in the original acquisition context (ABA renewal or in a context distinct from the conditioning and extinction contexts (ABC renewal. We have previously identified Ser831 phosphorylation of GluA1 subunit in the lateral amygdala (LA as a key molecular mechanism for ABC renewal. However, molecular mechanisms underlying ABA renewal remain to be elucidated. Here, we found that both the excitatory synaptic efficacy and GluA2-lacking AMPAR activity at thalamic input synapses onto the LA (T-LA synapses were enhanced upon ABA renewal. GluA2-lacking AMPAR activity was also increased during low-threshold potentiation, a potential cellular substrate of renewal, at T-LA synapses. The microinjection of 1-naphtylacetyl-spermine (NASPM, a selective blocker of GluA2-lacking AMPARs, into the LA attenuated ABA renewal, suggesting a critical role of GluA2-lacking AMPARs in ABA renewal. We also found that Ser831 phosphorylation of GluA1 in the LA was increased upon ABA renewal. We developed a short peptide mimicking the Ser831-containing C-tail region of GluA1, which can be phosphorylated upon renewal (GluA1S; thus, the phosphorylated GluA1S may compete with Ser831-phosphorylated GluA1. This GluA1S peptide blocked the low-threshold potentiation when dialyzed into a recorded neuron. The microinjection of a cell-permeable form of GluA1S peptide into the LA attenuated ABA renewal. In support of the GluA1S experiments, a GluA1D peptide (in which the serine at 831 is replaced with a phosphomimetic amino acid, aspartate attenuated ABA renewal when microinjected into the LA. These findings suggest that enhancements

  8. ABA renewal involves enhancements in both GluA2-lacking AMPA receptor activity and GluA1 phosphorylation in the lateral amygdala.

    Science.gov (United States)

    Park, Kyungjoon; Song, Beomjong; Kim, Jeongyeon; Hong, Ingie; Song, Sangho; Lee, Junuk; Park, Sungmo; Kim, Jihye; An, Bobae; Lee, Hyun Woo; Lee, Seungbok; Kim, Hyun; Lee, Justin C; Lee, Sukwon; Choi, Sukwoo

    2014-01-01

    Fear renewal, the context-specific relapse of fear following fear extinction, is a leading animal model of post-traumatic stress disorders (PTSD) and fear-related disorders. Although fear extinction can diminish fear responses, this effect is restricted to the context where the extinction is carried out, and the extinguished fear strongly relapses when assessed in the original acquisition context (ABA renewal) or in a context distinct from the conditioning and extinction contexts (ABC renewal). We have previously identified Ser831 phosphorylation of GluA1 subunit in the lateral amygdala (LA) as a key molecular mechanism for ABC renewal. However, molecular mechanisms underlying ABA renewal remain to be elucidated. Here, we found that both the excitatory synaptic efficacy and GluA2-lacking AMPAR activity at thalamic input synapses onto the LA (T-LA synapses) were enhanced upon ABA renewal. GluA2-lacking AMPAR activity was also increased during low-threshold potentiation, a potential cellular substrate of renewal, at T-LA synapses. The microinjection of 1-naphtylacetyl-spermine (NASPM), a selective blocker of GluA2-lacking AMPARs, into the LA attenuated ABA renewal, suggesting a critical role of GluA2-lacking AMPARs in ABA renewal. We also found that Ser831 phosphorylation of GluA1 in the LA was increased upon ABA renewal. We developed a short peptide mimicking the Ser831-containing C-tail region of GluA1, which can be phosphorylated upon renewal (GluA1S); thus, the phosphorylated GluA1S may compete with Ser831-phosphorylated GluA1. This GluA1S peptide blocked the low-threshold potentiation when dialyzed into a recorded neuron. The microinjection of a cell-permeable form of GluA1S peptide into the LA attenuated ABA renewal. In support of the GluA1S experiments, a GluA1D peptide (in which the serine at 831 is replaced with a phosphomimetic amino acid, aspartate) attenuated ABA renewal when microinjected into the LA. These findings suggest that enhancements in both the

  9. Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco.

    Science.gov (United States)

    Mialoundama, Alexis Samba; Heintz, Dimitri; Debayle, Delphine; Rahier, Alain; Camara, Bilal; Bouvier, Florence

    2009-07-01

    In the Solanaceae, biotic and abiotic elicitors induce de novo synthesis of sesquiterpenoid stress metabolites known as phytoalexins. Because plant hormones play critical roles in the induction of defense-responsive genes, we have explored the effect of abscisic acid (ABA) on the synthesis of capsidiol, the major wild tobacco (Nicotiana plumbaginifolia) sesquiterpenoid phytoalexin, using wild-type plants versus nonallelic mutants Npaba2 and Npaba1 that are deficient in ABA synthesis. Npaba2 and Npaba1 mutants exhibited a 2-fold higher synthesis of capsidiol than wild-type plants when elicited with either cellulase or arachidonic acid or when infected by Botrytis cinerea. The same trend was observed for the expression of the capsidiol biosynthetic genes 5-epi-aristolochene synthase and 5-epi-aristolochene hydroxylase. Treatment of wild-type plants with fluridone, an inhibitor of the upstream ABA pathway, recapitulated the behavior of Npaba2 and Npaba1 mutants, while the application of exogenous ABA reversed the enhanced synthesis of capsidiol in Npaba2 and Npaba1 mutants. Concomitant with the production of capsidiol, we observed the induction of ABA 8'-hydroxylase in elicited plants. In wild-type plants, the induction of ABA 8'-hydroxylase coincided with a decrease in ABA content and with the accumulation of ABA catabolic products such as phaseic acid and dihydrophaseic acid, suggesting a negative regulation exerted by ABA on capsidiol synthesis. Collectively, our data indicate that ABA is not required per se for the induction of capsidiol synthesis but is essentially implicated in a stress-response checkpoint to fine-tune the amplification of capsidiol synthesis in challenged plants.

  10. Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated Arabidopsis seeds

    NARCIS (Netherlands)

    Maia de Oliveira, J.; Dekkers, S.J.W.; Dolle, M.; Ligterink, W.; Hilhorst, H.W.M.

    2014-01-01

    During germination, orthodox seeds lose their desiccation tolerance (DT) and become sensitive to extreme drying. Yet, DT can be rescued, in a well-defined developmental window, by the application of a mild osmotic stress before dehydration. A role for abscisic acid (ABA) has been implicated in this

  11. Overexpression of the transcription factor NF-YC9 confers abscisic acid hypersensitivity in Arabidopsis.

    Science.gov (United States)

    Bi, Chao; Ma, Yu; Wang, Xiao-Fang; Zhang, Da-Peng

    2017-11-01

    Nuclear factor Y (NF-Y) family proteins are involved in many developmental processes and responses to environmental cues in plants, but whether and how they regulate phytohormone abscisic acid (ABA) signaling need further studies. In the present study, we showed that over-expression of the NF-YC9 gene confers ABA hypersensitivity in both the early seedling growth and stomatal response, while down-regulation of NF-YC9 does not affect ABA response in these processes. We also showed that over-expression of the NF-YC9 gene confers salt and osmotic hypersensitivity in early seedling growth, which is likely to be directly associated with the ABA hypersensitivity. Further, we observed that NF-YC9 physically interacts with the ABA-responsive bZIP transcription factor ABA-INSENSITIVE5 (ABI5), and facilitates the function of ABI5 to bind and activate the promoter of a target gene EM6. Additionally, NF-YC9 up-regulates expression of the ABI5 gene in response to ABA. These findings show that NF-YC9 may be involved in ABA signaling as a positive regulator and likely functions redundantly together with other NF-YC members, and support the model that the NF-YC9 mediates ABA signaling via targeting to and aiding the ABA-responsive transcription factors such as ABI5.

  12. Anaemia in Pregnancy in Abia State University Teaching Hospital, Aba

    African Journals Online (AJOL)

    A prospective study of incidence of anaemia in pregnancy at Abia state University Teaching Hospital, Aba was conducted over a six-month period spanning from 31st January 2000 to 31st July 2000. The incidence of anaemia in pregnancy was 29%. The vast majority (97.6%) had mild anaemia. The result showed that most ...

  13. CmWRKY1 Enhances the Dehydration Tolerance of Chrysanthemum through the Regulation of ABA-Associated Genes.

    Directory of Open Access Journals (Sweden)

    Qingqing Fan

    Full Text Available WRKY transcription factors serve as antagonistic or synergistic regulators in a variety of abiotic stress responses in plants. Here, we show that CmWRKY1, a member of the group IIb WRKY family isolated from Chrysanthemum morifolium, exhibits no transcriptional activation in yeast cells. The subcellular localization examination showed that CmWRKY1 localizes to the nucleus in vivo. Furthermore, CmWRKY1-overexpressing transgenic lines exhibit enhanced dehydration tolerance in response to polyethylene glycol (PEG treatment compared with wild-type plants. We further confirmed that the transgenic plants exhibit suppressed expression levels of genes negatively regulated by ABA, such as PP2C, ABI1 and ABI2, and activated expression levels of genes positively regulated by ABA, such as PYL2, SnRK2.2, ABF4, MYB2, RAB18, and DREB1A. Taken together, our results indicate that CmWRKY1 plays an important role in the response to drought in chrysanthemum through an ABA-mediated pathway.

  14. Infection of guinea pigs with vesicular stomatitis New Jersey virus Transmitted by Culicoides sonorensis (Diptera: Ceratopogonidae).

    Science.gov (United States)

    Pérez De León, Adalberto A; O'Toole, Donal; Tabachnick, Walter J

    2006-05-01

    Intrathoracically inoculated Culicoides sonorensis Wirth & Jones were capable of transmitting vesicular stomatitis New Jersey virus (family Rhabdoviridae, genus Vesiculovirus, VSNJV) during blood feeding on the abdomen of six guinea pigs. None of the guinea pigs infected in this manner developed clinical signs of vesicular stomatitis despite seroconversion for VSNJV. Guinea pigs infected by intradermal inoculations of VSNJV in the abdomen also failed to develop clinical signs of vesicular stomatitis. Three guinea pigs given intradermal inoculations of VSNJV in the foot pad developed lesions typical of vesicular stomatitis. Transmission by the bite of C. sonorensis may have facilitated guinea pig infection with VSNJV because a single infected C. sonorensis caused seroconversion and all guinea pigs infected by insect bite seroconverted compared with 50% of the guinea pigs infected by intradermal inoculation with a higher titer VSNJV inoculum. The role of C. sonorensis in the transmission of VSNJV is discussed.

  15. Multivariate moment closure techniques for stochastic kinetic models

    International Nuclear Information System (INIS)

    Lakatos, Eszter; Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H.

    2015-01-01

    Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs

  16. Multivariate moment closure techniques for stochastic kinetic models

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, Eszter, E-mail: e.lakatos13@imperial.ac.uk; Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H., E-mail: m.stumpf@imperial.ac.uk [Department of Life Sciences, Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London SW7 2AZ (United Kingdom)

    2015-09-07

    Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.

  17. Ectopic expression of soybean gmsbh1 confers aba sensitivity during seed germination and early seedling establishment in transgenic arabidopsis

    International Nuclear Information System (INIS)

    Shu, Y.; Zhou, Y.; Huang, S.; Chen, M.; Huang, L.; Ma, H.

    2017-01-01

    The class I KNOX homeobox transcription factors are known to play an important role in maintenance of plant phenotype, especially leaves and flowers. In this study, a soybean KNOX I homeobox transcription factor, GmSBH1, was analyzed and confirmed to play important roles in the process of seed germination and developing. Real time quantitative PCR assay showed that the transcript level of GmSBH1 in soybean seedlings was modulated by plant hormones, such as IAA, GA, MeJA and ABA.Yeast one-hybrid assay showed that GmSBH1 could bind to the ABRE cis-element. Overexpression of GmSBH1 in Arabidopsis resulted in the abnormal phenotype of flowers and siliques. In GmSBH1 transgenic lines, both seed germination and seedlings growth showed hypersensitive to ABA. Moreover, the expression of ABA-responsive genes, such as ABI3 and ABI5, were increased in the transgenic line seedlings. Taken together, ectopic expression of GmSBH1 could alter the morphology and confer ABA sensitivity during seed germination and early seedling growth in transgenic Arabidopsis. (author)

  18. Stomatal responses to carbon dioxide of isolated epidermis from a C/sub 3/ plant, the Argenteum mutant of Pisum sativum L. , and a crassulacean-acid-metabolism plant Kalanchoe daigremontiana Hamet et Perr

    Energy Technology Data Exchange (ETDEWEB)

    Jewer, P.C.; Neales, T.F.; Incoll, L.D.

    1985-01-01

    The response of stomata in isolated epidermis to the concentration of CO/sub 2/ in the gaseous phase was examined in a C/sub 3/ species, the Argenteum mutant of Pisum sativum, and a crassulacean-acid-metabolism (CAM) species, Kalanchoe daigremontiana. Epidermis from leaves of both species was incubated on buffer solutions in the presence of air containing various volume fractions of CO/sub 2/ (0 to 10,000 x 10/sup -6/). In both species and in the light and in darkness, the effect of CO/sub 2/ was to inhibit stomatal opening, the maximum inhibition of opening occurring in the range 0 to 360 x 10/sup -6/. The inhibition of opening per unit change in concentration was greatest between volume fractions of 0 and 240 x 10/sup -6/. There was little further closure above the volume fraction of 360 x 10/sup -6/, i.e. approximately ambient concentration of CO/sub 2/. Thus, although leaves of CAM species may experience much higher internal concentrations of CO/sub 2/ in the light than those of C/sub 3/ plants, this does not affect the sensitivity of their stomata to CO/sub 2/ concentration or the range over which they respond. Stomatal responses to CO/sub 2/ were similar in both the light and the dark, indicating that effects of CO/sub 2/ on stomata occur via mechanisms which are independent of light. The responses of stomata to CO/sub 2/ in the gaseous phase took place without the treatments changing the pH of the buffered solutions. Thus, it is unlikely that CO/sub 2/ elicited stomatal movement by changing either the pH or the HCO/sub 3//sup -//CO/sub 3//sup 2 -/ equilibria. It is suggested that the concentration of dissolved unhydrated CO/sub 2/ may be the effector of stomatal movement and that its activity is related to its reactivity with amines.

  19. Impact of Different Standard Type A7A Drum Closure-Ring Practices on Gasket Contraction and Bolt Closure Distance– 15621

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, Edward [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Blanton, Paul [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bobbitt, John H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-11

    The Department of Energy, the Savannah River National Laboratory, several manufacturers of specification drums, and the United States Department of Transportation (DOT) are collaborating in the development of a guidance document for DOE contractors and vendors who wish to qualify containers to DOT 7A Type A requirements. Currently, the effort is focused on DOT 7A Type A 208-liter (55-gallons) drums with a standard 12-gauge bolted closure ring. The U.S. requirements, contained in Title 49, Part 178.350 “Specification 7A; general packaging, Type A specifies a competent authority review of the packaging is not required for the transport of (Class 7) radioactive material containing less than Type A quantities of radioactive material. For Type AF drums, a 4 ft. regulatory free drop must be performed, such that the drum “suffers maximum damage.” Although the actual orientation is not defined by the specification, recent studies suggest that maximum damage would result from a shallow angle top impact, where kinetic energy is transferred to the lid, ultimately causing heavy damage to the lid, or even worse, causing the lid to come off. Since each vendor develops closure recommendations/procedures for the drums they manufacture, key parameters applied to drums during closing vary based on vendor. As part of the initial phase of the collaboration, the impact of the closure variants on the ability of the drum to suffer maximum damage is investigated. Specifically, closure testing is performed varying: 1) the amount of torque applied to the closure ring bolt; and, 2) stress relief protocol, including: a) weight of hammer; and, b) orientation that the hammer hits the closure ring. After closure, the amount of drum lid gasket contraction and the distance that the closure bolt moves through the closure ring is measured.

  20. Serum cytokine profile and clinicopathological findings in oral lichen planus, oral lichenoid lesions and stomatitis

    DEFF Research Database (Denmark)

    Larsen, Kristine Røn; Johansen, Jeanne Duus; Reibel, Jesper

    2017-01-01

    The objective of this study was to examine if clinical and histopathological variables in patients with oral lichen planus (OLP), oral lichenoid lesions (OLL), and generalized stomatitis display different cytokine profiles and if concomitant contact allergy influences this profile. Forty-nine pat......The objective of this study was to examine if clinical and histopathological variables in patients with oral lichen planus (OLP), oral lichenoid lesions (OLL), and generalized stomatitis display different cytokine profiles and if concomitant contact allergy influences this profile. Forty...... analyzed and compared between groups. Nineteen patients had OLP, primarily with ulcerative lesions on the buccal mucosa, 19 patients had OLL, and 11 patients had generalized stomatitis. All patients had oral symptoms, mainly stinging and burning. Nineteen patients and 10 healthy subjects had contact...... higher levels of IL-6 than the healthy subjects. Interferon-γ, IL-12p40, and IL-12p70 were below detection limit. Our findings indicate that OLP, OLL, and generalized stomatitis cannot be discriminated by means of the selected serum cytokines, and that the presence of concomitant contact allergy does...

  1. Evaluation of the stomatal conductance formulation in the EMEP ozone deposition model for Picea abies

    Science.gov (United States)

    Wieser, G.; Emberson, L. D.

    It is widely acknowledged that the possible impacts of ozone on forest trees are more closely related to ozone flux through the stomata than to external ozone exposure. However, the application of the flux approach on a European scale requires the availability of appropriate models, such as the European Monitoring and Evaluation Programme (EMEP) ozone deposition model, for estimating ozone flux and cumulative ozone uptake. Within this model stomatal conductance is the key variable, since it determines the amount of ozone absorbed by the leaves. This paper describes the suitability of the existing EMEP ozone deposition model parameterisation and formulation to represent stomatal behaviour determined from field measurements on adult Norway spruce ( Picea abies (L.) Karst.) trees in the Central European Alps. Parameters affecting maximum stomatal conductance (e.g. seasonal phenology, needle position, needle age, nutrient deficiency and ozone itself) and stomatal response functions to temperature, irradiance, vapour pressure deficit, and soil water content are investigated. Finally, current limitations and possible alterations of the EMEP model will be discussed with respect to spatial scales of available input data for future flux modelling.

  2. Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum

    Science.gov (United States)

    Bonan, G. B.; Williams, M.; Fisher, R. A.; Oleson, K. W.

    2014-09-01

    The Ball-Berry stomatal conductance model is commonly used in earth system models to simulate biotic regulation of evapotranspiration. However, the dependence of stomatal conductance (gs) on vapor pressure deficit (Ds) and soil moisture must be empirically parameterized. We evaluated the Ball-Berry model used in the Community Land Model version 4.5 (CLM4.5) and an alternative stomatal conductance model that links leaf gas exchange, plant hydraulic constraints, and the soil-plant-atmosphere continuum (SPA). The SPA model simulates stomatal conductance numerically by (1) optimizing photosynthetic carbon gain per unit water loss while (2) constraining stomatal opening to prevent leaf water potential from dropping below a critical minimum. We evaluated two optimization algorithms: intrinsic water-use efficiency (ΔAn /Δgs, the marginal carbon gain of stomatal opening) and water-use efficiency (ΔAn /ΔEl, the marginal carbon gain of transpiration water loss). We implemented the stomatal models in a multi-layer plant canopy model to resolve profiles of gas exchange, leaf water potential, and plant hydraulics within the canopy, and evaluated the simulations using leaf analyses, eddy covariance fluxes at six forest sites, and parameter sensitivity analyses. The primary differences among stomatal models relate to soil moisture stress and vapor pressure deficit responses. Without soil moisture stress, the performance of the SPA stomatal model was comparable to or slightly better than the CLM Ball-Berry model in flux tower simulations, but was significantly better than the CLM Ball-Berry model when there was soil moisture stress. Functional dependence of gs on soil moisture emerged from water flow along the soil-to-leaf pathway rather than being imposed a priori, as in the CLM Ball-Berry model. Similar functional dependence of gs on Ds emerged from the ΔAn/ΔEl optimization, but not the ΔAn /gs optimization. Two parameters (stomatal efficiency and root hydraulic

  3. Effects of dormancy-breaking chemicals on ABA levels in barley grain embryos

    NARCIS (Netherlands)

    Wang, M.; Meulen, R.M. van der; Visser, K.; Schalk, H.P. van; Duijn, B. van; Boer, A.H. de

    1998-01-01

    The endogenous ABA contents of dormant and nondormant barley grains were determined following application of different compounds to break dormancy. The chemicals used for breaking of dormancy in intact dormant grains were weak and strong acids, alcohols,. hydrogen peroxide, cyanide, nitrate,

  4. Possible role for abscisic acid in regulation of photosynthetic and photorespiratory carbon metabolism in barley leaves

    International Nuclear Information System (INIS)

    Popova, L.P.; Tsonev, T.D.; Vaklinova, S.G.

    1987-01-01

    The influence of abscisic acid (ABA) on carbon metabolism, rate of photorespiration, and the activity of the photorespiratory enzymes ribulose bisphosphate oxygenase and glycolate oxidase in 7-day-old barley seedlings (Hordeum vulgare L. var. Alfa) was investigated. Plants treated with ABA had enhanced incorporation of labeled carbon from 14 CO 2 into glycolic acid, glycine, and serine, while 14 C incorporation into 3-phosphoglyceric acid and sugarphosphate esters was depressed. Parallel with this effect, treated plants showed a rise in activity of RuBP oxygenase and glycolic acid oxidase. The rate of photorespiration was increased twofold by ABA treatment at IO -6 molar while the CO 2 -compensation point increased 46% and stomatal resistance increased more than twofold over control plants

  5. Impact of Canopy Coupling on Canopy Average Stomatal Conductance Across Seven Tree Species in Northern Wisconsin

    Science.gov (United States)

    Ewers, B. E.; Mackay, D. S.; Samanta, S.; Ahl, D. E.; Burrows, S. S.; Gower, S. T.

    2001-12-01

    Land use changes over the last century in northern Wisconsin have resulted in a heterogeneous landscape composed of the following four main forest types: northern hardwoods, northern conifer, aspen/fir, and forested wetland. Based on sap flux measurements, aspen/fir has twice the canopy transpiration of northern hardwoods. In addition, daily transpiration was only explained by daily average vapor pressure deficit across the cover types. The objective of this study was to determine if canopy average stomatal conductance could be used to explain the species effects on tree transpiration. Our first hypothesis is that across all of the species, stomatal conductance will respond to vapor pressure deficit so as to maintain a minimum leaf water potential to prevent catostrophic cavitiation. The consequence of this hypothesis is that among species and individuals there is a proportionality between high stomatal conductance and the sensitivity of stomatal conductance to vapor pressure deficit. Our second hypothesis is that species that do not follow the proportionality deviate because the canopies are decoupled from the atmosphere. To test our two hypotheses we calculated canopy average stomatal conductance from sap flux measurements using an inversion of the Penman-Monteith equation. We estimated the canopy coupling using a leaf energy budget model that requires leaf transpiration and canopy aerodynamic conductance. We optimized the parameters of the aerodynamic conductance model using a Monte Carlo technique across six parameters. We determined the optimal model for each species by selecting parameter sets that resulted in the proportionality of our first hypothesis. We then tested the optimal energy budget models of each species by comparing leaf temperature and leaf width predicted by the models to measurements of each tree species. In red pine, sugar maple, and trembling aspen trees under high canopy coupling conditions, we found the hypothesized proportionality

  6. Optimization of Thermo-Mechanical Processing for Forging of Newly Developed Creep-Resistant Magnesium Alloy ABaX633

    Directory of Open Access Journals (Sweden)

    Kamineni Pitcheswara Rao

    2017-11-01

    Full Text Available The compressive strength and creep resistance of cast Mg-6Al-3Ba-3Ca (ABaX633 alloy has been measured in the temperature range of 25 to 250 °C, and compared with that of its predecessor ABaX422. The alloy is stronger and more creep-resistant than ABaX422, and exhibits only a small decrease of yield stress with temperature. The higher strength of ABaX633 is attributed to a larger volume fraction of intermetallic particles (Al, Mg2Ca and Mg21Al3Ba2 in its microstructure. Hot deformation mechanisms in ABaX633 have been characterized by developing a processing map in the temperature and strain rate ranges of 300 to 500 °C and 0.0003 to 10 s−1. The processing map exhibits two workability domains in the temperature and strain rate ranges of: (1 380 to 475 °C and 0.0003 to 0.003 s−1, and (2 480–500 °C and 0.003 to 0.5 s−1. The apparent activation energy values estimated in the above two domains (204 and 216 kJ/mol are higher than that for lattice self-diffusion of Mg, which is attributed to the large back-stress that is caused by the intermetallic particles. Optimum condition for bulk working is 500 °C and 0.01 s−1 at which hot workability will be maximum. Flow instability is exhibited at lower temperatures and higher strain rates, as well as at higher temperatures and higher strain rates. The predictions of the processing map on the workability domains, as well as the instability regimes are fully validated by the forging of a rib-web (cup shaped component under optimized conditions.

  7. Reconstitution of the fusogenic activity of vesicular stomatitis virus

    NARCIS (Netherlands)

    Metsikkö, K.; van Meer, G.; Simons, K.

    1986-01-01

    Enveloped virus glycoproteins exhibit membrane fusion activity. We have analysed whether the G protein of vesicular stomatitis virus, reconstituted into liposomes, is able to fuse nucleated cells in a pH-dependent fashion. Proteoliposomes produced by octylglucoside dialysis did not exhibit cell

  8. Professional Closure Beyond State Authorization

    Directory of Open Access Journals (Sweden)

    Gitte Sommer Harrits

    2014-03-01

    Full Text Available For decades, the Weberian approach to the study of professions has been strong, emphasizing state authorization and market monopolies as constituting what is considered a profession. Originally, however, the Weberian conception of closure, or the ways in which a profession is constituted and made separate, was broader. This article suggests a revision of the closure concept, integrating insights from Pierre Bourdieu, and conceptualizing professional closure as the intersection of social, symbolic and legal closure. Based on this revision, this article demonstrates how to apply such a concept in empirical studies. This is done by exploring social, symbolic and legal closure across sixteen professional degree programs. The analyses show a tendency for some overlap between different forms of closure, with a somewhat divergent pattern for legal closure. Results support the argument that we need to study these processes as an intersection of different sources of closure, including capital, lifestyles and discourse

  9. Abscisic Acid–Responsive Guard Cell Metabolomes of Arabidopsis Wild-Type and gpa1 G-Protein Mutants[C][W

    Science.gov (United States)

    Jin, Xiaofen; Wang, Rui-Sheng; Zhu, Mengmeng; Jeon, Byeong Wook; Albert, Reka; Chen, Sixue; Assmann, Sarah M.

    2013-01-01

    Individual metabolites have been implicated in abscisic acid (ABA) signaling in guard cells, but a metabolite profile of this specialized cell type is lacking. We used liquid chromatography–multiple reaction monitoring mass spectrometry for targeted analysis of 85 signaling-related metabolites in Arabidopsis thaliana guard cell protoplasts over a time course of ABA treatment. The analysis utilized ∼350 million guard cell protoplasts from ∼30,000 plants of the Arabidopsis Columbia accession (Col) wild type and the heterotrimeric G-protein α subunit mutant, gpa1, which has ABA-hyposensitive stomata. These metabolomes revealed coordinated regulation of signaling metabolites in unrelated biochemical pathways. Metabolites clustered into different temporal modules in Col versus gpa1, with fewer metabolites showing ABA-altered profiles in gpa1. Ca2+-mobilizing agents sphingosine-1-phosphate and cyclic adenosine diphosphate ribose exhibited weaker ABA-stimulated increases in gpa1. Hormone metabolites were responsive to ABA, with generally greater responsiveness in Col than in gpa1. Most hormones also showed different ABA responses in guard cell versus mesophyll cell metabolomes. These findings suggest that ABA functions upstream to regulate other hormones, and are also consistent with G proteins modulating multiple hormonal signaling pathways. In particular, indole-3-acetic acid levels declined after ABA treatment in Col but not gpa1 guard cells. Consistent with this observation, the auxin antagonist α-(phenyl ethyl-2-one)-indole-3-acetic acid enhanced ABA-regulated stomatal movement and restored partial ABA sensitivity to gpa1. PMID:24368793

  10. Tight closure and vanishing theorems

    International Nuclear Information System (INIS)

    Smith, K.E.

    2001-01-01

    Tight closure has become a thriving branch of commutative algebra since it was first introduced by Mel Hochster and Craig Huneke in 1986. Over the past few years, it has become increasingly clear that tight closure has deep connections with complex algebraic geometry as well, especially with those areas of algebraic geometry where vanishing theorems play a starring role. The purpose of these lectures is to introduce tight closure and to explain some of these connections with algebraic geometry. Tight closure is basically a technique for harnessing the power of the Frobenius map. The use of the Frobenius map to prove theorems about complex algebraic varieties is a familiar technique in algebraic geometry, so it should perhaps come as no surprise that tight closure is applicable to algebraic geometry. On the other hand, it seems that so far we are only seeing the tip of a large and very beautiful iceberg in terms of tight closure's interpretation and applications to algebraic geometry. Interestingly, although tight closure is a 'characteristic p' tool, many of the problems where tight closure has proved useful have also yielded to analytic (L2) techniques. Despite some striking parallels, there had been no specific result directly linking tight closure and L∼ techniques. Recently, however, the equivalence of an ideal central to the theory of tight closure was shown to be equivalent to a certain 'multiplier ideal' first defined using L2 methods. Presumably, deeper connections will continue to emerge. There are two main types of problems for which tight closure has been helpful: in identifying nice structure and in establishing uniform behavior. The original algebraic applications of tight closure include, for example, a quick proof of the Hochster-Roberts theorem on the Cohen-Macaulayness of rings of invariants, and also a refined version of the Brianqon-Skoda theorem on the uniform behaviour of integral closures of powers of ideals. More recent, geometric

  11. Linking stomatal sensitivity and whole-tree hydraulic architecture

    Science.gov (United States)

    Katherine A. McCulloh; David R. Woodruff

    2012-01-01

    Despite the complexity of the relationship between stomatal sensitivity, water loss and vulnerability to embolism, the goal of teasing apart the subtleties is a necessary one. As Litvak et al. (2012) mention, determining transpiration patterns based on vulnerability to embolism would be much easier than the lengthy and potentially expensive processes involved in sap...

  12. An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress

    OpenAIRE

    Li, Cong; Yue, Jing; Wu, Xiaowei; Xu, Cong; Yu, Jingjuan

    2014-01-01

    The DREB (dehydration-responsive element binding)-type transcription factors regulate the expression of stress-inducible genes by binding the DRE/CRT cis-elements in promoter regions. The upstream transcription factors that regulate the transcription of DREB transcription factors have not been clearly defined, although the function of DREB transcription factors in abiotic stress is known. In this study, an abscisic acid (ABA)-responsive DREB-binding protein gene (SiARDP) was cloned from foxta...

  13. 40 CFR 264.228 - Closure and post-closure care.

    Science.gov (United States)

    2010-07-01

    ... remaining wastes to a bearing capacity sufficient to support final cover; and (iii) Cover the surface....112 must include both a plan for complying with paragraph (a)(1) of this section and a contingent plan... practicably removed at closure; and (ii) The owner or operator must prepare a contingent post-closure plan...

  14. Stomatal development in barley as a bioassay for cell differentation: its use with X-rays and gibberellic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zeiger, E; Rafalowsky, J [Chile Univ., Santiago. Departamento de Biologia y Genetica

    1976-01-01

    A bioassay for cell differentiation during stomatal development in barley (Hordeum vulgare L.) has been defined. It uses cell kinetics analysis to follow the temporal course of cell divisions in the developmental sequence. The rate of displacement of the divisions along the stomatal rows provides a measure of differentiation. Physical factors affecting differentiation may be tested with intact seedlings. The bioassay showed that X-ray irradiation inhibited the divisions leading to stomatal formation. The inhibition kinetics was similar to the one observed in root meristems. Chemical substances are tested by culturing excised shoots in a synthetic medium. Detached leaves responded to sucrose and light with increasing rates of stomatal divisions. Gibberellic acid (GA/sub 3/) was assayed for its effects on the growth of the leaf and the differentiation of stomata. GA/sub 3/ increased the overall length of the leaves without affecting the rates of cell division. The treated cells responded with increased elongation rates and a precocious initiation and completion of cell enlargement. GA/sub 3/ had no specific effect on stomatal differentiation.

  15. Physiological studies on photochemical oxidant injury in rice plants. II. Effect of abscisic acid (ABA) on ozone injury and ethylene production in rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y.H.; Nakamura, H.; Ota, Y.

    1981-12-01

    In order to determine the effect of ABA on ozone injury to rice plants, ethylene production, rate of chlorophyll retention and ozone-sensitivity of rice plants pretreated with ABA solution were investigated. The experiments were carried out in pots using rice plants at the 7-8 leaf stage. The results obtained are summarized as follows: ethylene production by the leaf blades exposed to ozone increased with the increase in the dosage of ozone; ethylene production was higher in cv. Nihonbare which was more sensitive to ozone than in cv. Tongil; pre-treatment with ABA solution one hour before ozone treatment reduced ethylene production by the leaf blades exposed to ozone; and the rate of chlorophyll retention decreased following injury, but increased remarkably by the pre-treatment with ABA solution. In conclusion, it could be demonstrated that ozone injury of rice plants can be reduced by the pre-treatment with ABA solution. 28 references, 5 figures, 1 table.

  16. RCRA corrective action and closure

    International Nuclear Information System (INIS)

    1995-02-01

    This information brief explains how RCRA corrective action and closure processes affect one another. It examines the similarities and differences between corrective action and closure, regulators' interests in RCRA facilities undergoing closure, and how the need to perform corrective action affects the closure of DOE's permitted facilities and interim status facilities

  17. Modelling stomatal ozone flux and deposition to grassland communities across Europe

    International Nuclear Information System (INIS)

    Ashmore, M.R.; Bueker, P.; Emberson, L.D.; Terry, A.C.; Toet, S.

    2007-01-01

    Regional scale modelling of both ozone deposition and the risk of ozone impacts is poorly developed for grassland communities. This paper presents new predictions of stomatal ozone flux to grasslands at five different locations in Europe, using a mechanistic model of canopy development for productive grasslands to generate time series of leaf area index and soil water potential as inputs to the stomatal component of the DO 3 SE ozone deposition model. The parameterisation of both models was based on Lolium perenne, a dominant species of productive pasture in Europe. The modelled seasonal time course of stomatal ozone flux to both the whole canopy and to upper leaves showed large differences between climatic zones, which depended on the timing of the start of the growing season, the effect of soil water potential, and the frequency of hay cuts. Values of modelled accumulated flux indices and the AOT40 index showed a five-fold difference between locations, but the locations with the highest flux differed depending on the index used; the period contributing to the accumulation of AOT40 did not always coincide with the modelled period of active ozone canopy uptake. Use of a fixed seasonal profile of leaf area index in the flux model produced very different estimates of annual accumulated total canopy and leaf ozone flux when compared with the flux model linked to a simulation of canopy growth. Regional scale model estimates of both the risks of ozone impacts and of total ozone deposition will be inaccurate unless the effects of climate and management in modifying grass canopy growth are incorporated. - Modelled stomatal flux of ozone to productive grasslands in Europe shows different spatial and temporal variation to AOT40, and is modified by management and soil water status

  18. Sensitivity of stomatal conductance to soil moisture: implications for tropospheric ozone

    Directory of Open Access Journals (Sweden)

    A. Anav

    2018-04-01

    Full Text Available Soil moisture and water stress play a pivotal role in regulating stomatal behaviour of plants; however, in the last decade, the role of water availability has often been neglected in atmospheric chemistry modelling studies as well as in integrated risk assessments, despite the fact that plants remove a large amount of atmospheric compounds from the lower troposphere through stomata. The main aim of this study is to evaluate, within the chemistry transport model CHIMERE, the effect of soil water limitation on stomatal conductance and assess the resulting changes in atmospheric chemistry testing various hypotheses of water uptake by plants in the rooting zone. Results highlight how dry deposition significantly declines when soil moisture is used to regulate the stomatal opening, mainly in the semi-arid environments: in particular, over Europe the amount of ozone removed by dry deposition in one year without considering any soil water limitation to stomatal conductance is about 8.5 TgO3, while using a dynamic layer that ensures that plants maximize the water uptake from soil, we found a reduction of about 10 % in the amount of ozone removed by dry deposition ( ∼  7.7 TgO3. Although dry deposition occurs from the top of canopy to ground level, it affects the concentration of gases remaining in the lower atmosphere, with a significant impact on ozone concentration (up to 4 ppb extending from the surface to the upper troposphere (up to 650 hPa. Our results shed light on the importance of improving the parameterizations of processes occurring at plant level (i.e. from the soil to the canopy as they have significant implications for concentration of gases in the lower troposphere and resulting risk assessments for vegetation or human health.

  19. Sensitivity of stomatal conductance to soil moisture: implications for tropospheric ozone

    Science.gov (United States)

    Anav, Alessandro; Proietti, Chiara; Menut, Laurent; Carnicelli, Stefano; De Marco, Alessandra; Paoletti, Elena

    2018-04-01

    Soil moisture and water stress play a pivotal role in regulating stomatal behaviour of plants; however, in the last decade, the role of water availability has often been neglected in atmospheric chemistry modelling studies as well as in integrated risk assessments, despite the fact that plants remove a large amount of atmospheric compounds from the lower troposphere through stomata. The main aim of this study is to evaluate, within the chemistry transport model CHIMERE, the effect of soil water limitation on stomatal conductance and assess the resulting changes in atmospheric chemistry testing various hypotheses of water uptake by plants in the rooting zone. Results highlight how dry deposition significantly declines when soil moisture is used to regulate the stomatal opening, mainly in the semi-arid environments: in particular, over Europe the amount of ozone removed by dry deposition in one year without considering any soil water limitation to stomatal conductance is about 8.5 TgO3, while using a dynamic layer that ensures that plants maximize the water uptake from soil, we found a reduction of about 10 % in the amount of ozone removed by dry deposition ( ˜ 7.7 TgO3). Although dry deposition occurs from the top of canopy to ground level, it affects the concentration of gases remaining in the lower atmosphere, with a significant impact on ozone concentration (up to 4 ppb) extending from the surface to the upper troposphere (up to 650 hPa). Our results shed light on the importance of improving the parameterizations of processes occurring at plant level (i.e. from the soil to the canopy) as they have significant implications for concentration of gases in the lower troposphere and resulting risk assessments for vegetation or human health.

  20. Post-operative analgesic requirement in non-closure and closure of peritoneum during open appendectomy

    International Nuclear Information System (INIS)

    Khan, A.W.; Maqsood, R.; Saleem, M.M.

    2017-01-01

    To compare the mean post-operative analgesic requirement in non-closure and closure of peritoneum during open appendectomy. Study Design: Randomized controlled trial. Place and Duration of Study: Department of General Surgery Combined Military Hospital Quetta, from 1st August 2014 to 30th April 2015. Material and Methods: A total of 60 patients were included in this study and were divided into two groups of 30 each. Patients in group A underwent open appendectomy with closure of peritoneum while patients in group B had non-closure of peritoneum during the same procedure. Post-operatively, pain severity was assessed on visual analogue scale (VAS) numeric pain distress scale. On presence of VAS numeric pain distress scale between 5 to 7, intramuscular (IM) diclofenac sodium was given and on score >7, intravascular (IV) tramadol was given. The final outcome was measured at day 0 and day 1. Results: Pain score and analgesic requirements were significantly less in non-closure group than closure group on day 0 and day 1, showing statistically significant difference between the two groups. Conclusion: Mean post-operative analgesic requirement is significantly less in non-closure group as compared to closure group during open appendectomy. (author)

  1. Effect of nitrogen supply on transpiration and stomatal behaviour of beans (Phaseolus vulgaris L. )

    Energy Technology Data Exchange (ETDEWEB)

    Shimshi, D

    1970-01-01

    The effect of nitrogen supply on the transpiration rate and stomatal opening of potted bean plants was studied in a series of experiments. The transpiration rates of N-supplied plants were higher than those of N-deficient plants when soil moisture was relatively high; as soil moisture approached the wilting range, the transpiration rates of N-supplied plants dropped to below those of N-deficient plants. In spite of the marked differences in transpiration rates, as influenced by soil moisture and nitrogen supply, the stomata appeared closed. By coating the upper or lower surfaces of the leaves with a vapor-impervious compound it was shown that stomatal apertures below the limit of microscopic resolution control the rate of transpiration. Under conditions that encourage stomatal opening (covering the plants with transparent plastic bags), the stomata of the N-deficient plants opened to a lesser degree than those of N-supplied plants. There was some evidence that when stomata were visibly open, transpiration rates were regulated by the degree of plant hydration rather than by the degree of stomatal opening. It is concluded that N-deficient plants fail to open their stomata as widely and to close them as tightly as N-supplied plants. 8 references, 2 tables.

  2. Using Plant Temperature to Evaluate the Response of Stomatal Conductance to Soil Moisture Deficit

    Directory of Open Access Journals (Sweden)

    Ming-Han Yu

    2015-10-01

    Full Text Available Plant temperature is an indicator of stomatal conductance, which reflects soil moisture stresses. We explored the relationship between plant temperature and soil moisture to optimize irrigation schedules in a water-stress experiment using Firmiana platanifolia (L. f. Marsili in an incubator. Canopy temperature, leaf temperature, and stomatal conductance were measured using thermal imaging and a porometer. The results indicated that (1 stomatal conductance decreased with declines in soil moisture, and reflected average canopy temperature; (2 the variation of the leaf temperature distribution was a reliable indicator of soil moisture stress, and the temperature distribution in severely water-stressed leaves exhibited greater spatial variation than that in the presence of sufficient irrigation; (3 thermal indices (Ig and crop water stress index (CWSI were theoretically proportional to stomatal conductance (gs, Ig was certified to have linearity relationship with gs and CWSI have a logarithmic relationship with gs, and both of the two indices can be used to estimate soil moisture; and (4 thermal imaging data can reflect water status irrespective of long-term water scarcity or lack of sudden rainfall. This study applied thermal imaging methods to monitor plants and develop adaptable irrigation scheduling, which are important for the formulation of effective and economical agriculture and forestry policy.

  3. Primary closure after carotid endarterectomy is not inferior to other closure techniques.

    Science.gov (United States)

    Avgerinos, Efthymios D; Chaer, Rabih A; Naddaf, Abdallah; El-Shazly, Omar M; Marone, Luke; Makaroun, Michel S

    2016-09-01

    Primary closure after carotid endarterectomy (CEA) has been much maligned as an inferior technique with worse outcomes than in patch closure. Our purpose was to compare perioperative and long-term results of different CEA closure techniques in a large institutional experience. A consecutive cohort of CEAs between January 1, 2000, and December 31, 2010, was retrospectively analyzed. Closure technique was used to divide patients into three groups: primary longitudinal arteriotomy closure (PRC), patch closure (PAC), and eversion closure (EVC). End points were perioperative events, long-term strokes, and restenosis ≥70%. Multivariate regression models were used to assess the effect of baseline predictors. There were 1737 CEA cases (bilateral, 143; mean age, 71.4 ± 9.3 years; 56.2% men; 35.3% symptomatic) performed during the study period with a mean clinical follow-up of 49.8 ± 36.4 months (range, 0-155 months). More men had primary closure, but other demographic and baseline symptoms were similar between groups. Half the patients had PAC, with the rest evenly distributed between PRC and EVC. The rate of nerve injury was 2.7%, the rate of reintervention for hematoma was 1.5%, and the length of hospital stay was 2.4 ± 3.0 days, with no significant differences among groups. The combined stroke and death rate was 2.5% overall and 3.9% and 1.7% in the symptomatic and asymptomatic cohort, respectively. Stroke and death rates were similar between groups: PRC, 11 (2.7%); PAC, 19 (2.2%); EVC, 13 (2.9%). Multivariate analysis showed baseline symptomatic disease (odds ratio, 2.4; P = .007) and heart failure (odds ratio, 3.1; P = .003) as predictors of perioperative stroke and death, but not the type of closure. Cox regression analysis demonstrated, among other risk factors, no statin use (hazard ratio, 2.1; P = .008) as a predictor of ipsilateral stroke and severe (glomerular filtration rate <30 mL/min/1.73 m(2)) renal insufficiency (hazard ratio, 2.6; P

  4. Ferns are less dependent on passive dilution by cell expansion to coordinate leaf vein and stomatal spacing than angiosperms.

    Directory of Open Access Journals (Sweden)

    Madeline R Carins Murphy

    Full Text Available Producing leaves with closely spaced veins is a key innovation linked to high rates of photosynthesis in angiosperms. A close geometric link between veins and stomata in angiosperms ensures that investment in enhanced venous water transport provides the strongest net carbon return to the plant. This link is underpinned by "passive dilution" via expansion of surrounding cells. However, it is not known whether this 'passive dilution' mechanism is present in plant lineages other than angiosperms and is another key feature of the angiosperms' evolutionary success. Consequently, we sought to determine whether the 'passive dilution' mechanism is; (i exclusive to the angiosperms, (ii a conserved mechanism that evolved in the common ancestor of ferns and angiosperms, or (iii has evolved continuously over time. To do this we first we assessed the plasticity of vein and stomatal density and epidermal cell size in ferns in response to light environment. We then compared the relationships between these traits found among ferns with modelled relationships that assume vein and stomatal density respond passively to epidermal cell expansion, and with those previously observed in angiosperms. Vein density, stomatal density and epidermal cell size were linked in ferns with remarkably similar relationships to those observed in angiosperms, except that fern leaves had fewer veins per stomata. However, plasticity was limited in ferns and stomatal spacing was dependent on active stomatal differentiation as well as passive cell expansion. Thus, ferns (like angiosperms appear to coordinate vein and stomatal density with epidermal cell expansion to some extent to maintain a constant ratio between veins and stomata in the leaf. The different general relationships between vein density and stomatal density in ferns and angiosperms suggests the groups have different optimum balances between the production of vein tissue dedicated to water supply and stomatal tissue for gas

  5. Transcriptome Profiling of the Pineapple under Low Temperature to Facilitate Its Breeding for Cold Tolerance

    Science.gov (United States)

    Chen, Chengjie; Zhang, Yafeng; Xu, Zhiqiang; Luan, Aiping; Mao, Qi; Feng, Junting; Xie, Tao; Gong, Xue; Wang, Xiaoshuang; Chen, Hao; He, Yehua

    2016-01-01

    The pineapple (Ananas comosus) is cold sensitive. Most cultivars are injured during winter periods, especially in sub-tropical regions. There is a lack of molecular information on the pineapple’s response to cold stress. In this study, high-throughput transcriptome sequencing and gene expression analysis were performed on plantlets of a cold-tolerant genotype of the pineapple cultivar ‘Shenwan’ before and after cold treatment. A total of 1,186 candidate cold responsive genes were identified, and their credibility was confirmed by RT-qPCR. Gene set functional enrichment analysis indicated that genes related to cell wall properties, stomatal closure and ABA and ROS signal transduction play important roles in pineapple cold tolerance. In addition, a protein association network of CORs (cold responsive genes) was predicted, which could serve as an entry point to dissect the complex cold response network. Our study found a series of candidate genes and their association network, which will be helpful to cold stress response studies and pineapple breeding for cold tolerance. PMID:27656892

  6. Experience with TL-102M for the treatment of radiation stomatitis

    International Nuclear Information System (INIS)

    Nishio, Juntaro; Matsuya, Tokuzo; Inoue, Kazuo; Miyazaki, Tadashi; Maeda, Noriaki.

    1984-01-01

    TL-102M was administered to 14 patients who had radiation stomatitis following radiation therapy for malignant tumors in the oral cavity. Regarding the degree of overall improvement, one of the 14 patients was evaluated as ''extremely improved'', eight as ''improved'', four as ''slightly improved'', and one as ''unchanged''. None of the patients had side effects. Adherent, powdered TL-102M was easy to take for patients. Most of the patients desired to continue to take this drug because of having neither painfulness nor adhesive feeling. The usage of TL-102M could be helpful in promoting the treatment for cancer, thus suggesting that it is useful in treating radiation stomatitis. (Namekawa, K.)

  7. Abscisic Acid Negatively Regulates Elicitor-Induced Synthesis of Capsidiol in Wild Tobacco1[W

    Science.gov (United States)

    Mialoundama, Alexis Samba; Heintz, Dimitri; Debayle, Delphine; Rahier, Alain; Camara, Bilal; Bouvier, Florence

    2009-01-01

    In the Solanaceae, biotic and abiotic elicitors induce de novo synthesis of sesquiterpenoid stress metabolites known as phytoalexins. Because plant hormones play critical roles in the induction of defense-responsive genes, we have explored the effect of abscisic acid (ABA) on the synthesis of capsidiol, the major wild tobacco (Nicotiana plumbaginifolia) sesquiterpenoid phytoalexin, using wild-type plants versus nonallelic mutants Npaba2 and Npaba1 that are deficient in ABA synthesis. Npaba2 and Npaba1 mutants exhibited a 2-fold higher synthesis of capsidiol than wild-type plants when elicited with either cellulase or arachidonic acid or when infected by Botrytis cinerea. The same trend was observed for the expression of the capsidiol biosynthetic genes 5-epi-aristolochene synthase and 5-epi-aristolochene hydroxylase. Treatment of wild-type plants with fluridone, an inhibitor of the upstream ABA pathway, recapitulated the behavior of Npaba2 and Npaba1 mutants, while the application of exogenous ABA reversed the enhanced synthesis of capsidiol in Npaba2 and Npaba1 mutants. Concomitant with the production of capsidiol, we observed the induction of ABA 8′-hydroxylase in elicited plants. In wild-type plants, the induction of ABA 8′-hydroxylase coincided with a decrease in ABA content and with the accumulation of ABA catabolic products such as phaseic acid and dihydrophaseic acid, suggesting a negative regulation exerted by ABA on capsidiol synthesis. Collectively, our data indicate that ABA is not required per se for the induction of capsidiol synthesis but is essentially implicated in a stress-response checkpoint to fine-tune the amplification of capsidiol synthesis in challenged plants. PMID:19420326

  8. Phenomics allows identification of genomic regions affecting maize stomatal conductance with conditional effects of water deficit and evaporative demand.

    Science.gov (United States)

    Prado, Santiago Alvarez; Cabrera-Bosquet, Llorenç; Grau, Antonin; Coupel-Ledru, Aude; Millet, Emilie J; Welcker, Claude; Tardieu, François

    2018-02-01

    Stomatal conductance is central for the trades-off between hydraulics and photosynthesis. We aimed at deciphering its genetic control and that of its responses to evaporative demand and water deficit, a nearly impossible task with gas exchanges measurements. Whole-plant stomatal conductance was estimated via inversion of the Penman-Monteith equation from data of transpiration and plant architecture collected in a phenotyping platform. We have analysed jointly 4 experiments with contrasting environmental conditions imposed to a panel of 254 maize hybrids. Estimated whole-plant stomatal conductance closely correlated with gas-exchange measurements and biomass accumulation rate. Sixteen robust quantitative trait loci (QTLs) were identified by genome wide association studies and co-located with QTLs of transpiration and biomass. Light, vapour pressure deficit, or soil water potential largely accounted for the differences in allelic effects between experiments, thereby providing strong hypotheses for mechanisms of stomatal control and a way to select relevant candidate genes among the 1-19 genes harboured by QTLs. The combination of allelic effects, as affected by environmental conditions, accounted for the variability of stomatal conductance across a range of hybrids and environmental conditions. This approach may therefore contribute to genetic analysis and prediction of stomatal control in diverse environments. © 2017 John Wiley & Sons Ltd.

  9. A New Approach to Sequence Analysis Exemplified by Identification of cis-Elements in Abscisic Acid Inducible Promoters

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Hallin, Peter Fischer; Salomon, Jesper

    -regulatory elements. We have developed a method for identifying short, conserved motifs in biological sequences such as proteins, DNA and RNA5. This method was used for analysis of approximately 2000 Arabidopsis thaliana promoters that have been shown by DNA array analysis to be induced by abscisic acid6....... These promoters were compared to 28000 promoters that are not induced by abscisic acid. The analysis identified previously described ABA-inducible promoter elements such as ABRE, CE3 and CRT1 but also new cis-elements were found. Furthermore, the list of DNA elements could be used to predict ABA...

  10. Saving of drinking water in cooling system at Aq aba Thermal Power Station

    International Nuclear Information System (INIS)

    Al-Nsour, A.F.

    2001-01-01

    This paper discussing a new modification, design and implementation to the existing cooling water system of boiler drum continuous blow down water at Aq aba Thermal Power Stations to eliminate drinking water consumption as a coolant medium

  11. Stress-induced accumulation of wheat germ agglutinin and abscisic acid in roots of wheat seedlings

    International Nuclear Information System (INIS)

    Cammue, B.P.A.; Broekaert, W.F.; Kellens, J.T.C.; Peumans, W.J.; Raikhel, N.V.

    1989-01-01

    Wheat germ agglutinin (WGA) levels in roots of 2-day-old wheat seedlings increased up to three-fold when stressed by air-drying. Similar results were obtained when seedling roots were incubated either in 0.5 molar mannitol or 180 grams per liter polyethylene glycol 6,000, with a peak level of WGA after 5 hours of stress. Longer periods of osmotic treatment resulted in a gradual decline of WGA in the roots. Since excised wheat roots incorporate more [ 35 S]cysteine into WGA under stress conditions, the observed increase of lectin levels is due to de novo synthesis. Measurement of abscisic acid (ABA) levels in roots of control and stressed seedlings indicated a 10-fold increase upon air-drying. Similarly, a five- and seven-fold increase of ABA content of seedling roots was found after 2 hours of osmotic stress by polyethylene glycol 6,000 and mannitol, respectively. Finally, the stress-induced increase of WGA in wheat roots could be inhibited by growing seedlings in the presence of fluridone, an inhibitor of ABA synthesis. These results indicate that roots of water-stressed wheat seedlings (a) contain more WGA as a result of an increased de novo synthesis of this lectin, and (b) exhibit higher ABA levels. The stress-induced increase of lectin accumulation seems to be under control of ABA

  12. Pathogen exploitation of an abscisic acid- and jasmonate-inducible MAPK phosphatase and its interception by Arabidopsis immunity.

    Science.gov (United States)

    Mine, Akira; Berens, Matthias L; Nobori, Tatsuya; Anver, Shajahan; Fukumoto, Kaori; Winkelmüller, Thomas M; Takeda, Atsushi; Becker, Dieter; Tsuda, Kenichi

    2017-07-11

    Phytopathogens promote virulence by, for example, exploiting signaling pathways mediated by phytohormones such as abscisic acid (ABA) and jasmonate (JA). Some plants can counteract pathogen virulence by invoking a potent form of immunity called effector-triggered immunity (ETI). Here, we report that ABA and JA mediate inactivation of the immune-associated MAP kinases (MAPKs), MPK3 and MPK6, in Arabidopsis thaliana ABA induced expression of genes encoding the protein phosphatases 2C (PP2Cs), HAI1 , HAI2 , and HAI3 through ABF/AREB transcription factors. These three HAI PP2Cs interacted with MPK3 and MPK6 and were required for ABA-mediated MPK3/MPK6 inactivation and immune suppression. The bacterial pathogen Pseudomonas syringae pv. tomato ( Pto ) DC3000 activates ABA signaling and produces a JA-mimicking phytotoxin, coronatine (COR), that promotes virulence. We found that Pto DC3000 induces HAI1 through COR-mediated activation of MYC2, a master transcription factor in JA signaling. HAI1 dephosphorylated MPK3 and MPK6 in vitro and was necessary for COR-mediated suppression of MPK3/MPK6 activation and immunity. Intriguingly, upon ETI activation, A. thaliana plants overcame the HAI1-dependent virulence of COR by blocking JA signaling. Finally, we showed conservation of induction of HAI PP2Cs by ABA and JA in other Brassicaceae species. Taken together, these results suggest that ABA and JA signaling pathways, which are hijacked by the bacterial pathogen, converge on the HAI PP2Cs that suppress activation of the immune-associated MAPKs. Also, our data unveil interception of JA-signaling activation as a host counterstrategy against the bacterial suppression of MAPKs during ETI.

  13. Analysis of Stomatal Patterning in Selected Mutants of MAPK Pathways

    KAUST Repository

    Felemban, Abrar

    2016-01-01

    -activated protein kinase (MAPK) signalling pathway, which modulates a variety of other processes, including cell proliferation, regulation of cytokinesis, programed cell death, and response to abiotic and biotic stress. The environment also plays a role in stomatal

  14. Light energy dissipation under water stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Stuhlfauth, T.; Scheuermann, R.; Fock, H.P. (Universitaet Kaiserslautern (West Germany))

    1990-04-01

    Using {sup 14}CO{sub 2} gas exchange and metabolite analyses, stomatal as well as total internal CO{sub 2} uptake and evolution were estimated. Pulse modulated fluorescence was measured during induction and steady state of photosynthesis. Leaf water potential of Digitalis lanata EHRH. plants decreased to {minus}2.5 megapascals after withholding irrigation. By osmotic adjustment, leaves remained turgid and fully exposed to irradiance even at severe water stress. Due to the stress-induced reduction of stomatal conductance, the stomatal CO{sub 2} exchange was drastically reduced, whereas the total CO{sub 2} uptake and evolution were less affected. Stomatal closure induced an increase in the reassimilation of internally evolved CO{sub 2}. This CO{sub 2}-recycling consumes a significant amount of light energy in the form of ATP and reducing equivalents. As a consequence, the metabolic demand for light energy is only reduced by about 40%, whereas net photosynthesis is diminished by about 70% under severe stress conditions. By CO{sub 2} recycling, carbon flux, enzymatic substrate turnover and consumption of light energy were maintained at high levels, which enabled the plant to recover rapidly after rewatering. In stressed D. lanata plants a variable fluorescence quenching mechanism, termed coefficient of actinic light quenching, was observed. Besides water conservation, light energy dissipation is essential and involves regulated metabolic variations.

  15. Pressure disequilibria induced by rapid valve closure in noble gas extraction lines

    Science.gov (United States)

    Morgan, Leah; Davidheiser-Kroll, Brett

    2015-01-01

    Pressure disequilibria during rapid valve closures can affect calculated molar quantities for a range of gas abundance measurements (e.g., K-Ar geochronology, (U-Th)/He geochronology, noble gas cosmogenic chronology). Modeling indicates this effect in a system with a 10 L reservoir reaches a bias of 1% before 1000 pipette aliquants have been removed from the system, and a bias of 10% before 10,000 aliquants. Herein we explore the causes and effects of this problem, which is the result of volume changes during valve closure. We also present a solution in the form of an electropneumatic pressure regulator that can precisely control valve motion. This solution reduces the effect to ∼0.3% even after 10,000 aliquants have been removed from a 10 L reservoir.

  16. Pressure disequilibria induced by rapid valve closure in noble gas extraction lines

    Science.gov (United States)

    Morgan, Leah E.; Davidheiser-Kroll, Brett

    2015-06-01

    Pressure disequilibria during rapid valve closures can affect calculated molar quantities for a range of gas abundance measurements (e.g., K-Ar geochronology, (U-Th)/He geochronology, noble gas cosmogenic chronology). Modeling indicates this effect in a system with a 10 L reservoir reaches a bias of 1% before 1000 pipette aliquants have been removed from the system, and a bias of 10% before 10,000 aliquants. Herein we explore the causes and effects of this problem, which is the result of volume changes during valve closure. We also present a solution in the form of an electropneumatic pressure regulator that can precisely control valve motion. This solution reduces the effect to ˜0.3% even after 10,000 aliquants have been removed from a 10 L reservoir.

  17. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming

    DEFF Research Database (Denmark)

    Marchin, Renée M.; Broadhead, Alice A.; Bostic, Laura E.

    2016-01-01

    chamber VPD. Warming increased mean water use of Carya by 140% and Quercus by 150%, but had no significant effect on water use of Acer. Increased water use of ring-porous species was attributed to (1) higher air T and (2) stomatal acclimation to VPD resulting in higher gs and more sensitive stomata......Future climate change is expected to increase temperature (T) and atmospheric vapour pressure deficit (VPD) in many regions, but the effect of persistent warming on plant stomatal behaviour is highly uncertain. We investigated the effect of experimental warming of 1.9-5.1 °C and increased VPD of 0.......5-1.3 kPa on transpiration and stomatal conductance (gs ) of tree seedlings in the temperate forest understory (Duke Forest, North Carolina, USA). We observed peaked responses of transpiration to VPD in all seedlings, and the optimum VPD for transpiration (Dopt ) shifted proportionally with increasing...

  18. Isolation and functional characterisation of two new bZIP maize regulators of the ABA responsive gene rab28.

    Science.gov (United States)

    Nieva, Claudia; Busk, Peter K; Domínguez-Puigjaner, Eva; Lumbreras, Victoria; Testillano, Pilar S; Risueño, Maria-Carmen; Pagès, Montserrat

    2005-08-01

    The plant hormone abscisic acid regulates gene expression in response to growth stimuli and abiotic stress. Previous studies have implicated members of the bZIP family of transcription factors as mediators of abscisic acid dependent gene expression through the ABRE cis-element. Here, we identify two new maize bZIP transcription factors, EmBP-2 and ZmBZ-1 related to EmBP-1 and OsBZ-8 families. They are differentially expressed during embryo development; EmBP-2 is constitutive, whereas ZmBZ-1 is abscisic acid-inducible and accumulates during late embryogenesis. Both factors are nuclear proteins that bind to ABREs and activate transcription of the abscisic acid-inducible gene rab28 from maize. EmBP-2 and ZmBZ-1 are phosphorylated by protein kinase CK2 and phosphorylation alters their DNA binding properties. Our data suggest that EmBP-2 and ZmBZ-1 are involved in the expression of abscisic acid inducible genes such as rab28 and their activity is modulated by ABA and by phosphorylation.

  19. Differential effects of elevated air humidity on stomatal closing ability of Kalanchoë blossfeldiana between the C

    NARCIS (Netherlands)

    Fanourakis, Dimitrios; Hyldgaard, Benita; Gebraegziabher, Habtamu; Bouranis, Dimitris; Körner, Oliver; Nielsen, Kai Lønne; Ottosen, Carl-Otto

    2017-01-01

    High relative air humidity (RH ≥ 85%) impairs stomatal functionality, attenuating plant capacity to cope with abiotic stress. Previous studies were limited to C3 species, so the RH effect on stomatal physiology of CAM plants remains unexplored. We addressed the topic through

  20. Conceptos generales sobre ABA en niños con trastorno del espectro autista

    Directory of Open Access Journals (Sweden)

    Sandra Elizabeth Piñeros Ortiz

    2012-01-01

    Full Text Available Los trastornos del espectro autista (TEA son entidades que generan discapacidad. Diversas intervenciones psicofarmacológicas y psicosociales modulan algunas de las alteraciones comportamentales asociadas y mejoran la calidad de vida de las personas afectadas y de sus cuidadores. La terapia ABA es una de las intervenciones psicosociales más conocidas y utilizada en población con TEA. Mediante de la  formulación de preguntas clave y sus respuestas, este artículo realiza una breve descripción de los aspectos históricos, las principales características y los fundamentos teóricos del ABA. Se discuten los resultados de diversos estudios que señalan las limitaciones metodológicas de las investigaciones sobre  la efectividad de esta terapia y sus implicaciones para la práctica clínica.