WorldWideScience

Sample records for aba-induced hardening conditions

  1. Mesophyll conductance decreases in the wild type but not in an ABA-deficient mutant (aba1) of Nicotiana plumbaginifolia under drought conditions.

    Science.gov (United States)

    Mizokami, Yusuke; Noguchi, Ko; Kojima, Mikiko; Sakakibara, Hitoshi; Terashima, Ichiro

    2015-03-01

    Under drought conditions, leaf photosynthesis is limited by the supply of CO2 . Drought induces production of abscisic acid (ABA), and ABA decreases stomatal conductance (gs ). Previous papers reported that the drought stress also causes the decrease in mesophyll conductance (gm ). However, the relationships between ABA content and gm are unclear. We investigated the responses of gm to the leaf ABA content [(ABA)L ] using an ABA-deficient mutant, aba1, and the wild type (WT) of Nicotiana plumbaginifolia. We also measured leaf water potential (ΨL ) because leaf hydraulics may be related to gm . Under drought conditions, gm decreased with the increase in (ABA)L in WT, whereas both (ABA)L and gm were unchanged by the drought treatment in aba1. Exogenously applied ABA decreased gm in both WT and aba1 in a dose-dependent manner. ΨL in WT was decreased by the drought treatment to -0.7 MPa, whereas ΨL in aba1 was around -0.8 MPa even under the well-watered conditions and unchanged by the drought treatment. From these results, we conclude that the increase in (ABA)L is crucial for the decrease in gm under drought conditions. We discuss possible relationships between the decrease in gm and changes in the leaf hydraulics. © 2014 John Wiley & Sons Ltd.

  2. Unraveling the involvement of ABA in the water deficit-induced modulation of nitrogen metabolism in Medicago truncatula seedlings.

    Science.gov (United States)

    Planchet, Elisabeth; Rannou, Olivier; Ricoult, Claudie; Limami, Anis M

    2011-07-01

    Effects of water deficit and/or abscisic acid (ABA) were investigated on early seedling growth of Medicago truncatula, and on glutamate metabolism under dark conditions. Water deficit (simulated by polyethylene glycol, PEG), ABA and their combination resulted in a reduction in growth rate of the embryo axis, and also in a synergistic increase of free amino acid (AA) content. However, the inhibition of water uptake retention induced by water deficit seemed to occur in an ABA-independent manner. Expression of several genes involved in glutamate metabolism was induced during water deficit, whereas ABA, in combination or not with PEG, repressed them. The only exception came from a gene encoding 1-pyrroline-5-carboxylate synthetase (P5CS) which appeared to be induced in an ABA-dependent manner under water deficit. Our results demonstrate clearly the involvement of an ABA-dependent and an ABA-independent regulatory system, governing growth and glutamate metabolism under water deficit.

  3. ABFs, a family of ABA-responsive element binding factors.

    Science.gov (United States)

    Choi, H; Hong, J; Ha, J; Kang, J; Kim, S Y

    2000-01-21

    Abscisic acid (ABA) plays an important role in environmental stress responses of higher plants during vegetative growth. One of the ABA-mediated responses is the induced expression of a large number of genes, which is mediated by cis-regulatory elements known as abscisic acid-responsive elements (ABREs). Although a number of ABRE binding transcription factors have been known, they are not specifically from vegetative tissues under induced conditions. Considering the tissue specificity of ABA signaling pathways, factors mediating ABA-dependent stress responses during vegetative growth phase may thus have been unidentified so far. Here, we report a family of ABRE binding factors isolated from young Arabidopsis plants under stress conditions. The factors, isolated by a yeast one-hybrid system using a prototypical ABRE and named as ABFs (ABRE binding factors) belong to a distinct subfamily of bZIP proteins. Binding site selection assay performed with one ABF showed that its preferred binding site is the strong ABRE, CACGTGGC. ABFs can transactivate an ABRE-containing reporter gene in yeast. Expression of ABFs is induced by ABA and various stress treatments, whereas their induction patterns are different from one another. Thus, a new family of ABRE binding factors indeed exists that have the potential to activate a large number of ABA/stress-responsive genes in Arabidopsis.

  4. Influence of Cooling Condition on the Performance of Grinding Hardened Layer in Grind-hardening

    Science.gov (United States)

    Wang, G. C.; Chen, J.; Xu, G. Y.; Li, X.

    2018-02-01

    45# steel was grinded and hardened on a surface grinding machine to study the effect of three different cooling media, including emulsion, dry air and liquid nitrogen, on the microstructure and properties of the hardened layer. The results show that the microstructure of material surface hardened with emulsion is pearlite and no hardened layer. The surface roughness is small and the residual stress is compressive stress. With cooling condition of liquid nitrogen and dry air, the specimen surface are hardened, the organization is martensite, the surface roughness is also not changed, but high hardness of hardened layer and surface compressive stress were obtained when grinding using liquid nitrogen. The deeper hardened layer grinded with dry air was obtained and surface residual stress is tensile stress. This study provides an experimental basis for choosing the appropriate cooling mode to effectively control the performance of grinding hardened layer.

  5. ABA, GA(3), and nitrate may control seed germination of Crithmum maritimum (Apiaceae) under saline conditions.

    Science.gov (United States)

    Atia, Abdallah; Debez, Ahmed; Barhoumi, Zouhaier; Smaoui, Abderrazak; Abdelly, Chedly

    2009-08-01

    Impaired germination is common among halophyte seeds exposed to salt stress, partly resulting from the salt-induced reduction of the growth regulator contents in seeds. Thus, the understanding of hormonal regulation during the germination process is a main key: (i) to overcome the mechanisms by which NaCl-salinity inhibit germination; and (ii) to improve the germination of these species when challenged with NaCl. In the present investigation, the effects of ABA, GA(3), NO(-)(3), and NH(+)(4) on the germination of the oilseed halophyte Crithmum maritimum (Apiaceae) were assessed under NaCl-salinity (up to 200 mM NaCl). Seeds were collected from Tabarka rocky coasts (N-W of Tunisia). The exogenous application of GA(3), nitrate (either as NaNO(3) or KNO(3)), and NH(4)Cl enhanced germination under NaCl salinity. The beneficial impact of KNO(3) on germination upon seed exposure to NaCl salinity was rather due to NO(-)(3) than to K(+), since KCl failed to significantly stimulate germination. Under optimal conditions for germination (0 mM NaCl), ABA inhibited germination over time in a dose dependent manner, but KNO(3) completely restored the germination parameters. Under NaCl salinity, the application of fluridone (FLU) an inhibitor of ABA biosynthesis, stimulated substantially seed germination. Taken together, our results point out that NO(-)(3) and GA(3) mitigate the NaCl-induced reduction of seed germination, and that NO(-)(3) counteracts the inhibitory effect of ABA on germination of C. maritimum.

  6. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination

    Directory of Open Access Journals (Sweden)

    Erwann eArc

    2013-03-01

    Full Text Available Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8’-hydroxylation. The hormonal balance between ABA and gibberellins (GAs has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8’-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination.

  7. Arabidopsis DREB2C modulates ABA biosynthesis during germination.

    Science.gov (United States)

    Je, Jihyun; Chen, Huan; Song, Chieun; Lim, Chae Oh

    2014-09-12

    Plant dehydration-responsive element binding factors (DREBs) are transcriptional regulators of the APETELA2/Ethylene Responsive element-binding Factor (AP2/ERF) family that control expression of abiotic stress-related genes. We show here that under conditions of mild heat stress, constitutive overexpression seeds of transgenic DREB2C overexpression Arabidopsis exhibit delayed germination and increased abscisic acid (ABA) content compared to untransformed wild-type (WT). Treatment with fluridone, an inhibitor of the ABA biosynthesis abrogated these effects. Expression of an ABA biosynthesis-related gene, 9-cis-epoxycarotenoid dioxygenase 9 (NCED9) was up-regulated in the DREB2C overexpression lines compared to WT. DREB2C was able to trans-activate expression of NCED9 in Arabidopsis leaf protoplasts in vitro. Direct and specific binding of DREB2C to a complete DRE on the NCED9 promoter was observed in electrophoretic mobility shift assays. Exogenous ABA treatment induced DREB2C expression in germinating seeds of WT. Vegetative growth of transgenic DREB2C overexpression lines was more strongly inhibited by exogenous ABA compared to WT. These results suggest that DREB2C is a stress- and ABA-inducible gene that acts as a positive regulator of ABA biosynthesis in germinating seeds through activating NCED9 expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence.

    Science.gov (United States)

    Liu, Tie; Longhurst, Adam D; Talavera-Rauh, Franklin; Hokin, Samuel A; Barton, M Kathryn

    2016-10-04

    Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties.

  9. Ion irradiation-induced swelling and hardening effect of Hastelloy N alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.J. [Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, D.H.; Chen, H.C.; Lei, G.H.; Huang, H.F.; Zhang, W.; Wang, C.B. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Yan, L., E-mail: yanlong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Fu, D.J. [Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Tang, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-06-15

    The volumetric swelling and hardening effect of irradiated Hastelloy N alloy were investigated in this paper. 7 MeV and 1 MeV Xe ions irradiations were performed at room temperature (RT) with irradiation dose ranging from 0.5 to 27 dpa. The volumetric swelling increases with increasing irradiation dose, and reaches up to 3.2% at 27 dpa. And the irradiation induced lattice expansion is also observed. The irradiation induced hardening initiates at low ion dose (≤1dpa) then saturates with higher ion dose. The irradiation induced volumetric swelling may be ascribed to excess atomic volume of defects. The irradiation induced hardening may be explained by the pinning effect where the defects can act as obstacles for the free movement of dislocation lines. And the evolution of the defects' size and number density could be responsible for the saturation of hardness. - Highlights: •Irradiation Swelling: The irradiation induced volumetric swelling increases with ion dose. •Irradiation Hardening: The irradiation hardening initiates below 1 dpa, then saturates with higher ion dose (1–10 dpa). •Irradiation Mechanism: The irradiation phenomena are ascribed to the microstructural evolution of the irradiation defects.

  10. Helium-induced hardening effect in polycrystalline tungsten

    Science.gov (United States)

    Kong, Fanhang; Qu, Miao; Yan, Sha; Zhang, Ailin; Peng, Shixiang; Xue, Jianming; Wang, Yugang

    2017-09-01

    In this paper, helium induced hardening effect of tungsten was investigated. 50 keV He2+ ions at fluences vary from 5 × 1015 cm-2 to 5 × 1017 cm-2 were implanted into polycrystalline tungsten at RT to create helium bubble-rich layers near the surface. The microstructure and mechanical properties of the irradiated specimens were studied by TEM and nano-indentor. Helium bubble rich layers are formed in near surface region, and the layers become thicker with the rise of fluences. Helium bubbles in the area of helium concentration peak are found to grow up, while the bubble density is almost unchanged. Obvious hardening effect is induced by helium implantation in tungsten. Micro hardness increases rapidly with the fluence firstly, and more slowly when the fluence is above 5 × 1016 cm-2. The hardening effect of tungsten can be attributed to helium bubbles, which is found to be in agreement with the Bacon-Orowan stress formula. The growing diameter is the major factor rather than helium bubbles density (voids distance) in the process of helium implantation at fluences below 5 × 1017 cm-2.

  11. Transcriptional Responses of Chilean Quinoa (Chenopodium quinoa Willd.) Under Water Deficit Conditions Uncovers ABA-Independent Expression Patterns.

    Science.gov (United States)

    Morales, Andrea; Zurita-Silva, Andres; Maldonado, Jonathan; Silva, Herman

    2017-01-01

    HIGHLIGHTS R49 genotype displayed best performance on selected physiological parameters and highest tolerance to drought.R49 drought over-represented transcripts has exhibited 19% of genes (306 contigs) that presented no homology to published databases.Expression pattern for canonical responses to drought such as ABA biosynthesis and other genes induced in response to drought were assessed by qPCR. Global freshwater shortage is one of the biggest challenges of our time, often associated to misuse, increased consumption demands and the effects of climate change, paralleled with the desertification of vast areas. Chenopodium quinoa (Willd.) represents a very promising species, due to both nutritional content and cultivation under water constraint. We characterized drought tolerance of three Chilean genotypes and selected Genotype R49 (Salares ecotype) based upon Relative Water Content (RWC), Electrolyte Leakage (EL) and maximum efficiency of photosystem II (F v /F m ) after drought treatment, when compared to another two genotypes. Exploratory RNA-Seq of R49 was generated by Illumina paired-ends method comparing drought and control irrigation conditions. We obtained 104.8 million reads, with 54 million reads for control condition and 51 million reads for drought condition. Reads were assembled in 150,952 contigs, were 31,523 contigs have a reading frame of at least 300 nucleotides (100 aminoacids). BLAST2GO annotation showed a 15% of genes without homology to NCBI proteins, but increased to 19% (306 contigs) when focused into drought-induced genes. Expression pattern for canonical drought responses such as ABA biosynthesis and other genes induced were assessed by qPCR, suggesting novelty of R49 drought responses.

  12. ABA signaling in stress-response and seed development.

    Science.gov (United States)

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2013-07-01

    KEY MESSAGE : We review the recent progress on ABA signaling, especially ABA signaling for ABA-dependent gene expression, including the AREB/ABF regulon, SnRK2 protein kinase, 2C-type protein phosphatases and ABA receptors. Drought negatively impacts plant growth and the productivity of crops. Drought causes osmotic stress to organisms, and the osmotic stress causes dehydration in plant cells. Abscisic acid (ABA) is produced under osmotic stress conditions, and it plays an important role in the stress response and tolerance of plants. ABA regulates many genes under osmotic stress conditions. It also regulates gene expression during seed development and germination. The ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. ABRE-binding protein (AREB)/ABRE-binding factor (ABF) transcription factors (TFs) regulate ABRE-dependent gene expression. Other TFs are also involved in ABA-responsive gene expression. SNF1-related protein kinases 2 are the key regulators of ABA signaling including the AREB/ABF regulon. Recently, ABA receptors and group A 2C-type protein phosphatases were shown to govern the ABA signaling pathway. Moreover, recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress-response and seed development. The control of the expression of ABA signaling factors may improve tolerance to environmental stresses.

  13. Abscisic (ABA)-aldehyde is a precursor to, and 1',4'-trans-ABA-diol a catabolite of, ABA in apple

    International Nuclear Information System (INIS)

    Rock, C.D.; Zeevaart, J.A.D.

    1990-01-01

    Previous 18 O labeling studies of abscisic acid (ABA) have shown that apple (Malus domestica Borkh. cv Granny Smith) fruits synthesize a majority of [ 18 O]ABA with the label incorporated in the 1'-hydroxyl position and unlabeled in the carboxyl group (JAD Zeevaart, TG Heath, DA Gage [1989] Plant Physiol 91: 1594-1601). It was proposed that exchange of 18 O in the side chain with the medium occurred at an aldehyde intermediate stage of ABA biosynthesis. We have isolated ABA-aldehyde and 1'-4'-trans-ABA-diol (ABA-trans-diol) from 18 O-labeled apple fruit tissue and measured the extent and position of 18 O incorporation by tandem mass spectrometry. 18 O-Labeling patterns of ABA-aldehyde, ABA-trans-diol, and ABA indicate that ABA-aldehyde is a precursor to, and ABA-trans-diol a catabolite of, ABA. Exchange of 18 O in the carbonyl of ABA-aldehyde can be the cause of loss of 18 O from the side chain of [ 18 O]ABA. Results of feeding experiments with deuterated substrates provide further support for the precursor-product relationship of ABA-aldehyde → ABAABA-trans-diol. The ABA-aldehyde and ABA-trans-diol contents of fruits and leaves were low, approximately 1 and 0.02 nanograms per gram fresh weight for ABA-aldehyde and ABA-trans-diol, respectively, while ABA levels in fruits ranged from 10 to 200 nanograms per gram fresh weight. ABA biosynthesis was about 10-fold lower in fruits than in leaves. In fruits, the majority of ABA was conjugated to β-D-glucopyranosyl abscisate, whereas in leaves ABA was mainly hydroxylated to phaseic acid. Parallel pathways for ABA and trans-ABA biosynthesis and conjugation in fruits and leaves are proposed

  14. Residual stresses relaxation in surface-hardened half-space under creep conditions

    Directory of Open Access Journals (Sweden)

    Vladimir P. Radchenko

    2015-09-01

    Full Text Available We developed the method for solving the problem of residual stresses relaxation in surface-hardened layer of half-space under creep conditions. At the first stage we made the reconstruction of stress-strain state in half-space after plastic surface hardening procedure based on partial information about distribution for one residual stress tensor component experimentally detected. At the second stage using a numerical method we solve the problem of relaxation of self-balanced residual stresses under creep conditions. To solve this problem we introduce the following Cartesian system: x0y plane is aligned with hardened surface of half-space and 0z axis is directed to the depth of hardened layer. We also introduce the hypotheses of plane sections parallel to x0z and y0z planes. Detailed analysis of the problem has been done. Comparison of the calculated data with the corresponding test data was made for plane specimens (rectangular parallelepipeds made of EP742 alloy during T=650°C after the ultrasonic hardening with four hardening modes. We use half-space to model these specimens because penetration's depth of residual stresses is less than specimen general size in two digit exponent. There is enough correspondence of experimental and calculated data. It is shown that there is a decay (in modulus of pressing residual stresses under creep in 1.4–1.6 times.

  15. Development of Bake Hardening Effect by Plastic Deformation and Annealing Conditions

    Directory of Open Access Journals (Sweden)

    Kvačkaj, T.

    2006-01-01

    Full Text Available The paper deals with the classification of steel sheets for automotives industry on the basis of strength and structural characteristics. Experimental works were aimed to obtain the best possible strengthening parameters as well as work hardening and solid solution ferrite hardening, which are the result of thermal activation of interstitial carbon atoms during paint-baking of auto body. Hardening process coming from interstitial atoms is realized as two-step process. The first step is BH (bake hardening effect achieved by interaction of interstitial atoms with dislocations. The Cottrels atmosphere is obtained. The second step of BH effect is to produced the hardening from precipitation of the carbon atoms in e-carbides, or formation of Fe32C4 carbides. WH (work hardening effect is obtained as dislocation hardening from plastic deformations during sheet deep drawing. Experimental works were aimed at as to achieve such plastic material properties after cold rolling, annealing and skin-pass rolling, which would be able to classify the material ZStE220BH into the drawing categories at the level of DQ – DDQ. As resulting from the experimental results, the optimal treatment conditions for the maximal sum (WH+BH = 86 MPa are as follows: total cold rolling deformation ecold = 65 %, annealing temperature Tanneal. = 700 °C.

  16. A distal ABA responsive element in AtNCED3 promoter is required for positive feedback regulation of ABA biosynthesis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Yan-Zhuo Yang

    Full Text Available The plant hormone abscisic acid (ABA plays a crucial role in plant development and responses to abiotic stresses. Recent studies indicate that a positive feedback regulation by ABA exists in ABA biosynthesis in plants under dehydration stress. To understand the molecular basis of this regulation, we analyzed the cis-elements of the AtNCED3 promoter in Arabidopsis. AtNCED3 encodes the first committed and highly regulated dioxygenase in the ABA biosynthetic pathway. Through delineated and mutagenesis analyses in stable-transformed Arabidopsis, we revealed that a distal ABA responsive element (ABRE: GGCACGTG, -2372 to -2364 bp is required for ABA-induced AtNCED3 expression. By analyzing the AtNCED3 expression in ABRE binding protein ABF3 over-expression transgenic plants and knock-out mutants, we provide evidence that the ABA feedback regulation of AtNCED3 expression is not mediated by ABF3.

  17. A distal ABA responsive element in AtNCED3 promoter is required for positive feedback regulation of ABA biosynthesis in Arabidopsis.

    Science.gov (United States)

    Yang, Yan-Zhuo; Tan, Bao-Cai

    2014-01-01

    The plant hormone abscisic acid (ABA) plays a crucial role in plant development and responses to abiotic stresses. Recent studies indicate that a positive feedback regulation by ABA exists in ABA biosynthesis in plants under dehydration stress. To understand the molecular basis of this regulation, we analyzed the cis-elements of the AtNCED3 promoter in Arabidopsis. AtNCED3 encodes the first committed and highly regulated dioxygenase in the ABA biosynthetic pathway. Through delineated and mutagenesis analyses in stable-transformed Arabidopsis, we revealed that a distal ABA responsive element (ABRE: GGCACGTG, -2372 to -2364 bp) is required for ABA-induced AtNCED3 expression. By analyzing the AtNCED3 expression in ABRE binding protein ABF3 over-expression transgenic plants and knock-out mutants, we provide evidence that the ABA feedback regulation of AtNCED3 expression is not mediated by ABF3.

  18. Cloning and expression analysis of cDNAs for ABA 8'-hydroxylase during sweet cherry fruit maturation and under stress conditions.

    Science.gov (United States)

    Ren, Jie; Sun, Liang; Wu, Jiefang; Zhao, Shengli; Wang, Canlei; Wang, Yanping; Ji, Kai; Leng, Ping

    2010-11-15

    Abscisic acid (ABA) plays a key role in various aspects of plant growth and development, including adaptation to environmental stress and fruit maturation in sweet cherry fruit. In higher plants, the level of ABA is determined by synthesis and catabolism. In order to gain insight into ABA synthesis and catabolism in sweet cherry fruit during maturation and under stress conditions, four cDNAs of PacCYP707A1 -PacCYP707A4 for 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA, and one cDNA of PacNCED1 for 9-cis-epoxycarotenoid dioxygenase, a key enzyme in the ABA biosynthetic pathway, were isolated from sweet cherry fruit (Prunus avium L.). The timing and pattern of PacNCED1 expression was coincident with that of ABA accumulation, which was correlated to maturation of sweet cherry fruit. All four PacCYP707As were expressed at varying intensities throughout fruit development and appeared to play overlapping roles in ABA catabolism throughout sweet cherry fruit development. The application of ABA enhanced the expression of PacCYP707A1 -PacCYP707A3 as well as PacNCED1, but downregulated the PacCYP707A4 transcript level. Expressions of PacCYP707A1, PacCYP707A3 and PacNCED1 were strongly increased by water stress. No significant differences in PacCYP707A2 and PacCYP707A4 expression were observed between dehydrated and control fruits. The results suggest that endogenous ABA content is modulated by a dynamic balance between biosynthesis and catabolism, which are regulated by PacNCED1 and PacCYP707As transcripts, respectively, during fruit maturation and under stress conditions. Copyright © 2010 Elsevier GmbH. All rights reserved.

  19. Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L) and cabbage (Brassica campestris).

    Science.gov (United States)

    Zhu, Su-Qin; Chen, Ming-Wei; Ji, Ben-Hua; Jiao, De-Mao; Liang, Jian-Sheng

    2011-08-01

    Changes in actual efficiency of PS II photochemistry, non-photochemical quenching (NPQ), content of xanthophylls and kinetics of de-epoxidation were studied in ABA-fed and non-ABA-fed leaves of rice and cabbage under NaCl stress. Salt stress induced more progressive decrease in actual efficiency of PS II photochemistry (ФPS II), higher reduction state of PS II, and a small significant increase in NPQ in NaCl-sensitive rice plants as compared with NaCl-tolerant cabbage plants, whereas exogenously supplied ABA alleviated the decrease in actual efficiency of PS II photochemistry (ФPS II), induced a lower reduction state of PS II, and caused higher capacity of NPQ in ABA-fed plants than in non-ABA-fed plants. As a result, there were higher activities of photosynthetic electron transport, higher capacity of energy dissipation, and lower cumulation of excess light in cabbage than in rice plants, and in ABA-fed leaves than in non-ABA-fed leaves. The effect of ABA was more efficient in cabbage than in rice plants. Addition of exogenous ABA resulted in enhancement of the size of the xanthophyll cycle pool, promotion of de-epoxidation of the xanthophyll cycle components, and a rise in the level of NPQ by altering the kinetics of de-epoxidation of the xanthophyll cycle. Protection from photodamage appears to be achieved by coordinated contributions by exogenous ABA and xanthophyll cycle-mediated NPQ. This variety of photoprotective mechanisms may be essential for conferring photodamage tolerance under NaCl stress. © The Author [2011]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved.

  20. Effect of hardening on the crack growth rate of austenitic stainless steels in primary PWR conditions

    International Nuclear Information System (INIS)

    Castano, M.L.; Garcia, M.S.; Diego, G. de; Gomez-Briceno, D.; Francia, L.

    2002-01-01

    Intergranular cracking of non-sensitized materials, found in light water reactor (LWR) components exposed to neutron radiation, has been attributed to Irradiation Assisted Stress Corrosion Cracking (IASCC). Cracking of baffle former bolts, fabricated of AISI-316L and AISI-347, have been reported in some Europeans and US PWR plants. Examinations of removed bolts indicate the intergranular cracking characteristics can be associated with IASCC phenomena. Neutron radiation produce critical modifications of the microstructure and microchemical of stainless steels such hardening due to irradiation and Radiation Induce Segregation (RIS) at grain boundaries, among others. Chromium depletion at grain boundary due to RIS seems to justify the intergranular cracking of irradiated materials, both in plant and in lab tests, at high electrochemical corrosion potential (BWR-NWC environments), but it is not enough to explain cracking at low corrosion potential (BWR-HWC and PWR environments). In these latter conditions, hardening is considered a possible additional mechanism to explain the behavior of irradiated material. Radiation Hardening can be simulated in non irradiated material by mechanical deformation. Although some differences exists in the types of defects produced by radiation and mechanical deformation, it is accepted that the study of the stress corrosion behavior of unirradiated austenitic steels with different hardening levels would contribute to the understanding of IASCC mechanism. In order to evaluate the influence of hardening on the stress corrosion susceptibility of austenitic steels, crack growth rate tests with 316L and 347 stainless steels with nominal yield strengths from 500 to 900 MPa, produced by cold work are being carried out at 340 deg C in PWR conditions. Preliminary results indicate that crack propagation was obtained in the 316Lss and 347ss cold worked, even with a yield strength of 550 MPa. (authors)

  1. Reduced ABA Accumulation in the Root System is Caused by ABA Exudation in Upland Rice (Oryza sativa L. var. Gaoshan1) and this Enhanced Drought Adaptation.

    Science.gov (United States)

    Shi, Lu; Guo, Miaomiao; Ye, Nenghui; Liu, Yinggao; Liu, Rui; Xia, Yiji; Cui, Suxia; Zhang, Jianhua

    2015-05-01

    Lowland rice (Nipponbare) and upland rice (Gaoshan 1) that are comparable under normal and moderate drought conditions showed dramatic differences in severe drought conditions, both naturally occurring long-term drought and simulated rapid water deficits. We focused on their root response and found that enhanced tolerance of upland rice to severe drought conditions was mainly due to the lower level of ABA in its roots than in those of the lowland rice. We first excluded the effect of ABA biosynthesis and catabolism on root-accumulated ABA levels in both types of rice by monitoring the expression of four OsNCED genes and two OsABA8ox genes. Next, we excluded the impact of the aerial parts on roots by suppressing leaf-biosynthesized ABA with fluridone and NDGA (nordihydroguaiaretic acid), and measuring the ABA level in detached roots. Instead, we proved that upland rice had the ability to export considerably more root-sourced ABA than lowland rice under severe drought, which improved ABA-dependent drought adaptation. The investigation of apoplastic pH in root cells and root anatomy showed that ABA leakage in the root system of upland rice was related to high apoplastic pH and the absence of Casparian bands in the sclerenchyma layer. Finally, taking some genes as examples, we predicted that different ABA levels in rice roots stimulated distinct ABA perception and signaling cascades, which influenced its response to water stress. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites

    International Nuclear Information System (INIS)

    Li, V.C.; Wu, H.W.

    1992-01-01

    Apart from imparting increased fracture toughness, one of the useful purposes of reinforcing brittle matrices with fibers is to create enhanced composite strain capacity. This paper reviews the conditions underwhich such a composite will exhibit the pseudo strain-hardening phenomenon. The presentation is given in a unified manner for both continuous aligned and discontinuous random fiber composites. It is demonstrated that pseudo strain hardening can be practically designed for both gills of composites by proper tailoring of material structures. 18 refs., 8 figs., 2 tabs

  3. ABA Is Involved in Regulation of Cold Stress Response in Bermudagrass

    Directory of Open Access Journals (Sweden)

    Xuebing Huang

    2017-10-01

    Full Text Available As a representative warm-season grass, Bermudagrass [Cynodon dactylon (L. Pers.] is widely used in turf systems. However, low temperature remarkably limits its growth and distribution. ABA is a crucial phytohormone that has been reported to regulate much important physiological and biochemical processes in plants under abiotic stress. Therefore, the objective of this study was to figure out the effects of ABA on the cold-sensitive (S and cold-resistant (R Bermudagrass genotypes response to cold stress. In this study, the plants were treated with 100 μM ABA solution and exposed to 4°C temperature. After 7 days of cold treatment, the electrolyte leakage (EL, malonaldehyde (MDA and H2O2 content were significantly increased in both genotypes compared with control condition, and these values were higher in R genotype than those of S genotype, respectively. By contrast, exogenous ABA application decreased the electrolyte leakage (EL, MDA and H2O2 content in both genotypes compared with those plants without ABA treatment under cold treatment condition. In addition, exogenous ABA application increased the levels of chlorophyll a fluorescence transient curve for both genotypes, and it was higher in R genotype than that of S genotype. Analysis of photosynthetic fluorescence parameters revealed that ABA treatment improved the performance of photosystem II under cold condition, particularly for the R genotype. Moreover, cold stress significantly increased δ13C values for both genotypes, while it was alleviated by exogenous ABA. Additionally, exogenous ABA application altered the expression of ABA- or cold related genes, including ABF1, CBF1, and LEA. In summary, exogenous ABA application enhanced cold resistance of both genotypes by maintaining cell membrane stability, improving the process of photosystem II, increasing carbon isotopic fractionation under cold stress, and more prominently in R genotype compared with S genotype.

  4. On residual stresses and fatigue of laser hardened steels

    International Nuclear Information System (INIS)

    Lin, Ru.

    1992-01-01

    This thesis deals with studies on residual stresses and fatigue properties of laser-transformation hardened steels. Two types of specimens, cylinders and fatigue specimens were used in the studies. The cylinders, made of Swedish steels SS 2244 and SS 2258 which correspond to AISI 4140 and AISI 52100 respectively, were locally hardened by a single scan of laser beam in the longitudinal direction, with various laser parameters. Residual stress distributions across the hardened tracks were measured by means of X-ray diffraction. The origins of residual stresses were investigated and discussed. For the fatigue specimens, including smooth and notched types made of Swedish steels SS 2244, SS 2225 and SS 1572 (similar to AISI 4140, AISI 4130 and AISI 1035, respectively), laser hardening was carried out in the gauge section. The residual stress field induced by the hardening process and the fatigue properties by plane bending fatigue test were studied. In order to investigate the stability of the residual stress field, stress measurements were also made on specimens being loaded near the fatigue limits for over 10 7 cycles. Further the concept of local fatigue strength was employed to correlate quantitatively the effect of hardness and residual stress field on the fatigue limits. In addition a group of smooth specimens of SS 2244 was induction hardened and the hardening results were compared with the corresponding laser hardened ones in terms of residual stress and fatigue behaviour. It has been found that compressive stresses exist in the hardened zone of all the specimens studied. The laser hardening condition, the specimen and how the hardening is carried out can significantly affect the residual stress field. Laser hardening can greatly improve the fatigue properties by inducing a hardened and compressed surface layer. (112 refs.)(au)

  5. On residual stresses and fatigue of laser hardened steels

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ru.

    1992-01-01

    This thesis deals with studies on residual stresses and fatigue properties of laser-transformation hardened steels. Two types of specimens, cylinders and fatigue specimens were used in the studies. The cylinders, made of Swedish steels SS 2244 and SS 2258 which correspond to AISI 4140 and AISI 52100 respectively, were locally hardened by a single scan of laser beam in the longitudinal direction, with various laser parameters. Residual stress distributions across the hardened tracks were measured by means of X-ray diffraction. The origins of residual stresses were investigated and discussed. For the fatigue specimens, including smooth and notched types made of Swedish steels SS 2244, SS 2225 and SS 1572 (similar to AISI 4140, AISI 4130 and AISI 1035, respectively), laser hardening was carried out in the gauge section. The residual stress field induced by the hardening process and the fatigue properties by plane bending fatigue test were studied. In order to investigate the stability of the residual stress field, stress measurements were also made on specimens being loaded near the fatigue limits for over 10[sup 7] cycles. Further the concept of local fatigue strength was employed to correlate quantitatively the effect of hardness and residual stress field on the fatigue limits. In addition a group of smooth specimens of SS 2244 was induction hardened and the hardening results were compared with the corresponding laser hardened ones in terms of residual stress and fatigue behaviour. It has been found that compressive stresses exist in the hardened zone of all the specimens studied. The laser hardening condition, the specimen and how the hardening is carried out can significantly affect the residual stress field. Laser hardening can greatly improve the fatigue properties by inducing a hardened and compressed surface layer. (112 refs.)(au).

  6. Fern Stomatal Responses to ABA and CO2 Depend on Species and Growth Conditions.

    Science.gov (United States)

    Hõrak, Hanna; Kollist, Hannes; Merilo, Ebe

    2017-06-01

    Changing atmospheric CO 2 levels, climate, and air humidity affect plant gas exchange that is controlled by stomata, small pores on plant leaves and stems formed by guard cells. Evolution has shaped the morphology and regulatory mechanisms governing stomatal movements to correspond to the needs of various land plant groups over the past 400 million years. Stomata close in response to the plant hormone abscisic acid (ABA), elevated CO 2 concentration, and reduced air humidity. Whether the active regulatory mechanisms that control stomatal closure in response to these stimuli are present already in mosses, the oldest plant group with stomata, or were acquired more recently in angiosperms remains controversial. It has been suggested that the stomata of the basal vascular plants, such as ferns and lycophytes, close solely hydropassively. On the other hand, active stomatal closure in response to ABA and CO 2 was found in several moss, lycophyte, and fern species. Here, we show that the stomata of two temperate fern species respond to ABA and CO 2 and that an active mechanism of stomatal regulation in response to reduced air humidity is present in some ferns. Importantly, fern stomatal responses depend on growth conditions. The data indicate that the stomatal behavior of ferns is more complex than anticipated before, and active stomatal regulation is present in some ferns and has possibly been lost in others. Further analysis that takes into account fern species, life history, evolutionary age, and growth conditions is required to gain insight into the evolution of land plant stomatal responses. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Transcriptome Analysis of ABA/JA-Dual Responsive Genes in Rice Shoot and Root.

    Science.gov (United States)

    Kim, Jin-Ae; Bhatnagar, Nikita; Kwon, Soon Jae; Min, Myung Ki; Moon, Seok-Jun; Yoon, In Sun; Kwon, Taek-Ryoun; Kim, Sun Tae; Kim, Beom-Gi

    2018-01-01

    The phytohormone abscisic acid (ABA) enables plants to adapt to adverse environmental conditions through the modulation of metabolic pathways and of growth and developmental programs. We used comparative microarray analysis to identify genes exhibiting ABA-dependent expression and other hormone-dependent expression among them in Oryza sativa shoot and root. We identified 854 genes as significantly up- or down-regulated in root or shoot under ABA treatment condition. Most of these genes had similar expression profiles in root and shoot under ABA treatment condition, whereas 86 genes displayed opposite expression responses in root and shoot. To examine the crosstalk between ABA and other hormones, we compared the expression profiles of the ABA-dependently regulated genes under several different hormone treatment conditions. Interestingly, around half of the ABA-dependently expressed genes were also regulated by jasmonic acid based on microarray data analysis. We searched the promoter regions of these genes for cis-elements that could be responsible for their responsiveness to both hormones, and found that ABRE and MYC2 elements, among others, were common to the promoters of genes that were regulated by both ABA and JA. These results show that ABA and JA might have common gene expression regulation system and might explain why the JA could function for both abiotic and biotic stress tolerance.

  8. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors.

    Science.gov (United States)

    Kobayashi, Yuhko; Murata, Michiharu; Minami, Hideyuki; Yamamoto, Shuhei; Kagaya, Yasuaki; Hobo, Tokunori; Yamamoto, Akiko; Hattori, Tsukaho

    2005-12-01

    The plant hormone abscisic acid (ABA) induces gene expression via the ABA-response element (ABRE) present in the promoters of ABA-regulated genes. A group of bZIP proteins have been identified as ABRE-binding factors (ABFs) that activate transcription through this cis element. A rice ABF, TRAB1, has been shown to be activated via ABA-dependent phosphorylation. While a large number of signalling factors have been identified that are involved in stomatal regulation by ABA, relatively less is known about the ABA-signalling pathway that leads to gene expression. We have shown recently that three members of the rice SnRK2 protein kinase family, SAPK8, SAPK9 and SAPK10, are activated by ABA signal as well as by hyperosmotic stress. Here we show that transient overexpression in cultured cell protoplasts of these ABA-activated SnRK2 protein kinases leads to the activation of an ABRE-regulated promoter, suggesting that these kinases are involved in the gene-regulation pathway of ABA signalling. We further show several lines of evidence that these ABA-activated SnRK2 protein kinases directly phosphorylate TRAB1 in response to ABA. Kinetic analysis of SAPK10 activation and TRAB1 phosphorylation indicated that the latter immediately followed the former. TRAB1 was found to be phosphorylated not only in response to ABA, but also in response to hyperosmotic stress, which was interpreted as the consequence of phosphorylation of TRAB1 by hyperosmotically activated SAPKs. Physical interaction between TRAB1 and SAPK10 in vivo was demonstrated by a co-immunoprecipitation experiment. Finally, TRAB1 was phosphorylated in vitro by the ABA-activated SnRK2 protein kinases at Ser102, which is phosphorylated in vivo in response to ABA and is critical for the activation function.

  9. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis

    Science.gov (United States)

    Kwak, June M.; Mori, Izumi C.; Pei, Zhen-Ming; Leonhardt, Nathalie; Torres, Miguel Angel; Dangl, Jeffery L.; Bloom, Rachel E.; Bodde, Sara; Jones, Jonathan D.G.; Schroeder, Julian I.

    2003-01-01

    Reactive oxygen species (ROS) have been proposed to function as second messengers in abscisic acid (ABA) signaling in guard cells. However, the question whether ROS production is indeed required for ABA signal transduction in vivo has not yet been addressed, and the molecular mechanisms mediating ROS production during ABA signaling remain unknown. Here, we report identification of two partially redundant Arabidopsis guard cell-expressed NADPH oxidase catalytic subunit genes, AtrbohD and AtrbohF, in which gene disruption impairs ABA signaling. atrbohD/F double mutations impair ABA-induced stomatal closing, ABA promotion of ROS production, ABA-induced cytosolic Ca2+ increases and ABA- activation of plasma membrane Ca2+-permeable channels in guard cells. Exogenous H2O2 rescues both Ca2+ channel activation and stomatal closing in atrbohD/F. ABA inhibition of seed germination and root elongation are impaired in atrbohD/F, suggesting more general roles for ROS and NADPH oxidases in ABA signaling. These data provide direct molecular genetic and cell biological evidence that ROS are rate-limiting second messengers in ABA signaling, and that the AtrbohD and AtrbohF NADPH oxidases function in guard cell ABA signal transduction. PMID:12773379

  10. ABA-Induced Stomatal Closure Involves ALMT4, a Phosphorylation-Dependent Vacuolar Anion Channel of Arabidopsis[OPEN

    Science.gov (United States)

    Baetz, Ulrike; Huck, Nicola V.; Zhang, Jingbo

    2017-01-01

    Stomatal pores are formed between a pair of guard cells and allow plant uptake of CO2 and water evaporation. Their aperture depends on changes in osmolyte concentration of guard cell vacuoles, specifically of K+ and Mal2−. Efflux of Mal2− from the vacuole is required for stomatal closure; however, it is not clear how the anion is released. Here, we report the identification of ALMT4 (ALUMINUM ACTIVATED MALATE TRANSPORTER4) as an Arabidopsis thaliana ion channel that can mediate Mal2− release from the vacuole and is required for stomatal closure in response to abscisic acid (ABA). Knockout mutants showed impaired stomatal closure in response to the drought stress hormone ABA and increased whole-plant wilting in response to drought and ABA. Electrophysiological data show that ALMT4 can mediate Mal2− efflux and that the channel activity is dependent on a phosphorylatable C-terminal serine. Dephosphomimetic mutants of ALMT4 S382 showed increased channel activity and Mal2− efflux. Reconstituting the active channel in almt4 mutants impaired growth and stomatal opening. Phosphomimetic mutants were electrically inactive and phenocopied the almt4 mutants. Surprisingly, S382 can be phosphorylated by mitogen-activated protein kinases in vitro. In brief, ALMT4 likely mediates Mal2− efflux during ABA-induced stomatal closure and its activity depends on phosphorylation. PMID:28874508

  11. The effects of induction hardening on wear properties of AISI 4140 steel in dry sliding conditions

    International Nuclear Information System (INIS)

    Totik, Y.; Sadeler, R.; Altun, H.; Gavgali, M.

    2002-01-01

    Wear behaviour of induction hardened AISI 4140 steel was evaluated under dry sliding conditions. Specimens were induction hardened at 1000 Hz for 6, 10, 14, 18, 27 s, respectively, in the inductor which was a three-turn coil with a coupling distance of 2.8 mm. Normalised and induction hardened specimens were fully characterised before and after the wear testing using hardness, profilometer, scanning electron microscopy and X-ray diffraction. The wear tests using a pin-on-disc machine showed that the induction hardening treatments improved the wear behaviour of AISI 4140 steel specimens compared to normalised AISI 4140 steel as a result of residual stresses and hardened surfaces. The wear coefficients in normalised specimens are greater than that in the induction hardened samples. The lowest coefficient of the friction was obtained in specimens induction-hardened at 875 deg. C for 27 s

  12. The effects of induction hardening on wear properties of AISI 4140 steel in dry sliding conditions

    Energy Technology Data Exchange (ETDEWEB)

    Totik, Y.; Sadeler, R.; Altun, H.; Gavgali, M

    2002-02-15

    Wear behaviour of induction hardened AISI 4140 steel was evaluated under dry sliding conditions. Specimens were induction hardened at 1000 Hz for 6, 10, 14, 18, 27 s, respectively, in the inductor which was a three-turn coil with a coupling distance of 2.8 mm. Normalised and induction hardened specimens were fully characterised before and after the wear testing using hardness, profilometer, scanning electron microscopy and X-ray diffraction. The wear tests using a pin-on-disc machine showed that the induction hardening treatments improved the wear behaviour of AISI 4140 steel specimens compared to normalised AISI 4140 steel as a result of residual stresses and hardened surfaces. The wear coefficients in normalised specimens are greater than that in the induction hardened samples. The lowest coefficient of the friction was obtained in specimens induction-hardened at 875 deg. C for 27 s.

  13. The effect of strobilurins on leaf gas exchange, water use efficiency and ABA content in grapevine under field conditions.

    Science.gov (United States)

    Diaz-Espejo, Antonio; Cuevas, María Victoria; Ribas-Carbo, Miquel; Flexas, Jaume; Martorell, Sebastian; Fernández, José Enrique

    2012-03-01

    Strobilurins are one of the most important classes of agricultural fungicides. In addition to their anti-fungal effect, strobilurins have been reported to produce simultaneous effects in plant physiology. This study investigated whether the use of strobilurin fungicide improved water use efficiency in leaves of grapevines grown under field conditions in a Mediterranean climate in southern Spain. Fungicide was applied three times in the vineyard and measurements of leaf gas exchange, plant water status, abscisic acid concentration in sap ([ABA]), and carbon isotope composition in leaves were performed before and after applications. No clear effect on stomatal conductance, leaf water potential and intrinsic water use efficiency was found after three fungicide applications. ABA concentration was observed to increase after fungicide application on the first day, vanishing three days later. Despite this transient effect, evolution of [ABA] matched well with the evolution of leaf carbon isotope ratio, which can be used as a surrogate for plant water use efficiency. Morning stomatal conductance was negatively correlated to [ABA]. Yield was enhanced in strobilurin treated plants, whereas fruit quality remained unaltered. Published by Elsevier GmbH.

  14. Positive feedback regulation of a Lycium chinense-derived VDE gene by drought-induced endogenous ABA, and over-expression of this VDE gene improve drought-induced photo-damage in Arabidopsis.

    Science.gov (United States)

    Guan, Chunfeng; Ji, Jing; Zhang, Xuqiang; Li, Xiaozhou; Jin, Chao; Guan, Wenzhu; Wang, Gang

    2015-03-01

    Violaxanthin de-epoxidase (VDE) plays an important role in protecting the photosynthetic apparatus from photo-damage by dissipating excessively absorbed light energy as heat, via the conversion of violaxanthin (V) to intermediate product antheraxanthin (A) and final product zeaxanthin (Z) under light stress. We have cloned a VDE gene (LcVDE) from Lycium chinense, a deciduous woody perennial halophyte, which can grow in a large variety of soil types. The amino acid sequence of LcVDE has high homology with VDEs in other plants. Under drought stress, relative expression of LcVDE and the de-epoxidation ratio (Z+0.5A)/(V+A+Z) increased rapidly, and non-photochemical quenching (NPQ) also rose. Interestingly, these elevations induced by drought stress were reduced by the topical administration of abamine SG, a potent ABA inhibitor via inhibition of NCED in the ABA synthesis pathway. Until now, little has been done to explore the relationship between endogenous ABA and the expression of VDE genes. Since V serves as a common precursor for ABA, these data support the possible involvement of endogenous ABA in the positive feedback regulation of LcVDE gene expression in L. chinense under drought stress. Moreover, the LcVDE may be involved in modulating the level of photosynthesis damage caused by drought stress. Furthermore, the ratio of (Z+0.5A)/(V+A+Z) and NPQ increased more in transgenic Arabidopsis over-expressing LcVDE gene than the wild types under drought stress. The maximum quantum yield of primary photochemistry of PSII (Fv/Fm) in transgenic Arabidopsis decreased more slowly during the stressed period than that in wild types under the same conditions. Furthermore, transgenic Arabidopsis over-expressing LcVDE showed increased tolerance to drought stress. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Hardening in AlN induced by point defects

    International Nuclear Information System (INIS)

    Suematsu, H.; Mitchell, T.E.; Iseki, T.; Yano, T.

    1991-01-01

    Pressureless-sintered AIN was neutron irradiated and the hardness change was examined by Vickers indentation. The hardness was increased by irradiation. When the samples were annealed at high temperature, the hardness gradually decreased. Length was also found to increase and to change in the same way as the hardness. A considerable density of dislocation loops still remained, even after the hardness completely recovered to the value of the unirradiated sample. Thus, it is concluded that the hardening in AIN is caused by isolated point defects and small clusters of point defects, rather than by dislocation loops. Hardness was found to increase in proportion to the length change. If the length change is assumed to be proportional to the point defect density, then the curve could be fitted qualitatively to that predicted by models of solution hardening in metals. Furthermore, the curves for three samples irradiated at different temperatures and fluences are identical. There should be different kinds of defect clusters in samples irradiated at different conditions, e.g., the fraction of single point defects is the highest in the sample irradiated at the lowest temperature. Thus, hardening is insensitive to the kind of defects remaining in the sample and is influenced only by those which contribute to length change

  16. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation.

    Science.gov (United States)

    Yoshida, Takuya; Fujita, Yasunari; Sayama, Hiroko; Kidokoro, Satoshi; Maruyama, Kyonoshin; Mizoi, Junya; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2010-02-01

    A myriad of drought stress-inducible genes have been reported, and many of these are activated by abscisic acid (ABA). In the promoter regions of such ABA-regulated genes, conserved cis-elements, designated ABA-responsive elements (ABREs), control gene expression via bZIP-type AREB/ABF transcription factors. Although all three members of the AREB/ABF subfamily, AREB1, AREB2, and ABF3, are upregulated by ABA and water stress, it remains unclear whether these are functional homologs. Here, we report that all three AREB/ABF transcription factors require ABA for full activation, can form hetero- or homodimers to function in nuclei, and can interact with SRK2D/SnRK2.2, an SnRK2 protein kinase that was identified as a regulator of AREB1. Along with the tissue-specific expression patterns of these genes and the subcellular localization of their encoded proteins, these findings clearly indicate that AREB1, AREB2, and ABF3 have largely overlapping functions. To elucidate the role of these AREB/ABF transcription factors, we generated an areb1 areb2 abf3 triple mutant. Large-scale transcriptome analysis, which showed that stress-responsive gene expression is remarkably impaired in the triple mutant, revealed novel AREB/ABF downstream genes in response to water stress, including many LEA class and group-Ab PP2C genes and transcription factors. The areb1 areb2 abf3 triple mutant is more resistant to ABA than are the other single and double mutants with respect to primary root growth, and it displays reduced drought tolerance. Thus, these results indicate that AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent gene expression for ABA signaling under conditions of water stress.

  17. Lipid profiling demonstrates that suppressing Arabidopsis phospholipase Dδ retards ABA-promoted leaf senescence by attenuating lipid degradation.

    Directory of Open Access Journals (Sweden)

    Yanxia Jia

    Full Text Available Senescence is the last phase of the plant life cycle and has an important role in plant development. Degradation of membrane lipids is an essential process during leaf senescence. Several studies have reported fundamental changes in membrane lipids and phospholipase D (PLD activity as leaves senesce. Suppression of phospholipase Dα1 (PLDα1 retards abscisic acid (ABA-promoted senescence. However, given the absence of studies that have profiled changes in the compositions of membrane lipid molecules during leaf senescence, there is no direct evidence that PLD affects lipid composition during the process. Here, we show that application of n-butanol, an inhibitor of PLD, and N-Acylethanolamine (NAE 12∶0, a specific inhibitor of PLDα1, retarded ABA-promoted senescence to different extents. Furthermore, phospholipase Dδ (PLDδ was induced in leaves treated with ABA, and suppression of PLDδ retarded ABA-promoted senescence in Arabidopsis. Lipid profiling revealed that detachment-induced senescence had different effects on plastidic and extraplastidic lipids. The accelerated degradation of plastidic lipids during ABA-induced senescence in wild-type plants was attenuated in PLDδ-knockout (PLDδ-KO plants. Dramatic increases in phosphatidic acid (PA and decreases in phosphatidylcholine (PC during ABA-induced senescence were also suppressed in PLDδ-KO plants. Our results suggest that PLDδ-mediated hydrolysis of PC to PA plays a positive role in ABA-promoted senescence. The attenuation of PA formation resulting from suppression of PLDδ blocks the degradation of membrane lipids, which retards ABA-promoted senescence.

  18. Chaboche-based cyclic material hardening models for 316 SS–316 SS weld under in-air and pressurized water reactor water conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov; Soppet, William K.; Majumdar, Saurindranath; Natesan, Krishnamurti

    2016-08-15

    Highlights: • 316 SS–316 SS weld cyclically harden/soften while undergoing fatigue loading. • Cyclic hardening/softening creates cycle dependent stress-strain curves. • This necessitate to estimate the cycle dependence of material properties. • Cyclic evolution of Chaboche parameters are estimated under different conditions. - Abstract: This paper discusses a material hardening models for welds made from 316 stainless steel (SS) to 316 SS. The model parameters were estimated from the strain-versus-stress curves obtained from tensile and fatigue tests conducted under different conditions (air at room temperature, air at 300 °C, and primary loop water conditions for a pressurized water reactor). These data were used to check the fatigue cycle dependency of the material hardening parameters (yield stress, parameters related to Chaboche-based linear and nonlinear kinematic hardening models, etc.). The details of the experimental results, material hardening models, and associated calculated results are published in an Argonne report (ANL/LWRS-15/2). This paper summarizes the reported material parameters for 316 SS–316 SS welds and their dependency on fatigue cycles and other test conditions.

  19. Arabidopsis PCaP2 Functions as a Linker Between ABA and SA Signals in Plant Water Deficit Tolerance

    Directory of Open Access Journals (Sweden)

    Xianling Wang

    2018-05-01

    Full Text Available Water stress has a major influence on plant growth, development, and productivity. However, the cross-talk networks involved in drought tolerance are not well understood. Arabidopsis PCaP2 is a plasma membrane-associated Ca2+-binding protein. In this study, we employ qRT-PCR and β-glucuronidase (GUS histochemical staining to demonstrate that PCaP2 expression was strongly induced in roots, cotyledons, true leaves, lateral roots, and whole plants under water deficit conditions. Compared with the wild type (WT plants, PCaP2-overexpressing (PCaP2-OE plants displayed enhanced water deficit tolerance in terms of seed germination, seedling growth, and plant survival status. On the contrary, PCaP2 mutation and reduction via PCaP2-RNAi rendered plants more sensitive to water deficit. Furthermore, PCaP2-RNAi and pcap2 seedlings showed shorter root hairs and lower relative water content compared to WT under normal conditions and these phenotypes were exacerbated under water deficit. Additionally, the expression of PCaP2 was strongly induced by exogenous abscisic acid (ABA and salicylic acid (SA treatments. PCaP2-OE plants showed insensitive to exogenous ABA and SA treatments, in contrast to the susceptible phenotypes of pcap2 and PCaP2-RNAi. It is well-known that SNF1-related kinase 2s (SnRK2s and pathogenesis-related (PRs are major factors that influence plant drought tolerance by ABA- and SA-mediated pathways, respectively. Interestingly, PCaP2 positively regulated the expression of drought-inducible genes (RD29A, KIN1, and KIN2, ABA-mediated drought responsive genes (SnRK2.2, -2.3, -2.6, ABF1, -2, -3, -4, and SA-mediated drought responsive genes (PR1, -2, -5 under water deficit, ABA, or SA treatments. Taken together, our results showed that PCaP2 plays an important and positive role in Arabidopsis water deficit tolerance by involving in response to both ABA and SA signals and regulating root hair growth. This study provides novel insights into the

  20. ABA and ABC renewal of conditioned magazine approach are not impaired by dorsal hippocampus inactivation or lesions

    Science.gov (United States)

    Campese, Vincent; Delamater, Andrew R.

    2013-01-01

    Three experiments investigated the role of the dorsal hippocampus (DH) in renewal of conditioned and then extinguished magazine approach responding in rats. Experiments 1 and 2 found no effect of muscimol inactivation of the DH during testing on ABA and ABC renewal, respectively. However, subjects from these studies were subsequently found to be impaired on a delayed non-matching-to-place task following muscimol but not saline infusions. Experiment 3 found no effects of post-training excitotoxic lesions of the DH on ABA and ABC renewal. Lesioned subjects were, however, impaired on the delayed non-matching-to-place task compared to control subjects. These findings suggest that the DH may not play a similar role in Pavlovian extinction in appetitive learning tasks as has previously been reported in aversive learning. PMID:23583520

  1. Influence of Microstructure and Process Conditions on Simultaneous Low-Temperature Surface Hardening and Bulk Precipitation Hardening of Nanoflex®

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas L.

    2015-01-01

    Precipitation hardening martensitic stainless steel Nanoflex was low-temperature nitrided or nitrocarburized. In these treatments, simultaneous hardening of the bulk, by precipitation hardening, and the surface by dissolving nitrogen/carbon can be obtained because the treatment temperatures...... and times for these essentially different hardening mechanisms are compatible. The effect of the processing history of the steel on the nitrided/nitrocarburized case was investigated by varying the amounts of austenite and martensite through variation of the degree of plastic deformation by tensile strain...... consisting of martensite results in the deepest nitrided case, while a shallow case develops on a microstructure consisting of austenite. For an initial microstructure consisting of both martensite and austenite a non-uniform case depth is achieved. Simultaneous bulk and surface hardening is only possible...

  2. N. plumbaginifolia zeaxanthin epoxidase transgenic lines have unaltered baseline ABA accumulations in roots and xylem sap, but contrasting sensitivities of ABA accumulation to water deficit.

    Science.gov (United States)

    Borel, C; Audran, C; Frey, A; Marion-Poll, A; Tardieu, F; Simonneau, T

    2001-03-01

    A series of transgenic lines of Nicotiana plumbaginifolia with modified expression of zeaxanthin epoxidase gene (ZEP) provided contrasting ABA accumulation in roots and xylem sap. For mild water stress, concentration of ABA in the xylem sap ([ABA](xylem)) was clearly lower in plants underexpressing ZEP mRNA (complemented mutants and antisense transgenic lines) than in wild-type. In well-watered conditions, all lines presented similar [ABA](xylem) and similar ABA accumulation rates in detached roots. Plants could, therefore, be grown under normal light intensities and evaporative demand. Both ZEP mRNA abundance and ABA accumulation rate in roots increased with water deficit in all transgenic lines, except in complemented aba2-s1 mutants in which the ZEP gene was controlled by a constitutive promoter which does not respond to water deficit. These lines presented no change in root ABA content either with time or dehydration. The increase in ZEP mRNA abundance in roots with decreasing RWC was more pronounced in detached roots than in whole plants, suggesting a difference in mechanism. In all transgenic lines, a linear relationship was observed between predawn leaf water potential and [ABA](xylem), which could be reproduced in several experiments in the greenhouse and in the growth chamber. It is therefore possible to represent the effect of the transformation by a single parameter, thereby allowing the use of a quantitative approach to assist understanding of the behaviour of transgenic lines.

  3. A Microsomal Proteomics View of H2O2- and ABA-Dependent Responses

    KAUST Repository

    Alquraishi, May Majed; Thomas, Ludivine; Gehring, Chris; Marondedze, Claudius

    2017-01-01

    The plant hormone abscisic acid (ABA) modulates a number of plant developmental processes and responses to stress. In planta, ABA has been shown to induce reactive oxygen species (ROS) production through the action of plasma membrane-associated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases. Although quantitative proteomics studies have been performed to identify ABA- or hydrogen peroxide (H₂O₂)-dependent proteins, little is known about the ABA- and H₂O₂-dependent microsomal proteome changes. Here, we examined the effect of 50 µM of either H₂O₂ or ABA on the Arabidopsis microsomal proteome using tandem mass spectrometry and identified 86 specifically H₂O₂-dependent, and 52 specifically ABA-dependent proteins that are differentially expressed. We observed differential accumulation of proteins involved in the tricarboxylic acid (TCA) cycle notably in response to H₂O₂. Of these, aconitase 3 responded to both H₂O₂ and ABA. Additionally, over 30 proteins linked to RNA biology responded significantly to both treatments. Gene ontology categories such as 'response to stress' and 'transport' were enriched, suggesting that H₂O₂ or ABA directly and/or indirectly cause complex and partly overlapping cellular responses. Data are available via ProteomeXchange with identifier PXD006513.

  4. A Microsomal Proteomics View of H2O2- and ABA-Dependent Responses

    KAUST Repository

    Alquraishi, May Majed

    2017-08-21

    The plant hormone abscisic acid (ABA) modulates a number of plant developmental processes and responses to stress. In planta, ABA has been shown to induce reactive oxygen species (ROS) production through the action of plasma membrane-associated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases. Although quantitative proteomics studies have been performed to identify ABA- or hydrogen peroxide (H₂O₂)-dependent proteins, little is known about the ABA- and H₂O₂-dependent microsomal proteome changes. Here, we examined the effect of 50 µM of either H₂O₂ or ABA on the Arabidopsis microsomal proteome using tandem mass spectrometry and identified 86 specifically H₂O₂-dependent, and 52 specifically ABA-dependent proteins that are differentially expressed. We observed differential accumulation of proteins involved in the tricarboxylic acid (TCA) cycle notably in response to H₂O₂. Of these, aconitase 3 responded to both H₂O₂ and ABA. Additionally, over 30 proteins linked to RNA biology responded significantly to both treatments. Gene ontology categories such as \\'response to stress\\' and \\'transport\\' were enriched, suggesting that H₂O₂ or ABA directly and/or indirectly cause complex and partly overlapping cellular responses. Data are available via ProteomeXchange with identifier PXD006513.

  5. Effects of Multiple Contexts and Context Similarity on the Renewal of Extinguished Conditioned Behaviour in an ABA Design with Humans

    Science.gov (United States)

    Balooch, Siavash Bandarian; Neumann, David L.

    2011-01-01

    The ABA renewal procedure involves pairing a conditional stimulus (CS) and an unconditional stimulus (US) in one context (A), presenting extinction trials of the CS alone in a second context (B), and nonreinforced test trials of the CS in the acquisition context (A). The renewal of extinguished conditioned behaviour is observed during test. The…

  6. ABA-alcohol is an intermediate in abscisic acid biosynthesis

    International Nuclear Information System (INIS)

    Rock, C.D.; Zeevaart, J.A.D.

    1990-01-01

    It has been established that ABA-aldehyde is a precursor to ABA. The ABA-deficient flacca and sitiens mutants of tomato are blocked in the conversion of ABA-aldehyde to ABA, and accumulate trans-ABA-alcohol. 18 O-Labeling studies of ABA in flacca and sitiens show that these mutants synthesize a large percentage of [ 18 O]ABA which contains two 18 O atoms in the carboxyl group. Furthermore, the mutants synthesize much greater amounts of trans-ABA-glucose ester (t-ABA-GE) compared with the wild type, and this [ 18 O]t-ABA-GE is also double labeled in the carboxyl group. Our interpretation of these data is that the 18 O in ABA-aldehyde is trapped in the side chain by reduction to [ 18 O]ABA-alcohol, followed by isomerization to [ 18 O]t-ABA-alcohol and oxidation with 18 O 2 to [ 18 O]t-ABA. The [ 18 O]t-ABA is then rapidly converted to [ 18 O]t-ABA-GE. Because [ 18 O]ABA doubly labeled in the carboxyl group has been observed in small amounts in labeling experiments with several species, and various species have been shown to convert ABA-aldehyde to ABA-alcohol and t-ABA-alcohol, we propose that ABA-alcohol is an ABA intermediate in a shunt pathway

  7. The ABA receptors -- we report you decide.

    Science.gov (United States)

    McCourt, Peter; Creelman, Robert

    2008-10-01

    The plant hormone abscisic acid (ABA) has been implicated in a variety of physiological responses ranging from seed dormancy to stomatal conductance. Recently, three groups have reported the molecular identification of three disparate ABA receptors. Unlike the identification of other hormone receptors, in these three cases high affinity binding to ABA rather than the isolation of ABA insensitive mutants led to these receptor genes. Interestingly, two of the receptors encode genes involved in floral timing and chlorophyll biosynthesis, which are not considered traditional ABA responses. And the third receptor has been clouded in issues of its molecular identity. To clearly determine the roles of these genes in ABA perception it will require placing of these ABA-binding proteins into the rich ABA physiological context that has built up over the years.

  8. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio.

    Science.gov (United States)

    Shuai, Haiwei; Meng, Yongjie; Luo, Xiaofeng; Chen, Feng; Zhou, Wenguan; Dai, Yujia; Qi, Ying; Du, Junbo; Yang, Feng; Liu, Jiang; Yang, Wenyu; Shu, Kai

    2017-10-03

    Auxin is an important phytohormone which mediates diverse development processes in plants. Published research has demonstrated that auxin induces seed dormancy. However, the precise mechanisms underlying the effect of auxin on seed germination need further investigation, especially the relationship between auxins and both abscisic acid (ABA) and gibberellins (GAs), the latter two phytohormones being the key regulators of seed germination. Here we report that exogenous auxin treatment represses soybean seed germination by enhancing ABA biosynthesis, while impairing GA biogenesis, and finally decreasing GA 1 /ABA and GA 4 /ABA ratios. Microscope observation showed that auxin treatment delayed rupture of the soybean seed coat and radicle protrusion. qPCR assay revealed that transcription of the genes involved in ABA biosynthetic pathway was up-regulated by application of auxin, while expression of genes involved in GA biosynthetic pathway was down-regulated. Accordingly, further phytohormone quantification shows that auxin significantly increased ABA content, whereas the active GA 1 and GA 4 levels were decreased, resulting insignificant decreases in the ratiosGA 1 /ABA and GA 4 /ABA.Consistent with this, ABA biosynthesis inhibitor fluridone reversed the delayed-germination phenotype associated with auxin treatment, while paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Altogether, exogenous auxin represses soybean seed germination by mediating ABA and GA biosynthesis.

  9. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana

    KAUST Repository

    Danquah, Agyemang

    2015-04-01

    Summary Abscisic acid (ABA) is a major phytohormone involved in important stress-related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA-triggered phosphoproteins as putative mitogen-activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA-activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3-1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA-dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR-SnRK2-PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA-induced MAPK pathway in plant stress signalling. Significance Statement We report in this article the identification of a complete MAPK module, composed of MAP3K17/18, MKK3 and MPK1/2/7/14, which is activated by ABA through the ABA core signalling complex. We showed that the activation of this module requires the MAP3K protein synthesis which occurs after hours of stress treatment, suggesting that the pathway is involved in a delayed wave of cellular responses to ABA and drought. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  10. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana

    KAUST Repository

    Danquah, Agyemang; Zé licourt, Axel de; Boudsocq, Marie; Neubauer, Jorinde; Frei Dit Frey, Nicolas; Leonhardt, Nathalie; Pateyron, Sté phanie; Gwinner, Frederik; Tamby, Jean Philippe; Ortiz-Masià , Dolores; Marcote, Marí a Jesú s; Hirt, Heribert; Colcombet, Jean

    2015-01-01

    Summary Abscisic acid (ABA) is a major phytohormone involved in important stress-related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA-triggered phosphoproteins as putative mitogen-activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA-activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3-1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA-dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR-SnRK2-PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA-induced MAPK pathway in plant stress signalling. Significance Statement We report in this article the identification of a complete MAPK module, composed of MAP3K17/18, MKK3 and MPK1/2/7/14, which is activated by ABA through the ABA core signalling complex. We showed that the activation of this module requires the MAP3K protein synthesis which occurs after hours of stress treatment, suggesting that the pathway is involved in a delayed wave of cellular responses to ABA and drought. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  11. RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis

    KAUST Repository

    Ren, Zhonghai

    2010-03-08

    Soil salinity limits agricultural production and is a major obstacle for feeding the growing world population. We used natural genetic variation in salt tolerance among different Arabidopsis accessions to map a major quantitative trait locus (QTL) for salt tolerance and abscisic acid (ABA) sensitivity during seed germination and early seedling growth. A recombinant inbred population derived from Landsberg erecta (Ler; salt and ABA sensitive) x Shakdara (Sha; salt and ABA resistant) was used for QTL mapping. High-resolution mapping and cloning of this QTL, Response to ABA and Salt 1 (RAS1), revealed that it is an ABA- and salt stress-inducible gene and encodes a previously undescribed plant-specific protein. A premature stop codon results in a truncated RAS1 protein in Sha. Reducing the expression of RAS1 by transfer-DNA insertion in Col or RNA interference in Ler leads to decreased salt and ABA sensitivity, whereas overexpression of the Ler allele but not the Sha allele causes increased salt and ABA sensitivity. Our results suggest that RAS1 functions as a negative regulator of salt tolerance during seed germination and early seedling growth by enhancing ABA sensitivity and that its loss of function contributes to the increased salt tolerance of Sha.

  12. Experiment research on grind-hardening of AISI5140 steel based on thermal copensation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiang Ming; Ren, Ying Hui; Zheng, Bo; Zhou, Zhixiong [College of Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan (China); Deng, Zhao Hui [Key Laboratory for High Efficiency and Precision Machining of Difficult-to-Cut Material of Hunan Province, Hunan (China)

    2016-08-15

    The grind-hardening process utilizes the heat generated to induce martensitic phase transformation. However, the maximum achievable harden layer depth is limited due to high grinding forces, and the tensile residual stress appears on the ground surface in the grind-hardening process. This paper proposes a new grind-hardening technology using thermal compensation. The workpiece of AISI5140 steel is preheated by electric resistance heating, and ground under the condition of the workpiece temperature 25°C, 120°C, 180°C and 240°C. The grinding force, harden layer depth and surface quality including residual stress on ground surface, surface roughness and micro-hardness are investigated. The experimental results show that a deep harden layer with a fine grain martensite can be obtained with the thermal compensation. The ground workpiece surface produces a certain compressive residual stress, and the residual compressive stress value increases with preheating temperature. As the preheating temperature increases, grinding force slightly decreases, while there is slightly increment of surface roughness. Compared with the conventional grind-hardening process, both the harden layer depth and residual stress distribution are significantly improved.

  13. Role of abscisic acid (aba) in modulating the responses of two apple rootstocks to drought stress

    International Nuclear Information System (INIS)

    Zhang, L.; Li, X.; Li, B.; Han, M.; Liu, F.; Zhang, L.; Zheng, P.

    2014-01-01

    Drought stress is considered as the main limiting factor for apple (Malus domestica L.) production in some semi-arid areas of China. In this study, we investigated the modulation role of abscisic acid (ABA) and fluridone (ABA synthesis inhibitor) on water relations and antioxidant enzyme system in 2-year-old seedlings of two apple rootstocks i.e. Malus sieversii (Ledeb.) Roem. (MS) and Malus hupehensis (Pamp.) Rehd. (MH). Drought stress induced ion leakage, accumulation of malondiadehyde (MDA) and decreases in leaf water potential and relative water content (RWC) in both rootstocks, which were significantly alleviated by exogenous ABA application. Drought stress also induced markedly increases in endogenous ABA content and activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR), to a greater magnitude in MS as compared to MH rootstock. Concentration of 100 mol/L and 50 mol/L ABA had the most positive effects on drought-stressed rootstocks of MS and MH, respectively. Spraying optimum exogenous ABA contributed to enhancement in most of the above antioxidant enzymes activities but reduction in content of MDA and maintained the appropriate leaf water potential and RWC in both rootstocks. Pretreatment with fluridone aggravated ion leakage and the accumulation of MDA in two apple rootstocks under drought stress, which was overcome by exogenous ABA application to some extent. In conclusion, the endogenous ABA was probably involved in the regulation of two apple rootstocks in responses to drought stress. (author)

  14. Working hardening modelization in zirconium alloys

    International Nuclear Information System (INIS)

    Sanchez, P.; Pochettino, Alberto A.

    1999-01-01

    Working hardening effects on mechanical properties and crystallographic textures formation in Zr-based alloys are studied. The hardening mechanisms for different grain deformations and topological conditions of simple crystal yield are considered. Results obtained show that the differences in the cold rolling textures (L and T textures) can be related with hardening microstructural parameters. (author)

  15. Fluridone and norflurazon, carotenoid-biosynthesis inhibitors, promote seed conditioning and germination of the holoparasite Orobanche minor.

    Science.gov (United States)

    Chae, Sang Heon; Yoneyama, Koichi; Takeuchi, Yasutomo; Joel, Daniel M.

    2004-02-01

    Fluridone and norflurazon, two carotenoid-biosynthesis inhibitors, shortened the conditioning period required by seeds of Orobanche minor in order to respond to the germination stimulant strigol. Neither fluridone nor norflurazon alone induced seed germination of O. minor, they promoted strigol-induced germination. In addition, these compounds restored the conditioning and germination of seeds at a supraoptimal temperature (30 degrees C) as well as in the light. Gibberellic acid (GA(3)) showed similar promotive and protective effects on the conditioning and germination of O. minor seeds. Although fluridone and norflurazon are known to prevent abscisic acid (ABA)-biosynthesis, and stresses such as supraoptimal temperatures have been reported to induce ABA accumulation in plants, the amount of ABA in the seeds or that released from the seeds into the conditioning media was not affected by the fluridone treatment and by exposure to the supraoptimal temperature. These results indicate that the promotive and protective effects of fluridone and norflurazon on the conditioning and germination of O. minor seeds would be attributed to other perturbations rather than the inhibition of ABA-biosynthesis.

  16. Effects of ABA application on cessation of shoot elongation in long-day grown Norway spruce seedlings.

    Science.gov (United States)

    Heide, O M

    1986-06-01

    Abscisic acid (ABA) was applied in lanolin to apical buds of Norway spruce (Picea abies (L.) Karst.) seedlings actively growing in a 24 h photoperiod. At a rate of 100 microg per plant, ABA suspended shoot elongation for about three weeks in the majority of plants but failed to induce normal winter buds. The role of ABA in the induction of dormancy is thus uncertain in conifers as well as in deciduous woody plants.

  17. Regulation of carotenoid and ABA accumulation during the development and germination of Nicotiana plumbaginifolia seeds.

    Science.gov (United States)

    Frey, Anne; Boutin, Jean-Pierre; Sotta, Bruno; Mercier, Raphaël; Marion-Poll, Annie

    2006-08-01

    Abscisic acid (ABA) is derived from epoxycarotenoid cleavage and regulates seed development and maturation. A detailed carotenoid analysis was undertaken to study the contribution of epoxycarotenoid synthesis to the regulation of ABA accumulation in Nicotiana plumbaginifolia developing seeds. Maximal accumulation of xanthophylls occurred at mid-development in wild type seeds, when total ABA levels also peaked. In contrast, in ABA-deficient mutants xanthophyll synthesis was delayed, in agreement with the retardation in seed maturation. Seed dormancy was restored in mutants impaired in the conversion of zeaxanthin into violaxanthin by zeaxanthin epoxidase (ZEP), by the introduction of the Arabidopsis AtZEP gene under the control of promoters inducing expression during later stages of seed development compared to wild type NpZEP, and in dry and imbibed seeds. Alterations in the timing and level of ZEP expression did not highly affect the temporal regulation of ABA accumulation in transgenic seeds, despite notable perturbations in xanthophyll accumulation. Therefore, major regulatory control of ABA accumulation might occur downstream of epoxycarotenoid synthesis.

  18. UV-induced cross-linking of abscisic acid to binding proteins

    International Nuclear Information System (INIS)

    Cornelussen, M.H.M.; Karssen, C.M.; Loon, L.C. van

    1995-01-01

    Conditions for UV-induced cross-linking of abscisic acid (ABA) through its enone chromophore to binding proteins were evaluated. The effects of a UV-light band between 260 and 530 nm on both unconjugated and protein-conjugated ABA, as well as on anti-ABA antibodies as models of ABA-binding proteins were determined. UV irradiation caused both isomerization and photolysis of ABA, but increasing the lower irradiation boundary to 345 nm strongly reduced photolysis and largely prevented isomerization. When conjugated to alkaline phosphatase (AP), ABA remained stable when using either a 320 or a 345 nm filter. At these wavelengths both binding of ABA to antibodies as well as AP enzymatic activity were maintained. UV-induced cross-linking of monoclonal anti-ABA antibodies to immobilized ABA was analysed by immunoassays. Optimal cross-linking was achieved after a 5 min irradiation period at 0°, using a long pass, cut-on filter to quench wavelengths below 290 nm. This cross-linking faithfully reflected cognate binding activity. (author)

  19. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress

    KAUST Repository

    Liu, Junwei; He, Hanzi; Vitali, Marco; Visentin, Ivan; Charnikhova, Tatsiana V.; Haider, Imran; Schubert, Andrea; Ruyter-Spira, Carolien P.; Bouwmeester, Harro J J; Lovisolo, Claudio; Cardinale, Francesca

    2015-01-01

    Main conclusion: Strigolactone changes and cross talk with ABA unveil a picture of root-specific hormonal dynamics under stress.Abstract: Strigolactones (SLs) are carotenoid-derived hormones influencing diverse aspects of development and communication with (micro)organisms, and proposed as mediators of environmental stimuli in resource allocation processes; to contribute to adaptive adjustments, therefore, their pathway must be responsive to environmental cues. To investigate the relationship between SLs and abiotic stress in Lotus japonicus, we compared wild-type and SL-depleted plants, and studied SL metabolism in roots stressed osmotically and/or phosphate starved. SL-depleted plants showed increased stomatal conductance, both under normal and stress conditions, and impaired resistance to drought associated with slower stomatal closure in response to abscisic acid (ABA). This confirms that SLs contribute to drought resistance in species other than Arabidopsis. However, we also observed that osmotic stress rapidly and strongly decreased SL concentration in tissues and exudates of wild-type Lotus roots, by acting on the transcription of biosynthetic and transporter-encoding genes and independently of phosphate abundance. Pre-treatment with exogenous SLs inhibited the osmotic stress-induced ABA increase in wild-type roots and down-regulated the transcription of the ABA biosynthetic gene LjNCED2. We propose that a transcriptionally regulated, early SL decrease under osmotic stress is needed (but not sufficient) to allow the physiological increase of ABA in roots. This work shows that SL metabolism and effects on ABA are seemingly opposite in roots and shoots under stress.

  20. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress

    KAUST Repository

    Liu, Junwei

    2015-02-26

    Main conclusion: Strigolactone changes and cross talk with ABA unveil a picture of root-specific hormonal dynamics under stress.Abstract: Strigolactones (SLs) are carotenoid-derived hormones influencing diverse aspects of development and communication with (micro)organisms, and proposed as mediators of environmental stimuli in resource allocation processes; to contribute to adaptive adjustments, therefore, their pathway must be responsive to environmental cues. To investigate the relationship between SLs and abiotic stress in Lotus japonicus, we compared wild-type and SL-depleted plants, and studied SL metabolism in roots stressed osmotically and/or phosphate starved. SL-depleted plants showed increased stomatal conductance, both under normal and stress conditions, and impaired resistance to drought associated with slower stomatal closure in response to abscisic acid (ABA). This confirms that SLs contribute to drought resistance in species other than Arabidopsis. However, we also observed that osmotic stress rapidly and strongly decreased SL concentration in tissues and exudates of wild-type Lotus roots, by acting on the transcription of biosynthetic and transporter-encoding genes and independently of phosphate abundance. Pre-treatment with exogenous SLs inhibited the osmotic stress-induced ABA increase in wild-type roots and down-regulated the transcription of the ABA biosynthetic gene LjNCED2. We propose that a transcriptionally regulated, early SL decrease under osmotic stress is needed (but not sufficient) to allow the physiological increase of ABA in roots. This work shows that SL metabolism and effects on ABA are seemingly opposite in roots and shoots under stress.

  1. A unified theoretical and experimental study of anisotropic hardening

    International Nuclear Information System (INIS)

    Boehler, J.P.; Raclin, J.

    1981-01-01

    The purpose of this work is to develop a consistent formulation of the constitutive relations regarding anisotropic hardening materials. Attention is focused on the appearance and the evolution of mechanical anisotropies during irreversible processes, such as plastic forming and inelastic deformation of structures. The representation theorems for anisotropic tensor functions constitute a theoretical basis, allowing to reduce arbitrariness and to obtain a unified formulation of anisotropic hardening. In this approach, a general three-dimensional constitutive law is developed for prestrained initially orthotropic materials. Introduction of the plastic behavior results in the general forms of both the flow-law and the yield criterion. The developed theory is then specialized for the case of plane stress and different modes of anisotropic hardening are analyzed. A new generalization of the Von Mises criterion is proposed, in considering a homogeneous form of order two in stress and employing the simplest combinations of the basic invariants entering the general form of the yield condition. The proposed criterion involves specific terms accounting for the initial anisotropy, the deformation induced anisotropy and correlative terms between initial and induced anisotropy. The effects of prestrainings result in both isotropic and anisotropic hardening. An adequate experimental program, consisting of uniaxial tensile tests on oriented specimens of prestrained sheet-metal, was performed, in order to determine the specific form and the evolution of the anisotropic failure criterion for soft-steel subjected to different irreversible prestrainings. (orig.)

  2. A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in arabidopsis.

    Directory of Open Access Journals (Sweden)

    M Águila Ruiz-Sola

    Full Text Available Abscisic acid (ABA is a hormone that plays a vital role in mediating abiotic stress responses in plants. Salt exposure induces the synthesis of ABA through the cleavage of carotenoid precursors (xanthophylls, which are found at very low levels in roots. Here we show that de novo ABA biosynthesis in salt-treated Arabidopsis thaliana roots involves an organ-specific induction of the carotenoid biosynthetic pathway. Upregulation of the genes encoding phytoene synthase (PSY and other enzymes of the pathway producing ABA precursors was observed in roots but not in shoots after salt exposure. A pharmacological block of the carotenoid pathway substantially reduced ABA levels in stressed roots, confirming that an increase in carotenoid accumulation contributes to fuel hormone production after salt exposure. Treatment with exogenous ABA was also found to upregulate PSY expression only in roots, suggesting an organ-specific feedback regulation of the carotenoid pathway by ABA. Taken together, our results show that the presence of high concentrations of salt in the growth medium rapidly triggers a root-specific activation of the carotenoid pathway, probably to ensure a proper supply of ABA precursors required for a sustained production of the hormone.

  3. Overexpression of an ABA biosynthesis gene using a stress inducible promoter enhances drought resistance in petunia

    Science.gov (United States)

    Plants respond to drought stress by closing their stomata and reducing transpirational water loss. The plant hormone abscisic acid (ABA) regulates growth and stomatal closure particularly when the plant is under environmental stresses. One of the key enzymes in the ABA biosynthesis of higher plants ...

  4. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds.

    Science.gov (United States)

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Doron-Faigenboim, Adi; Blumwald, Eduardo; Sadka, Avi

    2014-07-01

    Many fruit trees undergo cycles of heavy fruit load (ON-Crop) in one year, followed by low fruit load (OFF-Crop) the following year, a phenomenon known as alternate bearing (AB). The mechanism by which fruit load affects flowering induction during the following year (return bloom) is still unclear. Although not proven, it is commonly accepted that the fruit or an organ which senses fruit presence generates an inhibitory signal that moves into the bud and inhibits apical meristem transition. Indeed, fruit removal from ON-Crop trees (de-fruiting) induces return bloom. Identification of regulatory or metabolic processes modified in the bud in association with altered fruit load might shed light on the nature of the AB signalling process. The bud transcriptome of de-fruited citrus trees was compared with those of ON- and OFF-Crop trees. Fruit removal resulted in relatively rapid changes in global gene expression, including induction of photosynthetic genes and proteins. Altered regulatory mechanisms included abscisic acid (ABA) metabolism and auxin polar transport. Genes of ABA biosynthesis were induced; however, hormone analyses showed that the ABA level was reduced in OFF-Crop buds and in buds shortly following fruit removal. Additionally, genes associated with Ca(2+)-dependent auxin polar transport were remarkably induced in buds of OFF-Crop and de-fruited trees. Hormone analyses showed that auxin levels were reduced in these buds as compared with ON-Crop buds. In view of the auxin transport autoinhibition theory, the possibility that auxin distribution plays a role in determining bud fate is discussed. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. ARA-aldehyde and ABA-trans-diol in apple fruits

    International Nuclear Information System (INIS)

    Rock, C.D.; Zeevaart, J.A.D.

    1989-01-01

    We have isolated ABA-aldehyde and ABA-t-diol from postharvest apple fruits, cv. Granny Smith and confirmed their structure by GC-MS. These putative ABA biosynthetic precursors incorporate 18 O to a similar degree as ABA during 48 hours under 18 O 2 atmospheres. The presence of significant amounts of ABA-aldehyde can explain the unique 18 O labeling pattern of ABA in this tissue, where a majority of ABA molecules containing 18 O is labeled in the 1'-hydroxyl group and not in the side chain carboxyl group, the primary site of incorporation for stressed leaves. Exchange of the carbonyl oxygen of ABA-aldehyde with water would decrease 18 O enrichment in the side chain. Results of 18 O 2 experiments and feeding studies using hexadeutero-ABA-aldehyde will be presented and the biosynthetic relationship of these compounds discussed

  6. GhCAX3 gene, a novel Ca(2+/H(+ exchanger from cotton, confers regulation of cold response and ABA induced signal transduction.

    Directory of Open Access Journals (Sweden)

    Lian Xu

    Full Text Available As a second messenger, Ca(2+ plays a major role in cold induced transduction via stimulus-specific increases in [Ca(2+]cyt, which is called calcium signature. During this process, CAXs (Ca(2+/H(+ exchangers play critical role. For the first time, a putative Ca(2+/H(+ exchanger GhCAX3 gene from upland cotton (Gossypium hirsutum cv. 'YZ-1' was isolated and characterized. It was highly expressed in all tissues of cotton except roots and fibers. This gene may act as a regulator in cotton's response to abiotic stresses as it could be up-regulated by Ca(2+, NaCl, ABA and cold stress. Similar to other CAXs, it was proved that GhCAX3 also had Ca(2+ transport activity and the N-terminal regulatory region (NRR through yeast complementation assay. Over-expression of GhCAX3 in tobacco showed less sensitivity to ABA during seed germination and seedling stages, and the phenotypic difference between wild type (WT and transgenic plants was more significant when the NRR was truncated. Furthermore, GhCAX3 conferred cold tolerance in yeast as well as in tobacco seedlings based on physiological and molecular studies. However, transgenic plant seeds showed more sensitivity to cold stress compared to WT during seed germination, especially when expressed in N-terminal truncated version. Finally, the extent of sensitivity in transgenic lines was more severe than that in WT line under sodium tungstate treatment (an ABA repressor, indicating that ABA could alleviate cold sensitivity of GhCAX3 seeds, especially in short of its NRR. Meanwhile, we also found that overexpression of GhCAX3 could enhance some cold and ABA responsive marker genes. Taken together, these results suggested that GhCAX3 plays important roles in the cross-talk of ABA and cold signal transduction, and compared to full-length of GhCAX3, the absence of NRR could enhance the tolerance or sensitivity to cold stress, depending on seedling's developmental stages.

  7. Arabidopsis CPR5 independently regulates seed germination and postgermination arrest of development through LOX pathway and ABA signaling.

    Directory of Open Access Journals (Sweden)

    Guilan Gao

    Full Text Available The phytohormone abscisic acid (ABA and the lipoxygenases (LOXs pathway play important roles in seed germination and seedling growth and development. Here, we reported on the functional characterization of Arabidopsis CPR5 in the ABA signaling and LOX pathways. The cpr5 mutant was hypersensitive to ABA in the seed germination, cotyledon greening and root growth, whereas transgenic plants overexpressing CPR5 were insensitive. Genetic analysis demonstrated that CPR5 gene may be located downstream of the ABI1 in the ABA signaling pathway. However, the cpr5 mutant showed an ABA independent drought-resistant phenotype. It was also found that the cpr5 mutant was hypersensitive to NDGA and NDGA treatment aggravated the ABA-induced delay in the seed germination and cotyledon greening. Taken together, these results suggest that the CPR5 plays a regulatory role in the regulation of seed germination and early seedling growth through ABA and LOX pathways independently.

  8. Aquaporins Contribute to ABA-Triggered Stomatal Closure through OST1-Mediated Phosphorylation

    Science.gov (United States)

    Grondin, Alexandre; Rodrigues, Olivier; Verdoucq, Lionel; Merlot, Sylvain; Leonhardt, Nathalie; Maurel, Christophe

    2015-01-01

    Stomatal movements in response to environmental stimuli critically control the plant water status. Although these movements are governed by osmotically driven changes in guard cell volume, the role of membrane water channels (aquaporins) has remained hypothetical. Assays in epidermal peels showed that knockout Arabidopsis thaliana plants lacking the Plasma membrane Intrinsic Protein 2;1 (PIP2;1) aquaporin have a defect in stomatal closure, specifically in response to abscisic acid (ABA). ABA induced a 2-fold increase in osmotic water permeability (Pf) of guard cell protoplasts and an accumulation of reactive oxygen species in guard cells, which were both abrogated in pip2;1 plants. Open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6), a protein kinase involved in guard cell ABA signaling, was able to phosphorylate a cytosolic PIP2;1 peptide at Ser-121. OST1 enhanced PIP2;1 water transport activity when coexpressed in Xenopus laevis oocytes. Upon expression in pip2;1 plants, a phosphomimetic form (Ser121Asp) but not a phosphodeficient form (Ser121Ala) of PIP2;1 constitutively enhanced the Pf of guard cell protoplasts while suppressing its ABA-dependent activation and was able to restore ABA-dependent stomatal closure in pip2;1. This work supports a model whereby ABA-triggered stomatal closure requires an increase in guard cell permeability to water and possibly hydrogen peroxide, through OST1-dependent phosphorylation of PIP2;1 at Ser-121. PMID:26163575

  9. SvABA

    DEFF Research Database (Denmark)

    Wala, Jeremiah A; Bandopadhayay, Pratiti; Greenwald, Noah

    2018-01-01

    Structural variants (SVs), including small insertion and deletion variants (indels), are challenging to detect through standard alignment-based variant calling methods. Sequence assembly offers a powerful approach to identifying SVs, but is difficult to apply at scale genome-wide for SV detection...... due to its computational complexity and the difficulty of extracting SVs from assembly contigs. We describe SvABA, an efficient and accurate method for detecting SVs from short-read sequencing data using genome-wide local assembly with low memory and computing requirements. We evaluated Sv...... complex somatic rearrangements with chains of short (applied SvABA to 344 cancer genomes from 11 cancer types and found that short templated-sequence insertions occur in ∼4% of all somatic rearrangements. Finally, we...

  10. Interplay between ABA and phospholipases A(2) and D in the response of citrus fruit to postharvest dehydration.

    Science.gov (United States)

    Romero, Paco; Gandía, Mónica; Alférez, Fernando

    2013-09-01

    The interplay between abscisic acid (ABA) and phospholipases A2 and D (PLA2 and PLD) in the response of citrus fruit to water stress was investigated during postharvest by using an ABA-deficient mutant from 'Navelate' orange named 'Pinalate'. Fruit from both varieties harvested at two different maturation stages (mature-green and full-mature) were subjected to prolonged water loss inducing stem-end rind breakdown (SERB) in full-mature fruit. Treatment with PLA2 inhibitor aristolochic acid (AT) and PLD inhibitor lysophosphatidylethanolamine (LPE) reduced the disorder in both varieties, suggesting that phospholipid metabolism is involved in citrus peel quality. Expression of CsPLDα and CsPLDβ, and CssPLA2α and CssPLA2β was studied by real-time RT-PCR during water stress and in response to ABA. CsPLDα expression increased in mature-green fruit from 'Navelate' but not in 'Pinalate' and ABA did not counteract this effect. ABA enhanced repression of CsPLDα in full-mature fruit. CsPLDβ gene expression decreased in mature-green 'Pinalate', remained unchanged in 'Navelate' and was induced in full-mature fruit from both varieties. CssPLA2α expression increased in mature-green fruit from both varieties whereas in full-mature fruit only increased in 'Navelate'. CssPLA2β expression increased in mature-green flavedo from both varieties, but in full-mature fruit remained steady in 'Navelate' and barely increased in 'Pinalate' fruit. ABA reduced expression in both after prolonged storage. Responsiveness to ABA increased with maturation. Our results show interplay between PLA2 and PLD and suggest that ABA action is upstream phospholipase activation. Response to ABA during water stress in citrus is regulated during fruit maturation and involves membrane phospholipid degradation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Radiation hardening revisited: Role of intracascade clustering

    DEFF Research Database (Denmark)

    Singh, B.N.; Foreman, A.J.E.; Trinkaus, H.

    1997-01-01

    be explained in terms of conventional dispersed-barrier hardening because (a) the grown-in dislocations are not free, and (b) irradiation-induced defect clusters are not rigid indestructible Orowan obstacles. A new model called 'cascade-induced source hardening' is presented where glissile loops produced...... directly in cascades are envisaged to decorate the grown-in dislocations so that they cannot act as dislocation sources. The upper yield stress is related to the breakaway stress which is necessary to pull the dislocation away from the clusters/loops decorating it. The magnitude of the breakaway stress has...

  12. Reciprocal Regulation of the TOR Kinase and ABA Receptor Balances Plant Growth and Stress Response.

    Science.gov (United States)

    Wang, Pengcheng; Zhao, Yang; Li, Zhongpeng; Hsu, Chuan-Chih; Liu, Xue; Fu, Liwen; Hou, Yueh-Ju; Du, Yanyan; Xie, Shaojun; Zhang, Chunguang; Gao, Jinghui; Cao, Minjie; Huang, Xiaosan; Zhu, Yingfang; Tang, Kai; Wang, Xingang; Tao, W Andy; Xiong, Yan; Zhu, Jian-Kang

    2018-01-04

    As sessile organisms, plants must adapt to variations in the environment. Environmental stress triggers various responses, including growth inhibition, mediated by the plant hormone abscisic acid (ABA). The mechanisms that integrate stress responses with growth are poorly understood. Here, we discovered that the Target of Rapamycin (TOR) kinase phosphorylates PYL ABA receptors at a conserved serine residue to prevent activation of the stress response in unstressed plants. This phosphorylation disrupts PYL association with ABA and with PP2C phosphatase effectors, leading to inactivation of SnRK2 kinases. Under stress, ABA-activated SnRK2s phosphorylate Raptor, a component of the TOR complex, triggering TOR complex dissociation and inhibition. Thus, TOR signaling represses ABA signaling and stress responses in unstressed conditions, whereas ABA signaling represses TOR signaling and growth during times of stress. Plants utilize this conserved phospho-regulatory feedback mechanism to optimize the balance of growth and stress responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Devising Strain Hardening Models Using Kocks–Mecking Plots—A Comparison of Model Development for Titanium Aluminides and Case Hardening Steel

    Directory of Open Access Journals (Sweden)

    Markus Bambach

    2016-08-01

    Full Text Available The present study focuses on the development of strain hardening models taking into account the peculiarities of titanium aluminides. In comparison to steels, whose behavior has been studied extensively in the past, titanium aluminides possess a much larger initial work hardening rate, a sharp peak stress and pronounced softening. The work hardening behavior of a TNB-V4 (Ti–44.5Al–6.25Nb–0.8Mo–0.1B alloy is studied using isothermal hot compression tests conducted on a Gleeble 3500 simulator, and compared to the typical case hardening steel 25MoCrS4. The behavior is analyzed with the help of the Kocks-Mecking plots. In contrast to steel the TNB-V4 alloy shows a non-linear course of θ (i.e., no stage-III hardening initially and exhibits neither a plateau (stage IV hardening nor an inflection point at all deformation conditions. The present paper describes the development and application of a methodology for the design of strain hardening models for the TNB-V4 alloy and the 25CrMoS4 steel by taking the course of the Kocks-Mecking plots into account. Both models use different approaches for the hardening and softening mechanisms and accurately predict the flow stress over a wide range of deformation conditions. The methodology may hence assist in further developments of more sophisticated physically-based strain hardening models for TiAl-alloys.

  14. Production of ABA responses requires both the nuclear and cytoplasmic functional involvement of PYR1

    International Nuclear Information System (INIS)

    Park, EunJoo; Kim, Tae-Houn

    2017-01-01

    Abscisic acid (ABA) enhances stress tolerant responses in plants against unfavorable environmental conditions. In Arabidopsis, ABA promotes interactions between PYR/PYL/RCARs and PP2C, thereby allowing SnRK2s to phosphorylate downstream components required for the regulation of gene expression or for gating ion channels. Because PYR1 is known to localize to nucleus and cytoplasm it is a question whether nuclear or cytoplasmic PYR1 confer different functions to the ABA signaling pathway, as has been previously shown for regulatory proteins. In order to answer this question, transgenic lines expressing nuclear PYR1 were generated in an ABA insensitive mutant background. Enforced nuclear expression of PYR1 was examined by confocal microscopy and western blot analysis. Physiological analyses of the transgenic lines demonstrated that nuclear PYR1 is sufficient to generate ABA responses, such as, the inhibition of seed germination, root growth inhibition, the induction of gene expression, and stomatal closing movement. However, for the full recovery of ABA responses in the mutant background cytoplasmic PYR1 was required. The study suggests both nuclear and cytoplasmic PYR1 participate in the control of ABA signal transduction. - Highlights: • Nuclear and cytoplasmic functions of PYR1 were studied in the mutant which lacked majority of ABA responses. • Nuclear PYR1 reconstituted partially the ABA responses during seed germination, root growth, and guard cell movement. • Both the nuclear and cytoplasmic functions of PYR1 were required for the full generation of ABA responses.

  15. The effect of austenitizing conditions in the ductile iron hardening process on longitudinal ultrasonic wave velocity

    Directory of Open Access Journals (Sweden)

    A. W. Orłowicz

    2014-04-01

    Full Text Available The paper presents results of a research on the effect of austenitizing temperature and time adopted in the hardening operation on the ultrasonic wave velocity in ductile iron. It has been found that with increasing austenitizing temperature and with the passage of the austenitizing time, a monotonic decrease of the ultrasonic longitudinal wave velocity value occurred. Implementation of ultrasonic testing of results obtained in the course of the cast iron hardening process both in production and as-cast conditions, requires development of a test methodology that must take into account the influence of base material structure (degree of nodularization, graphite precipitation count on the ultrasound wave velocity.

  16. ABA signaling is necessary but not sufficient for RD29B transcriptional memory during successive dehydration stresses in Arabidopsis thaliana.

    Science.gov (United States)

    Virlouvet, Laetitia; Ding, Yong; Fujii, Hiroaki; Avramova, Zoya; Fromm, Michael

    2014-07-01

    Plants subjected to a prior dehydration stress were seen to have altered transcriptional responses during a subsequent dehydration stress for up to 5 days after the initial stress. The abscisic acid (ABA) inducible RD29B gene of Arabidopsis thaliana was strongly induced after the first stress and displayed transcriptional memory with transcript levels nine-fold higher during the second dehydration stress. These increased transcript levels were due to an increased rate of transcription and are associated with an altered chromatin template during the recovery interval between the dehydration stresses. Here we use a combination of promoter deletion/substitutions, mutants in the trans-acting transcription factors and their upstream protein kinases, and treatments with exogenous ABA or dehydration stress to advance our understanding of the features required for transcriptional memory of RD29B. ABA Response Elements (ABREs) are sufficient to confer transcriptional memory on a minimal promoter, although there is a context effect from flanking sequences. Different mutations in Snf1 Related Protein Kinase 2 (SnRK2) genes positively and negatively affected the response, suggesting that this effect is important for transcriptional memory. Although exogenous ABA treatments could prime transcriptional memory, a second ABA treatment was not sufficient to activate transcriptional memory. Therefore, we concluded that transcriptional memory requires ABA and an ABA-independent factor that is induced or activated by a subsequent dehydration stress and directly or indirectly results in a more active RD29B chromatin template. These results advance our knowledge of the cis- and trans-acting factors that are required for transcriptional memory of RD29B. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  17. Auxin and ABA act as central regulators of developmental networks associated with paradormancy in Canada thistle (Cirsium arvense)

    KAUST Repository

    Anderson, James V.

    2012-05-13

    Abstract Dormancy in underground vegetative buds of Canada thistle, an herbaceous perennial weed, allows escape from current control methods and contributes to its invasive nature. In this study, ∼65 % of root sections obtained from greenhouse propagated Canada thistle produced new vegetative shoots by 14 days post-sectioning. RNA samples obtained from sectioned roots incubated 0, 24, 48, and 72 h at 25°C under 16:8 h light-dark conditions were used to construct four MID-tagged cDNA libraries. Analysis of in silico data obtained using Roche 454 GS-FLX pyrosequencing technologies identified molecular networks associated with paradormancy release in underground vegetative buds of Canada thistle. Sequencing of two replicate plates produced ∼2.5 million ESTs with an average read length of 362 bases. These ESTs assembled into 67358 unique sequences (21777 contigs and 45581 singlets) and annotation against the Arabidopsis database identified 15232 unigenes. Among the 15232 unigenes, we identified processes enriched with transcripts involved in plant hormone signaling networks. To follow-up on these results, we examined hormone profiles in roots, which identified changes in abscisic acid (ABA) and ABA metabolites, auxins, and cytokinins post-sectioning. Transcriptome and hormone profiling data suggest that interaction between auxin- and ABA-signaling regulate paradormancy maintenance and release in underground adventitious buds of Canada thistle. Our proposed model shows that sectioning-induced changes in polar auxin transport alters ABA metabolism and signaling, which further impacts gibberellic acid signaling involving interactions between ABA and FUSCA3. Here we report that reduced auxin and ABA-signaling, in conjunction with increased cytokinin biosynthesis post-sectioning supports a model where interactions among hormones drives molecular networks leading to cell division, differentiation, and vegetative outgrowth. ©Springer-Verlag (outside the USA) 2012.

  18. The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration.

    Science.gov (United States)

    Romero, Paco; Lafuente, María T; Rodrigo, María J

    2012-08-01

    The abscisic acid (ABA) signalling core in plants include the cytosolic ABA receptors (PYR/PYL/RCARs), the clade-A type 2C protein phosphatases (PP2CAs), and the subclass III SNF1-related protein kinases 2 (SnRK2s). The aim of this work was to identify these ABA perception system components in sweet orange and to determine the influence of endogenous ABA on their transcriptional regulation during fruit development and ripening, taking advantage of the comparative analysis between a wild-type and a fruit-specific ABA-deficient mutant. Transcriptional changes in the ABA signalosome during leaf dehydration were also studied. Six PYR/PYL/RCAR, five PP2CA, and two subclass III SnRK2 genes, homologous to those of Arabidopsis, were identified in the Citrus genome. The high degree of homology and conserved motifs for protein folding and for functional activity suggested that these Citrus proteins are bona fide core elements of ABA perception in orange. Opposite expression patterns of CsPYL4 and CsPYL5 and ABA accumulation were found during ripening, although there were few differences between varieties. In contrast, changes in expression of CsPP2CA genes during ripening paralleled those of ABA content and agreeed with the relevant differences between wild-type and mutant fruit transcript accumulation. CsSnRK2 gene expression continuously decreased with ripening and no remarkable differences were found between cultivars. Overall, dehydration had a minor effect on CsPYR/PYL/RCAR and CsSnRK2 expression in vegetative tissue, whereas CsABI1, CsAHG1, and CsAHG3 were highly induced by water stress. The global results suggest that responsiveness to ABA changes during citrus fruit ripening, and leaf dehydration was higher in the CsPP2CA gene negative regulators than in the other ABA signalosome components.

  19. Involvement of NADPH oxidase isoforms in the production of O2- manipulated by ABA in the senescing leaves of early-senescence-leaf (esl) mutant rice (Oryza sativa).

    Science.gov (United States)

    Li, Zhaowei; Wang, Fubiao; Zhao, Qian; Liu, Jianchao; Cheng, Fangmin

    2018-01-01

    In this study, the differences in reactive oxygen species (ROS) generation and abscisic acid (ABA) accumulation in senescing leaves were investigated by early-senescence-leaf (esl) mutant and its wild type, to clarify the relationship among ABA levels, ROS generation, and NADPH oxidase (Nox) in senescing leaves of rice (Oryza sativa). The temporal expression levels of OsNox isoforms in senescing leaves and their expression patterns in response to ABA treatment were determined through quantitative real-time reverse transcription PCR (qRT-PCR). Results showed that the flag leaf of the esl mutant generated more O2- concentrations and accumulated higher ABA levels than the wild-type cultivar did in the grain-filling stage. Exogenous ABA treatment induced O2- generation; however, it was depressed by diphenyleneiodonium chloride (DPI) pretreatment in the detached leaf segments. This finding suggested the involvement of NADPH oxidase in ABA-induced O2- generation. The esl mutant exhibited significantly higher expression of OsNox2, OsNox5, OsNox6, and OsNox7 in the initial of grain-filling stage, followed by sharply decrease. The transcriptional levels of OsNox1, OsNox3, and OsFR07 in the flag leaf of the esl mutant were significantly lower than those in the wild-type cultivar. The expression levels of OsNox2, OsNox5, OsNox6, and OsNox7 were significantly enhanced by exogenous ABA treatments. The enhanced expression levels of OsNox2 and OsNox6 were dependent on the duration of ABA treatment. The inducible expression levels of OsNox5 and OsNox7 were dependent on ABA concentrations. By contrast, exogenous ABA treatment severely repressed the transcripts of OsNox1, OsNox3, and OsFR07 in the detached leaf segments. Therefore, OsNox2, OsNox5, OsNox6, and OsNox7 were probably involved in the ABA-induced O2- generation in the initial stage of leaf senescence. Subsequently, other oxidases activated in deteriorating cells were associated with ROS generation and accumulation in the

  20. Physiological studies on photochemical oxidant injury in rice plants. III. Relationship between abscisic acid (ABA) and water metabolism in water-stressed rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y.H.; Ota, Y.

    1981-12-01

    Several experiments were carried out to determine the effects of exogenously applied ABA on water metabolism, and to clarify the endogenous ABA relationships in ozone-sensitivity under different soil water content in rice plants. The rice plants were cultivated in soil with 60, 80, and 100% of maximum water holding capacity and under submerged condition. The results of the experiments were as follows: ozone injury was reduced with increasing ABA content of which production was increased under water stress conditions. Under water stressed conditions, the rate of water loss was decreased with increasing concentration of ABA applied exogenously. It may be assumed that the ozone-sensitivity is closely related to the stomatal closure caused by the increased ABA content due to water stress. 5 references, 4 tables.

  1. Identification and mechanism of ABA receptor antagonism

    KAUST Repository

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M.; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric

    2010-01-01

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands. © 2010 Nature America, Inc. All rights reserved.

  2. Identification and mechanism of ABA receptor antagonism

    KAUST Repository

    Melcher, Karsten

    2010-08-22

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands. © 2010 Nature America, Inc. All rights reserved.

  3. Metabolites and hormones are involved in the intraspecific variability of drought hardening in radiata pine.

    Science.gov (United States)

    De Diego, N; Saiz-Fernández, I; Rodríguez, J L; Pérez-Alfocea, P; Sampedro, M C; Barrio, R J; Lacuesta, M; Moncaleán, P

    2015-09-01

    Studies of metabolic and physiological bases of plant tolerance and hardening against drought are essential to improve genetic breeding programs, especially in productive species such as Pinus radiata. The exposure to different drought cycles is a highly effective tool that improves plant conditioning, but limited information is available about the mechanisms that modulate this process. To clarify this issue, six P. radiata breeds with well-known differences in drought tolerance were analyzed after two consecutive drought cycles. Survival rate, concentration of several metabolites such as free soluble amino acids and polyamines, and main plant hormones varied between them after drought hardening, while relative growth ratio and water potential at both predawn and dawn did not. Hardening induced a strong increase in total soluble amino acids in all breeds, accumulating mainly those implicated in the glutamate metabolism (GM), especially L-proline, in the most tolerant breeds. Other amino acids from GM such as γ-aminobutyric acid (GABA) and L-arginine (Arg) were also strongly increased. GABA pathway could improve the response against drought, whereas Arg acts as precursor for the synthesis of spermidine. This polyamine showed a positive relationship with the survival capacity, probably due to its role as antioxidant under stress conditions. Finally, drought hardening also induced changes in phytohormone content, showing each breed a different profile. Although all of them accumulated indole-3-acetic acid and jasmonic acid and reduced zeatin content in needles, significant differences were observed regarding abscisic acid, salicylic acid and mainly zeatin riboside. These results confirm that hardening is not only species-dependent but also an intraspecific processes controlled through metabolite changes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. A NAP-AAO3 Regulatory Module Promotes Chlorophyll Degradation via ABA Biosynthesis in Arabidopsis Leaves[W][OPEN

    Science.gov (United States)

    Yang, Jiading; Worley, Eric

    2014-01-01

    Chlorophyll degradation is an important part of leaf senescence, but the underlying regulatory mechanisms are largely unknown. Excised leaves of an Arabidopsis thaliana NAC-LIKE, ACTIVATED BY AP3/PI (NAP) transcription factor mutant (nap) exhibited lower transcript levels of known chlorophyll degradation genes, STAY-GREEN1 (SGR1), NON-YELLOW COLORING1 (NYC1), PHEOPHYTINASE (PPH), and PHEIDE a OXYGENASE (PaO), and higher chlorophyll retention than the wild type during dark-induced senescence. Transcriptome coexpression analysis revealed that abscisic acid (ABA) metabolism/signaling genes were disproportionately represented among those positively correlated with NAP expression. ABA levels were abnormally low in nap leaves during extended darkness. The ABA biosynthetic genes 9-CIS-EPOXYCAROTENOID DIOXYGENASE2, ABA DEFICIENT3, and ABSCISIC ALDEHYDE OXIDASE3 (AAO3) exhibited abnormally low transcript levels in dark-treated nap leaves. NAP transactivated the promoter of AAO3 in mesophyll cell protoplasts, and electrophoretic mobility shift assays showed that NAP can bind directly to a segment (−196 to −162 relative to the ATG start codon) of the AAO3 promoter. Exogenous application of ABA increased the transcript levels of SGR1, NYC1, PPH, and PaO and suppressed the stay-green phenotype of nap leaves during extended darkness. Overexpression of AAO3 in nap leaves also suppressed the stay-green phenotype under extended darkness. Collectively, the results show that NAP promotes chlorophyll degradation by enhancing transcription of AAO3, which leads to increased levels of the senescence-inducing hormone ABA. PMID:25516602

  5. VvWRKY13 enhances ABA biosynthesis in Vitis vinifera

    Directory of Open Access Journals (Sweden)

    JIe Hao

    2017-06-01

    Full Text Available Abscisic acid (ABA plays critical roles in plant growth and development as well as in plants’ responses to abiotic stresses. We previously isolated VvWRKY13, a novel transcription factor, from Vitis vinifera (grapevine, and here we present evidence that VvWRKY13 may regulate ABA biosynthesis in plants. When VvWRKY13 was ectopically expressed in Arabidopsis, the transgenic lines showed delayed seed germination, smaller stomatal aperture size, and several other phenotypic changes, indicating elevated ABA levels in these plants. Sequence analysis of several genes that are involved in grapevine ABA synthetic pathway identified WRKY-specific binding elements (W-box or W-like box in the promoter regions. Indeed, transient overexpression of VvWRKY13 in grapevine leaves significantly increased the transcript levels of ABA synthetic pathway genes. Taken together, we conclude that VvWRKY13 may promote ABA production by activating genes in the ABA synthetic pathway.

  6. Amplification of ABA biosynthesis and signaling through a positive feedback mechanism in seeds.

    Science.gov (United States)

    Nonogaki, Mariko; Sall, Khadidiatou; Nambara, Eiji; Nonogaki, Hiroyuki

    2014-05-01

    Abscisic acid is an essential hormone for seed dormancy. Our previous study using the plant gene switch system, a chemically induced gene expression system, demonstrated that induction of 9-cis-epoxycarotenoid dioxygenase (NCED), a rate-limiting ABA biosynthesis gene, was sufficient to suppress germination in imbibed Arabidopsis seeds. Here, we report development of an efficient experimental system that causes amplification of NCED expression during seed maturation. The system was created with a Triticum aestivum promoter containing ABA responsive elements (ABREs) and a Sorghum bicolor NCED to cause ABA-stimulated ABA biosynthesis and signaling, through a positive feedback mechanism. The chimeric gene pABRE:NCED enhanced NCED and ABF (ABRE-binding factor) expression in Arabidopsis Columbia-0 seeds, which caused 9- to 73-fold increases in ABA levels. The pABRE:NCED seeds exhibited unusually deep dormancy which lasted for more than 3 months. Interestingly, the amplified ABA pathways also caused enhanced expression of Arabidopsis NCED5, revealing the presence of positive feedback in the native system. These results demonstrated the robustness of positive feedback mechanisms and the significance of NCED expression, or single metabolic change, during seed maturation. The pABRE:NCED system provides an excellent experimental system producing dormant and non-dormant seeds of the same maternal origin, which differ only in zygotic ABA. The pABRE:NCED seeds contain a GFP marker which enables seed sorting between transgenic and null segregants and are ideal for comparative analysis. In addition to its utility in basic research, the system can also be applied to prevention of pre-harvest sprouting during crop production, and therefore contributes to translational biology. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  7. Type 2C Phosphatase 1 of Artemisia annua L. Is a Negative Regulator of ABA Signaling

    Directory of Open Access Journals (Sweden)

    Fangyuan Zhang

    2014-01-01

    Full Text Available The phytohormone abscisic acid (ABA plays an important role in plant development and environmental stress response. Additionally, ABA also regulates secondary metabolism such as artemisinin in the medicinal plant Artemisia annua L. Although an earlier study showed that ABA receptor, AaPYL9, plays a positive role in ABA-induced artemisinin content improvement, many components in the ABA signaling pathway remain to be elucidated in Artemisia annua L. To get insight of the function of AaPYL9, we isolated and characterized an AaPYL9-interacting partner, AaPP2C1. The coding sequence of AaPP2C1 encodes a deduced protein of 464 amino acids, with all the features of plant type clade A PP2C. Transcriptional analysis showed that the expression level of AaPP2C1 is increased after ABA, salt, and drought treatments. Yeast two-hybrid and bimolecular fluorescence complementation assays (BiFC showed that AaPYL9 interacted with AaPP2C1. The P89S, H116A substitution in AaPYL9 as well as G199D substitution or deletion of the third phosphorylation site-like motif in AaPP2C1 abolished this interaction. Furthermore, constitutive expression of AaPP2C1 conferred ABA insensitivity compared with the wild type. In summary, our data reveals that AaPP2C1 is an AaPYL9-interacting partner and involved in the negative modulation of the ABA signaling pathway in A. annua L.

  8. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress.

    Science.gov (United States)

    Sun, Xinbo; Sun, Chunyu; Li, Zhigang; Hu, Qian; Han, Liebao; Luo, Hong

    2016-06-01

    Heat shock proteins (HSPs) are molecular chaperones that accumulate in response to heat and other abiotic stressors. Small HSPs (sHSPs) belong to the most ubiquitous HSP subgroup with molecular weights ranging from 12 to 42 kDa. We have cloned a new sHSP gene, AsHSP17 from creeping bentgrass (Agrostis stolonifera) and studied its role in plant response to environmental stress. AsHSP17 encodes a protein of 17 kDa. Its expression was strongly induced by heat in both leaf and root tissues, and by salt and abscisic acid (ABA) in roots. Transgenic Arabidopsis plants constitutively expressing AsHSP17 exhibited enhanced sensitivity to heat and salt stress accompanied by reduced leaf chlorophyll content and decreased photosynthesis under both normal and stressed conditions compared to wild type. Overexpression of AsHSP17 also led to hypersensitivity to exogenous ABA and salinity during germination and post-germinative growth. Gene expression analysis indicated that AsHSP17 modulates expression of photosynthesis-related genes and regulates ABA biosynthesis, metabolism and ABA signalling as well as ABA-independent stress signalling. Our results suggest that AsHSP17 may function as a protein chaperone to negatively regulate plant responses to adverse environmental stresses through modulating photosynthesis and ABA-dependent and independent signalling pathways. © 2015 John Wiley & Sons Ltd.

  9. Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signaling components in Arabidopsis.

    Science.gov (United States)

    Zhao, Chenchen; Cai, Shengguan; Wang, Yizhou; Chen, Zhong-Hua

    2016-06-02

    Nitrate reductases NIA1 and NIA2 determine NO production in plants and are critical to abscisic acid (ABA)-induced stomatal closure. However, the role for NIA1 and NIA2 in ABA signaling has not been paid much attention in nitrate reductase loss-of-function mutant nia1nia2. Recently, we have demonstrated that ABA-inhibited K(+)in current and ABA-enhanced slow anion current were absent in nia1nia2. Exogenous NO restored regulation of these channels for stomatal closure in nia1nia2. In this study, we found that mutating NIA1 and NIA2 impaired nearly all the key components of guard cell ABA signaling pathway in Arabidopsis. We also propose a simplified model for ABA signaling in the nia1nia2 mutant.

  10. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence.

    Science.gov (United States)

    Lü, Peitao; Zhang, Changqing; Liu, Jitao; Liu, Xiaowei; Jiang, Guimei; Jiang, Xinqiang; Khan, Muhammad Ali; Wang, Liangsheng; Hong, Bo; Gao, Junping

    2014-05-01

    Rose (Rosa hybrida) is one of the most important ornamental plants worldwide; however, senescence of its petals terminates the ornamental value of the flower, resulting in major economic loss. It is known that the hormones abscisic acid (ABA) and ethylene promote petal senescence, while gibberellins (GAs) delay the process. However, the molecular mechanisms underlying the antagonistic effects amongst plant hormones during petal senescence are still unclear. Here we isolated RhHB1, a homeodomain-leucine zipper I transcription factor gene, from rose flowers. Quantitative RT-PCR and GUS reporter analyses showed that RhHB1 was strongly expressed in senescing petals, and its expression was induced by ABA or ethylene in petals. ABA or ethylene treatment clearly accelerated rose petal senescence, while application of the gibberellin GA3 delayed the process. However, silencing of RhHB1 delayed the ABA- or ethylene-mediated senescence, and resulted in higher petal anthocyanin levels and lower expression of RhSAG12. Moreover, treatment with paclobutrazol, an inhibitor of GA biosynthesis, repressed these delays. In addition, silencing of RhHB1 blocked the ABA- or ethylene-induced reduction in expression of the GA20 oxidase encoded by RhGA20ox1, a gene in the GA biosynthetic pathway. Furthermore, RhHB1 directly binds to the RhGA20ox1 promoter, and silencing of RhGA20ox1 promoted petal senescence. Eight senescence-related genes showed substantial differences in expression in petals after treatment with GA3 or paclobutrazol. These results suggest that RhHB1 mediates the antagonistic effect of GAs on ABA and ethylene during rose petal senescence, and that the promotion of petal senescence by ABA or ethylene operates through an RhHB1-RhGA20ox1 regulatory checkpoint. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  11. Non-destructive screening method for radiation hardened performance of large scale integration

    International Nuclear Information System (INIS)

    Zhou Dong; Xi Shanbin; Guo Qi; Ren Diyuan; Li Yudong; Sun Jing; Wen Lin

    2013-01-01

    The space radiation environment could induce radiation damage on the electronic devices. As the performance of commercial devices is generally superior to that of radiation hardened devices, it is necessary to screen out the devices with good radiation hardened performance from the commercial devices and applying these devices to space systems could improve the reliability of the systems. Combining the mathematical regression analysis with the different physical stressing experiments, we investigated the non-destructive screening method for radiation hardened performance of the integrated circuit. The relationship between the change of typical parameters and the radiation performance of the circuit was discussed. The irradiation-sensitive parameters were confirmed. The pluralistic linear regression equation toward the prediction of the radiation performance was established. Finally, the regression equations under stress conditions were verified by practical irradiation. The results show that the reliability and accuracy of the non-destructive screening method can be elevated by combining the mathematical regression analysis with the practical stressing experiment. (authors)

  12. Involvement of NADPH oxidase isoforms in the production of O2− manipulated by ABA in the senescing leaves of early-senescence-leaf (esl) mutant rice (Oryza sativa)

    Science.gov (United States)

    Wang, Fubiao; Zhao, Qian; Liu, Jianchao; Cheng, Fangmin

    2018-01-01

    In this study, the differences in reactive oxygen species (ROS) generation and abscisic acid (ABA) accumulation in senescing leaves were investigated by early-senescence-leaf (esl) mutant and its wild type, to clarify the relationship among ABA levels, ROS generation, and NADPH oxidase (Nox) in senescing leaves of rice (Oryza sativa). The temporal expression levels of OsNox isoforms in senescing leaves and their expression patterns in response to ABA treatment were determined through quantitative real-time reverse transcription PCR (qRT-PCR). Results showed that the flag leaf of the esl mutant generated more O2- concentrations and accumulated higher ABA levels than the wild-type cultivar did in the grain-filling stage. Exogenous ABA treatment induced O2- generation; however, it was depressed by diphenyleneiodonium chloride (DPI) pretreatment in the detached leaf segments. This finding suggested the involvement of NADPH oxidase in ABA-induced O2- generation. The esl mutant exhibited significantly higher expression of OsNox2, OsNox5, OsNox6, and OsNox7 in the initial of grain-filling stage, followed by sharply decrease. The transcriptional levels of OsNox1, OsNox3, and OsFR07 in the flag leaf of the esl mutant were significantly lower than those in the wild-type cultivar. The expression levels of OsNox2, OsNox5, OsNox6, and OsNox7 were significantly enhanced by exogenous ABA treatments. The enhanced expression levels of OsNox2 and OsNox6 were dependent on the duration of ABA treatment. The inducible expression levels of OsNox5 and OsNox7 were dependent on ABA concentrations. By contrast, exogenous ABA treatment severely repressed the transcripts of OsNox1, OsNox3, and OsFR07 in the detached leaf segments. Therefore, OsNox2, OsNox5, OsNox6, and OsNox7 were probably involved in the ABA-induced O2- generation in the initial stage of leaf senescence. Subsequently, other oxidases activated in deteriorating cells were associated with ROS generation and accumulation in the

  13. Microstructural evolution and strain hardening behavior of the cold-drawn austenitic stainless steels

    International Nuclear Information System (INIS)

    Choi, Jeom Yong; Jin, Won

    1998-01-01

    The strain induced α ' -martensite formation and the strain hardening behavior of metastable austenitic stainless steel during cold drawing have been investigated. The strain induced α ' -martensite nucleates mainly at the intersection of the mechanical twins rather than ε-martensite. It could be explained by the increase of stacking fault energy which arises from the heat generated during high speed drawing and, for AISI 304/Cu, the additional effect of Cu additions. The strain hardening behavior of austenitic stainless steel is strongly related to the microstructural evolution accompanied by strain induced α ' -martensite. The work hardening rates of cold-drawn 304 increased with increasing interstitial element(C,N) contents which affect the strength of the strain induced α ' -martensite

  14. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway.

    Science.gov (United States)

    Kizis, Dimosthenis; Pagès, Montserrat

    2002-06-01

    The abscisic acid-responsive gene rab17 of maize is expressed during late embryogenesis, and is induced by ABA and desiccation in embryo and vegetative tissues. ABRE and DRE cis-elements are involved in regulation of the gene by ABA and drought. Using yeast one-hybrid screening, we isolated two cDNAs encoding two new DRE-binding proteins, designated DBF1 and DBF2, that are members of the AP2/EREBP transcription factor family. Analysis of mRNA accumulation profiles showed that DBF1 is induced during maize embryogenesis and after desiccation, NaCl and ABA treatments in plant seedlings, whereas the DBF2 mRNA is not induced. DNA-binding preferences of DBFs were analysed by electrophoretic mobility shift assays, and showed that both DBF1 and DBF2 bound to the wild-type DRE2 element, but not to the DRE2 mutant or to the DRE1 element which differs only in a single nucleotide. Transactivation activity using particle bombardment showed that DBF1 functioned as activator of DRE2-dependent transcription of rab17 promoter by ABA, whereas DBF2 overexpression had a repression action downregulating not only the basal promoter activity, but also the ABA effect. These results show that ABA plays a role in the regulation of DBF activity, and suggests the existence of an ABA-dependent pathway for the regulation of genes through the C-repeat/DRE element.

  15. Overexpression of Arachis hypogaea AREB1 Gene Enhances Drought Tolerance by Modulating ROS Scavenging and Maintaining Endogenous ABA Content

    Directory of Open Access Journals (Sweden)

    Ling Li

    2013-06-01

    Full Text Available AhAREB1 (Arachis hypogaea Abscisic-acid Response Element Binding Protein 1 is a member of the basic domain leucine zipper (bZIP-type transcription factor in peanut. Previously, we found that expression of AhAREB1 was specifically induced by abscisic acid (ABA, dehydration and drought. To understand the drought defense mechanism regulated by AhAREB1, transgenic Arabidopsis overexpressing AhAREB1 was conducted in wild-type (WT, and a complementation experiment was employed to ABA non-sensitivity mutant abi5 (abscisic acid-insensitive 5. Constitutive expression of AhAREB1 confers water stress tolerance and is highly sensitive to exogenous ABA. Microarray and further real-time PCR analysis revealed that drought stress, reactive oxygen species (ROS scavenging, ABA synthesis/metabolism-related genes and others were regulated in transgenic Arabidopsis overexpressing AhAREB1. Accordingly, low level of ROS, but higher ABA content was detected in the transgenic Arabidopsis plants’ overexpression of AhAREB1. Taken together, it was concluded that AhAREB1 modulates ROS accumulation and endogenous ABA level to improve drought tolerance in transgenic Arabidopsis.

  16. Abscisic Acid (ABA) Regulation of Arabidopsis SR Protein Gene Expression

    Science.gov (United States)

    Cruz, Tiago M. D.; Carvalho, Raquel F.; Richardson, Dale N.; Duque, Paula

    2014-01-01

    Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses. PMID:25268622

  17. Abscisic Acid Is a Major Regulator of Grape Berry Ripening Onset: New Insights into ABA Signaling Network

    Science.gov (United States)

    Pilati, Stefania; Bagagli, Giorgia; Sonego, Paolo; Moretto, Marco; Brazzale, Daniele; Castorina, Giulia; Simoni, Laura; Tonelli, Chiara; Guella, Graziano; Engelen, Kristof; Galbiati, Massimo; Moser, Claudio

    2017-01-01

    Grapevine is a world-wide cultivated economically relevant crop. The process of berry ripening is non-climacteric and does not rely on the sole ethylene signal. Abscisic acid (ABA) is recognized as an important hormone of ripening inception and color development in ripening berries. In order to elucidate the effect of this signal at the molecular level, pre-véraison berries were treated ex vivo for 20 h with 0.2 mM ABA and berry skin transcriptional modulation was studied by RNA-seq after the treatment and 24 h later, in the absence of exogenous ABA. This study highlighted that a small amount of ABA triggered its own biosynthesis and had a transcriptome-wide effect (1893 modulated genes) characterized by the amplification of the transcriptional response over time. By comparing this dataset with the many studies on ripening collected within the grapevine transcriptomic compendium Vespucci, an extended overlap between ABA- and ripening modulated gene sets was observed (71% of the genes), underpinning the role of this hormone in the regulation of berry ripening. The signaling network of ABA, encompassing ABA metabolism, transport and signaling cascade, has been analyzed in detail and expanded based on knowledge from other species in order to provide an integrated molecular description of this pathway at berry ripening onset. Expression data analysis was combined with in silico promoter analysis to identify candidate target genes of ABA responsive element binding protein 2 (VvABF2), a key upstream transcription factor of the ABA signaling cascade which is up-regulated at véraison and also by ABA treatments. Two transcription factors, VvMYB143 and VvNAC17, and two genes involved in protein degradation, Armadillo-like and Xerico-like genes, were selected for in vivo validation by VvABF2-mediated promoter trans-activation in tobacco. VvNAC17 and Armadillo-like promoters were induced by ABA via VvABF2, while VvMYB143 responded to ABA in a VvABF2-independent manner. This

  18. The influence of hardening conditions on the properties of masonry cement mortar prisms made in brick moulds

    NARCIS (Netherlands)

    Bertram, G.; Lourenco, P.B.; Hasseltine, B.A.; Vasconseles, G.

    2014-01-01

    One aspect of our investigation into the spacing of movement joints involved the short and long term deformation of mortar embedded in masonry. In this research the influence of hardening conditions on the physical and mechanical properties of masonry cement mortar [M5] were studied. Mortar prisms

  19. X-Ray diffraction study of strain hardening and annealing in an UNS S31803 duplex stainless steel

    International Nuclear Information System (INIS)

    Aguiar, Denilson Jose Marcolino de; Padilha, Angelo Fernando

    2010-01-01

    In the present work the phenomena of strain hardening, formation and reversion of the strain induced alpha-prime martensite (α', CCC, Ferromagnetic) in an UNS S31803 duplex stainless steel have been studied. Initially, the microstructure of the material in the solution annealed condition was characterized with aid of several complementary techniques of microstructural analysis. The volumetric fraction, crystalline structure, chemical composition, size and morphology of the two phases (ferrite and austenite) have been determined. The phenomena of strain hardening, formation and reversion of strain induced martensite in the austenite phase and recovery of austenite and ferrite phases have been studied, predominantly by using X-ray diffraction and the Rietveld method. (author)

  20. EFFECT OF HARDENING TIME ON DEFORMATION-STRENGTH INDICATORS OF CONCRETE FOR INJECTION WITH A TWO-STAGE EXPANSION DURING HARDENING IN WATER

    Directory of Open Access Journals (Sweden)

    Tatjana N. Zhilnikova

    2017-01-01

    Full Text Available Abstract. Objectives Concretes for injection with a two-stage expansion are a kind of selfstressing concrete obtained with the use of self-stressing cement.The aim of the work is to study the influence of the duration of aging on the porosity, strength and self-stress of concrete hardening in water, depending on the expansion value at the first stage. At the first stage, the compacted concrete mixture is expanded to ensure complete filling of the formwork space. At the second stage, the hardening concrete expands due to the formation of an increased amount of ettringite. This process is prolonged in time, with the amount of self-stress and strength dependant on the conditions of hardening. Methods  Experimental evaluation of self-stress, strength and porosity of concretes that are permanently hardened in water, under air-moist and air-dry conditions after different expansion at the first stage. The self-stress of cement stone is the result of superposition of two processes: the hardening of the structure due to hydration of silicates and its expansion as a result of hydration of calcium aluminates with the subsequent formation of ettringite. The magnitude of self-stress is determined by the ratio of these two processes. The self-stress of the cement stone changes in a manner similar to the change in its expansion. The stabilisation of expansion is accompanied by stabilisation of self-stress of cement stone. Results  The relationship of self-stress, strength and porosity of concrete for injection with a two-stage expansion on the duration and humidity conditions of hardening, taking into account the conditions of deformation limitation at the first stage, is revealed. Conclusion During prolonged hardening in an aqueous medium, self-stresses are reduced up to 25% with the exception of expansion at the first stage and up to 20% with an increase in volume up to 5% at the first stage. The increase in compressive strength is up to 28% relative to

  1. Deep Drawing Simulation Of High And Ultrahigh Strength Steels Under Consideration Of Anisotropic Hardening

    International Nuclear Information System (INIS)

    Roll, Karl; Faust, Alexander; Kessler, Lutz

    2007-01-01

    In today's sheet metal forming simulation, most attention is paid to yield loci functions, which describe the anisotropy of the material in yielding. The coefficients, defining the shape of the yield locus in these functions are usually fitted at a certain level of plastic work and are then valid for the whole range of plastic deformation. Modern high and ultrahigh strength steels, especially those with induced plasticity, may often exhibit only a very small anisotropy in yielding, but a severe anisotropy in work hardening for different loading conditions. This behavior can not be described by fitting the yield locus at a specific value of plastic deformation. An approach to take into account the anisotropic hardening of sheet metals is to provide different yield curves for several loading conditions and expand the yield locus dependent on the current form of load. By doing this, one can use a comparatively simple yield locus, like that of Hill from 1948, because all anisotropy is given by the different hardening curves. For the commercial FEM code LS DYNA the material model MATFEM Generalized Yield is available as a user subroutine, which supports this approach. In this paper, forming simulation results of different yield loci are compared with experimental results. The simulations were carried out in LS-DYNA with the Barlat 89 and 2000 yield loci and isotropic hardening and with the GenYld model combining a Hill 48 yield locus and anisotropic hardening. The deep drawing experiments were conducted on a hydraulic press, measuring binder and punch forces. The deformation of the sheet was measured by optical grid analysis. A comparison of the simulated and measured plastic strains shows that using a model including anisotropic hardening can produce better results than the usage of a complex yield locus but isotropic hardening for the examined materials. This might be interesting for e.g. spring back simulations. By combining a simple yield locus with anisotropic

  2. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rock, C.D.; Zeevaart, J.A.D. (Michigan State Univ., East Lansing (United States))

    1991-09-01

    The three mutant alleles of the ABA locus of Arabidopsis thaliana result in plants that are deficient in the plant growth regulator abscisic acid (ABA). The authors have used {sup 18}O{sub 2} to label ABA in water-stressed leaves of mutant and wild-type Arabidopsis. Analysis by selected ion monitoring and tandem mass spectrometry of ({sup 18}O)ABA and its catabolites, phaseic acid and ABA-glucose ester ({beta}-D-glucopyranosyl abscisate), indicates that the aba genotypes are impaired in ABA biosynthesis and have a small ABA precursor pool of compounds that contain oxygens on the rings, presumably oxygenated carotenoids (xanthophylls). Quantitation of the carotenoids form mutant and wild-type leaves establishes that the aba alleles cause a deficiency of the epoxy-carotenoids violaxanthin and neoxanthin and an accumulation of their biosynthetic precursor, zeaxanthin. These results provide evidence that ABA is synthesized by oxidative cleavage of epoxy-carotenoids (the indirect pathway). Furthermore the carotenoid mutant they describe undergoes normal greening. Thus the aba alleles provide an opportunity to study the physiological roles of epoxy-carotenoids in photosynthesis in a higher plants.

  3. Experimental study and theoretical simulation of the cross hardening effect in shape memory alloys

    Science.gov (United States)

    Movchan, A. A.; Sil'chenko, A. L.; Kazarina, S. A.

    2017-10-01

    The shapes and the relative position of martensitic inelasticity and forward transformation diagrams are experimentally studied. The strain dependences of the stress in loading under martensitic inelasticity conditions after an experiment on the accumulation of the forward transformation-induced strain at a constant or variable stress are investigated on titanium nickelide samples. It is found that the hardening of the martensite part of the representative volume of a shape memory alloy (titanium nickelide) after forward transformation under a nonmonotonically changing stress can be nonuniform. The cross hardening phenomenon is theoretically described in terms of the model of nonlinear deformation of a shape memory alloy during phase and structural transformations.

  4. A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops.

    Directory of Open Access Journals (Sweden)

    Réka Albert

    2017-09-01

    Full Text Available Stomata, microscopic pores in leaf surfaces through which water loss and carbon dioxide uptake occur, are closed in response to drought by the phytohormone abscisic acid (ABA. This process is vital for drought tolerance and has been the topic of extensive experimental investigation in the last decades. Although a core signaling chain has been elucidated consisting of ABA binding to receptors, which alleviates negative regulation by protein phosphatases 2C (PP2Cs of the protein kinase OPEN STOMATA 1 (OST1 and ultimately results in activation of anion channels, osmotic water loss, and stomatal closure, over 70 additional components have been identified, yet their relationships with each other and the core components are poorly elucidated. We integrated and processed hundreds of disparate observations regarding ABA signal transduction responses underlying stomatal closure into a network of 84 nodes and 156 edges and, as a result, established those relationships, including identification of a 36-node, strongly connected (feedback-rich component as well as its in- and out-components. The network's domination by a feedback-rich component may reflect a general feature of rapid signaling events. We developed a discrete dynamic model of this network and elucidated the effects of ABA plus knockout or constitutive activity of 79 nodes on both the outcome of the system (closure and the status of all internal nodes. The model, with more than 1024 system states, is far from fully determined by the available data, yet model results agree with existing experiments in 82 cases and disagree in only 17 cases, a validation rate of 75%. Our results reveal nodes that could be engineered to impact stomatal closure in a controlled fashion and also provide over 140 novel predictions for which experimental data are currently lacking. Noting the paucity of wet-bench data regarding combinatorial effects of ABA and internal node activation, we experimentally confirmed

  5. A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops.

    Science.gov (United States)

    Albert, Réka; Acharya, Biswa R; Jeon, Byeong Wook; Zañudo, Jorge G T; Zhu, Mengmeng; Osman, Karim; Assmann, Sarah M

    2017-09-01

    Stomata, microscopic pores in leaf surfaces through which water loss and carbon dioxide uptake occur, are closed in response to drought by the phytohormone abscisic acid (ABA). This process is vital for drought tolerance and has been the topic of extensive experimental investigation in the last decades. Although a core signaling chain has been elucidated consisting of ABA binding to receptors, which alleviates negative regulation by protein phosphatases 2C (PP2Cs) of the protein kinase OPEN STOMATA 1 (OST1) and ultimately results in activation of anion channels, osmotic water loss, and stomatal closure, over 70 additional components have been identified, yet their relationships with each other and the core components are poorly elucidated. We integrated and processed hundreds of disparate observations regarding ABA signal transduction responses underlying stomatal closure into a network of 84 nodes and 156 edges and, as a result, established those relationships, including identification of a 36-node, strongly connected (feedback-rich) component as well as its in- and out-components. The network's domination by a feedback-rich component may reflect a general feature of rapid signaling events. We developed a discrete dynamic model of this network and elucidated the effects of ABA plus knockout or constitutive activity of 79 nodes on both the outcome of the system (closure) and the status of all internal nodes. The model, with more than 1024 system states, is far from fully determined by the available data, yet model results agree with existing experiments in 82 cases and disagree in only 17 cases, a validation rate of 75%. Our results reveal nodes that could be engineered to impact stomatal closure in a controlled fashion and also provide over 140 novel predictions for which experimental data are currently lacking. Noting the paucity of wet-bench data regarding combinatorial effects of ABA and internal node activation, we experimentally confirmed several predictions

  6. Nonlinear kinematic hardening under non-proportional loading

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1979-07-01

    Within the framework of conventional plasticity theory, it is first determined under which conditions Melan-Prager's and Ziegler's kinematic hardening rules result in identical material behaviour. Next, assuming initial isotropy and adopting the von Mises yield criterion, a nonlinear kinematic hardening function is proposed for prediction of metal behaviour. The model assumes that hardening at a specific stress point depends on the direction of the new incremental loading. Hereby a realistic response is obtained for general reversed loading, and a smooth behaviour is assured, even when loading deviates more and more from proportional loading and ultimately results in reversed loading. The predictions of the proposed model for non-proportional loading under plane stress conditions are compared with those of the classical linear kinematic model, the isotropic model and with published experimental data. Finally, the limitations of the proposaed model are discussed. (author)

  7. Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp hordei in Arabidopsis

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Hagedorn, Peter; De Torres-Zabala, Marta

    2008-01-01

    -representation of abscisic acid (ABA)-responsive genes, including the ABA biosynthesis gene AAO3, which is significantly induced in ataf1 plants compared to wild-type plants following inoculation with Bgh. Additionally, we show that Bgh inoculation results in decreased endogenous ABA levels in an ATAF1-dependent manner...

  8. Structural heredity influence upon principles of strain wave hardening

    Science.gov (United States)

    Kiricheck, A. V.; Barinov, S. V.; Yashin, A. V.

    2017-02-01

    It was established experimentally that by penetration of a strain wave through material hardened not only the technological modes of processing, but also a technological heredity - the direction of the fibers of the original macrostructure have an influence upon the diagram of microhardness. By penetration of the strain wave along fibers, the degree of hardening the material is less, however, a product is hardened throughout its entire section mainly along fibers. In the direction of the strain waves across fibers of the original structure of material, the degree of material hardening is much higher, the depth of the hardened layer with the degree of hardening not less than 50% makes at least 3 mm. It was found that under certain conditions the strain wave can completely change the original structure of the material. Thus, a heterogeneously hardened structure characterized by the interchange of harder and more viscous areas is formed, which is beneficial for assurance of high operational properties of material.

  9. Levels of ABA, its precursors and dehydrin-like proteins during ...

    African Journals Online (AJOL)

    Abstract—Abscisic acid (ABA) and dehydrin proteins are thought to confer tolerance to plant tissue under physiological stress and drought. Rhizophora mucronata, a true mangrove species, is subjected to physiological drought from fluctuating high saline conditions where leaf loss or senescence is considered a possible ...

  10. Stage IV work-hardening related to disorientations in dislocation structures

    DEFF Research Database (Denmark)

    Pantleon, W.

    2004-01-01

    The effect of deformation-induced disorientations on the work-hardening of metals is modelled based on dislocation dynamics. Essentially, Kocks’ dislocation model describing stage III hardening is extended to stage IV by incorporation of excess dislocations related to the disorientations....... Disorientations evolving from purely statistical reasons — leading to a square root dependence of the average disorientation angle on strain — affect the initial work-hardening rate (and the saturation stress) of stage III only slightly. On the other hand, deterministic contributions to the development...... of disorientations, as differences in the activated slip systems across boundaries, cause a linear increase of the flow stress at large strains. Such a constant work-hardening rate is characteristic for stage IV....

  11. Investigation of srawberry hardening in low temperatures in vitro

    OpenAIRE

    Lukoševičiūtė, Vanda; Rugienius, Rytis; Kavaliauskaitė, Danguolė

    2007-01-01

    Cold resistance of different strawberry varieties in vitro and ability to retain hardening after defrosting and repeated hardening. Phytohormons – gibberellin and abscisic acid added in the growing medium were investigated in Horticulture plant genetic and biotechnology department of LIH. We tried to model common conditions in temperate zone when freeze-thaw cycles often occur during wintertime. For investigation in vitro strawberries for the first time hardened in light at the temperature of...

  12. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis.

    Science.gov (United States)

    Shu, Kai; Qi, Ying; Chen, Feng; Meng, Yongjie; Luo, Xiaofeng; Shuai, Haiwei; Zhou, Wenguan; Ding, Jun; Du, Junbo; Liu, Jiang; Yang, Feng; Wang, Qiang; Liu, Weiguo; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Yang, Wenyu

    2017-01-01

    Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN), an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde) level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA 1 , GA 3 , and GA 4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA 1 /ABA, GA 3 /ABA, and GA 4 /ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.

  13. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis

    Directory of Open Access Journals (Sweden)

    Kai Shu

    2017-08-01

    Full Text Available Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA while positively mediating abscisic acid (ABA biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN, an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA1, GA3, and GA4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA1/ABA, GA3/ABA, and GA4/ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.

  14. ABA-dependent inhibition of the ubiquitin proteasome system during germination at high temperature in Arabidopsis.

    Science.gov (United States)

    Chiu, Rex Shun; Pan, Shiyue; Zhao, Rongmin; Gazzarrini, Sonia

    2016-12-01

    During germination, endogenous and environmental factors trigger changes in the transcriptome, translatome and proteome to break dormancy. In Arabidopsis thaliana, the ubiquitin proteasome system (UPS) degrades proteins that promote dormancy to allow germination. While research on the UPS has focused on the identification of proteasomal substrates, little information is known about the regulation of its activity. Here we characterized the activity of the UPS during dormancy release and maintenance by monitoring protein ubiquitination and degradation of two proteasomal substrates: Suc-LLVY-AMC, a well characterized synthetic substrate, and FUSCA3 (FUS3), a dormancy-promoting transcription factor degraded by the 26S proteasome. Our data indicate that proteasome activity and protein ubiquitination increase during imbibition at optimal temperature (21°C), and are required for seed germination. However, abscisic acid (ABA) and supraoptimal temperature (32°C) inhibit germination by dampening both protein ubiquitination and proteasome activity. Inhibition of UPS function by high temperature is reduced by the ABA biosynthesis inhibitor, fluridone, and in ABA biosynthetic mutants, suggesting that it is ABA dependent. Accordingly, inhibition of FUS3 degradation at 32°C is also dependent on ABA. Native gels show that inhibition of proteasome activity is caused by interference with the 26S/30S ratio as well as free 19S and 20S levels, impacting the proteasome degradation cycle. Transfer experiments show that ABA-mediated inhibition of proteasome activity at 21°C is restricted to the first 2 days of germination, a time window corresponding to seed sensitivity to environmental and ABA-mediated growth inhibition. Our data show that ABA and high temperature inhibit germination under unfavourable growth conditions by repressing the UPS. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  15. The secondary hardening phenomenon in strain-hardened MP35N alloy

    International Nuclear Information System (INIS)

    Asgari, S.; El-Danaf, E.; Shaji, E.; Kalidindi, S.R.; Doherty, R.D.

    1998-01-01

    Mechanical testing and microscopy techniques were used to investigate the influence of aging on the structure and strengthening of MP35N alloy. It was confirmed that aging the deformed material at 600 C for 4 h provided additional strengthening, here referred to as secondary hardening, in addition to the primary strain hardening. The secondary hardening phenomenon was shown to be distinctly different from typical age hardening processes in that it only occurred in material deformed beyond a certain cold work level. At moderate strains, aging caused a shift in the entire stress-strain curve of the annealed material to higher stresses while at high strains, it produced shear localization and limited work softening. The secondary hardening increment was also found to be grain size dependent. The magnitude of the secondary hardening appeared to be controlled by the flow stress in the strain hardened material. A model is proposed to explain the observations and is supported by direct experimental evidence. The model is based on formation of h.c.p. nuclei through the Suzuki mechanism, that is segregation of solute atoms to stacking faults, on aging the strain hardened material. The h.c.p. precipitates appear to thicken only in the presence of high dislocation density produced by prior cold work

  16. Simultaneous surface engineering and bulk hardening of precipitation hardening stainless steel

    DEFF Research Database (Denmark)

    Frandsen, Rasmus Berg; Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    This article addresses simultaneous bulk precipitation hardening and low temperature surface engineering of two commercial precipitation hardening stainless steels: Sandvik Nanoflex® and Uddeholm Corrax®. Surface engineering comprised gaseous nitriding or gaseous carburising. Microstructural....... The duration and temperature of the nitriding/carburising surface hardening treatment can be chosen in agreement with the thermal treatment for obtaining optimal bulk hardness in the precipitation hardening stainless steel....... characterisation of the cases developed included X-ray diffraction analysis, reflected light microscopy and micro-hardness testing. It was found that the incorporation of nitrogen or carbon resulted in a hardened case consisting of a combination of (tetragonal) martensite and expanded (cubic) austenite...

  17. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy.

    Science.gov (United States)

    Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang

    2015-01-01

    The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ).

  18. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5 is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy.

    Directory of Open Access Journals (Sweden)

    Jian eWu

    2015-11-01

    Full Text Available The phytohormone abscisic acid (ABA regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5, which is a basic leucine zipper motif transcriptional factor (TF. GhABI5 is expressed in dormant vegetative organs (corm, cormel and stolon as well as in reproductive organs (stamen, and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6 and RD29B. Down-regulation of GhABI5 in dormant cormels via Virus Induced Gene Silence (VIGS promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B. The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ.

  19. The Role of MAPK Modules and ABA during Abiotic Stress Signaling

    KAUST Repository

    Zélicourt, Axel de

    2016-05-01

    To respond to abiotic stresses, plants have developed specific mechanisms that allow them to rapidly perceive and respond to environmental changes. The phytohormone abscisic acid (ABA) was shown to be a pivotal regulator of abiotic stress responses in plants, triggering major changes in plant physiology. The ABA core signaling pathway largely relies on the activation of SnRK2 kinases to mediate several rapid responses, including gene regulation, stomatal closure, and plant growth modulation. Mitogen-activated protein kinases (MAPKs) have also been implicated in ABA signaling, but an entire ABA-activated MAPK module was uncovered only recently. In this review, we discuss the evidence for a role of MAPK modules in the context of different plant ABA signaling pathways. Abiotic stresses impact average yield in agriculture by more than 50% globally.Since ABA is a key regulator of abiotic stress responses, an understanding of its functioning at the molecular level is essential for plant breeding. Although the ABA core signaling pathway has been unraveled, several downstream events are still unclear.MAPKs are involved in most plant developmental stages and in response to stresses. Several members of the MAPK family were shown to be directly or indirectly activated by the ABA core signaling pathway.Recent evidence shows that the complete MAP3K17/18-MKK3-MPK1/2/7/14 module is under the control of ABA, whose members are under the transcriptional and post-translational control of the ABA core signaling pathway. © 2016 Elsevier Ltd.

  20. ABA receptors: The START of a new paradigm in phytohormone signalling

    KAUST Repository

    Klingler, John

    2010-06-03

    The phytohormone abscisic acid (ABA) plays a central role in plant development and in plant adaptation to both biotic and abiotic stressors. In recent years, knowledge of ABA metabolism and signal transduction has advanced rapidly to provide detailed glimpses of the hormone\\'s activities at the molecular level. Despite this progress, many gaps in understanding have remained, particularly at the early stages of ABA perception by the plant cell. The search for an ABA receptor protein has produced multiple candidates, including GCR2, GTG1, and GTG2, and CHLH. In addition to these candidates, in 2009 several research groups converged on a novel family of Arabidopsis proteins that bind ABA, and thereby interact directly with a class of protein phosphatases that are well known as critical players in ABA signal transduction. The PYR/PYL/RCAR receptor family is homologous to the Bet v 1-fold and START domain proteins. It consists of 14 members, nearly all of which appear capable of participating in an ABA receptor-signal complex that responds to the hormone by activating the transcription of ABA-responsive genes. Evidence is provided here that PYR/PYL/RCAR receptors can also drive the phosphorylation of the slow anion channel SLAC1 to provide a fast and timely response to the ABA signal. Crystallographic studies have vividly shown the mechanics of ABA binding to PYR/PYL/RCAR receptors, presenting a model that bears some resemblance to the binding of gibberellins to GID1 receptors. Since this ABA receptor family is highly conserved in crop species, its discovery is likely to usher a new wave of progress in the elucidation and manipulation of plant stress responses in agricultural settings. © 2010 The Author(s).

  1. Importance of Abscisic Acid (ABA in the In Vitro Conservation of Cassava (Manihot esculenta Crantz Importancia del Ácido Abscísico (ABA en la Conservación In Vitro de la Yuca (Manihot esculenta Crantz

    Directory of Open Access Journals (Sweden)

    L. Pedro Barrueto Cid

    2008-09-01

    Full Text Available The conventional technology for in vitro plant conservation for cassava (Manihot esculenta Crantz germplasm collections is laborious due to the need for several sub-culturing procedures per year. This practice implies high costs for medium preparation, tissue culture tubes, time-consuming labor, risks of contamination, mislabeling of accession, and the need for large growth chambers. We have developed a new procedure using in vitro cultivated nodal axillary buds treated with different abscisic acid (ABA concentrations to reduce the time for recycling transplants cultivated in a SP basic nutritive medium. Nodal explants were stored for three months with ABA. Plants were obtained after nodal axillary buds were placed in SP medium without ABA. Results indicated that 20 and 30 mM ABA induced bud dormancy and delayed sprouting without affecting subsequent growth of plants after treatment.La tecnología usual para conservación in vitro de colecciones de germoplasma de yuca (Manihotesculenta Crantz es corrientemente laboriosa y emplea varias transferencias por año. Este procedimiento envuelve altos costos en preparación de medios, consumo de tiempo, riesgos de manipulación y necesidad de mucho espacio para la mantención de colecciones en cámaras de cultivos. Se desarrolló un nuevo procedimiento usando yemas axilares nodales cultivadas in vitro con diferentes concentraciones de ácido abscísico (ABA, con el objetivo de reducir los ciclos de transferencia de los cultivos mantenidos en un medio nutritivo básico tal como el SP. Los segmentos nodales fueron almacenados por tres meses en presencia de ABA. Las plantas fueron obtenidas después que los segmentos nodales fueron transferidos al medio SP sin ABA. Los resultados indican que 20 y 30 mM de ABA indujeron una completa dormancia de yemas, sin afectar el desarrollo posterior de las yemas nodales y su consecuente conversión en planta.

  2. BUSFET -- A radiation-hardened SOI transistor

    International Nuclear Information System (INIS)

    Schwank, J.R.; Shaneyfelt, M.R.; Draper, B.L.; Dodd, P.E.

    1999-01-01

    The total-dose hardness of SOI technology is limited by radiation-induced charge trapping in gate, field, and SOI buried oxides. Charge trapping in the buried oxide can lead to back-channel leakage and makes hardening SOI transistors more challenging than hardening bulk-silicon transistors. Two avenues for hardening the back-channel are (1) to use specially prepared SOI buried oxides that reduce the net amount of trapped positive charge or (2) to design transistors that are less sensitive to the effects of trapped charge in the buried oxide. In this work, the authors propose a partially-depleted SOI transistor structure for mitigating the effects of trapped charge in the buried oxide on radiation hardness. They call this structure the BUSFET--Body Under Source FET. The BUSFET utilizes a shallow source and a deep drain. As a result, the silicon depletion region at the back channel caused by radiation-induced charge trapping in the buried oxide does not form a conducting path between source and drain. Thus, the BUSFET structure design can significantly reduce radiation-induced back-channel leakage without using specially prepared buried oxides. Total dose hardness is achieved without degrading the intrinsic SEU or dose rate hardness of SOI technology. The effectiveness of the BUSFET structure for reducing total-dose back-channel leakage depends on several variables, including the top silicon film thickness and doping concentration, and the depth of the source. 3-D simulations show that for a body doping concentration of 10 18 cm -3 , a drain bias of 3 V, and a source depth of 90 nm, a silicon film thickness of 180 nm is sufficient to almost completely eliminate radiation-induced back-channel leakage. However, for a doping concentration of 3 x 10 17 cm -3 , a thicker silicon film (300 nm) must be used

  3. Work hardening correlation for monotonic loading based on state variables

    International Nuclear Information System (INIS)

    Huang, F.H.; Li, C.Y.

    1977-01-01

    An absolute work hardening correlation in terms of the hardness parameter and the internal stress based on the state variable approach was developed. It was found applicable to a variety of metals and alloys. This correlation predicts strain rate insensitive work hardening properties at low homologous temperatures and produces strain rate effects at higher homologous temperatures without involving thermally induced recovery processes

  4. The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28.

    Science.gov (United States)

    Pla, M; Vilardell, J; Guiltinan, M J; Marcotte, W R; Niogret, M F; Quatrano, R S; Pagès, M

    1993-01-01

    The maize gene rab28 has been identified as ABA-inducible in embryos and vegetative tissues. It is also induced by water stress in young leaves. The proximal promoter region contains the conserved cis-acting element CCACGTGG (ABRE) reported for ABA induction in other plant genes. Transient expression assays in rice protoplasts indicate that a 134 bp fragment (-194 to -60 containing the ABRE) fused to a truncated cauliflower mosaic virus promoter (35S) is sufficient to confer ABA-responsiveness upon the GUS reporter gene. Gel retardation experiments indicate that nuclear proteins from tissues in which the rab28 gene is expressed can interact specifically with this 134 bp DNA fragment. Nuclear protein extracts from embryo and water-stressed leaves generate specific complexes of different electrophoretic mobility which are stable in the presence of detergent and high salt. However, by DMS footprinting the same guanine-specific contacts with the ABRE in both the embryo and leaf binding activities were detected. These results indicate that the rab28 promoter sequence CCACGTGG is a functional ABA-responsive element, and suggest that distinct regulatory factors with apparent similar affinity for the ABRE sequence may be involved in the hormone action during embryo development and in vegetative tissues subjected to osmotic stress.

  5. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels.

    Science.gov (United States)

    Cohen, Ana C; Bottini, Rubén; Pontin, Mariela; Berli, Federico J; Moreno, Daniela; Boccanlandro, Hernán; Travaglia, Claudia N; Piccoli, Patricia N

    2015-01-01

    Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth-promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress-related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col-0 and aba2-1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro-grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild-type Col-0 and on the mutant aba2-1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col-0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought. © 2014 Scandinavian Plant Physiology Society.

  6. A hardenability test proposal

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, N.V.S.N. [Ingersoll-Rand (I) Ltd., Bangalore (India)

    1996-12-31

    A new approach for hardenability evaluation and its application to heat treatable steels will be discussed. This will include an overview and deficiencies of the current methods and discussion on the necessity for a new approach. Hardenability terminology will be expanded to avoid ambiguity and over-simplification as encountered with the current system. A new hardenability definition is proposed. Hardenability specification methods are simplified and rationalized. The new hardenability evaluation system proposed here utilizes a test specimen with varying diameter as an alternative to the cylindrical Jominy hardenability test specimen and is readily applicable to the evaluation of a wide variety of steels with different cross-section sizes.

  7. Radiation-hardened optoelectronic components: detectors

    International Nuclear Information System (INIS)

    Wiczer, J.J.

    1986-01-01

    In this talk, we will survey recent research in the area of radiation hardened optical detectors. We have studied conventional silicon photodiode structures, special radiation hardened silicon photodiodes, and special double heterojunction AlGaAs/GaAs photodiodes in neutron, gamma, pulsed x-ray and charged particle environments. We will present results of our work and summarize other research in this area. Our studies have shown that detectors can be made to function acceptably after exposures to neutron fluences of 10 15 n/cm 2 , total dose gamma exposures of 10 8 rad (Si), and flash x-ray environments of 10 8 rad/sec (Si). We will describe detector structures that can operate through these conditions, pre-rad and post-rad operational characteristics, and experimental conditions that produced these results. 23 refs., 10 figs., 1 tab

  8. AAB and ABA Renewal as a Function of the Number of Extinction Trials in Conditioned Taste Aversion

    Directory of Open Access Journals (Sweden)

    José E. Callejas-Aguilera

    2007-01-01

    Full Text Available Se realizaron tres experimentos en los que se exploró el efecto de renovación en aversión condicionada al sabor en función del número de ensayos de extinción. En el Experimento 1, tres grupos de ratas recibieron un ensayo de condicionamiento, donde una solución de sacarina se emparejó con LiCl, seguido por tres ensayos de extinción y dos ensayos de prueba. Los grupos difirieron en el contexto donde recibieron cada una de las fases (AAA, ABA y AAB. El cambio de contexto después de la extinción renovó la aversión condicionada al sabor, independientemente de si aquél implicó el regreso al contexto de condicionamiento (ABA o el paso a un contexto diferente (AAB. En el Experimento 2, aumentar el número de ensayos de extinción a 5 eliminó la renovación en el grupo AAB. El Experimento 3 replicó estos resultados dentro de un diseño factorial. Se discuten las implicaciones del efecto diferencial de la cantidad de extinción en la renovación AAB y ABA para la teoría de la recuperación de la información.

  9. Rapid hardening induced by electric pulse annealing in nanostructured pure aluminum

    DEFF Research Database (Denmark)

    Zeng, Wei; Shen, Yao; Zhang, Ning

    2012-01-01

    Nanostructured pure aluminum was fabricated by heavy cold-rolling and then subjected to recovery annealing either by applying electric pulse annealing or by traditional air furnace annealing. Both annealing treatments resulted in an increase in yield strength due to the occurrence of a “dislocation...... source-limited hardening” mechanism. However, the hardening kinetics was substantially faster for the electric pulse annealed material. Detailed microstructural characterization suggested that the rapid hardening during electric pulse annealing is related to an enhanced rate of recovery of dislocation...

  10. Stress corrosion cracking of age-hardenable nickel-base alloys in LWR-conditions

    International Nuclear Information System (INIS)

    Kekkonen, T.; Haenninen, H.

    1985-01-01

    At present it seems that the microstructure most resistant to stress corrosion cracking (SCC) in high temperature water is obtained by a solution annealing treatment at a relatively high temperature (appr. 1100 deg C) followed by water quenching and a single aging treatment (appr. 700 deg C/20 h). This should produce a microstructure with a high M 23 Cc 6 :MC ratio, semi-continous coherent M 23 C 6 precipitation, and an evenly distributed gamma prime in the matrix. However, since the actual mechanism of SCC in age-hardenable Ni-base alloys is unclear, the microstructural features resulting in the good resistance to SCC cannot be specified. Furthermore, the possible microstructural changes caused by prolonged use in LWR-conditions are unknown

  11. The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jianjun Guo

    Full Text Available BACKGROUND: The plant hormone abscisic acid (ABA regulates diverse processes of plant growth and development. It has recently been proposed that GCR2 functions as a G-protein-coupled receptor (GPCR for ABA. However, the structural relationships and functionality of GCR2 have been challenged by several independent studies. A central question in this controversy is whether gcr2 mutants are insensitive to ABA, because gcr2 mutants were shown to display reduced sensitivity to ABA under one experimental condition (e.g. 22 degrees C, continuous white light with 150 micromol m(-2 s(-1 but were shown to display wild-type sensitivity under another slightly different condition (e.g. 23 degrees C, 14/10 hr photoperiod with 120 micromol m(-2 s(-1. It has been hypothesized that gcr2 appears only weakly insensitive to ABA because two other GCR2-like genes in Arabidopsis, GCL1 and GCL2, compensate for the loss of function of GCR2. PRINCIPAL FINDINGS: In order to test this hypothesis, we isolated a putative loss-of-function allele of GCL2, and then generated all possible combinations of mutations in each member of the GCR2 gene family. We found that all double mutants, including gcr2 gcl1, gcr2 gcl2, gcl1 gcl2, as well as the gcr2 gcl1 gcl2 triple mutant displayed wild-type sensitivity to ABA in seed germination and early seedling development assays, demonstrating that the GCR2 gene family is not required for ABA responses in these processes. CONCLUSION: These results provide compelling genetic evidence that GCR2 is unlikely to act as a receptor for ABA in the context of either seed germination or early seedling development.

  12. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells

    Directory of Open Access Journals (Sweden)

    Zhao Zhixin

    2011-05-01

    Full Text Available Abstract Background In the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA. ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs. Following ABA exposure, solute uptake into guard cells is rapidly inhibited and solute loss is promoted, resulting in inhibition of stomatal opening and promotion of stomatal closure, with consequent plant water conservation. There is a wealth of information on the guard cell signaling mechanisms underlying these rapid ABA responses. To investigate ABA regulation of gene expression in guard cells in a systematic genome-wide manner, we analyzed data from global transcriptomes of guard cells generated with Affymetrix ATH1 microarrays, and compared these results to ABA regulation of gene expression in leaves and other tissues. Results The 1173 ABA-regulated genes of guard cells identified by our study share significant overlap with ABA-regulated genes of other tissues, and are associated with well-defined ABA-related promoter motifs such as ABREs and DREs. However, we also computationally identified a unique cis-acting motif, GTCGG, associated with ABA-induction of gene expression specifically in guard cells. In addition, approximately 300 genes showing ABA-regulation unique to this cell type were newly uncovered by our study. Within the ABA-regulated gene set of guard cells, we found that many of the genes known to encode ion transporters associated with stomatal opening are down-regulated by ABA, providing one mechanism for long-term maintenance of stomatal closure during drought. We also found examples of both negative and positive feedback in the transcriptional regulation by ABA of known ABA-signaling genes, particularly with regard to the PYR/PYL/RCAR class of soluble ABA receptors and

  13. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells

    Science.gov (United States)

    2011-01-01

    Background In the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA). ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs. Following ABA exposure, solute uptake into guard cells is rapidly inhibited and solute loss is promoted, resulting in inhibition of stomatal opening and promotion of stomatal closure, with consequent plant water conservation. There is a wealth of information on the guard cell signaling mechanisms underlying these rapid ABA responses. To investigate ABA regulation of gene expression in guard cells in a systematic genome-wide manner, we analyzed data from global transcriptomes of guard cells generated with Affymetrix ATH1 microarrays, and compared these results to ABA regulation of gene expression in leaves and other tissues. Results The 1173 ABA-regulated genes of guard cells identified by our study share significant overlap with ABA-regulated genes of other tissues, and are associated with well-defined ABA-related promoter motifs such as ABREs and DREs. However, we also computationally identified a unique cis-acting motif, GTCGG, associated with ABA-induction of gene expression specifically in guard cells. In addition, approximately 300 genes showing ABA-regulation unique to this cell type were newly uncovered by our study. Within the ABA-regulated gene set of guard cells, we found that many of the genes known to encode ion transporters associated with stomatal opening are down-regulated by ABA, providing one mechanism for long-term maintenance of stomatal closure during drought. We also found examples of both negative and positive feedback in the transcriptional regulation by ABA of known ABA-signaling genes, particularly with regard to the PYR/PYL/RCAR class of soluble ABA receptors and their downstream targets

  14. BUSFET - A Novel Radiation-Hardened SOI Transistor

    International Nuclear Information System (INIS)

    Schwank, J.R.; Shaneyfelt, M.R.; Draper, B.L.; Dodd, P.E.

    1999-01-01

    The total-dose hardness of SOI technology is limited by radiation-induced charge trapping in gate, field, and SOI buried oxides. Charge trapping in the buried oxide can lead to back-channel leakage and makes hardening SOI transistors more challenging than hardening bulk-silicon transistors. Two avenues for hardening the back-channel are (1) to use specially prepared SOI buried oxides that reduce the net amount of trapped positive charge or (2) to design transistors that are less sensitive to the effects of trapped charge in the buried oxide. In this work, we propose a new partially-depleted SOI transistor structure that we call the BUSFET--Body Under Source FET. The BUSFET utilizes a shallow source and a deep drain. As a result, the silicon depletion region at the back channel caused by radiation-induced charge trapping in the buried oxide does not form a conducting path between source and drain. Thus, the BUSFET structure design can significantly reduce radiation-induced back-channel leakage without using specially prepared buried oxides. Total dose hardness is achieved without degrading the intrinsic SEU and dose rate hardness of SOI technology. The effectiveness of the BUSFET structure for reducing total-dose back-channel leakage depends on several variables, including the top silicon film thickness and doping concentration and the depth of the source. 3-D simulations show that for a doping concentration of 10 18 cm -3 and a source depth of 90 nm, a silicon film thickness of 180 nm is sufficient to almost completely eliminate radiation-induced back-channel leakage. However, for a doping concentration of 3x10 17 cm -3 , a thicker silicon film (300 nm) must be used

  15. Comparison of Thermal Creep Strain Calculation Results Using Time Hardening and Strain Hardening Rules

    International Nuclear Information System (INIS)

    Kim, Junehyung; Cheon, Jinsik; Lee, Byoungoon; Lee, Chanbock

    2014-01-01

    One of the design criteria for the fuel rod in PGSFR is the thermal creep strain of the cladding, because the cladding is exposed to a high temperature for a long time during reactor operation period. In general, there are two kind of calculation scheme for thermal creep strain: time hardening and strain hardening rules. In this work, thermal creep strain calculation results for HT9 cladding by using time hardening and strain hardening rules are compared by employing KAERI's current metallic fuel performance analysis code, MACSIS. Also, thermal creep strain calculation results by using ANL's metallic fuel performance analysis code, LIFE-METAL which adopts strain hardening rule are compared with those by using MACSIS. Thermal creep strain calculation results for HT9 cladding by using time hardening and strain hardening rules were compared by employing KAERI's current metallic fuel performance analysis code, MACSIS. Also, thermal creep strain calculation results by using ANL's metallic fuel performance analysis code, LIFE-METAL which adopts strain hardening rule were compared with those by using MACSIS. Tertiary creep started earlier in time hardening rule than in strain hardening rule. Also, calculation results by MACSIS with strain hardening and those obtained by using LIFE-METAL were almost identical to each other

  16. Radiation-hardenable diluents for radiation-hardenable compositions

    International Nuclear Information System (INIS)

    Schuster, K.E.; Rosenkranz, H.J.; Furh, K.; Ruedolph, H.

    1979-01-01

    Radiation-crosslinkable diluents for radiation-hardenable compositions (binders) consisting of a mixture of triacrylates of a reaction product of trimethylol propane and ethylene oxide with an average degree of ethoxylation of from 2.5 to 4 are described. The ethoxylated trimethylol propane is substantially free from trimethylol propane and has the following distribution: 4 to 5% by weight of monoethoxylation product, 14 to 16% by weight of diethoxylation product, 20 to 30% by weight of triethoxylation product, 20 to 30% by weight of tetraethoxylation product, 16 to 18% by weight of pentaethoxylation product, and 6 to 8% by weight of hexaethoxylation product. The diluents effectively reduce the viscosity of radiation-hardenable compositions and do not have any adverse effect upon their reactivity or upon the properties of the resulting hardened products

  17. Effect of thermal exposure on the residual stress relaxation in a hardened cylindrical sample under creep conditions

    Science.gov (United States)

    Radchenko, V. P.; Saushkin, M. N.; Tsvetkov, V. V.

    2016-05-01

    This paper describes the effect of thermal exposure (high-temperature exposure) ( T = 675°C) on the residual creep stress relaxation in a surface hardened solid cylindrical sample made of ZhS6UVI alloy. The analysis is carried out with the use of experimental data for residual stresses after micro-shot peening and exposures to temperatures equal to T = 675°C during 50, 150, and 300 h. The paper presents the technique for solving the boundary-value creep problem for the hardened cylindrical sample with the initial stress-strain state under the condition of thermal exposure. The uniaxial experimental creep curves obtained under constant stresses of 500, 530, 570, and 600 MPa are used to construct the models describing the primary and secondary stages of creep. The calculated and experimental data for the longitudinal (axial) tensor components of residual stresses are compared, and their satisfactory agreement is determined.

  18. Physiological and Molecular Processes Associated with Long Duration of ABA Treatment

    Directory of Open Access Journals (Sweden)

    Mei Wang

    2018-02-01

    Full Text Available Plants need to respond to various environmental stresses such as abiotic stress for proper development and growth. The responses to abiotic stress can be biochemically demanding, resulting in a trade-off that negatively affects plant growth and development. Thus, plant stress responses must be fine-tuned depending on the stress severity and duration. Abscisic acid, a phytohormone, plays a key role in responses to abiotic stress. Here, we investigated time-dependent physiological and molecular responses to long-term ABA treatment in Arabidopsis as an approach to gain insight into the plant responses to long-term abiotic stress. Upon ABA treatment, the amount of cellular ABA increased to higher levels, reaching to a peak at 24 h after treatment (HAT, and then gradually decreased with time whereas ABA-GE was maintained at lower levels until 24 HAT and then abruptly increased to higher levels at 48 HAT followed by a gradual decline at later time points. Many genes involved in dehydration stress responses, ABA metabolism, chloroplast biogenesis, and chlorophyll degradation were strongly expressed at early time points with a peak at 24 or 48 HAT followed by gradual decreases in induction fold or even suppression at later time points. At the physiological level, long-term ABA treatment caused leaf yellowing, reduced chlorophyll levels, and inhibited chloroplast division in addition to the growth suppression whereas short-term ABA treatment did not affect chlorophyll levels. Our results indicate that the duration of ABA treatment is a crucial factor in determining the mode of ABA-mediated signaling and plant responses: active mobilization of cellular resources at early time points and suppressive responses at later time points.

  19. Towards the Identification of New Genes Involved in ABA-Dependent Abiotic Stresses Using Arabidopsis Suppressor Mutants of abh1 Hypersensitivity to ABA during Seed Germination

    Directory of Open Access Journals (Sweden)

    Iwona Szarejko

    2013-06-01

    Full Text Available Abscisic acid plays a pivotal role in the abiotic stress response in plants. Although great progress has been achieved explaining the complexity of the stress and ABA signaling cascade, there are still many questions to answer. Mutants are a valuable tool in the identification of new genes or new alleles of already known genes and in elucidating their role in signaling pathways. We applied a suppressor mutation approach in order to find new components of ABA and abiotic stress signaling in Arabidopsis. Using the abh1 (ABA hypersensitive 1 insertional mutant as a parental line for EMS mutagenesis, we selected several mutants with suppressed hypersensitivity to ABA during seed germination. Here, we present the response to ABA and a wide range of abiotic stresses during the seed germination and young seedling development of two suppressor mutants—soa2 (suppressor of abh1 hypersensitivity to ABA 2 and soa3 (suppressor of abh1 hypersensitivity to ABA 3. Generally, both mutants displayed a suppression of the hypersensitivity of abh1 to ABA, NaCl and mannitol during germination. Both mutants showed a higher level of tolerance than Columbia-0 (Col-0—the parental line of abh1 in high concentrations of glucose. Additionally, soa2 exhibited better root growth than Col-0 in the presence of high ABA concentrations. soa2 and soa3 were drought tolerant and both had about 50% fewer stomata per mm2 than the wild-type but the same number as their parental line—abh1. Taking into account that suppressor mutants had the same genetic background as their parental line—abh1, it was necessary to backcross abh1 with Landsberg erecta four times for the map-based cloning approach. Mapping populations, derived from the cross of abh1 in the Landsberg erecta background with each suppressor mutant, were created. Map based cloning in order to identify the suppressor genes is in progress.

  20. Simulation-aided investigation of beam hardening induced errors in CT dimensional metrology

    DEFF Research Database (Denmark)

    Tan, Ye; Kiekens, Kim; Welkenhuyzen, Frank

    2014-01-01

    are mutually correlated, it remains challenging to interpret measurement results and to identify the distinct error sources. Since simulations allow isolating the different affecting factors, they form a useful complement to experimental investigations. Dewulf et al (2012 CIRP Ann. Manuf. Technol. 61 495......–8) investigated the influence of beam hardening correction parameters on the diameter of a calibrated steel pin in different experimental set-ups. It was clearly shown that an inappropriate beam hardening correction can result in significant dimensional errors. This paper confirms these results using simulations...... of a pin surrounded by a stepped cylinder: a clear discontinuity in the measured diameter of the inner pin is observed where it enters the surrounding material. The results are expanded with an investigation of the beam hardening effect on the measurement results for both inner and outer diameters...

  1. Generation Mechanism of Work Hardened Surface Layer in Metal Cutting

    Science.gov (United States)

    Hikiji, Rikio; Kondo, Eiji; Kawagoishi, Norio; Arai, Minoru

    Finish machining used to be carried out in grinding, but it is being replaced by cutting with very small undeformed chip thickness. In ultra precision process, the effects of the cutting conditions and the complicated factors on the machined surface integrity are the serious problems. In this research, work hardened surface layer was dealt with as an evaluation of the machined surface integrity and the effect of the mechanical factors on work hardening was investigated experimentally in orthogonal cutting. As a result, it was found that work hardened surface layer was affected not only by the shear angle varied under the cutting conditions and the thrust force of cutting resistance, but also by the thrust force acting point, the coefficient of the thrust force and the compressive stress equivalent to the bulk hardness. Furthermore, these mechanical factors acting on the depth of the work hardened surface layer were investigated with the calculation model.

  2. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Makoto, E-mail: makoto.fukuda@qse.tohoku.ac.jp [Tohoku University, Sendai, 980-8579 (Japan); Kiran Kumar, N.A.P.; Koyanagi, Takaaki; Garrison, Lauren M. [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Snead, Lance L. [Massachusetts Institute of Technology, Cambridge, MA, 02139 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Hasegawa, Akira [Tohoku University, Sendai, 980-8579 (Japan)

    2016-10-15

    Neutron irradiation to single crystal pure tungsten was performed in the mixed spectrum High Flux Isotope Reactor (HFIR). To investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ∼90–∼800 °C and fast neutron fluences were 0.02–9.00 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. The hardness and microstructure changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV). Irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten. - Highlights: • The microstructure and irradiation hardening of single crystal pure W irradiated in HFIR was investigated. • The neutron energy spectrum influence was evaluated by comparing the HFIR results with previous work in Joyo and JMTR. • In the dose range up to ∼1 dpa, the neutron energy spectrum influence of irradiation hardening was not clear. • In the dose range above 1 dpa, the neutron energy influence on irradiation hardening and microstructural development was clearly observed. • The irradiation induced precipitates caused significant irradiation hardening of pure W irradiated in HFIR.

  3. Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure.

    Science.gov (United States)

    Rodrigues, Olivier; Reshetnyak, Ganna; Grondin, Alexandre; Saijo, Yusuke; Leonhardt, Nathalie; Maurel, Christophe; Verdoucq, Lionel

    2017-08-22

    Stomatal movements are crucial for the control of plant water status and protection against pathogens. Assays on epidermal peels revealed that, similar to abscisic acid (ABA), pathogen-associated molecular pattern (PAMP) flg22 requires the At PIP2;1 aquaporin to induce stomatal closure. Flg22 also induced an increase in osmotic water permeability ( P f ) of guard cell protoplasts through activation of At PIP2;1. The use of HyPer, a genetic probe for intracellular hydrogen peroxide (H 2 O 2 ), revealed that both ABA and flg22 triggered an accumulation of H 2 O 2 in wild-type but not pip2;1 guard cells. Pretreatment of guard cells with flg22 or ABA facilitated the influx of exogenous H 2 O 2 Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) and open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6) were both necessary to flg22-induced P f and both phosphorylated At PIP2;1 on Ser121 in vitro. Accumulation of H 2 O 2 and stomatal closure as induced by flg22 was restored in pip2;1 guard cells by a phosphomimetic form (Ser121Asp) but not by a phosphodeficient form (Ser121Ala) of At PIP2;1. We propose a mechanism whereby phosphorylation of At PIP2;1 Ser121 by BAK1 and/or OST1 is triggered in response to flg22 to activate its water and H 2 O 2 transport activities. This work establishes a signaling role of plasma membrane aquaporins in guard cells and potentially in other cellular context involving H 2 O 2 signaling.

  4. Modeling copper precipitation hardening and embrittlement in a dilute Fe-0.3at.%Cu alloy under neutron irradiation

    Science.gov (United States)

    Bai, Xian-Ming; Ke, Huibin; Zhang, Yongfeng; Spencer, Benjamin W.

    2017-11-01

    Neutron irradiation in light water reactors can induce precipitation of nanometer sized Cu clusters in reactor pressure vessel steels. The Cu precipitates impede dislocation gliding, leading to an increase in yield strength (hardening) and an upward shift of ductile-to-brittle transition temperature (embrittlement). In this work, cluster dynamics modeling is used to model the entire Cu precipitation process (nucleation, growth, and coarsening) in a Fe-0.3at.%Cu alloy under neutron irradiation at 300°C based on the homogenous nucleation mechanism. The evolution of the Cu cluster number density and mean radius predicted by the modeling agrees well with experimental data reported in literature for the same alloy under the same irradiation conditions. The predicted precipitation kinetics is used as input for a dispersed barrier hardening model to correlate the microstructural evolution with the radiation hardening and embrittlement in this alloy. The predicted radiation hardening agrees well with the mechanical test results in the literature. Limitations of the model and areas for future improvement are also discussed in this work.

  5. Strain hardening of aluminium alloy 3004 in the deep drawing and ironing processes

    International Nuclear Information System (INIS)

    Courbon, J.; Duval, J.L.

    1993-01-01

    The evolution of material hardening resulting from the canmaking operations on aluminium beverage cans has been investigated. Tensile tests in cup walls revealed that deep drawing induced softening in the hoop direction and hardening in the meridian direction. This anisotropy is retained in the ironing operation. Changes in strain path on a heavily cold-rolled material probably cause such a complex behaviour. To determine hardening laws for deep drawing, simple shear tests were thus performed because of the strain path similarity. They allowed to determine hardening laws over larger strains than tension could reach and revealed a saturation of stress. Altogether they proved adapted to the understanding of deep drawing. (orig.)

  6. A transcriptional approach to unravel the connection between phospholipases A₂ and D and ABA signal in citrus under water stress.

    Science.gov (United States)

    Romero, Paco; Lafuente, M Teresa; Alférez, Fernando

    2014-07-01

    The effect of water stress on the interplay between phospholipases (PL) A2 and D and ABA signalling was investigated in fruit and leaves from the sweet orange Navelate and its fruit-specific ABA-deficient mutant Pinalate by studying simultaneously expression of 5 PLD and 3 PLA2-encoding genes. In general, expression levels of PLD-encoding genes were higher at harvest in the flavedo (coloured outer part of the peel) from Pinalate. Moreover, a higher and transient increase in expression of CsPLDα, CsPLDβ, CsPLDδ and CsPLDζ was observed in the mutant as compared to Navelate fruit under water stress, which may reflect a mechanism of acclimation to water stress influenced by ABA deficiency. An early induction in CsPLDγ gene expression, when increase in peel damage during fruit storage was most evident, suggested a role for this gene in membrane degradation processes during water stress. Exogenous ABA on mutant fruit modified the expression of all PLD genes and reduced the expression of CsPLDα and CsPLDβ by 1 week to levels similar to those of Navelate, suggesting a repressor role of ABA on these genes. In general, CssPLA2α and β transcript levels were lower in flavedo from Pinalate than from Navelate fruit during the first 3 weeks of storage, suggesting that expression of these genes also depends at least partially on ABA levels. Patterns of expression of PLD and PLA2-encoding genes were very similar in Navelate and Pinalate leaves, which have similar ABA levels, when comparing both RH conditions. Results comparison with other from previous works in the same experimental systems helped to decipher the effect of the stress severity on the differential response of some of these genes under dehydration conditions and pointed out the interplay between PLA2 and PLD families and their connection with ABA signalling in citrus. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Comparative Study of Hardening Mechanisms During Aging of a 304 Stainless Steel Containing α'-Martensite

    Science.gov (United States)

    Jeong, S. W.; Kang, U. G.; Choi, J. Y.; Nam, W. J.

    2012-09-01

    Strain aging and hardening behaviors of a 304 stainless steel containing deformation-induced martensite were investigated by examining mechanical properties and microstructural evolution for different aging temperature and time. Introduced age hardening mechanisms of a cold rolled 304 stainless steel were the additional formation of α'-martensite, hardening of α'-martensite, and hardening of deformed austenite. The increased amount of α'-martensite at an aging temperature of 450 °C confirmed the additional formation of α'-martensite as a hardening mechanism in a cold rolled 304 stainless steel. Additionally, the increased hardness in both α'-martensite and austenite phases with aging temperature proved that hardening of both α'-martensite and austenite phases would be effective as hardening mechanisms in cold rolled and aged 304 stainless steels. The results suggested that among hardening mechanisms, hardening of an α'-martensite phase, including the diffusion of interstitial solute carbon atoms to dislocations and the precipitation of fine carbide particles would become a major hardening mechanism during aging of cold rolled 304 stainless steels.

  8. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes.

    Science.gov (United States)

    Zhao, Yang; Xing, Lu; Wang, Xingang; Hou, Yueh-Ju; Gao, Jinghui; Wang, Pengcheng; Duan, Cheng-Guo; Zhu, Xiaohong; Zhu, Jian-Kang

    2014-06-03

    The phytohormone abscisic acid (ABA) regulates plant growth, development, and abiotic stress responses. ABA signaling is mediated by a group of receptors known as the PYR1/PYL/RCAR family, which includes the pyrabactin resistance 1-like protein PYL8. Under stress conditions, ABA signaling activates SnRK2 protein kinases to inhibit lateral root growth after emergence from the primary root. However, even in the case of persistent stress, lateral root growth eventually recovers from inhibition. We showed that PYL8 is required for the recovery of lateral root growth, following inhibition by ABA. PYL8 directly interacted with the transcription factors MYB77, MYB44, and MYB73. The interaction of PYL8 and MYB77 increased the binding of MYB77 to its target MBSI motif in the promoters of multiple auxin-responsive genes. Compared to wild-type seedlings, the lateral root growth of pyl8 mutant seedlings and myb77 mutant seedlings was more sensitive to inhibition by ABA. The recovery of lateral root growth was delayed in pyl8 mutant seedlings in the presence of ABA, and the defect was rescued by exposing pyl8 mutant seedlings to the auxin IAA (3-indoleacetic acid). Thus, PYL8 promotes lateral root growth independently of the core ABA-SnRK2 signaling pathway by enhancing the activities of MYB77 and its paralogs, MYB44 and MYB73, to augment auxin signaling. Copyright © 2014, American Association for the Advancement of Science.

  9. Work Hardening Behavior of 1020 Steel During Cold-Beating Simulation

    Science.gov (United States)

    CUI, Fengkui; LING, Yuanfei; XUE, Jinxue; LIU, Jia; LIU, Yuhui; LI, Yan

    2017-03-01

    The present research of cold-beating formation mainly focused on roller design and manufacture, kinematics, constitutive relation, metal flow law, thermo-mechanical coupling, surface micro-topography and microstructure evolution. However, the research on surface quality and performance of workpieces in the process of cold-beating is rare. Cold-beating simulation experiment of 1020 steel is conducted at room temperature and strain rates ranging from 2000 to 4000 s-1 base on the law of plastic forming. According to the experimental data, the model of strain hardening of 1020 steel is established, Scanning Electron Microscopy(SEM) is conducted, the mechanism of the work hardening of 1020 steel is clarified by analyzing microstructure variation of 1020 steel. It is found that the strain rate hardening effect of 1020 steel is stronger than the softening effect induced by increasing temperatures, the process of simulation cold-beating cause the grain shape of 1020 steel significant change and microstructure elongate significantly to form a fibrous tissue parallel to the direction of deformation, the higher strain rate, the more obvious grain refinement and the more hardening effect. Additionally, the change law of the work hardening rate is investigated, the relationship between dislocation density and strain, the relationship between work hardening rate and dislocation density is obtained. Results show that the change trend of the work hardening rate of 1020 steel is divided into two stages, the work hardening rate decreases dramatically in the first stage and slowly decreases in the second stage, finally tending toward zero. Dislocation density increases with increasing strain and strain rate, work hardening rate decreases with increasing dislocation density. The research results provide the basis for solving the problem of improving the surface quality and performance of workpieces under cold-beating formation of 1020 steel.

  10. Radiation-hardened bulk CMOS technology

    International Nuclear Information System (INIS)

    Dawes, W.R. Jr.; Habing, D.H.

    1979-01-01

    The evolutionary development of a radiation-hardened bulk CMOS technology is reviewed. The metal gate hardened CMOS status is summarized, including both radiation and reliability data. The development of a radiation-hardened bulk silicon gate process which was successfully implemented to a commercial microprocessor family and applied to a new, radiation-hardened, LSI standard cell family is also discussed. The cell family is reviewed and preliminary characterization data is presented. Finally, a brief comparison of the various radiation-hardened technologies with regard to performance, reliability, and availability is made

  11. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Dong-bei Xu

    Full Text Available Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2 was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1, were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44, were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade.

  12. Effects of residual stress on irradiation hardening in stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, N.; Kondo, K.; Kaji, Y. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Miwa, Y. [Nuclear Energy and Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: Structural materials in fusion reactor with water cooling system will undergo corrosion in aqueous environment and heavier irradiation than that in LWR. Irradiation assisted stress corrosion (IASCC) may be induced in stainless steels exposed in these environment for a long term of reactor operation. The IASCC is considered to be caused in a welding zone. It is difficult to predict and estimate the IASCC, because several irradiation effects (irradiation hardening, swelling, irradiation induced stress relaxation, etc) work intricately. Firstly, effects of residual stress on irradiation hardening were investigated in stainless steels. Specimens used in this study were SUS316 and SUS316L. By bending deformation, the specimens with several % plastic strain, which corresponds to weld residual stress, were prepared. Ion irradiations of 12 MeV Ni{sup 3+} were performed at 330, 400 and 550 deg. C to 45 dpa in TIARA facility at JAEA. No bent specimen was simultaneously irradiated with the bent specimen. The residual stress was estimated by X-ray residual stress measurements before and after the irradiation. The micro-hardness was measured by using nano-indenter. The irradiation hardening and the stress relaxation were changed by irradiation under bending deformation. The residual stress did not relax even for the case of the higher temperature aging at 500 deg. C for the same time of irradiation. The residual stress after ion irradiation, however, relaxed at these experimental temperatures in SUS316L. The hardness was obviously suppressed in bent SUS316L irradiated at 300 deg. C to 6 or 12 dpa. It was evident that irradiation induced stress relaxation occasionally suppressed the irradiation hardening in SUS316L. (authors)

  13. Abscinazole-F1, a conformationally restricted analogue of the plant growth retardant uniconazole and an inhibitor of ABA 8'-hydroxylase CYP707A with no growth-retardant effect.

    Science.gov (United States)

    Todoroki, Yasushi; Kobayashi, Kyotaro; Shirakura, Minaho; Aoyama, Hikaru; Takatori, Kokichi; Nimitkeatkai, Hataitip; Jin, Mei-Hong; Hiramatsu, Saori; Ueno, Kotomi; Kondo, Satoru; Mizutani, Masaharu; Hirai, Nobuhiro

    2009-09-15

    To develop a specific inhibitor of abscisic acid (ABA) 8'-hydroxylase, a key enzyme in the catabolism of ABA, a plant hormone involved in stress tolerance, seed dormancy, and other various physiological events, we designed and synthesized conformationally restricted analogues of uniconazole (UNI), a well-known plant growth retardant, which inhibits a biosynthetic enzyme (ent-kaurene oxidase) of gibberellin as well as ABA 8'-hydroxylase. Although most of these analogues were less effective than UNI in inhibition of ABA 8'-hydroxylase and rice seedling growth, we found that a lactol-bridged analogue with an imidazole is a potent inhibitor of ABA 8'-hydroxylase but not of plant growth. This compound, abscinazole-F1, induced drought tolerance in apple seedlings upon spray treatment with a 10 microM solution.

  14. Ordering phenomena in ABA triblock copolymer gels

    DEFF Research Database (Denmark)

    Reynders, K.; Mischenko, N.; Kleppinger, R.

    1997-01-01

    Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network). The lat......Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network...

  15. Epoxy modified bitumen : Chemical hardening and its interpretation

    NARCIS (Netherlands)

    Apostolidis, P.; Pipintakos, G.; van de Ven, M.F.C.; Liu, X.; Erkens, Sandra; Scarpas, Athanasios

    2018-01-01

    Epoxy modified bitumen (EMB) is a promising technology for long lasting paving materials ensuring higher resistance to rutting, oxygen- and moisture-induced damage. In this paper, an analysis of the chemical reactions that take place during the chemical hardening process (curing) of epoxy modified

  16. On the correlation between irradiation-induced microstructural features and the hardening of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Lambrecht, M.; Meslin, E.; Malerba, L.; Hernandez-Mayoral, M.; Bergner, F.; Pareige, P.; Radiguet, B.; Almazouzi, A.

    2010-01-01

    A correlation is attempted between microstructural observations by various complementary techniques, which have been implemented within the PERFECT project and the hardening measured by tensile tests of reactor pressure vessel steel and model alloys after irradiation to a dose of ∼7 x 10 19 n cm -2 . This is done, using the simple hardening model embodied by the Orowan equation and applying the most suitable superposition law, as suggested by a parametric study using the DUPAIR line tension code. It is found that loops are very strong obstacles to dislocation motion, but due to their low concentration, they only play a minor role in the hardening itself. For the precipitates, the contrary is found, although they are quite soft (due to their very small sizes and their coherent nature), they still play the dominant role in the hardening. Vacancy clusters are important for the formation of both loops and precipitates, but they will play almost no role in the hardening by themselves.

  17. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca(2+-permeable channels and stomatal closure.

    Directory of Open Access Journals (Sweden)

    Izumi C Mori

    2006-10-01

    Full Text Available Abscisic acid (ABA signal transduction has been proposed to utilize cytosolic Ca(2+ in guard cell ion channel regulation. However, genetic mutants in Ca(2+ sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca(2+-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell-expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca(2+ activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca(2+-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca(2+-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca(2+ oscillation experiments revealed that Ca(2+-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca(2+-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca(2+-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling.

  18. Effect of yield strength on stress corrosion crack propagation under PWR and BWR environments of hardened stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Castano, M.L.; Garcia, M.S.; Diego, G. de; Gomez-Briceno, D. [CIEMAT, Nuclear Fission Department, Structural Materials Program, Avda. Complutense 22, 28040 Madrid (Spain)

    2004-07-01

    Core components of light water reactor (LWR), mainly made of austenitic stainless steels (SS), subjected to stress and exposed to relatively high fast neutron flux may suffer a cracking process termed as Irradiation Assisted Stress Corrosion Cracking (IASCC). Neutron radiation leads to critical modifications in material characteristics, which can modify their stress corrosion cracking (SCC) response. Current knowledge highlights three fundamental factors, induced by radiation, as primary contributors to IASCC of core materials: Radiation Induced Segregation (RIS) at grain boundaries, Radiation Hardening and Radiolysis. Most of the existing literature on IASCC is focussed on the influence of RIS, mainly chromium depletion, which can promote IASCC in oxidizing environments, such a Boiling Water Reactor (BWR) under normal water chemistry. However, in non-oxidizing environments, such as primary water of Pressurized Water Reactor (PWR) or BWR hydrogen water chemistry, the role played by chromium depletion at grain boundary on IASCC behaviour of highly irradiated material is irrelevant. One important issue with limited study is the effect of radiation induced hardening. The role of hardening on IASCC is became stronger considered, especially for environments where other factors, like micro-chemistry, have no significant influence. To formulate the mechanism of IASCC, a well-established method is to isolate and quantify the effect of individual parameters. The use of unirradiated material and the simulation of the irradiation effects is a procedure used with success for evaluating the influence of irradiation effects. Radiation hardening can be simulated by mechanical deformation and, although some differences exist in the types of defects produced, it is believed that the study of the SCC behaviour of unirradiated materials with different hardening levels would contribute to the understanding of IASCC mechanism. In order to evaluate the influence of hardening on the

  19. Principles and techniques of radiation hardening. Volume 3. Electromagnetic pulse (EMP) and system generated EMP

    International Nuclear Information System (INIS)

    Rudie, N.J.

    1976-01-01

    The three-volume book is intended to serve as a review of the effects of thermonuclear explosion induced radiation (x-rays, gamma rays, and beta particles) and the resulting electromagnetic pulse (EMP). Volume 3 deals with the following topics: selected fundamentals of electromagnetic theory; EMP induced currents on antennas and cables; the EMP response of electronics; EMP hardening; EMP testing; injection currents; internal electromagnetic pulse (IEMP); replacement currents; and system generated electromagnetic pulse (SGEMP) hardening

  20. The rose (Rosa hybrida) NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis.

    Science.gov (United States)

    Jiang, Guimei; Jiang, Xinqiang; Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing

    2014-01-01

    Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein

  1. The rose (Rosa hybrida NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Guimei Jiang

    Full Text Available Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida, RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose Rh

  2. Optimization of Thermo-Mechanical Processing for Forging of Newly Developed Creep-Resistant Magnesium Alloy ABaX633

    Directory of Open Access Journals (Sweden)

    Kamineni Pitcheswara Rao

    2017-11-01

    Full Text Available The compressive strength and creep resistance of cast Mg-6Al-3Ba-3Ca (ABaX633 alloy has been measured in the temperature range of 25 to 250 °C, and compared with that of its predecessor ABaX422. The alloy is stronger and more creep-resistant than ABaX422, and exhibits only a small decrease of yield stress with temperature. The higher strength of ABaX633 is attributed to a larger volume fraction of intermetallic particles (Al, Mg2Ca and Mg21Al3Ba2 in its microstructure. Hot deformation mechanisms in ABaX633 have been characterized by developing a processing map in the temperature and strain rate ranges of 300 to 500 °C and 0.0003 to 10 s−1. The processing map exhibits two workability domains in the temperature and strain rate ranges of: (1 380 to 475 °C and 0.0003 to 0.003 s−1, and (2 480–500 °C and 0.003 to 0.5 s−1. The apparent activation energy values estimated in the above two domains (204 and 216 kJ/mol are higher than that for lattice self-diffusion of Mg, which is attributed to the large back-stress that is caused by the intermetallic particles. Optimum condition for bulk working is 500 °C and 0.01 s−1 at which hot workability will be maximum. Flow instability is exhibited at lower temperatures and higher strain rates, as well as at higher temperatures and higher strain rates. The predictions of the processing map on the workability domains, as well as the instability regimes are fully validated by the forging of a rib-web (cup shaped component under optimized conditions.

  3. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition.

    Science.gov (United States)

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-04-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development. © The Author 2016. Published by

  4. ABA-Mediated Stomatal Response in Regulating Water Use during the Development of Terminal Drought in Wheat

    Directory of Open Access Journals (Sweden)

    Renu Saradadevi

    2017-07-01

    Full Text Available End-of-season drought or “terminal drought,” which occurs after flowering, is considered the most significant abiotic stress affecting crop yields. Wheat crop production in Mediterranean-type environments is often exposed to terminal drought due to decreasing rainfall and rapid increases in temperature and evapotranspiration during spring when wheat crops enter the reproductive stage. Under such conditions, every millimeter of extra soil water extracted by the roots benefits grain filling and yield and improves water use efficiency (WUE. When terminal drought develops, soil dries from the top, exposing the top part of the root system to dry soil while the bottom part is in contact with available soil water. Plant roots sense the drying soil and produce signals, which on transmission to shoots trigger stomatal closure to regulate crop water use through transpiration. However, transpiration is linked to crop growth and productivity and limiting transpiration may reduce potential yield. While an early and high degree of stomatal closure affects photosynthesis and hence biomass production, a late and low degree of stomatal closure exhausts available soil water rapidly which results in yield losses through a reduction in post-anthesis water use. The plant hormone abscisic acid (ABA is considered the major chemical signal involved in stomatal regulation. Wheat genotypes differ in their ability to produce ABA under drought and also in their stomatal sensitivity to ABA. In this viewpoint article we discuss the possibilities of exploiting genotypic differences in ABA response to soil drying in regulating the use of water under terminal drought. Root density distribution in the upper drying layers of the soil profile is identified as a candidate trait that can affect ABA accumulation and subsequent stomatal closure. We also examine whether leaf ABA can be designated as a surrogate characteristic for improved WUE in wheat to sustain grain yield under

  5. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway

    OpenAIRE

    Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng

    2017-01-01

    Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4, were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses (Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions wer...

  6. Microstructural changes and strain hardening effects in abrasive contacts at different relative velocities and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rojacz, H., E-mail: rojacz@ac2t.at [AC2T research GmbH, Viktor-Kaplan-Straße 2C, 2700 Wiener Neustadt (Austria); Mozdzen, G. [Aerospace & Advanced Composites GmbH, Viktor-Kaplan-Straße 2F, 2700 Wiener Neustadt (Austria); Weigel, F.; Varga, M. [AC2T research GmbH, Viktor-Kaplan-Straße 2C, 2700 Wiener Neustadt (Austria)

    2016-08-15

    Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocity leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.

  7. Microstructural changes and strain hardening effects in abrasive contacts at different relative velocities and temperatures

    International Nuclear Information System (INIS)

    Rojacz, H.; Mozdzen, G.; Weigel, F.; Varga, M.

    2016-01-01

    Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocity leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.

  8. Anthropogenic impacts on the water quality of Aba River, southeast ...

    African Journals Online (AJOL)

    Anthropogenic impacts on the water quality of Aba River, southeast Nigeria. ... Ethiopian Journal of Environmental Studies and Management ... of Aba River, southeast Nigeria was studied in four stations from November 2014 to August 2015 to identify the major anthropogenic activities and their impact on the water quality.

  9. Estimation of radiation hardening in ferritic steels using the cluster dynamics models

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jun Hyun; Kim, Whung Whoe; Hong, Jun Hwa [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Evolution of microstructure under irradiation brings about the mechanical property changes of materials, of which the major concern is radiation hardening in this work. Radiation hardening is generally expressed in terms of an increase in yield strength as a function of radiation dose and temperature. Cluster dynamics model for radiation hardening has been developed to describe the evolution of point defects clusters (PDCs) and copperrich precipitates (CRPs). While the mathematical models developed by Stoller focus on the evolution of PDCs in ferritic steels under neutron irradiation, we slightly modify the model by including the CRP growth and estimate the magnitude of hardening induced by PDC and CRP. The model is then used to calculate the changes in yield strength of RPV steels. The calculation results are compared to measured yield strength values, obtained from surveillance testing of PWR vessel steels in France.

  10. Integrating role of ethylene and ABA in tomato plants adaptation to salt stress

    DEFF Research Database (Denmark)

    Amjad, Muhammad; Akhtar, Javaid; Anwar-ul-Haq, Muhammad

    2014-01-01

    concentrations of ABA and ethylene under saline conditions compared to control (0mM NaCl) and salt-sensitive genotype. The concentration of hormones was significantly higher in the treatment where no K was applied and it was lower in treatments where K was applied indicating that K application reduced...

  11. The transport and distribution of 3H-ABA affected by al sress on soybean seedig

    International Nuclear Information System (INIS)

    Chen Guang; Sun Yang; Pang Jinduo

    2010-01-01

    A hydroponic experiment combining radioisotope techniques was carried out to understand the effect of Al stress on the transport and the distribution of 3 H-ABA by using Jilin70, a soybean variety of Al resistance. The transport and distribution of ABA affected by Al stress on soybean seedling were studied with radioisotope technique. The results showed that ABA could be transported up or down in soybean seedling. The stress of Al accelerated the transport of ABA and enhanced the distribution of ABA in the roots by Al stress. The paper present the foundation for the mechanisms of ABA under Al stress in plant. (authors)

  12. Assessment of burnout among health workers and bankers in Aba ...

    African Journals Online (AJOL)

    Aim: To determine the prevalence of burnout among health workers and bankers in Aba South Local Government Area in Abia State. Materials and Methods: A cross.sectional, descriptive study was carried out in 2013 among health workers and bankers in Aba metropolis. By multistage sampling method, proportionate ...

  13. The Dynamics of Embolism Refilling in Abscisic Acid (ABA-Deficient Tomato Plants

    Directory of Open Access Journals (Sweden)

    Francesca Secchi

    2012-12-01

    Full Text Available Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant’s refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant’s capacity for refilling.

  14. Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: a comparison of dormant and non-dormant rice cultivars.

    Science.gov (United States)

    Liu, Yang; Fang, Jun; Xu, Fan; Chu, Jinfang; Yan, Cunyu; Schläppi, Michael R; Wang, Youping; Chu, Chengcai

    2014-06-20

    Seed dormancy is an important agronomic trait in cereals. Using deep dormant (N22), medium dormant (ZH11), and non-dormant (G46B) rice cultivars, we correlated seed dormancy phenotypes with abscisic acid (ABA) and gibberellin (GA) metabolism gene expression profiles and phytohormone levels during seed development and imbibition. A time course analysis of ABA and GA content during seed development showed that N22 had a high ABA level at early and middle seed developmental stages, while at late developmental stage it declined to the level of ZH11; however, its ABA/GA ratio maintained at a high level throughout seed development. By contrast, G46B had the lowest ABA content during seed development though at early developmental stage its ABA level was close to that of ZH11, and its ABA/GA ratio peaked at late developmental stage that was at the same level of ZH11. Compared with N22 and G46B, ZH11 had an even and medium ABA level during seed development and its ABA/GA ratio peaked at the middle developmental stage. Moreover, the seed development time-point having high ABA/GA ratio also had relatively high transcript levels for key genes in ABA and GA metabolism pathways across three cultivars. These indicated that the embryo-imposed dormancy has been induced before the late developmental stage and is determined by ABA/GA ratio. A similar analysis during seed imbibition showed that ABA was synthesized in different degrees for the three cultivars. In addition, water uptake assay for intact mature seeds suggested that water could permeate through husk barrier into seed embryo for all three cultivars; however, all three cultivars showed distinct colors by vanillin-staining indicative of the existence of flavans in their husks, which are dormancy inhibition compounds responsible for the husk-imposed dormancy. Copyright © 2014. Published by Elsevier Ltd.

  15. Immunolocalization of IAA and ABA in roots and needles of radiata pine (Pinus radiata) during drought and rewatering.

    Science.gov (United States)

    De Diego, N; Rodríguez, J L; Dodd, I C; Pérez-Alfocea, F; Moncaleán, P; Lacuesta, M

    2013-05-01

    Anatomical, physiological and phytohormonal changes involved in drought tolerance were examined in different Pinus radiata D. Don breeds subjected to soil drying and rewatering. Breeds with the smallest stomatal chamber size had the lowest transpiration rate and the highest intrinsic water-use efficiency. Xylem cell size was positively correlated with leaf hydraulic conductance and needle indole-3-acetic acid (IAA) concentrations, whereas transpiration rate was negatively correlated with needle abscisic acid (ABA) levels. Since these two phytohormones seem important in regulating the P. radiata drought response, they were simultaneously immunolocalized in roots and needles of the most tolerant breed (P. radiata var. radiata × var. cedrosensis) during two sequential drought cycles and after rewatering. During drought, IAA was unequally distributed into the pointed area of the needle cross-section and mainly located in mesophyll and vascular tissue cells of needles, possibly inducing needle epinasty, whereas ABA was principally located in guard cells, presumably to elicit stomata closure. In the roots, at the end of the first drought cycle, while strong IAA accumulation was observed in the cortex, ABA levels decreased probably due to translocation to the leaves. Rewatering modified the distribution of both IAA and ABA in the needles, causing an accumulation principally in vascular tissue, with residual concentrations in mesophyll, likely favouring the acclimatization of the plants for further drought cycles. Contrarily, in the roots IAA and ABA were located in the exodermis, a natural barrier that regulates the phytohormone translocation to other plant tissues and hormone losses to the soil solution after rewatering. These results confirm that immunolocalization is an efficient tool to understand the translocation of IAA and ABA in plants subjected to different water stress situations, and clarify their role in regulating physiological responses such as stomata

  16. Surviving a Dry Future: Abscisic Acid (ABA)-Mediated Plant Mechanisms for Conserving Water under Low Humidity

    Science.gov (United States)

    McAdam, Scott A. M.

    2017-01-01

    Angiosperms are able to respond rapidly to the first sign of dry conditions, a decrease in air humidity, more accurately described as an increase in the vapor pressure deficit between the leaf and the atmosphere (VPD), by abscisic acid (ABA)-mediated stomatal closure. The genes underlying this response offer valuable candidates for targeted selection of crop varieties with improved drought tolerance, a critical goal for current plant breeding programs, to maximize crop production in drier and increasingly marginalized environments, and meet the demands of a growing population in the face of a changing climate. Here, we review current understanding of the genetic mechanisms underpinning ABA-mediated stomatal closure, a key means for conserving water under dry conditions, examine how these mechanisms evolved, and discuss what remains to be investigated. PMID:29113039

  17. Bromodomain proteins GTE9 and GTE11 are essential for specific BT2-mediated sugar and ABA responses in Arabidopsis thaliana.

    Science.gov (United States)

    Misra, Anjali; McKnight, Thomas D; Mandadi, Kranthi K

    2018-03-01

    Global Transcription Factor Group E proteins GTE9 and GTE11 interact with BT2 to mediate ABA and sugar responses in Arabidopsis thaliana. BT2 is a BTB-domain protein that regulates responses to various hormone, stress and metabolic conditions in Arabidopsis thaliana. Loss of BT2 results in plants that are hypersensitive to inhibition of germination by abscisic acid (ABA) and sugars. Conversely, overexpression of BT2 results in resistance to ABA and sugars. Here, we report the roles of BT2-interacting partners GTE9 and GTE11, bromodomain and extraterminal-domain proteins of Global Transcription Factor Group E, in BT2-mediated responses to sugars and hormones. Loss-of-function mutants, gte9-1 and gte11-1, mimicked the bt2-1-null mutant responses; germination of all three mutants was hypersensitive to inhibition by glucose and ABA. Loss of either GTE9 or GTE11 in a BT2 over-expressing line blocked resistance to sugars and ABA, indicating that both GTE9 and GTE11 were required for BT2 function. Co-immunoprecipitation of BT2 and GTE9 suggested that these proteins physically interact in vivo, and presumably function together to mediate responses to ABA and sugar signals.

  18. A non-linear kinematic hardening function

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1977-05-01

    Based on the classical theory of plasticity, and accepting the von Mises criterion as the initial yield criterion, a non-linear kinematic hardening function applicable both to Melan-Prager's and to Ziegler's hardening rule is proposed. This non-linear hardening function is determined by means of the uniaxial stress-strain curve, and any such curve is applicable. The proposed hardening function considers the problem of general reversed loading, and a smooth change in the behaviour from one plastic state to another nearlying plastic state is obtained. A review of both the kinematic hardening theory and the corresponding non-linear hardening assumptions is given, and it is shown that material behaviour is identical whether Melan-Prager's or Ziegler's hardening rule is applied, provided that the von Mises yield criterion is adopted. (author)

  19. The biological activity of ABA-1-like protein from Ascaris lumbricoides

    OpenAIRE

    武藤, 理穂; 今井, 伸二郎; 手塚, 裕之; 古橋, 裕子; 藤田, 紘一郎

    2001-01-01

    The elevation of non-specific IgE (total IgE) in Ascaris infection can be seen one week after infection, and reaches a peak after approximately two weeks. It has been reported that ABA-1 protein is the main constituent in the pseudocoelomic fluid of Ascaris suum. To investigate the effect of the ABA-1-like protein from Ascaris lumbricoides (ALB), the cDNA was cloned by reverse transcriptase polymerase chain reaction, using original primers based on the consensus sequences of ABA-1 and TBA-1, ...

  20. Laser transformation hardening effect on hardening zone features and surface hardness of tool steel AISI D2

    Directory of Open Access Journals (Sweden)

    D. Lesyk

    2017-06-01

    Full Text Available The relationship of technological input regimes of the laser transformation hardening on change the hardening depth, hardening width, and hardening angle, as well as surface hardness of the tool steel AISI D2 using multifactor experiment with elements of the analysis of variance and regression equations was determined. The laser transformation hardening process implemented by controlling the heating temperature using Nd:YAG fiber laser with scanner, pyrometer and proportional-integral-differential controller. The linear and quadratic regression models are developed, as well as response surface to determine the effect of the heating temperature and feed rate of the treated surface on the energy density of the laser beam, hardening depths, hardening width, hardening angle, and surface hardness are designed. The main effect on the energy density of the laser beam has a velocity laser treatment, on the other hand, the main effect on the geometrical parameters of the laser hardened zone and surface hardness has temperature heating are shown. The optimum magnitudes of the heating temperature (1270 °C and feed rate of the treated surface (90 mm/min for laser transformation hardening of the tool steel AISI D2 using fiber laser with scanner were defined.

  1. The Arabidopsis Phytocystatin AtCYS5 Enhances Seed Germination and Seedling Growth under Heat Stress Conditions.

    Science.gov (United States)

    Song, Chieun; Kim, Taeyoon; Chung, Woo Sik; Lim, Chae Oh

    2017-08-01

    Phytocystatins (PhyCYSs) are plant-specific proteinaceous inhibitors that are implicated in protein turnover and stress responses. Here, we characterized a PhyCYS from Arabidopsis thaliana , which was designated AtCYS5. RT-qPCR analysis showed that the expression of AtCYS5 in germinating seeds was induced by heat stress (HS) and exogenous abscisic acid (ABA) treatment. Analysis of the expression of the β -glucuronidase reporter gene under the control of the AtCYS5 promoter showed that AtCYS5 expression during seed germination was induced by HS and ABA. Constitutive overexpression of AtCYS5 driven by the cauliflower mosaic virus 35S promoter led to enhanced HS tolerance in transgenic Arabidopsis , which was characterized by higher fresh weight and root length compared to wild-type (WT) and knockout ( cys5 ) plants grown under HS conditions. The HS tolerance of At-CYS5 -overexpressing transgenic plants was associated with increased insensitivity to exogenous ABA during both seed germination and post-germination compared to WT and cys5 . Although no HS elements were identified in the 5'-flanking region of AtCYS5 , canonical ABA-responsive elements (ABREs) were detected. AtCYS5 was upregulated in ABA-treated protoplasts transiently co-expressing this gene and genes encoding bZIP ABRE-binding factors (ABFs and AREB3). In the absence of ABA, ABF1 and ABF3 directly bound to the ABREs in the AtCYS5 promoter, which activated the transcription of this gene in the presence of ABA. These results suggest that an ABA-dependent pathway plays a positive role in the HS-responsive expression of AtCYS5 during seed germination and post-germination growth.

  2. Superheat effect on bainite steel hardenability

    International Nuclear Information System (INIS)

    Kubachek, V.V.; Sklyuev, P.V.

    1978-01-01

    The bainite hardenability of 34KhN1M and 35 KhN1M2Ph steels has been investigated by the end-face hardening technique. It is established that, as the temperature of austenitization rises from 900 to 1280 deg C, the temperature of bainite transformation increases and bainite hardenability of the steels falls off. A repeated slow heating to 900 deg C of previously overheated 34KhN1M steel breaks up grain, lowers the temperature of the bainite transformation and raises the hardenability to values obtained with ordinary hardening from 900 deg C. A similar heating of previously overheated 35KhN1M2Ph steel is accompanied by restoration of initial coarse grains and maintenance of both the elevated bainite transformation temperature and to lower hardenability corresponding to hardening from the temperature of previous overheating

  3. Cyclic ADP-ribose and IP3 mediate abscisic acid-induced isoflavone accumulation in soybean sprouts

    International Nuclear Information System (INIS)

    Jiao, Caifeng; Yang, Runqiang; Gu, Zhenxin

    2016-01-01

    In this study, the roles of ABA-cADPR-Ca 2+ and ABA-IP3-Ca 2+ signaling pathways in UV-B-induced isoflavone accumulation in soybean sprouts were investigated. Results showed that abscisic acid (ABA) up regulated cyclic ADP-ribose (cADPR) and inositol 1,4,5-trisphosphate (IP3) levels in soybean sprouts under UV-B radiation. Furthermore, cADPR and IP3, as second messengers of UV-B-triggered ABA, induced isoflavone accumulation by up-regulating proteins and genes expression and activity of isoflavone biosynthetic-enzymes (chalcone synthase, CHS; isoflavone synthase, IFS). After Ca 2+ was chelated by EGTA, isoflavone content decreased. Overall, ABA-induced cADPR and IP3 up regulated isoflavone accumulation which was mediated by Ca 2+ signaling via enhancing the expression of proteins and genes participating in isoflavone biosynthesis in soybean sprouts under UV-B radiation. - Highlights: • UV-B-induced cADPR and IP3 synthesis was mediated by ABA. • cADPR and IP3 were involved in UV-B-ABA-induced isoflavone accumulation. • cADPR and IP3-induced isoflavone accumulation may be mediated by Ca 2+ . • ABA, cADPR, IP3 and Ca 2+ could activate proteins expression of CHS and IFS.

  4. Instability analysis of a fully plastic center-cracked strip of a power hardening material

    International Nuclear Information System (INIS)

    Zahoor, A.; Paris, P.C.

    1978-01-01

    An approach for predicting unstable crack growth in a power hardening material is discussed. A fully plastic center-cracked strip of finite width under plane strain conditions, which involves J-controlled crack growth, is analyzed. The conditions for unstable crack growth are identified in terms of a non-dimensional parameter, the Tearing Modulus, T, which incorporates the effect of elastic system compliance on the cracked structure as well as the influence of hardening. Numerical results also illustrate the strong influences on stability of both the strain hardening characteristics of the material and certain geometrical proportions which greatly influence the system compliance. (author)

  5. Dual DNA binding property of ABA insensitive 3 like factors targeted to promoters responsive to ABA and auxin.

    Science.gov (United States)

    Nag, Ronita; Maity, Manas Kanti; Dasgupta, Maitrayee

    2005-11-01

    The ABA responsive ABI3 and the auxin responsive ARF family of transcription factors bind the CATGCATG (Sph) and TGTCTC core motifs in ABA and auxin response elements (ABRE and AuxRE), respectively. Several evidences indicate ABI3s to act downstream to auxin too. Because DNA binding domain of ABI3s shows significant overlap with ARFs we enquired whether auxin responsiveness through ABI3s could be mediated by their binding to canonical AuxREs. Investigations were undertaken through in vitro gel mobility shift assays (GMSA) using the DNA binding domain B3 of PvAlf (Phaseolus vulgaris ABI3 like factor) and upstream regions of auxin responsive gene GH3 (-267 to -141) and ABA responsive gene Em (-316 to -146) harboring AuxRE and ABRE, respectively. We demonstrate that B3 domain of PvAlf could bind AuxRE only when B3 was associated with its flanking domain B2 (B2B3). Such strict requirement of B2 domain was not observed with ABRE, where B3 could bind with or without being associated with B2. This dual specificity in DNA binding of ABI3s was also demonstrated with nuclear extracts of cultured cells of Arachis hypogea. Supershift analysis of ABRE and AuxRE bound nuclear proteins with antibodies raised against B2B3 domains of PvAlf revealed that ABI3 associated complexes were detectable in association with both cis elements. Competition GMSA confirmed the same complexes to bind ABRE and AuxRE. This dual specificity of ABI3 like factors in DNA binding targeted to natural promoters responsive to ABA and auxin suggests them to have a potential role in conferring crosstalk between these two phytohormones.

  6. 77 FR 36231 - Americans With Disabilities Act (ADA) and Architectural Barriers Act (ABA) Accessibility...

    Science.gov (United States)

    2012-06-18

    ...-0004] RIN 3014-AA39 Americans With Disabilities Act (ADA) and Architectural Barriers Act (ABA... (ADA) and Architectural Barriers Act (ABA) Accessibility Guidelines to specifically address emergency... ensure that newly constructed and altered emergency transportable housing units covered by the ADA or ABA...

  7. The Arabidopsis aba4-1 mutant reveals a specific function for neoxanthin in protection against photooxidative stress.

    Science.gov (United States)

    Dall'Osto, Luca; Cazzaniga, Stefano; North, Helen; Marion-Poll, Annie; Bassi, Roberto

    2007-03-01

    The aba4-1 mutant completely lacks neoxanthin but retains all other xanthophyll species. The missing neoxanthin in light-harvesting complex (Lhc) proteins is compensated for by higher levels of violaxanthin, albeit with lower capacity for photoprotection compared with proteins with wild-type levels of neoxanthin. Detached leaves of aba4-1 were more sensitive to oxidative stress than the wild type when exposed to high light and incubated in a solution of photosensitizer agents. Both treatments caused more rapid pigment bleaching and lipid oxidation in aba4-1 than wild-type plants, suggesting that neoxanthin acts as an antioxidant within the photosystem II (PSII) supercomplex in thylakoids. While neoxanthin-depleted Lhc proteins and leaves had similar sensitivity as the wild type to hydrogen peroxide and singlet oxygen, they were more sensitive to superoxide anions. aba4-1 intact plants were not more sensitive than the wild type to high-light stress, indicating the existence of compensatory mechanisms of photoprotection involving the accumulation of zeaxanthin. However, the aba4-1 npq1 double mutant, lacking zeaxanthin and neoxanthin, underwent stronger PSII photoinhibition and more extensive oxidation of pigments than the npq1 mutant, which still contains neoxanthin. We conclude that neoxanthin preserves PSII from photoinactivation and protects membrane lipids from photooxidation by reactive oxygen species. Neoxanthin appears particularly active against superoxide anions produced by the Mehler's reaction, whose rate is known to be enhanced in abiotic stress conditions.

  8. ABA receptors: The START of a new paradigm in phytohormone signalling

    KAUST Repository

    Klingler, John; Batelli, Georgia; Zhu, Jian-Kang

    2010-01-01

    detailed glimpses of the hormone's activities at the molecular level. Despite this progress, many gaps in understanding have remained, particularly at the early stages of ABA perception by the plant cell. The search for an ABA receptor protein has produced

  9. Involvement of ABA in induction of secondary dormancy in barley (Hordeum vulgare L.) seeds.

    Science.gov (United States)

    Leymarie, Juliette; Robayo-Romero, Maria Emilia; Gendreau, Emmanuel; Benech-Arnold, Roberto L; Corbineau, Françoise

    2008-12-01

    At harvest, barley seeds are dormant because their germination is difficult above 20 degrees C. Incubation of primary dormant seeds at 30 degrees C, a temperature at which they do not germinate, results in a loss of their ability to germinate at 20 degrees C. This phenomenon which corresponds to an induction of a secondary dormancy is already observed after a pre-treatment at 30 degrees C as short as 4-6 h, and is optimal after 24-48 h. It is associated with maintenance of a high level of embryo ABA content during seed incubation at 30 degrees C, and after seed transfer at 20 degrees C, while ABA content decreases rapidly in embryos of primary dormant seeds placed directly at 20 degrees C. Induction of secondary dormancy also results in an increase in embryo responsiveness to ABA at 20 degrees C. Application of ABA during seed treatment at 30 degrees C has no significant additive effect on the further germination at 20 degrees C. In contrast, incubation of primary dormant seeds at 20 degrees C for 48 and 72 h in the presence of ABA inhibits further germination on water similarly to 24-48 h incubation at 30 degrees C. However fluridone, an inhibitor of ABA synthesis, applied during incubation of the grains at 30 degrees C has only a slight effect on ABA content and secondary dormancy. Expression of genes involved in ABA metabolism (HvABA8'OH-1, HvNCED1 and HvNCED2) was studied in relation to the expression of primary and secondary dormancies. The results presented suggest a specific role for HvNCED1 and HvNCED2 in regulation of ABA synthesis in secondary seed dormancy.

  10. Disorientations and their role on the work-hardening in stage IV

    DEFF Research Database (Denmark)

    Pantleon, W.

    2005-01-01

    statistical reasons still lead to stage III behavior and a saturation of the ow stress, but deterministic contributions to the development of disorienta- tions, as dierences in activated slip systems across boundaries, cause a linear increase of the flow stress at large strains. Such a constant work......The eect of deformation-induced disorientations on work-hardening of metals is modelled by dislocation dynamics. By incorporating excess dislocations related to disori- entations, Kocks' dislocation model describing stage III hardening is extended to stage IV. Disorientations evolving from purely...

  11. Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3.

    Science.gov (United States)

    Finkelstein, Ruth; Gampala, Srinivas S L; Lynch, Tim J; Thomas, Terry L; Rock, Christopher D

    2005-09-01

    Abscisic acid-responsive gene expression is regulated by numerous transcription factors, including a subgroup of basic leucine zipper factors that bind to the conserved cis-acting sequences known as ABA-responsive elements. Although one of these factors, ABA-insensitive 5 (ABI5), was identified genetically, the paucity of genetic data for the other family members has left it unclear whether they perform unique functions or act redundantly to ABI5 or each other. To test for potential redundancy with ABI5, we identified the family members with most similar effects and interactions in transient expression systems (ABF3 and ABF1), then characterized loss-of-function lines for those loci. The abf1 and abf3 monogenic mutant lines had at most minimal effects on germination or seed-specific gene expression, but the enhanced ABA- and stress-resistance of abf3 abi5 double mutants revealed redundant action of these genes in multiple stress responses of seeds and seedlings. Although ABI5, ABF3, and ABF1 have some overlapping effects, they appear to antagonistically regulate each other's expression at specific stages. Consequently, loss of any one factor may be partially compensated by increased expression of other family members.

  12. Characterization of the Promoter Region of an Arabidopsis Gene for 9-cis-Epoxycarotenoid Dioxygenase Involved in Dehydration-Inducible Transcription

    Science.gov (United States)

    Behnam, Babak; Iuchi, Satoshi; Fujita, Miki; Fujita, Yasunari; Takasaki, Hironori; Osakabe, Yuriko; Yamaguchi-Shinozaki, Kazuko; Kobayashi, Masatomo; Shinozaki, Kazuo

    2013-01-01

    Plants respond to dehydration stress and tolerate water-deficit status through complex physiological and cellular processes. Many genes are induced by water deficit. Abscisic acid (ABA) plays important roles in tolerance to dehydration stress by inducing many stress genes. ABA is synthesized de novo in response to dehydration. Most of the genes involved in ABA biosynthesis have been identified, and they are expressed mainly in leaf vascular tissues. Of the products of such genes, 9-cis-epoxycarotenoid dioxygenase (NCED) is a key enzyme in ABA biosynthesis. One of the five NCED genes in Arabidopsis, AtNCED3, is significantly induced by dehydration. To understand the regulatory mechanism of the early stages of the dehydration stress response, it is important to analyse the transcriptional regulatory systems of AtNCED3. In the present study, we found that an overlapping G-box recognition sequence (5′-CACGTG-3′) at −2248 bp from the transcriptional start site of AtNCED3 is an important cis-acting element in the induction of the dehydration response. We discuss the possible transcriptional regulatory system of dehydration-responsive AtNCED3 expression, and how this may control the level of ABA under water-deficit conditions. PMID:23604098

  13. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis.

    Science.gov (United States)

    Kim, June-Sik; Mizoi, Junya; Yoshida, Takuya; Fujita, Yasunari; Nakajima, Jun; Ohori, Teppei; Todaka, Daisuke; Nakashima, Kazuo; Hirayama, Takashi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2011-12-01

    In plants, osmotic stress-responsive transcriptional regulation depends mainly on two major classes of cis-acting elements found in the promoter regions of stress-inducible genes: ABA-responsive elements (ABREs) and dehydration-responsive elements (DREs). ABRE has been shown to perceive ABA-mediated osmotic stress signals, whereas DRE is known to be involved in an ABA-independent pathway. Previously, we reported that the transcription factor DRE-BINDING PROTEIN 2A (DREB2A) regulates DRE-mediated transcription of target genes under osmotic stress conditions in Arabidopsis (Arabidopsis thaliana). However, the transcriptional regulation of DREB2A itself remains largely uncharacterized. To elucidate the transcriptional mechanism associated with the DREB2A gene under osmotic stress conditions, we generated a series of truncated and base-substituted variants of the DREB2A promoter and evaluated their transcriptional activities individually. We found that both ABRE and coupling element 3 (CE3)-like sequences located approximately -100 bp from the transcriptional initiation site are necessary for the dehydration-responsive expression of DREB2A. Coupling our transient expression analyses with yeast one-hybrid and chromatin immunoprecipitation (ChIP) assays indicated that the ABRE-BINDING PROTEIN 1 (AREB1), AREB2 and ABRE-BINDING FACTOR 3 (ABF3) bZIP transcription factors can bind to and activate the DREB2A promoter in an ABRE-dependent manner. Exogenous ABA application induced only a modest accumulation of the DREB2A transcript when compared with the osmotic stress treatment. However, the osmotic stress-induced DREB2A expression was found to be markedly impaired in several ABA-deficient and ABA-insensitive mutants. These results suggest that in addition to an ABA-independent pathway, the ABA-dependent pathway plays a positive role in the osmotic stress-responsive expression of DREB2A.

  14. Fatigue of coated and laser hardened steels

    International Nuclear Information System (INIS)

    La Cruz, P. de.

    1990-01-01

    In the present work the effect of ion nitriding, laser hardening and hot dip galvanizing upon the fatigue limit and notch sensitivity of a B-Mn Swedish steel SS 2131 have been investigated. The fatigue tests were performed in plane reverse bending fatigue (R=1). The quenched and tempered condition was taken as the reference condition. The microstructure, microhardness, fracture surface and coating appearance of the fatigue surface treated specimens were studied. Residual stress and retained austenite measurements were also carried out. It was found that ion nitriding improves the fatigue limit by 53 % for smooth specimens and by 115 % for notched specimens. Laser hardening improves the fatigue limit by 18 % and 56 % for smooth and notched specimen respectively. Hot dip galvanizing gives a slight deterioration of the fatigue limit (9 % and 10 % for smooth and notched specimen respectively). Ion nitriding and laser hardening decrease the value of the notch sensitivity factor q by 78 % and 65 % respectively. Hot dip galvanizing does not modify it. A simple schematic model based on a residual stress distribution, has been used to explain the different effects. It seems that the presence of the higher compressive residual stresses and the higher uniformity of the microstructure may be the causes of the better fatigue performance of ion nitrided specimens. (119 refs.) (author)

  15. Radiation effects on radiation-hardened KU and KS-4V optical fibres

    International Nuclear Information System (INIS)

    Ivanov, A.A.; Tugarinov, S.N.; Kaschuck, Y.A.; Krasilnikov, A.V.; Bender, S.E.

    1999-01-01

    The aim of this work was to test the un-pretreated and the hardened (H 2 -loaded and pre-irradiated) KS-4V and KU optical fibres in reactor environment by in-situ measurements of both the radiation-induced loss and the luminescence in the visible spectral region. Both the radio-luminescent and the transmission spectra were in-situ detected during irradiation by charge-coupled-device (CCD) linear detector in the visible spectral region of 400 to 700 nm. The radiation induced loss spectra at the fast neutron fluence of 2*10 6 n/cm 2 shows the hardened, H 2 -loading and pre-irradiating effects in the both KU and KS-4V fibres. KU un-pretreated fibre shows a big radiation absorption band of non-bridging oxygen centered at the wavelength of 630 nm. It appears that the KS-4V hardened fibre has a specific point in the loss spectrum in the vicinity of 460 nm. Other measurements were performed, particularly after reactor shutdown and at 3 different neutron fluences with constant neutron flux after restarting

  16. [Microstructural changes in hardened beans (Phaseolus vulgaris)].

    Science.gov (United States)

    Mujica, Maria Virginia; Granito, Marisela; Soto, Naudy

    2015-06-01

    (Phaseolus vulgaris). The hardening of Phaseolus vulgaris beans stored at high temperature and high relative humidity is one of the main constraints for consumption. The objective of this research was to evaluate by scanning electron microscopy, structural changes in cotyledons and testa of the hardened beans. The freshly harvested grains were stored for twelve months under two conditions: 5 ° C-34% RH and 37 ° C-75% RH, in order to promote hardening. The stored raw and cooked grains were lyophilized and fractured. The sections of testa and cotyledons were observed in an electron microscope JSM-6390. After twelve months, grains stored at 37 ° C-75% RH increased their hardness by 503%, whereas there were no significant changes in grains stored at 5 ° C-34% RH. At the microstructural level, the cotyledons of the raw grains show clear differences in appearance of the cell wall, into the intercellular space size and texture matrix protein. There were also differences in compaction of palisade and sub-epidermal layer in the testa of raw grains. After cooking, cotyledon cells of the soft grains were well separated while these ofhard grains were seldom separated. In conclusion, the found differences in hard and soft grains showed a significant participation of both structures, cotyledons and testa, in the grains hardening.

  17. Effect of Pre-Aging Conditions on Bake-Hardening Response of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn Alloy Sheets

    International Nuclear Information System (INIS)

    Lee, Kwang-jin; Woo, Kee-do

    2011-01-01

    Pre-aging heat treatment after solution heat treatment (SHT) of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn alloy sheets for auto-bodies was carried out to investigate the effect of pre-aging and its conditions on the bake-hardening response. Mechanical properties were evaluated by a tensile and Vickers hardness test. Microstructural observation was also performed using a transmission electron microscope (TEM). It was revealed that pre-aging treatments play a great role in the bake-hardening response. In addition, it was found that the sphere-shaped nanosized clusters that can directly transit to the needle-shaped β” phase during the paint-bake process, not being dissolved into the matrix, are formed at 343 K. The result, reveals that the dominant factor of the bake-hardening response is the pre-aging temperature rather than the pre-aging time.

  18. An ABA-responsive element in the AtSUC1 promoter is involved in the regulation of AtSUC1 expression.

    Science.gov (United States)

    Hoth, Stefan; Niedermeier, Matthias; Feuerstein, Andrea; Hornig, Julia; Sauer, Norbert

    2010-09-01

    Abscisic acid (ABA) and sugars regulate many aspects of plant growth and development, and we are only just beginning to understand the complex interactions between ABA and sugar signaling networks. Here, we show that ABA-dependent transcription factors bind to the promoter of the Arabidopsis thaliana AtSUC1 (At1g71880) sucrose transporter gene in vitro. We present the characterization of a cis-regulatory element by truncation of the AtSUC1 promoter and by electrophoretic mobility shift assays that is identical to a previously characterized ABA-responsive element (ABRE). In yeast 1-hybrid analyses we identified ABI5 (AtbZIP39; At2g36270) and AREB3 (AtbZIP66; At3g56850) as potential interactors. Analyses of plants expressing the beta-glucuronidase reporter gene under the control of ABI5 or AREB3 promoter sequences demonstrated that both transcription factor genes are co-expressed with AtSUC1 in pollen and seedlings, the primary sites of AtSUC1 action. Mutational analyses of the identified cis-regulatory element verified its importance for AtSUC1 expression in young seedlings. In abi5-4 seedlings, we observed an increase of sucrose-dependent anthocyanin accumulation and AtSUC1 mRNA levels. This suggests that ABI5 prevents an overshoot of sucrose-induced AtSUC1 expression and confirmed a novel cross-link between sugar and ABA signaling.

  19. ABA pretreatment can alter the distribution of polysomes in salt-stressed barley sprouts

    Directory of Open Access Journals (Sweden)

    Szypulska Ewa

    2016-12-01

    Full Text Available The study analyzed caryopses of barley (Hordeum vulgare cv. Stratus. Caryopses were germinated in darkness at 20°C in three experimental setups: (a in distilled water for 24 hours, followed by 100 mM NaCl for another 24 hours (salinity stress, SS, (b in 100 μM of abscisic acid for the first 24 hours, followed by rinsing with distilled water to remove residual ABA, and in 100 mM NaCl for another 24 hours (ABA pretreatment + salinity stress, ABAS, (c in distilled water only (control, C. Changes in the content of free polysomes (FP, membrane-bound polysomes (MBP, cytoskeleton-bound polysomes (CBP and cytomatrix-bound polysomes (CMBP were examined in barley sprouts germinated in SS and ABAS treatments for 48 hours. In salt-stressed barley sprouts, the concentrations of membrane-bound and cytoskeleton-bound polysomes (MBP, CBP and CMBP decreased significantly, whereas an increase was noted only in the free polysome (FP fraction. ABA pretreatment altered the distribution of polysomes in stressed plants. The content of cytoskeletonbound polysomes (CBP and CMBP increased, FP levels decreased, whereas no changes in MBP content were observed in response to ABA treatment. Our results suggest that plants respond to salt stress by increasing the concentrations of free polysomes that are probably released from damaged cell structures, mainly membranes. Our present and previous findings indicate that ABA could inhibit the release of FP in stressed plants by enhancing polysome binding to the cytoskeleton.

  20. 78 FR 70356 - Compliance With Order EA-13-109, Order Modifying Licenses With Regard to Reliable Hardened...

    Science.gov (United States)

    2013-11-25

    ... Licenses With Regard to Reliable Hardened Containment Vents Capable of Operation Under Severe Accident... Regard to Reliable Hardened Containment Vents Capable of Operation under Severe Accident Conditions... capable of a operation under severe accident conditions. This ISG also endorses, with clarifications, the...

  1. Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant.

    Science.gov (United States)

    Romero, Paco; Rodrigo, María J; Alférez, Fernando; Ballester, Ana-Rosa; González-Candelas, Luis; Zacarías, Lorenzo; Lafuente, María T

    2012-04-01

    Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate orange (Citrus sinesis L. Osbeck) and its spontaneous ABA-deficient mutant Pinalate, which is more prone to dehydration and to developing peel damage. Major changes in gene expression occurring in the wild-type line were impaired in the mutant fruit. Gene ontology analysis revealed the ability of Navelate fruits to induce the response to water deprivation and di-, tri-valent inorganic cation transport biological processes, as well as repression of the carbohydrate biosynthesis process in the mutant. Exogenous ABA triggered relevant transcriptional changes and repressed the protein ubiquitination process, although it could not fully rescue the physiological behaviour of the mutant. Overall, the results indicated that dehydration responsiveness requires ABA-dependent and -independent signals, and highlight that the ability of citrus fruits to trigger molecular responses against dehydration is an important factor in reducing their susceptibility to developing peel damage.

  2. Process design of press hardening with gradient material property influence

    International Nuclear Information System (INIS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-01-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  3. Nitrogen nutrition and drought hardening exert opposite effects on the stress tolerance of Pinus pinea L. seedlings.

    Science.gov (United States)

    Villar-Salvador, Pedro; Peñuelas, Juan L; Jacobs, Douglass F

    2013-02-01

    Functional attributes determine the survival and growth of planted seedlings in reforestation projects. Nitrogen (N) and water are important resources in the cultivation of forest species, which have a strong effect on plant functional traits. We analyzed the influence of N nutrition on drought acclimation of Pinus pinea L. seedlings. Specifically, we addressed if high N fertilization reduces drought and frost tolerance of seedlings and whether drought hardening reverses the effect of high N fertilization on stress tolerance. Seedlings were grown under two N fertilization regimes (6 and 100 mg N per plant) and subjected to three drought-hardening levels (well-watered, moderate and strong hardening). Water relations, gas exchange, frost damage, N concentration and growth at the end of the drought-hardening period, and survival and growth of seedlings under controlled xeric and mesic outplanting conditions were measured. Relative to low-N plants, high-N plants were larger, had higher stomatal conductance (27%), residual transpiration (11%) and new root growth capacity and closed stomata at higher water potential. However, high N fertilization also increased frost damage (24%) and decreased plasmalemma stability to dehydration (9%). Drought hardening reversed to a great extent the reduction in stress tolerance caused by high N fertilization as it decreased frost damage, stomatal conductance and residual transpiration by 21, 31 and 24%, respectively, and increased plasmalemma stability to dehydration (8%). Drought hardening increased tissue non-structural carbohydrates and N concentration, especially in high-fertilized plants. Frost damage was positively related to the stability of plasmalemma to dehydration (r = 0.92) and both traits were negatively related to the concentration of reducing soluble sugars. No differences existed between moderate and strong drought-hardening treatments. Neither N nutrition nor drought hardening had any clear effect on seedling

  4. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice

    NARCIS (Netherlands)

    Zhang, S.; Kohlen, W.; Jiang, L.; Bouwmeester, H.J.; Meijer, A.H.; Schluepmann, H.; Liu, C.M.; Ouwerkerk, P.B.F.

    2012-01-01

    Oshox22 belongs to the homeodomain-leucine zipper (HD-Zip) family I of transcription factors, most of which have unknown functions. Here we show that the expression of Oshox22 is strongly induced by salt stress, abscisic acid (ABA), and polyethylene glycol treatment (PEG), and weakly by cold stress.

  5. The Arabidopsis aba4-1 Mutant Reveals a Specific Function for Neoxanthin in Protection against Photooxidative Stress[W

    Science.gov (United States)

    Dall'Osto, Luca; Cazzaniga, Stefano; North, Helen; Marion-Poll, Annie; Bassi, Roberto

    2007-01-01

    The aba4-1 mutant completely lacks neoxanthin but retains all other xanthophyll species. The missing neoxanthin in light-harvesting complex (Lhc) proteins is compensated for by higher levels of violaxanthin, albeit with lower capacity for photoprotection compared with proteins with wild-type levels of neoxanthin. Detached leaves of aba4-1 were more sensitive to oxidative stress than the wild type when exposed to high light and incubated in a solution of photosensitizer agents. Both treatments caused more rapid pigment bleaching and lipid oxidation in aba4-1 than wild-type plants, suggesting that neoxanthin acts as an antioxidant within the photosystem II (PSII) supercomplex in thylakoids. While neoxanthin-depleted Lhc proteins and leaves had similar sensitivity as the wild type to hydrogen peroxide and singlet oxygen, they were more sensitive to superoxide anions. aba4-1 intact plants were not more sensitive than the wild type to high-light stress, indicating the existence of compensatory mechanisms of photoprotection involving the accumulation of zeaxanthin. However, the aba4-1 npq1 double mutant, lacking zeaxanthin and neoxanthin, underwent stronger PSII photoinhibition and more extensive oxidation of pigments than the npq1 mutant, which still contains neoxanthin. We conclude that neoxanthin preserves PSII from photoinactivation and protects membrane lipids from photooxidation by reactive oxygen species. Neoxanthin appears particularly active against superoxide anions produced by the Mehler's reaction, whose rate is known to be enhanced in abiotic stress conditions. PMID:17351115

  6. Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit.

    Science.gov (United States)

    Kholová, Jana; Hash, C T; Kumar, P Lava; Yadav, Rattan S; Kocová, Marie; Vadez, Vincent

    2010-03-01

    It was previously shown that pearl millet genotypes carrying a terminal drought tolerance quantitative trait locus (QTL) had a lower transpiration rate (Tr; g cm(-2) d(-1)) under well-watered conditions than sensitive lines. Here experiments were carried out to test whether this relates to leaf abscisic acid (ABA) and Tr concentration at high vapour pressure deficit (VPD), and whether that leads to transpiration efficiency (TE) differences. These traits were measured in tolerant/sensitive pearl millet genotypes, including near-isogenic lines introgressed with a terminal drought tolerance QTL (NIL-QTLs). Most genotypic differences were found under well-watered conditions. ABA levels under well-watered conditions were higher in tolerant genotypes, including NIL-QTLs, than in sensitive genotypes, and ABA did not increase under water stress. Well-watered Tr was lower in tolerant than in sensitive genotypes at all VPD levels. Except for one line, Tr slowed down in tolerant lines above a breakpoint at 1.40-1.90 kPa, with the slope decreasing >50%, whereas sensitive lines showed no change in that Tr response across the whole VPD range. It is concluded that two water-saving (avoidance) mechanisms may operate under well-watered conditions in tolerant pearl millet: (i) a low Tr even at low VPD conditions, which may relate to leaf ABA; and (ii) a sensitivity to higher VPD that further restricts Tr, which suggests the involvement of hydraulic signals. Both traits, which did not lead to TE differences, could contribute to absolute water saving seen in part due to dry weight increase differences. This water saved would become critical for grain filling and deserves consideration in the breeding of terminal drought-tolerant lines.

  7. Skin hardening effect in patients with polymorphic light eruption: comparison of UVB hardening in hospital with a novel home UV-hardening device.

    Science.gov (United States)

    Franken, S M; Genders, R E; de Gruijl, F R; Rustemeyer, T; Pavel, S

    2013-01-01

    An effective prophylactic treatment of patients with polymorphic light eruption (PLE) consists of repeated low, gradually increasing exposures to UVB radiation. This so-called UV(B) hardening induces better tolerance of the skin to sunlight. SunshowerMedical company (Amsterdam) has developed an UV (B) source that can be used during taking shower. The low UV fluence of this apparatus makes it an interesting device for UV hardening. In a group of PLE patients, we compared the effectiveness of the irradiation with SunshowerMedical at home with that of the UVB treatment in the hospital. The PLE patients were randomized for one of the treatments. The hospital treatment consisted of irradiations with broad-band UVB (Waldmann 85/UV21 lamps) twice a week during 6 weeks. The home UV-device was used each day with the maximal irradiation time of 6 min. The outcome assessment was based on the information obtained from patients' dermatological quality of life (DLQI) questionnaires, the ability of both phototherapies to reduce the provocation reaction and from the patients' evaluation of the long-term benefits of their phototherapies. Sixteen patients completed treatment with SunshowerMedical and thirteen completed treatment in hospital. Both types of phototherapy were effective. There was a highly significant improvement in DLQI with either treatment. In most cases, the hardening reduced or even completely suppressed clinical UV provocation of PLE. The patients using SunshowerMedical at home were, however, much more content with the treatment procedure than the patients visiting the dermatological units. Both treatments were equally effective in the induction of skin tolerance to sunlight in PLE patients. However, the home treatment was much better accepted than the treatment in the hospital. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  8. Synthesis of a new hardener agent for self-healing epoxy resins

    Science.gov (United States)

    Raimondo, Marialuigia; Guadagno, Liberata; Naddeo, Carlo; Longo, Pasquale; Mariconda, Annaluisa; Agovino, Anna

    2014-05-01

    Actually, the development of smart composites capable of self-repair in aeronautical structures is still at the planning stage owing to complex issues to overcome. One of the critical points in the development of self-healing epoxy resin is related to the impossibility to employ primary amines as hardeners. In this paper, the synthesis of a new hardener for self-healing resins is shown together with applicability conditions/ranges.

  9. Deficiência hídrica e aplicação de ABA nas trocas gasosas e no acúmulo de flavonoides em calêndula (Calendula officinalis L. = Water deficit and ABA application on leaf gas exchange and flavonoid content in marigold (Calendula officinalis L..

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Pacheco

    2011-04-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos da deficiencia hidrica e aplicacao de acido abscisico (ABA sobre aspectos fisiologicos e teor de flavonoides em plantas de calendula. Oexperimento foi instalado em condicoes de casa-de-vegetacao com plantas envasadas. No inicio do florescimento de plantas de calendula, foram aplicados quatro intervalos de suspensao da irrigacao (irrigacao diaria; tres; seis e nove dias sem irrigar, acompanhados por tres doses de ABA (0, 10 e 100 ƒÊM. Avaliou-se o conteudo relativo de agua na folha (CRA e as trocas gasosas, utilizando-se um analisador portatil por infravermelho (A: fotossintese liquida, gs: condutancia estomatica, E: transpiracao, Ci: concentracao intercelular de CO2 e EUA: eficiencia de uso daagua. Aos nove dias sem irrigacao ocorreram reducoes significativas em todas as variaveis de trocas gasosas analisadas, independente da aplicacao de ABA. Concluiu-se que o efeito principal do ABA foi o de causar diminuicao na gs, a qual foi acompanhada de reducao em A somente quando as plantas estavam desidratadas. As intensidades de deficiencia hidrica testadas nao causaram interferencia no acumulo de flavonoides nas inflorescencias. Entretanto, o ABA restringiu a biossintese de flavonoides, tanto nas plantas-controle como nas plantas submetidas a deficiencia hidrica.The goal of this study was to evaluate the effects of water deficit and abscisic acid (ABA application on physiological parameters and flavonoid production in marigold plant. The experiment was performed under nursery conditions with potted plants. It was tested water deficit by withholding water (control . diary irrigation, 3, 6 and9 days without irrigation followed by 3 ABA concentrations (0, 10 e 100 ƒÊM applied in the beginning of blooming. It was evaluated the relative water content and the leaf gas exchange using a portable infrared gas analyzer (A: net photosynthesis, gs: stomatal conductance, E: transpiration, Ci: CO2 intercellular

  10. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    International Nuclear Information System (INIS)

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M.H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2012-01-01

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

  11. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M.H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric (Van Andel); (Scripps); (NWU); (Purdue); (UCR); (Chinese Aca. Sci.); (NU Singapore)

    2014-10-02

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

  12. Structural characterisation of oxygen diffusion hardened alpha-tantalum PVD-coatings on titanium.

    Science.gov (United States)

    Hertl, C; Koll, L; Schmitz, T; Werner, E; Gbureck, U

    2014-08-01

    Titanium substrates were coated with tantalum layers of 5 μm thickness using physical vapour deposition (PVD). The tantalum layers showed a (110)-preferred orientation. The coated samples were hardened by oxygen diffusion. Using X-ray diffraction the crystallographic structure of the tantalum coatings was characterised, comparing untreated and diffusion hardened specimen conditions. Oxygen depth profiles were determined by glow discharge spectrometry. The hardening effect of the heat treatment was examined by Vickers microhardness testing. The increase of surface hardness caused by oxygen diffusion was at least 50%. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Synthetic, spectroscopic and structural studies on 4-aminobenzoate complexes of divalent alkaline earth metals: x-ray crystal structures of [[Mg(H2O)6] (4-aba)2].2H2O and [Ca(H2O)2(4-aba)2] (4-aba=4-aminobenzoate)

    International Nuclear Information System (INIS)

    Murugavel, Ramaswamy; Karambelkar, Vivek V.; Anantharaman, Ganapathi

    2000-01-01

    Reactions between MCl 2 .nH 2 O (M = Mg, Ca, Sr, and Ba) and 4-aminobenzoic acid (4-abaH) result in the formation of complexes [(Mg(H 2 O) 6 )(4-aba) 2 ) .2H 2 O (I), [Ca(4-aba) 2 (H2 O ) 2 ] (2), [Sr(4-aba) 2 (H2 O ) 2 ] (3), and [Ba(4-aba) 2 Cl] (4), respectively. The new compounds 1 and 2, as well as the previously reported 3 and 4 form an extended intra- and intermolecular hydrogen bonded network in the solid-state. The compounds have been characterized by elemental analysis, pH measurements, thermogravimetric studies, and IR, NMR, and UV-Vis spectroscopy. The solid state structures of the molecules 1 and 2 have been determined by single crystal x-ray diffraction studies. In the case of magnesium complex 1, the dipositively charged Mg cation is surrounded by six water molecules and the two 4-aminobenzoate ligands show no direct bonding to the metal ion. The calcium ion in 2 is octa-coordinated with direct coordination of the 4-aminobenzoate ligands to the metal ion. The Ca-Ca separation in the polymeric chain of 2 is 3.9047(5) A. (author)

  14. Effects of kinematic hardening rules on thermal ratchetting analysis of cylinders subjected to cyclically moving temperature distribution

    International Nuclear Information System (INIS)

    Ohno, N.; Kobayashi, M.

    1995-01-01

    In the present work, thermal ratchetting in a cylinder subjected to a cyclically moving temperature front (i.e. liquid surface induced thermal ratchetting) was analyzed by implementing in a finite element method the four kinds of plasticity models with different kinematic hardening rules. The following findings were thus obtained concerning effects of the kinematic hardening rules on the analysis. (1) If transition nonlinear hardening after yielding is disregarded, the thermal ratchetting becomes significant, as seen in the results of the PP and LKH models. Especially the PP model, which does not express any strain hardening, predicts steady development of the thermal ratchetting. (2) If significant mechanical ratchetting is allowed in the modeling of kinematic hardening, the thermal ratchetting becomes marked, as seen in the results of the AF model. (3) Model dependence of the thermal ratchetting is more noticeable when the difference of temperature at the temperature front, ΔT, is smaller. (4) The OW model makes the thermal ratchetting stop at a smaller number of cycles when ΔT is smaller. On the other hand, the LKH and AF models allow that the thermal ratchetting to develop more constantly when ΔT is smaller. As seen from the above findings, the analysis of liquid surface induced thermal ratchetting has great dependence on the kinematic hardening rules employed. Especially the PP model, which has been used often to analyze the thermal ratchetting so far, gives too large development of the thermal ratchetting. Thus we may say that in order to improve the analysis it is necessary to use an appropriate kinematic hardening model which is capable of expressing appropriately both mechanical ratchetting and transient nonlinear hardening after yielding. (author)

  15. ABA-Cloud: support for collaborative breath research.

    Science.gov (United States)

    Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton

    2013-06-01

    This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step toward the definition of conceptualized terms commonly used by the international community of breath researchers. They build the basis for the development of an ontology (a concept from computer science used for communication between machines and/or humans and representation and reuse of knowledge) dedicated to breath research.

  16. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    Science.gov (United States)

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M. H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2013-01-01

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites. PMID:22116026

  17. General analytical shakedown solution for structures with kinematic hardening materials

    Science.gov (United States)

    Guo, Baofeng; Zou, Zongyuan; Jin, Miao

    2016-09-01

    The effect of kinematic hardening behavior on the shakedown behaviors of structure has been investigated by performing shakedown analysis for some specific problems. The results obtained only show that the shakedown limit loads of structures with kinematic hardening model are larger than or equal to those with perfectly plastic model of the same initial yield stress. To further investigate the rules governing the different shakedown behaviors of kinematic hardening structures, the extended shakedown theorem for limited kinematic hardening is applied, the shakedown condition is then proposed, and a general analytical solution for the structural shakedown limit load is thus derived. The analytical shakedown limit loads for fully reversed cyclic loading and non-fully reversed cyclic loading are then given based on the general solution. The resulting analytical solution is applied to some specific problems: a hollow specimen subjected to tension and torsion, a flanged pipe subjected to pressure and axial force and a square plate with small central hole subjected to biaxial tension. The results obtained are compared with those in literatures, they are consistent with each other. Based on the resulting general analytical solution, rules governing the general effects of kinematic hardening behavior on the shakedown behavior of structure are clearly.

  18. Radiation hardening and embrittlement of some refractory metals and alloys

    International Nuclear Information System (INIS)

    Fabritsiev, S.; Pokrovskyb

    2007-01-01

    Tungsten is proposed for application in the ITER divertor and limiter as plasma facing material. The tungsten operation temperature in the ITER divertor is relatively high. Hence, the ductile properties of tungsten will be controlled by the low temperature radiation embrittlement. The mechanism of radiation hardening and embrittlement under neutron irradiation at low temperature is well studied for FCC metals, in particular for copper. At the same time, low-temperature radiation hardening of BCC materials, in particular for refractory metals, is less studied. This study presents the results of investigation into radiation hardening and embrittlement of pure metals: W, Mo and Nb, and W-Re and Ta-4W alloys. The materials were in the annealed conditions. The specimens were irradiated in the SM-2 reactor to doses of 10 -4 -10 -1 dpa at 80 C and then tested for tension at 80 C. The study of the stress-strain curves of unirradiated specimens revealed a yield drop for W, Mo, Nb, Ta-4W, W-Re. After the yield drop some metals (Mo,Nb) retain their capability for strain hardening and demonstrate a high elongation (20-50%). Radiation hardening is maximum in Mo (∝400MPa) and minimum in Nb (∝100 MPa). In this case the dependence slope for Nb is similar to that for pure copper irradiated in SM-2 under the same conditions. Ii and Ta-4W have a higher slope. Measurement of electrical resistivity of irradiated specimens showed that for all materials it is increased monotonously with an increase in the irradiation dose. A minimum gain in electrical resistivity with a dose was observed for Nb (∝3% at 0.1 dpa). As for Mo it was essentially higher, i.e. ∝ 30%. The gain was maximum for W-Re alloy. Comparison of radiation hardening dose dependencies obtained in this study with the data for FCC metals (Cu) showed that in spite of the quantitative difference the qualitative behavior of these two classes of metals is similar. (orig.)

  19. Hardening and microstructural evolution of A533b steels irradiated with Fe ions and electrons

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H., E-mail: watanabe@riam.kyushu-u.ac.jp [Research Institute for Applied Mechanics, Kyushu University, 6-1, Kasuga-kouenn, Kasugashi, Fukuoka, 816-8580 (Japan); Arase, S. [Interdisciplinary Graduate School of Kyushu University, 6-1, Kasuga-kouenn, Kasugashi, Fukuoka, 816-8580 (Japan); Yamamoto, T.; Wells, P. [Dept. Chemical Engineering, UCSB Engineering II, RM3357, Santa Barbara, CA, 93106-5080 (United States); Onishi, T. [Interdisciplinary Graduate School of Kyushu University, 6-1, Kasuga-kouenn, Kasugashi, Fukuoka, 816-8580 (Japan); Odette, G.R. [Dept. Chemical Engineering, UCSB Engineering II, RM3357, Santa Barbara, CA, 93106-5080 (United States)

    2016-04-01

    Radiation hardening and embrittlement of A533B steels is heavily dependent on the Cu content. In this study, to investigate the effect of copper on the microstructural evolution of these materials, A533B steels with different Cu levels were irradiated with 2.4 MeV Fe ions and 1.0 MeV electrons. Ion irradiation was performed from room temperature (RT) to 350 °C with doses up to 1 dpa. At RT and 290 °C, low dose (<0.1 dpa) hardening trend corresponded with ΔH ∝ (dpa){sup n}, with n initially approximately 0.5 and consistent with a barrier hardening mechanism, but saturating at ≈0.1 dpa. At higher dose levels, the radiation-induced hardening exhibited a strong Cu content dependence at 290 °C, but not at 350 °C. Electron irradiation using high-voltage electron microscopy revealed the growth of interstitial-type dislocation loops and enrichment of Ni, Mn, and Si in the vicinities of pre-existing dislocations at doses for which the radiation-induced hardness due to ion irradiation was prominent.

  20. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses.

    Science.gov (United States)

    Narusaka, Yoshihiro; Nakashima, Kazuo; Shinwari, Zabta K; Sakuma, Yoh; Furihata, Takashi; Abe, Hiroshi; Narusaka, Mari; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2003-04-01

    Many abiotic stress-inducible genes contain two cis-acting elements, namely a dehydration-responsive element (DRE; TACCGACAT) and an ABA-responsive element (ABRE; ACGTGG/TC), in their promoter regions. We precisely analyzed the 120 bp promoter region (-174 to -55) of the Arabidopsis rd29A gene whose expression is induced by dehydration, high-salinity, low-temperature, and abscisic acid (ABA) treatments and whose 120 bp promoter region contains the DRE, DRE/CRT-core motif (A/GCCGAC), and ABRE sequences. Deletion and base substitution analyses of this region showed that the DRE-core motif functions as DRE and that the DRE/DRE-core motif could be a coupling element of ABRE. Gel mobility shift assays revealed that DRE-binding proteins (DREB1s/CBFs and DREB2s) bind to both DRE and the DRE-core motif and that ABRE-binding proteins (AREBs/ABFs) bind to ABRE in the 120 bp promoter region. In addition, transactivation experiments using Arabidopsis leaf protoplasts showed that DREBs and AREBs cumulatively transactivate the expression of a GUS reporter gene fused to the 120 bp promoter region of rd29A. These results indicate that DRE and ABRE are interdependent in the ABA-responsive expression of the rd29A gene in response to ABA in Arabidopsis.

  1. Effect of bainitic transformation on bake hardening in TRIP assisted steel

    International Nuclear Information System (INIS)

    Das, S.; Timokhina, I.; Singh, S.B.; Pereloma, E.; Mohanty, O.N.

    2012-01-01

    Highlights: ► Bainitic transformation in TRIP-assisted steel can lead to a very good bake hardening response as demonstrated by other researchers also. ► No extra deformation is needed. Dislocations can be generated in situ during the transformation itself. ► Detail characterisation and theoretical treatments showed bainite plates are sufficiently enriched with extra carbon atoms which can migrate and lock the dislocations. - Abstract: Bake hardening is a phenomenon where freshly generated dislocations get pinned down by the migrating carbon atoms under the influence of temperature employed in paint baking shop. Experimentally, a minimal 2% deformation is given to generate such new dislocations. On the other hand, after bainitic transformation, steel contains a large number of dislocations as well as excess carbon atoms in bainite, a combination of which is capable of producing bake hardening effect. In the current analysis, one grade of transformation induced plasticity aided steel was chosen to study the effect of isothermal bainitic transformation on subsequent bake hardening response, without giving any deformation assuming that the previous treatment would have generated sufficient dislocations which could be pinned down by the migrating carbon atoms under the influence of thermal treatment of the bake hardening process. The final microstructure was characterised by many techniques, using Thermo-Calc, optical microscopy, XRD analysis and 3-DAP. A good agreement was observed amongst all the techniques employed.

  2. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio

    OpenAIRE

    Shuai, Haiwei; Meng, Yongjie; Luo, Xiaofeng; Chen, Feng; Zhou, Wenguan; Dai, Yujia; Qi, Ying; Du, Junbo; Yang, Feng; Liu, Jiang; Yang, Wenyu; Shu, Kai

    2017-01-01

    Auxin is an important phytohormone which mediates diverse development processes in plants. Published research has demonstrated that auxin induces seed dormancy. However, the precise mechanisms underlying the effect of auxin on seed germination need further investigation, especially the relationship between auxins and both abscisic acid (ABA) and gibberellins (GAs), the latter two phytohormones being the key regulators of seed germination. Here we report that exogenous auxin treatment represse...

  3. 40 CFR 63.1296 - Standards for slabstock flexible polyurethane foam production-HAP ABA equipment leaks.

    Science.gov (United States)

    2010-07-01

    ... polyurethane foam production-HAP ABA equipment leaks. 63.1296 Section 63.1296 Protection of Environment... production—HAP ABA equipment leaks. Each owner or operator of a new or existing slabstock affected source complying with the emission point specific limitation option provided in § 63.1293(a) shall control HAP ABA...

  4. 40 CFR 63.1295 - Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels.

    Science.gov (United States)

    2010-07-01

    ... polyurethane foam production-HAP ABA storage vessels. 63.1295 Section 63.1295 Protection of Environment... production—HAP ABA storage vessels. Each owner or operator of a new or existing slabstock affected source complying with the emission point specific limitation option provided in § 63.1293(a) shall control HAP ABA...

  5. Coping as a Predictor of Burnout and General Health in Therapists Working in ABA Schools

    Science.gov (United States)

    Griffith, G. M.; Barbakou, A.; Hastings, R. P.

    2014-01-01

    Background: Little is known about the work-related well-being of applied behaviour analysis (ABA) therapists who work in school-based contexts and deliver ABA interventions to children with autism. Methods: A questionnaire on work-related stress (burnout), general distress, perceived supervisor support and coping was completed by 45 ABA therapists…

  6. Study of interaction among silicon, lithium, oxygen and radiation-induced defects for radiation-hardened solar cells

    Science.gov (United States)

    Berman, P. A.

    1973-01-01

    In order to improve reliability and the useful lifetime of solar cell arrays for space use, a program was undertaken to develop radiation-hardened lithium-doped silicon solar cells. These cells were shown to be significantly more resistant to degradation by ionized particles than the presently used n-p nonlithium-doped silicon solar cells. The results of various analyses performed to develop a more complete understanding of the physics of the interaction among lithium, silicon, oxygen, and radiation-induced defects are presented. A discussion is given of those portions of the previous model of radiation damage annealing which were found to be in error and those portions which were upheld by these extensive investigations.

  7. Profiling ABA metabolites in Nicotiana tabacum L. leaves by ultra-performance liquid chromatography-electrospray tandem mass spectrometry.

    Science.gov (United States)

    Turecková, Veronika; Novák, Ondrej; Strnad, Miroslav

    2009-11-15

    We have developed a simple method for extracting and purifying (+)-abscisic acid (ABA) and eight ABA metabolites--phaseic acid (PA), dihydrophaseic acid (DPA), neophaseic acid (neoPA), ABA-glucose ester (ABAGE), 7'-hydroxy-ABA (7'-OH-ABA), 9'-hydroxy-ABA (9'-OH-ABA), ABAaldehyde, and ABAalcohol--before analysis by a novel technique for these substances, ultra-performance liquid chromatography-electrospray ionisation tandem mass spectrometry (UPLC-ESI-MS/MS). The procedure includes addition of deuterium-labelled standards, extraction with methanol-water-acetic acid (10:89:1, v/v), simple purification by Oasis((R)) HLB cartridges, rapid chromatographic separation by UPLC, and sensitive, accurate quantification by MS/MS in multiple reaction monitoring modes. The detection limits of the technique ranged between 0.1 and 1 pmol for ABAGE and ABA acids in negative ion mode, and 0.01-0.50 pmol for ABAGE, ABAaldehyde, ABAalcohol and the methylated acids in positive ion mode. The fast liquid chromatographic separation and analysis of ABA and its eight measured derivatives by UPLC-ESI-MS/MS provide rapid, accurate and robust quantification of most of the substances, and the low detection limits allow small amounts of tissue (1-5mg) to be used in quantitative analysis. To demonstrate the potential of the technique, we isolated ABA and its metabolites from control and water-stressed tobacco leaf tissues then analysed them by UPLC-ESI-MS/MS. Only ABA, PA, DPA, neoPA, and ABAGE were detected in the samples. PA was the most abundant analyte (ca. 1000 pmol/g f.w.) in both the control and water-stressed tissues, followed by ABAGE and DPA, which were both present at levels ca. 5-fold lower. ABA levels were at least 100-fold lower than PA concentrations, but they increased following the water stress treatment, while ABAGE, PA, and DPA levels decreased. Overall, the technique offers substantial improvements over previously described methods, enabling the detailed, direct study of

  8. Radiation effects in semiconductors: technologies for hardened integrated circuits

    International Nuclear Information System (INIS)

    Charlot, J.M.

    1983-09-01

    Various technologies are used to manufacture integrated circuits for electronic systems. But for specific applications, including those with radiation environment, it is necessary to choose an appropriate technologie or to improve a specific one in order to reach a definite hardening level. The aim of this paper is to present the main effects induced by radiation (neutrons and gamma rays) into the basic semiconductor devices, to explain some physical degradation mechanisms and to propose solutions for hardened integrated circuit fabrication. The analysis involves essentially the monolithic structure of the integrated circuits and the isolation technology of active elements. In conclusion, the advantages of EPIC and SOS technologies are described and the potentialities of new technologies (GaAs and SOI) are presented

  9. Radiation effects in semiconductors: technologies for hardened integrated circuits

    International Nuclear Information System (INIS)

    Charlot, J.M.

    1984-01-01

    Various technologies are used to manufacture integrated circuits for electronic systems. But for specific applications, including those with radiation environment, it is necessary to choose an appropriate technology or to improve a specific one in order to reach a definite hardening level. The aim of this paper is to present the main effects induced by radiation (neutrons and gamma rays) into the basic semiconductor devices, to explain some physical degradation mechanisms and to propose solutions for hardened integrated circuit fabrication. The analysis involves essentially the monolithic structure of the integrated circuits and the isolation technology of active elements. In conclusion, the advantages of EPIC and SOS technologies are described and the potentialities of new technologies (GaAs and SOI) are presented. (author)

  10. Involvement of WRKY Transcription Factors in Abscisic-Acid-Induced Cold Tolerance of Banana Fruit.

    Science.gov (United States)

    Luo, Dong-Lan; Ba, Liang-Jie; Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Chen, Jian-Ye

    2017-05-10

    Phytohormone abscisic acid (ABA) and plant-specific WRKY transcription factors (TFs) have been implicated to play important roles in various stress responses. The involvement of WRKY TFs in ABA-mediated cold tolerance of economical fruits, such as banana fruit, however remains largely unknown. Here, we reported that ABA application could induce expressions of ABA biosynthesis-related genes MaNCED1 and MaNCED2, increase endogenous ABA contents, and thereby enhance cold tolerance in banana fruit. Four banana fruit WRKY TFs, designated as MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71, were identified and characterized. All four of these MaWRKYs were nuclear-localized and displayed transactivation activities. Their expressions were induced by ABA treatment during cold storage. More importantly, the gel mobility shift assay and transient expression analysis revealed that MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71 directly bound to the W-box elements in MaNCED1 and MaNCED2 promoters and activated their expressions. Taken together, our findings demonstrate that banana fruit WRKY TFs are involved in ABA-induced cold tolerance by, at least in part, increasing ABA levels via directly activating NECD expressions.

  11. Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response

    OpenAIRE

    Chen, Li-Ting; Wu, Keqiang

    2010-01-01

    Our recent study revealed the involvement of the Arabidopsis histone deacetylase HDA6 in modulating ABA and salt stress responses. In this report, we further investigated the role of HDA19 in ABA and salt stress responses. The Arabidopsis HDA19 T-DNA insertion mutant, hda19-1, displayed a phenotype that was hypersensitive to ABA and salt stress. Compared with wild-type plants, the expression of ABA responsive genes, ABI1, ABI2, KAT1, KAT2 and RD29B, was decreased in hda19-1 plants when treate...

  12. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    OpenAIRE

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M. H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun

    2011-01-01

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, wh...

  13. HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis.

    Science.gov (United States)

    Kim, Woohyun; Lee, Yeon; Park, Jeongmoo; Lee, Nayoung; Choi, Giltsu

    2013-04-01

    Seed dormancy, a seed status that prohibits germination even in the presence of inductive germination signals, is a poorly understood process. To identify molecular components that regulate seed dormancy, we screened T-DNA insertion lines and identified a mutant designated honsu (hon). HON loss-of-function mutants display deep seed dormancy, whereas HON-overexpressing lines display shallow seed dormancy. HON encodes a seed-specific group A phosphatase 2C (PP2C) and is one of the major negative regulators of seed dormancy among group A PP2Cs. Like other PP2C family members, HON interacts with PYR1/RCAR11 in the presence of ABA. Our analysis indicates that HON inhibits ABA signaling and activates gibberellic acid signaling, and both of these conditions must be satisfied to promote the release of seed dormancy. However, HON mRNA levels are increased in mutants displaying deep seed dormancy or under conditions that deepen seed dormancy, and decreased in mutants displaying shallow seed dormancy or under conditions that promote the release of seed dormancy. Taken together, our results indicate that the expression of HON mRNA is homeostatically regulated by seed dormancy.

  14. Radiation hardening of integrated circuits technologies

    International Nuclear Information System (INIS)

    Auberton-Herve, A.J.; Leray, J.L.

    1991-01-01

    The radiation hardening studies started in the mid decade -1960-1970. To survive the different military or space radiative environment, a new engineering science borned, to understand the degradation of electronics components. The different solutions to improve the electronic behavior in such environment, have been named radiation hardening of the technologies. Improvement of existing technologies, and qualification method have been widely studied. However, at the other hand, specific technologies was developped : The Silicon On Insulator technologies for CMOS or Bipolar. The HSOI3HD technology (supported by DGA-CEA DAM and LETI with THOMSON TMS) offers today the highest hardening level for the integration density of hundreds of thousand transistors on the same silicon. Full complex systems would be realized on a single die with a technological radiation hardening and no more system hardening

  15. Maillard-reaction-induced modification and aggregation of proteins and hardening of texture in protein bar model systems.

    Science.gov (United States)

    Zhou, Peng; Guo, Mufan; Liu, Dasong; Liu, Xiaoming; Labuza, Teodore P

    2013-03-01

    The hardening of high-protein bars causes problems in their acceptability to consumers. The objective of this study was to determine the progress of the Maillard reaction in model systems of high-protein nutritional bars containing reducing sugars, and to illustrate the influences of the Maillard reaction on the modification and aggregation of proteins and the hardening of bar matrices during storage. The progress of the Maillard reaction, glycation, and aggregation of proteins, and textural changes in bar matrices were investigated during storage at 25, 35, and 45 °C. The initial development of the Maillard reaction caused little changes in hardness; however, further storage resulted in dramatic modification of protein with formation of high-molecular-weight polymers, resulting in the hardening in texture. The replacement of reducing sugars with nonreducing ingredients such as sugar alcohols in the formula minimized the changes in texture. The hardening of high-protein bars causes problems in their acceptability to consumers. Maillard reaction is one of the mechanisms contributing to the hardening of bar matrix, particularly for the late stage of storage. The replacement of reducing sugars with nonreducing ingredients such as sugar alcohols in the formula will minimize the changes in texture. © 2013 Institute of Food Technologists®

  16. PAISAGEM CULTURAL: AVALIAÇÃO DAS PAISAGENS CÊNICAS DE GUARAQUEÇABA (Cultural landscape: evaluation of scenic landscapes Guaraqueçaba)

    OpenAIRE

    SOUZA, Roberson Miranda; PASSOS, Messias Modesto dos; YAMAKI, Humberto

    2014-01-01

    A Paisagem Cultural do município de Guaraqueçaba que está localizado no Estado do Paraná, na planície costeira, representada no recorte com latitude entre 23º e 26º S e longitude 48º e 54º W, área de difícil acesso. Área de proteção ambiental, sendo Guaraqueçaba situada em uma privilegiada porção preservada de Floresta Tropical Úmida, aproximadamente 500 mil ha, que juntamente com a região Sul do Estado de São Paulo representa a maior área contínua de remanescentes dessa floresta. Deste modo ...

  17. Radiation hardening of optical fibers and fiber sensors for space applications: recent advances

    Science.gov (United States)

    Girard, S.; Ouerdane, Y.; Pinsard, E.; Laurent, A.; Ladaci, A.; Robin, T.; Cadier, B.; Mescia, L.; Boukenter, A.

    2017-11-01

    In these ICSO proceedings, we review recent advances from our group concerning the radiation hardening of optical fiber and fiber-based sensors for space applications and compare their benefits to state-of-the-art results. We focus on the various approaches we developed to enhance the radiation tolerance of two classes of optical fibers doped with rare-earths: the erbium (Er)-doped ones and the ytterbium/erbium (Er/Yb)-doped ones. As a first approach, we work at the component level, optimizing the fiber structure and composition to reduce their intrinsically high radiation sensitivities. For the Erbium-doped fibers, this has been achieved using a new structure for the fiber that is called Hole-Assisted Carbon Coated (HACC) optical fibers whereas for the Er/Ybdoped optical fibers, their hardening was successfully achieved adding to the fiber, the Cerium element, that prevents the formation of the radiation-induced point defects responsible for the radiation induced attenuation in the infrared part of the spectrum. These fibers are used as part of more complex systems like amplifiers (Erbium-doped Fiber Amplifier, EDFA or Yb-EDFA) or source (Erbium-doped Fiber Source, EDFS or Yb- EDFS), we discuss the impact of using radiation-hardened fibers on the system radiation vulnerability and demonstrate the resistance of these systems to radiation constraints associated with today and future space missions. Finally, we will discuss another radiation hardening approach build in our group and based on a hardening-by-system strategy in which the amplifier is optimized during its elaboration for its future mission considering the radiation effects and not in-lab.

  18. ABA Represses the Expression of Cell Cycle Genes and May Modulate the Development of Endodormancy in Grapevine Buds

    Directory of Open Access Journals (Sweden)

    Ricardo Vergara

    2017-05-01

    Full Text Available Recently, the plant hormone abscisic acid (ABA has been implicated as a key player in the regulation of endodormancy (ED in grapevine buds (Vitis vinifera L. In this study, we show that in the vine, the expression of genes related to the biosynthesis of ABA (VvNCED1; VvNCED2 and the content of ABA are significantly higher in the latent bud than at the shoot apex, while the expression of an ABA catabolic gene (VvA8H3 showed no significant difference between either organ. A negative correlation between the content of ABA and transcript levels of cell cycle genes (CCG was found in both tissues. This result suggested that ABA may negatively regulate the expression of CCG in meristematic tissues of grapevines. To test this proposition, the effect of ABA on the expression of CCG was analyzed in two meristematic tissues of the vine: somatic embryos and shoot apexes. The results indicated that cell cycle progression is repressed by ABA in both organs, since it down-regulated the expression of genes encoding cyclin-dependent kinases (VvCDKB1, VvCDKB2 and genes encoding cyclins of type A (VvCYCA1, VvCYCA2, VvCYCA3, B (VvCYCB, and D (VvCYCD3.2a and up-regulated the expression of VvICK5, a gene encoding an inhibitor of CDKs. During ED, the content of ABA increased, and the expression of CCG decreased. Moreover, the dormancy-breaking compound hydrogen cyanamide (HC reduced the content of ABA and up-regulated the expression of CCG, this last effect was abolished when HC and ABA were co-applied. Taken together, these results suggest that ABA-mediated repression of CCG transcription may be part of the mechanism through which ABA modulates the development of ED in grapevine buds.

  19. Practical aspects of systems hardening

    International Nuclear Information System (INIS)

    Shepherd, W.J.

    1989-01-01

    Applications of hardening technology in a practical system require a balance between the factors governing affordability, producibility, and survivability of the finished design. Without careful consideration of the top-level system operating constraints, a design engineer may find himself with a survivable but overweight, unproductive, expensive design. This paper explores some lessons learned in applying hardening techniques to several laser communications programs and is intended as an introductory guide to novice designers faced with the task of hardening a space system

  20. NEW APPROACH FOR TECHNOLOGY OF VOLUMETRIC – SUPERFICIAL HARDENING OF GEAR DETAILS OF THE BACK AXLE OF MOBILE MACHINES

    Directory of Open Access Journals (Sweden)

    A. I. Mihluk

    2010-01-01

    Full Text Available The new approach for technology of volumetric – superficial hardening of gear details of the back axle made of steel lowered harden ability is offered. This approach consisting in formation of intense – hardened condition on all surface of a detail.

  1. Experiment-based modelling of hardening and localized plasticity in metals irradiated under cascade damage conditions

    International Nuclear Information System (INIS)

    Singh, B.N.; Ghoniem, N.M.; Trinkaus, H.

    2002-01-01

    The analysis of the available experimental observations shows that the occurrence of a sudden yield drop and the associated plastic flow localization are the major concerns regarding the performance and lifetime of materials exposed to fission or fusion neutrons. In the light of the known mechanical properties and microstructures of the as-irradiated and irradiated and deformed materials, it has been argued that the increase in the upper yield stress, the sudden yield drop and the initiation of plastic flow localization, can be rationalized in terms of the cascade induced source hardening (CISH) model. Various aspects of the model (main assumptions and predictions) have been investigated using analytical calculations, 3-D dislocation dynamics and molecular dynamics simulations. The main results and conclusions are briefly summarized. Finally, it is pointed out that even though the formation of cleared channels may be rationalized in terms of climb-controlled glide of the source dislocation, a number of problems regarding the initiation and the evolution of these channels remain unsolved

  2. Experiment-based modelling of hardening and localized plasticity in metals irradiated under cascade damage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N. E-mail: bachu.singh@risoe.dk; Ghoniem, N.M.; Trinkaus, H

    2002-12-01

    The analysis of the available experimental observations shows that the occurrence of a sudden yield drop and the associated plastic flow localization are the major concerns regarding the performance and lifetime of materials exposed to fission or fusion neutrons. In the light of the known mechanical properties and microstructures of the as-irradiated and irradiated and deformed materials, it has been argued that the increase in the upper yield stress, the sudden yield drop and the initiation of plastic flow localization, can be rationalized in terms of the cascade induced source hardening (CISH) model. Various aspects of the model (main assumptions and predictions) have been investigated using analytical calculations, 3-D dislocation dynamics and molecular dynamics simulations. The main results and conclusions are briefly summarized. Finally, it is pointed out that even though the formation of cleared channels may be rationalized in terms of climb-controlled glide of the source dislocation, a number of problems regarding the initiation and the evolution of these channels remain unsolved.

  3. A Novel Radiation Hardened CAM

    CERN Document Server

    Shojaii, Seyed Ruhollah; The ATLAS collaboration

    2018-01-01

    This poster describes an innovative Content Addressable Memory cell with radiation hardened (RH-CAM) architecture. The RH-CAM is designed in a commercial 28 nm CMOS technology. The circuit has been simulated in worst-case conditions, and the effects due to single particles are analyzed injecting a fault current into a circuit node. The proposed architecture can perform on-time pattern recognition tasks in harsh environments, such as very front-end electronics in hadron colliders and in space applications.

  4. Abscisic-acid-induced cellular apoptosis and differentiation in glioma via the retinoid acid signaling pathway.

    Science.gov (United States)

    Zhou, Nan; Yao, Yu; Ye, Hongxing; Zhu, Wei; Chen, Liang; Mao, Ying

    2016-04-15

    Retinoid acid (RA) plays critical roles in regulating differentiation and apoptosis in a variety of cancer cells. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share structural similarities. Here we proposed that ABA may also play a role in cellular differentiation and apoptosis by sharing a similar signaling pathway with RA that may be involved in glioma pathogenesis. We reported for the first time that the ABA levels were twofold higher in low-grade gliomas compared with high-grade gliomas. In glioma tissues, there was a positive correlation between the ABA levels and the transcription of cellular retinoic acid-binding protein 2 (CRABP2) and a negative correlation between the ABA levels and transcription of fatty acid-binding protein 5 (FABP5). ABA treatment induced a significant increase in the expression of CRABP2 and a decrease in the expression of peroxisome proliferator-activated receptor (PPAR) in glioblastoma cells. Remarkably, both cellular apoptosis and differentiation were increased in the glioblastoma cells after ABA treatment. ABA-induced cellular apoptosis and differentiation were significantly reduced by selectively silencing RAR-α, while RAR-α overexpression exaggerated the ABA-induced effects. These results suggest that ABA may play a role in the pathogenesis of glioma by promoting cellular apoptosis and differentiation through the RA signaling pathway. © 2015 UICC.

  5. Stress-induced accumulation of wheat germ agglutinin and abscisic acid in roots of wheat seedlings

    International Nuclear Information System (INIS)

    Cammue, B.P.A.; Broekaert, W.F.; Kellens, J.T.C.; Peumans, W.J.; Raikhel, N.V.

    1989-01-01

    Wheat germ agglutinin (WGA) levels in roots of 2-day-old wheat seedlings increased up to three-fold when stressed by air-drying. Similar results were obtained when seedling roots were incubated either in 0.5 molar mannitol or 180 grams per liter polyethylene glycol 6,000, with a peak level of WGA after 5 hours of stress. Longer periods of osmotic treatment resulted in a gradual decline of WGA in the roots. Since excised wheat roots incorporate more [ 35 S]cysteine into WGA under stress conditions, the observed increase of lectin levels is due to de novo synthesis. Measurement of abscisic acid (ABA) levels in roots of control and stressed seedlings indicated a 10-fold increase upon air-drying. Similarly, a five- and seven-fold increase of ABA content of seedling roots was found after 2 hours of osmotic stress by polyethylene glycol 6,000 and mannitol, respectively. Finally, the stress-induced increase of WGA in wheat roots could be inhibited by growing seedlings in the presence of fluridone, an inhibitor of ABA synthesis. These results indicate that roots of water-stressed wheat seedlings (a) contain more WGA as a result of an increased de novo synthesis of this lectin, and (b) exhibit higher ABA levels. The stress-induced increase of lectin accumulation seems to be under control of ABA

  6. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong

    2011-06-01

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent

  7. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Yijie; Wang Qiming; Cui Yi; Huo Yongzhong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Ding Shurong, E-mail: dsr1971@163.com [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)

    2011-06-15

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent

  8. Effect of bainitic transformation on bake hardening in TRIP assisted steel

    Energy Technology Data Exchange (ETDEWEB)

    Das, S., E-mail: sourav.das@tatasteel.com [Research and Development, Tata Steel Limited, Jamshedpur (India); Timokhina, I. [Centre for Material and Fibre Innovation/Science and Technology, Deakin University (Australia); Singh, S.B. [Metallurgical and Materials Engineering, IIT Kharagpur (India); Pereloma, E. [BlueScope Steel Metallurgy Centre, University of Wollongong (Australia); Mohanty, O.N. [RSB Metaltech, RSB Group, Jamshedpur (India)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer Bainitic transformation in TRIP-assisted steel can lead to a very good bake hardening response as demonstrated by other researchers also. Black-Right-Pointing-Pointer No extra deformation is needed. Dislocations can be generated in situ during the transformation itself. Black-Right-Pointing-Pointer Detail characterisation and theoretical treatments showed bainite plates are sufficiently enriched with extra carbon atoms which can migrate and lock the dislocations. - Abstract: Bake hardening is a phenomenon where freshly generated dislocations get pinned down by the migrating carbon atoms under the influence of temperature employed in paint baking shop. Experimentally, a minimal 2% deformation is given to generate such new dislocations. On the other hand, after bainitic transformation, steel contains a large number of dislocations as well as excess carbon atoms in bainite, a combination of which is capable of producing bake hardening effect. In the current analysis, one grade of transformation induced plasticity aided steel was chosen to study the effect of isothermal bainitic transformation on subsequent bake hardening response, without giving any deformation assuming that the previous treatment would have generated sufficient dislocations which could be pinned down by the migrating carbon atoms under the influence of thermal treatment of the bake hardening process. The final microstructure was characterised by many techniques, using Thermo-Calc, optical microscopy, XRD analysis and 3-DAP. A good agreement was observed amongst all the techniques employed.

  9. Strain hardening behavior and microstructural evolution during plastic deformation of dual phase, non-grain oriented electrical and AISI 304 steels

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Guilherme Corrêa; Gonzalez, Berenice Mendonça; Arruda Santos, Leandro de, E-mail: leandro.arruda@demet.ufmg.br

    2017-01-27

    Strain hardening behavior and microstructural evolution of non-grain oriented electrical, dual phase, and AISI 304 steels, subjected to uniaxial tensile tests, were investigated in this study. Tensile tests were performed at room temperature and the strain hardening behavior of the steels was characterized by three different parameters: modified Crussard–Jaoul stages, strain hardening rate and instantaneous strain hardening exponent. Optical microscopic analysis, X-ray diffraction measurements, phase quantification by Rietveld refinement and hardness tests were also carried out in order to correlate the microstructural and mechanical responses to plastic deformation. Distinct strain hardening stages were observed in the steels in terms of the instantaneous strain hardening exponent and the strain hardening rate. The dual phase and non-grain oriented steels exhibited a two-stage strain hardening behavior while the AISI 304 steel displayed multiple stages, resulting in a more complex strain hardening behavior. The dual phase steels showed a high work hardening capacity in stage 1, which was gradually reduced in stage 2. On the other hand, the AISI 304 steel showed high strain hardening capacity, which continued to increase up to the tensile strength. This is a consequence of its additional strain hardening mechanism, based on a strain-induced martensitic transformation, as shown by the X-ray diffraction and optical microscopic analyses.

  10. Crystallization and initial X-ray data of abscisic acid receptor PYL3 in the presence of (−)-ABA

    International Nuclear Information System (INIS)

    Zhang, Xingliang; Zhang, Qi; Wang, Guoqiang

    2013-01-01

    The complex of the abscisic acid receptor PYL3 with (−)-ABA was crystallized and refined to obtain high-quality diffraction data. Diffraction data were collected and processed at 2.65 Å resolution. Abscisic acid (ABA) modulates many complicated developmental processes and responses to environmental stimuli. Recently, several (+)-ABA signalling mechanisms by the RCAR/PYR1/PYL family of proteins (PYLs) have been proposed. However, the mechanism of the recognition and binding of the unnatural ligand (−)-ABA by PYLs has not yet been elucidated. In the present study, the expression, purification and crystallization of PYL3 in complex with (−)-ABA are reported. Diffraction data were refined to 2.65 Å resolution for this complex in space group P6 5 . These findings will help to explain the stereospecificity of PYLs for (−)-ABA and to explore the selective ABA agonists

  11. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway.

    Science.gov (United States)

    Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng

    2017-01-01

    Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4 , were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses ( Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass.

  12. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway

    Directory of Open Access Journals (Sweden)

    Aimin Lv

    2017-05-01

    Full Text Available Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4, were estimated under various stresses and abscisic acid (ABA treatments in two bermudagrasses (Cynodon dactylon L.: Tifway (drought-tolerant and C299 (drought-sensitive. The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass.

  13. Solution hardening and strain hardening at elevated temperatures

    International Nuclear Information System (INIS)

    Kocks, U.F.

    1982-10-01

    Solutes can significantly increase the rate of strain hardening; as a consequence, the saturation stress, at which strain hardening tends to cease for a given temperature and strain rate, is increased more than the yield stress: this is the major effect of solutes on strength at elevated temperatures, especially in the regime where dynamic strain-aging occurs. It is shown that local solute mobility can affect both the rate of dynamic recovery and the dislocation/dislocation interaction strength. The latter effect leads to multiplicative solution strengthening. It is explained by a new model based on repeated dislocation unlocking, in a high-temperature limit, which also rationalizes the stress dependence of static and dynamic strain-aging, and may help explain the plateau of the yield stress at elevated temperatures. 15 figures

  14. Microstructure and age-hardening effects of aluminium alloys with additions of scandium and zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Galun, R.; Mordike, B.L. [Inst. fuer Werkstoffkunde und Werkstofftechnik, Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany); Maiwald, T.; Smola, B. [Zentrum fuer Funktionswerkstoffe GmbH, Clausthal-Zellerfeld (Germany); Mergen, R.; Manner, M.; Uitz, W. [Miba Gleitlager GmbH, Laakirchen (Australia)

    2004-12-01

    The aim of the work presented in this report was to produce age-hardenable aluminium alloys containing scandium and zirconium by a casting process with similar cooling conditions like an industrial casting process. Microstructure, precipitation structure and age-hardening response of different alloys with up to 0.4 wt.% Sc and Zr were investigated. Age-hardening experiments from the as-cast condition without solution annealing showed a significant increase of hardness of about 100% for Sc-rich alloys and of 50% for Zr-rich alloys compared to the as-cast condition. TEM investigations revealed the formation of precipitates of ternary Al{sub 3}(Sc{sub x}Zr{sub 1-x}) phases with a cubic cP4 crystal structure. In addition to the strengthening effect, a high thermal stability especially of the precipitates in Zr-rich alloys up to 400 C let these alloys look very promising for high-temperature applications. (orig.)

  15. Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings.

    Science.gov (United States)

    Ren, Cheng-Gang; Kong, Cun-Cui; Xie, Zhi-Hong

    2018-05-03

    Strigolactones (SLs) are considered to be a novel class of phytohormone involved in plant defense responses. Currently, their relationships with other plant hormones, such as abscisic acid (ABA), during responses to salinity stress are largely unknown. In this study, the relationship between SL and ABA during the induction of H 2 O 2 - mediated tolerance to salt stress were studied in arbuscular mycorrhizal (AM) Sesbania cannabina seedlings. The SL levels increased after ABA treatments and decreased when ABA biosynthesis was inhibited in AM plants. Additionally, the expression levels of SL-biosynthesis genes in AM plants increased following treatments with exogenous ABA and H 2 O 2 . Furthermore, ABA-induced SL production was blocked by a pre-treatment with dimethylthiourea, which scavenges H 2 O 2 . In contrast, ABA production was unaffected by dimethylthiourea. Abscisic acid induced only partial and transient increases in the salt tolerance of TIS108 (a SL synthesis inhibitor) treated AM plants, whereas SL induced considerable and prolonged increases in salt tolerance after a pre-treatment with tungstate. These results strongly suggest that ABA is regulating the induction of salt tolerance by SL in AM S. cannabina seedlings.

  16. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic and Precipitation Hardening Stainless Steels by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of three commercial austenitic stainless steels: AISI 304, EN 1.4369 and Sandvik Nanoflex® with various degrees of austenite stability. The materials were...... case included X-ray diffraction analysis, reflected light microscopy and microhardness. The results demonstrate that a case of expanded austenite develops and that, in particular, strain-induced martensite has a large influence on the nitrided zone....

  17. The response of mulberry trees after seedling hardening to summer drought in the hydro-fluctuation belt of Three Gorges Reservoir Areas.

    Science.gov (United States)

    Huang, Xiaohui; Liu, Yun; Li, Jiaxing; Xiong, Xingzheng; Chen, Yang; Yin, Xiaohua; Feng, Dalan

    2013-10-01

    Interest has developed in the potential of mulberry (Morus alba), a woody perennial, for revegetating the hydro-fluctuation belt of the Three Gorges Reservoir due to its resistance to water-logging stress. To be useful, the trees must also be able to withstand dry conditions in summer when temperatures can be very high and droughts become severe quickly. Here, we report a study in which mulberry seedlings were grown in a greenhouse under a variety of simulated soil water conditions reflecting potential summer scenarios in the hydro-fluctuation belt of the Three Gorges Reservoir Area. We compared the responses of two pretreatment groups of mulberry seedlings to different levels of drought stress. The pretreatment groups differed with respect to drought hardening: the daily-managed (DM) group had relative soil moisture held constant in the range 70-80 %, while the drought-hardened (DH) group had relative soil moisture held constant at 40-50 %. Following the month-long pretreatment of seedlings, the two groups of young trees (DM and DH) were then respectively subjected to three levels of drought stress for a month: normal watering, moderate drought stress, and severe drought stress. A series of measurements comparing the physiological status of the plants in the two groups were then made, and the following results were obtained: (1) As drought stress increased, the heights, base diameters, root surface areas, photosynthetic rates (Pn), stomatal conductances (Gs), and transpiration rates (Tr) of the mulberry trees in both groups (DM and DH) decreased significantly, while the specific root area and abscisic acid (ABA) contents had increasing trends. Root activity and instantaneous water use efficiency of mulberry trees in both groups (DM and DH) were all raised under drought stress conditions than under normal watering, but the root/shoot ratio and leaf water potential were lowered. (2) At the same level of soil water content, the heights, base diameters, root

  18. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases

    OpenAIRE

    Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2011-01-01

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the cryst...

  19. Hardening Azure applications

    CERN Document Server

    Gaurav, Suraj

    2015-01-01

    Learn what it takes to build large scale, mission critical applications -hardened applications- on the Azure cloud platform. This 208 page book covers the techniques and engineering principles that every architect and developer needs to know to harden their Azure/.NET applications to ensure maximum reliability and high availability when deployed at scale. While the techniques are implemented in .NET and optimized for Azure, the principles here will also be valuable for users of other cloud-based development platforms. Applications come in a variety of forms, from simple apps that can be bui

  20. ABA renewal involves enhancements in both GluA2-lacking AMPA receptor activity and GluA1 phosphorylation in the lateral amygdala.

    Directory of Open Access Journals (Sweden)

    Kyungjoon Park

    Full Text Available Fear renewal, the context-specific relapse of fear following fear extinction, is a leading animal model of post-traumatic stress disorders (PTSD and fear-related disorders. Although fear extinction can diminish fear responses, this effect is restricted to the context where the extinction is carried out, and the extinguished fear strongly relapses when assessed in the original acquisition context (ABA renewal or in a context distinct from the conditioning and extinction contexts (ABC renewal. We have previously identified Ser831 phosphorylation of GluA1 subunit in the lateral amygdala (LA as a key molecular mechanism for ABC renewal. However, molecular mechanisms underlying ABA renewal remain to be elucidated. Here, we found that both the excitatory synaptic efficacy and GluA2-lacking AMPAR activity at thalamic input synapses onto the LA (T-LA synapses were enhanced upon ABA renewal. GluA2-lacking AMPAR activity was also increased during low-threshold potentiation, a potential cellular substrate of renewal, at T-LA synapses. The microinjection of 1-naphtylacetyl-spermine (NASPM, a selective blocker of GluA2-lacking AMPARs, into the LA attenuated ABA renewal, suggesting a critical role of GluA2-lacking AMPARs in ABA renewal. We also found that Ser831 phosphorylation of GluA1 in the LA was increased upon ABA renewal. We developed a short peptide mimicking the Ser831-containing C-tail region of GluA1, which can be phosphorylated upon renewal (GluA1S; thus, the phosphorylated GluA1S may compete with Ser831-phosphorylated GluA1. This GluA1S peptide blocked the low-threshold potentiation when dialyzed into a recorded neuron. The microinjection of a cell-permeable form of GluA1S peptide into the LA attenuated ABA renewal. In support of the GluA1S experiments, a GluA1D peptide (in which the serine at 831 is replaced with a phosphomimetic amino acid, aspartate attenuated ABA renewal when microinjected into the LA. These findings suggest that enhancements

  1. ABA renewal involves enhancements in both GluA2-lacking AMPA receptor activity and GluA1 phosphorylation in the lateral amygdala.

    Science.gov (United States)

    Park, Kyungjoon; Song, Beomjong; Kim, Jeongyeon; Hong, Ingie; Song, Sangho; Lee, Junuk; Park, Sungmo; Kim, Jihye; An, Bobae; Lee, Hyun Woo; Lee, Seungbok; Kim, Hyun; Lee, Justin C; Lee, Sukwon; Choi, Sukwoo

    2014-01-01

    Fear renewal, the context-specific relapse of fear following fear extinction, is a leading animal model of post-traumatic stress disorders (PTSD) and fear-related disorders. Although fear extinction can diminish fear responses, this effect is restricted to the context where the extinction is carried out, and the extinguished fear strongly relapses when assessed in the original acquisition context (ABA renewal) or in a context distinct from the conditioning and extinction contexts (ABC renewal). We have previously identified Ser831 phosphorylation of GluA1 subunit in the lateral amygdala (LA) as a key molecular mechanism for ABC renewal. However, molecular mechanisms underlying ABA renewal remain to be elucidated. Here, we found that both the excitatory synaptic efficacy and GluA2-lacking AMPAR activity at thalamic input synapses onto the LA (T-LA synapses) were enhanced upon ABA renewal. GluA2-lacking AMPAR activity was also increased during low-threshold potentiation, a potential cellular substrate of renewal, at T-LA synapses. The microinjection of 1-naphtylacetyl-spermine (NASPM), a selective blocker of GluA2-lacking AMPARs, into the LA attenuated ABA renewal, suggesting a critical role of GluA2-lacking AMPARs in ABA renewal. We also found that Ser831 phosphorylation of GluA1 in the LA was increased upon ABA renewal. We developed a short peptide mimicking the Ser831-containing C-tail region of GluA1, which can be phosphorylated upon renewal (GluA1S); thus, the phosphorylated GluA1S may compete with Ser831-phosphorylated GluA1. This GluA1S peptide blocked the low-threshold potentiation when dialyzed into a recorded neuron. The microinjection of a cell-permeable form of GluA1S peptide into the LA attenuated ABA renewal. In support of the GluA1S experiments, a GluA1D peptide (in which the serine at 831 is replaced with a phosphomimetic amino acid, aspartate) attenuated ABA renewal when microinjected into the LA. These findings suggest that enhancements in both the

  2. Validation of functional fetal autonomic brain age score fABAS in 5 min short recordings

    International Nuclear Information System (INIS)

    Hoyer, Dirk; Kowalski, Eva-Maria; Schmidt, Alexander; Witte, Otto W; Schneider, Uwe; Schleußner, Ekkehard; Hatzmann, Wolfgang; Grönemeyer, Dietrich HW; Van Leeuwen, Peter

    2015-01-01

    With the objective of evaluating the functional maturation age and developmental disturbances we have previously introduced the fetal autonomic brain age score (fABAS) using 30 min fetal magnetocardiographic recordings (fMCG, Jena). The score is based on heart rate pattern indices that are related to universal principles of developmental biology. The present work aims at the validation of the fABAS methodology on 5 min recordings from an independent database (fMCG, Bochum).We found high agreement of fABAS obtained from Jena normal fetuses (5 min subsets, n  =  364) and Bochum recordings (n  =  322, normal fetuses). fABAS of 48 recordings from fetuses with intra-uterine growth restriction (IUGR, Bochum) was reduced in most of the cases, a result consistent with IUGR fetuses from Jena previously reported. fABAS calculated from 5 min snapshots only partly covers the accuracy when compared to fABAS from 30 min recordings. More precise diagnosis requires longer recordings.fABAS obtained from fMCG recordings is a strong candidate for standardized assessment of functional maturation age and developmental disturbances. Even 5 min recordings seem to be valuable for screening for maturation problems. (paper)

  3. 40 CFR 63.1297 - Standards for slabstock flexible polyurethane foam production-HAP ABA emissions from the...

    Science.gov (United States)

    2010-07-01

    ... polyurethane foam production-HAP ABA emissions from the production line. 63.1297 Section 63.1297 Protection of... foam production—HAP ABA emissions from the production line. (a) Each owner or operator of a new or... § 63.1293(a)(1) shall control HAP ABA emissions from the slabstock polyurethane foam production line in...

  4. The surface fatigue life of contour induction hardened AISI 1552 gears

    Science.gov (United States)

    Townsend, Dennis P.; Turza, Alan; Chaplin, Mike

    1995-07-01

    Two groups of spur gears manufactured from two different materials and heat treatments were endurance tested for surface fatigue life. One group was manufactured from AISI 1552 and was finished ground to a 0.4 micron (16 micro-in.) rms surface finish and then dual frequency contour induction hardened. The second group was manufactured from CEVM AISI 9310 and was carburized, hardened, and ground to a 0.4 micron (16 micro-in.) rms surface finish. The gear pitch diameter was 8.89 cm (3.5 in.). Test conditions were a maximum Hertz stress of 1.71 GPa (248 ksi), a bulk gear temperature of approximately 350 K (170 F) and a speed of 10,000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The test results showed that the 10 percent surface fatigue (pitting) life of the contour hardened AISI 1552 test gears was 1.7 times that of the carburized and hardened AISI 9310 test gears. Also there were two early failures of the AISI 1552 gears by bending fatigue.

  5. A late embryogenesis abundant protein HVA1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty.

    Science.gov (United States)

    Chen, Yi-Shih; Lo, Shuen-Fang; Sun, Peng-Kai; Lu, Chung-An; Ho, Tuan-Hua D; Yu, Su-May

    2015-01-01

    Regulation of root architecture is essential for maintaining plant growth under adverse environment. A synthetic abscisic acid (ABA)/stress-inducible promoter was designed to control the expression of a late embryogenesis abundant protein (HVA1) in transgenic rice. The background of HVA1 is low but highly inducible by ABA, salt, dehydration and cold. HVA1 was highly accumulated in root apical meristem (RAM) and lateral root primordia (LRP) after ABA/stress treatments, leading to enhanced root system expansion. Water-use efficiency (WUE) and biomass also increased in transgenic rice, likely due to the maintenance of normal cell functions and metabolic activities conferred by HVA1 which is capable of stabilizing proteins, under osmotic stress. HVA1 promotes lateral root (LR) initiation, elongation and emergence and primary root (PR) elongation via an auxin-dependent process, particularly by intensifying asymmetrical accumulation of auxin in LRP founder cells and RAM, even under ABA/stress-suppressive conditions. We demonstrate a successful application of an inducible promoter in regulating the spatial and temporal expression of HVA1 for improving root architecture and multiple stress tolerance without yield penalty. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Intracellular compartimentation of abscisic acid (ABA) in guard cells and mesophyll cells under exposure to SO sub 2. Kompartimentierung von Abscisinsaeure (ABA) in Schliess- und Mesophyllzellen unter SO sub 2 -Belastung

    Energy Technology Data Exchange (ETDEWEB)

    Baier, M.; Daeter, W.; Hartung, W. (Wuerzburg Univ. (Germany, F.R.). Lehrstuhl fuer Botanik 1)

    1989-07-01

    The effect of SO{sub 2} on the intracellular compartimentation of ABA in guard cells and mesophyll cells of Valerianella locusta was investigated, using the efflux compartmental analysis, as described by Behl and Hartung (1986). The cytoplasmic ABA content of the guard cells was reduced drastically by 6 {mu}molxm{sup -3} SO{sub 2} (20% of the controls). The vacuolar content was decreased less dramatically (70% of the controls). The ABA distribution of mesophyll cells remained uneffected by 6 {mu}molxm{sup -3} SO{sub 2}. The SO{sub 2} effects are explained by an acidification of the compartments. (orig.).

  7. Abscisic Acid Induces Rapid Reductions in Mesophyll Conductance to Carbon Dioxide.

    Directory of Open Access Journals (Sweden)

    Giuseppe Sorrentino

    Full Text Available The rate of photosynthesis (A of plants exposed to water deficit is a function of stomatal (gs and mesophyll (gm conductance determining the availability of CO2 at the site of carboxylation within the chloroplast. Mesophyll conductance often represents the greatest impediment to photosynthetic uptake of CO2, and a crucial determinant of the photosynthetic effects of drought. Abscisic acid (ABA plays a fundamental role in signalling and co-ordination of plant responses to drought; however, the effect of ABA on gm is not well-defined. Rose, cherry, olive and poplar were exposed to exogenous ABA and their leaf gas exchange parameters recorded over a four hour period. Application with ABA induced reductions in values of A, gs and gm in all four species. Reduced gm occurred within one hour of ABA treatment in three of the four analysed species; indicating that the effect of ABA on gm occurs on a shorter timescale than previously considered. These declines in gm values associated with ABA were not the result of physical changes in leaf properties due to altered turgor affecting movement of CO2, or caused by a reduction in the sub-stomatal concentration of CO2 (Ci. Increased [ABA] likely induces biochemical changes in the properties of the interface between the sub-stomatal air-space and mesophyll layer through the actions of cooporins to regulate the transport of CO2. The results of this study provide further evidence that gm is highly responsive to fluctuations in the external environment, and stress signals such as ABA induce co-ordinated modifications of both gs and gm in the regulation of photosynthesis.

  8. Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, F., E-mail: f.bergner@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Gillemot, F. [Centre for Energy Research of the Hungarian Academy of Sciences, 29-33 Konkoly-Thege street, 1121 Budapest XII (Hungary); Hernández-Mayoral, M.; Serrano, M. [Division of Materials, CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Török, G. [Wigner Research Center for Physics of the Hungarian Academy of Sciences, 29-33 Konkoly-Thege street, 1121 Budapest XII (Hungary); Ulbricht, A.; Altstadt, E. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany)

    2015-06-15

    Highlights: • TEM and SANS were applied to estimate mean size and number density of loops, nanovoids and Cu-rich clusters. • A three-feature dispersed-barrier hardening model was applied to estimate the yield stress increase. • The values and errors of the dimensionless obstacle strength were estimated in a consistent way. • Nanovoids are stronger obstacles for dislocation glide than dislocation loops, loops are stronger than Cu-rich clusters. • For reactor-relevant conditions, Cu-rich clusters contribute most to hardening due to their high number density. - Abstract: Dislocation loops, nanovoids and Cu-rich clusters (CRPs) are known to represent obstacles for dislocation glide in neutron-irradiated reactor pressure vessel (RPV) steels, but a consistent experimental determination of the respective obstacle strengths is still missing. A set of Cu-bearing low-Ni RPV steels and model alloys was characterized by means of SANS and TEM in order to specify mean size and number density of loops, nanovoids and CRPs. The obstacle strengths of these families were estimated by solving an over-determined set of linear equations. We have found that nanovoids are stronger than loops and loops are stronger than CRPs. Nevertheless, CRPs contribute most to irradiation hardening because of their high number density. Nanovoids were only observed for neutron fluences beyond typical end-of-life conditions of RPVs. The estimates of the obstacle strength are critically compared with reported literature data.

  9. Formation of dislocations and hardening of LiF under high-dose irradiation with 5-21 MeV {sup 12}C ions

    Energy Technology Data Exchange (ETDEWEB)

    Zabels, R.; Manika, I.; Maniks, J.; Grants, R. [Institute of Solid State Physics, University of Latvia, Riga (Latvia); Schwartz, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Dauletbekova, A.; Baizhumanov, M. [L.N. Gumilyov Eurasian National University, Astana (Kazakhstan); Zdorovets, M. [Institute of Nuclear Physics, Almaty (Kazakhstan)

    2017-05-15

    The emergence of dislocations and hardening of LiF crystals irradiated to high doses with {sup 12}C ions have been investigated using chemical etching, AFM, nanoindentation, and thermal annealing. At fluences ensuring the overlapping of tracks (Φ ≥6 x 10{sup 11} ions/cm{sup 2}), the formation of dislocation-rich structure and ion-induced hardening is observed. High-fluence (10{sup 15} ions/cm{sup 2}) irradiation with {sup 12}C ions causes accumulation of extended defects and induces hardening comparable to that reached by heavy ions despite of large differences in ion mass, energy, energy loss, and track morphology. The depth profiles of hardness indicate on a notable contribution of elastic collision mechanism (nuclear loss) in the damage production and hardening. The effect manifests at the end part of the ion range and becomes significant at high fluences (≥10{sup 14} ions/cm{sup 2}). (orig.)

  10. Determination of ABA-binding proteins contents in subcellular fractions isolated from cotton seedlings using radioimmunoanalysis

    International Nuclear Information System (INIS)

    Tursunkhodjayeva, F.M.

    2004-01-01

    Full text: Knowledge of plants' hormone receptor sites is essential to understanding of the principles of phytohormone action in cells and tissues. The hormone abscisic acid (ABA) takes part in many important physiological processes of plants, including water balance and resistance to salt stress. The detection of salt tolerance in the early stages of ontogenesis is desirable for effective cultivation of cotton. Usually such characteristics are determined visually after genetic analysis of hybrids over several generations. This classic method of genetics requires a long time to grow several generations of cotton plants. In this connection we study ABA-binding protein contents in subcellular fractions isolated from seedlings of several kinds of cotton with different tolerance to salt stress. The contents of ABA-binding protein in nuclei and chloroplasts fractions isolated from cotton seedlings were determined using radioimmunoanalysis. The subcellular fractions were prepared by ultracentrifugation in 0,25 - 2,2 M sucrose gradient. ABA-binding protein was isolated from cotton seedlings by affinity chromatography. The antibodies against ABA-binding protein of cotton were developed in rabbits according standard protocols. Than the antibodies were labelled by radioisotope J 125 according Greenwood et al. It was shown, that the nuclei and chloroplasts fractions isolated from cotton with high tolerance to salt stress contain ABA-binding protein up to 1,5-1,8 times more, than the same fractions from cotton with low tolerance to salt stress. So, the ABA-binding protein contents in cotton seedlings may be considered as a marker for screening of cotton kinds, which may potentially have high tolerance to salt stress

  11. Hydrogen embrittlement susceptibility of laser-hardened 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, L.W.; Lin, Z.W. [Nat. Taiwan Ocean Univ., Keelung (Taiwan). Inst. of Mater. Eng.; Shiue, R.K. [Institute of Materials Sciences and Engineering, National Dong Hwa University, Hualien, Taiwan (Taiwan); Chen, C. [Institute of Materials Sciences and Engineering, National Taiwan University, Taipei, Taiwan (Taiwan)

    2000-10-15

    Slow strain rate tensile (SSRT) tests were performed to investigate the susceptibility to hydrogen embrittlement of laser-hardened AISI 4140 specimens in air, gaseous hydrogen and saturated H{sub 2}S solution. Experimental results indicated that round bar specimens with two parallel hardened bands on opposite sides along the loading axis (i.e. the PH specimens), exhibited a huge reduction in tensile ductility for all test environments. While circular-hardened (CH) specimens with 1 mm hardened depth and 6 mm wide within the gauge length were resistant to gaseous hydrogen embrittlement. However, fully hardened CH specimens became susceptible to hydrogen embrittlement for testing in air at a lower strain rate. The strength of CH specimens increased with decreasing the depth of hardened zones in a saturated H{sub 2}S solution. The premature failure of hardened zones in a susceptible environment caused the formation of brittle intergranular fracture and the decrease in tensile ductility. (orig.)

  12. Temperature dependence of work hardening in sparsely twinning zirconium

    International Nuclear Information System (INIS)

    Singh, Jaiveer; Mahesh, S.; Roy, Shomic; Kumar, Gulshan; Srivastava, D.; Dey, G.K.; Saibaba, N.; Samajdar, I.

    2017-01-01

    Fully recrystallized commercial Zirconium plates were subjected to uniaxial tension. Tests were conducted at different temperatures (123 K - 623 K) and along two plate directions. Both directions were nominally unfavorable for deformation twinning. The effect of the working temperature on crystallographic texture and in-grain misorientation development was insignificant. However, systematic variation in work hardening and in the area fraction and morphology of deformation twins was observed with temperature. At all temperatures, twinning was associated with significant near boundary mesoscopic shear, suggesting a possible linkage with twin nucleation. A binary tree based model of the polycrystal, which explicitly accounts for grain boundary accommodation and implements the phenomenological extended Voce hardening law, was implemented. This model could capture the measured stress-strain response and twin volume fractions accurately. Interestingly, slip and twin system hardness evolution permitted multiplicative decomposition into temperature-dependent, and accumulated strain-dependent parts. Furthermore, under conditions of relatively limited deformation twinning, the work hardening of the slip and twin systems followed two phenomenological laws proposed in the literature for non-twinning single-phase face centered cubic materials.

  13. Design optimization of radiation-hardened CMOS integrated circuits

    International Nuclear Information System (INIS)

    1975-01-01

    Ionizing-radiation-induced threshold voltage shifts in CMOS integrated circuits will drastically degrade circuit performance unless the design parameters related to the fabrication process are properly chosen. To formulate an approach to CMOS design optimization, experimentally observed analytical relationships showing strong dependences between threshold voltage shifts and silicon dioxide thickness are utilized. These measurements were made using radiation-hardened aluminum-gate CMOS inverter circuits and have been corroborated by independent data taken from MOS capacitor structures. Knowledge of these relationships allows one to define ranges of acceptable CMOS design parameters based upon radiation-hardening capabilities and post-irradiation performance specifications. Furthermore, they permit actual design optimization of CMOS integrated circuits which results in optimum pre- and post-irradiation performance with respect to speed, noise margins, and quiescent power consumption. Theoretical and experimental results of these procedures, the applications of which can mean the difference between failure and success of a CMOS integrated circuit in a radiation environment, are presented

  14. Two Back Stress Hardening Models in Rate Independent Rigid Plastic Deformation

    Science.gov (United States)

    Yun, Su-Jin

    In the present work, the constitutive relations based on the combination of two back stresses are developed using the Armstrong-Frederick, Phillips and Ziegler’s type hardening rules. Various evolutions of the kinematic hardening parameter can be obtained by means of a simple combination of back stress rate using the rule of mixtures. Thus, a wide range of plastic deformation behavior can be depicted depending on the dominant back stress evolution. The ultimate back stress is also determined for the present combined kinematic hardening models. Since a kinematic hardening rule is assumed in the finite deformation regime, the stress rate is co-rotated with respect to the spin of substructure obtained by incorporating the plastic spin concept. A comparison of the various co-rotational rates is also included. Assuming rigid plasticity, the continuum body consists of the elastic deformation zone and the plastic deformation zone to form a hybrid finite element formulation. Then, the plastic deformation behavior is investigated under various loading conditions with an assumption of the J2 deformation theory. The plastic deformation localization turns out to be strongly dependent on the description of back stress evolution and its associated hardening parameters. The analysis for the shear deformation with fixed boundaries is carried out to examine the deformation localization behavior and the evolution of state variables.

  15. Challenges in hardening technologies using shallow-trench isolation

    International Nuclear Information System (INIS)

    Shaneyfelt, M.R.; Dodd, P.E.; Draper, B.L.; Flores, R.S.

    1998-02-01

    Challenges related to radiation hardening CMOS technologies with shallow-trench isolation are explored. Results show that trench hardening can be more difficult than simply replacing the trench isolation oxide with a hardened field oxide

  16. An energy-based beam hardening model in tomography

    International Nuclear Information System (INIS)

    Casteele, E van de; Dyck, D van; Sijbers, J; Raman, E

    2002-01-01

    As a consequence of the polychromatic x-ray source, used in micro-computer tomography (μCT) and in medical CT, the attenuation is no longer a linear function of absorber thickness. If this nonlinear beam hardening effect is not compensated, the reconstructed images will be corrupted by cupping artefacts. In this paper, a bimodal energy model for the detected energy spectrum is presented, which can be used for reduction of artefacts caused by beam hardening in well-specified conditions. Based on the combination of the spectrum of the source and the detector efficiency, the assumption is made that there are two dominant energies which can describe the system. The validity of the proposed model is examined by fitting the model to the experimental datapoints obtained on a microtomograph for different materials and source voltages

  17. Radiation hardened COTS-based 32-bit microprocessor

    International Nuclear Information System (INIS)

    Haddad, N.; Brown, R.; Cronauer, T.; Phan, H.

    1999-01-01

    A high performance radiation hardened 32-bit RISC microprocessor based upon a commercial single chip CPU has been developed. This paper presents the features of radiation hardened microprocessor, the methods used to radiation harden this device, the results of radiation testing, and shows that the RAD6000 is well-suited for the vast majority of space applications. (authors)

  18. On the Spectral Hardening at gsim300 keV in Solar Flares

    Science.gov (United States)

    Li, G.; Kong, X.; Zank, G.; Chen, Y.

    2013-05-01

    It has long been noted that the spectra of observed continuum emissions in many solar flares are consistent with double power laws with a hardening at energies gsim300 keV. It is now widely believed that at least in electron-dominated events, the hardening in the photon spectrum reflects an intrinsic hardening in the source electron spectrum. In this paper, we point out that a power-law spectrum of electrons with a hardening at high energies can be explained by the diffusive shock acceleration of electrons at a termination shock with a finite width. Our suggestion is based on an early analytical work by Drury et al., where the steady-state transport equation at a shock with a tanh profile was solved for a p-independent diffusion coefficient. Numerical simulations with a p-dependent diffusion coefficient show hardenings in the accelerated electron spectrum that are comparable with observations. One necessary condition for our proposed scenario to work is that high-energy electrons resonate with the inertial range of the MHD turbulence and low-energy electrons resonate with the dissipation range of the MHD turbulence at the acceleration site, and the spectrum of the dissipation range ~k -2.7. A ~k -2.7 dissipation range spectrum is consistent with recent solar wind observations.

  19. Multi-MGy Radiation Hardened Camera for Nuclear Facilities

    International Nuclear Information System (INIS)

    Girard, Sylvain; Boukenter, Aziz; Ouerdane, Youcef; Goiffon, Vincent; Corbiere, Franck; Rolando, Sebastien; Molina, Romain; Estribeau, Magali; Avon, Barbara; Magnan, Pierre; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Raine, Melanie

    2015-01-01

    electronics will be exposed. Another important element of the camera is the optical system that transports the image from the scene to the image sensor. This arrangement of glass-based lenses is affected by radiations through two mechanisms: the radiation induced absorption and the radiation induced refractive index changes. The first one will limit the signal to noise ratio of the image whereas the second one will directly affect the resolution of the camera. We'll present at the conference a coupled simulation/experiment study of these effects for various commercial glasses and present vulnerability study of typical optical systems to radiations at MGy doses. The last very important part of the camera is the illumination system that can be based on various technologies of emitting devices like LED, SLED or lasers. The most promising solutions for high radiation doses will be presented at the conference. In addition to this hardening-by-component approach, the global radiation tolerance of the camera can be drastically improve by working at the system level, combining innovative approaches eg. for the optical and illumination systems. We'll present at the conference the developed approach allowing to extend the camera lifetime up to the MGy dose range. (authors)

  20. Multi-MGy Radiation Hardened Camera for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Sylvain; Boukenter, Aziz; Ouerdane, Youcef [Universite de Saint-Etienne, Lab. Hubert Curien, UMR-CNRS 5516, F-42000 Saint-Etienne (France); Goiffon, Vincent; Corbiere, Franck; Rolando, Sebastien; Molina, Romain; Estribeau, Magali; Avon, Barbara; Magnan, Pierre [ISAE, Universite de Toulouse, F-31055 Toulouse (France); Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Raine, Melanie [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-07-01

    electronics will be exposed. Another important element of the camera is the optical system that transports the image from the scene to the image sensor. This arrangement of glass-based lenses is affected by radiations through two mechanisms: the radiation induced absorption and the radiation induced refractive index changes. The first one will limit the signal to noise ratio of the image whereas the second one will directly affect the resolution of the camera. We'll present at the conference a coupled simulation/experiment study of these effects for various commercial glasses and present vulnerability study of typical optical systems to radiations at MGy doses. The last very important part of the camera is the illumination system that can be based on various technologies of emitting devices like LED, SLED or lasers. The most promising solutions for high radiation doses will be presented at the conference. In addition to this hardening-by-component approach, the global radiation tolerance of the camera can be drastically improve by working at the system level, combining innovative approaches eg. for the optical and illumination systems. We'll present at the conference the developed approach allowing to extend the camera lifetime up to the MGy dose range. (authors)

  1. The biological activity of ABA-1-like protein from Ascaris lumbricoides.

    Science.gov (United States)

    Muto, R; Imai, S; Tezuka, H; Furuhashi, Y; Fujita, K

    2001-09-01

    The elevation of non-specific IgE (total IgE) in Ascaris infection can be seen one week after infection, and reaches a peak after approximately two weeks. It has been reported that ABA-1 protein is the main constituent in the pseudocoelomic fluid of Ascaris suum. To investigate the effect of the ABA-1-like protein from Ascaris lumbricoides (ALB), the cDNA was cloned by reverse transcriptase polymerase chain reaction, using original primers based on the consensus sequences of ABA-1 and TBA-1, that is an ABA-1-like protein from Toxocara canis. The clone was sequenced, we constructed the recombinant polyprotein of ALB (rALB14 and rALB7) based on the ALB sequence, and rALB was administrated to BALB/c mice. Fourteen days after inoculation with rALB14 which is the full length of ALB, the elevation of total IgE which we supposed to contain non-specific IgE was observed, and the results were as we expected. Furthermore, in an in-vitro experiment, we confirmed that the spleen cells proliferated when stimulated by rALB14 and concanavalin A. Therefore, the whole conformation of ALB is considered to be involved in the elevation of non-specific IgE, and is involved in the activation of T cells.

  2. A Study of Tensile Flow and Work-Hardening Behavior of Alloy 617

    Science.gov (United States)

    Singh, Aditya Narayan; Moitra, A.; Bhaskar, Pragna; Dasgupta, Arup; Sasikala, G.; Bhaduri, A. K.

    2018-04-01

    The simple power relationship σ = Κɛ p n satisfactorily expresses the tensile flow behavior of many metals and alloys in their uniform plastic strain regime. However, many FCC materials with low stacking fault energy have opposed such power law relationship. Alloy 617, an age-hardenable Ni-based superalloy is also observed not to obey the simple power law relationship neither in its solution-treated nor in its aged conditions. Various flow relationships were used to obtain the best fit for the tensile data, and different relationships were identified for the different aged conditions. The work-hardening rate (θ) demonstrates three distinct regions for all aged conditions, and there is an obvious change in the trend of θ versus σ. In the initial portion, θ decreases rapidly followed by a gradual increase in the second stage and again a decrease in its third stage is perceived in the Alloy 617. These three-stage characteristics are attributed to a commonly known precipitate, γ': Ni3(Ti, Al) which evolves during aging treatment and well recognized under transmission electron microscopy (TEM) observation. TEM results also reveal a slight degree of coarsening in γ' over aging. The tensile flow and the work-hardening behavior are well correlated with other microstructural evolution during the aging treatments.

  3. The effect of the initial microstructure in terms of sink strength on the ion-irradiation-induced hardening of ODS alloys studied by nanoindentation

    Science.gov (United States)

    Duan, Binghuang; Heintze, Cornelia; Bergner, Frank; Ulbricht, Andreas; Akhmadaliev, Shavkat; Oñorbe, Elvira; de Carlan, Yann; Wang, Tieshan

    2017-11-01

    Oxide dispersion strengthened (ODS) Fe-Cr alloys are promising candidates for structural components in nuclear energy production. The small grain size, high dislocation density and the presence of particle matrix interfaces may contribute to the improved irradiation resistance of this class of alloys by providing sinks and/or traps for irradiation-induced point defects. The extent to which these effects impede hardening is still a matter of debate. To address this problem, a set of alloys of different grain size, dislocation density and oxide particle distribution were selected. In this study, three-step Fe-ion irradiation at both 300 °C and 500 °C up to 10 dpa was used to introduce damage in five different materials including three 9Cr-ODS alloys, one 14Cr-ODS alloy and one 14Cr-non-ODS alloy. Electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), small angle neutron scattering (SANS), and nanoindentation testing were applied, the latter before and after irradiation. Significant hardening occurred for all materials and temperatures, but it is distinctly lower in the 14Cr alloys and also tends to be lower at the higher temperature. The possible contribution of Cr-rich α‧-phase particles is addressed. The impact of grain size, dislocation density and particle distribution is demonstrated in terms of an empirical trend between total sink strength and hardening.

  4. Plastic limit analysis with non linear kinematic strain hardening for metalworking processes applications

    International Nuclear Information System (INIS)

    Chaaba, Ali; Aboussaleh, Mohamed; Bousshine, Lahbib; Boudaia, El Hassan

    2011-01-01

    Limit analysis approaches are widely used to deal with metalworking processes analysis; however, they are applied only for perfectly plastic materials and recently for isotropic hardening ones excluding any kind of kinematic hardening. In the present work, using Implicit Standard Materials concept, sequential limit analysis approach and the finite element method, our objective consists in extending the limit analysis application for including linear and non linear kinematic strain hardenings. Because this plastic flow rule is non associative, the Implicit Standard Materials concept is adopted as a framework of non standard plasticity modeling. The sequential limit analysis procedure which considers the plastic behavior with non linear kinematic strain hardening as a succession of perfectly plastic behavior with yielding surfaces updated after each sequence of limit analysis and geometry updating is applied. Standard kinematic finite element method together with a regularization approach is used for performing two large compression cases (cold forging) in plane strain and axisymmetric conditions

  5. Analysis of thermal ratchetting of a cylinder subjected to axially moving temperature front. Effect of kinematic hardening rule

    International Nuclear Information System (INIS)

    Ohno, Nobutada; Yari, Takashi; Kobayashi, Mineo

    1995-01-01

    When a cylinder is subjected to a temperature front moving cyclically in the axial direction, the circumferential plastic strain may accumulate with the increase of the number of cycles. This is a thermal ratchetting problem induced by a liquid surface moving in a cylinder, and it is important especially in designing fast breeder reactors. In the present paper, the effect of kinematic hardening rule on the thermal ratchetting analysis is discussed by implementing the following four kinds of kinematic hardening rules in a finite element analysis; the perfectly plastic model (PP), the linear kinematic hardening rule (LKH), the classical nonlinear kinematic hardening rule of Armstrong and Frederick (AF), and the rule proposed recently by Ohno and Wang (OW). It is shown that disregard of transient hardening after yielding leads to overestimating the thermal ratchetting, that a rule predicting larger mechanical ratchetting under uniaxial cyclic loading makes the thermal ratchetting more serious, and that the Ohno and Wang rule can render the analysis most realistic among them. (author)

  6. Numerical predicting of the structure and stresses state in hardened element made of tool steel

    Directory of Open Access Journals (Sweden)

    A. Bokota

    2008-03-01

    Full Text Available The paper presents numerical model of thcrmal phcnomcna, phasc transformation and mcchanical phcnomcna associated with hardeningof carbon tool steel. Model for evaluation or fractions OF phases and their kinetics bascd on continuous heating diagram (CHT andcontinuous cooling diagram (CCT. The stresses generated during hardening were assumed to rcsult from ~hermal load. stntcturaI plasticdeformations and transformation plasricity. Thc hardened material was assumed to be elastic-plastic, and in ordcr to mark plastic strains the non-isothermal plastic law of flow with the isotropic hardening and condition plasticity of Huber-Misses were used. TherrnophysicaI values of mechanical phenomena dependent on bo~hth e phase composition and temperature. In the numerical example thc simulated estimation of the phasc Fraction and strcss distributions in the hardened axisimmetrical elemcnt was performed.

  7. Laser Surface Hardening of Groove Edges

    Science.gov (United States)

    Hussain, A.; Hamdani, A. H.; Akhter, R.; Aslam, M.

    2013-06-01

    Surface hardening of groove-edges made of 3Cr13 Stainless Steel has been carried out using 500 W CO2 laser with a rectangular beam of 2.5×3 mm2. The processing speed was varied from 150-500 mm/min. It was seen that the hardened depth increases with increase in laser interaction time. A maximum hardened depth of around 1mm was achieved. The microhardness of the transformed zone was 2.5 times the hardness of base metal. The XRD's and microstructural analysis were also reported.

  8. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana.

    Science.gov (United States)

    Marin, E; Nussaume, L; Quesada, A; Gonneau, M; Sotta, B; Hugueney, P; Frey, A; Marion-Poll, A

    1996-05-15

    Abscisic acid (ABA) is a plant hormone which plays an important role in seed development and dormancy and in plant response to environmental stresses. An ABA-deficient mutant of Nicotiana plumbaginifolia, aba2, was isolated by transposon tagging using the maize Activator transposon. The aba2 mutant exhibits precocious seed germination and a severe wilty phenotype. The mutant is impaired in the first step of the ABA biosynthesis pathway, the zeaxanthin epoxidation reaction. ABA2 cDNA is able to complement N.plumbaginifolia aba2 and Arabidopsis thaliana aba mutations indicating that these mutants are homologous. ABA2 cDNA encodes a chloroplast-imported protein of 72.5 kDa, sharing similarities with different mono-oxigenases and oxidases of bacterial origin and having an ADP-binding fold and an FAD-binding domain. ABA2 protein, produced in Escherichia coli, exhibits in vitro zeaxanthin epoxidase activity. This is the first report of the isolation of a gene of the ABA biosynthetic pathway. The molecular identification of ABA2 opens the possibility to study the regulation of ABA biosynthesis and its cellular location.

  9. An Innovative Radiation Hardened CAM Architecture

    CERN Document Server

    Shojaii, Seyed Ruhollah; The ATLAS collaboration

    2018-01-01

    This article describes an innovative Content Addressable Memory (CAM) cell with radiation hardened (RH) architecture. The RH-CAM is designed in a commercial 28 nm CMOS technology. The circuit has been simulated in worst-case conditions, and the effects due to single particles have been analyzed by injecting a current pulse into a circuit node. The proposed architecture is suitable for on-time pattern recognition tasks in harsh environments, such as front-end electronics in hadron colliders and in space applications.

  10. Microhardness technique for determination of radiation hardening in austenitic stainless steel using

    International Nuclear Information System (INIS)

    Hofman, A.

    1995-01-01

    The use of microhardness technique to determine the radiation hardening has been studied. Microhardness measurements have been conducted on austenitic stainless steel 0H18N10T irradiated up to 2·10 23 nm -2 . It was determined that the increase in microhardness varies directly with the measured increase in the 0,2% offret yield strength and has been found that microhardness technique may be an effective tool to measurements of radiation induced hardening. Based on the results and Cahoon's relation that σ 0,2 (MPa)=3,27HV(0,1) n method for evaluating the yield stress σ 0,2 by microhardness technique is analyzed. 14 refs., 3 figs., 3 tabs

  11. Role of thioproline on seed germination: interaction ROS-ABA and effects on antioxidative metabolism.

    Science.gov (United States)

    Barba-Espin, Gregorio; Nicolas, Eduardo; Almansa, Maria Soledad; Cantero-Navarro, Elena; Albacete, Alfonso; Hernández, José Antonio; Díaz-Vivancos, Pedro

    2012-10-01

    In this work we investigate the effect of the imbibition of pea seeds with different thioproline (TP) concentrations on the germination percentage and the early growth of the seedlings. The interaction between TP and hydrogen peroxide (H₂O₂) treatments is also analysed in order to test if any synergy in germination and growth occurs. Although the imbibition of pea seeds in the presence of TP did not significantly improve the germination percentage, TP and/or H₂O₂ pre-treatments increased seedlings growth. This increase in seedling growth was reduced by abscisic acid (ABA) addition. Imbibition of pea seeds in the presence of ABA also reduced the endogenous H₂O₂ contents of pea seedlings in control and TP-treated seeds. The incubation of pea seeds with TP and/or H₂O₂ in presence or absence of ABA decreased the activity of H₂O₂-scavenging enzymes. The increase of the endogenous H₂O₂ contents observed in TP and/or H₂O₂ treatments in absence of ABA could be correlated with the decrease in these activities. Finally, the hormone profile of pea seedlings was investigated. The results show that the increase in seedling growth is correlated with a decrease in ABA in samples pre-treated with H₂O₂ and TP + H₂O₂. Nevertheless, no significant differences in endogenous ABA concentration were observed with the TP pre-treatment. This paper suggests a relationship between endogenous H₂O₂ contents and plant growth, so reinforcing the intricate crosstalk between reactive oxygen species (ROS) and plant hormones in seed germination signalling and early seedling development. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  12. Hardening Embrittlement and Non-Hardening Embrittlement of Welding-Heat-Affected Zones in a Cr-Mo Low Alloy Steel

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2018-06-01

    Full Text Available The embrittlement of heat affected zones (HAZs resulting from the welding of a P-doped 2.25Cr-1Mo steel was studied by the analysis of the fracture appearance transition temperatures (FATTs of the HAZs simulated under a heat input of 45 kJ/cm with different peak temperatures. The FATTs of the HAZs both with and without tempering increased with the rise of the peak temperature. However, the FATTs were apparently lower for the tempered HAZs. For the as-welded (untempered HAZs, the FATTs were mainly affected by residual stress, martensite/austenite (M/A islands, and bainite morphology. The observed embrittlement is a hardening embrittlement. On the other hand, the FATTs of the tempered HAZs were mainly affected by phosphorus grain boundary segregation, thereby causing a non-hardening embrittlement. The results demonstrate that the hardening embrittlement of the as-welded HAZs was more severe than the non-hardening embrittlement of the tempered HAZs. Consequently, a post-weld heat treatment should be carried out if possible so as to eliminate the hardening embrittlement.

  13. Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon).

    Science.gov (United States)

    Speirs, Jim; Binney, Allan; Collins, Marisa; Edwards, Everard; Loveys, Brian

    2013-04-01

    The influence of different levels of irrigation and of variation in atmospheric vapour pressure deficit (VPD) on the synthesis, metabolism, and transport of abscisic acid (ABA) and the effects on stomatal conductance were examined in field-grown Cabernet Sauvignon grapevines. Xylem sap, leaf tissue, and root tissue were collected at regular intervals during two seasons in conjunction with measurements of leaf water potential (Ψleaf) and stomatal conductance (gs). The different irrigation levels significantly altered the Ψleaf and gs of the vines across both seasons. ABA abundance in the xylem sap was correlated with gs. The expression of genes associated with ABA synthesis, NCED1 and NCED2, was higher in the roots than in the leaves throughout and highest in the roots in mid January, a time when soil moisture declined and VPD was at its highest. Their expression in roots was also inversely related to the levels of irrigation and correlated with ABA abundance in the roots, xylem sap, and leaves. Three genes encoding ABA 8'-hydroxylases were isolated and their identities confirmed by expression in yeast cells. The expression of one of these, Hyd1, was elevated in leaves when VPD was below 2.0-2.5 kPa and minimal at higher VPD levels. The results provide evidence that ABA plays an important role in linking stomatal response to soil moisture status and that changes in ABA catabolism at or near its site of action allows optimization of gas exchange to current environmental conditions.

  14. Radiation-chemical hardening of phenol-formaldehyde oligomers

    International Nuclear Information System (INIS)

    Shlapatskaya, V.V.; Omel'chenko, S.I.

    1978-01-01

    Radiation-chemical hardening of phenol formaldehyde oligomers of the resol type has been studied in the presence of furfural and diallylphthalate diluents. The samples have been hardened on an electron accelerator at an electron energy of 1.0-1.1 MeV and a dose rate of 2-3 Mrad/s. The kinetics of hardening has been studied on the yield of gel fraction within the range of absorbed doses from 7 to 400 Mrad. Radiation-chemical hardening of the studied compositions is activated with sensitizers, namely, amines, metal chlorides, and heterocyclic derivatives of metals. Furfural and diallylphthalate compositions are suitable for forming glass-fibre plastic items by the wet method and coatings under the action of ionizing radiations

  15. Spread of carbapenem-resistant Acinetobacter baumannii global clone 2 in Asia and AbaR-type resistance islands.

    Science.gov (United States)

    Kim, Dae Hun; Choi, Ji-Young; Kim, Hae Won; Kim, So Hyun; Chung, Doo Ryeon; Peck, Kyong Ran; Thamlikitkul, Visanu; So, Thomas Man-Kit; Yasin, Rohani M D; Hsueh, Po-Ren; Carlos, Celia C; Hsu, Li Yang; Buntaran, Latre; Lalitha, M K; Song, Jae-Hoon; Ko, Kwan Soo

    2013-11-01

    In this surveillance study, we identified the genotypes, carbapenem resistance determinants, and structural variations of AbaR-type resistance islands among carbapenem-resistant Acinetobacter baumannii (CRAB) isolates from nine Asian locales. Clonal complex 92 (CC92), corresponding to global clone 2 (GC2), was the most prevalent in most Asian locales (83/108 isolates; 76.9%). CC108, or GC1, was a predominant clone in India. OXA-23 oxacillinase was detected in CRAB isolates from most Asian locales except Taiwan. blaOXA-24 was found in CRAB isolates from Taiwan. AbaR4-type resistance islands, which were divided into six subtypes, were identified in most CRAB isolates investigated. Five isolates from India, Malaysia, Singapore, and Hong Kong contained AbaR3-type resistance islands. Of these, three isolates harbored both AbaR3- and AbaR4-type resistance islands simultaneously. In this study, GC2 was revealed as a prevalent clone in most Asian locales, with the AbaR4-type resistance island predominant, with diverse variants. The significance of this study lies in identifying the spread of global clones of carbapenem-resistant A. baumannii in Asia.

  16. Effects of sulfite and pH an abscisic acid (ABA) dependent transpiration and on stomatal opening

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, N.; Maruta, I.; Sugahara, K.

    1980-01-01

    In rice, alday, wheat and tobacco (Nicotiana tabacum l. samsun and samsun nn) plants which contained large amounts of ABA, the transpiration rate decreased rapidly with 2 ppM SO/sub 2/ fumigation and reached 20 to 65% of the initial level after 5- to 30-min exposure depending on their ABAj contents. In the cases of broad bean and tobacco (n. Gutinosa l.) with low ABA contents, the rate slightly increased for 20 and 40 min, respectively, after the start of the fumigation and then decreased gradually. The transpiration rates of corn and sorghum, in spite of their extremely low ABA contents, pronouncedly decreased with SO/sub 2/ fumigation and reached 65 and 50%, respectively, of the initial levels after 40-min exposure. Foliar application of 0.04 N HCL to N. tacum l. samsun nn leaves remarkably depressed the transpiration rate, while the application of 0.04 m NA/sub 2/SO/sub 3/ decreased the rate only to the same level as water treatment. Foliar application of either HCL of Na/sub 2/SO/sub 3/ to N. glutinosa l. leaves exerted little change in the transpiration rate. When 10-4 m ABA was applied to broad bean leaves prior to HCl and Na/sub 2/SO/sub 3/ treatment, their transpiration rate was decreased by HCl, but not by Na/sub 2/SO/sub 3/ application. In sonicated epidermal strips peeled from broad bean leaves, Na/sub 2/SO/sub 3/ produced a slight increase in the stomatal aperture size in the absence of ABA, but showed no effect in the presence of ABA. The aperture size was identical in the pH range of 3.0 to 7.0 in the incubation medium. In the presence of ABA in the medium, the aperture size was small in the acidic region of pH with a minimal value at pH 4.0. ABA decreased the aperture size at concentrations above 10-9 m at pH 4.0 and 10-6 m at pH 7.0 in the medium. ABA uptake by epidermal strips was large in the acidic region, especially at pH 4.0.

  17. ON THE SPECTRAL HARDENING AT ∼>300 keV IN SOLAR FLARES

    International Nuclear Information System (INIS)

    Li, G.; Kong, X.; Zank, G.; Chen, Y.

    2013-01-01

    It has long been noted that the spectra of observed continuum emissions in many solar flares are consistent with double power laws with a hardening at energies ∼>300 keV. It is now widely believed that at least in electron-dominated events, the hardening in the photon spectrum reflects an intrinsic hardening in the source electron spectrum. In this paper, we point out that a power-law spectrum of electrons with a hardening at high energies can be explained by the diffusive shock acceleration of electrons at a termination shock with a finite width. Our suggestion is based on an early analytical work by Drury et al., where the steady-state transport equation at a shock with a tanh profile was solved for a p-independent diffusion coefficient. Numerical simulations with a p-dependent diffusion coefficient show hardenings in the accelerated electron spectrum that are comparable with observations. One necessary condition for our proposed scenario to work is that high-energy electrons resonate with the inertial range of the MHD turbulence and low-energy electrons resonate with the dissipation range of the MHD turbulence at the acceleration site, and the spectrum of the dissipation range ∼k –2.7 . A ∼k –2.7 dissipation range spectrum is consistent with recent solar wind observations.

  18. Bake hardening of nanograin AA7075 aluminum alloy

    International Nuclear Information System (INIS)

    Dehghani, Kamran

    2011-01-01

    Highlights: ► The bake hardening behavior of AA7075 was studied and compared with its coarse-grain counterpart. ► Nanograin AA7075 exhibited 88–100% increase in bake hardenability. ► Nanograin AA7075 exhibited 36–38% increase in final yield strength after baking. ► Maximum bake hardenability and final yield stress were about 185 MPa and 719 MPa. - Abstract: In the present work, the bake hardening of nanostructured AA7075 aluminum alloy was compared with that of its coarse-grain counterpart. Surface severe plastic deformation (SSPD) was used to produce nanograin layers on both surfaces of workpieces. The nanostructured layers were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The thickness of nanostructured layer, having the grains of 50–110 nm, was about 75 μm on each side of workpiece. The bake hardenability of nanograin and coarse-grain AA7075 was then compared by pre-straining to 2, 4 and 6% followed by baking at 100 °C and 200 °C for 20 min. Comparing to coarse-grain case, there was about 88–100% increase in bake hardenability and about 36–38% increase in yield strength after the bake hardening of present nanograin AA7075. Such an increase in bake hardenability and strength was achieved when the thickness of two nanograin layers was about only one-tenth of the whole thickness.

  19. Thermomechanical properties of radiation hardened oligoesteracrylates

    International Nuclear Information System (INIS)

    Lomonosova, N.V.; Chikin, Yu.A.

    1984-01-01

    Thermomechanical properties of radiation hardened oligoesteracrylates are studied by the methods of isothermal heating and thermal mechanics. Films of dimethacrylate of ethylene glycol, triethylene glycol (TGM-3), tetraethylene glycol, tridecaethylene glycol and TGM-3 mixture with methyl methacrylate hardened by different doses (5-150 kGy) using Co 60 installation with a dose rate of 2x10 -3 kGy/s served as a subject of the research. During oligoesteracrylate hargening a space network is formed, chain sections between lattice points of which are in a stressed state. Maximum of deformation is observed at 210-220 deg C on thermomechanical curves of samples hardened by doses > 5 kGy, which form and intensity is dependent on an absorbed dose. Presence of a high-temperature maximum on diaqrams of isometric heating of spatially cross-linked oligoesteracrylates is discovered. High thermal stability of three-dimensional network of radiation hardened oligoesteracrylates provides satisfactory tensile properties (40% of initial strength) in sample testing an elevated temperatures (200-250 deg C)

  20. Simulating irradiation hardening in tungsten under fast neutron irradiation including Re production by transmutation

    Science.gov (United States)

    Huang, Chen-Hsi; Gilbert, Mark R.; Marian, Jaime

    2018-02-01

    Simulations of neutron damage under fusion energy conditions must capture the effects of transmutation, both in terms of accurate chemical inventory buildup as well as the physics of the interactions between transmutation elements and irradiation defect clusters. In this work, we integrate neutronics, primary damage calculations, molecular dynamics results, Re transmutation calculations, and stochastic cluster dynamics simulations to study neutron damage in single-crystal tungsten to mimic divertor materials. To gauge the accuracy and validity of the simulations, we first study the material response under experimental conditions at the JOYO fast reactor in Japan and the High Flux Isotope Reactor at Oak Ridge National Laboratory, for which measurements of cluster densities and hardening levels up to 2 dpa exist. We then provide calculations under expected DEMO fusion conditions. Several key mechanisms involving Re atoms and defect clusters are found to govern the accumulation of irradiation damage in each case. We use established correlations to translate damage accumulation into hardening increases and compare our results to the experimental measurements. We find hardening increases in excess of 5000 MPa in all cases, which casts doubts about the integrity of W-based materials under long-term fusion exposure.

  1. Genome-wide targeted prediction of ABA responsive genes in rice based on over-represented cis-motif in co-expressed genes.

    Science.gov (United States)

    Lenka, Sangram K; Lohia, Bikash; Kumar, Abhay; Chinnusamy, Viswanathan; Bansal, Kailash C

    2009-02-01

    Abscisic acid (ABA), the popular plant stress hormone, plays a key role in regulation of sub-set of stress responsive genes. These genes respond to ABA through specific transcription factors which bind to cis-regulatory elements present in their promoters. We discovered the ABA Responsive Element (ABRE) core (ACGT) containing CGMCACGTGB motif as over-represented motif among the promoters of ABA responsive co-expressed genes in rice. Targeted gene prediction strategy using this motif led to the identification of 402 protein coding genes potentially regulated by ABA-dependent molecular genetic network. RT-PCR analysis of arbitrarily chosen 45 genes from the predicted 402 genes confirmed 80% accuracy of our prediction. Plant Gene Ontology (GO) analysis of ABA responsive genes showed enrichment of signal transduction and stress related genes among diverse functional categories.

  2. An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress.

    Science.gov (United States)

    Li, Cong; Yue, Jing; Wu, Xiaowei; Xu, Cong; Yu, Jingjuan

    2014-10-01

    The DREB (dehydration-responsive element binding)-type transcription factors regulate the expression of stress-inducible genes by binding the DRE/CRT cis-elements in promoter regions. The upstream transcription factors that regulate the transcription of DREB transcription factors have not been clearly defined, although the function of DREB transcription factors in abiotic stress is known. In this study, an abscisic acid (ABA)-responsive DREB-binding protein gene (SiARDP) was cloned from foxtail millet (Setaria italica). The transcript level of SiARDP increased not only after drought, high salt, and low temperature stresses, but also after an ABA treatment in foxtail millet seedlings. Two ABA-responsive elements (ABRE1: ACGTGTC; ABRE2: ACGTGGC) exist in the promoter of SiARDP. Further analyses showed that two ABA-responsive element binding (AREB)-type transcription factors, SiAREB1 and SiAREB2, could physically bind to the ABRE core element in vitro and in vivo. The constitutive expression of SiARDP in Arabidopsis thaliana enhanced drought and salt tolerance during seed germination and seedling development, and overexpression of SiARDP in foxtail millet improved drought tolerance. The expression levels of target genes of SiARDP were upregulated in transgenic Arabidopsis and foxtail millet. These results reveal that SiARDP, one of the target genes of SiAREB, is involved in ABA-dependent signal pathways and plays a critical role in the abiotic stress response in plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Instabilities in power law gradient hardening materials

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2005-01-01

    Tension and compression instabilities are investigated for specimens with dimensions in the micron range. A finite strain generalization of a higher order strain gradient plasticity theory is implemented in a finite element scheme capable of modeling power law hardening materials. Effects...... of gradient hardening are found to delay the onset of localization under plane strain tension, and significantly reduce strain gradients in the localized zone. For plane strain compression gradient hardening is found to increase the load-carrying capacity significantly....

  4. Precipitation and Hardening in Magnesium Alloys

    Science.gov (United States)

    Nie, Jian-Feng

    2012-11-01

    Magnesium alloys have received an increasing interest in the past 12 years for potential applications in the automotive, aircraft, aerospace, and electronic industries. Many of these alloys are strong because of solid-state precipitates that are produced by an age-hardening process. Although some strength improvements of existing magnesium alloys have been made and some novel alloys with improved strength have been developed, the strength level that has been achieved so far is still substantially lower than that obtained in counterpart aluminum alloys. Further improvements in the alloy strength require a better understanding of the structure, morphology, orientation of precipitates, effects of precipitate morphology, and orientation on the strengthening and microstructural factors that are important in controlling the nucleation and growth of these precipitates. In this review, precipitation in most precipitation-hardenable magnesium alloys is reviewed, and its relationship with strengthening is examined. It is demonstrated that the precipitation phenomena in these alloys, especially in the very early stage of the precipitation process, are still far from being well understood, and many fundamental issues remain unsolved even after some extensive and concerted efforts made in the past 12 years. The challenges associated with precipitation hardening and age hardening are identified and discussed, and guidelines are outlined for the rational design and development of higher strength, and ultimately ultrahigh strength, magnesium alloys via precipitation hardening.

  5. The microstructural origin of work hardening stages

    DEFF Research Database (Denmark)

    Hughes, D. A.; Hansen, N.

    2018-01-01

    The strain evolution of the flow stress and work hardening rate in stages III and IV is explored by utilizing a fully described deformation microstructure. Extensive measurements by transmission electron microscopy reveal a hierarchical subdivision of grains by low angle incidental dislocation...... addition of the classical Taylor and Hall-Petch formulations. Model predictions agree closely with experimental values of flow stress and work hardening rate in stages III and IV. Strong connections between the evolutionary stages of the deformation microstructure and work hardening rates create a new...... (modern) basis for the classic problem of work hardening in metals and alloys. These connections lead the way for the future development of ultra high strength ductile metals produced via plastic deformation.(c) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  6. Relationship between abscisic acid (ABA) concentration and some ...

    African Journals Online (AJOL)

    This work investigated the effects of endogenous abscisic acid (ABA) and physiologic parameters related to yield in two wheat cultivars (Triticum aestivum L.), Marvdasht and Zagros (sensitive and tolerant to terminal season drought, respectively) grown in pots under well watered and water-stressed starting from anthesis ...

  7. Improving precipitation hardening behavior of Mg−Zn based alloys with Ce−Ca microalloying additions

    Energy Technology Data Exchange (ETDEWEB)

    Langelier, B., E-mail: langelb@mcmaster.ca [Mechanical & Mechatronics Engineering, The University of Waterloo, N2L 3G1 (Canada); Canadian Centre for Electron Microscopy, McMaster University, L8S 4L8 (Canada); Korinek, A. [Canadian Centre for Electron Microscopy, McMaster University, L8S 4L8 (Canada); Donnadieu, P. [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Esmaeili, S. [Mechanical & Mechatronics Engineering, The University of Waterloo, N2L 3G1 (Canada)

    2016-10-15

    The precipitation hardening behavior of newly developed Mg−Zn−Ca−Ce alloys, with modified texture and improved ductility, is studied to delineate the microstructural characteristics that lead to effective hardening upon ageing treatments. Advanced electron microscopy and atom probe techniques are used to analyze the structural characteristics in relevance to the hardening potential. It has been found that the formation of a new basal precipitate phase, which evolves from a single atomic layer GP zone, and is finely distributed in both under-aged and peak-aged microstructures, has a significant impact in the improvement of the hardening response compared with the base Mg−Zn alloys. It has also been found that the β′{sub 1} rod precipitates, commonly formed during ageing treatments of Mg−Zn alloys, have their size and distribution significantly refined in the Ca−Ce containing alloys. The role of alloy chemistry in the formation of the fine basal plate GP zones and the refinement in β′{sub 1} precipitation and their relationships to the hardening behavior are discussed. It is proposed that Ca microalloying governs the formation of the GP zones and the enhancement of hardening, particularly in the under-aged conditions, but that this is aided by a beneficial effect from Ce. - Highlights: • Ce−Ca microalloying additions improve hardening in Mg−Zn, over Ce or Ca alone. • Improved hardening is due to refined β′{sub 1} rods, and fine basal plate precipitates. • Atom probe tomography identifies Ca in both β′{sub 1} and the fine basal plates. • The fine basal plates originate as ordered monolayer GP zones with 1:1 Zn:Ca (at.%). • With ageing GP zones become more Zn-rich and transform to the fine basal plates.

  8. Radiation hardenable coating mixture

    International Nuclear Information System (INIS)

    Howard, D.D.

    1977-01-01

    This invention relates to coatings that harden under radiation and to their compositions. Specifically, this invention concerns unsaturated urethane resins polymerisable by addition and to compositions, hardening under the effect of radiation, containing these resins. These resins feature the presence of at least one unsaturated ethylenic terminal group of structure CH 2 =C and containing the product of the reaction of an organic isocyanate compound with at least two isocyanate groups and one polyester polyol with at least two hydroxyl groups, and one unsaturated monomer compound polymerisable by addition having a single active hydrogen group reacting with the isocyanate [fr

  9. Role of phytohormones under induced drought stress in wheat

    International Nuclear Information System (INIS)

    Bano, A.; Yasmeen, S.

    2010-01-01

    The performance of plants (grown in pots) was studied for drought induced at critical stages of grain filling. Furthermore, the effect of abscisic acid (ABA) and benzyladenine (BA), were also studied on the physiology of plants during grain filling. Seeds of two wheat varieties cv Margalla-99 (cv1) and cv Manthar-2003 (cv2) were sown in pots. Stress treatments were imposed immediately after anthesis. Drought stress resulted in maximum decrease in IAA and GA content but proline and ABA content of leaves showed maximum increase at hard dough stage in cv1. With decrease in soil moisture content under induced drought stress, the percentage decrease in IAA and GA and increase in proline and ABA was greater in leaves and spikes of potted plants. All parameters showed greater decrease in cv2 than in cv1. Application of both ABA and BA, each at 10-6 M applied at anthesis stage, was involved in osmoregulation by the production of proline. The adverse effect of drought started at anthesis stage reaching maximum at hard dough stage. ABA was more effective at the later stages of grain filling whereas, BA was more effective at early stages. (author)

  10. Creep behavior of Zircaloy cladding under variable conditions

    International Nuclear Information System (INIS)

    Matsuo, Y.

    1989-01-01

    Various creep tests of Zircaloy cladding tubes under variable conditions were conducted to investigate which hardening rule can be applicable for the creep behavior associated with condition changes. The results show that the strain-hardening rule is applicable in general when either the stress or temperature conditions change, provided that a certain amount of creep strain recovery is observed in case of stress drop. In stress reversal conditions, however, softening of the material was observed. Strain rate after stress reversal is much higher than that predicted by the strain-hardening rule. In this case, the modified strain-hardening model, considering a recoverable creep-hardening range together with the strain recovery, predicts the creep behavior well. The applicability of the model is ascertained through a verification test that includes stress reversal, strain recovery, stress changes, and temperature changes

  11. Degradation and protein release properties of microspheres prepared from biodegradable poly(lactide-co-glycolide) and ABA triblock copolymers: influence of buffer media on polymer erosion and bovine serum albumin release.

    Science.gov (United States)

    Bittner, B; Witt, C; Mäder, K; Kissel, T

    1999-08-05

    The aim of the present study was to investigate the influence of the chemical insertion of poly(ethylene oxide), PEO, into a poly(lactide-co-glycolide), PLG, backbone on the mechanisms of in vitro degradation and erosion of the polymer. For this purpose microspheres prepared by a modified W/O/W double emulsion technique using ABA triblock copolymers, consisting of PLG A-blocks attached to central PEO B-blocks were compared with microspheres prepared from PLG. Due to their molecular architecture the ABA triblock copolymers differed in their erosion and degradation behavior from PLG. Degradation occurred faster in the ABA polymers by cleavage of ester bonds inside the polymer backbone. Even erosion was shown to start immediately after incubation in different buffer media. By varying pH and ionic strength of the buffer it was found that both mass loss and molecular weight decay were accelerated in alkaline and acidic pH in the case of the ABA triblock copolymers. Although the pH of the medium had a moderate influence on the degradation of PLG, the molecular weight decay was not accompanied by a mass loss during the observation time. In a second set of experiments we prepared bovine serum albumin, BSA, loaded microspheres from both polymers. The release of BSA from ABA microspheres under in vitro conditions parallels the faster swelling and erosion rates. This could be confirmed by electron paramagnetic resonance, EPR, measurements with spin labeled albumin where an influx of buffer medium into the ABA microspheres was already observed within a few minutes. In contrast, PLG microspheres revealed a burst release without any erosion. The current study shows that the environmental conditions affected the degradation and erosion of the pure polymer microspheres in the same way as the release of the model protein. This leads to the conclusion that the more favorable degradation profile of the ABA triblock copolymers was responsible for the improvement of the release profile.

  12. Transcriptional regulation of genes encoding ABA metabolism enzymes during the fruit development and dehydration stress of pear 'Gold Nijisseiki'.

    Science.gov (United States)

    Dai, Shengjie; Li, Ping; Chen, Pei; Li, Qian; Pei, Yuelin; He, Suihuan; Sun, Yufei; Wang, Ya; Kai, Wenbin; Zhao, Bo; Liao, Yalan; Leng, Ping

    2014-09-01

    To investigate the contribution of abscisic acid (ABA) in pear 'Gold Nijisseiki' during fruit ripening and under dehydration stress, two cDNAs (PpNCED1 and PpNCED2) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) (a key enzyme in ABA biosynthesis), two cDNAs (PpCYP707A1 and PpCYP707A2) which encode 8'-hydroxylase (a key enzyme in the oxidative catabolism of ABA), one cDNA (PpACS3) which encodes 1-aminocyclopropane-1-carboxylic acid (ACC), and one cDNA (PpACO1) which encodes ACC oxidase involved in ethylene biosynthesis were cloned from 'Gold Nijisseiki' fruit. In the pulp, peel and seed, expressions of PpNCED1 and PpNCED2 rose in two stages which corresponded with the increase of ABA levels. The expression of PpCYP707A1 dramatically declined after 60-90 days after full bloom (DAFB) in contrast to the changes of ABA levels during this period, while PpCYP707A2 stayed low during the whole development of fruit. Application of exogenous ABA at 100 DAFB increased the soluble sugar content and the ethylene release but significantly decreased the titratable acid and chlorophyll contents in fruits. When fruits harvested at 100 DAFB were stored in the laboratory (25 °C, 50% relative humidity), the ABA content and the expressions of PpNCED1/2 and PpCYP707A1 in the pulp, peel and seed increased significantly, while ethylene reached its highest value after the maximum peak of ABA accompanied with the expressions of PpACS3 and PpACO1. In sum the endogenous ABA may play an important role in the fruit ripening and dehydration of pear 'Gold Nijisseiki' and the ABA level was regulated mainly by the dynamics of PpNCED1, PpNCED2 and PpCYP707A1 at the transcriptional level. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis

    OpenAIRE

    Kai Shu; Ying Qi; Feng Chen; Yongjie Meng; Xiaofeng Luo; Haiwei Shuai; Wenguan Zhou; Jun Ding; Junbo Du; Jiang Liu; Feng Yang; Qiang Wang; Weiguo Liu; Taiwen Yong; Xiaochun Wang

    2017-01-01

    Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease i...

  14. Fatigue hardening and softening studies on strain hardened 18-8 austenitic stainless steel

    International Nuclear Information System (INIS)

    Ramakrishna Prasad, C.; Vasudevan, R.

    1976-01-01

    Metals when subjected to fatigue harden or soften depending on their previous mechanical history. Annealed or mildly cold worked metals are known to harden while severely cold worked metals soften when subjected to fatigue loading. In the present work samples of austenitic 18-8 steel cold worked to 11% and 22% reduction in area were mounted in a vertical pulsator and fatigued in axial tension-compression. Clear cut effects were produced and it was noticed that these depended on the extent of cold work, the amplitude as well as the number of cycles of fatigue and mean stress if any. (orig.) [de

  15. Sap fluxes from different parts of the rootzone modulate xylem ABA concentration during partial rootzone drying and re-wetting.

    Science.gov (United States)

    Pérez-Pérez, J G; Dodd, I C

    2015-04-01

    Previous studies with partial rootzone drying (PRD) irrigation demonstrated that alternating the wet and dry parts of the rootzone (PRD-Alternated) increased leaf xylem ABA concentration ([X-ABA]leaf) compared with maintaining the same wet and dry parts of the rootzone (PRD-Fixed). To determine the relative contributions of different parts of the rootzone to this ABA signal, [X-ABA]leaf of potted, split-root tomato (Solanum lycopersicum) plants was modelled by quantifying the proportional water uptake from different soil compartments, and [X-ABA]leaf responses to the entire pot soil-water content (θpot). Continuously measuring soil-moisture depletion by, or sap fluxes from, different parts of the root system revealed that water uptake rapidly declined (within hours) after withholding water from part of the rootzone, but was rapidly restored (within minutes) upon re-watering. Two hours after re-watering part of the rootzone, [X-ABA]leaf was equally well predicted according to θpot alone and by accounting for the proportional water uptake from different parts of the rootzone. Six hours after re-watering part of the rootzone, water uptake by roots in drying soil was minimal and, instead, occurred mainly from the newly irrigated part of the rootzone, thus [X-ABA]leaf was best predicted by accounting for the proportional water uptake from different parts of the rootzone. Contrary to previous results, alternating the wet and dry parts of the rootzone did not enhance [X-ABA]leaf compared with PRD-Fixed irrigation. Further work is required to establish whether altered root-to-shoot ABA signalling contributes to the improved yields of crops grown with alternate, rather than fixed, PRD. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Processing, Microstructures and Properties of a Dual Phase Precipitation-Hardening PM Stainless Steel

    Science.gov (United States)

    Schade, Christopher

    To improve the mechanical properties of PM stainless steels in comparison with their wrought counterparts, a PM stainless steel alloy was developed which combines a dual-phase microstructure with precipitation-hardening. The use of a mixed microstructure of martensite and ferrite results in an alloy with a combination of the optimum properties of each phase, namely strength and ductility. The use of precipitation hardening via the addition of copper results in additional strength and hardness. A range of compositions was studied in combination with various sintering conditions to determine the optimal thermal processing to achieve the desired microstructure. The microstructure could be varied from predominately ferrite to one containing a high percentage of martensite by additions of copper and a variation of the sintering temperature before rapid cooling. Mechanical properties (transverse rupture strength (TRS), yield strength, tensile strength, ductility and impact toughness) were measured as a function of the v/o ferrite in the microstructure. A dual phase alloy with the optimal combination of properties served as the base for introducing precipitation hardening. Copper was added to the base alloy at various levels and its effect on the microstructure and mechanical properties was quantified. Processing at various sintering temperatures led to a range of microstructures; dilatometry was used utilized to monitor and understand the transformations and the formation of the two phases. The aging process was studied as a function of temperature and time by measuring TRS, yield strength, tensile strength, ductility, impact toughness and apparent hardness. It was determined that optimum aging was achieved at 538°C for 1h. Aging at slightly lower temperatures led to the formation of carbides, which contributed to reduced hardness and tensile strength. As expected, at the peak aging temperature, an increase in yield strength and ultimate tensile strength as well as

  17. Low-cycle fatigue behaviors of pre-hardening Hadfield steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, Bo [College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Wang, Fei [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, Fucheng, E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004 (China)

    2017-05-17

    Low-cycle fatigue behaviors of the pre-hardening (PH) and the water-quenching (WQ) Hadfield steel were studied using optical microscopy, transmission electron microscopy, and electron backscatter diffraction technique. The effect of the PH treatment on low-cycle fatigue behavior of the Hadfield steel was analyzed through comparing the cyclic hardening/softening behaviors and the changing regulations of stress amplitude, internal stress, and effective stress at different total strain amplitudes. Results showed obvious differences in fatigue behaviors between the PH (with a cold rolling deformation degree of 40%) and the WQ Hadfield steels. Transient hardening followed by cyclic stability behavior occurred in the PH Hadfield steel under cyclic loading, whereas cyclic softening behavior was barely observed. The fatigue life of the PH Hadfield steel was higher than that of the WQ Hadfield steel at relatively low strain amplitudes, while a contrary result was obtained at relatively high strain amplitudes. At low strain amplitudes, the deformation twins induced in the PH Hadfield steel could enhance the multiplication and slip process of dislocations, which actually improved the deformation uniformity. The long-range motion of dislocations was intensified at high strain amplitudes. However, the dislocation motion was also blocked by twin boundaries. As a result, the interactions between dislocations and deformation twins enhanced, finally causing severe dislocation accumulation. These two effects of deformation twins on dislocation motion eventually resulted in different low-cycle fatigue behaviors of the PH Hadfield steel.

  18. ABA suppresses Botrytis cinerea elicited NO production in tomato to influence H2O2 generation and increase host susceptibility

    Directory of Open Access Journals (Sweden)

    Anushen eSivakumaran

    2016-05-01

    Full Text Available Abscisic acid (ABA production has emerged a susceptibility factor in plant-pathogen interactions. This work examined the interaction of ABA with NO in tomato following challenge with the ABA-synthesising pathogen, Botrytis cinerea. Trace gas detection using a quantum cascade laser detected NO production within minutes of challenge with B. cinerea whilst photoacoustic laser detection detected ethylene production – an established mediator of defence against this pathogen - occurring after 6 h. Application of the NO generation inhibitor N-Nitro-L-arginine methyl ester (L-NAME suppressed both NO and ethylene production and resistance against B. cinerea. The tomato mutant sitiens fails to accumulate ABA (abscisic acid, shows increased resistance to B. cinerea and we noted exhibited elevated NO and ethylene production. Exogenous application of L-NAME or ABA reduced NO production in sitiens and reduced resistance to B. cinerea. Increased resistance to B. cinerea in sitiens have previously been linked to increased reactive oxygen species (ROS generation but this was reduced in both L-NAME and ABA treated sitiens. Taken together, our data suggests that ABA can decreases resistance to B. cinerea via reduction of NO production which also suppresses both ROS and ethylene production.

  19. The p450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea

    DEFF Research Database (Denmark)

    Siewers, V.; Smedsgaard, Jørn; Tudzynski, P.

    2004-01-01

    The phytopathogenic ascomycete Botrytis cinerea is known to produce abscisic acid (ABA), which is thought to be involved in host-pathogen interaction. Biochemical analyses had previously shown that, in contrast to higher plants, the fungal ABA biosynthesis probably does not proceed via carotenoids...

  20. The characterization of Vicker's microhardness indentations and pile-up profiles as a strain-hardening microprobe

    International Nuclear Information System (INIS)

    Santos, C. Jr.

    1998-04-01

    Microhardness measurements have long been used to examine strength properties and changes in strength properties in metals, for example, as induced by irradiation. Microhardness affords a relatively simple test that can be applied to very small volumes of material. Microhardness is nominally related to the flow stress of the material at a fixed level of plastic strain. Further, the geometry of the pile-up of material around the indentation is related to the strain-hardening behavior of a material; steeper pile-ups correspond to smaller strain-hardening rates. In this study the relationship between pile-up profiles and strain hardening is examined using both experimental and analytical methods. Vickers microhardness tests have been performed on a variety of metal alloys including low alloy, high Cr and austenitic stainless steels. The pile-up topology around the indentations has been quantified using confocal microscopy techniques. In addition, the indentation and pile-up geometry has been simulated using finite element method techniques. These results have been used to develop an improved quantification of the relationship between the pile-up geometry and the strain-hardening constitutive behavior of the test material

  1. Reactive oxygen species induced by heat stress during grain filling of rice (Oryza sativa L.) are involved in occurrence of grain chalkiness.

    Science.gov (United States)

    Suriyasak, Chetphilin; Harano, Keisuke; Tanamachi, Koichiro; Matsuo, Kazuhiro; Tamada, Aina; Iwaya-Inoue, Mari; Ishibashi, Yushi

    2017-09-01

    Heat stress during grain filling increases rice grain chalkiness due to increased activity of α-amylase, which hydrolyzes starch. In rice and barley seeds, reactive oxygen species (ROS) produced after imbibition induce α-amylase activity via regulation of gibberellin (GA) and abscisic acid (ABA) levels during seed germination. Here, we examined whether ROS is involved in induction of grain chalkiness by α-amylase in developing rice grains under heat stress. To elucidate the role of ROS in grain chalkiness, we grew post-anthesis rice plants (Oryza sativa L. cv. Koshihikari) under control (25°C) or heat stress (30°C) conditions with or without antioxidant (dithiothreitol) treatment. The developing grains were analyzed for expression of NADPH oxidases, GA biosynthesis genes (OsGA3ox1, OsGA20ox1), ABA catabolism genes (OsABA8'OH1, OsABA8'OH2) and an α-amylase gene (OsAmy3E), endogenous H 2 O 2 content and the grain quality. In grains exposed to heat stress, the expression of NADPH oxidase genes (especially, OsRbohB, OsRbohD, OsRbohF and OsRbohI) and the ROS content increased. Heat stress also increased the expression of OsGA3ox1, OsGA20ox1, OsABA8'OH1, OsABA8'OH2 and OsAmy3E. On the other hand, dithiothreitol treatment reduced the effects of heat stress on the expression of these genes and significantly reduced grain chalkiness induced by heat stress. These results suggest that, similar to cereal seed germination mechanism, ROS produced under heat stress is involved in α-amylase induction in maturating rice grains through GA/ABA metabolism, and consequently caused grain chalkiness. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Online frequency adjustment for energy optimisation of induction hardening processes; Energetische Optimierung von Induktionshaertungsprozessen durch Online-Frequenzanpassung

    Energy Technology Data Exchange (ETDEWEB)

    Ulferts, Alexander; Andrae, Frank [HWG Inductoheat GmbH, Reichenbach (Germany)

    2011-06-15

    It is frequently necessary to harden multiple points on a component. The hardness specification may, in many cases, be variable, and the boundary conditions often diverse. The relevant sectors of the component are in many cases more deeply hardened, to enhance strength and vibration-fatigue properties, with simultaneous retention of ductile properties in the core, in order to reduce the danger of fracture of the heat-treated component in service. In other cases, the hardening process is intended more to provide protection against elevated surface loadings and against abrasive erosion of material. Both of these applications are illustrated on the basis of a component in the context of this article, and the requirements made on the inductive hardening process discussed. The authors consciously raise the question of the limits of technical feasibility. (orig.)

  3. A review of the stages of work hardening

    Energy Technology Data Exchange (ETDEWEB)

    Rollett, A.D.; Kocks, U.F.

    1993-07-01

    Stages of work hardening are reviewed with emphasis on links between each stage. Simple quantitative descriptions are given for each stage. Similarities between stage I, easy glide, and stage IV, large strain hardening, are pointed out both in terms of magnitude of the hardening rate and of the underlying mechanism of dislocation debris accumulation. Stage II is described as an athermal hardening stage that occurs when statistical variations in the dislocation ``forest`` lead to geometrical storage of dislocations. The steadily decreasing hardening rate observed in stage III is characterized by the increasing rate of loss of dislocation density due to dynamic recovery. Stage III appears to have an asymptote to a saturation stress which is determined by the characteristics of the dislocation tangles, or cell walls. The imperfect nature of the dynamic recovery process, however, leads to the accumulation of dislocation debris and this, by analogy with stage 1, causes the apparent saturation stress to rise, thus causing stage IV.

  4. Thermal hardening of saturated clays. Application to underground storage of radioactive wastes

    International Nuclear Information System (INIS)

    Picard, Jean-Marc

    1994-01-01

    Saturated clays submitted to constant mechanical loading and slow temperature increase frequently undergo irreversible contractions. This phenomena is described here by means of a change of plastic limits induced by temperature only, called thermal hardening. Constitutive laws adapted to this kind of plastic behaviour can be formulated within a general framework that satisfies thermodynamical principles. It shows that this coupling results from the presence of a latent heat during the isothermal hardening of plastic limits. A thermomechanical extension of Cam Clay model is then proposed and used in the analysis of laboratory thermomechanical tests performed on clay materials. Making use of tests already published, we show the adequacy of the concept of thermal hardening for clay behaviour. Some clay from deep geological formation considered for the disposal of radioactive waste exhibit thermal hardening in laboratory tests. The consequences for the underground storage facilities during the thermal loading created by the waste are investigated by means of in situ tests as well as numerical computation. The measurement around a heating probe buried in the clay mass demonstrate the significance of thermo-hydro-mechanical couplings. An accurate understanding of in situ measurements is achieved by means of numerical modeling in which the interaction between the various loading of the tests (excavation, pore pressure seepage, and heating) is carefully taken into account. Thermal hardening of the clay appears to be of little influence in these in situ tests. On the other hand, the magnitude of thermo-hydro-mechanical couplings observed in situ are higher than might have been expected from laboratory tests. A more accurate prediction is obtained if one takes into account the more stiffer behaviour of clays when they are subjected to small deformations. (authors)

  5. Radiation-hardened bulk Si-gate CMOS microprocessor family

    International Nuclear Information System (INIS)

    Stricker, R.E.; Dingwall, A.G.F.; Cohen, S.; Adams, J.R.; Slemmer, W.C.

    1979-01-01

    RCA and Sandia Laboratories jointly developed a radiation-hardened bulk Si-gate CMOS technology which is used to fabricate the CDP-1800 series microprocessor family. Total dose hardness of 1 x 10 6 rads (Si) and transient upset hardness of 5 x 10 8 rads (Si)/sec with no latch up at any transient level was achieved. Radiation-hardened parts manufactured to date include the CDP-1802 microprocessor, the CDP-1834 ROM, the CDP-1852 8-bit I/O port, the CDP-1856 N-bit 1 of 8 decoder, and the TCC-244 256 x 4 Static RAM. The paper is divided into three parts. In the first section, the basic fundamentals of the non-hardened C 2 L technology used for the CDP-1800 series microprocessor parts is discussed along with the primary reasons for hardening this technology. The second section discusses the major changes in the fabrication sequence that are required to produce radiation-hardened devices. The final section details the electrical performance characteristics of the hardened devices as well as the effects of radiation on device performance. Also included in this section is a discussion of the TCC-244 256 x 4 Static RAM designed jointly by RCA and Sandia Laboratories for this application

  6. Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice.

    Science.gov (United States)

    Chen, Yixing; Zhou, Xiaojin; Chang, Shu; Chu, Zhilin; Wang, Hanmeng; Han, Shengcheng; Wang, Yingdian

    2017-12-02

    The calcium-dependent protein kinases (CDPKs) are a class of plant-specific kinase that directly bind Ca 2+ and mediate the calcium-signaling pathways to play important physiological roles in growth and development. The rice genome contains 31 CDPK genes, one of which, OsCPK21, is known to modulate the abscisic acid (ABA) and salt stress responses in this crop; however, the molecular mechanisms underlying this regulation are largely unknown. In the present study, we performed yeast two-hybrid screening, glutathione S-transferase pull-down, co-immunoprecipitation, and bimolecular fluorescence complementation assays to confirm the interaction between OsCPK21 and one of its putative targets, Os14-3-3 (OsGF14e). We used an in vitro kinase assay and site-directed mutagenesis to verify that OsCPK21 phosphorylates OsGF14e at Tyr-138. We used real-time PCR to reveal that several ABA and salt inducible genes were more highly expressed in the OsCPK21-OE and OsGF14e WT-OE plants than in the mutant OsGF14e Y138A-OE and wild-type plants. These results suggest that OsCPK21 phosphorylates OsGF14e to facilitate the response to ABA and salt stress. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. idRHa+ProMod - Rail Hardening Control System

    International Nuclear Information System (INIS)

    Ferro, L

    2016-01-01

    idRHa+ProMod is the process control system developed by Primetals Technologies to foresee the thermo-mechanical evolution and micro-structural composition of rail steels subjected to slack quenching into idRHa+ Rail Hardening equipments in a simulation environment. This tool can be used both off-line or in-line, giving the user the chance to test and study the best cooling strategies or letting the automatic control system free to adjust the proper cooling recipe. Optimization criteria have been tailored in order to determine the best cooling conditions according to the metallurgical requirements imposed by the main rail standards and also taking into account the elastoplastic bending phenomena occurring during all stages of the head hardening process. The computational core of idRHa+ProMod is a thermal finite element procedure coupled with special algorithms developed to work out the main thermo-physical properties of steel, to predict the non-isothermal austenite decomposition into all the relevant phases and subsequently to evaluate the amount of latent heat of transformation released, the compound thermal expansion coefficient and the amount of plastic deformation in the material. Air mist and air blades boundary conditions have been carefully investigated by means of pilot plant tests aimed to study the jet impingement on rail surfaces and the cooling efficiency at all working conditions. Heat transfer coefficients have been further checked and adjusted directly on field during commissioning. idRHa+ is a trademark of Primetals Technologies Italy Srl (paper)

  8. idRHa+ProMod - Rail Hardening Control System

    Science.gov (United States)

    Ferro, L.

    2016-03-01

    idRHa+ProMod is the process control system developed by Primetals Technologies to foresee the thermo-mechanical evolution and micro-structural composition of rail steels subjected to slack quenching into idRHa+ Rail Hardening equipments in a simulation environment. This tool can be used both off-line or in-line, giving the user the chance to test and study the best cooling strategies or letting the automatic control system free to adjust the proper cooling recipe. Optimization criteria have been tailored in order to determine the best cooling conditions according to the metallurgical requirements imposed by the main rail standards and also taking into account the elastoplastic bending phenomena occurring during all stages of the head hardening process. The computational core of idRHa+ProMod is a thermal finite element procedure coupled with special algorithms developed to work out the main thermo-physical properties of steel, to predict the non-isothermal austenite decomposition into all the relevant phases and subsequently to evaluate the amount of latent heat of transformation released, the compound thermal expansion coefficient and the amount of plastic deformation in the material. Air mist and air blades boundary conditions have been carefully investigated by means of pilot plant tests aimed to study the jet impingement on rail surfaces and the cooling efficiency at all working conditions. Heat transfer coefficients have been further checked and adjusted directly on field during commissioning. idRHa+ is a trademark of Primetals Technologies Italy Srl

  9. Micro-mechanical modelling of ductile failure in 6005A aluminium using a physics based strain hardening larw including stage IV

    DEFF Research Database (Denmark)

    Simar, Aude; Nielsen, Kim Lau; de Meester, Bruno

    2010-01-01

    The strain hardening and damage behaviour of isothermally heat treated 6005A aluminium is investigated in order to link the thermal treatment conditions, microstructure and fracture strain. The need for a plastic flow rule involving a stage IV hardening at large strain was found essential to gene...

  10. Inspection of the grapevine BURP superfamily highlights an expansion of RD22 genes with distinctive expression features in berry development and ABA-mediated stress responses.

    Science.gov (United States)

    Matus, José Tomás; Aquea, Felipe; Espinoza, Carmen; Vega, Andrea; Cavallini, Erika; Dal Santo, Silvia; Cañón, Paola; Rodríguez-Hoces de la Guardia, Amparo; Serrano, Jennifer; Tornielli, Giovanni Battista; Arce-Johnson, Patricio

    2014-01-01

    The RESPONSIVE TO DEHYDRATION 22 (RD22) gene is a molecular link between abscisic acid (ABA) signalling and abiotic stress responses. Its expression has been used as a reliable ABA early response marker. In Arabidopsis, the single copy RD22 gene possesses a BURP domain also located at the C-terminus of USP embryonic proteins and the beta subunit of polygalacturonases. In grapevine, a RD22 gene has been identified but putative paralogs are also found in the grape genome, possibly forming a large RD22 family in this species. In this work, we searched for annotations containing BURP domains in the Vitis vinifera genome. Nineteen proteins were defined by a comparative analysis between the two genome predictions and RNA-Seq data. These sequences were compared to other plant BURPs identified in previous genome surveys allowing us to reconceive group classifications based on phylogenetic relationships and protein motif occurrence. We observed a lineage-specific evolution of the RD22 family, with the biggest expansion in grapevine and poplar. In contrast, rice, sorghum and maize presented highly expanded monocot-specific groups. The Vitis RD22 group may have expanded from segmental duplications as most of its members are confined to a region in chromosome 4. The inspection of transcriptomic data revealed variable expression of BURP genes in vegetative and reproductive organs. Many genes were induced in specific tissues or by abiotic and biotic stresses. Three RD22 genes were further studied showing that they responded oppositely to ABA and to stress conditions. Our results show that the inclusion of RNA-Seq data is essential while describing gene families and improving gene annotations. Robust phylogenetic analyses including all BURP members from other sequenced species helped us redefine previous relationships that were erroneously established. This work provides additional evidence for RD22 genes serving as marker genes for different organs or stresses in grapevine.

  11. Investigation of a Hardened Cement Paste Grout

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Sørensen, Eigil Verner

    This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S.......This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S....

  12. Accurate hardening modeling as basis for the realistic simulation of sheet forming processes with complex strain-path changes

    International Nuclear Information System (INIS)

    Levkovitch, Vladislav; Svendsen, Bob

    2007-01-01

    Sheet metal forming involves large strains and severe strain-path changes. Large plastic strains lead in many metals to the development of persistent dislocation structures resulting in strong flow anisotropy. This induced anisotropic behavior manifests itself in the case of a strain path change through very different stress-strain responses depending on the type of the strain-path change. While many metals exhibit a drop of the yield stress (Bauschinger effect) after a load reversal, some metals show an increase of the yield stress after an orthogonal strain-path change (so-called cross hardening). To model the Bauschinger effect, kinematic hardening has been successfully used for years. However, the usage of the kinematic hardening leads automatically to a drop of the yield stress after an orthogonal strain-path change contradicting tests exhibiting the cross hardening effect. Another effect, not accounted for in the classical elasto-plasticity, is the difference between the tensile and compressive strength, exhibited e.g. by some steel materials. In this work we present a phenomenological material model whose structure is motivated by polycrystalline modeling that takes into account the evolution of polarized dislocation structures on the grain level - the main cause of the induced flow anisotropy on the macroscopic level. The model considers besides the movement of the yield surface and its proportional expansion, as it is the case in conventional plasticity, also the changes of the yield surface shape (distortional hardening) and accounts for the pressure dependence of the flow stress. All these additional attributes turn out to be essential to model the stress-strain response of dual phase high strength steels subjected to non-proportional loading

  13. Accurate Hardening Modeling As Basis For The Realistic Simulation Of Sheet Forming Processes With Complex Strain-Path Changes

    International Nuclear Information System (INIS)

    Levkovitch, Vladislav; Svendsen, Bob

    2007-01-01

    Sheet metal forming involves large strains and severe strain-path changes. Large plastic strains lead in many metals to the development of persistent dislocation structures resulting in strong flow anisotropy. This induced anisotropic behavior manifests itself in the case of a strain path change through very different stress-strain responses depending on the type of the strain-path change. While many metals exhibit a drop of the yield stress (Bauschinger effect) after a load reversal, some metals show an increase of the yield stress after an orthogonal strain-path change (so-called cross hardening). To model the Bauschinger effect, kinematic hardening has been successfully used for years. However, the usage of the kinematic hardening leads automatically to a drop of the yield stress after an orthogonal strain-path change contradicting tests exhibiting the cross hardening effect. Another effect, not accounted for in the classical elasto-plasticity, is the difference between the tensile and compressive strength, exhibited e.g. by some steel materials. In this work we present a phenomenological material model whose structure is motivated by polycrystalline modeling that takes into account the evolution of polarized dislocation structures on the grain level - the main cause of the induced flow anisotropy on the macroscopic level. The model considers besides the movement of the yield surface and its proportional expansion, as it is the case in conventional plasticity, also the changes of the yield surface shape (distortional hardening) and accounts for the pressure dependence of the flow stress. All these additional attributes turn out to be essential to model the stress-strain response of dual phase high strength steels subjected to non-proportional loading

  14. Abscisic acid (ABA) and key proteins in its perception and signaling pathways are ancient, but their roles have changed through time.

    Science.gov (United States)

    Sussmilch, Frances C; Atallah, Nadia M; Brodribb, Timothy J; Banks, Jo Ann; McAdam, Scott A M

    2017-09-02

    Homologs of the Arabidopsis core abscisic acid (ABA) signaling component OPEN STOMATA1 (OST1) are best known for their role in closing stomata in angiosperm species. We recently characterized a fern OST1 homolog, GAMETOPHYTES ABA INSENSITIVE ON ANTHERDIOGEN 1 (GAIA1), which is not required for stomatal closure in ferns, consistent with physiologic evidence that shows the stomata of these plants respond passively to changes in leaf water status. Instead, gaia1 mutants reveal a critical role in ABA signaling for spore dormancy and sex determination, in a system regulated by antagonism between ABA and the gibberellin (GA)-derived fern hormone antheridiogen (A CE ). ABA and key proteins, including ABA receptors from the PYR/PYL/RCAR family and negative regulators of ABA-signaling from Group A of the type-2C protein phosphatases (PP2Cs), in addition to OST1 homologs, can be found in all terrestrial land plant lineages, ranging from liverworts that lack stomata, to angiosperms. As land plants have evolved and diversified over the past 450 million years, so too have the roles of this important plant hormone and the genes involved in its signaling and perception.

  15. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 - and ABA-induced stomatal closing.

    Science.gov (United States)

    Azoulay-Shemer, Tamar; Palomares, Axxell; Bagheri, Andisheh; Israelsson-Nordstrom, Maria; Engineer, Cawas B; Bargmann, Bastiaan O R; Stephan, Aaron B; Schroeder, Julian I

    2015-08-01

    Stomata mediate gas exchange between the inter-cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2 ]. [CO2 ] in leaves mediates stomatal movements. The role of guard cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll-deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard cell specific enhancer trap line. Our data show that more than 90% of guard cells were chlorophyll-deficient. Interestingly, approximately 45% of stomata had an unusual, previously not-described, morphology of thin-shaped chlorophyll-less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole-leaf photosynthetic parameters (PSII, qP, qN, FV '/FM' ) were comparable with wild-type plants. Time-resolved intact leaf gas-exchange analyses showed a reduction in stomatal conductance and CO2 -assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2 ] shifts. Detailed stomatal aperture measurements of normal kidney-shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2 ] elevation and abscisic acid (ABA), while thin-shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2 ] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard cell CO2 and ABA signal transduction are not directly modulated by guard cell photosynthesis/electron transport. Moreover, the finding that chlorophyll-less stomata cause a 'deflated' thin-shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard cell turgor production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  16. Numerical and experimental comparison of plastic work-hardening rules

    International Nuclear Information System (INIS)

    Haisler, W.E.

    1977-01-01

    The purpose of this paper is to describe recent numerical and experimental correlation studies of several plastic work-hardening rules. The mechanical sublayer model and the combined kinematic-isotropic hardening rules are examined and the numerical results for several structural geometries are compared to experimental results. Both monotonic and cyclic loads are considered. The governing incremental plasticity relations are developed for both work-hardening models. The combined kinematic-isotropic hardening model is developed in terms of a ratio γ which controls the relative contribution of kinematic hardening (yield surface translation) and isotropic hardening (yield surface expansion). In addition to making use of a uniaxial stress-strain curve as input data, the model allows for the input of a yield surface size vs. uniaxial plastic strain curve obtained from a cyclic uniaxial reverse loading test. The mechanical sublayer model is developed in general form and a new method for determining the sublayer parameters (stress weighting factors and yield stresses) is presented. It is demonstrated that former procedures used to obtain the sublayer parameters are inconsistent for multiaxial loading. Numerical and experimental results are presented for a cylinder, circular plate with punch, and a steel pressure vessel. The numerical results are obtained with the computer program AGGIE I. The comparison study indicates that reasonable agreement is obtained with both hardening models; the choice depending upon whether the loading is monotonic or cyclic

  17. Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes.

    Science.gov (United States)

    Tian, Y Z; Zhao, L J; Chen, S; Shibata, A; Zhang, Z F; Tsuji, N

    2015-11-19

    It is commonly accepted that twinning can induce an increase of strain-hardening rate during the tensile process of face-centered cubic (FCC) metals and alloys with low stacking fault energy (SFE). In this study, we explored the grain size effect on the strain-hardening behavior of a Cu-15 at.%Al alloy with low SFE. Instead of twinning, we detected a significant contribution of stacking faults (SFs) irrespective of the grain size even in the initial stage of tensile process. In contrast, twinning was more sensitive to the grain size, and the onset of deformation twins might be postponed to a higher strain with increasing the grain size. In the Cu-15 at.%Al alloy with a mean grain size of 47 μm, there was a stage where the strain-hardening rate increases with strain, and this was mainly induced by the SFs instead of twinning. Thus in parallel with the TWIP effect, we proposed that SFs also contribute significantly to the plasticity of FCC alloys with low SFE.

  18. Prevalence of falciparum malaria amongst pregnant women in Aba ...

    African Journals Online (AJOL)

    Malaria during pregnancy poses a substantial risk to mother and foetus especially an infection with Plasmodium falciparum. This study was undertaken to assess the prevalence of falciparum malaria among pregnant women in Aba South Local Government Area, Abia State, south-east Nigeria. Blood samples from 432 ...

  19. Microstructural and Mechanical Study of Press Hardening of Thick Boron Steel Sheet

    Science.gov (United States)

    Pujante, J.; Garcia-Llamas, E.; Golling, S.; Casellas, D.

    2017-09-01

    Press hardening has become a staple in the production of automotive safety components, due to the combination of high mechanical properties and form complexity it offers. However, the use of press hardened components has not spread to the truck industry despite the advantages it confers, namely affordable weight reduction without the use of exotic materials, would be extremely attractive for this sector. The main reason for this is that application of press hardened components in trucks implies adapting the process to the manufacture of thick sheet metal. This introduces an additional layer of complexity, mainly due to the thermal gradients inside the material resulting in though-thickness differences in austenitization and cooling, potentially resulting in complex microstructure and gradient of mechanical properties. This work presents a preliminary study on the press hardening of thick boron steel sheet. First of all, the evolution of the sheet metal during austenitization is studied by means of dilatometry tests and by analysing the effect of furnace dwell time on grain size. Afterwards, material cooled using different cooling strategies, and therefore different effective cooling rates, is studied in terms of microstructure and mechanical properties. Initial results from finite element simulation are compared to experimental results, focusing on the phase composition in through thickness direction. Results show that industrial-equivalent cooling conditions do not lead to gradient microstructures, even in extreme scenarios involving asymmetrical cooling.

  20. COMPLEX SURFACE HARDENING OF STEEL ARTICLES

    Directory of Open Access Journals (Sweden)

    A. V. Kovalchuk

    2014-01-01

    Full Text Available The method of complex surface hardening of steel detailswas designed. The method is a compound of two processes of hardening: chemical heat treatment and physical vapor deposition (PVD of the coating. The result, achieved in this study is much higher, than in other work on this topic and is cumulative. The method designed can be used in mechanical engineering, medicine, energetics and is perspective for military and space technologies.

  1. Influence of Cultivar on the Postharvest Hardening of Trifoliate Yam (Dioscorea dumetorum Tubers

    Directory of Open Access Journals (Sweden)

    Christian Siadjeu

    2016-01-01

    Full Text Available The influence of cultivar on the postharvest hardening of Dioscorea dumetorum tubers was assessed. 32 cultivars of D. dumetorum tubers were planted in April 2014, harvested at physiological maturity, and stored under prevailing tropical ambient conditions (19–28°C, 60–85% RH for 0, 5, 14, 21, and 28 days. Samples were evaluated for cooked hardness. Results showed that one cultivar, Ibo sweet 3, was not affected by the hardening phenomenon. The remaining 31 were all subject to the hardening phenomenon at different degree. Cooked hardness increased more rapidly in cultivars with many roots on the tuber surface compared to cultivars with few roots on the tuber surface. When both the characteristics flesh colour and number of roots on tuber surface were associated, cooked hardness in cultivars with yellow flesh and many roots increased more rapidly than in cultivars with white flesh and many roots, whereas cooked hardness in cultivars with yellow flesh and few roots increased more slowly than in cultivars with white flesh and few roots. Accessions collected in high altitude increased more rapidly compared to accessions collected in low altitude. The cultivar Ibo sweet 3 identified in this study could provide important information for breeding program of D. dumetorum against postharvest hardening phenomenon.

  2. Effect of martensitic phase transformation on the hardening behavior and texture evolution in a 304L stainless steel under compression at liquid nitrogen temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cakmak, Ercan [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Vogel, Sven C. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Choo, Hahn, E-mail: hchoo@utk.edu [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States)

    2014-01-01

    The martensitic phase transformation behavior and its relations with the macroscopic hardening rate and the evolutions in the crystallographic texture of the constituent phases were studied for a 304L stainless steel that exhibits the transformation induced plasticity (TRIP) phenomenon. Time-of-flight neutron diffraction was used to measure the evolutions of phase fractions and texture in terms of pole figures as a function of the applied compressive strain at the liquid nitrogen temperature (77 K). The phase transformation analyses show that the hcp-martensite phase fraction reaches a significant level of about 22 wt% at 15% applied strain and remains constant. The bcc-martensite phase fraction increases continuously with the deformation that correlates well with the macroscopic hardening behavior. Furthermore, the texture analyses show that transformation has dominant effect on the bcc-martensite texture evolution with little influence from subsequent plastic deformation at current testing conditions.

  3. Effect of martensitic phase transformation on the hardening behavior and texture evolution in a 304L stainless steel under compression at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Cakmak, Ercan; Vogel, Sven C.; Choo, Hahn

    2014-01-01

    The martensitic phase transformation behavior and its relations with the macroscopic hardening rate and the evolutions in the crystallographic texture of the constituent phases were studied for a 304L stainless steel that exhibits the transformation induced plasticity (TRIP) phenomenon. Time-of-flight neutron diffraction was used to measure the evolutions of phase fractions and texture in terms of pole figures as a function of the applied compressive strain at the liquid nitrogen temperature (77 K). The phase transformation analyses show that the hcp-martensite phase fraction reaches a significant level of about 22 wt% at 15% applied strain and remains constant. The bcc-martensite phase fraction increases continuously with the deformation that correlates well with the macroscopic hardening behavior. Furthermore, the texture analyses show that transformation has dominant effect on the bcc-martensite texture evolution with little influence from subsequent plastic deformation at current testing conditions

  4. Parents' Experiences of Applied Behaviour Analysis (ABA)-Based Interventions for Children Diagnosed with Autistic Spectrum Disorder

    Science.gov (United States)

    McPhilemy, Catherine; Dillenburger, Karola

    2013-01-01

    Applied behaviour analysis (ABA)-based programmes are endorsed as the gold standard for treatment of children with autistic spectrum disorder (ASD) in most of North America. This is not the case in most of Europe, where instead a non-specified "eclectic" approach is adopted. We explored the social validity of ABA-based interventions with…

  5. Radiation-hardened control system

    International Nuclear Information System (INIS)

    Vandermolen, R.I.; Smith, S.F.; Emery, M.S.

    1993-01-01

    A radiation-hardened bit-slice control system with associated input/output circuits was developed to prove that programmable circuits could be constructed to successfully implement intelligent functions in a highly radioactive environment. The goal for this effort was to design and test a programmable control system that could withstand a minimum total dose of 10 7 rads (gamma). The Radiation Hardened Control System (RHCS) was tested in operation at a dose rate that ranged up to 135 krad/h, with an average total dose of 10.75 Mrads. Further testing beyond the required 10 7 rads was also conducted. RHCS performed properly through the target dose of 10 7 rads, and sporadic intermittent failures in some programmable logic devices were noted after ∼ 13 Mrads

  6. Evaluation of irradiation hardening of proton irradiated stainless steels by nanoindentation

    International Nuclear Information System (INIS)

    Yabuuchi, Kiyohiro; Kuribayashi, Yutaka; Nogami, Shuhei; Kasada, Ryuta; Hasegawa, Akira

    2014-01-01

    Ion irradiation experiments are useful for investigating irradiation damage. However, estimating the irradiation hardening of ion-irradiated materials is challenging because of the shallow damage induced region. Therefore, the purpose of this study is to prove usefulness of nanoindentation technique for estimation of irradiation hardening for ion-irradiated materials. SUS316L austenitic stainless steel was used and it was irradiated by 1 MeV H + ions to a nominal displacement damage of 0.1, 0.3, 1, and 8 dpa at 573 K. The irradiation hardness of the irradiated specimens were measured and analyzed by Nix–Gao model. The indentation size effect was observed in both unirradiated and irradiated specimens. The hardness of the irradiated specimens changed significantly at certain indentation depths. The depth at which the hardness varied indicated that the region deformed by the indenter had reached the boundary between the irradiated and unirradiated regions. The hardness of the irradiated region was proportional to the inverse of the indentation depth in the Nix–Gao plot. The bulk hardness of the irradiated region, H 0 , estimated by the Nix–Gao plot and Vickers hardness were found to be related to each other, and the relationship could be described by the equation, HV = 0.76H 0 . Thus, the nanoindentation technique demonstrated in this study is valuable for measuring irradiation hardening in ion-irradiated materials

  7. Effects of exogenous ABA application on post-anthesis dry matter redistribution and grain starch accumulation of winter wheat with different staygreen characteristics

    Directory of Open Access Journals (Sweden)

    Dongqing Yang

    2014-04-01

    Full Text Available The objective of this study was to investigate whether and how exogenous abscisic acid (ABA is involved in mediating starch accumulation in the grain and redistribution of carbohydrates during grain filling of two wheat cultivars with different staygreen characteristics. At blooming stage, plants of Wennong 6 (a staygreen cultivar and Jimai 20 (control were sprayed with 10 mg L− 1 abscisic acid (ABA for 3 days. The application of ABA significantly (P < 0.05 increased grain filling rate, starch accumulation rate and content, remobilization of dry matters to kernels, and 1000-grain weight of the two cultivars. Exogenous ABA markedly (P < 0.05 increased grain yield at maturity, and Wennong 6 and Jiami 20 showed 14.14% and 4.86% higher compared yield than the control. Dry matter accumulation after anthesis of Wennong 6 was also significantly (P < 0.05 influenced by exogenous ABA, whereas that of Jimai 20 was unchanged. Application of ABA increased endogenous zeatin riboside (ZR content 7 days after anthesis (DAA, and spraying ABA significantly increased endogenous indole-3-acetic acid (IAA and ABA contents from 7 to 21 DAA and decreased gibberellin (GA3 content at 14 DAA, but increased GA3 content from 21 to 35 DAA. The results suggested that increased yield of staygreen was due to greater starch assimilation owing to a higher filling rate and longer grain-filling duration.

  8. The Role of Mesolimbic Reward Neurocircuitry in Prevention and Rescue of the Activity-Based Anorexia (ABA) Phenotype in Rats.

    Science.gov (United States)

    Foldi, Claire J; Milton, Laura K; Oldfield, Brian J

    2017-11-01

    Patients suffering from anorexia nervosa (AN) become anhedonic; unable or unwilling to derive normal pleasures and avoid rewarding outcomes, most profoundly in food intake. The activity-based anorexia (ABA) model recapitulates many of the characteristics of the human condition, including anhedonia, and allows investigation of the underlying neurobiology of AN. The potential for increased neuronal activity in reward/hedonic circuits to prevent and rescue weight loss is investigated in this model. The mesolimbic pathway extending from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) was activated using a dual viral strategy, involving retrograde transport of Cre (CAV-2-Cre) to the VTA and coincident injection of DREADD receptors (AAV-hSyn-DIO-hM3D(Gq)-mCherry). Systemic clozapine-n-oxide (CNO; 0.3 mg/kg) successfully recruited a large proportion of the VTA-NAc dopaminergic projections, with activity evidenced by colocalization with elevated levels of Fos protein. The effects of reward circuit activation on energy balance and predicted survival was investigated in female Sprague-Dawley rats, where free access to running wheels was paired with time-limited (90 min) access to food, a paradigm (ABA) which will cause anorexia and death if unchecked. Excitation of the reward pathway substantially increased food intake and food anticipatory activity (FAA) to prevent ABA-associated weight loss, while overall locomotor activity was unchanged. Similar activation of reward circuitry, delayed until establishment of the ABA phenotype, rescued rats from their precipitous weight loss. Although these data are consistent with shifts primarily in food intake, the contribution of mechanisms including energy expenditure to survival remains to be determined. These results will inform the neurobiological underpinnings of AN, and provide insight into the mechanisms of reward circuitry relevant to feeding and weight loss.

  9. Hardening of niobium alloys at precrystallization annealing

    International Nuclear Information System (INIS)

    Vasil'eva, E.V.; Pustovalov, V.A.

    1989-01-01

    Niobium base alloys were investigated. It is shown that precrystallization annealing of niobium-molybdenum, niobium-vanadium and niobium-zirconium alloys elevates much more sufficiently their resistance to microplastic strains, than to macroplastic strains. Hardening effect differs sufficiently for different alloys. The maximal hardening is observed for niobium-vanadium alloys, the minimal one - for niobium-zirconium alloys

  10. Voltage-Dependent Anion Channel 2 of Arabidopsis thaliana (AtVDAC2 Is Involved in ABA-Mediated Early Seedling Development

    Directory of Open Access Journals (Sweden)

    Xufeng Li

    2009-05-01

    Full Text Available The voltage-dependent anion channel (VDAC is the major transport protein in the outer membrane of mitochondria and plays crucial roles in energy metabolism, apoptosis, and metabolites transport. In plants, the expression of VDACs can be affected by different stresses, including drought, salinity and pathogen defense. In this study, we investigated the expression pattern of AtVDAC2 in A. thaliana and found ABA suppressed the accumulation of AtVDAC2 transcripts. Further, phenotype analysis of this VDAC deregulated-expression transgenic Arabidopsis plants indicated that AtVDAC2 anti-sense line showed an ABA-insensitivity phenotype during the early seedling development under ABA treatment. The results suggested that AtVDAC2 might be involved in ABA signaling in A. thaliana.

  11. Temperature Effects on the Tensile Properties of Precipitation-Hardened Al-Mg-Cu-Si Alloys

    Directory of Open Access Journals (Sweden)

    J.B. Ferguson

    2016-02-01

    Full Text Available Because the mechanical performance of precipitation-hardened alloys can be significantly altered with temperature changes, understanding and predicting the effects of temperatures on various mechanical properties for these alloys are important. In the present work, an analytical model has been developed to predict the elastic modulus, the yield stress, the failure stress, and the failure strain taking into consideration the effect of temperatures for precipitation-hardenable Al-Mg-Cu-Si Alloys (Al-A319 alloys. In addition, other important mechanical properties of Al-A319 alloys including the strain hardening exponent, the strength coefficient, and the ductility parameter can be estimated using the current model. It is demonstrated that the prediction results based on the proposed model are in good agreement with those obtained experimentally in Al-A319 alloys in the as-cast condition and after W and T7 heat treatments.

  12. Expression Analysis of Four Peroxiredoxin Genes from Tamarix hispida in Response to Different Abiotic Stresses and Exogenous Abscisic Acid (ABA

    Directory of Open Access Journals (Sweden)

    Guiyan Yang

    2012-03-01

    Full Text Available Peroxiredoxins (Prxs are a recently discovered family of antioxidant enzymes that catalyze the reduction of peroxides and alkyl peroxides. In this study, four Prx genes (named as ThPrxII, ThPrxIIE, ThPrxIIF, and Th2CysPrx were cloned from Tamarix hispida. Their expression profiles in response to stimulus of NaCl, NaHCO3, PEG, CdCl2 and abscisic acid (ABA in roots, stems and leaves of T. hispida were investigated using real-time RT-PCR. The results showed that the four ThPrxs were all expressed in roots, stems and leaves. Furthermore, the transcript levels of ThPrxIIE and ThPrxII were the lowest and the highest, respectively, in all tissue types. All the ThPrx genes were induced by both NaCl and NaHCO3 and reached their highest expression levels at the onset of stress in roots. Under PEG and CdCl2 stress, the expression patterns of these ThPrxs showed temporal and spatial specificity. The expressions of the ThPrxs were all differentially regulated by ABA, indicating that they are all involved in the ABA signaling pathway. These findings reveal a complex regulation of Prxs that is dependent on the type of Prx, tissue, and the signaling molecule. The divergence of the stress-dependent transcriptional regulation of the ThPrx gene family in T. hispida may provide an essential basis for the elucidation of Prx function in future work.

  13. Expression analysis of four peroxiredoxin genes from Tamarix hispida in response to different abiotic stresses and Exogenous Abscisic Acid (ABA).

    Science.gov (United States)

    Gao, Caiqiu; Zhang, Kaimin; Yang, Guiyan; Wang, Yucheng

    2012-01-01

    Peroxiredoxins (Prxs) are a recently discovered family of antioxidant enzymes that catalyze the reduction of peroxides and alkyl peroxides. In this study, four Prx genes (named as ThPrxII, ThPrxIIE, ThPrxIIF, and Th2CysPrx) were cloned from Tamarix hispida. Their expression profiles in response to stimulus of NaCl, NaHCO(3), PEG, CdCl(2) and abscisic acid (ABA) in roots, stems and leaves of T. hispida were investigated using real-time RT-PCR. The results showed that the four ThPrxs were all expressed in roots, stems and leaves. Furthermore, the transcript levels of ThPrxIIE and ThPrxII were the lowest and the highest, respectively, in all tissue types. All the ThPrx genes were induced by both NaCl and NaHCO(3) and reached their highest expression levels at the onset of stress in roots. Under PEG and CdCl(2) stress, the expression patterns of these ThPrxs showed temporal and spatial specificity. The expressions of the ThPrxs were all differentially regulated by ABA, indicating that they are all involved in the ABA signaling pathway. These findings reveal a complex regulation of Prxs that is dependent on the type of Prx, tissue, and the signaling molecule. The divergence of the stress-dependent transcriptional regulation of the ThPrx gene family in T. hispida may provide an essential basis for the elucidation of Prx function in future work.

  14. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    Science.gov (United States)

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis. PMID:26902640

  15. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions.

    Science.gov (United States)

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-02-23

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis.

  16. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion.

    Science.gov (United States)

    Li, Yangyang; Wang, Cheng; Liu, Xinye; Song, Jian; Li, Hongjian; Sui, Zhipeng; Zhang, Ming; Fang, Shuang; Chu, Jinfang; Xin, Mingming; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2016-04-01

    Heterosis has been widely used in agriculture, but the underlying molecular principles are still largely unknown. During seed germination, we observed that maize (Zea mays) hybrid B73/Mo17 was less sensitive than its parental inbred lines to exogenous abscisic acid (ABA), and endogenous ABA content in hybrid embryos decreased more rapidly than in the parental inbred lines. ZmABA8ox1b, an ABA inactivation gene, was consistently more highly up-regulated in hybrid B73/Mo17 than in its parental inbred lines at early stages of seed germination. Moreover, ectopic expression of ZmABA8ox1b obviously promoted seed germination in Arabidopsis Remarkably, microscopic observation revealed that cell expansion played a major role in the ABA-mediated maize seed germination heterosis, which could be attributed to the altered expression of cell wall-related genes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. The effect of 2,4-D and ABA on respiration of isolated mitochondria from maize coleoptiles

    Directory of Open Access Journals (Sweden)

    Ewa Raczek

    2014-01-01

    Full Text Available The susceptibility of isolated maize mitochondria to the growth regulators: 2,4-dichlorophenoxyacetic acid (2,4-D and abscisic acid (ABA was studied. It was found that 2,4-D (a herbicide inhibits respiration in mitochondria, as do other herbicides or phenoxy-acids. In the entire range of concentrations used (10-3-10-9 M, 2,4-D introduced into the medium before the respiration reaction was begun, or during it, limited the intensity of succinate oxidation. It did not, however, markedly change phosphorylation properties. Uncoupling of oxidative phosphorylation took place only after preincubation of mitochondria with 2,4-D and was the result of the destruction of mitochondrial membranes. ABA (a growth inhibitor of plants caused a similar response in maize mitochondria. Preincubation of mitochondria with ABA lead to the uncoupling of oxidative phosphorylation. Whereas ABA introduced during respiration (state 4 respiration or before its onset, lowered the oxidative potential of mitochondria, it also changed the pattern of state 4-3-4 transition after addition of ADP (it was especially visible at high concentrations, which indicates that the coupling of oxidative phosphorylation with the respiratory chain has faltered. It seems that this negative effect of 2,4-D and ABA on respiration of isolated maize mitochondria is connected with the inhibitory effect of these growth regulators on the growth of maize coleoptiles. Interference in the organization mitochondrial membranes results in a lowered supply of ATP - a source of energy needed in elongation processes.

  18. Levels of ABA, its precursors and dehydrin-like proteins during ...

    African Journals Online (AJOL)

    2Department of Molecular Biology and Biotechnology, University of Dar es Salaam,. P.O Box 35179, Dar ... to combat stress. Levels of ABA and proteins that cross reacted with an anti – dehydrin ...... Cambridge, Melbourne). Wang, X.-Q., Ullah ...

  19. Induced resistance in tomato by SAR activators during predisposing salinity stress

    Directory of Open Access Journals (Sweden)

    Matthew Francis Pye

    2013-05-01

    Full Text Available Plant activators are chemicals that induce disease resistance. The phytohormone salicylic acid (SA is a crucial signal for systemic acquired resistance (SAR, and SA-mediated resistance is a target of several commercial plant activators, including Actigard (1,2,3-benzothiadiazole-7-thiocarboxylic acid-s-methyl-ester, BTH and Tiadinil (N-(3-chloro-4-methylphenyl-4-methyl-1,2,3-thiadiazole-5-carboxamide, TDL. BTH and TDL were examined for their impact on abscisic acid (ABA-mediated, salt-induced disease predisposition in tomato seedlings. A brief episode of salt stress to roots significantly increased the severity of disease caused by Pseudomonas syringae pv. tomato (Pst and Phytophthora capsici relative to non-stressed plants. Root treatment with TDL induced resistance to Pst in leaves and provided protection in both non-stressed and salt-stressed seedlings in WT and highly susceptible NahG plants. Non-stressed and salt-stressed ABA-deficient sitiens mutants were highly resistant to Pst. Neither TDL nor BTH induced resistance to root infection by P. capsici, nor did they moderate the salt-induced increment in disease severity. Root treatment with these plant activators increased the levels of ABA in roots and shoots similar to levels observed in salt-stressed plants. The results indicate that SAR activators can protect tomato plants from bacterial speck disease under predisposing salt stress, and suggest that some SA-mediated defense responses function sufficiently in plants with elevated levels of ABA.

  20. Characterization of Radiation Hardened Bipolar Linear Devices for High Total Dose Missions

    Science.gov (United States)

    McClure, Steven S.; Harris, Richard D.; Rax, Bernard G.; Thorbourn, Dennis O.

    2012-01-01

    Radiation hardened linear devices are characterized for performance in combined total dose and displacement damage environments for a mission scenario with a high radiation level. Performance at low and high dose rate for both biased and unbiased conditions is compared and the impact to hardness assurance methodology is discussed.

  1. Hardening device, by inserts, of electronic component against radiation

    International Nuclear Information System (INIS)

    Val, C.

    1987-01-01

    The hardening device includes at least two materials, one with high atomic number with respect to the other. One of these materials is set as inserts in a layer of the other material. The hardening device is then made by stacking of such layers, the insert density varying from one layer to the other, making thus vary the atomic number resulting from the hardening device along its thickness, following a predefined law [fr

  2. Hormonal control of seed development in gibberellin- and ABA-deficient tomato (Lycopersicon esculentum Mill. cv. Moneymaker) mutants

    NARCIS (Netherlands)

    Castro, de R.D.; Hilhorst, H.W.M.

    2006-01-01

    Developing seeds of tomato gibberellin (GA)-deficient gib1 and abscisic acid (ABA)-deficient sitw mutants enabled us to analyze the role of GA in the regulation of embryo histo-differentiation, and the role of ABA in the regulation of maturation and quiescence. Our data show that DNA synthesis and

  3. HARDENING OF CRANE RAILS BY PLASMA DISCRETE-TIME SURFACE TREATMENT

    Directory of Open Access Journals (Sweden)

    S. S. Samotugin

    2017-01-01

    Full Text Available Crane wheels and rails are subjected to intensive wear in the process of operation. Therefore, improvement of these components’ performance can be considered a task of high importance. A promising direction in this regard is surface treatment by highly concentrated energy flows such as laser beams or plasma jets. This thesis suggests that the use of gradient plasma surface treatment can improve the performance of crane rails. A research was conducted, according to which hardened zones were deposited on crane rails under different treatment modes. Microhardness was measured both at the surface and in depth using custom-made microsections. The article includes the results of study of plasma surface hardening effects on wear resistance of crane rails. Change of plasma surface treatment parameters (current, plasma torch movement speed, argon gas flow rate allows for desired steel hardness and structure, while the choice of optimal location for hardened zones makes it possible to significantly improve wear resistance and crack resistance. As a result of plasma surface hardening, the fine-grained martensite structure is obtained with mainly lamellar morphology and higher hardness rate compared toinduction hardening or overlaying. Wear test of carbon steels revealed that plasma surfacing reduces abrasive wear rate compared to the irinitial state by 2 to 3 times. Enough sharp boundary between hardened and non-hardened portions has a positive effect on the performance of parts under dynamic loads, contributing to the inhibition of cracks during the transition from solid to a soft metal. For carbon and low alloy rail steels, the properties achieved by plasma surface hardening can effectively replace induction hardening or overlaying.The mode range for plasma surface treatment that allow sobtaining a surface layer with certain operating properties has been determined.

  4. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Riaño-Pachón Diego

    2007-08-01

    Full Text Available Abstract Background In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs, ABRE and CE3, in thale cress (Arabidopsis thaliana and rice (Oryza sativa. Results Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Conclusion Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of

  5. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice.

    Science.gov (United States)

    Gómez-Porras, Judith L; Riaño-Pachón, Diego Mauricio; Dreyer, Ingo; Mayer, Jorge E; Mueller-Roeber, Bernd

    2007-08-01

    In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs), ABRE and CE3, in thale cress (Arabidopsis thaliana) and rice (Oryza sativa). Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE) associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs) in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of interacting with transcription factors. Further studies will be

  6. A procedure for the hardening of materials

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1984-01-01

    A method of hardening metals or ceramics which have fcc, bcc or hcp structures in which two species of differing atomic radii are introduced into the material to be hardened. One species is of a size such that it can diffuse through the lattice normally. The other is of a size such that it can diffuse readily only along dislocations. Ion bombardment is the preferred method of introducing the species with different atomic radii. The material to be hardened is subjected to heat and plastic deformation so as to cause a large number of dislocations with jogs. The species meet at the jogs where they interact and are trapped and set up strain fields which prevent further deformation of the material. (author)

  7. An Anisotropic Hardening Model for Springback Prediction

    Science.gov (United States)

    Zeng, Danielle; Xia, Z. Cedric

    2005-08-01

    As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.

  8. An Anisotropic Hardening Model for Springback Prediction

    International Nuclear Information System (INIS)

    Zeng, Danielle; Xia, Z. Cedric

    2005-01-01

    As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test

  9. Short-term exposure to atmospheric ammonia does not affect frost hardening of needles from three- and five-year-old Scots pine trees

    NARCIS (Netherlands)

    Clement, J.M A M; van Hasselt, P.R; van Eerden, L.J.M.; Dueck, T.A.

    The effect of atmospheric ammonia on frost hardening of needles from 3- and 5-year-old Scots pine trees was investigated. Trees were exposed to various concentrations of NH(3) during different hardening stages under laboratory conditions and in experiments with open-top chambers under a natural

  10. Tertiary-amine-containing thermo- and pH-sensitive hydrophilic ABA triblock copolymers: effect of different tertiary amines on thermally induced sol-gel transitions.

    Science.gov (United States)

    Henn, Daniel M; Wright, Roger A E; Woodcock, Jeremiah W; Hu, Bin; Zhao, Bin

    2014-03-11

    This Article reports on the synthesis of a series of well-defined, tertiary-amine-containing ABA triblock copolymers, composed of a poly(ethylene oxide) (PEO) central block and thermo- and pH-sensitive outer blocks, and the study of the effect of different tertiary amines on thermally induced sol-gel transition temperatures (T(sol-gel)) of their 10 wt % aqueous solutions. The doubly responsive ABA triblock copolymers were prepared from a difunctional PEO macroinitiator by atom transfer radical polymerization of methoxydi(ethylene glycol) methacrylate and ethoxydi(ethylene glycol) methacrylate at a feed molar ratio of 30:70 with ∼5 mol % of either N,N-diethylaminoethyl methacrylate (DEAEMA), N,N-diisopropylaminoethyl methacrylate, or N,N-di(n-butyl)aminoethyl methacrylate. The chain lengths of thermosensitive outer blocks and the molar contents of tertiary amines were very similar for all copolymers. Using rheological measurements, we determined the pH dependences of T(sol-gel) of 10 wt % aqueous solutions of these copolymers in a phosphate buffer. The T(sol-gel) versus pH curves of all polymers exhibited a sigmoidal shape. The T(sol-gel) increased with decreasing pH; the changes were small on both high and low pH sides. At a specific pH, the T(sol-gel) decreased with increasing the hydrophobicity of the tertiary amine, and upon decreasing pH the onset pH value for the T(sol-gel) to begin to increase noticeably was lower for the more hydrophobic tertiary amine-containing copolymer. In addition, we studied the effect of different tertiary amines on the release behavior of FITC-dextran from 10 wt % micellar gels in an acidic medium at 37 and 27 °C. The release profiles for three studied hydrogels at 37 °C were essentially the same, suggesting that the release was dominated by the diffusion of FITC-dextran. At 27 °C, the release was significantly faster for the DEAEMA-containing copolymer, indicating that both diffusion and gel dissolution contributed to the

  11. Novel circuits for radiation hardened memories

    International Nuclear Information System (INIS)

    Haraszti, T.P.; Mento, R.P.; Moyer, N.E.; Grant, W.M.

    1992-01-01

    This paper reports on implementation of large storage semiconductor memories which combine radiation hardness with high packing density, operational speed, and low power dissipation and require both hardened circuit and hardened process technologies. Novel circuits, including orthogonal shuffle type of write-read arrays, error correction by weighted bidirectional codes and associative iterative repair circuits, are proposed for significant improvements of SRAMs' immunity against the effects of total dose and cosmic particle impacts. The implementation of the proposed circuit resulted in fault-tolerant 40-Mbit and 10-Mbit monolithic memories featuring a data rate of 120 MHz and power dissipation of 880 mW. These experimental serial-parallel memories were fabricated with a nonhardened standard CMOS processing technology, yet provided a total dose hardness of 1 Mrad and a projected SEU rate of 1 x 10 - 12 error/bit/day. Using radiation hardened processing improvements by factors of 10 to 100 are predicted in both total dose hardness and SEU rate

  12. Depletion of abscisic acid levels in roots of flooded Carrizo citrange (Poncirus trifoliata L. Raf. × Citrus sinensis L. Osb.) plants is a stress-specific response associated to the differential expression of PYR/PYL/RCAR receptors.

    Science.gov (United States)

    Arbona, Vicent; Zandalinas, Sara I; Manzi, Matías; González-Guzmán, Miguel; Rodriguez, Pedro L; Gómez-Cadenas, Aurelio

    2017-04-01

    Soil flooding reduces root abscisic acid (ABA) levels in citrus, conversely to what happens under drought. Despite this reduction, microarray analyses suggested the existence of a residual ABA signaling in roots of flooded Carrizo citrange seedlings. The comparison of ABA metabolism and signaling in roots of flooded and water stressed plants of Carrizo citrange revealed that the hormone depletion was linked to the upregulation of CsAOG, involved in ABA glycosyl ester (ABAGE) synthesis, and to a moderate induction of catabolism (CsCYP707A, an ABA 8'-hydroxylase) and buildup of dehydrophaseic acid (DPA). Drought strongly induced both ABA biosynthesis and catabolism (CsNCED1, 9-cis-neoxanthin epoxycarotenoid dioxygenase 1, and CsCYP707A) rendering a significant hormone accumulation. In roots of flooded plants, restoration of control ABA levels after stress release was associated to the upregulation of CsBGLU18 (an ABA β-glycosidase) that cleaves ABAGE. Transcriptional profile of ABA receptor genes revealed a different induction in response to soil flooding (CsPYL5) or drought (CsPYL8). These two receptor genes along with CsPYL1 were cloned and expressed in a heterologous system. Recombinant CsPYL5 inhibited ΔNHAB1 activity in vitro at lower ABA concentrations than CsPYL8 or CsPYL1, suggesting its better performance under soil flooding conditions. Both stress conditions induced ABA-responsive genes CsABI5 and CsDREB2A similarly, suggesting the occurrence of ABA signaling in roots of flooded citrus seedlings. The impact of reduced ABA levels in flooded roots on CsPYL5 expression along with its higher hormone affinity reinforce the role of this ABA receptor under soil-flooding conditions and explain the expression of certain ABA-responsive genes.

  13. ANISOTROPIC STRAIN-HARDENING IN POLYCRYSTALLINE COPPER AND ALUMINUM

    NARCIS (Netherlands)

    HESS, F

    1993-01-01

    A new viscoplastic model for the plastic stress-strain behaviour of f.c.c. metals is presented. In this model the strain hardening results from increasing dislocation densities. The observed stagnation of strain hardening after strain reversals is explained by a lowering of the increase in

  14. Surface hardening of titanium alloys with melting depth controlled by heat sink

    Science.gov (United States)

    Oden, Laurance L.; Turner, Paul C.

    1995-01-01

    A process for forming a hard surface coating on titanium alloys includes providing a piece of material containing titanium having at least a portion of one surface to be hardened. The piece having a portion of a surface to be hardened is contacted on the backside by a suitable heat sink such that the melting depth of said surface to be hardened may be controlled. A hardening material is then deposited as a slurry. Alternate methods of deposition include flame, arc, or plasma spraying, electrodeposition, vapor deposition, or any other deposition method known by those skilled in the art. The surface to be hardened is then selectively melted to the desired depth, dependent on the desired coating thickness, such that a molten pool is formed of the piece surface and the deposited hardening material. Upon cooling a hardened surface is formed.

  15. Cost and returns analysis of catfish marketing in Aba South Local ...

    African Journals Online (AJOL)

    Cost and returns analysis of catfish marketing in Aba South Local Government Area of Abia State, Nigeria. ... The constraints militating against catfish marketing were also identified. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  16. Research on SEU hardening of heterogeneous Dual-Core SoC

    Science.gov (United States)

    Huang, Kun; Hu, Keliu; Deng, Jun; Zhang, Tao

    2017-08-01

    The implementation of Single-Event Upsets (SEU) hardening has various schemes. However, some of them require a lot of human, material and financial resources. This paper proposes an easy scheme on SEU hardening for Heterogeneous Dual-core SoC (HD SoC) which contains three techniques. First, the automatic Triple Modular Redundancy (TMR) technique is adopted to harden the register heaps of the processor and the instruction-fetching module. Second, Hamming codes are used to harden the random access memory (RAM). Last, a software signature technique is applied to check the programs which are running on CPU. The scheme need not to consume additional resources, and has little influence on the performance of CPU. These technologies are very mature, easy to implement and needs low cost. According to the simulation result, the scheme can satisfy the basic demand of SEU-hardening.

  17. Hardening and softening mechanisms of pearlitic steel wire under torsion

    International Nuclear Information System (INIS)

    Zhao, Tian-Zhang; Zhang, Shi-Hong; Zhang, Guang-Liang; Song, Hong-Wu; Cheng, Ming

    2014-01-01

    Highlights: • Mechanical behavior of pearlitic steel wire is studied using torsion. • Work hardening results from refinement lamellar pearlitic structure. • Softening results from recovery, shear bands and lamellar fragmentations. • A microstructure based analytical flow stress model is established. - Abstract: The mechanical behaviors and microstructure evolution of pearlitic steel wires under monotonic shear deformation have been investigated by a torsion test and a number of electron microscopy techniques including scanning electron microscopy (SEM) and transmission electron microscopy (TEM), with an aim to reveal the softening and hardening mechanisms of a randomly oriented pearlitic structure during a monotonic stain path. Significantly different from the remarkable strain hardening in cold wire drawing, the strain hardening rate during torsion drops to zero quickly after a short hardening stage. The microstructure observations indicate that the inter-lamellar spacing (ILS) decreases and the dislocations accumulate with strain, which leads to hardening of the material. Meanwhile, when the strain is larger than 0.154, the enhancement of dynamic recovery, shear bands (SBs) and cementite fragmentations results in the softening and balances the strain hardening. A microstructure based analytical flow stress model with considering the influence of ILS on the mean free path of dislocations and the softening caused by SBs and cementite fragmentations, has been established and the predicted flow shear curve meets well with the measured curve in the torsion test

  18. A brief review of cavity swelling and hardening in irradiated copper and copper alloys

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1990-01-01

    The literature on radiation-induced swelling and hardening in copper and its alloy is reviewed. Void formation does not occur during irradiation of copper unless suitable impurity atoms such as oxygen or helium are present. Void formation occurs for neutron irradiation temperatures of 180 to 550 degree C, with peak swelling occurring at ∼320 degree C for irradiation at a damage rate of 2 x 10 -7 dpa/s. The post-transient swelling rate has been measured to be ∼0.5%/dpa at temperatures near 400 degree C. Dispersion-strengthened copper has been found to be very resistant to void swelling due to the high sink density associated with the dispersion-stabilized dislocation structure. Irradiation of copper at temperatures below 400 degree C generally causes an increase in strength due to the formation of defect clusters which inhibit dislocation motion. The radiation hardening can be adequately described by Seeger's dispersed barrier model, with a barrier strength for small defect clusters of α ∼ 0.2. The radiation hardening apparently saturates for fluences greater than ∼10 24 n/m 2 during irradiation at room temperature due to a saturation of the defect cluster density. Grain boundaries can modify the hardening behavior by blocking the transmission of dislocation slip bands, leading to a radiation- modified Hall-Petch relation between yield strength and grain size. Radiation-enhanced recrystallization can lead to softening of cold-worked copper alloys at temperatures above 300 degree C

  19. cost and returns analysis of catfish marketing in aba south local

    African Journals Online (AJOL)

    The study analyzed the cost and returns of catfish marketing in Aba South ... significantly influenced net income should be considered in policy issues. ... entrepreneur/manager at a profit. .... marketers were well experienced in their business.

  20. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric (Van Andel); (Scripps); (Purdue); (NU Singapore)

    2014-10-02

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-{angstrom} resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases.

  1. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yuxiang, E-mail: yuxiangqin@126.com [Department of Biotechnology, University of Jinan, Jinan 250022 (China); Tian, Yanchen [The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100 (China); Han, Lu; Yang, Xinchao [Department of Biotechnology, University of Jinan, Jinan 250022 (China)

    2013-11-15

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway.

  2. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Qin, Yuxiang; Tian, Yanchen; Han, Lu; Yang, Xinchao

    2013-01-01

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway

  3. TRICARE Applied Behavior Analysis (ABA) Benefit: Comparison with Medicaid and Commercial Benefits.

    Science.gov (United States)

    Maglione, Margaret; Kadiyala, Srikanth; Kress, Amii; Hastings, Jaime L; O'Hanlon, Claire E

    2017-01-01

    This study compared the Applied Behavior Analysis (ABA) benefit provided by TRICARE as an early intervention for autism spectrum disorder with similar benefits in Medicaid and commercial health insurance plans. The sponsor, the Office of the Under Secretary of Defense for Personnel and Readiness, was particularly interested in how a proposed TRICARE reimbursement rate decrease from $125 per hour to $68 per hour for ABA services performed by a Board Certified Behavior Analyst compared with reimbursement rates (defined as third-party payment to the service provider) in Medicaid and commercial health insurance plans. Information on ABA coverage in state Medicaid programs was collected from Medicaid state waiver databases; subsequently, Medicaid provider reimbursement data were collected from state Medicaid fee schedules. Applied Behavior Analysis provider reimbursement in the commercial health insurance system was estimated using Truven Health MarketScan® data. A weighted mean U.S. reimbursement rate was calculated for several services using cross-state information on the number of children diagnosed with autism spectrum disorder. Locations of potential provider shortages were also identified. Medicaid and commercial insurance reimbursement rates varied considerably across the United States. This project concluded that the proposed $68-per-hour reimbursement rate for services provided by a board certified analyst was more than 25 percent below the U.S. mean.

  4. Laser quench hardening of steel: Effects of superimposed elastic pre-stress on the hardness and residual stress distribution

    Science.gov (United States)

    Meserve, Justin

    Cold drawn AISI 4140 beams were LASER surface hardened with a 2 kW CO2 LASER. Specimens were treated in the free state and while restrained in a bending fixture inducing surface tensile stresses of 94 and 230 MPa. Knoop hardness indentation was used to evaluate the through thickness hardness distribution, and a layer removal methodology was used to evaluate the residual stress distribution. Results showed the maximum surface hardness attained was not affected by pre-stress during hardening, and ranged from 513 to 676 kg/mm2. The depth of effective hardening varied at different magnitudes of pre-stress, but did not vary proportionately to the pre-stress. The surface residual stress, coinciding with the maximum compressive residual stress, increased as pre-stress was increased, from 1040 MPa for the nominally treated specimens to 1270 MPa for specimens pre-stressed to 230 MPa. The maximum tensile residual stress observed in the specimens decreased from 1060 MPa in the nominally treated specimens to 760 MPa for specimens pre-stressed to 230 MPa. Similarly, thickness of the compressive residual stress region increased and the depth at which maximum tensile residual stress occurred increased as the pre-stress during treatment was increased Overall, application of tensile elastic pre-stress during LASER hardening is beneficial to the development of compressive residual stress in AISI 4140, with minimal impact to the hardness attained from the treatment. The newly developed approach for LASER hardening may support efforts to increase both the wear and fatigue resistance of parts made from hardenable steels.

  5. Effect of the bainitic and martensitic microstructures on the hardening and embrittlement under neutron irradiation of a reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Marini, B., E-mail: bernard.marini@cea.fr [Commissariat à l' Energie Atomique et aux Energies Alternatives, DEN/DANS/DMN/SRMA, F-91191 Gif-sur Yvette (France); Averty, X. [Commissariat à l' Energie Atomique et aux Energies Alternatives, DEN/DANS/DMN/SEMI (now DEN/DANS/DM2S/SEMT), F-91191 Gif-sur Yvette (France); Wident, P.; Forget, P.; Barcelo, F. [Commissariat à l' Energie Atomique et aux Energies Alternatives, DEN/DANS/DMN/SRMA, F-91191 Gif-sur Yvette (France)

    2015-10-15

    The hardening and the embrittlement under neutron irradiation of an A508 type RPV steel considering three different microstructures (bainite, bainite-martensite and martensite)have been investigated These microstructures were obtained by quenching after autenitization at 1100 °C. The irradiation induced hardening appears to depend on microstructure and is correlated to the yield stress before irradiation. The irradiation induced embrittlement shows a more complex dependence. Martensite bearing microstructures are more sensitive to non hardening embrittlement than pure bainite. This enhanced sensitivity is associated with the development of intergranular brittle facture after irradiation; the pure martensite being more affected than the bainite-martensite. It is of interest to note that this mixed microstructure appears to be more embrittled than the pure bainitic or martensitic phases in terms of temperature transition shift. This behaviour which could emerge from the synergy of the embrittlement mechanisms of the two phases needs further investigations. However, the role of microstructure on brittle intergranular fracture development appears to be qualitatively similar under neutron irradiation and thermal ageing.

  6. Novel multiple opioid ligands based on 4-aminobenzazepinone (Aba), azepinoindole (Aia) and tetrahydroisoquinoline (Tic) scaffolds

    Science.gov (United States)

    Ballet, Steven; Marczak, Ewa D.; Feytens, Debby; Salvadori, Severo; Sasaki, Yusuke; Abell, Andrew D.; Lazarus, Lawrence H.; Balboni, Gianfranco; Tourwé, Dirk

    2010-01-01

    The dimerization and trimerization of the Dmt-Tic, Dmt-Aia and Dmt-Aba pharmacophores provided multiple ligands which were evaluated in vitro for opioid receptor binding and functional activity. Whereas the Tic- and Aba multimers proved to be dual and balanced δ/μ antagonists, as determined by the functional [S35]GTPγS binding assay, the dimerization of potent Aia-based ‘parent’ ligands unexpectedly resulted in substantial less efficient receptor binding and non-active dimeric compounds. PMID:20137938

  7. Neutron-irradiation + helium hardening and embrittlement modeling of 9% Cr-steels in an engineering perspective (HELENA)

    International Nuclear Information System (INIS)

    Chaouadi, Rachid

    2008-01-01

    This report provides a physically-based engineering model to estimate the radiation hardening of 9%Cr-steels under both displacement damage (dpa) and helium. The model is essentially based on the dispersed barrier hardening theory and the dynamic re-solution of helium under displacement cascades. However, a number of assumptions and simplifications were considered to obtain a simple description of irradiation hardening and embrittlement primarily relying on the available experimental data. As a result, two components were basically identified, the dpa component that can be associated with black dots and small loops and the He-component accounting for helium bubbles. The dpa component is strongly dependent on the irradiation temperature and its dependence law was based on a first-order annealing kinetics. The damage accumulation law was also modified to take saturation into account. Finally, the global kinetics of the damage accumulation kept defined, its amplitude is fitted to one experimental condition. The model was rationalized on an experimental database that mainly consists of ∝9%Cr-steels irradiated in the technologically important temperature range of 50 to 600 C up do 50 dpa and with a He-content up to ∝5000 appm, including neutron and proton irradiation as well as implantation. The test temperature effect is taken into account through a normalization procedure based on the change of the Young's modulus and the anelastic deformation that occurs at high temperature. Finally, the hardening-to-embrittlement correlation is obtained using the load diagram approach. Despite the large experimental scatter, inherent to the variety of the materials and irradiation as well as testing conditions, the obtained results are very promising. Improvement of the model performance is still possible by including He-hardening saturation and high temperature softening but unfortunately, at this stage, a number of conflicting experimental data reported in literature should

  8. Neutron-irradiation + helium hardening and embrittlement modeling of 9% Cr-steels in an engineering perspective (HELENA)

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, Rachid

    2008-07-01

    This report provides a physically-based engineering model to estimate the radiation hardening of 9%Cr-steels under both displacement damage (dpa) and helium. The model is essentially based on the dispersed barrier hardening theory and the dynamic re-solution of helium under displacement cascades. However, a number of assumptions and simplifications were considered to obtain a simple description of irradiation hardening and embrittlement primarily relying on the available experimental data. As a result, two components were basically identified, the dpa component that can be associated with black dots and small loops and the He-component accounting for helium bubbles. The dpa component is strongly dependent on the irradiation temperature and its dependence law was based on a first-order annealing kinetics. The damage accumulation law was also modified to take saturation into account. Finally, the global kinetics of the damage accumulation kept defined, its amplitude is fitted to one experimental condition. The model was rationalized on an experimental database that mainly consists of {proportional_to}9%Cr-steels irradiated in the technologically important temperature range of 50 to 600 C up do 50 dpa and with a He-content up to {proportional_to}5000 appm, including neutron and proton irradiation as well as implantation. The test temperature effect is taken into account through a normalization procedure based on the change of the Young's modulus and the anelastic deformation that occurs at high temperature. Finally, the hardening-to-embrittlement correlation is obtained using the load diagram approach. Despite the large experimental scatter, inherent to the variety of the materials and irradiation as well as testing conditions, the obtained results are very promising. Improvement of the model performance is still possible by including He-hardening saturation and high temperature softening but unfortunately, at this stage, a number of conflicting experimental data

  9. Extensional Strain Hardening Induced by π -π Interactions in Barely Entangled Polymer Chains: The Curious Case of Poly(4-vinylbiphenyl)

    Science.gov (United States)

    López-Barrón, Carlos R.; Zhou, Huaxing

    2017-12-01

    Aromatic π -π interactions between phenyl groups of adjacent chains in poly(4-vinylbiphenyl) (PVBP) have profound effects on the dynamics of this polymer. We report two unexpected nonlinear viscoelastic responses of PVBP when subjected to uniaxial flow. One is the unprecedented observation of extensional strain hardening (SH) in a barely entangled polymer melt. An even more intriguing finding is that SH of lightly (or even barely) entangled melts occurs at strain rates one order of magnitude below the coil-stretch transition predicted by Rouse theory (ɛ˙ H=0.5 /τR ).We postulate that this behavior is due to a molecular rearrangement mechanism (supported by x-ray diffraction measurements) that involves flow-induced π -π stacking of the phenyl groups, which results in an enhancement of the friction coefficient between polymer chains.

  10. Optimized radiation-hardened erbium doped fiber amplifiers for long space missions

    Science.gov (United States)

    Ladaci, A.; Girard, S.; Mescia, L.; Robin, T.; Laurent, A.; Cadier, B.; Boutillier, M.; Ouerdane, Y.; Boukenter, A.

    2017-04-01

    In this work, we developed and exploited simulation tools to optimize the performances of rare earth doped fiber amplifiers (REDFAs) for space missions. To describe these systems, a state-of-the-art model based on the rate equations and the particle swarm optimization technique is developed in which we also consider the main radiation effect on REDFA: the radiation induced attenuation (RIA). After the validation of this tool set by confrontation between theoretical and experimental results, we investigate how the deleterious radiation effects on the amplifier performance can be mitigated following adequate strategies to conceive the REDFA architecture. The tool set was validated by comparing the calculated Erbium-doped fiber amplifier (EDFA) gain degradation under X-rays at ˜300 krad(SiO2) with the corresponding experimental results. Two versions of the same fibers were used in this work, a standard optical fiber and a radiation hardened fiber, obtained by loading the previous fiber with hydrogen gas. Based on these fibers, standard and radiation hardened EDFAs were manufactured and tested in different operating configurations, and the obtained data were compared with simulation data done considering the same EDFA structure and fiber properties. This comparison reveals a good agreement between simulated gain and experimental data (vulnerability in terms of gain. The presented approach is a complementary and effective tool for hardening by device techniques and opens new perspectives for the applications of REDFAs and lasers in harsh environments.

  11. Histopathological pattern of diseases of the cervix in Aba, South ...

    African Journals Online (AJOL)

    Background: Diseases of the cervix continue to pose a major public health problem in developing countries. Objective: To ascertain the pattern and frequency of cervical lesions in Aba, and the findings compared with the records of other workers elsewhere. Design: A retrospective analysis of hysterectomy, trachelectomy ...

  12. The Role of MAPK Modules and ABA during Abiotic Stress Signaling

    KAUST Repository

    Zé licourt, Axel de; Colcombet, Jean; Hirt, Heribert

    2016-01-01

    To respond to abiotic stresses, plants have developed specific mechanisms that allow them to rapidly perceive and respond to environmental changes. The phytohormone abscisic acid (ABA) was shown to be a pivotal regulator of abiotic stress responses

  13. Radiation hardening of semiconductor parts

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This chapter is an overview of total-ionizing-dose and single-event hardening techniques and should be used as a guide to a range of research publications. It should be stressed that there is no clear and simple route to a radiation-tolerant silicon integrated circuit. What works for one fabrication process may not work for another, and there are many complex interactions within individual processes and designs. The authors have attempted to highlight the most important factors and those process changes which should bring improved hardness. The main point is that radiation-hardening as a procedure must be approached in a methodical fashion and with a good understanding of the response mechanisms involved

  14. Energetic model of metal hardening

    Directory of Open Access Journals (Sweden)

    Ignatova O.N.

    2011-01-01

    Full Text Available Based on Bailey hypothesis on the link between strain hardening and elastic lattice defect energy this paper suggests a shear strength energetic model that takes into consideration plastic strain intensity and rate as well as softening related to temperature annealing and dislocation annihilation. Metal strain hardening was demonstrated to be determined only by elastic strain energy related to the energy of accumulated defects. It is anticipated that accumulation of the elastic energy of defects is governed by plastic work. The suggested model has a reasonable agreement with the available experimental data for copper up to P = 70 GPa , for aluminum up to P = 10 GPa and for tantalum up to P = 20 GPa.

  15. Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions.

    Science.gov (United States)

    Li, Yajun; Zhang, Jiachang; Zhang, Juan; Hao, Ling; Hua, Jinping; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-08-01

    LOS5/ABA3 gene encoding molybdenum cofactor sulphurase is involved in aldehyde oxidase (AO) activity in Arabidopsis, which indirectly regulates ABA biosynthesis and increased stress tolerance. Here, we used a constitutive super promoter to drive LOS5/ABA3 overexpression in soybean (Glycine max L.) to enhance drought tolerance in growth chamber and field conditions. Expression of LOS5/ABA3 was up-regulated by drought stress, which led to increasing AO activity and then a notable increase in ABA accumulation. Transgenic soybean under drought stress had reduced water loss by decreased stomatal aperture size and transpiration rate, which alleviated leaf wilting and maintained higher relative water content. Exposed to drought stress, transgenic soybean exhibited reduced cell membrane damage by reducing electrolyte leakage and production of malondialdehyde and promoting proline accumulation and antioxidant enzyme activities. Also, overexpression of LOS5/ABA3 enhanced expression of stress-up-regulated genes. Furthermore, the seed yield of transgenic plants is at least 21% higher than that of wide-type plants under drought stress conditions in the field. These data suggest that overexpression of LOS5/ABA3 could improve drought tolerance in transgenic soybean via enhanced ABA accumulation, which could activate expression of stress-up-regulated genes and cause a series of physiological and biochemical resistant responses. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Design considerations for a radiation hardened nonvolatile memory

    International Nuclear Information System (INIS)

    Murray, J.R.

    1993-01-01

    Sub-optimal design practices can reduce the radiation hardness of a circuit even though it is fabricated in a radiation hardened process. This is especially true for a nonvolatile memory, as compared to a standard digital circuit, where high voltages and unusual bias conditions are required. This paper will discuss the design technique's used in the development of a 64K EEPROM (Electrically Erasable Programmable Read Only Memory) to maximize radiation hardness. The circuit radiation test results will be reviewed in order to provide validation of the techniques

  17. Hardening parts by chrome plating in manufacture and repair

    Science.gov (United States)

    Astanin, V. K.; Pukhov, E. V.; Stekolnikov, Y. A.; Emtsev, V. V.; Golikova, O. A.

    2018-03-01

    In the engineering industry, galvanic coatings are widely used to prolong the service life of the machines, which contribute to the increase in the strength of the parts and their resistance to environmental influences, temperature and pressure drops, wear and fretting corrosion. Galvanic coatings have been widely applied in engineering, including agriculture, aircraft building, mining, construction, and electronics. The article focuses on the manufacturing methods of new agricultural machinery parts and the repair techniques of worn parts by chrome plating. The main attention is paid to the unstable methods of chromium deposition (in pulsed and reversing modes) in low-concentration electrolytes, which makes it possible to increase the reliability and durability of the hardened parts operation by changing the conditions of electrocrystallization, that is, directed formation of the structure and texture, thickness, roughness and microhardness of chromium plating. The practical recommendations are given on the current and temperature regimes of chromium deposition and composition of baths used for the restoration and hardening of the machine parts. Moreover, the basic methods of machining allowances removal are analysed.

  18. AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5

    KAUST Repository

    Kim, Junhyeok; Hyun, Wooyoung; Nguyen, Hoai Nguyen; Jeong, Chanyoung; Xiong, Liming; Hong, Sukwhan; Lee, Hojoung

    2014-01-01

    Various Myb proteins have been shown to play crucial roles in plants, including primary and secondary metabolism, determination of cell fate and identity, regulation of development and involvement in responses to biotic and abiotic stresses. The 126 R2R3 Myb proteins (with two Myb repeats) have been found in Arabidopsis; however, the functions of most of these proteins remain to be fully elucidated. In the present study, we characterized the function of AtMyb7 using molecular biological and genetic analyses. We used qRT-PCR to determine the levels of stress-response gene transcripts in wild-type and atmyb7 plants. We showed that ArabidopsisAtMyb7 plays a critical role in seed germination. Under abscisic acid (ABA) and high-salt stress conditions, atmyb7 plants showed a lower germination rate than did wild-type plants. Furthermore, AtMyb7 promoter:GUS seeds exhibited different expression patterns in response to variations in the seed imbibition period. AtMyb7 negatively controls the expression of the gene encoding bZIP transcription factor, ABI5, which is a key transcription factor in ABA signalling and serves as a crucial regulator of germination inhibition in Arabidopsis. © 2014 John Wiley & Sons Ltd.

  19. AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5

    KAUST Repository

    Kim, Junhyeok

    2014-08-27

    Various Myb proteins have been shown to play crucial roles in plants, including primary and secondary metabolism, determination of cell fate and identity, regulation of development and involvement in responses to biotic and abiotic stresses. The 126 R2R3 Myb proteins (with two Myb repeats) have been found in Arabidopsis; however, the functions of most of these proteins remain to be fully elucidated. In the present study, we characterized the function of AtMyb7 using molecular biological and genetic analyses. We used qRT-PCR to determine the levels of stress-response gene transcripts in wild-type and atmyb7 plants. We showed that ArabidopsisAtMyb7 plays a critical role in seed germination. Under abscisic acid (ABA) and high-salt stress conditions, atmyb7 plants showed a lower germination rate than did wild-type plants. Furthermore, AtMyb7 promoter:GUS seeds exhibited different expression patterns in response to variations in the seed imbibition period. AtMyb7 negatively controls the expression of the gene encoding bZIP transcription factor, ABI5, which is a key transcription factor in ABA signalling and serves as a crucial regulator of germination inhibition in Arabidopsis. © 2014 John Wiley & Sons Ltd.

  20. Hardening cookies in web-based systems for better system integrity

    International Nuclear Information System (INIS)

    Mohamad Safuan Sulaiman; Mohd Dzul Aiman Aslan; Saaidi Ismail; Abdul Aziz Mohd Ramli; Abdul Muin Abdul Rahman; Siti Nurbahyah Hamdan; Norlelawati Hashimuddin; Sufian Norazam Mohamed Aris

    2012-01-01

    IT Center (ITC) as technical support and provider for most of web-based systems in Nuclear Malaysia has conducted a study to investigate cookie vulnerability in a system for better integrity. A part of the result has found that cookies in a web-based system in Nuclear Malaysia can be easily manipulated. The main objective of the study is to harden the vulnerability of the cookies. Two levels of security procedures have been used and enforced which consist of 1) Penetration test (Pen Test) 2) Hardening procedure. In one of the system, study has found that 121 attempts threats have been detected after the hardening enforcement from 23 March till 20 September 2012. At this stage, it can be concluded that cookie vulnerability in the system has been hardened and integrity has been assured after the enforcement. This paper describes in detail the penetration and hardening process of cookie vulnerability for better supporting web-based system in Nuclear Malaysia. (author)

  1. Medial prefrontal cortex involvement in the expression of extinction and ABA renewal of instrumental behavior for a food reinforcer.

    Science.gov (United States)

    Eddy, Meghan C; Todd, Travis P; Bouton, Mark E; Green, John T

    2016-02-01

    Instrumental renewal, the return of extinguished instrumental responding after removal from the extinction context, is an important model of behavioral relapse that is poorly understood at the neural level. In two experiments, we examined the role of the dorsomedial prefrontal cortex (dmPFC) and the ventromedial prefrontal cortex (vmPFC) in extinction and ABA renewal of instrumental responding for a sucrose reinforcer. Previous work, exclusively using drug reinforcers, has suggested that the roles of the dmPFC and vmPFC in expression of extinction and ABA renewal may depend at least in part on the type of drug reinforcer used. The current experiments used a food reinforcer because the behavioral mechanisms underlying the extinction and renewal of instrumental responding are especially well worked out in this paradigm. After instrumental conditioning in context A and extinction in context B, we inactivated dmPFC, vmPFC, or a more ventral medial prefrontal cortex region by infusing baclofen/muscimol (B/M) just prior to testing in both contexts. In rats with inactivated dmPFC, ABA renewal was still present (i.e., responding increased when returned to context A); however responding was lower (less renewal) than controls. Inactivation of vmPFC increased responding in context B (the extinction context) and decreased responding in context A, indicating no renewal in these animals. There was no effect of B/M infusion on rats with cannula placements ventral to the vmPFC. Fluorophore-conjugated muscimol was infused in a subset of rats following test to visualize infusion spread. Imaging suggested that the infusion spread was minimal and mainly constrained to the targeted area. Together, these experiments suggest that there is a region of medial prefrontal cortex encompassing both dmPFC and vmPFC that is important for ABA renewal of extinguished instrumental responding for a food reinforcer. In addition, vmPFC, but not dmPFC, is important for expression of extinction of

  2. Cloning and expression profiling of the PacSnRK2 and PacPP2C gene families during fruit development, ABA treatment, and dehydration stress in sweet cherry.

    Science.gov (United States)

    Shen, Xinjie; Guo, Xiao; Zhao, Di; Zhang, Qiang; Jiang, Yuzhuang; Wang, Yantao; Peng, Xiang; Wei, Yan; Zhai, Zefeng; Zhao, Wei; Li, Tianhong

    2017-10-01

    Plant SNF1-related protein kinase 2 (SnRK2) and protein phosphatase 2C (PP2C) family members are core components of the ABA signal transduction pathway. SnRK2 and PP2C proteins have been suggested to play crucial roles in fruit ripening and improving plant tolerance to drought stress, but supporting genetic information has been lacking in sweet cherry (Prunus avium L.). Here, we cloned six full-length SnRK2 genes and three full-length PP2C genes from sweet cherry cv. Hong Deng. Quantitative PCR analysis revealed that PacSnRK2.2, PacSnRK2.3, PacSnRK2.6, and PacPP2C1-3 were negatively regulated in fruits in response to exogenous ABA treatment, PacSnRK2.4 and PacSnRK2.5 were upregulated, and PacSnRK2.1 expression was not affected. The ABA treatment also significantly promoted the accumulation of anthocyanins in sweet cherry fruit. The expression of all PacSnRK2 and PacPP2C genes was induced by dehydration stress, which also promoted the accumulation of drought stress signaling molecules in the sweet cherry fruits, including ABA, soluble sugars, and anthocyanin. Furthermore, a yeast two-hybrid analysis demonstrated that PacPP2C1 interacts with all six PacSnRK2s, while PacPP2C3 does not interact with PacSnRK2.5. PacPP2C2 does not interact with PacSnRK2.1 or PacSnRK2.4. These results indicate that PacSnRK2s and PacPP2Cs may play a variety of roles in the sweet cherry ABA signaling pathway and the fruit response to drought stress. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. The Natural Aging Effect on Hardenability in Al-Mg-Si: A Complex Interaction between Composition and Heat Treatment Parameters

    Directory of Open Access Journals (Sweden)

    Alex Poznak

    2018-05-01

    Full Text Available The technological relevance of Al-Mg-Si alloys has been rapidly growing over the last decade. Of particular interest to current and future applications is the problematic negative effect of prior natural aging on subsequent artificial age hardening. The influence of natural aging is dependent on both processing and compositional variables and has origins that are far from well-understood. This work examines the hardenability of 6000 series alloys under a wide range of conditions, paying particular attention to the natural aging effect. Experimental variables include alloy composition (Mg + Si, Mg/Si, cooling rate after solutionization, and duration of prior natural aging. Hardenability was evaluated with full hardness and conductivity aging curves for each condition, as well as select Transmission Electron Microscopy (TEM. Results are discussed based on the actions of naturally aged solute clusters during artificial aging. In particular, a complex interaction between vacancy concentration, cluster stability, and precipitation driving force is suggested.

  4. Formulating the strength factor α for improved predictability of radiation hardening

    Energy Technology Data Exchange (ETDEWEB)

    Tan, L., E-mail: tanl@ornl.gov; Busby, J.T.

    2015-10-15

    Analytical equations were developed to calculate the strength factors of precipitates, Frank loops, and cavities in austenitic alloys, which strongly depend on barrier type, size, geometry and density, as well as temperature. Calculated strength factors were successfully used to estimate radiation hardening using the broadly employed dispersed barrier-hardening model, leading to good agreement with experimentally measured hardening in neutron-irradiated type 304 and 316 stainless steel variants. The formulated strength factor provides a route for more reliable hardening predictions and can be easily incorporated into component simulations and design.

  5. Scintillation-Hardened GPS Receiver

    Science.gov (United States)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  6. Application of a three-feature dispersed-barrier hardening model to neutron-irradiated Fe-Cr model alloys

    Science.gov (United States)

    Bergner, F.; Pareige, C.; Hernández-Mayoral, M.; Malerba, L.; Heintze, C.

    2014-05-01

    An attempt is made to quantify the contributions of different types of defect-solute clusters to the total irradiation-induced yield stress increase in neutron-irradiated (300 °C, 0.6 dpa), industrial-purity Fe-Cr model alloys (target Cr contents of 2.5, 5, 9 and 12 at.% Cr). Former work based on the application of transmission electron microscopy, atom probe tomography, and small-angle neutron scattering revealed the formation of dislocation loops, NiSiPCr-enriched clusters and α‧-phase particles, which act as obstacles to dislocation glide. The values of the dimensionless obstacle strength are estimated in the framework of a three-feature dispersed-barrier hardening model. Special attention is paid to the effect of measuring errors, experimental details and model details on the estimates. The three families of obstacles and the hardening model are well capable of reproducing the observed yield stress increase as a function of Cr content, suggesting that the nanostructural features identified experimentally are the main, if not the only, causes of irradiation hardening in these model alloys.

  7. Extracting material response from simple mechanical tests on hardening-softening-hardening viscoplastic solids

    Science.gov (United States)

    Mohan, Nisha

    Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches. A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of

  8. The ABA-INSENSITIVE-4 (ABI4) transcription factor links redox, hormone and sugar signaling pathways.

    Science.gov (United States)

    Foyer, Christine H; Kerchev, Pavel I; Hancock, Robert D

    2012-02-01

    The cellular reduction-oxidation (redox) hub processes information from metabolism and the environment and so regulates plant growth and defense through integration with the hormone signaling network. One key pathway of redox control involves interactions with ABSCISIC ACID (ABA). Accumulating evidence suggests that the ABA-INSENSITIVE-4 (ABI4) transcription factor plays a key role in transmitting information concerning the abundance of ascorbate and hence the ability of cells to buffer oxidative challenges. ABI4 is required for the ascorbate-dependent control of growth, a process that involves enhancement of salicylic acid (SA) signaling and inhibition of jasmonic acid (JA) signaling pathways. Low redox buffering capacity reinforces SA- JA- interactions through the mediation of ABA and ABI4 to fine-tune plant growth and defense in relation to metabolic cues and environmental challenges. Moreover, ABI4-mediated pathways of sugar sensitivity are also responsive to the abundance of ascorbate, providing evidence of overlap between redox and sugar signaling pathways.

  9. Inspection of the grapevine BURP superfamily highlights an expansion of RD22 genes with distinctive expression features in berry development and ABA-mediated stress responses.

    Directory of Open Access Journals (Sweden)

    José Tomás Matus

    Full Text Available The RESPONSIVE TO DEHYDRATION 22 (RD22 gene is a molecular link between abscisic acid (ABA signalling and abiotic stress responses. Its expression has been used as a reliable ABA early response marker. In Arabidopsis, the single copy RD22 gene possesses a BURP domain also located at the C-terminus of USP embryonic proteins and the beta subunit of polygalacturonases. In grapevine, a RD22 gene has been identified but putative paralogs are also found in the grape genome, possibly forming a large RD22 family in this species. In this work, we searched for annotations containing BURP domains in the Vitis vinifera genome. Nineteen proteins were defined by a comparative analysis between the two genome predictions and RNA-Seq data. These sequences were compared to other plant BURPs identified in previous genome surveys allowing us to reconceive group classifications based on phylogenetic relationships and protein motif occurrence. We observed a lineage-specific evolution of the RD22 family, with the biggest expansion in grapevine and poplar. In contrast, rice, sorghum and maize presented highly expanded monocot-specific groups. The Vitis RD22 group may have expanded from segmental duplications as most of its members are confined to a region in chromosome 4. The inspection of transcriptomic data revealed variable expression of BURP genes in vegetative and reproductive organs. Many genes were induced in specific tissues or by abiotic and biotic stresses. Three RD22 genes were further studied showing that they responded oppositely to ABA and to stress conditions. Our results show that the inclusion of RNA-Seq data is essential while describing gene families and improving gene annotations. Robust phylogenetic analyses including all BURP members from other sequenced species helped us redefine previous relationships that were erroneously established. This work provides additional evidence for RD22 genes serving as marker genes for different organs or stresses

  10. Partial Root-Zone Drying of Olive (Olea europaea var. 'Chetoui' Induces Reduced Yield under Field Conditions.

    Directory of Open Access Journals (Sweden)

    Soumaya Dbara

    Full Text Available The productivity of olive trees in arid and semi-arid environments is closely linked to irrigation. It is necessary to improve the efficiency of irrigation techniques to optimise the amount of olive fruit produced in relation to the volume of water used. Partial root-zone drying (PRD is a water saving irrigation technique that theoretically allows the production of a root-to-shoot signal that modifies the physiology of the above-ground parts of the plant; specifically reducing stomatal conductance (gs and improving water use efficiency (WUE. Partial root-zone drying has been successfully applied under field conditions to woody and non-woody crops; yet the few previous trials with olive trees have produced contrasting results. Thirty year-old olive trees (Olea europaea 'var. Chetoui' in a Tunisian grove were exposed to four treatments from May to October for three-years: 'control' plants received 100% of the potential evapotranspirative demand (ETc applied to the whole root-zone; 'PRD100' were supplied with an identical volume of water to the control plants alternated between halves of the root-zone every ten-days; 'PRD50' were given 50% of ETc to half of the root-system, and; 'rain-fed' plants received no supplementary irrigation. Allowing part of the root-zone to dry resulted in reduced vegetative growth and lower yield: PRD100 decreased yield by ~47% during productive years. During the less productive years of the alternate bearing cycle, irrigation had no effect on yield; this suggests that withholding of water during 'off-years' may enhance the effectiveness of irrigation over a two-year cycle. The amount and quality of oil within the olive fruit was unaffected by the irrigation treatment. Photosynthesis declined in the PRD50 and rain-fed trees due to greater diffusive limitations and reduced biochemical uptake of CO2. Stomatal conductance and the foliar concentration of abscisic acid (ABA were not altered by PRD100 irrigation, which may

  11. Partial Root-Zone Drying of Olive (Olea europaea var. 'Chetoui') Induces Reduced Yield under Field Conditions.

    Science.gov (United States)

    Dbara, Soumaya; Haworth, Matthew; Emiliani, Giovani; Ben Mimoun, Mehdi; Gómez-Cadenas, Aurelio; Centritto, Mauro

    2016-01-01

    The productivity of olive trees in arid and semi-arid environments is closely linked to irrigation. It is necessary to improve the efficiency of irrigation techniques to optimise the amount of olive fruit produced in relation to the volume of water used. Partial root-zone drying (PRD) is a water saving irrigation technique that theoretically allows the production of a root-to-shoot signal that modifies the physiology of the above-ground parts of the plant; specifically reducing stomatal conductance (gs) and improving water use efficiency (WUE). Partial root-zone drying has been successfully applied under field conditions to woody and non-woody crops; yet the few previous trials with olive trees have produced contrasting results. Thirty year-old olive trees (Olea europaea 'var. Chetoui') in a Tunisian grove were exposed to four treatments from May to October for three-years: 'control' plants received 100% of the potential evapotranspirative demand (ETc) applied to the whole root-zone; 'PRD100' were supplied with an identical volume of water to the control plants alternated between halves of the root-zone every ten-days; 'PRD50' were given 50% of ETc to half of the root-system, and; 'rain-fed' plants received no supplementary irrigation. Allowing part of the root-zone to dry resulted in reduced vegetative growth and lower yield: PRD100 decreased yield by ~47% during productive years. During the less productive years of the alternate bearing cycle, irrigation had no effect on yield; this suggests that withholding of water during 'off-years' may enhance the effectiveness of irrigation over a two-year cycle. The amount and quality of oil within the olive fruit was unaffected by the irrigation treatment. Photosynthesis declined in the PRD50 and rain-fed trees due to greater diffusive limitations and reduced biochemical uptake of CO2. Stomatal conductance and the foliar concentration of abscisic acid (ABA) were not altered by PRD100 irrigation, which may indicate the

  12. Neutron flux and annealing effects on irradiation hardening of RPV materials

    Science.gov (United States)

    Chaouadi, R.; Gérard, R.

    2011-11-01

    This paper aims to examine an eventual effect of neutron flux, sometimes referred to as dose rate effect, on irradiation hardening of a typical A533B reactor pressure vessel steel. Tensile tests on both low flux (reactor surveillance data) and high flux (BR2 reactor) were performed in a large fluence range. The obtained results indicate two features. First, the surveillance data exhibit a constant (˜90 MPa) higher yield strength than the high flux data. However, this difference cannot be explained from a flux effect but most probably from differences in the initial tensile properties. The hardening kinetic of both low and high flux is the same. Annealing at low temperature, 345 °C/40 h, to eventually reveal unstable matrix damage did not affect both BR2 and surveillance specimens. This is confirmed by other annealing experimental data including both tensile and hardness measurements and tensile data on A508 forging and weld. It is suggested that the absence of flux effect on the tensile properties while different radiation-induced microstructures can be attributed to thermal ageing effects.

  13. Investigation of hardening behavior in Xe ion-irradiated Zr–1Nb

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chunguang [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); China Institute of Atomic Energy, Beijing 102413 (China); Wang, Rongshan [Life Management Technology Center, Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Dai, Xianyuan [Fujian Fuqing Nuclear Power Co., Ltd., Fuqing 350318 (China); Wang, Yanli, E-mail: wangyl@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Xitao [Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083 (China); Bai, Guanghai; Zhang, Yanwei [Life Management Technology Center, Suzhou Nuclear Power Research Institute, Suzhou 215004 (China)

    2016-05-15

    Irradiation hardening behavior of Zr–1Nb was examined by nanoindentation, slow positron annihilation technique, transmission electron microscopy and coplanar extremely asymmetric X-ray diffraction technique. Samples were irradiated at a dose rate of 2.78 × 10{sup −4} dpa/s to peak doses of 0.15, 0.5, 1.5 and 2.5 dpa with 6.37 MeV Xe{sup 26+} ion beam at room temperature. The increase in hardness as a function of dose followed a power law expression with the exponent of 0.46. With increasing irradiation dose, more mono-, di- and trivacancies were induced, but their concentration remained constant once formed due to the equilibrium between the formation and recombination of vacancy type clusters during irradiation. Meanwhile, the dislocation loops were also introduced and their linear density increased with dose. The dislocation loops played an important role in the irradiation hardening behavior. But the exact contribution of each microstructural components to the overall hardness still needs further study.

  14. Microstructure-property relationships and constitutive response of plastically graded case hardened steels

    Science.gov (United States)

    Klecka, Michael A.

    . The average plastic strain induced by an indent is shown to be an effective measure of the representative plastic strain, which is used in order to relate hardness to yield strength in both virgin and plastically deformed materials. It is shown that the two carburized steels contain gradients in yield strength, but constant strain hardening exponent with depth. The resulting model of material behavior is used to characterize the influence of specific gradients in material properties on the surface indentation behavior under increasing indentation loads. It is also shown that the response of the material is not greatly influenced by strain hardening exponent, while a gradient in strain hardening ability only has minimal impact. Gradients in elastic properties are also shown to have negligible influence for a fixed gradient in hardness. The depth of subsurface plastic deformation is shown to increase with sharper gradients in hardness, but is not altered by gradients in elastic properties. The proposed approach is not specific to case hardened materials and can be used to determine the subsurface hardness gradient for any graded material.

  15. Application of submerged induction hardening; Ekichu koshuha yakiire no jitsuyoka

    Energy Technology Data Exchange (ETDEWEB)

    Nishimori, Y; Nagai, Y; Amii, Y [Mazda Motor Corp., Hiroshima (Japan); Tanaka, Y [Netsuren Co. Ltd., Tokyo (Japan); Mizuma, T [Toyo Advanced Technologies Co. Ltd., Hiroshima (Japan)

    1997-10-01

    As a cost-cutting measure, the linerless diesel engine was adopted by applying submerged induction hardening process which can harden partial inner surface of cylinder block bore. In applying this process, (1) development of induction coil which can form any shape of quenched pattern and (2) the development of machining technology which can hone precisely the distorted bore after quenching, were important. With these improvements, submerged Induction hardening was made practical. 1 ref., 11 figs.

  16. Personality Traits among Inmates of Aba Prison in Nigeria: Influence ...

    African Journals Online (AJOL)

    Aim: To assess the personality traits of inmates in Aba prison. Methods: Four hundred and six inmates were studied. Each inmate completed a semi-structured sociodemographic questionnaire and personality traits were assessed with the 44-item Big Five Inventory. Results: The majority (72.7%) of the inmates were within ...

  17. Nuclear EMP: key suppression device parameters for EMP hardening

    International Nuclear Information System (INIS)

    Durgin, D.L.; Brown, R.M.

    1975-03-01

    The electrical transients induced by EMP exhibit unique characteristics which differ considerably from transients associated with other phenomena such as lightning, switching, and circuit malfunctions. The suppression techniques developed to handle more common transients, though not necessarily the same devices, can be used for EMP damage protection. The suppression devices used for circuit level EMP protection are referred to as Terminal Protection Devices (TPD). Little detailed data describing the response of TPD's to EMP-related transients have been published. While most vendors publish specifications for TPD performance, there is little standardization of parameters and TPD response models are not available. This lack of parameter standardization has resulted in a proliferation of test data that is sometimes conflicting and often not directly comparable. This paper derives and/or defines a consistent set of parameters based on EMP circuit hardening requirements and on measurable component parameters and is concerned only with use of TPD's to prevent permanent damage. Three sets of parameters pertaining to pertinent TPD functional characteristics were defined as follows: standby parameters, protection parameters, and failure parameters. These parameters are used to evaluate a representative sample of TPD's and the results are presented in matrix form to facilitate the selection of devices for specific hardening problems

  18. Plastic limit pressure of spherical vessels with combined hardening involving large deformation

    International Nuclear Information System (INIS)

    Leu, S.-Y.; Liao, K.-C.; Lin, Y.-C.

    2014-01-01

    The paper aims to investigate plastic limit pressure of spherical vessels of nonlinear combined isotropic/kinematic hardening materials. The Armstrong-Frederick kinematic hardening model is adopted and the Voce hardening law is incorporated for isotropic hardening behavior. Analytically, we extend sequential limit analysis to deal with combined isotropic/kinematic hardening materials. Further, exact solutions of plastic limit pressure were developed analytically by conducting both static and kinematic limit analysis. The onset of instability was also derived and solved iteratively by Newton's method. Numerically, elastic–plastic analysis is also performed by the commercial finite-element code ABAQUS incorporated with the user subroutine UMAT implemented with user materials of combined hardening. Finally, the problem formulation and the solution derivations presented here are validated by a very good agreement between the numerical results of exact solutions and the results of elastic–plastic finite-element analysis by ABAQUS. -- Highlights: • Sequential limit analysis is extended to consider combined hardening. • Exact solutions of plastic limit pressure are developed. • The onset of instability of a spherical vessel is derived and solved numerically

  19. Overlapping and distinct roles of AKIN10 and FUSCA3 in ABA and sugar signaling during seed germination.

    Science.gov (United States)

    Tsai, Allen Yi-Lun; Gazzarrini, Sonia

    2012-10-01

    The Arabidopsis B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed maturation and also a central modulator of hormonal responses during late embryogenesis and germination. Recently, we have identified AKIN10, the Arabidopsis ortholog of Snf1 (Sucrose Non-Fermenting-1)-Related Kinase1 (SnRK1), as a FUS3-interacting protein. We demonstrated that AKIN10 physically interacts with and phosphorylates FUS3 at its N-terminal region, and genetically interacts with FUS3 to regulate developmental phase transition and lateral organ growth. Snf1/AMPK/SnRK1 kinases are important sensors of the cellular energy level, and they are activated in response to starvation and cellular stress. Here we present findings that indicate FUS3 and AKIN10 functionally overlap in ABA signaling, but play different roles in sugar responses during germination. Seeds overexpressing FUS3 and AKIN10 both display ABA-hypersensitivity and delayed germination. The latter is partly dependent on de novo ABA synthesis in both genotypes, as delayed germination can be partially rescued by the ABA biosynthesis inhibitor, fluridone. However, seeds and seedlings overexpressing FUS3 and AKIN10 show different sugar responses. AKIN10-overexpressing seeds and seedlings are hypersensitive to glucose, while those overexpressing FUS3 display overall defects in osmotic stress, primarily during seedling growth, as they show increased sensitivity toward sorbitol and glucose. Hypersensitivity to sugar and/or osmotic stress during germination are partly dependent on de novo ABA synthesis for both genotypes, although are likely to act through distinct pathways. This data suggests that AKIN10 and FUS3 both act as positive regulators of seed responses to ABA, and that AKIN10 regulates sugar signaling while FUS3 mediates osmotic stress responses.

  20. Radiation hardening at 77 K in Zn and Cu single crystals at low doses

    International Nuclear Information System (INIS)

    Gonzalez, H.C.; Bisogni, E.A.

    1980-01-01

    There is controversy about radiation hardening phenomenon and its additivity with other hardening mechanisms. The purpose of this work is to contribute to the understanding of this subject, through measurements made in Zn and Cu single crystals. Post-irradiation measurements of yield stress of Zn, made on different single crystals, show a direct proportionality to the 0.5 power of the dose. It is determined that for a dose greater than 3.7 x 10 16 neutrons cm -2 s -1 there is always cleavage. The maximum critical resolved shear stress measured is about 8.82 MPa. In order to study additivity it is necessary to lower experimental errors. A micro tensile machine is designed to operate in the CNEA facility RA1 in a bath of liquid N 2 . Experimental measurements of yield stress with dose are carried out in-situ on the same single crystals. Experimental results on Cu and Zn show that radiation induced yield stress increases with a 0.5 power law. It must be taken into account that the definition of radiation induced yield stress stands for radiation created obstacles operating alone. The radiation induced yield stress adds algebraically to the athermal component of the initial yield stress but is not exactly additive to the other thermally activated mechanisms. A gradual transition from one to the other type of obstacles is observed. (author)

  1. Kinematic Hardening: Characterization, Modeling and Impact on Springback Prediction

    International Nuclear Information System (INIS)

    Alves, J. L.; Bouvier, S.; Jomaa, M.; Billardon, R.; Oliveira, M. C.; Menezes, L. F.

    2007-01-01

    The constitutive modeling of the materials' mechanical behavior, usually carried out using a phenomenological constitutive model, i.e., a yield criterion associated to the isotropic and kinematic hardening laws, is of paramount importance in the FEM simulation of the sheet metal forming processes, as well as in the springback prediction. Among others, the kinematic behavior of the yield surface plays an essential role, since it is indispensable to describe the Bauschinger effect, i.e., the materials' answer to the multiple tension-compression cycles to which material points are submitted during the forming process. Several laws are usually used to model and describe the kinematic hardening, namely: a) the Prager's law, which describes a linear evolution of the kinematic hardening with the plastic strain rate tensor b) the Frederick-Armstrong non-linear kinematic hardening, basically a non-linear law with saturation; and c) a more advanced physically-based law, similar to the previous one but sensitive to the strain path changes. In the present paper a mixed kinematic hardening law (linear + non-linear behavior) is proposed and its implementation into a static fully-implicit FE code is described. The material parameters identification for sheet metals using different strategies, and the classical Bauschinger loading tests (i.e. in-plane forward and reverse monotonic loading), are addressed, and their impact on springback prediction evaluated. Some numerical results concerning the springback prediction of the Numisheet'05 Benchmark no. 3 are briefly presented to emphasize the importance of a correct modeling and identification of the kinematic hardening behavior

  2. Influences of Steelmaking Slags on Hydration and Hardening of Concretes

    Science.gov (United States)

    Kirsanova, A. A.; Dildin, A. N.; Maksimov, S. P.

    2017-11-01

    It is shown that the slag of metallurgical production can be used in the construction industry as an active mineral additive for concrete. This approach allows us to solve environmental problems and reduce costs for the production of binder and concrete simultaneously. Most often slag is used in the form of a filler, an active mineral additive or as a part of a binder for artificial conglomerates. The introduction of slag allows one to notice a part of the cement, to obtain concretes that are more resistant to the impact of aggressive sulfate media. The paper shows the possibility of using recycled steel-smelting slags in the construction industry for the production of cement. An assessment was made of their effect on the hydration of the cement stone and hardening of the concrete together with the plasticizer under normal conditions. In the process of work, we used the slag of the Zlatoust Electrometallurgical Factory. Possible limitations of the content of steel-slag slag in concrete because of the possible presence of harmful impurities are shown. It is necessary to enter slag in conjunction with superplasticizers to reduce the flow of water mixing. Slags can be used as a hardening accelerator for cement concrete as they allow one to increase the degree of cement hydration and concrete strength. It is shown that slags can be used to produce fast-hardening concretes and their comparative characteristics with other active mineral additives are given.

  3. Embrittlement of irradiated ferritic/martensitic steels in the absence of irradiation hardening

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge Noational Laboratory, TN (United States); Shiba, K. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Sokolov, M. [Oak Ridge National Laboratory, Materials Science and Technology Div., TN (United States)

    2007-07-01

    regime. Indications were that this embrittlement was also caused by irradiation-accelerated or irradiation-induced precipitation. These observations of embrittlement in the absence of irradiation hardening have been examined and analyzed with computational thermodynamics modeling to illuminate and understand the effect. (authors)

  4. Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in Aspergillus fumigatus

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kwang-Soo, E-mail: shinks@dju.kr [Division of Life Science, Daejeon University, Daejeon, 300-716 (Korea, Republic of); Kim, Young Hwan [Biomedical Omics Team, Korea Basic Science Institute (KBSI), Ohcang, 368-883 (Korea, Republic of); Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764 (Korea, Republic of); Department of Bio-Analytical Science, University of Science and Technology, Daejeon, 305-333 (Korea, Republic of); Yu, Jae-Hyuk, E-mail: jyu1@wisc.edu [Departments of Bacteriology and Genetics, The University of Wisconsin–Madison, Madison, WI, 53706 (United States)

    2015-07-31

    The opportunistic human pathogenic fungus Aspergillus fumigatus primarily reproduces by forming a large number of asexual spores (conidia). Sequential activation of the central regulators BrlA, AbaA and WetA is necessary for the fungus to undergo asexual development. In this study, to address the presumed roles of these key developmental regulators during proliferation of the fungus, we analyzed and compared the proteomes of vegetative cells of wild type (WT) and individual mutant strains. Approximately 1300 protein spots were detectable from 2-D electrophoresis gels. Among these, 13 proteins exhibiting significantly altered accumulation levels were further identified by ESI-MS/MS. Markedly, we found that the GliM and GliT proteins associated with gliotoxin (GT) biosynthesis and self-protection of the fungus from GT were significantly down-regulated in the ΔabaA and ΔbrlA mutants. Moreover, mRNA levels of other GT biosynthetic genes including gliM, gliP, gliT, and gliZ were significantly reduced in both mutant strains, and no and low levels of GT were detectable in the ΔbrlA and ΔabaA mutant strains, respectively. As GliT is required for the protection of the fungus from GT, growth of the ΔbrlA mutant with reduced levels of GliT was severely impaired by exogenous GT. Our studies demonstrate that AbaA and BrlA positively regulate expression of the GT biosynthetic gene cluster in actively growing vegetative cells, and likely bridge morphological and chemical development during the life-cycle of A. fumigatus. - Highlights: • Proteome analyses of WT and mutants reveal 13 differentially expressed proteins. • The GliT and GliM proteins are significantly down-regulated by ΔabaA and ΔbrlA. • Expression of other gliotoxin biosynthetic genes is lowered by ΔabaA and ΔbrlA. • Growth of ΔbrlA strain lacking GliT is completely inhibited by exogenous gliotoxin. • BrlA and AbaA play key roles in biogenesis of gliotoxin in Aspergillus fumigatus.

  5. Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in Aspergillus fumigatus

    International Nuclear Information System (INIS)

    Shin, Kwang-Soo; Kim, Young Hwan; Yu, Jae-Hyuk

    2015-01-01

    The opportunistic human pathogenic fungus Aspergillus fumigatus primarily reproduces by forming a large number of asexual spores (conidia). Sequential activation of the central regulators BrlA, AbaA and WetA is necessary for the fungus to undergo asexual development. In this study, to address the presumed roles of these key developmental regulators during proliferation of the fungus, we analyzed and compared the proteomes of vegetative cells of wild type (WT) and individual mutant strains. Approximately 1300 protein spots were detectable from 2-D electrophoresis gels. Among these, 13 proteins exhibiting significantly altered accumulation levels were further identified by ESI-MS/MS. Markedly, we found that the GliM and GliT proteins associated with gliotoxin (GT) biosynthesis and self-protection of the fungus from GT were significantly down-regulated in the ΔabaA and ΔbrlA mutants. Moreover, mRNA levels of other GT biosynthetic genes including gliM, gliP, gliT, and gliZ were significantly reduced in both mutant strains, and no and low levels of GT were detectable in the ΔbrlA and ΔabaA mutant strains, respectively. As GliT is required for the protection of the fungus from GT, growth of the ΔbrlA mutant with reduced levels of GliT was severely impaired by exogenous GT. Our studies demonstrate that AbaA and BrlA positively regulate expression of the GT biosynthetic gene cluster in actively growing vegetative cells, and likely bridge morphological and chemical development during the life-cycle of A. fumigatus. - Highlights: • Proteome analyses of WT and mutants reveal 13 differentially expressed proteins. • The GliT and GliM proteins are significantly down-regulated by ΔabaA and ΔbrlA. • Expression of other gliotoxin biosynthetic genes is lowered by ΔabaA and ΔbrlA. • Growth of ΔbrlA strain lacking GliT is completely inhibited by exogenous gliotoxin. • BrlA and AbaA play key roles in biogenesis of gliotoxin in Aspergillus fumigatus

  6. Growth and ABA responses of maple seedlings to aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, A.; Robitaille, G.; Boutin, R. [Canadian Forestry Service, Sainte Foy, PQ (Canada); Nadeau, P. [Agriculture and Agri-Food Canada Research Station, Sainte-Foy, PQ (Canada)

    1995-12-01

    The impacts of low pH and 2.0 mM aluminum (Al) on the growth of sugar maple seedlings was assessed over a 13-week period. The hypothesis was that low pH and high aluminum concentration would lower the vigor of sugar maple seedlings and were contributing factors to sugar maple stand decline. The effects of the stresses were measured in roots and shoots. The concentration of abscisis acid (ABA) in xylem sap in response to Al over time was measured to determine whether it could be used as an indicator of Al stress in sugar maple seedlings. At week 9, total leaf area of Al-treated seedlings was reduced by 27%, but by week 13 leaf area was similar for seedlings in all treatments. None of the other growth parameters examined were negatively affected by the treatments at either week 9 or week 13. ABA concentration in the xylem sap was not affected by any of the treatments. The duration of exposure to Al was found critical when assessing a threshold concentration for Al toxicity because plants can acclimate to an Al concentration previously considered toxic. 36 refs., 1 tab., 6 figs.

  7. Computer modelling of age hardening for cast aluminium alloys

    International Nuclear Information System (INIS)

    Wu, Linda; Ferguson, W George

    2009-01-01

    Age hardening, or precipitation hardening, is one of the most widely adopted techniques for strengthening of aluminium alloys. Although various age hardening models have been developed for aluminium alloys, from the large volume of literature reviewed, it appears that the bulk of the research has been concentrated on wrought aluminium alloys, only a few of the established precipitation models have been applied to the casting aluminium alloys. In the present work, there are two modelling methods that have been developed and applied to the casting aluminium alloys A356 and A357. One is based on the Shercliff-Ashby methodology to produce a process model, by which we mean a mathematical relationship between process variables (alloy composition, ageing temperature and time) and material properties (yield strength or hardness) through microstructure evolution (precipitate radius, volume fraction). The other method is based on the Kampmann and Wagner Numerical (KWN) model which deals with concomitant nucleation, growth and coarsening and is thus capable of predicting the full evolution of the particle size distribution and then a strength model is used to evaluate the resulting change in hardness or yield strength at room temperature by taking into account contributions from lattice resistance, solid solution hardening and precipitation hardening.

  8. Age hardening in die-cast Mg–Al–RE alloys due to minor Mn additions

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, S.M., E-mail: suming.zhu@rmit.edu.au [School Engineering, RMIT University, Carlton, Victoria 3053 (Australia); Department of Materials Science and Engineering, Monash University, Victoria 3800 (Australia); Abbott, T.B. [School Engineering, RMIT University, Carlton, Victoria 3053 (Australia); Department of Materials Science and Engineering, Monash University, Victoria 3800 (Australia); Magontec Limited, Sydney, New South Wales 2000 (Australia); Gibson, M.A. [School Engineering, RMIT University, Carlton, Victoria 3053 (Australia); Department of Materials Science and Engineering, Monash University, Victoria 3800 (Australia); CSIRO Manufacturing Flagship, Clayton, Victoria 3168 (Australia); Nie, J.F. [Department of Materials Science and Engineering, Monash University, Victoria 3800 (Australia); Easton, M.A. [School Engineering, RMIT University, Carlton, Victoria 3053 (Australia)

    2016-02-22

    Die-cast Mg–Al–rare earth (RE) alloys are normally used in the as-cast condition without the application of heat treatment because it is a common perception that heat treatment will not provide benefit to these alloys. This paper reports, for the first time, that enhanced age hardenability can be achieved in die-cast Mg–Al–RE alloys with minor Mn additions. For example, the yield strength of Mg–4 wt%Al–3 wt%La alloy with 0.32 wt% Mn is increased by ∼34 MPa (∼26%) after ageing at 200 °C for 32 h (T5). The enhanced age hardenability is associated with the precipitation of nanoscale Al–Mn particles during ageing.

  9. 78 FR 57418 - Compliance With Order EA-13-109, Order Modifying Licenses With Regard to Reliable Hardened...

    Science.gov (United States)

    2013-09-18

    ... Licenses With Regard to Reliable Hardened Containment Vents Capable of Operation Under Severe Accident... Capable of Operation under Severe Accident Conditions.'' (ADAMS Accession No. ML13247A417) This draft JLD... Containment Vents Capable of Operation under Severe Accident Conditions'' (ADAMS Accession No. ML13130A067...

  10. A project of X-ray hardening correction in large ICT

    International Nuclear Information System (INIS)

    Fang Min; Liu Yinong; Ni Jianping

    2005-01-01

    This paper presents a means of polychromatic X-ray beam hardening correction using a standard function to transform the polychromatic projection to monochromatic projection in large Industrial Computed Tomography (ICT). Some parameters were defined to verify the validity of hardening correction in large ICT and optimized. Simulated experiments were used to prove that without prior knowledge of the composition of the scanned object, the correction method using monochromatic reconstruction arithmetic could remove beam hardening artifact greatly. (authors)

  11. Influence of Hardening Model on Weld Residual Stress Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Jonathan; Gunnars, Jens (Inspecta Technology AB, Stockholm (Sweden))

    2009-06-15

    This study is the third stage of a project sponsored by the Swedish Radiation Safety Authority (SSM) to improve the weld residual stress modelling procedures currently used in Sweden. The aim of this study was to determine which material hardening model gave the best agreement with experimentally measured weld residual stress distributions. Two girth weld geometries were considered: 19mm and 65mm thick girth welds with Rin/t ratios of 10.5 and 2.8, respectively. The FE solver ABAQUS Standard v6.5 was used for analysis. As a preliminary step some improvements were made to the welding simulation procedure used in part one of the project. First, monotonic stress strain curves and a mixed isotropic/kinematic hardening model were sourced from the literature for 316 stainless steel. Second, more detailed information was obtained regarding the geometry and welding sequence for the Case 1 weld (compared with phase 1 of this project). Following the preliminary step, welding simulations were conducted using isotropic, kinematic and mixed hardening models. The isotropic hardening model gave the best overall agreement with experimental measurements; it is therefore recommended for future use in welding simulations. The mixed hardening model gave good agreement for predictions of the hoop stress but tended to under estimate the magnitude of the axial stress. It must be noted that two different sources of data were used for the isotropic and mixed models in this study and this may have contributed to the discrepancy in predictions. When defining a mixed hardening model it is difficult to delineate the relative contributions of isotropic and kinematic hardening and for the model used it may be that a greater isotropic hardening component should have been specified. The kinematic hardening model consistently underestimated the magnitude of both the axial and hoop stress and is not recommended for use. Two sensitivity studies were also conducted. In the first the effect of using a

  12. Influence of Hardening Model on Weld Residual Stress Distribution

    International Nuclear Information System (INIS)

    Mullins, Jonathan; Gunnars, Jens

    2009-06-01

    This study is the third stage of a project sponsored by the Swedish Radiation Safety Authority (SSM) to improve the weld residual stress modelling procedures currently used in Sweden. The aim of this study was to determine which material hardening model gave the best agreement with experimentally measured weld residual stress distributions. Two girth weld geometries were considered: 19mm and 65mm thick girth welds with Rin/t ratios of 10.5 and 2.8, respectively. The FE solver ABAQUS Standard v6.5 was used for analysis. As a preliminary step some improvements were made to the welding simulation procedure used in part one of the project. First, monotonic stress strain curves and a mixed isotropic/kinematic hardening model were sourced from the literature for 316 stainless steel. Second, more detailed information was obtained regarding the geometry and welding sequence for the Case 1 weld (compared with phase 1 of this project). Following the preliminary step, welding simulations were conducted using isotropic, kinematic and mixed hardening models. The isotropic hardening model gave the best overall agreement with experimental measurements; it is therefore recommended for future use in welding simulations. The mixed hardening model gave good agreement for predictions of the hoop stress but tended to under estimate the magnitude of the axial stress. It must be noted that two different sources of data were used for the isotropic and mixed models in this study and this may have contributed to the discrepancy in predictions. When defining a mixed hardening model it is difficult to delineate the relative contributions of isotropic and kinematic hardening and for the model used it may be that a greater isotropic hardening component should have been specified. The kinematic hardening model consistently underestimated the magnitude of both the axial and hoop stress and is not recommended for use. Two sensitivity studies were also conducted. In the first the effect of using a

  13. On complex periodic motions and bifurcations in a periodically forced, damped, hardening Duffing oscillator

    International Nuclear Information System (INIS)

    Guo, Yu; Luo, Albert C.J.

    2015-01-01

    In this paper, analytically predicted are complex periodic motions in the periodically forced, damped, hardening Duffing oscillator through discrete implicit maps of the corresponding differential equations. Bifurcation trees of periodic motions to chaos in such a hardening Duffing oscillator are obtained. The stability and bifurcation analysis of periodic motion in the bifurcation trees is carried out by eigenvalue analysis. The solutions of all discrete nodes of periodic motions are computed by the mapping structures of discrete implicit mapping. The frequency-amplitude characteristics of periodic motions are computed that are based on the discrete Fourier series. Thus, the bifurcation trees of periodic motions are also presented through frequency-amplitude curves. Finally, based on the analytical predictions, the initial conditions of periodic motions are selected, and numerical simulations of periodic motions are carried out for comparison of numerical and analytical predictions. The harmonic amplitude spectrums are also given for the approximate analytical expressions of periodic motions, which can also be used for comparison with experimental measurement. This study will give a better understanding of complex periodic motions in the hardening Duffing oscillator.

  14. Adaptive Behaviour Assessment System: Indigenous Australian Adaptation Model (ABAS: IAAM)

    Science.gov (United States)

    du Plessis, Santie

    2015-01-01

    The study objectives were to develop, trial and evaluate a cross-cultural adaptation of the Adaptive Behavior Assessment System-Second Edition Teacher Form (ABAS-II TF) ages 5-21 for use with Indigenous Australian students ages 5-14. This study introduced a multiphase mixed-method design with semi-structured and informal interviews, school…

  15. Quantum Hall Effect and Semimetallic Behavior of Dual-Gated ABA-Stacked Trilayer Graphene

    Directory of Open Access Journals (Sweden)

    E. A. Henriksen

    2012-01-01

    Full Text Available The electronic structure of multilayer graphenes depends strongly on the number of layers as well as the stacking order. Here we explore the electronic transport of purely ABA-stacked trilayer graphenes in a dual-gated field-effect device configuration. We find both that the zero-magnetic-field transport and the quantum Hall effect at high magnetic fields are distinctly different from the monolayer and bilayer graphenes, and that they show electron-hole asymmetries that are strongly suggestive of a semimetallic band overlap. When the ABA trilayers are subjected to an electric field perpendicular to the sheet, Landau-level splittings due to a lifting of the valley degeneracy are clearly observed.

  16. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions.

    Science.gov (United States)

    Uno, Y; Furihata, T; Abe, H; Yoshida, R; Shinozaki, K; Yamaguchi-Shinozaki, K

    2000-10-10

    The induction of the dehydration-responsive Arabidopsis gene, rd29B, is mediated mainly by abscisic acid (ABA). Promoter analysis of rd29B indicated that two ABA-responsive elements (ABREs) are required for the dehydration-responsive expression of rd29B as cis-acting elements. Three cDNAs encoding basic leucine zipper (bZIP)-type ABRE-binding proteins were isolated by using the yeast one-hybrid system and were designated AREB1, AREB2, and AREB3 (ABA-responsive element binding protein). Transcription of the AREB1 and AREB2 genes is up-regulated by drought, NaCl, and ABA treatment in vegetative tissues. In a transient transactivation experiment using Arabidopsis leaf protoplasts, both the AREB1 and AREB2 proteins activated transcription of a reporter gene driven by ABRE. AREB1 and AREB2 required ABA for their activation, because their transactivation activities were repressed in aba2 and abi1 mutants and enhanced in an era1 mutant. Activation of AREBs by ABA was suppressed by protein kinase inhibitors. These results suggest that both AREB1 and AREB2 function as transcriptional activators in the ABA-inducible expression of rd29B, and further that ABA-dependent posttranscriptional activation of AREB1 and AREB2, probably by phosphorylation, is necessary for their maximum activation by ABA. Using cultured Arabidopsis cells, we demonstrated that a specific ABA-activated protein kinase of 42-kDa phosphorylated conserved N-terminal regions in the AREB proteins.

  17. Abscisic Acid-Induced H2O2 Accumulation Enhances Antioxidant Capacity in Pumpkin-Grafted Cucumber Leaves under Ca(NO3)2 Stress

    Science.gov (United States)

    Shu, Sheng; Gao, Pan; Li, Lin; Yuan, Yinghui; Sun, Jin; Guo, Shirong

    2016-01-01

    With the aim to clarifying the role of the ABA/H2O2 signaling cascade in the regulating the antioxidant capacity of grafted cucumber plants in response to Ca(NO3)2 stress, we investigated the relationship between ABA-mediated H2O2 production and the activities of antioxidant enzymes in the leaves of pumpkin-grafted cucumber seedlings. The results showed that both ABA and H2O2 were detected in pumpkin-grafted cucumber seedlings in response to Ca(NO3)2 treatment within 0.5 h in the leaves and peaked at 3 and 6 h after Ca(NO3)2 treatment, respectively, compared to the levels under control conditions. The activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and peroxidase (POD) in pumpkin-grafted cucumber leaves gradually increased over time and peaked at 12 h of Ca(NO3)2 stress. Furthermore, in the leaves of pumpkin-grafted cucumber seedlings, the H2O2 generation, the antioxidant enzyme activities and the expression of SOD, POD and cAPX were strongly blocked by an inhibitor of ABA under Ca(NO3)2 stress, but this effect was eliminated by the addition of exogenous ABA. Moreover, the activities and gene expressions of these antioxidant enzymes in pumpkin-grafted leaves were almost inhibited under Ca(NO3)2 stress by pretreatment with ROS scavengers. These results suggest that the pumpkin grafting-induced ABA accumulation mediated H2O2 generation, resulting in the induction of antioxidant defense systems in leaves exposed to Ca(NO3)2 stress in the ABA/H2O2 signaling pathway. PMID:27746808

  18. Rationale simplified hardening training and recreational complexes future teachers

    Directory of Open Access Journals (Sweden)

    Verbludov I.B.

    2010-02-01

    Full Text Available Distribution in the modern world epidemiological diseases are influenza and acute respiratory viral infections requires a search for simplified, effective preventive means. The main direction of prevention of these diseases is to strengthen and enhance the activities of the immune system. Strengthening the protective systems of the body is directly related to the constant holding of different types of hardening. This study illustrates the possibility of using quenching air and water in the independent exercise training and recreational facilities in all conditions of students.

  19. Ethylene limits abscisic acid- or soil drying-induced stomatal closure in aged wheat leaves.

    Science.gov (United States)

    Chen, Lin; Dodd, Ian C; Davies, William J; Wilkinson, Sally

    2013-10-01

    The mechanism of age-induced decreased stomatal sensitivity to abscisic acid (ABA) and soil drying has been explored here. Older, fully expanded leaves partly lost their ability to close stomata in response to foliar ABA sprays, and soil drying which stimulated endogenous ABA production, while young fully expanded leaves closed their stomata more fully. However, ABA- or soil drying-induced stomatal closure of older leaves was partly restored by pretreating plants with 1-methylcyclopropene (1-MCP), which can antagonize ethylene receptors, or by inoculating soil around the roots with the rhizobacterium Variovorax paradoxus 5C-2, which contains 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase. ACC (the immediate biosynthetic precursor of ethylene) sprays revealed higher sensitivity of stomata to ethylene in older leaves than younger leaves, despite no differences in endogenous ACC concentrations or ethylene emission. Taken together, these results indicate that the relative insensitivity of stomatal closure to ABA and soil drying in older leaves is likely due to altered stomatal sensitivity to ethylene, rather than ethylene production. To our knowledge, this is the first study to mechanistically explain diminished stomatal responses to soil moisture deficit in older leaves, and the associated reduction in leaf water-use efficiency. © 2013 John Wiley & Sons Ltd.

  20. Mechanism of fluridone-induced seed germination of cistanche tubulosa

    International Nuclear Information System (INIS)

    Chen, Q.L.; Tu, P.

    2016-01-01

    Our previous study disclosed that fluridone, a synthesis inhibitor of abscisic acid (ABA), could stimulate seed germination in the holoparasitic plant Cistanche tubulosa . Nonetheless, the underlying mechanisms have not been thoroughly elucidated. In the present study, an attempt was made to reveal the mechanism of fluridone breaking seed dormancy in C. tubulosa and to determine the contribution of hormones in this process. The ABA level in seeds initially decreased following fluridone treatment and was subsequently maintained at a concentration of 31 ng g/sup -1/ DW (dry weight) three days later. The contents of gibberellins (GAs) initially in creased and subsequently were maintained at a level of 40 ng g-1 DW after ten days. However, the increment of seed germination induced by fluridone was inhibited after the introduction of exogenous ABA or paclobutrazol (a synthesis inhibitor of GAs). Furthermore, inhibition from paclobutrazol was reversed by an additional treatment with exogenous GA3. When the ratio of endogenous GAs to ABA reached 4:3, C. tubulosa seeds initiated germination. By contrast, although the ratio of endogenous GAs to ABA content reached 2:1 by cold stratification, C. tubulosa seeds could not germinate unless exogenous GA3 was added. In summary, our current study revealed that (i) GAs and ABA play key roles for the seed germination of C. tubulosa , (ii) fluridone inhibited ABA biosynthesis but increased the concentration of GAs in seeds, and (iii) fluridone might initiate other processes associated with germination. (author)

  1. Plasma Methods of Obtainment of Multifunctional Composite Materials, Dispersion-Hardened by Nanoparticles

    Science.gov (United States)

    Sizonenko, O. N.; Grigoryev, E. G.; Pristash, N. S.; Zaichenko, A. D.; Torpakov, A. S.; Lypian, Ye. V.; Tregub, V. A.; Zholnin, A. G.; Yudin, A. V.; Kovalenko, A. A.

    2017-09-01

    High voltage electric discharge (HVED) in disperse system "hydrocarbon liquid - powder" due to impact of plasma discharge channel, electromagnetic fields, shock waves mechanical impact, hydro flows and volume microcavitation leads to synthesis of nanocarbon, metal powders dispersion and synthesis of micro- (from 10-6 to 10-7 m) and nanosized (from 10-7 to 10-9 m) composite powders of hardening phases. Spark plasma sintering (SPS) of powder mixtures allows targeted control of grain growth rate and thus allows obtainment of multifunctional composite materials dispersion hardened by nanoparticles. Processes of HVED synthesis of micro- and nanosized powders of new compositions from elemental metal powders and their mixtures with the subsequent application of high-speed SPS of obtained powders create conditions for increase of strength (by 10-20 %), hardness and wear-resistance (by 30-60 %) of obtained materials.

  2. Mixed allogeneic reconstitution (A+B----A) to induce donor-specific transplantation tolerance. Permanent acceptance of a simultaneous donor skin graft

    International Nuclear Information System (INIS)

    Ildstad, S.T.; Wren, S.M.; Oh, E.; Hronakes, M.L.

    1991-01-01

    Mixed allogeneic reconstitution, in which a mixture of T-cell-depleted bone marrow of syngeneic host and allogeneic donor type is transplanted into a lethally irradiated recipient (A+B----A), results in mixed lymphopoietic chimerism with engraftment of a mixture of both host and donor bone marrow elements. Recipients are specifically tolerant to donor both in vitro and in vivo. Donor-specific skin grafts survive indefinitely when they are placed after full bone marrow repopulation at 28 days, while third-party grafts are rapidly rejected. To determine whether a delay of a month or more for full bone marrow repopulation is required before a donor-specific graft can be placed, we have now examined whether tolerance induction can be achieved if a graft is placed at the time of bone marrow transplantation. Permanent acceptance of donor-specific B10.BR skin grafts occurred when mixed allogeneic chimerism (B10+B10.BR----B10) was induced and a simultaneous allogeneic donor graft placed. In vitro, mixed reconstituted recipients were specifically tolerant to the B10.BR donor lymphoid cells but fully reactive to MHC-disparate third-party (BALB/c; H-2dd) when assessed by mixed lymphocyte reaction (MLR) and cell-mediated lympholysis (CML) assays. These data therefore indicate that a donor-specific graft placed at the time of mixed allogeneic reconstitution is permanently accepted without rejection. To determine whether an allogeneic skin graft alone without allogeneic bone marrow would be sufficient to induce tolerance, syngeneic reconstitution (B10----B10) was carried out, and a simultaneous B10.BR allogeneic skin graft placed. Although skin grafts were prolonged in all recipients, all grafts rejected when full lymphopoietic repopulation occurred at 28 days

  3. Concrete, hardened: Self desiccation

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard; Persson, Bertil

    1999-01-01

    The test method covers the determination of internal relative humidity (RH) in hardened concrete and cement mortar using RH instruments. The determination of RH is done on crushed samples of concrete or cement motar. This test method is only for measuring equipment which gives off or takes up...

  4. Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice (Oryza sativa L.) Seedlings

    Science.gov (United States)

    He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-01-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development. PMID:25330236

  5. Radiation-hardened CMOS/SOS LSI circuits

    International Nuclear Information System (INIS)

    Aubuchon, K.G.; Peterson, H.T.; Shumake, D.P.

    1976-01-01

    The recently developed technology for building radiation-hardened CMOS/SOS devices has now been applied to the fabrication of LSI circuits. This paper describes and presents results on three different circuits: an 8-bit adder/subtractor (Al gate), a 256-bit shift register (Si gate), and a polycode generator (Al gate). The 256-bit shift register shows very little degradation after 1 x 10 6 rads (Si), with an increase from 1.9V to 2.9V in minimum operating voltage, a decrease of about 20% in maximum frequency, and little or no change in quiescent current. The p-channel thresholds increase from -0.9V to -1.3V, while the n-channel thresholds decrease from 1.05 to 0.23V, and the n-channel leakage remains below 1nA/mil. Excellent hardening results were also obtained on the polycode generator circuit. Ten circuits were irradiated to 1 x 10 6 rads (Si), and all continued to function well, with an increase in minimum power supply voltage from 2.85V to 5.85V and an increase in quiescent current by a factor of about 2. Similar hardening results were obtained on the 8-bit adder, with the minimum power supply voltage increasing from 2.2V to 4.6V and the add time increasing from 270 to 350 nsec after 1 x 10 6 rads (Si). These results show that large CMOS/SOS circuits can be hardened to above 1 x 10 6 rads (Si) with either the Si gate or Al gate technology. The paper also discusses the relative advantages of the Si gate versus the Al gate technology

  6. Beam hardening correction algorithm in microtomography images

    International Nuclear Information System (INIS)

    Sales, Erika S.; Lima, Inaya C.B.; Lopes, Ricardo T.; Assis, Joaquim T. de

    2009-01-01

    Quantification of mineral density of bone samples is directly related to the attenuation coefficient of bone. The X-rays used in microtomography images are polychromatic and have a moderately broad spectrum of energy, which makes the low-energy X-rays passing through a sample to be absorbed, causing a decrease in the attenuation coefficient and possibly artifacts. This decrease in the attenuation coefficient is due to a process called beam hardening. In this work the beam hardening of microtomography images of vertebrae of Wistar rats subjected to a study of hyperthyroidism was corrected by the method of linearization of the projections. It was discretized using a spectrum in energy, also called the spectrum of Herman. The results without correction for beam hardening showed significant differences in bone volume, which could lead to a possible diagnosis of osteoporosis. But the data with correction showed a decrease in bone volume, but this decrease was not significant in a confidence interval of 95%. (author)

  7. Beam hardening correction algorithm in microtomography images

    Energy Technology Data Exchange (ETDEWEB)

    Sales, Erika S.; Lima, Inaya C.B.; Lopes, Ricardo T., E-mail: esales@con.ufrj.b, E-mail: ricardo@lin.ufrj.b [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Assis, Joaquim T. de, E-mail: joaquim@iprj.uerj.b [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Inst. Politecnico. Dept. de Engenharia Mecanica

    2009-07-01

    Quantification of mineral density of bone samples is directly related to the attenuation coefficient of bone. The X-rays used in microtomography images are polychromatic and have a moderately broad spectrum of energy, which makes the low-energy X-rays passing through a sample to be absorbed, causing a decrease in the attenuation coefficient and possibly artifacts. This decrease in the attenuation coefficient is due to a process called beam hardening. In this work the beam hardening of microtomography images of vertebrae of Wistar rats subjected to a study of hyperthyroidism was corrected by the method of linearization of the projections. It was discretized using a spectrum in energy, also called the spectrum of Herman. The results without correction for beam hardening showed significant differences in bone volume, which could lead to a possible diagnosis of osteoporosis. But the data with correction showed a decrease in bone volume, but this decrease was not significant in a confidence interval of 95%. (author)

  8. Evaluation of hardening by ion irradiation in molybdenum using nanoindentation techniques

    International Nuclear Information System (INIS)

    Iwakiri, Hirotomi; Watanabe, Hideo; Yoshida, Naoaki

    1997-01-01

    As a part of fundamental research on interaction of plasma and wall, some model experiments on loading of particles such as He, H and so forth suffered by plasma facing material were conducted for Mo in high Z material. As an evaluation method for it, nanoindentation technique was proposed. By this method, the hardness evaluation in surface neighboring damage range was conducted. As a result, in the helium irradiated materials, sufficient hardening was observed even at low dpa range impossible to recognize hardening on heavy ion and deuterium irradiated materials, and extreme hardening was established by formation of helium bubble at high dpa region. Furthermore, in the helium irradiated materials, recovery of hardening could not be observed even for annealed materials at 1173 K for 1 hr after irradiation. From such results, hardening promotion work due to helium and extreme thermal stability of the formed defects were elucidated. (B.K.)

  9. Induced magnetism in transition metal intercalated graphitic systems

    KAUST Repository

    Kaloni, Thaneshwor P.; Schwingenschlö gl, Udo; Upadhyay Kahaly, M.

    2011-01-01

    We investigate the structure, chemical bonding, electronic properties, and magnetic behavior of a three-dimensional graphitic network in aba and aaa stacking with intercalated transition metal atoms (Mn, Fe, Co, Ni, and Cu). Using density functional theory, we find induced spin-polarization of the C atoms both when the graphene sheets are aba stacked (forming graphite) and aaa stacked (resembling bi-layer graphene). The magnetic moment induced by Mn, Fe, and Co turns out to vary from 1.38 μB to 4.10 μB, whereas intercalation of Ni and Cu does not lead to a magnetic state. The selective induction of spin-polarization can be utilized in spintronic and nanoelectronic applications.

  10. Induced magnetism in transition metal intercalated graphitic systems

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-10-26

    We investigate the structure, chemical bonding, electronic properties, and magnetic behavior of a three-dimensional graphitic network in aba and aaa stacking with intercalated transition metal atoms (Mn, Fe, Co, Ni, and Cu). Using density functional theory, we find induced spin-polarization of the C atoms both when the graphene sheets are aba stacked (forming graphite) and aaa stacked (resembling bi-layer graphene). The magnetic moment induced by Mn, Fe, and Co turns out to vary from 1.38 μB to 4.10 μB, whereas intercalation of Ni and Cu does not lead to a magnetic state. The selective induction of spin-polarization can be utilized in spintronic and nanoelectronic applications.

  11. Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco.

    Science.gov (United States)

    Mialoundama, Alexis Samba; Heintz, Dimitri; Debayle, Delphine; Rahier, Alain; Camara, Bilal; Bouvier, Florence

    2009-07-01

    In the Solanaceae, biotic and abiotic elicitors induce de novo synthesis of sesquiterpenoid stress metabolites known as phytoalexins. Because plant hormones play critical roles in the induction of defense-responsive genes, we have explored the effect of abscisic acid (ABA) on the synthesis of capsidiol, the major wild tobacco (Nicotiana plumbaginifolia) sesquiterpenoid phytoalexin, using wild-type plants versus nonallelic mutants Npaba2 and Npaba1 that are deficient in ABA synthesis. Npaba2 and Npaba1 mutants exhibited a 2-fold higher synthesis of capsidiol than wild-type plants when elicited with either cellulase or arachidonic acid or when infected by Botrytis cinerea. The same trend was observed for the expression of the capsidiol biosynthetic genes 5-epi-aristolochene synthase and 5-epi-aristolochene hydroxylase. Treatment of wild-type plants with fluridone, an inhibitor of the upstream ABA pathway, recapitulated the behavior of Npaba2 and Npaba1 mutants, while the application of exogenous ABA reversed the enhanced synthesis of capsidiol in Npaba2 and Npaba1 mutants. Concomitant with the production of capsidiol, we observed the induction of ABA 8'-hydroxylase in elicited plants. In wild-type plants, the induction of ABA 8'-hydroxylase coincided with a decrease in ABA content and with the accumulation of ABA catabolic products such as phaseic acid and dihydrophaseic acid, suggesting a negative regulation exerted by ABA on capsidiol synthesis. Collectively, our data indicate that ABA is not required per se for the induction of capsidiol synthesis but is essentially implicated in a stress-response checkpoint to fine-tune the amplification of capsidiol synthesis in challenged plants.

  12. Cloning and characterization of a mitochondrial glyoxalase II from Brassica juncea that is upregulated by NaCl, Zn, and ABA

    International Nuclear Information System (INIS)

    Saxena, Mukesh; Bisht, Rekha; Roy, Suchandra Deb; Sopory, S.K.; Bhalla-Sarin, Neera

    2005-01-01

    A cDNA (1061 bp) Bj glyII was cloned from a mannitol induced library of Brassica juncea. It encoded a protein of 335 amino acids with a molecular weight of 36.52 kDa. The deduced amino acid sequence of the clone showed 92% and 56% identity with Pennisetum and rice glyoxalase II, respectively, and 30% identity was observed with the human glyoxalase II. Search for the identical residues revealed the presence of highly conserved THHHXDH domain which is involved in zinc binding. p-NN and pSORT analysis of this sequence revealed a N-terminal mitochondrial target peptide. The cDNA was cloned in pMAL and a fusion protein with MBP (78 kDa) was expressed in Escherichia coli. The recombinant protein was purified approximately sixfold by affinity purification on amylose column and showed its pH optima at 7.0. The K m was determined to be 120 μM using S-D-lactoylglutathione as substrate. The expression of Bj glyII under various abiotic stress conditions showed that it is upregulated by salinity, heavy metal stress, and ABA

  13. Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated Arabidopsis seeds

    NARCIS (Netherlands)

    Maia de Oliveira, J.; Dekkers, S.J.W.; Dolle, M.; Ligterink, W.; Hilhorst, H.W.M.

    2014-01-01

    During germination, orthodox seeds lose their desiccation tolerance (DT) and become sensitive to extreme drying. Yet, DT can be rescued, in a well-defined developmental window, by the application of a mild osmotic stress before dehydration. A role for abscisic acid (ABA) has been implicated in this

  14. Effect of raw materials and hardening process on hardness of manually forged knife

    Science.gov (United States)

    Balkhaya, Suwarno

    2017-06-01

    Knives are normally made by forging process either using a machine or traditional method by means of hammering process. This present work was conducted to study the effects of steel raw materials and hardening process on the hardness of manually forged knives. The knife samples were made by traditional hammering (forging) process done by local blacksmith. Afterward, the samples were heat treated with two different hardening procedures, the first was based on the blacksmith procedure and the second was systematically done at the laboratory. The forging was done in the temperature ranged between 900-950°C, while the final temperature ranged between 650-675°C. The results showed that knives made of spring steel and heat treated in simulated condition at the laboratory obtained higher level of hardness, i.e. 62 HRC. In general, knives heat treated by local blacksmith had lower level of hardness that those obtained from simulated condition. Therefore, we concluded that the traditional knife quality in term of hardness can be improved by optimizing the heat treatment schedule.

  15. Grind hardening process

    CERN Document Server

    Salonitis, Konstantinos

    2015-01-01

    This book presents the grind-hardening process and the main studies published since it was introduced in 1990s.  The modelling of the various aspects of the process, such as the process forces, temperature profile developed, hardness profiles, residual stresses etc. are described in detail. The book is of interest to the research community working with mathematical modeling and optimization of manufacturing processes.

  16. Anaemia in Pregnancy in Abia State University Teaching Hospital, Aba

    African Journals Online (AJOL)

    A prospective study of incidence of anaemia in pregnancy at Abia state University Teaching Hospital, Aba was conducted over a six-month period spanning from 31st January 2000 to 31st July 2000. The incidence of anaemia in pregnancy was 29%. The vast majority (97.6%) had mild anaemia. The result showed that most ...

  17. ABA signaling in guard cells entails a dynamic protein-protein interaction relay from the PYL-RCAR family receptors to ion channels.

    Science.gov (United States)

    Lee, Sung Chul; Lim, Chae Woo; Lan, Wenzhi; He, Kai; Luan, Sheng

    2013-03-01

    Plant hormone abscisic acid (ABA) serves as an integrator of environmental stresses such as drought to trigger stomatal closure by regulating specific ion channels in guard cells. We previously reported that SLAC1, an outward anion channel required for stomatal closure, was regulated via reversible protein phosphorylation events involving ABA signaling components, including protein phosphatase 2C members and a SnRK2-type kinase (OST1). In this study, we reconstituted the ABA signaling pathway as a protein-protein interaction relay from the PYL/RCAR-type receptors, to the PP2C-SnRK2 phosphatase-kinase pairs, to the ion channel SLAC1. The ABA receptors interacted with and inhibited PP2C phosphatase activity against the SnRK2-type kinase, releasing active SnRK2 kinase to phosphorylate, and activate the SLAC1 channel, leading to reduced guard cell turgor and stomatal closure. Both yeast two-hybrid and bimolecular fluorescence complementation assays were used to verify the interactions among the components in the pathway. These biochemical assays demonstrated activity modifications of phosphatases and kinases by their interaction partners. The SLAC1 channel activity was used as an endpoint readout for the strength of the signaling pathway, depending on the presence of different combinations of signaling components. Further study using transgenic plants overexpressing one of the ABA receptors demonstrated that changing the relative level of interacting partners would change ABA sensitivity.

  18. CmWRKY1 Enhances the Dehydration Tolerance of Chrysanthemum through the Regulation of ABA-Associated Genes.

    Directory of Open Access Journals (Sweden)

    Qingqing Fan

    Full Text Available WRKY transcription factors serve as antagonistic or synergistic regulators in a variety of abiotic stress responses in plants. Here, we show that CmWRKY1, a member of the group IIb WRKY family isolated from Chrysanthemum morifolium, exhibits no transcriptional activation in yeast cells. The subcellular localization examination showed that CmWRKY1 localizes to the nucleus in vivo. Furthermore, CmWRKY1-overexpressing transgenic lines exhibit enhanced dehydration tolerance in response to polyethylene glycol (PEG treatment compared with wild-type plants. We further confirmed that the transgenic plants exhibit suppressed expression levels of genes negatively regulated by ABA, such as PP2C, ABI1 and ABI2, and activated expression levels of genes positively regulated by ABA, such as PYL2, SnRK2.2, ABF4, MYB2, RAB18, and DREB1A. Taken together, our results indicate that CmWRKY1 plays an important role in the response to drought in chrysanthemum through an ABA-mediated pathway.

  19. Analysis of the work-hardening process in spheroidized steels

    International Nuclear Information System (INIS)

    Pacheco, J.L.

    1981-07-01

    An elementary model for the work-hardening process in duplex-structures steels (ferrite - spheroidite) is proposed and tested on low, medium and high carbon content, which seems to give good results concerning the influence of the volume fraction and particle size of the second phase on the work-hardening behaviour. (Author) [pt

  20. Design and characterization of cellulose nanocrystal-enhanced epoxy hardeners

    Science.gov (United States)

    Shane X. Peng; Robert J. Moon; Jeffrey P. Youngblood

    2014-01-01

    Cellulose nanocrystals (CNCs) are renewable, sustainable, and abundant nanomaterial widely used as reinforcing fillers in the field of polymer nanocomposites. In this study, two-part epoxy systems with CNC-enhanced hardeners were fabricated. Three types of hardeners, Jeffamine D400 (JD400), diethylenetriamine (DETA), and (±)-trans-1,2- diaminocyclohexane (DACH), were...

  1. Desiccation tolerance of Sphagnum revisited: a puzzle resolved.

    Science.gov (United States)

    Hájek, T; Vicherová, E

    2014-07-01

    As ecosystem engineers, Sphagnum mosses control their surroundings through water retention, acidification and peat accumulation. Because water retention avoids desiccation, sphagna are generally intolerant to drought; however, the literature on Sphagnum desiccation tolerance (DT) provides puzzling results, indicating the inducible nature of their DT. To test this, various Sphagnum species and other mesic bryophytes were hardened to drought by (i) slow drying; (ii) ABA application and (iii) chilling or frost. DT tolerance was assessed as recovery of chlorophyll fluorescence parameters after severe desiccation. We monitored the seasonal course of DT in bog bryophytes. Under laboratory conditions, following initial de-hardening, untreated Sphagnum shoots lacked DT; however, DT was induced by all hardening treatments except chilling, notably by slow drying, and in Sphagnum species of the section Cuspidata. In the field, sphagna in hollows and lawns developed DT several times during the growing season, responding to reduced precipitation and a lowered water table. Hummock and aquatic species developed DT only in late autumn, probably as a response to frost. Sphagnum protonemata failed to develop DT; hence, desiccation may limit Sphagnum establishment in drier habitats with suitable substrate chemistry. Desiccation avoiders among sphagna form compact hummocks or live submerged; thus, they do not develop DT in the field, lacking the initial desiccation experience, which is frequent in hollow and lawn habitats. We confirmed the morpho-physiological trade-off: in contrast to typical hollow sphagna, hummock species invest more resources in water retention (desiccation avoidance), while they have a lower ability to develop physiological DT. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Physical and Thermodynamical Properties of Water Phases in Hardening Portland Cement Systems

    DEFF Research Database (Denmark)

    Hansen, T. Bæk

    The present study is devoted to the description of water phases in hardening portland cement paste systems containing a significant amount of micro-filler and having a low to moderate water/powder ratio. Emphasis has been placed on the early stages of the hardening process.......The present study is devoted to the description of water phases in hardening portland cement paste systems containing a significant amount of micro-filler and having a low to moderate water/powder ratio. Emphasis has been placed on the early stages of the hardening process....

  3. Abscisic acid biosynthesis in isolated embryos of Zea mays L

    International Nuclear Information System (INIS)

    Gage, D.A.; Fong, F.; Zeevaart, J.A.D.

    1989-01-01

    Previous labeling experiments with 18 O 2 have supported the hypothesis that stress-induced abscisic acid (ABA) is synthesized through an indirect pathway involving an oxygenated carotenoid (xanthophyll) as a precursor. To investigate ABA formation under nonstress conditions, an 18 O 2 labeling experiment was conducted with isolated embryos from in vitro grown maize (Zea mays L.) kernels. Of the ABA produced during the incubation in 18 O 2 , three-fourths contained a single 18 O atom located in the carboxyl group. Approximately one-fourth of the ABA synthesized during the experiment contained two 18 O atoms. These results suggest that ABA synthesized in maize embryos under nonstress conditions also proceeds via the indirect pathway, requiring a xanthophyll precursor. It was also found that the newly synthesized ABA was preferentially released into the surrounding medium

  4. A specific glycerol kinase induces rapid cold hardening of the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Park, Youngjin; Kim, Yonggyun

    2014-08-01

    Insects in temperate zones survive low temperatures by migrating or tolerating the cold. The diamondback moth, Plutella xylostella, is a serious insect pest on cabbage and other cruciferous crops worldwide. We showed that P. xylostella became cold-tolerant by expressing rapid cold hardiness (RCH) in response to a brief exposure to moderately low temperature (4°C) for 7h along with glycerol accumulation in hemolymph. Glycerol played a crucial role in the cold-hardening process because exogenously supplying glycerol significantly increased the cold tolerance of P. xylostella larvae without cold acclimation. To determine the genetic factor(s) responsible for RCH and the increase of glycerol, four glycerol kinases (GKs), and glycerol-3-phosphate dehydrogenase (PxGPDH) were predicted from the whole P. xylostella genome and analyzed for their function associated with glycerol biosynthesis. All predicted genes were expressed, but differed in their expression during different developmental stages and in different tissues. Expression of the predicted genes was individually suppressed by RNA interference (RNAi) using double-stranded RNAs specific to target genes. RNAi of PxGPDH expression significantly suppressed RCH and glycerol accumulation. Only PxGK1 among the four GKs was responsible for RCH and glycerol accumulation. Furthermore, PxGK1 expression was significantly enhanced during RCH. These results indicate that a specific GK, the terminal enzyme to produce glycerol, is specifically inducible during RCH to accumulate the main cryoprotectant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Ectopic expression of soybean gmsbh1 confers aba sensitivity during seed germination and early seedling establishment in transgenic arabidopsis

    International Nuclear Information System (INIS)

    Shu, Y.; Zhou, Y.; Huang, S.; Chen, M.; Huang, L.; Ma, H.

    2017-01-01

    The class I KNOX homeobox transcription factors are known to play an important role in maintenance of plant phenotype, especially leaves and flowers. In this study, a soybean KNOX I homeobox transcription factor, GmSBH1, was analyzed and confirmed to play important roles in the process of seed germination and developing. Real time quantitative PCR assay showed that the transcript level of GmSBH1 in soybean seedlings was modulated by plant hormones, such as IAA, GA, MeJA and ABA.Yeast one-hybrid assay showed that GmSBH1 could bind to the ABRE cis-element. Overexpression of GmSBH1 in Arabidopsis resulted in the abnormal phenotype of flowers and siliques. In GmSBH1 transgenic lines, both seed germination and seedlings growth showed hypersensitive to ABA. Moreover, the expression of ABA-responsive genes, such as ABI3 and ABI5, were increased in the transgenic line seedlings. Taken together, ectopic expression of GmSBH1 could alter the morphology and confer ABA sensitivity during seed germination and early seedling growth in transgenic Arabidopsis. (author)

  6. Hardening and stress relaxation during repeated heating of 15Kh2MFA and 15Kh2NMFA steels welded joints

    International Nuclear Information System (INIS)

    Zubchenko, A.S.; Suslova, E.A.

    1986-01-01

    Results of investigation of temperature-time conditions of hardening of welded joints of 15Kh2MFA and 15Kh2NMFA steels and their relaxation resistance, effect of metal structure of imitated heat affected zone (HAZ) on intensity of precipitation hardening at repeated heating are presented as well as the results of the process of relaxation of residual stresses at welded joints samples heating carried out by automatic welding under the flux with the use of adding materials and technology of manufacturing of vessels of WWER-440 and WWER-1000 reactors. Peculiarities of the hardening at repeated heating of the HAZ metal imitated at these steels. Precipitation hardening of overheated 15Kh2MFA steel is connected with precipitations at repeated heating of carbides of the M 7 C 3 , M 3 C and VC type. Stress relaxation in welded joints runs more intensively at the initial stage of repeated heating, i.e. during the same period of the process of dispersed carbide precipitations

  7. Analysis of the unstressed lattice spacing, d0, for the determination of the residual stress in a friction stir welded plate of an age-hardenable aluminum alloy – Use of equilibrium conditions and a genetic algorithm

    International Nuclear Information System (INIS)

    Cioffi, F.; Hidalgo, J.I.; Fernández, R.; Pirling, T.; Fernández, B.; Gesto, D.; Puente Orench, I.; Rey, P.; González-Doncel, G.

    2014-01-01

    Procedures based on equilibrium conditions (stress and bending moment) have been used to obtain an unstressed lattice spacing, d 0 , as a crucial requirement for calculating the residual stress (RS) profile across a joint conducted on a 10 mm thick plate of age-hardenable AA2024 alloy by friction stir welding (FSW). Two procedures have been used that take advantage of neutron diffraction measurements. First, equilibrium conditions were imposed on sections parallel to the weld so that a constant d 0 value corresponding to the base material region could be calculated analytically. Second, balance conditions were imposed on a section transverse to the weld. Then, using the data and a genetic algorithm, suitable d 0 values for the different regions of the weld have been found. For several reasons, the comb method has proved to be inappropriate for RS determination in the case of age-hardenable alloys. However, the equilibrium conditions, together with the genetic algorithm, has been shown to be very suitable for determining RS profiles in FSW joints of these alloys, where inherent microstructural variations of d 0 across the weld are expected

  8. MOULDING MIXTURES HARDENING PROCESS BASED ON LIGNIN-BASE SULPHONATE BINDER

    Directory of Open Access Journals (Sweden)

    V. N. Ektova

    2004-01-01

    Full Text Available Hardening of agglutinant sands on lignosulphonate binding agent is the result of two processes: oxidation-reduction in the system lignosulphonate acids — persulfuric natrium in the early stages of hardening and hydration of cement in the latter stages.

  9. Effects of dormancy-breaking chemicals on ABA levels in barley grain embryos

    NARCIS (Netherlands)

    Wang, M.; Meulen, R.M. van der; Visser, K.; Schalk, H.P. van; Duijn, B. van; Boer, A.H. de

    1998-01-01

    The endogenous ABA contents of dormant and nondormant barley grains were determined following application of different compounds to break dormancy. The chemicals used for breaking of dormancy in intact dormant grains were weak and strong acids, alcohols,. hydrogen peroxide, cyanide, nitrate,

  10. Radiation hardening of metals irradiated by heavy ions

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Skuratov, V.A.; Mikhajlova, N.Yu.; Regel', V.R.

    1988-01-01

    The damage dose dependence in the 10 -4 -10 -2 dpa region of radiation hardening of Al, V, Ni, Cu irradiated by xenon ions with 124 MeV energy is investigated using the microhardness technique and transmission electron microscope. It is shown that the pure metals radiation hardening is stimulated for defects clusters with the typical size less than 5 nm, as in the case of neutron and the light charge ion irradiation

  11. Nuclear effects hardened shelters

    International Nuclear Information System (INIS)

    Lindke, P.

    1990-01-01

    This paper reports on the Houston Fearless 76 Government Projects Group that has been actively engaged for more than twenty-five years as a sub-contractor and currently as a prime contractor in the design, manufacture, repair and logistics support of custom mobile ground stations and their equipment accommodations. Other associated products include environmental control units (ECU's), mobilizers for shelters and a variety of mobile power generation units (MPU's). Since 1984, Houston Fearless 76 has designed and manufactured four 8 foot by 8 foot x 22 foot nuclear hardened mobile shelters. These shelters were designed to contain electronic data processing/reduction equipment. One shelter is currently being operated by the Air Force as a Defense Intelligence Agency (DIA) approved and certified Special Compartmented Information Facility (SCIF). During the development and manufacturing process of the shelters, we received continual technical assistance and design concept evaluations from Science Applications International Corporation (SAIC) Operations Analysis and Logistics Engineering Division and the Nondestructive Inspection Lab at McClellan AFB. SAIC was originally employed by the Air Force to design the nuclear hardening specifications applied to these shelters

  12. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin.

    Science.gov (United States)

    Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2016-07-01

    Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. Anti-transpirant activity in xylem sap from flooded tomato (Lycopersicon esculentum Mill.) plants is not due to pH-mediated redistributions of root- or shoot-sourced ABA.

    Science.gov (United States)

    Else, Mark A; Taylor, June M; Atkinson, Christopher J

    2006-01-01

    In flooded soils, the rapid effects of decreasing oxygen availability on root metabolic activity are likely to generate many potential chemical signals that may impact on stomatal apertures. Detached leaf transpiration tests showed that filtered xylem sap, collected at realistic flow rates from plants flooded for 2 h and 4 h, contained one or more factors that reduced stomatal apertures. The closure could not be attributed to increased root output of the glucose ester of abscisic acid (ABA-GE), since concentrations and deliveries of ABA conjugates were unaffected by soil flooding. Although xylem sap collected from the shoot base of detopped flooded plants became more alkaline within 2 h of flooding, this rapid pH change of 0.5 units did not alter partitioning of root-sourced ABA sufficiently to prompt a transient increase in xylem ABA delivery. More shoot-sourced ABA was detected in the xylem when excised petiole sections were perfused with pH 7 buffer, compared with pH 6 buffer. Sap collected from the fifth oldest leaf of "intact" well-drained plants and plants flooded for 3 h was more alkaline, by approximately 0.4 pH units, than sap collected from the shoot base. Accordingly, xylem [ABA] was increased 2-fold in sap collected from the fifth oldest petiole compared with the shoot base of flooded plants. However, water loss from transpiring, detached leaves was not reduced when the pH of the feeding solution containing 3-h-flooded [ABA] was increased from 6.7 to 7.1 Thus, the extent of the pH-mediated, shoot-sourced ABA redistribution was not sufficient to raise xylem [ABA] to physiologically active levels. Using a detached epidermis bioassay, significant non-ABA anti-transpirant activity was also detected in xylem sap collected at intervals during the first 24 h of soil flooding.

  14. Increase of resistance to cracking on stress relieving of hardened steel

    International Nuclear Information System (INIS)

    Velichko, V.V.; Zabil'skij, V.V.; Mikheev, G.M.

    1995-01-01

    Regularities of increase of resistance to cracking during stress relieving of hardened low-alloyed steels were studied, using complex of methods. Effect of carbon, stress concentrator radius, duration and temperature of stress relieving was studies in particular. Results of investigating kinetics of change of physicomechanical properties, hydrogen desorption from hardened specimens showed, that increase of resistance to cracking was caused by desorption from grain boundaries of diffusion-mobile hydrogen, formed during hardening. 18 refs., 8 figs

  15. Saturation behavior of irradiation hardening in F82H irradiated in the HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, T. [Blanket Engineering Group, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Shiba, K.; Tanigawa, H.; Ando, M. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Klueh, R.L. [Oak Ridge National Laboratory, TN (United States); Stoller, R. [ORNL - Oak Ridge National Laboratory, Materials Science and Technology Div., Oak Ridge, AK TN (United States)

    2007-07-01

    Full text of publication follows: Post irradiation tensile tests on reduced activation ferritic/martensitic steel, F82H have been conducted over the past two decades using Japan Materials Testing Reactor (JMTR) of JAEA, and Fast Flux Testing Facility (FFTF) of PNNL and High Flux Isotope Reactor (HFIR) of ORNL, USA, under Japan/US collaboration programs. According to these results, F82H does not demonstrate irradiation hardening above 673 K up to 60 dpa. The current study has been concentrated on hardening behavior at temperature around 573 K. A series of low temperature irradiation experiment has been conducted at the HFIR under the international collaborative research between JAEA/US-DOE. In this collaboration, the irradiation condition is precisely controlled by the well matured capsule designing and instrumentation. This paper summarizes recent results of the irradiation experiments focused on F82H and its modified steels compared with the irradiation properties database on F82H. Post irradiation tensile tests have been conducted on the F82H and its modified steels irradiated at 573 K and the dose level was up to 25 dpa. According to these results, irradiation hardening of F82H is saturated by 9 dpa and the as-irradiated 0.2 % proof stress is less than 1 GPa at ambient temperature. The deterioration of total elongation was also saturated by 9 dpa irradiation. The ductility of some modified steels which showed larger total elongation than that of F82H before irradiation become the same level as that of standard F82H steel after irradiation, even though its magnitude of irradiation hardening is smaller than that of F82H. This suggests that the more ductile steel demonstrates the more ductility loss at this temperature, regardless to the hardening level. The difference in ductility loss behavior between various tensile specimens will be discussed as the ductility could depend on the specimen dimension. (authors)

  16. An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress

    OpenAIRE

    Li, Cong; Yue, Jing; Wu, Xiaowei; Xu, Cong; Yu, Jingjuan

    2014-01-01

    The DREB (dehydration-responsive element binding)-type transcription factors regulate the expression of stress-inducible genes by binding the DRE/CRT cis-elements in promoter regions. The upstream transcription factors that regulate the transcription of DREB transcription factors have not been clearly defined, although the function of DREB transcription factors in abiotic stress is known. In this study, an abscisic acid (ABA)-responsive DREB-binding protein gene (SiARDP) was cloned from foxta...

  17. Some aspects of plasticity in hardened face-centred cubic metals

    International Nuclear Information System (INIS)

    Jackson, P.J.; Nathanson, P.D.K.

    1978-01-01

    The plasticity of crystals of f.c.c. metals hardened by solute atoms, neutron irradiation, quenching and by dislocation distributions not characteristic of the active mode of testing is reviewed, with emphasis being placed on the simiularity of slip after various hardening treatments. Normal work hardening is not treated. The reasons for this exclusion are discussed. It is concluded that correlated slip is a normal aspect of deformation, and that diffuse uncorrelated slip occurs only when secondary dislocation multiplication is promoted, e.g. by obstacles introduced by prior slip, or by the presence of hard impenetrable obstacles of another material or phase [af

  18. Work hardening behavior study of structural alloys for cryogenic applications

    International Nuclear Information System (INIS)

    Chu, D.; Morris, J.W. Jr.

    1992-01-01

    Previous investigation on aluminum-lithium alloys have indicated different dependencies of the work hardening behavior on temperature. This variation in temperature dependence is attributed to differences in microstructure rather than composition. An understanding of the microstructural effect on the observed thermal dependency is important as it may allow the tailoring of deformation properties through mechanical processing. Work hardening analyses on other aluminum alloys and a number of structural steels have been performed to better elucidate the role played by microstructure in determining the work hardening behavior. In the paper correlations between the differences in mechanical behavior and the various microstructures observed are presented

  19. Physiological studies on photochemical oxidant injury in rice plants. II. Effect of abscisic acid (ABA) on ozone injury and ethylene production in rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y.H.; Nakamura, H.; Ota, Y.

    1981-12-01

    In order to determine the effect of ABA on ozone injury to rice plants, ethylene production, rate of chlorophyll retention and ozone-sensitivity of rice plants pretreated with ABA solution were investigated. The experiments were carried out in pots using rice plants at the 7-8 leaf stage. The results obtained are summarized as follows: ethylene production by the leaf blades exposed to ozone increased with the increase in the dosage of ozone; ethylene production was higher in cv. Nihonbare which was more sensitive to ozone than in cv. Tongil; pre-treatment with ABA solution one hour before ozone treatment reduced ethylene production by the leaf blades exposed to ozone; and the rate of chlorophyll retention decreased following injury, but increased remarkably by the pre-treatment with ABA solution. In conclusion, it could be demonstrated that ozone injury of rice plants can be reduced by the pre-treatment with ABA solution. 28 references, 5 figures, 1 table.

  20. Effects of solute elements on irradiation hardening and microstructural evolution in low alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Katsuhiko, E-mail: fujiik@inss.co.jp [Institute of Nuclear Safety System Inc., 64 Sata, Mihama 919-1205 (Japan); Ohkubo, Tadakatsu, E-mail: OHKUBO.Tadakatsu@nims.go.jp [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Fukuya, Koji, E-mail: fukuya@inss.co.jp [Institute of Nuclear Safety System Inc., 64 Sata, Mihama 919-1205 (Japan)

    2011-10-01

    The effects of the elements Mn, Ni, Si and Cu on irradiation hardening and microstructural evolution in low alloy steels were investigated in ion irradiation experiments using five kinds of alloys prepared by removing Mn, Ni and Si from, and adding 0.05 wt.%Cu to, the base alloy (Fe-1.5Mn-0.5Ni-0.25Si). The alloy without Mn showed less hardening and the alloys without Ni or Si showed more hardening. The addition of Cu had hardly any influence on hardening. These facts indicated that Mn enhanced hardening and that Ni and Si had some synergetic effects. The formation of solute clusters was not confirmed by atom probe (AP) analysis, whereas small dislocation loops were identified by TEM observation. The difference in hardening between the alloys with and without Mn was qualitatively consistent with loop formation. However, microstructural components that were not detected by the AP and TEM were assumed to explain the hardening level quantitatively.

  1. Virus-induced down-regulation of GmERA1A and GmERA1B genes enhances the stomatal response to abscisic acid and drought resistance in soybean.

    Directory of Open Access Journals (Sweden)

    Takuya Ogata

    Full Text Available Drought is a major threat to global soybean production. The limited transformation potential and polyploid nature of soybean have hindered functional analysis of soybean genes. Previous research has implicated farnesylation in the plant's response to abscisic acid (ABA and drought tolerance. We therefore used virus-induced gene silencing (VIGS to evaluate farnesyltransferase genes, GmERA1A and GmERA1B (Glycine max Enhanced Response to ABA1-A and -B, as potential targets for increasing drought resistance in soybean. Apple latent spherical virus (ALSV-mediated GmERA1-down-regulated soybean leaves displayed an enhanced stomatal response to ABA and reduced water loss and wilting under dehydration conditions, suggesting that GmERA1A and GmERA1B negatively regulate ABA signaling in soybean guard cells. The findings provide evidence that the ALSV-VIGS system, which bypasses the need to generate transgenic plants, is a useful tool for analyzing gene function using only a single down-regulated leaf. Thus, the ALSV-VIGS system could constitute part of a next-generation molecular breeding pipeline to accelerate drought resistance breeding in soybean.

  2. OCCUPATIONAL ASTHMA CAUSED BY A HARDENER CONTAINING AN ALIPHATIC AND A CYCLOALIPHATIC DIAMINE

    NARCIS (Netherlands)

    ALEVA, RM; AALBERS, R; KOETER, GH; DEMONCHY, JGR

    An otherwise healthy 44-yr-old man experienced a serious attack of bronchial obstruction after working with resins and hardeners, releasing fumes of a mixture of an aliphatic and a cycloaliphatic diamine hardener. Eight hours after deliberate challenge with the hardener a large increase of airway

  3. Technology of hardening fills for mined spaces

    International Nuclear Information System (INIS)

    Simek, P.; Holas, M.; Chyla, A.; Pech, P.

    1985-01-01

    The technology is described of hardening fills for mined spaces of uranium deposits in North Bohemian chalk. A special equipment was developed for the controlled preparation of a hardening mixture. The composition of the fill is determined by the strength of the filled rock, expecially by the standard strength, i.e., the minimal strength of the filling under uniaxial pressure. The said parameter determines the consumption of binding materials and thereby the total costs of the filling. A description is presented of the filling technology, including rabbit tube transport of the mixture and quality control. (Pu)

  4. Effect of residual stress and hardening on grain boundary sliding in welds of low-carbon stainless steels with surface machining

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Katsuyama, Jinya

    2008-01-01

    To clarify the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in welds of low-carbon austenitic stainless steels with surface machining, residual stress and hardness were evaluated by 3-dimentional thermo elastic-plastic analysis and grain boundary sliding behavior was examined using a constant strain rate tensile test. It was revealed that grain boundary sliding occurred in the material at 561K by the tensile test with the numerically simulated tensile residual stress due to multi-pass welding and surface machining. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding induced by residual stress of multi pass welding and surface hardening. (author)

  5. Effect of hardening methods of moulding sands with water glass on structure of bonding bridges

    Directory of Open Access Journals (Sweden)

    M. Stachowicz

    2010-07-01

    Full Text Available Research on influence of hardening methods on structure of bonding bridges in moulding sands with sodium water glass is presented.Moulding sands with addition of 2.5 % of binder with molar module 2.0 were hardened with CO2 and dried in traditional way or hardenedwith microwaves. It was proved that the hardening method affects structure of bonding bridges, correlating with properties of the hardened moulding sands. It was found that strength of the moulding sands hardened with microwaves for 4 min is very close to that measured after traditional drying at 110 °C for 120 min. So, application of microwave hardening ensures significant shortening of the process time to the value comparable with CO2 hardening but guaranteeing over 10-fold increase of mechanical properties. Analysis of SEM images of hardened moulding sands permitted explaining differences in quality parameters of moulding sands by connecting them with structure of the created bonding bridges.

  6. Strain-hardening behavior and microstructure development in polycrystalline as-cast Mg-Zn-Y alloys with LPSO phase subjected to cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Kazuma [Department of Materials Science and Engineering, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Mayama, Tsuyoshi, E-mail: mayama@kumamoto-u.ac.jp [Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Yamasaki, Michiaki [School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Brisbane, Qld 4072 (Australia); Magnesium Research Center/Department of Materials Science and Engineering, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Kawamura, Yoshihito [Magnesium Research Center/Department of Materials Science and Engineering, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan)

    2016-08-30

    The strain-hardening behavior and microstructural development of polycrystalline as-cast Mg-Zn-Y alloys with various volume fractions of the long-period stacking ordered (LPSO) phase subjected to cyclic loading were experimentally evaluated. For all alloys, cyclic loading tests with a constant strain amplitude of 0.5% for up to 100 cycles showed asymmetric cyclic hardening behavior. That is, the absolute value of the compressive peak stress significantly increased during cyclic loading while the tensile peak stress slightly decreased. With increasing volume fraction of the LPSO phase, the stress amplitude significantly increased. Cyclic loading tests after compressive preloading up to 200 or 250 MPa resulted in a significant increase in the stress amplitude, while a number of kink bands developed during preloading. For the cyclic hardening behavior, the contribution of the increase in kinematic hardening was significant in the alloys with a higher volume fraction of the LPSO phase. Transmission electron microscopy observation of the cyclically deformed Mg{sub 85}Zn{sub 6}Y{sub 9} alloy indicated the formation of a deformation-induced band, where the crystal structure was transformed from 18R-LPSO to hcp-Mg with the exclusion of solute elements.

  7. The Use of Fuzzy Systems for Forecasting the Hardenability of Steel

    Directory of Open Access Journals (Sweden)

    Sitek W.

    2016-06-01

    Full Text Available The goal of the research carried out was to develop the fuzzy systems, allowing the determination of the Jominy hardenability curve based on the chemical composition of structural steels for quenching and tempering. Fuzzy system was created to calculate hardness of the steel, based on the alloying elements concentrations, and to forecast the hardenability curves. This was done based on information from the PN-EN 10083-3: 2008. Examples of hardenability curves calculated for exemplar steels were presented. Results of the research confirmed that fuzzy systems are a useful tool in evaluation the effect of alloying elements on the properties of materials compared to conventional methods. It has been demonstrated the practical usefulness of the developed models which allows forecasting the steels’ Jominy hardenability curve.

  8. Abscisic Acid Negatively Regulates Elicitor-Induced Synthesis of Capsidiol in Wild Tobacco1[W

    Science.gov (United States)

    Mialoundama, Alexis Samba; Heintz, Dimitri; Debayle, Delphine; Rahier, Alain; Camara, Bilal; Bouvier, Florence

    2009-01-01

    In the Solanaceae, biotic and abiotic elicitors induce de novo synthesis of sesquiterpenoid stress metabolites known as phytoalexins. Because plant hormones play critical roles in the induction of defense-responsive genes, we have explored the effect of abscisic acid (ABA) on the synthesis of capsidiol, the major wild tobacco (Nicotiana plumbaginifolia) sesquiterpenoid phytoalexin, using wild-type plants versus nonallelic mutants Npaba2 and Npaba1 that are deficient in ABA synthesis. Npaba2 and Npaba1 mutants exhibited a 2-fold higher synthesis of capsidiol than wild-type plants when elicited with either cellulase or arachidonic acid or when infected by Botrytis cinerea. The same trend was observed for the expression of the capsidiol biosynthetic genes 5-epi-aristolochene synthase and 5-epi-aristolochene hydroxylase. Treatment of wild-type plants with fluridone, an inhibitor of the upstream ABA pathway, recapitulated the behavior of Npaba2 and Npaba1 mutants, while the application of exogenous ABA reversed the enhanced synthesis of capsidiol in Npaba2 and Npaba1 mutants. Concomitant with the production of capsidiol, we observed the induction of ABA 8′-hydroxylase in elicited plants. In wild-type plants, the induction of ABA 8′-hydroxylase coincided with a decrease in ABA content and with the accumulation of ABA catabolic products such as phaseic acid and dihydrophaseic acid, suggesting a negative regulation exerted by ABA on capsidiol synthesis. Collectively, our data indicate that ABA is not required per se for the induction of capsidiol synthesis but is essentially implicated in a stress-response checkpoint to fine-tune the amplification of capsidiol synthesis in challenged plants. PMID:19420326

  9. Unit rupture work as a criterion for quantitative estimation of hardenability in steel

    International Nuclear Information System (INIS)

    Kramarov, M.A.; Orlov, E.D.; Rybakov, A.B.

    1980-01-01

    Shown is possible utilization of high sensitivity of resistance to fracture of structural steel to the hardenability degree in the course of hardening to find the quantitative estimation of the latter one. Proposed is a criterion kappa, the ratio of the unit rupture work in the case of incomplete hardenability (asub(Tsub(ih))) under investigation, and the analoguc value obtained in the case of complete hardenability Asub(Tsub(Ch)) at the testing temperature corresponding to the critical temperature Tsub(100(M). Confirmed is high criterion sensitivity of the hardened steel structure on the basis of experimental investigation of the 40Kh, 38KhNM and 38KhNMFA steels after isothermal hold-up at different temperatures, corresponding to production of various products of austenite decomposition

  10. Determination of the strain hardening rate of metals and alloys by X ray diffraction

    International Nuclear Information System (INIS)

    Cadalbert, Robert

    1977-01-01

    This report for engineering graduation is based on the study of X ray diffraction line profile which varies with the plastic strain rate of the metal. After some generalities of strain hardening (consequence of a plastic deformation on the structure of a polycrystalline metal, means to study a strain hardened structure, use of X ray diffraction to analyse the strain hardened crystalline structure), the author reports the strain hardening rate measurement by using X ray diffraction. Several aspects are addressed: principles, experimental technique, apparatus, automation and programming of the measurement cycle, method sensitivity and precision. In the next part, the author reports applications: measurement of the strain hardening rate in different materials (tubes with hexagonal profile, cylindrical tubes in austenitic steel), and study of the evolution of strain hardening with temperature [fr

  11. A New Approach to Sequence Analysis Exemplified by Identification of cis-Elements in Abscisic Acid Inducible Promoters

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Hallin, Peter Fischer; Salomon, Jesper

    -regulatory elements. We have developed a method for identifying short, conserved motifs in biological sequences such as proteins, DNA and RNA5. This method was used for analysis of approximately 2000 Arabidopsis thaliana promoters that have been shown by DNA array analysis to be induced by abscisic acid6....... These promoters were compared to 28000 promoters that are not induced by abscisic acid. The analysis identified previously described ABA-inducible promoter elements such as ABRE, CE3 and CRT1 but also new cis-elements were found. Furthermore, the list of DNA elements could be used to predict ABA...

  12. Artificial Intelligence Monitoring of Hardening Methods and Cutting Conditions and Their Effects on Surface Roughness, Performance, and Finish Turning Costs of Solid-State Recycled Aluminum Alloy 6061 Сhips

    Directory of Open Access Journals (Sweden)

    Adel Taha Abbas

    2018-05-01

    Full Text Available Aluminum Alloy 6061 components are frequently manufactured for various industries—aeronautics, yachting, and optical instruments—due to their excellent physical and mechanical properties, including corrosion resistance. There is little research on the mechanical tooling of AA6061 and none on its structure and properties and their effects on surface roughness after finish turning. The objective of this comprehensive study is, therefore, to ascertain the effects of both the modern method of hardening AA6061 shafts and the finish turning conditions on surface roughness, Ra, and the minimum machining time for unit-volume removal, Tm, while also establishing the cost price of processing one part, C. The hardening methods improved both the physical and the mechanical material properties processed with 2, 4, and 6 passes of equal channel angular pressing (ECAP at room temperature, using an ECAP-matrix with a channel angle of 90°. The reference workpiece sample was a hot extruded chip under an extrusion ratio (ER of 5.2 at an extrusion temperature of 500 °С (ET = 500 °C. The following results were obtained: grain size in ECAP-6 decreased from 15.9 to 2.46 μm, increasing both microhardness from 41 Vickers hardness value (HV to 110 HV and ultimate tensile strength from 132.4 to 403 MPa. The largest decrease in surface roughness, Ra—70%, was obtained turning a workpiece treated with ECAP-6. The multicriteria optimization was computed in a multilayer perceptron-based artificial neural network that yielded the following optimum values: the minimal length of the three-dimensional estimates vector with the coordinates Ra = 0.800 μm, Tm = 0.341 min/cm3, and С = 6.955 $ corresponded to the optimal finish turning conditions: cutting speed vc = 200 m/min, depth of cut ap = 0.2 mm, and feed per revolution fr = 0.103 mm/rev (ET-500 extrusion without hardening.

  13. DMILL circuits. The hardened electronics decuples its performances

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Thanks to the DMILL (mixed logic-linear hardening) technology under development at the CEA, MHS, a French company specialized in the fabrication of integrated circuits now produces hardened electronic circuits ten times more resistant to radiations than its competitors. Outside the initial market (several thousands of circuits for the LHC particle accelerator of Geneva), a broad choice of applications is opened to this technology: national defense, space, civil nuclear and medical engineering, and high temperature applications. Short paper. (J.S.)

  14. Long-term Effects of Relative Humidity on Properties of Microwave Hardened Moulding Sand with Sodium Silicate

    Directory of Open Access Journals (Sweden)

    Stachowicz M.

    2017-09-01

    Full Text Available Moulding sands containing sodium silicate (water-glass belong to the group of porous mixture with low resistance to increased humidity. Thanks to hydrophilic properties of hardened or even overheated binder, possible is application of effective methods of hydrous reclamation consisting in its secondary hydration. For the same reason (hydrophilia of the binder, moulds and foundry cores made of high-silica moulding sands with sodium silicate are susceptible to the action of components of atmospheric air, including the contained steam. This paper presents results of a research on the effect of (relative humidity on mechanical and technological properties of microwave-hardened moulding mixtures. Specimens of the moulding sand containing 1.5 wt% of sodium water-glass with module 2.5 were subjected, in a laboratory climatic chamber, to long-term action of steam contained in the chamber atmosphere. Concentration of water in atmospheric air was stabilized for 28 days (672 h according to the relative humidity parameter that was ca. 40%, 60% and 80% at constant temperature 20 °C. In three cycles of the examinations, the specimens were taken out from the chamber every 7 days (168 h and their mechanical and technological parameters were determined. It was found on the grounds of laboratory measurements that moulds and cores hardened with microwaves are susceptible to action of atmospheric air and presence of water (as steam intensifies action of the air components on glassy film of sodium silicate. Microwave-hardened moulding sands containing sodium silicate may be stored on a long-term basis in strictly determined atmospheric conditions only, at reduced humidity. In spite of a negative effect of steam contained in the air, the examined moulding mixtures maintain a part of their mechanical and technological properties, so the moulds and foundry cores stored in specified, controlled conditions could be still used in manufacture.

  15. Strain Hardening Behaviour and Its Effect on Properties of ZrB2 Reinforced Al Composite Prepared by Powder Metallurgy Technique

    Science.gov (United States)

    Kaku, Sai Mahesh Yadav; Khanra, Asit Kumar; Davidson, M. J.

    2018-04-01

    Strain hardening behaviour has significant effect on altering the properties of materials. In the present study, Al-ZrB2 metal matrix composites are made through powder metallurgy route. Incremental weight percentage (wt%) of ZrB2 (0, 2, 4 and 6 wt%) are added to Aluminium matrix to produce different composites. The homogenous powder mixture is compacted and pressurelessly sintered. Sintering of composites is performed over a range of 450-575 °C. The optimized sintered condition is observed at 550 °C for 1 h in controlled atmosphere (argon gas flow). The sintered compacts are strained in incremental steps in different levels up to failure. A visible crack on the bulge of the powder preform is considered as the failure. Composites are strain hardened up to failure. To evaluate the effect of temperature on strain hardening, strain hardening is carried out at different temperatures. Composites are densified with the extent of straining and hardness increases with the increase of strain. Hardness increase with the increase in temperature is maintained during strain hardening. To evaluate the corrosion behaviour of Al-ZrB2 composite, potentiodynamic polarization study are performed on the strained composites. Corrosion rate decrease with the extent of straining.

  16. Saving of drinking water in cooling system at Aq aba Thermal Power Station

    International Nuclear Information System (INIS)

    Al-Nsour, A.F.

    2001-01-01

    This paper discussing a new modification, design and implementation to the existing cooling water system of boiler drum continuous blow down water at Aq aba Thermal Power Stations to eliminate drinking water consumption as a coolant medium

  17. Simulation of the Press Hardening Process and Prediction of the Final Mechanical Material Properties

    Science.gov (United States)

    Hochholdinger, Bernd; Hora, Pavel; Grass, Hannes; Lipp, Arnulf

    2011-08-01

    Press hardening is a well-established production process in the automotive industry today. The actual trend of this process technology points towards the manufacturing of parts with tailored properties. Since the knowledge of the mechanical properties of a structural part after forming and quenching is essential for the evaluation of for example the crash performance, an accurate as possible virtual assessment of the production process is more than ever necessary. In order to achieve this, the definition of reliable input parameters and boundary conditions for the thermo-mechanically coupled simulation of the process steps is required. One of the most important input parameters, especially regarding the final properties of the quenched material, is the contact heat transfer coefficient (IHTC). The CHTC depends on the effective pressure or the gap distance between part and tool. The CHTC at different contact pressures and gap distances is determined through inverse parameter identification. Furthermore a simulation strategy for the subsequent steps of the press hardening process as well as adequate modeling approaches for part and tools are discussed. For the prediction of the yield curves of the material after press hardening a phenomenological model is presented. This model requires the knowledge of the microstructure within the part. By post processing the nodal temperature history with a CCT diagram the quantitative distribution of the phase fractions martensite, bainite, ferrite and pearlite after press hardening is determined. The model itself is based on a Hockett-Sherby approach with the Hockett-Sherby parameters being defined in function of the phase fractions and a characteristic cooling rate.

  18. Pathogen exploitation of an abscisic acid- and jasmonate-inducible MAPK phosphatase and its interception by Arabidopsis immunity.

    Science.gov (United States)

    Mine, Akira; Berens, Matthias L; Nobori, Tatsuya; Anver, Shajahan; Fukumoto, Kaori; Winkelmüller, Thomas M; Takeda, Atsushi; Becker, Dieter; Tsuda, Kenichi

    2017-07-11

    Phytopathogens promote virulence by, for example, exploiting signaling pathways mediated by phytohormones such as abscisic acid (ABA) and jasmonate (JA). Some plants can counteract pathogen virulence by invoking a potent form of immunity called effector-triggered immunity (ETI). Here, we report that ABA and JA mediate inactivation of the immune-associated MAP kinases (MAPKs), MPK3 and MPK6, in Arabidopsis thaliana ABA induced expression of genes encoding the protein phosphatases 2C (PP2Cs), HAI1 , HAI2 , and HAI3 through ABF/AREB transcription factors. These three HAI PP2Cs interacted with MPK3 and MPK6 and were required for ABA-mediated MPK3/MPK6 inactivation and immune suppression. The bacterial pathogen Pseudomonas syringae pv. tomato ( Pto ) DC3000 activates ABA signaling and produces a JA-mimicking phytotoxin, coronatine (COR), that promotes virulence. We found that Pto DC3000 induces HAI1 through COR-mediated activation of MYC2, a master transcription factor in JA signaling. HAI1 dephosphorylated MPK3 and MPK6 in vitro and was necessary for COR-mediated suppression of MPK3/MPK6 activation and immunity. Intriguingly, upon ETI activation, A. thaliana plants overcame the HAI1-dependent virulence of COR by blocking JA signaling. Finally, we showed conservation of induction of HAI PP2Cs by ABA and JA in other Brassicaceae species. Taken together, these results suggest that ABA and JA signaling pathways, which are hijacked by the bacterial pathogen, converge on the HAI PP2Cs that suppress activation of the immune-associated MAPKs. Also, our data unveil interception of JA-signaling activation as a host counterstrategy against the bacterial suppression of MAPKs during ETI.

  19. Segmentation-free empirical beam hardening correction for CT

    Energy Technology Data Exchange (ETDEWEB)

    Schüller, Sören; Sawall, Stefan [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany); Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich [Sirona Dental Systems GmbH, Fabrikstraße 31, 64625 Bensheim (Germany); Kachelrieß, Marc, E-mail: marc.kachelriess@dkfz.de [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2015-02-15

    Purpose: The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. Methods: To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the

  20. Segmentation-free empirical beam hardening correction for CT.

    Science.gov (United States)

    Schüller, Sören; Sawall, Stefan; Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich; Kachelrieß, Marc

    2015-02-01

    The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the proposed