WorldWideScience

Sample records for aba responsiveness after-ripening

  1. Physiological characteristics and related gene expression of after-ripening on seed dormancy release in rice.

    Science.gov (United States)

    Du, W; Cheng, J; Cheng, Y; Wang, L; He, Y; Wang, Z; Zhang, H

    2015-11-01

    After-ripening is a common method used for dormancy release in rice. In this study, the rice variety Jiucaiqing (Oryza sativa L. subsp. japonica) was used to determine dormancy release following different after-ripening times (1, 2 and 3 months). Germination speed, germination percentage and seedling emergence increased with after-ripening; more than 95% germination and 85% seedling emergence were observed following 1 month of after-ripening within 10 days of imbibition, compared with rice dormancy release. Dormancy release by after-ripening is mainly correlated with a rapid decline in ABA content and increase in IAA content during imbibition. Subsequently, GA(1)/ABA, GA(7)/ABA, GA(12)/ABA, GA(20)/ABA and IAA/ABA ratios significantly increased, while GA(3)/ABA, GA(4)/ABA and GAs/IAA ratio significantly decreased in imbibed seeds following 3 months of after-ripening, thereby altering α-amylase activity during seed germination. Peak α-amylase activity occurred at an earlier germination stage in after-ripened seeds than in freshly harvested seeds. Expression of ABA, GA and IAA metabolism genes and dormancy-related genes was regulated by after-ripening time upon imbibition. Expression of OsCYP707A5, OsGA2ox1, OsGA2ox2, OsGA2ox3, OsILR1, OsGH3-2, qLTG3-1 and OsVP1 increased, while expression of Sdr4 decreased in imbibed seeds following 3 months of after-ripening. Dormancy release through after-ripening might be involved in weakening tissues covering the embryo via qLTG3-1 and decreased ABA signalling and sensitivity via Sdr4 and OsVP1. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling.

    Directory of Open Access Journals (Sweden)

    Aihua Liu

    Full Text Available Treatments that promote dormancy release are often correlated with changes in seed hormone content and/or sensitivity. To understand the molecular mechanisms underlying the role of after-ripening (seed dry storage in triggering hormone related changes and dormancy decay in wheat (Triticum aestivum, temporal expression patterns of genes related to abscisic acid (ABA, gibberellin (GA, jasmonate and indole acetic acid (IAA metabolism and signaling, and levels of the respective hormones were examined in dormant and after-ripened seeds in both dry and imbibed states. After-ripening mediated developmental switch from dormancy to germination appears to be associated with declines in seed sensitivity to ABA and IAA, which are mediated by transcriptional repressions of PROTEIN PHOSPHATASE 2C, SNF1-RELATED PROTEIN KINASE2, ABA INSENSITIVE5 and LIPID PHOSPHATE PHOSPHTASE2, and AUXIN RESPONSE FACTOR and RELATED TO UBIQUITIN1 genes. Transcriptomic analysis of wheat seed responsiveness to ABA suggests that ABA inhibits the germination of wheat seeds partly by repressing the transcription of genes related to chromatin assembly and cell wall modification, and activating that of GA catabolic genes. After-ripening induced seed dormancy decay in wheat is also associated with the modulation of seed IAA and jasmonate contents. Transcriptional control of members of the ALLENE OXIDE SYNTHASE, 3-KETOACYL COENZYME A THIOLASE, LIPOXYGENASE and 12-OXOPHYTODIENOATE REDUCTASE gene families appears to regulate seed jasmonate levels. Changes in the expression of GA biosynthesis genes, GA 20-OXIDASE and GA 3-OXIDASE, in response to after-ripening implicate this hormone in enhancing dormancy release and germination. These findings have important implications in the dissection of molecular mechanisms underlying regulation of seed dormancy in cereals.

  3. ABA signaling in stress-response and seed development.

    Science.gov (United States)

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2013-07-01

    KEY MESSAGE : We review the recent progress on ABA signaling, especially ABA signaling for ABA-dependent gene expression, including the AREB/ABF regulon, SnRK2 protein kinase, 2C-type protein phosphatases and ABA receptors. Drought negatively impacts plant growth and the productivity of crops. Drought causes osmotic stress to organisms, and the osmotic stress causes dehydration in plant cells. Abscisic acid (ABA) is produced under osmotic stress conditions, and it plays an important role in the stress response and tolerance of plants. ABA regulates many genes under osmotic stress conditions. It also regulates gene expression during seed development and germination. The ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. ABRE-binding protein (AREB)/ABRE-binding factor (ABF) transcription factors (TFs) regulate ABRE-dependent gene expression. Other TFs are also involved in ABA-responsive gene expression. SNF1-related protein kinases 2 are the key regulators of ABA signaling including the AREB/ABF regulon. Recently, ABA receptors and group A 2C-type protein phosphatases were shown to govern the ABA signaling pathway. Moreover, recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress-response and seed development. The control of the expression of ABA signaling factors may improve tolerance to environmental stresses.

  4. ABFs, a family of ABA-responsive element binding factors.

    Science.gov (United States)

    Choi, H; Hong, J; Ha, J; Kang, J; Kim, S Y

    2000-01-21

    Abscisic acid (ABA) plays an important role in environmental stress responses of higher plants during vegetative growth. One of the ABA-mediated responses is the induced expression of a large number of genes, which is mediated by cis-regulatory elements known as abscisic acid-responsive elements (ABREs). Although a number of ABRE binding transcription factors have been known, they are not specifically from vegetative tissues under induced conditions. Considering the tissue specificity of ABA signaling pathways, factors mediating ABA-dependent stress responses during vegetative growth phase may thus have been unidentified so far. Here, we report a family of ABRE binding factors isolated from young Arabidopsis plants under stress conditions. The factors, isolated by a yeast one-hybrid system using a prototypical ABRE and named as ABFs (ABRE binding factors) belong to a distinct subfamily of bZIP proteins. Binding site selection assay performed with one ABF showed that its preferred binding site is the strong ABRE, CACGTGGC. ABFs can transactivate an ABRE-containing reporter gene in yeast. Expression of ABFs is induced by ABA and various stress treatments, whereas their induction patterns are different from one another. Thus, a new family of ABRE binding factors indeed exists that have the potential to activate a large number of ABA/stress-responsive genes in Arabidopsis.

  5. A distal ABA responsive element in AtNCED3 promoter is required for positive feedback regulation of ABA biosynthesis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Yan-Zhuo Yang

    Full Text Available The plant hormone abscisic acid (ABA plays a crucial role in plant development and responses to abiotic stresses. Recent studies indicate that a positive feedback regulation by ABA exists in ABA biosynthesis in plants under dehydration stress. To understand the molecular basis of this regulation, we analyzed the cis-elements of the AtNCED3 promoter in Arabidopsis. AtNCED3 encodes the first committed and highly regulated dioxygenase in the ABA biosynthetic pathway. Through delineated and mutagenesis analyses in stable-transformed Arabidopsis, we revealed that a distal ABA responsive element (ABRE: GGCACGTG, -2372 to -2364 bp is required for ABA-induced AtNCED3 expression. By analyzing the AtNCED3 expression in ABRE binding protein ABF3 over-expression transgenic plants and knock-out mutants, we provide evidence that the ABA feedback regulation of AtNCED3 expression is not mediated by ABF3.

  6. A distal ABA responsive element in AtNCED3 promoter is required for positive feedback regulation of ABA biosynthesis in Arabidopsis.

    Science.gov (United States)

    Yang, Yan-Zhuo; Tan, Bao-Cai

    2014-01-01

    The plant hormone abscisic acid (ABA) plays a crucial role in plant development and responses to abiotic stresses. Recent studies indicate that a positive feedback regulation by ABA exists in ABA biosynthesis in plants under dehydration stress. To understand the molecular basis of this regulation, we analyzed the cis-elements of the AtNCED3 promoter in Arabidopsis. AtNCED3 encodes the first committed and highly regulated dioxygenase in the ABA biosynthetic pathway. Through delineated and mutagenesis analyses in stable-transformed Arabidopsis, we revealed that a distal ABA responsive element (ABRE: GGCACGTG, -2372 to -2364 bp) is required for ABA-induced AtNCED3 expression. By analyzing the AtNCED3 expression in ABRE binding protein ABF3 over-expression transgenic plants and knock-out mutants, we provide evidence that the ABA feedback regulation of AtNCED3 expression is not mediated by ABF3.

  7. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors.

    Science.gov (United States)

    Kobayashi, Yuhko; Murata, Michiharu; Minami, Hideyuki; Yamamoto, Shuhei; Kagaya, Yasuaki; Hobo, Tokunori; Yamamoto, Akiko; Hattori, Tsukaho

    2005-12-01

    The plant hormone abscisic acid (ABA) induces gene expression via the ABA-response element (ABRE) present in the promoters of ABA-regulated genes. A group of bZIP proteins have been identified as ABRE-binding factors (ABFs) that activate transcription through this cis element. A rice ABF, TRAB1, has been shown to be activated via ABA-dependent phosphorylation. While a large number of signalling factors have been identified that are involved in stomatal regulation by ABA, relatively less is known about the ABA-signalling pathway that leads to gene expression. We have shown recently that three members of the rice SnRK2 protein kinase family, SAPK8, SAPK9 and SAPK10, are activated by ABA signal as well as by hyperosmotic stress. Here we show that transient overexpression in cultured cell protoplasts of these ABA-activated SnRK2 protein kinases leads to the activation of an ABRE-regulated promoter, suggesting that these kinases are involved in the gene-regulation pathway of ABA signalling. We further show several lines of evidence that these ABA-activated SnRK2 protein kinases directly phosphorylate TRAB1 in response to ABA. Kinetic analysis of SAPK10 activation and TRAB1 phosphorylation indicated that the latter immediately followed the former. TRAB1 was found to be phosphorylated not only in response to ABA, but also in response to hyperosmotic stress, which was interpreted as the consequence of phosphorylation of TRAB1 by hyperosmotically activated SAPKs. Physical interaction between TRAB1 and SAPK10 in vivo was demonstrated by a co-immunoprecipitation experiment. Finally, TRAB1 was phosphorylated in vitro by the ABA-activated SnRK2 protein kinases at Ser102, which is phosphorylated in vivo in response to ABA and is critical for the activation function.

  8. Production of ABA responses requires both the nuclear and cytoplasmic functional involvement of PYR1

    International Nuclear Information System (INIS)

    Park, EunJoo; Kim, Tae-Houn

    2017-01-01

    Abscisic acid (ABA) enhances stress tolerant responses in plants against unfavorable environmental conditions. In Arabidopsis, ABA promotes interactions between PYR/PYL/RCARs and PP2C, thereby allowing SnRK2s to phosphorylate downstream components required for the regulation of gene expression or for gating ion channels. Because PYR1 is known to localize to nucleus and cytoplasm it is a question whether nuclear or cytoplasmic PYR1 confer different functions to the ABA signaling pathway, as has been previously shown for regulatory proteins. In order to answer this question, transgenic lines expressing nuclear PYR1 were generated in an ABA insensitive mutant background. Enforced nuclear expression of PYR1 was examined by confocal microscopy and western blot analysis. Physiological analyses of the transgenic lines demonstrated that nuclear PYR1 is sufficient to generate ABA responses, such as, the inhibition of seed germination, root growth inhibition, the induction of gene expression, and stomatal closing movement. However, for the full recovery of ABA responses in the mutant background cytoplasmic PYR1 was required. The study suggests both nuclear and cytoplasmic PYR1 participate in the control of ABA signal transduction. - Highlights: • Nuclear and cytoplasmic functions of PYR1 were studied in the mutant which lacked majority of ABA responses. • Nuclear PYR1 reconstituted partially the ABA responses during seed germination, root growth, and guard cell movement. • Both the nuclear and cytoplasmic functions of PYR1 were required for the full generation of ABA responses.

  9. Growth and ABA responses of maple seedlings to aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, A.; Robitaille, G.; Boutin, R. [Canadian Forestry Service, Sainte Foy, PQ (Canada); Nadeau, P. [Agriculture and Agri-Food Canada Research Station, Sainte-Foy, PQ (Canada)

    1995-12-01

    The impacts of low pH and 2.0 mM aluminum (Al) on the growth of sugar maple seedlings was assessed over a 13-week period. The hypothesis was that low pH and high aluminum concentration would lower the vigor of sugar maple seedlings and were contributing factors to sugar maple stand decline. The effects of the stresses were measured in roots and shoots. The concentration of abscisis acid (ABA) in xylem sap in response to Al over time was measured to determine whether it could be used as an indicator of Al stress in sugar maple seedlings. At week 9, total leaf area of Al-treated seedlings was reduced by 27%, but by week 13 leaf area was similar for seedlings in all treatments. None of the other growth parameters examined were negatively affected by the treatments at either week 9 or week 13. ABA concentration in the xylem sap was not affected by any of the treatments. The duration of exposure to Al was found critical when assessing a threshold concentration for Al toxicity because plants can acclimate to an Al concentration previously considered toxic. 36 refs., 1 tab., 6 figs.

  10. Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response

    OpenAIRE

    Chen, Li-Ting; Wu, Keqiang

    2010-01-01

    Our recent study revealed the involvement of the Arabidopsis histone deacetylase HDA6 in modulating ABA and salt stress responses. In this report, we further investigated the role of HDA19 in ABA and salt stress responses. The Arabidopsis HDA19 T-DNA insertion mutant, hda19-1, displayed a phenotype that was hypersensitive to ABA and salt stress. Compared with wild-type plants, the expression of ABA responsive genes, ABI1, ABI2, KAT1, KAT2 and RD29B, was decreased in hda19-1 plants when treate...

  11. Dual DNA binding property of ABA insensitive 3 like factors targeted to promoters responsive to ABA and auxin.

    Science.gov (United States)

    Nag, Ronita; Maity, Manas Kanti; Dasgupta, Maitrayee

    2005-11-01

    The ABA responsive ABI3 and the auxin responsive ARF family of transcription factors bind the CATGCATG (Sph) and TGTCTC core motifs in ABA and auxin response elements (ABRE and AuxRE), respectively. Several evidences indicate ABI3s to act downstream to auxin too. Because DNA binding domain of ABI3s shows significant overlap with ARFs we enquired whether auxin responsiveness through ABI3s could be mediated by their binding to canonical AuxREs. Investigations were undertaken through in vitro gel mobility shift assays (GMSA) using the DNA binding domain B3 of PvAlf (Phaseolus vulgaris ABI3 like factor) and upstream regions of auxin responsive gene GH3 (-267 to -141) and ABA responsive gene Em (-316 to -146) harboring AuxRE and ABRE, respectively. We demonstrate that B3 domain of PvAlf could bind AuxRE only when B3 was associated with its flanking domain B2 (B2B3). Such strict requirement of B2 domain was not observed with ABRE, where B3 could bind with or without being associated with B2. This dual specificity in DNA binding of ABI3s was also demonstrated with nuclear extracts of cultured cells of Arachis hypogea. Supershift analysis of ABRE and AuxRE bound nuclear proteins with antibodies raised against B2B3 domains of PvAlf revealed that ABI3 associated complexes were detectable in association with both cis elements. Competition GMSA confirmed the same complexes to bind ABRE and AuxRE. This dual specificity of ABI3 like factors in DNA binding targeted to natural promoters responsive to ABA and auxin suggests them to have a potential role in conferring crosstalk between these two phytohormones.

  12. Transcriptome Analysis of ABA/JA-Dual Responsive Genes in Rice Shoot and Root.

    Science.gov (United States)

    Kim, Jin-Ae; Bhatnagar, Nikita; Kwon, Soon Jae; Min, Myung Ki; Moon, Seok-Jun; Yoon, In Sun; Kwon, Taek-Ryoun; Kim, Sun Tae; Kim, Beom-Gi

    2018-01-01

    The phytohormone abscisic acid (ABA) enables plants to adapt to adverse environmental conditions through the modulation of metabolic pathways and of growth and developmental programs. We used comparative microarray analysis to identify genes exhibiting ABA-dependent expression and other hormone-dependent expression among them in Oryza sativa shoot and root. We identified 854 genes as significantly up- or down-regulated in root or shoot under ABA treatment condition. Most of these genes had similar expression profiles in root and shoot under ABA treatment condition, whereas 86 genes displayed opposite expression responses in root and shoot. To examine the crosstalk between ABA and other hormones, we compared the expression profiles of the ABA-dependently regulated genes under several different hormone treatment conditions. Interestingly, around half of the ABA-dependently expressed genes were also regulated by jasmonic acid based on microarray data analysis. We searched the promoter regions of these genes for cis-elements that could be responsible for their responsiveness to both hormones, and found that ABRE and MYC2 elements, among others, were common to the promoters of genes that were regulated by both ABA and JA. These results show that ABA and JA might have common gene expression regulation system and might explain why the JA could function for both abiotic and biotic stress tolerance.

  13. A Microsomal Proteomics View of H2O2- and ABA-Dependent Responses

    KAUST Repository

    Alquraishi, May Majed; Thomas, Ludivine; Gehring, Chris; Marondedze, Claudius

    2017-01-01

    The plant hormone abscisic acid (ABA) modulates a number of plant developmental processes and responses to stress. In planta, ABA has been shown to induce reactive oxygen species (ROS) production through the action of plasma membrane-associated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases. Although quantitative proteomics studies have been performed to identify ABA- or hydrogen peroxide (H₂O₂)-dependent proteins, little is known about the ABA- and H₂O₂-dependent microsomal proteome changes. Here, we examined the effect of 50 µM of either H₂O₂ or ABA on the Arabidopsis microsomal proteome using tandem mass spectrometry and identified 86 specifically H₂O₂-dependent, and 52 specifically ABA-dependent proteins that are differentially expressed. We observed differential accumulation of proteins involved in the tricarboxylic acid (TCA) cycle notably in response to H₂O₂. Of these, aconitase 3 responded to both H₂O₂ and ABA. Additionally, over 30 proteins linked to RNA biology responded significantly to both treatments. Gene ontology categories such as 'response to stress' and 'transport' were enriched, suggesting that H₂O₂ or ABA directly and/or indirectly cause complex and partly overlapping cellular responses. Data are available via ProteomeXchange with identifier PXD006513.

  14. A Microsomal Proteomics View of H2O2- and ABA-Dependent Responses

    KAUST Repository

    Alquraishi, May Majed

    2017-08-21

    The plant hormone abscisic acid (ABA) modulates a number of plant developmental processes and responses to stress. In planta, ABA has been shown to induce reactive oxygen species (ROS) production through the action of plasma membrane-associated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases. Although quantitative proteomics studies have been performed to identify ABA- or hydrogen peroxide (H₂O₂)-dependent proteins, little is known about the ABA- and H₂O₂-dependent microsomal proteome changes. Here, we examined the effect of 50 µM of either H₂O₂ or ABA on the Arabidopsis microsomal proteome using tandem mass spectrometry and identified 86 specifically H₂O₂-dependent, and 52 specifically ABA-dependent proteins that are differentially expressed. We observed differential accumulation of proteins involved in the tricarboxylic acid (TCA) cycle notably in response to H₂O₂. Of these, aconitase 3 responded to both H₂O₂ and ABA. Additionally, over 30 proteins linked to RNA biology responded significantly to both treatments. Gene ontology categories such as \\'response to stress\\' and \\'transport\\' were enriched, suggesting that H₂O₂ or ABA directly and/or indirectly cause complex and partly overlapping cellular responses. Data are available via ProteomeXchange with identifier PXD006513.

  15. ABA Is Involved in Regulation of Cold Stress Response in Bermudagrass

    Directory of Open Access Journals (Sweden)

    Xuebing Huang

    2017-10-01

    Full Text Available As a representative warm-season grass, Bermudagrass [Cynodon dactylon (L. Pers.] is widely used in turf systems. However, low temperature remarkably limits its growth and distribution. ABA is a crucial phytohormone that has been reported to regulate much important physiological and biochemical processes in plants under abiotic stress. Therefore, the objective of this study was to figure out the effects of ABA on the cold-sensitive (S and cold-resistant (R Bermudagrass genotypes response to cold stress. In this study, the plants were treated with 100 μM ABA solution and exposed to 4°C temperature. After 7 days of cold treatment, the electrolyte leakage (EL, malonaldehyde (MDA and H2O2 content were significantly increased in both genotypes compared with control condition, and these values were higher in R genotype than those of S genotype, respectively. By contrast, exogenous ABA application decreased the electrolyte leakage (EL, MDA and H2O2 content in both genotypes compared with those plants without ABA treatment under cold treatment condition. In addition, exogenous ABA application increased the levels of chlorophyll a fluorescence transient curve for both genotypes, and it was higher in R genotype than that of S genotype. Analysis of photosynthetic fluorescence parameters revealed that ABA treatment improved the performance of photosystem II under cold condition, particularly for the R genotype. Moreover, cold stress significantly increased δ13C values for both genotypes, while it was alleviated by exogenous ABA. Additionally, exogenous ABA application altered the expression of ABA- or cold related genes, including ABF1, CBF1, and LEA. In summary, exogenous ABA application enhanced cold resistance of both genotypes by maintaining cell membrane stability, improving the process of photosystem II, increasing carbon isotopic fractionation under cold stress, and more prominently in R genotype compared with S genotype.

  16. Role of abscisic acid (aba) in modulating the responses of two apple rootstocks to drought stress

    International Nuclear Information System (INIS)

    Zhang, L.; Li, X.; Li, B.; Han, M.; Liu, F.; Zhang, L.; Zheng, P.

    2014-01-01

    Drought stress is considered as the main limiting factor for apple (Malus domestica L.) production in some semi-arid areas of China. In this study, we investigated the modulation role of abscisic acid (ABA) and fluridone (ABA synthesis inhibitor) on water relations and antioxidant enzyme system in 2-year-old seedlings of two apple rootstocks i.e. Malus sieversii (Ledeb.) Roem. (MS) and Malus hupehensis (Pamp.) Rehd. (MH). Drought stress induced ion leakage, accumulation of malondiadehyde (MDA) and decreases in leaf water potential and relative water content (RWC) in both rootstocks, which were significantly alleviated by exogenous ABA application. Drought stress also induced markedly increases in endogenous ABA content and activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR), to a greater magnitude in MS as compared to MH rootstock. Concentration of 100 mol/L and 50 mol/L ABA had the most positive effects on drought-stressed rootstocks of MS and MH, respectively. Spraying optimum exogenous ABA contributed to enhancement in most of the above antioxidant enzymes activities but reduction in content of MDA and maintained the appropriate leaf water potential and RWC in both rootstocks. Pretreatment with fluridone aggravated ion leakage and the accumulation of MDA in two apple rootstocks under drought stress, which was overcome by exogenous ABA application to some extent. In conclusion, the endogenous ABA was probably involved in the regulation of two apple rootstocks in responses to drought stress. (author)

  17. Reciprocal Regulation of the TOR Kinase and ABA Receptor Balances Plant Growth and Stress Response.

    Science.gov (United States)

    Wang, Pengcheng; Zhao, Yang; Li, Zhongpeng; Hsu, Chuan-Chih; Liu, Xue; Fu, Liwen; Hou, Yueh-Ju; Du, Yanyan; Xie, Shaojun; Zhang, Chunguang; Gao, Jinghui; Cao, Minjie; Huang, Xiaosan; Zhu, Yingfang; Tang, Kai; Wang, Xingang; Tao, W Andy; Xiong, Yan; Zhu, Jian-Kang

    2018-01-04

    As sessile organisms, plants must adapt to variations in the environment. Environmental stress triggers various responses, including growth inhibition, mediated by the plant hormone abscisic acid (ABA). The mechanisms that integrate stress responses with growth are poorly understood. Here, we discovered that the Target of Rapamycin (TOR) kinase phosphorylates PYL ABA receptors at a conserved serine residue to prevent activation of the stress response in unstressed plants. This phosphorylation disrupts PYL association with ABA and with PP2C phosphatase effectors, leading to inactivation of SnRK2 kinases. Under stress, ABA-activated SnRK2s phosphorylate Raptor, a component of the TOR complex, triggering TOR complex dissociation and inhibition. Thus, TOR signaling represses ABA signaling and stress responses in unstressed conditions, whereas ABA signaling represses TOR signaling and growth during times of stress. Plants utilize this conserved phospho-regulatory feedback mechanism to optimize the balance of growth and stress responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Is gene transcription involved in seed dry after-ripening?

    Directory of Open Access Journals (Sweden)

    Patrice Meimoun

    Full Text Available Orthodox seeds are living organisms that survive anhydrobiosis and may display dormancy, an inability to germinate at harvest. Seed germination potential can be acquired during a prolonged period of dry storage called after-ripening. The aim of this work was to determine if gene transcription is an underlying regulatory mechanism for dormancy alleviation during after-ripening. To identify changes in gene transcription strictly associated with the acquisition of germination potential but not with storage, we used seed storage at low relative humidity that maintains dormancy as control. Transcriptome profiling was performed using DNA microarray to compare change in gene transcript abundance between dormant (D, after-ripened non-dormant (ND and after-ripened dormant seeds (control, C. Quantitative real-time polymerase chain reaction (qPCR was used to confirm gene expression. Comparison between D and ND showed the differential expression of 115 probesets at cut-off values of two-fold change (p<0.05. Comparisons between both D and C with ND in transcript abundance showed that only 13 transcripts, among 115, could be specific to dormancy alleviation. qPCR confirms the expression pattern of these transcripts but without significant variation between conditions. Here we show that sunflower seed dormancy alleviation in the dry state is not related to regulated changes in gene expression.

  19. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels.

    Science.gov (United States)

    Cohen, Ana C; Bottini, Rubén; Pontin, Mariela; Berli, Federico J; Moreno, Daniela; Boccanlandro, Hernán; Travaglia, Claudia N; Piccoli, Patricia N

    2015-01-01

    Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth-promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress-related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col-0 and aba2-1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro-grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild-type Col-0 and on the mutant aba2-1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col-0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought. © 2014 Scandinavian Plant Physiology Society.

  20. Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3.

    Science.gov (United States)

    Finkelstein, Ruth; Gampala, Srinivas S L; Lynch, Tim J; Thomas, Terry L; Rock, Christopher D

    2005-09-01

    Abscisic acid-responsive gene expression is regulated by numerous transcription factors, including a subgroup of basic leucine zipper factors that bind to the conserved cis-acting sequences known as ABA-responsive elements. Although one of these factors, ABA-insensitive 5 (ABI5), was identified genetically, the paucity of genetic data for the other family members has left it unclear whether they perform unique functions or act redundantly to ABI5 or each other. To test for potential redundancy with ABI5, we identified the family members with most similar effects and interactions in transient expression systems (ABF3 and ABF1), then characterized loss-of-function lines for those loci. The abf1 and abf3 monogenic mutant lines had at most minimal effects on germination or seed-specific gene expression, but the enhanced ABA- and stress-resistance of abf3 abi5 double mutants revealed redundant action of these genes in multiple stress responses of seeds and seedlings. Although ABI5, ABF3, and ABF1 have some overlapping effects, they appear to antagonistically regulate each other's expression at specific stages. Consequently, loss of any one factor may be partially compensated by increased expression of other family members.

  1. Interplay between ABA and phospholipases A(2) and D in the response of citrus fruit to postharvest dehydration.

    Science.gov (United States)

    Romero, Paco; Gandía, Mónica; Alférez, Fernando

    2013-09-01

    The interplay between abscisic acid (ABA) and phospholipases A2 and D (PLA2 and PLD) in the response of citrus fruit to water stress was investigated during postharvest by using an ABA-deficient mutant from 'Navelate' orange named 'Pinalate'. Fruit from both varieties harvested at two different maturation stages (mature-green and full-mature) were subjected to prolonged water loss inducing stem-end rind breakdown (SERB) in full-mature fruit. Treatment with PLA2 inhibitor aristolochic acid (AT) and PLD inhibitor lysophosphatidylethanolamine (LPE) reduced the disorder in both varieties, suggesting that phospholipid metabolism is involved in citrus peel quality. Expression of CsPLDα and CsPLDβ, and CssPLA2α and CssPLA2β was studied by real-time RT-PCR during water stress and in response to ABA. CsPLDα expression increased in mature-green fruit from 'Navelate' but not in 'Pinalate' and ABA did not counteract this effect. ABA enhanced repression of CsPLDα in full-mature fruit. CsPLDβ gene expression decreased in mature-green 'Pinalate', remained unchanged in 'Navelate' and was induced in full-mature fruit from both varieties. CssPLA2α expression increased in mature-green fruit from both varieties whereas in full-mature fruit only increased in 'Navelate'. CssPLA2β expression increased in mature-green flavedo from both varieties, but in full-mature fruit remained steady in 'Navelate' and barely increased in 'Pinalate' fruit. ABA reduced expression in both after prolonged storage. Responsiveness to ABA increased with maturation. Our results show interplay between PLA2 and PLD and suggest that ABA action is upstream phospholipase activation. Response to ABA during water stress in citrus is regulated during fruit maturation and involves membrane phospholipid degradation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes.

    Science.gov (United States)

    Zhao, Yang; Xing, Lu; Wang, Xingang; Hou, Yueh-Ju; Gao, Jinghui; Wang, Pengcheng; Duan, Cheng-Guo; Zhu, Xiaohong; Zhu, Jian-Kang

    2014-06-03

    The phytohormone abscisic acid (ABA) regulates plant growth, development, and abiotic stress responses. ABA signaling is mediated by a group of receptors known as the PYR1/PYL/RCAR family, which includes the pyrabactin resistance 1-like protein PYL8. Under stress conditions, ABA signaling activates SnRK2 protein kinases to inhibit lateral root growth after emergence from the primary root. However, even in the case of persistent stress, lateral root growth eventually recovers from inhibition. We showed that PYL8 is required for the recovery of lateral root growth, following inhibition by ABA. PYL8 directly interacted with the transcription factors MYB77, MYB44, and MYB73. The interaction of PYL8 and MYB77 increased the binding of MYB77 to its target MBSI motif in the promoters of multiple auxin-responsive genes. Compared to wild-type seedlings, the lateral root growth of pyl8 mutant seedlings and myb77 mutant seedlings was more sensitive to inhibition by ABA. The recovery of lateral root growth was delayed in pyl8 mutant seedlings in the presence of ABA, and the defect was rescued by exposing pyl8 mutant seedlings to the auxin IAA (3-indoleacetic acid). Thus, PYL8 promotes lateral root growth independently of the core ABA-SnRK2 signaling pathway by enhancing the activities of MYB77 and its paralogs, MYB44 and MYB73, to augment auxin signaling. Copyright © 2014, American Association for the Advancement of Science.

  3. Fern Stomatal Responses to ABA and CO2 Depend on Species and Growth Conditions.

    Science.gov (United States)

    Hõrak, Hanna; Kollist, Hannes; Merilo, Ebe

    2017-06-01

    Changing atmospheric CO 2 levels, climate, and air humidity affect plant gas exchange that is controlled by stomata, small pores on plant leaves and stems formed by guard cells. Evolution has shaped the morphology and regulatory mechanisms governing stomatal movements to correspond to the needs of various land plant groups over the past 400 million years. Stomata close in response to the plant hormone abscisic acid (ABA), elevated CO 2 concentration, and reduced air humidity. Whether the active regulatory mechanisms that control stomatal closure in response to these stimuli are present already in mosses, the oldest plant group with stomata, or were acquired more recently in angiosperms remains controversial. It has been suggested that the stomata of the basal vascular plants, such as ferns and lycophytes, close solely hydropassively. On the other hand, active stomatal closure in response to ABA and CO 2 was found in several moss, lycophyte, and fern species. Here, we show that the stomata of two temperate fern species respond to ABA and CO 2 and that an active mechanism of stomatal regulation in response to reduced air humidity is present in some ferns. Importantly, fern stomatal responses depend on growth conditions. The data indicate that the stomatal behavior of ferns is more complex than anticipated before, and active stomatal regulation is present in some ferns and has possibly been lost in others. Further analysis that takes into account fern species, life history, evolutionary age, and growth conditions is required to gain insight into the evolution of land plant stomatal responses. © 2017 American Society of Plant Biologists. All Rights Reserved.

  4. Genome-wide targeted prediction of ABA responsive genes in rice based on over-represented cis-motif in co-expressed genes.

    Science.gov (United States)

    Lenka, Sangram K; Lohia, Bikash; Kumar, Abhay; Chinnusamy, Viswanathan; Bansal, Kailash C

    2009-02-01

    Abscisic acid (ABA), the popular plant stress hormone, plays a key role in regulation of sub-set of stress responsive genes. These genes respond to ABA through specific transcription factors which bind to cis-regulatory elements present in their promoters. We discovered the ABA Responsive Element (ABRE) core (ACGT) containing CGMCACGTGB motif as over-represented motif among the promoters of ABA responsive co-expressed genes in rice. Targeted gene prediction strategy using this motif led to the identification of 402 protein coding genes potentially regulated by ABA-dependent molecular genetic network. RT-PCR analysis of arbitrarily chosen 45 genes from the predicted 402 genes confirmed 80% accuracy of our prediction. Plant Gene Ontology (GO) analysis of ABA responsive genes showed enrichment of signal transduction and stress related genes among diverse functional categories.

  5. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Riaño-Pachón Diego

    2007-08-01

    Full Text Available Abstract Background In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs, ABRE and CE3, in thale cress (Arabidopsis thaliana and rice (Oryza sativa. Results Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Conclusion Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of

  6. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice.

    Science.gov (United States)

    Gómez-Porras, Judith L; Riaño-Pachón, Diego Mauricio; Dreyer, Ingo; Mayer, Jorge E; Mueller-Roeber, Bernd

    2007-08-01

    In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs), ABRE and CE3, in thale cress (Arabidopsis thaliana) and rice (Oryza sativa). Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE) associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs) in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of interacting with transcription factors. Further studies will be

  7. Electrical signaling, stomatal conductance, ABA and Ethylene content in avocado trees in response to root hypoxia

    Science.gov (United States)

    Gurovich, Luis; Schaffer, Bruce; García, Nicolás; Iturriaga, Rodrigo

    2009-01-01

    Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone. PMID:19649181

  8. AtRAV and AtbZIP transcription factors positively regulate ABA responses: Overexpression in cotton enhances drought stress adaptation

    Science.gov (United States)

    Drought tolerance is an important trait being pursued by the agbiotech industry. Abscisic acid (ABA) is a stress hormone that mediates a multitude of processes in growth and development, water use efficiency, and gene expression during seed development and in response to environmental stresses. Ar...

  9. After-ripening induced transcriptional changes of hormonal genes in wheat seeds: the cases of brassinosteroids, ethylene, cytokinin and salicylic acid.

    Directory of Open Access Journals (Sweden)

    Vijaya R Chitnis

    Full Text Available Maintenance and release of seed dormancy is regulated by plant hormones; their levels and seed sensitivity being the critical factors. This study reports transcriptional regulation of brassinosteroids (BR, ethylene (ET, cytokinin (CK and salicylic acid (SA related wheat genes by after-ripening, a period of dry storage that decays dormancy. Changes in the expression of hormonal genes due to seed after-ripening did not occur in the anhydrobiotic state but rather in the hydrated state. After-ripening induced dormancy decay appears to be associated with imbibition mediated increase in the synthesis and signalling of BR, via transcriptional activation of de-etiolated2, dwarf4 and brassinosteroid signaling kinase, and repression of brassinosteroid insensitive 2. Our analysis is also suggestive of the significance of increased ET production, as reflected by enhanced transcription of 1-aminocyclopropane-1-carboxylic acid oxidase in after-ripened seeds, and tight regulation of seed response to ET in regulating dormancy decay. Differential transcriptions of lonely guy, zeatin O-glucosyltransferases and cytokinin oxidases, and pseudo-response regulator between dormant and after-ripened seeds implicate CK in the regulation of seed dormancy in wheat. Our analysis also reflects the association of dormancy decay in wheat with seed SA level and NPR independent SA signaling that appear to be regulated transcriptionally by phenylalanine ammonia lyase, and whirly and suppressor of npr1 inducible1 genes, respectively. Co-expression clustering of the hormonal genes implies the significance of synergistic and antagonistic interaction between the different plant hormones in regulating wheat seed dormancy. These results contribute to further our understanding of the molecular features controlling seed dormancy in wheat.

  10. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Dong-bei Xu

    Full Text Available Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2 was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1, were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44, were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade.

  11. Seed after-ripening and dormancy determine adult life history independently of germination timing.

    Science.gov (United States)

    de Casas, Rafael Rubio; Kovach, Katherine; Dittmar, Emily; Barua, Deepak; Barco, Brenden; Donohue, Kathleen

    2012-05-01

    • Seed dormancy can affect life history through its effects on germination time. Here, we investigate its influence on life history beyond the timing of germination. • We used the response of Arabidopsis thaliana to chilling at the germination and flowering stages to test the following: how seed dormancy affects germination responses to the environment; whether variation in dormancy affects adult phenology independently of germination time; and whether environmental cues experienced by dormant seeds have an effect on adult life history. • Dormancy conditioned the germination response to low temperatures, such that prolonged periods of chilling induced dormancy in nondormant seeds, but stimulated germination in dormant seeds. The alleviation of dormancy through after-ripening was associated with earlier flowering, independent of germination date. Experimental dormancy manipulations showed that prolonged chilling at the seed stage always induced earlier flowering, regardless of seed dormancy. Surprisingly, this effect of seed chilling on flowering time was observed even when low temperatures did not induce germination. • In summary, seed dormancy influences flowering time and hence life history independent of its effects on germination timing. We conclude that the seed stage has a pronounced effect on life history, the influence of which goes well beyond the timing of germination. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  12. ABA-Mediated Stomatal Response in Regulating Water Use during the Development of Terminal Drought in Wheat

    Directory of Open Access Journals (Sweden)

    Renu Saradadevi

    2017-07-01

    Full Text Available End-of-season drought or “terminal drought,” which occurs after flowering, is considered the most significant abiotic stress affecting crop yields. Wheat crop production in Mediterranean-type environments is often exposed to terminal drought due to decreasing rainfall and rapid increases in temperature and evapotranspiration during spring when wheat crops enter the reproductive stage. Under such conditions, every millimeter of extra soil water extracted by the roots benefits grain filling and yield and improves water use efficiency (WUE. When terminal drought develops, soil dries from the top, exposing the top part of the root system to dry soil while the bottom part is in contact with available soil water. Plant roots sense the drying soil and produce signals, which on transmission to shoots trigger stomatal closure to regulate crop water use through transpiration. However, transpiration is linked to crop growth and productivity and limiting transpiration may reduce potential yield. While an early and high degree of stomatal closure affects photosynthesis and hence biomass production, a late and low degree of stomatal closure exhausts available soil water rapidly which results in yield losses through a reduction in post-anthesis water use. The plant hormone abscisic acid (ABA is considered the major chemical signal involved in stomatal regulation. Wheat genotypes differ in their ability to produce ABA under drought and also in their stomatal sensitivity to ABA. In this viewpoint article we discuss the possibilities of exploiting genotypic differences in ABA response to soil drying in regulating the use of water under terminal drought. Root density distribution in the upper drying layers of the soil profile is identified as a candidate trait that can affect ABA accumulation and subsequent stomatal closure. We also examine whether leaf ABA can be designated as a surrogate characteristic for improved WUE in wheat to sustain grain yield under

  13. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice

    OpenAIRE

    Riaño-Pachón Diego; Gómez-Porras Judith L; Dreyer Ingo; Mayer Jorge E; Mueller-Roeber Bernd

    2007-01-01

    Abstract Background In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with...

  14. Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant

    OpenAIRE

    Romero, Paco; Rodrigo, María J.; Alférez, Fernando; Ballester, Ana-Rosa; González-Candelas, Luis; Zacarías, Lorenzo; Lafuente, María T.

    2012-01-01

    Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate ...

  15. Bromodomain proteins GTE9 and GTE11 are essential for specific BT2-mediated sugar and ABA responses in Arabidopsis thaliana.

    Science.gov (United States)

    Misra, Anjali; McKnight, Thomas D; Mandadi, Kranthi K

    2018-03-01

    Global Transcription Factor Group E proteins GTE9 and GTE11 interact with BT2 to mediate ABA and sugar responses in Arabidopsis thaliana. BT2 is a BTB-domain protein that regulates responses to various hormone, stress and metabolic conditions in Arabidopsis thaliana. Loss of BT2 results in plants that are hypersensitive to inhibition of germination by abscisic acid (ABA) and sugars. Conversely, overexpression of BT2 results in resistance to ABA and sugars. Here, we report the roles of BT2-interacting partners GTE9 and GTE11, bromodomain and extraterminal-domain proteins of Global Transcription Factor Group E, in BT2-mediated responses to sugars and hormones. Loss-of-function mutants, gte9-1 and gte11-1, mimicked the bt2-1-null mutant responses; germination of all three mutants was hypersensitive to inhibition by glucose and ABA. Loss of either GTE9 or GTE11 in a BT2 over-expressing line blocked resistance to sugars and ABA, indicating that both GTE9 and GTE11 were required for BT2 function. Co-immunoprecipitation of BT2 and GTE9 suggested that these proteins physically interact in vivo, and presumably function together to mediate responses to ABA and sugar signals.

  16. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway.

    Science.gov (United States)

    Kizis, Dimosthenis; Pagès, Montserrat

    2002-06-01

    The abscisic acid-responsive gene rab17 of maize is expressed during late embryogenesis, and is induced by ABA and desiccation in embryo and vegetative tissues. ABRE and DRE cis-elements are involved in regulation of the gene by ABA and drought. Using yeast one-hybrid screening, we isolated two cDNAs encoding two new DRE-binding proteins, designated DBF1 and DBF2, that are members of the AP2/EREBP transcription factor family. Analysis of mRNA accumulation profiles showed that DBF1 is induced during maize embryogenesis and after desiccation, NaCl and ABA treatments in plant seedlings, whereas the DBF2 mRNA is not induced. DNA-binding preferences of DBFs were analysed by electrophoretic mobility shift assays, and showed that both DBF1 and DBF2 bound to the wild-type DRE2 element, but not to the DRE2 mutant or to the DRE1 element which differs only in a single nucleotide. Transactivation activity using particle bombardment showed that DBF1 functioned as activator of DRE2-dependent transcription of rab17 promoter by ABA, whereas DBF2 overexpression had a repression action downregulating not only the basal promoter activity, but also the ABA effect. These results show that ABA plays a role in the regulation of DBF activity, and suggests the existence of an ABA-dependent pathway for the regulation of genes through the C-repeat/DRE element.

  17. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress.

    Science.gov (United States)

    Sun, Xinbo; Sun, Chunyu; Li, Zhigang; Hu, Qian; Han, Liebao; Luo, Hong

    2016-06-01

    Heat shock proteins (HSPs) are molecular chaperones that accumulate in response to heat and other abiotic stressors. Small HSPs (sHSPs) belong to the most ubiquitous HSP subgroup with molecular weights ranging from 12 to 42 kDa. We have cloned a new sHSP gene, AsHSP17 from creeping bentgrass (Agrostis stolonifera) and studied its role in plant response to environmental stress. AsHSP17 encodes a protein of 17 kDa. Its expression was strongly induced by heat in both leaf and root tissues, and by salt and abscisic acid (ABA) in roots. Transgenic Arabidopsis plants constitutively expressing AsHSP17 exhibited enhanced sensitivity to heat and salt stress accompanied by reduced leaf chlorophyll content and decreased photosynthesis under both normal and stressed conditions compared to wild type. Overexpression of AsHSP17 also led to hypersensitivity to exogenous ABA and salinity during germination and post-germinative growth. Gene expression analysis indicated that AsHSP17 modulates expression of photosynthesis-related genes and regulates ABA biosynthesis, metabolism and ABA signalling as well as ABA-independent stress signalling. Our results suggest that AsHSP17 may function as a protein chaperone to negatively regulate plant responses to adverse environmental stresses through modulating photosynthesis and ABA-dependent and independent signalling pathways. © 2015 John Wiley & Sons Ltd.

  18. The ABA receptors -- we report you decide.

    Science.gov (United States)

    McCourt, Peter; Creelman, Robert

    2008-10-01

    The plant hormone abscisic acid (ABA) has been implicated in a variety of physiological responses ranging from seed dormancy to stomatal conductance. Recently, three groups have reported the molecular identification of three disparate ABA receptors. Unlike the identification of other hormone receptors, in these three cases high affinity binding to ABA rather than the isolation of ABA insensitive mutants led to these receptor genes. Interestingly, two of the receptors encode genes involved in floral timing and chlorophyll biosynthesis, which are not considered traditional ABA responses. And the third receptor has been clouded in issues of its molecular identity. To clearly determine the roles of these genes in ABA perception it will require placing of these ABA-binding proteins into the rich ABA physiological context that has built up over the years.

  19. Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant.

    Science.gov (United States)

    Romero, Paco; Rodrigo, María J; Alférez, Fernando; Ballester, Ana-Rosa; González-Candelas, Luis; Zacarías, Lorenzo; Lafuente, María T

    2012-04-01

    Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate orange (Citrus sinesis L. Osbeck) and its spontaneous ABA-deficient mutant Pinalate, which is more prone to dehydration and to developing peel damage. Major changes in gene expression occurring in the wild-type line were impaired in the mutant fruit. Gene ontology analysis revealed the ability of Navelate fruits to induce the response to water deprivation and di-, tri-valent inorganic cation transport biological processes, as well as repression of the carbohydrate biosynthesis process in the mutant. Exogenous ABA triggered relevant transcriptional changes and repressed the protein ubiquitination process, although it could not fully rescue the physiological behaviour of the mutant. Overall, the results indicated that dehydration responsiveness requires ABA-dependent and -independent signals, and highlight that the ability of citrus fruits to trigger molecular responses against dehydration is an important factor in reducing their susceptibility to developing peel damage.

  20. Expression Analysis of Four Peroxiredoxin Genes from Tamarix hispida in Response to Different Abiotic Stresses and Exogenous Abscisic Acid (ABA

    Directory of Open Access Journals (Sweden)

    Guiyan Yang

    2012-03-01

    Full Text Available Peroxiredoxins (Prxs are a recently discovered family of antioxidant enzymes that catalyze the reduction of peroxides and alkyl peroxides. In this study, four Prx genes (named as ThPrxII, ThPrxIIE, ThPrxIIF, and Th2CysPrx were cloned from Tamarix hispida. Their expression profiles in response to stimulus of NaCl, NaHCO3, PEG, CdCl2 and abscisic acid (ABA in roots, stems and leaves of T. hispida were investigated using real-time RT-PCR. The results showed that the four ThPrxs were all expressed in roots, stems and leaves. Furthermore, the transcript levels of ThPrxIIE and ThPrxII were the lowest and the highest, respectively, in all tissue types. All the ThPrx genes were induced by both NaCl and NaHCO3 and reached their highest expression levels at the onset of stress in roots. Under PEG and CdCl2 stress, the expression patterns of these ThPrxs showed temporal and spatial specificity. The expressions of the ThPrxs were all differentially regulated by ABA, indicating that they are all involved in the ABA signaling pathway. These findings reveal a complex regulation of Prxs that is dependent on the type of Prx, tissue, and the signaling molecule. The divergence of the stress-dependent transcriptional regulation of the ThPrx gene family in T. hispida may provide an essential basis for the elucidation of Prx function in future work.

  1. Expression analysis of four peroxiredoxin genes from Tamarix hispida in response to different abiotic stresses and Exogenous Abscisic Acid (ABA).

    Science.gov (United States)

    Gao, Caiqiu; Zhang, Kaimin; Yang, Guiyan; Wang, Yucheng

    2012-01-01

    Peroxiredoxins (Prxs) are a recently discovered family of antioxidant enzymes that catalyze the reduction of peroxides and alkyl peroxides. In this study, four Prx genes (named as ThPrxII, ThPrxIIE, ThPrxIIF, and Th2CysPrx) were cloned from Tamarix hispida. Their expression profiles in response to stimulus of NaCl, NaHCO(3), PEG, CdCl(2) and abscisic acid (ABA) in roots, stems and leaves of T. hispida were investigated using real-time RT-PCR. The results showed that the four ThPrxs were all expressed in roots, stems and leaves. Furthermore, the transcript levels of ThPrxIIE and ThPrxII were the lowest and the highest, respectively, in all tissue types. All the ThPrx genes were induced by both NaCl and NaHCO(3) and reached their highest expression levels at the onset of stress in roots. Under PEG and CdCl(2) stress, the expression patterns of these ThPrxs showed temporal and spatial specificity. The expressions of the ThPrxs were all differentially regulated by ABA, indicating that they are all involved in the ABA signaling pathway. These findings reveal a complex regulation of Prxs that is dependent on the type of Prx, tissue, and the signaling molecule. The divergence of the stress-dependent transcriptional regulation of the ThPrx gene family in T. hispida may provide an essential basis for the elucidation of Prx function in future work.

  2. Transcriptional Responses of Chilean Quinoa (Chenopodium quinoa Willd.) Under Water Deficit Conditions Uncovers ABA-Independent Expression Patterns.

    Science.gov (United States)

    Morales, Andrea; Zurita-Silva, Andres; Maldonado, Jonathan; Silva, Herman

    2017-01-01

    HIGHLIGHTS R49 genotype displayed best performance on selected physiological parameters and highest tolerance to drought.R49 drought over-represented transcripts has exhibited 19% of genes (306 contigs) that presented no homology to published databases.Expression pattern for canonical responses to drought such as ABA biosynthesis and other genes induced in response to drought were assessed by qPCR. Global freshwater shortage is one of the biggest challenges of our time, often associated to misuse, increased consumption demands and the effects of climate change, paralleled with the desertification of vast areas. Chenopodium quinoa (Willd.) represents a very promising species, due to both nutritional content and cultivation under water constraint. We characterized drought tolerance of three Chilean genotypes and selected Genotype R49 (Salares ecotype) based upon Relative Water Content (RWC), Electrolyte Leakage (EL) and maximum efficiency of photosystem II (F v /F m ) after drought treatment, when compared to another two genotypes. Exploratory RNA-Seq of R49 was generated by Illumina paired-ends method comparing drought and control irrigation conditions. We obtained 104.8 million reads, with 54 million reads for control condition and 51 million reads for drought condition. Reads were assembled in 150,952 contigs, were 31,523 contigs have a reading frame of at least 300 nucleotides (100 aminoacids). BLAST2GO annotation showed a 15% of genes without homology to NCBI proteins, but increased to 19% (306 contigs) when focused into drought-induced genes. Expression pattern for canonical drought responses such as ABA biosynthesis and other genes induced were assessed by qPCR, suggesting novelty of R49 drought responses.

  3. An ABA-responsive element in the AtSUC1 promoter is involved in the regulation of AtSUC1 expression.

    Science.gov (United States)

    Hoth, Stefan; Niedermeier, Matthias; Feuerstein, Andrea; Hornig, Julia; Sauer, Norbert

    2010-09-01

    Abscisic acid (ABA) and sugars regulate many aspects of plant growth and development, and we are only just beginning to understand the complex interactions between ABA and sugar signaling networks. Here, we show that ABA-dependent transcription factors bind to the promoter of the Arabidopsis thaliana AtSUC1 (At1g71880) sucrose transporter gene in vitro. We present the characterization of a cis-regulatory element by truncation of the AtSUC1 promoter and by electrophoretic mobility shift assays that is identical to a previously characterized ABA-responsive element (ABRE). In yeast 1-hybrid analyses we identified ABI5 (AtbZIP39; At2g36270) and AREB3 (AtbZIP66; At3g56850) as potential interactors. Analyses of plants expressing the beta-glucuronidase reporter gene under the control of ABI5 or AREB3 promoter sequences demonstrated that both transcription factor genes are co-expressed with AtSUC1 in pollen and seedlings, the primary sites of AtSUC1 action. Mutational analyses of the identified cis-regulatory element verified its importance for AtSUC1 expression in young seedlings. In abi5-4 seedlings, we observed an increase of sucrose-dependent anthocyanin accumulation and AtSUC1 mRNA levels. This suggests that ABI5 prevents an overshoot of sucrose-induced AtSUC1 expression and confirmed a novel cross-link between sugar and ABA signaling.

  4. Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis.

    Science.gov (United States)

    Nakashima, Kazuo; Fujita, Yasunari; Katsura, Koji; Maruyama, Kyonoshin; Narusaka, Yoshihiro; Seki, Motoaki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2006-01-01

    ABA-responsive elements (ABREs) are cis-acting elements and basic leucine zipper (bZIP)-type ABRE-binding proteins (AREBs) are transcriptional activators that function in the expression of RD29B in vegetative tissue of Arabidopsis in response to abscisic acid (ABA) treatment. Dehydration-responsive elements (DREs) function as coupling elements of ABRE in the expression of RD29A in response to ABA. Expression analysis using abi3 and abi5 mutants showed that ABI3 and ABI5 play important roles in the expression of RD29B in seeds. Base-substitution analysis showed that two ABREs function strongly and one ABRE coupled with DRE functions weakly in the expression of RD29A in embryos. In a transient transactivation experiment, ABI3, ABI5 and AREB1 activated transcription of a GUS reporter gene driven by the RD29B promoter strongly but these proteins activated the transcription driven by the RD29A promoter weakly. In 35S::ABI3 Arabidopsis plants, the expression of RD29B was up-regulated strongly, but that of RD29A was up-regulated weakly. These results indicate that the expression of RD29B having ABREs in the promoter is up-regulated strongly by ABI3, whereas that of RD29A having one ABRE coupled with DREs in the promoter is up-regulated weakly by ABI3. We compared the expression of 7000 Arabidopsis genes in response to ABA treatment during germination and in the vegetative growth stage, and that in 35S::ABI3 plants using a full-length cDNA microarray. The expression of ABI3- and/or ABA-responsive genes and cis-elements in the promoters are discussed.

  5. Salt and drought stress and ABA responses related to bZIP genes from V. radiata and V. angularis.

    Science.gov (United States)

    Wang, Lanfen; Zhu, Jifeng; Li, Xiaoming; Wang, Shumin; Wu, Jing

    2018-04-20

    Mung bean and adzuki bean are warm-season legumes widely cultivated in China. However, bean production in major producing regions is limited by biotic and abiotic stress, such as drought and salt stress. Basic leucine zipper (bZIP) genes play key roles in responses to various biotic and abiotic stresses. However, only several bZIP genes involved in drought and salt stress in legumes, especially Vigna radiata and Vigna angularis, have been identified. In this study, we identified 54 and 50 bZIP proteins from whole-genome sequences of V. radiata and V. angularis, respectively. First, we comprehensively surveyed the characteristics of all bZIP genes, including their gene structure, chromosome distribution and motif composition. Phylogenetic trees showed that VrbZIP and VabZIP proteins were divided into ten clades comprising nine known and one unknown subgroup. The results of the nucleotide substitution rate of the orthologous gene pairs showed that bZIP proteins have undergone strong purifying selection: V. radiata and V. angularis diverged 1.25 million years ago (mya) to 9.20 mya (average of 4.95 mya). We also found that many cis-acting regulatory elements (CAREs) involved in abiotic stress and plant hormone responses were detected in the putative promoter regions of the bZIP genes. Finally, using the quantitative real-time PCR (qRT-PCR) method, we performed expression profiling of the bZIP genes in response to drought, salt and abscisic acid (ABA). We identified several bZIP genes that may be involved in drought and salt responses. Generally, our results provided useful and rich resources of VrbZIP and VabZIP genes for the functional characterization and understanding of bZIP transcription factors (TFs) in warm-season legumes. In addition, our results revealed important and interesting data - a subset of VrbZIP and VabZIP gene expression profiles in response to drought, salt and ABA stress. These results provide gene expression evidence for the selection of

  6. The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28.

    Science.gov (United States)

    Pla, M; Vilardell, J; Guiltinan, M J; Marcotte, W R; Niogret, M F; Quatrano, R S; Pagès, M

    1993-01-01

    The maize gene rab28 has been identified as ABA-inducible in embryos and vegetative tissues. It is also induced by water stress in young leaves. The proximal promoter region contains the conserved cis-acting element CCACGTGG (ABRE) reported for ABA induction in other plant genes. Transient expression assays in rice protoplasts indicate that a 134 bp fragment (-194 to -60 containing the ABRE) fused to a truncated cauliflower mosaic virus promoter (35S) is sufficient to confer ABA-responsiveness upon the GUS reporter gene. Gel retardation experiments indicate that nuclear proteins from tissues in which the rab28 gene is expressed can interact specifically with this 134 bp DNA fragment. Nuclear protein extracts from embryo and water-stressed leaves generate specific complexes of different electrophoretic mobility which are stable in the presence of detergent and high salt. However, by DMS footprinting the same guanine-specific contacts with the ABRE in both the embryo and leaf binding activities were detected. These results indicate that the rab28 promoter sequence CCACGTGG is a functional ABA-responsive element, and suggest that distinct regulatory factors with apparent similar affinity for the ABRE sequence may be involved in the hormone action during embryo development and in vegetative tissues subjected to osmotic stress.

  7. Genome Wide Transcriptome Analysis reveals ABA mediated response in Arabidopsis during Gold (AuCl4- treatment

    Directory of Open Access Journals (Sweden)

    Devesh eShukla

    2014-11-01

    Full Text Available The unique physico-chemical properties of gold nanoparticles (AuNPs find manifold applications in diagnostics, medicine and catalysis. Chemical synthesis produces reactive AuNPs and generates hazardous by-products. Alternatively, plants can be utilized to produce AuNPs in an eco-friendly manner. To better control the biosynthesis of AuNPs, we need to first understand the detailed molecular response induced by AuCl4- In this study, we carried out global transcriptome analysis in root tissue of Arabidopsis grown for 12- hours in presence of gold solution (HAuCl4 using the novel unbiased Affymetrix exon array. Transcriptomics analysis revealed differential regulation of a total of 704 genes and 4900 exons. Of these, 492 and 212 genes were up- and downregulated, respectively. The validation of the expressed key genes, such as glutathione-S-transferases, auxin responsive genes, cytochrome P450 82C2, methyl transferases, transducin (G protein beta subunit, ERF transcription factor, ABC, and MATE transporters, was carried out through quantitative RT-PCR. These key genes demonstrated specific induction under AuCl4- treatment relative to other heavy metals, suggesting a unique plant-gold interaction. GO enrichment analysis reveals the upregulation of processes like oxidative stress, glutathione binding, metal binding, transport, and plant hormonal responses. Changes predicted in biochemical pathways indicated major modulation in glutathione mediated detoxification, flavones and derivatives, and plant hormone biosynthesis. Motif search analysis identified a highly significant enriched motif, ACGT, which is an abscisic acid responsive core element (ABRE, suggesting the possibility of ABA- mediated signaling. Identification of abscisic acid response element (ABRE points to the operation of a predominant signaling mechanism in response to AuCl4- exposure. Overall, this study presents a useful picture of plant-gold interaction with an identification of

  8. Transcript and hormone analyses reveal the involvement of ABA-signalling, hormone crosstalk and genotype-specific biological processes in cold-shock response in wheat

    Czech Academy of Sciences Publication Activity Database

    Kalapos, S.; Dobrev, Petre; Nagy, T.; Vítámvás, P.; Gyorgyey, J.; Kocsy, G.; Marincs, F.; Galiba, G.

    2016-01-01

    Roč. 253, DEC (2016), s. 86-97 ISSN 0168-9452 Institutional support: RVO:61389030 Keywords : complex phytohormone responses * abscisic-acid biosynthesis * frost-resistance * stress responses * gene-expression * chromosome 5a * triticum-monococcum * regulatory network * basal resistance * abiotic stresses * ABA-Signalling * Carbon metabolism * Freezing-tolerance * Gene ontology * Plant hormones * Short-term cold-shock * Triticum aestivum Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.437, year: 2016

  9. Isolation and functional characterisation of two new bZIP maize regulators of the ABA responsive gene rab28.

    Science.gov (United States)

    Nieva, Claudia; Busk, Peter K; Domínguez-Puigjaner, Eva; Lumbreras, Victoria; Testillano, Pilar S; Risueño, Maria-Carmen; Pagès, Montserrat

    2005-08-01

    The plant hormone abscisic acid regulates gene expression in response to growth stimuli and abiotic stress. Previous studies have implicated members of the bZIP family of transcription factors as mediators of abscisic acid dependent gene expression through the ABRE cis-element. Here, we identify two new maize bZIP transcription factors, EmBP-2 and ZmBZ-1 related to EmBP-1 and OsBZ-8 families. They are differentially expressed during embryo development; EmBP-2 is constitutive, whereas ZmBZ-1 is abscisic acid-inducible and accumulates during late embryogenesis. Both factors are nuclear proteins that bind to ABREs and activate transcription of the abscisic acid-inducible gene rab28 from maize. EmBP-2 and ZmBZ-1 are phosphorylated by protein kinase CK2 and phosphorylation alters their DNA binding properties. Our data suggest that EmBP-2 and ZmBZ-1 are involved in the expression of abscisic acid inducible genes such as rab28 and their activity is modulated by ABA and by phosphorylation.

  10. GhCAX3 gene, a novel Ca(2+/H(+ exchanger from cotton, confers regulation of cold response and ABA induced signal transduction.

    Directory of Open Access Journals (Sweden)

    Lian Xu

    Full Text Available As a second messenger, Ca(2+ plays a major role in cold induced transduction via stimulus-specific increases in [Ca(2+]cyt, which is called calcium signature. During this process, CAXs (Ca(2+/H(+ exchangers play critical role. For the first time, a putative Ca(2+/H(+ exchanger GhCAX3 gene from upland cotton (Gossypium hirsutum cv. 'YZ-1' was isolated and characterized. It was highly expressed in all tissues of cotton except roots and fibers. This gene may act as a regulator in cotton's response to abiotic stresses as it could be up-regulated by Ca(2+, NaCl, ABA and cold stress. Similar to other CAXs, it was proved that GhCAX3 also had Ca(2+ transport activity and the N-terminal regulatory region (NRR through yeast complementation assay. Over-expression of GhCAX3 in tobacco showed less sensitivity to ABA during seed germination and seedling stages, and the phenotypic difference between wild type (WT and transgenic plants was more significant when the NRR was truncated. Furthermore, GhCAX3 conferred cold tolerance in yeast as well as in tobacco seedlings based on physiological and molecular studies. However, transgenic plant seeds showed more sensitivity to cold stress compared to WT during seed germination, especially when expressed in N-terminal truncated version. Finally, the extent of sensitivity in transgenic lines was more severe than that in WT line under sodium tungstate treatment (an ABA repressor, indicating that ABA could alleviate cold sensitivity of GhCAX3 seeds, especially in short of its NRR. Meanwhile, we also found that overexpression of GhCAX3 could enhance some cold and ABA responsive marker genes. Taken together, these results suggested that GhCAX3 plays important roles in the cross-talk of ABA and cold signal transduction, and compared to full-length of GhCAX3, the absence of NRR could enhance the tolerance or sensitivity to cold stress, depending on seedling's developmental stages.

  11. Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice.

    Science.gov (United States)

    Chen, Yixing; Zhou, Xiaojin; Chang, Shu; Chu, Zhilin; Wang, Hanmeng; Han, Shengcheng; Wang, Yingdian

    2017-12-02

    The calcium-dependent protein kinases (CDPKs) are a class of plant-specific kinase that directly bind Ca 2+ and mediate the calcium-signaling pathways to play important physiological roles in growth and development. The rice genome contains 31 CDPK genes, one of which, OsCPK21, is known to modulate the abscisic acid (ABA) and salt stress responses in this crop; however, the molecular mechanisms underlying this regulation are largely unknown. In the present study, we performed yeast two-hybrid screening, glutathione S-transferase pull-down, co-immunoprecipitation, and bimolecular fluorescence complementation assays to confirm the interaction between OsCPK21 and one of its putative targets, Os14-3-3 (OsGF14e). We used an in vitro kinase assay and site-directed mutagenesis to verify that OsCPK21 phosphorylates OsGF14e at Tyr-138. We used real-time PCR to reveal that several ABA and salt inducible genes were more highly expressed in the OsCPK21-OE and OsGF14e WT-OE plants than in the mutant OsGF14e Y138A-OE and wild-type plants. These results suggest that OsCPK21 phosphorylates OsGF14e to facilitate the response to ABA and salt stress. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Inspection of the grapevine BURP superfamily highlights an expansion of RD22 genes with distinctive expression features in berry development and ABA-mediated stress responses.

    Directory of Open Access Journals (Sweden)

    José Tomás Matus

    Full Text Available The RESPONSIVE TO DEHYDRATION 22 (RD22 gene is a molecular link between abscisic acid (ABA signalling and abiotic stress responses. Its expression has been used as a reliable ABA early response marker. In Arabidopsis, the single copy RD22 gene possesses a BURP domain also located at the C-terminus of USP embryonic proteins and the beta subunit of polygalacturonases. In grapevine, a RD22 gene has been identified but putative paralogs are also found in the grape genome, possibly forming a large RD22 family in this species. In this work, we searched for annotations containing BURP domains in the Vitis vinifera genome. Nineteen proteins were defined by a comparative analysis between the two genome predictions and RNA-Seq data. These sequences were compared to other plant BURPs identified in previous genome surveys allowing us to reconceive group classifications based on phylogenetic relationships and protein motif occurrence. We observed a lineage-specific evolution of the RD22 family, with the biggest expansion in grapevine and poplar. In contrast, rice, sorghum and maize presented highly expanded monocot-specific groups. The Vitis RD22 group may have expanded from segmental duplications as most of its members are confined to a region in chromosome 4. The inspection of transcriptomic data revealed variable expression of BURP genes in vegetative and reproductive organs. Many genes were induced in specific tissues or by abiotic and biotic stresses. Three RD22 genes were further studied showing that they responded oppositely to ABA and to stress conditions. Our results show that the inclusion of RNA-Seq data is essential while describing gene families and improving gene annotations. Robust phylogenetic analyses including all BURP members from other sequenced species helped us redefine previous relationships that were erroneously established. This work provides additional evidence for RD22 genes serving as marker genes for different organs or stresses

  13. Inspection of the grapevine BURP superfamily highlights an expansion of RD22 genes with distinctive expression features in berry development and ABA-mediated stress responses.

    Science.gov (United States)

    Matus, José Tomás; Aquea, Felipe; Espinoza, Carmen; Vega, Andrea; Cavallini, Erika; Dal Santo, Silvia; Cañón, Paola; Rodríguez-Hoces de la Guardia, Amparo; Serrano, Jennifer; Tornielli, Giovanni Battista; Arce-Johnson, Patricio

    2014-01-01

    The RESPONSIVE TO DEHYDRATION 22 (RD22) gene is a molecular link between abscisic acid (ABA) signalling and abiotic stress responses. Its expression has been used as a reliable ABA early response marker. In Arabidopsis, the single copy RD22 gene possesses a BURP domain also located at the C-terminus of USP embryonic proteins and the beta subunit of polygalacturonases. In grapevine, a RD22 gene has been identified but putative paralogs are also found in the grape genome, possibly forming a large RD22 family in this species. In this work, we searched for annotations containing BURP domains in the Vitis vinifera genome. Nineteen proteins were defined by a comparative analysis between the two genome predictions and RNA-Seq data. These sequences were compared to other plant BURPs identified in previous genome surveys allowing us to reconceive group classifications based on phylogenetic relationships and protein motif occurrence. We observed a lineage-specific evolution of the RD22 family, with the biggest expansion in grapevine and poplar. In contrast, rice, sorghum and maize presented highly expanded monocot-specific groups. The Vitis RD22 group may have expanded from segmental duplications as most of its members are confined to a region in chromosome 4. The inspection of transcriptomic data revealed variable expression of BURP genes in vegetative and reproductive organs. Many genes were induced in specific tissues or by abiotic and biotic stresses. Three RD22 genes were further studied showing that they responded oppositely to ABA and to stress conditions. Our results show that the inclusion of RNA-Seq data is essential while describing gene families and improving gene annotations. Robust phylogenetic analyses including all BURP members from other sequenced species helped us redefine previous relationships that were erroneously established. This work provides additional evidence for RD22 genes serving as marker genes for different organs or stresses in grapevine.

  14. Effect of population, collection year, after-ripening and incubation condition on seed germination of Stipa bungeana

    OpenAIRE

    Zhang, Rui; Baskin, J. M.; Baskin, C. C.; Mo, Qing; Chen, Lijun; Hu, Xiaowen; Wang, Yanrong

    2017-01-01

    Knowledge of the germination behavior of different populations of a species can be useful in the selection of appropriate seed sources for restoration. The aim of this study was to test the effect of seed population, collection year, after-ripening and incubation conditions on seed dormancy and germination of Stipa bungeana, a perennial grass used for revegetation of degraded grasslands on the Loess Plateau, China. Fresh S. bungeana seeds were collected from eight locally-adapted populations ...

  15. Abscisic Acid (ABA) Regulation of Arabidopsis SR Protein Gene Expression

    Science.gov (United States)

    Cruz, Tiago M. D.; Carvalho, Raquel F.; Richardson, Dale N.; Duque, Paula

    2014-01-01

    Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses. PMID:25268622

  16. Two Groups of Thellungiella salsuginea RAVs Exhibit Distinct Responses and Sensitivity to Salt and ABA in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shaohui Yang

    Full Text Available Containing both AP2 domain and B3 domain, RAV (Related to ABI3/VP1 transcription factors are involved in diverse functions in higher plants. A total of eight TsRAV genes were isolated from the genome of Thellungiella salsuginea and could be divided into two groups (A- and B-group based on their sequence similarity. The mRNA abundance of all Thellungiella salsuginea TsRAVs followed a gradual decline during seed germination. In Thellungiella salsuginea seedling, transcripts of TsRAVs in the group A (A-TsRAVs were gradually and moderately reduced by salt treatment but rapidly and severely repressed by ABA treatment. In comparison, with a barely detectable constitutive expression, the transcriptional level of TsRAVs in the group B (B-TsRAVs exhibited a moderate induction in cotyledons when confronted with ABA. We then produced the "gain-of-function" transgenic Arabidopsis plants for each TsRAV gene and found that only 35S:A-TsRAVs showed weak growth retardation including reduced root elongation, suggesting their roles in negatively controlling plant growth. Under normal conditions, the germination process of all TsRAVs overexpressing transgenic seeds was inhibited with a stronger effect observed in 35S:A-TsRAVs seeds than in 35S:B-TsRAVs seeds. With the presence of NaCl, seed germination and seedling root elongation of all plants including wild type and 35S:TsRAVs plants were retarded and a more severe inhibition occurred to the 35S:A-TsRAV transgenic plants. ABA treatment only negatively affected the germination rates of 35S:A-TsRAV transgenic seeds but not those of 35S:B-TsRAV transgenic seeds. All 35S:TsRAVs transgenic plants showed a similar degree of reduction in root growth compared with untreated seedlings in the presence of ABA. Furthermore, the cotyledon greening/expansion was more severely inhibited 35S:A-TsRAVs than in 35S:B-TsRAVs seedlings. Upon water deficiency, with a wider opening of stomata, 35S:A-TsRAVs plants experienced a faster

  17. VvWRKY13 enhances ABA biosynthesis in Vitis vinifera

    Directory of Open Access Journals (Sweden)

    JIe Hao

    2017-06-01

    Full Text Available Abscisic acid (ABA plays critical roles in plant growth and development as well as in plants’ responses to abiotic stresses. We previously isolated VvWRKY13, a novel transcription factor, from Vitis vinifera (grapevine, and here we present evidence that VvWRKY13 may regulate ABA biosynthesis in plants. When VvWRKY13 was ectopically expressed in Arabidopsis, the transgenic lines showed delayed seed germination, smaller stomatal aperture size, and several other phenotypic changes, indicating elevated ABA levels in these plants. Sequence analysis of several genes that are involved in grapevine ABA synthetic pathway identified WRKY-specific binding elements (W-box or W-like box in the promoter regions. Indeed, transient overexpression of VvWRKY13 in grapevine leaves significantly increased the transcript levels of ABA synthetic pathway genes. Taken together, we conclude that VvWRKY13 may promote ABA production by activating genes in the ABA synthetic pathway.

  18. Epigenetic chromatin modifiers in barley: IV. The study of barley Polycomb group (PcG genes during seed development and in response to external ABA

    Directory of Open Access Journals (Sweden)

    Stanca Michele A

    2010-04-01

    Full Text Available Abstract Background Epigenetic phenomena have been associated with the regulation of active and silent chromatin states achieved by modifications of chromatin structure through DNA methylation, and histone post-translational modifications. The latter is accomplished, in part, through the action of PcG (Polycomb group protein complexes which methylate nucleosomal histone tails at specific sites, ultimately leading to chromatin compaction and gene silencing. Different PcG complex variants operating during different developmental stages have been described in plants. In particular, the so-called FIE/MEA/FIS2 complex governs the expression of genes important in embryo and endosperm development in Arabidopsis. In our effort to understand the epigenetic mechanisms regulating seed development in barley (Hordeum vulgare, an agronomically important monocot plant cultivated for its endosperm, we set out to characterize the genes encoding barley PcG proteins. Results Four barley PcG gene homologues, named HvFIE, HvE(Z, HvSu(z12a, and HvSu(z12b were identified and structurally and phylogenetically characterized. The corresponding genes HvFIE, HvE(Z, HvSu(z12a, and HvSu(z12b were mapped onto barley chromosomes 7H, 4H, 2H and 5H, respectively. Expression analysis of the PcG genes revealed significant differences in gene expression among tissues and seed developmental stages and between barley cultivars with varying seed size. Furthermore, HvFIE and HvE(Z gene expression was responsive to the abiotic stress-related hormone abscisic acid (ABA known to be involved in seed maturation, dormancy and germination. Conclusion This study reports the first characterization of the PcG homologues, HvFIE, HvE(Z, HvSu(z12a and HvSu(z12b in barley. All genes co-localized with known chromosomal regions responsible for malting quality related traits, suggesting that they might be used for developing molecular markers to be applied in marker assisted selection. The Pc

  19. Mesophyll conductance decreases in the wild type but not in an ABA-deficient mutant (aba1) of Nicotiana plumbaginifolia under drought conditions.

    Science.gov (United States)

    Mizokami, Yusuke; Noguchi, Ko; Kojima, Mikiko; Sakakibara, Hitoshi; Terashima, Ichiro

    2015-03-01

    Under drought conditions, leaf photosynthesis is limited by the supply of CO2 . Drought induces production of abscisic acid (ABA), and ABA decreases stomatal conductance (gs ). Previous papers reported that the drought stress also causes the decrease in mesophyll conductance (gm ). However, the relationships between ABA content and gm are unclear. We investigated the responses of gm to the leaf ABA content [(ABA)L ] using an ABA-deficient mutant, aba1, and the wild type (WT) of Nicotiana plumbaginifolia. We also measured leaf water potential (ΨL ) because leaf hydraulics may be related to gm . Under drought conditions, gm decreased with the increase in (ABA)L in WT, whereas both (ABA)L and gm were unchanged by the drought treatment in aba1. Exogenously applied ABA decreased gm in both WT and aba1 in a dose-dependent manner. ΨL in WT was decreased by the drought treatment to -0.7 MPa, whereas ΨL in aba1 was around -0.8 MPa even under the well-watered conditions and unchanged by the drought treatment. From these results, we conclude that the increase in (ABA)L is crucial for the decrease in gm under drought conditions. We discuss possible relationships between the decrease in gm and changes in the leaf hydraulics. © 2014 John Wiley & Sons Ltd.

  20. A Randomized Clinical Trial Comparison Between Pivotal Response Treatment (PRT) and Adult-Driven Applied Behavior Analysis (ABA) Intervention on Disruptive Behaviors in Public School Children with Autism.

    Science.gov (United States)

    Mohammadzaheri, Fereshteh; Koegel, Lynn Kern; Rezaei, Mohammad; Bakhshi, Enayatolah

    2015-09-01

    Children with autism often demonstrate disruptive behaviors during demanding teaching tasks. Language intervention can be particularly difficult as it involves social and communicative areas, which are challenging for this population. The purpose of this study was to compare two intervention conditions, a naturalistic approach, Pivotal Response Treatment (PRT) with an adult-directed ABA approach on disruptive behavior during language intervention in the public schools. A randomized clinical trial design was used with two groups of children, matched according to age, sex and mean length of utterance. The data showed that the children demonstrated significantly lower levels of disruptive behavior during the PRT condition. The results are discussed with respect to antecedent manipulations that may be helpful in reducing disruptive behavior.

  1. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses.

    Science.gov (United States)

    Narusaka, Yoshihiro; Nakashima, Kazuo; Shinwari, Zabta K; Sakuma, Yoh; Furihata, Takashi; Abe, Hiroshi; Narusaka, Mari; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2003-04-01

    Many abiotic stress-inducible genes contain two cis-acting elements, namely a dehydration-responsive element (DRE; TACCGACAT) and an ABA-responsive element (ABRE; ACGTGG/TC), in their promoter regions. We precisely analyzed the 120 bp promoter region (-174 to -55) of the Arabidopsis rd29A gene whose expression is induced by dehydration, high-salinity, low-temperature, and abscisic acid (ABA) treatments and whose 120 bp promoter region contains the DRE, DRE/CRT-core motif (A/GCCGAC), and ABRE sequences. Deletion and base substitution analyses of this region showed that the DRE-core motif functions as DRE and that the DRE/DRE-core motif could be a coupling element of ABRE. Gel mobility shift assays revealed that DRE-binding proteins (DREB1s/CBFs and DREB2s) bind to both DRE and the DRE-core motif and that ABRE-binding proteins (AREBs/ABFs) bind to ABRE in the 120 bp promoter region. In addition, transactivation experiments using Arabidopsis leaf protoplasts showed that DREBs and AREBs cumulatively transactivate the expression of a GUS reporter gene fused to the 120 bp promoter region of rd29A. These results indicate that DRE and ABRE are interdependent in the ABA-responsive expression of the rd29A gene in response to ABA in Arabidopsis.

  2. An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress.

    Science.gov (United States)

    Li, Cong; Yue, Jing; Wu, Xiaowei; Xu, Cong; Yu, Jingjuan

    2014-10-01

    The DREB (dehydration-responsive element binding)-type transcription factors regulate the expression of stress-inducible genes by binding the DRE/CRT cis-elements in promoter regions. The upstream transcription factors that regulate the transcription of DREB transcription factors have not been clearly defined, although the function of DREB transcription factors in abiotic stress is known. In this study, an abscisic acid (ABA)-responsive DREB-binding protein gene (SiARDP) was cloned from foxtail millet (Setaria italica). The transcript level of SiARDP increased not only after drought, high salt, and low temperature stresses, but also after an ABA treatment in foxtail millet seedlings. Two ABA-responsive elements (ABRE1: ACGTGTC; ABRE2: ACGTGGC) exist in the promoter of SiARDP. Further analyses showed that two ABA-responsive element binding (AREB)-type transcription factors, SiAREB1 and SiAREB2, could physically bind to the ABRE core element in vitro and in vivo. The constitutive expression of SiARDP in Arabidopsis thaliana enhanced drought and salt tolerance during seed germination and seedling development, and overexpression of SiARDP in foxtail millet improved drought tolerance. The expression levels of target genes of SiARDP were upregulated in transgenic Arabidopsis and foxtail millet. These results reveal that SiARDP, one of the target genes of SiAREB, is involved in ABA-dependent signal pathways and plays a critical role in the abiotic stress response in plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway

    OpenAIRE

    Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng

    2017-01-01

    Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4, were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses (Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions wer...

  4. Identification and mechanism of ABA receptor antagonism

    KAUST Repository

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M.; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric

    2010-01-01

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands. © 2010 Nature America, Inc. All rights reserved.

  5. Identification and mechanism of ABA receptor antagonism

    KAUST Repository

    Melcher, Karsten

    2010-08-22

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands. © 2010 Nature America, Inc. All rights reserved.

  6. SvABA

    DEFF Research Database (Denmark)

    Wala, Jeremiah A; Bandopadhayay, Pratiti; Greenwald, Noah

    2018-01-01

    Structural variants (SVs), including small insertion and deletion variants (indels), are challenging to detect through standard alignment-based variant calling methods. Sequence assembly offers a powerful approach to identifying SVs, but is difficult to apply at scale genome-wide for SV detection...... due to its computational complexity and the difficulty of extracting SVs from assembly contigs. We describe SvABA, an efficient and accurate method for detecting SVs from short-read sequencing data using genome-wide local assembly with low memory and computing requirements. We evaluated Sv...... complex somatic rearrangements with chains of short (applied SvABA to 344 cancer genomes from 11 cancer types and found that short templated-sequence insertions occur in ∼4% of all somatic rearrangements. Finally, we...

  7. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway.

    Science.gov (United States)

    Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng

    2017-01-01

    Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4 , were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses ( Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass.

  8. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway

    Directory of Open Access Journals (Sweden)

    Aimin Lv

    2017-05-01

    Full Text Available Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4, were estimated under various stresses and abscisic acid (ABA treatments in two bermudagrasses (Cynodon dactylon L.: Tifway (drought-tolerant and C299 (drought-sensitive. The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass.

  9. An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress

    OpenAIRE

    Li, Cong; Yue, Jing; Wu, Xiaowei; Xu, Cong; Yu, Jingjuan

    2014-01-01

    The DREB (dehydration-responsive element binding)-type transcription factors regulate the expression of stress-inducible genes by binding the DRE/CRT cis-elements in promoter regions. The upstream transcription factors that regulate the transcription of DREB transcription factors have not been clearly defined, although the function of DREB transcription factors in abiotic stress is known. In this study, an abscisic acid (ABA)-responsive DREB-binding protein gene (SiARDP) was cloned from foxta...

  10. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence.

    Science.gov (United States)

    Liu, Tie; Longhurst, Adam D; Talavera-Rauh, Franklin; Hokin, Samuel A; Barton, M Kathryn

    2016-10-04

    Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties.

  11. Compound stress response in stomatal closure: a mathematical model of ABA and ethylene interaction in guard cells

    Directory of Open Access Journals (Sweden)

    Beguerisse-Dıaz Mariano

    2012-11-01

    Full Text Available Abstract Background Stomata are tiny pores in plant leaves that regulate gas and water exchange between the plant and its environment. Abscisic acid and ethylene are two well-known elicitors of stomatal closure when acting independently. However, when stomata are presented with a combination of both signals, they fail to close. Results Toshed light on this unexplained behaviour, we have collected time course measurements of stomatal aperture and hydrogen peroxide production in Arabidopsis thaliana guard cells treated with abscisic acid, ethylene, and a combination of both. Our experiments show that stomatal closure is linked to sustained high levels of hydrogen peroxide in guard cells. When treated with a combined dose of abscisic acid and ethylene, guard cells exhibit increased antioxidant activity that reduces hydrogen peroxide levels and precludes closure. We construct a simplified model of stomatal closure derived from known biochemical pathways that captures the experimentally observed behaviour. Conclusions Our experiments and modelling results suggest a distinct role for two antioxidant mechanisms during stomatal closure: a slower, delayed response activated by a single stimulus (abscisic acid ‘or’ ethylene and another more rapid ‘and’ mechanism that is only activated when both stimuli are present. Our model indicates that the presence of this rapid ‘and’ mechanism in the antioxidant response is key to explain the lack of closure under a combined stimulus.

  12. Effect of population, collection year, after-ripening and incubation condition on seed germination of Stipa bungeana.

    Science.gov (United States)

    Zhang, Rui; Baskin, J M; Baskin, C C; Mo, Qing; Chen, Lijun; Hu, Xiaowen; Wang, Yanrong

    2017-10-24

    Knowledge of the germination behavior of different populations of a species can be useful in the selection of appropriate seed sources for restoration. The aim of this study was to test the effect of seed population, collection year, after-ripening and incubation conditions on seed dormancy and germination of Stipa bungeana, a perennial grass used for revegetation of degraded grasslands on the Loess Plateau, China. Fresh S. bungeana seeds were collected from eight locally-adapted populations in 2015 and 2016. Dormancy and germination characteristics of fresh and 6-month-old dry-stored seeds were determined by incubating them over a range of alternating temperature regimes in light. Effect of water stress on germination was tested for fresh and 6-month-old dry-stored seeds. Seed dormancy and germination of S. bungeana differed with population and collection year. Six months of dry storage broke seed dormancy, broadened the temperature range for germination and increased among-population differences in germination percentage. The rank order of germination was not consistent in all germination tests, and it varied among populations. Thus, studies on comparing seed dormancy and germination among populations must consider year of collection, seed dormancy states and germination test conditions when selecting seeds for grassland restoration and management.

  13. Arabidopsis DREB2C modulates ABA biosynthesis during germination.

    Science.gov (United States)

    Je, Jihyun; Chen, Huan; Song, Chieun; Lim, Chae Oh

    2014-09-12

    Plant dehydration-responsive element binding factors (DREBs) are transcriptional regulators of the APETELA2/Ethylene Responsive element-binding Factor (AP2/ERF) family that control expression of abiotic stress-related genes. We show here that under conditions of mild heat stress, constitutive overexpression seeds of transgenic DREB2C overexpression Arabidopsis exhibit delayed germination and increased abscisic acid (ABA) content compared to untransformed wild-type (WT). Treatment with fluridone, an inhibitor of the ABA biosynthesis abrogated these effects. Expression of an ABA biosynthesis-related gene, 9-cis-epoxycarotenoid dioxygenase 9 (NCED9) was up-regulated in the DREB2C overexpression lines compared to WT. DREB2C was able to trans-activate expression of NCED9 in Arabidopsis leaf protoplasts in vitro. Direct and specific binding of DREB2C to a complete DRE on the NCED9 promoter was observed in electrophoretic mobility shift assays. Exogenous ABA treatment induced DREB2C expression in germinating seeds of WT. Vegetative growth of transgenic DREB2C overexpression lines was more strongly inhibited by exogenous ABA compared to WT. These results suggest that DREB2C is a stress- and ABA-inducible gene that acts as a positive regulator of ABA biosynthesis in germinating seeds through activating NCED9 expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. A Randomized Clinical Trial Comparison between Pivotal Response Treatment (PRT) and Structured Applied Behavior Analysis (ABA) Intervention for Children with Autism

    Science.gov (United States)

    Mohammadzaheri, Fereshteh; Koegel, Lynn Kern; Rezaee, Mohammad; Rafiee, Seyed Majid

    2014-01-01

    Accumulating studies are documenting specific motivational variables that, when combined into a naturalistic teaching paradigm, can positively influence the effectiveness of interventions for children with autism spectrum disorder (ASD). The purpose of this study was to compare two applied behavior analysis (ABA) intervention procedures, a…

  15. Arabidopsis Tóxicos en Levadura 78 (AtATL78) mediates ABA-dependent ROS signaling in response to drought stress

    DEFF Research Database (Denmark)

    Suh, Ji Yeon; Kim, Soo Jin; Oh, Tae Rin

    2016-01-01

    concentrations of Ca(2+), a down-stream signaling molecule of ABA signaling pathway, atatl78 mutant plants successfully closed the pores. Furthermore, AtATL78 protein indirectly associated with catalases and the deficiency of AtATL78 led the reduction of catalase activity and H2O2, implying the function of At...

  16. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells

    Directory of Open Access Journals (Sweden)

    Zhao Zhixin

    2011-05-01

    Full Text Available Abstract Background In the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA. ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs. Following ABA exposure, solute uptake into guard cells is rapidly inhibited and solute loss is promoted, resulting in inhibition of stomatal opening and promotion of stomatal closure, with consequent plant water conservation. There is a wealth of information on the guard cell signaling mechanisms underlying these rapid ABA responses. To investigate ABA regulation of gene expression in guard cells in a systematic genome-wide manner, we analyzed data from global transcriptomes of guard cells generated with Affymetrix ATH1 microarrays, and compared these results to ABA regulation of gene expression in leaves and other tissues. Results The 1173 ABA-regulated genes of guard cells identified by our study share significant overlap with ABA-regulated genes of other tissues, and are associated with well-defined ABA-related promoter motifs such as ABREs and DREs. However, we also computationally identified a unique cis-acting motif, GTCGG, associated with ABA-induction of gene expression specifically in guard cells. In addition, approximately 300 genes showing ABA-regulation unique to this cell type were newly uncovered by our study. Within the ABA-regulated gene set of guard cells, we found that many of the genes known to encode ion transporters associated with stomatal opening are down-regulated by ABA, providing one mechanism for long-term maintenance of stomatal closure during drought. We also found examples of both negative and positive feedback in the transcriptional regulation by ABA of known ABA-signaling genes, particularly with regard to the PYR/PYL/RCAR class of soluble ABA receptors and

  17. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells

    Science.gov (United States)

    2011-01-01

    Background In the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA). ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs. Following ABA exposure, solute uptake into guard cells is rapidly inhibited and solute loss is promoted, resulting in inhibition of stomatal opening and promotion of stomatal closure, with consequent plant water conservation. There is a wealth of information on the guard cell signaling mechanisms underlying these rapid ABA responses. To investigate ABA regulation of gene expression in guard cells in a systematic genome-wide manner, we analyzed data from global transcriptomes of guard cells generated with Affymetrix ATH1 microarrays, and compared these results to ABA regulation of gene expression in leaves and other tissues. Results The 1173 ABA-regulated genes of guard cells identified by our study share significant overlap with ABA-regulated genes of other tissues, and are associated with well-defined ABA-related promoter motifs such as ABREs and DREs. However, we also computationally identified a unique cis-acting motif, GTCGG, associated with ABA-induction of gene expression specifically in guard cells. In addition, approximately 300 genes showing ABA-regulation unique to this cell type were newly uncovered by our study. Within the ABA-regulated gene set of guard cells, we found that many of the genes known to encode ion transporters associated with stomatal opening are down-regulated by ABA, providing one mechanism for long-term maintenance of stomatal closure during drought. We also found examples of both negative and positive feedback in the transcriptional regulation by ABA of known ABA-signaling genes, particularly with regard to the PYR/PYL/RCAR class of soluble ABA receptors and their downstream targets

  18. Reduced ABA Accumulation in the Root System is Caused by ABA Exudation in Upland Rice (Oryza sativa L. var. Gaoshan1) and this Enhanced Drought Adaptation.

    Science.gov (United States)

    Shi, Lu; Guo, Miaomiao; Ye, Nenghui; Liu, Yinggao; Liu, Rui; Xia, Yiji; Cui, Suxia; Zhang, Jianhua

    2015-05-01

    Lowland rice (Nipponbare) and upland rice (Gaoshan 1) that are comparable under normal and moderate drought conditions showed dramatic differences in severe drought conditions, both naturally occurring long-term drought and simulated rapid water deficits. We focused on their root response and found that enhanced tolerance of upland rice to severe drought conditions was mainly due to the lower level of ABA in its roots than in those of the lowland rice. We first excluded the effect of ABA biosynthesis and catabolism on root-accumulated ABA levels in both types of rice by monitoring the expression of four OsNCED genes and two OsABA8ox genes. Next, we excluded the impact of the aerial parts on roots by suppressing leaf-biosynthesized ABA with fluridone and NDGA (nordihydroguaiaretic acid), and measuring the ABA level in detached roots. Instead, we proved that upland rice had the ability to export considerably more root-sourced ABA than lowland rice under severe drought, which improved ABA-dependent drought adaptation. The investigation of apoplastic pH in root cells and root anatomy showed that ABA leakage in the root system of upland rice was related to high apoplastic pH and the absence of Casparian bands in the sclerenchyma layer. Finally, taking some genes as examples, we predicted that different ABA levels in rice roots stimulated distinct ABA perception and signaling cascades, which influenced its response to water stress. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana

    KAUST Repository

    Danquah, Agyemang

    2015-04-01

    Summary Abscisic acid (ABA) is a major phytohormone involved in important stress-related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA-triggered phosphoproteins as putative mitogen-activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA-activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3-1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA-dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR-SnRK2-PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA-induced MAPK pathway in plant stress signalling. Significance Statement We report in this article the identification of a complete MAPK module, composed of MAP3K17/18, MKK3 and MPK1/2/7/14, which is activated by ABA through the ABA core signalling complex. We showed that the activation of this module requires the MAP3K protein synthesis which occurs after hours of stress treatment, suggesting that the pathway is involved in a delayed wave of cellular responses to ABA and drought. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  20. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana

    KAUST Repository

    Danquah, Agyemang; Zé licourt, Axel de; Boudsocq, Marie; Neubauer, Jorinde; Frei Dit Frey, Nicolas; Leonhardt, Nathalie; Pateyron, Sté phanie; Gwinner, Frederik; Tamby, Jean Philippe; Ortiz-Masià , Dolores; Marcote, Marí a Jesú s; Hirt, Heribert; Colcombet, Jean

    2015-01-01

    Summary Abscisic acid (ABA) is a major phytohormone involved in important stress-related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA-triggered phosphoproteins as putative mitogen-activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA-activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3-1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA-dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR-SnRK2-PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA-induced MAPK pathway in plant stress signalling. Significance Statement We report in this article the identification of a complete MAPK module, composed of MAP3K17/18, MKK3 and MPK1/2/7/14, which is activated by ABA through the ABA core signalling complex. We showed that the activation of this module requires the MAP3K protein synthesis which occurs after hours of stress treatment, suggesting that the pathway is involved in a delayed wave of cellular responses to ABA and drought. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  1. Abscisic (ABA)-aldehyde is a precursor to, and 1',4'-trans-ABA-diol a catabolite of, ABA in apple

    International Nuclear Information System (INIS)

    Rock, C.D.; Zeevaart, J.A.D.

    1990-01-01

    Previous 18 O labeling studies of abscisic acid (ABA) have shown that apple (Malus domestica Borkh. cv Granny Smith) fruits synthesize a majority of [ 18 O]ABA with the label incorporated in the 1'-hydroxyl position and unlabeled in the carboxyl group (JAD Zeevaart, TG Heath, DA Gage [1989] Plant Physiol 91: 1594-1601). It was proposed that exchange of 18 O in the side chain with the medium occurred at an aldehyde intermediate stage of ABA biosynthesis. We have isolated ABA-aldehyde and 1'-4'-trans-ABA-diol (ABA-trans-diol) from 18 O-labeled apple fruit tissue and measured the extent and position of 18 O incorporation by tandem mass spectrometry. 18 O-Labeling patterns of ABA-aldehyde, ABA-trans-diol, and ABA indicate that ABA-aldehyde is a precursor to, and ABA-trans-diol a catabolite of, ABA. Exchange of 18 O in the carbonyl of ABA-aldehyde can be the cause of loss of 18 O from the side chain of [ 18 O]ABA. Results of feeding experiments with deuterated substrates provide further support for the precursor-product relationship of ABA-aldehyde → ABAABA-trans-diol. The ABA-aldehyde and ABA-trans-diol contents of fruits and leaves were low, approximately 1 and 0.02 nanograms per gram fresh weight for ABA-aldehyde and ABA-trans-diol, respectively, while ABA levels in fruits ranged from 10 to 200 nanograms per gram fresh weight. ABA biosynthesis was about 10-fold lower in fruits than in leaves. In fruits, the majority of ABA was conjugated to β-D-glucopyranosyl abscisate, whereas in leaves ABA was mainly hydroxylated to phaseic acid. Parallel pathways for ABA and trans-ABA biosynthesis and conjugation in fruits and leaves are proposed

  2. ABA-alcohol is an intermediate in abscisic acid biosynthesis

    International Nuclear Information System (INIS)

    Rock, C.D.; Zeevaart, J.A.D.

    1990-01-01

    It has been established that ABA-aldehyde is a precursor to ABA. The ABA-deficient flacca and sitiens mutants of tomato are blocked in the conversion of ABA-aldehyde to ABA, and accumulate trans-ABA-alcohol. 18 O-Labeling studies of ABA in flacca and sitiens show that these mutants synthesize a large percentage of [ 18 O]ABA which contains two 18 O atoms in the carboxyl group. Furthermore, the mutants synthesize much greater amounts of trans-ABA-glucose ester (t-ABA-GE) compared with the wild type, and this [ 18 O]t-ABA-GE is also double labeled in the carboxyl group. Our interpretation of these data is that the 18 O in ABA-aldehyde is trapped in the side chain by reduction to [ 18 O]ABA-alcohol, followed by isomerization to [ 18 O]t-ABA-alcohol and oxidation with 18 O 2 to [ 18 O]t-ABA. The [ 18 O]t-ABA is then rapidly converted to [ 18 O]t-ABA-GE. Because [ 18 O]ABA doubly labeled in the carboxyl group has been observed in small amounts in labeling experiments with several species, and various species have been shown to convert ABA-aldehyde to ABA-alcohol and t-ABA-alcohol, we propose that ABA-alcohol is an ABA intermediate in a shunt pathway

  3. ABA receptors: The START of a new paradigm in phytohormone signalling

    KAUST Repository

    Klingler, John

    2010-06-03

    The phytohormone abscisic acid (ABA) plays a central role in plant development and in plant adaptation to both biotic and abiotic stressors. In recent years, knowledge of ABA metabolism and signal transduction has advanced rapidly to provide detailed glimpses of the hormone\\'s activities at the molecular level. Despite this progress, many gaps in understanding have remained, particularly at the early stages of ABA perception by the plant cell. The search for an ABA receptor protein has produced multiple candidates, including GCR2, GTG1, and GTG2, and CHLH. In addition to these candidates, in 2009 several research groups converged on a novel family of Arabidopsis proteins that bind ABA, and thereby interact directly with a class of protein phosphatases that are well known as critical players in ABA signal transduction. The PYR/PYL/RCAR receptor family is homologous to the Bet v 1-fold and START domain proteins. It consists of 14 members, nearly all of which appear capable of participating in an ABA receptor-signal complex that responds to the hormone by activating the transcription of ABA-responsive genes. Evidence is provided here that PYR/PYL/RCAR receptors can also drive the phosphorylation of the slow anion channel SLAC1 to provide a fast and timely response to the ABA signal. Crystallographic studies have vividly shown the mechanics of ABA binding to PYR/PYL/RCAR receptors, presenting a model that bears some resemblance to the binding of gibberellins to GID1 receptors. Since this ABA receptor family is highly conserved in crop species, its discovery is likely to usher a new wave of progress in the elucidation and manipulation of plant stress responses in agricultural settings. © 2010 The Author(s).

  4. Crystallization and initial X-ray data of abscisic acid receptor PYL3 in the presence of (−)-ABA

    International Nuclear Information System (INIS)

    Zhang, Xingliang; Zhang, Qi; Wang, Guoqiang

    2013-01-01

    The complex of the abscisic acid receptor PYL3 with (−)-ABA was crystallized and refined to obtain high-quality diffraction data. Diffraction data were collected and processed at 2.65 Å resolution. Abscisic acid (ABA) modulates many complicated developmental processes and responses to environmental stimuli. Recently, several (+)-ABA signalling mechanisms by the RCAR/PYR1/PYL family of proteins (PYLs) have been proposed. However, the mechanism of the recognition and binding of the unnatural ligand (−)-ABA by PYLs has not yet been elucidated. In the present study, the expression, purification and crystallization of PYL3 in complex with (−)-ABA are reported. Diffraction data were refined to 2.65 Å resolution for this complex in space group P6 5 . These findings will help to explain the stereospecificity of PYLs for (−)-ABA and to explore the selective ABA agonists

  5. The C-terminal region (640-967) of Arabidopsis CPL1 interacts with the abiotic stress- and ABA-responsive transcription factors

    International Nuclear Information System (INIS)

    Bang, Woo Young; Kim, Se Won; Jeong, In Sil; Koiwa, Hisashi; Bahk, Jeong Dong

    2008-01-01

    Proteins in CPL1 family are unique to plants and contain a phosphatase catalytic domain and double-stranded RNA (dsRNA)-binding motifs (DRMs) in a single peptide. Though DRMs are important for the function of Arabidopsis CPL1 in vivo, the role of CPL1 DRM has been obscure. We have isolated two transcription factors, ANAC019 (At1g52890) and AtMYB3 (At1g22640), which specifically interact with the C-terminal region (640-967) of AtCPL1 containing two DRMs. Detailed interaction analysis indicated that AtMYB3 specifically interacted with the first DRM but not with the second DRM in CPL1 C-terminal fragment. GFP-fusion analysis indicated that AtMYB3 localized in nuclei-like CPL1, and its expression is induced by abiotic stress and ABA treatment. These results suggest that AtMYB3 function in abiotic stress signaling in concert with CPL1

  6. The Role of MAPK Modules and ABA during Abiotic Stress Signaling

    KAUST Repository

    Zélicourt, Axel de

    2016-05-01

    To respond to abiotic stresses, plants have developed specific mechanisms that allow them to rapidly perceive and respond to environmental changes. The phytohormone abscisic acid (ABA) was shown to be a pivotal regulator of abiotic stress responses in plants, triggering major changes in plant physiology. The ABA core signaling pathway largely relies on the activation of SnRK2 kinases to mediate several rapid responses, including gene regulation, stomatal closure, and plant growth modulation. Mitogen-activated protein kinases (MAPKs) have also been implicated in ABA signaling, but an entire ABA-activated MAPK module was uncovered only recently. In this review, we discuss the evidence for a role of MAPK modules in the context of different plant ABA signaling pathways. Abiotic stresses impact average yield in agriculture by more than 50% globally.Since ABA is a key regulator of abiotic stress responses, an understanding of its functioning at the molecular level is essential for plant breeding. Although the ABA core signaling pathway has been unraveled, several downstream events are still unclear.MAPKs are involved in most plant developmental stages and in response to stresses. Several members of the MAPK family were shown to be directly or indirectly activated by the ABA core signaling pathway.Recent evidence shows that the complete MAP3K17/18-MKK3-MPK1/2/7/14 module is under the control of ABA, whose members are under the transcriptional and post-translational control of the ABA core signaling pathway. © 2016 Elsevier Ltd.

  7. The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration.

    Science.gov (United States)

    Romero, Paco; Lafuente, María T; Rodrigo, María J

    2012-08-01

    The abscisic acid (ABA) signalling core in plants include the cytosolic ABA receptors (PYR/PYL/RCARs), the clade-A type 2C protein phosphatases (PP2CAs), and the subclass III SNF1-related protein kinases 2 (SnRK2s). The aim of this work was to identify these ABA perception system components in sweet orange and to determine the influence of endogenous ABA on their transcriptional regulation during fruit development and ripening, taking advantage of the comparative analysis between a wild-type and a fruit-specific ABA-deficient mutant. Transcriptional changes in the ABA signalosome during leaf dehydration were also studied. Six PYR/PYL/RCAR, five PP2CA, and two subclass III SnRK2 genes, homologous to those of Arabidopsis, were identified in the Citrus genome. The high degree of homology and conserved motifs for protein folding and for functional activity suggested that these Citrus proteins are bona fide core elements of ABA perception in orange. Opposite expression patterns of CsPYL4 and CsPYL5 and ABA accumulation were found during ripening, although there were few differences between varieties. In contrast, changes in expression of CsPP2CA genes during ripening paralleled those of ABA content and agreeed with the relevant differences between wild-type and mutant fruit transcript accumulation. CsSnRK2 gene expression continuously decreased with ripening and no remarkable differences were found between cultivars. Overall, dehydration had a minor effect on CsPYR/PYL/RCAR and CsSnRK2 expression in vegetative tissue, whereas CsABI1, CsAHG1, and CsAHG3 were highly induced by water stress. The global results suggest that responsiveness to ABA changes during citrus fruit ripening, and leaf dehydration was higher in the CsPP2CA gene negative regulators than in the other ABA signalosome components.

  8. Physiological and Molecular Processes Associated with Long Duration of ABA Treatment

    Directory of Open Access Journals (Sweden)

    Mei Wang

    2018-02-01

    Full Text Available Plants need to respond to various environmental stresses such as abiotic stress for proper development and growth. The responses to abiotic stress can be biochemically demanding, resulting in a trade-off that negatively affects plant growth and development. Thus, plant stress responses must be fine-tuned depending on the stress severity and duration. Abscisic acid, a phytohormone, plays a key role in responses to abiotic stress. Here, we investigated time-dependent physiological and molecular responses to long-term ABA treatment in Arabidopsis as an approach to gain insight into the plant responses to long-term abiotic stress. Upon ABA treatment, the amount of cellular ABA increased to higher levels, reaching to a peak at 24 h after treatment (HAT, and then gradually decreased with time whereas ABA-GE was maintained at lower levels until 24 HAT and then abruptly increased to higher levels at 48 HAT followed by a gradual decline at later time points. Many genes involved in dehydration stress responses, ABA metabolism, chloroplast biogenesis, and chlorophyll degradation were strongly expressed at early time points with a peak at 24 or 48 HAT followed by gradual decreases in induction fold or even suppression at later time points. At the physiological level, long-term ABA treatment caused leaf yellowing, reduced chlorophyll levels, and inhibited chloroplast division in addition to the growth suppression whereas short-term ABA treatment did not affect chlorophyll levels. Our results indicate that the duration of ABA treatment is a crucial factor in determining the mode of ABA-mediated signaling and plant responses: active mobilization of cellular resources at early time points and suppressive responses at later time points.

  9. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana.

    Science.gov (United States)

    Marin, E; Nussaume, L; Quesada, A; Gonneau, M; Sotta, B; Hugueney, P; Frey, A; Marion-Poll, A

    1996-05-15

    Abscisic acid (ABA) is a plant hormone which plays an important role in seed development and dormancy and in plant response to environmental stresses. An ABA-deficient mutant of Nicotiana plumbaginifolia, aba2, was isolated by transposon tagging using the maize Activator transposon. The aba2 mutant exhibits precocious seed germination and a severe wilty phenotype. The mutant is impaired in the first step of the ABA biosynthesis pathway, the zeaxanthin epoxidation reaction. ABA2 cDNA is able to complement N.plumbaginifolia aba2 and Arabidopsis thaliana aba mutations indicating that these mutants are homologous. ABA2 cDNA encodes a chloroplast-imported protein of 72.5 kDa, sharing similarities with different mono-oxigenases and oxidases of bacterial origin and having an ADP-binding fold and an FAD-binding domain. ABA2 protein, produced in Escherichia coli, exhibits in vitro zeaxanthin epoxidase activity. This is the first report of the isolation of a gene of the ABA biosynthetic pathway. The molecular identification of ABA2 opens the possibility to study the regulation of ABA biosynthesis and its cellular location.

  10. Towards the Identification of New Genes Involved in ABA-Dependent Abiotic Stresses Using Arabidopsis Suppressor Mutants of abh1 Hypersensitivity to ABA during Seed Germination

    Directory of Open Access Journals (Sweden)

    Iwona Szarejko

    2013-06-01

    Full Text Available Abscisic acid plays a pivotal role in the abiotic stress response in plants. Although great progress has been achieved explaining the complexity of the stress and ABA signaling cascade, there are still many questions to answer. Mutants are a valuable tool in the identification of new genes or new alleles of already known genes and in elucidating their role in signaling pathways. We applied a suppressor mutation approach in order to find new components of ABA and abiotic stress signaling in Arabidopsis. Using the abh1 (ABA hypersensitive 1 insertional mutant as a parental line for EMS mutagenesis, we selected several mutants with suppressed hypersensitivity to ABA during seed germination. Here, we present the response to ABA and a wide range of abiotic stresses during the seed germination and young seedling development of two suppressor mutants—soa2 (suppressor of abh1 hypersensitivity to ABA 2 and soa3 (suppressor of abh1 hypersensitivity to ABA 3. Generally, both mutants displayed a suppression of the hypersensitivity of abh1 to ABA, NaCl and mannitol during germination. Both mutants showed a higher level of tolerance than Columbia-0 (Col-0—the parental line of abh1 in high concentrations of glucose. Additionally, soa2 exhibited better root growth than Col-0 in the presence of high ABA concentrations. soa2 and soa3 were drought tolerant and both had about 50% fewer stomata per mm2 than the wild-type but the same number as their parental line—abh1. Taking into account that suppressor mutants had the same genetic background as their parental line—abh1, it was necessary to backcross abh1 with Landsberg erecta four times for the map-based cloning approach. Mapping populations, derived from the cross of abh1 in the Landsberg erecta background with each suppressor mutant, were created. Map based cloning in order to identify the suppressor genes is in progress.

  11. RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis

    KAUST Repository

    Ren, Zhonghai

    2010-03-08

    Soil salinity limits agricultural production and is a major obstacle for feeding the growing world population. We used natural genetic variation in salt tolerance among different Arabidopsis accessions to map a major quantitative trait locus (QTL) for salt tolerance and abscisic acid (ABA) sensitivity during seed germination and early seedling growth. A recombinant inbred population derived from Landsberg erecta (Ler; salt and ABA sensitive) x Shakdara (Sha; salt and ABA resistant) was used for QTL mapping. High-resolution mapping and cloning of this QTL, Response to ABA and Salt 1 (RAS1), revealed that it is an ABA- and salt stress-inducible gene and encodes a previously undescribed plant-specific protein. A premature stop codon results in a truncated RAS1 protein in Sha. Reducing the expression of RAS1 by transfer-DNA insertion in Col or RNA interference in Ler leads to decreased salt and ABA sensitivity, whereas overexpression of the Ler allele but not the Sha allele causes increased salt and ABA sensitivity. Our results suggest that RAS1 functions as a negative regulator of salt tolerance during seed germination and early seedling growth by enhancing ABA sensitivity and that its loss of function contributes to the increased salt tolerance of Sha.

  12. A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in arabidopsis.

    Directory of Open Access Journals (Sweden)

    M Águila Ruiz-Sola

    Full Text Available Abscisic acid (ABA is a hormone that plays a vital role in mediating abiotic stress responses in plants. Salt exposure induces the synthesis of ABA through the cleavage of carotenoid precursors (xanthophylls, which are found at very low levels in roots. Here we show that de novo ABA biosynthesis in salt-treated Arabidopsis thaliana roots involves an organ-specific induction of the carotenoid biosynthetic pathway. Upregulation of the genes encoding phytoene synthase (PSY and other enzymes of the pathway producing ABA precursors was observed in roots but not in shoots after salt exposure. A pharmacological block of the carotenoid pathway substantially reduced ABA levels in stressed roots, confirming that an increase in carotenoid accumulation contributes to fuel hormone production after salt exposure. Treatment with exogenous ABA was also found to upregulate PSY expression only in roots, suggesting an organ-specific feedback regulation of the carotenoid pathway by ABA. Taken together, our results show that the presence of high concentrations of salt in the growth medium rapidly triggers a root-specific activation of the carotenoid pathway, probably to ensure a proper supply of ABA precursors required for a sustained production of the hormone.

  13. Involvement of ABA in induction of secondary dormancy in barley (Hordeum vulgare L.) seeds.

    Science.gov (United States)

    Leymarie, Juliette; Robayo-Romero, Maria Emilia; Gendreau, Emmanuel; Benech-Arnold, Roberto L; Corbineau, Françoise

    2008-12-01

    At harvest, barley seeds are dormant because their germination is difficult above 20 degrees C. Incubation of primary dormant seeds at 30 degrees C, a temperature at which they do not germinate, results in a loss of their ability to germinate at 20 degrees C. This phenomenon which corresponds to an induction of a secondary dormancy is already observed after a pre-treatment at 30 degrees C as short as 4-6 h, and is optimal after 24-48 h. It is associated with maintenance of a high level of embryo ABA content during seed incubation at 30 degrees C, and after seed transfer at 20 degrees C, while ABA content decreases rapidly in embryos of primary dormant seeds placed directly at 20 degrees C. Induction of secondary dormancy also results in an increase in embryo responsiveness to ABA at 20 degrees C. Application of ABA during seed treatment at 30 degrees C has no significant additive effect on the further germination at 20 degrees C. In contrast, incubation of primary dormant seeds at 20 degrees C for 48 and 72 h in the presence of ABA inhibits further germination on water similarly to 24-48 h incubation at 30 degrees C. However fluridone, an inhibitor of ABA synthesis, applied during incubation of the grains at 30 degrees C has only a slight effect on ABA content and secondary dormancy. Expression of genes involved in ABA metabolism (HvABA8'OH-1, HvNCED1 and HvNCED2) was studied in relation to the expression of primary and secondary dormancies. The results presented suggest a specific role for HvNCED1 and HvNCED2 in regulation of ABA synthesis in secondary seed dormancy.

  14. The Role of MAPK Modules and ABA during Abiotic Stress Signaling

    KAUST Repository

    Zé licourt, Axel de; Colcombet, Jean; Hirt, Heribert

    2016-01-01

    To respond to abiotic stresses, plants have developed specific mechanisms that allow them to rapidly perceive and respond to environmental changes. The phytohormone abscisic acid (ABA) was shown to be a pivotal regulator of abiotic stress responses

  15. The Dynamics of Embolism Refilling in Abscisic Acid (ABA-Deficient Tomato Plants

    Directory of Open Access Journals (Sweden)

    Francesca Secchi

    2012-12-01

    Full Text Available Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant’s refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant’s capacity for refilling.

  16. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases

    OpenAIRE

    Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2011-01-01

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the cryst...

  17. Arabidopsis Histone Demethylases LDL1 and LDL2 Control Primary Seed Dormancy by Regulating DELAY OF GERMINATION 1 and ABA Signaling-Related Genes

    Directory of Open Access Journals (Sweden)

    Ming lei Zhao

    2015-03-01

    Full Text Available Seed dormancy controls germination and plays a critical role in regulating the beginning of the life cycle of plants. Seed dormancy is established and maintained during seed maturation and is gradually broken during dry storage (after-ripening. The plant hormone abscisic acid (ABA and DELAY OF GERMINATION1 (DOG1 protein are essential regulators of seed dormancy. Recent studies revealed that chromatin modifications are also involved in the transcription regulation of seed dormancy. Here, we showed that two Arabidopsis histone demethylases, LYSINESPECIFIC DEMETHYLASE LIKE 1 and 2 (LDL1 and LDL2 act redundantly in repressing of seed dormancy. LDL1 and LDL2 are highly expressed in the early silique developing stage. The ldl1 ldl2 double mutant displays increased seed dormancy, whereas overexpression of LDL1 or LDL2 in Arabidopsis causes reduced dormancy. Furthermore, we showed that LDL1 and LDL2 repress the expression of seed dormancy-related genes, including DOG1, ABA2 and ABI3 during seed dormancy establishment. Furthermore, genetic analysis revealed that the repression of seed dormancy by LDL1 and LDL2 requires DOG1, ABA2 and ABI3. Taken together, our findings revealed that LDL1 and LDL2 play an essential role in seed dormancy.

  18. Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp hordei in Arabidopsis

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Hagedorn, Peter; De Torres-Zabala, Marta

    2008-01-01

    -representation of abscisic acid (ABA)-responsive genes, including the ABA biosynthesis gene AAO3, which is significantly induced in ataf1 plants compared to wild-type plants following inoculation with Bgh. Additionally, we show that Bgh inoculation results in decreased endogenous ABA levels in an ATAF1-dependent manner...

  19. Type 2C Phosphatase 1 of Artemisia annua L. Is a Negative Regulator of ABA Signaling

    Directory of Open Access Journals (Sweden)

    Fangyuan Zhang

    2014-01-01

    Full Text Available The phytohormone abscisic acid (ABA plays an important role in plant development and environmental stress response. Additionally, ABA also regulates secondary metabolism such as artemisinin in the medicinal plant Artemisia annua L. Although an earlier study showed that ABA receptor, AaPYL9, plays a positive role in ABA-induced artemisinin content improvement, many components in the ABA signaling pathway remain to be elucidated in Artemisia annua L. To get insight of the function of AaPYL9, we isolated and characterized an AaPYL9-interacting partner, AaPP2C1. The coding sequence of AaPP2C1 encodes a deduced protein of 464 amino acids, with all the features of plant type clade A PP2C. Transcriptional analysis showed that the expression level of AaPP2C1 is increased after ABA, salt, and drought treatments. Yeast two-hybrid and bimolecular fluorescence complementation assays (BiFC showed that AaPYL9 interacted with AaPP2C1. The P89S, H116A substitution in AaPYL9 as well as G199D substitution or deletion of the third phosphorylation site-like motif in AaPP2C1 abolished this interaction. Furthermore, constitutive expression of AaPP2C1 conferred ABA insensitivity compared with the wild type. In summary, our data reveals that AaPP2C1 is an AaPYL9-interacting partner and involved in the negative modulation of the ABA signaling pathway in A. annua L.

  20. Ordering phenomena in ABA triblock copolymer gels

    DEFF Research Database (Denmark)

    Reynders, K.; Mischenko, N.; Kleppinger, R.

    1997-01-01

    Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network). The lat......Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network...

  1. Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: a comparison of dormant and non-dormant rice cultivars.

    Science.gov (United States)

    Liu, Yang; Fang, Jun; Xu, Fan; Chu, Jinfang; Yan, Cunyu; Schläppi, Michael R; Wang, Youping; Chu, Chengcai

    2014-06-20

    Seed dormancy is an important agronomic trait in cereals. Using deep dormant (N22), medium dormant (ZH11), and non-dormant (G46B) rice cultivars, we correlated seed dormancy phenotypes with abscisic acid (ABA) and gibberellin (GA) metabolism gene expression profiles and phytohormone levels during seed development and imbibition. A time course analysis of ABA and GA content during seed development showed that N22 had a high ABA level at early and middle seed developmental stages, while at late developmental stage it declined to the level of ZH11; however, its ABA/GA ratio maintained at a high level throughout seed development. By contrast, G46B had the lowest ABA content during seed development though at early developmental stage its ABA level was close to that of ZH11, and its ABA/GA ratio peaked at late developmental stage that was at the same level of ZH11. Compared with N22 and G46B, ZH11 had an even and medium ABA level during seed development and its ABA/GA ratio peaked at the middle developmental stage. Moreover, the seed development time-point having high ABA/GA ratio also had relatively high transcript levels for key genes in ABA and GA metabolism pathways across three cultivars. These indicated that the embryo-imposed dormancy has been induced before the late developmental stage and is determined by ABA/GA ratio. A similar analysis during seed imbibition showed that ABA was synthesized in different degrees for the three cultivars. In addition, water uptake assay for intact mature seeds suggested that water could permeate through husk barrier into seed embryo for all three cultivars; however, all three cultivars showed distinct colors by vanillin-staining indicative of the existence of flavans in their husks, which are dormancy inhibition compounds responsible for the husk-imposed dormancy. Copyright © 2014. Published by Elsevier Ltd.

  2. Abscisic Acid Is a Major Regulator of Grape Berry Ripening Onset: New Insights into ABA Signaling Network

    Science.gov (United States)

    Pilati, Stefania; Bagagli, Giorgia; Sonego, Paolo; Moretto, Marco; Brazzale, Daniele; Castorina, Giulia; Simoni, Laura; Tonelli, Chiara; Guella, Graziano; Engelen, Kristof; Galbiati, Massimo; Moser, Claudio

    2017-01-01

    Grapevine is a world-wide cultivated economically relevant crop. The process of berry ripening is non-climacteric and does not rely on the sole ethylene signal. Abscisic acid (ABA) is recognized as an important hormone of ripening inception and color development in ripening berries. In order to elucidate the effect of this signal at the molecular level, pre-véraison berries were treated ex vivo for 20 h with 0.2 mM ABA and berry skin transcriptional modulation was studied by RNA-seq after the treatment and 24 h later, in the absence of exogenous ABA. This study highlighted that a small amount of ABA triggered its own biosynthesis and had a transcriptome-wide effect (1893 modulated genes) characterized by the amplification of the transcriptional response over time. By comparing this dataset with the many studies on ripening collected within the grapevine transcriptomic compendium Vespucci, an extended overlap between ABA- and ripening modulated gene sets was observed (71% of the genes), underpinning the role of this hormone in the regulation of berry ripening. The signaling network of ABA, encompassing ABA metabolism, transport and signaling cascade, has been analyzed in detail and expanded based on knowledge from other species in order to provide an integrated molecular description of this pathway at berry ripening onset. Expression data analysis was combined with in silico promoter analysis to identify candidate target genes of ABA responsive element binding protein 2 (VvABF2), a key upstream transcription factor of the ABA signaling cascade which is up-regulated at véraison and also by ABA treatments. Two transcription factors, VvMYB143 and VvNAC17, and two genes involved in protein degradation, Armadillo-like and Xerico-like genes, were selected for in vivo validation by VvABF2-mediated promoter trans-activation in tobacco. VvNAC17 and Armadillo-like promoters were induced by ABA via VvABF2, while VvMYB143 responded to ABA in a VvABF2-independent manner. This

  3. ABA pretreatment can alter the distribution of polysomes in salt-stressed barley sprouts

    Directory of Open Access Journals (Sweden)

    Szypulska Ewa

    2016-12-01

    Full Text Available The study analyzed caryopses of barley (Hordeum vulgare cv. Stratus. Caryopses were germinated in darkness at 20°C in three experimental setups: (a in distilled water for 24 hours, followed by 100 mM NaCl for another 24 hours (salinity stress, SS, (b in 100 μM of abscisic acid for the first 24 hours, followed by rinsing with distilled water to remove residual ABA, and in 100 mM NaCl for another 24 hours (ABA pretreatment + salinity stress, ABAS, (c in distilled water only (control, C. Changes in the content of free polysomes (FP, membrane-bound polysomes (MBP, cytoskeleton-bound polysomes (CBP and cytomatrix-bound polysomes (CMBP were examined in barley sprouts germinated in SS and ABAS treatments for 48 hours. In salt-stressed barley sprouts, the concentrations of membrane-bound and cytoskeleton-bound polysomes (MBP, CBP and CMBP decreased significantly, whereas an increase was noted only in the free polysome (FP fraction. ABA pretreatment altered the distribution of polysomes in stressed plants. The content of cytoskeletonbound polysomes (CBP and CMBP increased, FP levels decreased, whereas no changes in MBP content were observed in response to ABA treatment. Our results suggest that plants respond to salt stress by increasing the concentrations of free polysomes that are probably released from damaged cell structures, mainly membranes. Our present and previous findings indicate that ABA could inhibit the release of FP in stressed plants by enhancing polysome binding to the cytoskeleton.

  4. Amplification of ABA biosynthesis and signaling through a positive feedback mechanism in seeds.

    Science.gov (United States)

    Nonogaki, Mariko; Sall, Khadidiatou; Nambara, Eiji; Nonogaki, Hiroyuki

    2014-05-01

    Abscisic acid is an essential hormone for seed dormancy. Our previous study using the plant gene switch system, a chemically induced gene expression system, demonstrated that induction of 9-cis-epoxycarotenoid dioxygenase (NCED), a rate-limiting ABA biosynthesis gene, was sufficient to suppress germination in imbibed Arabidopsis seeds. Here, we report development of an efficient experimental system that causes amplification of NCED expression during seed maturation. The system was created with a Triticum aestivum promoter containing ABA responsive elements (ABREs) and a Sorghum bicolor NCED to cause ABA-stimulated ABA biosynthesis and signaling, through a positive feedback mechanism. The chimeric gene pABRE:NCED enhanced NCED and ABF (ABRE-binding factor) expression in Arabidopsis Columbia-0 seeds, which caused 9- to 73-fold increases in ABA levels. The pABRE:NCED seeds exhibited unusually deep dormancy which lasted for more than 3 months. Interestingly, the amplified ABA pathways also caused enhanced expression of Arabidopsis NCED5, revealing the presence of positive feedback in the native system. These results demonstrated the robustness of positive feedback mechanisms and the significance of NCED expression, or single metabolic change, during seed maturation. The pABRE:NCED system provides an excellent experimental system producing dormant and non-dormant seeds of the same maternal origin, which differ only in zygotic ABA. The pABRE:NCED seeds contain a GFP marker which enables seed sorting between transgenic and null segregants and are ideal for comparative analysis. In addition to its utility in basic research, the system can also be applied to prevention of pre-harvest sprouting during crop production, and therefore contributes to translational biology. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  5. Cooperation of three WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in repressing two ABA-responsive genes ABI4 and ABI5 in Arabidopsis

    OpenAIRE

    Liu, Zhi-Qiang; Yan, Lu; Wu, Zhen; Mei, Chao; Lu, Kai; Yu, Yong-Tao; Liang, Shan; Zhang, Xiao-Feng; Wang, Xiao-Fang; Zhang, Da-Peng

    2012-01-01

    Three evolutionarily closely related WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in Arabidopsis were previously identified as negative abscisic acid (ABA) signalling regulators, of which WRKY40 regulates ABI4 and ABI5 expression, but it remains unclear whether and how the three transcription factors cooperate to regulate expression of ABI4 and ABI5. In the present experiments, it was shown that WRKY18 and WRKY60, like WRKY40, interact with the W-box in the promoters of ABI4 a...

  6. Sap fluxes from different parts of the rootzone modulate xylem ABA concentration during partial rootzone drying and re-wetting.

    Science.gov (United States)

    Pérez-Pérez, J G; Dodd, I C

    2015-04-01

    Previous studies with partial rootzone drying (PRD) irrigation demonstrated that alternating the wet and dry parts of the rootzone (PRD-Alternated) increased leaf xylem ABA concentration ([X-ABA]leaf) compared with maintaining the same wet and dry parts of the rootzone (PRD-Fixed). To determine the relative contributions of different parts of the rootzone to this ABA signal, [X-ABA]leaf of potted, split-root tomato (Solanum lycopersicum) plants was modelled by quantifying the proportional water uptake from different soil compartments, and [X-ABA]leaf responses to the entire pot soil-water content (θpot). Continuously measuring soil-moisture depletion by, or sap fluxes from, different parts of the root system revealed that water uptake rapidly declined (within hours) after withholding water from part of the rootzone, but was rapidly restored (within minutes) upon re-watering. Two hours after re-watering part of the rootzone, [X-ABA]leaf was equally well predicted according to θpot alone and by accounting for the proportional water uptake from different parts of the rootzone. Six hours after re-watering part of the rootzone, water uptake by roots in drying soil was minimal and, instead, occurred mainly from the newly irrigated part of the rootzone, thus [X-ABA]leaf was best predicted by accounting for the proportional water uptake from different parts of the rootzone. Contrary to previous results, alternating the wet and dry parts of the rootzone did not enhance [X-ABA]leaf compared with PRD-Fixed irrigation. Further work is required to establish whether altered root-to-shoot ABA signalling contributes to the improved yields of crops grown with alternate, rather than fixed, PRD. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. The ABA-INSENSITIVE-4 (ABI4) transcription factor links redox, hormone and sugar signaling pathways.

    Science.gov (United States)

    Foyer, Christine H; Kerchev, Pavel I; Hancock, Robert D

    2012-02-01

    The cellular reduction-oxidation (redox) hub processes information from metabolism and the environment and so regulates plant growth and defense through integration with the hormone signaling network. One key pathway of redox control involves interactions with ABSCISIC ACID (ABA). Accumulating evidence suggests that the ABA-INSENSITIVE-4 (ABI4) transcription factor plays a key role in transmitting information concerning the abundance of ascorbate and hence the ability of cells to buffer oxidative challenges. ABI4 is required for the ascorbate-dependent control of growth, a process that involves enhancement of salicylic acid (SA) signaling and inhibition of jasmonic acid (JA) signaling pathways. Low redox buffering capacity reinforces SA- JA- interactions through the mediation of ABA and ABI4 to fine-tune plant growth and defense in relation to metabolic cues and environmental challenges. Moreover, ABI4-mediated pathways of sugar sensitivity are also responsive to the abundance of ascorbate, providing evidence of overlap between redox and sugar signaling pathways.

  8. Aquaporins Contribute to ABA-Triggered Stomatal Closure through OST1-Mediated Phosphorylation

    Science.gov (United States)

    Grondin, Alexandre; Rodrigues, Olivier; Verdoucq, Lionel; Merlot, Sylvain; Leonhardt, Nathalie; Maurel, Christophe

    2015-01-01

    Stomatal movements in response to environmental stimuli critically control the plant water status. Although these movements are governed by osmotically driven changes in guard cell volume, the role of membrane water channels (aquaporins) has remained hypothetical. Assays in epidermal peels showed that knockout Arabidopsis thaliana plants lacking the Plasma membrane Intrinsic Protein 2;1 (PIP2;1) aquaporin have a defect in stomatal closure, specifically in response to abscisic acid (ABA). ABA induced a 2-fold increase in osmotic water permeability (Pf) of guard cell protoplasts and an accumulation of reactive oxygen species in guard cells, which were both abrogated in pip2;1 plants. Open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6), a protein kinase involved in guard cell ABA signaling, was able to phosphorylate a cytosolic PIP2;1 peptide at Ser-121. OST1 enhanced PIP2;1 water transport activity when coexpressed in Xenopus laevis oocytes. Upon expression in pip2;1 plants, a phosphomimetic form (Ser121Asp) but not a phosphodeficient form (Ser121Ala) of PIP2;1 constitutively enhanced the Pf of guard cell protoplasts while suppressing its ABA-dependent activation and was able to restore ABA-dependent stomatal closure in pip2;1. This work supports a model whereby ABA-triggered stomatal closure requires an increase in guard cell permeability to water and possibly hydrogen peroxide, through OST1-dependent phosphorylation of PIP2;1 at Ser-121. PMID:26163575

  9. Mutations in the Arabidopsis Lst8 and Raptor genes encoding partners of the TOR complex, or inhibition of TOR activity decrease abscisic acid (ABA) synthesis.

    Science.gov (United States)

    Kravchenko, Alena; Citerne, Sylvie; Jéhanno, Isabelle; Bersimbaev, Rakhmetkazhi I; Veit, Bruce; Meyer, Christian; Leprince, Anne-Sophie

    2015-11-27

    The Target of Rapamycin (TOR) kinase regulates essential processes in plant growth and development by modulation of metabolism and translation in response to environmental signals. In this study, we show that abscisic acid (ABA) metabolism is also regulated by the TOR kinase. Indeed ABA hormone level strongly decreases in Lst8-1 and Raptor3g mutant lines as well as in wild-type (WT) Arabidopsis plants treated with AZD-8055, a TOR inhibitor. However the growth and germination of these lines are more sensitive to exogenous ABA. The diminished ABA hormone accumulation is correlated with lower transcript levels of ZEP, NCED3 and AAO3 biosynthetic enzymes, and higher transcript amount of the CYP707A2 gene encoding a key-enzyme in abscisic acid catabolism. These results suggest that the TOR signaling pathway is implicated in the regulation of ABA accumulation in Arabidopsis. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jianjun Guo

    Full Text Available BACKGROUND: The plant hormone abscisic acid (ABA regulates diverse processes of plant growth and development. It has recently been proposed that GCR2 functions as a G-protein-coupled receptor (GPCR for ABA. However, the structural relationships and functionality of GCR2 have been challenged by several independent studies. A central question in this controversy is whether gcr2 mutants are insensitive to ABA, because gcr2 mutants were shown to display reduced sensitivity to ABA under one experimental condition (e.g. 22 degrees C, continuous white light with 150 micromol m(-2 s(-1 but were shown to display wild-type sensitivity under another slightly different condition (e.g. 23 degrees C, 14/10 hr photoperiod with 120 micromol m(-2 s(-1. It has been hypothesized that gcr2 appears only weakly insensitive to ABA because two other GCR2-like genes in Arabidopsis, GCL1 and GCL2, compensate for the loss of function of GCR2. PRINCIPAL FINDINGS: In order to test this hypothesis, we isolated a putative loss-of-function allele of GCL2, and then generated all possible combinations of mutations in each member of the GCR2 gene family. We found that all double mutants, including gcr2 gcl1, gcr2 gcl2, gcl1 gcl2, as well as the gcr2 gcl1 gcl2 triple mutant displayed wild-type sensitivity to ABA in seed germination and early seedling development assays, demonstrating that the GCR2 gene family is not required for ABA responses in these processes. CONCLUSION: These results provide compelling genetic evidence that GCR2 is unlikely to act as a receptor for ABA in the context of either seed germination or early seedling development.

  11. A transcriptional approach to unravel the connection between phospholipases A₂ and D and ABA signal in citrus under water stress.

    Science.gov (United States)

    Romero, Paco; Lafuente, M Teresa; Alférez, Fernando

    2014-07-01

    The effect of water stress on the interplay between phospholipases (PL) A2 and D and ABA signalling was investigated in fruit and leaves from the sweet orange Navelate and its fruit-specific ABA-deficient mutant Pinalate by studying simultaneously expression of 5 PLD and 3 PLA2-encoding genes. In general, expression levels of PLD-encoding genes were higher at harvest in the flavedo (coloured outer part of the peel) from Pinalate. Moreover, a higher and transient increase in expression of CsPLDα, CsPLDβ, CsPLDδ and CsPLDζ was observed in the mutant as compared to Navelate fruit under water stress, which may reflect a mechanism of acclimation to water stress influenced by ABA deficiency. An early induction in CsPLDγ gene expression, when increase in peel damage during fruit storage was most evident, suggested a role for this gene in membrane degradation processes during water stress. Exogenous ABA on mutant fruit modified the expression of all PLD genes and reduced the expression of CsPLDα and CsPLDβ by 1 week to levels similar to those of Navelate, suggesting a repressor role of ABA on these genes. In general, CssPLA2α and β transcript levels were lower in flavedo from Pinalate than from Navelate fruit during the first 3 weeks of storage, suggesting that expression of these genes also depends at least partially on ABA levels. Patterns of expression of PLD and PLA2-encoding genes were very similar in Navelate and Pinalate leaves, which have similar ABA levels, when comparing both RH conditions. Results comparison with other from previous works in the same experimental systems helped to decipher the effect of the stress severity on the differential response of some of these genes under dehydration conditions and pointed out the interplay between PLA2 and PLD families and their connection with ABA signalling in citrus. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Overexpression of Arachis hypogaea AREB1 Gene Enhances Drought Tolerance by Modulating ROS Scavenging and Maintaining Endogenous ABA Content

    Directory of Open Access Journals (Sweden)

    Ling Li

    2013-06-01

    Full Text Available AhAREB1 (Arachis hypogaea Abscisic-acid Response Element Binding Protein 1 is a member of the basic domain leucine zipper (bZIP-type transcription factor in peanut. Previously, we found that expression of AhAREB1 was specifically induced by abscisic acid (ABA, dehydration and drought. To understand the drought defense mechanism regulated by AhAREB1, transgenic Arabidopsis overexpressing AhAREB1 was conducted in wild-type (WT, and a complementation experiment was employed to ABA non-sensitivity mutant abi5 (abscisic acid-insensitive 5. Constitutive expression of AhAREB1 confers water stress tolerance and is highly sensitive to exogenous ABA. Microarray and further real-time PCR analysis revealed that drought stress, reactive oxygen species (ROS scavenging, ABA synthesis/metabolism-related genes and others were regulated in transgenic Arabidopsis overexpressing AhAREB1. Accordingly, low level of ROS, but higher ABA content was detected in the transgenic Arabidopsis plants’ overexpression of AhAREB1. Taken together, it was concluded that AhAREB1 modulates ROS accumulation and endogenous ABA level to improve drought tolerance in transgenic Arabidopsis.

  13. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation.

    Science.gov (United States)

    Yoshida, Takuya; Fujita, Yasunari; Sayama, Hiroko; Kidokoro, Satoshi; Maruyama, Kyonoshin; Mizoi, Junya; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2010-02-01

    A myriad of drought stress-inducible genes have been reported, and many of these are activated by abscisic acid (ABA). In the promoter regions of such ABA-regulated genes, conserved cis-elements, designated ABA-responsive elements (ABREs), control gene expression via bZIP-type AREB/ABF transcription factors. Although all three members of the AREB/ABF subfamily, AREB1, AREB2, and ABF3, are upregulated by ABA and water stress, it remains unclear whether these are functional homologs. Here, we report that all three AREB/ABF transcription factors require ABA for full activation, can form hetero- or homodimers to function in nuclei, and can interact with SRK2D/SnRK2.2, an SnRK2 protein kinase that was identified as a regulator of AREB1. Along with the tissue-specific expression patterns of these genes and the subcellular localization of their encoded proteins, these findings clearly indicate that AREB1, AREB2, and ABF3 have largely overlapping functions. To elucidate the role of these AREB/ABF transcription factors, we generated an areb1 areb2 abf3 triple mutant. Large-scale transcriptome analysis, which showed that stress-responsive gene expression is remarkably impaired in the triple mutant, revealed novel AREB/ABF downstream genes in response to water stress, including many LEA class and group-Ab PP2C genes and transcription factors. The areb1 areb2 abf3 triple mutant is more resistant to ABA than are the other single and double mutants with respect to primary root growth, and it displays reduced drought tolerance. Thus, these results indicate that AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent gene expression for ABA signaling under conditions of water stress.

  14. ABA signaling is necessary but not sufficient for RD29B transcriptional memory during successive dehydration stresses in Arabidopsis thaliana.

    Science.gov (United States)

    Virlouvet, Laetitia; Ding, Yong; Fujii, Hiroaki; Avramova, Zoya; Fromm, Michael

    2014-07-01

    Plants subjected to a prior dehydration stress were seen to have altered transcriptional responses during a subsequent dehydration stress for up to 5 days after the initial stress. The abscisic acid (ABA) inducible RD29B gene of Arabidopsis thaliana was strongly induced after the first stress and displayed transcriptional memory with transcript levels nine-fold higher during the second dehydration stress. These increased transcript levels were due to an increased rate of transcription and are associated with an altered chromatin template during the recovery interval between the dehydration stresses. Here we use a combination of promoter deletion/substitutions, mutants in the trans-acting transcription factors and their upstream protein kinases, and treatments with exogenous ABA or dehydration stress to advance our understanding of the features required for transcriptional memory of RD29B. ABA Response Elements (ABREs) are sufficient to confer transcriptional memory on a minimal promoter, although there is a context effect from flanking sequences. Different mutations in Snf1 Related Protein Kinase 2 (SnRK2) genes positively and negatively affected the response, suggesting that this effect is important for transcriptional memory. Although exogenous ABA treatments could prime transcriptional memory, a second ABA treatment was not sufficient to activate transcriptional memory. Therefore, we concluded that transcriptional memory requires ABA and an ABA-independent factor that is induced or activated by a subsequent dehydration stress and directly or indirectly results in a more active RD29B chromatin template. These results advance our knowledge of the cis- and trans-acting factors that are required for transcriptional memory of RD29B. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  15. Anthropogenic impacts on the water quality of Aba River, southeast ...

    African Journals Online (AJOL)

    Anthropogenic impacts on the water quality of Aba River, southeast Nigeria. ... Ethiopian Journal of Environmental Studies and Management ... of Aba River, southeast Nigeria was studied in four stations from November 2014 to August 2015 to identify the major anthropogenic activities and their impact on the water quality.

  16. Assessment of burnout among health workers and bankers in Aba ...

    African Journals Online (AJOL)

    Aim: To determine the prevalence of burnout among health workers and bankers in Aba South Local Government Area in Abia State. Materials and Methods: A cross.sectional, descriptive study was carried out in 2013 among health workers and bankers in Aba metropolis. By multistage sampling method, proportionate ...

  17. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy.

    Science.gov (United States)

    Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang

    2015-01-01

    The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ).

  18. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5 is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy.

    Directory of Open Access Journals (Sweden)

    Jian eWu

    2015-11-01

    Full Text Available The phytohormone abscisic acid (ABA regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5, which is a basic leucine zipper motif transcriptional factor (TF. GhABI5 is expressed in dormant vegetative organs (corm, cormel and stolon as well as in reproductive organs (stamen, and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6 and RD29B. Down-regulation of GhABI5 in dormant cormels via Virus Induced Gene Silence (VIGS promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B. The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ.

  19. Overlapping and distinct roles of AKIN10 and FUSCA3 in ABA and sugar signaling during seed germination.

    Science.gov (United States)

    Tsai, Allen Yi-Lun; Gazzarrini, Sonia

    2012-10-01

    The Arabidopsis B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed maturation and also a central modulator of hormonal responses during late embryogenesis and germination. Recently, we have identified AKIN10, the Arabidopsis ortholog of Snf1 (Sucrose Non-Fermenting-1)-Related Kinase1 (SnRK1), as a FUS3-interacting protein. We demonstrated that AKIN10 physically interacts with and phosphorylates FUS3 at its N-terminal region, and genetically interacts with FUS3 to regulate developmental phase transition and lateral organ growth. Snf1/AMPK/SnRK1 kinases are important sensors of the cellular energy level, and they are activated in response to starvation and cellular stress. Here we present findings that indicate FUS3 and AKIN10 functionally overlap in ABA signaling, but play different roles in sugar responses during germination. Seeds overexpressing FUS3 and AKIN10 both display ABA-hypersensitivity and delayed germination. The latter is partly dependent on de novo ABA synthesis in both genotypes, as delayed germination can be partially rescued by the ABA biosynthesis inhibitor, fluridone. However, seeds and seedlings overexpressing FUS3 and AKIN10 show different sugar responses. AKIN10-overexpressing seeds and seedlings are hypersensitive to glucose, while those overexpressing FUS3 display overall defects in osmotic stress, primarily during seedling growth, as they show increased sensitivity toward sorbitol and glucose. Hypersensitivity to sugar and/or osmotic stress during germination are partly dependent on de novo ABA synthesis for both genotypes, although are likely to act through distinct pathways. This data suggests that AKIN10 and FUS3 both act as positive regulators of seed responses to ABA, and that AKIN10 regulates sugar signaling while FUS3 mediates osmotic stress responses.

  20. Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon).

    Science.gov (United States)

    Speirs, Jim; Binney, Allan; Collins, Marisa; Edwards, Everard; Loveys, Brian

    2013-04-01

    The influence of different levels of irrigation and of variation in atmospheric vapour pressure deficit (VPD) on the synthesis, metabolism, and transport of abscisic acid (ABA) and the effects on stomatal conductance were examined in field-grown Cabernet Sauvignon grapevines. Xylem sap, leaf tissue, and root tissue were collected at regular intervals during two seasons in conjunction with measurements of leaf water potential (Ψleaf) and stomatal conductance (gs). The different irrigation levels significantly altered the Ψleaf and gs of the vines across both seasons. ABA abundance in the xylem sap was correlated with gs. The expression of genes associated with ABA synthesis, NCED1 and NCED2, was higher in the roots than in the leaves throughout and highest in the roots in mid January, a time when soil moisture declined and VPD was at its highest. Their expression in roots was also inversely related to the levels of irrigation and correlated with ABA abundance in the roots, xylem sap, and leaves. Three genes encoding ABA 8'-hydroxylases were isolated and their identities confirmed by expression in yeast cells. The expression of one of these, Hyd1, was elevated in leaves when VPD was below 2.0-2.5 kPa and minimal at higher VPD levels. The results provide evidence that ABA plays an important role in linking stomatal response to soil moisture status and that changes in ABA catabolism at or near its site of action allows optimization of gas exchange to current environmental conditions.

  1. Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environment specific sensing

    NARCIS (Netherlands)

    Finch-Savage, W.E.; Cadman, C.S.C.; Toorop, P.E.; Lynn, J.R.; Hilhorst, H.W.M.

    2007-01-01

    The depth of seed dormancy can be influenced by a number of different environmental signals, but whether a common mechanism underlies this apparently similar response has yet to be investigated. Full-genome microarrays were used for a global transcript analysis of Arabidopsis thaliana Cape Verde

  2. The effect of 2,4-D and ABA on respiration of isolated mitochondria from maize coleoptiles

    Directory of Open Access Journals (Sweden)

    Ewa Raczek

    2014-01-01

    Full Text Available The susceptibility of isolated maize mitochondria to the growth regulators: 2,4-dichlorophenoxyacetic acid (2,4-D and abscisic acid (ABA was studied. It was found that 2,4-D (a herbicide inhibits respiration in mitochondria, as do other herbicides or phenoxy-acids. In the entire range of concentrations used (10-3-10-9 M, 2,4-D introduced into the medium before the respiration reaction was begun, or during it, limited the intensity of succinate oxidation. It did not, however, markedly change phosphorylation properties. Uncoupling of oxidative phosphorylation took place only after preincubation of mitochondria with 2,4-D and was the result of the destruction of mitochondrial membranes. ABA (a growth inhibitor of plants caused a similar response in maize mitochondria. Preincubation of mitochondria with ABA lead to the uncoupling of oxidative phosphorylation. Whereas ABA introduced during respiration (state 4 respiration or before its onset, lowered the oxidative potential of mitochondria, it also changed the pattern of state 4-3-4 transition after addition of ADP (it was especially visible at high concentrations, which indicates that the coupling of oxidative phosphorylation with the respiratory chain has faltered. It seems that this negative effect of 2,4-D and ABA on respiration of isolated maize mitochondria is connected with the inhibitory effect of these growth regulators on the growth of maize coleoptiles. Interference in the organization mitochondrial membranes results in a lowered supply of ATP - a source of energy needed in elongation processes.

  3. The Rose (Rosa hybrida) NAC Transcription Factor 3 Gene, RhNAC3, Involved in ABA Signaling Pathway Both in Rose and Arabidopsis

    OpenAIRE

    Jiang, Guimei; Jiang, Xinqiang; Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing

    2014-01-01

    Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory seq...

  4. Involvement of NADPH oxidase isoforms in the production of O2- manipulated by ABA in the senescing leaves of early-senescence-leaf (esl) mutant rice (Oryza sativa).

    Science.gov (United States)

    Li, Zhaowei; Wang, Fubiao; Zhao, Qian; Liu, Jianchao; Cheng, Fangmin

    2018-01-01

    In this study, the differences in reactive oxygen species (ROS) generation and abscisic acid (ABA) accumulation in senescing leaves were investigated by early-senescence-leaf (esl) mutant and its wild type, to clarify the relationship among ABA levels, ROS generation, and NADPH oxidase (Nox) in senescing leaves of rice (Oryza sativa). The temporal expression levels of OsNox isoforms in senescing leaves and their expression patterns in response to ABA treatment were determined through quantitative real-time reverse transcription PCR (qRT-PCR). Results showed that the flag leaf of the esl mutant generated more O2- concentrations and accumulated higher ABA levels than the wild-type cultivar did in the grain-filling stage. Exogenous ABA treatment induced O2- generation; however, it was depressed by diphenyleneiodonium chloride (DPI) pretreatment in the detached leaf segments. This finding suggested the involvement of NADPH oxidase in ABA-induced O2- generation. The esl mutant exhibited significantly higher expression of OsNox2, OsNox5, OsNox6, and OsNox7 in the initial of grain-filling stage, followed by sharply decrease. The transcriptional levels of OsNox1, OsNox3, and OsFR07 in the flag leaf of the esl mutant were significantly lower than those in the wild-type cultivar. The expression levels of OsNox2, OsNox5, OsNox6, and OsNox7 were significantly enhanced by exogenous ABA treatments. The enhanced expression levels of OsNox2 and OsNox6 were dependent on the duration of ABA treatment. The inducible expression levels of OsNox5 and OsNox7 were dependent on ABA concentrations. By contrast, exogenous ABA treatment severely repressed the transcripts of OsNox1, OsNox3, and OsFR07 in the detached leaf segments. Therefore, OsNox2, OsNox5, OsNox6, and OsNox7 were probably involved in the ABA-induced O2- generation in the initial stage of leaf senescence. Subsequently, other oxidases activated in deteriorating cells were associated with ROS generation and accumulation in the

  5. Immunolocalization of IAA and ABA in roots and needles of radiata pine (Pinus radiata) during drought and rewatering.

    Science.gov (United States)

    De Diego, N; Rodríguez, J L; Dodd, I C; Pérez-Alfocea, F; Moncaleán, P; Lacuesta, M

    2013-05-01

    Anatomical, physiological and phytohormonal changes involved in drought tolerance were examined in different Pinus radiata D. Don breeds subjected to soil drying and rewatering. Breeds with the smallest stomatal chamber size had the lowest transpiration rate and the highest intrinsic water-use efficiency. Xylem cell size was positively correlated with leaf hydraulic conductance and needle indole-3-acetic acid (IAA) concentrations, whereas transpiration rate was negatively correlated with needle abscisic acid (ABA) levels. Since these two phytohormones seem important in regulating the P. radiata drought response, they were simultaneously immunolocalized in roots and needles of the most tolerant breed (P. radiata var. radiata × var. cedrosensis) during two sequential drought cycles and after rewatering. During drought, IAA was unequally distributed into the pointed area of the needle cross-section and mainly located in mesophyll and vascular tissue cells of needles, possibly inducing needle epinasty, whereas ABA was principally located in guard cells, presumably to elicit stomata closure. In the roots, at the end of the first drought cycle, while strong IAA accumulation was observed in the cortex, ABA levels decreased probably due to translocation to the leaves. Rewatering modified the distribution of both IAA and ABA in the needles, causing an accumulation principally in vascular tissue, with residual concentrations in mesophyll, likely favouring the acclimatization of the plants for further drought cycles. Contrarily, in the roots IAA and ABA were located in the exodermis, a natural barrier that regulates the phytohormone translocation to other plant tissues and hormone losses to the soil solution after rewatering. These results confirm that immunolocalization is an efficient tool to understand the translocation of IAA and ABA in plants subjected to different water stress situations, and clarify their role in regulating physiological responses such as stomata

  6. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress

    KAUST Repository

    Liu, Junwei

    2015-02-26

    Main conclusion: Strigolactone changes and cross talk with ABA unveil a picture of root-specific hormonal dynamics under stress.Abstract: Strigolactones (SLs) are carotenoid-derived hormones influencing diverse aspects of development and communication with (micro)organisms, and proposed as mediators of environmental stimuli in resource allocation processes; to contribute to adaptive adjustments, therefore, their pathway must be responsive to environmental cues. To investigate the relationship between SLs and abiotic stress in Lotus japonicus, we compared wild-type and SL-depleted plants, and studied SL metabolism in roots stressed osmotically and/or phosphate starved. SL-depleted plants showed increased stomatal conductance, both under normal and stress conditions, and impaired resistance to drought associated with slower stomatal closure in response to abscisic acid (ABA). This confirms that SLs contribute to drought resistance in species other than Arabidopsis. However, we also observed that osmotic stress rapidly and strongly decreased SL concentration in tissues and exudates of wild-type Lotus roots, by acting on the transcription of biosynthetic and transporter-encoding genes and independently of phosphate abundance. Pre-treatment with exogenous SLs inhibited the osmotic stress-induced ABA increase in wild-type roots and down-regulated the transcription of the ABA biosynthetic gene LjNCED2. We propose that a transcriptionally regulated, early SL decrease under osmotic stress is needed (but not sufficient) to allow the physiological increase of ABA in roots. This work shows that SL metabolism and effects on ABA are seemingly opposite in roots and shoots under stress.

  7. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress

    KAUST Repository

    Liu, Junwei; He, Hanzi; Vitali, Marco; Visentin, Ivan; Charnikhova, Tatsiana V.; Haider, Imran; Schubert, Andrea; Ruyter-Spira, Carolien P.; Bouwmeester, Harro J J; Lovisolo, Claudio; Cardinale, Francesca

    2015-01-01

    Main conclusion: Strigolactone changes and cross talk with ABA unveil a picture of root-specific hormonal dynamics under stress.Abstract: Strigolactones (SLs) are carotenoid-derived hormones influencing diverse aspects of development and communication with (micro)organisms, and proposed as mediators of environmental stimuli in resource allocation processes; to contribute to adaptive adjustments, therefore, their pathway must be responsive to environmental cues. To investigate the relationship between SLs and abiotic stress in Lotus japonicus, we compared wild-type and SL-depleted plants, and studied SL metabolism in roots stressed osmotically and/or phosphate starved. SL-depleted plants showed increased stomatal conductance, both under normal and stress conditions, and impaired resistance to drought associated with slower stomatal closure in response to abscisic acid (ABA). This confirms that SLs contribute to drought resistance in species other than Arabidopsis. However, we also observed that osmotic stress rapidly and strongly decreased SL concentration in tissues and exudates of wild-type Lotus roots, by acting on the transcription of biosynthetic and transporter-encoding genes and independently of phosphate abundance. Pre-treatment with exogenous SLs inhibited the osmotic stress-induced ABA increase in wild-type roots and down-regulated the transcription of the ABA biosynthetic gene LjNCED2. We propose that a transcriptionally regulated, early SL decrease under osmotic stress is needed (but not sufficient) to allow the physiological increase of ABA in roots. This work shows that SL metabolism and effects on ABA are seemingly opposite in roots and shoots under stress.

  8. Abscisic Acid Synthesis and Response

    Science.gov (United States)

    Finkelstein, Ruth

    2013-01-01

    Abscisic acid (ABA) is one of the “classical” plant hormones, i.e. discovered at least 50 years ago, that regulates many aspects of plant growth and development. This chapter reviews our current understanding of ABA synthesis, metabolism, transport, and signal transduction, emphasizing knowledge gained from studies of Arabidopsis. A combination of genetic, molecular and biochemical studies has identified nearly all of the enzymes involved in ABA metabolism, almost 200 loci regulating ABA response, and thousands of genes regulated by ABA in various contexts. Some of these regulators are implicated in cross-talk with other developmental, environmental or hormonal signals. Specific details of the ABA signaling mechanisms vary among tissues or developmental stages; these are discussed in the context of ABA effects on seed maturation, germination, seedling growth, vegetative stress responses, stomatal regulation, pathogen response, flowering, and senescence. PMID:24273463

  9. ABA-Induced Stomatal Closure Involves ALMT4, a Phosphorylation-Dependent Vacuolar Anion Channel of Arabidopsis[OPEN

    Science.gov (United States)

    Baetz, Ulrike; Huck, Nicola V.; Zhang, Jingbo

    2017-01-01

    Stomatal pores are formed between a pair of guard cells and allow plant uptake of CO2 and water evaporation. Their aperture depends on changes in osmolyte concentration of guard cell vacuoles, specifically of K+ and Mal2−. Efflux of Mal2− from the vacuole is required for stomatal closure; however, it is not clear how the anion is released. Here, we report the identification of ALMT4 (ALUMINUM ACTIVATED MALATE TRANSPORTER4) as an Arabidopsis thaliana ion channel that can mediate Mal2− release from the vacuole and is required for stomatal closure in response to abscisic acid (ABA). Knockout mutants showed impaired stomatal closure in response to the drought stress hormone ABA and increased whole-plant wilting in response to drought and ABA. Electrophysiological data show that ALMT4 can mediate Mal2− efflux and that the channel activity is dependent on a phosphorylatable C-terminal serine. Dephosphomimetic mutants of ALMT4 S382 showed increased channel activity and Mal2− efflux. Reconstituting the active channel in almt4 mutants impaired growth and stomatal opening. Phosphomimetic mutants were electrically inactive and phenocopied the almt4 mutants. Surprisingly, S382 can be phosphorylated by mitogen-activated protein kinases in vitro. In brief, ALMT4 likely mediates Mal2− efflux during ABA-induced stomatal closure and its activity depends on phosphorylation. PMID:28874508

  10. A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops.

    Directory of Open Access Journals (Sweden)

    Réka Albert

    2017-09-01

    Full Text Available Stomata, microscopic pores in leaf surfaces through which water loss and carbon dioxide uptake occur, are closed in response to drought by the phytohormone abscisic acid (ABA. This process is vital for drought tolerance and has been the topic of extensive experimental investigation in the last decades. Although a core signaling chain has been elucidated consisting of ABA binding to receptors, which alleviates negative regulation by protein phosphatases 2C (PP2Cs of the protein kinase OPEN STOMATA 1 (OST1 and ultimately results in activation of anion channels, osmotic water loss, and stomatal closure, over 70 additional components have been identified, yet their relationships with each other and the core components are poorly elucidated. We integrated and processed hundreds of disparate observations regarding ABA signal transduction responses underlying stomatal closure into a network of 84 nodes and 156 edges and, as a result, established those relationships, including identification of a 36-node, strongly connected (feedback-rich component as well as its in- and out-components. The network's domination by a feedback-rich component may reflect a general feature of rapid signaling events. We developed a discrete dynamic model of this network and elucidated the effects of ABA plus knockout or constitutive activity of 79 nodes on both the outcome of the system (closure and the status of all internal nodes. The model, with more than 1024 system states, is far from fully determined by the available data, yet model results agree with existing experiments in 82 cases and disagree in only 17 cases, a validation rate of 75%. Our results reveal nodes that could be engineered to impact stomatal closure in a controlled fashion and also provide over 140 novel predictions for which experimental data are currently lacking. Noting the paucity of wet-bench data regarding combinatorial effects of ABA and internal node activation, we experimentally confirmed

  11. A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops.

    Science.gov (United States)

    Albert, Réka; Acharya, Biswa R; Jeon, Byeong Wook; Zañudo, Jorge G T; Zhu, Mengmeng; Osman, Karim; Assmann, Sarah M

    2017-09-01

    Stomata, microscopic pores in leaf surfaces through which water loss and carbon dioxide uptake occur, are closed in response to drought by the phytohormone abscisic acid (ABA). This process is vital for drought tolerance and has been the topic of extensive experimental investigation in the last decades. Although a core signaling chain has been elucidated consisting of ABA binding to receptors, which alleviates negative regulation by protein phosphatases 2C (PP2Cs) of the protein kinase OPEN STOMATA 1 (OST1) and ultimately results in activation of anion channels, osmotic water loss, and stomatal closure, over 70 additional components have been identified, yet their relationships with each other and the core components are poorly elucidated. We integrated and processed hundreds of disparate observations regarding ABA signal transduction responses underlying stomatal closure into a network of 84 nodes and 156 edges and, as a result, established those relationships, including identification of a 36-node, strongly connected (feedback-rich) component as well as its in- and out-components. The network's domination by a feedback-rich component may reflect a general feature of rapid signaling events. We developed a discrete dynamic model of this network and elucidated the effects of ABA plus knockout or constitutive activity of 79 nodes on both the outcome of the system (closure) and the status of all internal nodes. The model, with more than 1024 system states, is far from fully determined by the available data, yet model results agree with existing experiments in 82 cases and disagree in only 17 cases, a validation rate of 75%. Our results reveal nodes that could be engineered to impact stomatal closure in a controlled fashion and also provide over 140 novel predictions for which experimental data are currently lacking. Noting the paucity of wet-bench data regarding combinatorial effects of ABA and internal node activation, we experimentally confirmed several predictions

  12. ARA-aldehyde and ABA-trans-diol in apple fruits

    International Nuclear Information System (INIS)

    Rock, C.D.; Zeevaart, J.A.D.

    1989-01-01

    We have isolated ABA-aldehyde and ABA-t-diol from postharvest apple fruits, cv. Granny Smith and confirmed their structure by GC-MS. These putative ABA biosynthetic precursors incorporate 18 O to a similar degree as ABA during 48 hours under 18 O 2 atmospheres. The presence of significant amounts of ABA-aldehyde can explain the unique 18 O labeling pattern of ABA in this tissue, where a majority of ABA molecules containing 18 O is labeled in the 1'-hydroxyl group and not in the side chain carboxyl group, the primary site of incorporation for stressed leaves. Exchange of the carbonyl oxygen of ABA-aldehyde with water would decrease 18 O enrichment in the side chain. Results of 18 O 2 experiments and feeding studies using hexadeutero-ABA-aldehyde will be presented and the biosynthetic relationship of these compounds discussed

  13. Arabidopsis YAK1 regulates abscisic acid response and drought resistance

    KAUST Repository

    Kim, Dongjin; Ntui, Valentine Otang; Xiong, Liming

    2016-01-01

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination

  14. The rose (Rosa hybrida) NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis.

    Science.gov (United States)

    Jiang, Guimei; Jiang, Xinqiang; Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing

    2014-01-01

    Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein

  15. The rose (Rosa hybrida NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Guimei Jiang

    Full Text Available Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida, RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose Rh

  16. The transport and distribution of 3H-ABA affected by al sress on soybean seedig

    International Nuclear Information System (INIS)

    Chen Guang; Sun Yang; Pang Jinduo

    2010-01-01

    A hydroponic experiment combining radioisotope techniques was carried out to understand the effect of Al stress on the transport and the distribution of 3 H-ABA by using Jilin70, a soybean variety of Al resistance. The transport and distribution of ABA affected by Al stress on soybean seedling were studied with radioisotope technique. The results showed that ABA could be transported up or down in soybean seedling. The stress of Al accelerated the transport of ABA and enhanced the distribution of ABA in the roots by Al stress. The paper present the foundation for the mechanisms of ABA under Al stress in plant. (authors)

  17. Ectopic expression of soybean gmsbh1 confers aba sensitivity during seed germination and early seedling establishment in transgenic arabidopsis

    International Nuclear Information System (INIS)

    Shu, Y.; Zhou, Y.; Huang, S.; Chen, M.; Huang, L.; Ma, H.

    2017-01-01

    The class I KNOX homeobox transcription factors are known to play an important role in maintenance of plant phenotype, especially leaves and flowers. In this study, a soybean KNOX I homeobox transcription factor, GmSBH1, was analyzed and confirmed to play important roles in the process of seed germination and developing. Real time quantitative PCR assay showed that the transcript level of GmSBH1 in soybean seedlings was modulated by plant hormones, such as IAA, GA, MeJA and ABA.Yeast one-hybrid assay showed that GmSBH1 could bind to the ABRE cis-element. Overexpression of GmSBH1 in Arabidopsis resulted in the abnormal phenotype of flowers and siliques. In GmSBH1 transgenic lines, both seed germination and seedlings growth showed hypersensitive to ABA. Moreover, the expression of ABA-responsive genes, such as ABI3 and ABI5, were increased in the transgenic line seedlings. Taken together, ectopic expression of GmSBH1 could alter the morphology and confer ABA sensitivity during seed germination and early seedling growth in transgenic Arabidopsis. (author)

  18. ABA receptors: The START of a new paradigm in phytohormone signalling

    KAUST Repository

    Klingler, John; Batelli, Georgia; Zhu, Jian-Kang

    2010-01-01

    detailed glimpses of the hormone's activities at the molecular level. Despite this progress, many gaps in understanding have remained, particularly at the early stages of ABA perception by the plant cell. The search for an ABA receptor protein has produced

  19. Personality Traits among Inmates of Aba Prison in Nigeria: Influence ...

    African Journals Online (AJOL)

    Aim: To assess the personality traits of inmates in Aba prison. Methods: Four hundred and six inmates were studied. Each inmate completed a semi-structured sociodemographic questionnaire and personality traits were assessed with the 44-item Big Five Inventory. Results: The majority (72.7%) of the inmates were within ...

  20. Relationship between abscisic acid (ABA) concentration and some ...

    African Journals Online (AJOL)

    This work investigated the effects of endogenous abscisic acid (ABA) and physiologic parameters related to yield in two wheat cultivars (Triticum aestivum L.), Marvdasht and Zagros (sensitive and tolerant to terminal season drought, respectively) grown in pots under well watered and water-stressed starting from anthesis ...

  1. Histopathological pattern of diseases of the cervix in Aba, South ...

    African Journals Online (AJOL)

    Background: Diseases of the cervix continue to pose a major public health problem in developing countries. Objective: To ascertain the pattern and frequency of cervical lesions in Aba, and the findings compared with the records of other workers elsewhere. Design: A retrospective analysis of hysterectomy, trachelectomy ...

  2. Adaptive Behaviour Assessment System: Indigenous Australian Adaptation Model (ABAS: IAAM)

    Science.gov (United States)

    du Plessis, Santie

    2015-01-01

    The study objectives were to develop, trial and evaluate a cross-cultural adaptation of the Adaptive Behavior Assessment System-Second Edition Teacher Form (ABAS-II TF) ages 5-21 for use with Indigenous Australian students ages 5-14. This study introduced a multiphase mixed-method design with semi-structured and informal interviews, school…

  3. Prevalence of falciparum malaria amongst pregnant women in Aba ...

    African Journals Online (AJOL)

    Malaria during pregnancy poses a substantial risk to mother and foetus especially an infection with Plasmodium falciparum. This study was undertaken to assess the prevalence of falciparum malaria among pregnant women in Aba South Local Government Area, Abia State, south-east Nigeria. Blood samples from 432 ...

  4. Anaemia in Pregnancy in Abia State University Teaching Hospital, Aba

    African Journals Online (AJOL)

    A prospective study of incidence of anaemia in pregnancy at Abia state University Teaching Hospital, Aba was conducted over a six-month period spanning from 31st January 2000 to 31st July 2000. The incidence of anaemia in pregnancy was 29%. The vast majority (97.6%) had mild anaemia. The result showed that most ...

  5. Coping as a Predictor of Burnout and General Health in Therapists Working in ABA Schools

    Science.gov (United States)

    Griffith, G. M.; Barbakou, A.; Hastings, R. P.

    2014-01-01

    Background: Little is known about the work-related well-being of applied behaviour analysis (ABA) therapists who work in school-based contexts and deliver ABA interventions to children with autism. Methods: A questionnaire on work-related stress (burnout), general distress, perceived supervisor support and coping was completed by 45 ABA therapists…

  6. 77 FR 36231 - Americans With Disabilities Act (ADA) and Architectural Barriers Act (ABA) Accessibility...

    Science.gov (United States)

    2012-06-18

    ...-0004] RIN 3014-AA39 Americans With Disabilities Act (ADA) and Architectural Barriers Act (ABA... (ADA) and Architectural Barriers Act (ABA) Accessibility Guidelines to specifically address emergency... ensure that newly constructed and altered emergency transportable housing units covered by the ADA or ABA...

  7. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric (Van Andel); (Scripps); (Purdue); (NU Singapore)

    2014-10-02

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-{angstrom} resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases.

  8. After-Ripening of Red Pepper (Capsicum Annuum) as Affected by Ionizing Radiation; Effets des Rayonnements Ionisants sur le Murissement du Piment (Capsicum Annuum) Apres la Recolte; Vliyanie ioniziruyushchego izlucheniya na dozrevanie krasnogo pertsa (Capsicum Annuum); Efecto de las Radiaciones Ionizantes en la Postmaturacion del Pimiento Rojo (Capsicum Annuum)

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, J.; Kiss, I.; Andrassy, Eva [Central Food Research Institute, Budapest (Hungary)

    1966-11-15

    The direct effect of X-rays on freshly picked, sweet red pepper at dose levels of between 0 and 800 krad, and on the after-ripening of red pepper at dose levels of between 0 and 100 krad, was investigated. As an effect of the irradiation of between 400 and 800 krad, the pericarps softened; the carotenoid content, however, was not substantially reduced, even at a dose of 800 krad. During the nine weeks' storage period at room temperature, subsequent to irradiation, an increase of about 90% of the total pigment content, expressed as capsanthin, was observed in the samples not treated. The formation of the carotenoid pigments was accelerated, to some extent, by 80 rad, and substantially accelerated by treatment of 2 krad. The samples treated at the 2-krad level reached the same pigment content in three weeks as the control samples in eight weeks. In the radiation-treated samples, however, the pigment content decreased after the fourth to fifth week of storage. Dose levels above 10 krad slowed down or inhibited the formation of carotenoids during storage (after ripening). The reducing sugar content and the rate of drying were not affected by 0 to 100-krad doses. Since the several hundred kilorad irradiation doses needed to destroy, or substantially inhibit, the growth of moulds causing the deterioration of red pepper of high moisture content have a deleterious effect, the application of irradiation to decrease storage losses in fresh, picked red pepper does not seem to be advisable. The application, however, of the very low doses stimulating carotenoid formation does seem to be promising in view of shortening the after-ripening period and increasing the pigment content. Further investigations are needed to establish the most suitable storage conditions for the after-ripening of red peppers and the causes responsible for decrease in the carotenoid content of irradiated fruits in the second half of the storage period. (author) [French] Les auteurs ont etudie l

  9. Arabidopsis PCaP2 Functions as a Linker Between ABA and SA Signals in Plant Water Deficit Tolerance

    Directory of Open Access Journals (Sweden)

    Xianling Wang

    2018-05-01

    Full Text Available Water stress has a major influence on plant growth, development, and productivity. However, the cross-talk networks involved in drought tolerance are not well understood. Arabidopsis PCaP2 is a plasma membrane-associated Ca2+-binding protein. In this study, we employ qRT-PCR and β-glucuronidase (GUS histochemical staining to demonstrate that PCaP2 expression was strongly induced in roots, cotyledons, true leaves, lateral roots, and whole plants under water deficit conditions. Compared with the wild type (WT plants, PCaP2-overexpressing (PCaP2-OE plants displayed enhanced water deficit tolerance in terms of seed germination, seedling growth, and plant survival status. On the contrary, PCaP2 mutation and reduction via PCaP2-RNAi rendered plants more sensitive to water deficit. Furthermore, PCaP2-RNAi and pcap2 seedlings showed shorter root hairs and lower relative water content compared to WT under normal conditions and these phenotypes were exacerbated under water deficit. Additionally, the expression of PCaP2 was strongly induced by exogenous abscisic acid (ABA and salicylic acid (SA treatments. PCaP2-OE plants showed insensitive to exogenous ABA and SA treatments, in contrast to the susceptible phenotypes of pcap2 and PCaP2-RNAi. It is well-known that SNF1-related kinase 2s (SnRK2s and pathogenesis-related (PRs are major factors that influence plant drought tolerance by ABA- and SA-mediated pathways, respectively. Interestingly, PCaP2 positively regulated the expression of drought-inducible genes (RD29A, KIN1, and KIN2, ABA-mediated drought responsive genes (SnRK2.2, -2.3, -2.6, ABF1, -2, -3, -4, and SA-mediated drought responsive genes (PR1, -2, -5 under water deficit, ABA, or SA treatments. Taken together, our results showed that PCaP2 plays an important and positive role in Arabidopsis water deficit tolerance by involving in response to both ABA and SA signals and regulating root hair growth. This study provides novel insights into the

  10. N. plumbaginifolia zeaxanthin epoxidase transgenic lines have unaltered baseline ABA accumulations in roots and xylem sap, but contrasting sensitivities of ABA accumulation to water deficit.

    Science.gov (United States)

    Borel, C; Audran, C; Frey, A; Marion-Poll, A; Tardieu, F; Simonneau, T

    2001-03-01

    A series of transgenic lines of Nicotiana plumbaginifolia with modified expression of zeaxanthin epoxidase gene (ZEP) provided contrasting ABA accumulation in roots and xylem sap. For mild water stress, concentration of ABA in the xylem sap ([ABA](xylem)) was clearly lower in plants underexpressing ZEP mRNA (complemented mutants and antisense transgenic lines) than in wild-type. In well-watered conditions, all lines presented similar [ABA](xylem) and similar ABA accumulation rates in detached roots. Plants could, therefore, be grown under normal light intensities and evaporative demand. Both ZEP mRNA abundance and ABA accumulation rate in roots increased with water deficit in all transgenic lines, except in complemented aba2-s1 mutants in which the ZEP gene was controlled by a constitutive promoter which does not respond to water deficit. These lines presented no change in root ABA content either with time or dehydration. The increase in ZEP mRNA abundance in roots with decreasing RWC was more pronounced in detached roots than in whole plants, suggesting a difference in mechanism. In all transgenic lines, a linear relationship was observed between predawn leaf water potential and [ABA](xylem), which could be reproduced in several experiments in the greenhouse and in the growth chamber. It is therefore possible to represent the effect of the transformation by a single parameter, thereby allowing the use of a quantitative approach to assist understanding of the behaviour of transgenic lines.

  11. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca(2+-permeable channels and stomatal closure.

    Directory of Open Access Journals (Sweden)

    Izumi C Mori

    2006-10-01

    Full Text Available Abscisic acid (ABA signal transduction has been proposed to utilize cytosolic Ca(2+ in guard cell ion channel regulation. However, genetic mutants in Ca(2+ sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca(2+-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell-expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca(2+ activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca(2+-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca(2+-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca(2+ oscillation experiments revealed that Ca(2+-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca(2+-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca(2+-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling.

  12. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rock, C.D.; Zeevaart, J.A.D. (Michigan State Univ., East Lansing (United States))

    1991-09-01

    The three mutant alleles of the ABA locus of Arabidopsis thaliana result in plants that are deficient in the plant growth regulator abscisic acid (ABA). The authors have used {sup 18}O{sub 2} to label ABA in water-stressed leaves of mutant and wild-type Arabidopsis. Analysis by selected ion monitoring and tandem mass spectrometry of ({sup 18}O)ABA and its catabolites, phaseic acid and ABA-glucose ester ({beta}-D-glucopyranosyl abscisate), indicates that the aba genotypes are impaired in ABA biosynthesis and have a small ABA precursor pool of compounds that contain oxygens on the rings, presumably oxygenated carotenoids (xanthophylls). Quantitation of the carotenoids form mutant and wild-type leaves establishes that the aba alleles cause a deficiency of the epoxy-carotenoids violaxanthin and neoxanthin and an accumulation of their biosynthetic precursor, zeaxanthin. These results provide evidence that ABA is synthesized by oxidative cleavage of epoxy-carotenoids (the indirect pathway). Furthermore the carotenoid mutant they describe undergoes normal greening. Thus the aba alleles provide an opportunity to study the physiological roles of epoxy-carotenoids in photosynthesis in a higher plants.

  13. PERCEPTION ABOUT BOTTLE FEEDING AMONG MOTHERS IN SELECTED HEALTH CARE SETTINGS IN ABA SOUTH LGA, ABIA STATE, NIGERIA

    OpenAIRE

    Achema.G.; Chigbo.R

    2011-01-01

    The study determined the perception of bottle feeding among mothers attending child welfare clinic in selected health centers in Aba South LGA. It also ascertained the knowledge of mothers about the breast feeding and factors responsible for chosen bottle feeding. A descriptive research design was adopted for the study where a total survey of 45 mothers who were selected systematically from the centers were interviewed as a method of data collection. The findings of the study showed that 93% ...

  14. CmWRKY1 Enhances the Dehydration Tolerance of Chrysanthemum through the Regulation of ABA-Associated Genes.

    Directory of Open Access Journals (Sweden)

    Qingqing Fan

    Full Text Available WRKY transcription factors serve as antagonistic or synergistic regulators in a variety of abiotic stress responses in plants. Here, we show that CmWRKY1, a member of the group IIb WRKY family isolated from Chrysanthemum morifolium, exhibits no transcriptional activation in yeast cells. The subcellular localization examination showed that CmWRKY1 localizes to the nucleus in vivo. Furthermore, CmWRKY1-overexpressing transgenic lines exhibit enhanced dehydration tolerance in response to polyethylene glycol (PEG treatment compared with wild-type plants. We further confirmed that the transgenic plants exhibit suppressed expression levels of genes negatively regulated by ABA, such as PP2C, ABI1 and ABI2, and activated expression levels of genes positively regulated by ABA, such as PYL2, SnRK2.2, ABF4, MYB2, RAB18, and DREB1A. Taken together, our results indicate that CmWRKY1 plays an important role in the response to drought in chrysanthemum through an ABA-mediated pathway.

  15. ABA-Cloud: support for collaborative breath research.

    Science.gov (United States)

    Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton

    2013-06-01

    This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step toward the definition of conceptualized terms commonly used by the international community of breath researchers. They build the basis for the development of an ontology (a concept from computer science used for communication between machines and/or humans and representation and reuse of knowledge) dedicated to breath research.

  16. ABA renewal involves enhancements in both GluA2-lacking AMPA receptor activity and GluA1 phosphorylation in the lateral amygdala.

    Directory of Open Access Journals (Sweden)

    Kyungjoon Park

    Full Text Available Fear renewal, the context-specific relapse of fear following fear extinction, is a leading animal model of post-traumatic stress disorders (PTSD and fear-related disorders. Although fear extinction can diminish fear responses, this effect is restricted to the context where the extinction is carried out, and the extinguished fear strongly relapses when assessed in the original acquisition context (ABA renewal or in a context distinct from the conditioning and extinction contexts (ABC renewal. We have previously identified Ser831 phosphorylation of GluA1 subunit in the lateral amygdala (LA as a key molecular mechanism for ABC renewal. However, molecular mechanisms underlying ABA renewal remain to be elucidated. Here, we found that both the excitatory synaptic efficacy and GluA2-lacking AMPAR activity at thalamic input synapses onto the LA (T-LA synapses were enhanced upon ABA renewal. GluA2-lacking AMPAR activity was also increased during low-threshold potentiation, a potential cellular substrate of renewal, at T-LA synapses. The microinjection of 1-naphtylacetyl-spermine (NASPM, a selective blocker of GluA2-lacking AMPARs, into the LA attenuated ABA renewal, suggesting a critical role of GluA2-lacking AMPARs in ABA renewal. We also found that Ser831 phosphorylation of GluA1 in the LA was increased upon ABA renewal. We developed a short peptide mimicking the Ser831-containing C-tail region of GluA1, which can be phosphorylated upon renewal (GluA1S; thus, the phosphorylated GluA1S may compete with Ser831-phosphorylated GluA1. This GluA1S peptide blocked the low-threshold potentiation when dialyzed into a recorded neuron. The microinjection of a cell-permeable form of GluA1S peptide into the LA attenuated ABA renewal. In support of the GluA1S experiments, a GluA1D peptide (in which the serine at 831 is replaced with a phosphomimetic amino acid, aspartate attenuated ABA renewal when microinjected into the LA. These findings suggest that enhancements

  17. ABA renewal involves enhancements in both GluA2-lacking AMPA receptor activity and GluA1 phosphorylation in the lateral amygdala.

    Science.gov (United States)

    Park, Kyungjoon; Song, Beomjong; Kim, Jeongyeon; Hong, Ingie; Song, Sangho; Lee, Junuk; Park, Sungmo; Kim, Jihye; An, Bobae; Lee, Hyun Woo; Lee, Seungbok; Kim, Hyun; Lee, Justin C; Lee, Sukwon; Choi, Sukwoo

    2014-01-01

    Fear renewal, the context-specific relapse of fear following fear extinction, is a leading animal model of post-traumatic stress disorders (PTSD) and fear-related disorders. Although fear extinction can diminish fear responses, this effect is restricted to the context where the extinction is carried out, and the extinguished fear strongly relapses when assessed in the original acquisition context (ABA renewal) or in a context distinct from the conditioning and extinction contexts (ABC renewal). We have previously identified Ser831 phosphorylation of GluA1 subunit in the lateral amygdala (LA) as a key molecular mechanism for ABC renewal. However, molecular mechanisms underlying ABA renewal remain to be elucidated. Here, we found that both the excitatory synaptic efficacy and GluA2-lacking AMPAR activity at thalamic input synapses onto the LA (T-LA synapses) were enhanced upon ABA renewal. GluA2-lacking AMPAR activity was also increased during low-threshold potentiation, a potential cellular substrate of renewal, at T-LA synapses. The microinjection of 1-naphtylacetyl-spermine (NASPM), a selective blocker of GluA2-lacking AMPARs, into the LA attenuated ABA renewal, suggesting a critical role of GluA2-lacking AMPARs in ABA renewal. We also found that Ser831 phosphorylation of GluA1 in the LA was increased upon ABA renewal. We developed a short peptide mimicking the Ser831-containing C-tail region of GluA1, which can be phosphorylated upon renewal (GluA1S); thus, the phosphorylated GluA1S may compete with Ser831-phosphorylated GluA1. This GluA1S peptide blocked the low-threshold potentiation when dialyzed into a recorded neuron. The microinjection of a cell-permeable form of GluA1S peptide into the LA attenuated ABA renewal. In support of the GluA1S experiments, a GluA1D peptide (in which the serine at 831 is replaced with a phosphomimetic amino acid, aspartate) attenuated ABA renewal when microinjected into the LA. These findings suggest that enhancements in both the

  18. Involvement of NADPH oxidase isoforms in the production of O2− manipulated by ABA in the senescing leaves of early-senescence-leaf (esl) mutant rice (Oryza sativa)

    Science.gov (United States)

    Wang, Fubiao; Zhao, Qian; Liu, Jianchao; Cheng, Fangmin

    2018-01-01

    In this study, the differences in reactive oxygen species (ROS) generation and abscisic acid (ABA) accumulation in senescing leaves were investigated by early-senescence-leaf (esl) mutant and its wild type, to clarify the relationship among ABA levels, ROS generation, and NADPH oxidase (Nox) in senescing leaves of rice (Oryza sativa). The temporal expression levels of OsNox isoforms in senescing leaves and their expression patterns in response to ABA treatment were determined through quantitative real-time reverse transcription PCR (qRT-PCR). Results showed that the flag leaf of the esl mutant generated more O2- concentrations and accumulated higher ABA levels than the wild-type cultivar did in the grain-filling stage. Exogenous ABA treatment induced O2- generation; however, it was depressed by diphenyleneiodonium chloride (DPI) pretreatment in the detached leaf segments. This finding suggested the involvement of NADPH oxidase in ABA-induced O2- generation. The esl mutant exhibited significantly higher expression of OsNox2, OsNox5, OsNox6, and OsNox7 in the initial of grain-filling stage, followed by sharply decrease. The transcriptional levels of OsNox1, OsNox3, and OsFR07 in the flag leaf of the esl mutant were significantly lower than those in the wild-type cultivar. The expression levels of OsNox2, OsNox5, OsNox6, and OsNox7 were significantly enhanced by exogenous ABA treatments. The enhanced expression levels of OsNox2 and OsNox6 were dependent on the duration of ABA treatment. The inducible expression levels of OsNox5 and OsNox7 were dependent on ABA concentrations. By contrast, exogenous ABA treatment severely repressed the transcripts of OsNox1, OsNox3, and OsFR07 in the detached leaf segments. Therefore, OsNox2, OsNox5, OsNox6, and OsNox7 were probably involved in the ABA-induced O2- generation in the initial stage of leaf senescence. Subsequently, other oxidases activated in deteriorating cells were associated with ROS generation and accumulation in the

  19. An ABA-based Intervention Package for Treating the Inappropriate Use of a Communication Device Within Autistic Populations

    Directory of Open Access Journals (Sweden)

    Virge Connery

    2013-08-01

    Full Text Available The principles of applied behaviour analysis (ABA are widely used with autistic populations in managing challenging behaviour. The following paper will review supporting literature for creating a treatment package for targeting the misuse of a communication device in brief detail by using key elements in ABA. It will examine various types of attention (or response that may reinforce the problem behaviour, as well as intervention methods, such as functional communication training and noncontingent reinforcement. In addition, the necessity of extinction for effective intervention will be considered. A review of the literature may help inform the development of a successful treatment package that could be implemented within applied settings. Additional desirable outcomes include: reduction in aberrant behaviour, accessing attention appropriately, establishing the correct use of the communication device and increase in manding levels.

  20. Surviving a Dry Future: Abscisic Acid (ABA)-Mediated Plant Mechanisms for Conserving Water under Low Humidity

    Science.gov (United States)

    McAdam, Scott A. M.

    2017-01-01

    Angiosperms are able to respond rapidly to the first sign of dry conditions, a decrease in air humidity, more accurately described as an increase in the vapor pressure deficit between the leaf and the atmosphere (VPD), by abscisic acid (ABA)-mediated stomatal closure. The genes underlying this response offer valuable candidates for targeted selection of crop varieties with improved drought tolerance, a critical goal for current plant breeding programs, to maximize crop production in drier and increasingly marginalized environments, and meet the demands of a growing population in the face of a changing climate. Here, we review current understanding of the genetic mechanisms underpinning ABA-mediated stomatal closure, a key means for conserving water under dry conditions, examine how these mechanisms evolved, and discuss what remains to be investigated. PMID:29113039

  1. PENGEMBANGAN ASPEK SOSIAL ANAK USIA DINI DI TAMAN KANAK-KANAK ABA IV MANGLI JEMBER TAHUN 2016

    Directory of Open Access Journals (Sweden)

    Musyarofah Musyarofah

    2017-06-01

    Full Text Available Early childhood growth will affect the next period i.e. the attainment of maturity in social relations. This research would like to overview the early childhood development precisely and maximally, so the result will be able to develop all aspects of the scope of child development including social aspects. The goal in this research is to describe the early childhood social development in kindergarten (TK ABA IV Mangli Jember by using qualitative approach. The results showed that (1 the early childhood social abilities in kindergarten ABA IV Mangli Jember include the ability to get along, socialize and properly communicate with friends and teachers, working together, being patient in taking turn, caring and helping friends who is in trouble in classroom tasks, sharing food and toys, giving up to friends and being responsible.

  2. PENGEMBANGAN ASPEK SOSIAL ANAK USIA DINI DI TAMAN KANAK-KANAK ABA IV MANGLI JEMBER TAHUN 2016

    Directory of Open Access Journals (Sweden)

    Musyarofah

    2017-11-01

    Full Text Available Early childhood growth will affect the next period i.e. the attainment of maturity in social relations. This research would like to overview the early childhood development precisely and maximally, so the result will be able to develop all aspects of the scope of child development including social aspects. The goal in this research is to describe the early childhood social development in kindergarten (TK ABA IV Mangli Jember by using qualitative approach. The results showed that (1 the early childhood social abilities in kindergarten ABA IV Mangli Jember include the ability to get along, socialize and properly communicate with friends and teachers, working together, being patient in taking turn, caring and helping friends who is in trouble in classroom tasks, sharing food and toys, giving up to friends and being responsible.

  3. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination

    Directory of Open Access Journals (Sweden)

    Erwann eArc

    2013-03-01

    Full Text Available Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8’-hydroxylation. The hormonal balance between ABA and gibberellins (GAs has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8’-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination.

  4. Kaolin modulates ABA and IAA dynamics and physiology of grapevine under Mediterranean summer stress.

    Science.gov (United States)

    Dinis, L-T; Bernardo, S; Luzio, A; Pinto, G; Meijón, M; Pintó-Marijuan, M; Cotado, A; Correia, C; Moutinho-Pereira, J

    2018-01-01

    The foliar exogenous application of kaolin, a radiation-reflecting inert mineral, has proven to be an effective short-term climate change mitigation strategy for Mediterranean vineyards. In this work, we address the hypothesis that kaolin could improve both the hormonal dynamics and physiological responses of grapevines growing in Douro Region, northern Portugal. For this purpose, the leaf water potential, gas exchange and chlorophyll a fluorescence parameters were monitored, as well as the abscisic acid (ABA) and indole-3-acetic acid (IAA) quantification and immunolocalization were assessed. The study revealed a slight decrease in ABA and an increase in IAA in the kaolin treatment, which in turn were associated with the improvement of physiological performance. A month after spraying, kaolin improves the water potential respectively, 30% and 17% in the predawn and midday periods. Besides, plants treated with kaolin showed higher values of stomatal conductance, net CO 2 assimilation rate and intrinsic water use efficiency. Kaolin also ameliorates the effective PSII efficiency (67%), as well as the maximum quantum efficiency of photosystem II and the photosynthetic electron transport rate (>73%). These results were consistent with the higher photochemical quenching and the lower non-photochemical quenching observed in treated leaves and with the better performance obtained by the JIP test parameters. Physiological and hormonal analysis confirmed that kaolin effectively enhance grapevine summer stress tolerance. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold and heat

    Directory of Open Access Journals (Sweden)

    Kazuo eNakashima

    2014-05-01

    Full Text Available Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs are master regulators of gene expression. ABRE-binding protein (AREB and ABRE-binding factor (ABF TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein (DREB TFs and NAC TFs are also involved in stress responses including drought, heat and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these transcription factors in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  6. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat.

    Science.gov (United States)

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2014-01-01

    Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs) are master regulators of gene expression. ABRE-binding protein and ABRE-binding factor TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein TFs and NAC TFs are also involved in stress responses including drought, heat, and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these TFs in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  7. Uniaxial Extensional Behavior of A--B--A Thermoplastic Elastomers: Structure-Properties Relationship and Modeling

    Science.gov (United States)

    Martinetti, Luca

    At service temperatures, A--B--A thermoplastic elastomers (TPEs) behave similarly to filled (and often entangled) B-rich rubbers since B block ends are anchored on rigid A domains. Therefore, their viscoelastic behavior is largely dictated by chain mobility of the B block rather than by microstructural order. Relating the small- and large-strain response of undiluted A--B--A triblocks to molecular parameters is a prerequisite for designing associated TPE-based systems that can meet the desired linear and nonlinear rheological criteria. This dissertation was aimed at connecting the chemical and topological structure of A--B--A TPEs with their viscoelastic properties, both in the linear and in the nonlinear regime. Since extensional deformations are relevant for the processing and often the end-use applications of thermoplastic elastomers, the behavior was investigated predominantly in uniaxial extension. The unperturbed size of polymer coils is one of the most fundamental properties in polymer physics, affecting both the thermodynamics of macromolecules and their viscoelastic properties. Literature results on poly(D,L-lactide) (PLA) unperturbed chain dimensions, plateau modulus, and critical molar mass for entanglement effect in viscosity were reviewed and discussed in the framework of the coil packing model. Self-consistency between experimental estimates of melt chain dimensions and viscoelastic properties was discussed, and the scaling behaviors predicted by the coil packing model were identified. Contrary to the widespread belief that amorphous polylactide must be intrinsically stiff, the coil packing model and accurate experimental measurements undoubtedly support the flexible nature of PLA. The apparent brittleness of PLA in mechanical testing was attributed to a potentially severe physical aging occurring at room temperature and to the limited extensibility of the PLA tube statistical segment. The linear viscoelastic response of A--B--A TPEs was first

  8. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    Science.gov (United States)

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M. H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2013-01-01

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites. PMID:22116026

  9. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    International Nuclear Information System (INIS)

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M.H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2012-01-01

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

  10. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M.H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric (Van Andel); (Scripps); (NWU); (Purdue); (UCR); (Chinese Aca. Sci.); (NU Singapore)

    2014-10-02

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

  11. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    OpenAIRE

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M. H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun

    2011-01-01

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, wh...

  12. Quantitative statistical analysis of cis-regulatory sequences in ABA/VP1- and CBF/DREB1-regulated genes of Arabidopsis.

    Science.gov (United States)

    Suzuki, Masaharu; Ketterling, Matthew G; McCarty, Donald R

    2005-09-01

    We have developed a simple quantitative computational approach for objective analysis of cis-regulatory sequences in promoters of coregulated genes. The program, designated MotifFinder, identifies oligo sequences that are overrepresented in promoters of coregulated genes. We used this approach to analyze promoter sequences of Viviparous1 (VP1)/abscisic acid (ABA)-regulated genes and cold-regulated genes, respectively, of Arabidopsis (Arabidopsis thaliana). We detected significantly enriched sequences in up-regulated genes but not in down-regulated genes. This result suggests that gene activation but not repression is mediated by specific and common sequence elements in promoters. The enriched motifs include several known cis-regulatory sequences as well as previously unidentified motifs. With respect to known cis-elements, we dissected the flanking nucleotides of the core sequences of Sph element, ABA response elements (ABREs), and the C repeat/dehydration-responsive element. This analysis identified the motif variants that may correlate with qualitative and quantitative differences in gene expression. While both VP1 and cold responses are mediated in part by ABA signaling via ABREs, these responses correlate with unique ABRE variants distinguished by nucleotides flanking the ACGT core. ABRE and Sph motifs are tightly associated uniquely in the coregulated set of genes showing a strict dependence on VP1 and ABA signaling. Finally, analysis of distribution of the enriched sequences revealed a striking concentration of enriched motifs in a proximal 200-base region of VP1/ABA and cold-regulated promoters. Overall, each class of coregulated genes possesses a discrete set of the enriched motifs with unique distributions in their promoters that may account for the specificity of gene regulation.

  13. Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize

    Directory of Open Access Journals (Sweden)

    Xiaolin eWu

    2015-01-01

    Full Text Available ABA is a major plant hormone that plays important roles during many phases of plant life cycle, including seed development, maturity and dormancy, and especially the acquisition of desiccation tolerance. Understanding of the molecular basis of ABA-mediated plant response to stress is of interest not only in basic research on plant adaptation but also in applied research on plant productivity. Maize mutant viviparous-5 (vp5, deficient in ABA biosynthesis in seeds, is a useful material for studying ABA-mediated response in maize. Due to carotenoid deficiency, vp5 endosperm is white, compared to yellow Vp5 endosperm. However, the background difference at proteome level between vp5 and Vp5 seeds is unclear. This study aimed to characterize proteome alterations of maize vp5 seeds and to identify ABA-dependent proteins during seed maturation. We compared the embryo and endosperm proteomes of vp5 and Vp5 seeds by gel-based proteomics. Up to 46 protein spots, most in embryos, were found to be differentially accumulated between vp5 and Vp5. The identified proteins included small heat shock proteins (sHSPs, late embryogenesis abundant (LEA proteins, stress proteins, storage proteins and enzymes among others. However, EMB564, the most abundant LEA protein in maize embryo, accumulated in comparable levels between vp5 and Vp5 embryos, which contrasted to previously characterized, greatly lowered expression of emb564 mRNA in vp5 embryos. Moreover, LEA proteins and sHSPs displayed differential accumulations in vp5 embryos: six out of eight identified LEA proteins decreased while nine sHSPs increased in abundance. Finally, we discussed the possible causes of global proteome alterations, especially the observed differential accumulation of identified LEA proteins and sHSPs in vp5 embryos. The data derived from this study provides new insight into ABA-dependent proteins and ABA-mediated response during maize seed maturation.

  14. Overexpression of an ABA biosynthesis gene using a stress inducible promoter enhances drought resistance in petunia

    Science.gov (United States)

    Plants respond to drought stress by closing their stomata and reducing transpirational water loss. The plant hormone abscisic acid (ABA) regulates growth and stomatal closure particularly when the plant is under environmental stresses. One of the key enzymes in the ABA biosynthesis of higher plants ...

  15. Medial prefrontal cortex involvement in the expression of extinction and ABA renewal of instrumental behavior for a food reinforcer.

    Science.gov (United States)

    Eddy, Meghan C; Todd, Travis P; Bouton, Mark E; Green, John T

    2016-02-01

    Instrumental renewal, the return of extinguished instrumental responding after removal from the extinction context, is an important model of behavioral relapse that is poorly understood at the neural level. In two experiments, we examined the role of the dorsomedial prefrontal cortex (dmPFC) and the ventromedial prefrontal cortex (vmPFC) in extinction and ABA renewal of instrumental responding for a sucrose reinforcer. Previous work, exclusively using drug reinforcers, has suggested that the roles of the dmPFC and vmPFC in expression of extinction and ABA renewal may depend at least in part on the type of drug reinforcer used. The current experiments used a food reinforcer because the behavioral mechanisms underlying the extinction and renewal of instrumental responding are especially well worked out in this paradigm. After instrumental conditioning in context A and extinction in context B, we inactivated dmPFC, vmPFC, or a more ventral medial prefrontal cortex region by infusing baclofen/muscimol (B/M) just prior to testing in both contexts. In rats with inactivated dmPFC, ABA renewal was still present (i.e., responding increased when returned to context A); however responding was lower (less renewal) than controls. Inactivation of vmPFC increased responding in context B (the extinction context) and decreased responding in context A, indicating no renewal in these animals. There was no effect of B/M infusion on rats with cannula placements ventral to the vmPFC. Fluorophore-conjugated muscimol was infused in a subset of rats following test to visualize infusion spread. Imaging suggested that the infusion spread was minimal and mainly constrained to the targeted area. Together, these experiments suggest that there is a region of medial prefrontal cortex encompassing both dmPFC and vmPFC that is important for ABA renewal of extinguished instrumental responding for a food reinforcer. In addition, vmPFC, but not dmPFC, is important for expression of extinction of

  16. 40 CFR 63.1297 - Standards for slabstock flexible polyurethane foam production-HAP ABA emissions from the...

    Science.gov (United States)

    2010-07-01

    ... polyurethane foam production-HAP ABA emissions from the production line. 63.1297 Section 63.1297 Protection of... foam production—HAP ABA emissions from the production line. (a) Each owner or operator of a new or... § 63.1293(a)(1) shall control HAP ABA emissions from the slabstock polyurethane foam production line in...

  17. 40 CFR 63.1296 - Standards for slabstock flexible polyurethane foam production-HAP ABA equipment leaks.

    Science.gov (United States)

    2010-07-01

    ... polyurethane foam production-HAP ABA equipment leaks. 63.1296 Section 63.1296 Protection of Environment... production—HAP ABA equipment leaks. Each owner or operator of a new or existing slabstock affected source complying with the emission point specific limitation option provided in § 63.1293(a) shall control HAP ABA...

  18. 40 CFR 63.1295 - Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels.

    Science.gov (United States)

    2010-07-01

    ... polyurethane foam production-HAP ABA storage vessels. 63.1295 Section 63.1295 Protection of Environment... production—HAP ABA storage vessels. Each owner or operator of a new or existing slabstock affected source complying with the emission point specific limitation option provided in § 63.1293(a) shall control HAP ABA...

  19. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis

    Science.gov (United States)

    Kwak, June M.; Mori, Izumi C.; Pei, Zhen-Ming; Leonhardt, Nathalie; Torres, Miguel Angel; Dangl, Jeffery L.; Bloom, Rachel E.; Bodde, Sara; Jones, Jonathan D.G.; Schroeder, Julian I.

    2003-01-01

    Reactive oxygen species (ROS) have been proposed to function as second messengers in abscisic acid (ABA) signaling in guard cells. However, the question whether ROS production is indeed required for ABA signal transduction in vivo has not yet been addressed, and the molecular mechanisms mediating ROS production during ABA signaling remain unknown. Here, we report identification of two partially redundant Arabidopsis guard cell-expressed NADPH oxidase catalytic subunit genes, AtrbohD and AtrbohF, in which gene disruption impairs ABA signaling. atrbohD/F double mutations impair ABA-induced stomatal closing, ABA promotion of ROS production, ABA-induced cytosolic Ca2+ increases and ABA- activation of plasma membrane Ca2+-permeable channels in guard cells. Exogenous H2O2 rescues both Ca2+ channel activation and stomatal closing in atrbohD/F. ABA inhibition of seed germination and root elongation are impaired in atrbohD/F, suggesting more general roles for ROS and NADPH oxidases in ABA signaling. These data provide direct molecular genetic and cell biological evidence that ROS are rate-limiting second messengers in ABA signaling, and that the AtrbohD and AtrbohF NADPH oxidases function in guard cell ABA signal transduction. PMID:12773379

  20. ABF2, ABF3, and ABF4 Promote ABA-Mediated Chlorophyll Degradation and Leaf Senescence by Transcriptional Activation of Chlorophyll Catabolic Genes and Senescence-Associated Genes in Arabidopsis.

    Science.gov (United States)

    Gao, Shan; Gao, Jiong; Zhu, Xiaoyu; Song, Yi; Li, Zhongpeng; Ren, Guodong; Zhou, Xin; Kuai, Benke

    2016-09-06

    Chlorophyll (Chl) degradation is an integral process of leaf senescence, and NYE1/SGR1 has been demonstrated as a key regulator of Chl catabolism in diverse plant species. In this study, using yeast one-hybrid screening, we identified three abscisic acid (ABA)-responsive element (ABRE)-binding transcription factors, ABF2 (AREB1), ABF3, and ABF4 (AREB2), as the putative binding proteins of the NYE1 promoter. Through the transactivation analysis, electrophoretic mobility shift assay, and chromatin immunoprecipitation, we demonstrated that ABF2, ABF3, and ABF4 directly bound to and activated the NYE1 promoter in vitro and in vivo. ABA is a positive regulator of leaf senescence, and exogenously applied ABA can accelerate Chl degradation. The triple mutant of the ABFs, abf2abf3abf4, as well as two ABA-insensitive mutants, abi1-1 and snrk2.2/2.3/2.6, exhibited stay-green phenotypes after ABA treatment, along with decreased induction of NYE1 and NYE2 expression. In contrast, overexpression of ABF4 accelerated Chl degradation upon ABA treatment. Interestingly, ABF2/3/4 could also activate the expression of two Chl catabolic enzyme genes, PAO and NYC1, by directly binding to their promoters. In addition, abf2abf3abf4 exhibited a functional stay-green phenotype, and senescence-associated genes (SAGs), such as SAG29 (SWEET15), might be directly regulated by the ABFs. Taken together, our results suggest that ABF2, ABF3, and ABF4 likely act as key regulators in mediating ABA-triggered Chl degradation and leaf senescence in general in Arabidopsis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  1. Degradation and protein release properties of microspheres prepared from biodegradable poly(lactide-co-glycolide) and ABA triblock copolymers: influence of buffer media on polymer erosion and bovine serum albumin release.

    Science.gov (United States)

    Bittner, B; Witt, C; Mäder, K; Kissel, T

    1999-08-05

    The aim of the present study was to investigate the influence of the chemical insertion of poly(ethylene oxide), PEO, into a poly(lactide-co-glycolide), PLG, backbone on the mechanisms of in vitro degradation and erosion of the polymer. For this purpose microspheres prepared by a modified W/O/W double emulsion technique using ABA triblock copolymers, consisting of PLG A-blocks attached to central PEO B-blocks were compared with microspheres prepared from PLG. Due to their molecular architecture the ABA triblock copolymers differed in their erosion and degradation behavior from PLG. Degradation occurred faster in the ABA polymers by cleavage of ester bonds inside the polymer backbone. Even erosion was shown to start immediately after incubation in different buffer media. By varying pH and ionic strength of the buffer it was found that both mass loss and molecular weight decay were accelerated in alkaline and acidic pH in the case of the ABA triblock copolymers. Although the pH of the medium had a moderate influence on the degradation of PLG, the molecular weight decay was not accompanied by a mass loss during the observation time. In a second set of experiments we prepared bovine serum albumin, BSA, loaded microspheres from both polymers. The release of BSA from ABA microspheres under in vitro conditions parallels the faster swelling and erosion rates. This could be confirmed by electron paramagnetic resonance, EPR, measurements with spin labeled albumin where an influx of buffer medium into the ABA microspheres was already observed within a few minutes. In contrast, PLG microspheres revealed a burst release without any erosion. The current study shows that the environmental conditions affected the degradation and erosion of the pure polymer microspheres in the same way as the release of the model protein. This leads to the conclusion that the more favorable degradation profile of the ABA triblock copolymers was responsible for the improvement of the release profile.

  2. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis

    Directory of Open Access Journals (Sweden)

    Kai Shu

    2017-08-01

    Full Text Available Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA while positively mediating abscisic acid (ABA biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN, an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA1, GA3, and GA4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA1/ABA, GA3/ABA, and GA4/ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.

  3. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis.

    Science.gov (United States)

    Shu, Kai; Qi, Ying; Chen, Feng; Meng, Yongjie; Luo, Xiaofeng; Shuai, Haiwei; Zhou, Wenguan; Ding, Jun; Du, Junbo; Liu, Jiang; Yang, Feng; Wang, Qiang; Liu, Weiguo; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Yang, Wenyu

    2017-01-01

    Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN), an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde) level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA 1 , GA 3 , and GA 4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA 1 /ABA, GA 3 /ABA, and GA 4 /ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.

  4. The biological activity of ABA-1-like protein from Ascaris lumbricoides

    OpenAIRE

    武藤, 理穂; 今井, 伸二郎; 手塚, 裕之; 古橋, 裕子; 藤田, 紘一郎

    2001-01-01

    The elevation of non-specific IgE (total IgE) in Ascaris infection can be seen one week after infection, and reaches a peak after approximately two weeks. It has been reported that ABA-1 protein is the main constituent in the pseudocoelomic fluid of Ascaris suum. To investigate the effect of the ABA-1-like protein from Ascaris lumbricoides (ALB), the cDNA was cloned by reverse transcriptase polymerase chain reaction, using original primers based on the consensus sequences of ABA-1 and TBA-1, ...

  5. Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure.

    Science.gov (United States)

    Rodrigues, Olivier; Reshetnyak, Ganna; Grondin, Alexandre; Saijo, Yusuke; Leonhardt, Nathalie; Maurel, Christophe; Verdoucq, Lionel

    2017-08-22

    Stomatal movements are crucial for the control of plant water status and protection against pathogens. Assays on epidermal peels revealed that, similar to abscisic acid (ABA), pathogen-associated molecular pattern (PAMP) flg22 requires the At PIP2;1 aquaporin to induce stomatal closure. Flg22 also induced an increase in osmotic water permeability ( P f ) of guard cell protoplasts through activation of At PIP2;1. The use of HyPer, a genetic probe for intracellular hydrogen peroxide (H 2 O 2 ), revealed that both ABA and flg22 triggered an accumulation of H 2 O 2 in wild-type but not pip2;1 guard cells. Pretreatment of guard cells with flg22 or ABA facilitated the influx of exogenous H 2 O 2 Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) and open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6) were both necessary to flg22-induced P f and both phosphorylated At PIP2;1 on Ser121 in vitro. Accumulation of H 2 O 2 and stomatal closure as induced by flg22 was restored in pip2;1 guard cells by a phosphomimetic form (Ser121Asp) but not by a phosphodeficient form (Ser121Ala) of At PIP2;1. We propose a mechanism whereby phosphorylation of At PIP2;1 Ser121 by BAK1 and/or OST1 is triggered in response to flg22 to activate its water and H 2 O 2 transport activities. This work establishes a signaling role of plasma membrane aquaporins in guard cells and potentially in other cellular context involving H 2 O 2 signaling.

  6. Arabidopsis CPR5 independently regulates seed germination and postgermination arrest of development through LOX pathway and ABA signaling.

    Directory of Open Access Journals (Sweden)

    Guilan Gao

    Full Text Available The phytohormone abscisic acid (ABA and the lipoxygenases (LOXs pathway play important roles in seed germination and seedling growth and development. Here, we reported on the functional characterization of Arabidopsis CPR5 in the ABA signaling and LOX pathways. The cpr5 mutant was hypersensitive to ABA in the seed germination, cotyledon greening and root growth, whereas transgenic plants overexpressing CPR5 were insensitive. Genetic analysis demonstrated that CPR5 gene may be located downstream of the ABI1 in the ABA signaling pathway. However, the cpr5 mutant showed an ABA independent drought-resistant phenotype. It was also found that the cpr5 mutant was hypersensitive to NDGA and NDGA treatment aggravated the ABA-induced delay in the seed germination and cotyledon greening. Taken together, these results suggest that the CPR5 plays a regulatory role in the regulation of seed germination and early seedling growth through ABA and LOX pathways independently.

  7. Unraveling the involvement of ABA in the water deficit-induced modulation of nitrogen metabolism in Medicago truncatula seedlings.

    Science.gov (United States)

    Planchet, Elisabeth; Rannou, Olivier; Ricoult, Claudie; Limami, Anis M

    2011-07-01

    Effects of water deficit and/or abscisic acid (ABA) were investigated on early seedling growth of Medicago truncatula, and on glutamate metabolism under dark conditions. Water deficit (simulated by polyethylene glycol, PEG), ABA and their combination resulted in a reduction in growth rate of the embryo axis, and also in a synergistic increase of free amino acid (AA) content. However, the inhibition of water uptake retention induced by water deficit seemed to occur in an ABA-independent manner. Expression of several genes involved in glutamate metabolism was induced during water deficit, whereas ABA, in combination or not with PEG, repressed them. The only exception came from a gene encoding 1-pyrroline-5-carboxylate synthetase (P5CS) which appeared to be induced in an ABA-dependent manner under water deficit. Our results demonstrate clearly the involvement of an ABA-dependent and an ABA-independent regulatory system, governing growth and glutamate metabolism under water deficit.

  8. Identification and characterization of cis-acting elements involved in the regulation of ABA- and/or GA-mediated LuPLR1 gene expression and lignan biosynthesis in flax (Linum usitatissimum L.) cell cultures.

    Science.gov (United States)

    Corbin, Cyrielle; Renouard, Sullivan; Lopez, Tatiana; Lamblin, Frédéric; Lainé, Eric; Hano, Christophe

    2013-03-15

    Pinoresinol lariciresinol reductase 1, encoded by the LuPLR1 gene in flax (Linum usitatissimum L.), is responsible for the biosynthesis of (+)-secoisolariciresinol, a cancer chemopreventive phytoestrogenic lignan accumulated in high amount in the hull of flaxseed. Our recent studies have demonstrated a key role of abscisic acid (ABA) in the regulation of LuPLR1 gene expression and thus of the (+)-secoisolariciresinol synthesis during the flax seedcoat development. It is well accepted that gibberellins (GA) and ABA play antagonistic roles in the regulation of numerous developmental processes; therefore it is of interest to clarify their respective effects on lignan biosynthesis. Herein, using flax cell suspension cultures, we demonstrate that LuPLR1 gene expression and (+)-secoisolariciresinol synthesis are up-regulated by ABA and down-regulated by GA. The LuPLR1 gene promoter analysis and mutation experiments allow us to identify and characterize two important cis-acting sequences (ABRE and MYB2) required for these regulations. These results imply that a cross-talk between ABA and GA signaling orchestrated by transcription factors is involved in the regulation of lignan biosynthesis. This is particularly evidenced in the case of the ABRE cis-regulatory sequence of LuPLR1 gene promoter that appears to be a common target sequence of GA and ABA signals. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Rapid Quantification of Abscisic Acid by GC-MS/MS for Studies of Abiotic Stress Response.

    Science.gov (United States)

    Verslues, Paul E

    2017-01-01

    Drought and low water potential induce large increases in Abscisic Acid (ABA ) content of plant tissue. This increased ABA content is essential to regulate downstream stress resistance responses; however, the mechanisms regulating ABA accumulation are incompletely known. Thus, the ability to accurately quantify ABA at high throughput and low cost is important for plant stress research. We have combined and modified several previously published protocols to establish a rapid ABA analysis protocol using gas chromatography-tandem mass spectrometry (GC-MS/MS). Derivatization of ABA is performed with (trimethylsilyl)-diazomethane rather than the harder to prepare diazomethane. Sensitivity of the analysis is sufficient that small samples of low water potential treated Arabidopsis thaliana seedlings can be routinely analyzed in reverse genetic studies of putative stress regulators as well as studies of natural variation in ABA accumulation.

  10. cost and returns analysis of catfish marketing in aba south local

    African Journals Online (AJOL)

    The study analyzed the cost and returns of catfish marketing in Aba South ... significantly influenced net income should be considered in policy issues. ... entrepreneur/manager at a profit. .... marketers were well experienced in their business.

  11. Saving of drinking water in cooling system at Aq aba Thermal Power Station

    International Nuclear Information System (INIS)

    Al-Nsour, A.F.

    2001-01-01

    This paper discussing a new modification, design and implementation to the existing cooling water system of boiler drum continuous blow down water at Aq aba Thermal Power Stations to eliminate drinking water consumption as a coolant medium

  12. Cost and returns analysis of catfish marketing in Aba South Local ...

    African Journals Online (AJOL)

    Cost and returns analysis of catfish marketing in Aba South Local Government Area of Abia State, Nigeria. ... The constraints militating against catfish marketing were also identified. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  13. ABA-dependent inhibition of the ubiquitin proteasome system during germination at high temperature in Arabidopsis.

    Science.gov (United States)

    Chiu, Rex Shun; Pan, Shiyue; Zhao, Rongmin; Gazzarrini, Sonia

    2016-12-01

    During germination, endogenous and environmental factors trigger changes in the transcriptome, translatome and proteome to break dormancy. In Arabidopsis thaliana, the ubiquitin proteasome system (UPS) degrades proteins that promote dormancy to allow germination. While research on the UPS has focused on the identification of proteasomal substrates, little information is known about the regulation of its activity. Here we characterized the activity of the UPS during dormancy release and maintenance by monitoring protein ubiquitination and degradation of two proteasomal substrates: Suc-LLVY-AMC, a well characterized synthetic substrate, and FUSCA3 (FUS3), a dormancy-promoting transcription factor degraded by the 26S proteasome. Our data indicate that proteasome activity and protein ubiquitination increase during imbibition at optimal temperature (21°C), and are required for seed germination. However, abscisic acid (ABA) and supraoptimal temperature (32°C) inhibit germination by dampening both protein ubiquitination and proteasome activity. Inhibition of UPS function by high temperature is reduced by the ABA biosynthesis inhibitor, fluridone, and in ABA biosynthetic mutants, suggesting that it is ABA dependent. Accordingly, inhibition of FUS3 degradation at 32°C is also dependent on ABA. Native gels show that inhibition of proteasome activity is caused by interference with the 26S/30S ratio as well as free 19S and 20S levels, impacting the proteasome degradation cycle. Transfer experiments show that ABA-mediated inhibition of proteasome activity at 21°C is restricted to the first 2 days of germination, a time window corresponding to seed sensitivity to environmental and ABA-mediated growth inhibition. Our data show that ABA and high temperature inhibit germination under unfavourable growth conditions by repressing the UPS. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  14. Regulation of carotenoid and ABA accumulation during the development and germination of Nicotiana plumbaginifolia seeds.

    Science.gov (United States)

    Frey, Anne; Boutin, Jean-Pierre; Sotta, Bruno; Mercier, Raphaël; Marion-Poll, Annie

    2006-08-01

    Abscisic acid (ABA) is derived from epoxycarotenoid cleavage and regulates seed development and maturation. A detailed carotenoid analysis was undertaken to study the contribution of epoxycarotenoid synthesis to the regulation of ABA accumulation in Nicotiana plumbaginifolia developing seeds. Maximal accumulation of xanthophylls occurred at mid-development in wild type seeds, when total ABA levels also peaked. In contrast, in ABA-deficient mutants xanthophyll synthesis was delayed, in agreement with the retardation in seed maturation. Seed dormancy was restored in mutants impaired in the conversion of zeaxanthin into violaxanthin by zeaxanthin epoxidase (ZEP), by the introduction of the Arabidopsis AtZEP gene under the control of promoters inducing expression during later stages of seed development compared to wild type NpZEP, and in dry and imbibed seeds. Alterations in the timing and level of ZEP expression did not highly affect the temporal regulation of ABA accumulation in transgenic seeds, despite notable perturbations in xanthophyll accumulation. Therefore, major regulatory control of ABA accumulation might occur downstream of epoxycarotenoid synthesis.

  15. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio.

    Science.gov (United States)

    Shuai, Haiwei; Meng, Yongjie; Luo, Xiaofeng; Chen, Feng; Zhou, Wenguan; Dai, Yujia; Qi, Ying; Du, Junbo; Yang, Feng; Liu, Jiang; Yang, Wenyu; Shu, Kai

    2017-10-03

    Auxin is an important phytohormone which mediates diverse development processes in plants. Published research has demonstrated that auxin induces seed dormancy. However, the precise mechanisms underlying the effect of auxin on seed germination need further investigation, especially the relationship between auxins and both abscisic acid (ABA) and gibberellins (GAs), the latter two phytohormones being the key regulators of seed germination. Here we report that exogenous auxin treatment represses soybean seed germination by enhancing ABA biosynthesis, while impairing GA biogenesis, and finally decreasing GA 1 /ABA and GA 4 /ABA ratios. Microscope observation showed that auxin treatment delayed rupture of the soybean seed coat and radicle protrusion. qPCR assay revealed that transcription of the genes involved in ABA biosynthetic pathway was up-regulated by application of auxin, while expression of genes involved in GA biosynthetic pathway was down-regulated. Accordingly, further phytohormone quantification shows that auxin significantly increased ABA content, whereas the active GA 1 and GA 4 levels were decreased, resulting insignificant decreases in the ratiosGA 1 /ABA and GA 4 /ABA.Consistent with this, ABA biosynthesis inhibitor fluridone reversed the delayed-germination phenotype associated with auxin treatment, while paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Altogether, exogenous auxin represses soybean seed germination by mediating ABA and GA biosynthesis.

  16. ABA Represses the Expression of Cell Cycle Genes and May Modulate the Development of Endodormancy in Grapevine Buds

    Directory of Open Access Journals (Sweden)

    Ricardo Vergara

    2017-05-01

    Full Text Available Recently, the plant hormone abscisic acid (ABA has been implicated as a key player in the regulation of endodormancy (ED in grapevine buds (Vitis vinifera L. In this study, we show that in the vine, the expression of genes related to the biosynthesis of ABA (VvNCED1; VvNCED2 and the content of ABA are significantly higher in the latent bud than at the shoot apex, while the expression of an ABA catabolic gene (VvA8H3 showed no significant difference between either organ. A negative correlation between the content of ABA and transcript levels of cell cycle genes (CCG was found in both tissues. This result suggested that ABA may negatively regulate the expression of CCG in meristematic tissues of grapevines. To test this proposition, the effect of ABA on the expression of CCG was analyzed in two meristematic tissues of the vine: somatic embryos and shoot apexes. The results indicated that cell cycle progression is repressed by ABA in both organs, since it down-regulated the expression of genes encoding cyclin-dependent kinases (VvCDKB1, VvCDKB2 and genes encoding cyclins of type A (VvCYCA1, VvCYCA2, VvCYCA3, B (VvCYCB, and D (VvCYCD3.2a and up-regulated the expression of VvICK5, a gene encoding an inhibitor of CDKs. During ED, the content of ABA increased, and the expression of CCG decreased. Moreover, the dormancy-breaking compound hydrogen cyanamide (HC reduced the content of ABA and up-regulated the expression of CCG, this last effect was abolished when HC and ABA were co-applied. Taken together, these results suggest that ABA-mediated repression of CCG transcription may be part of the mechanism through which ABA modulates the development of ED in grapevine buds.

  17. Abscisic acid analogs as chemical probes for dissection of abscisic acid responses in Arabidopsis thaliana.

    Science.gov (United States)

    Benson, Chantel L; Kepka, Michal; Wunschel, Christian; Rajagopalan, Nandhakishore; Nelson, Ken M; Christmann, Alexander; Abrams, Suzanne R; Grill, Erwin; Loewen, Michele C

    2015-05-01

    Abscisic acid (ABA) is a phytohormone known to mediate numerous plant developmental processes and responses to environmental stress. In Arabidopsis thaliana, ABA acts, through a genetically redundant family of ABA receptors entitled Regulatory Component of ABA Receptor (RCAR)/Pyrabactin Resistant 1 (PYR1)/Pyrabactin Resistant-Like (PYL) receptors comprised of thirteen homologues acting in concert with a seven-member set of phosphatases. The individual contributions of A. thaliana RCARs and their binding partners with respect to specific physiological functions are as yet poorly understood. Towards developing efficacious plant growth regulators selective for specific ABA functions and tools for elucidating ABA perception, a panel of ABA analogs altered specifically on positions around the ABA ring was assembled. These analogs have been used to probe thirteen RCARs and four type 2C protein phosphatases (PP2Cs) and were also screened against representative physiological assays in the model plant Arabidopsis. The 1'-O methyl ether of (S)-ABA was identified as selective in that, at physiologically relevant levels, it regulates stomatal aperture and improves drought tolerance, but does not inhibit germination or root growth. Analogs with the 7'- and 8'-methyl groups of the ABA ring replaced with bulkier groups generally retained the activity and stereoselectivity of (S)- and (R)-ABA, while alteration of the 9'-methyl group afforded an analog that substituted for ABA in inhibiting germination but neither root growth nor stomatal closure. Further in vitro testing indicated differences in binding of analogs to individual RCARs, as well as differences in the enzyme activity resulting from specific PP2Cs bound to RCAR-analog complexes. Ultimately, these findings highlight the potential of a broader chemical genetics approach for dissection of the complex network mediating ABA-perception, signaling and functionality within a given species and modifications in the future design

  18. Determination of ABA-binding proteins contents in subcellular fractions isolated from cotton seedlings using radioimmunoanalysis

    International Nuclear Information System (INIS)

    Tursunkhodjayeva, F.M.

    2004-01-01

    Full text: Knowledge of plants' hormone receptor sites is essential to understanding of the principles of phytohormone action in cells and tissues. The hormone abscisic acid (ABA) takes part in many important physiological processes of plants, including water balance and resistance to salt stress. The detection of salt tolerance in the early stages of ontogenesis is desirable for effective cultivation of cotton. Usually such characteristics are determined visually after genetic analysis of hybrids over several generations. This classic method of genetics requires a long time to grow several generations of cotton plants. In this connection we study ABA-binding protein contents in subcellular fractions isolated from seedlings of several kinds of cotton with different tolerance to salt stress. The contents of ABA-binding protein in nuclei and chloroplasts fractions isolated from cotton seedlings were determined using radioimmunoanalysis. The subcellular fractions were prepared by ultracentrifugation in 0,25 - 2,2 M sucrose gradient. ABA-binding protein was isolated from cotton seedlings by affinity chromatography. The antibodies against ABA-binding protein of cotton were developed in rabbits according standard protocols. Than the antibodies were labelled by radioisotope J 125 according Greenwood et al. It was shown, that the nuclei and chloroplasts fractions isolated from cotton with high tolerance to salt stress contain ABA-binding protein up to 1,5-1,8 times more, than the same fractions from cotton with low tolerance to salt stress. So, the ABA-binding protein contents in cotton seedlings may be considered as a marker for screening of cotton kinds, which may potentially have high tolerance to salt stress

  19. Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit.

    Science.gov (United States)

    Kholová, Jana; Hash, C T; Kumar, P Lava; Yadav, Rattan S; Kocová, Marie; Vadez, Vincent

    2010-03-01

    It was previously shown that pearl millet genotypes carrying a terminal drought tolerance quantitative trait locus (QTL) had a lower transpiration rate (Tr; g cm(-2) d(-1)) under well-watered conditions than sensitive lines. Here experiments were carried out to test whether this relates to leaf abscisic acid (ABA) and Tr concentration at high vapour pressure deficit (VPD), and whether that leads to transpiration efficiency (TE) differences. These traits were measured in tolerant/sensitive pearl millet genotypes, including near-isogenic lines introgressed with a terminal drought tolerance QTL (NIL-QTLs). Most genotypic differences were found under well-watered conditions. ABA levels under well-watered conditions were higher in tolerant genotypes, including NIL-QTLs, than in sensitive genotypes, and ABA did not increase under water stress. Well-watered Tr was lower in tolerant than in sensitive genotypes at all VPD levels. Except for one line, Tr slowed down in tolerant lines above a breakpoint at 1.40-1.90 kPa, with the slope decreasing >50%, whereas sensitive lines showed no change in that Tr response across the whole VPD range. It is concluded that two water-saving (avoidance) mechanisms may operate under well-watered conditions in tolerant pearl millet: (i) a low Tr even at low VPD conditions, which may relate to leaf ABA; and (ii) a sensitivity to higher VPD that further restricts Tr, which suggests the involvement of hydraulic signals. Both traits, which did not lead to TE differences, could contribute to absolute water saving seen in part due to dry weight increase differences. This water saved would become critical for grain filling and deserves consideration in the breeding of terminal drought-tolerant lines.

  20. Effects of ABA application on cessation of shoot elongation in long-day grown Norway spruce seedlings.

    Science.gov (United States)

    Heide, O M

    1986-06-01

    Abscisic acid (ABA) was applied in lanolin to apical buds of Norway spruce (Picea abies (L.) Karst.) seedlings actively growing in a 24 h photoperiod. At a rate of 100 microg per plant, ABA suspended shoot elongation for about three weeks in the majority of plants but failed to induce normal winter buds. The role of ABA in the induction of dormancy is thus uncertain in conifers as well as in deciduous woody plants.

  1. Microarray Analysis of Transcriptional Responses to Abscisic Acid and Salt Stress in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yucheng Wang

    2013-05-01

    Full Text Available Abscisic acid (ABA plays a crucial role in plant responses to abiotic stress. To investigate differences in plant responses to salt and ABA stimulus, differences in gene expression in Arabidopsis in response to salt and ABA were compared using an Agilent oligo microarray. A total of 144 and 139 genes were significantly up- and downregulated, respectively, under NaCl stress, while 406 and 381 genes were significantly up- and downregulated, respectively, under ABA stress conditions. In addition, 31 genes were upregulated by both NaCl and ABA stresses, and 23 genes were downregulated by these stressors, suggesting that these genes may play similar roles in plant responses to salt and ABA stress. Gene ontology (GO analysis revealed four subgroups of genes, including genes in the GO categories “Molecular transducer activity”, “Growth”, “Biological adhesion” and “Pigmentation”, which were expressed in response to ABA stress but not NaCl stress. In addition, genes that play specific roles during salt or ABA stress were identified. Our results may help elucidate differences in the response of plants to salt and ABA stress.

  2. Plastid Located WHIRLY1 Enhances the Responsiveness of Arabidopsis Seedlings Toward Abscisic Acid

    Science.gov (United States)

    Isemer, Rena; Krause, Kirsten; Grabe, Nils; Kitahata, Nobutaka; Asami, Tadao; Krupinska, Karin

    2012-01-01

    WHIRLY1 is a protein that can be translocated from the plastids to the nucleus, making it an ideal candidate for communicating information between these two compartments. Mutants of Arabidopsis thaliana lacking WHIRLY1 (why1) were shown to have a reduced sensitivity toward salicylic acid (SA) and abscisic acid (ABA) during germination. Germination assays in the presence of abamine, an inhibitor of ABA biosynthesis, revealed that the effect of SA on germination was in fact caused by a concomitant stimulation of ABA biosynthesis. In order to distinguish whether the plastid or the nuclear isoform of WHIRLY1 is adjusting the responsiveness toward ABA, sequences encoding either the complete WHIRLY1 protein or a truncated form lacking the plastid transit peptide were overexpressed in the why1 mutant background. In plants overexpressing the full-length sequence, WHIRLY1 accumulated in both plastids and the nucleus, whereas in plants overexpressing the truncated sequence, WHIRLY1 accumulated exclusively in the nucleus. Seedlings containing recombinant WHIRLY1 in both compartments were hypersensitive toward ABA. In contrast, seedlings possessing only the nuclear form of WHIRLY1 were as insensitive toward ABA as the why1 mutants. ABA was furthermore shown to lower the rate of germination of wildtype seeds even in the presence of abamine which is known to inhibit the formation of xanthoxin, the plastid located precursor of ABA. From this we conclude that plastid located WHIRLY1 enhances the responsiveness of seeds toward ABA even when ABA is supplied exogenously. PMID:23269926

  3. On the role of abscisic acid in seed dormancy of red rice.

    Science.gov (United States)

    Gianinetti, Alberto; Vernieri, Paolo

    2007-01-01

    Abscisic acid (ABA) is commonly assumed to be the primary effector of seed dormancy, but conclusive evidence for this role is lacking. This paper reports on the relationships occurring in red rice between ABA and seed dormancy. Content of free ABA in dry and imbibed caryopses, both dormant and after-ripened, the effects of inhibitors, and the ability of applied ABA to revert dormancy breakage were considered. The results indicate: (i) no direct correlation of ABA content with the dormancy status of the seed, either dry or imbibed; (ii) different sensitivity to ABA of non-dormant seed and seed that was forced to germinate by fluridone; and (iii) an inability of exogenous ABA to reinstate dormancy in fluridone-treated seed, even though applied at a pH which favoured high ABA accumulation. These considerations suggest that ABA is involved in regulating the first steps of germination, but unidentified developmental effectors that are specific to dormancy appear to stimulate ABA synthesis and to enforce the responsiveness to this phytohormone. These primary effectors appear physiologically to modulate dormancy and via ABA they effect the growth of the embryo. Therefore, it is suggested that ABA plays a key role in integrating the dormancy-specific developmental signals with the control of growth.

  4. Depletion of abscisic acid levels in roots of flooded Carrizo citrange (Poncirus trifoliata L. Raf. × Citrus sinensis L. Osb.) plants is a stress-specific response associated to the differential expression of PYR/PYL/RCAR receptors.

    Science.gov (United States)

    Arbona, Vicent; Zandalinas, Sara I; Manzi, Matías; González-Guzmán, Miguel; Rodriguez, Pedro L; Gómez-Cadenas, Aurelio

    2017-04-01

    Soil flooding reduces root abscisic acid (ABA) levels in citrus, conversely to what happens under drought. Despite this reduction, microarray analyses suggested the existence of a residual ABA signaling in roots of flooded Carrizo citrange seedlings. The comparison of ABA metabolism and signaling in roots of flooded and water stressed plants of Carrizo citrange revealed that the hormone depletion was linked to the upregulation of CsAOG, involved in ABA glycosyl ester (ABAGE) synthesis, and to a moderate induction of catabolism (CsCYP707A, an ABA 8'-hydroxylase) and buildup of dehydrophaseic acid (DPA). Drought strongly induced both ABA biosynthesis and catabolism (CsNCED1, 9-cis-neoxanthin epoxycarotenoid dioxygenase 1, and CsCYP707A) rendering a significant hormone accumulation. In roots of flooded plants, restoration of control ABA levels after stress release was associated to the upregulation of CsBGLU18 (an ABA β-glycosidase) that cleaves ABAGE. Transcriptional profile of ABA receptor genes revealed a different induction in response to soil flooding (CsPYL5) or drought (CsPYL8). These two receptor genes along with CsPYL1 were cloned and expressed in a heterologous system. Recombinant CsPYL5 inhibited ΔNHAB1 activity in vitro at lower ABA concentrations than CsPYL8 or CsPYL1, suggesting its better performance under soil flooding conditions. Both stress conditions induced ABA-responsive genes CsABI5 and CsDREB2A similarly, suggesting the occurrence of ABA signaling in roots of flooded citrus seedlings. The impact of reduced ABA levels in flooded roots on CsPYL5 expression along with its higher hormone affinity reinforce the role of this ABA receptor under soil-flooding conditions and explain the expression of certain ABA-responsive genes.

  5. Ethylene Responses in Rice Roots and Coleoptiles Are Differentially Regulated by a Carotenoid Isomerase-Mediated Abscisic Acid Pathway[OPEN

    Science.gov (United States)

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice. PMID:25841037

  6. Genome-wide identification and expression analysis of the CaNAC family members in chickpea during development, dehydration and ABA treatments.

    Directory of Open Access Journals (Sweden)

    Chien Van Ha

    Full Text Available The plant-specific NAC transcription factors (TFs play important roles in regulation of diverse biological processes, including development, growth, cell division and responses to environmental stimuli. In this study, we identified the members of the NAC TF family of chickpea (Cicer arietinum and assess their expression profiles during plant development and under dehydration and abscisic acid (ABA treatments in a systematic manner. Seventy-one CaNAC genes were detected from the chickpea genome, including 8 membrane-bound members of which many might be involved in dehydration responses as judged from published literature. Phylogenetic analysis of the chickpea and well-known stress-related Arabidopsis and rice NACs enabled us to predict several putative stress-related CaNACs. By exploring available transcriptome data, we provided a comprehensive expression atlas of CaNACs in various tissues at different developmental stages. With the highest interest in dehydration responses, we examined the expression of the predicted stress-related and membrane-bound CaNACs in roots and leaves of chickpea seedlings, subjected to well-watered (control, dehydration and ABA treatments, using real-time quantitative PCR (RT-qPCR. Nine-teen of the 23 CaNACs examined were found to be dehydration-responsive in chickpea roots and/or leaves in either ABA-dependent or -independent pathway. Our results have provided a solid foundation for selection of promising tissue-specific and/or dehydration-responsive CaNAC candidates for detailed in planta functional analyses, leading to development of transgenic chickpea varieties with improved productivity under drought.

  7. Role of thioproline on seed germination: interaction ROS-ABA and effects on antioxidative metabolism.

    Science.gov (United States)

    Barba-Espin, Gregorio; Nicolas, Eduardo; Almansa, Maria Soledad; Cantero-Navarro, Elena; Albacete, Alfonso; Hernández, José Antonio; Díaz-Vivancos, Pedro

    2012-10-01

    In this work we investigate the effect of the imbibition of pea seeds with different thioproline (TP) concentrations on the germination percentage and the early growth of the seedlings. The interaction between TP and hydrogen peroxide (H₂O₂) treatments is also analysed in order to test if any synergy in germination and growth occurs. Although the imbibition of pea seeds in the presence of TP did not significantly improve the germination percentage, TP and/or H₂O₂ pre-treatments increased seedlings growth. This increase in seedling growth was reduced by abscisic acid (ABA) addition. Imbibition of pea seeds in the presence of ABA also reduced the endogenous H₂O₂ contents of pea seedlings in control and TP-treated seeds. The incubation of pea seeds with TP and/or H₂O₂ in presence or absence of ABA decreased the activity of H₂O₂-scavenging enzymes. The increase of the endogenous H₂O₂ contents observed in TP and/or H₂O₂ treatments in absence of ABA could be correlated with the decrease in these activities. Finally, the hormone profile of pea seedlings was investigated. The results show that the increase in seedling growth is correlated with a decrease in ABA in samples pre-treated with H₂O₂ and TP + H₂O₂. Nevertheless, no significant differences in endogenous ABA concentration were observed with the TP pre-treatment. This paper suggests a relationship between endogenous H₂O₂ contents and plant growth, so reinforcing the intricate crosstalk between reactive oxygen species (ROS) and plant hormones in seed germination signalling and early seedling development. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. Transcriptomic analysis of rice aleurone cells identified a novel abscisic acid response element.

    Science.gov (United States)

    Watanabe, Kenneth A; Homayouni, Arielle; Gu, Lingkun; Huang, Kuan-Ying; Ho, Tuan-Hua David; Shen, Qingxi J

    2017-09-01

    Seeds serve as a great model to study plant responses to drought stress, which is largely mediated by abscisic acid (ABA). The ABA responsive element (ABRE) is a key cis-regulatory element in ABA signalling. However, its consensus sequence (ACGTG(G/T)C) is present in the promoters of only about 40% of ABA-induced genes in rice aleurone cells, suggesting other ABREs may exist. To identify novel ABREs, RNA sequencing was performed on aleurone cells of rice seeds treated with 20 μM ABA. Gibbs sampling was used to identify enriched elements, and particle bombardment-mediated transient expression studies were performed to verify the function. Gene ontology analysis was performed to predict the roles of genes containing the novel ABREs. This study revealed 2443 ABA-inducible genes and a novel ABRE, designated as ABREN, which was experimentally verified to mediate ABA signalling in rice aleurone cells. Many of the ABREN-containing genes are predicted to be involved in stress responses and transcription. Analysis of other species suggests that the ABREN may be monocot specific. This study also revealed interesting expression patterns of genes involved in ABA metabolism and signalling. Collectively, this study advanced our understanding of diverse cis-regulatory sequences and the transcriptomes underlying ABA responses in rice aleurone cells. © 2017 John Wiley & Sons Ltd.

  9. PAISAGEM CULTURAL: AVALIAÇÃO DAS PAISAGENS CÊNICAS DE GUARAQUEÇABA (Cultural landscape: evaluation of scenic landscapes Guaraqueçaba)

    OpenAIRE

    SOUZA, Roberson Miranda; PASSOS, Messias Modesto dos; YAMAKI, Humberto

    2014-01-01

    A Paisagem Cultural do município de Guaraqueçaba que está localizado no Estado do Paraná, na planície costeira, representada no recorte com latitude entre 23º e 26º S e longitude 48º e 54º W, área de difícil acesso. Área de proteção ambiental, sendo Guaraqueçaba situada em uma privilegiada porção preservada de Floresta Tropical Úmida, aproximadamente 500 mil ha, que juntamente com a região Sul do Estado de São Paulo representa a maior área contínua de remanescentes dessa floresta. Deste modo ...

  10. Novel multiple opioid ligands based on 4-aminobenzazepinone (Aba), azepinoindole (Aia) and tetrahydroisoquinoline (Tic) scaffolds

    Science.gov (United States)

    Ballet, Steven; Marczak, Ewa D.; Feytens, Debby; Salvadori, Severo; Sasaki, Yusuke; Abell, Andrew D.; Lazarus, Lawrence H.; Balboni, Gianfranco; Tourwé, Dirk

    2010-01-01

    The dimerization and trimerization of the Dmt-Tic, Dmt-Aia and Dmt-Aba pharmacophores provided multiple ligands which were evaluated in vitro for opioid receptor binding and functional activity. Whereas the Tic- and Aba multimers proved to be dual and balanced δ/μ antagonists, as determined by the functional [S35]GTPγS binding assay, the dimerization of potent Aia-based ‘parent’ ligands unexpectedly resulted in substantial less efficient receptor binding and non-active dimeric compounds. PMID:20137938

  11. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 - and ABA-induced stomatal closing.

    Science.gov (United States)

    Azoulay-Shemer, Tamar; Palomares, Axxell; Bagheri, Andisheh; Israelsson-Nordstrom, Maria; Engineer, Cawas B; Bargmann, Bastiaan O R; Stephan, Aaron B; Schroeder, Julian I

    2015-08-01

    Stomata mediate gas exchange between the inter-cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2 ]. [CO2 ] in leaves mediates stomatal movements. The role of guard cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll-deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard cell specific enhancer trap line. Our data show that more than 90% of guard cells were chlorophyll-deficient. Interestingly, approximately 45% of stomata had an unusual, previously not-described, morphology of thin-shaped chlorophyll-less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole-leaf photosynthetic parameters (PSII, qP, qN, FV '/FM' ) were comparable with wild-type plants. Time-resolved intact leaf gas-exchange analyses showed a reduction in stomatal conductance and CO2 -assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2 ] shifts. Detailed stomatal aperture measurements of normal kidney-shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2 ] elevation and abscisic acid (ABA), while thin-shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2 ] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard cell CO2 and ABA signal transduction are not directly modulated by guard cell photosynthesis/electron transport. Moreover, the finding that chlorophyll-less stomata cause a 'deflated' thin-shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard cell turgor production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  12. The p450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea

    DEFF Research Database (Denmark)

    Siewers, V.; Smedsgaard, Jørn; Tudzynski, P.

    2004-01-01

    The phytopathogenic ascomycete Botrytis cinerea is known to produce abscisic acid (ABA), which is thought to be involved in host-pathogen interaction. Biochemical analyses had previously shown that, in contrast to higher plants, the fungal ABA biosynthesis probably does not proceed via carotenoids...

  13. Parents' Experiences of Applied Behaviour Analysis (ABA)-Based Interventions for Children Diagnosed with Autistic Spectrum Disorder

    Science.gov (United States)

    McPhilemy, Catherine; Dillenburger, Karola

    2013-01-01

    Applied behaviour analysis (ABA)-based programmes are endorsed as the gold standard for treatment of children with autistic spectrum disorder (ASD) in most of North America. This is not the case in most of Europe, where instead a non-specified "eclectic" approach is adopted. We explored the social validity of ABA-based interventions with…

  14. Hormonal control of seed development in gibberellin- and ABA-deficient tomato (Lycopersicon esculentum Mill. cv. Moneymaker) mutants

    NARCIS (Netherlands)

    Castro, de R.D.; Hilhorst, H.W.M.

    2006-01-01

    Developing seeds of tomato gibberellin (GA)-deficient gib1 and abscisic acid (ABA)-deficient sitw mutants enabled us to analyze the role of GA in the regulation of embryo histo-differentiation, and the role of ABA in the regulation of maturation and quiescence. Our data show that DNA synthesis and

  15. Modelling of root ABA synthesis, stomatal conductance, transpiration and potato production under water saving irrigation regimes

    DEFF Research Database (Denmark)

    Plauborg, Finn; Abrahamsen, Per; Gjettermann, Birgitte

    2010-01-01

    . Experimental data was compared to simulated results from the new enhanced Daisy model which include modelling 2D soil water flow, abscisic acid (ABA) signalling and its effect on stomatal conductance and hence on transpiration and assimilation, and finally crop yield. The results demonstrated that the enhanced...

  16. Levels of ABA, its precursors and dehydrin-like proteins during ...

    African Journals Online (AJOL)

    2Department of Molecular Biology and Biotechnology, University of Dar es Salaam,. P.O Box 35179, Dar ... to combat stress. Levels of ABA and proteins that cross reacted with an anti – dehydrin ...... Cambridge, Melbourne). Wang, X.-Q., Ullah ...

  17. Levels of ABA, its precursors and dehydrin-like proteins during ...

    African Journals Online (AJOL)

    Abstract—Abscisic acid (ABA) and dehydrin proteins are thought to confer tolerance to plant tissue under physiological stress and drought. Rhizophora mucronata, a true mangrove species, is subjected to physiological drought from fluctuating high saline conditions where leaf loss or senescence is considered a possible ...

  18. Integrating role of ethylene and ABA in tomato plants adaptation to salt stress

    DEFF Research Database (Denmark)

    Amjad, Muhammad; Akhtar, Javaid; Anwar-ul-Haq, Muhammad

    2014-01-01

    concentrations of ABA and ethylene under saline conditions compared to control (0mM NaCl) and salt-sensitive genotype. The concentration of hormones was significantly higher in the treatment where no K was applied and it was lower in treatments where K was applied indicating that K application reduced...

  19. Effects of dormancy-breaking chemicals on ABA levels in barley grain embryos

    NARCIS (Netherlands)

    Wang, M.; Meulen, R.M. van der; Visser, K.; Schalk, H.P. van; Duijn, B. van; Boer, A.H. de

    1998-01-01

    The endogenous ABA contents of dormant and nondormant barley grains were determined following application of different compounds to break dormancy. The chemicals used for breaking of dormancy in intact dormant grains were weak and strong acids, alcohols,. hydrogen peroxide, cyanide, nitrate,

  20. Genome Sequence of Jumbo Phage vB_AbaM_ME3 of Acinetobacter baumanni.

    Science.gov (United States)

    Buttimer, Colin; O'Sullivan, Lisa; Elbreki, Mohamed; Neve, Horst; McAuliffe, Olivia; Ross, R Paul; Hill, Colin; O'Mahony, Jim; Coffey, Aidan

    2016-08-25

    Bacteriophage (phage) vB_AbaM_ME3 was previously isolated from wastewater effluent using the propagating host Acinetobacter baumannii DSM 30007. The full genome was sequenced, revealing it to be the largest Acinetobacter bacteriophage sequenced to date with a size of 234,900 bp and containing 326 open reading frames (ORFs). Copyright © 2016 Buttimer et al.

  1. Genome Sequence of Jumbo Phage vB_AbaM_ME3 of Acinetobacter baumanni

    OpenAIRE

    Buttimer, Colin; O?Sullivan, Lisa; Elbreki, Mohamed; Neve, Horst; McAuliffe, Olivia; Ross, R. Paul; Hill, Colin; O?Mahony, Jim; Coffey, Aidan

    2016-01-01

    Bacteriophage (phage) vB_AbaM_ME3 was previously isolated from wastewater effluent using the propagating host Acinetobacter baumannii DSM 30007. The full genome was sequenced, revealing it to be the largest Acinetobacter bacteriophage sequenced to date with a size of 234,900 bp and containing 326 open reading frames (ORFs).

  2. The biological activity of ABA-1-like protein from Ascaris lumbricoides.

    Science.gov (United States)

    Muto, R; Imai, S; Tezuka, H; Furuhashi, Y; Fujita, K

    2001-09-01

    The elevation of non-specific IgE (total IgE) in Ascaris infection can be seen one week after infection, and reaches a peak after approximately two weeks. It has been reported that ABA-1 protein is the main constituent in the pseudocoelomic fluid of Ascaris suum. To investigate the effect of the ABA-1-like protein from Ascaris lumbricoides (ALB), the cDNA was cloned by reverse transcriptase polymerase chain reaction, using original primers based on the consensus sequences of ABA-1 and TBA-1, that is an ABA-1-like protein from Toxocara canis. The clone was sequenced, we constructed the recombinant polyprotein of ALB (rALB14 and rALB7) based on the ALB sequence, and rALB was administrated to BALB/c mice. Fourteen days after inoculation with rALB14 which is the full length of ALB, the elevation of total IgE which we supposed to contain non-specific IgE was observed, and the results were as we expected. Furthermore, in an in-vitro experiment, we confirmed that the spleen cells proliferated when stimulated by rALB14 and concanavalin A. Therefore, the whole conformation of ALB is considered to be involved in the elevation of non-specific IgE, and is involved in the activation of T cells.

  3. Bringing ABA into Early Childhood Routines to Meet the Needs of Young Children with ASD

    Science.gov (United States)

    Leach, Debra

    2014-01-01

    It is well documented that applied behavior analysis (ABA) approaches to intervention for young children with ASD have a strong evidence-base. Although federal special education law mandates that early intervention services and supports be implemented within the natural environment to the maximum extent appropriate, many young children with ASD…

  4. Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated Arabidopsis seeds

    NARCIS (Netherlands)

    Maia de Oliveira, J.; Dekkers, S.J.W.; Dolle, M.; Ligterink, W.; Hilhorst, H.W.M.

    2014-01-01

    During germination, orthodox seeds lose their desiccation tolerance (DT) and become sensitive to extreme drying. Yet, DT can be rescued, in a well-defined developmental window, by the application of a mild osmotic stress before dehydration. A role for abscisic acid (ABA) has been implicated in this

  5. Role of protein farnesylation events in the ABA-mediated regulation of the Pinoresinol-Lariciresinol Reductase 1 (LuPLR1) gene expression and lignan biosynthesis in flax (Linum usitatissimum L.).

    Science.gov (United States)

    Corbin, Cyrielle; Decourtil, Cédric; Marosevic, Djurdjica; Bailly, Marlène; Lopez, Tatiana; Renouard, Sullivan; Doussot, Joël; Dutilleul, Christelle; Auguin, Daniel; Giglioli-Guivarc'h, Nathalie; Lainé, Eric; Lamblin, Frédéric; Hano, Christophe

    2013-11-01

    A Linum usitatissimum LuERA1 gene encoding a putative ortholog of the ERA1 (Enhanced Response to ABA 1) gene of Arabidopsis thaliana (encoding the beta subunit of a farnesyltransferase) was analyzed in silico and for its expression in flax. The gene and the protein sequences are highly similar to other sequences already characterized in plants and all the features of a farnesyltransferase were detected. Molecular modeling of LuERA1 protein confirmed its farnesyltransferase nature. LuERA1 is expressed in the vegetative organs and also in the outer seedcoat of the flaxseed, where it could modulate the previously observed regulation operated by ABA on lignan synthesis. This effect could be mediated by the regulation of the transcription of a key gene for lignan synthesis in flax, the LuPLR1 gene, encoding a pinoresinol lariciresinol reductase. The positive effect of manumycin A, a specific inhibitor of farnesyltransferase, on lignan biosynthesis in flax cell suspension systems supports the hypothesis of the involvement of such an enzyme in the negative regulation of ABA action. In Arabidopsis, ERA1 is able to negatively regulate the ABA effects and the mutant era1 has an enhanced sensitivity to ABA. When expressed in an Arabidopsis cell suspension (heterologous system) LuERA1 is able to reverse the effect of the era1 mutation. RNAi experiments in flax targeting the farnesyltransferase β-subunit encoded by the LuERA1 gene led to an increase LuPLR1 expression level associated with an increased content of lignan in transgenic calli. Altogether these results strongly suggest a role of the product of this LuERA1 gene in the ABA-mediated upregulation of lignan biosynthesis in flax cells through the activation of LuPLR1 promoter. This ABA signaling pathway involving ERA1 probably acts through the ABRE box found in the promoter sequence of LuPLR1, a key gene for lignan synthesis in flax, as demonstrated by LuPLR1 gene promoter-reporter experiments in flax cells using wild

  6. Profiling ABA metabolites in Nicotiana tabacum L. leaves by ultra-performance liquid chromatography-electrospray tandem mass spectrometry.

    Science.gov (United States)

    Turecková, Veronika; Novák, Ondrej; Strnad, Miroslav

    2009-11-15

    We have developed a simple method for extracting and purifying (+)-abscisic acid (ABA) and eight ABA metabolites--phaseic acid (PA), dihydrophaseic acid (DPA), neophaseic acid (neoPA), ABA-glucose ester (ABAGE), 7'-hydroxy-ABA (7'-OH-ABA), 9'-hydroxy-ABA (9'-OH-ABA), ABAaldehyde, and ABAalcohol--before analysis by a novel technique for these substances, ultra-performance liquid chromatography-electrospray ionisation tandem mass spectrometry (UPLC-ESI-MS/MS). The procedure includes addition of deuterium-labelled standards, extraction with methanol-water-acetic acid (10:89:1, v/v), simple purification by Oasis((R)) HLB cartridges, rapid chromatographic separation by UPLC, and sensitive, accurate quantification by MS/MS in multiple reaction monitoring modes. The detection limits of the technique ranged between 0.1 and 1 pmol for ABAGE and ABA acids in negative ion mode, and 0.01-0.50 pmol for ABAGE, ABAaldehyde, ABAalcohol and the methylated acids in positive ion mode. The fast liquid chromatographic separation and analysis of ABA and its eight measured derivatives by UPLC-ESI-MS/MS provide rapid, accurate and robust quantification of most of the substances, and the low detection limits allow small amounts of tissue (1-5mg) to be used in quantitative analysis. To demonstrate the potential of the technique, we isolated ABA and its metabolites from control and water-stressed tobacco leaf tissues then analysed them by UPLC-ESI-MS/MS. Only ABA, PA, DPA, neoPA, and ABAGE were detected in the samples. PA was the most abundant analyte (ca. 1000 pmol/g f.w.) in both the control and water-stressed tissues, followed by ABAGE and DPA, which were both present at levels ca. 5-fold lower. ABA levels were at least 100-fold lower than PA concentrations, but they increased following the water stress treatment, while ABAGE, PA, and DPA levels decreased. Overall, the technique offers substantial improvements over previously described methods, enabling the detailed, direct study of

  7. The glutamate carboxypeptidase AMP1 mediates abscisic acid and abiotic stress responses in Arabidopsis.

    Science.gov (United States)

    Shi, Yiting; Wang, Zheng; Meng, Pei; Tian, Siqi; Zhang, Xiaoyan; Yang, Shuhua

    2013-07-01

    ALTERED MERISTEM PROGRAM1 (AMP1) encodes a glutamate carboxypeptidase that plays an important role in shoot apical meristem development and phytohormone homeostasis. We isolated a new mutant allele of AMP1, amp1-20, from a screen for abscisic acid (ABA) hypersensitive mutants and characterized the function of AMP1 in plant stress responses. amp1 mutants displayed ABA hypersensitivity, while overexpression of AMP1 caused ABA insensitivity. Moreover, endogenous ABA concentration was increased in amp1-20- and decreased in AMP1-overexpressing plants under stress conditions. Application of ABA reduced the AMP1 protein level in plants. Interestingly, amp1 mutants accumulated excess superoxide and displayed hypersensitivity to oxidative stress. The hypersensitivity of amp1 to ABA and oxidative stress was partially rescued by reactive oxygen species (ROS) scavenging agent. Furthermore, amp1 was tolerant to freezing and drought stress. The ABA hypersensitivity and freezing tolerance of amp1 was dependent on ABA signaling. Moreover, amp1 had elevated soluble sugar content and showed hypersensitivity to high concentrations of sugar. By contrast, the contents of amino acids were changed in amp1 mutant compared to the wild-type. This study suggests that AMP1 modulates ABA, oxidative and abotic stress responses, and is involved in carbon and amino acid metabolism in Arabidopsis. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. Genome-Wide Analysis of the RAV Family in Soybean and Functional Identification of GmRAV-03 Involvement in Salt and Drought Stresses and Exogenous ABA Treatment

    Directory of Open Access Journals (Sweden)

    Shu-Ping Zhao

    2017-06-01

    Full Text Available Transcription factors play vital roles in plant growth and in plant responses to abiotic stresses. The RAV transcription factors contain a B3 DNA binding domain and/or an APETALA2 (AP2 DNA binding domain. Although genome-wide analyses of RAV family genes have been performed in several species, little is known about the family in soybean (Glycine max L.. In this study, a total of 13 RAV genes, named as GmRAVs, were identified in the soybean genome. We predicted and analyzed the amino acid compositions, phylogenetic relationships, and folding states of conserved domain sequences of soybean RAV transcription factors. These soybean RAV transcription factors were phylogenetically clustered into three classes based on their amino acid sequences. Subcellular localization analysis revealed that the soybean RAV proteins were located in the nucleus. The expression patterns of 13 RAV genes were analyzed by quantitative real-time PCR. Under drought stresses, the RAV genes expressed diversely, up- or down-regulated. Following NaCl treatments, all RAV genes were down-regulated excepting GmRAV-03 which was up-regulated. Under abscisic acid (ABA treatment, the expression of all of the soybean RAV genes increased dramatically. These results suggested that the soybean RAV genes may be involved in diverse signaling pathways and may be responsive to abiotic stresses and exogenous ABA. Further analysis indicated that GmRAV-03 could increase the transgenic lines resistance to high salt and drought and result in the transgenic plants insensitive to exogenous ABA. This present study provides valuable information for understanding the classification and putative functions of the RAV transcription factors in soybean.

  9. Intracellular compartimentation of abscisic acid (ABA) in guard cells and mesophyll cells under exposure to SO sub 2. Kompartimentierung von Abscisinsaeure (ABA) in Schliess- und Mesophyllzellen unter SO sub 2 -Belastung

    Energy Technology Data Exchange (ETDEWEB)

    Baier, M.; Daeter, W.; Hartung, W. (Wuerzburg Univ. (Germany, F.R.). Lehrstuhl fuer Botanik 1)

    1989-07-01

    The effect of SO{sub 2} on the intracellular compartimentation of ABA in guard cells and mesophyll cells of Valerianella locusta was investigated, using the efflux compartmental analysis, as described by Behl and Hartung (1986). The cytoplasmic ABA content of the guard cells was reduced drastically by 6 {mu}molxm{sup -3} SO{sub 2} (20% of the controls). The vacuolar content was decreased less dramatically (70% of the controls). The ABA distribution of mesophyll cells remained uneffected by 6 {mu}molxm{sup -3} SO{sub 2}. The SO{sub 2} effects are explained by an acidification of the compartments. (orig.).

  10. ABA suppresses Botrytis cinerea elicited NO production in tomato to influence H2O2 generation and increase host susceptibility

    Directory of Open Access Journals (Sweden)

    Anushen eSivakumaran

    2016-05-01

    Full Text Available Abscisic acid (ABA production has emerged a susceptibility factor in plant-pathogen interactions. This work examined the interaction of ABA with NO in tomato following challenge with the ABA-synthesising pathogen, Botrytis cinerea. Trace gas detection using a quantum cascade laser detected NO production within minutes of challenge with B. cinerea whilst photoacoustic laser detection detected ethylene production – an established mediator of defence against this pathogen - occurring after 6 h. Application of the NO generation inhibitor N-Nitro-L-arginine methyl ester (L-NAME suppressed both NO and ethylene production and resistance against B. cinerea. The tomato mutant sitiens fails to accumulate ABA (abscisic acid, shows increased resistance to B. cinerea and we noted exhibited elevated NO and ethylene production. Exogenous application of L-NAME or ABA reduced NO production in sitiens and reduced resistance to B. cinerea. Increased resistance to B. cinerea in sitiens have previously been linked to increased reactive oxygen species (ROS generation but this was reduced in both L-NAME and ABA treated sitiens. Taken together, our data suggests that ABA can decreases resistance to B. cinerea via reduction of NO production which also suppresses both ROS and ethylene production.

  11. Validation of functional fetal autonomic brain age score fABAS in 5 min short recordings

    International Nuclear Information System (INIS)

    Hoyer, Dirk; Kowalski, Eva-Maria; Schmidt, Alexander; Witte, Otto W; Schneider, Uwe; Schleußner, Ekkehard; Hatzmann, Wolfgang; Grönemeyer, Dietrich HW; Van Leeuwen, Peter

    2015-01-01

    With the objective of evaluating the functional maturation age and developmental disturbances we have previously introduced the fetal autonomic brain age score (fABAS) using 30 min fetal magnetocardiographic recordings (fMCG, Jena). The score is based on heart rate pattern indices that are related to universal principles of developmental biology. The present work aims at the validation of the fABAS methodology on 5 min recordings from an independent database (fMCG, Bochum).We found high agreement of fABAS obtained from Jena normal fetuses (5 min subsets, n  =  364) and Bochum recordings (n  =  322, normal fetuses). fABAS of 48 recordings from fetuses with intra-uterine growth restriction (IUGR, Bochum) was reduced in most of the cases, a result consistent with IUGR fetuses from Jena previously reported. fABAS calculated from 5 min snapshots only partly covers the accuracy when compared to fABAS from 30 min recordings. More precise diagnosis requires longer recordings.fABAS obtained from fMCG recordings is a strong candidate for standardized assessment of functional maturation age and developmental disturbances. Even 5 min recordings seem to be valuable for screening for maturation problems. (paper)

  12. Scrotoschisis in Aba, South East Nigeria: A case report

    African Journals Online (AJOL)

    Ndukauba Eleweke

    2018-02-21

    Feb 21, 2018 ... E-mail address: ndeleweke@yahoo.ca (N. Eleweke). Peer review under responsibility of Pan African Urological Surgeons'. Association. suchcaseshavebeendescribedintheEnglishliterature[1,2].Shukla et al. [1] and Ameh et al. [2] have reported cases of scrotoschisis in. Northern Nigeria. This is the first case ...

  13. Importance of Abscisic Acid (ABA in the In Vitro Conservation of Cassava (Manihot esculenta Crantz Importancia del Ácido Abscísico (ABA en la Conservación In Vitro de la Yuca (Manihot esculenta Crantz

    Directory of Open Access Journals (Sweden)

    L. Pedro Barrueto Cid

    2008-09-01

    Full Text Available The conventional technology for in vitro plant conservation for cassava (Manihot esculenta Crantz germplasm collections is laborious due to the need for several sub-culturing procedures per year. This practice implies high costs for medium preparation, tissue culture tubes, time-consuming labor, risks of contamination, mislabeling of accession, and the need for large growth chambers. We have developed a new procedure using in vitro cultivated nodal axillary buds treated with different abscisic acid (ABA concentrations to reduce the time for recycling transplants cultivated in a SP basic nutritive medium. Nodal explants were stored for three months with ABA. Plants were obtained after nodal axillary buds were placed in SP medium without ABA. Results indicated that 20 and 30 mM ABA induced bud dormancy and delayed sprouting without affecting subsequent growth of plants after treatment.La tecnología usual para conservación in vitro de colecciones de germoplasma de yuca (Manihotesculenta Crantz es corrientemente laboriosa y emplea varias transferencias por año. Este procedimiento envuelve altos costos en preparación de medios, consumo de tiempo, riesgos de manipulación y necesidad de mucho espacio para la mantención de colecciones en cámaras de cultivos. Se desarrolló un nuevo procedimiento usando yemas axilares nodales cultivadas in vitro con diferentes concentraciones de ácido abscísico (ABA, con el objetivo de reducir los ciclos de transferencia de los cultivos mantenidos en un medio nutritivo básico tal como el SP. Los segmentos nodales fueron almacenados por tres meses en presencia de ABA. Las plantas fueron obtenidas después que los segmentos nodales fueron transferidos al medio SP sin ABA. Los resultados indican que 20 y 30 mM de ABA indujeron una completa dormancia de yemas, sin afectar el desarrollo posterior de las yemas nodales y su consecuente conversión en planta.

  14. Is salinity tolerance of rice lines concerned to endogenous ABA ...

    African Journals Online (AJOL)

    In this work we tested its putative relationship of Abscisic acid with the degree of tolerance to this abiotic stress. For this purpose, we have examined the responses of sensitive (IR29) and tolerant (IR651) varieties of indica rice (Oryza sativa L.) to a range of salinity (0 (control) and 90 mM NaCl. Shoot and root dry weight ...

  15. Quantum Hall Effect and Semimetallic Behavior of Dual-Gated ABA-Stacked Trilayer Graphene

    Directory of Open Access Journals (Sweden)

    E. A. Henriksen

    2012-01-01

    Full Text Available The electronic structure of multilayer graphenes depends strongly on the number of layers as well as the stacking order. Here we explore the electronic transport of purely ABA-stacked trilayer graphenes in a dual-gated field-effect device configuration. We find both that the zero-magnetic-field transport and the quantum Hall effect at high magnetic fields are distinctly different from the monolayer and bilayer graphenes, and that they show electron-hole asymmetries that are strongly suggestive of a semimetallic band overlap. When the ABA trilayers are subjected to an electric field perpendicular to the sheet, Landau-level splittings due to a lifting of the valley degeneracy are clearly observed.

  16. Conceptos generales sobre ABA en niños con trastorno del espectro autista

    Directory of Open Access Journals (Sweden)

    Sandra Elizabeth Piñeros Ortiz

    2012-01-01

    Full Text Available Los trastornos del espectro autista (TEA son entidades que generan discapacidad. Diversas intervenciones psicofarmacológicas y psicosociales modulan algunas de las alteraciones comportamentales asociadas y mejoran la calidad de vida de las personas afectadas y de sus cuidadores. La terapia ABA es una de las intervenciones psicosociales más conocidas y utilizada en población con TEA. Mediante de la  formulación de preguntas clave y sus respuestas, este artículo realiza una breve descripción de los aspectos históricos, las principales características y los fundamentos teóricos del ABA. Se discuten los resultados de diversos estudios que señalan las limitaciones metodológicas de las investigaciones sobre  la efectividad de esta terapia y sus implicaciones para la práctica clínica.

  17. Time-series of the re-establishment of desiccation tolerance by ABA in germinated Arabidopsis thaliana seeds

    NARCIS (Netherlands)

    Dias Costa, Maria; Righetti, K.; Ligterink, Wilco; Buitink, J.; Hilhorst, Henk

    2015-01-01

    Mature seeds of Arabidopsis thaliana are desiccation tolerant, but they lose DT while progressing to germination. Yet, there is a small developmental window during which DT can be rescued by treatment with abscisic acid (ABA).

  18. ABA, GA(3), and nitrate may control seed germination of Crithmum maritimum (Apiaceae) under saline conditions.

    Science.gov (United States)

    Atia, Abdallah; Debez, Ahmed; Barhoumi, Zouhaier; Smaoui, Abderrazak; Abdelly, Chedly

    2009-08-01

    Impaired germination is common among halophyte seeds exposed to salt stress, partly resulting from the salt-induced reduction of the growth regulator contents in seeds. Thus, the understanding of hormonal regulation during the germination process is a main key: (i) to overcome the mechanisms by which NaCl-salinity inhibit germination; and (ii) to improve the germination of these species when challenged with NaCl. In the present investigation, the effects of ABA, GA(3), NO(-)(3), and NH(+)(4) on the germination of the oilseed halophyte Crithmum maritimum (Apiaceae) were assessed under NaCl-salinity (up to 200 mM NaCl). Seeds were collected from Tabarka rocky coasts (N-W of Tunisia). The exogenous application of GA(3), nitrate (either as NaNO(3) or KNO(3)), and NH(4)Cl enhanced germination under NaCl salinity. The beneficial impact of KNO(3) on germination upon seed exposure to NaCl salinity was rather due to NO(-)(3) than to K(+), since KCl failed to significantly stimulate germination. Under optimal conditions for germination (0 mM NaCl), ABA inhibited germination over time in a dose dependent manner, but KNO(3) completely restored the germination parameters. Under NaCl salinity, the application of fluridone (FLU) an inhibitor of ABA biosynthesis, stimulated substantially seed germination. Taken together, our results point out that NO(-)(3) and GA(3) mitigate the NaCl-induced reduction of seed germination, and that NO(-)(3) counteracts the inhibitory effect of ABA on germination of C. maritimum.

  19. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis

    OpenAIRE

    Kai Shu; Ying Qi; Feng Chen; Yongjie Meng; Xiaofeng Luo; Haiwei Shuai; Wenguan Zhou; Jun Ding; Junbo Du; Jiang Liu; Feng Yang; Qiang Wang; Weiguo Liu; Taiwen Yong; Xiaochun Wang

    2017-01-01

    Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease i...

  20. TRICARE Applied Behavior Analysis (ABA) Benefit: Comparison with Medicaid and Commercial Benefits.

    Science.gov (United States)

    Maglione, Margaret; Kadiyala, Srikanth; Kress, Amii; Hastings, Jaime L; O'Hanlon, Claire E

    2017-01-01

    This study compared the Applied Behavior Analysis (ABA) benefit provided by TRICARE as an early intervention for autism spectrum disorder with similar benefits in Medicaid and commercial health insurance plans. The sponsor, the Office of the Under Secretary of Defense for Personnel and Readiness, was particularly interested in how a proposed TRICARE reimbursement rate decrease from $125 per hour to $68 per hour for ABA services performed by a Board Certified Behavior Analyst compared with reimbursement rates (defined as third-party payment to the service provider) in Medicaid and commercial health insurance plans. Information on ABA coverage in state Medicaid programs was collected from Medicaid state waiver databases; subsequently, Medicaid provider reimbursement data were collected from state Medicaid fee schedules. Applied Behavior Analysis provider reimbursement in the commercial health insurance system was estimated using Truven Health MarketScan® data. A weighted mean U.S. reimbursement rate was calculated for several services using cross-state information on the number of children diagnosed with autism spectrum disorder. Locations of potential provider shortages were also identified. Medicaid and commercial insurance reimbursement rates varied considerably across the United States. This project concluded that the proposed $68-per-hour reimbursement rate for services provided by a board certified analyst was more than 25 percent below the U.S. mean.

  1. Lipid profiling demonstrates that suppressing Arabidopsis phospholipase Dδ retards ABA-promoted leaf senescence by attenuating lipid degradation.

    Directory of Open Access Journals (Sweden)

    Yanxia Jia

    Full Text Available Senescence is the last phase of the plant life cycle and has an important role in plant development. Degradation of membrane lipids is an essential process during leaf senescence. Several studies have reported fundamental changes in membrane lipids and phospholipase D (PLD activity as leaves senesce. Suppression of phospholipase Dα1 (PLDα1 retards abscisic acid (ABA-promoted senescence. However, given the absence of studies that have profiled changes in the compositions of membrane lipid molecules during leaf senescence, there is no direct evidence that PLD affects lipid composition during the process. Here, we show that application of n-butanol, an inhibitor of PLD, and N-Acylethanolamine (NAE 12∶0, a specific inhibitor of PLDα1, retarded ABA-promoted senescence to different extents. Furthermore, phospholipase Dδ (PLDδ was induced in leaves treated with ABA, and suppression of PLDδ retarded ABA-promoted senescence in Arabidopsis. Lipid profiling revealed that detachment-induced senescence had different effects on plastidic and extraplastidic lipids. The accelerated degradation of plastidic lipids during ABA-induced senescence in wild-type plants was attenuated in PLDδ-knockout (PLDδ-KO plants. Dramatic increases in phosphatidic acid (PA and decreases in phosphatidylcholine (PC during ABA-induced senescence were also suppressed in PLDδ-KO plants. Our results suggest that PLDδ-mediated hydrolysis of PC to PA plays a positive role in ABA-promoted senescence. The attenuation of PA formation resulting from suppression of PLDδ blocks the degradation of membrane lipids, which retards ABA-promoted senescence.

  2. Spread of carbapenem-resistant Acinetobacter baumannii global clone 2 in Asia and AbaR-type resistance islands.

    Science.gov (United States)

    Kim, Dae Hun; Choi, Ji-Young; Kim, Hae Won; Kim, So Hyun; Chung, Doo Ryeon; Peck, Kyong Ran; Thamlikitkul, Visanu; So, Thomas Man-Kit; Yasin, Rohani M D; Hsueh, Po-Ren; Carlos, Celia C; Hsu, Li Yang; Buntaran, Latre; Lalitha, M K; Song, Jae-Hoon; Ko, Kwan Soo

    2013-11-01

    In this surveillance study, we identified the genotypes, carbapenem resistance determinants, and structural variations of AbaR-type resistance islands among carbapenem-resistant Acinetobacter baumannii (CRAB) isolates from nine Asian locales. Clonal complex 92 (CC92), corresponding to global clone 2 (GC2), was the most prevalent in most Asian locales (83/108 isolates; 76.9%). CC108, or GC1, was a predominant clone in India. OXA-23 oxacillinase was detected in CRAB isolates from most Asian locales except Taiwan. blaOXA-24 was found in CRAB isolates from Taiwan. AbaR4-type resistance islands, which were divided into six subtypes, were identified in most CRAB isolates investigated. Five isolates from India, Malaysia, Singapore, and Hong Kong contained AbaR3-type resistance islands. Of these, three isolates harbored both AbaR3- and AbaR4-type resistance islands simultaneously. In this study, GC2 was revealed as a prevalent clone in most Asian locales, with the AbaR4-type resistance island predominant, with diverse variants. The significance of this study lies in identifying the spread of global clones of carbapenem-resistant A. baumannii in Asia.

  3. Transcriptional regulation of genes encoding ABA metabolism enzymes during the fruit development and dehydration stress of pear 'Gold Nijisseiki'.

    Science.gov (United States)

    Dai, Shengjie; Li, Ping; Chen, Pei; Li, Qian; Pei, Yuelin; He, Suihuan; Sun, Yufei; Wang, Ya; Kai, Wenbin; Zhao, Bo; Liao, Yalan; Leng, Ping

    2014-09-01

    To investigate the contribution of abscisic acid (ABA) in pear 'Gold Nijisseiki' during fruit ripening and under dehydration stress, two cDNAs (PpNCED1 and PpNCED2) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) (a key enzyme in ABA biosynthesis), two cDNAs (PpCYP707A1 and PpCYP707A2) which encode 8'-hydroxylase (a key enzyme in the oxidative catabolism of ABA), one cDNA (PpACS3) which encodes 1-aminocyclopropane-1-carboxylic acid (ACC), and one cDNA (PpACO1) which encodes ACC oxidase involved in ethylene biosynthesis were cloned from 'Gold Nijisseiki' fruit. In the pulp, peel and seed, expressions of PpNCED1 and PpNCED2 rose in two stages which corresponded with the increase of ABA levels. The expression of PpCYP707A1 dramatically declined after 60-90 days after full bloom (DAFB) in contrast to the changes of ABA levels during this period, while PpCYP707A2 stayed low during the whole development of fruit. Application of exogenous ABA at 100 DAFB increased the soluble sugar content and the ethylene release but significantly decreased the titratable acid and chlorophyll contents in fruits. When fruits harvested at 100 DAFB were stored in the laboratory (25 °C, 50% relative humidity), the ABA content and the expressions of PpNCED1/2 and PpCYP707A1 in the pulp, peel and seed increased significantly, while ethylene reached its highest value after the maximum peak of ABA accompanied with the expressions of PpACS3 and PpACO1. In sum the endogenous ABA may play an important role in the fruit ripening and dehydration of pear 'Gold Nijisseiki' and the ABA level was regulated mainly by the dynamics of PpNCED1, PpNCED2 and PpCYP707A1 at the transcriptional level. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat

    OpenAIRE

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2014-01-01

    Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress cond...

  5. Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signaling components in Arabidopsis.

    Science.gov (United States)

    Zhao, Chenchen; Cai, Shengguan; Wang, Yizhou; Chen, Zhong-Hua

    2016-06-02

    Nitrate reductases NIA1 and NIA2 determine NO production in plants and are critical to abscisic acid (ABA)-induced stomatal closure. However, the role for NIA1 and NIA2 in ABA signaling has not been paid much attention in nitrate reductase loss-of-function mutant nia1nia2. Recently, we have demonstrated that ABA-inhibited K(+)in current and ABA-enhanced slow anion current were absent in nia1nia2. Exogenous NO restored regulation of these channels for stomatal closure in nia1nia2. In this study, we found that mutating NIA1 and NIA2 impaired nearly all the key components of guard cell ABA signaling pathway in Arabidopsis. We also propose a simplified model for ABA signaling in the nia1nia2 mutant.

  6. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion.

    Science.gov (United States)

    Li, Yangyang; Wang, Cheng; Liu, Xinye; Song, Jian; Li, Hongjian; Sui, Zhipeng; Zhang, Ming; Fang, Shuang; Chu, Jinfang; Xin, Mingming; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2016-04-01

    Heterosis has been widely used in agriculture, but the underlying molecular principles are still largely unknown. During seed germination, we observed that maize (Zea mays) hybrid B73/Mo17 was less sensitive than its parental inbred lines to exogenous abscisic acid (ABA), and endogenous ABA content in hybrid embryos decreased more rapidly than in the parental inbred lines. ZmABA8ox1b, an ABA inactivation gene, was consistently more highly up-regulated in hybrid B73/Mo17 than in its parental inbred lines at early stages of seed germination. Moreover, ectopic expression of ZmABA8ox1b obviously promoted seed germination in Arabidopsis Remarkably, microscopic observation revealed that cell expansion played a major role in the ABA-mediated maize seed germination heterosis, which could be attributed to the altered expression of cell wall-related genes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence.

    Science.gov (United States)

    Lü, Peitao; Zhang, Changqing; Liu, Jitao; Liu, Xiaowei; Jiang, Guimei; Jiang, Xinqiang; Khan, Muhammad Ali; Wang, Liangsheng; Hong, Bo; Gao, Junping

    2014-05-01

    Rose (Rosa hybrida) is one of the most important ornamental plants worldwide; however, senescence of its petals terminates the ornamental value of the flower, resulting in major economic loss. It is known that the hormones abscisic acid (ABA) and ethylene promote petal senescence, while gibberellins (GAs) delay the process. However, the molecular mechanisms underlying the antagonistic effects amongst plant hormones during petal senescence are still unclear. Here we isolated RhHB1, a homeodomain-leucine zipper I transcription factor gene, from rose flowers. Quantitative RT-PCR and GUS reporter analyses showed that RhHB1 was strongly expressed in senescing petals, and its expression was induced by ABA or ethylene in petals. ABA or ethylene treatment clearly accelerated rose petal senescence, while application of the gibberellin GA3 delayed the process. However, silencing of RhHB1 delayed the ABA- or ethylene-mediated senescence, and resulted in higher petal anthocyanin levels and lower expression of RhSAG12. Moreover, treatment with paclobutrazol, an inhibitor of GA biosynthesis, repressed these delays. In addition, silencing of RhHB1 blocked the ABA- or ethylene-induced reduction in expression of the GA20 oxidase encoded by RhGA20ox1, a gene in the GA biosynthetic pathway. Furthermore, RhHB1 directly binds to the RhGA20ox1 promoter, and silencing of RhGA20ox1 promoted petal senescence. Eight senescence-related genes showed substantial differences in expression in petals after treatment with GA3 or paclobutrazol. These results suggest that RhHB1 mediates the antagonistic effect of GAs on ABA and ethylene during rose petal senescence, and that the promotion of petal senescence by ABA or ethylene operates through an RhHB1-RhGA20ox1 regulatory checkpoint. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  8. Arabidopsis YAK1 regulates abscisic acid response and drought resistance.

    Science.gov (United States)

    Kim, Dongjin; Ntui, Valentine Otang; Xiong, Liming

    2016-07-01

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. © 2016 Federation of European Biochemical Societies.

  9. Arabidopsis YAK1 regulates abscisic acid response and drought resistance

    KAUST Repository

    Kim, Dongjin

    2016-06-06

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. © 2016 Federation of European Biochemical Societies.

  10. Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses

    KAUST Repository

    Zhang, Xiujuan

    2013-06-01

    The phytohormone abscisic acid (ABA) regulates seed germination, plant growth and development, and response to abiotic stresses such as drought and salt stresses. Receptor-like kinases are well known signaling components that mediate plant responses to developmental and environmental stimuli. Here, we characterized the biological function of an ABA and stress-inducible cysteine-rich receptor-like protein kinase, CRK45, in ABA signaling in Arabidopsis thaliana. The crk45 mutant was less sensitive to ABA than the wild type during seed germination and early seedling development, whereas CRK45 overexpression plants were more sensitive to ABA compared to the wild type. Furthermore, overexpression of CRK45 led to hypersensitivity to salt and glucose inhibition of seed germination, whereas the crk45 mutant showed the opposite phenotypes. In addition, CRK45 overexpression plants had enhanced tolerance to drought. Gene expression analyses revealed that the expression of representative stress-responsive genes was significantly enhanced in CRK45 overexpression plants in response to salt stress. ABA biosynthetic genes such as NCED3,. 22NCED3, 9-Cis-Epoxycarotenoid Dioxygenase 3.NCED5,. 33NCED5, 9-Cis-Epoxycarotenoid Dioxygenase 5.ABA2,. 44ABA2, Abscisic Acid Deficient 2. and AAO355AAO3, Abscisic Aldehyde Oxidase 3. were also constitutively elevated in the CRK45 overexpression plants. We concluded that CRK45 plays an important role in ABA signaling that regulates Arabidopsis seeds germination, early seedling development and abiotic stresses response, by positively regulating ABA responses in these processes. © 2013 Elsevier Masson SAS.

  11. Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses.

    Science.gov (United States)

    de Torres Zabala, Marta; Bennett, Mark H; Truman, William H; Grant, Murray R

    2009-08-01

    The importance of phytohormone balance is increasingly recognized as central to the outcome of plant-pathogen interactions. Recently it has been demonstrated that abscisic acid signalling pathways are utilized by the bacterial phytopathogen Pseudomonas syringae to promote pathogenesis. In this study, we examined the dynamics, inter-relationship and impact of three key acidic phytohormones, salicylic acid, abscisic acid and jasmonic acid, and the bacterial virulence factor, coronatine, during progression of P. syringae infection of Arabidopsis thaliana. We show that levels of SA and ABA, but not JA, appear to play important early roles in determining the outcome of the infection process. SA is required in order to mount a full innate immune responses, while bacterial effectors act rapidly to activate ABA biosynthesis. ABA suppresses inducible innate immune responses by down-regulating SA biosynthesis and SA-mediated defences. Mutant analyses indicated that endogenous ABA levels represent an important reservoir that is necessary for effector suppression of plant-inducible innate defence responses and SA synthesis prior to subsequent pathogen-induced increases in ABA. Enhanced susceptibility due to loss of SA-mediated basal resistance is epistatically dominant over acquired resistance due to ABA deficiency, although ABA also contributes to symptom development. We conclude that pathogen-modulated ABA signalling rapidly antagonizes SA-mediated defences. We predict that hormonal perturbations, either induced or as a result of environmental stress, have a marked impact on pathological outcomes, and we provide a mechanistic basis for understanding priming events in plant defence.

  12. Effects of sulfite and pH an abscisic acid (ABA) dependent transpiration and on stomatal opening

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, N.; Maruta, I.; Sugahara, K.

    1980-01-01

    In rice, alday, wheat and tobacco (Nicotiana tabacum l. samsun and samsun nn) plants which contained large amounts of ABA, the transpiration rate decreased rapidly with 2 ppM SO/sub 2/ fumigation and reached 20 to 65% of the initial level after 5- to 30-min exposure depending on their ABAj contents. In the cases of broad bean and tobacco (n. Gutinosa l.) with low ABA contents, the rate slightly increased for 20 and 40 min, respectively, after the start of the fumigation and then decreased gradually. The transpiration rates of corn and sorghum, in spite of their extremely low ABA contents, pronouncedly decreased with SO/sub 2/ fumigation and reached 65 and 50%, respectively, of the initial levels after 40-min exposure. Foliar application of 0.04 N HCL to N. tacum l. samsun nn leaves remarkably depressed the transpiration rate, while the application of 0.04 m NA/sub 2/SO/sub 3/ decreased the rate only to the same level as water treatment. Foliar application of either HCL of Na/sub 2/SO/sub 3/ to N. glutinosa l. leaves exerted little change in the transpiration rate. When 10-4 m ABA was applied to broad bean leaves prior to HCl and Na/sub 2/SO/sub 3/ treatment, their transpiration rate was decreased by HCl, but not by Na/sub 2/SO/sub 3/ application. In sonicated epidermal strips peeled from broad bean leaves, Na/sub 2/SO/sub 3/ produced a slight increase in the stomatal aperture size in the absence of ABA, but showed no effect in the presence of ABA. The aperture size was identical in the pH range of 3.0 to 7.0 in the incubation medium. In the presence of ABA in the medium, the aperture size was small in the acidic region of pH with a minimal value at pH 4.0. ABA decreased the aperture size at concentrations above 10-9 m at pH 4.0 and 10-6 m at pH 7.0 in the medium. ABA uptake by epidermal strips was large in the acidic region, especially at pH 4.0.

  13. Synthesis and characterization of aba-type copolymers for encapsulation of bovine hemoglobin

    International Nuclear Information System (INIS)

    Lima, Felipe F.; Andrade, Cristina T.

    2012-01-01

    The use of biopolymers for the development of oxygen carriers has been extensively investigated. In this work, three different ABA triblock copolymers were synthesized and used to encapsulate purified bovine hemoglobin, using a double emulsion technique. The effect of polymer composition, homogenization velocity, and addition of a surfactant, on the protein entrapment was evaluated. These copolymers, which have a hydrophilic block, achieved higher values of encapsulation efficiency than the corresponding homopolymers. The increase in homogenization strength also promoted an increase in encapsulation efficiency. Capsules formation occurred even in the absence of PVA. (author)

  14. Conceptos generales sobre aba en niños con trastorno del espectro autista

    OpenAIRE

    Piñeros Ortiz, Sandra Elizabeth; Toro Herrera, Sandra Milena

    2012-01-01

    Los trastornos del espectro autista (TEA) son entidades que generan discapacidad. Diversas intervenciones psicofarmacológicas y psicosociales modulan algunas de las alteraciones comportamentales asociadas y mejoran la calidad de vida de las personas afectadas y de sus cuidadores. La terapia ABA es una de las intervenciones psicosociales más conocidas y utilizada en población con TEA. Mediante de la  formulación de preguntas clave y sus respuestas, este artículo realiza una breve descripción d...

  15. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism.

    Science.gov (United States)

    Cadman, Cassandra S C; Toorop, Peter E; Hilhorst, Henk W M; Finch-Savage, William E

    2006-06-01

    Physiologically dormant seeds, like those of Arabidopsis, will cycle through dormant states as seasons change until the environment is favourable for seedling establishment. This phenomenon is widespread in the plant kingdom, but has not been studied at the molecular level. Full-genome microarrays were used for a global transcript analysis of Arabidopsis thaliana (accession Cvi) seeds in a range of dormant and dry after-ripened states during cycling. Principal component analysis of the expression patterns observed showed that they differed in newly imbibed primary dormant seeds, as commonly used in experimental studies, compared with those in the maintained primary and secondary dormant states that exist during cycling. Dormant and after-ripened seeds appear to have equally active although distinct gene expression programmes, dormant seeds having greatly reduced gene expression associated with protein synthesis, potentially controlling the completion of germination. A core set of 442 genes were identified that had higher expression in all dormant states compared with after-ripened states. Abscisic acid (ABA) responsive elements were significantly over-represented in this set of genes the expression of which was enhanced when multiple copies of the elements were present. ABA regulation of dormancy was further supported by expression patterns of key genes in ABA synthesis/catabolism, and dormancy loss in the presence of fluridone. The data support an ABA-gibberelic acid hormone balance mechanism controlling cycling through dormant states that depends on synthetic and catabolic pathways of both hormones. Many of the most highly expressed genes in dormant states were stress-related even in the absence of abiotic stress, indicating that ABA, stress and dormancy responses overlap significantly at the transcriptome level.

  16. The Arabidopsis aba4-1 Mutant Reveals a Specific Function for Neoxanthin in Protection against Photooxidative Stress[W

    Science.gov (United States)

    Dall'Osto, Luca; Cazzaniga, Stefano; North, Helen; Marion-Poll, Annie; Bassi, Roberto

    2007-01-01

    The aba4-1 mutant completely lacks neoxanthin but retains all other xanthophyll species. The missing neoxanthin in light-harvesting complex (Lhc) proteins is compensated for by higher levels of violaxanthin, albeit with lower capacity for photoprotection compared with proteins with wild-type levels of neoxanthin. Detached leaves of aba4-1 were more sensitive to oxidative stress than the wild type when exposed to high light and incubated in a solution of photosensitizer agents. Both treatments caused more rapid pigment bleaching and lipid oxidation in aba4-1 than wild-type plants, suggesting that neoxanthin acts as an antioxidant within the photosystem II (PSII) supercomplex in thylakoids. While neoxanthin-depleted Lhc proteins and leaves had similar sensitivity as the wild type to hydrogen peroxide and singlet oxygen, they were more sensitive to superoxide anions. aba4-1 intact plants were not more sensitive than the wild type to high-light stress, indicating the existence of compensatory mechanisms of photoprotection involving the accumulation of zeaxanthin. However, the aba4-1 npq1 double mutant, lacking zeaxanthin and neoxanthin, underwent stronger PSII photoinhibition and more extensive oxidation of pigments than the npq1 mutant, which still contains neoxanthin. We conclude that neoxanthin preserves PSII from photoinactivation and protects membrane lipids from photooxidation by reactive oxygen species. Neoxanthin appears particularly active against superoxide anions produced by the Mehler's reaction, whose rate is known to be enhanced in abiotic stress conditions. PMID:17351115

  17. The Arabidopsis aba4-1 mutant reveals a specific function for neoxanthin in protection against photooxidative stress.

    Science.gov (United States)

    Dall'Osto, Luca; Cazzaniga, Stefano; North, Helen; Marion-Poll, Annie; Bassi, Roberto

    2007-03-01

    The aba4-1 mutant completely lacks neoxanthin but retains all other xanthophyll species. The missing neoxanthin in light-harvesting complex (Lhc) proteins is compensated for by higher levels of violaxanthin, albeit with lower capacity for photoprotection compared with proteins with wild-type levels of neoxanthin. Detached leaves of aba4-1 were more sensitive to oxidative stress than the wild type when exposed to high light and incubated in a solution of photosensitizer agents. Both treatments caused more rapid pigment bleaching and lipid oxidation in aba4-1 than wild-type plants, suggesting that neoxanthin acts as an antioxidant within the photosystem II (PSII) supercomplex in thylakoids. While neoxanthin-depleted Lhc proteins and leaves had similar sensitivity as the wild type to hydrogen peroxide and singlet oxygen, they were more sensitive to superoxide anions. aba4-1 intact plants were not more sensitive than the wild type to high-light stress, indicating the existence of compensatory mechanisms of photoprotection involving the accumulation of zeaxanthin. However, the aba4-1 npq1 double mutant, lacking zeaxanthin and neoxanthin, underwent stronger PSII photoinhibition and more extensive oxidation of pigments than the npq1 mutant, which still contains neoxanthin. We conclude that neoxanthin preserves PSII from photoinactivation and protects membrane lipids from photooxidation by reactive oxygen species. Neoxanthin appears particularly active against superoxide anions produced by the Mehler's reaction, whose rate is known to be enhanced in abiotic stress conditions.

  18. Mechanistic Basis for Plant Responses to Drought Stress : Regulatory Mechanism of Abscisic Acid Signaling

    Science.gov (United States)

    Miyakawa, Takuya; Tanokura, Masaru

    The phytohormone abscisic acid (ABA) plays a key role in the rapid adaptation of plants to environmental stresses such as drought and high salinity. Accumulated ABA in plant cells promotes stomatal closure in guard cells and transcription of stress-tolerant genes. Our understanding of ABA responses dramatically improved by the discovery of both PYR/PYL/RCAR as a soluble ABA receptor and inhibitory complex of a protein phospatase PP2C and a protein kinase SnRK2. Moreover, several structural analyses of PYR/PYL/RCAR revealed the mechanistic basis for the regulatory mechanism of ABA signaling, which provides a rational framework for the design of alternative agonists in future.

  19. The putative E3 ubiquitin ligase ECERIFERUM9 regulates abscisic acid biosynthesis and response during seed germination and postgermination growth in arabidopsis

    KAUST Repository

    Zhao, Huayan

    2014-05-08

    The ECERIFERUM9 (CER9) gene encodes a putative E3 ubiquitin ligase that functions in cuticle biosynthesis and the maintenance of plant water status. Here, we found that CER9 is also involved in abscisic acid (ABA) signaling in seeds and young seedlings of Arabidopsis (Arabidopsis thaliana). The germinated embryos of the mutants exhibited enhanced sensitivity to ABA during the transition from reversible dormancy to determinate seedling growth. Expression of the CER9 gene is closely related to ABA levels and displays a similar pattern to that of ABSCISIC ACID-INSENSITIVE5 (ABI5), which encodes a positive regulator of ABA responses in seeds. cer9 mutant seeds exhibited delayed germination that is independent of seed coat permeability. Quantitative proteomic analyses showed that cer9 seeds had a protein profile similar to that of the wild type treated with ABA. Transcriptomics analyses revealed that genes involved in ABA biosynthesis or signaling pathways were differentially regulated in cer9 seeds. Consistent with this, high levels of ABA were detected in dry seeds of cer9. Blocking ABA biosynthesis by fluridone treatment or by combining an ABA-deficient mutation with cer9 attenuated the phenotypes of cer9. Whereas introduction of the abi1-1, abi3-1, or abi4-103 mutation could completely eliminate the ABA hypersensitivity of cer9, introduction of abi5 resulted only in partial suppression. These results indicate that CER9 is a novel negative regulator of ABA biosynthesis and the ABA signaling pathway during seed germination. © 2014 American Society of Plant Biologists. All Rights Reserved.

  20. The Putative E3 Ubiquitin Ligase ECERIFERUM9 Regulates Abscisic Acid Biosynthesis and Response during Seed Germination and Postgermination Growth in Arabidopsis.

    Science.gov (United States)

    Zhao, Huayan; Zhang, Huoming; Cui, Peng; Ding, Feng; Wang, Guangchao; Li, Rongjun; Jenks, Matthew A; Lü, Shiyou; Xiong, Liming

    2014-07-01

    The ECERIFERUM9 (CER9) gene encodes a putative E3 ubiquitin ligase that functions in cuticle biosynthesis and the maintenance of plant water status. Here, we found that CER9 is also involved in abscisic acid (ABA) signaling in seeds and young seedlings of Arabidopsis (Arabidopsis thaliana). The germinated embryos of the mutants exhibited enhanced sensitivity to ABA during the transition from reversible dormancy to determinate seedling growth. Expression of the CER9 gene is closely related to ABA levels and displays a similar pattern to that of ABSCISIC ACID-INSENSITIVE5 (ABI5), which encodes a positive regulator of ABA responses in seeds. cer9 mutant seeds exhibited delayed germination that is independent of seed coat permeability. Quantitative proteomic analyses showed that cer9 seeds had a protein profile similar to that of the wild type treated with ABA. Transcriptomics analyses revealed that genes involved in ABA biosynthesis or signaling pathways were differentially regulated in cer9 seeds. Consistent with this, high levels of ABA were detected in dry seeds of cer9. Blocking ABA biosynthesis by fluridone treatment or by combining an ABA-deficient mutation with cer9 attenuated the phenotypes of cer9. Whereas introduction of the abi1-1, abi3-1, or abi4-103 mutation could completely eliminate the ABA hypersensitivity of cer9, introduction of abi5 resulted only in partial suppression. These results indicate that CER9 is a novel negative regulator of ABA biosynthesis and the ABA signaling pathway during seed germination. © 2014 American Society of Plant Biologists. All Rights Reserved.

  1. The Putative E3 Ubiquitin Ligase ECERIFERUM9 Regulates Abscisic Acid Biosynthesis and Response during Seed Germination and Postgermination Growth in Arabidopsis1[W][OPEN

    Science.gov (United States)

    Zhao, Huayan; Zhang, Huoming; Cui, Peng; Ding, Feng; Wang, Guangchao; Li, Rongjun; Jenks, Matthew A.; Lü, Shiyou; Xiong, Liming

    2014-01-01

    The ECERIFERUM9 (CER9) gene encodes a putative E3 ubiquitin ligase that functions in cuticle biosynthesis and the maintenance of plant water status. Here, we found that CER9 is also involved in abscisic acid (ABA) signaling in seeds and young seedlings of Arabidopsis (Arabidopsis thaliana). The germinated embryos of the mutants exhibited enhanced sensitivity to ABA during the transition from reversible dormancy to determinate seedling growth. Expression of the CER9 gene is closely related to ABA levels and displays a similar pattern to that of ABSCISIC ACID-INSENSITIVE5 (ABI5), which encodes a positive regulator of ABA responses in seeds. cer9 mutant seeds exhibited delayed germination that is independent of seed coat permeability. Quantitative proteomic analyses showed that cer9 seeds had a protein profile similar to that of the wild type treated with ABA. Transcriptomics analyses revealed that genes involved in ABA biosynthesis or signaling pathways were differentially regulated in cer9 seeds. Consistent with this, high levels of ABA were detected in dry seeds of cer9. Blocking ABA biosynthesis by fluridone treatment or by combining an ABA-deficient mutation with cer9 attenuated the phenotypes of cer9. Whereas introduction of the abi1-1, abi3-1, or abi4-103 mutation could completely eliminate the ABA hypersensitivity of cer9, introduction of abi5 resulted only in partial suppression. These results indicate that CER9 is a novel negative regulator of ABA biosynthesis and the ABA signaling pathway during seed germination. PMID:24812105

  2. Plant response to drought stress simulated by ABA application: Changes in chemical composition of cuticular waxes

    Czech Academy of Sciences Publication Activity Database

    Macková, J.; Vašková, M.; Macek, Petr; Hronková, Marie; Schreiber, L.; Šantrůček, Jiří

    2013-01-01

    Roč. 86, SI (2013), s. 70-75 ISSN 0098-8472 R&D Projects: GA ČR GA206/08/0787; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z50510513 Institutional support: RVO:60077344 ; RVO:67985939 Keywords : Abscisic acid * Carbon isotope * CER6 Subject RIV: ED - Physiology Impact factor: 3.003, year: 2013

  3. Cloning and expression profiling of the PacSnRK2 and PacPP2C gene families during fruit development, ABA treatment, and dehydration stress in sweet cherry.

    Science.gov (United States)

    Shen, Xinjie; Guo, Xiao; Zhao, Di; Zhang, Qiang; Jiang, Yuzhuang; Wang, Yantao; Peng, Xiang; Wei, Yan; Zhai, Zefeng; Zhao, Wei; Li, Tianhong

    2017-10-01

    Plant SNF1-related protein kinase 2 (SnRK2) and protein phosphatase 2C (PP2C) family members are core components of the ABA signal transduction pathway. SnRK2 and PP2C proteins have been suggested to play crucial roles in fruit ripening and improving plant tolerance to drought stress, but supporting genetic information has been lacking in sweet cherry (Prunus avium L.). Here, we cloned six full-length SnRK2 genes and three full-length PP2C genes from sweet cherry cv. Hong Deng. Quantitative PCR analysis revealed that PacSnRK2.2, PacSnRK2.3, PacSnRK2.6, and PacPP2C1-3 were negatively regulated in fruits in response to exogenous ABA treatment, PacSnRK2.4 and PacSnRK2.5 were upregulated, and PacSnRK2.1 expression was not affected. The ABA treatment also significantly promoted the accumulation of anthocyanins in sweet cherry fruit. The expression of all PacSnRK2 and PacPP2C genes was induced by dehydration stress, which also promoted the accumulation of drought stress signaling molecules in the sweet cherry fruits, including ABA, soluble sugars, and anthocyanin. Furthermore, a yeast two-hybrid analysis demonstrated that PacPP2C1 interacts with all six PacSnRK2s, while PacPP2C3 does not interact with PacSnRK2.5. PacPP2C2 does not interact with PacSnRK2.1 or PacSnRK2.4. These results indicate that PacSnRK2s and PacPP2Cs may play a variety of roles in the sweet cherry ABA signaling pathway and the fruit response to drought stress. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses

    KAUST Repository

    Zhang, Xiujuan; Yang, Guanyu; Shi, Rui; Han, Xiaomin; Qi, Liwang; Wang, Ruigang; Xiong, Liming; Li, Guojing

    2013-01-01

    The phytohormone abscisic acid (ABA) regulates seed germination, plant growth and development, and response to abiotic stresses such as drought and salt stresses. Receptor-like kinases are well known signaling components that mediate plant responses

  5. Synthetic, spectroscopic and structural studies on 4-aminobenzoate complexes of divalent alkaline earth metals: x-ray crystal structures of [[Mg(H2O)6] (4-aba)2].2H2O and [Ca(H2O)2(4-aba)2] (4-aba=4-aminobenzoate)

    International Nuclear Information System (INIS)

    Murugavel, Ramaswamy; Karambelkar, Vivek V.; Anantharaman, Ganapathi

    2000-01-01

    Reactions between MCl 2 .nH 2 O (M = Mg, Ca, Sr, and Ba) and 4-aminobenzoic acid (4-abaH) result in the formation of complexes [(Mg(H 2 O) 6 )(4-aba) 2 ) .2H 2 O (I), [Ca(4-aba) 2 (H2 O ) 2 ] (2), [Sr(4-aba) 2 (H2 O ) 2 ] (3), and [Ba(4-aba) 2 Cl] (4), respectively. The new compounds 1 and 2, as well as the previously reported 3 and 4 form an extended intra- and intermolecular hydrogen bonded network in the solid-state. The compounds have been characterized by elemental analysis, pH measurements, thermogravimetric studies, and IR, NMR, and UV-Vis spectroscopy. The solid state structures of the molecules 1 and 2 have been determined by single crystal x-ray diffraction studies. In the case of magnesium complex 1, the dipositively charged Mg cation is surrounded by six water molecules and the two 4-aminobenzoate ligands show no direct bonding to the metal ion. The calcium ion in 2 is octa-coordinated with direct coordination of the 4-aminobenzoate ligands to the metal ion. The Ca-Ca separation in the polymeric chain of 2 is 3.9047(5) A. (author)

  6. The regulatory network of ThbZIP1 in response to abscisic acid treatment

    Directory of Open Access Journals (Sweden)

    Xiaoyu eJi

    2015-02-01

    Full Text Available Previously, a bZIP transcription factor from Tamarix hispida, ThbZIP1, was characterized: plants overexpressing ThbZIP1 displayed improved salt stress tolerance but were sensitive to abscisic acid (ABA. In the current study, we further characterized the regulatory network of ThbZIP1 and the mechanism of ABA sensitivity mediated by ThbZIP1. An ABF transcription factor from T. hispida, ThABF1, directly regulates the expression of ThbZIP1. Microarray analysis identified 1,662 and 1,609 genes that were respectively significantly upregulated or downregulated by ThbZIP1 when exposed to ABA. GO analysis showed that the processes including response to stimulus, catalytic activity, binding function, and metabolic process were highly altered in ThbZIP1 expressing plants exposed to ABA. The gene expression in ThbZIP1 transformed plants were compared between exposed to ABA and salt on the genome scale. Genes differentially regulated by both salt and ABA treatment only accounted for 9.75% of total differentially regulated genes. GO analysis showed that structural molecule activity, organelle part, membrane-enclosed lumen, reproduction and reproductive process are enhanced by ABA but inhibited by salt stress. Conversely, immune system and multi-organism process were improved by salt but inhibited by ABA. Transcription regulator activity, enzyme regulator activity and developmental process were significantly altered by ABA but were not affected by salt stress. Our study provides insights into how ThbZIP1 mediates ABA and salt stress response at the molecular level.

  7. Abscisic Acid–Responsive Guard Cell Metabolomes of Arabidopsis Wild-Type and gpa1 G-Protein Mutants[C][W

    Science.gov (United States)

    Jin, Xiaofen; Wang, Rui-Sheng; Zhu, Mengmeng; Jeon, Byeong Wook; Albert, Reka; Chen, Sixue; Assmann, Sarah M.

    2013-01-01

    Individual metabolites have been implicated in abscisic acid (ABA) signaling in guard cells, but a metabolite profile of this specialized cell type is lacking. We used liquid chromatography–multiple reaction monitoring mass spectrometry for targeted analysis of 85 signaling-related metabolites in Arabidopsis thaliana guard cell protoplasts over a time course of ABA treatment. The analysis utilized ∼350 million guard cell protoplasts from ∼30,000 plants of the Arabidopsis Columbia accession (Col) wild type and the heterotrimeric G-protein α subunit mutant, gpa1, which has ABA-hyposensitive stomata. These metabolomes revealed coordinated regulation of signaling metabolites in unrelated biochemical pathways. Metabolites clustered into different temporal modules in Col versus gpa1, with fewer metabolites showing ABA-altered profiles in gpa1. Ca2+-mobilizing agents sphingosine-1-phosphate and cyclic adenosine diphosphate ribose exhibited weaker ABA-stimulated increases in gpa1. Hormone metabolites were responsive to ABA, with generally greater responsiveness in Col than in gpa1. Most hormones also showed different ABA responses in guard cell versus mesophyll cell metabolomes. These findings suggest that ABA functions upstream to regulate other hormones, and are also consistent with G proteins modulating multiple hormonal signaling pathways. In particular, indole-3-acetic acid levels declined after ABA treatment in Col but not gpa1 guard cells. Consistent with this observation, the auxin antagonist α-(phenyl ethyl-2-one)-indole-3-acetic acid enhanced ABA-regulated stomatal movement and restored partial ABA sensitivity to gpa1. PMID:24368793

  8. HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis.

    Science.gov (United States)

    Kim, Woohyun; Lee, Yeon; Park, Jeongmoo; Lee, Nayoung; Choi, Giltsu

    2013-04-01

    Seed dormancy, a seed status that prohibits germination even in the presence of inductive germination signals, is a poorly understood process. To identify molecular components that regulate seed dormancy, we screened T-DNA insertion lines and identified a mutant designated honsu (hon). HON loss-of-function mutants display deep seed dormancy, whereas HON-overexpressing lines display shallow seed dormancy. HON encodes a seed-specific group A phosphatase 2C (PP2C) and is one of the major negative regulators of seed dormancy among group A PP2Cs. Like other PP2C family members, HON interacts with PYR1/RCAR11 in the presence of ABA. Our analysis indicates that HON inhibits ABA signaling and activates gibberellic acid signaling, and both of these conditions must be satisfied to promote the release of seed dormancy. However, HON mRNA levels are increased in mutants displaying deep seed dormancy or under conditions that deepen seed dormancy, and decreased in mutants displaying shallow seed dormancy or under conditions that promote the release of seed dormancy. Taken together, our results indicate that the expression of HON mRNA is homeostatically regulated by seed dormancy.

  9. Characterisation and genome sequence of the lytic Acinetobacter baumannii bacteriophage vB_AbaS_Loki.

    Directory of Open Access Journals (Sweden)

    Dann Turner

    Full Text Available Acinetobacter baumannii has emerged as an important nosocomial pathogen in healthcare and community settings. While over 100 of Acinetobacter phages have been described in the literature, relatively few have been sequenced. This work describes the characterisation and genome annotation of a new lytic Acinetobacter siphovirus, vB_AbaS_Loki, isolated from activated sewage sludge. Sequencing revealed that Loki encapsulates a 41,308 bp genome, encoding 51 predicted open reading frames. Loki is most closely related to Acinetobacter phage IME_AB3 and more distantly related to Burkholderia phage KL1, Paracoccus phage vB_PmaS_IMEP1 and Pseudomonas phages vB_Pae_Kakheti25, vB_PaeS_SCH_Ab26 and PA73. Loki is characterised by a narrow host range, among the 40 Acinetobacter isolates tested, productive infection was only observed for the propagating host, A. baumannii ATCC 17978. Plaque formation was found to be dependent upon the presence of Ca2+ ions and adsorption to host cells was abolished upon incubation with a mutant of ATCC 17978 encoding a premature stop codon in lpxA. The complete genome sequence of vB_AbaS_Loki was deposited in the European Nucleotide Archive (ENA under the accession number LN890663.

  10. Auxin and ABA act as central regulators of developmental networks associated with paradormancy in Canada thistle (Cirsium arvense)

    KAUST Repository

    Anderson, James V.

    2012-05-13

    Abstract Dormancy in underground vegetative buds of Canada thistle, an herbaceous perennial weed, allows escape from current control methods and contributes to its invasive nature. In this study, ∼65 % of root sections obtained from greenhouse propagated Canada thistle produced new vegetative shoots by 14 days post-sectioning. RNA samples obtained from sectioned roots incubated 0, 24, 48, and 72 h at 25°C under 16:8 h light-dark conditions were used to construct four MID-tagged cDNA libraries. Analysis of in silico data obtained using Roche 454 GS-FLX pyrosequencing technologies identified molecular networks associated with paradormancy release in underground vegetative buds of Canada thistle. Sequencing of two replicate plates produced ∼2.5 million ESTs with an average read length of 362 bases. These ESTs assembled into 67358 unique sequences (21777 contigs and 45581 singlets) and annotation against the Arabidopsis database identified 15232 unigenes. Among the 15232 unigenes, we identified processes enriched with transcripts involved in plant hormone signaling networks. To follow-up on these results, we examined hormone profiles in roots, which identified changes in abscisic acid (ABA) and ABA metabolites, auxins, and cytokinins post-sectioning. Transcriptome and hormone profiling data suggest that interaction between auxin- and ABA-signaling regulate paradormancy maintenance and release in underground adventitious buds of Canada thistle. Our proposed model shows that sectioning-induced changes in polar auxin transport alters ABA metabolism and signaling, which further impacts gibberellic acid signaling involving interactions between ABA and FUSCA3. Here we report that reduced auxin and ABA-signaling, in conjunction with increased cytokinin biosynthesis post-sectioning supports a model where interactions among hormones drives molecular networks leading to cell division, differentiation, and vegetative outgrowth. ©Springer-Verlag (outside the USA) 2012.

  11. A NAP-AAO3 Regulatory Module Promotes Chlorophyll Degradation via ABA Biosynthesis in Arabidopsis Leaves[W][OPEN

    Science.gov (United States)

    Yang, Jiading; Worley, Eric

    2014-01-01

    Chlorophyll degradation is an important part of leaf senescence, but the underlying regulatory mechanisms are largely unknown. Excised leaves of an Arabidopsis thaliana NAC-LIKE, ACTIVATED BY AP3/PI (NAP) transcription factor mutant (nap) exhibited lower transcript levels of known chlorophyll degradation genes, STAY-GREEN1 (SGR1), NON-YELLOW COLORING1 (NYC1), PHEOPHYTINASE (PPH), and PHEIDE a OXYGENASE (PaO), and higher chlorophyll retention than the wild type during dark-induced senescence. Transcriptome coexpression analysis revealed that abscisic acid (ABA) metabolism/signaling genes were disproportionately represented among those positively correlated with NAP expression. ABA levels were abnormally low in nap leaves during extended darkness. The ABA biosynthetic genes 9-CIS-EPOXYCAROTENOID DIOXYGENASE2, ABA DEFICIENT3, and ABSCISIC ALDEHYDE OXIDASE3 (AAO3) exhibited abnormally low transcript levels in dark-treated nap leaves. NAP transactivated the promoter of AAO3 in mesophyll cell protoplasts, and electrophoretic mobility shift assays showed that NAP can bind directly to a segment (−196 to −162 relative to the ATG start codon) of the AAO3 promoter. Exogenous application of ABA increased the transcript levels of SGR1, NYC1, PPH, and PaO and suppressed the stay-green phenotype of nap leaves during extended darkness. Overexpression of AAO3 in nap leaves also suppressed the stay-green phenotype under extended darkness. Collectively, the results show that NAP promotes chlorophyll degradation by enhancing transcription of AAO3, which leads to increased levels of the senescence-inducing hormone ABA. PMID:25516602

  12. Spectroscopic and structural studies on some divalent metal salt of p-aminobenzoic acid (ABA(MG)) tetracyanonickelate complexes

    International Nuclear Information System (INIS)

    Atalay, Y.

    2004-01-01

    Infrared spectra of MLNi (CN) 4 [ M=Mn, Fe, Co, Ni, Zn or Cd and LDivalent metal salt of p- Aminobenzoic Acid or ABA (Mg) ] are reported. Their structure consists of polymeric layers of [M-Ni(CN) 4 ] α with the divalent metal salt of p-aminobenzoic acid [ABA(Mg)] molecules bound directly to the metal (M). These spectra were comparewith powder the Xray diffraction pattern of complexes. It is show that proposed structures for these complexes derived from Mattson 1000 FTIR spectra are consistent with the X-ray powder diffraction measurements and elemental analysis result

  13. Transport and concentration of abscisic acid (ABA) and auxin (IAA) in deciduous and coniferous trees. Transport und Gehalt von Abscisinsaeure (ABA) und Auxin (IAA) in Laub- und Nadelblaettern

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, W.

    1988-09-01

    Abscisic acid and indoleacetic acid were chosen to examine whether intact deciduous and coniferous tissues from spruce, hemlock fir, spinage, barley and sorrel or isolated mesophyll protoplasts from barley and closing cell preparations from Valerianella locusta are affected by sulphur dioxide in terms of changes in the concentration, transportation and distribution of such plant hormones. The distribution of phytohormones like ABA and IAA over the individual cell compartments is determined by the different pH gradients of the latter. Owing to their acidity these hormones are accumulated in alkaline cell inclusion bodies like chloroplasts and cytosol. Potentially acid air pollutants like SO{sub 2} and NO{sub x} lead to acidification of previously alkaline cell compartments, due to which fact the cellular pH gradients are reduced. This, in turn, gives rise to a redistribution of phytohormones to the effect that certain target cells such as closing cells of leaves or meristem cells come under the influence of altered hormone concentrations and compositions. This is bound to affect the processes controlling the development, growth and stress behaviour of plants. (orig.) With 55 refs., 2 tabs., 16 figs.

  14. Failure to upregulate Agrp and Orexin in response to activity based anorexia in weight loss vulnerable rats characterized by passive stress coping and prenatal stress experience.

    Science.gov (United States)

    Boersma, Gretha J; Liang, Nu-Chu; Lee, Richard S; Albertz, Jennifer D; Kastelein, Anneke; Moody, Laura A; Aryal, Shivani; Moran, Timothy H; Tamashiro, Kellie L

    2016-05-01

    We hypothesize that anorexia nervosa (AN) poses a physiological stress. Therefore, the way an individual copes with stress may affect AN vulnerability. Since prenatal stress (PNS) exposure alters stress responsivity in offspring this may increase their risk of developing AN. We tested this hypothesis using the activity based anorexia (ABA) rat model in control and PNS rats that were characterized by either proactive or passive stress-coping behavior. We found that PNS passively coping rats ate less and lost more weight during the ABA paradigm. Exposure to ABA resulted in higher baseline corticosterone and lower insulin levels in all groups. However, leptin levels were only decreased in rats with a proactive stress-coping style. Similarly, ghrelin levels were increased only in proactively coping ABA rats. Neuropeptide Y (Npy) expression was increased and proopiomelanocortin (Pomc) expression was decreased in all rats exposed to ABA. In contrast, agouti-related peptide (Agrp) and orexin (Hctr) expression were increased in all but the PNS passively coping ABA rats. Furthermore, DNA methylation of the orexin gene was increased after ABA in proactive coping rats and not in passive coping rats. Overall our study suggests that passive PNS rats have innate impairments in leptin and ghrelin in responses to starvation combined with prenatal stress associated impairments in Agrp and orexin expression in response to starvation. These impairments may underlie decreased food intake and associated heightened body weight loss during ABA in the passively coping PNS rats. Published by Elsevier Ltd.

  15. Effects of exogenous ABA application on post-anthesis dry matter redistribution and grain starch accumulation of winter wheat with different staygreen characteristics

    Directory of Open Access Journals (Sweden)

    Dongqing Yang

    2014-04-01

    Full Text Available The objective of this study was to investigate whether and how exogenous abscisic acid (ABA is involved in mediating starch accumulation in the grain and redistribution of carbohydrates during grain filling of two wheat cultivars with different staygreen characteristics. At blooming stage, plants of Wennong 6 (a staygreen cultivar and Jimai 20 (control were sprayed with 10 mg L− 1 abscisic acid (ABA for 3 days. The application of ABA significantly (P < 0.05 increased grain filling rate, starch accumulation rate and content, remobilization of dry matters to kernels, and 1000-grain weight of the two cultivars. Exogenous ABA markedly (P < 0.05 increased grain yield at maturity, and Wennong 6 and Jiami 20 showed 14.14% and 4.86% higher compared yield than the control. Dry matter accumulation after anthesis of Wennong 6 was also significantly (P < 0.05 influenced by exogenous ABA, whereas that of Jimai 20 was unchanged. Application of ABA increased endogenous zeatin riboside (ZR content 7 days after anthesis (DAA, and spraying ABA significantly increased endogenous indole-3-acetic acid (IAA and ABA contents from 7 to 21 DAA and decreased gibberellin (GA3 content at 14 DAA, but increased GA3 content from 21 to 35 DAA. The results suggested that increased yield of staygreen was due to greater starch assimilation owing to a higher filling rate and longer grain-filling duration.

  16. Physiological studies on photochemical oxidant injury in rice plants. III. Relationship between abscisic acid (ABA) and water metabolism in water-stressed rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y.H.; Ota, Y.

    1981-12-01

    Several experiments were carried out to determine the effects of exogenously applied ABA on water metabolism, and to clarify the endogenous ABA relationships in ozone-sensitivity under different soil water content in rice plants. The rice plants were cultivated in soil with 60, 80, and 100% of maximum water holding capacity and under submerged condition. The results of the experiments were as follows: ozone injury was reduced with increasing ABA content of which production was increased under water stress conditions. Under water stressed conditions, the rate of water loss was decreased with increasing concentration of ABA applied exogenously. It may be assumed that the ozone-sensitivity is closely related to the stomatal closure caused by the increased ABA content due to water stress. 5 references, 4 tables.

  17. Physiological studies on photochemical oxidant injury in rice plants. II. Effect of abscisic acid (ABA) on ozone injury and ethylene production in rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y.H.; Nakamura, H.; Ota, Y.

    1981-12-01

    In order to determine the effect of ABA on ozone injury to rice plants, ethylene production, rate of chlorophyll retention and ozone-sensitivity of rice plants pretreated with ABA solution were investigated. The experiments were carried out in pots using rice plants at the 7-8 leaf stage. The results obtained are summarized as follows: ethylene production by the leaf blades exposed to ozone increased with the increase in the dosage of ozone; ethylene production was higher in cv. Nihonbare which was more sensitive to ozone than in cv. Tongil; pre-treatment with ABA solution one hour before ozone treatment reduced ethylene production by the leaf blades exposed to ozone; and the rate of chlorophyll retention decreased following injury, but increased remarkably by the pre-treatment with ABA solution. In conclusion, it could be demonstrated that ozone injury of rice plants can be reduced by the pre-treatment with ABA solution. 28 references, 5 figures, 1 table.

  18. Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L) and cabbage (Brassica campestris).

    Science.gov (United States)

    Zhu, Su-Qin; Chen, Ming-Wei; Ji, Ben-Hua; Jiao, De-Mao; Liang, Jian-Sheng

    2011-08-01

    Changes in actual efficiency of PS II photochemistry, non-photochemical quenching (NPQ), content of xanthophylls and kinetics of de-epoxidation were studied in ABA-fed and non-ABA-fed leaves of rice and cabbage under NaCl stress. Salt stress induced more progressive decrease in actual efficiency of PS II photochemistry (ФPS II), higher reduction state of PS II, and a small significant increase in NPQ in NaCl-sensitive rice plants as compared with NaCl-tolerant cabbage plants, whereas exogenously supplied ABA alleviated the decrease in actual efficiency of PS II photochemistry (ФPS II), induced a lower reduction state of PS II, and caused higher capacity of NPQ in ABA-fed plants than in non-ABA-fed plants. As a result, there were higher activities of photosynthetic electron transport, higher capacity of energy dissipation, and lower cumulation of excess light in cabbage than in rice plants, and in ABA-fed leaves than in non-ABA-fed leaves. The effect of ABA was more efficient in cabbage than in rice plants. Addition of exogenous ABA resulted in enhancement of the size of the xanthophyll cycle pool, promotion of de-epoxidation of the xanthophyll cycle components, and a rise in the level of NPQ by altering the kinetics of de-epoxidation of the xanthophyll cycle. Protection from photodamage appears to be achieved by coordinated contributions by exogenous ABA and xanthophyll cycle-mediated NPQ. This variety of photoprotective mechanisms may be essential for conferring photodamage tolerance under NaCl stress. © The Author [2011]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved.

  19. The small ethylene response factor ERF96 is involved in the regulation of the abscisic acid response in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Xiaoping eWang

    2015-11-01

    Full Text Available Ethylene regulates many aspects of plant growth and development including seed germination, leaf senescence, and fruit ripening, and of plant responses to environmental stimuli including both biotic and abiotic stresses. Ethylene Response Factors (ERFs are plant-specific transcription factors and are a subfamily of the AP2 (APETALA2/ERF transcription factor family. The function of many members in this large gene family remains largely unknown. ERF96, a member of the Group IX ERF family transcription factors, has recently been shown to be a transcriptional activator that is involved in plant defense response in Arabidopsis. Here we provide evidence that ERF96 is a positive regulator of abscisic acid (ABA responses. Bioinformatics analysis indicated that there are a total four small ERFs in Arabidopsis including ERF95, ERF96, ERF97 and ERF98, and that ERF96 forms a cluster with ERF95 and ERF97. By using quantitative RT-PCR, we found that ERF96 is expressed in all tissues and organs examined except roots, with relatively high expression in flowers and seeds. Results from the protoplast transfection assay results indicated that the EDLL motif-containing C-terminal domain is responsible for ERF96’s transcriptional activity. Although loss-of-function mutant of ERF96 was morphologically similar to wild type plants, transgenic plants overexpressing ERF96 had smaller rosette size and were delayed in flowering time. In ABA sensitivity assays, we found that ERF96 overexpression plants were hypersensitive to ABA in terms of ABA inhibition of seed germination, early seedling development and root elongation. Consistent with these observations, elevated transcript levels of some ABA-responsive genes including RD29A, ABI5, ABF3, ABF4, P5CS and COR15A were observed in the transgenic plants in the presence of ABA. However, in the absence of ABA treatment, the transcript levels of these ABA-responsive genes remained largely unchanged. Our experiments also showed

  20. A method to identify important dynamical states in Boolean models of regulatory networks: application to regulation of stomata closure by ABA in A. thaliana.

    Science.gov (United States)

    Bugs, Cristhian A; Librelotto, Giovani R; Mombach, José C M

    2011-12-22

    We introduce a method to analyze the states of regulatory Boolean models that identifies important network states and their biological influence on the global network dynamics. It consists in (1) finding the states of the network that are most frequently visited and (2) the identification of variable and frozen nodes of the network. The method, along with a simulation that includes random features, is applied to the study of stomata closure by abscisic acid (ABA) in A. thaliana proposed by Albert and coworkers. We find that for the case of study, that the dynamics of wild and mutant networks have just two states that are highly visited in their space of states and about a third of all nodes of the wild network are variable while the rest remain frozen in True or False states. This high number of frozen elements explains the low cardinality of the space of states of the wild network. Similar results are observed in the mutant networks. The application of the method allowed us to explain how wild and mutants behave dynamically in the SS and determined an essential feature of the activation of the closure node (representing stomata closure), i.e. its synchronization with the AnionEm node (representing anion efflux at the plasma membrane). The dynamics of this synchronization explains the efficiency reached by the wild and each of the mutant networks. For the biological problem analyzed, our method allows determining how wild and mutant networks differ 'phenotypically'. It shows that the different efficiencies of stomata closure reached among the simulated wild and mutant networks follow from a dynamical behavior of two nodes that are always synchronized. Additionally, we predict that the involvement of the anion efflux at the plasma membrane is crucial for the plant response to ABA. The algorithm used in the simulations is available upon request.

  1. Effects of Multiple Contexts and Context Similarity on the Renewal of Extinguished Conditioned Behaviour in an ABA Design with Humans

    Science.gov (United States)

    Balooch, Siavash Bandarian; Neumann, David L.

    2011-01-01

    The ABA renewal procedure involves pairing a conditional stimulus (CS) and an unconditional stimulus (US) in one context (A), presenting extinction trials of the CS alone in a second context (B), and nonreinforced test trials of the CS in the acquisition context (A). The renewal of extinguished conditioned behaviour is observed during test. The…

  2. The Role of Self-Efficacy and Autonomy Support in School Psychologists' Use of ABA

    Science.gov (United States)

    Runyon, Katie; Stevens, Tara; Roberts, Brook; Whittaker, Richelle; Clark, Ashley; Chapman, Christy K.; Boggs-Lopez, Misty

    2018-01-01

    The most recent version of the Individuals with Disabilities Education Improvement Act (IDEIA) emphasizes research-based intervention in the school setting. Administrators expect school psychologists to lead initiatives introducing interventions and techniques derived from scientific approaches, such as applied behavior analysis (ABA). However, in…

  3. Formative Evaluation of an ABA Outreach Training Program for Parents of Children with Autism in Remote Areas

    Science.gov (United States)

    Heitzman-Powell, Linda S.; Buzhardt, Jay; Rusinko, Lisa C.; Miller, Todd M.

    2014-01-01

    Families in rural or remote areas have limited access to evidence-based intervention for their children with autism. Using web-based training and telemedicine technology, the current study investigated the feasibility of training seven parents to implement Applied Behavior Analysis (ABA) strategies with their children with autism. In this…

  4. Effect of root pruning and irrigation regimes on leaf water relations and xylem ABA and ionic concentrations in pear trees

    DEFF Research Database (Denmark)

    Wang, Yufei; Bertelsen, Marianne G.; Petersen, Karen Koefoed

    2014-01-01

    relation characteristics, stomatal conductance and xylem sap abscisic acid (ABA) and ionic concentrations. Results showed that leaf water potential, leaf turgor and stomatal conductance of root pruning (RP) treatment was significantly lower than those of non-root pruning (NP) treatment indicating that root...

  5. The effect of strobilurins on leaf gas exchange, water use efficiency and ABA content in grapevine under field conditions.

    Science.gov (United States)

    Diaz-Espejo, Antonio; Cuevas, María Victoria; Ribas-Carbo, Miquel; Flexas, Jaume; Martorell, Sebastian; Fernández, José Enrique

    2012-03-01

    Strobilurins are one of the most important classes of agricultural fungicides. In addition to their anti-fungal effect, strobilurins have been reported to produce simultaneous effects in plant physiology. This study investigated whether the use of strobilurin fungicide improved water use efficiency in leaves of grapevines grown under field conditions in a Mediterranean climate in southern Spain. Fungicide was applied three times in the vineyard and measurements of leaf gas exchange, plant water status, abscisic acid concentration in sap ([ABA]), and carbon isotope composition in leaves were performed before and after applications. No clear effect on stomatal conductance, leaf water potential and intrinsic water use efficiency was found after three fungicide applications. ABA concentration was observed to increase after fungicide application on the first day, vanishing three days later. Despite this transient effect, evolution of [ABA] matched well with the evolution of leaf carbon isotope ratio, which can be used as a surrogate for plant water use efficiency. Morning stomatal conductance was negatively correlated to [ABA]. Yield was enhanced in strobilurin treated plants, whereas fruit quality remained unaltered. Published by Elsevier GmbH.

  6. The melt rheological behavior of AB, ABA, BAB, and (AB)n block copolymers with monodisperse aramide segments

    NARCIS (Netherlands)

    Araichimani, A.; Dullaert, Konraad; Gaymans, R.J.

    2009-01-01

    The melt rheological behavior of segmented block copolymers with high melting diamide (A) hard segments (HS) and polyether (B) soft segments was studied. The block copolymers can be classified as B (monoblock), AB (diblock), ABA (triblock, diamide end segment), BAB (triblock, diamide mid-segment)

  7. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice

    NARCIS (Netherlands)

    Zhang, S.; Kohlen, W.; Jiang, L.; Bouwmeester, H.J.; Meijer, A.H.; Schluepmann, H.; Liu, C.M.; Ouwerkerk, P.B.F.

    2012-01-01

    Oshox22 belongs to the homeodomain-leucine zipper (HD-Zip) family I of transcription factors, most of which have unknown functions. Here we show that the expression of Oshox22 is strongly induced by salt stress, abscisic acid (ABA), and polyethylene glycol treatment (PEG), and weakly by cold stress.

  8. Group Training of Applied Behavior Analysis (ABA) Knowledge Competencies to Community-Based Service Providers for Adults with Developmental Disabilities

    Science.gov (United States)

    Luiselli, James K.; St. Amand, CarrieAnne; MaGee, Christine; Sperry, James M.

    2008-01-01

    We describe a training program to teach applied behavior analysis (ABA) knowledge competencies to paraprofessional staff (N = 47) at a habilitation services agency for adults with developmental disabilities. Before and following training, staff completed assessment of knowledge tests for three content areas: basic learning principles,…

  9. Effective School-Community Relations as a Key Performance Indicator for the Secondary School Administrator in Aba South District, Nigeria

    Science.gov (United States)

    Abraham, Nath. M.; Ememe, Ogbonna N.

    2012-01-01

    This study investigates Effective School-Community Relations as a key Performance Indicator (KPI) of Secondary Schools Administrator in Aba South District, Nigeria. Descriptive survey method was adopted. All the 248 teachers made up the population and sample in a purposive sampling technique representing 100% of the entire population as sample. A…

  10. Chain conformations of ABA triblock coplymers in microphase-separated structures for SANS

    International Nuclear Information System (INIS)

    Matsushita, Y.; Nomura, M.; Watanabe, J.; Mogi, Y.; Noda, I.; Han, C.C.

    1993-01-01

    Single chain conformations of center block, polystyrene, of poly(2-vinylpyridine-b-styrene-b-2-vinylpyridine)(PSP) triblock copolymers of the ABA type in bulk were measured by small angle neutron scattering (SANS), while microphase separation structures were studied by small angle X-ray Scattering (SAXS) and transmission electron microscopy (TEM). From the morphological observations, PSP block copolymers have confirmed to have alternating lamellar structure both when φs = 0.33 and φs = 0.5, where φs is the volume fraction of polystyrene blocks. It was also clarified that the chain dimension of center blocks of sample with φs = 0.33 is smaller than that of sample with φs = 0.5. This result may mean that the center blocks have bridge-righ conformation when φs = 0.33 while they have loop-rich conformation when φs = 0.5. (author)

  11. The Prevalence of Substance Use among Bandar Abas Azad Islamic University Students

    Directory of Open Access Journals (Sweden)

    Hamid Mardani

    2012-11-01

    Full Text Available Aim: Substance abuse is one of the most important problem and disease in current century that produced wide worry in the entire world. The solving of addiction among young and educated population is more important issue. The current research was aimed the study of the prevalence rate of the substance use (included: opium, alcohol, cigarette, Hubble bubble among Bandar Abas azad Islamic university students. Method: In this cross sectional study 310 university students were selected by stratified random sampling. For gathering data the prevalence substance use questionnaire was used. Results: The findings showed the start age was 22-25 years old. Also, prevalence rate of cigarette, Hubble bubble, opium, and alcohol were higher in boy students in comparison of girl students. The rate of difference was significant by run of chi square analysis. Conclusion: Sex, the history of substance use in family member, and friends were risk factors of substance use.

  12. A.B.A. Checklist: Birds of Continental United States and Canada

    Science.gov (United States)

    Keith, G.S.; Balch, L.G.; Gibson, D.D.; McCaskie, R.G.; Robbins, C.S.; Small, A.; Sykes, P.W.; Tucker, J.A.

    1982-01-01

    The 'Summary' in this edition of the A BA Checklist has been greatly expanded to include all properly documented records for each accidental species. These records are published, except for a very few recent ones which are in press or in preparation. Emphasis is on records supported by specimens or photographs, but sight records are also included. To make these accounts more useful to researchers, a reference has been given for each record. All records, except those identified as '(photo)' or '(specimen)', or by some other type of objective evidence, are sight records. Because of the interest shown in this section of the Checklist, coverage has not been confined to accidental species (defined as those which have occurred fewer than ten times in the ABA Checklist area during the twentieth century). Accounts are also given for selected rare visitors and native species. Two of the primary references are abbreviated in the accounts: Audubon Field Notes-AFN, and American Birds-AB.

  13. Computational prediction and experimental verification of HVA1-like abscisic acid responsive promoters in rice (Oryza sativa).

    Science.gov (United States)

    Ross, Christian; Shen, Qingxi J

    2006-09-01

    Abscisic acid (ABA) is one of the central plant hormones, responsible for controlling both maturation and germination in seeds, as well as mediating adaptive responses to desiccation, injury, and pathogen infection in vegetative tissues. Thorough analyses of two barley genes, HVA1 and HVA22, indicate that their response to ABA relies on the interaction of two cis-acting elements in their promoters, an ABA response element (ABRE) and a coupling element (CE). Together, they form an ABA response promoter complex (ABRC). Comparison of promoters of barley HVA1 and it rice orthologue indicates that the structures and sequences of their ABRCs are highly similar. Prediction of ABA responsive genes in the rice genome is then tractable to a bioinformatics approach based on the structures of the well-defined barley ABRCs. Here we describe a model developed based on the consensus, inter-element spacing and orientations of experimentally determined ABREs and CEs. Our search of the rice promoter database for promoters that fit the model has generated a partial list of genes in rice that have a high likelihood of being involved in the ABA signaling network. The ABA inducibility of some of the rice genes identified was validated with quantitative reverse transcription PCR (QPCR). By limiting our input data to known enhancer modules and experimentally derived rules, we have generated a high confidence subset of ABA-regulated genes. The results suggest that the pathways by which cereals respond to biotic and abiotic stresses overlap significantly, and that regulation is not confined to the level transcription. The large fraction of putative regulatory genes carrying HVA1-like enhancer modules in their promoters suggests the ABA signal enters at multiple points into a complex regulatory network that remains largely unmapped.

  14. Demographic and ecological survey of dog population in aba, abia state, Nigeria.

    Science.gov (United States)

    Otolorin, Gbeminiyi Richard; Umoh, Jarlath U; Dzikwi, Asabe Adamu

    2014-01-01

    Dog ecology is essential in understanding the distribution, structure, and population density of dogs and pattern of dog ownership in any given area. A cross-sectional study was designed to study dog ecology in Aba, Abia state, Nigeria, from April to June 2013. The study revealed that the 500 households surveyed possessed 5,823 individuals and 747 dogs, giving a dog to human ratio of 1 : 7.8; hence dog population in Aba was estimated to be 68,121. About 495/747 (66.3%) of the dogs were exotic and 465/747 (62.2%) were males. A total of 319/500 (63.8%) of the households had fences that restrained dog movement and there was no incidence of dog bite in 447/500 (89.4%) of the households surveyed. There were statistical associations between vaccination against antirabies and breeds of dogs (χ (2) = 79.8, df = 2, P < 0.005). Exotic breed (adjusted OR = 0.39; CI = 0.23-0.65) and local breed of dogs (adjusted OR = 0.08; CI = 0.04-0.14) had less odds of being vaccinated as compared to crossbreed of dogs. About 126 dogs (2.5 dogs per street) were estimated from street counts survey. The relative high dog to human ratio and low vaccination coverage of owned dogs population pose public health concerns requiring adequate public health education and proper antirabies vaccination coverage of dogs in the study area.

  15. Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid.

    Science.gov (United States)

    Chen, Jingxin; Mao, Linchun; Lu, Wenjing; Ying, Tiejin; Luo, Zisheng

    2016-01-01

    Auxin and abscisic acid regulate strawberry fruit ripening and senescence through cross-talk of their signal transduction pathways that further modulate the structural genes related to physico-chemical properties of fruit. The physiological and transcriptomic changes in harvested strawberry fruits in responses to IAA, ABA and their combination were analyzed. Exogenous IAA delayed the ripening process of strawberries after harvest while ABA promoted the postharvest ripening. However, treatment with a combination of IAA and ABA did not slow down nor accelerate the postharvest ripening in the strawberry fruits. At the molecular level, exogenous IAA up regulated the expressions of genes related to IAA signaling, including AUX/IAA, ARF, TOPLESS and genes encoding E3 ubiquitin protein ligase and annexin, and down regulated genes related to pectin depolymerization, cell wall degradation, sucrose and anthocyanin biosyntheses. In contrast, exogenous ABA induced genes related to fruit softening, and genes involved in signaling pathways including SKP1, HSPs, CK2, and SRG1. Comparison of transcriptomes in responses to individual treatments with IAA or ABA or the combination revealed that there were cooperative and antagonistic actions between IAA and ABA in fruit. However, 17% of the differentially expressed unigenes in response to the combination of IAA and ABA were unique and were not found in those unigenes responding to either IAA or ABA alone. The analyses also found that receptor-like kinases and ubiquitin ligases responded to both IAA and ABA, which seemed to play a pivotal role in both hormones' signaling pathways and thus might be the cross-talk points of both hormones.

  16. Optimization of Thermo-Mechanical Processing for Forging of Newly Developed Creep-Resistant Magnesium Alloy ABaX633

    Directory of Open Access Journals (Sweden)

    Kamineni Pitcheswara Rao

    2017-11-01

    Full Text Available The compressive strength and creep resistance of cast Mg-6Al-3Ba-3Ca (ABaX633 alloy has been measured in the temperature range of 25 to 250 °C, and compared with that of its predecessor ABaX422. The alloy is stronger and more creep-resistant than ABaX422, and exhibits only a small decrease of yield stress with temperature. The higher strength of ABaX633 is attributed to a larger volume fraction of intermetallic particles (Al, Mg2Ca and Mg21Al3Ba2 in its microstructure. Hot deformation mechanisms in ABaX633 have been characterized by developing a processing map in the temperature and strain rate ranges of 300 to 500 °C and 0.0003 to 10 s−1. The processing map exhibits two workability domains in the temperature and strain rate ranges of: (1 380 to 475 °C and 0.0003 to 0.003 s−1, and (2 480–500 °C and 0.003 to 0.5 s−1. The apparent activation energy values estimated in the above two domains (204 and 216 kJ/mol are higher than that for lattice self-diffusion of Mg, which is attributed to the large back-stress that is caused by the intermetallic particles. Optimum condition for bulk working is 500 °C and 0.01 s−1 at which hot workability will be maximum. Flow instability is exhibited at lower temperatures and higher strain rates, as well as at higher temperatures and higher strain rates. The predictions of the processing map on the workability domains, as well as the instability regimes are fully validated by the forging of a rib-web (cup shaped component under optimized conditions.

  17. Abscisic acid (ABA) and key proteins in its perception and signaling pathways are ancient, but their roles have changed through time.

    Science.gov (United States)

    Sussmilch, Frances C; Atallah, Nadia M; Brodribb, Timothy J; Banks, Jo Ann; McAdam, Scott A M

    2017-09-02

    Homologs of the Arabidopsis core abscisic acid (ABA) signaling component OPEN STOMATA1 (OST1) are best known for their role in closing stomata in angiosperm species. We recently characterized a fern OST1 homolog, GAMETOPHYTES ABA INSENSITIVE ON ANTHERDIOGEN 1 (GAIA1), which is not required for stomatal closure in ferns, consistent with physiologic evidence that shows the stomata of these plants respond passively to changes in leaf water status. Instead, gaia1 mutants reveal a critical role in ABA signaling for spore dormancy and sex determination, in a system regulated by antagonism between ABA and the gibberellin (GA)-derived fern hormone antheridiogen (A CE ). ABA and key proteins, including ABA receptors from the PYR/PYL/RCAR family and negative regulators of ABA-signaling from Group A of the type-2C protein phosphatases (PP2Cs), in addition to OST1 homologs, can be found in all terrestrial land plant lineages, ranging from liverworts that lack stomata, to angiosperms. As land plants have evolved and diversified over the past 450 million years, so too have the roles of this important plant hormone and the genes involved in its signaling and perception.

  18. The dehydration stress of couch grass is associated with its lipid metabolism, the induction of transporters and the re-programming of development coordinated by ABA.

    Science.gov (United States)

    Janská, Anna; Svoboda, Pavel; Spiwok, Vojtěch; Kučera, Ladislav; Ovesná, Jaroslava

    2018-05-02

    The wild relatives of crop species represent a potentially valuable source of novel genetic variation, particularly in the context of improving the crop's level of tolerance to abiotic stress. The mechanistic basis of these tolerances remains largely unexplored. Here, the focus was to characterize the transcriptomic response of the nodes (meristematic tissue) of couch grass (a relative of barley) to dehydration stress, and to compare it to that of the barley crown formed by both a drought tolerant and a drought sensitive barley cultivar. Many of the genes up-regulated in the nodes by the stress were homologs of genes known to be mediated by abscisic acid during the response to drought, or were linked to either development or lipid metabolism. Transporters also featured prominently, as did genes acting on root architecture. The resilience of the couch grass node arise from both their capacity to develop an altered, more effective root architecture, but also from their formation of a lipid barrier on their outer surface and their ability to modify both their lipid metabolism and transporter activity when challenged by dehydration stress. Our analysis revealed the nature of dehydration stress response in couch grass. We suggested the tolerance is associated with lipid metabolism, the induction of transporters and the re-programming of development coordinated by ABA. We also proved the applicability of barley microarray for couch grass stress-response analysis.

  19. AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5

    KAUST Repository

    Kim, Junhyeok; Hyun, Wooyoung; Nguyen, Hoai Nguyen; Jeong, Chanyoung; Xiong, Liming; Hong, Sukwhan; Lee, Hojoung

    2014-01-01

    Various Myb proteins have been shown to play crucial roles in plants, including primary and secondary metabolism, determination of cell fate and identity, regulation of development and involvement in responses to biotic and abiotic stresses. The 126 R2R3 Myb proteins (with two Myb repeats) have been found in Arabidopsis; however, the functions of most of these proteins remain to be fully elucidated. In the present study, we characterized the function of AtMyb7 using molecular biological and genetic analyses. We used qRT-PCR to determine the levels of stress-response gene transcripts in wild-type and atmyb7 plants. We showed that ArabidopsisAtMyb7 plays a critical role in seed germination. Under abscisic acid (ABA) and high-salt stress conditions, atmyb7 plants showed a lower germination rate than did wild-type plants. Furthermore, AtMyb7 promoter:GUS seeds exhibited different expression patterns in response to variations in the seed imbibition period. AtMyb7 negatively controls the expression of the gene encoding bZIP transcription factor, ABI5, which is a key transcription factor in ABA signalling and serves as a crucial regulator of germination inhibition in Arabidopsis. © 2014 John Wiley & Sons Ltd.

  20. AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5

    KAUST Repository

    Kim, Junhyeok

    2014-08-27

    Various Myb proteins have been shown to play crucial roles in plants, including primary and secondary metabolism, determination of cell fate and identity, regulation of development and involvement in responses to biotic and abiotic stresses. The 126 R2R3 Myb proteins (with two Myb repeats) have been found in Arabidopsis; however, the functions of most of these proteins remain to be fully elucidated. In the present study, we characterized the function of AtMyb7 using molecular biological and genetic analyses. We used qRT-PCR to determine the levels of stress-response gene transcripts in wild-type and atmyb7 plants. We showed that ArabidopsisAtMyb7 plays a critical role in seed germination. Under abscisic acid (ABA) and high-salt stress conditions, atmyb7 plants showed a lower germination rate than did wild-type plants. Furthermore, AtMyb7 promoter:GUS seeds exhibited different expression patterns in response to variations in the seed imbibition period. AtMyb7 negatively controls the expression of the gene encoding bZIP transcription factor, ABI5, which is a key transcription factor in ABA signalling and serves as a crucial regulator of germination inhibition in Arabidopsis. © 2014 John Wiley & Sons Ltd.

  1. Cloning and expression analysis of cDNAs for ABA 8'-hydroxylase during sweet cherry fruit maturation and under stress conditions.

    Science.gov (United States)

    Ren, Jie; Sun, Liang; Wu, Jiefang; Zhao, Shengli; Wang, Canlei; Wang, Yanping; Ji, Kai; Leng, Ping

    2010-11-15

    Abscisic acid (ABA) plays a key role in various aspects of plant growth and development, including adaptation to environmental stress and fruit maturation in sweet cherry fruit. In higher plants, the level of ABA is determined by synthesis and catabolism. In order to gain insight into ABA synthesis and catabolism in sweet cherry fruit during maturation and under stress conditions, four cDNAs of PacCYP707A1 -PacCYP707A4 for 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA, and one cDNA of PacNCED1 for 9-cis-epoxycarotenoid dioxygenase, a key enzyme in the ABA biosynthetic pathway, were isolated from sweet cherry fruit (Prunus avium L.). The timing and pattern of PacNCED1 expression was coincident with that of ABA accumulation, which was correlated to maturation of sweet cherry fruit. All four PacCYP707As were expressed at varying intensities throughout fruit development and appeared to play overlapping roles in ABA catabolism throughout sweet cherry fruit development. The application of ABA enhanced the expression of PacCYP707A1 -PacCYP707A3 as well as PacNCED1, but downregulated the PacCYP707A4 transcript level. Expressions of PacCYP707A1, PacCYP707A3 and PacNCED1 were strongly increased by water stress. No significant differences in PacCYP707A2 and PacCYP707A4 expression were observed between dehydrated and control fruits. The results suggest that endogenous ABA content is modulated by a dynamic balance between biosynthesis and catabolism, which are regulated by PacNCED1 and PacCYP707As transcripts, respectively, during fruit maturation and under stress conditions. Copyright © 2010 Elsevier GmbH. All rights reserved.

  2. Seeds of Brassicaceae weeds have an inherent or inducible response to the germination stimulant karrikinolide.

    Science.gov (United States)

    Long, Rowena L; Stevens, Jason C; Griffiths, Erin M; Adamek, Markus; Gorecki, Marta J; Powles, Stephen B; Merritt, David J

    2011-10-01

    Karrikinolide (KAR(1)) is a smoke-derived chemical that can trigger seeds to germinate. A potential application for KAR(1) is for synchronizing the germination of weed seeds, thereby enhancing the efficiency of weed control efforts. Yet not all species germinate readily with KAR(1), and it is not known whether seemingly non-responsive species can be induced to respond. Here a major agronomic weed family, the Brassicaceae, is used to test the hypothesis that a stimulatory response to KAR(1) may be present in physiologically dormant seeds but may not be expressed under all circumstances. Seeds of eight Brassicaceae weed species (Brassica tournefortii, Raphanus raphanistrum, Sisymbrium orientale, S. erysimoides, Rapistrum rugosum, Lepidium africanum, Heliophila pusilla and Carrichtera annua) were tested for their response to 1 µm KAR(1) when freshly collected and following simulated and natural dormancy alleviation, which included wet-dry cycling, dry after-ripening, cold and warm stratification and a 2 year seed burial trial. Seven of the eight Brassicaceae species tested were stimulated to germinate with KAR(1) when the seeds were fresh, and the remaining species became responsive to KAR(1) following wet-dry cycling and dry after-ripening. Light influenced the germination response of seeds to KAR(1), with the majority of species germinating better in darkness. Germination with and without KAR(1) fluctuated seasonally throughout the seed burial trial. KAR(1) responses are more complex than simply stating whether a species is responsive or non-responsive; light and temperature conditions, dormancy state and seed lot all influence the sensitivity of seeds to KAR(1), and a response to KAR(1) can be induced. Three response types for generalizing KAR(1) responses are proposed, namely inherent, inducible and undetected. Given that responses to KAR(1) were either inherent or inducible in all 15 seed lots included in this study, the Brassicaceae may be an ideal target for

  3. Physiological and molecular responses to drought in Petunia: the importance of stress severity

    Science.gov (United States)

    Kim, Jongyun

    2012-01-01

    Plant responses to drought stress vary depending on the severity of stress and the stage of drought progression. To improve the understanding of such responses, the leaf physiology, abscisic acid (ABA) concentration, and expression of genes associated with ABA metabolism and signalling were investigated in Petunia × hybrida. Plants were exposed to different specific substrate water contents (θ = 0.10, 0.20, 0.30, or 0.40 m3·m–3) to induce varying levels of drought stress. Plant responses were investigated both during the drying period (θ decreased to the θ thresholds) and while those threshold θ were maintained. Stomatal conductance (gs) and net photosynthesis (A) decreased with decreasing midday leaf water potential (Ψleaf). Leaf ABA concentration increased with decreasing midday Ψleaf and was negatively correlated with gs (r = –0.92). Despite the increase in leaf ABA concentration under drought, no significant effects on the expression of ABA biosynthesis genes were observed. However, the ABA catabolism-related gene CYP707A2 was downregulated, primarily in plants under severe drought (θ = 0.10 m3∙m–3), suggesting a decrease in ABA catabolism under severe drought. Expression of phospholipase Dα (PLDα), involved in regulating stomatal responses to ABA, was enhanced under drought during the drying phase, but there was no relationship between PLDα expression and midday Ψleaf after the θ thresholds had been reached. The results show that drought response of plants depends on the severity of drought stress and the phase of drought progression. PMID:23077204

  4. Synthesis of ABA Tri-Block Co-Polymer Magnetopolymersomes via Electroporation for Potential Medical Application

    Directory of Open Access Journals (Sweden)

    Jennifer Bain

    2015-12-01

    Full Text Available The ABA tri-block copolymer poly(2-methyloxazoline–poly(dimethylsiloxane–poly(2-methyloxazoline (PMOXA–PDMS–PMOXA is known for its capacity to mimic a bilayer membrane in that it is able to form vesicular polymersome structures. For this reason, it is the subject of extensive research and enables the development of more robust, adaptable and biocompatible alternatives to natural liposomes for biomedical applications. However, the poor solubility of this polymer renders published methods for forming vesicles unreproducible, hindering research and development of these polymersomes. Here we present an adapted, simpler method for the production of PMOXA–PDMS–PMOXA polymersomes of a narrow polydispersity (45 ± 5.8 nm, via slow addition of aqueous solution to a new solvent/polymer mixture. We then magnetically functionalise these polymersomes to form magnetopolymersomes via in situ precipitation of iron-oxide magnetic nanoparticles (MNPs within the PMOXA–PDMS–PMOXA polymersome core and membrane. This is achieved using electroporation to open pores within the membrane and to activate the formation of MNPs. The thick PMOXA–PDMS–PMOXA membrane is well known to be relatively non-permeable when compared to more commonly used di-block polymer membranes due a distinct difference in both size and chemistry and therefore very difficult to penetrate using standard biological methods. This paper presents for the first time the application of electroporation to an ABA tri-block polymersome membrane (PMOXA–PDMS–PMOXA for intravesicular in situ precipitation of uniform MNPs (2.6 ± 0.5 nm. The electroporation process facilitates the transport of MNP reactants across the membrane yielding in situ precipitation of MNPs. Further to differences in length and chemistry, a tri-block polymersome membrane structure differs from a natural lipid or di-block polymer membrane and as such the application and effects of electroporation on this type of

  5. The role of the atypical kinases ABC1K7 and ABC1K8 in abscisic acid responses

    Directory of Open Access Journals (Sweden)

    Anna eManara

    2016-03-01

    Full Text Available The ABC1K family of atypical kinases (activity of bc1 complex kinase is represented in bacteria, archaea and eukaryotes. In plants they regulate diverse physiological processes in the chloroplasts and mitochondria, but their precise functions are poorly defined. ABC1K7 and ABC1K8 are probably involved in oxidative stress responses, isoprenyl lipid synthesis and distribution of iron within chloroplasts. Because reactive oxygen species take part in abscisic acid (ABA-mediated processes, we investigated the functions of ABC1K7 and ABC1K8 during germination, stomatal movement and leaf senescence. Both genes were upregulated by ABA treatment and some ABA-responsive physiological processes were affected in abc1k7 and abc1k8 mutants. Germination was more severely affected by ABA, osmotic stress and salt stress in the single and double mutants; the stomatal aperture was smaller in the mutants under standard growth conditions and was not further reduced by exogenous ABA application; ABA-induced senescence symptoms were more severe in the leaves of the single and double mutants compared to wild type leaves. Taken together, our results suggest that ABC1K7 and ABC1K8 might be involved in the cross-talk between ABA and ROS signaling.

  6. Suppressing Type 2C Protein Phosphatases Alters Fruit Ripening and the Stress Response in Tomato.

    Science.gov (United States)

    Zhang, Yushu; Li, Qian; Jiang, Li; Kai, Wenbin; Liang, Bin; Wang, Juan; Du, Yangwei; Zhai, Xiawan; Wang, Jieling; Zhang, Yingqi; Sun, Yufei; Zhang, Lusheng; Leng, Ping

    2018-01-01

    Although ABA signaling has been widely studied in Arabidopsis, the roles of core ABA signaling components in fruit remain poorly understood. Herein, we characterize SlPP2C1, a group A type 2C protein phosphatase that negatively regulates ABA signaling and fruit ripening in tomato. The SlPP2C1 protein was localized in the cytoplasm close to AtAHG3/AtPP2CA. The SlPP2C1 gene was expressed in all tomato tissues throughout development, particularly in flowers and fruits, and it was up-regulated by dehydration and ABA treatment. SlPP2C1 expression in fruits was increased at 30 d after full bloom and peaked at the B + 1 stage. Suppression of SlPP2C1 expression significantly accelerated fruit ripening which was associated with higher levels of ABA signaling genes that are reported to alter the expression of fruit ripening genes involved in ethylene release and cell wall catabolism. SlPP2C1-RNAi (RNA interference) led to increased endogenous ABA accumulation and advanced release of ethylene in transgenic fruits compared with wild-type (WT) fruits. SlPP2C1-RNAi also resulted in abnormal flowers and obstructed the normal abscission of pedicels. SlPP2C1-RNAi plants were hypersensitized to ABA, and displayed delayed seed germination and primary root growth, and increased resistance to drought stress compared with WT plants. These results demonstrated that SlPP2C1 is a functional component in the ABA signaling pathway which participates in fruit ripening, ABA responses and drought tolerance. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. ABA and ABC renewal of conditioned magazine approach are not impaired by dorsal hippocampus inactivation or lesions

    Science.gov (United States)

    Campese, Vincent; Delamater, Andrew R.

    2013-01-01

    Three experiments investigated the role of the dorsal hippocampus (DH) in renewal of conditioned and then extinguished magazine approach responding in rats. Experiments 1 and 2 found no effect of muscimol inactivation of the DH during testing on ABA and ABC renewal, respectively. However, subjects from these studies were subsequently found to be impaired on a delayed non-matching-to-place task following muscimol but not saline infusions. Experiment 3 found no effects of post-training excitotoxic lesions of the DH on ABA and ABC renewal. Lesioned subjects were, however, impaired on the delayed non-matching-to-place task compared to control subjects. These findings suggest that the DH may not play a similar role in Pavlovian extinction in appetitive learning tasks as has previously been reported in aversive learning. PMID:23583520

  8. Changes in ABA, IAA and JA levels during calyx, fruit and leaves development in cape gooseberry plants (Physalis peruviana L.).

    Science.gov (United States)

    Álvarez-Flórez, F; López-Cristoffanini, C; Jáuregui, O; Melgarejo, L M; López-Carbonell, M

    2017-06-01

    Changes in abscisic acid (ABA), indole-3-acetic acid (IAA) and jasmonic acid (JA) content in developing calyx, fruits and leaves of Physalis peruviana L. plants were analysed. Plant hormones have been widely studied for their roles in the regulation of various aspects related to plant development and, in particular, into their action during development and ripening of fleshly fruits. The obtained evidences suggest that the functions of these hormones are no restricted to a particular development stage, and more than one hormone is involved in controlling various aspects of plant development. Our results will contribute to understand the role of these hormones during growth and development of calyx, fruits and leaves in cape gooseberry plants. This work offers a good, quickly and efficiently protocol to extract and quantify simultaneously ABA, IAA and JA in different tissues of cape gooseberry plants. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Physiological studies on photochemical oxidant injury in rice plants. IV. Effect of nitrogen application on endogenous abscisic acid (ABA) production and ozone injury of rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y.H.; Ota, Y.

    1981-12-01

    In order to determine the effects of nitrogen application on ABA content of rice plants and their ozone-sensitivity, ABA production and ozone injuries were observed under different levels of nitrogen application with two Japonica and two Japonica X Indica type varieties. In all varieties, endogenous ABA content decreased with the increasing level of nitrogen applied, although total nitrogen content increased with the increasing level of nitrogen applied. Ozone injury was found with increasing level of nitrogen applied and to change depending on the varieties. Ozone injury was found to be more serious with increasing nitrogen content in Jinheung and Nongback, however it was less pronounced in Tongil and Milyang No. 23. Endogenous ABA content and ozone-sensitivity were related to the nitrogen content in the rice plants.

  10. Voltage-Dependent Anion Channel 2 of Arabidopsis thaliana (AtVDAC2 Is Involved in ABA-Mediated Early Seedling Development

    Directory of Open Access Journals (Sweden)

    Xufeng Li

    2009-05-01

    Full Text Available The voltage-dependent anion channel (VDAC is the major transport protein in the outer membrane of mitochondria and plays crucial roles in energy metabolism, apoptosis, and metabolites transport. In plants, the expression of VDACs can be affected by different stresses, including drought, salinity and pathogen defense. In this study, we investigated the expression pattern of AtVDAC2 in A. thaliana and found ABA suppressed the accumulation of AtVDAC2 transcripts. Further, phenotype analysis of this VDAC deregulated-expression transgenic Arabidopsis plants indicated that AtVDAC2 anti-sense line showed an ABA-insensitivity phenotype during the early seedling development under ABA treatment. The results suggested that AtVDAC2 might be involved in ABA signaling in A. thaliana.

  11. The Role of Mesolimbic Reward Neurocircuitry in Prevention and Rescue of the Activity-Based Anorexia (ABA) Phenotype in Rats.

    Science.gov (United States)

    Foldi, Claire J; Milton, Laura K; Oldfield, Brian J

    2017-11-01

    Patients suffering from anorexia nervosa (AN) become anhedonic; unable or unwilling to derive normal pleasures and avoid rewarding outcomes, most profoundly in food intake. The activity-based anorexia (ABA) model recapitulates many of the characteristics of the human condition, including anhedonia, and allows investigation of the underlying neurobiology of AN. The potential for increased neuronal activity in reward/hedonic circuits to prevent and rescue weight loss is investigated in this model. The mesolimbic pathway extending from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) was activated using a dual viral strategy, involving retrograde transport of Cre (CAV-2-Cre) to the VTA and coincident injection of DREADD receptors (AAV-hSyn-DIO-hM3D(Gq)-mCherry). Systemic clozapine-n-oxide (CNO; 0.3 mg/kg) successfully recruited a large proportion of the VTA-NAc dopaminergic projections, with activity evidenced by colocalization with elevated levels of Fos protein. The effects of reward circuit activation on energy balance and predicted survival was investigated in female Sprague-Dawley rats, where free access to running wheels was paired with time-limited (90 min) access to food, a paradigm (ABA) which will cause anorexia and death if unchecked. Excitation of the reward pathway substantially increased food intake and food anticipatory activity (FAA) to prevent ABA-associated weight loss, while overall locomotor activity was unchanged. Similar activation of reward circuitry, delayed until establishment of the ABA phenotype, rescued rats from their precipitous weight loss. Although these data are consistent with shifts primarily in food intake, the contribution of mechanisms including energy expenditure to survival remains to be determined. These results will inform the neurobiological underpinnings of AN, and provide insight into the mechanisms of reward circuitry relevant to feeding and weight loss.

  12. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio

    OpenAIRE

    Shuai, Haiwei; Meng, Yongjie; Luo, Xiaofeng; Chen, Feng; Zhou, Wenguan; Dai, Yujia; Qi, Ying; Du, Junbo; Yang, Feng; Liu, Jiang; Yang, Wenyu; Shu, Kai

    2017-01-01

    Auxin is an important phytohormone which mediates diverse development processes in plants. Published research has demonstrated that auxin induces seed dormancy. However, the precise mechanisms underlying the effect of auxin on seed germination need further investigation, especially the relationship between auxins and both abscisic acid (ABA) and gibberellins (GAs), the latter two phytohormones being the key regulators of seed germination. Here we report that exogenous auxin treatment represse...

  13. Ab initio quasiparticle bandstructure of ABA and ABC-stacked graphene trilayers

    Science.gov (United States)

    Menezes, Marcos; Capaz, Rodrigo; Louie, Steven

    2013-03-01

    We obtain the quasiparticle band structure of ABA and ABC-stacked graphene trilayers through ab initio density functional theory (DFT) and many-body quasiparticle calculations within the GW approximation. To interpret our results, we fit the DFT and GW π bands to a low energy tight-binding model, which is found to reproduce very well the observed features near the K point. The values of the extracted hopping parameters are reported and compared with available theoretical and experimental data. For both stackings, the quasiparticle corrections lead to a renormalization of the Fermi velocity, an effect also observed in previous calculations on monolayer graphene. They also increase the separation between the higher energy bands, which is proportional to the nearest neighbor interlayer hopping parameter γ1. Both features are brought to closer agreement with experiment through the quasiparticle corrections. Finally, other effects, such as trigonal warping, electron-hole assymetry and energy gaps are discussed in terms of the associated parameters. This work was supported by the Brazilian funding agencies: CAPES, CNPq, FAPERJ and INCT-Nanomateriais de Carbono. It was also supported by NSF grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231.

  14. AAB and ABA Renewal as a Function of the Number of Extinction Trials in Conditioned Taste Aversion

    Directory of Open Access Journals (Sweden)

    José E. Callejas-Aguilera

    2007-01-01

    Full Text Available Se realizaron tres experimentos en los que se exploró el efecto de renovación en aversión condicionada al sabor en función del número de ensayos de extinción. En el Experimento 1, tres grupos de ratas recibieron un ensayo de condicionamiento, donde una solución de sacarina se emparejó con LiCl, seguido por tres ensayos de extinción y dos ensayos de prueba. Los grupos difirieron en el contexto donde recibieron cada una de las fases (AAA, ABA y AAB. El cambio de contexto después de la extinción renovó la aversión condicionada al sabor, independientemente de si aquél implicó el regreso al contexto de condicionamiento (ABA o el paso a un contexto diferente (AAB. En el Experimento 2, aumentar el número de ensayos de extinción a 5 eliminó la renovación en el grupo AAB. El Experimento 3 replicó estos resultados dentro de un diseño factorial. Se discuten las implicaciones del efecto diferencial de la cantidad de extinción en la renovación AAB y ABA para la teoría de la recuperación de la información.

  15. 40 CFR Table 1 to Subpart III of... - HAP ABA Formulation Limitations Matrix for New Sources [see § 63.1297(d)(2)

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true HAP ABA Formulation Limitations Matrix for New Sources [see § 63.1297(d)(2)] 1 Table 1 to Subpart III of Part 63 Protection of Environment... Flexible Polyurethane Foam Production Pt. 63, Subpt. III, Table 1 Table 1 to Subpart III of Part 63—HAP ABA...

  16. ABA signaling in guard cells entails a dynamic protein-protein interaction relay from the PYL-RCAR family receptors to ion channels.

    Science.gov (United States)

    Lee, Sung Chul; Lim, Chae Woo; Lan, Wenzhi; He, Kai; Luan, Sheng

    2013-03-01

    Plant hormone abscisic acid (ABA) serves as an integrator of environmental stresses such as drought to trigger stomatal closure by regulating specific ion channels in guard cells. We previously reported that SLAC1, an outward anion channel required for stomatal closure, was regulated via reversible protein phosphorylation events involving ABA signaling components, including protein phosphatase 2C members and a SnRK2-type kinase (OST1). In this study, we reconstituted the ABA signaling pathway as a protein-protein interaction relay from the PYL/RCAR-type receptors, to the PP2C-SnRK2 phosphatase-kinase pairs, to the ion channel SLAC1. The ABA receptors interacted with and inhibited PP2C phosphatase activity against the SnRK2-type kinase, releasing active SnRK2 kinase to phosphorylate, and activate the SLAC1 channel, leading to reduced guard cell turgor and stomatal closure. Both yeast two-hybrid and bimolecular fluorescence complementation assays were used to verify the interactions among the components in the pathway. These biochemical assays demonstrated activity modifications of phosphatases and kinases by their interaction partners. The SLAC1 channel activity was used as an endpoint readout for the strength of the signaling pathway, depending on the presence of different combinations of signaling components. Further study using transgenic plants overexpressing one of the ABA receptors demonstrated that changing the relative level of interacting partners would change ABA sensitivity.

  17. Abscisic Acid and Gibberellins Antagonistically Mediate Plant Development and Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Kai Shu

    2018-03-01

    Full Text Available Phytohormones regulate numerous important biological processes in plant development and biotic/abiotic stress response cascades. More than 50 and 100 years have passed since the initial discoveries of the phytohormones abscisic acid (ABA and gibberellins (GA, respectively. Over the past several decades, numerous elegant studies have demonstrated that ABA and GA antagonistically regulate many plant developmental processes, including seed maturation, seed dormancy and germination, root initiation, hypocotyl and stem elongation, and floral transition. Furthermore, as a well-established stress hormone, ABA plays a key role in plant responses to abiotic stresses, such as drought, flooding, salinity and low temperature. Interestingly, recent evidence revealed that GA are also involved in plant response to adverse environmental conditions. Consequently, the complex crosstalk networks between ABA and GA, mediated by diverse key regulators, have been extensively investigated and documented. In this updated mini-review, we summarize the most recent advances in our understanding of the antagonistically regulatory roles of ABA and GA in different stages of plant development and in various plant–environment interactions, focusing on the crosstalk between ABA and GA at the levels of phytohormone metabolism and signal transduction.

  18. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters.

    Science.gov (United States)

    Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2005-02-01

    cis-Acting regulatory elements are important molecular switches involved in the transcriptional regulation of a dynamic network of gene activities controlling various biological processes, including abiotic stress responses, hormone responses and developmental processes. In particular, understanding regulatory gene networks in stress response cascades depends on successful functional analyses of cis-acting elements. The ever-improving accuracy of transcriptome expression profiling has led to the identification of various combinations of cis-acting elements in the promoter regions of stress-inducible genes involved in stress and hormone responses. Here we discuss major cis-acting elements, such as the ABA-responsive element (ABRE) and the dehydration-responsive element/C-repeat (DRE/CRT), that are a vital part of ABA-dependent and ABA-independent gene expression in osmotic and cold stress responses.

  19. Elastic properties of nano structured AZrO3 (A=Ba, Sr) single perovskites

    International Nuclear Information System (INIS)

    Pazhani, R.; Thomas, J.K.; Moses Ezhil Raj, A.; Solomon, S.; Bena Jothy, V.; Mathai, K.C.

    2011-01-01

    Nanocrystals of barium zirconate and strontium zirconate AZrO 3 (A=Ba and Sr) were synthesized by a unique self-sustained single-step combustion of an aqueous solution, containing Ba, Sr and Zr ions by using citric acid as complexing agent and liquor ammonia as fuel, thus giving rise to phase pure AZrO 3 nanopowder. In this process, a single phase pure nanopowder of AZrO 3 has been obtained without the need of calcination steps. The formation and stability of the compound was confirmed through the tolerance factor on the basis of the ionic radii of all the atoms of the compound. Phase-purity of the as-prepared powders was examined using X-ray diffraction. As-prepared powder was single phase, crystalline, and composed of uniform particles with sizes 20-30 nm. The crystal structure of AZrO 3 are respective cubic (Pm3-bar m, a=4.1839A) and orthorhombic (Pnma, a=5.7937A, b=8.17648A and c=5.7694A). Annealed samples of SrZrO 3 has improved crystal structure with a=5.764A, b=8.2292A and c=5.7989A, comparable to the standards. Microstrain acting on all the planes of the material is positive which indicates presence of tensile stress on the material. The calculated compressive stress on the surface of' the nanopowder is of the order 0.213 GPa to -0.274 GPa for BaZrO 3 and 4.443 GPa to -0.220 GPa for SrZrO 3 along various planes of the particles. (author)

  20. Tertiary-amine-containing thermo- and pH-sensitive hydrophilic ABA triblock copolymers: effect of different tertiary amines on thermally induced sol-gel transitions.

    Science.gov (United States)

    Henn, Daniel M; Wright, Roger A E; Woodcock, Jeremiah W; Hu, Bin; Zhao, Bin

    2014-03-11

    This Article reports on the synthesis of a series of well-defined, tertiary-amine-containing ABA triblock copolymers, composed of a poly(ethylene oxide) (PEO) central block and thermo- and pH-sensitive outer blocks, and the study of the effect of different tertiary amines on thermally induced sol-gel transition temperatures (T(sol-gel)) of their 10 wt % aqueous solutions. The doubly responsive ABA triblock copolymers were prepared from a difunctional PEO macroinitiator by atom transfer radical polymerization of methoxydi(ethylene glycol) methacrylate and ethoxydi(ethylene glycol) methacrylate at a feed molar ratio of 30:70 with ∼5 mol % of either N,N-diethylaminoethyl methacrylate (DEAEMA), N,N-diisopropylaminoethyl methacrylate, or N,N-di(n-butyl)aminoethyl methacrylate. The chain lengths of thermosensitive outer blocks and the molar contents of tertiary amines were very similar for all copolymers. Using rheological measurements, we determined the pH dependences of T(sol-gel) of 10 wt % aqueous solutions of these copolymers in a phosphate buffer. The T(sol-gel) versus pH curves of all polymers exhibited a sigmoidal shape. The T(sol-gel) increased with decreasing pH; the changes were small on both high and low pH sides. At a specific pH, the T(sol-gel) decreased with increasing the hydrophobicity of the tertiary amine, and upon decreasing pH the onset pH value for the T(sol-gel) to begin to increase noticeably was lower for the more hydrophobic tertiary amine-containing copolymer. In addition, we studied the effect of different tertiary amines on the release behavior of FITC-dextran from 10 wt % micellar gels in an acidic medium at 37 and 27 °C. The release profiles for three studied hydrogels at 37 °C were essentially the same, suggesting that the release was dominated by the diffusion of FITC-dextran. At 27 °C, the release was significantly faster for the DEAEMA-containing copolymer, indicating that both diffusion and gel dissolution contributed to the

  1. ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent.

    Science.gov (United States)

    Hobo, T; Asada, M; Kowyama, Y; Hattori, T

    1999-09-01

    ACGT-containing ABA response elements (ABREs) have been functionally identified in the promoters of various genes. In addition, single copies of ABRE have been found to require a cis-acting, coupling element to achieve ABA induction. A coupling element 3 (CE3) sequence, originally identified as such in the barley HVA1 promoter, is found approximately 30 bp downstream of motif A (ACGT-containing ABRE) in the promoter of the Osem gene. The relationship between these two elements was further defined by linker-scan analyses of a 55 bp fragment of the Osem promoter, which is sufficient for ABA-responsiveness and VP1 activation. The analyses revealed that both motif A and CE3 sequence were required not only for ABA-responsiveness but also for VP1 activation. Since the sequences of motif A and CE3 were found to be similar, motif-exchange experiments were carried out. The experiments demonstrated that motif A and CE3 were interchangeable by each other with respect to both ABA and VP1 regulation. In addition, both sequences were shown to be recognized by a VP1-interacting, ABA-responsive bZIP factor TRAB1. These results indicate that ACGT-containing ABREs and CE3 are functionally equivalent cis-acting elements. Furthermore, TRAB1 was shown to bind two other non-ACGT ABREs. Based on these results, all these ABREs including CE3 are proposed to be categorized into a single class of cis-acting elements.

  2. Abscisic acid metabolite profiling as indicators of plastic responses to drought in grasses from arid Patagonian Monte (Argentina).

    Science.gov (United States)

    Cenzano, Ana M; Masciarelli, O; Luna, M Virginia

    2014-10-01

    The identification of hormonal and biochemical traits that play functional roles in the adaptation to drought is necessary for the conservation and planning of rangeland management. The aim of this study was to evaluate the effects of drought on i) the water content (WC) of different plant organs, ii) the endogenous level of abscisic acid (ABA) and metabolites (phaseic acid-PA, dihydrophaseic acid-DPA and abscisic acid conjugated with glucose ester-ABA-GE), iii) the total carotenoid concentration and iv) to compare the traits of two desert perennial grasses (Pappostipa speciosa and Poa ligularis) with contrasting morphological and functional drought resistance traits and life-history strategies. Both species were subjected to two levels of gravimetric soil moisture (the highest near field capacity during autumn-winter and the lowest corresponding to summer drought). Drought significantly increased the ABA and DPA levels in the green leaves of P. speciosa and P. ligularis. Drought decreased ABA in the roots of P. speciosa while it increased ABA in the roots of P. ligularis. P. ligularis had the highest ABA level and WC in green leaves. While P. speciosa had the highest DPA levels in leaves. In conclusion, we found the highest ABA level in the mesophytic species P. ligularis and the lowest ABA level in the xerophytic species P. speciosa, revealing that the ABA metabolite profile in each grass species is a plastic response to drought resistance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Foliar Abscisic Acid-To-Ethylene Accumulation and Response Regulate Shoot Growth Sensitivity to Mild Drought in Wheat

    Science.gov (United States)

    Valluru, Ravi; Davies, William J.; Reynolds, Matthew P.; Dodd, Ian C.

    2016-01-01

    Although, plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ABA and ethylene concentrations under mild drought compared to control. The DT and DS groups exhibited different SDW response trends, whereby the DS group decreased while the DT group increased SDW, to increased concentrations of ABA and ethylene under mild drought, although both groups decreased ABA/ethylene ratio under mild drought albeit at different levels. We concluded that SDW of the DT and DS groups might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of low concentrations (0.1 μM) of ABA increased shoot relative growth rate (RGR) in the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor) spray increased RGR in both groups compared to control. Furthermore, the DT group accumulated a significantly higher galactose while a significantly lower maltose in the shoot compared to the DS group. Taken all together, these results suggest an impact of ABA, ethylene, and ABA:ethylene ratio on SDW of wheat seedlings that may partly underlie a genotypic variability of different shoot growth sensitivities to drought among crop species under field conditions. We propose that phenotyping based on hormone accumulation, response and hormonal ratio would be a viable, rapid, and an early–stage selection tool aiding genotype selection for stress tolerance. PMID:27148292

  4. Dissection of cis-regulatory element architecture of the rice oleosin gene promoters to assess abscisic acid responsiveness in suspension-cultured rice cells.

    Science.gov (United States)

    Kim, Sol; Lee, Soo-Bin; Han, Chae-Seong; Lim, Mi-Na; Lee, Sung-Eun; Yoon, In Sun; Hwang, Yong-Sic

    2017-08-01

    Oleosins are the most abundant proteins in the monolipid layer surrounding neutral storage lipids that form oil bodies in plants. Several lines of evidence indicate that they are physiologically important for the maintenance of oil body structure and for mobilization of the lipids stored inside. Rice has six oleosin genes in its genome, the expression of all of which was found to be responsive to abscisic acid (ABA) in our examination of mature embryo and aleurone tissues. The 5'-flanking region of OsOle5 was initially characterized for its responsiveness to ABA through a transient expression assay system using the protoplasts from suspension-cultured rice cells. A series of successive deletions and site-directed mutations identified five regions critical for the hormonal induction of its promoter activity. A search for cis-acting elements in these regions deposited in a public database revealed that they contain various promoter elements previously reported to be involved in the ABA response of various genes. A gain-of-function experiment indicated that multiple copies of all five regions were sufficient to provide the minimal promoter with a distinct ABA responsiveness. Comparative sequence analysis of the short, but still ABA-responsive, promoters of OsOle genes revealed no common modular architecture shared by them, indicating that various distinct promoter elements and independent trans-acting factors are involved in the ABA responsiveness of rice oleosin multigenes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Effect of Anticitrullinated Protein Antibody Status on Response to Abatacept or Antitumor Necrosis Factor-α Therapy in Patients with Rheumatoid Arthritis: A US National Observational Study.

    Science.gov (United States)

    Harrold, Leslie R; Litman, Heather J; Connolly, Sean E; Kelly, Sheila; Hua, Winnie; Alemao, Evo; Rosenblatt, Lisa; Rebello, Sabrina; Kremer, Joel M

    2018-01-01

    Assess whether baseline anticyclic citrullinated peptide antibodies (anti-CCP) status is associated with treatment response in patients with rheumatoid arthritis (RA) initiating abatacept (ABA) or a tumor necrosis factor-α inhibitor (TNFi). Using the Corrona RA registry, patients were identified who initiated ABA or a TNFi (June 2004-January 2015), had a followup visit 6 months (± 3 mos) after initiation, and anti-CCP measured at or prior to initiation. Primary outcome was mean change in Clinical Disease Activity Index (CDAI) from initiation to 6 months. Treatment response was evaluated based on a typical patient profile (female, aged 57 yrs, body mass index of 30 kg/m 2 , baseline CDAI of 20, 1 prior biologic, and no comorbidities other than RA). Secondary outcomes included remission and low disease activity. There were 566 ABA initiators [anti-CCP+ (≥ 20 units/ml): n = 362; anti-CCP- (< 20 units/ml): n = 204] and 1715 TNFi initiators (anti-CCP+: n = 1113; anti-CCP-: n = 602). Differences between treatment groups included baseline disease duration, CDAI, and prior biologic use. At 6 months, anti-CCP+ ABA initiators were associated with significantly greater CDAI response versus anti-CCP- ABA initiators; no significant difference was observed for TNFi initiators. When considering a typical RA patient profile, CDAI response was greater in anti-CCP+ versus anti-CCP- ABA initiators; anti-CCP+ versus anti-CCP- TNFi initiators were similar. Secondary outcome responses were also greater in anti-CCP+ versus anti-CCP- ABA initiators; TNFi initiators did not differ by anti-CCP status. In a US-based clinical practice setting, anti-CCP status was associated with a differential treatment response to ABA, but not TNFi.

  6. Borboletas e Mariposas (Insecta: Lepidoptera do Município de Joaçaba, Estado de Santa Catarina, Brasil

    Directory of Open Access Journals (Sweden)

    Mario Favretto

    2012-07-01

    Abstract. For the first time is presented a list of Lepidoptera recorded in the municipality of Joaçaba, state of Santa Catarina, Brazil. The individuals were collected between the years 2006 and 2010 in different environments resulting in 58 species belonging to ten families. The most abundant families were Nymphalidae and Saturniidae, representing 34,48% and 24,13% of the species richness respectively. In addition, the most representative genera of Nymphalidae were Morpho (three species, and Hamadryas (two species, while in Saturniidae were Rothschildia (three species and Automeris (two species.

  7. Ethylene Receptors Signal via a Noncanonical Pathway to Regulate Abscisic Acid Responses1[OPEN

    Science.gov (United States)

    Bakshi, Arkadipta; Fernandez, Jessica C.

    2018-01-01

    Ethylene is a gaseous plant hormone perceived by a family of receptors in Arabidopsis (Arabidopsis thaliana) including ETHYLENE RESPONSE1 (ETR1) and ETR2. Previously we showed that etr1-6 loss-of-function plants germinate better and etr2-3 loss-of-function plants germinate worse than wild-type under NaCl stress and in response to abscisic acid (ABA). In this study, we expanded these results by showing that ETR1 and ETR2 have contrasting roles in the control of germination under a variety of inhibitory conditions for seed germination such as treatment with KCl, CuSO4, ZnSO4, and ethanol. Pharmacological and molecular biology results support a model where ETR1 and ETR2 are indirectly affecting the expression of genes encoding ABA signaling proteins to affect ABA sensitivity. The receiver domain of ETR1 is involved in this function in germination under these conditions and controlling the expression of genes encoding ABA signaling proteins. Epistasis analysis demonstrated that these contrasting roles of ETR1 and ETR2 do not require the canonical ethylene signaling pathway. To explore the importance of receptor-protein interactions, we conducted yeast two-hybrid screens using the cytosolic domains of ETR1 and ETR2 as bait. Unique interacting partners with either ETR1 or ETR2 were identified. We focused on three of these proteins and confirmed the interactions with receptors. Loss of these proteins led to faster germination in response to ABA, showing that they are involved in ABA responses. Thus, ETR1 and ETR2 have both ethylene-dependent and -independent roles in plant cells that affect responses to ABA. PMID:29158332

  8. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis.

    Directory of Open Access Journals (Sweden)

    Biao Lai

    Full Text Available The red coloration of litchi fruit depends on the accumulation of anthocyanins. The anthocyanins level in litchi fruit varies widely among cultivars, developmental stages and environmental stimuli. Previous studies on various plant species demonstrate that anthocyanin biosynthesis is controlled at the transcriptional level. Here, we describe a litchi R2R3-MYB transcription factor gene, LcMYB1, which demonstrates a similar sequence as other known anthocyanin regulators. The transcription levels of the LcMYB1 and anthocyanin biosynthetic genes were investigated in samples with different anthocyanin levels. The expression of LcMYB1 was strongly associated with tissue anthocyanin content. LcMYB1 transcripts were only detected in anthocyanin-accumulating tissues and were positively correlated with anthocyanin accumulation in the pericarps of 12 genotypes. ABA and sunlight exposure promoted, whereas CPPU and bagging inhibited the expression of LcMYB1 and anthocyanin accumulation in the pericarp. Cis-elements associated with light responsiveness and abscisic acid responsiveness were identified in the promoter region of LcMYB1. Among the 6 structural genes tested, only LcUFGT was highly correlated with LcMYB1. These results suggest that LcMYB1 controls anthocyanin biosynthesis in litchi and LcUFGT might be the structural gene that is targeted and regulated by LcMYB1. Furthermore, the overexpression of LcMYB1 induced anthocyanin accumulation in all tissues in tobacco, confirming the function of LcMYB1 in the regulation of anthocyanin biosynthesis. The upregulation of NtAn1b in response to LcMYB1 overexpression seems to be essential for anthocyanin accumulation in the leaf and pedicel. In the reproductive tissues of transgenic tobacco, however, increased anthocyanin accumulation is independent of tobacco's endogenous MYB and bHLH transcriptional factors, but associated with the upregulation of specific structural genes.

  9. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis.

    Science.gov (United States)

    Lai, Biao; Li, Xiao-Jing; Hu, Bing; Qin, Yong-Hua; Huang, Xu-Ming; Wang, Hui-Cong; Hu, Gui-Bing

    2014-01-01

    The red coloration of litchi fruit depends on the accumulation of anthocyanins. The anthocyanins level in litchi fruit varies widely among cultivars, developmental stages and environmental stimuli. Previous studies on various plant species demonstrate that anthocyanin biosynthesis is controlled at the transcriptional level. Here, we describe a litchi R2R3-MYB transcription factor gene, LcMYB1, which demonstrates a similar sequence as other known anthocyanin regulators. The transcription levels of the LcMYB1 and anthocyanin biosynthetic genes were investigated in samples with different anthocyanin levels. The expression of LcMYB1 was strongly associated with tissue anthocyanin content. LcMYB1 transcripts were only detected in anthocyanin-accumulating tissues and were positively correlated with anthocyanin accumulation in the pericarps of 12 genotypes. ABA and sunlight exposure promoted, whereas CPPU and bagging inhibited the expression of LcMYB1 and anthocyanin accumulation in the pericarp. Cis-elements associated with light responsiveness and abscisic acid responsiveness were identified in the promoter region of LcMYB1. Among the 6 structural genes tested, only LcUFGT was highly correlated with LcMYB1. These results suggest that LcMYB1 controls anthocyanin biosynthesis in litchi and LcUFGT might be the structural gene that is targeted and regulated by LcMYB1. Furthermore, the overexpression of LcMYB1 induced anthocyanin accumulation in all tissues in tobacco, confirming the function of LcMYB1 in the regulation of anthocyanin biosynthesis. The upregulation of NtAn1b in response to LcMYB1 overexpression seems to be essential for anthocyanin accumulation in the leaf and pedicel. In the reproductive tissues of transgenic tobacco, however, increased anthocyanin accumulation is independent of tobacco's endogenous MYB and bHLH transcriptional factors, but associated with the upregulation of specific structural genes.

  10. Novel Fri1-like Viruses Infecting Acinetobacter baumannii-vB_AbaP_AS11 and vB_AbaP_AS12-Characterization, Comparative Genomic Analysis, and Host-Recognition Strategy.

    Science.gov (United States)

    Popova, Anastasia V; Lavysh, Daria G; Klimuk, Evgeniy I; Edelstein, Mikhail V; Bogun, Alexander G; Shneider, Mikhail M; Goncharov, Artemiy E; Leonov, Sergey V; Severinov, Konstantin V

    2017-07-17

    Acinetobacter baumannii is a gram-negative, non-fermenting aerobic bacterium which is often associated with hospital-acquired infections and known for its ability to develop resistance to antibiotics, form biofilms, and survive for long periods in hospital environments. In this study, we present two novel viruses, vB_AbaP_AS11 and vB_AbaP_AS12, specifically infecting and lysing distinct multidrug-resistant clinical A. baumannii strains with K19 and K27 capsular polysaccharide structures, respectively. Both phages demonstrate rapid adsorption, short latent periods, and high burst sizes in one-step growth experiments. The AS11 and AS12 linear double-stranded DNA genomes of 41,642 base pairs (bp) and 41,402 bp share 86.3% nucleotide sequence identity with the most variable regions falling in host receptor-recognition genes. These genes encode tail spikes possessing depolymerizing activities towards corresponding capsular polysaccharides which are the primary bacterial receptors. We described AS11 and AS12 genome organization and discuss the possible regulation of transcription. The overall genomic architecture and gene homology analyses showed that the phages are new representatives of the recently designated Fri1virus genus of the Autographivirinae subfamily within the Podoviridae family.

  11. Novel Fri1-like Viruses Infecting Acinetobacter baumannii—vB_AbaP_AS11 and vB_AbaP_AS12—Characterization, Comparative Genomic Analysis, and Host-Recognition Strategy.

    Directory of Open Access Journals (Sweden)

    Anastasia V. Popova

    2017-07-01

    Full Text Available Acinetobacter baumannii is a gram-negative, non-fermenting aerobic bacterium which is often associated with hospital-acquired infections and known for its ability to develop resistance to antibiotics, form biofilms, and survive for long periods in hospital environments. In this study, we present two novel viruses, vB_AbaP_AS11 and vB_AbaP_AS12, specifically infecting and lysing distinct multidrug-resistant clinical A. baumannii strains with K19 and K27 capsular polysaccharide structures, respectively. Both phages demonstrate rapid adsorption, short latent periods, and high burst sizes in one-step growth experiments. The AS11 and AS12 linear double-stranded DNA genomes of 41,642 base pairs (bp and 41,402 bp share 86.3% nucleotide sequence identity with the most variable regions falling in host receptor–recognition genes. These genes encode tail spikes possessing depolymerizing activities towards corresponding capsular polysaccharides which are the primary bacterial receptors. We described AS11 and AS12 genome organization and discuss the possible regulation of transcription. The overall genomic architecture and gene homology analyses showed that the phages are new representatives of the recently designated Fri1virus genus of the Autographivirinae subfamily within the Podoviridae family.

  12. Assessment of burnout among health workers and bankers in Aba south local government area, Abia state, South East Nigeria.

    Science.gov (United States)

    Aguwa, E N; Nduka, I; Arinze-Onyia, S U

    2014-01-01

    To determine the prevalence of burnout among health workers and bankers in Aba South Local Government Area in Abia State. A cross-sectional, descriptive study was carried out in 2013 among health workers and bankers in Aba metropolis. By multistage sampling method, proportionate number of the health workers and bankers were selected. The study instrument was Freudenberger Burnout Scale. A total of 327 health workers and bankers were studied: 253 (77.4%) were health workers while 74 (22.6%) were bankers. The age range was 21 to 59 years, and 229 (70.0%) were females. Most (48.3%) had worked for 5 years or less and had burnout scores within 0-25. There was significant difference between gender ( P = 0.017), level of education ( P = 0.038), and type of occupation ( P = 0.002) to burnout score. Age ( P = 0.956), marital status ( P = 0.461), and years of work ( P = 0.247) did not significantly affect burnout score. Female health workers were significantly more at risk of burning out compared to their male counterparts. Among bankers, however, though females were more at risk, this was not significant. Sex, level of education and type of work were the greatest contributors to burnout score. The prevalence of burnout risk among health workers and bankers is high. More female health workers are at risk of burnout than male health workers. There should be policies aimed at identifying those most at risk and reducing the prevalence.

  13. Quality of the paratransit service (tricycle and its operation in Aba, Nigeria: An analysis of customers' opinions

    Directory of Open Access Journals (Sweden)

    Obioma R. Nwaogbe

    2012-11-01

    Full Text Available This study examines the quality of the paratransit service and its operations in Aba, Abia State, Nigeria, with a view to identifying its challenges and contributions to informal transport and equitable service distribution to the residents of Aba. Structured questionnaires and past literature were used as sources of data. The primary data included road networks, number of trips per day by operators, operating speed, and purpose of travel, passengers' security, tricycle speed, and waiting time. The study was conducted by using two questionnaires: one for the operators and the other for tricycle users. The total number of completed questionnaires for the survey was 100 for operators and 229 for users. The sampling technique used was random sampling from several zones of the study area. Data were analysed using percentage and Chi-square statistical techniques for testing the hypotheses with the Minitab 11.0 version package. The study found that 92% of operators reported a high level of road network deterioration, and 61% reported making 9-12 trips per day. The hypothesis test was used to study people's feelings about the attributes of the service provided for paratransit users, such as affordability, regularity, comfort and safety. It was found that there is no significant difference at the 5% level between the various categories of these respondents.

  14. Dukungan Orang Tua dengan Perilaku Cuci Tangan dan Gosok Gigi pada Anak di TK ABA Kepiton, Kulon Progo

    Directory of Open Access Journals (Sweden)

    Isman Susanto

    2015-03-01

    Full Text Available Childhood is a time that very susceptible to various diseases due to a less of affective sanitation and poor hygiene. Hands washing and teeth brushing behavior are part of the health behaviors that need to be invested to prevent the diseases. Parents have important role in providing support and maintaining their children’s health care. Objective of this research was to know a relationship between parents support with hands washing and teeth brushing behaviors among children in Kindergarten ABA Kepiton, Kulon Progo. This research was a Quantitative inductive research with cross sectional study approach. The Population were all of children and parents of children attending in kindergarten ABA Kepiton, Kulon Progo which consisted of 37 childrens. With a total sampling method, the number of samples was meet inclusion and exclusion criteria were 35 childrens. Analysis of the data used Fisher’s Exact Test. Results of Fisher’s Exact Test showed that there was relationship between parents support and hands washing behavior in children, p-value =0.009 (p<0.05 and there was no relationship between parents support and teeth brushing behavior in children, p-value=0.292 (p>0.05. In conclusion, there was a relationship between parents support and hands washing behavior in children and there was no relationship between parents support and teeth brushing behavior in children.

  15. A follow up on the distribution of coliform bacteria along the Jordanian coastline of the gulf of Aq aba

    International Nuclear Information System (INIS)

    Al-Mogharabi, M. S.; Khyami-Horani, H.

    1997-01-01

    A survey of the occurrence of enteric indicator organisms (e. g. total and fecal coliform) and enteric pathogenic bacteria (Salmonella sp.) was undertaken at ten sites, along the northern coast of the Gulf of Aq aba (Jordan)m during the period October 1994 to September 1995. Both total coliforms and Escherichia coli counts were within the accepted international standards for marine bathing water. the mean value per 100 ml seawater ranged between 18 to 70(n=12 months) for total coliforms, 1 to 27 (n=8 mon thus) for Escherichia coli and 1 to 9 (n = 8 months) for Salmonella species. The analysis of va rance for total coliforms revealed a highly significant temporal variations (P<0.001), but no significant spatial differences were found .Whereas, Salmonella sp. counts showed significant spatial variations (P<0.001), with the Border site being significantly different from the other sites except the Palace site. These results suggest that the hygienic water quality at the Jordanian side of the Gulf of Aq aba, is good all over the year although the sewage discharge from Ei lat might cause a health hazard as to be the major source of enteric pathogenic bacteria. (authors). 13 refs., 4 figs., 1 tab

  16. The structure of arabidopsis thaliana OST1 provides insights into the kinase regulation mechanism in response to osmotic stress

    KAUST Repository

    Yunta, Cristina

    2011-11-01

    SnRK [SNF1 (sucrose non-fermenting-1)-related protein kinase] 2.6 [open stomata 1 (OST1)] is well characterized at molecular and physiological levels to control stomata closure in response to water-deficit stress. OST1 is a member of a family of 10 protein kinases from Arabidopsis thaliana (SnRK2) that integrates abscisic acid (ABA)-dependent and ABA-independent signals to coordinate the cell response to osmotic stress. A subgroup of protein phosphatases type 2C binds OST1 and keeps the kinase dephosphorylated and inactive. Activation of OST1 relies on the ABA-dependent inhibition of the protein phosphatases type 2C and the subsequent self-phosphorylation of the kinase. The OST1 ABA-independent activation depends on a short sequence motif that is conserved among all the members of the SnRK2 family. However, little is known about the molecular mechanism underlying this regulation. The crystallographic structure of OST1 shows that ABA-independent regulation motif stabilizes the conformation of the kinase catalytically essential α C helix, and it provides the basis of the ABA-independent regulation mechanism for the SnRK2 family of protein kinases. © 2011 Elsevier Ltd. All rights reserved.

  17. The structure of arabidopsis thaliana OST1 provides insights into the kinase regulation mechanism in response to osmotic stress

    KAUST Repository

    Yunta, Cristina; Martí nez-Ripoll, Martí n; Zhu, Jian-Kang; Albert, Armando

    2011-01-01

    SnRK [SNF1 (sucrose non-fermenting-1)-related protein kinase] 2.6 [open stomata 1 (OST1)] is well characterized at molecular and physiological levels to control stomata closure in response to water-deficit stress. OST1 is a member of a family of 10 protein kinases from Arabidopsis thaliana (SnRK2) that integrates abscisic acid (ABA)-dependent and ABA-independent signals to coordinate the cell response to osmotic stress. A subgroup of protein phosphatases type 2C binds OST1 and keeps the kinase dephosphorylated and inactive. Activation of OST1 relies on the ABA-dependent inhibition of the protein phosphatases type 2C and the subsequent self-phosphorylation of the kinase. The OST1 ABA-independent activation depends on a short sequence motif that is conserved among all the members of the SnRK2 family. However, little is known about the molecular mechanism underlying this regulation. The crystallographic structure of OST1 shows that ABA-independent regulation motif stabilizes the conformation of the kinase catalytically essential α C helix, and it provides the basis of the ABA-independent regulation mechanism for the SnRK2 family of protein kinases. © 2011 Elsevier Ltd. All rights reserved.

  18. Deficiência hídrica e aplicação de ABA nas trocas gasosas e no acúmulo de flavonoides em calêndula (Calendula officinalis L. = Water deficit and ABA application on leaf gas exchange and flavonoid content in marigold (Calendula officinalis L..

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Pacheco

    2011-04-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos da deficiencia hidrica e aplicacao de acido abscisico (ABA sobre aspectos fisiologicos e teor de flavonoides em plantas de calendula. Oexperimento foi instalado em condicoes de casa-de-vegetacao com plantas envasadas. No inicio do florescimento de plantas de calendula, foram aplicados quatro intervalos de suspensao da irrigacao (irrigacao diaria; tres; seis e nove dias sem irrigar, acompanhados por tres doses de ABA (0, 10 e 100 ƒÊM. Avaliou-se o conteudo relativo de agua na folha (CRA e as trocas gasosas, utilizando-se um analisador portatil por infravermelho (A: fotossintese liquida, gs: condutancia estomatica, E: transpiracao, Ci: concentracao intercelular de CO2 e EUA: eficiencia de uso daagua. Aos nove dias sem irrigacao ocorreram reducoes significativas em todas as variaveis de trocas gasosas analisadas, independente da aplicacao de ABA. Concluiu-se que o efeito principal do ABA foi o de causar diminuicao na gs, a qual foi acompanhada de reducao em A somente quando as plantas estavam desidratadas. As intensidades de deficiencia hidrica testadas nao causaram interferencia no acumulo de flavonoides nas inflorescencias. Entretanto, o ABA restringiu a biossintese de flavonoides, tanto nas plantas-controle como nas plantas submetidas a deficiencia hidrica.The goal of this study was to evaluate the effects of water deficit and abscisic acid (ABA application on physiological parameters and flavonoid production in marigold plant. The experiment was performed under nursery conditions with potted plants. It was tested water deficit by withholding water (control . diary irrigation, 3, 6 and9 days without irrigation followed by 3 ABA concentrations (0, 10 e 100 ƒÊM applied in the beginning of blooming. It was evaluated the relative water content and the leaf gas exchange using a portable infrared gas analyzer (A: net photosynthesis, gs: stomatal conductance, E: transpiration, Ci: CO2 intercellular

  19. Abscisic acid and transpiration rate are involved in the response to boron toxicity in Arabidopsis plants.

    Science.gov (United States)

    Macho-Rivero, Miguel Ángel; Camacho-Cristóbal, Juan José; Herrera-Rodríguez, María Begoña; Müller, Maren; Munné-Bosch, Sergi; González-Fontes, Agustín

    2017-05-01

    Boron (B) is an essential microelement for vascular plant development, but its toxicity is a major problem affecting crop yields in arid and semi-arid areas of the world. In the literature, several genes involved in abscisic acid (ABA) signalling and responses are upregulated in Arabidopsis roots after treatment with excess B. It is known that the AtNCED3 gene, which encodes a crucial enzyme for ABA biosynthesis, plays a key role in the plant response to drought stress. In this study, root AtNCED3 expression and shoot ABA content were rapidly increased in wild-type plants upon B-toxicity treatment. The Arabidopsis ABA-deficient nced3-2 mutant had higher transpiration rate, stomatal conductance and accumulated more B in their shoots than wild-type plants, facts that were associated with the lower levels of ABA in this mutant. However, in wild-type plants, B toxicity caused a significant reduction in stomatal conductance, resulting in a decreased transpiration rate. This response could be a mechanism to limit the transport of excess B from the roots to the leaves under B toxicity. In agreement with the higher transpiration rate of the nced3-2 mutant, this genotype showed an increased leaf B concentration and damage upon exposure to 5 mM B. Under B toxicity, ABA application decreased B accumulation in wild-type and nced3-2 plants. In summary, this work shows that excess B applied to the roots leads to rapid changes in AtNCED3 expression and gas exchange parameters that would contribute to restrain the B entry into the leaves, this effect being mediated by ABA. © 2016 Scandinavian Plant Physiology Society.

  20. An active Mitochondrial Complex II Present in Mature Seeds Contains an Embryo-Specific Iron-Sulfur Subunit Regulated by ABA and bZIP53 and Is Involved in Germination and Seedling Establishment.

    Science.gov (United States)

    Restovic, Franko; Espinoza-Corral, Roberto; Gómez, Isabel; Vicente-Carbajosa, Jesús; Jordana, Xavier

    2017-01-01

    Complex II (succinate dehydrogenase) is an essential mitochondrial enzyme involved in both the tricarboxylic acid cycle and the respiratory chain. In Arabidopsis thaliana , its iron-sulfur subunit (SDH2) is encoded by three genes, one of them ( SDH2.3 ) being specifically expressed during seed maturation in the embryo. Here we show that seed SDH2.3 expression is regulated by abscisic acid (ABA) and we define the promoter region (-114 to +49) possessing all the cis -elements necessary and sufficient for high expression in seeds. This region includes between -114 and -32 three ABRE (ABA-responsive) elements and one RY-enhancer like element, and we demonstrate that these elements, although necessary, are not sufficient for seed expression, our results supporting a role for the region encoding the 5' untranslated region (+1 to +49). The SDH2.3 promoter is activated in leaf protoplasts by heterodimers between the basic leucine zipper transcription factors bZIP53 (group S1) and bZIP10 (group C) acting through the ABRE elements, and by the B3 domain transcription factor ABA insensitive 3 (ABI3). The in vivo role of bZIP53 is further supported by decreased SDH2.3 expression in a knockdown bzip53 mutant. By using the protein synthesis inhibitor cycloheximide and sdh2 mutants we have been able to conclusively show that complex II is already present in mature embryos before imbibition, and contains mainly SDH2.3 as iron-sulfur subunit. This complex plays a role during seed germination sensu-stricto since we have previously shown that seeds lacking SDH2.3 show retarded germination and now we demonstrate that low concentrations of thenoyltrifluoroacetone, a complex II inhibitor, also delay germination. Furthermore, complex II inhibitors completely block hypocotyl elongation in the dark and seedling establishment in the light, highlighting an essential role of complex II in the acquisition of photosynthetic competence and the transition from heterotrophy to autotrophy.

  1. Specificity determinants for the abscisic acid response element ?

    OpenAIRE

    Sarkar, Aditya Kumar; Lahiri, Ansuman

    2013-01-01

    Abscisic acid (ABA) response elements (ABREs) are a group of cis-acting DNA elements that have been identified from promoter analysis of many ABA-regulated genes in plants. We are interested in understanding the mechanism of binding specificity between ABREs and a class of bZIP transcription factors known as ABRE binding factors (ABFs). In this work, we have modeled the homodimeric structure of the bZIP domain of ABRE binding factor 1 from Arabidopsis thaliana (AtABF1) and studied its interac...

  2. Stomatal closure of Pelargonium × hortorum in response to soil water deficit is associated with decreased leaf water potential only under rapid soil drying.

    Science.gov (United States)

    Boyle, Richard K A; McAinsh, Martin; Dodd, Ian C

    2016-01-01

    Soil water deficits applied at different rates and for different durations can decrease both stomatal conductance (gs ) and leaf water potential (Ψleaf ). Understanding the physiological mechanisms regulating these responses is important in sustainable irrigation scheduling. Glasshouse-grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at various fractions of plant evapotranspiration (100, 75 and 50% ET) for 20 days or irrigation was withheld for 4 days. Xylem sap was collected and gs and Ψleaf were measured on days 15 and 20, and on days 16-19 for the respective treatments. Xylem sap pH and NO3 (-) and Ca(2+) concentrations did not differ between irrigation treatments. Xylem abscisic acid (ABA) concentrations ([ABA]xyl ) increased within 24 h of irrigation being withheld whilst gs and Ψleaf decreased. Supplying irrigation at a fraction of daily ET produced a similar relationship between [ABA]xyl and gs , but did not change Ψleaf . Treatment differences occurred independently of whether Ψleaf was measured in whole leaves with a pressure chamber, or in the lamina with a thermocouple psychrometer. Plants that were irrigated daily showed lower [ABA]xyl than plants from which irrigation was withheld, even at comparable soil moisture content. This implies that regular re-watering attenuates ABA signaling due to maintenance of soil moisture in the upper soil levels. Crucially, detached leaves supplied with synthetic ABA showed a similar relationship between [ABA]xyl and gs as intact plants, suggesting that stomatal closure of P. hortorum in response to soil water deficit is primarily an ABA-induced response, independent of changes in Ψleaf . © 2015 Scandinavian Plant Physiology Society.

  3. Abscinazole-F1, a conformationally restricted analogue of the plant growth retardant uniconazole and an inhibitor of ABA 8'-hydroxylase CYP707A with no growth-retardant effect.

    Science.gov (United States)

    Todoroki, Yasushi; Kobayashi, Kyotaro; Shirakura, Minaho; Aoyama, Hikaru; Takatori, Kokichi; Nimitkeatkai, Hataitip; Jin, Mei-Hong; Hiramatsu, Saori; Ueno, Kotomi; Kondo, Satoru; Mizutani, Masaharu; Hirai, Nobuhiro

    2009-09-15

    To develop a specific inhibitor of abscisic acid (ABA) 8'-hydroxylase, a key enzyme in the catabolism of ABA, a plant hormone involved in stress tolerance, seed dormancy, and other various physiological events, we designed and synthesized conformationally restricted analogues of uniconazole (UNI), a well-known plant growth retardant, which inhibits a biosynthetic enzyme (ent-kaurene oxidase) of gibberellin as well as ABA 8'-hydroxylase. Although most of these analogues were less effective than UNI in inhibition of ABA 8'-hydroxylase and rice seedling growth, we found that a lactol-bridged analogue with an imidazole is a potent inhibitor of ABA 8'-hydroxylase but not of plant growth. This compound, abscinazole-F1, induced drought tolerance in apple seedlings upon spray treatment with a 10 microM solution.

  4. Conservation between higher plants and the moss Physcomitrella patens in response to the phytohormone abscisic acid: a proteomics analysis

    Directory of Open Access Journals (Sweden)

    Wang Xiaoqin

    2010-08-01

    Full Text Available Abstract Background The plant hormone abscisic acid (ABA is ubiquitous among land plants where it plays an important role in plant growth and development. In seeds, ABA induces embryogenesis and seed maturation as well as seed dormancy and germination. In vegetative tissues, ABA is a necessary mediator in the triggering of many of the physiological and molecular adaptive responses of the plant to adverse environmental conditions, such as desiccation, salt and cold. Results In this study, we investigated the influence of abscisic acid (ABA on Physcomitrella patens at the level of the proteome using two-dimensional gel electrophoresis (2-DE and liquid chromatography-tandem mass spectrometry (LC-MS/MS. Sixty-five protein spots showed changes in response to ABA treatment. Among them, thirteen protein spots were down-regulated; fifty-two protein spots were up-regulated including four protein spots which were newly induced. These proteins were involved in various functions, including material and energy metabolism, defense, protein destination and storage, transcription, signal transduction, cell growth/division, transport, and cytoskeleton. Specifically, most of the up-regulated proteins functioned as molecular chaperones, transcriptional regulators, and defense proteins. Detailed analysis of these up-regulated proteins showed that ABA could trigger stress and defense responses and protect plants from oxidative damage. Otherwise, three protein kinases involved in signal pathways were up-regulated suggesting that P. patens is sensitive to exogenous ABA. The down-regulated of the Rubisco small subunit, photosystem II oxygen-evolving complex proteins and photosystem assembly protein ycf3 indicated that photosynthesis of P. patens was inhibited by ABA treatment. Conclusion Proteome analysis techniques have been applied as a direct, effective, and reliable tool in differential protein expressions. Sixty-five protein spots showed differences in

  5. Anti-transpirant activity in xylem sap from flooded tomato (Lycopersicon esculentum Mill.) plants is not due to pH-mediated redistributions of root- or shoot-sourced ABA.

    Science.gov (United States)

    Else, Mark A; Taylor, June M; Atkinson, Christopher J

    2006-01-01

    In flooded soils, the rapid effects of decreasing oxygen availability on root metabolic activity are likely to generate many potential chemical signals that may impact on stomatal apertures. Detached leaf transpiration tests showed that filtered xylem sap, collected at realistic flow rates from plants flooded for 2 h and 4 h, contained one or more factors that reduced stomatal apertures. The closure could not be attributed to increased root output of the glucose ester of abscisic acid (ABA-GE), since concentrations and deliveries of ABA conjugates were unaffected by soil flooding. Although xylem sap collected from the shoot base of detopped flooded plants became more alkaline within 2 h of flooding, this rapid pH change of 0.5 units did not alter partitioning of root-sourced ABA sufficiently to prompt a transient increase in xylem ABA delivery. More shoot-sourced ABA was detected in the xylem when excised petiole sections were perfused with pH 7 buffer, compared with pH 6 buffer. Sap collected from the fifth oldest leaf of "intact" well-drained plants and plants flooded for 3 h was more alkaline, by approximately 0.4 pH units, than sap collected from the shoot base. Accordingly, xylem [ABA] was increased 2-fold in sap collected from the fifth oldest petiole compared with the shoot base of flooded plants. However, water loss from transpiring, detached leaves was not reduced when the pH of the feeding solution containing 3-h-flooded [ABA] was increased from 6.7 to 7.1 Thus, the extent of the pH-mediated, shoot-sourced ABA redistribution was not sufficient to raise xylem [ABA] to physiologically active levels. Using a detached epidermis bioassay, significant non-ABA anti-transpirant activity was also detected in xylem sap collected at intervals during the first 24 h of soil flooding.

  6. Abscisic acid regulates seed germination of Vellozia species in response to temperature.

    Science.gov (United States)

    Vieira, B C; Bicalho, E M; Munné-Bosch, S; Garcia, Q S

    2017-03-01

    The relationship between the phytohormones, gibberellin (GA) and abscisic acid (ABA) and light and temperature on seed germination is still not well understood. We aimed to investigate the role of the ABA and GA on seed germination of Vellozia caruncularis, V. intermedia and V. alutacea in response to light/dark conditions on different temperature. Seeds were incubated in GA (GA 3 or GA 4 ) or ABA and their respective biosynthesis inhibitors (paclobutrazol - PAC, and fluridone - FLU) solutions at two contrasting temperatures (25 and 40 °C). Furthermore, endogenous concentrations of active GAs and those of ABA were measured in seeds of V. intermedia and V. alutacea during imbibition/germination. Exogenous ABA inhibited the germination of Vellozia species under all conditions tested. GA, FLU and FLU + GA 3 stimulated germination in the dark at 25 °C (GA 4 being more effective than GA 3 ). PAC reduced seed germination in V. caruncularis and V. alutacea, but did not affect germination of V. intermedia at 40 °C either under light or dark conditions. During imbibition in the dark, levels of active GAs decreased in the seeds of V. intermedia, but were not altered in those of V. alutacea. Incubation at 40 °C decreased ABA levels during imbibition in both V. caruncularis and V. alutacea. We conclude that the seeds of Vellozia species studied here require light or high temperature to germinate and ABA has a major role in the regulation of Vellozia seed germination in response to light and temperature. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis.

    Science.gov (United States)

    Kim, June-Sik; Mizoi, Junya; Yoshida, Takuya; Fujita, Yasunari; Nakajima, Jun; Ohori, Teppei; Todaka, Daisuke; Nakashima, Kazuo; Hirayama, Takashi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2011-12-01

    In plants, osmotic stress-responsive transcriptional regulation depends mainly on two major classes of cis-acting elements found in the promoter regions of stress-inducible genes: ABA-responsive elements (ABREs) and dehydration-responsive elements (DREs). ABRE has been shown to perceive ABA-mediated osmotic stress signals, whereas DRE is known to be involved in an ABA-independent pathway. Previously, we reported that the transcription factor DRE-BINDING PROTEIN 2A (DREB2A) regulates DRE-mediated transcription of target genes under osmotic stress conditions in Arabidopsis (Arabidopsis thaliana). However, the transcriptional regulation of DREB2A itself remains largely uncharacterized. To elucidate the transcriptional mechanism associated with the DREB2A gene under osmotic stress conditions, we generated a series of truncated and base-substituted variants of the DREB2A promoter and evaluated their transcriptional activities individually. We found that both ABRE and coupling element 3 (CE3)-like sequences located approximately -100 bp from the transcriptional initiation site are necessary for the dehydration-responsive expression of DREB2A. Coupling our transient expression analyses with yeast one-hybrid and chromatin immunoprecipitation (ChIP) assays indicated that the ABRE-BINDING PROTEIN 1 (AREB1), AREB2 and ABRE-BINDING FACTOR 3 (ABF3) bZIP transcription factors can bind to and activate the DREB2A promoter in an ABRE-dependent manner. Exogenous ABA application induced only a modest accumulation of the DREB2A transcript when compared with the osmotic stress treatment. However, the osmotic stress-induced DREB2A expression was found to be markedly impaired in several ABA-deficient and ABA-insensitive mutants. These results suggest that in addition to an ABA-independent pathway, the ABA-dependent pathway plays a positive role in the osmotic stress-responsive expression of DREB2A.

  8. Improvement of Surface Flashover Performance of Al2O3 Ceramics in Vacuum by Adopting A-B-A Insulation System

    International Nuclear Information System (INIS)

    Li Shengtao; Zhang Tuo; Huang Qifeng; Li Weiwei; Ni Fengyan; Li Jianying

    2011-01-01

    A new insulation system with inorganic A-B-A insulators was proposed to improve the surface flashover performance in vacuum. Inorganic A-B-A insulator samples of Mo/Al 2 O 3 cermet-Al 2 O 3 ceramic-Mo/Al 2 O 3 cermet were prepared, in which the conductivity and permittivity of the Mo/Al 2 O 3 cermets were controlled through different amount of metallic molybdenum powder added. The effects of both conductivity and permittivity of Mo/Al 2 O 3 cermets on the DC and impulse surface flashover voltage in vacuum were experimentally investigated. The result showed that the DC and impulse surface flashover voltage were improved by 52% and 95%, respectively. For the distribution of electric field, two triple junctions, i.e., vacuum-layer A-cathode (TJ1) and vacuum-layer A-layer B (TJ2) were prepared with the introduction of layer A into the A-B-A insulation system. Based on the electric field distribution obtained via electrostatic field simulation and Maxwell-Wagner three-layer model, the electric field of TJ1 decreases while that of TJ2 increases with the increase in conductivity and permittivity of layer A under applied DC and impulse voltage, respectively. Therefore, the improvement of surface flashover performance of A-B-A insulators has been reasonably explained. (fusion engineering)

  9. ESTRATÉGIAS DE MARKETING DIGITAL APLICADAS NOS CURSOS DE COMUNICAÇÃO SOCIAL DA UNOESC JOAÇABA

    OpenAIRE

    Santos, Paulo Ricardo; Paganini, Alice

    2014-01-01

    Este trabalho tem como tema principal o estudo das estratégias de marketing digital utilizadas nos Cursos de Comunicação Social da Universidade do Oeste de Santa Catarina (Unoesc) de Joaçaba, assim como analisar os benefícios que trouxeram aos cursos e aos acadêmicos. Para isso, efetuou-se um estudo referente a esse tipo de marketing, suas ferramentas e estratégias, além da respectiva evolução dessa nova forma de atuação dentro da comunicação. Além de o presente trabalho ter como objetivo apr...

  10. Characterization of a Poly(styrene-block-methylacrylate-random-octadecylacrylate-block-styrene) Shape Memory ABA Triblock Copolymer

    Science.gov (United States)

    Fei, Pengzhan; Cavicchi, Kevin

    2011-03-01

    A new ABA triblock copolymer of poly(styrene-block- methylacrylate-random-octadecylacrylate-block-styrene) (PS-b- PMA-r-PODA-b-PS) was synthesized by reversible addition fragmentation chain transfer polymerization. The triblock copolymer can generate a three-dimensional, physically crosslinked network by self-assembly, where the glassy PS domains physically crosslink the midblock chains. The side chain crystallization of the polyoctadecylacrylare (PODA) side chain generates a second reversible network enabling shape memory properties. Shape memory tests by uniaxial deformation and recovery of molded dog-bone shape samples demonstrate that shape fixities above 96% and shape recoveries above 98% were obtained for extensional strains up to 300%. An outstanding advantage of this shape memory material is that it can be very easily shaped and remolded by elevating the temperature to 140circ; C, and after remolding the initial shape memory properties are totally recovered by eliminating the defects introduced by the previous deformation cycling.

  11. Printable, Degradable, and Biocompatible Ion Gels from a Renewable ABA Triblock Polyester and a Low Toxicity Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Boxin; Schneiderman, Deborah K.; Bidoky, Fazel Zare; Frisbie, C.Daniel; Lodge, Timothy P. (UMM)

    2017-09-15

    We have designed printable, biocompatible, and degradable ion gels by combining a novel ABA triblock aliphatic polyester, poly(ε-decalactone)-b-poly(dl-lactide)-b-poly(ε-decalactone), and a low toxicity ionic liquid, 1-butyl-1-methylpyrrolidinium bistrifluoromethanesulfonylimide ([P14][TFSI]). Due to the favorable compatibility between amorphous poly(dl-lactide) and [P14][TFSI] and the insolubility of the poly(ε-decalactone), the triblock polymer forms self-assembled micellar cross-links similar to thermoplastic elastomers, which ensures similar processing conditions and mechanical robustness during the fabrication of printed electrolyte-gated organic transistor devices. Additionally, the ester backbone in the polymer structure enables efficient hydrolytic degradation of these ion gels compared to those made previously using carbon-backbone polymers.

  12. GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice.

    Science.gov (United States)

    Du, Hao; Chang, Yu; Huang, Fei; Xiong, Lizhong

    2015-11-01

    Plant responses to abiotic stresses are coordinated by arrays of growth and developmental programs. Gibberellic acid (GA) and abscisic acid (ABA) play critical roles in the developmental programs and environmental responses, respectively, through complex signaling and metabolism networks. However, crosstalk between the two phytohormones in stress responses remains largely unknown. In this study, we report that GIBBERELLIN-INSENSITIVE DWARF 1 (GID1), a soluble receptor for GA, regulates stomatal development and patterning in rice (Oryza sativa L.). The gid1 mutant showed impaired biosynthesis of endogenous ABA under drought stress conditions, but it exhibited enhanced sensitivity to exogenous ABA. Scanning electron microscope and infrared thermal image analysis indicated an increase in the stomatal conductance in the gid1 mutant under drought conditions. Interestingly, the gid1 mutant had increased levels of chlorophyll and carbohydrates under submergence conditions, and showed enhanced reactive oxygen species (ROS)-scavenging ability and submergence tolerance compared with the wild-type. Further analyses suggested that the function of GID1 in submergence responses is partially dependent on ABA, and GA signaling by GID1 is involved in submergence tolerance by modulating carbohydrate consumption. Taken together, these findings suggest GID1 plays distinct roles in stomatal response and submergence tolerance through both the ABA and GA signaling pathways in rice. © 2014 Institute of Botany, Chinese Academy of Sciences.

  13. Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in Aspergillus fumigatus

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kwang-Soo, E-mail: shinks@dju.kr [Division of Life Science, Daejeon University, Daejeon, 300-716 (Korea, Republic of); Kim, Young Hwan [Biomedical Omics Team, Korea Basic Science Institute (KBSI), Ohcang, 368-883 (Korea, Republic of); Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764 (Korea, Republic of); Department of Bio-Analytical Science, University of Science and Technology, Daejeon, 305-333 (Korea, Republic of); Yu, Jae-Hyuk, E-mail: jyu1@wisc.edu [Departments of Bacteriology and Genetics, The University of Wisconsin–Madison, Madison, WI, 53706 (United States)

    2015-07-31

    The opportunistic human pathogenic fungus Aspergillus fumigatus primarily reproduces by forming a large number of asexual spores (conidia). Sequential activation of the central regulators BrlA, AbaA and WetA is necessary for the fungus to undergo asexual development. In this study, to address the presumed roles of these key developmental regulators during proliferation of the fungus, we analyzed and compared the proteomes of vegetative cells of wild type (WT) and individual mutant strains. Approximately 1300 protein spots were detectable from 2-D electrophoresis gels. Among these, 13 proteins exhibiting significantly altered accumulation levels were further identified by ESI-MS/MS. Markedly, we found that the GliM and GliT proteins associated with gliotoxin (GT) biosynthesis and self-protection of the fungus from GT were significantly down-regulated in the ΔabaA and ΔbrlA mutants. Moreover, mRNA levels of other GT biosynthetic genes including gliM, gliP, gliT, and gliZ were significantly reduced in both mutant strains, and no and low levels of GT were detectable in the ΔbrlA and ΔabaA mutant strains, respectively. As GliT is required for the protection of the fungus from GT, growth of the ΔbrlA mutant with reduced levels of GliT was severely impaired by exogenous GT. Our studies demonstrate that AbaA and BrlA positively regulate expression of the GT biosynthetic gene cluster in actively growing vegetative cells, and likely bridge morphological and chemical development during the life-cycle of A. fumigatus. - Highlights: • Proteome analyses of WT and mutants reveal 13 differentially expressed proteins. • The GliT and GliM proteins are significantly down-regulated by ΔabaA and ΔbrlA. • Expression of other gliotoxin biosynthetic genes is lowered by ΔabaA and ΔbrlA. • Growth of ΔbrlA strain lacking GliT is completely inhibited by exogenous gliotoxin. • BrlA and AbaA play key roles in biogenesis of gliotoxin in Aspergillus fumigatus.

  14. Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in Aspergillus fumigatus

    International Nuclear Information System (INIS)

    Shin, Kwang-Soo; Kim, Young Hwan; Yu, Jae-Hyuk

    2015-01-01

    The opportunistic human pathogenic fungus Aspergillus fumigatus primarily reproduces by forming a large number of asexual spores (conidia). Sequential activation of the central regulators BrlA, AbaA and WetA is necessary for the fungus to undergo asexual development. In this study, to address the presumed roles of these key developmental regulators during proliferation of the fungus, we analyzed and compared the proteomes of vegetative cells of wild type (WT) and individual mutant strains. Approximately 1300 protein spots were detectable from 2-D electrophoresis gels. Among these, 13 proteins exhibiting significantly altered accumulation levels were further identified by ESI-MS/MS. Markedly, we found that the GliM and GliT proteins associated with gliotoxin (GT) biosynthesis and self-protection of the fungus from GT were significantly down-regulated in the ΔabaA and ΔbrlA mutants. Moreover, mRNA levels of other GT biosynthetic genes including gliM, gliP, gliT, and gliZ were significantly reduced in both mutant strains, and no and low levels of GT were detectable in the ΔbrlA and ΔabaA mutant strains, respectively. As GliT is required for the protection of the fungus from GT, growth of the ΔbrlA mutant with reduced levels of GliT was severely impaired by exogenous GT. Our studies demonstrate that AbaA and BrlA positively regulate expression of the GT biosynthetic gene cluster in actively growing vegetative cells, and likely bridge morphological and chemical development during the life-cycle of A. fumigatus. - Highlights: • Proteome analyses of WT and mutants reveal 13 differentially expressed proteins. • The GliT and GliM proteins are significantly down-regulated by ΔabaA and ΔbrlA. • Expression of other gliotoxin biosynthetic genes is lowered by ΔabaA and ΔbrlA. • Growth of ΔbrlA strain lacking GliT is completely inhibited by exogenous gliotoxin. • BrlA and AbaA play key roles in biogenesis of gliotoxin in Aspergillus fumigatus

  15. Pollution of shallow groundwater in urban areas of developing countries; a comparative case study of Enugu and Aba towns of southeastern Nigeria

    International Nuclear Information System (INIS)

    Uma, K. O.; Ezeigbo, H. I.

    2000-07-01

    Field studies involving hydrochemical sampling of the groundwater in dug wells and shallow boreholes were carried out in the towns of Enugu (underlain by laterized clay aquifers) and Aba (underlain by loose sandstones). The results suggested generally similar enrichment pattern of some sewage sensitive geochemical parameters (Cl - , NO 3 , electric conductivity, HCO -3 and p H). There is, for instance, a clear elevation of the concentration of nitrates and chlorides above background values of zero and 10 mg/l respectively and these could be correlated with the intensity of urbanization in both towns. A significant observation was the relatively higher concentration of the sensitive parameters in the laterized clay aquifer beneath Enugu with respect to the sandy aquifer beneath Aba. The median concentration values of nitrates and chlorides were 20 mg/l and 16 mg/l at Aba whereas the values at Enugu were 27 mg/l and 72 mg/I respectively. The average electric conductance at Aba (300 mS/cm) was only about 50% of the corresponding value at Enugu, (610 mS/cm). There was also a more uniform concentration range at Enugu whereas outlier values were more common at Aba. The explanation for this could be found in both the matrix lithology and aquifer hydraulics in the areas. It is projected from the findings that thin laterized clay aquifers in hilly terrains could provide a highly conducive environment for rapid contaminant distribution. Such a hydrogeologic environment may even pose greater danger than that of a permeable sandy aquifer in flat terrains

  16. Pre-silencing of genes involved in the electron transport chain (ETC) pathway is associated with responsiveness to abatacept in rheumatoid arthritis.

    Science.gov (United States)

    Derambure, C; Dzangue-Tchoupou, G; Berard, C; Vergne, N; Hiron, M; D'Agostino, M A; Musette, P; Vittecoq, O; Lequerré, T

    2017-05-25

    In the current context of personalized medicine, one of the major challenges in the management of rheumatoid arthritis (RA) is to identify biomarkers that predict drug responsiveness. From the European APPRAISE trial, our main objective was to identify a gene expression profile associated with responsiveness to abatacept (ABA) + methotrexate (MTX) and to understand the involvement of this signature in the pathophysiology of RA. Whole human genome microarrays (4 × 44 K) were performed from a first subset of 36 patients with RA. Data validation by quantitative reverse-transcription (qRT)-PCR was performed from a second independent subset of 32 patients with RA. Gene Ontology and WikiPathways database allowed us to highlight the specific biological mechanisms involved in predicting response to ABA/MTX. From the first subset of 36 patients with RA, a combination including 87 transcripts allowed almost perfect separation between responders and non-responders to ABA/MTX. Next, the second subset of patients 32 with RA allowed validation by qRT-PCR of a minimal signature with only four genes. This latter signature categorized 81% of patients with RA with 75% sensitivity, 85% specificity and 85% negative predictive value. This combination showed a significant enrichment of genes involved in electron transport chain (ETC) pathways. Seven transcripts from ETC pathways (NDUFA6, NDUFA4, UQCRQ, ATP5J, COX7A2, COX7B, COX6A1) were significantly downregulated in responders versus non-responders to ABA/MTX. Moreover, dysregulation of these genes was independent of inflammation and was specific to ABA response. Pre-silencing of ETC genes is associated with future response to ABA/MTX and might be a crucial key to susceptibility to ABA response.

  17. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs

    NARCIS (Netherlands)

    Denance, N.; Sanchez Vallet, A.; Goffner, D.; Molina, A.

    2013-01-01

    Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid, and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA),

  18. Assessment of (Fouquieria splendens ssp. breviflora Cell Cultures Response Under to Water Stress

    Directory of Open Access Journals (Sweden)

    Leonor Angélica Guerrero Zúñiga

    2017-05-01

    Full Text Available Plant cell cultures are homogenous experimental systems, highly controllable that allow the study of short and large water stress adaptations without the interference of the different tissues and development of plants. An approach to understand these adaptations is through the presence of induced proteins; as a result of changes in genetic expression. This work analyze the response of Fouquieria splendens ssp. breviflora cell cultures exposed to abscisic acid (ABA, through the electrophoretic characterization of quantity and quality of stress induced proteins. There were recorded low molecular weight polypeptides (< 35kDa, common in experiments under ABA 10mM, followed by the association with 20 and 30mM ABA conditions, with a particularly response of cell cultures without the stress agent.

  19. Response

    Science.gov (United States)

    Higgins, Chris

    2012-01-01

    This article presents the author's response to the reviews of his book, "The Good Life of Teaching: An Ethics of Professional Practice." He begins by highlighting some of the main concerns of his book. He then offers a brief response, doing his best to address the main criticisms of his argument and noting where the four reviewers (Charlene…

  20. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses1[OPEN

    Science.gov (United States)

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A.; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A.; Kay, Steve A.; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R.; Schroeder, Julian I.

    2015-01-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  1. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress.

    Directory of Open Access Journals (Sweden)

    Nobuhiro Suzuki

    Full Text Available Abiotic stresses such as drought, heat or salinity are a major cause of yield loss worldwide. Recent studies revealed that the acclimation of plants to a combination of different environmental stresses is unique and cannot be directly deduced from studying the response of plants to each of the different stresses applied individually. Here we report on the response of Arabidopsis thaliana to a combination of salt and heat stress using transcriptome analysis, physiological measurements and mutants deficient in abscisic acid, salicylic acid, jasmonic acid or ethylene signaling. Arabidopsis plants were found to be more susceptible to a combination of salt and heat stress compared to each of the different stresses applied individually. The stress combination resulted in a higher ratio of Na+/K+ in leaves and caused the enhanced expression of 699 transcripts unique to the stress combination. Interestingly, many of the transcripts that specifically accumulated in plants in response to the salt and heat stress combination were associated with the plant hormone abscisic acid. In accordance with this finding, mutants deficient in abscisic acid metabolism and signaling were found to be more susceptible to a combination of salt and heat stress than wild type plants. Our study highlights the important role abscisic acid plays in the acclimation of plants to a combination of two different abiotic stresses.

  2. Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in Aspergillus fumigatus.

    Science.gov (United States)

    Shin, Kwang-Soo; Kim, Young Hwan; Yu, Jae-Hyuk

    2015-07-31

    The opportunistic human pathogenic fungus Aspergillus fumigatus primarily reproduces by forming a large number of asexual spores (conidia). Sequential activation of the central regulators BrlA, AbaA and WetA is necessary for the fungus to undergo asexual development. In this study, to address the presumed roles of these key developmental regulators during proliferation of the fungus, we analyzed and compared the proteomes of vegetative cells of wild type (WT) and individual mutant strains. Approximately 1300 protein spots were detectable from 2-D electrophoresis gels. Among these, 13 proteins exhibiting significantly altered accumulation levels were further identified by ESI-MS/MS. Markedly, we found that the GliM and GliT proteins associated with gliotoxin (GT) biosynthesis and self-protection of the fungus from GT were significantly down-regulated in the ΔabaA and ΔbrlA mutants. Moreover, mRNA levels of other GT biosynthetic genes including gliM, gliP, gliT, and gliZ were significantly reduced in both mutant strains, and no and low levels of GT were detectable in the ΔbrlA and ΔabaA mutant strains, respectively. As GliT is required for the protection of the fungus from GT, growth of the ΔbrlA mutant with reduced levels of GliT was severely impaired by exogenous GT. Our studies demonstrate that AbaA and BrlA positively regulate expression of the GT biosynthetic gene cluster in actively growing vegetative cells, and likely bridge morphological and chemical development during the life-cycle of A. fumigatus. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Effective planning and management as critical factors in urban water supply and management in Umuahia and Aba, Abia State, Nigeria

    Science.gov (United States)

    Uchegbu, Smart N.

    Plan and policy development usually define the course, goal, execution, success or failure of any public utilities initiative. Urban water supply is not an exception. Planning and management in public water supply systems often determine the quality of service the water supply authorities can render. This paper, therefore, addresses the issue of effective planning and management as critical determinants of urban water supply and management with respect to two Nigerian cities Umuahia and Aba both in Abia State. Appropriate sampling methods systematic sampling and cluster techniques were employed in order to collect data for the study. The collected data were analyzed using multiple linear regression. The findings of the study indicate that planning and management indices such as funding, manpower, water storage tank capacity greatly influence the volume of water supplied in the study areas. Funding was identified as a major determinant of the efficiency of the water supply system. Therefore, the study advocates the need for sector reforms that would usher in private participants in the water sector both for improved funding and enhanced productivity.

  4. The genomic view of genes responsive to the antagonistic phytohormones, abscisic acid, and gibberellin.

    Science.gov (United States)

    Yazaki, Junshi; Kikuchi, Shoshi

    2005-01-01

    We now have the various genomics tools for monocot (Oryza sativa) and a dicot (Arabidopsis thaliana) plant. Plant is not only a very important agricultural resource but also a model organism for biological research. It is important that the interaction between ABA and GA is investigated for controlling the transition from embryogenesis to germination in seeds using genomics tools. These studies have investigated the relationship between dormancy and germination using genomics tools. Genomics tools identified genes that had never before been annotated as ABA- or GA-responsive genes in plant, detected new interactions between genes responsive to the two hormones, comprehensively characterized cis-elements of hormone-responsive genes, and characterized cis-elements of rice and Arabidopsis. In these research, ABA- and GA-regulated genes have been classified as functional proteins (proteins that probably function in stress or PR tolerance) and regulatory proteins (protein factors involved in further regulation of signal transduction). Comparison between ABA and/or GA-responsive genes in rice and those in Arabidopsis has shown that the cis-element has specificity in each species. cis-Elements for the dehydration-stress response have been specified in Arabidopsis but not in rice. cis-Elements for protein storage are remarkably richer in the upstream regions of the rice gene than in those of Arabidopsis.

  5. ABA and GA3 regulate the synthesis of primary and secondary metabolites related to alleviation from biotic and abiotic stresses in grapevine.

    Science.gov (United States)

    Murcia, Germán; Fontana, Ariel; Pontin, Mariela; Baraldi, Rita; Bertazza, Gianpaolo; Piccoli, Patricia N

    2017-03-01

    Plants are able to synthesize a large number of organic compounds. Among them, primary metabolites are known to participate in plant growth and development, whereas secondary metabolites are mostly involved in defense and other facultative processes. In grapevine, one of the major fruit crops in the world, secondary metabolites, mainly polyphenols, are of great interest for the wine industry. Even though there is an extensive literature on the content and profile of those compounds in berries, scarce or no information is available regarding polyphenols in other organs. In addition, little is known about the effect of plant growth regulators (PGRs), ABA and GA 3 (extensively used in table grapes) on the synthesis of primary and secondary metabolites in wine grapes. In table grapes, cultural practices include the use of GA 3 sprays shortly before veraison, to increase berry and bunch size, and sugar content in fruits. Meanwhile, ABA applications to the berries on pre-veraison improve the skin coloring and sugar accumulation, anticipating the onset of veraison. Accordingly, the aim of this study was to assess and characterize primary and secondary metabolites in leaves, berries and roots of grapevine plants cv. Malbec at veraison, and changes in compositions after ABA and GA 3 aerial sprayings. Metabolic profiling was conducted using GC-MS, GC-FID and HPLC-MWD. A large set of metabolites was identified: sugars, alditols, organic acids, amino acids, polyphenols (flavonoids and non-flavonoids) and terpenes (mono-, sesqui-, di- and triterpenes). The obtained results showed that ABA applications elicited synthesis of mono- and sesquiterpenes in all assessed tissues, as well as L-proline, acidic amino acids and anthocyanins in leaves. Additionally, applications with GA 3 elicited synthesis of L-proline in berries, and mono- and sesquiterpenes in all the tissues. However, treatment with GA 3 seemed to block polyphenol synthesis, mainly in berries. In conclusion, ABA and GA

  6. SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-Type Protein Kinase, Is Important for Abscisic Acid Responses in Arabidopsis through Phosphorylation of ABSCISIC ACID-INSENSITIVE51[OPEN

    Science.gov (United States)

    Zhou, Xiaona; Hao, Hongmei; Zhang, Yuguo; Bai, Yili; Zhu, Wenbo; Qin, Yunxia; Yuan, Feifei; Zhao, Feiyi; Wang, Mengyao; Hu, Jingjiang; Xu, Hong; Guo, Aiguang; Zhao, Huixian; Zhao, Yang; Cao, Cuiling; Yang, Yongqing; Schumaker, Karen S.; Guo, Yan; Xie, Chang Gen

    2015-01-01

    Abscisic acid (ABA) plays an essential role in seed germination. In this study, we demonstrate that one SNF1-RELATED PROTEIN KINASE3-type protein kinase, SOS2-LIKE PROTEIN KINASE5 (PKS5), is involved in ABA signal transduction via the phosphorylation of an interacting protein, ABSCISIC ACID-INSENSITIVE5 (ABI5). We found that pks5-3 and pks5-4, two previously identified PKS5 superactive kinase mutants with point mutations in the PKS5 FISL/NAF (a conserved peptide that is necessary for interaction with SOS3 or SOS3-LIKE CALCIUM BINDING PROTEINs) motif and the kinase domain, respectively, are hypersensitive to ABA during seed germination. PKS5 was found to interact with ABI5 in yeast (Saccharomyces cerevisiae), and this interaction was further confirmed in planta using bimolecular fluorescence complementation. Genetic studies revealed that ABI5 is epistatic to PKS5. PKS5 phosphorylates a serine (Ser) residue at position 42 in ABI5 and regulates ABA-responsive gene expression. This phosphorylation was induced by ABA in vivo and transactivated ABI5. Expression of ABI5, in which Ser-42 was mutated to alanine, could not fully rescue the ABA-insensitive phenotypes of the abi5-8 and pks5-4abi5-8 mutants. In contrast, mutating Ser-42 to aspartate rescued the ABA insensitivity of these mutants. These data demonstrate that PKS5-mediated phosphorylation of ABI5 at Ser-42 is critical for the ABA regulation of seed germination and gene expression in Arabidopsis (Arabidopsis thaliana). PMID:25858916

  7. Anion channels: master switches of stress responses.

    Science.gov (United States)

    Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar

    2012-04-01

    During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Transcriptional Regulation of Arabidopsis MIR168a and ARGONAUTE1 Homeostasis in Abscisic Acid and Abiotic Stress Responses1[W

    Science.gov (United States)

    Li, Wei; Cui, Xiao; Meng, Zhaolu; Huang, Xiahe; Xie, Qi; Wu, Heng; Jin, Hailing; Zhang, Dabing; Liang, Wanqi

    2012-01-01

    The accumulation of a number of small RNAs in plants is affected by abscisic acid (ABA) and abiotic stresses, but the underlying mechanisms are poorly understood. The miR168-mediated feedback regulatory loop regulates ARGONAUTE1 (AGO1) homeostasis, which is crucial for gene expression modulation and plant development. Here, we reveal a transcriptional regulatory mechanism by which MIR168 controls AGO1 homeostasis during ABA treatment and abiotic stress responses in Arabidopsis (Arabidopsis thaliana). Plants overexpressing MIR168a and the AGO1 loss-of-function mutant ago1-27 display ABA hypersensitivity and drought tolerance, while the mir168a-2 mutant shows ABA hyposensitivity and drought hypersensitivity. Both the precursor and mature miR168 were induced under ABA and several abiotic stress treatments, but no obvious decrease for the target of miR168, AGO1, was shown under the same conditions. However, promoter activity analysis indicated that AGO1 transcription activity was increased under ABA and drought treatments, suggesting that transcriptional elevation of MIR168a is required for maintaining a stable AGO1 transcript level during the stress response. Furthermore, we showed both in vitro and in vivo that the transcription of MIR168a is directly regulated by four abscisic acid-responsive element (ABRE) binding factors, which bind to the ABRE cis-element within the MIR168a promoter. This ABRE motif is also found in the promoter of MIR168a homologs in diverse plant species. Our findings suggest that transcriptional regulation of miR168 and posttranscriptional control of AGO1 homeostasis may play an important and conserved role in stress response and signal transduction in plants. PMID:22247272

  9. Transcriptional regulation of Arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses.

    Science.gov (United States)

    Li, Wei; Cui, Xiao; Meng, Zhaolu; Huang, Xiahe; Xie, Qi; Wu, Heng; Jin, Hailing; Zhang, Dabing; Liang, Wanqi

    2012-03-01

    The accumulation of a number of small RNAs in plants is affected by abscisic acid (ABA) and abiotic stresses, but the underlying mechanisms are poorly understood. The miR168-mediated feedback regulatory loop regulates ARGONAUTE1 (AGO1) homeostasis, which is crucial for gene expression modulation and plant development. Here, we reveal a transcriptional regulatory mechanism by which MIR168 controls AGO1 homeostasis during ABA treatment and abiotic stress responses in Arabidopsis (Arabidopsis thaliana). Plants overexpressing MIR168a and the AGO1 loss-of-function mutant ago1-27 display ABA hypersensitivity and drought tolerance, while the mir168a-2 mutant shows ABA hyposensitivity and drought hypersensitivity. Both the precursor and mature miR168 were induced under ABA and several abiotic stress treatments, but no obvious decrease for the target of miR168, AGO1, was shown under the same conditions. However, promoter activity analysis indicated that AGO1 transcription activity was increased under ABA and drought treatments, suggesting that transcriptional elevation of MIR168a is required for maintaining a stable AGO1 transcript level during the stress response. Furthermore, we showed both in vitro and in vivo that the transcription of MIR168a is directly regulated by four abscisic acid-responsive element (ABRE) binding factors, which bind to the ABRE cis-element within the MIR168a promoter. This ABRE motif is also found in the promoter of MIR168a homologs in diverse plant species. Our findings suggest that transcriptional regulation of miR168 and posttranscriptional control of AGO1 homeostasis may play an important and conserved role in stress response and signal transduction in plants.

  10. Osabc1k8, an abc1-like kinase gene, mediates abscisic acid sensitivity and dehydration tolerance response in rice seedlings

    International Nuclear Information System (INIS)

    Liu, Y.; Li, T.; Yang, C.

    2015-01-01

    The activity of bc1 complex kinase (ABC1K) protein family, which widely exists in prokaryotes and eukaryotes, consists of 15 members in rice, and the role of this family in plants has not yet been studied in details. In this study, a novel function of OsABC1K8 (LOC-Os06g48770), a member of rice ABC1K family, was characterized. The transcript level of OsABC1K8 changes in response to salt, dehydration, cold, PEG, oxidative (H/sub 2/O/sub 2/) stresses, or abscisic acid (ABA) treatment. Overexpression of OsABC1K8 significantly increased sensitivity to dehydration and reduced sensitivity to ABA. In the contrast, RNAi transgenic lines displayed significantly reduced sensitivity to dehydration stress and increased sensitivity to ABA. Furthermore, the transcriptional levels of several ABA/stress-regulated responsive genes were suppressed in OsABC1K8 over-expressing plants under dehydration stress. In conclusion, our results suggested that OsABC1K8 is a negative regulator in response to dehydration stress through an ABA-dependent pathway. (author)

  11. Teaching Socially Valid Social Interaction Responses to Students with Severe Disabilities in an Integrated School Setting.

    Science.gov (United States)

    Nientimp, Edward G.; Cole, Christine L.

    1992-01-01

    Evaluated effects of procedure to teach appropriate social responses to adolescents with severe disabilities by employing ABA withdrawal design, replicated twice with two students, and AB design with third student. Results showed increases in correct responding and decreases in echolalia following intervention. Generalization of appropriate…

  12. PERIPHERAL PARASITAEMIA AND ITS ASSOCIATION WITH PLASMA CYTOKINES LEVELS IN MALARIA-INFECTED PREGNANT WOMEN IN ABA, ABIA STATE, NIGERIA.

    Science.gov (United States)

    Ifeanyichukwu, M O; Okamgba, O C; Amilo, G I; Nwokorie, E A

    2017-01-01

    Cytokines in pregnant female may not be a normal phenomenon as malarial infection is often associated with strong CD4+ cell activation and up-regulation of pro-inflammatory cytokines. We investigated the relationship between peripheral parasitaemia and plasma levels of cytokines among malaria infected pregnant women in Aba, Abia State, Nigeria. A total of 206 non-HIV positive asymptomatic malaria parasitaemic (n=144) and non-parasitaemic (n=62) pregnant women were recruited for this study alongside 80 non-pregnant women who served as positive (n=40) and negative (n=40) controls. Blood samples were aseptically collected from each subject and tested for HIV and malaria parasites using standard methods. Also, plasma levels of cytokines were measured using Th1/Th2 human cytokine ELISA kits (Abcam, UK). Analysis of Variance and Student's t-test were used for Comparison of groups while Pearson's Correlation Coefficient was used for tests of association. The results revealed a mean parasite density of 685.56±484.55 parasites/µl of blood. Malaria infected pregnant subjects showed significantly higher levels of IFN-γ, TNF-α, IL-4, IL-6 and IL-10 when compared with their non-infected counterparts (P< 0.05). The cytokines evaluated were higher in moderate parasitaemia than mild parasitaemia. Positive correlation existed between peripheral parasite density (PPD) and IL-4 (r= 0.24, P=0.004), PPD and IL-6 (r = 0.35, P = 0.001) as well as PPD and IL-10 (r = 0.29, P = 0.001). This study showed that increase in peripheral parasitaemia increased levels of some plasma cytokines (IL-4, IL-6 and IL-10) but not IFN-γ and TNF-α in the malaria infected pregnant women studied.

  13. Isolation and characterization of ScGluD2, a new sugarcane beta-1,3-glucanase D family gene induced by Sporisorium scitamineum, ABA, H2O2, NaCl, and CdCl2 stresses

    Directory of Open Access Journals (Sweden)

    Yachun Su

    2016-09-01

    Full Text Available Beta-1,3-glucanases (EC 3.2.1.39, commonly known as pathogenesis-related (PR proteins, play an important role not only in plant defense against fungal pathogens but also in plant physiological and developmental processes. However, only a limited number of sugarcane beta-1,3-glucanase genes have been isolated. In the present study, we identified and characterized a new beta-1,3-glucanase gene ScGluD2 (GenBank Acc No. KF664181 from sugarcane. An X8 domain was present at the C terminal region of ScGluD2, suggesting beta-1,3-glucan-binding function. Phylogenetic analysis showed that the predicted ScGluD2 protein was classified into subfamily D beta-1,3-glucanase. Localization of the ScGluD2 protein in the plasma membrane was determined by tagging it with green fluorescent protein. The expression of ScGluD2 was more up-regulated in sugarcane smut-resistant cultivars in the early stage (1 d or 3 d than in the susceptible ones after being challenged by the smut pathogen, revealing that ScGluD2 may be involved in defense against the invasion of Sporisorium scitamineum. Transient overexpression of ScGluD2 in Nicotiana benthamiana leaves induced a defense response and exhibited antimicrobial action on the tobacco pathogens Pseudomonas solanacearum and Botrytis cinerea, further demonstrating that ScGluD2 was related to the resistance to plant pathogens. However, the transcripts of ScGluD2 partially increased (12 h under NaCl stress, and were steadily up-regulated from 6 h to 24 h upon ABA, H2O2, and CdCl2 treatments, suggesting that ABA may be a signal molecule regulating oxidative stress and play a role in the salt and heavy metal stress-induced stimulation of ScGluD2 transcripts. Taken together, ScGluD2, a novel member of subfamily D beta-1,3-glucanase, was a stress-related gene of sugarcane involved in plant defense against smut pathogen attack and salt and heavy metal stresses.

  14. Expression Analysis of MYC Genes from Tamarix hispida in Response to Different Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Guifeng Liu

    2012-01-01

    Full Text Available The MYC genes are a group of transcription factors containing both bHLH and ZIP motifs that play important roles in the regulation of abscisic acid (ABA-responsive genes. In the present study, to investigate the roles of MYC genes under NaCl, osmotic and ABA stress conditions, nine MYC genes were cloned from Tamarix hispida. Real-time reverse-transcriptase (RT-PCR showed that all nine MYC genes were expressed in root, stem and leaf tissues, but that the levels of the transcripts of these genes in the various tissues differed notably. The MYC genes were highly induced in the roots in response to ABA, NaCl and osmotic stresses after 3 h; however, in the stem and leaf tissues, MYC genes were highly induced only when exposed to these stresses for 6 h. In addition, most of these MYC genes were highly expressed in roots in comparison with stems and leaves. Furthermore, the MYC genes were more highly induced in roots than in stem and leaf tissues, indicating that these genes may play roles in stress responses mainly in the roots rather than the stems and leaves. The results of this present study suggest that MYCs are involved in salt and osmotic stress tolerances and are controlled by the ABA signal transduction pathway.

  15. Expression analysis of MYC genes from Tamarix hispida in response to different abiotic stresses.

    Science.gov (United States)

    Ji, Xiaoyu; Wang, Yucheng; Liu, Guifeng

    2012-01-01

    The MYC genes are a group of transcription factors containing both bHLH and ZIP motifs that play important roles in the regulation of abscisic acid (ABA)-responsive genes. In the present study, to investigate the roles of MYC genes under NaCl, osmotic and ABA stress conditions, nine MYC genes were cloned from Tamarix hispida. Real-time reverse-transcriptase (RT)-PCR showed that all nine MYC genes were expressed in root, stem and leaf tissues, but that the levels of the transcripts of these genes in the various tissues differed notably. The MYC genes were highly induced in the roots in response to ABA, NaCl and osmotic stresses after 3 h; however, in the stem and leaf tissues, MYC genes were highly induced only when exposed to these stresses for 6 h. In addition, most of these MYC genes were highly expressed in roots in comparison with stems and leaves. Furthermore, the MYC genes were more highly induced in roots than in stem and leaf tissues, indicating that these genes may play roles in stress responses mainly in the roots rather than the stems and leaves. The results of this present study suggest that MYCs are involved in salt and osmotic stress tolerances and are controlled by the ABA signal transduction pathway.

  16. Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic Acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes.

    Science.gov (United States)

    Argyris, Jason; Dahal, Peetambar; Hayashi, Eiji; Still, David W; Bradford, Kent J

    2008-10-01

    Lettuce (Lactuca sativa 'Salinas') seeds fail to germinate when imbibed at temperatures above 25 degrees C to 30 degrees C (termed thermoinhibition). However, seeds of an accession of Lactuca serriola (UC96US23) do not exhibit thermoinhibition up to 37 degrees C in the light. Comparative genetics, physiology, and gene expression were analyzed in these genotypes to determine the mechanisms governing the regulation of seed germination by temperature. Germination of the two genotypes was differentially sensitive to abscisic acid (ABA) and gibberellin (GA) at elevated temperatures. Quantitative trait loci associated with these phenotypes colocated with a major quantitative trait locus (Htg6.1) from UC96US23 conferring germination thermotolerance. ABA contents were elevated in Salinas seeds that exhibited thermoinhibition, consistent with the ability of fluridone (an ABA biosynthesis inhibitor) to improve germination at high temperatures. Expression of many genes involved in ABA, GA, and ethylene biosynthesis, metabolism, and response was differentially affected by high temperature and light in the two genotypes. In general, ABA-related genes were more highly expressed when germination was inhibited, and GA- and ethylene-related genes were more highly expressed when germination was permitted. In particular, LsNCED4, a gene encoding an enzyme in the ABA biosynthetic pathway, was up-regulated by high temperature only in Salinas seeds and also colocated with Htg6.1. The temperature sensitivity of expression of LsNCED4 may determine the upper temperature limit for lettuce seed germination and may indirectly influence other regulatory pathways via interconnected effects of increased ABA biosynthesis.

  17. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds.

    Science.gov (United States)

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Doron-Faigenboim, Adi; Blumwald, Eduardo; Sadka, Avi

    2014-07-01

    Many fruit trees undergo cycles of heavy fruit load (ON-Crop) in one year, followed by low fruit load (OFF-Crop) the following year, a phenomenon known as alternate bearing (AB). The mechanism by which fruit load affects flowering induction during the following year (return bloom) is still unclear. Although not proven, it is commonly accepted that the fruit or an organ which senses fruit presence generates an inhibitory signal that moves into the bud and inhibits apical meristem transition. Indeed, fruit removal from ON-Crop trees (de-fruiting) induces return bloom. Identification of regulatory or metabolic processes modified in the bud in association with altered fruit load might shed light on the nature of the AB signalling process. The bud transcriptome of de-fruited citrus trees was compared with those of ON- and OFF-Crop trees. Fruit removal resulted in relatively rapid changes in global gene expression, including induction of photosynthetic genes and proteins. Altered regulatory mechanisms included abscisic acid (ABA) metabolism and auxin polar transport. Genes of ABA biosynthesis were induced; however, hormone analyses showed that the ABA level was reduced in OFF-Crop buds and in buds shortly following fruit removal. Additionally, genes associated with Ca(2+)-dependent auxin polar transport were remarkably induced in buds of OFF-Crop and de-fruited trees. Hormone analyses showed that auxin levels were reduced in these buds as compared with ON-Crop buds. In view of the auxin transport autoinhibition theory, the possibility that auxin distribution plays a role in determining bud fate is discussed. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Structures and self-activating photoluminescent properties of Sr3−xAxGaO4F (A=Ba, Ca) materials

    International Nuclear Information System (INIS)

    Green, Robert; Vogt, Thomas

    2012-01-01

    The synthesis, structures and photoluminescent properties of mixed oxyfluorides of the type Sr 3−x A x GaO 4 F are compared to Sr 3−x A x AlO 4 F (A=Ca, Ba) materials. In these compounds the F − and O 2− ions are ordered and located on two distinct crystallographic sites. When substituting Sr 2+ by Ba 2+ and Ca 2+ , we find in Sr 3−x A x GaO 4 F materials an ordering of the alkaline earth cations over the two crystallographic sites. The amount of Ba 2+ ions that can be substituted into Sr 3−x A x GaO 4 F is x≤1.2, which is slightly more than can be incorporated into the previously reported Al-analog Sr 3−x A x AlO 4 F (x=1.0). Conversely, the amount of Ca 2+ ions that can be substituted into Sr 3−x Ca x GaO 4 F (x=0.3) is significantly less than in Sr 3−x Ca x AlO 4 F (x=1.0). A post-synthesis reduction step causes these materials to exhibit self-activating broad band photoluminescence where the emitted colors vary with the amount of ions substituted into the host lattice. - Graphical abstract: TOC Statement The structures of the self-activating phosphors Sr 3−x A x MO 4 F (A=Ba, Ca and M=Al, Ga) can be rationalized as alternating layers of bond compression and elongation, which impact the photoluminescence. Highlights: ► Comparison of the structural changes in Sr 3−x A x AlO 4 F and Sr 3−x A x GaO 4 F (A=Ba, Ca) and its influence on the photoluminescence of these self-activating phosphors. ► Analysis of the Global Instability Index of the Sr 3−x A x AlO 4 F and Sr 3−x A x GaO 4 F (A=Ba, Ca). ► Comparison of the photoluminescence between the self-activating phosphors Sr 3−x A x AlO 4 F and Sr 3−x A x GaO 4 F (A=Ba, Ca).

  19. Modulación de la expresión por GA y ABA de los genes Ss1 y Ss2 que codifican sacarosa sintasa en cebada

    OpenAIRE

    Carbonero Zalduegui, Pilar; Barrero Sicilia, Cristina; Oñate Sanchez, Luis; Hernando Amado, Sara; Rueda Romero, Paloma

    2008-01-01

    En este trabajo se ha llevado a cabo un estudio comparativo entre distintas isoformas de SUSy de cereales y arabidopsis. Además se ha realizado un análisis de expresión de HvSs1 y HvSs2 en distintos órganos, incluyendo patrones temporales en semillas en desarrollo y germinación, así como la variación de su respuesta a ácido abscísico (ABA) y giberélico (GA3).

  20. Liver function assessment in malaria, typhoid and malaria-typhoid co-infection in Aba, Abia State, Nigeria.

    Science.gov (United States)

    Enemchukwu, B N; Ibe, C C; Udedi, S C; Iroha, A; Ubaoji, K I; Ogundapo, S S

    2014-06-01

    Malaria and typhoid fever are among the most endemic diseases in the tropics and are associated with poverty and underdevelopment with significant morbidity and mortality. Both diseases can lead to liver damage if not properly treated. The liver function assessment was therefore conducted on (90) volunteer patients; comprising (30) patients with malaria only, (30) with typhoid only and (30) with malaria-typhoid co-infection randomly selected from Abia State University Teaching Hospital, Aba, Abia State, Nigeria and (20) healthy individuals were used as control. Blood samples collected from these subjects were screened for malaria parasite and Staphylococcus typhi using standard methods. Mean serum levels of ALP (112.55±84.23), AST (31.33±12.80), ALT (23.10±11.84), TB (19.43±5.02), CB (5.91±3.03) and ALP (116.69±48.68), AST (28.33±11.72), ALT (22.8±5.94), TB (19.31±5.84),CB (5.60±2.50) were obtained for those subjects with malaria and typhoid respectively and subjects with malaria-typhoid co-infection recorded the following; ALP (134.33±56.62), AST (33.97±8.43), ALT (24.40±4.37),TB (21.27±2.96),CB (6.58±3.10) while the control subjects had mean serum levels ofALP (71.05±18.18), AST (16.65±7.45), ALT (13.85±6.09), TB (10.05±4.85) and CB (3.00±1.67). These mean values were subjected to a statistical test using students t-test which revealed a significant increase (p<0.05).The results suggest that malaria, typhoid and malaria-typhoid co-infection can elevate ALP, AST, ALT, TB and CB serum levels and can lead to liver damage if not properly treated.

  1. The role of the HvNAC6 transcription factor in response to biotic and abiotic stress in barley

    DEFF Research Database (Denmark)

    Chen, Yan-Jun

    -mediated transformation methods could be used to study stress responses at the whole-plant level. The abscisic acid (ABA) and salicylic acid (SA) levels were measured during Bgh infection to investigate the involvement of these hormones and TF in the basal resistance. HvNAC6 RNAi plants were also subjected to dehydration...

  2. Overexpression of StNF-YB3.1 reduces photosynthetic capacity and tuber production, and promotes ABA-mediated stomatal closure in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Xuanyuan, Guochao; Lu, Congming; Zhang, Ruofang; Jiang, Jiming

    2017-08-01

    Nuclear factor Y (NF-Y) is one of the most ubiquitous transcription factors (TFs), comprising NF-YA, NF-YB and NF-YC subunits, and has been identified and reported in various aspects of development for plants and animals. In this work, StNF-YB3.1, a putative potato NF-YB subunit encoding gene, was isolated from Solanum tuberosum by rapid amplification of cDNA ends (RACE). Overexpression of StNF-YB3.1 in potato (cv. Atlantic) resulted in accelerated onset of flowering, and significant increase in leaf chlorophyll content in field trials. However, transgenic potato plants overexpressing StNF-YB3.1 (OEYB3.1) showed significant decreases in photosynthetic rate and stomatal conductance both at tuber initiation and bulking stages. OEYB3.1 lines were associated with significantly fewer tuber numbers and yield reduction. Guard cell size and stomatal density were not changed in OEYB3.1 plants, whereas ABA-mediated stomatal closure was accelerated compared to that of wild type plants because of the up-regulation of genes for ABA signaling, such as StCPK10-like, StSnRK2.6/OST1-like, StSnRK2.7-like and StSLAC1-like. We speculate that the acceleration of stomatal closure was a possible reason for the significantly decreased stomatal conductance and photosynthetic rate. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Plant natriuretic peptides are apoplastic and paracrine stress response molecules

    KAUST Repository

    Wang, Yuhua

    2011-04-07

    Higher plants contain biologically active proteins that are recognized by antibodies against human atrial natriuretic peptide (ANP). We identified and isolated two Arabidopsis thaliana immunoreactive plant natriuretic peptide (PNP)-encoding genes, AtPNP-A and AtPNP-B, which are distantly related members of the expansin superfamily and have a role in the regulation of homeostasis in abiotic and biotic stresses, and have shown that AtPNP-A modulates the effects of ABA on stomata. Arabidopsis PNP (PNP-A) is mainly expressed in leaf mesophyll cells, and in protoplast assays we demonstrate that it is secreted using AtPNP-A:green fluorescent protein (GFP) reporter constructs and flow cytometry. Transient reporter assays provide evidence that AtPNP-A expression is enhanced by heat, osmotica and salt, and that AtPNP-A itself can enhance its own expression, thereby generating a response signature diagnostic for paracrine action and potentially also autocrine effects. Expression of native AtPNP-A is enhanced by osmotica and transiently by salt. Although AtPNP-A expression is induced by salt and osmotica, ABA does not significantly modulate AtPNP-A levels nor does recombinant AtPNP-A affect reporter expression of the ABA-responsive RD29A gene. Together, these results provide experimental evidence that AtPNP-A is stress responsive, secreted into the apoplastic space and can enhance its own expression. Furthermore, our findings support the idea that AtPNP-A, together with ABA, is an important component in complex plant stress responses and that, much like in animals, peptide signaling molecules can create diverse and modular signals essential for growth, development and defense under rapidly changing environmental conditions. © 2011 The Author.

  4. Genetic Variation for Lettuce Seed Thermoinhibition Is Associated with Temperature-Sensitive Expression of Abscisic Acid, Gibberellin, and Ethylene Biosynthesis, Metabolism, and Response Genes1[C][W][OA

    Science.gov (United States)

    Argyris, Jason; Dahal, Peetambar; Hayashi, Eiji; Still, David W.; Bradford, Kent J.

    2008-01-01

    Lettuce (Lactuca sativa ‘Salinas’) seeds fail to germinate when imbibed at temperatures above 25°C to 30°C (termed thermoinhibition). However, seeds of an accession of Lactuca serriola (UC96US23) do not exhibit thermoinhibition up to 37°C in the light. Comparative genetics, physiology, and gene expression were analyzed in these genotypes to determine the mechanisms governing the regulation of seed germination by temperature. Germination of the two genotypes was differentially sensitive to abscisic acid (ABA) and gibberellin (GA) at elevated temperatures. Quantitative trait loci associated with these phenotypes colocated with a major quantitative trait locus (Htg6.1) from UC96US23 conferring germination thermotolerance. ABA contents were elevated in Salinas seeds that exhibited thermoinhibition, consistent with the ability of fluridone (an ABA biosynthesis inhibitor) to improve germination at high temperatures. Expression of many genes involved in ABA, GA, and ethylene biosynthesis, metabolism, and response was differentially affected by high temperature and light in the two genotypes. In general, ABA-related genes were more highly expressed when germination was inhibited, and GA- and ethylene-related genes were more highly expressed when germination was permitted. In particular, LsNCED4, a gene encoding an enzyme in the ABA biosynthetic pathway, was up-regulated by high temperature only in Salinas seeds and also colocated with Htg6.1. The temperature sensitivity of expression of LsNCED4 may determine the upper temperature limit for lettuce seed germination and may indirectly influence other regulatory pathways via interconnected effects of increased ABA biosynthesis. PMID:18753282

  5. Natural variation in stomatal response to closing stimuli among Arabidopsis thaliana accessions after exposure to low VPD as a tool to recognize the mechanism of disturbed stomatal functioning.

    Science.gov (United States)

    Aliniaeifard, Sasan; van Meeteren, Uulke

    2014-12-01

    Stomatal responses to closing stimuli are disturbed after long-term exposure of plants to low vapour pressure deficit (VPD). The mechanism behind this disturbance is not fully understood. Genetic variation between naturally occurring ecotypes can be helpful to elucidate the mechanism controlling stomatal movements in different environments. We characterized the stomatal responses of 41 natural accessions of Arabidopsis thaliana to closing stimuli (ABA and desiccation) after they had been exposed for 4 days to moderate VPD (1.17 kPa) or low VPD (0.23 kPa). A fast screening system was used to test stomatal response to ABA using chlorophyll fluorescence imaging under low O2 concentrations of leaf discs floating on ABA solutions. In all accessions stomatal conductance (gs) was increased after prior exposure to low VPD. After exposure to low VPD, stomata of 39 out of 41 of the accessions showed a diminished ABA closing response; only stomata of low VPD-exposed Map-42 and C24 were as responsive to ABA as moderate VPD-exposed plants. In response to desiccation, most of the accessions showed a normal stomata closing response following low VPD exposure. Only low VPD-exposed Cvi-0 and Rrs-7 showed significantly less stomatal closure compared with moderate VPD-exposed plants. Using principle component analysis (PCA), accessions could be categorized to very sensitive, moderately sensitive, and less sensitive to closing stimuli. In conclusion, we present evidence for different stomatal responses to closing stimuli after long-term exposure to low VPD across Arabidopsis accessions. The variation can be a useful tool for finding the mechanism of stomatal malfunctioning. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Nicotinamidase activity is important for germination.

    Science.gov (United States)

    Hunt, Lee; Holdsworth, Michael J; Gray, Julie E

    2007-08-01

    It has been suggested that nicotinamide must be degraded during germination; however, the enzyme responsible and its physiological role have not been previously studied. We have identified an Arabidopsis gene, NIC2, that is expressed at relatively high levels in mature seed, and encodes a nicotinamidase enzyme with homology to yeast and bacterial nicotinamidases. Seed of a knockout mutant, nic2-1, had reduced nicotinamidase activity, retarded germination and impaired germination potential. nic2-1 germination was restored by after-ripening or moist chilling, but remained hypersensitive to application of nicotinamide or ABA. Nicotinamide is a known inhibitor of NAD-degrading poly(ADP-ribose) polymerases (PARP enzymes) that are implicated in DNA repair. We found reduced poly(ADP)ribosylation levels in nic2-1 seed, which were restored by moist chilling. Furthermore, nic2-1 seed had elevated levels of NAD, and germination was hypersensitive to methyl methanesulphonate (MMS), suggesting that PARP activity and DNA repair responses were impaired. We suggest that nicotinamide is normally metabolized by NIC2 during moist chilling or after-ripening, which relieves inhibition of PARP activity and allows DNA repair to occur prior to germination.

  7. Overexpression of a Protein Phosphatase 2C from Beech Seeds in Arabidopsis Shows Phenotypes Related to Abscisic Acid Responses and Gibberellin Biosynthesis1

    Science.gov (United States)

    Reyes, David; Rodríguez, Dolores; González-García, Mary Paz; Lorenzo, Oscar; Nicolás, Gregorio; García-Martínez, José Luis; Nicolás, Carlos

    2006-01-01

    A functional abscisic acid (ABA)-induced protein phosphatase type 2C (PP2C) was previously isolated from beech (Fagus sylvatica) seeds (FsPP2C2). Because transgenic work is not possible in beech, in this study we overexpressed this gene in Arabidopsis (Arabidopsis thaliana) to provide genetic evidence on FsPP2C2 function in seed dormancy and other plant responses. In contrast with other PP2Cs described so far, constitutive expression of FsPP2C2 in Arabidopsis, under the cauliflower mosaic virus 35S promoter, produced enhanced sensitivity to ABA and abiotic stress in seeds and vegetative tissues, dwarf phenotype, and delayed flowering, and all these effects were reversed by gibberellic acid application. The levels of active gibberellins (GAs) were reduced in 35S:FsPP2C2 plants, although transcript levels of AtGA20ox1 and AtGA3ox1 increased, probably as a result of negative feedback regulation, whereas the expression of GASA1 was induced by GAs. Additionally, FsPP2C2-overexpressing plants showed a strong induction of the Responsive to ABA 18 (RAB18) gene. Interestingly, FsPP2C2 contains two nuclear targeting sequences, and transient expression assays revealed that ABA directed this protein to the nucleus. Whereas other plant PP2Cs have been shown to act as negative regulators, our results support the hypothesis that FsPP2C2 is a positive regulator of ABA. Moreover, our results indicate the existence of potential cross-talk between ABA signaling and GA biosynthesis. PMID:16815952

  8. Ecophysiological response to seasonal variations in water availability in the arborescent, endemic plant Vellozia gigantea.

    Science.gov (United States)

    Morales, Melanie; Garcia, Queila S; Munné-Bosch, Sergi

    2015-03-01

    The physiological response of plants growing in their natural habitat is strongly determined by seasonal variations in environmental conditions and the interaction of abiotic and biotic stresses. Here, leaf water and nutrient contents, changes in cellular redox state and endogenous levels of stress-related phytohormones (abscisic acid (ABA), salicylic acid and jasmonates) were examined during the rainy and dry season in Vellozia gigantea, an endemic species growing at high elevations in the rupestrian fields of the Espinhaço Range in Brazil. Enhanced stomatal closure and increased ABA levels during the dry season were associated with an efficient control of leaf water content. Moreover, reductions in 12-oxo-phytodienoic acid (OPDA) levels during the dry season were observed, while levels of other jasmonates, such as jasmonic acid and jasmonoyl-isoleucine, were not affected. Changes in ABA and OPDA levels correlated with endogenous concentrations of iron and silicon, hydrogen peroxide, and vitamin E, thus indicating complex interactions between water and nutrient contents, changes in cellular redox state and endogenous hormone concentrations. Results also suggested crosstalk between activation of mechanisms for drought stress tolerance (as mediated by ABA) and biotic stress resistance (mediated by jasmonates), in which vitamin E levels may serve as a control point. It is concluded that, aside from a tight ABA-associated regulation of stomatal closure during the dry season, crosstalk between activation of abiotic and biotic defences, and nutrient accumulation in leaves may be important modulators of plant stress responses in plants growing in their natural habitat. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Arabidopsis plastid AMOS1/EGY1 integrates abscisic acid signaling to regulate global gene expression response to ammonium stress

    KAUST Repository

    Li, Baohai

    2012-10-12

    Ammonium (NH4 +) is a ubiquitous intermediate of nitrogen metabolism but is notorious for its toxic effects on most organisms. Extensive studies of the underlying mechanisms of NH4 + toxicity have been reported in plants, but it is poorly understood how plants acclimate to high levels of NH4 +. Here, we identified an Arabidopsis (Arabidopsis thaliana) mutant, ammonium overly sensitive1 (amos1), that displays severe chlorosis under NH4 + stress. Map-based cloning shows amos1 to carry a mutation in EGY1 (for ethylene-dependent, gravitropism-deficient, and yellow-green-like protein1), which encodes a plastid metalloprotease. Transcriptomic analysis reveals that among the genes activated in response to NH4 +, 90% are regulated dependent on AMOS1/ EGY1. Furthermore, 63% of AMOS1/EGY1-dependent NH4 +-activated genes contain an ACGTG motif in their promoter region, a core motif of abscisic acid (ABA)-responsive elements. Consistent with this, our physiological, pharmacological, transcriptomic, and genetic data show that ABA signaling is a critical, but not the sole, downstream component of the AMOS1/EGY1-dependent pathway that regulates the expression of NH4 +-responsive genes and maintains chloroplast functionality under NH4 + stress. Importantly, abi4 mutants defective in ABA-dependent and retrograde signaling, but not ABA-deficient mutants, mimic leaf NH4 + hypersensitivity of amos1. In summary, our findings suggest that an NH4 +-responsive plastid retrograde pathway, which depends on AMOS1/EGY1 function and integrates with ABA signaling, is required for the regulation of expression of the presence of high NH4 + levels. © 2012 American Society of Plant Biologists. All Rights Reserved.

  10. Arabidopsis plastid AMOS1/EGY1 integrates abscisic acid signaling to regulate global gene expression response to ammonium stress

    KAUST Repository

    Li, Baohai; Li, Qing; Xiong, Liming; Kronzucker, Herbert J.; Krä mer, Ute; Shi, Weiming

    2012-01-01

    Ammonium (NH4 +) is a ubiquitous intermediate of nitrogen metabolism but is notorious for its toxic effects on most organisms. Extensive studies of the underlying mechanisms of NH4 + toxicity have been reported in plants, but it is poorly understood how plants acclimate to high levels of NH4 +. Here, we identified an Arabidopsis (Arabidopsis thaliana) mutant, ammonium overly sensitive1 (amos1), that displays severe chlorosis under NH4 + stress. Map-based cloning shows amos1 to carry a mutation in EGY1 (for ethylene-dependent, gravitropism-deficient, and yellow-green-like protein1), which encodes a plastid metalloprotease. Transcriptomic analysis reveals that among the genes activated in response to NH4 +, 90% are regulated dependent on AMOS1/ EGY1. Furthermore, 63% of AMOS1/EGY1-dependent NH4 +-activated genes contain an ACGTG motif in their promoter region, a core motif of abscisic acid (ABA)-responsive elements. Consistent with this, our physiological, pharmacological, transcriptomic, and genetic data show that ABA signaling is a critical, but not the sole, downstream component of the AMOS1/EGY1-dependent pathway that regulates the expression of NH4 +-responsive genes and maintains chloroplast functionality under NH4 + stress. Importantly, abi4 mutants defective in ABA-dependent and retrograde signaling, but not ABA-deficient mutants, mimic leaf NH4 + hypersensitivity of amos1. In summary, our findings suggest that an NH4 +-responsive plastid retrograde pathway, which depends on AMOS1/EGY1 function and integrates with ABA signaling, is required for the regulation of expression of the presence of high NH4 + levels. © 2012 American Society of Plant Biologists. All Rights Reserved.

  11. Understanding the Posttranscriptional Regulation of Plant Responses to Abiotic Stress

    KAUST Repository

    AlShareef, Sahar A.

    2017-06-01

    Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and biotic and abiotic stresses. Recent work showed that AS is pervasive across plant species, with more than 60% of intron-containing genes producing different isoforms. Mammalian cell-based assays have discovered various AS small-molecule inhibitors that perturb splicing and thereby provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Here, I show that the macrolide Pladienolide B (PB) and herboxidiene (GEX1A) inhibits both constitutive and alternative splicing, mimics an abiotic stress signal, and activates the abscisic acid (ABA) pathway in plants. Moreover, PB and GEX1A activate genome-wide transcriptional patterns involved in abiotic stress responses in plants. PB and GEX1A treatment triggered the ABA signaling pathway, activated ABA-inducible promoters, and led to stomatal closure. Interestingly, PB and GEX1A elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. This work establishes PB and GEX1A as potent splicing inhibitors in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  12. Etno parks in the function of cultural tourism development in the Mačva, Šabačka Posavina and Pocerina

    Directory of Open Access Journals (Sweden)

    Grčić Ljiljana

    2010-01-01

    Full Text Available The monuments of folk architecture have its historical, artistic and tourist value. They illustrate the characteristics of local culture and way of life, and therefore should be preserved for the future. The main touristic functions in them can be cognitive, educational, fun, and also vacation and recreation. If we would like to keep the traditional folk architecture, it is necessary to protect vulnerable areas at the source or in the open air museums. This paper presents an overview of the ethno-parks and other facilities in the Mačva, Šabac, Šabačka Pocerina and Posavina, which seems preserved examples of folk architecture and architecture from the nineteenth and early twentieth century, are part of the cultural heritage not only of these areas, but also the whole of Serbia.

  13. Effects of chilling and ABA on [3H]gibberellin A4 metabolism in somatic embryos of grape (Vitis vinifera L. x V. rupestris Scheele)

    International Nuclear Information System (INIS)

    Pearce, D.; Pharis, R.P.; Rajasekaran, K.; Mullins, M.G.

    1987-01-01

    Previous work has indicated that changes in gibberellin (GA) metabolism may be involved in chilling-induced release from dormancy in somatic embryos of grape (Vitis vinifera L. x V. rupestris Scheele). The authors have chilled somatic embryos of grape for 2, 4, or 8 weeks, then incubated them with [ 3 H]GA 4 (of high specific activity, 4.81 x 10 19 becquerel per millimole) for 48 hours at 26 0 C. Chilling had little effect on the total amount of free [ 3 H]GA-like metabolites formed during incubation at 26 0 C, but did change the relative proportions of individual metabolites. The amount of highly water-soluble [ 3 H] metabolites formed at 26 0 C decreased in embryos chilled for 4 or 8 weeks. The concentration of endogeneous GA precursors (e.g., GA 12 aldehyde-, kaurene, and kaurenoic acid-like substances) increased in embryos chilled for 4 or 8 weeks. Treatment with abscisic acid (ABA) (known to inhibit germination in grape embryos) concurrent with [ 3 H]GA 4 treatment at 26 0 C, reduced the uptake of [ 3 H] GA 4 but had little effect on the qualitative spectrum of metabolites. However, in the embryos chilled for 8 weeks and then treated with ABA for 48 hours at 26 0 C, there was a higher concentration of GA precursors than in untreated control embryos. Chilled embryos thus have an enhanced potential for an increase in free GAs through synthesis from increased amounts of GA precursors, or through a reduced ability to form highly water-soluble GA metabolites (i.e., GA conjugates or polyhydroxylated free GAs)

  14. Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress

    OpenAIRE

    Chen Zhixiang; Xiao Yong; Shi Junwei; Lai Zhibing; Chen Han; Xu Xinping

    2010-01-01

    Abstract Background WRKY transcription factors are involved in plant responses to both biotic and abiotic stresses. Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors interact both physically and functionally in plant defense responses. However, their role in plant abiotic stress response has not been directly analyzed. Results We report that the three WRKYs are involved in plant responses to abscisic acid (ABA) and abiotic stress. Through analysis of single, double, and triple muta...

  15. Natural variation in germination responses of Arabidopsis to seasonal cues and their associated physiological mechanisms

    Science.gov (United States)

    Barua, Deepak; Butler, Colleen; Tisdale, Tracy E.; Donohue, Kathleen

    2012-01-01

    Background and Aims Despite the intense interest in phenological adaptation to environmental change, the fundamental character of natural variation in germination is almost entirely unknown. Specifically, it is not known whether different genotypes within a species are germination specialists to particular conditions, nor is it known what physiological mechanisms of germination regulation vary in natural populations and how they are associated with responses to particular environmental factors. Methods We used a set of recombinant inbred genotypes of Arabidopsis thaliana, in which linkage disequilibrium has been disrupted over seven generations, to test for genetic variation and covariation in germination responses to distinct environmental factors. We then examined physiological mechanisms associated with those responses, including seed-coat permeability and sensitivity to the phytohormones gibberellic acid (GA) and abscisic acid (ABA). Key Results Genetic variation for germination was environment-dependent, but no evidence for specialization of germination to different conditions was found. Hormonal sensitivities also exhibited significant genetic variation, but seed-coat properties did not. GA sensitivity was associated with germination responses to multiple environmental factors, but seed-coat permeability and ABA sensitivity were associated with specific germination responses, suggesting that an evolutionary change in GA sensitivity could affect germination in multiple environments, but that of ABA sensitivity may affect germination under more restricted conditions. Conclusions The physiological mechanisms of germination responses to specific environmental factors therefore can influence the ability to adapt to diverse seasonal environments encountered during colonization of new habitats or with future predicted climate change. PMID:22012958

  16. Structure, function and networks of transcription factors involved in abiotic stress responses

    DEFF Research Database (Denmark)

    Lindemose, Søren; O'Shea, Charlotte; Jensen, Michael Krogh

    2013-01-01

    Transcription factors (TFs) are master regulators of abiotic stress responses in plants. This review focuses on TFs from seven major TF families, known to play functional roles in response to abiotic stresses, including drought, high salinity, high osmolarity, temperature extremes...... and the phytohormone ABA. Although ectopic expression of several TFs has improved abiotic stress tolerance in plants, fine-tuning of TF expression and protein levels remains a challenge to avoid crop yield loss. To further our understanding of TFs in abiotic stress responses, emerging gene regulatory networks based...... on TFs and their direct targets genes are presented. These revealed components shared between ABA-dependent and independent signaling as well as abiotic and biotic stress signaling. Protein structure analysis suggested that TFs hubs of large interactomes have extended regions with protein intrinsic...

  17. Positive feedback regulation of a Lycium chinense-derived VDE gene by drought-induced endogenous ABA, and over-expression of this VDE gene improve drought-induced photo-damage in Arabidopsis.

    Science.gov (United States)

    Guan, Chunfeng; Ji, Jing; Zhang, Xuqiang; Li, Xiaozhou; Jin, Chao; Guan, Wenzhu; Wang, Gang

    2015-03-01

    Violaxanthin de-epoxidase (VDE) plays an important role in protecting the photosynthetic apparatus from photo-damage by dissipating excessively absorbed light energy as heat, via the conversion of violaxanthin (V) to intermediate product antheraxanthin (A) and final product zeaxanthin (Z) under light stress. We have cloned a VDE gene (LcVDE) from Lycium chinense, a deciduous woody perennial halophyte, which can grow in a large variety of soil types. The amino acid sequence of LcVDE has high homology with VDEs in other plants. Under drought stress, relative expression of LcVDE and the de-epoxidation ratio (Z+0.5A)/(V+A+Z) increased rapidly, and non-photochemical quenching (NPQ) also rose. Interestingly, these elevations induced by drought stress were reduced by the topical administration of abamine SG, a potent ABA inhibitor via inhibition of NCED in the ABA synthesis pathway. Until now, little has been done to explore the relationship between endogenous ABA and the expression of VDE genes. Since V serves as a common precursor for ABA, these data support the possible involvement of endogenous ABA in the positive feedback regulation of LcVDE gene expression in L. chinense under drought stress. Moreover, the LcVDE may be involved in modulating the level of photosynthesis damage caused by drought stress. Furthermore, the ratio of (Z+0.5A)/(V+A+Z) and NPQ increased more in transgenic Arabidopsis over-expressing LcVDE gene than the wild types under drought stress. The maximum quantum yield of primary photochemistry of PSII (Fv/Fm) in transgenic Arabidopsis decreased more slowly during the stressed period than that in wild types under the same conditions. Furthermore, transgenic Arabidopsis over-expressing LcVDE showed increased tolerance to drought stress. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. The Application of Ultra-High-Performance Liquid Chromatography Coupled with a LTQ-Orbitrap Mass Technique to Reveal the Dynamic Accumulation of Secondary Metabolites in Licorice under ABA Stress.

    Science.gov (United States)

    Li, Da; Xu, Guojie; Ren, Guangxi; Sun, Yufeng; Huang, Ying; Liu, Chunsheng

    2017-10-20

    The traditional medicine licorice is the most widely consumed herbal product in the world. Although much research work on studying the changes in the active compounds of licorice has been reported, there are still many areas, such as the dynamic accumulation of secondary metabolites in licorice, that need to be further studied. In this study, the secondary metabolites from licorice under two different methods of stress were investigated by ultra-high-performance liquid chromatography coupled with hybrid linear ion trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap-MS). A complex continuous coordination of flavonoids and triterpenoids in a network was modulated by different methods of stress during growth. The results showed that a total of 51 secondary metabolites were identified in licorice under ABA stress. The partial least squares-discriminate analysis (PLS-DA) revealed the distinction of obvious compounds among stress-specific districts relative to ABA stress. The targeted results showed that there were significant differences in the accumulation patterns of the deeply targeted 41 flavonoids and 10 triterpenoids compounds by PCA and PLS-DA analyses. To survey the effects of flavonoid and triterpenoid metabolism under ABA stress, we inspected the stress-specific metabolic changes. Our study testified that the majority of flavonoids and triterpenoids were elevated in licorice under ABA stress, while the signature metabolite affecting the dynamic accumulation of secondary metabolites was detected. Taken together, our results suggest that ABA-specific metabolite profiling dynamically changed in terms of the biosynthesis of flavonoids and triterpenoids, which may offer new trains of thought on the regular pattern of dynamic accumulation of secondary metabolites in licorice at the metabolite level. Our results also provide a reference for clinical applications and directional planting and licorice breeding.

  19. The Application of Ultra-High-Performance Liquid Chromatography Coupled with a LTQ-Orbitrap Mass Technique to Reveal the Dynamic Accumulation of Secondary Metabolites in Licorice under ABA Stress

    Directory of Open Access Journals (Sweden)

    Da Li

    2017-10-01

    Full Text Available The traditional medicine licorice is the most widely consumed herbal product in the world. Although much research work on studying the changes in the active compounds of licorice has been reported, there are still many areas, such as the dynamic accumulation of secondary metabolites in licorice, that need to be further studied. In this study, the secondary metabolites from licorice under two different methods of stress were investigated by ultra-high-performance liquid chromatography coupled with hybrid linear ion trap–Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap-MS. A complex continuous coordination of flavonoids and triterpenoids in a network was modulated by different methods of stress during growth. The results showed that a total of 51 secondary metabolites were identified in licorice under ABA stress. The partial least squares–discriminate analysis (PLS-DA revealed the distinction of obvious compounds among stress-specific districts relative to ABA stress. The targeted results showed that there were significant differences in the accumulation patterns of the deeply targeted 41 flavonoids and 10 triterpenoids compounds by PCA and PLS-DA analyses. To survey the effects of flavonoid and triterpenoid metabolism under ABA stress, we inspected the stress-specific metabolic changes. Our study testified that the majority of flavonoids and triterpenoids were elevated in licorice under ABA stress, while the signature metabolite affecting the dynamic accumulation of secondary metabolites was detected. Taken together, our results suggest that ABA-specific metabolite profiling dynamically changed in terms of the biosynthesis of flavonoids and triterpenoids, which may offer new trains of thought on the regular pattern of dynamic accumulation of secondary metabolites in licorice at the metabolite level. Our results also provide a reference for clinical applications and directional planting and licorice breeding.

  20. Differentially expressed genes during the imbibition of dormant and after-ripened seeds - a reverse genetics approach

    NARCIS (Netherlands)

    Yazdanpanah, Farzaneh; Hanson, Johannes; Hilhorst, Henk W.M.; Bentsink, Leónie

    2017-01-01

    Background: Seed dormancy, defined as the incapability of a viable seed to germinate under favourable conditions, is an important trait in nature and agriculture. Despite extensive research on dormancy and germination, many questions about the molecular mechanisms controlling these traits remain

  1. The size and germination of eggplant seed in relation to fruit maturity at harvest, after-ripening and ethylene application

    Directory of Open Access Journals (Sweden)

    Despoina MAKROGIANNI

    2010-11-01

    Full Text Available In eggplant cultivars Black Beauty, Emi, Long Negro and Tsakoniki cultivated for seed, flower induction and flower weight decreased in the presence of developing fruit on the plant. Harvesting prior to maturity (25-35 days after anthesis, aimed at increasing flower induction and fruit set, resulted in small seeds that failed to germinate or germinated poorly. When these fruit were stored for 20 days at 25±30C before seed extraction, seed size and germination increased indicating seed filling and maturation (‘after-ripening’ within the harvested fruit. In year 1, a single application of ethylene before storage increased the germination of Black Beauty and Long Negro harvested 25-35 days after anthesis, but reduced that of Emi and Tsakoniki. In year 2, ethylene application once before the storage of fruits harvested 35 days after anthesis promoted the germination of Tsakoniki and Emi, and when ethylene was applied three times germination was increased further. The possible applications of early harvest, fruit storage prior to seed extraction and ethylene treatment to eggplant seed production are discussed.

  2. Phytohormone Interaction Modulating Fruit Responses to Photooxidative and Heat Stress on Apple (Malus domestica Borkh.

    Directory of Open Access Journals (Sweden)

    Carolina A. Torres

    2017-12-01

    Full Text Available Sun-related physiological disorders such as sun damage on apples (Malus domestica Borkh are caused by cumulative photooxidative and heat stress during their growing season triggering morphological, physiological, and biochemical changes in fruit tissues not only while it is on the tree but also after it has been harvested. The objective of the work was to establish the interaction of auxin (indole-3-acetic acid; IAA, abscisic acid (ABA, jasmonic acid (JA, salicylic acid (SA, and ethylene (ET and its precursor ACC (free and conjugated, MACC during development of sun-injury-related disorders pre- and post-harvest on apples. Peel tissue was extracted from fruit growing under different sun exposures (Non-exposed, NE; Exposed, EX and with sun injury symptoms (Moderate, Mod. Sampling was carried out every 15 days from 75 days after full bloom (DAFB until 120 days post-harvest in cold storage (1°C, > 90%RH. Concentrations of IAA, ABA, JA, SA, were determined using UHPLC mass spectrometry, and ET and ACC (free and conjugated MACC using gas chromatography. IAA was found not to be related directly to sun injury development, but it decreased 60% in sun exposed tissue, and during fruit development. ABA, JA, SA, and ethylene concentrations were significantly higher (P ≤ 0.05 in Mod tissue, but their concentration, except for ethylene, were not affected by sun exposure. ACC and MACC concentrations increased until 105 DAFB in all sun exposure categories. During post-harvest, ethylene climacteric peak was delayed on EX compared to Mod. ABA and SA concentrations remained stable throughout storage in both tissue. JA dramatically increased post-harvest in both EX and Mod tissue, and orchards, confirming its role in low temperature tolerance. The results suggest that ABA, JA, and SA together with ethylene are modulating some of the abiotic stress defense responses on sun-exposed fruit during photooxidative and heat stress on the tree.

  3. An endoplasmic reticulum-localized Coffea arabica BURP domain-containing protein affects the response of transgenic Arabidopsis plants to diverse abiotic stresses.

    Science.gov (United States)

    Dinh, Sy Nguyen; Kang, Hunseung

    2017-11-01

    The Coffea arabica BURP domain-containing gene plays an important role in the response of transgenic Arabidopsis plants to abiotic stresses via regulating the level of diverse proteins. Although the functions of plant-specific BURP domain-containing proteins (BDP) have been determined for a few plants, their roles in the growth, development, and stress responses of most plant species, including coffee plant (Coffea arabica), are largely unknown. In this study, the function of a C. arabica BDP, designated CaBDP1, was investigated in transgenic Arabidopsis plants. The expression of CaBDP1 was highly modulated in coffee plants subjected to drought, cold, salt, or ABA. Confocal analysis of CaBDP1-GFP fusion proteins revealed that CaBDP1 is localized in the endoplasmic reticulum. The ectopic expression of CaBDP1 in Arabidopsis resulted in delayed germination of the transgenic plants under abiotic stress and in the presence of ABA. Cotyledon greening and seedling growth of the transgenic plants were inhibited in the presence of ABA due to the upregulation of ABA signaling-related genes like ABI3, ABI4, and ABI5. Proteome analysis revealed that the levels of several proteins are modulated in CaBDP1-expressing transgenic plants. The results of this study underscore the importance of BURP domain proteins in plant responses to diverse abiotic stresses.

  4. Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Weixiong; Ruan, Jianhua; Ho, Tuan-Hua David; You, Youngsook; Yu, Taotao; Quatrano, Ralph S

    2005-07-15

    A fundamental problem of computational genomics is identifying the genes that respond to certain endogenous cues and environmental stimuli. This problem can be referred to as targeted gene finding. Since gene regulation is mainly determined by the binding of transcription factors and cis-regulatory DNA sequences, most existing gene annotation methods, which exploit the conservation of open reading frames, are not effective in finding target genes. A viable approach to targeted gene finding is to exploit the cis-regulatory elements that are known to be responsible for the transcription of target genes. Given such cis-elements, putative target genes whose promoters contain the elements can be identified. As a case study, we apply the above approach to predict the genes in model plant Arabidopsis thaliana which are inducible by a phytohormone, abscisic acid (ABA), and abiotic stress, such as drought, cold and salinity. We first construct and analyze two ABA specific cis-elements, ABA-responsive element (ABRE) and its coupling element (CE), in A.thaliana, based on their conservation in rice and other cereal plants. We then use the ABRE-CE module to identify putative ABA-responsive genes in A.thaliana. Based on RT-PCR verification and the results from literature, this method has an accuracy rate of 67.5% for the top 40 predictions. The cis-element based targeted gene finding approach is expected to be widely applicable since a large number of cis-elements in many species are available.

  5. Abscisic acid refines the synthesis of chloroplast proteins in maize (Zea mays in response to drought and light.

    Directory of Open Access Journals (Sweden)

    Xiuli Hu

    Full Text Available To better understand abscisic acid (ABA regulation of the synthesis of chloroplast proteins in maize (Zea mays L. in response to drought and light, we compared leaf proteome differences between maize ABA-deficient mutant vp5 and corresponding wild-type Vp5 green and etiolated seedlings exposed to drought stress. Proteins extracted from the leaves of Vp5 and vp5 seedlings were used for two-dimensional electrophoresis (2-DE and subsequent matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF mass spectrometry (MS. After Coomassie brilliant blue staining, approximately 450 protein spots were reproducibly detected on 2-DE gels. A total of 36 differentially expressed protein spots in response to drought and light were identified using MALDI-TOF MS and their subcellular localization was determined based on the annotation of reviewed accession in UniProt Knowledgebase and the software prediction. As a result, corresponding 13 proteins of the 24 differentially expressed protein spots were definitely localized in chloroplasts and their expression was in an ABA-dependent way, including 6 up-regulated by both drought and light, 5 up-regulated by drought but down-regulated by light, 5 up-regulated by light but down-regulated by drought; 5 proteins down-regulated by drought were mainly those involved in photosynthesis and ATP synthesis. Thus, the results in the present study supported the vital role of ABA in regulating the synthesis of drought- and/or light-induced proteins in maize chloroplasts and would facilitate the functional characterization of ABA-induced chloroplast proteins in C(4 plants.

  6. Differentiation of photoperiod-induced ABA and soluble sugar responses of two quinoa (Chenopodium quinoa willd.) cultivars

    DEFF Research Database (Denmark)

    Bendevis, Mira Arpe; Sun, Yujie; Shabala, Sergey

    2014-01-01

    Adaptation of quinoa (Chenopodium quinoa Willd.) to new regions demands acclimation to day-length, in addition to a host of other abiotic factors. To further elucidate the effects of photoperiod on development of quinoa, two differently adapted cultivars, Achachino (short day) from Bolivia and Ti...

  7. Botulinum toxin-induced facial muscle paralysis affects amygdala responses to the perception of emotional expressions: preliminary findings from an A-B-A design

    OpenAIRE

    Kim, M Justin; Neta, Maital; Davis, F Caroline; Ruberry, Erika J; Dinescu, Diana; Heatherton, Todd F; Stotland, Mitchell A; Whalen, Paul J

    2014-01-01

    Background It has long been suggested that feedback signals from facial muscles influence emotional experience. The recent surge in use of botulinum toxin (BTX) to induce temporary muscle paralysis offers a unique opportunity to directly test this ?facial feedback hypothesis.? Previous research shows that the lack of facial muscle feedback due to BTX-induced paralysis influences subjective reports of emotional experience, as well as brain activity associated with the imitation of emotional fa...

  8. Protocol for a feasibility trial for improving breast feeding initiation and continuation: assets-based infant feeding help before and after birth (ABA)

    Science.gov (United States)

    Jolly, Kate; Ingram, Jenny; Clarke, Joanne; Johnson, Debbie; Trickey, Heather; Thomson, Gill; Dombrowski, Stephan U; Sitch, Alice; Dykes, Fiona; Feltham, Max G; Darwent, Kirsty; MacArthur, Christine; Roberts, Tracy

    2018-01-01

    Introduction Breast feeding improves the health of mothers and infants; the UK has low rates, with marked socioeconomic inequalities. While trials of peer support services have been effective in some settings, UK trials have not improved breast feeding rates. Qualitative research suggests that many women are alienated by the focus on breast feeding. We propose a change from breast feeding-focused interactions to respecting a woman’s feeding choices, inclusion of behaviour change theory and an increased intensity of contacts in the 2 weeks after birth when many women cease to breast feed. This will take place alongside an assets-based approach that focuses on the positive capability of individuals, their social networks and communities. We propose a feasibility study for a multicentre randomised controlled trial of the Assets feeding help Before and After birth (ABA) infant feeding service versus usual care. Methods and analysis A two-arm, non-blinded randomised feasibility study will be conducted in two UK localities. Women expecting their first baby will be eligible, regardless of feeding intention. The ABA infant feeding intervention will apply a proactive, assets-based, woman-centred, non-judgemental approach, delivered antenatally and postnatally tailored through face-to-face contacts, telephone and SMS texts. Outcomes will test the feasibility of delivering the intervention with recommended intensity and duration to disadvantaged women; acceptability to women, feeding helpers and professionals; and feasibility of a future randomised controlled trial (RCT), detailing recruitment rates, willingness to be randomised, follow-up rates at 3 days, 8 weeks and 6 months, and level of outcome completion. Outcomes of the proposed full trial will also be collected. Mixed methods will include qualitative interviews with women/partners, feeding helpers and health service staff; feeding helper logs; and review of audio-recorded helper–women interactions to assess

  9. Alternative Splicing Control of Abiotic Stress Responses.

    Science.gov (United States)

    Laloum, Tom; Martín, Guiomar; Duque, Paula

    2018-02-01

    Alternative splicing, which generates multiple transcripts from the same gene, is an important modulator of gene expression that can increase proteome diversity and regulate mRNA levels. In plants, this post-transcriptional mechanism is markedly induced in response to environmental stress, and recent studies have identified alternative splicing events that allow rapid adjustment of the abundance and function of key stress-response components. In agreement, plant mutants defective in splicing factors are severely impaired in their response to abiotic stress. Notably, mounting evidence indicates that alternative splicing regulates stress responses largely by targeting the abscisic acid (ABA) pathway. We review here current understanding of post-transcriptional control of plant stress tolerance via alternative splicing and discuss research challenges for the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. In situ assessment of morpho-physiological response of wheat (triticum aestivum L.) genotypes to drought

    International Nuclear Information System (INIS)

    Raziuddin; Faratullah; Ullah, N.; Hassan, G.; Swati, Z.A.; Bakht, J.; Shafi, M.; Akmal, M.

    2010-01-01

    In situ studies were conducted to assess the morpho-physiological responses of wheat genotypes to PEG-induced water stress. Wheat genotypes were raised in hydroponic cultures where plants were nourished with half strength Hoagland solution. Plants were exposed to 00, 10, 20, 30 and 40% PEG-6000 at 4-leaf stage. PEG was applied in split doses at the rate of 10% with an interval of 15 days. Significant differences (p=0.05) were recorded for all the parameters studied due to genotypes and PEG concentrations. Wheat genotypes showed negative but variable response to PEG concentrations for shoot length, root length, root/ shoot ratio and root mass whereas PEG imposed stress had positive impact on proline content and abscisic acid (ABA). Genotype Khattakwal attained maximum shoot length in PEG induced stress. Maximum root/shoot ratio and root mass was recorded in Ghaznavi-98 while Tatara and Khattakwal attained maximum relative water content. Endogenous proline and ABA content increased up to 10 fold in response to 40% PEG. Maximum proline was accumulated by Khattakwal whereas maximum ABA by ICP-3. (author)

  11. Incubação de empreendimentos turísticos solidários para o desenvolvimento nas comunidades tradicionais em Guaraqueçaba (PR

    Directory of Open Access Journals (Sweden)

    Isabel Jurema Grimm

    2017-01-01

    Full Text Available Promover o protagonismo de comunidades no processo de desenvolvimento do turismo local tem estimulado a constituição de incubadoras de empreendimentos solidários. Tal processo amplia a intervenção social, politica e econômica do poder público e fortalece a organização comunitária para responder as questões de geração de trabalho e renda, com base em experiências solidárias e cooperativas. Nesse artigo são analisadas as ações da Incubadora Tecnológica de Cooperativas Populares (ITCP/UFPR no processo de formação da cadeia produtiva do turismo comunitário, em Barra do Superagüi, município de Guaraqueçaba, Paraná. Metodologicamente compõe-se de estudo de caso, com observação direta e entrevistas com gestores do projeto. Os resultados apontam indícios da incubação de empreendimentos turísticos contribuírem para fortalecer a comunidade local com vistas ao desenvolvimento territorial, e na articulação de ações do projeto com políticas públicas de economia solidária e do turismo, que surgem em comunidades, que desejam oferecer produtos, serviços e atrair visitantes.

  12. Cloning and characterization of a mitochondrial glyoxalase II from Brassica juncea that is upregulated by NaCl, Zn, and ABA

    International Nuclear Information System (INIS)

    Saxena, Mukesh; Bisht, Rekha; Roy, Suchandra Deb; Sopory, S.K.; Bhalla-Sarin, Neera

    2005-01-01

    A cDNA (1061 bp) Bj glyII was cloned from a mannitol induced library of Brassica juncea. It encoded a protein of 335 amino acids with a molecular weight of 36.52 kDa. The deduced amino acid sequence of the clone showed 92% and 56% identity with Pennisetum and rice glyoxalase II, respectively, and 30% identity was observed with the human glyoxalase II. Search for the identical residues revealed the presence of highly conserved THHHXDH domain which is involved in zinc binding. p-NN and pSORT analysis of this sequence revealed a N-terminal mitochondrial target peptide. The cDNA was cloned in pMAL and a fusion protein with MBP (78 kDa) was expressed in Escherichia coli. The recombinant protein was purified approximately sixfold by affinity purification on amylose column and showed its pH optima at 7.0. The K m was determined to be 120 μM using S-D-lactoylglutathione as substrate. The expression of Bj glyII under various abiotic stress conditions showed that it is upregulated by salinity, heavy metal stress, and ABA

  13. Redox proteomics and physiological responses in Cistus albidus shrubs subjected to long-term summer drought followed by recovery.

    Science.gov (United States)

    Brossa, Ricard; Pintó-Marijuan, Marta; Francisco, Rita; López-Carbonell, Marta; Chaves, Maria Manuela; Alegre, Leonor

    2015-04-01

    The interaction between enzymatic and non-enzymatic antioxidants, endogenous levels of ABA and ABA-GE, the rapid recuperation of photosynthetic proteins under re-watering as well the high level of antioxidant proteins in previously drought-stressed plants under re-watering conditions, will contribute to drought resistance in plants subjected to a long-term drought stress under Mediterranean field conditions. This work provides an overview of the mechanisms of Cistus albidus acclimation to long-term summer drought followed by re-watering in Mediterranean field conditions. To better understand the molecular mechanisms of drought resistance in these plants, a proteomic study using 2-DE and MALDI-TOF/TOF MS/MS was performed on leaves from these shrubs. The analysis identified 57 differentially expressed proteins in water-stressed plants when contrasted to well watered. Water-stressed plants showed an increase, both qualitatively and quantitatively, in HSPs, and downregulation of photosynthesis and carbon metabolism enzymes. Under drought conditions, there was considerable upregulation of enzymes related to redox homeostasis, DHA reductase, Glyoxalase, SOD and isoflavone reductase. However, upregulation of catalase was not observed until after re-watering was carried out. Drought treatment caused an enhancement in antioxidant defense responses that can be modulated by ABA, and its catabolites, ABA-GE, as well as JA. Furthermore, quantification of protein carbonylation was shown to be a useful marker of the relationship between water and oxidative stress, and showed that there was only moderate oxidative stress in C. albidus plants subjected to water stress. After re-watering plants recovered although the levels of ABA-GE and antioxidant enzymes still remain higher than in well-watered plants. We expect that our results will provide new data on summer acclimation to drought stress in Mediterranean shrubs.

  14. A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes.

    Science.gov (United States)

    Zheng, Lei; Liu, Guifeng; Meng, Xiangnan; Liu, Yujia; Ji, Xiaoyu; Li, Yanbang; Nie, Xianguang; Wang, Yucheng

    2013-07-01

    WRKY transcription factors are involved in various biological processes, such as development, metabolism and responses to stress. However, their exact roles in abiotic stress tolerance are largely unknown. Here, we demonstrated a working model for the function of a WRKY gene (ThWRKY4) from Tamarix hispida in the stress response. ThWRKY4 is highly induced by abscisic acid (ABA), salt and drought in the early period of stress (stress for 3, 6, or 9 h), which can be regulated by ABF (ABRE binding factors) and Dof (DNA binding with one finger), and also can be crossregulated by other WRKYs and autoregulated as well. Overexpression of ThWRKY4 conferred tolerance to salt, oxidative and ABA treatment in transgenic plants. ThWRKY4 can improve the tolerance to salt and ABA treatment by improving activities of superoxide dismutase and peroxidase, decreasing levels of O2 (-) and H2O2, reducing electrolyte leakage, keeping the loss of chlorophyll, and protecting cells from death. Microarray analyses showed that overexpression of ThWRKY4 in Arabidopsis leads to 165 and 100 genes significantly up- and downregulated, respectively. Promoter scanning analysis revealed that ThWRKY4 regulates the gene expression via binding to W-box motifs present in their promoter regions. This study shows that ThWRKY4 functions as a transcription factor to positively modulate abiotic stress tolerances, and is involved in modulating reactive oxygen species.

  15. Virus-induced down-regulation of GmERA1A and GmERA1B genes enhances the stomatal response to abscisic acid and drought resistance in soybean.

    Directory of Open Access Journals (Sweden)

    Takuya Ogata

    Full Text Available Drought is a major threat to global soybean production. The limited transformation potential and polyploid nature of soybean have hindered functional analysis of soybean genes. Previous research has implicated farnesylation in the plant's response to abscisic acid (ABA and drought tolerance. We therefore used virus-induced gene silencing (VIGS to evaluate farnesyltransferase genes, GmERA1A and GmERA1B (Glycine max Enhanced Response to ABA1-A and -B, as potential targets for increasing drought resistance in soybean. Apple latent spherical virus (ALSV-mediated GmERA1-down-regulated soybean leaves displayed an enhanced stomatal response to ABA and reduced water loss and wilting under dehydration conditions, suggesting that GmERA1A and GmERA1B negatively regulate ABA signaling in soybean guard cells. The findings provide evidence that the ALSV-VIGS system, which bypasses the need to generate transgenic plants, is a useful tool for analyzing gene function using only a single down-regulated leaf. Thus, the ALSV-VIGS system could constitute part of a next-generation molecular breeding pipeline to accelerate drought resistance breeding in soybean.

  16. Overlapping and distinct roles of AKIN10 and FUSCA3 in ABA and sugar signaling during seed germination

    OpenAIRE

    Tsai, Allen Yi-Lun; Gazzarrini, Sonia

    2012-01-01

    The Arabidopsis B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed maturation and also a central modulator of hormonal responses during late embryogenesis and germination. Recently, we have identified AKIN10, the Arabidopsis ortholog of Snf1 (Sucrose Non-Fermenting-1)–Related Kinase1 (SnRK1), as a FUS3-interacting protein. We demonstrated that AKIN10 physically interacts with and phosphorylates FUS3 at its N-terminal region, and genetically interacts with FUS3 to regul...

  17. Movement of Abscisic Acid into the Apoplast in Response to Water Stress in Xanthium strumarium L.

    Science.gov (United States)

    Cornish, K; Zeevaart, J A

    1985-07-01

    The effect of water stress on the redistribution of abcisic acid (ABA) in mature leaves of Xanthium strumarium L. was investigated using a pressure dehydration technique. In both turgid and stressed leaves, the ABA in the xylem exudate, the ;apoplastic' ABA, increased before ;bulk leaf' stress-induced ABA accumulation began. In the initially turgid leaves, the ABA level remained constant in both the apoplast and the leaf as a whole until wilting symptoms appeared. Following turgor loss, sufficient quantities of ABA moved into the apoplast to stimulate stomatal closure. Thus, the initial increase of apoplastic ABA may be relevant to the rapid stomatal closure seen in stressed leaves before their bulk leaf ABA levels rise.Following recovery from water stress, elevated levels of ABA remained in the apoplast after the bulk leaf contents had returned to their prestress values. This apoplastic ABA may retard stomatal reopening during the initial recovery period.

  18. Differences in Copper Absorption and Accumulation between Copper-Exclusion and Copper-Enrichment Plants: A Comparison of Structure and Physiological Responses.

    Science.gov (United States)

    Fu, Lei; Chen, Chen; Wang, Bin; Zhou, Xishi; Li, Shuhuan; Guo, Pan; Shen, Zhenguo; Wang, Guiping; Chen, Yahua

    2015-01-01

    Differences in copper (Cu) absorption and transport, physiological responses and structural characteristics between two types of Cu-resistant plants, Oenothera glazioviana (Cu-exclusion type) and Elsholtzia haichowensis (Cu-enrichment type), were investigated in the present study. The results indicated the following: (1) After 50 μM Cu treatment, the Cu ratio in the xylem vessels of E. haichowensis increased by 60%. A Cu adsorption experiment indicated that O. glazioviana exhibited greater resistance to Cu, and Cu absorption and the shoot/root ratio of Cu were significantly lower in O. glazioviana than in E. haichowensis. (2) An analysis of the endogenous abscisic acid (ABA) variance and exogenous ABA treatment demonstrated that the ABA levels of both plants did not differ; exogenous ABA treatment clearly reduced Cu accumulation in both plants. (3) The leaf stomatal density of O. glazioviana was significantly less than that of E. haichowensis. Guard cells in E. haichowensis plants were covered with a thick cuticle layer, the epidermal hair was more numerous and longer, and the number of xylem conduits in the root was small. (4) The transpiration rate and the stomatal conductance of O. glazioviana were both significantly lower than those of E. haichowensis, regardless of whether the plants were treated with Cu. Taken together, these results indicate that the differences in the structural characteristics between these two plant species, particularly in the characteristics related to plant transpiration, are important factors that govern whether plants acquire or exclude Cu.

  19. Differences in Copper Absorption and Accumulation between Copper-Exclusion and Copper-Enrichment Plants: A Comparison of Structure and Physiological Responses

    Science.gov (United States)

    Fu, Lei; Chen, Chen; Wang, Bin; Zhou, Xishi; Li, Shuhuan; Guo, Pan; Shen, Zhenguo; Wang, Guiping; Chen, Yahua

    2015-01-01

    Differences in copper (Cu) absorption and transport, physiological responses and structural characteristics between two types of Cu-resistant plants, Oenothera glazioviana (Cu-exclusion type) and Elsholtzia haichowensis (Cu-enrichment type), were investigated in the present study. The results indicated the following: (1) After 50 μM Cu treatment, the Cu ratio in the xylem vessels of E. haichowensis increased by 60%. A Cu adsorption experiment indicated that O. glazioviana exhibited greater resistance to Cu, and Cu absorption and the shoot/root ratio of Cu were significantly lower in O. glazioviana than in E. haichowensis. (2) An analysis of the endogenous abscisic acid (ABA) variance and exogenous ABA treatment demonstrated that the ABA levels of both plants did not differ; exogenous ABA treatment clearly reduced Cu accumulation in both plants. (3) The leaf stomatal density of O. glazioviana was significantly less than that of E. haichowensis. Guard cells in E. haichowensis plants were covered with a thick cuticle layer, the epidermal hair was more numerous and longer, and the number of xylem conduits in the root was small. (4) The transpiration rate and the stomatal conductance of O. glazioviana were both significantly lower than those of E. haichowensis, regardless of whether the plants were treated with Cu. Taken together, these results indicate that the differences in the structural characteristics between these two plant species, particularly in the characteristics related to plant transpiration, are important factors that govern whether plants acquire or exclude Cu. PMID:26207743

  20. Differences in Copper Absorption and Accumulation between Copper-Exclusion and Copper-Enrichment Plants: A Comparison of Structure and Physiological Responses.

    Directory of Open Access Journals (Sweden)

    Lei Fu

    Full Text Available Differences in copper (Cu absorption and transport, physiological responses and structural characteristics between two types of Cu-resistant plants, Oenothera glazioviana (Cu-exclusion type and Elsholtzia haichowensis (Cu-enrichment type, were investigated in the present study. The results indicated the following: (1 After 50 μM Cu treatment, the Cu ratio in the xylem vessels of E. haichowensis increased by 60%. A Cu adsorption experiment indicated that O. glazioviana exhibited greater resistance to Cu, and Cu absorption and the shoot/root ratio of Cu were significantly lower in O. glazioviana than in E. haichowensis. (2 An analysis of the endogenous abscisic acid (ABA variance and exogenous ABA treatment demonstrated that the ABA levels of both plants did not differ; exogenous ABA treatment clearly reduced Cu accumulation in both plants. (3 The leaf stomatal density of O. glazioviana was significantly less than that of E. haichowensis. Guard cells in E. haichowensis plants were covered with a thick cuticle layer, the epidermal hair was more numerous and longer, and the number of xylem conduits in the root was small. (4 The transpiration rate and the stomatal conductance of O. glazioviana were both significantly lower than those of E. haichowensis, regardless of whether the plants were treated with Cu. Taken together, these results indicate that the differences in the structural characteristics between these two plant species, particularly in the characteristics related to plant transpiration, are important factors that govern whether plants acquire or exclude Cu.

  1. Effects of extinction in multiple contexts on renewal of instrumental responses.

    Science.gov (United States)

    Bernal-Gamboa, Rodolfo; Nieto, Javier; Uengoer, Metin

    2017-09-01

    In two experiments with rats, we investigated the effects of using multiple contexts during extinction on renewal of lever-pressing behavior. During the first phase of both experiments, rats were reinforced to press a lever for food in Context A. Then, responses underwent extinction. For half of the animals, extinction sessions were conducted in a single context, whereas the other half received extinction in three different contexts. In Experiment 1, we observed that extinction in multiple contexts eliminated ABC renewal, but had no detectable impact on ABA renewal. Experiment 2 revealed that conducting extended extinction training in multiple contexts attenuated ABA renewal. Theoretical and clinical implications of the present findings are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Characterization of StABF1, a stress-responsive bZIP transcription factor from Solanum tuberosum L. that is phosphorylated by StCDPK2 in vitro.

    Science.gov (United States)

    Muñiz García, María Noelia; Giammaria, Verónica; Grandellis, Carolina; Téllez-Iñón, María Teresa; Ulloa, Rita María; Capiati, Daniela Andrea

    2012-04-01

    ABF/AREB bZIP transcription factors mediate plant abiotic stress responses by regulating the expression of stress-related genes. These proteins bind to the abscisic acid (ABA)-responsive element (ABRE), which is the major cis-acting regulatory sequence in ABA-dependent gene expression. In an effort to understand the molecular mechanisms of abiotic stress resistance in cultivated potato (Solanum tuberosum L.), we have cloned and characterized an ABF/AREB-like transcription factor from potato, named StABF1. The predicted protein shares 45-57% identity with A. thaliana ABFs proteins and 96% identity with the S. lycopersicum SlAREB1 and presents all of the distinctive features of ABF/AREB transcription factors. Furthermore, StABF1 is able to bind to the ABRE in vitro. StABF1 gene is induced in response to ABA, drought, salt stress and cold, suggesting that it might be a key regulator of ABA-dependent stress signaling pathways in cultivated potato. StABF1 is phosphorylated in response to ABA and salt stress in a calcium-dependent manner, and we have identified a potato CDPK isoform (StCDPK2) that phosphorylates StABF1 in vitro. Interestingly, StABF1 expression is increased during tuber development and by tuber-inducing conditions (high sucrose/nitrogen ratio) in leaves. We also found that StABF1 calcium-dependent phosphorylation is stimulated by tuber-inducing conditions and inhibited by gibberellic acid, which inhibits tuberization.

  3. A Response to Papatola and Lustig's Paper on Navigating a Managed Care Peer Review: Guidance for Clinicians Using Applied Behavior Analysis in the Treatment of Children on the Autism Spectrum.

    Science.gov (United States)

    Kornack, Julie; Herscovitch, Brandon; Williams, Ashley L

    2017-12-01

    In their 2016 article, "Navigating a Managed Care Peer Review: Guidance for Clinicians Using Applied Behavior Analysis [ABA] in the Treatment of Children on the Autism Spectrum," Papatola and Lustig provide an overview of the managed care process, discuss the medical necessity of ABA, and offer guidance to clinicians on how to navigate the managed care peer review process. Given that the authors are employed by a large international health insurance carrier and conduct peer reviews on behalf of that organization, this response seeks to provide guidance from both the clinical and public policy perspectives that reflect best practices in the field of autism treatment. This response is not written with the intention of providing or replacing legal advice; rather, this paper offers health care providers of ABA an essential understanding of some of the laws that govern and support their efforts to secure medically necessary treatment and the mechanisms in place with which to challenge decisions by managed care organizations, health plans, and health insurance issuers that may be contrary to best practices. Finally, suggestions are offered on how to navigate a peer review to ensure optimal outcomes and, when necessary, to lay the groundwork to overturn a funding source decision that does not reflect best practices or the standard of care in ABA-based autism treatment.

  4. Assessment of Sustainable Livelihood and Geographic Detection of Settlement Sites in Ethnically Contiguous Poverty-Stricken Areas in the Aba Prefecture, China

    Directory of Open Access Journals (Sweden)

    Yanguo Liu

    2018-01-01

    Full Text Available The Chinese government aims to deal with poverty by 2020 for people living in ethnic and rural regions, including mountainous ethnic regions with the highest concentration of poverty and chronic poverty. Based on a sustainable livelihood Framework, five capitals and 33 evaluation indices of livelihood were built, and 13 counties’ resources of the Aba Tibetan and Qiang Autonomous Prefecture were compared in order to calculate the degree of poverty. Topographic factors index of settlement sites (TFIS were constructed by eight topographic factors, and diagnoses of the dominant factors of differentiation of 2699 settlements were calculated by using the geographical detector model to establish the poverty alleviation policies and models for different regions. The results showed that the livelihood capital evaluation indices were different (0.56–1.88, and natural capitals (mean value 1.56 had obvious advantages, but physical (mean value 0.56, financial (mean value 0.78, and human capital were lower (mean value 0.93, limiting the rate of transforming the ecological resources advantage into the economy. In the TFIS, the settlement points indicate topographic factors of natural breakpoint classification superposition, including elevation, slope, relief amplitude, surface incision, variance coefficient in elevation, surface roughness, distance to roads, and distance to rivers. These are within the 8–34 range, and their power determinant value to TFIS are 0.02, 0.70, 0.77, 0.76, 0.51, 0.66, 0.06, and 0.09. Livelihood capital evaluation indices and TFIS classification one (8–14 are positively correlated, and negative correlation (22–26 and 27–34 is at the 0.05 level. The county's poverty alleviation measures and development under different livelihood indices and TFIS indicate that the ecotourism industry has become the inevitable choice for promoting rapid and coordinated development of economy, society, and the environment in ethnic regions.

  5. Fat-Related Anthropometric Variables and Regional Patterns of Body Size and Adiposity of Adolescents in Aba South LGA, Abia State, Nigeria.

    Science.gov (United States)

    Eme, Paul Eze; Onuoha, Nnenna Ola; Mbah, Obioma B

    2016-05-04

    This study assessed fat-related anthropometric variables and regional patterns of body size and adiposity of adolescents in Aba South LGA. A total number of 600 adolescents who were secondary school students aged 10 to 19 years wereselected from 61 registered secondary schools. A multi-random sampling technique was used to select the patients. Ethical approval and informed consent were obtained from the patients who participated in the study. Each patient was subjected to weight, height, mid-upper arm circumference (MUAC), and skinfolds measurements using standard methods. Body fat percentage was calculated by the formulas described by Slaughter, Siris, and Shailk equations. Descriptive statistics of frequencies, percentages, mean, and standard deviation were used to examine the gender-specific anthropometric indices. Chi-square and independent t test were also applied to determine the differences between the parameters or variables of the genders at P< .05. The respondents aged 19 years had the highest measurement for triceps (14.60 mm), thigh (35.05 mm), and MUAC (25.95 mm), while those aged 18 years had the highest measurement for suprailiac (15.00 mm) and subscapular (16.94 mm). Females had more fat deposits than males in all the skinfold sites. They also had a significantly (P = .05) higher body fat percentage than males. A multiple regression analysis revealed that maximum calf fat was a strong predictor of body fat percentage of the patients. High prevalence of obesity was found in this study, and the 3 equations of body fat percentage showed similar findings that more females than males had higher body fat percentage. © The Author(s) 2016.

  6. Crystal structure and X-ray photoemission spectroscopic study of A{sub 2}LaMO{sub 6} [A=Ba, Ca; M=Nb, Ta

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Alo, E-mail: alo_dutta@yahoo.com [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Saha, Sujoy [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Kumari, Premlata [Department of Chemistry, Government P.G. College, Lansdowne, Pauri-Garhwal 246139 (India); Sinha, T.P. [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Shannigrahi, Santiranjan [Institute of Materials Research and Engineering, Agency for Science Technology and Research, 3 Research Link, Singapore 117602 (Singapore)

    2015-09-15

    The X-ray photoemission spectroscopic (XPS) study of the double perovskite oxides A{sub 2}LaMO{sub 6} [A=Ba, Ca; M=Nb, Ta] synthesized by the solid-state reaction technique has been carried out to investigate the nature of the chemical state of the constituent ions and the bonding between them. The Rietveld refinement of the X-ray diffraction patterns suggests the monoclinic crystal structure of all the materials at room temperature. The negative and positive chemical shifts of the core level XPS spectrum of O-1s and Nb-3d{sub 3/2}/Ta-4f{sub 5/2} respectively suggest the covalent bonding between Nb/Ta cations and O ion. The change of the bonding strength between the anion and the cations from one material to another has been analyzed. The vibrational property of the materials is investigated using the room temperature Raman spectra. A large covalency of Ta-based compound than Nb compound is confirmed from the relative shifting of the Raman modes of the materials. - Graphical abstract: Crystal structure of two perovskite oxides CLN and CLT is investigated. XPS study confirms the two different co-ordination environments of Ca and covalent bonding between B-site cations and O-ion. - Highlights: • Ordered perovskite structure obtained by Rietveld refinement of XRD patterns. • Study of nature of chemical bonding by X-ray photoemission spectroscopy. • Opposite chemical shift of d-states of Nb/Ta with respect to O. • Covalent bonding between d-states of Nb/Ta and O. • Relative Raman shifts of CLN and CLT substantiate the more covalent character of Ta than Nb.

  7. Mixed allogeneic reconstitution (A+B----A) to induce donor-specific transplantation tolerance. Permanent acceptance of a simultaneous donor skin graft

    International Nuclear Information System (INIS)

    Ildstad, S.T.; Wren, S.M.; Oh, E.; Hronakes, M.L.

    1991-01-01

    Mixed allogeneic reconstitution, in which a mixture of T-cell-depleted bone marrow of syngeneic host and allogeneic donor type is transplanted into a lethally irradiated recipient (A+B----A), results in mixed lymphopoietic chimerism with engraftment of a mixture of both host and donor bone marrow elements. Recipients are specifically tolerant to donor both in vitro and in vivo. Donor-specific skin grafts survive indefinitely when they are placed after full bone marrow repopulation at 28 days, while third-party grafts are rapidly rejected. To determine whether a delay of a month or more for full bone marrow repopulation is required before a donor-specific graft can be placed, we have now examined whether tolerance induction can be achieved if a graft is placed at the time of bone marrow transplantation. Permanent acceptance of donor-specific B10.BR skin grafts occurred when mixed allogeneic chimerism (B10+B10.BR----B10) was induced and a simultaneous allogeneic donor graft placed. In vitro, mixed reconstituted recipients were specifically tolerant to the B10.BR donor lymphoid cells but fully reactive to MHC-disparate third-party (BALB/c; H-2dd) when assessed by mixed lymphocyte reaction (MLR) and cell-mediated lympholysis (CML) assays. These data therefore indicate that a donor-specific graft placed at the time of mixed allogeneic reconstitution is permanently accepted without rejection. To determine whether an allogeneic skin graft alone without allogeneic bone marrow would be sufficient to induce tolerance, syngeneic reconstitution (B10----B10) was carried out, and a simultaneous B10.BR allogeneic skin graft placed. Although skin grafts were prolonged in all recipients, all grafts rejected when full lymphopoietic repopulation occurred at 28 days

  8. Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Ren, Shuxin; Lyle, Chimera; Jiang, Guo-Liang; Penumala, Abhishek

    2016-01-01

    Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative reverse transcription-polymerase chain reaction analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1 kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops.

  9. Soybean salt tolerance 1 (GmST1 reduces ROS production, enhances ABA sensitivity and abiotic stress tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shuxin eRen

    2016-04-01

    Full Text Available Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species (ROS under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative RT-PCR analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops.

  10. Synthesis of Novel Temperature- and pH-Sensitive ABA Triblock Copolymers P(DEAEMA-co-MEO2MA-co-OEGMA-b-PEG-b-P(DEAEMA-co-MEO2MA-co-OEGMA: Micellization, Sol–Gel Transitions, and Sustained BSA Release

    Directory of Open Access Journals (Sweden)

    Yanan Han

    2016-11-01

    Full Text Available Novel temperature- and pH-responsive ABA-type triblock copolymers, P(DEAEMA-co-MEO2MA-co-OEGMA-b-PEG-b-P(DEAEMA-co-MEO2MA-co-OEGMA, composed of a poly(ethylene glycol (PEG middle block and temperature- and pH-sensitive outer blocks, were synthesized by atom transfer radical polymerization (ATRP. The composition and structure of the copolymer were characterized by 1H NMR and gel permeation chromatography (GPC. The temperature- and pH-sensitivity, micellization, and the sol–gel transitions of the triblock copolymers in aqueous solutions were studied using transmittance measurements, surface tension, viscosity, fluorescence probe technique, dynamic light scattering (DLS, zeta-potential measurements, and transmission electron microscopy (TEM. The lower critical solution temperature (LCST of the triblock copolymer, which contains a small amount of a weak base group, (N,N-diethylamino ethyl methacrylate (DEAEMA, can be tuned precisely and reversibly by changing the solution pH. When the copolymer concentration was sufficiently high, increasing temperature resulted in the free-flowing solution transformation into a micellar gel. The sol-to-gel transition temperature (Tsol–gel in aqueous solution will continue to decrease as solution concentration increases.

  11. Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings.

    Science.gov (United States)

    Zhu, Fu-Yuan; Chen, Mo-Xian; Ye, Neng-Hui; Shi, Lu; Ma, Kai-Long; Yang, Jing-Fang; Cao, Yun-Ying; Zhang, Youjun; Yoshida, Takuya; Fernie, Alisdair R; Fan, Guang-Yi; Wen, Bo; Zhou, Ruo; Liu, Tie-Yuan; Fan, Tao; Gao, Bei; Zhang, Di; Hao, Ge-Fei; Xiao, Shi; Liu, Ying-Gao; Zhang, Jianhua

    2017-08-01

    In eukaryotes, mechanisms such as alternative splicing (AS) and alternative translation initiation (ATI) contribute to organismal protein diversity. Specifically, splicing factors play crucial roles in responses to environment and development cues; however, the underlying mechanisms are not well investigated in plants. Here, we report the parallel employment of short-read RNA sequencing, single molecule long-read sequencing and proteomic identification to unravel AS isoforms and previously unannotated proteins in response to abscisic acid (ABA) treatment. Combining the data from the two sequencing methods, approximately 83.4% of intron-containing genes were alternatively spliced. Two AS types, which are referred to as alternative first exon (AFE) and alternative last exon (ALE), were more abundant than intron retention (IR); however, by contrast to AS events detected under normal conditions, differentially expressed AS isoforms were more likely to be translated. ABA extensively affects the AS pattern, indicated by the increasing number of non-conventional splicing sites. This work also identified thousands of unannotated peptides and proteins by ATI based on mass spectrometry and a virtual peptide library deduced from both strands of coding regions within the Arabidopsis genome. The results enhance our understanding of AS and alternative translation mechanisms under normal conditions, and in response to ABA treatment. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. A cytochrome P450, OsDSS1, is involved in growth and drought stress responses in rice (Oryza sativa L.).

    Science.gov (United States)

    Tamiru, Muluneh; Undan, Jerwin R; Takagi, Hiroki; Abe, Akira; Yoshida, Kakoto; Undan, Jesusa Q; Natsume, Satoshi; Uemura, Aiko; Saitoh, Hiromasa; Matsumura, Hideo; Urasaki, Naoya; Yokota, Takao; Terauchi, Ryohei

    2015-05-01

    Cytochrome P450s are among the largest protein coding gene families in plant genomes. However, majority of the genes remain uncharacterized. Here, we report the characterization of dss1, a rice mutant showing dwarfism and reduced grain size. The dss1 phenotype is caused by a non-synonymous point mutation we identified in DSS1, which is member of a P450 gene cluster located on rice chromosome 3 and corresponds to the previously reported CYP96B4/SD37 gene. Phenotypes of several dwarf mutants characterized in rice are associated with defects in the biosynthesis or perception of the phytohormones gibberellins (GAs) and brassinosteroids (BRs). However, both GA and BR failed to rescue the dss1 phenotype. Hormone profiling revealed the accumulation of abscisic acid (ABA) and ABA metabolites, as well as significant reductions in GA19 and GA53 levels, precursors of the bioactive GA1, in the mutant. The dss1 contents of cytokinin and auxins were not significantly different from wild-type plants. Consistent with the accumulation of ABA and metabolites, germination and early growth was delayed in dss1, which also exhibited an enhanced tolerance to drought. Additionally, expressions of members of the DSS1/CYP96B gene cluster were regulated by drought stress and exogenous ABA. RNA-seq-based transcriptome profiling revealed, among others, that cell wall-related genes and genes involved in lipid metabolism were up- and down-regulated in dss1, respectively. Taken together, these findings suggest that DSS1 mediates growth and stress responses in rice by fine-tuning GA-to-ABA balance, and might as well play a role in lipid metabolism.

  13. Movement of Abscisic Acid into the Apoplast in Response to Water Stress in Xanthium strumarium L. 1

    Science.gov (United States)

    Cornish, Katrina; Zeevaart, Jan A. D.

    1985-01-01

    The effect of water stress on the redistribution of abcisic acid (ABA) in mature leaves of Xanthium strumarium L. was investigated using a pressure dehydration technique. In both turgid and stressed leaves, the ABA in the xylem exudate, the `apoplastic' ABA, increased before `bulk leaf' stress-induced ABA accumulation began. In the initially turgid leaves, the ABA level remained constant in both the apoplast and the leaf as a whole until wilting symptoms appeared. Following turgor loss, sufficient quantities of ABA moved into the apoplast to stimulate stomatal closure. Thus, the initial increase of apoplastic ABA may be relevant to the rapid stomatal closure seen in stressed leaves before their bulk leaf ABA levels rise. Following recovery from water stress, elevated levels of ABA remained in the apoplast after the bulk leaf contents had returned to their prestress values. This apoplastic ABA may retard stomatal reopening during the initial recovery period. PMID:16664294

  14. Novel de novo synthesized phosphate carrier compound ABA-PEG20k-Pi20 suppresses collagenase production in Enterococcus faecalis and prevents colonic anastomotic leak in an experimental model.

    Science.gov (United States)

    Wiegerinck, M; Hyoju, S K; Mao, J; Zaborin, A; Adriaansens, C; Salzman, E; Hyman, N H; Zaborina, O; van Goor, H; Alverdy, J C

    2018-04-16

    Previous work has demonstrated that anastomotic leak can be caused by collagenolytic bacteria such as Enterococcus faecalis via an effect on wound collagen. In humans, E. faecalis is the organism cultured most commonly from a leaking anastomosis, and is not routinely eliminated by standard oral or intravenous antibiotics. Novel strategies are needed to contain the virulence of this pathogen when present on anastomotic tissues. Polyphosphorylated polymer ABA-PEG20k-Pi20 was tested in mice for its ability to prevent anastomotic leak caused by collagenolytic E. faecalis. The study design included a distal colonic resection and anastomosis followed by introduction of E. faecalis to anastomotic tissues via enema. Mice were assigned randomly to receive either ABA-PEG20-Pi20 or its unphosphorylated precursor ABA-PEG20k in their drinking water. The development of anastomotic leak was determined after the animals had been killed. Overnight incubation of two different E. faecalis collagenolytic strains with 2 mmol/l of ABA-PEG20k-Pi20 led to near complete inhibition of collagenase production (from 21 000 to 1000 and from 68 000 to 5000 units; P leak rates decreased from eight of 15 to three of 15 animals (P leak caused by this organism. Clinical relevance Progress in understanding the pathogenesis of anastomotic leak continues to point to intestinal bacteria as key causative agents. The presence of pathogens such as Enterococcus faecalis that predominate on anastomotic tissues despite antibiotic use, coupled with their ability to produce collagenase, appears to alter the process of healing that leads to leakage. Further antibiotic administration may seem logical, but carries the unwanted risk of eliminating the normal microbiome, which functions competitively to exclude and suppress the virulence of pathogens such as E. faecalis. Therefore, non-antibiotic strategies that can suppress the production of collagenase by E. faecalis without affecting its growth, or potentially

  15. Ya'aba et al.

    African Journals Online (AJOL)

    Christy

    Dieterich DT., Purow JM and Rajapaksa R (1999): Activity of combination therapy with interferon alfa-2b plus ribavirin in chronic hepatitis C patients co-infected with HIV. Semin. Liver Diseases. 19(supplement. 1):87-94. 5. Federal Ministry of Health Nigeria (2004). National HIV/AIDS and Reproductive Health Survey.

  16. Differential Effects of Phosphatidylinositol 4-Kinase (PI4K and 3-Kinase (PI3K Inhibitors on Stomatal Responses to Environmental Signals

    Directory of Open Access Journals (Sweden)

    Koh Iba

    2017-05-01

    Full Text Available Specific cellular components including products of phosphatidylinositol (PI metabolism play an important role as signaling molecules in stomatal responses to environmental signals. In this study, pharmacological inhibitors of a set of cellular components, including PI4-kinase (PI4K and PI3K, were used to investigate stomatal closure in response to CO2, darkness, and abscisic acid (ABA. Treatment with PAO, a specific inhibitor of PI4K, specifically inhibited the stomatal response to CO2 compared with that to darkness and ABA. In contrast, treatment with LY294002, a PI3K-specific inhibitor, specifically inhibited the stomatal response to darkness compared with that to CO2 and ABA. The specific inhibitory effects of PAO and LY294002 were also observed as changes in the spatial density of dot-like structures labeled by green fluorescent protein-tagged PATROL1, a protein that controls stomatal aperture possibly via regulation of H+-ATPase amount in guard cell plasma membranes. Our results suggest an important role for PI4K and PI3K in the CO2 and darkness signal transduction pathways, respectively, that mediate PATROL1 dynamics.

  17. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo

    KAUST Repository

    Fujii, Hiroaki

    2011-01-10

    Osmotic stress associated with drought or salinity is a major factor that limits plant productivity. Protein kinases in the SNF1-related protein kinase 2 (SnRK2) family are activated by osmotic stress, suggesting that the kinases are involved in osmotic stress signaling. However, due to functional redundancy, their contribution to osmotic stress responses remained unclear. In this report, we constructed an Arabidopsis line carrying mutations in all 10 members of the SnRK2 family. The decuple mutant snrk2.1/2/3/4/5/6/7/8/9/10 grew poorly under hyperosmotic stress conditions but was similar to the wild type in culture media in the absence of osmotic stress. The mutant was also defective in gene regulation and the accumulation of abscisic acid (ABA), proline, and inositol 1,4,5-trisphosphate under osmotic stress. In addition, analysis of mutants defective in the ABA-activated SnRK2s (snrk2.2/3/6) and mutants defective in the rest of the SnRK2s (snrk2.1/4/5/7/8/9/10) revealed that SnRK2s are a merging point of ABA-dependent and -independent pathways for osmotic stress responses. These results demonstrate critical functions of the SnRK2s in mediating osmotic stress signaling and tolerance.

  18. Genotypic differences in architectural and physiological responses to water restriction in rose bush

    Science.gov (United States)

    Li-Marchetti, Camille; Le Bras, Camille; Relion, Daniel; Citerne, Sylvie; Huché-Thélier, Lydie; Sakr, Soulaiman; Morel, Philippe; Crespel, Laurent

    2015-01-01

    The shape and, therefore, the architecture of the plant are dependent on genetic and environmental factors such as water supply. The architecture determines the visual quality, a key criterion underlying the decision to purchase an ornamental potted plant. The aim of this study was to analyze genotypic responses of eight rose bush cultivars to alternation of water restriction and re-watering periods, with soil water potential of -20 and -10 kPa respectively. Responses were evaluated at the architectural level through 3D digitalization using six architectural variables and at the physiological level by measuring stomatal conductance, water content, hormones [abscisic acid (ABA), auxin, cytokinins, jasmonic acid, and salicylic acid (SA)], sugars (sucrose, fructose, and glucose), and proline. Highly significant genotype and watering effects were revealed for all the architectural variables measured, as well as genotype × watering interaction, with three distinct genotypic architectural responses to water restriction – weak, moderate and strong – represented by Hw336, ‘Baipome’ and ‘The Fairy,’ respectively. The physiological analysis explained, at least in part, the more moderate architectural response of ‘Baipome’ compared to ‘The Fairy,’ but not that of Hw336 which is an interspecific hybrid. Such physiological responses in ‘Baipome’ could be related to: (i) the maintenance of the stimulation of budbreak and photosynthetic activity during water restriction periods due to a higher concentration in conjugated cytokinins (cCK) and to a lower concentration in SA; (ii) a better resumption of budbreak during the re-watering periods due to a lower concentration in ABA during this period. When associated with the six architectural descriptors, cCK, SA and ABA, which explained the genotypic differences in this study, could be used as selection criteria for breeding programs aimed at improving plant shape and tolerance to water restriction. PMID

  19. Plant responses to water stress

    Science.gov (United States)

    Kar, Rup Kumar

    2011-01-01

    Terrestrial plants most often encounter drought stress because of erratic rainfall which has become compounded due to present climatic changes.Responses of plants to water stress may be assigned as either injurious change or tolerance index. One of the primary and cardinal changes in response to drought stress is the generation of reactive oxygen species (ROS), which is being considered as the cause of cellular damage. However, recently a signaling role of such ROS in triggering the ROS scavenging system that may confer protection or tolerance against stress is emerging. Such scavenging system consists of antioxidant enzymes like SOD, catalase and peroxidases, and antioxidant compounds like ascorbate, reduced glutathione; a balance between ROS generation and scavenging ultimately determines the oxidative load. As revealed in case of defence against pathogen, signaling via ROS is initiated by NADPH oxidase-catalyzed superoxide generation in the apoplastic space (cell wall) followed by conversion to hydrogen peroxide by the activity of cell wall-localized SOD. Wall peroxidase may also play role in ROS generation for signaling. Hydrogen peroxide may use Ca2+ and MAPK pathway as downstream signaling cascade. Plant hormones associated with stress responses like ABA and ethylene play their role possibly via a cross talk with ROS towards stress tolerance, thus projecting a dual role of ROS under drought stress. PMID:22057331

  20. The Arabidopsis thaliana RNA editing factor SLO2, which affects the mitochondrial electron transport chain, participates in multiple stress and hormone responses.

    Science.gov (United States)

    Zhu, Qiang; Dugardeyn, Jasper; Zhang, Chunyi; Mühlenbock, Per; Eastmond, Peter J; Valcke, Roland; De Coninck, Barbara; Oden, Sevgi; Karampelias, Michael; Cammue, Bruno P A; Prinsen, Els; Van Der Straeten, Dominique

    2014-02-01

    Recently, we reported that the novel mitochondrial RNA editing factor SLO2 is essential for mitochondrial electron transport, and vital for plant growth through regulation of carbon and energy metabolism. Here, we show that mutation in SLO2 causes hypersensitivity to ABA and insensitivity to ethylene, suggesting a link with stress responses. Indeed, slo2 mutants are hypersensitive to salt and osmotic stress during the germination stage, while adult plants show increased drought and salt tolerance. Moreover, slo2 mutants are more susceptible to Botrytis cinerea infection. An increased expression of nuclear-encoded stress-responsive genes, as well as mitochondrial-encoded NAD genes of complex I and genes of the alternative respiratory pathway, was observed in slo2 mutants, further enhanced by ABA treatment. In addition, H2O2 accumulation and altered amino acid levels were recorded in slo2 mutants. We conclude that SLO2 is required for plant sensitivity to ABA, ethylene, biotic, and abiotic stress. Although two stress-related RNA editing factors were reported very recently, this study demonstrates a unique role of SLO2, and further supports a link between mitochondrial RNA editing events and stress response.

  1. Nitric oxide is involved in light-specific responses of tomato during germination under normal and osmotic stress conditions.

    Science.gov (United States)

    Piterková, Jana; Luhová, Lenka; Hofman, Jakub; Turecková, Veronika; Novák, Ondrej; Petrivalsky, Marek; Fellner, Martin

    2012-09-01

    Nitric oxide (NO) is involved in the signalling and regulation of plant growth and development and responses to biotic and abiotic stresses. The photoperiod-sensitive mutant 7B-1 in tomato (Solanum lycopersicum) showing abscisic acid (ABA) overproduction and blue light (BL)-specific tolerance to osmotic stress represents a valuable model to study the interaction between light, hormones and stress signalling. The role of NO as a regulator of seed germination and ABA-dependent responses to osmotic stress was explored in wild-type and 7B-1 tomato under white light (WL) and BL. Germination data were obtained from the incubation of seeds on germinating media of different composition. Histochemical analysis of NO production in germinating seeds was performed by fluorescence microscopy using a cell-permeable NO probe, and endogenous ABA was analysed by mass spectrometry. The NO donor S-nitrosoglutathione stimulated seed germination, whereas the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) had an inhibitory effect. Under WL in both genotypes, PTIO strongly suppressed germination stimulated by fluridone, an ABA inhibitor. The stimulatory effect of the NO donor was also observed under osmotic stress for 7B-1 seeds under WL and BL. Seed germination inhibited by osmotic stress was restored by fluridone under WL, but less so under BL, in both genotypes. This effect of fluridone was further modulated by the NO donor and NO scavenger, but only to a minor extent. Fluorescence microscopy using the cell-permeable NO probe DAF-FM DA (4-amino-5-methylamino-2',7'-difluorofluorescein diacetate) revealed a higher level of NO in stressed 7B-1 compared with wild-type seeds. As well as defective BL signalling, the differential NO-dependent responses of the 7B-1 mutant are probably associated with its high endogenous ABA concentration and related impact on hormonal cross-talk in germinating seeds. These data confirm that light-controlled seed germination and

  2. ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element.

    Science.gov (United States)

    Chen, Hsing-Yu; Hsieh, En-Jung; Cheng, Mei-Chun; Chen, Chien-Yu; Hwang, Shih-Ying; Lin, Tsan-Piao

    2016-07-01

    ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) of Arabidopsis thaliana is an AP2/ERF domain transcription factor that regulates jasmonate (JA) biosynthesis and is induced by methyl JA treatment. The regulatory mechanism of ORA47 remains unclear. ORA47 is shown to bind to the cis-element (NC/GT)CGNCCA, which is referred to as the O-box, in the promoter of ABI2. We proposed that ORA47 acts as a connection between ABA INSENSITIVE1 (ABI1) and ABI2 and mediates an ABI1-ORA47-ABI2 positive feedback loop. PORA47:ORA47-GFP transgenic plants were used in a chromatin immunoprecipitation (ChIP) assay to show that ORA47 participates in the biosynthesis and/or signaling pathways of nine phytohormones. Specifically, many abscisic acid (ABA) and JA biosynthesis and signaling genes were direct targets of ORA47 under stress conditions. The JA content of the P35S:ORA47-GR lines was highly induced under wounding and moderately induced under water stress relative to that of the wild-type plants. The wounding treatment moderately increased ABA accumulation in the transgenic lines, whereas the water stress treatment repressed the ABA content. ORA47 is proposed to play a role in the biosynthesis of JA and ABA and in regulating the biosynthesis and/or signaling of a suite of phytohormone genes when plants are subjected to wounding and water stress. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  3. Impact of oral health on quality of life among the elderly population of Joaçaba, Santa Catarina, Brazil Impacto da condição bucal na qualidade de vida dos idosos de Joaçaba, Santa Catarina, Brasil

    Directory of Open Access Journals (Sweden)

    Maria Gabriela Haye Biazevic

    2004-03-01

    Full Text Available The objective of this study was to investigate the impact of oral health conditions on the quality of life of elderly people in Joaçaba - SC, in Southern Brazil. A survey based on systematic sampling of clusters was carried out with 183 elderly people that belong to old age groups. The survey was conducted in order to assess the oral conditions of the participants (use of and need for prosthesis based on the criteria from the World Health Organization publication "Oral Health Surveys, Basic Methods", 4th edition. The oral health impact profile (OHIP was used to evaluate the impact of oral condition in the quality of life. ABIPEME (Brazilian Association of Market Research Institutes criterion was used, together with the level of education and the number of people in the household to determine social inequalities. The participants were mostly women (82% and the OHIP mean was 10.35. No correlation was observed between the OHIP level and formal education or between OHIP and number of residents per household. There was a correlation of 0.240 (p = 0.001 between ABIPEME and OHIP. The OHIP mean for those not using maxillary prosthesis was 12.48 and the mean for those using it was 9.81 (p = 0.399. The mean OHIP for those in need of maxillary prosthesis for those who did not need it was 13.00 and 8.88, respectively (p = 0.014. The same trend was found for the use and need for mandibular prosthesis. The conclusion was that the need for maxillary and mandibular prosthesis impacted the quality of life among the elderly population of Joaçaba.O objetivo do presente estudo foi investigar o impacto da condição bucal na qualidade de vida dos idosos do município de Joaçaba - SC. Foi estudada a população de idosos que participa dos grupos da terceira idade a partir de amostra sistemática por conglomerados de 183 idosos. Foi realizado um levantamento epidemiológico utilizando os critérios de diagnóstico da OMS (Organização Mundial da Saúde (1997 para

  4. Memory responses of jasmonic acid-associated Arabidopsis genes to a repeated dehydration stress.

    Science.gov (United States)

    Liu, Ning; Staswick, Paul E; Avramova, Zoya

    2016-11-01

    Dehydration stress activates numerous genes co-regulated by diverse signaling pathways. Upon repeated exposures, however, a subset of these genes does not respond maintaining instead transcription at their initial pre-stressed levels ('revised-response' genes). Most of these genes are involved in jasmonic acid (JA) biosynthesis, JA-signaling and JA-mediated stress responses. How these JA-associated genes are regulated to provide different responses to similar dehydration stresses is an enigma. Here, we investigate molecular mechanisms that contribute to this transcriptional behavior. The memory-mechanism is stress-specific: one exposure to dehydration stress or to abscisic acid (ABA) is required to prevent transcription in the second. Both ABA-mediated and JA-mediated pathways are critical for the activation of these genes, but the two signaling pathways interact differently during a single or multiple encounters with dehydration stress. Synthesis of JA during the first (S1) but not the second dehydration stress (S2) accounts for the altered transcriptional responses. We propose a model for these memory responses, wherein lack of MYC2 and of JA synthesis in S2 is responsible for the lack of expression of downstream genes. The similar length of the memory displayed by different memory-type genes suggests biological relevance for transcriptional memory as a gene-regulating mechanism during recurring bouts of drought. © 2016 John Wiley & Sons Ltd.

  5. Expression Profiles of 12 Late Embryogenesis Abundant Protein Genes from Tamarix hispida in Response to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Caiqiu Gao

    2014-01-01

    Full Text Available Twelve embryogenesis abundant protein (LEA genes (named ThLEA-1 to -12 were cloned from Tamarix hispida. The expression profiles of these genes in response to NaCl, PEG, and abscisic acid (ABA in roots, stems, and leaves of T. hispida were assessed using real-time reverse transcriptase-polymerase chain reaction (RT-PCR. These ThLEAs all showed tissue-specific expression patterns in roots, stems, and leaves under normal growth conditions. However, they shared a high similar expression patterns in the roots, stems, and leaves when exposed to NaCl and PEG stress. Furthermore, ThLEA-1, -2, -3, -4, and -11 were induced by NaCl and PEG, but ThLEA-5, -6, -8, -10, and -12 were downregulated by salt and drought stresses. Under ABA treatment, some ThLEA genes, such as ThLEA-1, -2, and -3, were only slightly differentially expressed in roots, stems, and leaves, indicating that they may be involved in the ABA-independent signaling pathway. These findings provide a basis for the elucidation of the function of LEA genes in future work.

  6. Expression profiles of 12 late embryogenesis abundant protein genes from Tamarix hispida in response to abiotic stress.

    Science.gov (United States)

    Gao, Caiqiu; Liu, Yali; Wang, Chao; Zhang, Kaimin; Wang, Yucheng

    2014-01-01

    Twelve embryogenesis abundant protein (LEA) genes (named ThLEA-1 to -12) were cloned from Tamarix hispida. The expression profiles of these genes in response to NaCl, PEG, and abscisic acid (ABA) in roots, stems, and leaves of T. hispida were assessed using real-time reverse transcriptase-polymerase chain reaction (RT-PCR). These ThLEAs all showed tissue-specific expression patterns in roots, stems, and leaves under normal growth conditions. However, they shared a high similar expression patterns in the roots, stems, and leaves when exposed to NaCl and PEG stress. Furthermore, ThLEA-1, -2, -3, -4, and -11 were induced by NaCl and PEG, but ThLEA-5, -6, -8, -10, and -12 were downregulated by salt and drought stresses. Under ABA treatment, some ThLEA genes, such as ThLEA-1, -2, and -3, were only slightly differentially expressed in roots, stems, and leaves, indicating that they may be involved in the ABA-independent signaling pathway. These findings provide a basis for the elucidation of the function of LEA genes in future work.

  7. Early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock gene expression in roots and the triggering of abscisic acid-responsive genes.

    Science.gov (United States)

    Hermans, Christian; Vuylsteke, Marnik; Coppens, Frederik; Craciun, Adrian; Inzé, Dirk; Verbruggen, Nathalie

    2010-07-01

    *Plant growth and development ultimately depend on environmental variables such as the availability of essential minerals. Unravelling how nutrients affect gene expression will help to understand how they regulate plant growth. *This study reports the early transcriptomic response to magnesium (Mg) deprivation in Arabidopsis. Whole-genome transcriptome was studied in the roots and young mature leaves 4, 8 and 28 h after the removal of Mg from the nutrient solution. *The highest number of regulated genes was first observed in the roots. Contrary to other mineral deficiencies, Mg depletion did not induce a higher expression of annotated genes in Mg uptake. Remarkable responses include the perturbation of the central oscillator of the circadian clock in roots and the triggering of abscisic acid (ABA) signalling, with half of the up-regulated Mg genes in leaves being ABA-responsive. However, no change in ABA content was observed. *The specificity of the response of some Mg-regulated genes was challenged by studying their expression after other mineral deficiencies and environmental stresses. The possibility to develop markers for Mg incipient deficiency is discussed here.

  8. Ross Sea Polynyas: Response of Ice Concentration Retrievals to Large Areas of Thin Ice

    Science.gov (United States)

    Kwok, R.; Comiso, J. C.; Martin, S.; Drucker, R.

    2007-01-01

    For a 3-month period between May and July of 2005, we examine the response of the Advanced Microwave Scanning Radiometer (AMSR-E) Enhanced NASA Team 2 (NT2) and AMSR-E Bootstrap (ABA) ice concentration algorithms to large areas of thin ice of the Ross Sea polynyas. Coincident Envisat Synthetic Aperture Radar (SAR) coverage of the region during this period offers a detailed look at the development of the polynyas within several hundred kilometers of the ice front. The high-resolution imagery and derived ice motion fields show bands of polynya ice, covering up to approximately 105 km(sup 2) of the Ross Sea, that are associated with wind-forced advection. In this study, ice thickness from AMSR-E 36 GHz polarization information serves as the basis for examination of the response. The quality of the thickness of newly formed sea ice (<10 cm) from AMSR-E is first assessed with thickness estimates derived from ice surface temperatures from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The effect of large areas of thin ice in lowering the ice concentration estimates from both NT2/ABA approaches is clearly demonstrated. Results show relatively robust relationships between retrieved ice concentrations and thin ice thickness estimates that differ between the two algorithms. These relationships define the approximate spatial coincidence of ice concentration and thickness isopleths. Using the 83% (ABA) and 91% (NT2) isopleths as polynya boundaries, we show that the computed coverage compares well with that using the estimated 10-cm thickness contour. The thin ice response characterized here suggests that in regions with polynyas, the retrieval results could be used to provide useful geophysical information, namely thickness and coverage.

  9. Specificity determinants for the abscisic acid response element.

    Science.gov (United States)

    Sarkar, Aditya Kumar; Lahiri, Ansuman

    2013-01-01

    Abscisic acid (ABA) response elements (ABREs) are a group of cis-acting DNA elements that have been identified from promoter analysis of many ABA-regulated genes in plants. We are interested in understanding the mechanism of binding specificity between ABREs and a class of bZIP transcription factors known as ABRE binding factors (ABFs). In this work, we have modeled the homodimeric structure of the bZIP domain of ABRE binding factor 1 from Arabidopsis thaliana (AtABF1) and studied its interaction with ACGT core motif-containing ABRE sequences. We have also examined the variation in the stability of the protein-DNA complex upon mutating ABRE sequences using the protein design algorithm FoldX. The high throughput free energy calculations successfully predicted the ability of ABF1 to bind to alternative core motifs like GCGT or AAGT and also rationalized the role of the flanking sequences in determining the specificity of the protein-DNA interaction.

  10. Plasmid borne Carbapenem-Hydrolyzing Class D β-Lactamases (CHDLs) and AdeABC efflux pump conferring carbapenem-tigecycline resistance among Acinetobacter baumannii isolates harboring TnAbaRs.

    Science.gov (United States)

    Savari, Mohammad; Ekrami, Alireza; Shoja, Saeed; Bahador, Abbas

    2017-03-01

    Here we studied the prevalence and mechanisms of simultaneous resistance to carbapenem and tigecycline and accumulation of resistance determinants reservoirs in genome of Acinetobacter baumannii (A. baumannii) clinical isolates. Susceptibility of the isolates were measured to 18 antimicrobial agents. Genetic diversity of the microbial population was determined using the International Clonal lineage typing (IC typing), multiple locus VNTR analysis (MLVA) and plasmid profiling methods. To detect the AbaRs, Carbapenem-Hydrolyzing Class D β-Lactamases (CHDLs) genes, AdeABC efflux pump genes and resistance determinants, PCR was used. Filter mating experiments were used to prove that if carbapenem resistance genes are located on conjugative plasmids or not. Among the A. baumannii clinical isolates, 40.8% were carbapenem-tigecycline resistant and in this population, 46.9% were belonging to IC I, IC II or IC III and 53.1% were IC variants. These isolates had fallen in 40 MLVA types and were harboring plasmids in multiple numbers and sizes. In this study, bla OXA-23-like was the most prevalent CHDL and conjugation analysis proved that the carbapenem resistance genes are located on conjugative plasmids. All efflux pump genes, except for adeC, were detected in all carbapenem-tigecycline resistant A. baumannii (CTRAb) isolates. Resistance determinants were distributed in both TnAbaRs and R plasmids with a shift toward the R plasmids. Emerging of carbapenem resistant A. baumannii (CRAB) with simultaneous resistance to the last line therapy including tigecycline represent emerging of extensively drug resistance (XDR) and pandrug resistance (PDR) phenotypes that would be a great threat to our public health system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis

    DEFF Research Database (Denmark)

    Ohnuma, Takayuki; Numata, Tomoyuki; Osawa, Takuo

    2011-01-01

    Expression of a class V chitinase gene (At4g19810, AtChiC) in Arabidopsis thaliana was examined by quantitative real-time PCR and by analyzing microarray data available at Genevestigator. The gene expression was induced by the plant stress-related hormones abscisic acid (ABA) and jasmonic acid (JA......, the amino acid residues responsible for substrate binding were found to be well conserved when compared with those of the class V chitinase from Nicotiana tabacum (NtChiV). All of the structural and functional properties of AtChiC are quite similar to those obtained for NtChiV, and seem to be common...

  12. Differential expression of poplar sucrose nonfermenting1-related protein kinase 2 genes in response to abiotic stress and abscisic acid.

    Science.gov (United States)

    Yu, Xiang; Takebayashi, Arika; Demura, Taku; Ohtani, Misato

    2017-09-01

    Knowledge on the responses of woody plants to abiotic stress can inform strategies to breed improved tree varieties and to manage tree species for environmental conservation and the production of lignocellulosic biomass. In this study, we examined the expression patterns of poplar (Populus trichocarpa) genes encoding members of the sucrose nonfermenting1-related protein kinase 2 (SnRK2) family, which are core components of the abiotic stress response. The P. trichocarpa genome contains twelve SnRK2 genes (PtSnRK2.1- PtSnRK2.12) that can be divided into three subclasses (I-III) based on the structures of their encoded kinase domains. We found that PtSnRK2s are differentially expressed in various organs. In MS medium-grown plants, all of the PtSnRK2 genes were significantly upregulated in response to abscisic acid (ABA) treatment, whereas osmotic and salt stress treatments induced only some (four and seven, respectively) of the PtSnRK2 genes. By contrast, soil-grown plants showed increased expression of most PtSnRK2 genes under drought and salt treatments, but not under ABA treatment. In soil-grown plants, drought stress induced SnRK2 subclass II genes in all tested organs (leaves, stems, and roots), whereas subclass III genes tended to be upregulated in leaves only. These results suggest that the PtSnRK2 genes are involved in abiotic stress responses, are at least partially activated by ABA, and show organ-specific responses.

  13. Physiological and gene expression responses of sunflower (Helianthus annuus L.) plants differ according to irrigation placement.

    Science.gov (United States)

    Aguado, Ana; Capote, Nieves; Romero, Fernando; Dodd, Ian C; Colmenero-Flores, José M

    2014-10-01

    To investigate effects of soil moisture heterogeneity on plant physiology and gene expression in roots and leaves, three treatments were implemented in sunflower plants growing with roots split between two compartments: a control (C) treatment supplying 100% of plant evapotranspiration, and two treatments receiving 50% of plant evapotranspiration, either evenly distributed to both compartments (deficit irrigation - DI) or unevenly distributed to ensure distinct wet and dry compartments (partial rootzone drying - PRD). Plants receiving the same amount of water responded differently under the two irrigation systems. After 3 days, evapotranspiration was similar in C and DI, but 20% less in PRD, concomitant with decreased leaf water potential (Ψleaf) and increased leaf xylem ABA concentration. Six water-stress responsive genes were highly induced in roots growing in the drying soil compartment of PRD plants, and their expression was best correlated with local soil water content. On the other hand, foliar gene expression differed significantly from that of the root and correlated better with xylem ABA concentration and Ψleaf. While the PRD irrigation strategy triggered stronger physiological and molecular responses, suggesting a more intense and systemic stress reaction due to local dehydration of the dry compartment of PRD plants, the DI strategy resulted in similar water savings without strongly inducing these responses. Correlating physiological and molecular responses in PRD/DI plants may provide insights into the severity and location of water deficits and may enable a better understanding of long-distance signalling mechanisms. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. A role for SR proteins in plant stress responses.

    Science.gov (United States)

    Duque, Paula

    2011-01-01

    Members of the SR (serine/arginine-rich) protein gene family are key players in the regulation of alternative splicing, an important means of generating proteome diversity and regulating gene expression. In plants, marked changes in alternative splicing are induced by a wide variety of abiotic stresses, suggesting a role for this highly versatile gene regulation mechanism in the response to environmental cues. In support of this notion, the expression of plant SR proteins is stress-regulated at multiple levels, with environmental signals controlling their own alternative splicing patterns, phosphorylation status and subcellular distribution. Most importantly, functional links between these RNA-binding proteins and plant stress tolerance are beginning to emerge, including a role in the regulation of abscisic acid (ABA) signaling. Future identification of the physiological mRNA targets of plant SR proteins holds much promise for the elucidation of the molecular mechanisms underlying their role in the response to abiotic stress.

  15. Spatio-temporal appearance of α-amylase and limit dextrinase in barley aleurone layer in response to gibberellic acid, abscisic acid and salicylic acid.

    Science.gov (United States)

    Shahpiri, Azar; Talaei, Nasim; Finnie, Christine

    2015-01-01

    Cereal seed germination involves mobilization of storage reserves in the starchy endosperm to support seedling growth. In response to gibberellin produced by the embryo the aleurone layer synthesizes hydrolases that are secreted to the endosperm for degradation of storage products. In this study analysis of intracellular protein accumulation and release from barley aleurone layers is presented for the important enzymes in starch degradation: α-amylase and limit dextrinase (LD). Proteins were visualized by immunoblotting in aleurone layers and culture supernatants from dissected aleurone layers incubated up to 72 h with either gibberellic acid (GA), abscisic acid (ABA) or salicylic acid (SA). The results show that α-amylase is secreted from aleurone layer treated with GA soon after synthesis but the release of LD to culture supernatants was significantly delayed and coincided with a general loss of proteins from aleurone layers. Release of LD was found to differ from that of amylase and was suggested to depend on programmed cell death (PCD). Despite detection of intracellular amylase in untreated aleurone layers or aleurone layers treated with ABA or SA, α-amylase was not released from these samples. Nevertheless, the release of α-amylase was observed from aleurone layers treated with GA+ABA or GA+SA. © 2014 Society of Chemical Industry.

  16. Manipulation of the apoplastic pH of intact plants mimics stomatal and growth responses to water availability and microclimatic variation.

    Science.gov (United States)

    Wilkinson, Sally; Davies, William J

    2008-01-01

    The apoplastic pH of intact Forsythiaxintermedia (cv. Lynwood) and tomato (Solanum lycopersicum) plants has been manipulated using buffered foliar sprays, and thereby stomatal conductance (g(s)), leaf growth rate, and plant water loss have been controlled. The more alkaline the pH of the foliar spray, the lower the g(s) and/or leaf growth rate subsequently measured. The most alkaline pH that was applied corresponds to that measured in sap extracted from shoots of tomato and Forsythia plants experiencing, respectively, soil drying or a relatively high photon flux density (PFD), vapour pressure deficit (VPD), and temperature in the leaf microclimate. The negative correlation between PFD/VPD/temperature and g(s) determined in well-watered Forsythia plants exposed to a naturally varying summer microclimate was eliminated by spraying the plants with relatively alkaline but not acidic buffers, providing evidence for a novel pH-based signalling mechanism linking the aerial microclimate with stomatal aperture. Increasing the pH of the foliar spray only reduced g(s) in plants of the abscisic acid (ABA)-deficient flacca mutant of tomato when ABA was simultaneously sprayed onto leaves or injected into stems. In well-watered Forsythia plants exposed to a naturally varying summer microclimate (variable PFD, VPD, and temperature), xylem pH and leaf ABA concentration fluctuated but were positively correlated. Manipulation of foliar apoplastic pH also affected the response of g(s) and leaf growth to ABA injected into stems of intact Forsythia plants. The techniques used here to control physiology and water use in intact growing plants could easily be applied in a horticultural context.

  17. Contrasting germination responses to vegetative canopies experienced in pre- vs. post-dispersal environments

    Science.gov (United States)

    Leverett, Lindsay D.; Auge, Gabriela A.; Bali, Aman; Donohue, Kathleen

    2016-01-01

    Background Seeds adjust their germination based on conditions experienced before and after dispersal. Post-dispersal cues are expected to be more accurate predictors of offspring environments, and thus offspring success, than pre-dispersal cues. Therefore, germination responses to conditions experienced during seed maturation may be expected to be superseded by responses to conditions experienced during seed imbibition. In taxa of disturbed habitats, neighbours frequently reduce the performance of germinants. This leads to the hypotheses that a vegetative canopy will reduce germination in such taxa, and that a vegetative canopy experienced during seed imbibition will over-ride germination responses to a canopy experienced during seed maturation, since it is a more proximal cue of immediate competition. These hypotheses were tested here in Arabidopsis thaliana. Methods Seeds were matured under a simulated canopy (green filter) or white light. Fresh (dormant) seeds were imbibed in the dark, white light or canopy at two temperatures (10 or 22 °C), and germination proportions were recorded. Germination was also recorded in after-ripened (less dormant) seeds that were induced into secondary dormancy and imbibed in the dark at each temperature, either with or without brief exposure to red and far-red light. Key Results Unexpectedly, a maturation canopy expanded the conditions that elicited germination, even as seeds lost and regained dormancy. In contrast, an imbibition canopy impeded or had no effect on germination. Maturation under a canopy did not modify germination responses to red and far-red light. Seed maturation under a canopy masked genetic variation in germination. Conclusions The results challenge the hypothesis that offspring will respond more strongly to their own environment than to that of their parents. The observed relaxation of germination requirements caused by a maturation canopy could be maladaptive for offspring by disrupting germination responses

  18. Uptake of [2-14C]abscisic acid and distribution of 14C in apple embryos

    International Nuclear Information System (INIS)

    Barthe, P.; Bulard, C.

    1981-01-01

    Pyrus malus L. var. Golden delicious embryos were incubated with (+-)-[2- 14 C] abscisic acid (ABA). After incubations of various durations, the radioactivity was measured in whole embryos, cotyledons, and embryonic axes. With either 48-h or 16-d incubation periods, the uptake of [ 14 C] ABA depended upon the mode of culture used. The lowest values corresponded to the absorption by the embryonic axis, the highest to the absorption by the distal parts of the two cotyledons. The cotyledons accumulated the main part of the radioactivity under all conditions. Dormant and almost completely after-ripened embryos cultivated for 4 d showed no significant differences in the radioactivity uptake for identical modes of culture. There was a linear relationship between exogenous ABA concentrations (0.5 to 3.10 -5 M) and ABA uptake for embryos cultivated for 4 d with the distal parts of the cotyledons immersed in the medium. (orig.) [de

  19. Uptake of (2-/sup 14/C)abscisic acid and distribution of /sup 14/C in apple embryos

    Energy Technology Data Exchange (ETDEWEB)

    Barthe, P.; Bulard, C.

    1981-01-01

    Pyrus malus L. var. Golden delicious embryos were incubated with (+-)-(2-/sup 14/C) abscisic acid (ABA). After incubations of various durations, the radioactivity was measured in whole embryos, cotyledons, and embryonic axes. With either 48-h or 16-d incubation periods, the uptake of (/sup 14/C) ABA depended upon the mode of culture used. The lowest values corresponded to the absorption by the embryonic axis, the highest to the absorption by the distal parts of the two cotyledons. The cotyledons accumulated the main part of the radioactivity under all conditions. Dormant and almost completely after-ripened embryos cultivated for 4 d showed no significant differences in the radioactivity uptake for identical modes of culture. There was a linear relationship between exogenous ABA concentrations (0.5 to 3.10/sup -5/ M) and ABA uptake for embryos cultivated for 4 d with the distal parts of the cotyledons immersed in the medium.

  20. Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress.

    Science.gov (United States)

    Sun, Liang; Wang, Yan-Ping; Chen, Pei; Ren, Jie; Ji, Kai; Li, Qian; Li, Ping; Dai, Sheng-Jie; Leng, Ping

    2011-11-01

    In order to characterize the potential transcriptional regulation of core components of abscisic acid (ABA) signal transduction in tomato fruit development and drought stress, eight SlPYL (ABA receptor), seven SlPP2C (type 2C protein phosphatase), and eight SlSnRK2 (subfamily 2 of SNF1-related kinases) full-length cDNA sequences were isolated from the tomato nucleotide database of NCBI GenBank. All SlPYL, SlPP2C, and SlSnRK2 genes obtained are homologous to Arabidopsis AtPYL, AtPP2C, and AtSnRK2 genes, respectively. Based on phylogenetic analysis, SlPYLs and SlSnRK2s were clustered into three subfamilies/subclasses, and all SlPP2Cs belonged to PP2C group A. Within the SlPYL gene family, SlPYL1, SlPYL2, SlPYL3, and SlPYL6 were the major genes involved in the regulation of fruit development. Among them, SlPYL1 and SlPYL2 were expressed at high levels throughout the process of fruit development and ripening; SlPYL3 was strongly expressed at the immature green (IM) and mature green (MG) stages, while SlPYL6 was expressed strongly at the IM and red ripe (RR) stages. Within the SlPP2C gene family, the expression of SlPP2C, SlPP2C3, and SlPP2C4 increased after the MG stage; SlPP2C1 and SlPP2C5 peaked at the B3 stage, while SlPP2C2 and SlPP2C6 changed little during fruit development. Within the SlSnRK2 gene family, the expression of SlSnRK2.2, SlSnRK2.3, SlSnRK2.4, and SlSnRK2C was higher than that of other members during fruit development. Additionally, most SlPYL genes were down-regulated, while most SlPP2C and SlSnRK2 genes were up-regulated by dehydration in tomato leaf.

  1. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota; Julkowska, Magdalena; Montero Sommerfeld, Hector; Horst, Anneliek ter; Haring, Michel A; Testerink, Christa

    2016-01-01

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  2. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota

    2016-05-20

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  3. Physiological response to drought in radiata pine: phytohormone implication at leaf level.

    Science.gov (United States)

    De Diego, N; Pérez-Alfocea, F; Cantero, E; Lacuesta, M; Moncaleán, P

    2012-04-01

    Pinus radiata D. Don is one of the most abundant species in the north of Spain. Knowledge of drought response mechanisms is essential to guarantee plantation survival under reduced water supply as predicted in the future. Tolerance mechanisms are being studied in breeding programs, because information on such mechanisms can be used for genotype selection. In this paper, we analyze the changes of leaf water potential, hydraulic conductance (K(leaf)), stomatal conductance and phytohormones under drought in P. radiata breeds (O1, O2, O3, O4, O5 and O6) from different climatology areas, hypothesizing that they could show variable drought tolerance. As a primary signal, drought decreased cytokinin (zeatin and zeatin riboside-Z + ZR) levels in needles parallel to K(leaf) and gas exchange. When Z + ZR decreased by 65%, indole-3-acetic acid (IAA) and abscisic acid (ABA) accumulation started as a second signal and increments were higher for IAA than for ABA. When plants decreased by 80%, Z + ZR and K(leaf) doubled their ABA and IAA levels, the photosystem II yield decreased and the electrolyte leakage increased. At the end of the drought period, less tolerant breeds increased IAA over 10-fold compared with controls. External damage also induced jasmonic acid accumulation in all breeds except in O5 (P. radiata var. radiata × var. cedrosensis), which accumulated salicylic acid as a defense mechanism. After rewatering, only the most tolerant plants recovered their K(leaf,) perhaps due to an IAA decrease and 1-aminocyclopropane-1-carboxylic acid maintenance. From all phytohormones, IAA was the most representative 'water deficit signal' in P. radiata.

  4. Cloning and Expression Analysis of an AP2/ERF Gene and Its Responses to Phytohormones and Abiotic Stresses in Rice

    Directory of Open Access Journals (Sweden)

    Hao-li MA

    2010-03-01

    Full Text Available Ethylene response factors (ERFs play important roles in response to plant biotic and abiotic stresses. In this study, a gene encoding a putative AP2/ERF domain-containing protein was isolated by screening a SSH cDNA library from rice and designated as Oryza sativa AP2/ERF-like protein (OsAP2LP gene. OsAP2LP is 1491 bp in length, interrupted by seven introns, and encodes a putative protein of 348 amino acids. Temporal and spatial expression analysis showed that the OsAP2LP gene was preferentially expressed in roots, panicles, mature embryos and seeds in rice. Real-time quantitative PCR analysis indicated that the expression levels of the OsAP2LP gene were increased under the treatments of drought and gibberellin but decreased under the treatments of low temperature, salt, abscisic acid (ABA and zeatin. Taken together, these results suggest that OsAP2LP might be involved in stress responses, and probably plays roles as a transcription regulator when plants response to cold, salt and drought stresses through ABA and gibberellin pathways.

  5. Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots.

    Science.gov (United States)

    Zolla, Gaston; Heimer, Yair M; Barak, Simon

    2010-01-01

    Plant roots exhibit remarkable developmental plasticity in response to local soil conditions. It is shown here that mild salt stress stimulates a stress-induced morphogenic response (SIMR) in Arabidopsis thaliana roots characteristic of several other abiotic stresses: the proliferation of lateral roots (LRs) with a concomitant reduction in LR and primary root length. The LR proliferation component of the salt SIMR is dramatically enhanced by the transfer of seedlings from a low to a high NO3- medium, thereby compensating for the decreased LR length and maintaining overall LR surface area. Increased LR proliferation is specific to salt stress (osmotic stress alone has no stimulatory effect) and is due to the progression of more LR primordia from the pre-emergence to the emergence stage, in salt-stressed plants. In salt-stressed seedlings, greater numbers of LR primordia exhibit expression of a reporter gene driven by the auxin-sensitive DR5 promoter than in unstressed seedlings. Moreover, in the auxin transporter mutant aux1-7, the LR proliferation component of the salt SIMR is completely abrogated. The results suggest that salt stress promotes auxin accumulation in developing primordia thereby preventing their developmental arrest at the pre-emergence stage. Examination of ABA and ethylene mutants revealed that ABA synthesis and a factor involved in the ethylene signalling network also regulate the LR proliferation component of the salt SIMR.

  6. A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity.

    Science.gov (United States)

    Aquea, Felipe; Federici, Fernan; Moscoso, Cristian; Vega, Andrea; Jullian, Pastor; Haseloff, Jim; Arce-Johnson, Patricio

    2012-04-01

    Boron is an essential micronutrient for plants and is taken up in the form of boric acid (BA). Despite this, a high BA concentration is toxic for the plants, inhibiting root growth and is thus a significant problem in semi-arid areas in the world. In this work, we report the molecular basis for the inhibition of root growth caused by boron. We show that application of BA reduces the size of root meristems, correlating with the inhibition of root growth. The decrease in meristem size is caused by a reduction of cell division. Mitotic cell number significantly decreases and the expression level of key core cell cycle regulators is modulated. The modulation of the cell cycle does not appear to act through cytokinin and auxin signalling. A global expression analysis reveals tha