Reyes-Lillo, Sebastian E.; Rangel, Tonatiuh; Bruneval, Fabien; Neaton, Jeffrey B.
2016-07-01
The Ruddlesden-Popper (RP) homologous series Srn +1TinO3 n +1 provides a useful template for the study and control of the effects of dimensionality and quantum confinement on the excited state properties of the complex oxide SrTiO3. We use ab initio many-body perturbation theory within the G W approximation and the Bethe-Salpeter equation approach to calculate quasiparticle energies and absorption spectra of Srn +1TinO3 n +1 for n =1 -5 and ∞ . Our computed direct and indirect optical gaps are in excellent agreement with spectroscopic measurements. The calculated optical spectra reproduce the main experimental features and reveal excitonic structure near the gap edge. We find that electron-hole interactions are important across the series, leading to significant exciton binding energies that increase for small n and reach a value of 330 meV for n =1 , a trend attributed to increased quantum confinement. We find that the lowest-energy singlet exciton of Sr2TiO4 (n =1 ) localizes in the two-dimensional plane defined by the TiO2 layer, and we explain the origin of its localization.
Ab initio many-body calculations of the 4He photo-absorption cross section
Schuster, Micah D; Johnson, Calvin W; Jurgenson, Eric D; Navratil, Petr
2013-01-01
A major goal of nuclear theory is to make quantitative calculations of low-energy nuclear observables starting from microscopic internucleon forces. Computationally, this is complicated by the large model spaces needed to reach convergence in many-body approaches, such as the no-core shell model (NCSM). In recent years, the similarity renormalization group (SRG) has provided a powerful and versatile means to soften interactions for ab initio structure calculations, thus leading to convergence within smaller model spaces. Here we compute the 4He total photo absorption cross section and study, for the first time, the consistency of the SRG approach in a continuum observable.
Ab initio many-body calculations of nucleon-nucleus scattering
Quaglioni, Sofia; Navrátil, Petr
2009-04-01
We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and the Pauli principle. We outline technical details and present phase-shift results for neutron scattering on H3, He4, and Be10 and proton scattering on He3,4, using realistic nucleon-nucleon (NN) potentials. Our A=4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-He4S-wave phase shifts. In contrast, the experimental nucleon-He4P-wave phase shifts are not well reproduced by any NN potential we use. We demonstrate that a proper treatment of the coupling to the n-Be10 continuum is successful in explaining the parity-inverted ground state in Be11.
Ab initio many-body calculations of nucleon-nucleus scattering
Quaglioni, Sofia
2009-01-01
We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on 3H, 4He and 10Be and proton scattering on 3He and 4He, using realistic nucleon-nucleon (NN) potentials. Our A=4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-4He S-wave phase shifts. On the contrary, the experimental nucleon-4He P-wave phase shifts are not well reproduced by any NN potential we use. We demonstrate that a proper treatment of the coupling to the n-10Be continuum is successful in explaining the parity-inverted ground state in 11Be.
Many-body ab initio study of antiferromagnetic {Cr7M } molecular rings
Chiesa, A.; Carretta, S.; Santini, P.; Amoretti, G.; Pavarini, E.
2016-12-01
Antiferromagnetic molecular rings are widely studied both for fundamental quantum-mechanical issues and for technological applications, particularly in the field of quantum information processing. Here we present a detailed first-principles study of two families—purple and green—of {Cr7M } antiferromagnetic rings, where M is a divalent transition metal ion (M =Ni2 + , Mn2 +, and Zn2 +). We employ a recently developed flexible and efficient scheme to build ab initio system-specific Hubbard models. From such many-body models we systematically derive the low-energy effective spin Hamiltonian for the rings. Our approach allows us to calculate isotropic as well as anisotropic terms of the spin Hamiltonian, without any a priori assumption on its form. For each compound we calculate magnetic exchange couplings, zero-field splitting tensors, and gyromagnetic tensors, finding good agreement with experimental results.
Many-body effects on the electronic and optical properties of Si nanowires from ab initio approaches
Energy Technology Data Exchange (ETDEWEB)
Palummo, M.; Del Sole, R. [European Theoretical Spectroscopy Facility (ETSF), CNR-INFM-SMC, Roma (Italy); Dipartimento di Fisica - Universita di Roma, ' Tor Vergata' , Roma (Italy); Ossicini, S. [European Theoretical Spectroscopy Facility (ETSF), Reggio Emilia (Italy); Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia (Italy)
2010-08-15
The study of semiconducting nanowires is one of the most rapidly growing research areas in materials science and nanotechnology, not only from the point of view of the possible applications, but also regarding the use of the latest developments in the theory. In this paper, we review the general ab initio many-body theory and methods and resume some of our very recent results regarding the structural, electronic, and optical properties of Silicon nanowires (Si-NWs), outlining both the reached achievements and some of the technical aspects necessary to obtain them. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Kong, Bo; Zhang, Yachao
2016-07-01
The electronic structures of the cubic GdH3 are extensively investigated using the ab initio many-body GW calculations treating the Gd 4f electrons either in the core (4f-core) or in the valence states (4f-val). Different degrees of quasiparticle (QP) self-consistent calculations with the different starting points are used to correct the failures of the GGA/GGA + U/HSE03 calculations. In the 4f-core case, GGA + G0W0 calculations give a fundamental band gap of 1.72 eV, while GGA+ GW0 or GGA + GW calculations present a larger band gap. In the 4f-val case, the nonlocal exchange-correlation (xc) functional HSE03 can account much better for the strong localization of the 4f states than the semilocal or Hubbard U corrected xc functional in the Kohn-Sham equation. We show that the fundamental gap of the antiferromagnetic (AFM) or ferromagnetic (FM) GdH3 can be opened up by solving the QP equation with improved starting point of eigenvalues and wave functions given by HSE03. The HSE03 + G0W0 calculations present a fundamental band gap of 2.73 eV in the AFM configuration, and the results of the corresponding GW0 and GW calculations are 2.89 and 3.03 eV, respectively. In general, for the cubic structure, the fundamental gap from G0W0 calculations in the 4f-core case is the closest to the real result. By G0W0 calculations in the 4f-core case, we find that H or Gd defects can strongly affect the band structure, especially the H defects. We explain the mechanism in terms of the possible electron correlation on the hydrogen site. Under compression, the insulator-to-metal transition in the cubic GdH3 occurs around 40 GPa, which might be a satisfied prediction.
Ab Initio Many-Body Calculations of n-3H, n-4He, p-{3,4}He, and n-10Be Scattering
Quaglioni, Sofia
2008-01-01
We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We present phase shifts for neutron scattering on 3H, 4He and 10Be and proton scattering on {3,4}He, using realistic nucleon-nucleon potentials. Our A=4 scattering results are compared to earlier ab initio calculations. We demonstrate that a proper treatment of the coupling to the n-10Be continuum is essential to explain the parity-inverted ground state in 11Be.
DEFF Research Database (Denmark)
Jin, Chengjun; Markussen, Troels; Thygesen, Kristian Sommer
2014-01-01
We investigate the electronic conductance and thermopower of a single-molecule junction consisting of bis-(4-aminophenyl) acetylene (B4APA) connected to gold electrodes. We use nonequilibrium Green's function methods in combination with density-functional theory (DFT) and the many-body GW...... approximation. To simulate recent break junction experiments, we calculate the transport properties of the junction as it is pulled apart. For all junction configurations, DFT with a standard semilocal functional overestimates the conductance by almost an order of magnitude, while the thermopower...
Coccia, Emanuele; Guidoni, Leonardo
2014-01-01
In this letter we report the singlet ground state structure of the full carotenoid peridinin by means of variational Monte Carlo (VMC) calculations. The VMC relaxed geometry has an average bond length alternation of 0.1165(10) {\\AA}, larger than the values obtained by DFT (PBE, B3LYP and CAM-B3LYP) and shorter than that calculated at the Hartree-Fock (HF) level. TDDFT and EOM-CCSD calculations on a reduced peridinin model confirm the HOMO-LUMO major contribution of the Bu+-like (S2) bright excited state. Many Body Green's Function Theory (MBGFT) calculations of the vertical excitation energy of the Bu+-like state for the VMC structure (VMC/MBGFT) provide excitation energy of 2.62 eV, in agreement with experimental results in n-hexane (2.72 eV). The dependence of the excitation energy on the bond length alternation in the MBGFT and TDDFT calculations with different functionals is discussed.
Barbosa, Marcelo
A review about the nuclear properties, namely the nuclear moments (magnetic dipole moment and electric quadrupole moment) and their interaction with electromagnetic fields external to the nucleus (hyperfine interactions), as well as the angular distribution of radiation produced by $\\gamma$-decay, is presented. A detailed description about the theory of Perturbed Angular Correlations was done, including the comparison between $\\gamma-\\gamma$- correlations and $e^{-}- \\gamma$ correlations. For dynamic nuclear interactions, an introduction to the theory of stochastic states in PAC was performed. We focused on ab-initio implementation of observables for analyzing fluctuating quadrupole hyperfine interactions on time dependent perturbed angular correlations experiments. The development of computacional codes solving the full problem, adapted to fit data obtained on single crystals or polycrystals for two-state transient fields with any axial symmetry and orientation was the main purpose of this work. The final pa...
Ab initio multiple spawning dynamics using multi-state second-order perturbation theory.
Tao, Hongli; Levine, Benjamin G; Martínez, Todd J
2009-12-10
We have implemented multi-state second-order perturbation theory (MS-CASPT2) in the ab initio multiple spawning (AIMS) method for first-principles molecular dynamics including nonadiabatic effects. The nonadiabatic couplings between states are calculated numerically using an efficient method which requires only two extra energy calculations per time step. As a representative example, we carry out AIMS-MSPT2 calculations of the excited state dynamics of ethylene. Two distinct types of conical intersections, previously denoted as the twisted-pyramidalized and ethylidene intersections, are responsible for ultrafast population transfer from the excited state to the ground state. Although these two pathways have been observed in prior dynamics simulations, we show here that the branching ratio is affected by dynamic correlation with the twisted-pyramidalized intersection overweighting the ethylidene-like intersection during the decay process at the AIMS-MSPT2 level of description.
Nomura, Yusuke; Arita, Ryotaro
2015-12-01
We formulate an ab initio downfolding scheme for electron-phonon-coupled systems. In this scheme, we calculate partially renormalized phonon frequencies and electron-phonon coupling, which include the screening effects of high-energy electrons, to construct a realistic Hamiltonian consisting of low-energy electron and phonon degrees of freedom. We show that our scheme can be implemented by slightly modifying the density functional-perturbation theory (DFPT), which is one of the standard methods for calculating phonon properties from first principles. Our scheme, which we call the constrained DFPT, can be applied to various phonon-related problems, such as superconductivity, electron and thermal transport, thermoelectricity, piezoelectricity, dielectricity, and multiferroicity. We believe that the constrained DFPT provides a firm basis for the understanding of the role of phonons in strongly correlated materials. Here, we apply the scheme to fullerene superconductors and discuss how the realistic low-energy Hamiltonian is constructed.
Molecular Interactions with Many-Body Perturbation Theory.
1981-09-11
Medcine , Ne. York, York, June 4, 1979. R. J. Bartlett, "Many-Body Perturbation Thery", Aarhus University, Aarhus, Denmark, June 18, 1979. R. J. Bartlett...editor can be accepted for speedy publication. Permission is granted to authors of scientific articles and books to quote from this journal provided
Hartree-Fock Many-Body Perturbation Theory for Nuclear Ground-States
Tichai, Alexander; Binder, Sven; Roth, Robert
2016-01-01
We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT) as a simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence properties directly, we explore perturbative corrections up to 30th order and highlight the role of the partitioning for convergence. The use of a simple Hartree-Fock solution to construct the unperturbed basis leads to a convergent MBPT series for soft interactions, in contrast to, e.g., a harmonic oscillator basis. For larger model spaces and heavier nuclei, where a direct high-order MBPT calculation in not feasible, we perform third-order calculation and compare to advanced ab initio coupled-cluster calculations for the same interactions and model spaces. We demonstrate that third-order MBPT provides ground-state energies for nuclei up into tin isotopic chain that are in excellent agreement with the best available coupled-cluster results at a fraction of the computational cost.
Bereau, Tristan; von Lilienfeld, O Anatole
2015-01-01
Accurate predictions of van der Waals forces require faithful models of dispersion, permanent and induced multipole-moments, as well as penetration and repulsion. We introduce a universal combined physics- and data-driven model of dispersion and multipole-moment contributions, respectively. Atomic multipoles are estimated "on-the-fly" for any organic molecule in any conformation using a machine learning approach trained on quantum chemistry results for tens of thousands of atoms in varying chemical environments drawn from thousands of organic molecules. Globally neutral, cationic, and anionic molecular charge states can be treated with individual models. Dispersion interactions are included via recently-proposed classical many-body potentials. For nearly one thousand intermolecular dimers, this approximate van der Waals model is found to reach an accuracy similar to that of state-of-the-art force fields, while bypassing the need for parametrization. Estimates of cohesive energies for the benzene crystal confi...
Misquitta, Alston J; Stone, Anthony J
2016-09-13
Creating accurate, analytic atom-atom potentials for small organic molecules from first principles can be a time-consuming and computationally intensive task, particularly if we also require them to include explicit polarization terms, which are essential in many systems. We describe how the CamCASP suite of programs can be used to generate such potentials using some of the most accurate electronic structure methods currently applicable. We derive the long-range terms from monomer properties and determine the short-range anisotropy parameters by a novel and robust method based on the iterated stockholder atom approach. Using these techniques, we develop distributed multipole models for the electrostatic, polarization, and dispersion interactions in the pyridine dimer and develop a series of many-body potentials for the pyridine system. Even the simplest of these potentials exhibits root mean square errors of only about 0.6 kJ mol(-1) for the low-energy pyridine dimers, significantly surpassing the best empirical potentials. Our best model is shown to support eight stable minima, four of which have not been reported before in the literature. Further, the functional form can be made systematically more elaborate so as to improve the accuracy without a significant increase in the human-time spent in their generation. We investigate the effects of anisotropy, rank of multipoles, and choice of polarizability and dispersion models.
Stochastic many-body perturbation theory for anharmonic molecular vibrations
Energy Technology Data Exchange (ETDEWEB)
Hermes, Matthew R. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)
2014-08-28
A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value of a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm{sup −1} and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.
Stochastic many-body perturbation theory for anharmonic molecular vibrations.
Hermes, Matthew R; Hirata, So
2014-08-28
A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value of a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm(-1) and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.
Scherrer, Arne; Vuilleumier, Rodolphe; Sebastiani, Daniel
2016-08-01
We report the first fully ab initio calculation of dynamical vibrational circular dichroism spectra in the liquid phase using nuclear velocity perturbation theory (NVPT) derived electronic currents. Our approach is rigorous and general and thus capable of treating weak interactions of chiral molecules as, e.g., chirality transfer from a chiral molecule to an achiral solvent. We use an implementation of the NVPT that is projected along the dynamics to obtain the current and magnetic dipole moments required for accurate intensities. The gauge problem in the liquid phase is resolved in a twofold approach. The electronic expectation values are evaluated in a distributed origin gauge, employing maximally localized Wannier orbitals. In a second step, the gauge invariant spectrum is obtained in terms of a scaled molecular moments, which allows to systematically include solvent effects while keeping a significant signal-to-noise ratio. We give a thorough analysis and discussion of this choice of gauge for the liquid phase. At low temperatures, we recover the established double harmonic approximation. The methodology is applied to chiral molecules ((S)-d2-oxirane and (R)-propylene-oxide) in the gas phase and in solution. We find an excellent agreement with the theoretical and experimental references, including the emergence of signals due to chirality transfer from the solute to the (achiral) solvent.
Scherrer, Arne; Vuilleumier, Rodolphe; Sebastiani, Daniel
2016-08-28
We report the first fully ab initio calculation of dynamical vibrational circular dichroism spectra in the liquid phase using nuclear velocity perturbation theory (NVPT) derived electronic currents. Our approach is rigorous and general and thus capable of treating weak interactions of chiral molecules as, e.g., chirality transfer from a chiral molecule to an achiral solvent. We use an implementation of the NVPT that is projected along the dynamics to obtain the current and magnetic dipole moments required for accurate intensities. The gauge problem in the liquid phase is resolved in a twofold approach. The electronic expectation values are evaluated in a distributed origin gauge, employing maximally localized Wannier orbitals. In a second step, the gauge invariant spectrum is obtained in terms of a scaled molecular moments, which allows to systematically include solvent effects while keeping a significant signal-to-noise ratio. We give a thorough analysis and discussion of this choice of gauge for the liquid phase. At low temperatures, we recover the established double harmonic approximation. The methodology is applied to chiral molecules ((S)-d2-oxirane and (R)-propylene-oxide) in the gas phase and in solution. We find an excellent agreement with the theoretical and experimental references, including the emergence of signals due to chirality transfer from the solute to the (achiral) solvent.
Ab Initio Approach to the Non-Perturbative Scalar Yukawa Model
Li, Yang; Maris, P; Vary, J P
2015-01-01
We report on the first non-perturbative calculation of the quenched scalar Yukawa model in the four-body Fock sector truncation. The light-front Hamiltonian approach with a Fock sector dependent renormalization is applied. We study the Fock sector contribution and the electromagnetic form factor in the non-perturbative region. We find that the one- and two-body contributions dominate the Fock space up to coupling $\\alpha\\approx 1.7$. By comparing with lower Fock sector truncations, we show that the form factor converges with respect to the Fock sector expansion. As we approach the coupling $\\alpha \\approx 2.2$, we discover that the four-body contribution rises rapidly and overtakes the two- and three-body contributions.
Ab initio approach to the non-perturbative scalar Yukawa model
Directory of Open Access Journals (Sweden)
Yang Li
2015-09-01
Full Text Available We report on the first non-perturbative calculation of the scalar Yukawa model in the single-nucleon sector up to four-body Fock sector truncation (one “scalar nucleon” and three “scalar pions”. The light-front Hamiltonian approach with a systematic non-perturbative renormalization is applied. We study the n-body norms and the electromagnetic form factor. We find that the one- and two-body contributions dominate up to coupling α≈1.7. As we approach the coupling α≈2.2, we discover that the four-body contribution rises rapidly and overtakes the two- and three-body contributions. By comparing with lower sector truncations, we show that the form factor converges with respect to the Fock sector expansion.
An investigation of ab initio shell-model interactions derived by no-core shell model
Wang, XiaoBao; Dong, GuoXiang; Li, QingFeng; Shen, CaiWan; Yu, ShaoYing
2016-09-01
The microscopic shell-model effective interactions are mainly based on the many-body perturbation theory (MBPT), the first work of which can be traced to Brown and Kuo's first attempt in 1966, derived from the Hamada-Johnston nucleon-nucleon potential. However, the convergence of the MBPT is still unclear. On the other hand, ab initio theories, such as Green's function Monte Carlo (GFMC), no-core shell model (NCSM), and coupled-cluster theory with single and double excitations (CCSD), have made many progress in recent years. However, due to the increasing demanding of computing resources, these ab initio applications are usually limited to nuclei with mass up to A = 16. Recently, people have realized the ab initio construction of valence-space effective interactions, which is obtained through a second-time renormalization, or to be more exactly, projecting the full-manybody Hamiltonian into core, one-body, and two-body cluster parts. In this paper, we present the investigation of such ab initio shell-model interactions, by the recent derived sd-shell effective interactions based on effective J-matrix Inverse Scattering Potential (JISP) and chiral effective-field theory (EFT) through NCSM. In this work, we have seen the similarity between the ab initio shellmodel interactions and the interactions obtained by MBPT or by empirical fitting. Without the inclusion of three-body (3-bd) force, the ab initio shell-model interactions still share similar defects with the microscopic interactions by MBPT, i.e., T = 1 channel is more attractive while T = 0 channel is more repulsive than empirical interactions. The progress to include more many-body correlations and 3-bd force is still badly needed, to see whether such efforts of ab initio shell-model interactions can reach similar precision as the interactions fitted to experimental data.
Relativistic multireference many-body perturbation theory calculations on Au64+ - Au69+ ions
Energy Technology Data Exchange (ETDEWEB)
Vilkas, M J; Ishikawa, Y; Trabert, E
2006-03-31
Many-body perturbation theory (MBPT) calculations are an adequate tool for the description of the structure of highly charged multi-electron ions and for the analysis of their spectra. They demonstrate this by way of a re-investigation of n=3, {Delta}n=0 transitions in the EUV spectra of Na-, Mg-, Al-like, and Si-like ions of Au that have been obtained previously by heavy-ion accelerator based beam-foil spectroscopy. They discuss the evidence and propose several revisions on the basis of the multi-reference many-body perturbation theory calculations of Ne- through P-like ions of Au.
Changala, P Bryan
2016-01-01
We present a perturbative method for ab initio calculations of rotational and rovibrational effective Hamiltonians of both rigid and non-rigid molecules. Our approach is based on a curvilinear implementation of second order vibrational M{\\o}ller-Plesset perturbation theory (VMP2) extended to include rotational effects via a second order contact transformation. Though more expensive, this approach is significantly more accurate than standard second order vibrational perturbation theory (VPT2) for systems that are poorly described to zeroth order by rectilinear normal mode harmonic oscillators. We apply this method and demonstrate its accuracy on two molecules: Si$_2$C, a quasilinear triatomic with significant bending anharmonicity, and CH$_3$NO$_2$, which contains a completely unhindered methyl rotor. In addition to these two examples, we discuss several key technical aspects of the method, including an efficient implementation of Eckart and quasi-Eckart frame embedding that does not rely on numerical finite d...
Particle-hole configuration interaction and many-body perturbation theory: application to Hg+
Berengut, J C
2016-01-01
The combination of configuration interaction and many-body perturbation theory methods (CI+MBPT) is extended to non-perturbatively include configurations with electron holes below the designated Fermi level, allowing us to treat systems where holes play an important role. For example, the method can treat valence-hole systems like Ir$^{17+}$, particle-hole excitations in noble gases, and difficult transitions such as the $6s \\rightarrow 5d^{-1}6s^2$ optical clock transition in Hg$^+$. We take the latter system as our test case for the method and obtain very good accuracy (~1%) for the low-lying transition energies. The $\\alpha$-dependence of these transitions is calculated and used to reinterpret the existing best laboratory limits on the time-dependence of the fine-structure constant.
Finite-temperature second-order many-body perturbation theory revisited
Santra, Robin
2016-01-01
We present an algebraic, nondiagrammatic derivation of finite-temperature second-order many-body perturbation theory [FT-MBPT(2)], using techniques and concepts accessible to theoretical chemical physicists. We give explicit expressions not just for the grand potential but particularly for the mean energy of an interacting many-electron system. The framework presented is suitable for computing the energy of a finite or infinite system in contact with a heat and particle bath at finite temperature and chemical potential. FT-MBPT(2) may be applied if the system, at zero temperature, may be described using standard (i.e., zero-temperature) second-order many-body perturbation theory [ZT-MBPT(2)] for the energy. We point out that in such a situation, FT-MBPT(2) reproduces, in the zero-temperature limit, the energy computed within ZT-MBPT(2). In other words, the difficulty that has been referred to as the Kohn--Luttinger conundrum, does not occur. We comment, in this context, on a "renormalization" scheme recently ...
Second-order many-body perturbation expansions of vibrational Dyson self-energies.
Hermes, Matthew R; Hirata, So
2013-07-21
Second-order many-body perturbation theories for anharmonic vibrational frequencies and zero-point energies of molecules are formulated, implemented, and tested. They solve the vibrational Dyson equation self-consistently by taking into account the frequency dependence of the Dyson self-energy in the diagonal approximation, which is expanded in a diagrammatic perturbation series up to second order. Three reference wave functions, all of which are diagrammatically size consistent, are considered: the harmonic approximation and diagrammatic vibrational self-consistent field (XVSCF) methods with and without the first-order Dyson geometry correction, i.e., XVSCF[n] and XVSCF(n), where n refers to the truncation rank of the Taylor-series potential energy surface. The corresponding second-order perturbation theories, XVH2(n), XVMP2[n], and XVMP2(n), are shown to be rigorously diagrammatically size consistent for both total energies and transition frequencies, yield accurate results (typically within a few cm(-1) at n = 4 for water and formaldehyde) for both quantities even in the presence of Fermi resonance, and have access to fundamentals, overtones, and combinations as well as their relative intensities as residues of the vibrational Green's functions. They are implemented into simple algorithms that require only force constants and frequencies of the reference methods (with no basis sets, quadrature, or matrix diagonalization at any stage of the calculation). The rules for enumerating and algebraically interpreting energy and self-energy diagrams are elucidated in detail.
Energy Technology Data Exchange (ETDEWEB)
Hirata, So; Fan, Peng-Dong; Auer, Alexander A.; Nooijen, Marcel; Piecuch, Piotr
2004-12-22
Various approximations of combined coupled-cluster (CC) and many-body perturbation theories (MBPT) have been derived and implemented into parallel execution programs that take account of spin, spatial (real Abelian), and permutation symmetries within the spin-orbital formalisms for closed- and open-shell molecules. The models range from CCSD(T), CCSD[T], CCSD(2)T, CCSD(2)TQ, CCSDT(2)Q to the completely renormalized CCSD(T) and CCSD[T], where CCSD (CCSDT) is the CC with connected single and double (and triple) excitation operators and subscripted or parenthesized 2, T, and Q indicate the order of perturbation or the rank of connected excitation operators in the correction. The derivation and implementation have been semi-automated by the algebraic and symbolic manipulation program. The computer-synthesized subroutines generate the tensors with the highest rank in a block-wise manner so that they never need to be stored in their entirety, reusing the other pre-calculated intermediate tensors defined also prioritizing the memory optimization (subroutines for these are also computer synthesized). Consequently, the overall memory cost for the perturbation corrections of connected triple and quadruple excitation operators scales as O(n4) and O(n6), respectively (n is the number of orbitals). For systems with different multi-reference character in their wave functions, we found the order of accuracy is roughly CCSD < CR-CCSD(T) ? CCSD(2)T ? CCSD(T) < CCSD(2)TQ ? CCSDT < CCSDT(2)Q, whereas CR-CCSD(T) is effective for extreme cases of quasi-degeneracy (particularly for stretched single bonds) and the operation costs of CCSD(2)TQ and CCSDT(2)Q in the present implementations scale as rather steep O(n9). The perturbation correction part of the CCSD(T)/cc-pVDZ calculations for azulene exhibited a 45-fold speedup upon a 64-fold increase in the number of processors to 512 processors.
Zein, Samir; Neese, Frank
2008-08-28
The paper presents a method comparison for the prediction of zero-field splitting (ZFS) parameters in a series of Mn (II) coordination complexes. The test set consists of Mn (II) complexes that are experimentally well-characterized by X-ray diffraction and high-field electron paramagnetic resonance. Their ZFS parameters have been calculated using density functional theory (DFT) as well as complete active space self-consistent field (CASSCF) methods. It is shown that the recently introduced coupled-perturbed spin-orbit coupling (CP-SOC) approach [ Neese, F. J. Chem. Phys. 2007, 127, 164112 ] together with hybrid-DFT functionals leads to a slope of the correlation line (plot of experimental vs calculated D values) that is essentially unity provided that the direct spin-spin interaction is properly included in the treatment. This is different from our previous DFT study on the same series of complexes where a severe overestimation of the D parameter has been found [ Zein, S. ; Duboc, C. ; Lubitz, W. ; Neese, F. Inorg. Chem. 2008, 47, 134 ]. CASSCF methods have been used to evaluate the ZFS in an "ab initio ligand-field" type treatment. The study demonstrates that a substantial part of the relevant physics is lost in such a treatment since only excitations within the manganese d-manifold are accounted for. Thus, a severe underestimation of the D parameter has been found. Because the CASSCF calculations in combination with quasidegenerate perturbation theory treats the SOC to all orders, we have nevertheless verified that second-order perturbation theory is an adequate approximation in the case of the high-spin d (5) configuration.
Second-order many-body perturbation study of ice Ih
He, Xiao; Sode, Olaseni; Xantheas, Sotiris S.; Hirata, So
2012-11-01
Ice Ih is arguably the most important molecular crystal in nature, yet our understanding of its structural and dynamical properties is still far from complete. We present embedded-fragment calculations of the structures and vibrational spectra of the three-dimensional, proton-disordered phase of ice Ih performed at the level of second-order many-body perturbation theory with a basis-set superposition error correction. Our calculations address previous controversies such as the one related to the O-H bond length as well as the existence of two types of hydrogen bonds with strengths differing by a factor of two. For the latter, our calculations suggest that the observed spectral features arise from the directionality or the anisotropy of collective hydrogen-bond stretching vibrations rather than the previously suggested vastly different force constants. We also report a capability to efficiently compute infrared and Raman intensities of a periodic solid. Our approach reproduces the infrared and Raman spectra, the variation of inelastic neutron scattering spectra with deuterium concentration, and the anomaly of heat capacities at low temperatures for ice Ih.
Ab initio studies of ionization potentials of hydrated hydroxide and hydronium
Swartz, Charles W
2013-01-01
The ionization potential distributions of hydrated hydroxide and hydronium are computed with many-body approach for electron excitations with configurations generated by {\\it ab initio} molecular dynamics. The experimental features are well reproduced and found to be closely related to the molecular excitations. In the stable configurations, the ionization potential is mainly perturbed by water molecules within the first solvation shell. On the other hand, electron excitation is delocalized on both proton receiving and donating complex during proton transfer, which shifts the excitation energies and broadens the spectra for both hydrated ions.
Many-body quantum chemistry for the electron gas: convergent perturbative theories
Shepherd, James J
2013-01-01
We investigate the accuracy of a number of wavefunction based methods at the heart of quantum chemistry for metallic systems. Using Hartree-Fock as a reference, perturbative (M{\\o}ller-Plesset, MP) and coupled cluster (CC) theories are used to study the uniform electron gas model. Our findings suggest that non-perturbative coupled cluster theories are acceptable for modelling electronic interactions in metals whilst perturbative coupled cluster theories are not. Using screened interactions, we propose a simple modification to the widely-used coupled-cluster singles and doubles plus perturbative triples method (CCSD(T)) that lifts the divergent behaviour and is shown to give very accurate correlation energies for the homogeneous electron gas.
He, Xiao; Ryu, Shinsei; Hirata, So
2014-01-14
Finite-temperature extensions of ab initio Gaussian-basis-set spin-restricted Hartree-Fock (HF) and second-order many-body perturbation (MP2) theories are implemented for infinitely extended, periodic, one-dimensional solids and applied to the Peierls and charge-density-wave (CDW) transitions in polyyne and all-trans polyacetylene. The HF theory predicts insulating CDW ground states for both systems in their equidistant structures at low temperatures. In the same structures, they turn metallic at high temperatures. Starting from the "dimerized" low-temperature equilibrium structures, the systems need even higher temperatures to undergo a Peierls transition, which is accompanied by geometric as well as electronic distortions from dimerized to non-dimerized forms. The conventional finite-temperature MP2 theory shows a sign of divergence in any phase at any nonzero temperature and is useless. The renormalized finite-temperature MP2 (MP2R) theory is divergent only near metallic electronic structures, but is well behaved elsewhere. MP2R also predicts CDW and Peierls transitions occurring at two different temperatures. The effect of electron correlation is primarily to lower the Peierls transition temperature.
Nuclear forces and ab initio calculations of atomic nuclei
Meißner, Ulf-G.
2014-01-01
Nuclear forces and the nuclear many-body problem have been some of Gerry Brown's main topics in his so productive life as a theoretical physicist. In this talk, I outline how Gerry's work laid the foundations of the modern theory of nuclear forces and ab initio calculations of atomic nuclei. I also present some recent developments obtained in the framework of nuclear lattice simulations.
Ab initio molecular crystal structures, spectra, and phase diagrams.
Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni
2014-09-16
Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling
Energy Technology Data Exchange (ETDEWEB)
Samanta, Atanu; Singh, Abhishek K. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Jain, Manish [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)
2015-08-14
The reported values of bandgap of rutile GeO{sub 2} calculated by the standard density functional theory within local-density approximation (LDA)/generalized gradient approximation (GGA) show a wide variation (∼2 eV), whose origin remains unresolved. Here, we investigate the reasons for this variation by studying the electronic structure of rutile-GeO{sub 2} using many-body perturbation theory within the GW framework. The bandgap as well as valence bandwidth at Γ-point of rutile phase shows a strong dependence on volume change, which is independent of bandgap underestimation problem of LDA/GGA. This strong dependence originates from a change in hybridization among O-p and Ge-(s and p) orbitals. Furthermore, the parabolic nature of first conduction band along X-Γ-M direction changes towards a linear dispersion with volume expansion.
Wei, Wei; Dai, Ying; Huang, Baibiao; Jacob, Timo
2013-10-14
In order to study many-body effects in ZnO structures with reduced-dimensionality, electronic and optical absorption properties of ZnO monolayer and armchair ZnO nanoribbons (AZnONRs) are studied by means of Green's function perturbation theory using the GW+Bethe-Salpeter equation approach. In both ZnO monolayer and AZnONRs, as a consequence of enhanced quantum confinement, the quasi-particle corrections are significant and the optical absorption properties are dominated by strong excitonic effects with considerable binding energies (1-2 eV) assigned to the lowest-energy bound excitons. It reveals that inclusion of excitonic effects, which are neglected in calculations at single-particle approximation, is crucial to qualitatively and quantitatively describe the optical properties of such materials with reduced-dimensionality.
Ihrig, Arvid Conrad; Wieferink, Jürgen; Zhang, Igor Ying; Ropo, Matti; Ren, Xinguo; Rinke, Patrick; Scheffler, Matthias; Blum, Volker
2015-09-01
A key component in calculations of exchange and correlation energies is the Coulomb operator, which requires the evaluation of two-electron integrals. For localized basis sets, these four-center integrals are most efficiently evaluated with the resolution of identity (RI) technique, which expands basis-function products in an auxiliary basis. In this work we show the practical applicability of a localized RI-variant (‘RI-LVL’), which expands products of basis functions only in the subset of those auxiliary basis functions which are located at the same atoms as the basis functions. We demonstrate the accuracy of RI-LVL for Hartree-Fock calculations, for the PBE0 hybrid density functional, as well as for RPA and MP2 perturbation theory. Molecular test sets used include the S22 set of weakly interacting molecules, the G3 test set, as well as the G2-1 and BH76 test sets, and heavy elements including titanium dioxide, copper and gold clusters. Our RI-LVL implementation paves the way for linear-scaling RI-based hybrid functional calculations for large systems and for all-electron many-body perturbation theory with significantly reduced computational and memory cost.
$\\it{Ab}$ $\\it{initio}$ nuclear many-body perturbation calculations in the Hartree-Fock basis
Hu, Baishan; Sun, Zhonghao; Vary, James P; Li, Tong
2016-01-01
Starting from realistic nuclear forces, the chiral N$^3$LO and JISP16, we have applied many-body perturbation theory (MBPT) to the structure of closed-shell nuclei, $^4$He and $^{16}$O. The two-body N$^3$LO interaction is softened by a similarity renormalization group transformation while JISP16 is adopted without renormalization. The MBPT calculations are performed within the Hartree-Fock (HF) bases. The angular momentum coupled scheme is used, which can reduce the computational task. Corrections up to the third order in energy and up to the second order in radius are evaluated. Higher-order corrections in the HF basis are small relative to the leading-order perturbative result. Using the anti-symmetrized Goldstone diagram expansions of the wave function, we directly correct the one-body density for the calculation of the radius, rather than calculate corrections to the occupation propabilities of single-particle orbits as found in other treatments. We compare our results with other methods where available a...
Toward the Ab-initio Description of Medium Mass Nuclei
Barbieri, C; Soma, V; Duguet, T; Navratil, P
2012-01-01
As ab-initio calculations of atomic nuclei enter the A=40-100 mass range, a great challenge is how to approach the vast majority of open-shell (degenerate) isotopes. We add realistic three-nucleon interactions to the state of the art many-body Green's function theory of closed-shells, and find that physics of neutron driplines is reproduced with very good quality. Further, we introduce the Gorkov formalism to extend ab-initio theory to semi-magic, fully open-shell, isotopes. Proof-of-principle calculations for Ca-44 and Ni-74 confirm that this approach is indeed feasible. Combining these two advances (open-shells and three-nucleon interactions) requires longer, technical, work but it is otherwise within reach.
The density matrix renormalization group for ab initio quantum chemistry
Wouters, Sebastian
2014-01-01
During the past 15 years, the density matrix renormalization group (DMRG) has become increasingly important for ab initio quantum chemistry. Its underlying wavefunction ansatz, the matrix product state (MPS), is a low-rank decomposition of the full configuration interaction tensor. The virtual dimension of the MPS, the rank of the decomposition, controls the size of the corner of the many-body Hilbert space that can be reached with the ansatz. This parameter can be systematically increased until numerical convergence is reached. The MPS ansatz naturally captures exponentially decaying correlation functions. Therefore DMRG works extremely well for noncritical one-dimensional systems. The active orbital spaces in quantum chemistry are however often far from one-dimensional, and relatively large virtual dimensions are required to use DMRG for ab initio quantum chemistry (QC-DMRG). The QC-DMRG algorithm, its computational cost, and its properties are discussed. Two important aspects to reduce the computational co...
Liang, Yufeng; Vinson, John; Pemmaraju, Sri; Drisdell, Walter S.; Shirley, Eric L.; Prendergast, David
2017-03-01
Constrained-occupancy delta-self-consistent-field (Δ SCF ) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1 s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The Δ SCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle Δ SCF approach can be rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.
Ab-initio simulations of materials using VASP: Density-functional theory and beyond.
Hafner, Jürgen
2008-10-01
During the past decade, computer simulations based on a quantum-mechanical description of the interactions between electrons and between electrons and atomic nuclei have developed an increasingly important impact on solid-state physics and chemistry and on materials science-promoting not only a deeper understanding, but also the possibility to contribute significantly to materials design for future technologies. This development is based on two important columns: (i) The improved description of electronic many-body effects within density-functional theory (DFT) and the upcoming post-DFT methods. (ii) The implementation of the new functionals and many-body techniques within highly efficient, stable, and versatile computer codes, which allow to exploit the potential of modern computer architectures. In this review, I discuss the implementation of various DFT functionals [local-density approximation (LDA), generalized gradient approximation (GGA), meta-GGA, hybrid functional mixing DFT, and exact (Hartree-Fock) exchange] and post-DFT approaches [DFT + U for strong electronic correlations in narrow bands, many-body perturbation theory (GW) for quasiparticle spectra, dynamical correlation effects via the adiabatic-connection fluctuation-dissipation theorem (AC-FDT)] in the Vienna ab initio simulation package VASP. VASP is a plane-wave all-electron code using the projector-augmented wave method to describe the electron-core interaction. The code uses fast iterative techniques for the diagonalization of the DFT Hamiltonian and allows to perform total-energy calculations and structural optimizations for systems with thousands of atoms and ab initio molecular dynamics simulations for ensembles with a few hundred atoms extending over several tens of ps. Applications in many different areas (structure and phase stability, mechanical and dynamical properties, liquids, glasses and quasicrystals, magnetism and magnetic nanostructures, semiconductors and insulators, surfaces
Gulans, Andris; Kontur, Stefan; Meisenbichler, Christian; Nabok, Dmitrii; Pavone, Pasquale; Rigamonti, Santiago; Sagmeister, Stephan; Werner, Ute; Draxl, Claudia
2014-09-01
Linearized augmented planewave methods are known as the most precise numerical schemes for solving the Kohn-Sham equations of density-functional theory (DFT). In this review, we describe how this method is realized in the all-electron full-potential computer package, exciting. We emphasize the variety of different related basis sets, subsumed as (linearized) augmented planewave plus local orbital methods, discussing their pros and cons and we show that extremely high accuracy (microhartrees) can be achieved if the basis is chosen carefully. As the name of the code suggests, exciting is not restricted to ground-state calculations, but has a major focus on excited-state properties. It includes time-dependent DFT in the linear-response regime with various static and dynamical exchange-correlation kernels. These are preferably used to compute optical and electron-loss spectra for metals, molecules and semiconductors with weak electron-hole interactions. exciting makes use of many-body perturbation theory for charged and neutral excitations. To obtain the quasi-particle band structure, the GW approach is implemented in the single-shot approximation, known as G0W0. Optical absorption spectra for valence and core excitations are handled by the solution of the Bethe-Salpeter equation, which allows for the description of strongly bound excitons. Besides these aspects concerning methodology, we demonstrate the broad range of possible applications by prototypical examples, comprising elastic properties, phonons, thermal-expansion coefficients, dielectric tensors and loss functions, magneto-optical Kerr effect, core-level spectra and more.
Balan, Etienne; Lazzeri, M.; Mauri, F.; Calas, G.
2007-01-01
We review here some recent applications of ab initio calculations to the modelling of spectroscopic and energetic properties of minerals, which are key components of lateritic soils or govern their geochemical properties. Quantum mechanical ab initio calculations are based on density functional theory and density functional perturbation theory. Among the minerals investigated, zircon is a typical resistant primary mineral. Its resistance to weathering is at the origin of the peculiar geochemi...
Maschio, Lorenzo; Kirtman, Bernard; Rérat, Michel; Orlando, Roberto; Dovesi, Roberto
2013-10-28
We present a fully analytical formulation for calculating Raman intensities of crystalline periodic systems using a local basis set. Numerical differentiation with respect to atomic coordinates and with respect to wavevectors is entirely avoided as is the determination of crystal orbital coefficient derivatives with respect to nuclear displacements. Instead, our method utilizes the orbital energy-weighted density matrix and is based on the self-consistent solution of first- and second-order Coupled Perturbed Hartree-Fock/Kohn-Sham equations for the electronic response to external electric fields at the equilibrium geometry. This method has also been implemented in the Crystal program, which uses a Gaussian type basis set.
A highly accurate ab initio potential energy surface for methane
Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2016-09-01
A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of 12CH4 reproduced with a root-mean-square error of 0.70 cm-1. The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.
Petersen, Philippe A D; Silva, Andreia S; Gonçalves, Marcos B; Lapolli, André L; Ferreira, Ana Maria C; Carbonari, Artur W; Petrilli, Helena M
2014-06-01
In this work, perturbed angular correlation (PAC) spectroscopy is used to study differences in the nuclear quadrupole interactions of Cd probes in DNA molecules of mice infected with the Y-strain of Trypanosoma cruzi. The possibility of investigating the local genetic alterations in DNA, which occur along generations of mice infected with T. cruzi, using hyperfine interactions obtained from PAC measurements and density functional theory (DFT) calculations in DNA bases is discussed. A comparison of DFT calculations with PAC measurements could determine the type of Cd coordination in the studied molecules. To the best of our knowledge, this is the first attempt to use DFT calculations and PAC measurements to investigate the local environment of Cd ions bound to DNA bases in mice infected with Chagas disease. The obtained results also allowed the detection of local changes occurring in the DNA molecules of different generations of mice infected with T. cruzi, opening the possibility of using this technique as a complementary tool in the characterization of complicated biological systems.
Sun, Hosung; Freed, Karl F.
1984-01-01
The exact ab initio effective valence shell Hamiltonian, which is mimicked by semiempirical theories of valence, is calculated for CH at 11 bond lengths using quasidegenerate many-body perturbation theory to incorporate extensive correlation contributions. Least squares fits of the bond length dependence of the calculated CH matrix elements provide simple formulas which are compared with the intuitive forms introduced into semiempirical theories. Some of the semiempirical formulas, e.g., one-center, one-electron integrals and two-center, two-electron integrals, are in good agreement with our correlated ab initio calculations, while others display substantial departures. For example, the bond length dependence of one-center, two-electron integrals, which are assumed to be independent of bond length in semiempirical theories, is substantial but physically understandable. Corrections are found to the assumed proportionality of resonance and overlap integrals. The bond length dependence of nonclassical three-electron integrals is presented along with the hybrid and exchange integrals that are ignored in zero differential overlap methods.
Unified ab initio approaches to nuclear structure and reactions
Navratil, Petr; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo
2016-01-01
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in {\\em ab initio} nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches - built upon the No-Core Shell Model - that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the $^6$He halo nucleus, of five- and six...
Ab Initio Calculations of Oxosulfatovanadates
DEFF Research Database (Denmark)
Frøberg, Torben; Johansen, Helge
1996-01-01
Restricted Hartree-Fock and multi-configurational self-consistent-field calculations together with secondorder perturbation theory have been used to study the geometry, the electron density, and the electronicspectrum of (VO2SO4)-. A bidentate sulphate attachment to vanadium was found to be stable...
Energy Technology Data Exchange (ETDEWEB)
Vilkas, M J; Ishikawa, Y; Trabert, E
2005-12-22
Many-Body Perturbation Theory (MBPT) has been employed to calculate with high wavelength accuracy the extreme ultraviolet (EUV) spectra of F-like to P-like Xe ions. They discuss the reliability of the new calculations using the example of EUV beam-foil spectra of Xe, in which n = 3, {Delta}n = 0 transitions of Na-, Mg-, Al-like, and Si-like ions have been found to dominate. A further comparison is made with spectra from an electron beam ion trap, that is, from a device with a very different (low density) excitation balance.
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.
2014-01-01
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerat...
Reciprocity Theorems for Ab Initio Force Calculations
Wei, C; Mele, E J; Rappe, A M; Lewis, Steven P.; Rappe, Andrew M.
1996-01-01
We present a method for calculating ab initio interatomic forces which scales quadratically with the size of the system and provides a physically transparent representation of the force in terms of the spatial variation of the electronic charge density. The method is based on a reciprocity theorem for evaluating an effective potential acting on a charged ion in the core of each atom. We illustrate the method with calculations for diatomic molecules.
All-electron ab initio investigations of the electronic states of the NiC molecule
DEFF Research Database (Denmark)
Shim, Irene; Gingerich, Karl. A.
1999-01-01
The low-lying electronic states of NiC are investigated by all-electron ab initio multi-configuration self-consistent-field (CASSCF) calculations including relativistic corrections. The electronic structure of NiC is interpreted as perturbed antiferromagnetic couplings of the localized angular...
Highly scalable Ab initio genomic motif identification
Marchand, Benoit
2011-01-01
We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.
Ab initio Bogoliubov coupled cluster theory
Signoracci, Angelo; Hagen, Gaute; Duguet, Thomas
2014-09-01
Coupled cluster (CC) theory has become a standard method in nuclear theory for realistic ab initio calculations of medium mass nuclei, but remains limited by its requirement of a Slater determinant reference state which reasonably approximates the nuclear system of interest. Extensions of the method, such as equation-of-motion CC, permit the calculation of nuclei with one or two nucleons added or removed from a doubly magic core, yet still only a few dozen nuclei are accessible with modern computational restrictions. In order to extend the applicability of ab initio methods to open-shell systems, the superfluid nature of nuclei must be taken into account. By utilizing Bogoliubov algebra and employing spontaneous symmetry breaking with respect to particle number conservation, superfluid systems can be treated by a single reference state. An ab initio theory to include correlations on top of a Bogoliubov reference state has been developed in the guise of standard CC theory. The formalism and first results of this Bogoliubov coupled cluster theory will be presented to demonstrate the applicability of the method.
Shiga, Motoyuki; Tachikawa, Masanori; Miura, Shinichi
2000-12-01
We present an accurate calculational scheme for many-body systems composed of electrons and nuclei, by path integral molecular dynamics technique combined with the ab initio molecular orbital theory. Based upon the scheme, the simulation of a water molecule at room temperature is demonstrated, applying all-electron calculation at the Hartree-Fock level of theory.
Ab initio calculation of the potential bubble nucleus 34Si
Duguet, T.; Somà, V.; Lecluse, S.; Barbieri, C.; Navrátil, P.
2017-03-01
Background: The possibility that an unconventional depletion (referred to as a "bubble") occurs in the center of the charge density distribution of certain nuclei due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. Based on a mean-field rationale, a correlation between the occurrence of such a semibubble and an anomalously weak splitting between low angular-momentum spin-orbit partners has been further conjectured. Energy density functional and valence-space shell model calculations have been performed to identify and characterize the best candidates, among which 34Si appears as a particularly interesting case. While the experimental determination of the charge density distribution of the unstable 34Si is currently out of reach, (d ,p ) experiments on this nucleus have been performed recently to test the correlation between the presence of a bubble and an anomalously weak 1 /2--3 /2- splitting in the spectrum of 35Si as compared to 37S. Purpose: We study the potential bubble structure of 34Si on the basis of the state-of-the-art ab initio self-consistent Green's function many-body method. Methods: We perform the first ab initio calculations of 34Si and 36S. In addition to binding energies, the first observables of interest are the charge density distribution and the charge root-mean-square radius for which experimental data exist in 36S. The next observable of interest is the low-lying spectroscopy of 35Si and 37S obtained from (d ,p ) experiments along with the spectroscopy of 33Al and 35P obtained from knock-out experiments. The interpretation in terms of the evolution of the underlying shell structure is also provided. The study is repeated using several chiral effective field theory Hamiltonians as a way to test the robustness of the results with respect to input internucleon interactions. The convergence of the results with respect to the truncation of the many-body expansion, i.e., with respect to
Whitfield, T. W.; Crain, J.; Martyna, G. J.
2006-03-01
In order to better understand the physical interactions that stabilize protein secondary structure, the neat liquid state of a peptidic fragment, N-methylacetamide (NMA), was studied using computer simulation. Three different descriptions of the molecular liquid were examined: an empirical force field treatment with classical nuclei, an empirical force field treatment with quantum mechanical nuclei, and an ab initio density functional theory (DFT) treatment. The DFT electronic structure was evaluated using the BLYP approximate functional and a plane wave basis set. The different physical effects probed by the three models, such as quantum dispersion, many-body polarization, and nontrivial charge distributions on the liquid properties, were compared. Much of the structural ordering in the liquid is characterized by hydrogen bonded chains of NMA molecules. Modest structural differences are present among the three models of liquid NMA. The average molecular dipole in the liquid under the ab initio treatment, however, is enhanced by 60% over the gas phase value.
Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Zen, Andrea, E-mail: a.zen@ucl.ac.uk [Dipartimento di Fisica, “La Sapienza” - Università di Roma, piazzale Aldo Moro 5, 00185 Rome (Italy); London Centre for Nanotechnology, University College London, London WC1E 6BT (United Kingdom); Luo, Ye, E-mail: xw111luoye@gmail.com; Mazzola, Guglielmo, E-mail: gmazzola@phys.ethz.ch; Sorella, Sandro, E-mail: sorella@sissa.it [SISSA–International School for Advanced Studies, Via Bonomea 26, 34136 Trieste (Italy); Democritos Simulation Center CNR–IOM Istituto Officina dei Materiali, 34151 Trieste (Italy); Guidoni, Leonardo, E-mail: leonardo.guidoni@univaq.it [Dipartimento di Fisica, “La Sapienza” - Università di Roma, piazzale Aldo Moro 5, 00185 Rome (Italy); Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’ Aquila, via Vetoio, 67100 L’ Aquila (Italy)
2015-04-14
Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.
Computer simulation of acetonitrile and methanol with ab initio-based pair potentials
Hloucha, M.; Sum, A. K.; Sandler, S. I.
2000-10-01
This study address the adequacy of ab initio pair interaction energy potentials for the prediction of macroscopic properties. Recently, Bukowski et al. [J. Phys. Chem. A 103, 7322 (1999)] performed a comprehensive study of the potential energy surfaces for several pairs of molecules using symmetry-adapted perturbation theory. These ab initio energies were then fit to an appropriate site-site potential form. In an attempt to bridge the gap between ab initio interaction energy information and macroscopic properties prediction, we performed Gibbs ensemble Monte Carlo (GEMC) simulations using their developed pair potentials for acetonitrile and methanol. The simulations results show that the phase behavior of acetonitrile is well described by just the pair interaction potential. For methanol, on the other hand, pair interactions are insufficient to properly predict its vapor-liquid phase behavior, and its saturated liquid density. We also explored simplified forms for representing the ab initio interaction energies by refitting a selected range of the data to a site-site Lennard-Jones and to a modified Buckingham (exponential-6) potentials plus Coulombic interactions. These were also used in GEMC simulations in order to evaluate the quality and computational efficiency of these different potential forms. It was found that the phase behavior prediction for acetonitrile and methanol are highly dependent on the details of the interaction potentials developed.
Ab initio phonon properties of half-Heusler NiTiSn, NiZrSn and NiHfSn.
Andrea, Luc; Hug, Gilles; Chaput, Laurent
2015-10-28
A theoretical investigation of phonon properties from first-principles calculations is carried out for the half-Heusler compounds NiXSn, [Formula: see text], Zr and Hf. The crystal structures are optimised via ab initio calculations within the framework of density functional theory. The phonon properties are retrieved from harmonic and anharmonic interatomic force constants calculations using the finite size displacements method and many-body perturbation theory. A solution to the linearized phonon Boltzmann transport equation is then used to compute the ab initio thermal conductivities. For X = Ti, Zr and Hf, we found 15.4, 13.3 and 15.8 W m(-1) K(-1) at 300 K, respectively. Thanks to a spectral analysis of the velocities and lifetimes we were able appreciate the differences in the thermal conductivities between the three compounds under study. Our results provide insights to understand the behaviour of the thermal conductivity and therefore to improve the thermoelectric figure of merit for such materials.
Hoffmann, Alexander; Rohrmüller, Martin; Jesser, Anton; dos Santos Vieira, Ines; Schmidt, Wolf Gero; Herres-Pawlis, Sonja
2014-11-05
Ground- and excited-state properties of copper(II) charge-transfer systems have been investigated starting from density-functional calculations with particular emphasis on the role of (i) the exchange and correlation functional, (ii) the basis set, (iii) solvent effects, and (iv) the treatment of dispersive interactions. Furthermore (v), the applicability of TD-DFT to excitations of copper(II) bis(chelate) charge-transfer systems is explored by performing many-body perturbation theory (GW + BSE), independent-particle approximation and ΔSCF calculations for a small model system that contains simple guanidine and imine groups. These results show that DFT and TD-DFT in particular in combination with hybrid functionals are well suited for the description of the structural and optical properties, respectively, of copper(II) bis(chelate) complexes. Furthermore, it is found an accurate theoretical geometrical description requires the use of dispersion correction with Becke-Johnson damping and triple-zeta basis sets while solvent effects are small. The hybrid functionals B3LYP and TPSSh yielded best performance. The optical description is best with B3LYP, whereby heavily mixed molecular transitions of MLCT and LLCT character are obtained which can be more easily understood using natural transition orbitals. An natural bond orbital analysis sheds light on the donor properties of the different donor functions and the intraguanidine stabilization during coordination to copper(I) and (II).
Wang, Xiao-Chuan; Freed, Karl F.
1987-03-01
The effective valence shell Hamiltonian (Hv) of S2 is calculated as a function of internuclear distance using quasidegenerate many-body perturbation theory with the full valence space spanned by eight valence orbitals. Calculated potential curves and excitation energies for several valence states are in good agreement with experiment and are compared with configuration interaction calculations using the same primitive basis. In order to test assumptions of semiempirical theories, we also perform a more approximate calculation of Hv in which the valence space is constructed as the union of the atomic valence spaces with the atomic orbitals taken from atomic SCF calculations. A new and important feature of this approximate, correlated Hv is the use of optimized valence and excited orbitals as determined from a constrained SCF procedure. The matrix elements of this approximate, correlated Hv are transformed to the original nonorthogonal atomic valence basis, and their bond length dependences are fit with simple analytical functions. Some calculated Hv matrix elements agree with the forms commonly postulated for semiempirical integrals, while others display quite different behavior. An example of the latter are the one-center, two-electron integrals which depend significantly on bond length in marked contrast to semiempirical theories which assume them to be bond length independent.
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.
2014-12-01
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provide detailed physical insight. Although theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor—a highly accelerated first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor, we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, which provide new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery, in addition to its traditional role of interpreting experimental findings.
Giant magnetoresistance An ab-initio description
Binder, J
2000-01-01
A new theoretical concept to study the microscopic origin of Giant Magnetoresistance (GMR) from first principles is presented. The method is based on ab-initio electronic structure calculations within the spin density functional theory using a Screened KORRINGA-KOHNROSTOKER method. Scattering at impurity atoms in the multilayers is described by means of a GREEN's-function method. The scattering potentials are calculated self-consistently. The transport properties are treated quasi-classically solving the BOLTZMANN equation including the electronic structure of the layered system and the anisotropic scattering. The solution of the BOLTZMANN equation is performed iteratively taking into account both scattering out and scattering in terms (vertex corrections). The method is applied to Co/Cu and Fe/Cr multilayers. Trends of scattering cross sections, residual resistivities and GMR ratios are discussed for various transition metal impurities at different positions in the Co/Cu or Fe/Cr multilayers. Furthermore the...
Operator evolution for ab initio nuclear theory
Schuster, Micah D; Johnson, Calvin W; Jurgenson, Eric D; Navratil, Petr
2014-01-01
The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency, however, one ought to apply the same transformation to other operators when calculating transitions and mean values from the eigenstates of the renormalized Hamiltonian. Working in a translationally-invariant harmonic oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square-radius and total dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix elements in the 4He nucleus all but completely restores the invariance of the expectation values under the transformation. We also consider a Gaussian operator with adjustable range and find at short ranges an increased contribution from such ind...
Ab initio alpha-alpha scattering
Elhatisari, Serdar; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G
2015-01-01
Processes involving alpha particles and alpha-like nuclei comprise a major part of stellar nucleosynthesis and hypothesized mechanisms for thermonuclear supernovae. In an effort towards understanding alpha processes from first principles, we describe in this letter the first ab initio calculation of alpha-alpha scattering. We use lattice effective field theory to describe the low-energy interactions of nucleons and apply a technique called the adiabatic projection method to reduce the eight-body system to an effective two-cluster system. We find good agreement between lattice results and experimental phase shifts for S-wave and D-wave scattering. The computational scaling with particle number suggests that alpha processes involving heavier nuclei are also within reach in the near future.
The Many-Body Expansion Combined with Neural Networks
Yao, Kun; Parkhill, John
2016-01-01
Fragmentation methods such as the many-body expansion (MBE) are a common strategy to model large systems by partitioning energies into a hierarchy of decreasingly significant contributions. The number of fragments required for chemical accuracy is still prohibitively expensive for ab-initio MBE to compete with force field approximations for applications beyond single-point energies. Alongside the MBE, empirical models of ab-initio potential energy surfaces have improved, especially non-linear models based on neural networks (NN) which can reproduce ab-initio potential energy surfaces rapidly and accurately. Although they are fast, NNs suffer from their own curse of dimensionality; they must be trained on a representative sample of chemical space. In this paper we examine the synergy of the MBE and NN's, and explore their complementarity. The MBE offers a systematic way to treat systems of arbitrary size and intelligently sample chemical space. NN's reduce, by a factor in excess of $10^6$ the computational ove...
On the hierarchical parallelization of ab initio simulations
Ruiz-Barragan, Sergi; Shiga, Motoyuki
2016-01-01
A hierarchical parallelization has been implemented in a new unified code PIMD-SMASH for ab initio simulation where the replicas and the Born-Oppenheimer forces are parallelized. It is demonstrated that ab initio path integral molecular dynamics simulations can be carried out very efficiently for systems up to a few tens of water molecules. The code was then used to study a Diels-Alder reaction of cyclopentadiene and butenone by ab initio string method. A reduction in the reaction energy barrier is found in the presence of hydrogen-bonded water, in accordance with experiment.
Ab initio studies of niobium defects in uranium
Energy Technology Data Exchange (ETDEWEB)
Xiang, S; Huang, H; Hsiung, L
2007-06-01
Uranium (U), with the addition of small amount of niobium (Nb), is stainless. The Nb is fully miscible with the high temperature phase of U and tends to segregate upon cooling below 647 C. The starting point of segregation is the configuration of Nb substitutional or interstitial defects. Using density-functional-theory based ab initio calculations, the authors find that the formation energy of a single vacancy is 1.08 eV, that of Nb substitution is 0.59 eV, that of Nb interstitial at octahedral site is 1.58 eV, and that of Nb interstitial at tetrahedral site is 2.35 eV; all with reference to a reservoir of {gamma} phase U and pure Nb. The formation energy of Nb defects correlates with the local perturbation of electron distribution; higher formation energy to larger perturbation. Based on this study, Nb atoms thermodynamically prefer to occupy substitutional sites in {gamma} phase U, and they prefer to be in individual substitutional defects than clusters.
Jesser, Anton; Rohrmüller, Martin; Schmidt, Wolf Gero; Herres-Pawlis, Sonja
2014-01-05
We report a comprehensive computational benchmarking of the structural and optical properties of a bis(chelate) copper(I) guanidine-quinoline complex. Using various (TD-)DFT flavors a strong influence of the basis set is found. Moreover, the amount of exact exchange shifts metal-to-ligand bands by 1 eV through the absorption spectrum. The BP86/6-311G(d) and B3LYP/def2-TZVP functional/basis set combinations were found to yield results in best agreement with the experimental data. In order to probe the general applicability of TD-DFT to excitations of copper bis(chelate) charge-transfer (CT) systems, we studied a small model system that on the one hand is accessible to methods of many-body perturbation theory (MBPT) but still contains simple guanidine and imine groups. These calculations show that large quasiparticle energies of the order of several electronvolts are largely offset by exciton binding energies for optical excitations and that TD-DFT excitation energies deviate from MBPT results by at most 0.5 eV, further corroborating the reliability of our TD-DFT results. The latter result in a multitude of MLCT bands ranging from the visible region at 3.4 eV into the UV at 5.5 eV for the bis(chelate) complex. Molecular orbital analysis provided insight into the CT within these systems but gave mixed transitions. A meaningful transition assignment is possible, however, by using natural transition orbitals. Additionally, we performed a thorough conformational analysis as the correct description of the copper coordination is crucial for the prediction of optical spectra. We found that DFT identifies the correct conformational minimum and that the MLCTs are strongly dependent on the torsion of the chelate angles at the copper center. From the results, it is concluded that extensive benchmarking allows for the quantitative analyses of the CT behavior of copper bis(chelate) complexes within TD-DFT.
Ab initio calculation of the Hoyle state
Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G
2011-01-01
The Hoyle state plays a crucial role in the hydrogen burning of stars heavier than our sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle^{1} as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago^{2,3}, nuclear theorists have not yet uncovered the nature of this state from first principles. In this letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of properties of the Hoyle state and in agreement with the experimentally observed energy. These lattice simulations provide insight into the structure of this unique state and new clues as to the amount of fine...
Ab initio phase diagram of iridium
Burakovsky, L.; Burakovsky, N.; Cawkwell, M. J.; Preston, D. L.; Errandonea, D.; Simak, S. I.
2016-09-01
The phase diagram of iridium is investigated using the Z methodology. The Z methodology is a technique for phase diagram studies that combines the direct Z method for the computation of melting curves and the inverse Z method for the calculation of solid-solid phase boundaries. In the direct Z method, the solid phases along the melting curve are determined by comparing the solid-liquid equilibrium boundaries of candidate crystal structures. The inverse Z method involves quenching the liquid into the most stable solid phase at various temperatures and pressures to locate a solid-solid boundary. Although excellent agreement with the available experimental data (to ≲65 GPa) is found for the equation of state (EOS) of Ir, it is the third-order Birch-Murnaghan EOS with B0'=5 rather than the more widely accepted B0'=4 that describes our ab initio data to higher pressure (P ) . Our results suggest the existence of a random-stacking hexagonal close-packed structure of iridium at high P . We offer an explanation for the 14-layer hexagonal structure observed in experiments by Cerenius and Dubrovinsky.
An ab initio potential function for the ν13 vibrational mode of 1,3-butadiene
Senent, M. L.
1995-06-01
The restricted potential of the ν13 torsional mode of 1,3-butadiene has been determined from ab initio calculations. The relative energy and geometry of the second rotamer were calculated with the optimized couple cluster method with double substitutions. This ab initio level provides that the second stable structure attaches to a gauche form situated at 140.8°. The potential energy function was obtained by fitting to a symmetry-adapted Fourier series the total electronic energies of several selected conformations. These energies were calculated by the Möller-Plesset perturbation theory up to the second order (MP2) with full and partial optimization of the geometry. Torsional Raman band positions and fundamental frequencies were determined from the periodic potentials with a good agreement with experimental data. The convenience of performing fully optimized calculations to determine the restricted function is also refuted.
A highly accurate {\\it ab initio} potential energy surface for methane
Owens, Alec; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2016-01-01
A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art \\textit{ab initio} theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include: core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of $^{12}$CH$_4$ reproduced with a root-mean-square error of $0.70{\\,}$cm$^{-1}$. The computed \\textit{ab initio} equilibrium C{--}H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as $J$ (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the e...
Ab initio materials physics and microscopic electrodynamics of media
2016-01-01
We argue that the amazing progress of first-principles materials physics necessitates a revision of the Standard Approach to electrodynamics of media. We hence subject this Standard Approach to a thorough critique, which shows both its inherent conceptual problems and its practical inapplicability to modern ab initio calculations. We then go on to show that the common practice in ab initio materials physics has overcome these difficulties by taking a different, microscopic approach to electro...
Energy Technology Data Exchange (ETDEWEB)
Rivasseau, Vincent [Paris-Sud Univ. Orsay (France). Laboratoire de Physique Theorique; Seiringer, Robert [McGill Univ., Montreal, QC (Canada). Dept. of Mathematics and Statistics; Solovej, Jan Philip [Copenhagen Univ. (Denmark). Dept. of Mathematics; Spencer, Thomas [Institute for Advanced Study, Princeton, NJ (United States). School of Mathematics
2012-11-01
The book is based on the lectures given at the CIME school ''Quantum many body systems'' held in the summer of 2010. It provides a tutorial introduction to recent advances in the mathematics of interacting systems, written by four leading experts in the field: V. Rivasseau illustrates the applications of constructive Quantum Field Theory to 2D interacting electrons and their relation to quantum gravity; R. Seiringer describes a proof of Bose-Einstein condensation in the Gross-Pitaevski limit and explains the effects of rotating traps and the emergence of lattices of quantized vortices; J.-P. Solovej gives an introduction to the theory of quantum Coulomb systems and to the functional analytic methods used to prove their thermodynamic stability; finally, T. Spencer explains the supersymmetric approach to Anderson localization and its relation to the theory of random matrices. All the lectures are characterized by their mathematical rigor combined with physical insights.
A Relativistic Many-Body Analysis of the Electric Dipole Moment of $^{223}$Rn
Sahoo, B K; Das, B P
2014-01-01
We report the results of our {\\it ab initio} relativistic many-body calculations of the electric dipole moment (EDM) $d_A$ arising from the electron-nucleus tensor-pseudotensor (T-PT) interaction, the interaction of the nuclear Schiff moment (NSM) with the atomic electrons and the electric dipole polarizability $\\alpha_d$ for $^{223}$Rn. Our relativistic random-phase approximation (RPA) results are substantially larger than those of lower-order relativistic many-body perturbation theory (MBPT) and the results based on the relativistic coupled-cluster (RCC) method with single and double excitations (CCSD) are the most accurate to date for all the three properties that we have considered. We obtain $d_A = 4.85(6) \\times 10^{-20} C_T \\ |e| \\ cm$ from T-PT interaction, $d_A=2.89(4) \\times 10^{-17} {S/(|e|\\ fm^3)}$ from NSM interaction and $\\alpha_d=35.27(9) \\ ea_0^3$. The former two results in combination with the measured value of $^{223}$Rn EDM, when it becomes available, could yield the best limits for the T-...
Relativistic many-body analysis of the electric dipole moment of 223Rn
Sahoo, B. K.; Singh, Yashpal; Das, B. P.
2014-11-01
We report the results of our ab initio relativistic many-body calculations of the electric dipole moment (EDM) dA arising from the electron-nucleus tensor-pseudotensor (T-PT) interaction, the interaction of the nuclear Schiff moment (NSM) with the atomic electrons and the electric dipole polarizability αd for 223Rn . Our relativistic random-phase approximation results are substantially larger than those of lower-order relativistic many-body perturbation theory and the results based on the relativistic coupled-cluster method with single and double excitations are highly accurate for all three properties that we have considered. We obtain dA=4.85 (6 ) ×10-20 CT|e | cm from T-PT interaction, dA=2.89 (4 ) ×10-17S /(|e |fm3) from NSM interaction, and αd=35.27 (9 ) e a03 . The former two results in combination with the measured value of 223Rn EDM, when it becomes available, could yield the best limits for the T-PT coupling constant, EDMs, and chromo-EDMs of quarks and θQCD parameter, and would thereby shed light on leptoquark and supersymmetric models that predict C P violation.
Ab Initio Studies of Stratospheric Ozone Depletion Chemistry
Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei
Dytrych, T.; Maris, P.; Launey, K. D.; Draayer, J. P.; Vary, J. P.; Langr, D.; Saule, E.; Caprio, M. A.; Catalyurek, U.; Sosonkina, M.
2016-10-01
We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for 6Li and 12C in large harmonic oscillator model spaces and SU3-selected subspaces. We demonstrate LSU3shell's strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and significant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis affords memory savings in calculations of states with a fixed total angular momentum in large model spaces while exactly preserving translational invariance.
Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei
Energy Technology Data Exchange (ETDEWEB)
Dytrych, T. [Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic); Louisiana State Univ., Baton Rouge, LA (United States); Maris, Pieter [Iowa State Univ., Ames, IA (United States); Launey, K. D. [Louisiana State Univ., Baton Rouge, LA (United States); Draayer, J. P. [Louisiana State Univ., Baton Rouge, LA (United States); Vary, James [Iowa State Univ., Ames, IA (United States); Langr, D. [Czech Technical Univ., Prague (Czech Republic); Aerospace Research and Test Establishment, Prague (Czech Republic); Saule, E. [Univ. of North Carolina, Charlotte, NC (United States); Caprio, M. A. [Univ. of Notre Dame, IN (United States); Catalyurek, U. [The Ohio State Univ., Columbus, OH (United States). Dept. of Electrical and Computer Engineering; Sosonkina, M. [Old Dominion Univ., Norfolk, VA (United States)
2016-06-09
We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for ^{6}Li and ^{12}C in large harmonic oscillator model spaces and SU(3)-selected subspaces. We demonstrate LSU3shell's strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and signi cant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis a ords memory savings in calculations of states with a fixed total angular momentum in large model spaces while exactly preserving translational invariance.
Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei
Dytrych, T; Launey, K D; Draayer, J P; Vary, J P; Langr, D; Saule, E; Caprio, M A; Catalyurek, U; Sosonkina, M
2016-01-01
We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for 6Li and 12C in large harmonic oscillator model spaces and SU(3)-selected subspaces. We demonstrate LSU3shell's strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and significant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis affords memory savings in calculations of states with a fixed total angular momentum in large model spaces while exactly preserving translational invariance.
Marini, Andrea
Density functional theory and many-body perturbation theory methods (such as GW and Bethe-Selpether equation) are standard approaches to the equilibrium ground and excited state properties of condensed matter systems, surfaces, molecules and other several kind of materials. At the same time ultra-fast optical spectroscopy is becoming a widely used and powerful tool for the observation of the out-of-equilibrium dynamical processes. In this case the theoretical tools (such as the Baym-Kadanoff equation) are well known but, only recently, have been merged with the ab-Initio approach. And, for this reason, highly parallel and efficient codes are lacking. Nevertheless, the combination of these two areas of research represents, for the ab-initio community, a challenging prespective as it requires the development of advanced theoretical, methodological and numerical tools. Yambo is a popular community software implementing the above methods using plane-waves and pseudo-potentials. Yambo is available to the community as open-source software, and oriented to high-performance computing. The Yambo project aims at making the simulation of these equilibrium and out-of-equilibrium complex processes available to a wide community of users. Indeed the code is used, in practice, in many countries and well beyond the European borders. Yambo is a member of the suite of codes of the MAX European Center of Excellence (Materials design at the exascale) . It is also used by the user facilities of the European Spectroscopy Facility and of the NFFA European Center (nanoscience foundries & fine analysis). In this talk I will discuss some recent numerical and methodological developments that have been implemented in Yambo towards to exploitation of next generation HPC supercomputers. In particular, I will present the hybrid MPI+OpenMP parallelization and the specific case of the response function calculation. I will also discuss the future plans of the Yambo project and its potential use as
P-V Relation for Mercuric Calcogenides: Ab Initio Method
Directory of Open Access Journals (Sweden)
G. Misra
2011-01-01
Full Text Available Mercuric Calcogenides found many applications in electronic and optical devices as semiconducting materials. An equation of state provides useful information about the relationship between pressure (P, volume (V and temperature (T that helps to understand the behaviour of materials under the effect of high pressure and high temperature. The present paper sheds light on the electronic structure of Mercuric Calcogenides by simulating its electronic properties through ab initio method. This ab initio method is extended to derive the equation of state for Mercuric Calcogenides. The present equation of state has also been tested for the prediction of End Point. The computed results compare well with Quantum statistical data.
Use of ab initio quantum chemical methods in battery technology
Energy Technology Data Exchange (ETDEWEB)
Deiss, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-06-01
Ab initio quantum chemistry can nowadays predict physical and chemical properties of molecules and solids. An attempt should be made to use this tool more widely for predicting technologically favourable materials. To demonstrate the use of ab initio quantum chemistry in battery technology, the theoretical energy density (energy per volume of active electrode material) and specific energy (energy per mass of active electrode material) of a rechargeable lithium-ion battery consisting of a graphite electrode and a nickel oxide electrode has been calculated with this method. (author) 1 fig., 1 tab., 7 refs.
An accurate potential energy curve for helium based on ab initio calculations
Janzen, A. R.; Aziz, R. A.
1997-07-01
Korona, Williams, Bukowski, Jeziorski, and Szalewicz [J. Chem. Phys. 106, 1 (1997)] constructed a completely ab initio potential for He2 by fitting their calculations using infinite order symmetry adapted perturbation theory at intermediate range, existing Green's function Monte Carlo calculations at short range and accurate dispersion coefficients at long range to a modified Tang-Toennies potential form. The potential with retardation added to the dipole-dipole dispersion is found to predict accurately a large set of microscopic and macroscopic experimental data. The potential with a significantly larger well depth than other recent potentials is judged to be the most accurate characterization of the helium interaction yet proposed.
Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides
Sharma, Vinit; Krogel, Jaron T.; Kent, P. R. C.; Reboredo, Fernando A.
One of the critical scientific challenges of contemporary research is to obtain an accurate theoretical description of the electronic properties of strongly correlated systems such as transition metal oxides and rare-earth compounds, since state-of-art ab-initio methods based on approximate density functionals are not always sufficiently accurate. Quantum Monte Carlo (QMC) methods, which use statistical sampling to evaluate many-body wave functions, have the potential to answer this challenge. Owing to the few fundamental approximations made and the direct treatment of electron correlation, QMC methods are among the most accurate electronic structure methods available to date. We assess the accuracy of the diffusion Monte Carlo method in the case of rocksalt manganese oxide (MnO). We study the electronic properties of this strongly-correlated oxide, which has been identified as a suitable candidate for many applications ranging from catalysts to electronic devices. ``This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.'' Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides.
Relaxation of Small Molecules: an ab initio Study
Institute of Scientific and Technical Information of China (English)
CAO Yi-Gang; JIAO Zheng-Kuan; A. Antons; K. Schroeder; S. Blügel2
2002-01-01
Using an ab initio total energy and force method, we have relaxed several group IV and group V elementalclusters, in detail the arsenic and antimony dimers, silicon, phosphorus, arsenic and antimony tetramers. The obtainedbond lengths and cohesive energies are more accurate than other calculating methods, and in excellent agreement withthe experimental results.
Resonance and Aromaticity : An Ab Initio Valence Bond Approach
Rashid, Zahid; van Lenthe, Joop H.; Havenith, Remco W. A.
2012-01-01
Resonance energy is one of the criteria to measure aromaticity. The effect of the use of different orbital models is investigated in the calculated resonance energies of cyclic conjugated hydrocarbons within the framework of the ab initio Valence Bond Self-Consistent Field (VBSCF) method. The VB wav
Ab initio molecular dynamics simulation of laser melting of silicon
Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.
1996-01-01
The method of ab initio molecular dynamics, based on finite temperature density functional theory, is used to simulate laser heating of crystal silicon. We have found that a high concentration of excited electrons dramatically weakens the covalent bond. As a result, the system undergoes a melting tr
Structural flexibility of DABCO. Ab initio and DFT benchmark study
Nizovtsev, Anton S.; Ryzhikov, Maxim R.; Kozlova, Svetlana G.
2017-01-01
The energy and structural parameters of 1,4-diazabicyclo[2.2.2]octane (DABCO) obtained by various DFT methods are examined versus ab initio and experimental data. The features of twisting potentials of DABCO and closely-related species (1-azabicyclo[2.2.2]octane and bicyclo[2.2.2]octane) are discussed in light of computational schemes applied.
Energy Technology Data Exchange (ETDEWEB)
Ventelon, L. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SRMP), 91 - Gif-sur-Yvette (France)
2008-07-01
In the framework of the multi scale simulation of metals and alloys plasticity, the aim of this study is to develop a methodology of ab initio dislocations study and to apply it to the [111] screw dislocation in the bc iron. (A.L.B.)
Ab Initio No Core Shell Model - Recent Results and Further Prospects
Vary, James P; Potter, Hugh; Caprio, Mark A; Smith, Robin; Binder, Sven; Calci, Angelo; Fischer, Sebastian; Langhammer, Joachim; Roth, Robert; Aktulga, Hasan Metin; Ng, Esmond; Yang, Chao; Oryspayev, Dossay; Sosonkina, Masha; Saule, Erik; Çatalyürek, Ümit
2015-01-01
There has been significant recent progress in solving the long-standing problems of how nuclear shell structure and collective motion emerge from underlying microscopic inter-nucleon interactions. We review a selection of recent significant results within the ab initio No Core Shell Model (NCSM) closely tied to three major factors enabling this progress: (1) improved nuclear interactions that accurately describe the experimental two-nucleon and three-nucleon interaction data; (2) advances in algorithms to simulate the quantum many-body problem with strong interactions; and (3) continued rapid development of high-performance computers now capable of performing $20 \\times 10^{15}$ floating point operations per second. We also comment on prospects for further developments.
Steinmann, Casper; Fedorov, Dmitri G; Jensen, Jan H
2013-01-01
We extend the Effective Fragment Molecular Orbital (EFMO) method to the frozen domain approach where only the geometry of an active part is optimized, while the many-body polarization effects are considered for the whole system. The new approach efficiently mapped out the entire reaction path of chorismate mutase in less than four days using 80 cores on 20 nodes, where the whole system containing 2398 atoms is treated in the ab initio fashion without using any force fields. The reaction path is constructed automatically with the only assumption of defining the reaction coordinate a priori. We determine the reaction barrier of chorismate mutase to be [Formula: see text] kcal mol(-1) for MP2/cc-pVDZ and [Formula: see text] for MP2/cc-pVTZ in an ONIOM approach using EFMO-RHF/6-31G(d) for the high and low layers, respectively.
Energy Technology Data Exchange (ETDEWEB)
Ishikawa, Y; Santana, J A; Trabert, E
2009-09-30
A recently developed relatistic multireference many-body perturbation theory based on multireference configuration-interaction wavefunctions as zeroth order wavefunctions is outlined. The perturbation theory employs a general class of configuration-interaction wve functions as reference functions, and thus is applciable to multiple open valence shell systems with near degeneracy of a manifold of strongly interacting configurations. Multireference many-body perturbation calculations are reported for the ground and excited states of chlorine-like Fe X in which the near degeneracy of a manifold of strongly interacting configurations mandates a multireference treatment. Term energies of a total of 83 excited levels arising from the 3s{sup 2}3p{sup 5}, 3s3p{sup 6}, 3s{sup 2}3p{sup 4}3d, 3s3p{sup 5}3d, and 3s{sup 2}3p{sup 3}3d{sup 2} configurations of the ion are evaluated to high accuracy. Transition rates associated with E1/M1/E2/M2/E3 radiative decays and lifetimes of a number of excited levels are calculated and compared with laboratory measurements to critically evaluate recent experiments.
Estudo da geometria da uréia por métodos ab initio e simulação computacional de líquidos
Directory of Open Access Journals (Sweden)
Cirino José Jair Vianna
2002-01-01
Full Text Available A study was carried out on the urea geometries using ab initio calculation and Monte Carlo computational simulation of liquids. The ab initio calculated results showed that urea has a non-planar conformation in the gas phase in which the hydrogen atoms are out of the plane formed by the heavy atoms. Free energies associated to the rotation of the amino groups of urea in water were obtained using the Monte Carlo method in which the thermodynamic perturbation theory is implemented. The magnitude of the free energy obtained from this simulation did not permit us to conclude that urea is non-planar in water.
Lao, Ka Un; Herbert, John M
2015-01-15
We present an overview of "XSAPT", a family of quantum chemistry methods for noncovalent interactions. These methods combine an efficient, iterative, monomer-based approach to computing many-body polarization interactions with a two-body version of symmetry-adapted perturbation theory (SAPT). The result is an efficient method for computing accurate intermolecular interaction energies in large noncovalent assemblies such as molecular and ionic clusters, molecular crystals, clathrates, or protein-ligand complexes. As in traditional SAPT, the XSAPT energy is decomposable into physically meaningful components. Dispersion interactions are problematic in traditional low-order SAPT, and two new approaches are introduced here in an attempt to improve this situation: (1) third-generation empirical atom-atom dispersion potentials, and (2) an empirically scaled version of second-order SAPT dispersion. Comparison to high-level ab initio benchmarks for dimers, water clusters, halide-water clusters, a methane clathrate hydrate, and a DNA intercalation complex illustrate both the accuracy of XSAPT-based methods as well as their limitations. The computational cost of XSAPT scales as O(N(3))-O(N(5)) with respect to monomer size, N, depending upon the particular version that is employed, but the accuracy is typically superior to alternative ab initio methods with similar scaling. Moreover, the monomer-based nature of XSAPT calculations makes them trivially parallelizable, such that wall times scale linearly with respect to the number of monomer units. XSAPT-based methods thus open the door to both qualitative and quantitative studies of noncovalent interactions in clusters, biomolecules, and condensed-phase systems.
Spin-orbit decomposition of ab initio wavefunctions
Johnson, Calvin W
2014-01-01
Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum $j$, leading to $j$-$j$ coupling, phenomenological models suggested decades ago that for $0p$-shell nuclides a simpler picture can be realized via coupling of total spin $S$ and total orbital angular momentum $L$. I revisit this idea with large-basis, no-core shell model (NCSM) calculations using modern \\textit{ab initio} two-body interactions, and dissect the resulting wavefunctions into their component $L$- and $S$-components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly fifty years and six orders of magnitude in basis dimensions. I suggest $L$-$S$ may be a useful tool for analyzing \\textit{ab initio} wavefunctions of light nuclei, for example in the case of rotational bands.
Spin-orbit decomposition of ab initio nuclear wave functions
Johnson, Calvin W.
2015-03-01
Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.
Serine Proteases an Ab Initio Molecular Dynamics Study
De Santis, L
1999-01-01
In serine proteases (SP's), the H-bond between His-57 and Asp-102, and that between Gly-193 and the transition state intermediate play a crucial role for enzymatic function. To shed light on the nature of these interactions, we have carried out ab initio molecular dynamics simulations on complexes representing adducts between the reaction intermediate and elastase (one protein belonging to the SP family). Our calculations indicate the presence of a low--barrier H-bond between His-57 and Asp-102, in complete agreement with NMR experiments on enzyme--transition state analog complexes. Comparison with an ab initio molecular dynamics simulation on a model of the substrate--enzyme adduct indicates that the Gly-193--induced strong stabilization of the intermediate is accomplished by charge/dipole interactions and not by H-bonding as previously suggested. Inclusion of the protein electric field in the calculations does not affect significantly the charge distribution.
High Level Ab Initio Kinetics as a Tool for Astrochemistry
Klippenstein, Stephen
2015-05-01
We will survey the application of ab initio theoretical kinetics to reactions of importance to astrochemistry. Illustrative examples will be taken from our calculations for (i) interstellar chemistry, (ii) Titan's atmospheric chemistry, and (iii) the chemistry of extrasolar giant planets. The accuracy of various aspects of the calculations will be summarized including (i) the underlying ab initio electronic structure calculations, (ii) the treatment of the high pressure recombination process, and (iii) the treatment of the pressure dependence of the kinetics. The applications will consider the chemistry of phosphorous on giant planets, the kinetics of water dimerization, the chemistry of nitrogen on Titan's atmosphere, as well as various reactions of interstellar chemistry interest such as the recombination of OH with H, and O(3P) reacting with C2H5, CH2, and CCS. Chemical Sciences and Engineering Division.
Ab initio theories for light nuclei and neutron stars
Gezerlis, Alexandros
2016-09-01
In this talk I will touch upon several features of modern ab initio low-energy nuclear theory. I will start by discussing what ``ab initio'' means in this context. Specifically, I will spend some time going over nucleon-nucleon and three-nucleon interactions and their connections with the underlying theory of Quantum Chromodynamics. I will then show how these interactions are used to describe light nuclei using essentially exact few-body methods. I will then discuss heavier systems, especially those of astrophysical relevance, as well as the methods used to tackle them. This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Foundation for Innovation (CFI).
Thermochemical data for CVD modeling from ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Ho, P. [Sandia National Labs., Albuquerque, NM (United States); Melius, C.F. [Sandia National Labs., Livermore, CA (United States)
1993-12-31
Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.
GAUSSIAN 76: An ab initio Molecular Orbital Program
Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.
1978-01-01
Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.
Ab initio calculation of tight-binding parameters
Energy Technology Data Exchange (ETDEWEB)
McMahan, A.K.; Klepeis, J.E.
1997-12-01
We calculate ab initio values of tight-binding parameters for the f- electron metal Ce and various phases of Si, from local-density functional one-electron Hamiltonian and overlap matrix elements. Our approach allows us to unambiguously test the validity of the common minimal basis and two-center approximations as well as to determine the degree of transferability of both nonorthogonal and orthogonal hopping parameters in the cases considered.
Ab Initio-Based Predictions of Hydrocarbon Combustion Chemistry
2015-07-15
144306 (2010)] and the cubic -‐ spline -‐fitted PES reported by Xu, Xie, Zhang, Lin, and Guo...SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15. SUBJECT TERMS b ...accurate global PESs and for direct dynamics simulations using interpolating moving least squares (IMLS) that guarantee high fidelity to ab initio data. A
Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes
Energy Technology Data Exchange (ETDEWEB)
Draayer, Jerry P. [Louisiana State Univ., Baton Rouge, LA (United States)
2014-09-28
We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics.
Makhov, Dmitry V; Glover, William J; Martinez, Todd J; Shalashilin, Dmitrii V
2014-08-07
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
Ab initio molecular dynamics using hybrid density functionals
Guidon, Manuel; Schiffmann, Florian; Hutter, Jürg; Vandevondele, Joost
2008-06-01
Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Makhov, Dmitry V.; Shalashilin, Dmitrii V. [Department of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom); Glover, William J.; Martinez, Todd J. [Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)
2014-08-07
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
Ab initio study of structural, electronic, and thermal properties of Ir1-xRhx alloys
Directory of Open Access Journals (Sweden)
Sh. Ahmed
2015-06-01
Full Text Available The structural, electronic, mechanical and thermal properties of Ir1-xRhx alloys was studied systematically using ab initio density functional theory at different concentration (x = 0.00, 0.25, 0.50, 0.75, 1.00. The Special Quasirandom Structure method was used to make the alloys with FCC structure with four atoms per unit cell. The ground state properties such as lattice constant and bulk modulus were calculated to find the equilibrium atomic position for stable alloys. The calculated ground state properties are in good agreement with the experimental and previously presented other theoretical data. The electronic band structure and density of states were calculated to study the electronic properties for these alloys at different concentration. The electronic properties substantiate metallic behavior of alloys. The first principle density functional perturbation theory as implemented in quasiharmonic approximation was used for the calculation of thermal properties. We have calculated the thermal properties such the Debye temperatures, vibration energy, entropy, constant-volume specific heat and internal energy. The ab initio linear-response method was used for phonon densities of states calculations.
Energy Technology Data Exchange (ETDEWEB)
Bernard, St
1998-12-31
The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H{sub 2}){sub 2} which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author) 109 refs.
The {\\it ab initio} calculation of spectra of open shell diatomic molecules
Tennyson, Jonathan; McKemmish, Laura K; Yurchenko, Sergei N
2016-01-01
The spectra (rotational, rotation-vibrational or electronic) of diatomic molecules due to transitions involving only closed-shell ($^1\\Sigma$) electronic states follow very regular, simple patterns and their theoretical analysis is usually straightforward. On the other hand, open-shell electronic states lead to more complicated spectral patterns and, moreover, often appear as a manifold of closely lying electronic states, leading to perturbations with even larger complexity. This is especially true when at least one of the atoms is a transition metal. Traditionally these complex cases have been analysed using approaches based on perturbation theory, with semi-empirical parameters determined by fitting to spectral data. Recently the needs of two rather diverse scientific areas have driven the demand for improved theoretical models of open-shell diatomic systems based on an \\emph{ab initio} approach, these areas are ultracold chemistry and the astrophysics of "cool" stars, brown dwarfs and most recently extraso...
Ab initio description of continuum effects in A=11 exotic systems with chiral NN+3N forces
Calci, Angelo; Navratil, Petr; Roth, Robert; Dohet-Eraly, Jeremy; Quaglioni, Sofia; Hupin, Guillaume
2016-09-01
Based on the fundamental symmetries of QCD, chiral effective field theory (EFT) provides two- (NN), three- (3N) and many-nucleon interactions in a consistent and systematically improvable scheme. The rapid developments to construct divers families of chiral NN+3N interactions and the conceptual and technical improvements of ab initio many-body approaches pose a great opportunity for nuclear physics. By studying particular interesting phenomena in nuclear structure and reaction observables one can discriminate between different forces and study the predictive power of chiral EFT. The accurate description of the 11Be nucleus, in particular, the ground-state parity inversion and exceptionally strong E1 transition between its two bound states constitute an enormous challenge for the developments of nuclear forces and many-body approaches. We present a sensitivity analysis of structure and reaction observables to different NN+3N interactions in 11Be and n+10Be as well as the mirror p+10C scattering using the ab initio NCSM with continuum (NCSMC). Supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Work Proposal No. SCW1158. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada.
Energy Technology Data Exchange (ETDEWEB)
Sanz-Vicario, J.L. [Departamento de Quimica, C-IX, Universidad Autonoma de Madrid, 28049-Madrid (Spain); Sede de Investigacion Universitaria (SIU). Instituto de Fisica, Universidad de Antioquia, Medellin (Colombia)], E-mail: joseluis.sanzvicario@uam.es; Palacios, A. [Departamento de Quimica, C-IX, Universidad Autonoma de Madrid, 28049-Madrid (Spain); Cardona, J.C. [Sede de Investigacion Universitaria (SIU). Instituto de Fisica, Universidad de Antioquia, Medellin (Colombia); Bachau, H. [Centre des Lasers Intenses et Applications, UMR 5107 du CNRS-Universite bordeaux I-CEA, Universite Bordeaux I, 33405 Talence Cedex (France); Martin, F. [Departamento de Quimica, C-IX, Universidad Autonoma de Madrid, 28049-Madrid (Spain)
2007-10-15
An ab initio non-perturbative time dependent method to describe ionization of molecular systems by ultrashort (femtosecond) laser pulses has been developed. The method allows one to describe competing processes such as non dissociative ionization, dissociative ionization and dissociation into neutrals, including the possibility of autoionization. In this work we assess the validity of the method by applying it to different physical situations and by comparing with results previously obtained within stationary perturbation theory. In particular, it is shown that inclusion of the nuclear motion is essential to describe H{sub 2} resonance enhanced multiphoton ionization and interferences mediated by H{sub 2} autoionizing states.
Spin-orbit decomposition of ab initio wavefunctions
Johnson, Calvin W.
2014-01-01
Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum $j$, leading to $j$-$j$ coupling, phenomenological models suggested decades ago that for $0p$-shell nuclides a simpler picture can be realized via coupling of total spin $S$ and total orbital angular momentum $L$. I revisit this idea with large-basis, no-core shell model (NCSM) calculations using modern \\textit{ab initio} two-body interactions, and dissect the resulti...
Accelerating Ab Initio Nuclear Physics Calculations with GPUs
Potter, Hugh; Maris, Pieter; Sosonkina, Masha; Vary, James; Binder, Sven; Calci, Angelo; Langhammer, Joachim; Roth, Robert; Çatalyürek, Ümit; Saule, Erik
2014-01-01
This paper describes some applications of GPU acceleration in ab initio nuclear structure calculations. Specifically, we discuss GPU acceleration of the software package MFDn, a parallel nuclear structure eigensolver. We modify the matrix construction stage to run partly on the GPU. On the Titan supercomputer at the Oak Ridge Leadership Computing Facility, this produces a speedup of approximately 2.2x - 2.7x for the matrix construction stage and 1.2x - 1.4x for the entire run.
Ab initio study of phase equilibria in TiCx
DEFF Research Database (Denmark)
Korzhavyi, P.A.; Pourovskii, L.V.; Hugosson, H.W.
2002-01-01
The phase diagram for the vacancy-ordered structures in the substoichiometric TiCx (x = 0.5-1.0) has been established from Monte Carlo simulations with the long-range pair and multisite effective interactions obtained from ab initio calculations. Three ordered superstructures of vacancies (Ti2C, Ti......3C2, and Ti6C5) are found to be ground state configurations. Their stability has been verified by full-potential total energy calculations of the fully relaxed structures....
Ab initio structure determination via powder X-ray diffraction
Indian Academy of Sciences (India)
Digamber G Porob; T N Guru Row
2001-10-01
Structure determination by powder X-ray diffraction data has gone through a recent surge since it has become important to get to the structural information of materials which do not yield good quality single crystals. Although the method of structure completion when once the starting model is provided is facile through the Rietveld refinement technique, the structure solution ab initio os still not push-button technology. In this article a survey of the recent development in this area is provided with an illustration of the structure determination of -NaBi3V2O10.
Ab initio modeling of small proteins by iterative TASSER simulations
Directory of Open Access Journals (Sweden)
Zhang Yang
2007-05-01
Full Text Available Abstract Background Predicting 3-dimensional protein structures from amino-acid sequences is an important unsolved problem in computational structural biology. The problem becomes relatively easier if close homologous proteins have been solved, as high-resolution models can be built by aligning target sequences to the solved homologous structures. However, for sequences without similar folds in the Protein Data Bank (PDB library, the models have to be predicted from scratch. Progress in the ab initio structure modeling is slow. The aim of this study was to extend the TASSER (threading/assembly/refinement method for the ab initio modeling and examine systemically its ability to fold small single-domain proteins. Results We developed I-TASSER by iteratively implementing the TASSER method, which is used in the folding test of three benchmarks of small proteins. First, data on 16 small proteins (α-root mean square deviation (RMSD of 3.8Å, with 6 of them having a Cα-RMSD α-RMSD α-RMSD of the I-TASSER models was 3.9Å, whereas it was 5.9Å using TOUCHSTONE-II software. Finally, 20 non-homologous small proteins (α-RMSD of 3.9Å was obtained for the third benchmark, with seven cases having a Cα-RMSD Conclusion Our simulation results show that I-TASSER can consistently predict the correct folds and sometimes high-resolution models for small single-domain proteins. Compared with other ab initio modeling methods such as ROSETTA and TOUCHSTONE II, the average performance of I-TASSER is either much better or is similar within a lower computational time. These data, together with the significant performance of automated I-TASSER server (the Zhang-Server in the 'free modeling' section of the recent Critical Assessment of Structure Prediction (CASP7 experiment, demonstrate new progresses in automated ab initio model generation. The I-TASSER server is freely available for academic users http://zhang.bioinformatics.ku.edu/I-TASSER.
Benchmarks of the ab initio FCI, MCSM and NCFC methods
Abe, T; Otsuka, T; Shimizu, N; Utsuno, Y; Vary, J P
2012-01-01
We report ab initio no-core solutions for properties of light nuclei with three different approaches in order to assess the accuracy and convergence rates of each method. Full Configuration Interaction (FCI), Monte Carlo Shell Model (MCSM) and No Core Full Configuration (NCFC) approaches are solved separately for the ground state energy and other properties of seven light nuclei using the realistic JISP16 nucleon-nucleon interaction. The results are consistent among the different approaches. The methods differ significantly in how the required computational resources scale with increasing particle number for a given accuracy.
Ab-initio study of transition metal hydrides
Energy Technology Data Exchange (ETDEWEB)
Sharma, Ramesh [Dept. of Physics, Feroze Gandhi Insititute of Engineering and Technology, Raebareli-229001 (India); Shukla, Seema, E-mail: sharma.yamini62@gmail.com; Dwivedi, Shalini, E-mail: sharma.yamini62@gmail.com; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com [Theoretical Condensed Matter Physics Laboratory, Dept. of Physics Feroze Gandhi College, Raebareli-229001 (India)
2014-04-24
We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.
Morphing ab initio potential energy curve of beryllium monohydride
Špirko, Vladimír
2016-12-01
Effective (mass-dependent) potential energy curves of the ground electronic states of 9BeH, 9BeD, and 9BeT are constructed by morphing a very accurate MR-ACPF ab initio potential of Koput (2011) within the framework of the reduced potential energy curve approach of Jenč (1983). The morphing is performed by fitting the RPC parameters to available experimental ro-vibrational data. The resulting potential energy curves provide a fairly quantitative reproduction of the fitted data. This allows for a reliable prediction of the so-far unobserved molecular states in terms of only a small number of fitting parameters.
Tailoring magnetoresistance at the atomic level: An ab initio study
Tao, Kun
2012-01-05
The possibility of manipulating the tunneling magnetoresistance (TMR) of antiferromagnetic nanostructures is predicted in the framework of ab initio calculations. By the example of a junction composed of an antiferromagnetic dimer and a spin-polarized scanning tunneling microscopy tip we show that the TMR can be tuned and even reversed in sign by lateral and vertical movements of the tip. Moreover, our finite-bias calculations demonstrate that the magnitude and the sign of the TMR can also be tuned by an external voltage. © 2012 American Physical Society.
Hydrogen Desorption from Mg Hydride: An Ab Initio Study
Directory of Open Access Journals (Sweden)
Simone Giusepponi
2012-07-01
Full Text Available Hydrogen desorption from hydride matrix is still an open field of research. By means of accurate first-principle molecular dynamics (MD simulations an Mg–MgH2 interface is selected, studied and characterized. Electronic structure calculations are used to determine the equilibrium properties and the behavior of the surfaces in terms of structural deformations and total energy considerations. Furthermore, extensive ab-initio molecular dynamics simulations are performed at several temperatures to characterize the desorption process at the interface. The numerical model successfully reproduces the experimental desorption temperature for the hydride.
Ab initio intermolecular potential energy surface of He-LiH
Institute of Scientific and Technical Information of China (English)
鄢国森; 杨明晖; 谢代前
1997-01-01
The intermolecular potential energy surface of He-LiH complex was studied using the full-electronic complete forth-order Miller-Plesset perturbation (MPPT) method.In ab initio calculations,the bond length of LiH was fixed at 0 159 5 nm.The potential has two local minima of Vm=-179.93 cm for the linear He LiH geormetrv at Rm=0.227 nm and Vm=-10.44 cm-1 for the linear He-HL1 geometry at Rm=0.516 nm The potemal exhibits strong anisotropy The analytic potential function with 31 parameters was determined by fitting to the calculated ab,mtio potentials The influence of variation of LiH bond length on the potential energy surface was also studied
A-dependence of the Spectra of the F Isotopes from ab initio Calculations
Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Vary, James P.; Shirokov, Andrey M.
2016-03-01
Using a succession of Okubo-Lee-Suzuki transformations within the No Core Shell Model (NCSM) formalism, we derive an ab initio, non-perturbative procedure for calculating the input for standard shell-model (SSM) calculations within one major shell. We have used this approach for calculating the spectra of the F isotopes from A=18 to A=25, so as to study the A-dependence of the results. In particular, we are interested in seeing if the theoretical input is weak enough, so that a single set of two-body effective interactions can be used for all of the F isotopes investigated. We will present results from SSM calculations based on input obtained with the JISP16 nucleon-nucleon interaction in an initial 4 ℏΩ NCSM basis space. This work supported in part by TUBITAK-BIDEB, the US DOE, the US NSF, NERSC, and the Russian Ministry of Education and Science.
Density functional and ab initio investigation of S2N2 and (SN)2
Moon, Jiwon; Chae, Myoungju; Kim, Joonghan
2017-03-01
Quantum chemical calculations were performed to calculate the molecular properties of the 1Ag state of disulfur dinitride, S2N2, and the 1A1 state of the SN dimer, (SN)2, using density functional theory (DFT) and ab initio methods. The molecular structure of (SN)2 is a trapezoid instead of a rectangle. Because the multireference character of (SN)2 is considerable, most hybrid DFTs poorly describe its molecular properties. In contrast, old generalized gradient approximations give qualitatively correct descriptions of the molecular properties of (SN)2. Multi-state second-order multiconfigurational perturbation theory gives results that are close to those from multireference configuration interaction with the Davidson correction. The multireference character should be considered when calculating the molecular properties of poly sulfur nitride systems.
Ab initio study of the phononic origin of negative thermal expansion
Argaman, Uri; Eidelstein, Eitan; Levy, Ohad; Makov, Guy
2016-11-01
Negative thermal expansion is an uncommon phenomenon of theoretical interest. Multiple hypotheses regarding its microscopic origins have been suggested. In this paper, the thermal expansion of a representative semiconductor, Si, and a representative metal, Ti, are calculated ab initio using density-functional perturbation theory. The phonon modes' contributions to the thermal expansion are analyzed and the negative thermal expansion is shown to be dominated by negative mode Grüneisen parameters at specific points on the Brillouin zone boundaries. Thus, the elastic (Debye) theory for negative thermal expansion is shown to be irrelevant for these phenomena. The anomalous behavior of these modes in Ti is shown to be unaffected by an electronic topological transition as previously suggested, instead it arises from complex interplay of atomic displacements of the anomalous mode.
DEFF Research Database (Denmark)
Bork, Nicolai Christian; Du, Lin; Reiman, Heidi;
2014-01-01
Models of formation and growth of atmospheric aerosols are highly dependent on accurate cluster binding energies. These are most often calculated by ab initio electronic structure methods but remain associated with significant uncertainties. We present a computational benchmarking study......) and compare this range to predictions from several widely used electronic structure methods, including five density functionals, Møller-Plesset perturbation theory, and five coupled cluster methods up to CCSDT quality, considering also the D3 dispersion correctional scheme. With some exceptions, we find...... that most electronic structure methods overestimate ΔG°295 K. The effects of vibrational anharmonicity is approximated using scaling factors, reducing ΔG°295 K by ca. 1.8 kJ mol(-1), whereby ΔG°295 K predictions well within the experimental range can be obtained....
Energy Technology Data Exchange (ETDEWEB)
Bernard, S.; Jollet, F.; Jomard, G.; Siberchicot, B.; Torrent, M.; Zerah, G.; Amadon, B.; Bouchet, J.; Richard, N.; Robert, G. [CEA Bruyeres-le-Chatel, 91 (France)
2005-07-01
The determination of equations of states of heavy metals through ab initio calculation, i.e. without any adjustable parameter, allows to access to pressure and temperature thermodynamic conditions sometimes inaccessible to experiment. To perform such calculations, density functional theory (DFT) is a good starting point: when electronic densities are homogeneous enough, the local density approximation (LDA) remarkably accounts for thermodynamic properties of heavy metals, such as tantalum, or the light actinides, as well for static properties - equilibrium volume, elastic constants - as for dynamical quantities like phonon spectra. For heavier elements, like neptunium or plutonium, relativistic effects and strong electronic interactions must be taken into account, which requires more sophisticated theoretical approaches. (authors)
Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates
Energy Technology Data Exchange (ETDEWEB)
Chaka, Anne M.; Felmy, Andrew R.
2014-03-28
An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.
Ab initio thermodynamic model for magnesium carbonates and hydrates.
Chaka, Anne M; Felmy, Andrew R
2014-09-04
An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.
Ohta, Yasuhito; Ohta, Koji; Kinugawa, Kenichi
2004-01-01
An ab initio centroid molecular dynamics (CMD) method is developed by combining the CMD method with the ab initio molecular orbital method. The ab initio CMD method is applied to vibrational dynamics of diatomic molecules, H2 and HF. For the H2 molecule, the temperature dependence of the peak frequency of the vibrational spectral density is investigated. The results are compared with those obtained by the ab initio classical molecular dynamics method and exact quantum mechanical treatment. It is shown that the vibrational frequency obtained from the ab initio CMD approaches the exact first excitation frequency as the temperature lowers. For the HF molecule, the position autocorrelation function is also analyzed in detail. The present CMD method is shown to well reproduce the exact quantum result for the information on the vibrational properties of the system.
Helium atom excitations by the GW and Bethe-Salpeter many-body formalism
Li, Jing; Duchemin, Ivan; Blase, Xavier; Olevano, Valerio
2016-01-01
Helium atom is the simplest many-body electronic system provided by nature. The exact solution to the Schr\\"odinger equation is known for helium ground and excited states, and represents a workbench for any many-body methodology. Here we check ab initio many-body GW approximation and Bethe-Salpeter equation (BSE) against helium exact solution. Starting from Hartree-Fock, we show that GW and BSE yield impressingly accurate results on excitation energies and oscillator strength. These findings suggest that the accuracy of BSE and GW approximations is not significantly limited by self-interaction and self-screening problems even in this few electron limit. We further discuss our results in comparison to those obtained by time-dependent density-functional theory.
Energy Technology Data Exchange (ETDEWEB)
Duguet, T. [IRFU/Service de Physique Nucleaire, CEA, Centre de Saclay, Gif-sur-Yvette (France); Instituut voor Kern- en Stralingsfysica, KU Leuven, Leuven (Belgium); Michigan State University, National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, East Lansing, MI (United States); Bender, M. [Centre d' Etudes Nucleaires de Bordeaux Gradignan, Universite Bordeaux, UMR5797, Gradignan (France); Centre d' Etudes Nucleaires de Bordeaux Gradignan, CNRS/IN2P3, UMR5797, Gradignan (France); Ebran, J.P. [CEA, DAM, DIF, Arpajon (France); Lesinski, T.; Soma, V. [IRFU/Service de Physique Nucleaire, CEA, Centre de Saclay, Gif-sur-Yvette (France)
2015-12-15
This programmatic paper lays down the possibility to reconcile the necessity to resum many-body correlations into the energy kernel with the fact that safe multi-reference energy density functional (EDF) calculations cannot be achieved whenever the Pauli principle is not enforced, as is for example the case when many-body correlations are parametrized under the form of empirical density dependencies. Our proposal is to exploit a newly developed ab initio many-body formalism to guide the construction of safe, explicitly correlated and systematically improvable parametrizations of the off-diagonal energy and norm kernels that lie at the heart of the nuclear EDF method. The many-body formalism of interest relies on the concepts of symmetry breaking and restoration that have made the fortune of the nuclear EDF method and is, as such, amenable to this guidance. After elaborating on our proposal, we briefly outline the project we plan to execute in the years to come. (orig.)
Quantum plasmonics: from jellium models to ab initio calculations
Directory of Open Access Journals (Sweden)
Varas Alejandro
2016-08-01
Full Text Available Light-matter interaction in plasmonic nanostructures is often treated within the realm of classical optics. However, recent experimental findings show the need to go beyond the classical models to explain and predict the plasmonic response at the nanoscale. A prototypical system is a nanoparticle dimer, extensively studied using both classical and quantum prescriptions. However, only very recently, fully ab initio time-dependent density functional theory (TDDFT calculations of the optical response of these dimers have been carried out. Here, we review the recent work on the impact of the atomic structure on the optical properties of such systems. We show that TDDFT can be an invaluable tool to simulate the time evolution of plasmonic modes, providing fundamental understanding into the underlying microscopical mechanisms.
An Efficient Approach to Ab Initio Monte Carlo Simulation
Leiding, Jeff
2013-01-01
We present a Nested Markov Chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, is used to substantially decorrelate configurations at which the potential of interest is evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure is maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature \\beta^0), which is otherwise unconstrained. Local density approximation (LDA) results are presented for shocked states in argon at pressures from 4 to 60 GPa. Depending on the quality of the reference potential, the acceptance probability is enhanced by factors of 1.2-28 relative to unoptimized NMC sampling, and the procedure's efficiency is found to be competitive with that of standard ab initio...
Ab initio quantum dynamics using coupled-cluster
Kvaal, Simen
2012-01-01
The curse of dimensionality (COD) limits the current state-of-the-art {\\it ab initio} propagation methods for non-relativistic quantum mechanics to relatively few particles. For stationary structure calculations, the coupled-cluster (CC) method overcomes the COD in the sense that the method scales polynomially with the number of particles while still being size-consistent and extensive. We generalize the CC method to the time domain while allowing the single-particle functions to vary in an adaptive fashion as well, thereby creating a highly flexible, polynomially scaling approximation to the time-dependent Schr\\"odinger equation. The method inherits size-consistency and extensivity from the CC method. The method is dubbed orbital-adaptive time-dependent coupled-cluster (OATDCC), and is a hierarchy of approximations to the now standard multi-configurational time-dependent Hartree method for fermions. A numerical experiment is also given.
Ab initio study of the transition-metal carbene cations
Institute of Scientific and Technical Information of China (English)
李吉海; 冯大诚; 冯圣玉
1999-01-01
The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH2+ were investigated by ab initio molecular orbital theory （HF/LANL2DZ）. All of MCH2+ are coplanar. In the closed shell structures the C bonds to M with double bonds; while in the open shell structures the partial double bonds are formed, because one of the σ and π orbitals is singly occupied. It is mainly the π-type overlap between the 2px orbital of C and 4px, 3dxz, orbitals of M+ that forms the π orbitals. The dissociation energies of C—M bond appear in periodic trend from Sc to Cu. Most of the calculated bond dissociation energies are close to the experimental ones.
Ab initio study of II-(VI){sub 2} dichalcogenides
Energy Technology Data Exchange (ETDEWEB)
Olsson, P; Vidal, J; Lincot, D, E-mail: polsson@kth.se [Institut de R and D sur l' energie photovoltaique (IRDEP), UMR 7174-EDF-CNRS-ENSCP, 6 quai Watier, 78401 Chatou Cedex (France)
2011-10-12
The structural stabilities of the (Zn,Cd)(S,Se,Te){sub 2} dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe{sub 2} pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications. (paper)
Ab initio and kinetic modeling studies of formic acid oxidation
DEFF Research Database (Denmark)
Marshall, Paul; Glarborg, Peter
2015-01-01
A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...... have been compared to the experimental results of de Wilde and van Tiggelen (1968) who measured the laminar burning velocities for HOCHO flames over a range of stoichiometries and dilution ratios. The modeling predictions are generally satisfactory. The governing reaction mechanisms are outlined based...... on calculations with the kinetic model. Formic acid is consumed mainly by reaction with OH, yielding OCHO, which dissociates rapidly to CO2 + H, and HOCO, which may dissociate to CO + OH or CO2 + H, or react with H, OH, or O2 to form more stable products. The branching fraction of the HOCHO + OH reaction, as well...
Interatomic Coulombic decay widths of helium trimer: Ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Kolorenč, Přemysl, E-mail: kolorenc@mbox.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Institute of Theoretical Physics, V Holešovičkách 2, 180 00 Prague (Czech Republic); Sisourat, Nicolas [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France)
2015-12-14
We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.
Ab initio investigation of the mechanical properties of copper
Institute of Scientific and Technical Information of China (English)
Liu Yue-Lin; Gui Li-Jiang; Jin Shuo
2012-01-01
Employing the ab initio total energy method based on the density functional theory with the generalized gradient approximation,we have systematically investigated the theoretical mechanical properties of copper (Cu).The theoretical tensile strengths are calculated to be 25.3 GPa,5.9 GPa,and 37.6 GPa for the fcc Cu single crystal in the [001],[110],and [111] directions,respectively.Among the three directions,the [110] direction is the weakest one due to the occurrence of structure transition at the lower strain and the weakest interaction of atoms between the (110) planes,while the [111] direction is the strongest direction because of the strongest interaction of atoms between the (111) planes.In terms of the elastic constants of Cu single crystal,we also estimate some mechanical quantities of polycrystalline Cu,including bulk modulus B,shear modulus G,Young's modulus Ep,and Poisson's ratio v.
Ab initio quantum dynamics using coupled-cluster.
Kvaal, Simen
2012-05-21
The curse of dimensionality (COD) limits the current state-of-the-art ab initio propagation methods for non-relativistic quantum mechanics to relatively few particles. For stationary structure calculations, the coupled-cluster (CC) method overcomes the COD in the sense that the method scales polynomially with the number of particles while still being size-consistent and extensive. We generalize the CC method to the time domain while allowing the single-particle functions to vary in an adaptive fashion as well, thereby creating a highly flexible, polynomially scaling approximation to the time-dependent Schrödinger equation. The method inherits size-consistency and extensivity from the CC method. The method is dubbed orbital-adaptive time-dependent coupled-cluster, and is a hierarchy of approximations to the now standard multi-configurational time-dependent Hartree method for fermions. A numerical experiment is also given.
Ab initio Molecular Dynamics Study on Small Carbon Nanotubes
Institute of Scientific and Technical Information of China (English)
叶林晖; 刘邦贵; 王鼎盛
2001-01-01
Ab initio molecular dynamics simulations are performed on small single wall nanotubes. By structural relaxation,the equilibrium C-C bond lengths and bond angles are determined. Our result shows that for both zigzag and armchair nanotubes there are two nonequivalent bond lengths. One bond stretches from that of the graphene sheet, while the other shrinks. Small variations on bond angles are also shown. Energy bands are calculated for the optimized structures. It is found that the intrinsic curvature of the very small nanotube greatly modifies the energy band which can no longer be well described in the tight-binding zone-folding picture. In our calculation very small nanotubes are metallic. The energy per atom fits quite well with the relation of E(R) = E0 + f/R2 even for the extreme small radius. The implications of the results on the properties of small nanotubes are discussed.
High-throughput ab-initio dilute solute diffusion database
Wu, Henry; Mayeshiba, Tam; Morgan, Dane
2016-07-01
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.
Ab initio study of alanine polypeptide chains twisting
Solovyov, I A; Solovyov, A V; Yakubovitch, A V; Greiner, Walter; Solov'yov, Andrey V.; Solov'yov, Ilia A.; Yakubovitch, Alexander V.
2005-01-01
We have investigated the potential energy surfaces for alanine chains consisting of three and six amino acids. For these molecules we have calculated potential energy surfaces as a function of the Ramachandran angles Phi and Psi, which are widely used for the characterization of the polypeptide chains. These particular degrees of freedom are essential for the characterization of proteins folding process. Calculations have been carried out within ab initio theoretical framework based on the density functional theory and accounting for all the electrons in the system. We have determined stable conformations and calculated the energy barriers for transitions between them. Using a thermodynamic approach, we have estimated the times of characteristic transitions between these conformations. The results of our calculations have been compared with those obtained by other theoretical methods and with the available experimental data extracted from the Protein Data Base. This comparison demonstrates a reasonable corres...
Ab initio electronic structure and optical conductivity of bismuth tellurohalides
Schwalbe, Sebastian; Starke, Ronald; Schober, Giulio A H; Kortus, Jens
2016-01-01
We investigate the electronic structure, dielectric and optical properties of bismuth tellurohalides BiTeX (X = I, Cl, Br) by means of all-electron density functional theory. In particular, we present the ab initio conductivities and dielectric tensors calculated over a wide frequency range, and compare our results with the recent measurements by Akrap et al. , Makhnev et al. , and Rusinov et al. . We show how the low-frequency branch of the optical conductivity can be used to identify characteristic intra- and interband transitions between the Rashba spin-split bands in all three bismuth tellurohalides. We further calculate the refractive indices and dielectric constants, which in turn are systematically compared to previous predictions and measurements. We expect that our quantitative analysis will contribute to the general assessment of bulk Rashba materials for their potential use in spintronics devices.
Wang, K.; Chen, Z. B.; Si, R.; Jönsson, P.; Ekman, J.; Guo, X. L.; Li, S.; Long, F. Y.; Dang, W.; Zhao, X. H.; Hutton, R.; Chen, C. Y.; Yan, J.; Yang, X.
2016-10-01
Level energies, wavelengths, electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transition rates, oscillator strengths, and line strengths from combined relativistic configuration interaction and many-body perturbation calculations are reported for the 201 fine-structure states of the 2{s}22{p}6, 2{s}22{p}53l, 2s2{p}63l, 2{s}22{p}54l, 2s2{p}64l, 2{s}22{p}55l, and 2{s}22{p}56l configurations in all Ne-like ions between Cr xv and Kr xxvii. Calculated level energies and transition data are compared with experiments from the National Institute of Standards and Technology (NIST) and CHIANTI databases, and other recent benchmark calculations. The mean energy difference with the NIST experiments is only 0.05%. The present calculations significantly increase the amount of accurate spectroscopic data for the n > 3 states in a number of Ne-like ions of astrophysical interest. A complete data set should be helpful for analyzing new observations from solar and other astrophysical sources, and is also likely to be useful for modeling and diagnosing a variety of plasmas, including astronomical and fusion plasma.
Baeck, Kyoung K.; Watts, John D.; Bartlett, Rodney J.
1997-09-01
Analytic coupled-cluster (CC) and many-body perturbation theory (MBPT) energy gradient methods with restricted Hartree-Fock (RHF), unrestricted Hartree-Fock (UHF), restricted open-shell Hartree-Fock (ROHF), and quasi-RHF(QRHF) reference functions are extended to permit dopping core and excited orbitals. By using the canonical property of the semicanonical ROHF orbitals and the RHF orbitals from which the QRHF reference function is constructed, it is shown that a general procedure can be established not only for RHF and UHF, but also for ROHF and QRHF reference functions. The basic theory and implementation are reported. To provide a systematic study of the trends and magnitudes of the effects of dropped molecular orbitals (MOs) on the structures, harmonic frequencies, and ir intensities, we study HCN, C2H2, CO2, HO2, and C2H4 at increasing levels of correlation and basis sets. The effects of the dropped MOs with the largest basis sets are about 0.003 Å and 0.1° in structures and about 1% on harmonic frequencies and ir intensities. The magnitude and the direction of the drop-MO effect tend to be almost constant from MBPT(2) to CCSD(T) methods. The two isomers of S3 are studied by the drop-MO-method, yielding very accurate results.
Wang, Kai; Si, Ran; Jönsson, Per; Ekman, Jörgen; Guo, Xue Lin; Li, Shuang; Long, Fei Yun; Dang, Wei; Zhao, Xiao Hui; Hutton, Roger; Chen, Chong Yang; Yan, Jan; Yang, Xu
2016-01-01
Level energies, wavelengths, electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transition rates, oscillator strengths, and line strengths from combined relativistic configuration interaction and many-body perturbation calculations are reported for the 201 fine-structure states of the $2s^2 2p^6$, $2s^2 2p^5 3l$, $2s 2p^6 3l$, $2s^2 2p^5 4l$, $2s 2p^6 4l$, $2s^2 2p^5 5l$, and $2s^2 2p^5 6l$ configurations in all Ne-like ions between Cr XV and Kr XXVII. Calculated level energies and transition data are compared with experiments from the NIST and CHIANTI databases, and other recent benchmark calculations. The mean energy difference with the NIST experiments is only 0.05%. The present calculations significantly increase the amount of accurate spectroscopic data for the $n >3$ states in a number of Ne-like ions of astrophysics interest. A complete dataset should be helpful in analyzing new observations from the solar and other astrophysical sources, and is also likely to be useful for ...
Ab initio Bogoliubov coupled cluster theory for open-shell nuclei
Signoracci, Angelo; Hagen, Gaute; Jansen, Gustav
2014-01-01
Ab initio many-body methods address closed-shell nuclei up to mass A ~ 130 on the basis of realistic two- and three-nucleon interactions. Several routes to address open-shell nuclei are currently under investigation, including ideas which exploit spontaneous symmetry breaking. Singly open-shell nuclei can be efficiently described via the sole breaking of $U(1)$ gauge symmetry associated with particle number conservation, to account for their superfluid character. The present work formulates and applies Bogoliubov coupled cluster (BCC) theory, which consists of representing the exact ground-state wavefunction of the system as the exponential of a quasiparticle excitation cluster operator acting on a Bogoliubov reference state. Equations for the ground-state energy and cluster amplitudes are derived at the singles and doubles level (BCCSD) both algebraically and diagrammatically. The formalism includes three-nucleon forces at the normal-ordered two-body level. The first BCC code is implemented in $m$-scheme, wh...
High-level ab initio computations of the absorption spectra of organic iridium complexes.
Plasser, Felix; Dreuw, Andreas
2015-02-12
The excited states of fac-tris(phenylpyridinato)iridium [Ir(ppy)3] and the smaller model complex Ir(C3H4N)3 are computed using a number of high-level ab initio methods, including the recently implemented algebraic diagrammatic construction method to third-order ADC(3). A detailed description of the states is provided through advanced analysis methods, which allow a quantification of different charge transfer and orbital relaxation effects and give extended insight into the many-body wave functions. Compared to the ADC(3) benchmark an unexpected striking difference of ADC(2) is found for Ir(C3H4N)3, which derives from an overstabilization of charge transfer effects. Time-dependent density functional theory (TDDFT) using the B3LYP functional shows an analogous but less severe error for charge transfer states, whereas the ωB97 results are in good agreement with ADC(3). Multireference configuration interaction computations, which are in reasonable agreement with ADC(3), reveal that static correlation does not play a significant role. In the case of the larger Ir(ppy)3 complex, results at the TDDFT/B3LYP and TDDFT/ωB97 levels of theory are presented. Strong discrepancies between the two functionals, which are found with respect to the energies, characters, as well as the density of the low lying states, are discussed in detail and compared to experiment.
Ab initio calculation of the electronic absorption spectrum of liquid water
Energy Technology Data Exchange (ETDEWEB)
Martiniano, Hugo F. M. C.; Galamba, Nuno [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP (Brazil)
2014-04-28
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.
Ab Initio Enhanced calphad Modeling of Actinide-Rich Nuclear Fuels
Energy Technology Data Exchange (ETDEWEB)
Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Yang, Yong Austin [Univ. of Wisconsin, Madison, WI (United States)
2013-10-28
The process of fuel recycling is central to the Advanced Fuel Cycle Initiative (AFCI), where plutonium and the minor actinides (MA) Am, Np, and Cm are extracted from spent fuel and fabricated into new fuel for a fast reactor. Metallic alloys of U-Pu-Zr-MA are leading candidates for fast reactor fuels and are the current basis for fast spectrum metal fuels in a fully recycled closed fuel cycle. Safe and optimal use of these fuels will require knowledge of their multicomponent phase stability and thermodynamics (Gibbs free energies). In additional to their use as nuclear fuels, U-Pu-Zr-MA contain elements and alloy phases that pose fundamental questions about electronic structure and energetics at the forefront of modern many-body electron theory. This project will validate state-of-the-art electronic structure approaches for these alloys and use the resulting energetics to model U-Pu-Zr-MA phase stability. In order to keep the work scope practical, researchers will focus on only U-Pu-Zr-{Np,Am}, leaving Cm for later study. The overall objectives of this project are to: Provide a thermodynamic model for U-Pu-Zr-MA for improving and controlling reactor fuels; and, Develop and validate an ab initio approach for predicting actinide alloy energetics for thermodynamic modeling.
Ab Initio Excited States from the In-Medium Similarity Renormalization Group
Parzuchowski, N M; Bogner, S K
2016-01-01
We present two new methods for performing \\emph{ab initio} calculations of excited states for closed-shell systems within the in-medium similarity renormalization group (IMSRG) framework. Both are based on combining the IMSRG with simple many-body methods commonly used to target excited states, such as the Tamm-Dancoff approximation (TDA) and equations-of-motion (EOM) techniques. In the first approach, a two-step sequential IMSRG transformation is used to drive the Hamiltonian to a form where a simple TDA calculation (i.e., diagonalization in the space of $1$p$1$h excitations) becomes exact for a subset of eigenvalues. In the second approach, equations-of-motion (EOM) techniques are applied to the ground-state-decoupled IMSRG Hamiltonian to access excited states. We perform proof-of-principle calculations for parabolic quantum dots in two-dimensions and the closed shell nuclei $^{16}$O and $^{22}$O. We find that the TDA-IMSRG approach gives better accuracy than the EOM-IMSRG when calculations converge, but is...
Neukirch, Amanda; Nei, Wanyi; Pedesseau, Laurent; Even, Jacky; Katan, Claudine; Mohite, Aditya; Tretiak, Segrei
2015-03-01
The need for an inexpensive, clean, and plentiful source of energy has generated large amounts of research in an assortment of solution processed organic and hybrid organic-inorganic solar cells. A relative newcomer to the field of solution processed photovoltaics is the lead halide perovskite solar cell. In the past 5 years, the efficiencies of devices made from this material have increased from 3.5% to nearly 20%. Despite the rapid development of organic-inorganic perovskite solar cells, a thorough understanding of the fundamental photophysical processes driving the high performance of these devices is not well understood. I am using state-of-the-art ab initio computational techniques in order to characterize the properties at the interface of perovskite devices in order to aide in materials design and device engineering. I will present an in-depth analysis of the electronic and optical properties of bulk and surface states of pure and mixed halide systems. The high-level static quantum mechanical calculations, including spin-orbit-coupling and the many body GW approach, identify the key electronic states involved in photoinduced dynamics. This knowledge provides important information on how the optical properties change with variations to the system. Supported by the DOE, the LANL LDRD program XW11, and CNLS.
Reply to Comment on "Ab Initio Study of 40Ca with an Importance Truncated No-Core Shell Model"
Energy Technology Data Exchange (ETDEWEB)
Roth, R; Navratil, P
2008-01-04
In their comment on our recent Letter [1] Dean et al. [2] criticize the calculations for the ground-state energy of {sup 40}Ca within the importance truncated no-core shell model (NCSM). In particular they address the role of configurations beyond the 3p3h level, which have not been included in the {sup 40}Ca calculations for large N{sub max} {h_bar}{Omega} model spaces. Before responding to this point, the following general statements are in order. For the atomic nucleus as a self-bound system, translational invariance is an important symmetry. The only possibility to preserve translational invariance when working with a Slater determinant basis is to use the harmonic oscillator (HO) basis in conjunction with a basis truncation according to the total HO excitation energy, i.e. N{sub max} {h_bar}{Omega}, as done in the ab initio NCSM. This is important not only for obtaining proper binding or excitation energies, but also for a correct extraction of physical wavefunctions. The spurious center-of-mass components can be exactly removed only if the HO basis and the N{sub max} {h_bar}{Omega} truncation are employed. The minimal violation of the translational invariance was one of the main motivations for developing the importance-truncation scheme introduced in the Letter. In this scheme, we start with the complete N{sub max} {h_bar}{Omega} HO basis space and select important configurations via perturbation theory. All symmetries are under control and our importance-truncated NCSM calculations are completely variational and provide an upper bound of the ground-state energy of the system. The restriction to the 3p3h level, made for computational reasons in the N{sub max} > 8 calculations for {sup 40}Ca, is not inherent to the importance truncation scheme. The explicit inclusion of 4p4h configurations--though computationally more demanding--is straight-forward, even for the largest N{sub max} {h_bar}{Omega} model spaces discussed. To demonstrate this fact we have
Many-body effects in intermolecular forces.
Elrod, M J; Saykally, R J
1994-11-01
The authors provide a review and literature survey of many-body effects in intermolecular forces. Topics include experimental methods, theoretical methods, many-body effects in atomic systems, and many-body effects in aqueous and nonaqueous molecular systems.
Intense-field many-body S-matrix theory
Energy Technology Data Exchange (ETDEWEB)
Becker, A [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str 38, D-01187 Dresden (Germany); Faisal, F H M [Fakultaet fuer Physik, Universitaet Bielefeld, Postfach 100131, D-33501 Bielefeld (Germany)
2005-02-14
Intense-field many-body S-matrix theory (IMST) provides a systematic ab initio approach to investigate the dynamics of atoms and molecules interacting with intense laser radiation. We review the derivation of IMST as well as its diagrammatic representation and point out its advantage over the conventional 'prior' and 'post' expansions which are shown to be special cases of IMST. The practicality and usefulness of the theory is illustrated by its application to a number of current problems of atomic and molecular ionization in intense fields. We also present a consistent S-matrix formulation of the quantum amplitude for high harmonic generation (HHG) and point out some of the most general properties of HHG radiation emitted by a single atom as well as its relation to coherent emission from many atoms. Experimental results for single and double (multiple) ionization of atoms and the observed distributions of coincidence measurements are analysed and the dominant mechanisms behind them are discussed. Ionization of more complex systems such as diatomic and polyatomic molecules in intense laser fields is analysed as well using IMST and the results are discussed with special attention to the role of molecular orbital symmetry and molecular orientation in space. The review ends with a summary and a brief outlook. (topical review)
Energy Technology Data Exchange (ETDEWEB)
Wagner, Jan-Martin
2004-10-14
In this dissertation, ab-initio investigations of the strain influence on vibrational properties of GaN and AlN as well as of short-period GaN/AlN superlattices are presented. Based on densityfunctional theory and density-functional perturbation theory, for differently strained structures complete phonon spectra and related properties are calculated using the local-density approximation and norm-conserving pseudopotentials. (orig.)
Communication: Towards ab initio self-energy embedding theory in quantum chemistry
Energy Technology Data Exchange (ETDEWEB)
Lan, Tran Nguyen, E-mail: latran@umich.edu [Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Kananenka, Alexei A.; Zgid, Dominika [Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 (United States)
2015-12-28
The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green’s function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces.
Towards ab initio self-energy embedding theory in quantum chemistry
Lan, Tran Nguyen; Zgid, Dominika
2015-01-01
The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green's function (GF2) method is used to describe the non-local correlations, while the full configuration interaction (FCI) method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to $n-$electron valence state second-order perturbation theory (NEVPT2) with the same active...
Communication: Towards ab initio self-energy embedding theory in quantum chemistry.
Lan, Tran Nguyen; Kananenka, Alexei A; Zgid, Dominika
2015-12-28
The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green's function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces.
Casida, Mark E; Huix-Rotllant, Miquel
2016-01-01
In their famous paper, Kohn and Sham formulated a formally exact density-functional theory (DFT) for the ground-state energy and density of a system of N interacting electrons, albeit limited at the time by certain troubling representability questions. As no practical exact form of the exchange-correlation (xc) energy functional was known, the xc-functional had to be approximated, ideally by a local or semilocal functional. Nowadays, however, the realization that Nature is not always so nearsighted has driven us up Perdew's Jacob's ladder to find increasingly nonlocal density/wavefunction hybrid functionals. Time-dependent (TD-) DFT is a younger development which allows DFT concepts to be used to describe the temporal evolution of the density in the presence of a perturbing field. Linear response (LR) theory then allows spectra and other information about excited states to be extracted from TD-DFT. Once again the exact TD-DFT xc-functional must be approximated in practical calculations and this has historically been done using the TD-DFT adiabatic approximation (AA) which is to TD-DFT very similar to what the local density approximation (LDA) is to conventional ground-state DFT. Although some of the recent advances in TD-DFT focus on what can be done within the AA, others explore ways around the AA. After giving an overview of DFT, TD-DFT, and LR-TD-DFT, this chapter focuses on many-body corrections to LR-TD-DFT as one way to build hybrid density-functional/wavefunction methodology for incorporating aspects of nonlocality in time not present in the AA.
Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations
Good, Brian S.
2004-01-01
We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.
Ab initio path integral ring polymer molecular dynamics: Vibrational spectra of molecules
Shiga, Motoyuki; Nakayama, Akira
2008-01-01
The path integral ring polymer molecular dynamics method is combined with 'on-the-fly' ab initio electronic structure calculations and applied to vibrational spectra of small molecules, LiH and H 2O, at the room temperature. The results are compared with those of the numerically exact solution and ab initio path integral centroid molecular dynamics calculation. The peak positions in the calculated spectra are found to be reasonable, showing the red-shift due to potential anharmonicity. This unification enables the investigation of real-time quantum dynamics of chemically complex molecular systems on the ab initio Born-Oppenheimer potential energy surface.
Emergence of rotational bands in ab initio no-core configuration interaction calculations
Caprio, M A; Vary, J P; Smith, R
2015-01-01
Rotational bands have been observed to emerge in ab initio no-core configuration interaction (NCCI) calculations for p-shell nuclei, as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. We investigate the ab initio emergence of nuclear rotation in the Be isotopes, focusing on 9Be for illustration, and make use of basis extrapolation methods to obtain ab initio predictions of rotational band parameters for comparison with experiment. We find robust signatures for rotational motion, which reproduce both qualitative and quantitative features of the experimentally observed bands.
Lu-Lu, Zhang; Yu-Zhi, Song; Shou-Bao, Gao; Yuan, Zhang; Qing-Tian, Meng
2016-05-01
A globally accurate single-sheeted double many-body expansion potential energy surface is reported for the first excited state of HS2 by fitting the accurate ab initio energies, which are calculated at the multireference configuration interaction level with the aug-cc-pVQZ basis set. By using the double many-body expansion-scaled external correlation method, such calculated ab initio energies are then slightly corrected by scaling their dynamical correlation. A grid of 2767 ab initio energies is used in the least-square fitting procedure with the total root-mean square deviation being 1.406 kcal·mol-1. The topographical features of the HS2(A2A‧) global potential energy surface are examined in detail. The attributes of the stationary points are presented and compared with the corresponding ab initio results as well as experimental and other theoretical data, showing good agreement. The resulting potential energy surface of HS2(A2A‧) can be used as a building block for constructing the global potential energy surfaces of larger S/H molecular systems and recommended for dynamic studies on the title molecular system. Project supported by the National Natural Science Foundation of China (Grant No. 11304185), the Taishan Scholar Project of Shandong Province, China, the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014AM022), the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J15LJ03), the China Postdoctoral Science Foundation (Grant No. 2014M561957), and the Post-doctoral Innovation Project of Shandong Province, China (Grant No. 201402013).
Ab initio Bogoliubov coupled cluster theory for open-shell nuclei
Signoracci, A.; Duguet, T.; Hagen, G.; Jansen, G. R.
2015-06-01
Background: Ab initio many-body methods have been developed over the past 10 yr to address closed-shell nuclei up to mass A ≈130 on the basis of realistic two- and three-nucleon interactions. A current frontier relates to the extension of those many-body methods to the description of open-shell nuclei. Several routes to address open-shell nuclei are currently under investigation, including ideas that exploit spontaneous symmetry breaking. Purpose: Singly open-shell nuclei can be efficiently described via the sole breaking of U(1) gauge symmetry associated with particle-number conservation as a way to account for their superfluid character. While this route was recently followed within the framework of self-consistent Green's function theory, the goal of the present work is to formulate a similar extension within the framework of coupled cluster theory. Methods: We formulate and apply Bogoliubov coupled cluster (BCC) theory, which consists of representing the exact ground-state wave function of the system as the exponential of a quasiparticle excitation cluster operator acting on a Bogoliubov reference state. Equations for the ground-state energy and the cluster amplitudes are derived at the singles and doubles level (BCCSD) both algebraically and diagrammatically. The formalism includes three-nucleon forces at the normal-ordered two-body level. The first BCC code is implemented in m scheme, which will permit the treatment of doubly open-shell nuclei via the further breaking of SU(2) symmetry associated with angular momentum conservation. Results: Proof-of-principle calculations in an Nmax=6 spherical harmonic oscillator basis for O,1816 and 18Ne in the BCCD approximation are in good agreement with standard coupled cluster results with the same chiral two-nucleon interaction, while 20O and 20Mg display underbinding relative to experiment. The breaking of U(1) symmetry, monitored by computing the variance associated with the particle-number operator, is relatively
DEFF Research Database (Denmark)
Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.
2014-01-01
Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom....
Ab initio evaluations of the He solubility in liquid Li
Energy Technology Data Exchange (ETDEWEB)
Sedano, Luis A. [EURATOM-CIEMAT Assoc., Materials for Fusion Program, Bd. 43 P0.04, Avda. Complutense 22, 28040 Madrid (Spain)]. E-mail: luis.sedano@ciemat.es; Hassanein, Ahmed [Argonne Nat. Lab, 9700 South Class Av., Argonne, IL (United States)]. E-mail: hassanein@anl.gov; Sanz, Javier [ETSII-UNED, c/Juan del Rosal, 12, 28040 Madrid (E) (Spain)]. E-mail: jsanz@ind.UNED.es
2005-11-15
Modified embedding atom methods (MEAM) are developed to have predictions of the partial molar heat of solution (-H{sub s}) by direct simulation of metal cohesion, He-metal and He-He interaction. Transitions from crystalline Li to configurations, having the liquid Li structure's factors (h-bar (q)), are simulated ab initio. Once h-bar (q) reproduced, He atoms are added, one by one, to the Li system. Parallel lines for each case, with slopes clearly independent on the number of He atoms in the system, are obtained for energy versus pressure at given temperatures. Average differences between two adjacent parallels at zero pressure, once kinetic energy of the system discounted, represents the energy gained by an He atom when added to the Li system, related to the solution energy -H{sub s}. The molar excess entropy of gas in solution (S-bar {sub l}{sup ex}) is previously evaluated following diverse fundamental approaches: a 'thermodynamic liquid-hole' (TL-H) model for alkali liquids and a statistical-mechanics (Neff and McQuarrie's) model (SMM). Between 600 and 900 deg. C, a typical range of interest for the use of Li in fusion technology, the computed values for the (He) Henry's constant in Li range from 8x10{sup -14} to 10{sup -13} at. fr. Pa{sup -1}.
Rational design of electrolyte components by ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Johansson, Patrik; Jacobsson, Per [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)
2006-02-28
This paper is a small review of the use of computer simulations and especially the use of standard quantum-mechanical ab initio electronic structure calculations to rationally design and investigate different choices of chemicals/systems for lithium battery electrolytes. Covered systems and strategies to enhance the performance of electrolytes will range from assisting the interpretation of vibrational spectroscopy experiments over development of potentials for molecular dynamics simulations, to the design of new lithium salts and the lithium ion coordination in liquid, polymer, and gel polymer electrolytes. Examples of studied properties include the vibrational spectra of anions and ion pairs to characterize the nature and extent of the interactions present, the lithium ion affinities of anions, important for the salt solvation and the ability to provide a high concentration of charge carriers, the HOMO energies of the anions to estimate the stability versus oxidation, the anion volumes that correlate to the anion mobility, the lithium ion coordination and dynamics to reveal the limiting steps of lithium ion transport, etc. (author)
Ab initio calculation of the potential bubble nucleus $^{34}$Si
Duguet, T; Lecluse, S; Barbieri, C; Navrátil, P
2016-01-01
The possibility that an unconventional depletion in the center of the charge density distribution of certain nuclei occurs due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. We report on ab initio self-consistent Green's function calculations of one of such candidates, $^{34}$Si, together with its Z+2 neighbour $^{36}$S. Binding energies, rms radii and density distributions of the two nuclei as well as low-lying spectroscopy of $^{35}$Si, $^{37}$S, $^{33}$Al and $^{35}$P are discussed. The interpretation of one-nucleon removal and addition spectra in terms of the evolution of the underlying shell structure is also provided. The study is repeated using several chiral effective field theory Hamiltonians as a way to test the robustness of the results with respect to input inter-nucleon interactions. The prediction regarding the (non-)existence of the bubble structure in $^{34}$Si varies significantly with the nuclear Hamiltonian used. However, demandin...
Exploring the free energy surface using ab initio molecular dynamics
Samanta, Amit; Morales, Miguel A.; Schwegler, Eric
2016-04-01
Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti.
Ab initio predictions of the symmetry energy and recent constraints
Sammarruca, Francesca
2017-01-01
The symmetry energy plays a crucial role in the structure and the dynamics of neutron-rich systems, including the formation of neutron skins, the location of neutron drip lines, as well as intriguing correlations with the structure of compact stars. With experimental efforts in progress or being planned to shed light on the less known aspects of the nuclear chart, microscopic predictions based on ab initio approaches are very important. In recent years, chiral effective field theory has become popular because of its firm connection with quantum chromodynamics and its systematic approach to the development of nuclear forces. Predictions of the symmetry energy obtained from modern chiral interactions will be discussed in the light of recent empirical constraints extracted from heavy ion collisions at 400 MeV per nucleon at GSI. Applications of our equations of state to neutron-rich systems will also be discussed, with particular emphasis on neutron skins, which are sensitive to the density dependence of the symmetry energy.
Ab initio no-core solutions for $^6$Li
Shin, Ik Jae; Maris, Pieter; Vary, James P; Forssén, Christian; Rotureau, Jimmy; Michel, Nicolas
2016-01-01
We solve for properties of $^6$Li in the ab initio No-Core Full Configuration approach and we separately solve for its ground state and $J^{\\pi}=2_{2}^{+}$ resonance with the Gamow Shell Model in the Berggren basis. We employ both the JISP16 and chiral NNLO$_{opt}$ realistic nucleon-nucleon interactions and investigate the ground state energy, excitation energies, point proton root-mean-square radius and a suite of electroweak observables. We also extend and test methods to extrapolate the ground state energy, point proton root-mean-square radius, and electric quadrupole moment. We attain improved estimates of these observables in the No-Core Full Configuration approach by using basis spaces up through N$_{max}$=18 that enable more definitive comparisons with experiment. Using the Density Matrix Renormalization Group approach with the JISP16 interaction, we find that we can significantly improve the convergence of the Gamow Shell Model treatment of the $^6$Li ground state and $J^{\\pi}=2_{2}^{+}$ resonance by ...
An efficient approach to ab initio Monte Carlo simulation.
Leiding, Jeff; Coe, Joshua D
2014-01-21
We present a Nested Markov chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, was used to substantially decorrelate configurations at which the potential of interest was evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure was maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature β(0)), which was otherwise unconstrained. Local density approximation results are presented for shocked states of argon at pressures from 4 to 60 GPa, where-depending on the quality of the reference system potential-acceptance probabilities were enhanced by factors of 1.2-28 relative to unoptimized NMC. The optimization procedure compensated strongly for reference potential shortcomings, as evidenced by significantly higher speedups when using a reference potential of lower quality. The efficiency of optimized NMC is shown to be competitive with that of standard ab initio molecular dynamics in the canonical ensemble.
Ab-initio calculations for dilute magnetic semiconductors
Energy Technology Data Exchange (ETDEWEB)
Belhadji, Brahim
2008-03-03
This thesis focusses on ab-initio calculations for the electronic structure and the magnetic properties of dilute magnetic semiconductors (DMS). In particular we aim at the understanding of the complex exchange interactions in these systems. Our calculations are based on density functional theory, being ideally suited for a description of the material specific properties of the considered DMS. Moreover we use the KKR Green function method in connection with the coherent potential approximation (CPA), which allows to include the random substitutional disorder in a mean field-like approximation for the electronic structure. Finally we calculate the exchange coupling constants J{sub ij} between two impurities in a CPA medium by using the Lichtenstein formula and from this calculate the Curie temperature by a numerically exact Monte Carlo method. Based on this analysis we found and investigated four different exchange mechanisms being of importance in DMS systems: Double exchange, p-d exchange, antiferromagnetic superexchanges, and ferromagnetic superexchange. A second topic we have investigated in this thesis is the pressure dependence of the exchange interactions and the Curie temperatures in (Ga,Mn)As and (In,Mn)As, using the LDA and the LDA+U approximations. Exact calculations of T{sub C} by Monte Carlo simulations show a somehow different behavior. (orig.)
Engineering Room-temperature Superconductors Via ab-initio Calculations
Gulian, Mamikon; Melkonyan, Gurgen; Gulian, Armen
The BCS, or bosonic model of superconductivity, as Little and Ginzburg have first argued, can bring in superconductivity at room temperatures in the case of high-enough frequency of bosonic mode. It was further elucidated by Kirzhnitset al., that the condition for existence of high-temperature superconductivity is closely related to negative values of the real part of the dielectric function at finite values of the reciprocal lattice vectors. In view of these findings, the task is to calculate the dielectric function for real materials. Then the poles of this function will indicate the existence of bosonic excitations which can serve as a "glue" for Cooper pairing, and if the frequency is high enough, and the dielectric matrix is simultaneously negative, this material is a good candidate for very high-Tc superconductivity. Thus, our approach is to elaborate a methodology of ab-initio calculation of the dielectric function of various materials, and then point out appropriate candidates. We used the powerful codes (TDDF with the DP package in conjunction with ABINIT) for computing dielectric responses at finite values of the wave vectors in the reciprocal lattice space. Though our report is concerned with the particular problem of superconductivity, the application range of the data processing methodology is much wider. The ability to compute the dielectric function of existing and still non-existing (though being predicted!) materials will have many more repercussions not only in fundamental sciences but also in technology and industry.
Ab initio modelling of boron related defects in amorphous silicon
Energy Technology Data Exchange (ETDEWEB)
Oliveira, Tiago A.; Torres, Vitor J.B. [Department of Physics, University of Aveiro, Campus Santiago, 3810-193 Aveiro (Portugal)
2012-10-15
We have modeled boron related point defects in amorphous silicon, using an ab initio method, the Density functional theory-pseudopotential code Aimpro. The boron atoms were embedded in 64 atom amorphous silicon cubic supercells. The calculations were performed using boron defects in 15 different supercells. These supercells were developed using a modified Wooten-Winer-Weaire bond switching mechanism. In average, the properties of the 15 supercells agree with the observed radial and bond angle distributions, as well the electronic and vibrational density of states and Raman spectra. In amorphous silicon it has been very hard to find real self-interstitials, since for almost all the tested configurations, the amorphous lattice relaxes overall. We found that substitutional boron prefers to be 4-fold coordinated. We find also an intrinsic hole-trap in the non-doped amorphous lattice, which may explain the low efficiency of boron doping. The local vibrational modes are, in average, higher than the correspondent crystalline values (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Ab initio simulations of pseudomorphic silicene and germanene bidimensional heterostructures
Debernardi, Alberto; Marchetti, Luigi
2016-06-01
Among the novel two-dimensional (2D) materials, silicene and germanene, which are two honeycomb crystal structures composed of a monolayer of Si and Ge, respectively, have attracted the attention of material scientists because they combine the advantages of the new 2D ultimate-scaled electronics with their compatibility with industrial processes presently based on Si and Ge. We envisage pseudomorphic lateral heterostructures based on ribbons of silicene and germanene, which are the 2D analogs of conventional 3D Si/Ge superlattices and quantum wells. In spite of the considerable lattice mismatch (˜4 % ) between free-standing silicene and germanene, our ab initio simulations predict that, considering striped 2D lateral heterostructures made by alternating silicene and germanene ribbons of constant width, the silicene/germanene junction remains pseudomorphic—i.e., it maintains lattice-matched edges—up to critical ribbon widths that can reach some tens of nanometers. Such critical widths are one order of magnitude larger than the critical thickness measured in 3D pseudomorphic Si/Ge heterostructures and the resolution of state-of-the-art lithography, thus enabling the possibility of lithography patterned silicene/germanene junctions. We computed how the strain produced by the pseudomorphic growth modifies the crystal structure and electronic bands of the ribbons, providing a mechanism for band-structure engineering. Our results pave the way for lithography patterned lateral heterostructures that can serve as the building blocks of novel 2D electronics.
The Hydration Structure of Carbon Monoxide by Ab Initio Methods
Awoonor-Williams, Ernest
2016-01-01
The solvation of carbon monoxide (CO) in liquid water is important for understanding its toxicological effects and biochemical roles. In this paper, we use ab initio molecular dynamics (AIMD) and CCSD(T)-F12 calculations to assess the accuracy of the Straub and Karplus molecular mechanical (MM) model for CO(aq). The CCSD(T)-F12 CO--H2O potential energy surfaces show that the most stable structure corresponds to water donating a hydrogen bond to the C center. The MM-calculated surface it incorrectly predicts that the O atom is a stronger hydrogen bond acceptor than the C atom. The AIMD simulations indicate that CO is solvated like a hydrophobic solute, with very limited hydrogen bonding with water. The MM model tends to overestimate the degree of hydrogen bonding and overestimates the atomic radius of the C atom. The calculated Gibbs energy of hydration is in good agreement with experiment (9.3 kJ/mol calc. vs 10.7 kJ/mol exptl.). The calculated diffusivity of CO(aq) in TIP3P-model water was 5.19 x 10-5 cm2/s ...
Ab initio modeling of decomposition in iron based alloys
Gorbatov, O. I.; Gornostyrev, Yu. N.; Korzhavyi, P. A.; Ruban, A. V.
2016-12-01
This paper reviews recent progress in the field of ab initio based simulations of structure and properties of Fe-based alloys. We focus on thermodynamics of these alloys, their decomposition kinetics, and microstructure formation taking into account disorder of magnetic moments with temperature. We review modern theoretical tools which allow a consistent description of the electronic structure and energetics of random alloys with local magnetic moments that become totally or partially disordered when temperature increases. This approach gives a basis for an accurate finite-temperature description of alloys by calculating all the relevant contributions to the Gibbs energy from first-principles, including a configurational part as well as terms due to electronic, vibrational, and magnetic excitations. Applications of these theoretical approaches to the calculations of thermodynamics parameters at elevated temperatures (solution energies and effective interatomic interactions) are discussed including atomistic modeling of decomposition/clustering in Fe-based alloys. It provides a solid basis for understanding experimental data and for developing new steels for modern applications. The precipitation in Fe-Cu based alloys, the decomposition in Fe-Cr, and the short-range order formation in iron alloys with s-p elements are considered as examples.
Ab initio transport across bismuth selenide surface barriers
Narayan, Awadhesh
2014-11-24
© 2014 American Physical Society. We investigate the effect of potential barriers in the form of step edges on the scattering properties of Bi2Se3(111) topological surface states by means of large-scale ab initio transport simulations. Our results demonstrate the suppression of perfect backscattering, while all other scattering processes, which do not entail a complete spin and momentum reversal, are allowed. Furthermore, we find that the spin of the surface state develops an out-of-plane component as it traverses the barrier. Our calculations reveal the existence of quasibound states in the vicinity of the surface barriers, which appear in the form of an enhanced density of states in the energy window corresponding to the topological state. For double barriers we demonstrate the formation of quantum well states. To complement our first-principles results we construct a two-dimensional low-energy effective model and illustrate its shortcomings. Our findings are discussed in the context of a number of recent experimental works.
Ab initio calculations of the absorption spectrum of chalcone
Oumi, Manabu; Maurice, David; Head-Gordon, Martin
1999-03-01
The excitation energies and excited states of trans-chalcone ( trans-( s-cis)-1,3-diphenylpropenone), and several related molecules ( trans-( s-cis)-3-phenylpropenal, s-cis-1-phenylpropenone, propenal, trans-( s-cis)-1-(4-hydroxyphenyl)-3-phenylpropenone, trans-( s-cis)3-(4-hydroxyphenyl)-1-phenylpropenone) have been calculated using single reference ab initio molecular orbital methods, and characterized by attachment-detachment density analysis. The results suggest assignments for the lowest three electronic transitions observed experimentally for trans-( s-cis)-chalcone in solution. The extent of localization of the electronic transitions is established by calculations on the excited states of trans-( s-cis)-3-phenylpropenal, s-cis-1-phenylpropenone and propenal, as well as analysis of the chalcone calculations. Contrary to some previous work, none of these excitations are strongly delocalized over the entire molecule. Calculated substituent shifts for the hydroxy chalcones are in qualitative agreement with experimental data, and support the localized interpretation of the main π→ π* transition.
Ab initio thermodynamic results for warm dense matter
Bonitz, Michael
2016-10-01
Warm dense matter (WDM) - an exotic state where electrons are quantum degenerate and ions may be strongly correlated - is ubiquitous in dense astrophysical plasmas and highly compressed laboratory systems including inertial fusion. Accurate theoretical predictions require precision thermodynamic data for the electron gas at high density and finite temperature around the Fermi temperature. First such data have been obtained by restricted path integral Monte Carlo (restricted PIMC) simulations and transformed into analytical fits for the free energy. Such results are also key input for novel finite temperature density functional theory. However, the RPIMC data of Ref. 1 are limited to moderate densities, and even there turned out to be surprisingly inaccurate, which is a consequence of the fermion sign problem. These problems were recently overcome by the development of alternative QMC approaches in Kiel (configuration PIMC and permutation blocking PIMC) and Imperial College (Density matrix QMC). The three methods have their strengths and limitations in complementary parameter regions and provide highly accurate thermodynamic data for the electronic contributions in WDM. While the original results were obtained for small particle numbers, recently accurate finite size corrections were derived allowing to compute ab initio thermodynamic data with an unprecedented accuracy of better than 0.3 percent. This provides the final step for the use as benchmark data for experiments and models of Warm dense matter. Co-authors: T. Schoof, S. Groth, T. Dornheim, F. D. Malone, M. Foulkes, and T. Sjostroem, Funded by: DFG via SFB-TR24 and project BO1366-10.
2015-06-28
ghanshyam.vaghjiani@us.af.mil Ab initio Quantum Chemical Reaction Kinetics: Recent Applications in Combustion Chemistry Ghanshyam L. Vaghjiani* DISTRIBUTION A...Charts 3. DATES COVERED (From - To) June 2015-June 2015 4. TITLE AND SUBTITLE AB INITIO QUANTUM CHEMICAL REACTION KINETICS: RECENT APPLICATIONS IN...COMBUSTION CHEMISTRY (Briefing Charts) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Ghanshyam L
An ab initio Non-Equilibrium Green Function Approach to Charge Transport: Dithiolethine
Institute of Scientific and Technical Information of China (English)
Alexander Schnurpfeil; SONG Bo; Martin Albrecht
2006-01-01
@@ We present a novel ab initio non-equilibrium approach to calculate the current across a molecular junction. The method rests on a wavefunction-based full ab initio description of the central region of the junction combined with a tight binding approximation for the electrodes in the frame of the Keldysh Green function formalism. Our procedure is demonstrated for a dithiolethine molecule located between silver electrodes. The main conducting channel is identified and the full current-voltage characteristic is calculated.
Ab initio study of structural, electronic, and thermal properties of Ir_{1-x}Rh_{x} alloys
Directory of Open Access Journals (Sweden)
Sh. Ahmed
2015-06-01
Full Text Available The structural, electronic, mechanical and thermal properties of Ir_{1-x}Rh_{x} alloys was studied systematically using ab initio density functional theory at different concentration (x = 0.00, 0.25, 0.50, 0.75, 1.00. The Special Quasirandom Structure method was used to make the alloys with FCC structure with four atoms per unit cell. The ground state properties such as lattice constant and bulk modulus were calculated to find the equilibrium atomic position for stable alloys. The calculated ground state properties are in good agreement with the experimental and previously presented other theoretical data. The electronic band structure and density of states were calculated to study the electronic properties for these alloys at different concentration. The electronic properties substantiate metallic behavior of alloys. The first principle density functional perturbation theory as implemented in quasiharmonic approximation was used for the calculation of thermal properties. We have calculated the thermal properties such the Debye temperatures, vibration energy, entropy, constant-volume specific heat and internal energy. The ab initio linear-response method was used for phonon densities of states calculations.
Periodic Trends in Lanthanide Compounds through the Eyes of Multireference ab Initio Theory.
Aravena, Daniel; Atanasov, Mihail; Neese, Frank
2016-05-01
Regularities among electronic configurations for common oxidation states in lanthanide complexes and the low involvement of f orbitals in bonding result in the appearance of several periodic trends along the lanthanide series. These trends can be observed on relatively different properties, such as bonding distances or ionization potentials. Well-known concepts like the lanthanide contraction, the double-double (tetrad) effect, and the similar chemistry along the lanthanide series stem from these regularities. Periodic trends on structural and spectroscopic properties are examined through complete active space self-consistent field (CASSCF) followed by second-order N-electron valence perturbation theory (NEVPT2) including both scalar relativistic and spin-orbit coupling effects. Energies and wave functions from electronic structure calculations are further analyzed in terms of ab initio ligand field theory (AILFT), which allows one to rigorously extract angular overlap model ligand field, Racah, and spin-orbit coupling parameters directly from high-level ab initio calculations. We investigated the elpasolite Cs2NaLn(III)Cl6 (Ln(III) = Ce-Nd, Sm-Eu, Tb-Yb) crystals because these compounds have been synthesized for most Ln(III) ions. Cs2NaLn(III)Cl6 elpasolites have been also thoroughly characterized with respect to their spectroscopic properties, providing an exceptionally vast and systematic experimental database allowing one to analyze the periodic trends across the lanthanide series. Particular attention was devoted to the apparent discrepancy in metal-ligand covalency trends between theory and spectroscopy described in the literature. Consistent with earlier studies, natural population analysis indicates an increase in covalency along the series, while a decrease in both the nephelauxetic (Racah) and relativistic nephelauxetic (spin-orbit coupling) reduction with increasing atomic number is calculated. These apparently conflicting results are discussed on the
Lithium Insertion In Silicon Nanowires: An ab Initio Study
Zhang, Qianfan
2010-09-08
The ultrahigh specific lithium ion storage capacity of Si nanowires (SiNWs) has been demonstrated recently and has opened up exciting opportunities for energy storage. However, a systematic theoretical study on lithium insertion in SiNWs remains a challenge, and as a result, understanding of the fundamental interaction and microscopic dynamics during lithium insertion is still lacking. This paper focuses on the study of single Li atom insertion into SiNWs with different sizes and axis orientations by using full ab initio calculations. We show that the binding energy of interstitial Li increases as the SiNW diameter grows. The binding energies at different insertion sites, which can be classified as surface, intermediate, and core sites, are quite different. We find that surface sites are energetically the most favorable insertion positions and that intermediate sites are the most unfavorable insertion positions. Compared with the other growth directions, the [110] SiNWs with different diameters always present the highest binding energies on various insertion locations, which indicates that [110] SiNWs are more favorable by Li doping. Furthermore, we study Li diffusion inside SiNWs. The results show that the Li surface diffusion has a much higher chance to occur than the surface to core diffusion, which is consistent with the experimental observation that the Li insertion in SiNWs is layer by layer from surface to inner region. After overcoming a large barrier crossing surface-to-intermediate region, the diffusion toward center has a higher possibility to occur than the inverse process. © 2010 American Chemical Society.
Efficient conformational space exploration in ab initio protein folding simulation.
Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A Z M Dayem; Rahman, M Sohel
2015-08-01
Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic-polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency.
Resonance and aromaticity: an ab initio valence bond approach.
Rashid, Zahid; van Lenthe, Joop H; Havenith, Remco W A
2012-05-17
Resonance energy is one of the criteria to measure aromaticity. The effect of the use of different orbital models is investigated in the calculated resonance energies of cyclic conjugated hydrocarbons within the framework of the ab initio Valence Bond Self-Consistent Field (VBSCF) method. The VB wave function for each system was constructed using a linear combination of the VB structures (spin functions), which closely resemble the Kekulé valence structures, and two types of orbitals, that is, strictly atomic (local) and delocalized atomic (delocal) p-orbitals, were used to describe the π-system. It is found that the Pauling-Wheland's resonance energy with nonorthogonal structures decreases, while the same with orthogonalized structures and the total mean resonance energy (the sum of the weighted off-diagonal contributions in the Hamiltonian matrix of orthogonalized structures) increase when delocal orbitals are used as compared to local p-orbitals. Analysis of the interactions between the different structures of a system shows that the resonance in the 6π electrons conjugated circuits have the largest contributions to the resonance energy. The VBSCF calculations also show that the extra stability of phenanthrene, a kinked benzenoid, as compared to its linear counterpart, anthracene, is a consequence of the resonance in the π-system rather than the H-H interaction in the bay region as suggested previously. Finally, the empirical parameters for the resonance interactions between different 4n+2 or 4n π electrons conjugated circuits, used in Randić's conjugated circuits theory or Herdon's semi-emprical VB approach, are quantified. These parameters have to be scaled by the structure coefficients (weights) of the contributing structures.
Cosmic-Ray Modulation: an Ab Initio Approach
Engelbrecht, N. E.; Burger, R. A.
2014-10-01
A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three-dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented.
Ab initio study of structural, electronic, and thermal properties of Pt1-xPdx alloys
Ahmed, Shabbir; Zafar, Muhammad; Shakil, M.; Choudhary, M. A.; Hashmi, Muhammad Raza-Ur-Rehman
2017-01-01
We report a systematic theoretical study of Pt1-xPdx alloys using ab initio density functional theory (DFT) by pseudo potential method. We have used super cell approach to investigate structural, electronic and thermal properties of Platinum (Pt), Palladium (Pd) and their alloys Pt1-xPdx(x = 0.00, 0.25, 0.50, 0.75, 1.00). The calculated lattice constants and bulk moduli are in good agreement with available literature data. The results of electronic properties revealed that the alloys are metallic in nature. The thermal properties were investigated through density functional perturbation theory (DFPT) and quasi-harmonic approximation. The contribution to the free energy from the lattice vibration was calculated using the phonon densities of states (DOS) derived by means of the linear-response theory. The DFPT with quasi-harmonic approximation methods was applied to determine the phonon DOS and thermal quantities i.e., the Debye temperatures, vibration energy, entropy and constant-volume specific heat.
KAMINSKI, GEORGE A.; STERN, HARRY A.; BERNE, B. J.; FRIESNER, RICHARD A.; CAO, YIXIANG X.; MURPHY, ROBERT B.; ZHOU, RUHONG; HALGREN, THOMAS A.
2014-01-01
We present results of developing a methodology suitable for producing molecular mechanics force fields with explicit treatment of electrostatic polarization for proteins and other molecular system of biological interest. The technique allows simulation of realistic-size systems. Employing high-level ab initio data as a target for fitting allows us to avoid the problem of the lack of detailed experimental data. Using the fast and reliable quantum mechanical methods supplies robust fitting data for the resulting parameter sets. As a result, gas-phase many-body effects for dipeptides are captured within the average RMSD of 0.22 kcal/mol from their ab initio values, and conformational energies for the di- and tetrapeptides are reproduced within the average RMSD of 0.43 kcal/mol from their quantum mechanical counterparts. The latter is achieved in part because of application of a novel torsional fitting technique recently developed in our group, which has already been used to greatly improve accuracy of the peptide conformational equilibrium prediction with the OPLS-AA force field.1 Finally, we have employed the newly developed first-generation model in computing gas-phase conformations of real proteins, as well as in molecular dynamics studies of the systems. The results show that, although the overall accuracy is no better than what can be achieved with a fixed-charges model, the methodology produces robust results, permits reasonably low computational cost, and avoids other computational problems typical for polarizable force fields. It can be considered as a solid basis for building a more accurate and complete second-generation model. PMID:12395421
Stavretis, Shelby E; Atanasov, Mihail; Podlesnyak, Andrey A; Hunter, Seth C; Neese, Frank; Xue, Zi-Ling
2015-10-19
Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H₂TPP = tetraphenylporphyrin) have been directly determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm⁻¹ for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm⁻¹, E = 0.1(2) cm⁻¹ and D = 13.4(6) cm⁻¹, E = 0.3(6) cm⁻¹ for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm⁻¹ for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series. The electronic structure of [Fe(TPP)X] (X = F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the ⁶A₁ ground state. D was calculated from wave functions of the electronic multiplets spanned by the d⁵ configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX₆³⁻ complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the π- and σ-antibonding energies e(λ)(X) (λ = σ, π) in the series from X = F to I. Analysis of this correlation using second-order perturbation theory expressions in terms of angular overlap parameters rationalizes the
Gebrerufael, Eskendr; Hergert, Heiko; Roth, Robert
2016-01-01
We merge two successful ab initio nuclear-structure methods, the no-core shell model (NCSM) and the multi-reference in-medium similarity renormalization group (IM-SRG) to define a new many-body approach for the comprehensive description of ground and excited states of closed and open-shell nuclei. Building on the key advantages of the two methods---the decoupling of excitations at the many-body level in the IM-SRG and the access to arbitrary nuclei, eigenstates, and observables in the NCSM---their combination enables fully converged no-core calculations for an unprecedented range of nuclei and observables at moderate computational cost. We present applications in the carbon and oxygen isotopic chains, where conventional NCSM calculations are still feasible and provide an important benchmark. The efficiency and rapid convergence of the new approach make it ideally suited for ab initio studies of the complete spectroscopy of nuclei up into the medium-mass regime.
The ab initio calculation of spectra of open shell diatomic molecules
Tennyson, Jonathan; Lodi, Lorenzo; McKemmish, Laura K.; Yurchenko, Sergei N.
2016-05-01
The spectra (rotational, rotation-vibrational or electronic) of diatomic molecules due to transitions involving only closed-shell (1Σ ) electronic states follow very regular, simple patterns and their theoretical analysis is usually straightforward. On the other hand, open-shell electronic states lead to more complicated spectral patterns and, moreover, often appear as a manifold of closely lying electronic states, leading to perturbed spectra of even greater complexity. This is especially true when at least one of the atoms is a transition metal. Traditionally these complex cases have been analysed using approaches based on perturbation theory, with semi-empirical parameters determined by fitting to spectral data. Recently the needs of two rather diverse scientific areas have driven the demand for improved theoretical models of open-shell diatomic systems based on an ab initio approach; these areas are ultracold chemistry and the astrophysics of ‘cool’ stars, brown dwarfs and most recently extrasolar planets. However, the complex electronic structure of these molecules combined with the accuracy requirements of high-resolution spectroscopy render such an approach particularly challenging. This review describes recent progress in developing methods for directly solving the effective Schrödinger equation for open-shell diatomic molecules, with a focus on molecules containing a transtion metal. It considers four aspects of the problem: (i) the electronic structure problem; (ii) non-perturbative treatments of the curve couplings; (iii) the solution of the nuclear motion Schrödinger equation; (iv) the generation of accurate electric dipole transition intensities. Examples of applications are used to illustrate these issues.
Organic/inorganic hybrid materials: challenges for ab initio methodology.
Draxl, Claudia; Nabok, Dmitrii; Hannewald, Karsten
2014-11-18
CONSPECTUS: Organic/inorganic hybrid structures are most exciting since one can expect new properties that are absent in either of their building blocks. They open new perspectives toward the design and tailoring of materials with desired features and functions. Prerequisite for real progress is, however, the in-depth understanding of what happens on the atomic and electronic scale. In this respect, hybrid materials pose a challenge for electronic-structure theory. Methods that proved useful for describing one side may not be applicable for the other one, and they are likely to fail for the interfaces. In this Account, we address the question to what extent we can quantitatively describe hybrid materials and where we even miss a qualitative description. We note that we are dealing with extended systems and thus adopt a solid-state approach. Therefore, density-functional theory (DFT) and many-body perturbation theory (MBPT), the GW approach for charged and the Bethe-Salpeter equation for neutral excitations, are our methods of choice. We give a brief summary of the used methodology, focusing on those aspects where problems can be expected when materials of different character meet at an interface. These issues are then taken up when discussing hybrid materials. We argue when and why, for example, standard DFT may fall short when it comes to the electronic structure of organic/metal interfaces or where the framework of MBPT can or must take over. Selected examples of organic/inorganic interfaces, structural properties, electronic bands, optical excitation spectra, and charge-transport properties as obtained from DFT and MBPT highlight which properties can be reliably computed for such materials. The crucial role of van der Waals forces is shown for sexiphenyl films, where the subtle interplay between intermolecular and molecule-substrate interactions is decisive for growth and morphologies. With a PTCDA monolayer on metal surfaces we discuss the performance of DFT in
An ab initio study of plutonium oxides surfaces; Etude ab initio des surfaces d'oxydes de Pu
Energy Technology Data Exchange (ETDEWEB)
Jomard, G.; Bottin, F.; Amadon, B
2007-07-01
By means of first-principles calculations, we have studied the atomic structure as well as the thermodynamic stability of various plutonium dioxide surfaces in function of their environment (in terms of oxygen partial pressure and temperature). All these simulations have been performed with the ABINIT code. It is well known that DFT fails to describe correctly plutonium-based materials since 5f electrons in such systems are strongly correlated. In order to go beyond DFT, we have treated PuO{sub 2} and {beta}-Pu{sub 2}O{sub 3} in a DFT+U framework. We show that the couple of parameters (U,J) that works well for pure Pu is also well designed for describing ground state (GS) properties of these two oxides. The major improvement with respect with DFT is that we are able to predict an insulating GS in agreement with experiments. The presence of a gap in the DOS (Density of States) of plutonium oxides should play a significant role in the predicted surface reactivity. However, performing DFT+U calculations on surfaces of plutonium oxide from scratch was too ambitious. That is why we decided, as a first step, to study the stability of the (100), (110) and (111) surfaces of PuO{sub 2} in a DFT-GGA framework. For each of these orientations, we considered various terminations. These ab initio results have been introduced in a thermodynamic model which allows us to predict the relative stability of the different terminations as a function of temperature and oxygen partial pressure (p{sub O{sub 2}}). We conclude that at room temperature and for p{sub O{sub 2}}{approx}10 atm., the polar O{sub 2}-(100) termination is favoured. The stabilization of such a polar stoichiometric surface is surprising and should be confirmed by DFT+U calculations before any final conclusion. (authors)
Bandstructure meets many-body theory: the LDA+DMFT method
Energy Technology Data Exchange (ETDEWEB)
Held, K [Max-Planck Institut fuer Festkoerperforschung, D-70569 Stuttgart (Germany); Andersen, O K [Max-Planck Institut fuer Festkoerperforschung, D-70569 Stuttgart (Germany); Feldbacher, M [Max-Planck Institut fuer Festkoerperforschung, D-70569 Stuttgart (Germany); Yamasaki, A [Max-Planck Institut fuer Festkoerperforschung, D-70569 Stuttgart (Germany); Yang, Y-F [Max-Planck Institut fuer Festkoerperforschung, D-70569 Stuttgart (Germany)
2008-02-13
Ab initio calculation of the electronic properties of materials is a major challenge for solid-state theory. Whereas 40 years' experience has proven density-functional theory (DFT) in a suitable form, e.g. local approximation (LDA), to give a satisfactory description when electronic correlations are weak, materials with strongly correlated electrons, say d- or f-electrons, remain a challenge. Such materials often exhibit 'colossal' responses to small changes of external parameters such as pressure, temperature, and magnetic field, and are therefore most interesting for technical applications. Encouraged by the success of dynamical mean-field theory (DMFT) in dealing with model Hamiltonians for strongly correlated electron systems, physicists from the bandstructure and many-body communities have joined forces and developed a combined LDA+DMFT method for treating materials with strongly correlated electrons ab initio. As a function of increasing Coulomb correlations, this new approach yields a weakly correlated metal, a strongly correlated metal, or a Mott insulator. In this paper, we introduce the LDA+DMFT method by means of an example, LaMnO{sub 3}. Results for this material, including the 'colossal' magnetoresistance of doped manganites, are presented. We also discuss the advantages and disadvantages of the LDA+DMFT approach.
Bandstructure meets many-body theory: the LDA+DMFT method.
Held, K; Andersen, O K; Feldbacher, M; Yamasaki, A; Yang, Y-F
2008-02-13
Ab initio calculation of the electronic properties of materials is a major challenge for solid-state theory. Whereas 40 years' experience has proven density-functional theory (DFT) in a suitable form, e.g. local approximation (LDA), to give a satisfactory description when electronic correlations are weak, materials with strongly correlated electrons, say d- or f-electrons, remain a challenge. Such materials often exhibit 'colossal' responses to small changes of external parameters such as pressure, temperature, and magnetic field, and are therefore most interesting for technical applications. Encouraged by the success of dynamical mean-field theory (DMFT) in dealing with model Hamiltonians for strongly correlated electron systems, physicists from the bandstructure and many-body communities have joined forces and developed a combined LDA+DMFT method for treating materials with strongly correlated electrons ab initio. As a function of increasing Coulomb correlations, this new approach yields a weakly correlated metal, a strongly correlated metal, or a Mott insulator. In this paper, we introduce the LDA+DMFT method by means of an example, LaMnO(3). Results for this material, including the 'colossal' magnetoresistance of doped manganites, are presented. We also discuss the advantages and disadvantages of the LDA+DMFT approach.
Taioli, Simone; Garberoglio, Giovanni; Simonucci, Stefano; a Beccara, Silvio; Aversa, Lucrezia; Nardi, Marco; Verucchi, Roberto; Iannotta, Salvatore; Dapor, Maurizio; Alfè, Dario
2013-01-28
In this work, we investigate the processes leading to the room-temperature growth of silicon carbide thin films by supersonic molecular beam epitaxy technique. We present experimental data showing that the collision of fullerene on a silicon surface induces strong chemical-physical perturbations and, for sufficient velocity, disruption of molecular bonds, and cage breaking with formation of nanostructures with different stoichiometric character. We show that in these out-of-equilibrium conditions, it is necessary to go beyond the standard implementations of density functional theory, as ab initio methods based on the Born-Oppenheimer approximation fail to capture the excited-state dynamics. In particular, we analyse the Si-C(60) collision within the non-adiabatic nuclear dynamics framework, where stochastic hops occur between adiabatic surfaces calculated with time-dependent density functional theory. This theoretical description of the C(60) impact on the Si surface is in good agreement with our experimental findings.
Energy Technology Data Exchange (ETDEWEB)
Keegan, Ronan M. [STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); Bibby, Jaclyn; Thomas, Jens [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Xu, Dong [Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 (United States); Zhang, Yang [University of Michigan, Ann Arbor, MI 48109 (United States); Mayans, Olga [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Winn, Martyn D. [Science and Technology Facilities Council Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Rigden, Daniel J., E-mail: drigden@liv.ac.uk [University of Liverpool, Liverpool L69 7ZB (United Kingdom); STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom)
2015-02-01
Two ab initio modelling programs solve complementary sets of targets, enhancing the success of AMPLE with small proteins. AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.
Electrical resistivity of NaPb compound-forming liquid alloy using ab initio pseudopotentials
Indian Academy of Sciences (India)
Anil Thakur; N S Negi; P K Ahluwalla
2005-08-01
The study of electrical resistivity of compound-forming liquid alloy, NaPb, is presented as a function of concentration. Hard sphere diameters of Na and Pb are obtained through the interionic pair potentials evaluated using Troullier and Martins ab initio pseudopotential, which have been used to calculate the partial structure factors (). Considering the liquid alloy to be a ternary mixture, Ziman formula, modified for complex formation has been used for calculating resistivity of binary liquid alloys. Form factors are calculated using ab initio pseudopotentials. The results suggest that Ziman formalism, when used with ab initio pseudopotentials, are quite successful in explaining the electrical resistivity data of compound-forming binary liquid alloys.
Chan, Garnet Kin-Lic; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-01-01
Current descriptions of the ab initio DMRG algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab-initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational par...
Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions.
Changlani, Hitesh J; Zheng, Huihuo; Wagner, Lucas K
2015-09-14
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U(∗)/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.
Electron Transport through Polyene Junctions in between Carbon Nanotubes: an Ab Initio Realization
Chen, Yiing-Rei; Chen, Kai-Yu; Dou, Kun-Peng; Tai, Jung-Shen; Lee, Hsin-Han; Kaun, Chao-Cheng
With both ab initio and tight-binding model calculations, we study a system of polyene bridged armchair carbon nanotube electrodes, considering one-polyene and two-polyene cases, to address aspects of quantum transport through junctions with multiple conjugated molecules. The ab initio results of the two-polyene cases not only show the interference effect in transmission, but also the sensitive dependence of such effect on the combination of relative contact sites, which agrees nicely with the tight-binding model. Moreover, we show that the discrepancy mainly brought by ab initio relaxation provides an insight into the influence upon transmission spectra, from the junction's geometry, bonding and effective potential. This work was supported by the Ministry of Science and Technology of the Republic of China under Grant Nos. 99-2112-M-003-012-MY2 and 103-2622-E-002-031, and the National Center for Theoretical Sciences of Taiwan.
Charge-Transfer Excited States in Aqueous DNA: Insights from Many-Body Green's Function Theory
Yin, Huabing; Ma, Yuchen; Mu, Jinglin; Liu, Chengbu; Rohlfing, Michael
2014-06-01
Charge-transfer (CT) excited states play an important role in the excited-state dynamics of DNA in aqueous solution. However, there is still much controversy on their energies. By ab initio many-body Green's function theory, together with classical molecular dynamics simulations, we confirm the existence of CT states at the lower energy side of the optical absorption maximum in aqueous DNA as observed in experiments. We find that the hydration shell can exert strong effects (˜1 eV) on both the electronic structure and CT states of DNA molecules through dipole electric fields. In this case, the solvent cannot be simply regarded as a macroscopic screening medium as usual. The influence of base stacking and base pairing on the CT states is also discussed.
How many-body correlations and $\\alpha$-clustering shape $^6$He
Romero-Redondo, Carolina; Navratil, Petr; Hupin, Guillaume
2016-01-01
The Borromean $^6$He nucleus is an exotic system characterized by two `halo' neutrons orbiting around a compact $^4$He (or $\\alpha$) core, in which the binary subsystems are unbound. The simultaneous reproduction of its small binding energy and extended matter and point-proton radii has been a challenge for {\\em ab initio} theoretical calculations based on traditional bound-state methods. Using soft nucleon-nucleon interactions based on chiral effective field theory potentials, we show that supplementing the model space with $^4$He+$n$+$n$ cluster degrees of freedom largely solves this issue. We analyze the role played by the $\\alpha$-clustering and many-body correlations, and study the dependence of the energy spectrum on the resolution scale of the interaction.
How Many-Body Correlations and α Clustering Shape 6He
Romero-Redondo, Carolina; Quaglioni, Sofia; Navrátil, Petr; Hupin, Guillaume
2016-11-01
The Borromean 6He nucleus is an exotic system characterized by two halo neutrons orbiting around a compact 4He (or α ) core, in which the binary subsystems are unbound. The simultaneous reproduction of its small binding energy and extended matter and point-proton radii has been a challenge for ab initio theoretical calculations based on traditional bound-state methods. Using soft nucleon-nucleon interactions based on chiral effective field theory potentials, we show that supplementing the model space with 4He +n +n cluster degrees of freedom largely solves this issue. We analyze the role played by α clustering and many-body correlations, and study the dependence of the energy spectrum on the resolution scale of the interaction.
Lopuszynski, Michal; Majewski, Jacek A.
2007-01-01
We present theoretical studies for the third-order elastic constants $C_{ijk}$ in zinc-blende nitrides AlN, GaN, and InN. Our predictions for these compounds are based on detailed ab initio calculations of strain-energy and strain-stress relations in the framework of the density functional theory. To judge the computational accuracy, we compare the ab initio calculated results for $C_{ijk}$ with experimental data available for Si and GaAs. We also underline the relation of the third-order ela...
An ab initio study on single electron transfer between ClO2 and phenol
Institute of Scientific and Technical Information of China (English)
崔崇威; 黄君礼
2004-01-01
The SET mechanism between chlorine dioxide (ClO2 ) and phenol was studied by using ab initio method at 4-31G* level. Geometries of the reactants, intermediate and products of the reaction were optimized and the single point energy calculations of the species were performed. The relative structure data of the reactants, intermediate and products are given. The SET mechanism between ClO2 and phenol was confirmed by ab initio calculations. The reaction is exothermic about 200. 88 k J/mol.
Keegan, Ronan M; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D; Rigden, Daniel J
2015-02-01
AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.
Ab Initio Calculation on Self-Assembled Base-Functionalized Single-Walled Carbon Nanotubes
Institute of Scientific and Technical Information of China (English)
SONG Chen; XIA Yue-Yuan; ZHAO Ming-Wen; LIU Xiang-Dong; LI Ji-Ling; LI Li-Juan; LI Feng; HUANG Bo-Da
2006-01-01
@@ We perform ab initio calculations on the self-assembled base-functionalized single-walled carbon nanotubes (SWNTs) which exhibit the quasi-1D ‘ladder’ structure. The optimized configuration in the ab initio calculation is very similar to that obtainedfrom molecular dynamics simulation. We also calculate the electronic structures of the self-assembled base-functionalized SWNTs that exhibit distinct difference from the single-branch base-functionalized SWNT with a localized state lying just below the Fermi level, which may result from the coupling interaction between the bases accompanied by the self-assembly behaviour.
Atomic carbon chains as spin-transmitters: An ab initio transport study
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka
2010-01-01
An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin-polarization of the transmi......An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin...
Energy Technology Data Exchange (ETDEWEB)
Ganster, P
2004-10-15
A calcium aluminosilicate glass of molar composition 67 % SiO{sub 2} - 12 % Al{sub 2}O{sub 3} - 21 % CaO was modelled by classical and ab initio molecular dynamics. The size effect study in classical MD shows that the systems of 100 atoms are more ordered than the larger ones. These effects are mainly due to the 3-body terms in the empirical potentials. Nevertheless, these effects are small and the structures generated are in agreement with experimental data. In such kind of glass, we denote an aluminium avoidance and an excess of non bridging oxygens which can be compensated by tri coordinated oxygens. When the dynamics of systems of 100 and 200 atoms is followed by ab initio MD, some local arrangements occurs (bond length, angular distributions). Thus, more realistic vibrational properties are obtained in ab initio MD. The modelling of thin films shows that aluminium atoms extend to the most external part of the surface and they are all tri-coordinated. Calcium atoms are set in the sub layer part of the surface and they produce a depolymerization of the network. In classical MD, tri-coordinated aluminium atoms produce an important electric field above the surface. With non bridging oxygens, they constitute attractive sites for single water molecules. (author)
Douberly, G E; Ricks, A M; Ticknor, B W; Duncan, M A
2008-02-07
The infrared photodissociation spectra (IRPD) in the 700 to 4000 cm(-1) region are reported for H+ (CO2)n clusters (n = 1-4) and their complexes with argon. Weakly bound Ar atoms are attached to each complex upon cluster formation in a pulsed electric discharge/supersonic expansion cluster source. An expanded IRPD spectrum of the H+ (CO2)Ar complex, previously reported in the 2600-3000 cm(-1) range [Dopfer, O.; Olkhov, R.V.; Roth, D.; Maier, J.P. Chem. Phys. Lett. 1998, 296, 585-591] reveals new vibrational resonances. For n = 2 to 4, the vibrational resonances involving the motion of the proton are observed in the 750 to 1500 cm(-1) region of the spectrum, and by comparison to the predictions of theory, the structure of the small clusters are revealed. The monomer species has a nonlinear structure, with the proton binding to the lone pair of an oxygen. In the dimer, this nonlinear configuration is preserved, with the two CO2 units in a trans configuration about the central proton. Upon formation of the trimer, the core CO2 dimer ion undergoes a rearrangement, producing a structure with near C2v symmetry, which is preserved upon successive CO2 solvation. While the higher frequency asymmetric CO2 stretch vibrations are unaffected by the presence of the weakly attached Ar atom, the dynamics of the shared proton motions are substantially altered, largely due to the reduction in symmetry of each complex. For n = 2 to 4, the perturbation due to Ar leads to blue shifts of proton stretching vibrations that involve motion of the proton mostly parallel to the O-H+-O axis of the core ion. Moreover, proton stretching motions perpendicular to this axis exhibit smaller shifts, largely to the red. Ab initio (MP2) calculations of the structures, complexation energies, and harmonic vibrational frequencies are also presented, which support the assignments of the experimental spectra.
Setten, van M.J.; Wijs, de G.A.; Popa, V.A.; Brocks, G.
2005-01-01
Magnesium alanate Mg(AlH4)2 has recently raised interest as a potential material for hydrogen storage. We apply ab initio calculations to characterize structural, electronic and energetic properties of Mg(AlH4)2. Density functional theory calculations within the generalized gradient approximation (G
Raman and ab initio studies of simple and binary 1-alkyl-3-methylimidazolium ionic liquids
DEFF Research Database (Denmark)
Berg, R.W.; Deetlefs, M.; Seddon, K.R.;
2005-01-01
Raman spectra of the ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF6]), 1-hexyl-3-methylimidazolium chloride ([C(6)mim]Cl), and 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)mim][PF6]), and binary mixtures thereof, have been assigned using ab initio MP2...
Ab initio study of energy-level alignments in polymer-dye blends
Pasveer, W.F.; Bobbert, P.A.; Michels, M.A.J.; Langeveld-Voss, B.M.W.; Schoo, H.F.M.; Bastiaansen, J.J.A.M.
2003-01-01
Polymers with a small amount of dye blended in offer an attractive possibility to change the color of the emitted light by changing the dye. We present ab initio calculations within density-functional theory of the HOMO/ LUMO energies for dipyrrolomethane dyes, polyphenylenevinylene and polyfluorene
Relativistic ab initio spectroscopy study of forbidden lines of singly ionized zinc
Dixit, Gopal; Sahoo, Bijaya K.; Chaudhuri, Rajat K.; Majumder, Sonjoy
2009-01-01
The ab initio calculation has been carried out to study the astrophysically important forbidden electromagnetic transition rates of singly ionized zinc (Zn II). Electron correlations are considered to all orders using coupled-cluster theory in the relativistic framework. Calculated excitation energi
Ab initio study of long-period superstructures in close-packed A3B compounds
DEFF Research Database (Denmark)
Rosengaard, N. M.; Skriver, Hans Lomholt
1994-01-01
We have performed ab initio calculations of the stability of one-dimensional long-period superstructures in Cu3Pd, Cu3Al, and Ag3Mg by means of an interface Green's function technique based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The ene...
Mechanical properties of carbynes investigated by ab initio total-energy calculations
DEFF Research Database (Denmark)
Castelli, Ivano E.; Salvestrini, Paolo; Manini, Nicola
2012-01-01
As sp carbon chains (carbynes) are relatively rigid molecular objects, can we exploit them as construction elements in nanomechanics? To answer this question, we investigate their remarkable mechanical properties by ab initio total-energy simulations. In particular, we evaluate their linear...... response to small longitudinal and bending deformations and their failure limits for longitudinal compression and elongation....
Ab initio Defect Energetics in LaBO3 Perovskite Solid Oxide Fuel Cell Materials
DEFF Research Database (Denmark)
Lee, Yueh-Lin; Morgan, Dane; Kleis, Jesper;
2009-01-01
Perovskite materials of the form ABO3 are a promising family of compounds for use in solid oxide fuel cell (SOFC) cathodes. Study of the physics of these compounds under SOFC conditions with ab initio methods is particularly challenging due to high temperatures, exchange of oxygen with O2 gas...
Ab-initio modeling of an anion $C_{60}^-$ pseudopotential for fullerene-based compounds
Vrubel, I I; Ivanov, V K
2015-01-01
A pseudopotential of $C_{60}^-$ has been constructed from ab-initio quantum-mechanical calculations. Since the obtained pseudopotential can be easily fitted by rather simple analytical approximation it can be effectively used both in classical and quantum molecular dynamics of fullerene-based compounds.
An ab initio Valence Bond Study on Cyclopenta-Fused Naphthalenes and Fluoranthenes
Havenith, R.W.A.; van Lenthe, J.H.; Jenneskens, L.W.
2005-01-01
To probe the effect of external cyclopenta-fusion on a naphthalene core, ab initio valence bond (VB) calculations have been performed, using strictly atomic benzene p-orbitals and p-orbitals that are allowed to delocalize, on naphthalene (1), acenaphthylene (2), pyracylene (3), cyclopenta[b,c]-acena
DEFF Research Database (Denmark)
Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian
2012-01-01
We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set ...
Ab Initio Investigations of the C2F4S Isomers and of Their Interconversions
DEFF Research Database (Denmark)
Shim, Irene; Vallano-Lorenzo, Sandra; Lisbona-Martin, Pilar
2003-01-01
The transition states and the activation energies for the unobserved isomerization reactions between the three possible C2F4S isomers with divalent sulfur, trifluorothioacetyl fluoride 1, tetrafluorothiirane 2, and trifluoroethenesulfenyl fluoride 3, have been determined by ab initio Hartree-Fock...
Ab initio calculations on the structure of pyridine in its lowest triplet state
Buma, W.J.; Groenen, E.J.J.; Schmidt, J.
1990-01-01
Recently we have experimentally shown that pyridine-d5, as a guest in a single crystal of benzene-d6, adopts a boatlike structure upon excitation into the lowest triplet state T0. Here MRDCI ab initio calculations are presented that reveal that the observed nonplanarity of the molecule is not caused
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
The Pu–U–Am system: An ab initio informed CALPHAD thermodynamic study
Energy Technology Data Exchange (ETDEWEB)
Perron, A., E-mail: perron1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Turchi, P.E.A.; Landa, A.; Söderlind, P. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Ravat, B.; Oudot, B.; Delaunay, F. [CEA-Centre de Valduc, 21120 Is sur Tille (France)
2015-03-15
Highlights: • The ab initio informed CALPHAD assessment of the Am–U system has been realized. • A strong tendency toward phase separation across the whole composition range is predicted. • The ab initio informed Pu–U–Am thermodynamic database has been developed. • The solubility of Am and U in the liquid phase is improved by adding Pu. • The δ-Pu (fcc) phase is strongly stabilized by Am, on the contrary to the bcc phase. - Abstract: Phase diagram and thermodynamic properties of the Am–U system, that are experimentally unknown, are calculated using the CALPHAD method with input from ab initio electronic-structure calculations for the fcc and bcc phases. A strong tendency toward phase separation across the whole composition range is predicted. In addition, ab initio informed Pu–U and Am–Pu thermodynamic assessments are combined to build a Pu–U–Am thermodynamic database. Regarding the Pu-rich corner of the ternary system, predictions indicate that Am acts as a powerful δ-Pu (fcc) stabilizer. In the U-rich corner, similar predictions are made but to a lesser extent. In both cases, the bcc phase is destabilized and the fcc phase is enhanced. Finally, results and methodology are discussed and compared with previous assessments and guidelines are provided for further experimental studies.
Ab initio calculations on the inclusion complexation of cyclobis(paraquat- p-phenylene)
Zhang, Ke-Chun; Liu, Lei; Mu, Ting-Wei; Guo, Qing-Xiang
2001-01-01
Semiempirical PM3, ab initio HF/3-21g ∗, and DFT B3LYP/6-31g ∗ calculations in vacuum and in solution were performed on the inclusion complexation of cyclobis(paraquat- p-phenylene) with nine symmetric aromatic substrates. A good correlation was found between the theoretical stabilization energies and experimental free energy changes upon complexation.
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
DEFF Research Database (Denmark)
Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Rostrup-Nielsen, Jens;
2006-01-01
Mechanisms and energetics of graphene growth catalyzed by nickel nanoclusters were studied using ab initio density functional theory calculations. It is demonstrated that nickel step-edge sites act as the preferential growth centers for graphene layers on the nickel surface. Carbon is transported...
New ab initio based pair potential for accurate simulation of phase transitions in ZnO
Wang, Shuaiwei; Fan, Zhaochuan; Koster, Rik S.; Fang, Changming; Van Huis, Marijn A.; Yalcin, Anil O.; Tichelaar, Frans D.; Zandbergen, Henny W.; Vlugt, Thijs J H
2014-01-01
A set of interatomic pair potentials is developed for ZnO based on the partially charged rigid ion model (PCRIM). The derivation of the potentials combines lattice inversion, empirical fitting, and ab initio energy surface fitting. We show that, despite the low number of parameters in this model (8)
Ab Initio Calculations and Raman and SERS Spectral Analyses of Amphetamine Species
DEFF Research Database (Denmark)
Berg, Rolf W.; Nørbygaard, Thomas; White, Peter C.
2011-01-01
. The spectra of amphetamine and amphetamine-H+ sampleswere obtained and assigned according to a comparison of the experimental spectra and the ab initio MO calculations, performed using the Gaussian 03W program (Gaussian, Inc., Pittsburgh, PA). The analyses were based on complete geometry minimization...
Ab initio and work function and surface energy anisotropy of LaB6
Uijttewaal, M. A.; de Wijs, G. A.; de Groot, R. A.
2006-01-01
Lanthanum hexaboride is one of the cathode materials most used in high-power electronics technology, but the many experimental results do not provide a consistent picture of the surface properties. Therefore, we report the first ab initio calculations of the work functions and surface energies of th
Energy Technology Data Exchange (ETDEWEB)
Gerosa, Matteo [Department of Energy, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy); Di Valentin, Cristiana; Pacchioni, Gianfranco [Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milan (Italy); Bottani, Carlo Enrico, E-mail: carlo.bottani@polimi.it [Department of Energy, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy); Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano (Italy); Onida, Giovanni [Dipartimento di Fisica dell’ Universita’ degli Studi di Milano and European Theoretical Spectroscopy Facility (ETSF), Via Celoria 16, 20133 Milan (Italy)
2015-09-21
We investigate the long-standing problem of hole localization at the Al impurity in quartz SiO{sub 2}, using a relatively recent DFT hybrid-functional method in which the exchange fraction is obtained ab initio, based on an analogy with the static many-body COHSEX approximation to the electron self-energy. As the amount of the admixed exact exchange in hybrid functionals has been shown to be determinant for properly capturing the hole localization, this problem constitutes a prototypical benchmark for the accuracy of the method, allowing one to assess to what extent self-interaction effects are avoided. We obtain good results in terms of description of the charge localization and structural distortion around the Al center, improving with respect to the more popular B3LYP hybrid-functional approach. We also discuss the accuracy of computed hyperfine parameters, by comparison with previous calculations based on other self-interaction-free methods, as well as experimental values. We discuss and rationalize the limitations of our approach in computing defect-related excitation energies in low-dielectric-constant insulators.
Indian Academy of Sciences (India)
ELAHE PARVINI; MORTEZA VATANPARAST; ESMAIL VESSALLY; ALI BAHADORI
2016-12-01
Ab initio MP2/6-311++G(d,p) level calculations have been carried out to investigate the interplay between the halogen and pnicogen-hydride bonds in NCX...OPH₃...HMgY complexes (X = F, Cl, Br; Y = F, Cl, Br, H). The results indicated that the cooperative effects are obvious in the target complexes. These effects were considered in detail in terms of electrostatic potential, energetic, geometric, charge-transfer and electron density properties of the complexes. The values of cooperative energy (Ecoop) were ranging from −0.41 to −0.60 kJ/mol, −1.02 to −1.57 kJ/mol and −1.50 to −2.28 kJ/mol for X = F, Cl and Br, respectively. Based on many-body analysis, two and three-body terms of interaction energies have a positive contribution to the total interaction energy. It was found that the amount of charge transfer in the triads is higher than that in the corresponding dyads. AIM analyses showed that the halogen and pnicogen-hydride bonds in the triads are amplified with respect to the dyads
Timko, Jeff; Kuyucak, Serdar
2012-11-28
Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K(+) ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K(+) ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K(+) ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K(+) ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.
Duguet, T; Ebran, J -P; Lesinski, T; Somà, V
2015-01-01
This programmatic paper lays down the possibility to reconcile the necessity to resum many-body correlations into the energy kernel with the fact that safe multi-reference energy density functional (EDF) calculations cannot be achieved whenever the Pauli principle is not strictly enforced, as is for example the case when many-body correlations are parametrized under the form of empirical density dependencies. Our proposal is to exploit a newly developed ab initio many-body formalism to guide the construction of safe, explicitly correlated and systematically improvable parametrizations of the {\\it off-diagonal} energy and norm kernels that lie at the heart of the nuclear EDF method. The many-body formalism of interest relies on the concepts of symmetry breaking {\\it and} restoration that have made the fortune of the nuclear EDF method and is, as such, amenable to this guidance. After elaborating on our proposal, we briefly outline the project we plan to execute in the years to come.
Introduction to many-body physics
Coleman, Piers
2015-01-01
A modern, graduate-level introduction to many-body physics in condensed matter, this textbook explains the tools and concepts needed for a research-level understanding of the correlated behavior of quantum fluids. Starting with an operator-based introduction to the quantum field theory of many-body physics, this textbook presents the Feynman diagram approach, Green's functions and finite-temperature many body physics before developing the path integral approach to interacting systems. Special chapters are devoted to the concepts of Fermi liquid theory, broken symmetry, conduction in disordered systems, superconductivity and the physics of local-moment metals. A strong emphasis on concepts and numerous exercises make this an invaluable course book for graduate students in condensed matter physics. It will also interest students in nuclear, atomic and particle physics.
Durig, J. R.; Zhu, X.; Shen, S.
2001-08-01
Variable temperature (-55 to -150°C) studies of the infrared spectra (3500-400 cm -1) of 1-chloropropane (CH 3CH 2CH 2Cl) and 1-bromopropane (CH 3CH 2CH 2Br) dissolved in liquid krypton and xenon, respectively, have been recorded. Utilizing two conformer pairs in krypton solution for chloride and three conformer pairs in xenon solution for bromide, enthalpy differences of 52±3 cm -1 (0.62±0.06 kJ/mol) and 72±7 cm -1 (0.86±0.08 kJ/mol) were obtained for the chloride and bromide, respectively, with the gauche form being the more stable conformer for both molecules. From these data, it is estimated that 28 and 26% of trans form are present at ambient temperature for the chloride and bromide, respectively. The conformation stabilities, harmonic force constants, fundamental frequencies, infrared intensities and Raman activities have been obtained from RHF/6-31G(d) and/or MP2/6-31G(d) ab initio calculations for both halopropanes and these quantities have been compared to the experimental values when appropriate. The optimized geometries have also been obtained with several different ab initio basis sets with full electron correlation by the perturbation method up to MP2/6-311+G(2d,2p). The r0 structural parameters of both halopropanes have been obtained by combining the ab initio data with the previously reported microwave rotational constants for both conformers. The quantities are compared to the corresponding results for some similar molecules.
Allen, B. Danette; Alexandrov, Natalia
2016-01-01
Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that
Many-body methods in agent-based epidemic models
Nakamura, Gilberto M
2016-01-01
The susceptible-infected-susceptible (SIS) agent-based model is usually employed in the investigation of epidemics. The model describes a Markov process for a single communicable disease among susceptible (S) and infected (I) agents. However, the disease spreading forecasting is often restricted to numerical simulations, while analytic formulations lack both general results and perturbative approaches since they are subjected to asymmetric time generators. Here, we discuss perturbation theory, approximations and application of many-body techniques in epidemic models in the framework for squared norm of probability vector $|P(t)| ^2$, in which asymmetric time generators are replaced by their symmetric counterparts.
Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Sharma, Nalini; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University, Shimla(HP)-171005 (India); Thakur, Anil [Department of Physics, Govt. P. G. College Solan (HP)-173212 (India)
2015-05-15
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.
Conformational space of clindamycin studied by ab initio and full-atom molecular dynamics.
Kulczycka-Mierzejewska, Katarzyna; Trylska, Joanna; Sadlej, Joanna
2016-01-01
Molecular dynamics (MD) simulations allow determining internal flexibility of molecules at atomic level. Using ab initio Born-Oppenheimer molecular dynamics (BOMD), one can simulate in a reasonable time frame small systems with hundreds of atoms, usually in vacuum. With quantum mechanics/molecular mechanics (QM/MM) or full-atom molecular dynamics (FAMD), the influence of the environment can also be simulated. Here, we compare three types of MD calculations: ab initio BOMD, hybrid QM/MM, and classical FAMD. As a model system, we use a small antibiotic molecule, clindamycin, which is one of the lincosamide antibiotics. Clindamycin acquires two energetically stable forms and we investigated the transition between these two experimentally known conformers. We performed 60-ps BOMD simulations in vacuum, 50-ps QM/MM, and 100-ns FAMD in explicit water. The transition between two antibiotic conformers was observed using both BOMD and FAMD methods but was not noted in the QM/MM simulations.
Raman spectroscopy, ab-initio model calculations, and conformational, equilibria in ionic liquids
DEFF Research Database (Denmark)
Berg, Rolf W.
2009-01-01
spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT- Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methyl-imidazolium ([C4C1Im]+X-) salts. The rotational isomerism of the [C4C1Im]+ cation is described: the presence of anti......A review of the recent developments in the study and understanding of room temperature ionic liquids are given. An intimate picture of how and why these liquids are not crystals at ambient conditions is attempted, based on evidence from crystallographical results combined with vibrational.......3 Brief introduction to ab-initio model calculations .... 312 12.4 Case study on Raman spectroscopy and structure of imidazolium-based ionic liquids ..... 312 12.5 Raman spectra and structure of [C4C1Im]+ liquids ..... 315 12.6 Normal mode analysis and rotational isomerism of the [C4C1Im]+ cation...
Ab Initio No-Core Shell Model Calculations Using Realistic Two- and Three-Body Interactions
Energy Technology Data Exchange (ETDEWEB)
Navratil, P; Ormand, W E; Forssen, C; Caurier, E
2004-11-30
There has been significant progress in the ab initio approaches to the structure of light nuclei. One such method is the ab initio no-core shell model (NCSM). Starting from realistic two- and three-nucleon interactions this method can predict low-lying levels in p-shell nuclei. In this contribution, we present a brief overview of the NCSM with examples of recent applications. We highlight our study of the parity inversion in {sup 11}Be, for which calculations were performed in basis spaces up to 9{Dirac_h}{Omega} (dimensions reaching 7 x 10{sup 8}). We also present our latest results for the p-shell nuclei using the Tucson-Melbourne TM three-nucleon interaction with several proposed parameter sets.
Emergent properties of nuclei from ab initio coupled-cluster calculations
Hagen, G; Hjorth-Jensen, M; Papenbrock, T
2016-01-01
Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO$_{\\rm sat}$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to $^{56}$Ni. We derive an efficient scheme for including continuum effects in coupled-clust...
Interatomic potentials for Al and Ni from experimental data and ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Mishin, Y.; Farkas, D.; Miehl, M.J.; Papaconstantopoulos, D.A.
1999-07-01
New embedded-atom potentials for Al and Ni have been developed by fitting to both experimental data and the results of ab initio calculations. The ab initio data were obtained in the form of energies of different alternative computer-generated crystalline structures of these metals. The potentials accurately reproduce basic equilibrium properties of Al and Ni such as the elastic constants, phonon dispersion curves, vacancy formation and migration energies, stacking fault energies, and surface energies. The equilibrium energies of various alternative structures not included in the fitting database are calculated with these potentials. The results are compared with predictions of total-energy tight-binding calculations for the same structures. The embedded-atom potentials correctly reproduce the structural stability trends, which suggests that they are transferable to different local environments encountered in atomistic simulations of lattice defects.
Low-temperature metallic liquid hydrogen: an ab-initio path-integral molecular dynamics perspective
Chen, Ji; Li, Xin-Zheng; Zhang, Qianfan; Probert, Matthew; Pickard, Chris; Needs, Richard; Michaelides, Angelos; Wang, Enge
2013-03-01
Experiments and computer simulations have shown that the melting temperature of solid hydrogen drops with pressure above about 65 GPa, suggesting that a low temperature liquid state might exist. It has also been suggested that this liquid state might be non-molecular and metallic, although evidence for such behaviour is lacking. Using a combination of ab initio path-integral molecular dynamics and the two-phase methods, we have simulated the melting of solid hydrogen under finite temperatures. We found an atomic solid phase from 500 to 800 GPa which melts at < 200 K. Beyond this and up to pressures of 1,200 GPa a metallic atomic liquid is stable at temperatures as low as 50 K. The quantum motion of the protons is critical to the low melting temperature in this system as ab initio simulations with classical nuclei lead to a considerably higher melting temperature of ~300 K across the entire pressure range considered.
Melting of sodium under high pressure. An ab-initio study
Energy Technology Data Exchange (ETDEWEB)
González, D. J.; González, L. E. [Departamento de Física Teórica, Atómica y Optica, Universidad de Valladolid, 47011 Valladolid (Spain)
2015-08-17
We report ab-initio molecular dynamics simulations of dense liquid/solid sodium for a pressure range from 0 to 100 GPa. The simulations have been performed with the orbital free ab-initio molecular dynamics method which, by using the electron density as the basic variable, allows to perform simulations with large samples and for long runs. The calculated melting curve shows a maximum at a pressure ≈ 30 GPa and it is followed by a long, steep decrease. These features are in good agreement with the experimental data. For various pressures along the melting curve, we have calculated several liquid static properties (pair distribution functions, static structure factors and short-range order parameters) in order to analyze the structural effects of pressure.
McKemmish, Laura K; Tennyson, Jonathan
2016-01-01
Accurate knowledge of the rovibronic near-infrared and visible spectra of vanadium monoxide (VO) is very important for studies of cool stellar and hot planetary atmospheres. Here, the required ab initio dipole moment and spin-orbit coupling curves for VO are produced. This data forms the basis of a new VO line list considering 13 different electronic states and containing over 277 million transitions. Open shell transition, metal diatomics are challenging species to model through ab initio quantum mechanics due to the large number of low-lying electronic states, significant spin-orbit coupling and strong static and dynamic electron correlation. Multi-reference configuration interaction methodologies using orbitals from a complete active space self-consistent-field (CASSCF) calculation are the standard technique for these systems. We use different state-specific or minimal-state CASSCF orbitals for each electronic state to maximise the calculation accuracy. The off-diagonal dipole moment controls the intensity...
Electrical Resistivity of Na-K Binary Liquid Alloy Using Ab-Initio Pseudopotentials
Institute of Scientific and Technical Information of China (English)
Anil Thakur; P. K. Ahluwalia
2005-01-01
@@ The study of electrical resistivity of simple binary liquid alloy Na-K is presented as a function of concentration.Hard sphere diameters of sodium (Na) and potassium (K) are obtained through the inter ionic pair potentials evaluated using Troullier and Martins ab-initio pseudopotentials, which have been used to calculate partial structure factors S(q). The Ziman formula for calculating resistivity of binary liquid alloys has been used. Form factors are calculated using ab-initio pseudopotentials. The results suggest that the first principle approach for calculating pseudopotentials with in the frame work of Ziman formalism is quite successful in explaining the electrical resistivity data of compound forming binary liquid alloys.
Bridging a gap between continuum-QCD and ab initio predictions of hadron observables
Directory of Open Access Journals (Sweden)
Daniele Binosi
2015-03-01
Full Text Available Within contemporary hadron physics there are two common methods for determining the momentum-dependence of the interaction between quarks: the top-down approach, which works toward an ab initio computation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCD's gauge sector coincides with that required in order to describe ground-state hadron observables using a nonperturbative truncation of QCD's Dyson–Schwinger equations in the matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initio prediction of bound-state properties.
{\\it Ab initio} nuclear structure - the large sparse matrix eigenvalue problem
Vary, James P; Ng, Esmond; Yang, Chao; Sosonkina, Masha
2009-01-01
The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several {\\it ab initio} methods have now emerged that provide nearly exact solutions for some nuclear properties. The {\\it ab initio} no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds $10^{10}$ and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving t...
[Photoelectron Spectra of CCl2-: Ab Initio Calculation and Franck-Condon Analysis].
Wu, Jun
2015-12-01
Geometry optimization and harmonic vibrational frequency calculations were performed on the X¹A₁ state of CCl₂ and X²B₁ state of CCl₂⁻ at the B3LYP, MP2, CCSD levels. Franck-Condon analysis and spectral simulations were carried out on the photoelectron band of CCl₂⁻ including Duschinsky effects. The simulated spectra obtained are in excellent agreement with the experiment. Note that Duschinsky effect between bending vibration and the symmetric stretch modes should be considered in the CCl₂ (X¹A₁)-CCl₂⁻ (X²B₁) photodetachment process. By combining ab initio calculations with Franck-Condon analyses, the assignment of spectrum observed is firmly established to the X¹A₁-X²B₁ photodetachment process of the CCl₂⁻ radical, and the recommended geometric parameters of which in the literature are confirmed again base on ab initio theory and IFCA process.
Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon
Drumm, Daniel W.; Budi, Akin; Per, Manolo C.; Russo, Salvy P.; L Hollenberg, Lloyd C.
2013-02-01
The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%.
Li ion diffusion mechanisms in LiFePO4: an ab initio molecular dynamics study.
Yang, Jianjun; Tse, John S
2011-11-17
The mechanisms for thermal (self) diffusion of Li ions in fully lithiated LiFePO(4) have been investigated with spin polarized ab initio molecular dynamics calculations. The effect of electron correlation is taken into account with the GGA+U formalism. It was found that Li ion diffusion is not a continuous process but through a series of jumps from one site to another. A dominant process is the hopping between neighboring Li sites around the PO(4) groups, which results in a zigzag pathway along the crystallographic b-axis. This observation is in agreement with a recent neutron diffraction experiment. A second process involves the collaborative movements of the Fe ions leading to the formation of antisite defects and promotes Li diffusion across the Li ion channels. The finding of the second mechanism demonstrates the benefit of ab initio molecular dynamics simulation in sampling diffusion pathways that may not be anticipated.
Ab Initio Calculations for the BaTiO3 (001) Surface Structure
Institute of Scientific and Technical Information of China (English)
XUE Xu-Yan; WANG Chun-Lei; ZHONG Wei-Lie
2004-01-01
@@ The ab initio method within the local density approximation is applied to calculate cubic BaTiO3 (001) surface relaxation and rumpling for two different terminations (BaO and TiO2). Our calculations demonstrate that cubic perovskite BaTiO3 crystals possess surface polarization, accompanied by the presence of the relevant electric field.We analyse their electronic structures (band structure, density of states and the electronic density redistribution with emphasis on the covalency effects). The results are also compared with that of the previous ab initio calculations. Considerable increases of Ti-O chemical bond covalency nearby the surface have been observed.The band gap reduces especially for the TiO2 termination.
Liquid Be, Ca and Ba. An orbital-free ab-initio molecular dynamics study
Energy Technology Data Exchange (ETDEWEB)
Rio, B. G. del; González, L. E. [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid (Spain)
2015-08-17
Several static and dynamic properties of liquid beryllium (l-Be), liquid calcium (l-Ca) and liquid barium (l-Ba) near their triple point have been evaluated by the orbital-free ab initio molecular dynamics method (OF-AIMD), where the interaction between valence electrons and ions is described by means of local pseudopotentials. These local pseudopotentials used were constructed through a force-matching process with those obtained from a Kohn-Sham ab initio molecular dynamics study (KS-AIMD) of a reduced system with non-local pseudopotentials. The calculated static structures show good agreement with the available experimental data, including an asymmetric second peak in the structure factor which has been linked to the existence of a marked icosahedral short-range order in the liquid. As for the dynamic properties, we obtain collective density excitations whose associated dispersion relations exhibit a positive dispersion.
Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation
Correa, J. D.; Cisternas, E.
2016-09-01
By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.
Ab initio calculations on the magnetic properties of transition metal complexes
Energy Technology Data Exchange (ETDEWEB)
Bodenstein, Tilmann; Fink, Karin [Karlsruhe Institute of Technology, Institute of Nanotechnology, POB 3640, 76021 Karlsruhe (Germany)
2015-12-31
We present a protocol for the ab initio determination of the magnetic properties of mono- and polynuclear transition metal compounds. First, we obtain the low lying electronic states by multireference methods. Then, we include spin-orbit coupling and an external magnetic field for the determination of zero-field splitting and g-tensors. For the polynuclear complexes the magnetic exchange coupling constants are determined by a modified complete active space self consistent field method. Based on the results of the ab initio calculations, magnetic data such as magnetic susceptibility or magnetization are simulated and compared to experimental data. The results obtained for the polynuclear complexes are further analysed by calculations on model complexes where part of the magnetic centers are substituted by diamagnetic ions. The methods are applied to different Co and Ni containing transition metal complexes.
Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon.
Drumm, Daniel W; Budi, Akin; Per, Manolo C; Russo, Salvy P; L Hollenberg, Lloyd C
2013-02-27
: The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%.
Properties of metals during the heating by intense laser irradiation using ab initio simulations
Holst, Bastian; Recoules, Vanina; Torrent, Marc; Mazevet, Stephane
2011-10-01
Ultrashort laser pulses irradiating a target heat the electrons to very high temperatures. In contrast, the ionic lattice is unaffected on the time scale of the laser pulse since the heat capacity of electrons is much smaller than that of the lattice. This non-equilibrium system can be described as a composition of two subsystems: one consisting of hot electrons and the other of an ionic lattice at low temperature. We studied the effect of this intense electronic excitations on the optical properties of gold using ab initio simulations. We additionally use ab initio linear response to compute the phonon spectrum and the electron-phonon coupling constant within Density Functional Theory for several electronic temperatures of few eV. LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France.
Many-Body Density Matrix Theory
Tymczak, C. J.; Borysenko, Kostyantyn
2014-03-01
We propose a novel method for obtaining an accurate correlated ground state wave function for chemical systems beyond the Hartree-Fock level of theory. This method leverages existing linear scaling methods to accurately and easily obtain the correlated wave functions. We report on the theoretical development of this methodology, which we refer to as Many Body Density Matrix Theory. This theory has many significant advantages over existing methods. One, its computational cost is equivalent to Hartree-Fock or Density Functional theory. Two it is a variational upper bound to the exact many-body ground state energy. Three, like Hartree-Fock, it has no self-interaction. Four, it is size extensive. And five, formally is scales with the complexity of the correlations that in many cases scales linearly. We show the development of this theory and give several relevant examples.
Energy Technology Data Exchange (ETDEWEB)
Halasyamani, Shiv [Univ. of Houston, TX (United States); Fennie, Craig [Cornell Univ., Ithaca, NY (United States)
2016-11-03
We have focused on the synthesis, characterization, and ab initio theory on multi-functional mixed-metal fluorides. With funding from the DOE, we have successfully synthesized and characterized a variety of mixed metal fluoride materials.
Influence of the ab-initio nd cross sections in the critical heavy-water benchmarks
Morillon, B; Carbonell, J
2013-01-01
The n-d elastic and breakup cross sections are computed by solving the three-body Faddeev equations for realistic and semi-realistic Nucleon-Nucleon potentials. These cross sections are inserted in the Monte Carlo simulation of the nuclear processes considered in the International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP). The results obtained using thes ab initio n-d cross sections are compared with those provided by the most renown international libraries.
Optical and other material properties of SiO2 from ab initio studies
Warmbier, Robert; Mohammed, Faris; Quandt, Alexander
2014-07-01
The optical properties of photonic devices largely depend on the dielectric properties of the underlying materials. We apply modern ab initio methods to study crystalline SiO2 phases, which serve as toy models for amorphous glass. We discuss the dielectric response from the infrared to the VIS/UV, which is crucial for glass based photonic applications. Low density silica, like cristobalite, may provide a good basis for high transmission optical devices.
Ab initio quantum-enhanced optical phase estimation using real-time feedback control
DEFF Research Database (Denmark)
Berni, Adriano; Gehring, Tobias; Nielsen, Bo Melholt
2015-01-01
of a quantum-enhanced and fully deterministic ab initio phase estimation protocol based on real-time feedback control. Using robust squeezed states of light combined with a real-time Bayesian adaptive estimation algorithm, we demonstrate deterministic phase estimation with a precision beyond the quantum shot...... noise limit. The demonstrated protocol opens up new opportunities for quantum microscopy, quantum metrology and quantum information processing....
Energy Technology Data Exchange (ETDEWEB)
Herbig, Alexander
2016-02-12
An ab-initio electronic structure method for substitutionally disordered real materials is developed within a pseudopotential density functional theory approach. The method is validated against exact diagonalization and for simple disordered CuZn alloys. The developed method is applied to iron-based superconductors. In particular, band renormalization effects due to various chemical substitutions in BaFe{sub 2}As{sub 2} are investigated and their Cooper pair breaking effects are compared.
Simulation of Ab Initio Molecular Dynamics of Shock Wave on Copper
Institute of Scientific and Technical Information of China (English)
张林; 蔡灵仓; 向士凯; 经福谦; 陈栋泉
2003-01-01
The relation between particle velocity Up, up to 4 km/s, and shock wave velocity Us in copper has been simulated with ab initio molecular dynamics. The simulated relationship without considering the correction of zero-point and finite temperature effects is Us = 4.23 + 1.53Up. After considering the correction the relation becomes Us = 4.08 + 1.53Up, which is consistent with the experimental result.
Ab initio verification of the analytical R-matrix theory for strong field ionization
Torlina, Lisa; Morales, Felipe; Muller, H. G.; Smirnova, Olga
2014-10-01
We summarize the key aspects of the recently developed analytical R-matrix (ARM) theory for strong field ionization (Torlina and Smirnova 2012 Phys. Rev. A 86 043408; Kaushal and Smirnova 2013 Phys. Rev. A 88 013421), and present tests of this theory using ab initio numerical simulations for hydrogen and helium atoms in long circularly polarized laser pulses. We find excellent agreement between the predictions of ARM and the numerical calculations.
Ab initio molecular dynamics simulation of hydrogen fluoride at several thermodynamic states
DEFF Research Database (Denmark)
Kreitmeir, M.; Bertagnolli, H.; Mortensen, Jens Jørgen;
2003-01-01
Liquid hydrogen fluoride is a simple but interesting system for studies of the influence of hydrogen bonds on physical properties. We have performed ab initio molecular dynamics simulations of HF at several thermodynamic states, where we examine the microscopic structure of the liquid as well...... as its static and dynamic properties. The results obtained show good agreement with well established data, and, moreover, we were able to show significant changes within the structure depending on the system's temperature and density....
Ab Initio Study on the Anti-HIV Activities of Hydroxyflavones
Institute of Scientific and Technical Information of China (English)
ZHANG Yu
2005-01-01
Flavone and 95 hydroxyflavones have been studied with ab initio method, and their total energies, atomic charges, dipole moments, multipole moments, molecular orbital compositions, orbital energies etc. were obtained. Among them the relationship between total atomic charges and activities against HIV is basically in accordance with the experimental results. The beneficial references are provided for the extraction and synthesis of strong active anti-HIV medicines.
Projector augmented wave method: ab initio molecular dynamics with full wave functions
Indian Academy of Sciences (India)
Peter E Blöchl; Clemens J Först; Johannes Schimpl
2003-01-01
A brief introduction to the projector augmented wave method is given and recent developments are reviewed. The projector augmented wave method is an all-electron method for efficient ab initio molecular dynamics simulations with full wave functions. It extends and combines the traditions of existing augmented wave methods and the pseudopotential approach. Without sacrificing efficiency, the PAW method avoids transferability problems of the pseudopotential approach and it has been valuable to predict properties that depend on the full wave functions.
Ab initio molecular dynamics simulations of the Li4F4 cluster
Heidenreich, A.; Sauer, J.
1995-12-01
Molecular dynamics simulations have been performed directly on the ab initio potential energy surface of Li4F4, which was generated within the Hartree-Fock approximation using a Gaussian basis set (split valence contraction). Trajectories at different temperatures yield the temperature dependence of the infrared spectra and the photoelectron spectra. For the infrared spectra comparison is made with MD results using a shell model ion pair potential function.
First fully ab initio potential energy surface of methane with a spectroscopic accuracy
Nikitin, A. V.; Rey, M.; Tyuterev, Vl. G.
2016-09-01
Full 9-dimensional ab initio potential energy surfaces for the methane molecule are constructed using extended electronic structure coupled-cluster calculations with various series of basis sets following increasing X cardinal numbers: cc-pVXZ (X = 3, 4, 5, 6), aug-cc-ACVXZ (X = 3, 4, 5), and cc-pCVXZ-F12 (X = 3, 4). High-order dynamic electron correlations including triple and quadrupole excitations as well as relativistic and diagonal Born-Oppenheimer breakdown corrections were accounted for. Analytical potential functions are parametrized as non-polynomial expansions in internal coordinates in irreducible tensor representation. Vibrational energy levels are reported using global variational nuclear motion calculations with exact kinetic energy operator and a full account of the tetrahedral symmetry of CH4. Our best ab initio surface including above-mentioned contributions provides the rms (obs.-calc.) errors of less than 0.11 cm-1 for vibrational band centers below 4700 cm-1, and ˜0.3 cm-1 for all 229 assigned experimentally determined vibrational levels up to the Icosad range <7900 cm-1 without empirically adjusted parameters. These results improve the accuracy of ab initio methane vibrational predictions by more than an order of magnitude with respect to previous works. This is an unprecedented accuracy of first-principles calculations of a five-atomic molecule for such a large data set. New ab initio potential results in significantly better band center predictions even in comparison with best available empirically corrected potential energy surfaces. The issues related to the basis set extrapolation and an additivity of various corrections at this level of accuracy are discussed.
Lattice dynamics of wurtzite CdS: Neutron scattering and ab-initio calculations
Debernardi, A.; Pyka, N. M.; Göbel, A.; Ruf, T.; Lauck, R.; Kramp, S.; Cardona, M.
1997-08-01
We have measured the phonon dispersion of wurtzite CdS by inelastic neutron scattering in a single crystal made from the nonabsorbing isotope 114Cd. One of the two silent B 1-modes occurs at 3.96 THz ( k = 0 ). It is significantly lower and less dispersive than so far assumed. Previous semiempirical lattice dynamical models need to be reanalyzed. However, the observed dispersion branches compare favorably with an ab-initio calculation.
Steady state Ab-initio Theory of Lasers with Injected Signals
Cerjan, Alexander
2013-01-01
We present an ab-initio treatment of steady-state lasing with injected signals that treats both multimode lasing and spatial hole burning, and describes the transition to injection locking or partial locking in the multimode case. The theory shows that spatial hole burning causes a shift in the frequency of free-running laser modes away from the injection frequency, in contrast to standard approaches.
An Exactly Solvable Many-Body Model
Zettili, Nouredine; Boukahil, Abdelkrim
2012-03-01
We deal here with the construction of a simple many-body model that can be solved exactly. This model serves as a tool for testing the validity and accuracy of many-body approximation methods, most notably those encountered in nuclear theory. The model consists of a system of two distinguishable, one-dimensional sets fermions interacting via a schematic two-body force. We construct the Hamiltonian of the model by means of vector operators that satisfy a Lie algebra and which are the generators of an SO(2,1) group. The Hamiltonian depends on an adjustable parameter which regulates the strength of the two-body interaction. The size of the Hamiltonian's matrix is rendered finite by means of a built-in symmetry: the Hamiltonian is represented by a five-diagonal square matrix of finite size. The energy spectrum of the model is obtained by diagonalizing this matrix. The energy eigenvalues obtained from this diagonalization are exact, for we don't need to resort to any approximation in the diagonalization. This model offers a rich and flexible platform for testing quantitatively the various many-body approximation methods especially those that deal with nuclear collective motion.
Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.
Yang, Lina; Minnich, Austin J
2017-03-14
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.
Energy Technology Data Exchange (ETDEWEB)
Geng, Hua Y., E-mail: huay.geng@gmail.com [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, P.O. Box 919-102, Mianyang, Sichuan, 621900 (China); Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY 14853 (United States)
2015-02-15
A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.
Geng, Hua Y.
2015-02-01
A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model-the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of rs = 0.912.
Ab initio nuclear structure and reactions with chiral three-body forces
Energy Technology Data Exchange (ETDEWEB)
Langhammer, Joachim; Roth, Robert; Calci, Angelo [Institut fuer Kernphysik - Theoriezentrum, TU Darmstadt (Germany); Navratil, Petr [TRIUMF, Vancouver (Canada)
2014-07-01
One major ambition of ab initio nuclear theory is the description of nuclear-structure and reaction observables on equal footing. This is accomplished by combining the no-core shell model (NCSM) with the resonating-group method (RGM) to a unified ab initio approach to bound and continuum states, which is developed further to the no-core shell model with continuum (NCSMC). We present the formal developments to include three-nucleon interactions in both the NCSM/RGM and NCSMC formalism. This provides the possibility to assess the predictive power of chiral two- and three-nucleon forces in the variety of scattering observables. We study three-nucleon force effects on phase-shifts, cross sections and analyzing powers in first ab-initio studies of nucleon-{sup 4}He scattering with chiral two- and three-nucleon forces. Finally, we focus on heavier target nuclei using the NCSMC, e.g., in neutron-{sup 8}Be scattering and study the impact of the continuum on the spectrum of {sup 9}Be.
Geng, Hua Y
2014-01-01
A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model, the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4 fold for a two-level implementation, and can be increased to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibration...
Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions
Energy Technology Data Exchange (ETDEWEB)
Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green St., Urbana, Illinois 61801 (United States)
2015-09-14
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.
Energy Technology Data Exchange (ETDEWEB)
Yamaji, Youhei [Quantum-Phase Electronics Center, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656 (Japan)
2015-12-31
Recently, condensed-matter ab initio approaches to strongly correlated electrons confined in crystalline solids have been developed and applied to transition-metal oxides and molecular conductors. In this paper, an ab initio scheme based on constrained random phase approximations and localized Wannier orbitals is applied to a spin liquid candidate Na{sub 2}IrO{sub 3} and is shown to reproduce experimentally observed specific heat.
Kalugina, Yulia N; Lokshtanov, Sergei E; Cherepanov, Victor N; Vigasin, Andrey A
2016-02-07
We present new three-dimensional potential energy surface (PES) and dipole moment surfaces (DMSs) for the CH4-Ar van der Waals system. Ab initio calculations of the PES and DMS were carried out using the closed-shell single- and double-excitation coupled cluster approach with non-iterative perturbative treatment of triple excitations. The augmented correlation-consistent aug-cc-pVXZ (X = D,T,Q) basis sets were employed, and the energies obtained were then extrapolated to the complete basis set limit. The dipole moment surface was obtained using aug-cc-pVTZ basis set augmented with mid-bond functions for better description of exchange interactions. The second mixed virial coefficient was calculated and compared to available experimental data. The equilibrium constant for true dimer formation was calculated using classical partition function based on the knowledge of ab initio PES. Temperature variations of the zeroth spectral moment of the rototranslational collision-induced band as well as its true dimer constituent were traced with the use of the Boltzmann-weighted squared induced dipole properly integrated over respective phase space domains. Height profiles for N2-N2, N2-H2, CH4-N2, (CH4)2, and CH4-Ar true bound dimers in Titan's atmosphere were calculated with the use of reliable ab initio PESs.
Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials.
Blonsky, Michael N; Zhuang, Houlong L; Singh, Arunima K; Hennig, Richard G
2015-10-27
Two-dimensional (2D) materials present many unique materials concepts, including material properties that sometimes differ dramatically from those of their bulk counterparts. One of these properties, piezoelectricity, is important for micro- and nanoelectromechanical systems applications. Using symmetry analysis, we determine the independent piezoelectric coefficients for four groups of predicted and synthesized 2D materials. We calculate with density-functional perturbation theory the stiffness and piezoelectric tensors of these materials. We determine the in-plane piezoelectric coefficient d11 for 37 materials within the families of 2D metal dichalcogenides, metal oxides, and III-V semiconductor materials. A majority of the structures, including CrSe2, CrTe2, CaO, CdO, ZnO, and InN, have d11 coefficients greater than 5 pm/V, a typical value for bulk piezoelectric materials. Our symmetry analysis shows that buckled 2D materials exhibit an out-of-plane coefficient d31. We find that d31 for 8 III-V semiconductors ranges from 0.02 to 0.6 pm/V. From statistical analysis, we identify correlations between the piezoelectric coefficients and the electronic and structural properties of the 2D materials that elucidate the origin of the piezoelectricity. Among the 37 2D materials, CdO, ZnO, and CrTe2 stand out for their combination of large piezoelectric coefficient and low formation energy and are recommended for experimental exploration.
Unified ab initio treatment of attosecond photoionization and Compton scattering
Yudin, G. L.; Bondar, D. I.; Patchkovskii, S.; Corkum, P. B.; Bandrauk, A. D.
2009-10-01
We present a new theoretical approach to attosecond laser-assisted photo- and Compton ionization. Attosecond x-ray absorption and scattering are described by \\hat{\\mathscr{S}}^{(1,2)} -matrices, which are coherent superpositions of 'monochromatic' \\skew{3}\\hat{S}^{(1,2)} -matrices in a laser-modified Furry representation. Besides refining the existing theory of the soft x-ray photoelectron attosecond streak camera and spectral phase interferometry (ASC and ASPI), we formulate a theory of hard x-ray photoelectron and Compton ASC and ASPI. The resulting scheme has a simple structure and leads to closed-form expressions for ionization amplitudes. We investigate Compton electron interference in the separable Coulomb-Volkov continuum with both Coulomb and laser fields treated non-perturbatively. We find that at laser-field intensities below 1013 Wcm-2 normalized Compton lines almost coincide with the lines obtained in the laser-free regime. At higher intensities, attosecond interferences survive integration over electron momenta, and feature prominently in the Compton lines themselves. We define a regime where the electron ground-state density can be measured with controllable accuracy in an attosecond time interval. The new theory provides a firm basis for extracting photo- and Compton electron phases and atomic and molecular wavefunctions from experimental data.
Ab initio and DFT Studies of Be(BH42
Directory of Open Access Journals (Sweden)
J. S. Al-Otaibi
2016-03-01
Full Text Available In this study, the Ab inito and DFT calculations of optimized geometries, energy and vibrational spectra for the Beryllium borohydride Be(BH42 at different levels are achieved by Hartre – Fock (HF, perturbation theory (MP2 and density functional theory (B3LYP methods. They utilize the 6-31G(d, 6-311G(d,p, 6-311+G(d,p and 6-311++G(d,p basis sets. The theoretical results showed that Beryllium borohydride with the D2d structure which contains two identical groups of double bridging hydrogen has the lowest energy at all levels. Consequently, this compound is considered as the most stable one and the results of IR and Raman Spectra at all levels support that. We found that both structures Cs, C3v have the structure of D2d kind at all levels. The values of bond lengths for these two structures are identical for the bond lengths to the structure D2d kind which confirms this theory.
Molecular Interactions with Many-Body Perturbation Theory.
1980-09-15
SCHERAGA, H. A. 1971. Chem. Rev. 71: 195. 1 28. CLEMENTI , E., F. CAVALLONE & R. SCORDAMAGLIA. 1977. J. Am. Chem. Soc. 99: 5531; SCORDAMAGLIA, R., F...CAVALLONE & E. CLEMENTI . 1977.ibid. 99: 5545; BOLIS. G. & E. CLEMENTI , 1977. ibid 99: 5550. 1 29. SWAMINATHAN. S. & D. L. BEVERIDGE. 1977. J. Am
Bethe-salpeter equation from many-body perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Sander, Tobias; Starke, Ronald; Kresse, Georg [Computational Materials Physics, University of Vienna, Sensengasse 8/12, 1090 Vienna (Austria)
2013-07-01
The Green function formalism is a powerful tool to calculate not only electronic structure within the quasi-particle (QP) picture, but it also gives access to optical absorption spectra. Starting from QP energies within the GW method, the polarizability, as central quantity, is calculated from the solution of a Bethe-Salpeter-like equation (BSE). It is usually solved within the Tamm-Dancoff Approximation (TDA) which neglects the coupling of resonant (positive frequency branch) and anti-resonant (negative frequency branch) excitations. In this work we solve the full BSE (beyond TDA) based on self-consistently calculated QP orbitals and energies for typical systems. The dielectric function is averaged over many low dimensional shifted k-meshes to obtain k-point converged results. We compare the results to recently introduced approximation to the BSE kernel. Additionally, the time-evolution ansatz is employed to calculate the polarizability, which avoids the direct solution of the BSE.
Many-Body Physics with Trapped Ions
Schneider, Christian; Schaetz, Tobias
2011-01-01
Direct experimental access to some of the most intriguing quantum phenomena is not granted due to the lack of precise control of the relevant parameters in their naturally intricate environment. Their simulation on conventional computers is impossible, since quantum behaviour arising with superposition states or entanglement is not efficiently translatable into the classical language. However, one could gain deeper insight into complex quantum dynamics by experimentally simulating the quantum behaviour of interest in another quantum system, where the relevant parameters and interactions can be controlled and robust effects detected sufficiently well. We report on the progress in experimentally simulating quantum many-body physics with trapped ions.
Nuclear, particle and many body physics
Morse, Philip M; Feshbach, Herman
2013-01-01
Nuclear, Particle and Many Body Physics, Volume II, is the second of two volumes dedicated to the memory of physicist Amos de-Shalit. The contributions in this volume are a testament to the respect he earned as a physicist and of the warm and rich affection he commanded as a personal friend. The book contains 41 chapters and begins with a study on the renormalization of rational Lagrangians. Separate chapters cover the scattering of high energy protons by light nuclei; approximation of the dynamics of proton-neutron systems; the scattering amplitude for the Gaussian potential; Coulomb excitati
Quantum scaling in many-body systems
Continentino, Mucio A
2001-01-01
This book on quantum phase transitions has been written by one of the pioneers in the application of scaling ideas to many-body systems - a new and exciting subject that has relevance to many areas of condensed matter and theoretical physics. One of the few books on the subject, it emphasizes strongly correlated electronic systems. Although dealing with complex problems in statistical mechanics, it does not lose sight of the experiments and the actual physical systems which motivate the theoretical work. The book starts by presenting the scaling theory of quantum critical phenomena. Critical e
Many-body approach to electronic excitations concepts and applications
Bechstedt, Friedhelm
2015-01-01
The many-body-theoretical basis and applications of theoretical spectroscopy of condensed matter, e.g. crystals, nanosystems, and molecules are unified in one advanced text for readers from graduate students to active researchers in the field. The theory is developed from first principles including fully the electron-electron interaction and spin interactions. It is based on the many-body perturbation theory, a quantum-field-theoretical description, and Green's functions. The important expressions for ground states as well as electronic single-particle and pair excitations are explained. Based on single-particle and two-particle Green's functions, the Dyson and Bethe-Salpeter equations are derived. They are applied to calculate spectral and response functions. Important spectra are those which can be measured using photoemission/inverse photoemission, optical spectroscopy, and electron energy loss/inelastic X-ray spectroscopy. Important approximations are derived and discussed in the light of selected computa...
Mills, Jeffrey D; Ben-Nun, Michal; Rollin, Kyle; Bromley, Michael W J; Li, Jiabo; Hinde, Robert J; Winstead, Carl L; Sheehy, Jeffrey A; Boatz, Jerry A; Langhoff, Peter W
2016-08-25
the pairwise-atomic Hamiltonian matrices required for practical applications. These matrices can be retained as functions of scalar atomic-pair separations and employed in assembling aggregate Hamiltonian matrices, with Wigner rotation matrices providing analytical representations of their angular degrees of freedom. In this way, ab initio potential energy surfaces are obtained in the complete absence of repeated evaluations and transformations of the one- and two-electron integrals at different molecular geometries required in most ab inito molecular calculations, with large Hamiltonian matrix assembly simplified and explicit diagonalizations avoided employing partitioning and Brillouin-Wigner or Rayleigh-Schrödinger perturbation theory. Illustrative applications of the important components of the formalism, selected aspects of the scaling of the approach, and aspects of "on-the-fly" interfaces with Monte Carlo and molecular-dynamics methods are described in anticipation of subsequent applications to biomolecules and other large aggregates.
Non-equilibrium many body dynamics
Energy Technology Data Exchange (ETDEWEB)
Creutz, M.; Gyulassy, M.
1997-09-22
This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop.
Aquino, Fredy; Rodriguez, Jorge H.
2007-03-01
Zero-Field Splittings (ZFS) in metalloproteins and other metal complexes arise from the combined action of crystalline fields acting on the metal valence electrons and spin-orbit coupling (SOC), a relativistic effect. The ab-initio calculation of ZFS parameters of metal-containing (bio)molecules is a challenging computational problem of practical relevance to metalloenzyme biochemistry, inorganic chemistry, and molecular-based bio- nanotechnology. We have implemented a methodology which treats the nonrelativistic electronic structure of magnetic (bio) molecules within the framework of spin density functional theory (SDFT) and adds the relativistic effects of SOC via perturbation theory (PT). This combined SDFT-PT approach allowed us to compute the ZFS parameters of iron-containing complexes and non-heme iron proteins with a good degree of accuracy. We also developed a semiquantitative approach to elucidate the physico-chemical origin of the magnitudes of ZFS parameters. We present results for biochemically relevant iron complexes and for nitric oxide-containing non-heme iron proteins, such as isopenicillin N synthase, which have unusually large ZFS. The computed ZFS parameters are in good agreement with experiment. Supported by NSF CAREER Award CHE- 0349189 (JHR).
Ab initio calculation of electron-phonon coupling in monoclinic β-Ga2O3 crystal
Ghosh, Krishnendu; Singisetti, Uttam
2016-08-01
The interaction between electrons and vibrational modes in monoclinic β-Ga2O3 is theoretically investigated using ab-initio calculations. The large primitive cell of β-Ga2O3 gives rise to 30 phonon modes all of which are taken into account in transport calculation. The electron-phonon interaction is calculated under density functional perturbation theory and then interpolated using Wannier-Fourier interpolation. The long-range interaction elements between electrons and polar optical phonon (POP) modes are calculated separately using the Born effective charge tensor. The direction dependence of the long-range POP coupling in a monoclinic crystal is explored and is included in the transport calculations. Scattering rate calculations are done using the Fermi golden rule followed by solving the Boltzmann transport equation using the Rode's method to estimate low field mobility. A room temperature mobility of 115 cm2/V s is observed. Comparison with recent experimentally reported mobility is done for a wide range of temperatures (30 K-650 K). It is also found that the POP interaction dominates the electron mobility under low electric field conditions. The relative contribution of the different POP modes is analyzed and the mode 21 meV POP is found to have the highest impact on low field electron mobility at room temperature.
Many-body quantum interference on hypercubes
Dittel, Christoph; Keil, Robert; Weihs, Gregor
2017-03-01
Beyond the regime of distinguishable particles, many-body quantum interferences influence quantum transport in an intricate manner. However, symmetries of the single-particle transformation matrix alleviate this complexity and even allow the analytic formulation of suppression laws, which predict final states to occur with a vanishing probability due to total destructive interference. Here we investigate the symmetries of hypercube graphs and their generalisations with arbitrary identical subgraphs on all vertices. We find that initial many-particle states, which are invariant under self-inverse symmetries of the hypercube, lead to a large number of suppressed final states. The condition for suppression is determined solely by the initial symmetry, while the fraction of suppressed states is given by the number of independent symmetries of the initial state. Our findings reveal new insights into particle statistics for ensembles of indistinguishable bosons and fermions and may represent a first step towards many-particle quantum protocols in higher-dimensional structures.
Symmetry constraints on many-body localization
Potter, Andrew C.; Vasseur, Romain
2016-12-01
We derive general constraints on the existence of many-body localized (MBL) phases in the presence of global symmetries, and show that MBL is not possible with symmetry groups that protect multiplets (e.g., all non-Abelian symmetry groups). Based on simple representation theoretic considerations, we derive general Mermin-Wagner-type principles governing the possible alternative fates of nonequilibrium dynamics in isolated, strongly disordered quantum systems. Our results rule out the existence of MBL symmetry-protected topological phases with non-Abelian symmetry groups, as well as time-reversal symmetry-protected electronic topological insulators, and in fact all fermion topological insulators and superconductors in the 10-fold way classification. Moreover, extending our arguments to systems with intrinsic topological order, we rule out MBL phases with non-Abelian anyons as well as certain classes of symmetry-enriched topological orders.
Prediction of quantum many-body chaos in protactinium atom
Viatkina, A V; Flambaum, V V
2016-01-01
Energy level spectrum of protactinium atom (Pa, Z=91) is simulated with a CI calculation. Levels belonging to the separate manifolds of a given total angular momentum and parity $J^\\pi$ exhibit distinct properties of many-body quantum chaos. Moreover, an extremely strong enhancement of small perturbations takes place. As an example, effective three-electron interaction is investigated and found to play a significant role in the system. Chaotic properties of the eigenstates allow one to develop a statistical theory and predict probabilities of different processes in chaotic systems.
2014-12-01
Poly(aryl-ether-ether-ketone) as a Possible Metalized Film Capacitor Dielectric: Accurate Description of the Band Gap Through Ab Initio...Possible Metalized Film Capacitor Dielectric: Accurate Description of the Band Gap Through Ab Initio Calculation Janet Ho and Marco Olguin Sensors...a Possible Metalized Film Capacitor Dielectric: Accurate Description of the Band Gap Through Ab Initio Calculation 5a. CONTRACT NUMBER 5b. GRANT
Ashcraft, Robert W; Raman, Sumathy; Green, William H
2007-10-18
Ab initio molecular orbital calculations were performed and thermochemical parameters estimated for 46 species involved in the oxidation of hydroxylamine in aqueous nitric acid solution. Solution-phase properties were estimated using the several levels of theory in Gaussian03 and using COSMOtherm. The use of computational chemistry calculations for the estimation of physical properties and constants in solution is addressed. The connection between the pseudochemical potential of Ben-Naim and the traditional standard state-based thermochemistry is shown, and the connection of these ideas to computational chemistry results is established. This theoretical framework provides a basis for the practical use of the solution-phase computational chemistry estimates for real systems, without the implicit assumptions that often hide the nuances of solution-phase thermochemistry. The effect of nonidealities and a method to account for them is also discussed. A method is presented for estimating the solvation enthalpy and entropy for dilute aqueous solutions based on the solvation free energy from the ab initio calculations. The accuracy of the estimated thermochemical parameters was determined through comparison with (i) enthalpies of formation in the gas phase and in solution, (ii) Henry's law data for aqueous solutions, and (iii) various reaction equilibria in aqueous solution. Typical mean absolute deviations (MAD) for the solvation free energy in room-temperature water appear to be ~1.5 kcal/mol for most methods investigated. The MAD for computed enthalpies of formation in solution was 1.5-3 kcal/mol, depending on the methodology employed and the type of species (ion, radical, closed-shell) being computed. This work provides a relatively simple and unambiguous approach that can be used to estimate the thermochemical parameters needed to build detailed ab initio kinetic models of systems in aqueous solution. Technical challenges that limit the accuracy of the estimates are
Messina, Luca; Castin, Nicolas; Domain, Christophe; Olsson, Pär
2017-02-01
The quality of kinetic Monte Carlo (KMC) simulations of microstructure evolution in alloys relies on the parametrization of point-defect migration rates, which are complex functions of the local chemical composition and can be calculated accurately with ab initio methods. However, constructing reliable models that ensure the best possible transfer of physical information from ab initio to KMC is a challenging task. This work presents an innovative approach, where the transition rates are predicted by artificial neural networks trained on a database of 2000 migration barriers, obtained with density functional theory (DFT) in place of interatomic potentials. The method is tested on copper precipitation in thermally aged iron alloys, by means of a hybrid atomistic-object KMC model. For the object part of the model, the stability and mobility properties of copper-vacancy clusters are analyzed by means of independent atomistic KMC simulations, driven by the same neural networks. The cluster diffusion coefficients and mean free paths are found to increase with size, confirming the dominant role of coarsening of medium- and large-sized clusters in the precipitation kinetics. The evolution under thermal aging is in better agreement with experiments with respect to a previous interatomic-potential model, especially concerning the experiment time scales. However, the model underestimates the solubility of copper in iron due to the excessively high solution energy predicted by the chosen DFT method. Nevertheless, this work proves the capability of neural networks to transfer complex ab initio physical properties to higher-scale models, and facilitates the extension to systems with increasing chemical complexity, setting the ground for reliable microstructure evolution simulations in a wide range of alloys and applications.
Majumder, Moumita; Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker; Li, Jun; Guo, Hua; Manzhos, Sergei
2014-06-01
New potential energy surfaces for methane were constructed, represented as analytic fits to about 100,000 individual high-level ab initio data. Explicitly-correlated multireference data (MRCI-F12(AE)/CVQZ-F12) were computed using Molpro [1] and fit using multiple strategies. Fits with small to negligible errors were obtained using adaptations of the permutation-invariant-polynomials (PIP) approach [2,3] based on neural-networks (PIP-NN) [4,5] and the interpolative moving least squares (IMLS) fitting method [6] (PIP-IMLS). The PESs were used in full-dimensional vibrational calculations with an exact kinetic energy operator by representing the Hamiltonian in a basis of products of contracted bend and stretch functions and using a symmetry adapted Lanczos method to obtain eigenvalues and eigenvectors. Very close agreement with experiment was produced from the purely ab initio PESs. References 1- H.-J. Werner, P. J. Knowles, G. Knizia, 2012.1 ed. 2012, MOLPRO, a package of ab initio programs. see http://www.molpro.net. 2- Z. Xie and J. M. Bowman, J. Chem. Theory Comput 6, 26, 2010. 3- B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577, 2009. 4- J. Li, B. Jiang and Hua Guo, J. Chem. Phys. 139, 204103 (2013). 5- S Manzhos, X Wang, R Dawes and T Carrington, JPC A 110, 5295 (2006). 6- R. Dawes, X-G Wang, A.W. Jasper and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).
Exploring many body interactions with Raman spectroscopy
Tian, Yao
Many-body interactions are cornerstones of contemporary solid state physics research. Especially, phonon related interactions such as phonon-phonon coupling, spin-phonon coupling and electron-phonon coupling constantly present new challenges. To study phonon related many-body interactions, temperature dependent Raman spectroscopy is employed. Firstly, a new design and construction of a Raman microscope aimed at high collection eciency, positional and thermal stability is discussed. The application of the home-built Raman microscope is shown in the context of two types of novel materials; Cr2Ge2Te6 (spin-phonon coupling) and Bi2Te3-xSex (phonon-phonon coupling). Cr2Ge2Te6 is one of the rare class of ferromagnetic semiconductors and recent thermal transport studies suggest the spin and lattice are strongly coupled in its cousin compound Cr2Si2Te6. In this work, the spin-phonon coupling in Cr2Ge2Te6 has been revealed in multiple ways: we observed a split of two phonon modes due to the breaking of time reversal symmetry; the anomalous hardening of an additional three modes; and a dramatic enhancement of the phonon lifetimes. It is well-known that the phonon-phonon interaction plays a signicant role in determining the thermal transport properties of thermoelectrics. A comprehensive study of the phonon dynamics of Bi2Te3-xSex has been performed. We found that the unusual temperature dependence of dierent phonon modes originates from both cubic and quartic anharmonicity. These results are consistent with the resonance bonding mechanism, suggesting that the resonance bonding may be a common feature for conventional thermoelectrics. In the Raman spectra of Bi2Te2Se, the origin of the extra Raman feature has been debated for decades. Through a temperature dependent Raman study, we were able to prove the feature is generated by a Te-Se antisite induced local mode. The anomalous linewidth of the local mode as well as the anharmonic behavior were explained through a statistical
Raman Spectroscopy and Ab-Initio Model Calculations on Ionic Liquids
DEFF Research Database (Denmark)
Berg, Rolf W.
2007-01-01
spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT-Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methylimidazolium ([C4mim][X]) salts. The rotational isomerism of the [C4mim]þ cation is described: the presence of anti......A review of the recent developments in the study and understanding of room temperature ionic liquids are given. An intimate picture of how and why these liquids are not crystals at ambient conditions is attempted, based on evidence from crystallographical results combined with vibrational...
Atomic ionization of germanium by neutrinos from an ab initio approach
Energy Technology Data Exchange (ETDEWEB)
Chen, Jiunn-Wei [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); National Center for Theoretical Sciences and Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China); Chi, Hsin-Chang [Department of Physics, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan (China); Huang, Keh-Ning [Department of Physics, Sichuan University, Chengdu, Sichuan (China); Department of Physics, Fuzhou University, Fuzhou, Fujian (China); Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Liu, C.-P. [Department of Physics, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan (China); Shiao, Hao-Tse [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Singh, Lakhwinder [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Wong, Henry T. [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Wu, Chih-Liang; Wu, Chih-Pan [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China)
2014-04-04
An ab initio calculation of atomic ionization of germanium by neutrinos was carried out in the framework of multiconfiguration relativistic random phase approximation and benchmarked by related atomic structure and photoabsorption data. This improves over the conventional approach based on scattering off free electrons whose validity at sub-keV energy transfer is questionable. Limits on neutrino magnetic moments are derived using reactor neutrino data taken with low threshold germanium detectors. Future applications of these atomic techniques will greatly reduce the atomic uncertainties in low-energy neutrino and dark matter detections.
Pietrucci, Fabio; Andreoni, Wanda
2011-08-19
Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.
Simple synthesis, structure and ab initio study of 1,4-benzodiazepine-2,5-diones
Jadidi, Khosrow; Aryan, Reza; Mehrdad, Morteza; Lügger, Thomas; Ekkehardt Hahn, F.; Ng, Seik Weng
2004-04-01
A simple procedure for the synthesis of pyrido[2,1-c][1,4] benzodiazepine-6,12-dione ( 1) and 1,4-benzodiazepine-2,5-diones ( 2a- 2d), using microwave irradiation and/or conventional heating is reported. The configuration of 1 was determined by single-crystal X-ray diffraction. A detailed ab initio B3LYP/6-31G* calculation of structural parameters and substituent effects on ring inversion barriers (Δ G#) and also free energy differences (Δ G0) for benzodiazepines are reported.
Exploring proton transfer in 1,2,3-triazole-triazolium dimer with ab initio method
Energy Technology Data Exchange (ETDEWEB)
Li, Ailin; Yan, Tianying; Shen, Panwen [Department of Material Chemistry, Institute of New Energy Material Chemistry, Nankai University, Tianjin, 300071 (China)
2011-02-01
Ab initio calculations are utilized to search for transition state structures for proton transfer in the 1,2,3-triazole-triazolium complexes on the basis of optimized dimers. The result suggests six transition state structures for single proton transfer in the complexes, most of which are coplanar. The energy barriers, between different stable and transition states structures with zero point energy (ZPE) corrections, show that proton transfer occurs at room temperature with coplanar configuration that has the lowest energy. The results clearly support that reorientation gives triazole flexibility for proton transfer. (author)
Nechaev, I. A.; Krasovskii, E. E.
2016-11-01
We present a method to microscopically derive a small-size k .p Hamiltonian in a Hilbert space spanned by physically chosen ab initio spinor wave functions. Without imposing any complementary symmetry constraints, our formalism equally treats three- and two-dimensional systems and simultaneously yields the Hamiltonian parameters and the true Z2 topological invariant. We consider bulk crystals and thin films of Bi2Se3 , Bi2Te3 , and Sb2Te3 . It turns out that the effective continuous k .p models with open boundary conditions often incorrectly predict the topological character of thin films.
Krisilov, A. V.; Lantsuzskaya, E. V.; Levina, A. M.
2017-01-01
Reduced ion mobility and scattering cross sections are calculated from experimentally obtained spectra of the ion mobility of linear aliphatic alcohols with carbon atom numbers from 2 to 9. A linear increase in the scattering cross sections as the molecular weight grows is found. According to the results from experiments and quantum chemical calculations, alcohol cluster ions do not form a compact structure. Neither are dipole moments compensated for during dimerization, in contrast to the aldehydes and ketones described earlier. It was concluded from ab initio calculations that charge delocalization in monomeric and dimeric ions of alcohols increases the dipole moment many times over.
Energy Technology Data Exchange (ETDEWEB)
Razee, S.S.A.; Staunton, J.B. [Department of Physics, University of Warwick, Coventry (United Kingdom); Ginatempo, B.; Bruno, E. [Dipartimento di Fisica and Unita INFM, Universita di Messina, Messina (Italy); Pinski, F.J. [Department of Physics, University of Cincinnati, OH (United States)
2001-09-24
A theory is presented for describing the effects of annealing magnetic alloys in magnetic fields. It has an ab initio spin-polarized relativistic Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) electronic structure basis and uses the framework of concentration waves. Alloys which would otherwise be soft magnets are found experimentally to develop directional chemical order and significant uniaxial anisotropy when annealed in magnetic fields. Our approach is able to provide a quantitative description of these effects together with the underlying electronic mechanisms. We describe applications to the soft magnetic alloys permalloy and FeCo. (author)
Curchod, Basile F. E.; Rauer, Clemens; Marquetand, Philipp; González, Leticia; Martínez, Todd J.
2016-03-01
Full multiple spawning is a formally exact method to describe the excited-state dynamics of molecular systems beyond the Born-Oppenheimer approximation. However, it has been limited until now to the description of radiationless transitions taking place between electronic states with the same spin multiplicity. This Communication presents a generalization of the full and ab initio multiple spawning methods to both internal conversion (mediated by nonadiabatic coupling terms) and intersystem crossing events (triggered by spin-orbit coupling matrix elements) based on a spin-diabatic representation. The results of two numerical applications, a model system and the deactivation of thioformaldehyde, validate the presented formalism and its implementation.
Ab initio study of the EFG at the N sites in imidazole
Energy Technology Data Exchange (ETDEWEB)
Brown Goncalves, Marcos, E-mail: browngon@if.usp.br [Universidade de Sao Paulo, Instituto de Fisica (Brazil); Di Felice, R. [National Center on Nanostructures and Biosystems at Surfaces (S3) of INFM-CNR (Italy); Poleshchuk, O. Kh. [Tomsk State Pedagogical University (Russian Federation); Petrilli, H. M. [Universidade de Sao Paulo, Instituto de Fisica (Brazil)
2008-01-15
We study the nuclear quadrupole interaction at the nitrogen sites in the molecular and crystalline phases of the imidazole compound. We use PAW which is a state-of-the-art method to calculate the electronic structure and electric field gradient at the nucleus in the framework of the density functional theory. The quadrupole frequencies at both imino and amino N sites are in excellent agreement with measurements. This is the first time that the electric field gradient at crystalline imidazole is correctly treated by an ab initio theoretical approach.
Temperature-Dependent Diffusion Coefficients from ab initio Computations: Hydrogen in Nickel
Energy Technology Data Exchange (ETDEWEB)
E Wimmer; W Wolf; J Sticht; P Saxe; C Geller; R Najafabadi; G Young
2006-03-16
The temperature-dependent mass diffusion coefficient is computed using transition state theory. Ab initio supercell phonon calculations of the entire system provide the attempt frequency, the activation enthalpy, and the activation entropy as a function of temperature. Effects due to thermal lattice expansion are included and found to be significant. Numerical results for the case of hydrogen in nickel demonstrate a strong temperature dependence of the migration enthalpy and entropy. Trapping in local minima along the diffusion path has a pronounced effect especially at low temperatures. The computed diffusion coefficients with and without trapping bracket the available experimental values over the entire temperature range between 0 and 1400 K.
Ab initio studies on the mechanic and magnetic properties of PdHx
Institute of Scientific and Technical Information of China (English)
Cui Xin; Liang Xi-Xia; Wang Jian-Tao; Zhao Guo-Zhong
2011-01-01
Based on ab initio total energy calculations, the structural, electronic, mechanic, and magnetic properties of PdHx are investigated. It is found that bulk modulus of PdHx is larger than the metal Pd with the hydrogen storage except Pd4H2. The calculated results for the magnetic moments show that the hydrogen addition weakens the magnetic properties of the PdHx systems. A strong magneto-volume effect is found in PdHx structures as well as Pd. The transition from paramagnetism to ferromagnetism is discussed. The corresponding densities of states for both structures are also shown to understand the magnetic behaviour.
Paired-permanent approach for VB theory (II) -An ab initio spin-free VB program
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Paired-permanent approach for VB theory is extensively developed. Canonical expan sion of a paired-permanent is deduced. Furthermore, it is shown that a paired-permanent may be expressed in terms of the products of sub-paired-permanents of any given order and their corre sponding minors. An ab initio spin-free valence bond program, called Xiamen, is implemented by using paired-permanent approach. Test calculation shows that Xiamen package is more efficient than some other programs based on the traditional VB algorithm, and it provides a new practical tool for quantum chemistry.
Ab-initio simulation of photoinduced transformation of small rings in amorphous silica
Bernasconi, D. Donadio M.
2004-01-01
We have studied the photoinduced transformation of small rings (3-membered) in amorphous silica by Car-Parrinello simulations. The process of ring opening leading to the formation of a couple of paramagnetic centers, namely an E' and a non-bridging-oxygen hole center (NBOHC), has been proposed experimentally to occur in silica exposed to F2 laser irradiation (at 7.9 eV). By using a new scheme for the simulation of rare events in ab-initio molecular dynamics (Iannuzzi, Laio and Parrinello, Phy...
Ab initio MO study of reaction mechanism for carbonyl migration of Co complex
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Ab initio method under the effective core potential (ECP) approximation is employed to study the reaction mechanism of carbonyl migration of the cycle of olefin hydroformylation catalyzed by a carbonyl cobalt HCo(CO)3 at Hartree-Fock (HF) level. The structures of the reactant, transition state and product for the reaction are determined. The energy of each stationary point is corrected at MP2/LAN2DZ//LANL2DZ+ZPE (zero-point energy) level. The calculated activation barrier is 28.89 kJ/mol.
Ab initio study of the epitaxial growth of Ge on Si(100) surface
Energy Technology Data Exchange (ETDEWEB)
Milman, V.; Pennycook, S.J.; Jesson, D.E. [Oak Ridge National Lab., TN (United States); Payne, M.C.; Stich, I. [Cambridge Univ. (United Kingdom). Dept. of Physics
1993-11-01
We identify the binding sites for adsorption of a single Ge atom on the Si(100) surface using ab initio total energy calculations. The calculated diffusion barriers are in excellent agreement with experimental estimates. Using a large supercell we resolve the controversy regarding the binding geometry and migration path for the adatom, and investigate the influence of the adatom on the buckling of Si dimers. The adatom induces a buckling defect that is frequently observed using scanning tunneling microscopy (STM); therefore the study of single adatoms may be experimentally accessible.
Ab initio Path Integral Molecular Dynamics Based on Fragment Molecular Orbital Method
Fujita, Takatoshi; Watanabe, Hirofumi; Tanaka, Shigenori
2009-10-01
We have developed an ab initio path integral molecular dynamics method based on the fragment molecular orbital method. This “FMO-PIMD” method can treat both nuclei and electrons quantum mechanically, and is useful to simulate large hydrogen-bonded systems with high accuracy. After a benchmark calculation for water monomer, water trimer and glycine pentamer have been studied using the FMO-PIMD method to investigate nuclear quantum effects on structure and molecular interactions. The applicability of the present approach is demonstrated through a number of test calculations.
Ab initio research on DNA base alkylation by the β-position metabolite of methylethylnitrosamine
Institute of Scientific and Technical Information of China (English)
ZHAO Lijiao; ZHONG Rugang; YUAN Xiaolong; CUI Yasong; DAI Qianhuan
2004-01-01
Ab initio calculation is carried out to study the different supposed mechanisms of DNA base alkylation by β-sulphate-nitrosamines at RHF/6-31G(d) and MP2/6-31G(d)levels. Full geometric structure optimization is done for all reactants, intermediates, products and transition states. The activation energy and IRC are obtained. The results show that the anchimeric assistant effect promotes the alkylation of DNA base by β-sulphate-nitrosamines. Solvent calculation is carried out with Onsager model of SCRF method at the same level. The results indicate that the activation energy is decreased obviously in water.
Bogdanchikov, Georgii A.; Baklanov, Alexey V.
2017-01-01
Ab initio calculations have been carried out to investigate interaction of titanium dioxide TiO2 with oxygen O2 in ground triplet and excited singlet states. On a singlet potential energy surface (PES) formation of a stable compound of titanium peroxide TiO4 is revealed which should appear in reaction of TiO2 with singlet oxygen without activation barrier. This peroxide is lower in energy than the ground state of two individual molecules TiO2 + 3O2 by 34.6 kcal/mol. Location of conical intersection between triplet and singlet PESs of TiO2sbnd O2 is also investigated.
DEFF Research Database (Denmark)
Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.
2014-01-01
comparing time-resolved photoelectron spectroscopy (TRPES) with ab initio multiple spawning (AIMS) simulations on the MS-MR-CASPT2 level of theory. We disentangle the relationship between two phenomena that dominate the immediate molecular response upon light absorption: a spectrally dependent delay...... replaced by ‘‘hydrogen atoms’’ having mass 15 and TRPES spectra were calculated. These showed an induction time of (108 10) fs which could directly be assigned to progress along a torsional mode leading to the intersection seam with the molecular ground state. In a stepladder-type approach, the close...
Monte Carlo methods in AB initio quantum chemistry quantum Monte Carlo for molecules
Lester, William A; Reynolds, PJ
1994-01-01
This book presents the basic theory and application of the Monte Carlo method to the electronic structure of atoms and molecules. It assumes no previous knowledge of the subject, only a knowledge of molecular quantum mechanics at the first-year graduate level. A working knowledge of traditional ab initio quantum chemistry is helpful, but not essential.Some distinguishing features of this book are: Clear exposition of the basic theory at a level to facilitate independent study. Discussion of the various versions of the theory: diffusion Monte Carlo, Green's function Monte Carlo, and release n
Kubota, Yoshiyuki; Ohnuma, Toshiharu; Bučko, Tomáš
2017-03-01
The reaction of carbon dioxide (CO2) with aqueous 2-aminoethanol (MEA) has been investigated using both blue moon ensemble and metadynamics approaches combined with ab initio molecular dynamics (AIMD) simulations. The AIMD simulations predicted the spontaneous deprotonation of the intermediate compound, MEA zwitterion, and they were used to study two possible routes for subsequent proton transfer reactions: the formation of the protonated MEA and the formation of MEA carbamic acid. The free-energy curve depicted by blue moon ensemble technique supported the favorable deprotonation of MEA zwitterion. The overall free-energy profile showed the favorable formation of the ionic products of MEA carbamate ion and protonated MEA.
Ab initio calculation of the spectrum and structure of $^{16}$O
Epelbaum, Evgeny; Lähde, Timo A; Lee, Dean; Meißner, Ulf-G; Rupak, Gautam
2013-01-01
We present ab initio lattice calculations of the low-energy even-parity states of $^{16}$O using chiral nuclear effective field theory. We find good agreement with the empirical energy spectrum, and with the electromagnetic properties and transition rates. For the ground state, we find that the nucleons are arranged in a tetrahedral configuration of alpha clusters. For the first excited spin-0 state, we find that the predominant structure is a square configuration of alpha clusters, with rotational excitations that include the first spin-2 state.
Accurate calculation of the p Ka of trifluoroacetic acid using high-level ab initio calculations
Namazian, Mansoor; Zakery, Maryam; Noorbala, Mohammad R.; Coote, Michelle L.
2008-01-01
The p Ka value of trifluoroacetic acid has been successfully calculated using high-level ab initio methods such as G3 and CBS-QB3. Solvation energies have been calculated using CPCM continuum model of solvation at the HF and B3-LYP levels of theory with various basis sets. Excellent agreement with experiment (to within 0.4 p Ka units) was obtained using CPCM solvation energies at the B3-LYP/6-31+G(d) level (or larger) in conjunction with CBS-QB3 or G3 gas-phase energies of trifluoroacetic acid and its anion.
Charge carrier motion in disordered conjugated polymers: a multiscale ab-initio study
Energy Technology Data Exchange (ETDEWEB)
Vukmirovic, Nenad; Wang, Lin-Wang
2009-11-10
We developed an ab-initio multiscale method for simulation of carrier transport in large disordered systems, based on direct calculation of electronic states and electron-phonon coupling constants. It enabled us to obtain the never seen before rich microscopic details of carrier motion in conjugated polymers, which led us to question several assumptions of phenomenological models, widely used in such systems. The macroscopic mobility of disordered poly(3- hexylthiophene) (P3HT) polymer, extracted from our simulation, is in agreement with experimental results from the literature.
Ab-initio density functional theory study of a WO3 NH3-sensing mechanism
Institute of Scientific and Technical Information of China (English)
Hu Ming; Zhang Jie; Wang Wei-Dan; Qin Yu-Xiang
2011-01-01
WO3 bulk and various surfaces are studied by an ab-initio density functional theory technique.The band structures and electronic density states of WO3 bulk are investigated.The surface energies of different WO3 surfaces are compared and then the(002)surface with minimum energy is computed for its NH3 sensing mechanism which explains the results in the experiments.Three adsorption sites are considered.According to the comparisons of the energy and the charge change between before and after adsorption in the optimal adsorption site O1c,the NH3 sensing mechanism is obtained.
Ab initio study of spin-dependent transport in carbon nanotubes with iron and vanadium adatoms
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka
2008-01-01
We present an ab initio study of spin-dependent transport in armchair carbon nanotubes with transition metal adsorbates: iron or vanadium. The method based on density functional theory and nonequilibrium Green's functions is used to compute the electronic structure and zero-bias conductance....... The presence of the adsorbate causes scattering of electrons of mainly one spin type. The scattering is shown to be due to a coupling of the two armchair band states to the metal 3d orbitals with matching symmetry, giving rise to Fano antiresonances appearing as dips in the transmission function. The spin type...
Quantum chemistry the development of ab initio methods in molecular electronic structure theory
Schaefer III, Henry F
2004-01-01
This guide is guaranteed to prove of keen interest to the broad spectrum of experimental chemists who use electronic structure theory to assist in the interpretation of their laboratory findings. A list of 150 landmark papers in ab initio molecular electronic structure methods, it features the first page of each paper (which usually encompasses the abstract and introduction). Its primary focus is methodology, rather than the examination of particular chemical problems, and the selected papers either present new and important methods or illustrate the effectiveness of existing methods in predi
Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides
Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki
2012-09-01
Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.
Improved Ab Initio Molecular Dynamics by Minimal Biasing with Experimental Data
White, Andrew D; Hocky, Glen M; Voth, Gregory A
2016-01-01
Accounting for electrons and nuclei simultaneously is a key goal of computer simulation via ab initio molecular dynamics (AIMD). However, AIMD is often unable to accurately reproduce the properties of systems such as water due to inaccuracies in the underlying electronic density functionals, shortcomings that are often addressed by added empirical corrections and/or increasing the simulation temperature. We present here a maximum-entropy-based approach to directly incorporate limited experimental data via a minimal bias. The biased AIMD simulations of both water and of an excess proton in water are shown to give significantly improved properties for both the biased and unbiased observables.
Structural Features of Boron-Doped Si(113) Surfaces Simulated by ab initio Calculations
Institute of Scientific and Technical Information of China (English)
LIAO Long-Zhong; LIU Zheng-Hui; ZHANG Zhao-Hui
2008-01-01
Based on ab initio calculations, boron-doped Si(113) surfaces have been simulated and atomic structures of the surfaces have been proposed. It has been determined that surface features of empty and filled states that are separately localized at pentamers and adatoms indicates a low surface density of B atoms, while it is attributed to heavy doping of B atoms at the second layer that pentamers and adatoms are both present in an image of scanning tunnelling microscopy. B doping at the second layer should be balanced by adsorbed B or Si atoms beside the adatoms and inserted B interstitials below the adatoms.
Ab initio adiabatic and quasidiabatic potential energy surfaces of H++ CN system
Indian Academy of Sciences (India)
Bhargava Anusuri; Sanjay Kumar
2016-02-01
We present restricted geometry (collinear and perpendicular approaches of proton) ab initio three dimensional potential energy surfaces for H++ CN system. The calculations were performed at the internally contracted multi-reference configuration interaction level of theory using Dunning’s correlation consistent polarized valence triple zeta basis set. Adiabatic and quasidiabatic surfaces have been computed for the ground and the first excited electronic states. Nonadiabatic effects arising from radial coupling have been analyzed in terms of nonadiabatic coupling matrix elements and coupling potentials.
Directory of Open Access Journals (Sweden)
S. Tolosa
2013-01-01
Full Text Available A procedure for the theoretical study of chemical reactions in solution by means of molecular dynamics simulations of aqueous solution at infinite dilution is described using ab initio solute-solvent potentials and TIP3P water model to describe the interactions. The procedure is applied to the study of neutral hydrolysis of various molecules (HCONH2, HNCO, HCNHNH2, and HCOOCH3 via concerted and water-assisted mechanisms. We used the solvent as a reaction coordinate and the free energy curves for the calculation of the properties related with the reaction mechanism, namely, reaction and activation energies.
Institute of Scientific and Technical Information of China (English)
2008-01-01
Computational prediction of adsorption of small molecules in porous materials has great impact on the basic and applied research in chemical engineering and material sciences. In this work,we report an approach based on grand canonical ensemble Monte Carlo(GCMC) simulations and ab initio force fields. We calculated the adsorption curves of ammonia in ZSM-5 zeolite and hydrogen in MOF-5(a metal-organic-framework material). The predictions agree well with experimental data. Because the predictions are based on the first principle force fields,this approach can be used for the adsorption prediction of new molecules or materials without experimental data as guidance.
Wang, Shidong; Wang, Zhao; Setyawan, Wahyu; Mingo, Natalio; Curtarolo, Stefano
2011-10-01
Several thousand compounds from the Inorganic Crystal Structure Database have been considered as nanograined, sintered-powder thermoelectrics with the high-throughput ab-initio AFLOW framework. Regression analysis unveils that the power factor is positively correlated with both the electronic band gap and the carrier effective mass, and that the probability of having large thermoelectric power factors increases with the increasing number of atoms per primitive cell. Avenues for further investigation are revealed by this work. These avenues include the role of experimental and theoretical databases in the development of novel materials.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Ab initio method, under the effective core potential(ECP) approximation at HF/LANL2DZ level, has been employed to study the reaction mechanism of the carbonyl insertion of olefin hydroformylation catalyzed by a carbonyl cobalt HCo(CO)3. The two reaction paths have been discussed. The calculated potential energy barriers for the carbonyl migration and the ethyl group migration are 105.0 kJ/mol and 39.17 kJ/mol, respectively. The results indicate that the reaction path via ethyl migration is more energetically favorable than that via carbonyl insertion.
Trivacancy in silicon: A combined DLTS and ab-initio modeling study
Markevich, V. P.; Peaker, A. R.; Lastovskii, S. B.; Murin, L. I.; Coutinho, J.; Markevich, A. V.; Torres, V. J. B.; Briddon, P. R.; Dobaczewski, L.; Monakhov, E. V.; Svensson, B. G.
2009-12-01
Deep level transient spectroscopy and ab-initio modeling have been used for identification of energy levels and structure of trivacancy (V3) in Si. It is found that in the neutral charge state the V3 is bistable, with the "fourfold" configuration being lower in energy than the (1 1 0) planar configuration. V3 in the (1 1 0) planar configuration gives rise to two acceptor levels at Ec-0.36 eV and Ec-0.46 eV in the gap, while in the "fourfold" configuration the defect has trigonal symmetry and an acceptor level at Ec-0.075 eV.
Ab Initio Calculations of Elastic Constants of Li2O under Pressure
Institute of Scientific and Technical Information of China (English)
LI Xiao-Feng; CHEN Xiang-Rong; JI Guang-Fu; MENG Chuan-Min
2006-01-01
@@ We investigate the equilibrium lattice constant, bulk modulus, elastic constants and Debye temperature of Li2 O under pressure by using ab initio unrestricted Hartree-Fock (HF) linear combination of atomic orbital (LCAO) periodic approach. The obtained results at zero pressure are well consistent with the available experimental data and other theoretical results. It is found that the elastic constants C11, C12 and C44 and bulk modulus B increase monotonously as pressure increases. Also, the anisotropy will weaken and the Debye temperature will rise with pressure increasing.
Many-body localization in infinite chains
Enss, T.; Andraschko, F.; Sirker, J.
2017-01-01
We investigate the phase transition between an ergodic and a many-body localized phase in infinite anisotropic spin-1 /2 Heisenberg chains with binary disorder. Starting from the Néel state, we analyze the decay of antiferromagnetic order ms(t ) and the growth of entanglement entropy Sent(t ) during unitary time evolution. Near the phase transition we find that ms(t ) decays exponentially to its asymptotic value ms(∞ ) ≠0 in the localized phase while the data are consistent with a power-law decay at long times in the ergodic phase. In the localized phase, ms(∞ ) shows an exponential sensitivity on disorder with a critical exponent ν ˜0.9 . The entanglement entropy in the ergodic phase grows subballistically, Sent(t ) ˜tα , α ≤1 , with α varying continuously as a function of disorder. Exact diagonalizations for small systems, on the other hand, do not show a clear scaling with system size and attempts to determine the phase boundary from these data seem to overestimate the extent of the ergodic phase.
Institute of Scientific and Technical Information of China (English)
Yan Bing; Pan Shou-Fu; Guo Qing-Qun
2008-01-01
This paper carries out ab initio calculations to study the 80Se2(X3∑-g)state and 80Se+2(X2∏g),80Se+2(a4∏g)states by using completed active space self-consistent field and multi-reference second order perturbation theory.The electronic curves of these states including spin-orbit coupling are calculated,and then the spectroscopic parameters are obtained.The photoelectron spectra of 80Se2 molecule in gas phase are assigned according to Franck-Condon analysis based on calculated potential energy curves.The ionization energies of 80Se2 molecule are determined by the present calculation.
Kozlov, S V; Stolyarov, A V
2016-01-01
We performed a diabatization of the mutually perturbed $1^1\\Pi$ and $2^1\\Pi$ states of KRb based on both electronic structure calculation and direct coupled-channel deperturbation analysis of experimental energies. The potential energy curves (PECs) of the diabatic states and their scalar coupling were constructed from the \\textit{ab initio} adiabatic PECs by analytically integrating the radial $\\langle \\psi_1^{ad}|\\partial /\\partial R|\\psi_2^{ad}\\rangle$ matrix element obtained by a finite-difference method. The diabatic potentials and electronic coupling function were refined by the least squares fitting of the rovibronic termvalues of the $1^1\\Pi\\sim 2^1\\Pi$ complex. The empirical PECs combined with the coupling function as well as the diabatized spin-orbit coupling and transition dipole matrix elements are useful for further deperturbation treatment of both singlet and triplet states manifold.
Femtosecond dynamics of correlated many-body states in C60 fullerenes
Usenko, Sergey; Schüler, Michael; Azima, Armin; Jakob, Markus; Lazzarino, Leslie L.; Pavlyukh, Yaroslav; Przystawik, Andreas; Drescher, Markus; Laarmann, Tim; Berakdar, Jamal
2016-11-01
Fullerene complexes may play a key role in the design of future molecular electronics and nanostructured devices with potential applications in light harvesting using organic solar cells. Charge and energy flow in these systems is mediated by many-body effects. We studied the structure and dynamics of laser-induced multi-electron excitations in isolated C60 by two-photon photoionization as a function of excitation wavelength using a tunable fs UV laser and developed a corresponding theoretical framework on the basis of ab initio calculations. The measured resonance line width gives direct information on the excited state lifetime. From the spectral deconvolution we derive a lower limit for purely electronic relaxation on the order of {τ }{el}={10}-3+5 fs. Energy dissipation towards nuclear degrees of freedom is studied with time-resolved techniques. The evaluation of the nonlinear autocorrelation trace gives a characteristic time constant of {τ }{vib}=400+/- 100 fs for the exponential decay. In line with the experiment, the observed transient dynamics is explained theoretically by nonadiabatic (vibronic) couplings involving the correlated electronic, the nuclear degrees of freedom (accounting for the Herzberg-Teller coupling), and their interplay.
Femtosecond dynamics of correlated many-body states in C$_{60}$ fullerenes
Usenko, Sergey; Azima, Armin; Jakob, Markus; Lazzarino, Leslie L; Pavlyukh, Yaroslav; Przystawik, Andreas; Drescher, Markus; Laarmann, Tim; Berakdar, Jamal
2016-01-01
Fullerene complexes may play a key role in the design of future molecular electronics and nanostructured devices with potential applications in light harvesting using organic solar cells. Charge and energy flow in these systems is mediated by many-body effects. We studied the structure and dynamics of laser-induced multi-electron excitations in isolated C$_{60}$ by two-photon photoionization as a function of excitation wavelength using a tunable fs UV laser and developed a corresponding theoretical framework on the basis of ab initio calculations. The measured resonance line width gives direct information on the excited state lifetime. From the spectral deconvolution we derive a lower limit for purely electronic relaxation on the order of $\\tau_\\mathrm{el}=8^{+12}_{-5}$ fs. Energy dissipation towards nuclear degrees of freedom is studied in time-resolved experiments. The evaluation of the non-linear autocorrelation trace gives a characteristic time constant of $\\tau_\\mathrm{vib}=309\\pm31$ fs for the exponenti...
Many-body theory for the anti shielding factor of lithium atom
Mahapatra, P. C.; Rao, B. K.
1990-03-01
The Sternheimer anti-shielding factor of lithium atom has been calculated using linked cluster many-body perturbation theoretical technique. The results obtained compare well with some of the values available in the literature.
Xiong, L H; Yoo, H; Lou, H B; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z; Xie, H L; Xiao, T Q; Jeon, S; Lee, G W
2015-01-28
X-ray diffraction and electrostatic levitation measurements, together with the ab initio molecular dynamics simulation of liquid Al(75)Cu(25) alloy have been performed from 800 to 1600 K. Experimental and ab initio molecular dynamics simulation results match well with each other. No abnormal changes were experimentally detected in the specific heat capacity over total hemispheric emissivity and density curves in the studied temperature range for a bulk liquid Al(75)Cu(25) alloy measured by the electrostatic levitation technique. The structure factors gained by the ab initio molecular dynamics simulation precisely coincide with the experimental data. The atomic structure analyzed by the Honeycutt-Andersen index and Voronoi tessellation methods shows that icosahedral-like atomic clusters prevail in the liquid Al(75)Cu(25) alloy and the atomic clusters evolve continuously. All results obtained here suggest that no liquid-liquid transition appears in the bulk liquid Al(75)Cu(25) alloy in the studied temperature range.
Boese, A D; Martin, J M L; Marx, D; Chandra, Amalendu; Martin, Jan M.L.; Marx, Dominik
2003-01-01
The ammonia dimer (NH3)2 has been investigated using high--level ab initio quantum chemistry methods and density functional theory (DFT). The structure and energetics of important isomers is obtained to unprecedented accuracy without resorting to experiment. The global minimum of eclipsed C_s symmetry is characterized by a significantly bent hydrogen bond which deviates from linearity by about 20 degrees. In addition, the so-called cyclic C_{2h} structure is extremely close in energy on an overall flat potential energy surface. It is demonstrated that none of the currently available (GGA, meta--GGA, and hybrid) density functionals satisfactorily describe the structure and relative energies of this nonlinear hydrogen bond. We present a novel density functional, HCTH/407+, designed to describe this sort of hydrogen bond quantitatively on the level of the dimer, contrary to e.g. the widely used BLYP functional. This improved functional is employed in Car-Parrinello ab initio molecular dynamics simulations of liq...
Energy Technology Data Exchange (ETDEWEB)
Kimberg, Victor, E-mail: victor.kimberg@pks.mpi.de [Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden (Germany); Miron, Catalin, E-mail: miron@synchrotron-soleil.fr [Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, BP 48, FR-91192 Gif-sur-Yvette Cedex (France)
2014-08-15
Highlights: • Some studies related to the vibrational wave functions mapping phenomenon are reviewed. • The core-excited vibrational wave functions were mapped using dissociative and bound final states. • High-resolution experimental data is accompanied by ab initio calculations. • The mapping phenomenon allows one to extract constants of the molecular potentials. • The mapping techniques are general and can be applied for the study of many systems. - Abstract: The recent development of high brightness 3{sup rd} generation soft X-ray sources and high energy resolution electron spectrometers made it possible to accurately trace quantum phenomena associated to the vibrational dynamics in core-excited molecules. The present paper reviews the recent results on mapping of vibrational wave functions and molecular potentials based on electron spectroscopy. We discuss and compare the mapping phenomena in various systems, stressing the advantages of the resonant X-ray scattering for studying of the nuclear dynamics and spectroscopic constants of small molecules. The experimental results discussed in the paper are most often accompanied by state-of-the-art ab initio calculations allowing for a deeper understanding of the quantum effects. Besides its fundamental interest, the vibrational wave function mapping is shown to be useful for the analysis of core- and valence-excited molecular states based on the reflection principle.
Thermodynamic assessment of the Ho–Te system supported by ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Ghamri, H.; Belgacem-Bouzida, A. [Laboratoire d’étude Physico-Chimique des Matériaux, Département de Physique, Faculté des Sciences, Université de Batna, Rue Chahid Boukhlouf, 05000 Batna (Algeria); Djaballah, Y., E-mail: ydjaballah@yahoo.fr [Laboratoire d’étude Physico-Chimique des Matériaux, Département de Physique, Faculté des Sciences, Université de Batna, Rue Chahid Boukhlouf, 05000 Batna (Algeria); Hidoussi, A. [Laboratoire d’étude Physico-Chimique des Matériaux, Département de Physique, Faculté des Sciences, Université de Batna, Rue Chahid Boukhlouf, 05000 Batna (Algeria)
2013-03-05
Highlights: ► We calculated enthalpies of formation of the HoTe and Ho{sub 2}Te{sub 5} compounds by using ab initio method. ► We modeled the Gibbs energy of the HoTe intermediate phase for the first time. ► The thermodynamic parameters of the all phases existing in the system were determined. ► The complete phase diagram of the system (Ho–Te) is calculated. -- Abstract: The phase diagram of the Ho–Te binary system has been assessed by using the CALPHAD (Calculation of Phase Diagrams) method on the basis of the experimental data of the phase equilibria and enthalpies of formation from ab initio electronic-structure calculations within the framework of density-functional theory. Reasonable models were constructed for all the phases of the system. The liquid phase was described as the substitutional solution model with excess energy expressed by Redlich–Kister polynomial. The compounds Ho{sub 2}Te{sub 5} and HoTe{sub 3} were expressed as stoichiometric phases. The (HoTe) phase was modeled by two-sublattices; (Ho,Va){sub 1}(Te){sub 1}. A consistent set of thermodynamic parameters has been derived, and calculated phase diagram was compared with the experimental data. A good agreement between the calculated results and experimental data was obtained.
Galler, Anna; Gunacker, Patrik; Tomczak, Jan; Thunström, Patrik; Held, Karsten
Recently, approaches such as the dynamical vertex approximation (D ΓA) or the dual-fermion method have been developed. These diagrammatic approaches are going beyond dynamical mean field theory (DMFT) by including nonlocal electronic correlations on all length scales as well as the local DMFT correlations. Here we present our efforts to extend the D ΓA methodology to ab-initio materials calculations (ab-initio D ΓA). Our approach is a unifying framework which includes both GW and DMFT-type of diagrams, but also important nonlocal correlations beyond, e.g. nonlocal spin fluctuations. In our multi-band implementation we are using a worm sampling technique within continuous-time quantum Monte Carlo in the hybridization expansion to obtain the DMFT vertex, from which we construct the reducible vertex function using the two particle-hole ladders. As a first application we show results for transition metal oxides. Support by the ERC project AbinitioDGA (306447) is acknowledged.
Higher-order elastic constants and megabar pressure effects of bcc tungsten: Ab initio calculations
Vekilov, Yu. Kh.; Krasilnikov, O. M.; Lugovskoy, A. V.; Lozovik, Yu. E.
2016-09-01
The general method for the calculation of n th (n ≥2 ) order elastic constants of the loaded crystal is given in the framework of the nonlinear elasticity theory. For the crystals of cubic symmetry under hydrostatic compression, the two schemes of calculation of the elastic constants of second, third, and fourth order from energy-finite strain relations and stress-finite strain relations are implemented. Both techniques are applied for the calculation of elastic constants of orders from second to fourth to the bcc phase of tungsten at a 0-600 GPa pressure range. The energy and stress at the various pressures and deformations are obtained ab initio in the framework of projector augmented wave+generalized gradient approximation (PAW+GGA) method, as implemented in Vienna Ab initio Simulation Package (VASP) code. Using the obtained results, we found the pressure dependence of Grüneisen parameters for long-wave acoustic modes in this interval. The Lamé constants of second and third order were estimated for polycrystalline tungsten. The proposed method is applicable for crystals with arbitrary symmetry.
Ab initio simulations of phase stability and martensitic transitions in NiTi
Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.
2016-12-01
For NiTi-based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. We show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing phase transformation temperatures is discussed.
Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi
Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.
2016-01-01
For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.
Renison, C Alicia; Fernandes, Kyle D; Naidoo, Kevin J
2015-07-05
This article describes an extension of the quantum supercharger library (QSL) to perform quantum mechanical (QM) gradient and optimization calculations as well as hybrid QM and molecular mechanical (QM/MM) molecular dynamics simulations. The integral derivatives are, after the two-electron integrals, the most computationally expensive part of the aforementioned calculations/simulations. Algorithms are presented for accelerating the one- and two-electron integral derivatives on a graphical processing unit (GPU). It is shown that a Hartree-Fock ab initio gradient calculation is up to 9.3X faster on a single GPU compared with a single central processing unit running an optimized serial version of GAMESS-UK, which uses the efficient Schlegel method for s- and l-orbitals. Benchmark QM and QM/MM molecular dynamics simulations are performed on cellobiose in vacuo and in a 39 Å water sphere (45 QM atoms and 24843 point charges, respectively) using the 6-31G basis set. The QSL can perform 9.7 ps/day of ab initio QM dynamics and 6.4 ps/day of QM/MM dynamics on a single GPU in full double precision. © 2015 Wiley Periodicals, Inc.
Experimental and ab initio investigations on textured Li–Mn–O spinel thin film cathodes
Energy Technology Data Exchange (ETDEWEB)
Fischer, J., E-mail: Julian.Fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Music, D. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 52074 Aachen (Germany); Bergfeldt, T.; Ziebert, C.; Ulrich, S.; Seifert, H.J. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)
2014-12-01
This paper describes the tailored preparation of nearly identical lithium–manganese–oxide thin film cathodes with different global grain orientations. The thin films were synthesized by rf magnetron sputtering from a LiMn{sub 2}O{sub 4}-target in a pure argon plasma. Under appropriate processing conditions, thin films with a cubic spinel structure and a nearly similar density and surface topography but different grain orientation, i.e. (111)- and (440)-textured films, were achieved. The chemical composition was determined by inductively coupled plasma optical emission spectroscopy and carrier gas hot extraction. The constitution- and microstructure were evaluated by X-ray diffraction and Raman spectroscopy. The surface morphology and roughness were investigated by scanning electron and atomic force microscopy. The differently textured films represent an ideal model system for studying potential effects of grain orientation on the lithium ion diffusion and electrochemical behavior in LiMn{sub 2}O{sub 4}-based thin films. They are nearly identical in their chemical composition, atomic bonding behavior, surface-roughness, morphology and thickness. Our initial ab initio molecular dynamics data indicate that Li ion transport is faster in (111)-textured structure than in (440)-textured one. - Highlights: • Thin film model system of differently textured cubic Li–Mn–O spinels. • Investigation of the Li–Mn–O thin film mass density by X-ray reflectivity. • Ab initio molecular dynamics simulation on Li ion diffusion in LiMn{sub 2}O{sub 4}.
Embedding parameters in ab initio theory to develop approximations based on molecular similarity
Tanha, Matteus; Kaul, Shiva; Cappiello, Alexander; Gordon, Geoffrey J; Yaron, David J
2015-01-01
A means to take advantage of molecular similarity to lower the computational cost of electronic structure theory is explored, in which parameters are embedded into a low-cost, low-level (LL) ab initio model and adjusted to obtain agreement with results from a higher-level (HL) ab initio model. A parametrized LL (pLL) model is created by multiplying selected matrix elements of the Hamiltonian operators by scaling factors that depend on element types. Various schemes for applying the scaling factors are compared, along with the impact of making the scaling factors linear functions of variables related to bond lengths, atomic charges, and bond orders. The models are trained on ethane and ethylene, substituted with -NH2, -OH and -F, and tested on substituted propane, propylene and t-butane. Training and test datasets are created by distorting the molecular geometries and applying uniform electric fields. The fitted properties include changes in total energy arising from geometric distortions or applied fields, an...
Ab initio calculations of the optical properties of crystalline and liquid InSb
Energy Technology Data Exchange (ETDEWEB)
Sano, Haruyuki, E-mail: h-sano@ishikawa-nct.ac.jp [National Institute of Technology, Ishikawa College, Kitacyujo, Tsubata, Ishikawa 929-0392 (Japan); Mizutani, Goro [School of Materials Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292 (Japan)
2015-11-15
Ab initio calculations of the electronic and optical properties of InSb were performed for both the crystalline and liquid states. Two sets of atomic structure models for liquid InSb at 900 K were obtained by ab initio molecular dynamics simulations. To reduce the effect of structural peculiarities in the liquid models, an averaging of the two sets of the calculated electronic and optical properties corresponding to the two liquid models was performed. The calculated results indicate that, owing to the phase transition from crystal to liquid, the density of states around the Fermi level increases. As a result, the energy band gap opening near the Fermi level disappears. Consequently, the optical properties change from semiconductor to metallic behavior. Namely, owing to the melting of InSb, the interband transition peaks disappear and a Drude-like dispersion is observed in the optical dielectric functions. The optical absorption at a photon energy of 3.06 eV, which is used in Blu-ray Disc systems, increases owing to the melting of InSb. This increase in optical absorption is proposed to result from the increased optical transitions below 2 eV.
Ab initio calculation of oxygen self-diffusion coefficient in uranium dioxide UO2
Dorado, Boris; Garcia, Philippe; Torrent, Marc
Uranium dioxide UO2 is the most widely used nuclear fuel worldwide and its atomic transport properties are relevant to practically all engineering aspects of the material. Although transport properties have already been studied in UO2 by means of first-principles calculations, the ab initio determination of self-diffusion coefficients has up to now remained unreachable because the relevant computational tools were neither available or adapted. The present work reports our results related to the ab initio calculation of the oxygen self-diffusion coefficient in UO2. We first determine the Gibbs free energies of formation of oxygen charged defects by calculating both the electronic and vibrational (hence entropic) contributions. Then, we use the transition state theory in order to compute the effective jump frequency of the defects, which in turn provides us with the value of the pre-exponential factor. The results are compared to self-diffusion data obtained experimentally with a careful monitoring of the relevant thermodynamic conditions (oxygen partial pressure, temperature, impurity content).
Tanha, Matteus; Cappiello, Alex; Gordon, Geoffrey J; Yaron, David J
2013-01-01
A means to take advantage of molecular similarity to lower the computational cost of electronic structure theory is proposed, in which parameters are embedded into a low-cost, low-level (LL) ab initio theory and adjusted to obtain agreement with a higher level (HL) ab initio theory. This approach is explored by training such a model on data for ethane and testing the resulting model on methane, propane and butane. The electronic distribution of the molecules is varied by placing them in strong electrostatic environments consisting of random charges placed on the corners of a cube. The results find that parameters embedded in HF/STO-3G theory can be adjusted to obtain agreement, to within about 2 kcal/mol, with results of HF/6-31G theory. Obtaining this level of agreement requires the use of parameters that are functions of the bond lengths, atomic charges, and bond orders within the molecules. The argument is made that this approach provides a well-controlled means to take advantage of molecular similarity in...
smyRNA: a novel Ab initio ncRNA gene finder.
Directory of Open Access Journals (Sweden)
Raheleh Salari
Full Text Available BACKGROUND: Non-coding RNAs (ncRNAs have important functional roles in the cell: for example, they regulate gene expression by means of establishing stable joint structures with target mRNAs via complementary sequence motifs. Sequence motifs are also important determinants of the structure of ncRNAs. Although ncRNAs are abundant, discovering novel ncRNAs on genome sequences has proven to be a hard task; in particular past attempts for ab initio ncRNA search mostly failed with the exception of tools that can identify micro RNAs. METHODOLOGY/PRINCIPAL FINDINGS: We present a very general ab initio ncRNA gene finder that exploits differential distributions of sequence motifs between ncRNAs and background genome sequences. CONCLUSIONS/SIGNIFICANCE: Our method, once trained on a set of ncRNAs from a given species, can be applied to a genome sequences of other organisms to find not only ncRNAs homologous to those in the training set but also others that potentially belong to novel (and perhaps unknown ncRNA families. AVAILABILITY: (http://compbio.cs.sfu.ca/taverna/smyrna.
Ab initio determination of an extended Heisenberg Hamiltonian in CuO{sub 2} layers
Energy Technology Data Exchange (ETDEWEB)
Calzado, C.J.; Malrieu, J.P. [Lab. de Physique Quantique, IRSAMC, Univ. Paul Sabatier, Toulouse (France)
2001-06-01
Accurate ab initio calculations on embedded Cu{sub 4}O{sub 12} square clusters, fragments of the La{sub 2}CuO{sub 4} lattice, confirm a value of the nearest neighbor antiferromagnetic coupling (J = 124 meV) previously obtained from ab initio calculations on bicentric clusters and in good agreement with experiment. These calculations predict non negligible antiferromagnetic second-neighbor interaction (J' = 6.5 meV) and four-spin cyclic exchange (K = 14 meV), which may affect the thermodynamic and spectroscopic properties of these materials. The dependence of the magnetic coupling on local lattice distortions has also been investigated. Among them the best candidate to induce a spin-phonon effect seems to be the movement of the Cu atoms, changing the Cu-Cu distance, for which the variation of the nearest neighbor magnetic coupling with the Cu-O distance is {delta}J/{delta}d{sub Cu} {sub -} {sub O} {proportional_to} 1700 cm {sup -1} A {sup -1}. (orig.)
Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces
Herron, Jeffrey A.; Morikawa, Yoshitada; Mavrikakis, Manos
2016-08-01
Using ab initio molecular dynamics as implemented in periodic, self-consistent (generalized gradient approximation Perdew-Burke-Ernzerhof) density functional theory, we investigated the mechanism of methanol electrooxidation on Pt(111). We investigated the role of water solvation and electrode potential on the energetics of the first proton transfer step, methanol electrooxidation to methoxy (CH3O) or hydroxymethyl (CH2OH). The results show that solvation weakens the adsorption of methoxy to uncharged Pt(111), whereas the binding energies of methanol and hydroxymethyl are not significantly affected. The free energies of activation for breaking the C-H and O-H bonds in methanol were calculated through a Blue Moon Ensemble using constrained ab initio molecular dynamics. Calculated barriers for these elementary steps on unsolvated, uncharged Pt(111) are similar to results for climbing-image nudged elastic band calculations from the literature. Water solvation reduces the barriers for both C-H and O-H bond activation steps with respect to their vapor-phase values, although the effect is more pronounced for C-H bond activation, due to less disruption of the hydrogen bond network. The calculated activation energy barriers show that breaking the C-H bond of methanol is more facile than the O-H bond on solvated negatively biased or uncharged Pt(111). However, with positive bias, O-H bond activation is enhanced, becoming slightly more facile than C-H bond activation.
Novel high-pressure phase of ZrO{sub 2}: An ab initio prediction
Energy Technology Data Exchange (ETDEWEB)
Durandurdu, Murat, E-mail: murat.durandurdu@agu.edu.tr
2015-10-15
The high-pressure behavior of the orthorhombic cotunnite type ZrO{sub 2} is explored using an ab initio constant pressure technique. For the first time, a novel hexagonal phase (Ni{sub 2}In type) within P6{sub 3}/mmc symmetry is predicted through the simulation. The Ni{sub 2}In type crystal is the densest high-pressure phase of ZrO{sub 2} proposed so far and has not been observed in other metal dioxides at high pressure before. The phase transformation is accompanied by a small volume drop and likely to occur around 380 GPa in experiment. - Graphical abstract: Post-cotunnite Ni{sub 2}In type hexagonal phase forms in zirconia at high pressure. - Highlights: • A post-cotunnite phase is predicted for ZrO{sub 2} through an ab initio simulation. • Cotunnite ZrO{sub 2} adopts the Ni{sub 2}In type structure at high pressure. • The Ni{sub 2}In type structure is the densest high-pressure phase of ZrO{sub 2} proposed so far. • The preferred mechanism in ZrO{sub 2} differs from the other metal dioxides.
Kihara, D; Lu, H; Kolinski, A; Skolnick, J
2001-08-28
The successful prediction of protein structure from amino acid sequence requires two features: an efficient conformational search algorithm and an energy function with a global minimum in the native state. As a step toward addressing both issues, a threading-based method of secondary and tertiary restraint prediction has been developed and applied to ab initio folding. Such restraints are derived by extracting consensus contacts and local secondary structure from at least weakly scoring structures that, in some cases, can lack any global similarity to the sequence of interest. Furthermore, to generate representative protein structures, a reduced lattice-based protein model is used with replica exchange Monte Carlo to explore conformational space. We report results on the application of this methodology, termed TOUCHSTONE, to 65 proteins whose lengths range from 39 to 146 residues. For 47 (40) proteins, a cluster centroid whose rms deviation from native is below 6.5 (5) A is found in one of the five lowest energy centroids. The number of correctly predicted proteins increases to 50 when atomic detail is added and a knowledge-based atomic potential is combined with clustered and nonclustered structures for candidate selection. The combination of the ratio of the relative number of contacts to the protein length and the number of clusters generated by the folding algorithm is a reliable indicator of the likelihood of successful fold prediction, thereby opening the way for genome-scale ab initio folding.
Thermodynamic modeling of the Fe–Mo system coupled with experiments and ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Rajkumar, V.B.; Hari Kumar, K.C., E-mail: kchkumar@iitm.ac.in
2014-10-25
Highlights: • Gibbs energy functions for all stable phases in the Fe–Mo system obtained using Calphad method. • Ab initio calculation results are employed to improve Gibbs energy functions. • New experimental data have been incorporated in the optimization. • Thermochemical properties: energy of formation, cohesive energy. • Calculated values are compared with experimental results. - Abstract: In this paper we report the Gibbs energy functions for all stable phases in the Fe–Mo system obtained using Calphad method. Newly measured enthalpy increment data, tie-line data and liquidus data for selected compositions are used as input for the Gibbs energy modeling, along with carefully selected thermochemical and phase diagram data from literature. Further, ab initio generated energy of formation at 0 K for the intermetallic phases and end-members of the sublattice model for the μ phase and the σ phase are also used in the optimization of model parameters of the Gibbs energy functions. Calculated phase diagram and the thermochemical properties show good agreement with the experimental data.
Energy Technology Data Exchange (ETDEWEB)
Abe, K.; Ito, K.; Suezawa, H.; Hirota, M.; Nishio, M.
1986-10-01
Conformations of a series of acyclic alcohols (CH/sub 3/CH(R)CH(OH)CH/sub 3/, CH/sub 3/CH(R)CH(OH)CH(R')CH/sub 3/, and CH/sub 3/CH(R)CH(OH)Bu/sup t/) were studied (1) by measuring vicinal H-H coupling constants (/sup 3/JH-H), (2) by lanthanoid-induced shift (LIS) analysis, (3) by molecular mechanics calculations (MM2), and (4) by ab initio (STO-3G, 4-31G geometry optimization) calculations. In the case of conformationally flexible alcohols as exemplified by 2-butanol and 3-pentanol, population of conformers determined by the LIS method do not agree with those determined by the /sup 3/JH-H, MM2, and ab initio methods. The discrepancy comes from the fact that the LIS measurement gives the most stable conformation of the alcohol in the LSR-alcohol complex and not of the free alcohol. In some flexible molecules, the most stable conformer in the complex can be different from that of the free molecule. In general, the conformational equilibrium is shifted by coordination of the shift reagent to the conformer whose alkyl chain stretches opposite to the direction of the coordination site of the shift reagent. 21 references, 1 figure, 6 tables.
Duffy, Daniel J.; Quenneville, Jason; Baumbaugh, T. M.; Kitchener, S. A.; McCormick, R. K.; Dormady, C. N.; Croce, T. A.; Navabi, A.; Stidham, Howard D.; Hsu, Shaw L.; Guirgis, Gamil A.; Deng, Shiping; Durig, James R.
2004-02-01
Ab initio calculations are reported for three of four possible conformers of 1,3-dichloropropane. The fourth conformer, with C s symmetry, has a predicted enthalpy difference of more than 1500 cm -1 from the most stable conformer from each calculation regardless of the basis set used, so there is little chance of observing it. Thus, there is no evidence in the infrared or Raman spectrum of the presence of a fourth conformer. The order of stability given by the ab initio calculations is C 2(GG)>C 1(AG)>C 2v(AA)>C s(GG'), where A indicates the anti form for one of the CH 2Cl groups and G indicates the gauche conformation for the other CH 2Cl group relative to the plane of the carbon atoms. Almost every band observed can be confidently assigned to one or another of the conformers. Many observed bands proved to be of a composite nature, with several nearly coincident vibrations of different conformers contributing to the band contour. Nonetheless, a complete assignment of fundamentals is possible for the most stable C 2 conformer, and 5 of the fundamentals of the C 2v conformer and 13 those of the C 1 conformer can be confidently assigned.
Ground state analytical ab initio intermolecular potential for the Cl{sub 2}-water system
Energy Technology Data Exchange (ETDEWEB)
Hormain, Laureline; Monnerville, Maurice, E-mail: maurice.monnerville@univ-lille1.fr; Toubin, Céline; Duflot, Denis; Pouilly, Brigitte; Briquez, Stéphane [Laboratoire de Physique des Lasers Atomes et Molécules, Unité Mixte de Recherche (UMR) 8523, Université Lille I, Bât. P5, 59655 Villeneuve d’Ascq Cedex (France); Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón [Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, México (Mexico)
2015-04-14
The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl{sub 2} molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl{sub 2} − H{sub 2}O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by the comparison of ab initio results of Cl{sub 2} interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl{sub 2} on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results.
Many-Body Theory of Atomic Transitions
Holmes, Charles Potter
This dissertation presents a systematic approach to the derivation of transition widths and cross sections for atomic radiative and/or nonradiative processes. By applying the transition theory of Goldberger and Watson ^1, all transition properties are derived from proper solutions of the time-dependent Schrodinger equation. The focus is on situations where initial and final wave functions are nonorthogonal functions that belong to different self-consistent fields. This approach is particularly useful in the treatment of ionizing transitions where the outgoing free electron sees a different atomic potential from that of the initial bound state. Transition amplitudes are expressed as perturbation expansions in which singularities have been removed algebraically. These singularities are due to states which are degenerate with the initial and final states and represent the competing transition channels. The perturbation expansions show clearly the role of the nonorthogonality of the participating states leading to terms representing "shake" processes competing with higher-order electron correlation processes. Transition amplitudes including all second-order processes, are derived for the following transitions: X-ray, Auger, photoionization, radiative recombination, dielectronic recombination, radiative -Auger. Comparisons are made with the expressions frequently used by other workers. Using a Hartree-Fock-Slater model K- and L-shell X-ray and Auger transition widths are calculated for the range 5 Z Theory, (John Wiley & Sons, New York, 1964), Chapter 8, page 424.
Kawashima, Yukio; Tachikawa, Masanori
2013-05-01
Ab initio path integral molecular dynamics simulation was performed to understand the nuclear quantum effect on the hydrogen bond of hydrogen malonate anion. Static calculation predicted the proton transfer barrier as 0.12 kcal/mol. Conventional ab initio molecular dynamics simulation at 300 K found proton distribution with a double peak on the proton transfer coordinate. Inclusion of thermal effect alone elongates the hydrogen bond length, which increases the barrier height. Inclusion of nuclear quantum effect washes out this barrier, and distributes a single broad peak in the center. H/D isotope effect on the proton transfer is also discussed.
Kedziera, Dariusz; Mentel, Łukasz; Żuchowski, Piotr S.; Knoop, Steven
2015-06-01
We have obtained accurate ab initio +4Σ quartet potentials for the diatomic metastable triplet helium+alkali-metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with noniterative triples corrections CCSD(T) calculations and accurate calculations of the long-range C6 coefficients. These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is possible, because of the small reduced masses and shallow potentials that result in a small amount of bound states. Our results are relevant for ultracold metastable triplet helium+alkali-metal mixture experiments.
Lee, Jeehye
2010-01-01
We present the first systematic {\\em ab initio} study of anti-ferrodistortive (AFD) order in Ruddlesden-Popper (RP) phases of strontium titanate, Sr$_{1+n}$Ti$_n$O$_{3n+1}$, as a function of both compressive epitaxial strain and phase number $n$. We find all RP phases to exhibit AFD order under a significant range of strains, recovering the bulk AFD order as $\\sim 1/n^2$. A Ginzburg-Landau Hamiltonian generalized to include inter-octahedral interactions reproduces our {\\em ab initio} results well, opening a pathway to understanding other nanostructured perovskite systems.
Indian Academy of Sciences (India)
A NASSOUR
2016-09-01
In the present paper, an empirical embedded atom method (EAM) potential for gold–silicon (Au–Si) is developed by fitting to ab initio force (the ‘force matching’ method) and experimental data. The force database is generated within ab initio molecular dynamics (AIMD). The database includes liquid phase at various temperatures. Classical molecular dynamics simulations are performed to examine structural, coordination numbers, structure factors and dynamic properties of Au$_{81}$Si$_{19}$ alloy, with the interaction described via EAM model. The results are in good agreement with AIMD simulations and experimental data.
Ji, Pengfei
2016-01-01
By combining ab initio quantum mechanics calculation and Drude model, electron temperature and lattice temperature dependent electron thermal conductivity is calculated and implemented into a multiscale model of laser material interaction, which couples the classical molecular dynamics and two-temperature model. The results indicated that the electron thermal conductivity obtained from ab initio calculation leads to faster thermal diffusion than that using the electron thermal conductivity from empirical determination, which further induces deeper melting region, larger number of density waves travelling inside the copper film and more various speeds of atomic clusters ablated from the irradiated film surface.
Ab-initio optical properties and dielectric response of open-shell spinel zinc ferrite
Ziaei, Vafa; Bredow, Thomas
2017-02-01
In the present work, we predict the optical properties and the dielectric response spectrum of the spinel zinc ferrite Zn2Fe4O8, and show in particular the impact of many-body effects on the absorption spectrum, using advanced many-body perturbation approach. The excitonic effects remarkably redistribute the spectral weights causing a red-shift of 1.6 eV of the maximum of the independent particle G 0 W 0 (IP- G 0 W 0) towards the electron-hole affected spectrum. The excitation spectrum of the zinc ferrite exhibits a low lying doubly degenerated bound dark exciton at 1.84 eV with a fully symmetric excited-state density, and a narrow optical gap setting on at 1.93 eV. We further analyse the electronic transitions and exciton density distributions giving insights to the nature of excitations. The dielectric response of Zn2Fe4O8 shows a particular sensitivity to the excitations higher than the electronic band gap, however it abruptly becomes passive to the incoming electro-magnetic wave and propagates to the negative regions at high energy regimes.
Energy Technology Data Exchange (ETDEWEB)
Willaime, F. [Division de l' energie nucleaire, CEA Centre de Saclay, 91191 Gif-sur-Yvette (France); Deutsch, T.; Pochet, P. [INAC, Direction des sciences de la matiere, CEA Centre de Grenoble, 38054 Grenoble Cedex 9 (France)
2010-07-01
Ab-initio calculation methods, for the purposes of computing electronic structures, have made it possible, since the early nineties, to simulate the properties of perfect crystalline materials (materials free of any defect). By improving such methods, and with the increasing power of supercomputers, it has now become feasible to simulate the properties of elementary defects, which may seldom be accessed directly through experiments. This has opened up a vast, fruitful field of multi-scale simulations, where such data yield the basis for realistic simulations of the kinetics of materials evolution. The kinetic Monte-Carlo method thus provides the means to model phenomena acting at the scale of a second, or even of a year. In the issue of self-diffusion in silicon, multi-scale simulation has been successful in predicting an asymmetrical behaviour: a speeding up of vacancy diffusion under compression and a tailing off under tension, and conversely, a speeding up of interstitial diffusion under tension and a falling off under compression. Multi-scale modeling has also been successful in simulating irradiation defects in iron. (A.C.)
Roemelt, Michael
2015-07-01
Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctions are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.
Energy Technology Data Exchange (ETDEWEB)
Surin, L. A., E-mail: surin@ph1.uni-koeln.de [I. Physikalisches Institut, University of Cologne, Zülpicher St. 77, 50937 Cologne (Germany); Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya St. 5, 142190 Troitsk, Moscow (Russian Federation); Tarabukin, I. V.; Panfilov, V. A. [Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya St. 5, 142190 Troitsk, Moscow (Russian Federation); Schlemmer, S. [I. Physikalisches Institut, University of Cologne, Zülpicher St. 77, 50937 Cologne (Germany); Kalugina, Y. N. [Department of Optics and Spectroscopy, Tomsk State University, 36 Lenin Ave., 634050 Tomsk (Russian Federation); Faure, A.; Rist, C. [University Grenoble Alpes, IPAG, F-38000 Grenoble (France); CNRS, IPAG, F-38000 Grenoble (France); Avoird, A. van der, E-mail: A.vanderAvoird@theochem.ru.nl [Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)
2015-10-21
The rotational spectrum of the van der Waals complex CH{sub 4}–CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 110–145 GHz. Newly observed and assigned transitions belong to the K = 2–1 subband correlating with the rotationless j{sub CH4} = 0 ground state and the K = 2–1 and K = 0–1 subbands correlating with the j{sub CH4} = 2 excited state of free methane. The (approximate) quantum number K is the projection of the total angular momentum J on the intermolecular axis. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the CH{sub 4}–CO complex. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of CH{sub 4}–CO have been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations [CCSD(T)-F12a] and an augmented correlation-consistent triple zeta (aVTZ) basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the CH{sub 4} face closest to the CO subunit and binding energy D{sub e} = 177.82 cm{sup −1}. The bound rovibrational levels of the CH{sub 4}–CO complex were calculated for total angular momentum J = 0–6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D{sub 0} are 91.32, 94.46, and 104.21 cm{sup −1} for A (j{sub CH4} = 0), F (j{sub CH4} = 1), and E (j{sub CH4} = 2) nuclear spin modifications of CH{sub 4}–CO, respectively.
Lynch, Gillian C.; Steckler, Rozeanne; Varandas, Antonio J. C.; Truhlar, Donald G.; Schwenke, David W.
1991-01-01
New ab initio results and a double many-body expansion formalism have been used to parameterize a new FH2 potential energy surface with improved properties near the saddle point and in the region of long-range attraction. The functional form of the new surface includes dispersion forces by a double many-body expansion. Stationary point properties for the new surface are calculated along with the product-valley barrier maxima of vibrationally adiabatic potential curves for F + H2 - HF(nu-prime = 3) + H, F + HD - HF(nu-prime = 3) + D, and F + D2 - DF(nu-prime = 4) + D. The new surface should prove useful for studying the effect on dynamics of a low, early barrier with a wide, flat bend potential.
Giant many-body effects in liquid ammonia absorption spectrum
Ziaei, Vafa; Bredow, Thomas
2016-11-01
In the present work, we accurately calculate the absorption spectrum of liquid ammonia up to 13 eV using many-body perturbation approach. The electronic bandgap of liquid NH3 is perfectly described as the combination of density functional theory, Coulomb-hole screened exchange, and G0W0 approximation to the electronic self-energy, yielding a direct gap (Γ → Γ) of 7.71 eV, fully consistent with the experimentally measured gap from photo-emission spectroscopy. With respect to the NH3 optical properties, the entire spectrum in particular the low lying first absorption band is extremely affected by electron-hole interactions, leading to a fundamental redistribution of spectral weights of the independent-particle spectrum. Three well separated but broad main peaks are identified at 7.0, 9.8, and 11.8 eV with steadily increasing intensities in excellent agreement with the experimental data. Furthermore, we observe a giant net blue-shift of the first absorption peak of about 1.4 eV from gaseous to liquid phase as the direct consequence of many-body effects, allowing the associated liquid ammonia absorption band exciton to delocalize and feel more effectively the repulsion effects imposed by the surrounding solvent shells. Further, the spectrum is insensitive to the coupling of resonant and anti-resonant contributions. Concerning electronic response structure of liquid NH3, it is most sensitive to excitations at energies lower than its electronic gap.
Quantum theory of many-body systems techniques and applications
Zagoskin, Alexandre
2014-01-01
This text presents a self-contained treatment of the physics of many-body systems from the point of view of condensed matter. The approach, quite traditionally, uses the mathematical formalism of quasiparticles and Green’s functions. In particular, it covers all the important diagram techniques for normal and superconducting systems, including the zero-temperature perturbation theory and the Matsubara, Keldysh and Nambu-Gor'kov formalism, as well as an introduction to Feynman path integrals. This new edition contains an introduction to the methods of theory of one-dimensional systems (bosonization and conformal field theory) and their applications to many-body problems. Intended for graduate students in physics and related fields, the aim is not to be exhaustive, but to present enough detail to enable the student to follow the current research literature, or to apply the techniques to new problems. Many of the examples are drawn from mesoscopic physics, which deals with systems small enough that quantum...
Ab Initio and Analytic Intermolecular Potentials for Ar–CH3OH
Energy Technology Data Exchange (ETDEWEB)
Tasic, Uros; Alexeev, Yuri; Vayner, Grigoriy; Crawford, T Daniel; Windus, Theresa L.; Hase, William L.
2006-09-20
Ab initio calculations at the CCSD(T)/aug-cc-pVTZ level of theory were used to characterize the Ar–CH₃y6tOH intermolecular potential energy surface (PES). Potential energy curves were calculated for four different Ar + CH₃OH orientations and used to derive an analytic function for the intermolecular PES. A sum of Ar–C, Ar–O, Ar–H(C), and Ar–H(O) two-body potentials gives an excellent fit to these potential energy curves up to 100 kcal mol¯¹, and adding an additional r¯¹n term to the Buckingham two-body potential results in only a minor improvement in the fit. Three Ar–CH₃OH van der Waals minima were found from the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ calculations. The structure of the global minimum is in overall good agreement with experiment (X.-C. Tan, L. Sun and R. L. Kuczkowski, J. Mol. Spectrosc., 1995, 171, 248). It is T-shaped with the hydroxyl H-atom syn with respect to Ar. Extrapolated to the complete basis set (CBS) limit, the global minimum has a well depth of 0.72 kcal mol¯¹ with basis set superposition error (BSSE) correction. The aug-cc-pVTZ basis set gives a well depth only 0.10 kcal mol¯¹ smaller than this value. The well depths of the other two minima are within 0.16 kcal mol¯¹ of the global minimum. The analytic Ar–CH₃OH intermolecular potential also identifies these three minima as the only van der Waals minima and the structures predicted by the analytic potential are similar to the ab initio structures. The analytic potential identifies the same global minimum and the predicted well depths for the minima are within 0.05 kcal mol¯1 of the ab initio values. Combining this Ar–CH₃OH intermolecular potential with a potential for a OH-terminated alkylthiolate self-assembled monolayer surface (i.e., HO-SAM) provides a potential to model Ar + HO-SAM collisions.
i-PI: A Python interface for ab initio path integral molecular dynamics simulations
Ceriotti, Michele; More, Joshua; Manolopoulos, David E.
2014-03-01
Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these developments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high-pressure water. Catalogue identifier: AERN_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 138626 No. of bytes in distributed program, including test data, etc.: 3128618 Distribution format: tar.gz Programming language: Python. Computer: Multiple architectures. Operating system: Linux, Mac OSX, Windows. RAM: Less than 256 Mb Classification: 7.7. External routines: NumPy Nature of problem: Bringing the latest developments in the modelling of nuclear quantum effects with path integral molecular dynamics to ab initio electronic structure programs with minimal implementational effort. Solution method: State-of-the-art path integral molecular dynamics techniques are implemented in a Python interface. Any electronic structure code can be patched to receive the atomic
Realization of prediction of materials properties by ab initio computer simulation
Indian Academy of Sciences (India)
Yoshiyuki Kawazoe
2003-01-01
Ab initio treatment is becoming realistic to predict physical, chemical, and even mechanical properties of academically and industrially interesting materials. There is, however, some limitation in size and time of the system up to the order of several hundred atoms and ∼ 1 pico second, even if we use the fastest supercomputer efficiently. Therefore, it is very difficult to simulate realistic materials with grain boundaries and important reactions like diffusion in materials. To improve this situation, two ways have been invented. One way is to upgrade approximations to match the necessary levels according to inhomogeneous electron gas theory beyond the present day standard, i.e. local density approximation (LDA). The reason is simply that the system we are interested in is composed of many particles interacting with Coulomb forces governed by quantum mechanics. (Complete knowledge is available, and only what we should do is to make better approximations to explain the phenomena!). Another is to extract the necessary parameters from the ab initio calculations on systems with limited number of atoms, and apply these results into cluster variation, direct, or any other sophisticated methods based on classical concepts such as statistical mechanics. In this paper, several typical examples recently worked out by our research group are introduced to indicate that these methodologies are actually possible to be successfully used to predict materials properties before experiments based on the present day state-of-art supercomputing systems. It includes scientific visualization of the results of ab initio molecular dynamics simulation on atom insertion process to C60 and to carbon nanotube, tight-binding calculation of single electron conductance properties in nanotube to create nano-scale diode virtually by computer, which will be a base of future nanoscale electric device in nanometer size, Li + H reaction without Born–Oppenheimer approximation, structural phase
Ab initio study of the low-lying electronic states of the CaO molecule
Energy Technology Data Exchange (ETDEWEB)
Khalil, Hossain; Brites, Vincent; Quere, Frederic Le [Universite Paris-Est, Laboratoire de Modelisation et Simulation Multi Echelle, UMR 8208 CNRS, Batiment Lavoisier, 5 boulevard Descartes, Champs sur Marne, 77454 Marne-la-Vallee, Cedex 2 (France); Leonard, Celine, E-mail: celine.leonard@univ-paris-est.fr [Universite Paris-Est, Laboratoire de Modelisation et Simulation Multi Echelle, UMR 8208 CNRS, Batiment Lavoisier, 5 boulevard Descartes, Champs sur Marne, 77454 Marne-la-Vallee, Cedex 2 (France)
2011-07-28
Graphical abstract: Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure of the low-lying electronic states of the CaO molecule. The computations are done using the aug-cc-pV5Z basis set for O and the cc-pCV5Z for Ca. The potential energy curves for the molecular states correlating to the lowest three asymptotes are calculated at the CASSCF level. The potential curves of the lowest five molecular states, X{sup 1}{Sigma}{sup +}, a{sup 3}{Pi}, A'{sup 1{Pi}}, b{sup 3}{Sigma}{sup +} and A{sup 1}{Sigma}{sup +}, and the corresponding dipole moment functions have been determined using internally contracted multi-reference configuration interaction approaches. The spectroscopic constants associated with these electronic states are compared to experimental values. The corresponding electronic wavefunctions have also been analyzed using the dipole moment functions. Display Omitted Highlights: {yields} The five lowest electronic states of Cao have been determined ab initio at a high level of accuracy. {yields} Large active space, core-valence correlation and configuration interaction are required. {yields} The multi-configurational nature of the electronic ground state is confirmed as well as its monovalent and divalent ionic nature using dipole moment analysis. {yields} These interacting potentials will serve for future obtention of spin-rovibronic levels. - Abstract: Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure of the low-lying electronic states of the CaO molecule. The computations are done using the aug-cc-pV5Z basis set for O and the cc-pCV5Z for Ca. The potential energy curves for the molecular states correlating to the lowest three asymptotes are calculated at the CASSCF level. The potential curves of the lowest five molecular states, X{sup 1}{Sigma}{sup +}, a{sup 3}{Pi}, A'{sup 1}{Pi}, b{sup 3}{Sigma}{sup +} and A{sup 1
Ab initio study of perovskite type oxide materials for solid oxide fuel cells
Lee, Yueh-Lin
2011-12-01
Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen
Many-Body Boson Systems Half a Century Later
Verbeure, André F
2011-01-01
Many-body Boson Systems: Half a Century Later offers a modern way of dealing with the problems of equilibrium states of Bose systems. Starting with the variation principle of statistical mechanics and the energy-entropy balance principle as equilibrium criteria, results for general boson systems and models are explicitly derived using simple functional analytic calculus. Bridging the gap between idea’s of general theoretical physics and the phenomenological research in the field of Bose systems, this book provides an insight into the fascinating quantum world of bosons. Key topics include the occurrence of BEC and its intimate structural relation with the phenomena of spontaneous symmetry breaking and off-diagonal long range order; the condensate equation; the issue concerning the choice of boundary conditions; solvable versus non-solvable boson models; the set of quasi-free boson states; the role of dissipative perturbations; and the surprising but general relation between general quantum fluctuations and ...
Bruning, W.; Feil, D.
1992-01-01
An algorithm for calculating the scattering factors of atomic fragments in molecules as defined by the Stockholder recipe is presented. This method allows the calculation, from ab initio molecular wave functions, of structure factors including individual anisotropic atomic temperature factors. These
2011-01-01
The geometric, electronic structure, effect of the substitution, and structure physical-chemistry relationship for oxazoles derivatives have been studied by ab initio and DFT theory. In the present work, the calculated values, namely, net charges, bond lengths, dipole moments, electron affinities, heats of formation, and QSAR properties are reported and discussed in terms of the reactivity of oxazole derivatives.
DEFF Research Database (Denmark)
Gorelik, Tatiana E; van de Streek, Jacco; Kilbinger, Andreas F M
2012-01-01
Ab-initio crystal structure analysis of organic materials from electron diffraction data is presented. The data were collected using the automated electron diffraction tomography (ADT) technique. The structure solution and refinement route is first validated on the basis of the known crystal stru...
Sumner, Isaiah; Iyengar, Srinivasan S
2007-10-18
We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.
Ab-initio study of magnetic properties and phase transitions in Ga (Mn) N with Monte Carlo approach
Energy Technology Data Exchange (ETDEWEB)
Sbai, Y.; Ait Raiss, A.; Salmani, E. [LMPHE (URAC 12), Faculty of Science, Mohammed V University, Av. Ibn Batouta, Rabat (Morocco); Bahmad, L., E-mail: Bahmad@fsr.ac.ma [LMPHE (URAC 12), Faculty of Science, Mohammed V University, Av. Ibn Batouta, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculty of Science, Mohammed V University, Av. Ibn Batouta, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco)
2015-12-15
On the basis of ab-initio calculations and Monte Carlo simulations the magnetic and electronic properties of Gallium nitride (GaN) doped with the transition metal Manganese (Mn) were studied. The ab initio calculations were done using the AKAI–KKR–CPA method within the Local Density Approximation (LDA) approximation. We doped our Diluted Magnetic Semiconductor (DMS), with different concentrations of magnetic impurities Mn and plotted the density of state (DOS) for each one. Showing a half-metallic behavior and ferromagnetic state especially for Ga{sub 0.95}Mn{sub 0.05}N making this DMS a strong candidate for spintronic applications. Moreover, the magnetization and susceptibility of our system as a function of the temperature has been calculated and give for various system size L to study the size effect. In addition, the transition temperature was deduced from the peak of the susceptibility. The Ab initio results are in good agreement with literature especially for (x=0.05) of Mn which gives the most interesting results. - Highlights: • The AKAI–KKR–CPA method has been applied to study the doped compound GaN:Mn. • The local density approximation (LDA) has been applied. • The ab-initio calculations have been performed. • The density of states (DOS) have been plotted for differents doping concentrations, using Monte Carlo simulations.
Fishchuk, A.V.; Groenenboom, G.C.; Avoird, A. van der
2006-01-01
Bound energy levels and properties of the Cl((2)p)-HF complex were obtained from full three-dimensional (3D) calculations, with the use of the ab initio computed diabatic potential surfaces from the preceding paper and the inclusion of spin-orbit coupling. For a better understanding of the dynamics
Zhang, Yang
2014-02-01
We develop and test a new pipeline in CASP10 to predict protein structures based on an interplay of I-TASSER and QUARK for both free-modeling (FM) and template-based modeling (TBM) targets. The most noteworthy observation is that sorting through the threading template pool using the QUARK-based ab initio models as probes allows the detection of distant-homology templates which might be ignored by the traditional sequence profile-based threading alignment algorithms. Further template assembly refinement by I-TASSER resulted in successful folding of two medium-sized FM targets with >150 residues. For TBM, the multiple threading alignments from LOMETS are, for the first time, incorporated into the ab initio QUARK simulations, which were further refined by I-TASSER assembly refinement. Compared with the traditional threading assembly refinement procedures, the inclusion of the threading-constrained ab initio folding models can consistently improve the quality of the full-length models as assessed by the GDT-HA and hydrogen-bonding scores. Despite the success, significant challenges still exist in domain boundary prediction and consistent folding of medium-size proteins (especially beta-proteins) for nonhomologous targets. Further developments of sensitive fold-recognition and ab initio folding methods are critical for solving these problems.
Giovannetti, Gianluca; Brocks, Geert; Brink, van den Jeroen
2008-01-01
We investigate the effect that potassium intercalation has on the electronic structure of copper phthalocyanine (CuPc) molecular crystals by means of ab initio density functional calculations. Pristine CuPc (in its alpha and beta structures) is found to be an insulator containing local magnetic mome
Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.
1997-01-01
The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to simulate laser heating of crystalline silicon. We found that a high concentration of excited electrons dramatically weakens the covalent bonding. As a result the system undergoes a melting t
Structural properties of iron nitride on Cu(100): An ab-initio molecular dynamics study
Heryadi, Dodi
2011-01-01
Due to their potential applications in magnetic storage devices, iron nitrides have been a subject of numerous experimental and theoretical investigations. Thin films of iron nitride have been successfully grown on different substrates. To study the structural properties of a single monolayer film of FeN we have performed an ab-initio molecular dynamics simulation of its formation on a Cu(100) substrate. The iron nitride layer formed in our simulation shows a p4gm(2x2) reconstructed surface, in agreement with experimental results. In addition to its structural properties, we are also able to determine the magnetization of this thin film. Our results show that one monolayer of iron nitride on Cu(100) is ferromagnetic with a magnetic moment of 1.67 μ B. © 2011 Materials Research Society.
Tunneling of electrons via rotor-stator molecular interfaces: combined ab initio and model study
Petreska, Irina; Pejov, Ljupco; Kocarev, Ljupco
2015-01-01
Tunneling of electrons through rotor-stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons' formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that confirmation dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previ...
Ab initio atomic recombination reaction energetics on model heat shield surfaces
Senese, Fredrick; Ake, Robert
1992-01-01
Ab initio quantum mechanical calculations on small hydration complexes involving the nitrate anion are reported. The self-consistent field method with accurate basis sets has been applied to compute completely optimized equilibrium geometries, vibrational frequencies, thermochemical parameters, and stable site labilities of complexes involving 1, 2, and 3 waters. The most stable geometries in the first hydration shell involve in-plane waters bridging pairs of nitrate oxygens with two equal and bent hydrogen bonds. A second extremely labile local minimum involves out-of-plane waters with a single hydrogen bond and lies about 2 kcal/mol higher. The potential in the region of the second minimum is extremely flat and qualitatively sensitive to changes in the basis set; it does not correspond to a true equilibrium structure.
Ab initio determination of effective electron-phonon coupling factor in copper
Ji, Pengfei; Zhang, Yuwen
2016-04-01
The electron temperature Te dependent electron density of states g (ε), Fermi-Dirac distribution f (ε), and electron-phonon spectral function α2 F (Ω) are computed as prerequisites before achieving effective electron-phonon coupling factor Ge-ph. The obtained Ge-ph is implemented into a molecular dynamics (MD) and two-temperature model (TTM) coupled simulation of femtosecond laser heating. By monitoring temperature evolutions of electron and lattice subsystems, the result utilizing Ge-ph from ab initio calculation shows a faster decrease of Te and increase of Tl than those using Ge-ph from phenomenological treatment. The approach of calculating Ge-ph and its implementation into MD-TTM simulation is applicable to other metals.
Ab initio determination of effective electron-phonon coupling factor in copper
Ji, Pengfei
2016-01-01
The electron temperature T_e dependent electron density of states g({\\epsilon}), Fermi-Dirac distribution f({\\epsilon}), and electron-phonon spectral function {\\alpha}^2 F({\\Omega}) are computed as prerequisites before achieving effective electron-phonon coupling factor. The obtained is implemented into a molecular dynamics (MD) and two-temperature model (TTM) coupled simulation of femtosecond laser heating. By monitoring temperature evolutions of electron and lattice subsystems, the result utilizing G_(e-ph) from ab initio calculation, shows a faster decrease of T_e and increase of T_l than those using G_(e-ph) from phenomenological treatment. The approach of calculating G_(e-ph) and its implementation into MD-TTM simulation is applicable to other metals.
Femtosecond Laser Processing of Germanium: An Ab Initio Molecular Dynamics Study
Ji, Pengfei
2016-01-01
An ab initio molecular dynamics study of femtosecond laser processing of germanium is presented in this paper. The method based on the finite temperature density functional theory is adopted to probe the structural change, thermal motion of the atoms, dynamic property of the velocity autocorrelation, and the vibrational density of states. Starting from a cubic system at room temperature (300 K) containing 64 germanium atoms with an ordered arrangement of 1.132 nm in each dimension, the femtosecond laser processing is simulated by imposing the Nose Hoover thermostat to the electronic subsystem lasting for ~100 fs and continuing with microcanonical ensemble simulation of ~200 fs. The simulation results show solid, liquid and gas phases of germanium under adjusted intensities of the femtosecond laser irradiation. We find the irradiated germanium distinguishes from the usual germanium crystal by analyzing their melting and dynamic properties.
Relaxation of the excited -(2-hydroxy benzylidene) aniline molecule: An ab initio and TD DFT study
Indian Academy of Sciences (India)
Biswajit Chowdhury; Rina De; Pinaky Sett; Joydeep Chowdhury
2010-11-01
The photophysical behaviour of N-(2-hydroxy benzylidene) aniline or most commonly known as salicylideneaniline (SA) has been investigated using the ab initio and DFT levels of theory. The quantum chemical calculations show that the optimized non planar enol (1) form of the SA molecule is the most stable conformer in the ground state and is marked by the twisting of the phenolic and anilino rings of the molecule. The geometry optimizations and the subsequent frequency calculations of the excited singlet electronic states of the various tautomeric forms of SA molecule were performed with the CIS level of theory. A detail theoretical investigation on the relaxation dynamics of the SA molecule has been presented. Possible explanation on the excitation wavelength dependence of the photochromic yield of the molecule is also reported.
Probing defects and correlations in the hydrogen-bond network of ab initio water
Gasparotto, Piero; Ceriotti, Michele
2016-01-01
The hydrogen-bond network of water is characterized by the presence of coordination defects relative to the ideal tetrahedral network of ice, whose fluctuations determine the static and time-dependent properties of the liquid. Because of topological constraints, such defects do not come alone, but are highly correlated coming in a plethora of different pairs. Here we discuss in detail such correlations in the case of ab initio water models and show that they have interesting similarities to regular and defective solid phases of water. Although defect correlations involve deviations from idealized tetrahedrality, they can still be regarded as weaker hydrogen bonds that retain a high degree of directionality. We also investigate how the structure and population of coordination defects is affected by approximations to the inter-atomic potential, finding that in most cases, the qualitative features of the hydrogen bond network are remarkably robust.
Ab initio and DFT studies on vibrational spectra of some halides of group IIIB elements
Zhang, Yu; Zhao, Jianying; Tang, Guodong; Zhu, Longgen
2005-11-01
The vibrational spectra of some group IIIB elements halides MX 3 and their dimmers, M 2X 6 (M = Sc(III), Y(III), La(III); X = F, Cl, Br, I), have been systematically investigated by ab initio restricted Hartree-Fock (RHF) and density functional B3LYP methods with LanL2DZ and SDD basis sets. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational frequencies, calculated by two methods with different basis sets, are compared to each other. The effect of the methods and the basis sets used on the calculated vibrational frequencies are discussed. Some vibrational frequencies of these complexes are also predicted.
Design of two-photon molecular tandem architectures for solar cells by ab initio theory
DEFF Research Database (Denmark)
Ørnsø, Kristian Baruël; García Lastra, Juan Maria; De La Torre, Gema
2015-01-01
An extensive database of spectroscopic properties of molecules from ab initio calculations is used to design molecular complexes for use in tandem solar cells that convert two photons into a single electron–hole pair, thereby increasing the output voltage while covering a wider spectral range...... of the structural and energetic properties of several thousand porphyrin dyes. The third design is a molecular analogy of the intermediate band solar cell, and involves a single dye molecule with strong intersystem crossing to ensure a long lifetime of the intermediate state. Based on the calculated energy levels...... and molecular orbitals, energy diagrams are presented for the individual steps in the operation of such tandem solar cells. We find that theoretical open circuit voltages of up to 1.8 V can be achieved using these tandem designs. Questions about the practical implementation of prototypical devices...
Michel, K. H.; ćakır, D.; Sevik, C.; Peeters, F. M.
2017-03-01
The elastic constant C11 and piezoelectric stress constant e1 ,11 of two-dimensional (2D) dielectric materials comprising h-BN, 2 H -MoS2 , and other transition-metal dichalcogenides and dioxides are calculated using lattice dynamical theory. The results are compared with corresponding quantities obtained with ab initio calculations. We identify the difference between clamped-ion and relaxed-ion contributions with the dependence on inner strains which are due to the relative displacements of the ions in the unit cell. Lattice dynamics allows us to express the inner-strain contributions in terms of microscopic quantities such as effective ionic charges and optoacoustical couplings, which allows us to clarify differences in the piezoelectric behavior between h-BN and MoS2. Trends in the different microscopic quantities as functions of atomic composition are discussed.
Stress reduction of Cu-doped diamond-like carbon films from ab initio calculations
Directory of Open Access Journals (Sweden)
Xiaowei Li
2015-01-01
Full Text Available Structure and properties of Cu-doped diamond-like carbon films (DLC were investigated using ab initio calculations. The effect of Cu concentrations (1.56∼7.81 at.% on atomic bond structure was mainly analyzed to clarify the residual stress reduction mechanism. Results showed that with introducing Cu into DLC films, the residual compressive stress decreased firstly and then increased for each case with the obvious deterioration of mechanical properties, which was in agreement with the experimental results. Structural analysis revealed that the weak Cu-C bond and the relaxation of both the distorted bond angles and bond lengths accounted for the significant reduction of residual compressive stress, while at the higher Cu concentration the increase of residual stress attributed to the existence of distorted Cu-C structures and the increased fraction of distorted C-C bond lengths.
Stress reduction of Cu-doped diamond-like carbon films from ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Li, Xiaowei; Ke, Peiling; Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)
2015-01-15
Structure and properties of Cu-doped diamond-like carbon films (DLC) were investigated using ab initio calculations. The effect of Cu concentrations (1.56∼7.81 at.%) on atomic bond structure was mainly analyzed to clarify the residual stress reduction mechanism. Results showed that with introducing Cu into DLC films, the residual compressive stress decreased firstly and then increased for each case with the obvious deterioration of mechanical properties, which was in agreement with the experimental results. Structural analysis revealed that the weak Cu-C bond and the relaxation of both the distorted bond angles and bond lengths accounted for the significant reduction of residual compressive stress, while at the higher Cu concentration the increase of residual stress attributed to the existence of distorted Cu-C structures and the increased fraction of distorted C-C bond lengths.
A room temperature CO$_2$ line list with ab initio computed intensities
Zak, Emil; Polyansky, Oleg L; Lodi, Lorenzo; Zobov, Nikolay F; Tashkun, Sergey A; Perevalov, Valery I
2016-01-01
Atmospheric carbon dioxide concentrations are being closely monitored by remote sensing experiments which rely on knowing line intensities with an uncertainty of 0.5% or better. We report a theoretical study providing rotation-vibration line intensities substantially within the required accuracy based on the use of a highly accurate {\\it ab initio} dipole moment surface (DMS). The theoretical model developed is used to compute CO$_2$ intensities with uncertainty estimates informed by cross comparing line lists calculated using pairs of potential energy surfaces (PES) and DMS's of similar high quality. This yields lines sensitivities which are utilized in reliability analysis of our results. The final outcome is compared to recent accurate measurements as well as the HITRAN2012 database. Transition frequencies are obtained from effective Hamiltonian calculations to produce a comprehensive line list covering all $^{12}$C$^{16}$O$_2$ transitions below 8000 cm$^{-1}$ and stronger than 10$^{-30}$ cm / molecule at ...
An ab initio approach to free-energy reconstruction using logarithmic mean force dynamics.
Nakamura, Makoto; Obata, Masao; Morishita, Tetsuya; Oda, Tatsuki
2014-05-14
We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields.
Impact of oxygen on the 300-K isotherm of Laser Megajoule ablator using ab initio simulation
Colin-Lalu, P.; Recoules, V.; Salin, G.; Huser, G.
2015-11-01
The ablator material for inertial confinement fusion (ICF) capsules on the Laser Mégajoule is a glow-discharge polymer (GDP) plastic. Its equation of state (EOS) is of primary importance for the design of such capsules, since it has direct consequences on shock timing and is essential to mitigate hydrodynamic instabilities. Using ab initio molecular dynamics (AIMD), we have investigated the 300-K isotherm of amorphous CH1.37O0.08 plastic, whose structure is close to GDP plastic. The 300-K isotherm, which is often used as a cold curve within tabular EOS, is an important contribution of the EOS in the multimegabar pressure range. AIMD results are compared to analytic models within tabular EOS, pointing out large discrepancies. In addition, we show that the effect of oxygen decreases 300-K isotherm pressure by 10%-15%. The implication of these observations is the ability to improve ICF target performance, which is essential to achieve fusion ignition.
The ideal strength of gold under uniaxial stress: an ab initio study.
Wang, Hao; Li, Mo
2010-07-28
We employ an ab initio calculation based on density functional theory to investigate the ideal strength of face-centered cubic crystal Au under uniaxial stress along the [100] direction. We show that the stability of the perfect Au crystal under tensile stress is determined by the tetragonal shear stiffness modulus, with an ideal tensile strength of 4.2 GPa and the corresponding Lagrangian tensile strain of ∼ 0.07. The potential bifurcation from the primary uniaxial loading path is along the tetragonal shear. Under compressive stress, there is a stress-free body-centered cubic phase, which is unstable and ready to transform to a stress-free body-centered tetragonal phase with lower internal energy. The stable region is from - 1.6 to 4.2 GPa in the ideal strength, or from - 0.07 to 0.07 in the Lagrangian strain.
Ab-initio molecular dynamics study of lanthanides in liquid sodium
Li, Xiang; Samin, Adib; Zhang, Jinsuo; Unal, C.; Mariani, R. D.
2017-02-01
To mitigate the fuel cladding chemical interaction (FCCI) phenomena in liquid sodium cooled fast reactors, a fundamental understanding of the lanthanide (Ln) transport through liquid Nasbnd Cs filled pores in Usbnd Zr fuel is necessary. In this study, we investigate three abundant Ln fission products diffusion coefficients in liquid Na at multiple temperatures. By utilization of Ab-initio Molecular Dynamics, the Ln diffusivities are found to be in the magnitude order of liquid diffusion (10-5cm2 /s) and the temperature dependence of the diffusivity for different lanthanides in liquid sodium was explored. It is also observed that dilute concentration of Pr and Nd led to a significant change in Na diffusivity. The structural and electronic properties of Nasbnd Ln metallic systems have been investigated. The total coordination number shows dependence on both the temperature and the composition.
AB INITIO Modeling of Thermomechanical Properties of Mo-Based Alloys for Fossil Energy Conversion
Energy Technology Data Exchange (ETDEWEB)
Ching, Wai-Yim
2013-12-31
In this final scientific/technical report covering the period of 3.5 years started on July 1, 2011, we report the accomplishments on the study of thermo-mechanical properties of Mo-based intermetallic compounds under NETL support. These include computational method development, physical properties investigation of Mo-based compounds and alloys. The main focus is on the mechanical and thermo mechanical properties at high temperature since these are the most crucial properties for their potential applications. In particular, recent development of applying ab initio molecular dynamic (AIMD) simulations to the T1 (Mo{sub 5}Si{sub 3}) and T2 (Mo{sub 5}SiB{sub 2}) phases are highlighted for alloy design in further improving their properties.
Thermal Conductivity of Pure Noble Gases at Low Density from Ab Initio Prandtl Number
Song, Bo; Wang, Xiaopo; Liu, Zhigang
2013-03-01
The experimental data reported in the literature after 2000 have been investigated for the viscosity and thermal conductivity of helium-4, neon, and argon at low density. The well-established values of thermal conductivity by transient hot-wire measurements are not reliable enough for noble gases in the low-pressure gas region. These facts motivate us to determine the thermal conductivity from accurate viscosity data and the ab initio Prandtl number, with an uncertainty of 0.25 % for temperatures ranging between 200 K and 700 K. The theoretical accuracy is superior to the accuracy of the best measurements. The calculated results are accurate enough to be applied as standard values for the thermal conductivity of helium-4, neon, and argon over the considered temperature range.
Ab-initio Study of the Diffusion Mechanisms of Gallium in a Silicon Matrix
Levasseur-Smith, Kevin; Mousseau, Normand
2007-03-01
We present the results of a study into the diffusion mechanisms of Ga defects in crystalline Si. The dominant neutral configurations for single and multi-atom defects are established by ab-initio calculations using the density functional theory in the LDA approximation, with a LCAO basis as implemented in the SIESTA package. We find formation energies of 0.7 eV and 2.9 eV, respectively, for the substitutional and tetrahedral interstitial defects, while the diatomic substitutional-tetrahedral complex has a formation energy of 2.2 eV. Subsequent calculations using this same DFT package in conjunction with the activation relaxation technique (ART nouveau) allow us to determine possible diffusion pathways as well as their corresponding saddle points and energy barriers.
Ab-initio simulations of self-diffusion mechanisms in semiconductors
Energy Technology Data Exchange (ETDEWEB)
El-Mellouhi, Fedwa [Departement de physique and Regroupement quebecois sur les materiaux de pointe, Universite de Montreal, C.P. 6128, succ. Centre-ville, Montreal, Que., H3C 3J7 (Canada)], E-mail: f.el.mellouhi@umontreal.ca; Mousseau, Normand [Departement de physique and Regroupement quebecois sur les materiaux de pointe, Universite de Montreal, C.P. 6128, succ. Centre-ville, Montreal, Que., H3C 3J7 (Canada)], E-mail: normand.mousseau@umontreal.ca
2007-12-15
We present an application of SIEST-A-RT that combines the activation relaxation technique, ART nouveau, and the local-basis ab-initio code SIESTA, to study self-defect migration pathways in semiconductors. SIESTA provides reliable descriptions of defect properties in semiconductors directly comparable to experiment as well as, once combined with ART nouveau, a detailed description of their possible migration mechanisms. We use this package to characterize the properties of vacancies in silicon and GaAs, such as relaxation geometries, formation energies at low and high temperature, diffusion mechanisms and migration barriers. We show here that diffusion in bulk semiconductors is a rich and complex phenomenon that depends not only on the geometry of the defect and the surrounding lattice but also on its charge.
Ab-initio simulations of self-diffusion mechanisms in semiconductors
El-Mellouhi, Fedwa; Mousseau, Normand
2007-12-01
We present an application of SIEST-A-RT that combines the activation relaxation technique, ART nouveau, and the local-basis ab-initio code SIESTA, to study self-defect migration pathways in semiconductors. SIESTA provides reliable descriptions of defect properties in semiconductors directly comparable to experiment as well as, once combined with ART nouveau, a detailed description of their possible migration mechanisms. We use this package to characterize the properties of vacancies in silicon and GaAs, such as relaxation geometries, formation energies at low and high temperature, diffusion mechanisms and migration barriers. We show here that diffusion in bulk semiconductors is a rich and complex phenomenon that depends not only on the geometry of the defect and the surrounding lattice but also on its charge.
Estudo ab-initio da a-alanina em meio aquoso
Directory of Open Access Journals (Sweden)
Sambrano Júlio Ricardo
1999-01-01
Full Text Available Ab initio Hartree-Fock (HF, Density Functional (B3LYP and electron correlation (MP2 methods have been used to caracterize the aqueous medium intramolecular hydrogen bond in a-alanine. The 6-31G* and 6-31++G** were taken from Gaussian94 library. We were concerned on the structure of three conformers of a-alanine, in their neutral form plus on the structure of the zwitterionic form (Z. The Z structure is a stationary point at the HF/6-31G* level but it is not when diffuse functions and electron correlation are included. This results shows that the Z form does not exist in the gas phase. The inclusion of solvent effects changed significantly the results obtained in gas phase, therefore this inclusion make the Z form a stationary point within all level of theory, and the relative energy depends dramatically on the level of calculation.
Institute of Scientific and Technical Information of China (English)
ZHANG Zhi-jie; LIU Yu-hua; L(U) Zhong-yuan; LI Ze-sheng
2009-01-01
The rotational isomeric state(RIS) model was constructed for poly(vinylidene chloride)(PVDC) based on quantum chemistry calculations. The statistical weighted parameters were obtained from RIS representations and ab initio energies of conformers for model molecules 2,2,4,4-tetrachloropentane(TCP) and 2,2,4,4,6, 6-hexachlorohep-tane(HCH). By employing the RIS method, the characteristic ratio C∞ was calculated for PVDC. The calculated cha-racteristic ratio for PVDC is in good agreement with experiment result. Additionally, we studied the influence of the statistical weighted parameters on C∞ by calculating δC∞/δlnw. According to the values of δC∞/δlnw, the effects of second-order Cl-CH2 pentane type interaction and Cl-Cl long range interaction on C∞ were found to be important. In contrast, first-order interaction is unimportant.
reaxFF Reactive Force Field for Disulfide Mechanochemistry, Fitted to Multireference ab Initio Data.
Müller, Julian; Hartke, Bernd
2016-08-09
Mechanochemistry, in particular in the form of single-molecule atomic force microscopy experiments, is difficult to model theoretically, for two reasons: Covalent bond breaking is not captured accurately by single-determinant, single-reference quantum chemistry methods, and experimental times of milliseconds or longer are hard to simulate with any approach. Reactive force fields have the potential to alleviate both problems, as demonstrated in this work: Using nondeterministic global parameter optimization by evolutionary algorithms, we have fitted a reaxFF force field to high-level multireference ab initio data for disulfides. The resulting force field can be used to reliably model large, multifunctional mechanochemistry units with disulfide bonds as designed breaking points. Explorative calculations show that a significant part of the time scale gap between AFM experiments and dynamical simulations can be bridged with this approach.
Ab initio approach to the ion stopping power at the plasma-solid interface
Bonitz, Michael; Schlünzen, Niclas; Wulff, Lasse; Joost, Jan-Philip; Balzer, Karsten
2016-10-01
The energy loss of ions in solids is of key relevance for many applications of plasmas, ranging from plasma technology to fusion. Standard approaches are based on density functional theory or SRIM simulations, however, the applicability range and accuracy of these results are difficult to assess, in particular, for low energies. Here we present an independent approach that is based on ab initio nonequilibrium Green functions theory, e.g. that allows to incorporate electronic correlations effects of the solid. We present the first application of this method to low-temperature plasmas, concentrating on proton and alpha-particle stopping in a graphene layer. In addition to the stopping power we present time-dependent results for the local electron density, the spectral function and the photoemission spectrum that is directly accessible in optical, UV or x-ray diagnostics. http://www.itap.uni-kiel.de/theo-physik/bonitz/.
Ab initio electron scattering cross-sections and transport in liquid xenon
Boyle, G. J.; McEachran, R. P.; Cocks, D. G.; Brunger, M. J.; Buckman, S. J.; Dujko, S.; White, R. D.
2016-09-01
Ab initio fully differential cross-sections for electron scattering in liquid xenon are developed from a solution of the Dirac-Fock scattering equations, using a recently developed framework (Boyle et al 2015 J. Chem. Phys. 142 154507) which considers multipole polarizabilities, a non-local treatment of exchange, and screening and coherent scattering effects. A multi-term solution of Boltzmann’s equation accounting for the full anisotropic nature of the differential cross-section is used to calculate transport properties of excess electrons in liquid xenon. The results were found to agree to within 25% of the measured mobilities and characteristic energies over the reduced field range of 10-4-1 Td. The accuracies are comparable to those achieved in the gas phase. A simple model, informed by highly accurate gas-phase cross-sections, is presented to improve the liquid cross-sections, which was found to enhance the accuracy of the transport coefficient calculations.
Caillabet, L.; Canaud, B.; Salin, G.; Mazevet, S.; Loubeyre, P.
2011-09-01
Improving the description of the equation of state (EOS) of deuterium-tritium (DT) has recently been shown to change significantly the gain of an inertial confinement fusion target [S. X. Hu , Phys. Rev. Lett. 104, 235003 (2010)PRLTAO0031-900710.1103/PhysRevLett.104.235003]. Here we use an advanced multiphase EOS, based on ab initio calculations, to perform a full optimization of the laser pulse shape with hydrodynamic simulations starting from 19 K in DT ice. The thermonuclear gain is shown to be a robust estimate over possible uncertainties of the EOS. Two different target designs are discussed, for shock ignition and self-ignition. In the first case, the areal density and thermonuclear energy can be recovered by slightly increasing the laser energy. In the second case, a lower in-flight adiabat is needed, leading to a significant delay (3 ns) in the shock timing of the implosion.
Ab initio structure determination of new compound Ba 3(BO 3)(PO 4)
Ma, H. W.; Liang, J. K.; Wu, L.; Liu, G. Y.; Rao, G. H.; Chen, X. L.
2004-10-01
The crystal structure of new compound Ba3BPO7 was determined by ab initio method from high-resolution conventional X-ray powder diffraction data. The Rietveld refinement converged to Rp=5.92%, Rwp=8.87%, Rexp=5.00% with the following details: Hexagonal, space group P63mc, a=5.4898 (1) Å, c=14.7551(1) Å, Z=2. The basic unit of the structure is the [BaO10]-[BO3]-[PO4] polar polyhedra-chain composed of Ba1-B-P-O cluster. These chains, running along c-axis, stack in a HCP mode to build the whole structure with triangular prism channels. The channels are parallel to c-axis too, in which Ba2 and Ba3 are located.
Ab initio study of the electronic structure andelastic properties of Al5C3N
Institute of Scientific and Technical Information of China (English)
Xu Xue-Wen; Hu Long; Yu Xiao; Lu Zun-Ming; Fan Ying; Li Yang-xian; Tang Cheng-Chun
2011-01-01
We investigate the electronic structure,chemical bonding and elastic properties of the hexagonal aluminum carbonitride,Al5C3N,by ab initio calculations.Al5C3N is a semiconductor with a narrow indirect gap of 0.81 eV.The valence bands below the Fermi level (EF) originate from the hybridized Al p-C p and Al p-N p states.The calculated bulk and Young's moduli are 201 GPa and 292 GPa,which are slightly lower than those of Ti3SiC2.The values of the bulk-to-shear-modulus and bulk-modulus-to-c44 are 1.73 and 1.97,respectively,which axe higher than those of Ti2AlCand Ti2AlN,indicating that Al5C3N is a ductile ceramic.
Olsson, P. A. T.; Kese, K.; Kroon, M.; Alvarez Holston, A.-M.
2015-06-01
In this work we report the results of an ab initio study of the transgranular fracture toughness and cleavage of brittle zirconium hydrides. We use the Griffith-Irwin relation to assess the fracture toughness using calculated surface energy and estimated isotropic Voigt-Reuss-Hill averages of the elastic constants. The calculated fracture toughness values are found to concur well with experimental data, which implies that fracture is dominated by cleavage failure. To investigate the cleavage energetics, we model the decohesion process. To describe the interplanar interaction we adopt Rose’s universal binding energy relation, which is found to reproduce the behaviour accurately. The modelling shows that the work of fracture and ductility decreases with increasing hydrogen content.
Rafiee, Marjan A; Hadipour, Nasser L; Naderi-manesh, Hossein
2004-03-01
In this paper, ab initio calculated NQR parameters for some quinoline-containing derivatives are presented. The calculations are carried out in a search for the relationships between the charge distribution of these compounds and their ability to interact with haematin. On the basis of NQR parameters, pi-electron density on the nitrogen atom of the quinoline ring plays a dominant role in determining the ability of quinolines to interact with haematin. This point was confirmed with investigation of Fe+3 cation-pi quinoline ring interactions in 2- and 4-aminoquinoline. However, our results do not show any preference for those carbon atoms of the quinoline ring which previous reports have noted. In order to calculate the NQR parameters, the electric field gradient (EFG) should be evaluated at the site of a quadrupolar nucleus in each compound. EFGs are calculated by the Gaussian 98 program using the B3LYP/6-31 G* level of theory.
Ab initio modeling of radiation damage in MgF{sub 2} crystals
Energy Technology Data Exchange (ETDEWEB)
Abuova, F.U. [L. N. Gumilyov Eurasian National University, 3 Munaitpasova Str., Astana (Kazakhstan); Kotomin, E.A., E-mail: kotomin@latnet.lv [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063, Riga (Latvia); Lisitsyn, V.M. [Tomsk Polytechnical University, Tomsk 634003 (Russian Federation); Akilbekov, A.T. [L. N. Gumilyov Eurasian National University, 3 Munaitpasova Str., Astana (Kazakhstan); Piskunov, S. [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063, Riga (Latvia)
2014-05-01
MgF{sub 2} with a rutile structure is important radiation-resistant material with numerous applications due to its transparency from vacuum ultraviolet to infrared range of photon energies. We present and discuss the results of calculations for basic radiation defects in this crystal. The study is based on the large scale ab initio DFT calculations using hybrid B3PW exchange–correlation functional and atomic basis set. We analyzed the electronic structure, atomic displacements, charge density distribution as well as defect formation energies using large supercells. We compared properties of close and well separated F−H (Frenkel) defect pairs as well as individual defects. We simulated also formation and energetic preference of inert F{sub 2} interstitial molecules as sinks of mobile interstitial fluorine atoms which is relevant for material radiation stability. We discussed also diffusion of the primary electronic defects—F centers.
Minimal parameter implicit solvent model for ab initio electronic structure calculations
Dziedzic, Jacek; Skylaris, Chris-Kriton; Mostofi, Arash A; Payne, Mike C
2011-01-01
We present an implicit solvent model for ab initio electronic structure calculations which is fully self-consistent and is based on direct solution of the nonhomogeneous Poisson equation. The solute cavity is naturally defined in terms of an isosurface of the electronic density according to the formula of Fattebert and Gygi (J. Comp. Chem. 23, 6 (2002)). While this model depends on only two parameters, we demonstrate that by using appropriate boundary conditions and dispersion-repulsion contributions, solvation energies obtained for an extensive test set including neutral and charged molecules show dramatic improvement compared to existing models. Our approach is implemented in, but not restricted to, a linear-scaling density functional theory (DFT) framework, opening the path for self-consistent implicit solvent DFT calculations on systems of unprecedented size, which we demonstrate with calculations on a 2615-atom protein-ligand complex.
Ab-initio study of magnetism behavior in TiO2 semiconductor with structural defects
Zarhri, Z.; Houmad, M.; Ziat, Y.; El Rhazouani, O.; Slassi, A.; Benyoussef, A.; El Kenz, A.
2016-05-01
Magnetic, electronic and structural properties of titanium dioxide material with different structural defects are studied using the first-principles ab-initio calculations and the Korringa-Kohn-Rostoker method (KKR) combined with the coherent potential approximation (CPA) method in connection with the local density approximation (LDA). We investigated all structural defects in rutile TiO2 such as Titanium interstitial (Tii), Titanium anti-sites (Tio), Titanium vacancies (VTi), Oxygen interstitial (Oi), Oxygen anti-sites (OTi) and oxygen vacancies (Vo). Mechanisms of hybridization and interaction between magnetic atoms are investigated. The transition temperature is computed using the Mean Field Approximation (MFA).Magnetic stability energy of ferromagnetic and disordered local moment states is calculated to determine the most stable state. Titanium anti-sites have a half-metallic aspect. We also studied the change type caused by structural defects in this material.
Surface Tension of Ab Initio Liquid Water at the Water-Air Interface
Nagata, Yuki; Bonn, Mischa; Kühne, Thomas D
2016-01-01
We report calculations of the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the simulation cell size dependence of the surface tension of water from force field molecular dynamics (MD) simulations, which show that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is required for the small system used in the AIMD simulation. The AIMD simulations reveal that the double-{\\xi} basis set overestimates the experimentally measured surface tension due to the Pulay stress, while the triple and quadruple-{\\xi} basis sets give similar results. We further demonstrate that the van der Waals corrections critically affect the surface tension. AIMD simulations without the van der Waals correction substantially underestimate the surface tension, while van der Waals correction with the Grimme's D2 technique results in the value for the surface tension that is too high. T...
Effect of composition on antiphase boundary energy in Ni3Al based alloys: Ab initio calculations
Gorbatov, O. I.; Lomaev, I. L.; Gornostyrev, Yu. N.; Ruban, A. V.; Furrer, D.; Venkatesh, V.; Novikov, D. L.; Burlatsky, S. F.
2016-06-01
The effect of composition on the antiphase boundary (APB) energy of Ni-based L 12-ordered alloys is investigated by ab initio calculations employing the coherent potential approximation. The calculated APB energies for the {111} and {001} planes reproduce experimental values of the APB energy. The APB energies for the nonstoichiometric γ' phase increase with Al concentration and are in line with the experiment. The magnitude of the alloying effect on the APB energy correlates with the variation of the ordering energy of the alloy according to the alloying element's position in the 3 d row. The elements from the left side of the 3 d row increase the APB energy of the Ni-based L 12-ordered alloys, while the elements from the right side slightly affect it except Ni. The way to predict the effect of an addition on the {111} APB energy in a multicomponent alloy is discussed.
Ab-initio calculations on two-electron ions in strongly coupled plasma environment
Bhattacharyya, S; Mukherjee, T K
2015-01-01
In this work, the controversy between the interpretations of recent measurements on dense aluminum plasma created with Linac coherent light sources (LCLS) X-ray free electron laser (FEL) and Orion laser has been addressed. In both kind of experiments, helium-like and hydrogen-like spectral lines are used for plasma diagnostics . However, there exist no precise theoretical calculations for He-like ions within dense plasma environment. The strong need for an accurate theoretical estimates for spectral properties of He-like ions in strongly coupled plasma environment leads us to perform ab initio calculations in the framework of Rayleigh-Ritz variation principle in Hylleraas coordinates where ion-sphere potential is used. An approach to resolve the long-drawn problem of numerical instability for evaluating two-electron integrals with extended basis inside a finite domain is presented here. The present values of electron densities corresponding to disappearance of different spectral lines obtained within the fram...
Structure and lattice dynamics of rare-earth ferroborate crystals: Ab initio calculation
Chernyshev, V. A.; Nikiforov, A. E.; Petrov, V. P.; Serdtsev, A. V.; Kashchenko, M. A.; Klimin, S. A.
2016-08-01
The ab initio calculation of the crystal structure and the phonon spectrum of crystals RFe3(BO3)4 ( R = Pr, Nd, Sm) has been performed in the framework of the density functional theory. The ion coordinates in the unit cell, the lattice parameters, the frequencies and the types of fundamental vibrations, and also the intensities of lines in the Raman spectrum and infrared reflection spectra have been found. The elastic constants of the crystals have been calculated. For low-frequency A 2 mode in PrFe3(BO3)4, a "seed" vibration frequency that strongly interacts with the electronic excitation on a praseodymium ion was found. The calculation results satisfactory agree with the experimental data.
Dadsetani, Mehrdad; Nejatipour, Hajar; Ebrahimian, Ali
2015-05-01
Using the ab initio methods for solving the Bethe-Salpeter equation on the basis of the FPLAPW method, optical properties of crystalline phenanthrene were calculated, in a comparison to its isomer, anthracene. It was found that despite the similarity of the structural, electronic, and the overall optical properties in a 40 eV energy range, phenanthrene and anthracene show significant differences in their optical spectra in the energy range below band gaps. Phenanthrene has two spin singlet excitonic features whereas anthracene shows one. The singlet and the lowest triplet binding energies of phenanthrene were found to be larger than anthracene. In this study, in addition, a comparison has been made between the optical spectra in RPA and the existing experimental data.
Wachter, Georg; Lemell, Christoph; Burgdörfer, Joachim; Sato, Shunsuke A.; Tong, Xiao-Min; Yabana, Kazuhiro
2014-08-01
We theoretically investigate the generation of ultrafast currents in insulators induced by strong few-cycle laser pulses. Ab initio simulations based on time-dependent density functional theory give insight into the atomic-scale properties of the induced current signifying a femtosecond-scale insulator-metal transition. We observe the transition from nonlinear polarization currents during the laser pulse at low intensities to tunnelinglike excitation into the conduction band at higher laser intensities. At high intensities, the current persists after the conclusion of the laser pulse considered to be the precursor of the dielectric breakdown on the femtosecond scale. We show that the transferred charge sensitively depends on the orientation of the polarization axis relative to the crystal axis, suggesting that the induced charge separation reflects the anisotropic electronic structure. We find good agreement with very recent experimental data on the intensity and carrier-envelope phase dependence [A. Schiffrin et al., Nature (London) 493, 70 (2013)].
A unified scheme for ab initio molecular orbital theory and path integral molecular dynamics
Shiga, Motoyuki; Tachikawa, Masanori; Miura, Shinichi
2001-11-01
We present a general approach for accurate calculation of chemical substances which treats both nuclei and electrons quantum mechanically, adopting ab initio molecular orbital theory for the electronic structure and path integral molecular dynamics for the nuclei. The present approach enables the evaluation of physical quantities dependent on the nuclear configuration as well as the electronic structure, within the framework of Born-Oppenheimer adiabatic approximation. As an application, we give the path integral formulation of electric response properties—dipole moment and polarizability, which characterize the changes both in electronic structure and nuclear configuration at a given temperature when uniform electrostatic field is present. We also demonstrate the calculation of a water molecule using the present approach and the result of temperature and isotope effects is discussed.
Trends in magnetism of free Rh clusters via relativistic ab-initio calculations.
Šipr, O; Ebert, H; Minár, J
2015-02-11
A fully relativistic ab-initio study on free Rh clusters of 13-135 atoms is performed to identify general trends concerning their magnetism and to check whether concepts which proved to be useful in interpreting magnetism of 3d metals are applicable to magnetism of 4d systems. We found that there is no systematic relation between local magnetic moments and coordination numbers. On the other hand, the Stoner model appears well-suited both as a criterion for the onset of magnetism and as a guide for the dependence of local magnetic moments on the site-resolved density of states at the Fermi level. Large orbital magnetic moments antiparallel to spin magnetic moments were found for some sites. The intra-atomic magnetic dipole Tz term can be quite large at certain sites but as a whole it is unlikely to affect the interpretation of x-ray magnetic circular dichroism experiments based on the sum rules.
High-pressure elastic properties of cubic Ir2P from ab initio calculations
Sun, Xiao-Wei; Bioud, Nadhira; Fu, Zhi-Jian; Wei, Xiao-Ping; Song, Ting; Li, Zheng-Wei
2016-10-01
A study of the high-pressure elastic properties of new synthetic Ir2P in the anti-fluorite structure is conducted using ab initio calculations based on density functional theory. The elastic constants C11, C12 and C44 for the cubic Ir2P are obtained by the stress-strain method and the elastic stability calculations under pressure indicate that it is stable at least 100 GPa. Additionally, the electronic density of states, the aggregate elastic moduli, that is bulk modulus, shear modulus, and Young's modulus along with the Debye temperature, Poisson's ratio, and elastic anisotropy factor are all successfully obtained. Moreover, the pressure dependence of the longitudinal and shear wave velocities in three different directions [100], [110], and [111] for Ir2P are also predicted for the first time.
Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide
Energy Technology Data Exchange (ETDEWEB)
Crusius, Johann-Philipp, E-mail: johann-philipp.crusius@uni-rostock.de; Hassel, Egon [Lehrstuhl für Technische Thermodynamik, Universität Rostock, 18059 Rostock (Germany); Hellmann, Robert, E-mail: robert.hellmann@uni-rostock.de; Bich, Eckard [Institut für Chemie, Universität Rostock, 18059 Rostock (Germany)
2015-06-28
We present an analytical intermolecular potential energy surface (PES) for two rigid nitrous oxide (N{sub 2}O) molecules derived from high-level quantum-chemical ab initio calculations. Interaction energies for 2018 N{sub 2}O–N{sub 2}O configurations were computed utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. A site-site potential function with seven sites per N{sub 2}O molecule was fitted to the pair interaction energies. We validated our PES by computing the second virial coefficient as well as shear viscosity and thermal conductivity in the dilute-gas limit. The values of these properties are substantiated by the best experimental data.
Ab initio calculations in the symplectic no-core configuration interaction framework
McCoy, Anna; Caprio, Mark; Dytrych, Tomas
2016-09-01
A major challenge in quantitatively predicting nuclear structure directly from realistic nucleon-nucleon interactions, i.e., ab initio, arises due to an explosion in the dimension of the traditional Slater determinant basis as the number of nucleons and included shells increases. The need for including highly excited configurations arises, in large part, because the kinetic energy induces strong coupling across shells. However, the kinetic energy conserves symplectic symmetry. By combining this symplectic symmetry with the no-core configuration interaction (NCCI) framework, we reduce the size of basis necessary to obtain accurate results for p-shell nuclei. Supported by the US DOE under Grants DE-AC05-06OR23100 and DE-FG02-95ER-40934, and the Czech Science Foundation under Grant No. 16-16772S.
Ab initio study of heterojunction discontinuities in the ZnO/Cu2O system
Zemzemi, M.; Alaya, S.; Ben Ayadi, Z.
2014-06-01
Solar cells based on transparent conductive oxides such as ZnO/Cu2O constitute a very advanced way to build high-performance cells. In this work, we are interested in the characterization of the interface through nanoscale modeling based on ab initio approaches (density functional theory, local density approximation, and pseudopotential). This work aims to build a supercell containing a heterojunction ZnO/Cu2O and study the structural properties and the discontinuity of the valence band (band offset) from a semiconducting to another phase. We build a zinc oxide in the wurtzite structure along [0001] on which we place the copper oxide in the hexagonal (CdI2-type) structure. We choose the method of Van de Walle and Martin to calculate the energy offset. This approach fits well the density functional theory. Our calculation of the band offset gives a value that corresponds to other experimental and theoretical values.
Ab Initio Theory of Coherent Laser-Induced Magnetization in Metals
Berritta, Marco; Mondal, Ritwik; Carva, Karel; Oppeneer, Peter M.
2016-09-01
We present the first materials specific ab initio theory of the magnetization induced by circularly polarized laser light in metals. Our calculations are based on nonlinear density matrix theory and include the effect of absorption. We show that the induced magnetization, commonly referred to as inverse Faraday effect, is strongly materials and frequency dependent, and demonstrate the existence of both spin and orbital induced magnetizations which exhibit a surprisingly different behavior. We show that for nonmagnetic metals (such as Cu, Au, Pd, Pt) and antiferromagnetic metals the induced magnetization is antisymmetric in the light's helicity, whereas for ferromagnetic metals (Fe, Co, Ni, FePt) the imparted magnetization is only asymmetric in the helicity. We compute effective optomagnetic fields that correspond to the induced magnetizations and provide guidelines for achieving all-optical helicity-dependent switching.
Communication: Improved ab initio molecular dynamics by minimally biasing with experimental data
White, Andrew D.; Knight, Chris; Hocky, Glen M.; Voth, Gregory A.
2017-01-01
Accounting for electrons and nuclei simultaneously is a powerful capability of ab initio molecular dynamics (AIMD). However, AIMD is often unable to accurately reproduce properties of systems such as water due to inaccuracies in the underlying electronic density functionals. This shortcoming is often addressed by added empirical corrections and/or increasing the simulation temperature. We present here a maximum-entropy approach to directly incorporate limited experimental data via a minimal bias. Biased AIMD simulations of water and an excess proton in water are shown to give significantly improved properties both for observables which were biased to match experimental data and for unbiased observables. This approach also yields new physical insight into inaccuracies in the underlying density functional theory as utilized in the unbiased AIMD.
i-PI: A Python interface for ab initio path integral molecular dynamics simulations
Ceriotti, Michele; Manolopoulos, David E
2014-01-01
Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these developments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high pressure water.
Ab initio calculation of structure and thermodynamic properties of Zintl aluminide SrAl{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Fu, Zhi-Jian [Chongqing Key Laboratory of Micro/Nano Materials Engineering and Technology, Chongqing (China); Chongqing Univ. of Arts and Sciences (China). School of Electrical and Electronic Engineering; China Academy of Engineering Physics (CAEP), Mianyang, Sichuan (China). National Key Lab. of Shock Wave and Detonation Physics; Jia, Li-Jun [Chongqing Univ. of Arts and Sciences Library (China); Xia, Ji-Hong; Tang, Ke; Li, Zhao-Hong [Chongqing Univ. of Arts and Sciences (China). School of Electrical and Electronic Engineering; Sun, Xiao-Wei [Lanzhou Jiaotong Univ. (China). School of Mathematics and Physics; Chen, Qi-Feng [China Academy of Engineering Physics (CAEP), Mianyang, Sichuan (China). National Key Lab. of Shock Wave and Detonation Physics
2015-07-01
The structural and thermodynamic properties of the orthorhombic and cubic structure SrAl{sub 2} at pressure and temperature are investigated by using the ab initio plane-wave pseudopotential density functional theory method within the generalised gradient approximation (GGA). The calculated lattice parameters are in agreement with the available experimental data and other theoretical results. The phase transition predicted takes place at 0.5 GPa from the orthorhombic to the cubic structure at zero temperature. The thermodynamic properties of the zinc-blende structure SrAl{sub 2} are calculated by the quasi-harmonic Debye model. The pressure-volume relationship and the variations in the thermal expansion a are obtained systematically in the pressure and temperature ranges of 0-5 GPa and 0-500 K, respectively.
Iftimie, R; Schofield, J P; Iftimie, Radu; Salahub, Dennis; Schofield, Jeremy
2003-01-01
In this article, we propose an efficient method for sampling the relevant state space in condensed phase reactions. In the present method, the reaction is described by solving the electronic Schr\\"{o}dinger equation for the solute atoms in the presence of explicit solvent molecules. The sampling algorithm uses a molecular mechanics guiding potential in combination with simulated tempering ideas and allows thorough exploration of the solvent state space in the context of an ab initio calculation even when the dielectric relaxation time of the solvent is long. The method is applied to the study of the double proton transfer reaction that takes place between a molecule of acetic acid and a molecule of methanol in tetrahydrofuran. It is demonstrated that calculations of rates of chemical transformations occurring in solvents of medium polarity can be performed with an increase in the cpu time of factors ranging from 4 to 15 with respect to gas-phase calculations.
Ab initio research of stopping power for energetic ions in solids
He, Bin; Meng, Xu-Jun; Wang, Jian-Guo
2017-03-01
A new physical scenario is suggested to estimate the stopping power of energetic α particles in solid-density Be, Na, and Al at room temperature in an ab initio way based on the average atom model. In the scenario the stopping power is caused by the transition of free electrons to higher energy states and the ionization of bound electrons of the atom. Our results are found generally in good agreement with the recommended data in Al, Be and Na as well as the experimental data in Al. A comparison of energy loss with the recent experiment of protons in Be indicates that the scenario is more reasonable than the local density approximation in this case.
Energy Technology Data Exchange (ETDEWEB)
Moradian, Rostam [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Science and Technology Research Center, Razi University, Kermanshah (Iran, Islamic Republic of); Department of Nano Science, Computational Physical Science Research Laboratory, Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: moradian.rostam@gmail.com; Behzad, Somayeh; Chegel, Raad [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)
2008-10-01
By using ab initio density functional theory the structural and electronic properties of isolated and bundled (8,0) and (6,6) silicon carbide nanotubes (SiCNTs) are investigated. Our results show that for such small diameter nanotubes the inter-tube interaction causes a very small radial deformation, while band splitting and reduction of the semiconducting energy band gap are significant. We compared the equilibrium interaction energy and inter-tube separation distance of (8,0) SiCNT bundle with (10,0) carbon nanotube (CNT) bundle where they have the same radius. We found that there is a larger inter-tube separation and weaker inter-tube interaction in the (8,0) SiCNT bundle with respect to (10,0) CNT bundle, although they have the same radius.
Energy Technology Data Exchange (ETDEWEB)
Moradian, Rostam [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Science and Technology Research Center, Razi University, Kermanshah (Iran, Islamic Republic of); Computational Physical Science Research Laboratory, Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: moradian.rostam@gmail.com; Behzad, Somayeh; Chegel, Raad [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)
2009-06-15
We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated (6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated (6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.
Gao, Haiyuan; Li, Meijiao; Guo, Zhendong; Chen, Hongshen; Jin, Zhonghe; Yu, Bin
2011-01-01
Electronic transport properties of monolayer graphene with extreme physical bending up to 90o angle are studied using ab Initio first-principle calculations. The importance of key structural parameters including step height, curvature radius and bending angle are discussed how they modify the transport properties of the deformed graphene sheet comparing to the corresponding flat ones. The local density of state reveals that energy state modification caused by the physical bending is highly localized. It is observed that the transport properties of bent graphene with a wide range of geometrical configurations are insensitive to the structural deformation in the low-energy transmission spectra, even in the extreme case of bending. The results support that graphene, with its superb electromechanical robustness, could serve as a viable material platform in a spectrum of applications such as photovoltaics, flexible electronics, OLED, and 3D electronic chips.
Pernot, Pascal
2009-01-01
Bayesian Model Calibration is used to revisit the problem of scaling factor calibration for semi-empirical correction of ab initio calculations. A particular attention is devoted to uncertainty evaluation for scaling factors, and to their effect on prediction of observables involving scaled properties. We argue that linear models used for calibration of scaling factors are generally not statistically valid, in the sense that they are not able to fit calibration data within their uncertainty limits. Uncertainty evaluation and uncertainty propagation by statistical methods from such invalid models are doomed to failure. To relieve this problem, a stochastic function is included in the model to account for model inadequacy, according to the Bayesian Model Calibration approach. In this framework, we demonstrate that standard calibration summary statistics, as optimal scaling factor and root mean square, can be safely used for uncertainty propagation only when large calibration sets of precise data are used. For s...
Ab initio study of Ni2MnGa under shear deformation
Directory of Open Access Journals (Sweden)
Zelený Martin
2015-01-01
Full Text Available The effect of shear deformation on Ni2MnGa magnetic shape memory alloy has been investigated using ab initio electronic structure calculations. We used the projector-augmented wave method for the calculations of total energies and stresses as functions of applied affine shear deformation. The studied nonmodulated martensite (NM phase exhibits a tetragonally distorted L21 structure with c/a > 1. A large strain corresponding to simple shears in {001}, {100} and {100} systems was applied to describe a full path between two equivalent NM lattices. We also studied {101} shear which is related to twining of NM phase. Twin reorientation in this system is possible, because applied positive shear results in path with significantly smaller energetic barrier than for negative shear and for shears in other studied systems. When the full relaxation of lattice parameters is allowed, the barriers further strongly decrease and the structures along the twinning path can be considered as orthorhombic.
Rosenow, Phil
2016-01-01
The extent of hydrogen coverage of the Si(001)c(4x2) surface in the presence of hydrogen gas has been studied with dispersion corrected density functional theory. Electronic energy contributions are well described using a hybrid functional. The temperature dependence of the coverage in thermodynamic equilibrium was studied computing the phonon spectrum in a supercell approach. As an approximation to these demanding computations, an interpolated phonon approach was found to give comparable accuracy. The simpler ab initio thermodynamic approach is not accurate enough for the system studied, even if corrections by the Einstein model for surface vibrations are considered. The on-set of H2 desorption from the fully hydrogenated surface is predicted to occur at temperatures around 750 K. Strong changes in hydrogen coverage are found between 1000 and 1200 K in good agreement with previous reflectance anisotropy spectroscopy experiments. These findings allow a rational choice for the surface state in the computationa...
Binding of TNT to amplifying fluorescent polymers: an ab initio and molecular dynamics study.
Enlow, Mark A
2012-03-01
Molecular modeling techniques were employed to study the interaction of trinitrotoluene with an amplifying fluorescent polymer used in explosive sensor devices. The pentiptycene moiety present in these polymers appears to be the most energetically favorable binding site for trinitrotoluene. Surface features of the polymer suggest that the small cavity feature of the pentiptycene moiety may be more available for binding to analyte compounds due to steric crowding about the large cavity. Binding energies between model binding sites of the polymer and various analyte compounds were more rigorously estimated by semiempirical and ab initio techniques. Binding energies were found to be largest with trinitrotoluene and other nitroaromatic compounds. Electrostatic and π-stacking interactions between trinitrotoluene and the model host were investigated by studying a series of modified host compounds.
Ab initio potential energy and dipole moment surfaces of the F(-)(H2O) complex.
Kamarchik, Eugene; Toffoli, Daniele; Christiansen, Ove; Bowman, Joel M
2014-02-05
We present full-dimensional, ab initio potential energy and dipole moment surfaces for the F(-)(H2O) complex. The potential surface is a permutationally invariant fit to 16,114 coupled-cluster single double (triple)/aVTZ energies, while the dipole surface is a covariant fit to 11,395 CCSD(T)/aVTZ dipole moments. Vibrational self-consistent field/vibrational configuration interaction (VSCF/VCI) calculations of energies and the IR-spectrum are presented both for F(-)(H2O) and for the deuterated analog, F(-)(D2O). A one-dimensional calculation of the splitting of the ground state, due to equivalent double-well global minima, is also reported.
A New Generation of Cool White Dwarf Atmosphere Models Using Ab Initio Calculations
Blouin, S.; Dufour, P.; Kowalski, P. M.
2017-03-01
Due to their high photospheric density, cool helium-rich white dwarfs (particularly DZ, DQpec and ultracool) are often poorly described by current atmosphere models. As part of our ongoing efforts to design atmosphere models suitable for all cool white dwarfs, we investigate how the ionization ratio of heavy elements and the H2-He collision-induced absorption (CIA) spectrum are altered under fluid-like densities. For the conditions encountered at the photosphere of cool helium-rich white dwarfs, our ab initio calculations show that the ionization of most metals is inhibited and that the H2-He CIA spectrum is significantly distorted for densities higher than 0.1 g/cm3.
A New Generation of Cool White Dwarf Atmosphere Models Using Ab Initio Calculations
Blouin, Simon; Kowalski, Piotr M
2016-01-01
Due to their high photospheric density, cool helium-rich white dwarfs (particularly DZ, DQpec and ultracool) are often poorly described by current atmosphere models. As part of our ongoing efforts to design atmosphere models suitable for all cool white dwarfs, we investigate how the ionization ratio of heavy elements and the H$_2$-He collision-induced absorption (CIA) spectrum are altered under fluid-like densities. For the conditions encountered at the photosphere of cool helium-rich white dwarfs, our ab initio calculations show that the ionization of most metals is inhibited and that the H$_2$-He CIA spectrum is significantly distorted for densities higher than 0.1 g/cm$^3$.
Ab initio STUDIES ON MAGNETISM OF 3d TRANSITION METAL DIMERS
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Ab initio calculations with the self-consistent full-potential linearized augmented-plane-wave method (FLAPW), under generalized gradient approximation, have been carried out to describe the electronic and magnetic properties of 3d transition metal dimers. It predicted the antiferromagneticity of Cr2 and ferromagneticity of other species. The Mn2 dimer was shown to be ferromagnetic coupling with a local magnetic moment of 5μB. Retaining the value of its free atom state. The V2 and Ni2 exhibited low spin-polarization with local magnetic moment of only 1μB per atom. On the other hand, Fe2 and Co2 were highly spin-polarized with local magnetic moments of 3 and 2μB.
Structural phase transition of CdTe: an ab initio study.
Alptekin, Sebahaddin
2013-01-01
A constant pressure ab initio MD technique and density functional theory with a generalized gradient approximation (GGA) was used to study the pressure-induced phase transition in zinc-blende CdTe. We found that CdTe undergoes a structural first-order phase transition to [Formula: see text] (binary β-tin) tetragonal structure in the constant pressure molecular dynamics simulation at 20 GPa. When the pressure was increased to 50 GPa, the phase of tetragonal structure converted to a new Imm2 orthorhombic structure. These phase transformations were also calculated by using the enthalpy calculations. Transition phases, lattice parameters and bulk properties we attained are comparable with experimental and theoretical data.
Pressure-induced phase transition in wurtzite ZnTe: an ab initio study.
Alptekin, Sebahaddin
2012-03-01
A constant pressure ab initio MD technique and density functional theory with a generalized gradient approximation (GGA) was used to study the pressure-induced phase transition in wurtzite ZnTe. A first-order phase transition from the wurtzite structure to a Cmcm structure was successfully observed in a constant-pressure molecular dynamics simulation. This phase transformation was also analyzed using enthalpy calculations. We also investigated the stability of wurtzite (WZ) and zinc-blende (ZB) phases from energy-volume calculations, and found that both structures show quite similar equations of state and transform into a Cmcm structure at 16 GPa using enthalpy calculations, in agreement with experimental observations. The transition phase, lattice parameters and bulk properties we obtained are comparable with experimental and theoretical data.
Tailoring oxygen vacancies at ZnO( 1 1 ¯ 00 ) surface: An ab initio study
Korir, K. K.; Catellani, A.; Cicero, G.
2016-09-01
Oxygen vacancies in ZnO crystals have significant impacts on its properties and applications. On the basis of ab initio results, we describe the oxygen vacancy distribution and diffusion paths away from the ZnO( 1 1 ¯ 00 ) surface, aiming to elucidate thermodynamics and kinetic stability of the vacancies and a possible control mechanism. In view of defect engineering and sensor applications, we propose efficient routes to chemically control the equilibrium concentration of the oxygen vacancies at ZnO surfaces by exposure to specific reactive gases: we show that the oxygen vacancy concentration can be increased using sulfur oxide as post-growth treatment, while under exposure to ozone, no significant amount of oxygen vacancies can be sustained on the surface.
Ab initio molecular dynamics study of hydrogen removal by ion-surface interactions
Energy Technology Data Exchange (ETDEWEB)
Rosen, Johanna [Materials Chemistry, RWTH-Aachen, D-52056 Aachen (Germany); Larsson, Karin [Department of Materials Chemistry, Angstroem Laboratory, Uppsala University, Box 538, 751 21 Uppsala (Sweden); Schneider, Jochen M [Materials Chemistry, RWTH-Aachen, D-52056 Aachen (Germany)
2005-04-20
The energy dependence of surface reactions has been investigated through ab initio MD simulations for collisions between Al{sup 1+} and a gibbsite surface. No change in surface composition was observed for 0 eV initial kinetic energy of Al{sup 1+}. An increase in energy to 3.5 eV resulted in extended surface migration of hydrogen, subsequent H{sub 2} formation and desorption from the surface. These results may be understood based on thermodynamics and an increase in entropy upon H{sub 2} formation. They are of fundamental importance for an increased understanding of thin film growth through the correlation between ion energy and film composition. They may also indicate a pathway to affect impurity incorporation during film growth. (letter to the editor)
Hydrogen bond dynamics in liquid water: Ab initio molecular dynamics simulation
Energy Technology Data Exchange (ETDEWEB)
Kim, Cheolhee; Kim, Eunae [College of Pharmacy, Chosun University, Gwangju (Korea, Republic of); Yeom, Min Sun [Korea Institute of Science and Technology Information, Daejeon (Korea, Republic of)
2016-01-15
The effect of intermolecular interaction on the distribution of the harmonic vibrational frequencies of water molecules was investigated through ab initio molecular dynamics simulations based on the Born-Oppenheimer approach. For single water, the effect of the dynamics of the oxygen atom in single water and the simulation time step on the frequency distribution were examined. The distributions of the OH stretching and HOH bending vibrational frequencies of liquid water were compared to those of single water. The probability distributions of the change in OH bond length and the lifetime of the dangling OH bond were also obtained. The distribution of the frequencies was strongly affected by the long lifetime of the dangling OH bond, resulting in the formation of hydrogen bonds between water molecules.
Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines
DEFF Research Database (Denmark)
Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.;
2011-01-01
Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation....... This method enables the determination of both the electronic and the protonic (deuteronic) wave functions simultaneously and can directly calculate the geometrical difference induced by H/D isotope effects. The calculations show that the one-bond deuterium isotope effects on 15N nuclear shielding, 1Δ15N......(D), in ammonium and amines decrease as a counterion or water molecule moves closer to the nitrogen. 1Δ15N(D) and 2Δ1H(D) of the NH3+ groups of lysine residues in the B1 domain of protein G have been calculated using truncated side chains and also determined experimentally by NMR. Comparisons show...
Convergence from cluster to surface:ab initio calculations of Pd_n clusters
Institute of Scientific and Technical Information of China (English)
徐昕; 王南钦; 吕鑫; 陈明旦; 张乾二
1995-01-01
The"Metallic State Principle"and a way to constitute the metallic basis set are proposed,the latter is a modification of atomic basis set based on the free electron theory in solid state physics.Pd_n dusters have been carefully studied by means of ab initio calculations with atomic and metallic basis sets.Three rules,namely the"Ground State Principle",the"Lowest-Spin State Principle"and the"Metallic StatePrinciple"have been investigated and the calculation results based on these three rules are compared with eachother in terms of metallic configuration of bulk Pd,d-band width,Fermi level,etc.The calculation resultsdemonstrate that the characteristic properties of bulk Pd may be reproduced to some extent even with a smallduster if the"Metallic State Principle"is adopted.
Quantifying statistical uncertainties in ab initio nuclear physics using Lagrange multipliers
Carlsson, B D
2016-01-01
Theoretical predictions need quantified uncertainties for a meaningful comparison to experimental results. This is an idea which presently permeates the field of theoretical nuclear physics. In light of the recent progress in estimating theoretical uncertainties in ab initio nuclear physics, we here present and compare methods for evaluating the statistical part of the uncertainties. A special focus is put on the (for the field) novel method of Lagrange multipliers (LM). Uncertainties from the fit of the nuclear interaction to experimental data are propagated to a few observables in light-mass nuclei to highlight any differences between the presented methods. The main conclusion is that the LM method is more robust, while covariance based methods are less demanding in their evaluation.
Ab initio phonon coupling and optical response of hot electrons in plasmonic metals
Brown, Ana M; Narang, Prineha; Goddard, William A; Atwater, Harry A
2016-01-01
Ultrafast laser measurements probe the non-equilibrium dynamics of excited electrons in metals with increasing temporal resolution. Electronic structure calculations can provide a detailed microscopic understanding of hot electron dynamics, but a parameter-free description of pump-probe measurements has not yet been possible, despite intensive research, because of the phenomenological treatment of electron-phonon interactions. We present ab initio predictions of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We find substantial differences from free-electron and semi-empirical estimates, especially in noble metals above transient electron temperatures of 2000 K, because of the previously-neglected strong dependence of electron-phonon matrix elements on electron energy. We also present first-principles calculations of the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phon...
Mundy, Christopher J; Curioni, Alessandro; Goldman, Nir; Will Kuo, I-F; Reed, Evan J; Fried, Laurence E; Ianuzzi, Marcella
2008-05-14
We report herein ab initio molecular dynamics simulations of graphite under shock compression in conjunction with the multiscale shock technique. Our simulations reveal that a novel short-lived layered diamond intermediate is formed within a few hundred of femtoseconds upon shock loading at a shock velocity of 12 kms (longitudinal stress>130 GPa), followed by formation of cubic diamond. The layered diamond state differs from the experimentally observed hexagonal diamond intermediate found at lower pressures and previous hydrostatic calculations in that a rapid buckling of the graphitic planes produces a mixture of hexagonal and cubic diamond (layered diamond). Direct calculation of the x-ray absorption spectra in our simulations reveals that the electronic structure of the final state closely resembles that of compressed cubic diamond.
Molecular orbital ab initio and density functional theoretical study on reaction between PH2 and NO
Institute of Scientific and Technical Information of China (English)
HU; Zhengfa(胡正发); WANG; Zhenya(王振亚); LI; Haiyang(李海洋); ZHOU; Shikang(周士康)
2002-01-01
The theoretical study of reaction between PH2 and NO on the ground state potential energy surface is reported by using molecular orbital ab initio calculation and density function theory (DFT). Equilibrium structural parameters, harmonic vibrational frequencies, total energies and zero point energies of all species during reaction are computed by HF, MP2 (full) and B3LYP theory levels with the medium basis set 6-31G*. Theoretical results indicate that intermediate IM1(H2PNO) is firstly formed by overcoming a small energy barrier TS1, and then two four-membered ring transient states TS2 and TS5, with energy barriers 103.3 and 102.6 kJ/mol respectively,then H-migration and isomerization are completed and the products PN and H2O are formed. The reaction is exothermic one with -189.6 k J/mol released.
The Ab Initio Studies of NO Chemisorption on TiO2(110) Surface
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
The studies of NO chemisorption on TiO2(110) surface are the base of research to NO decomposed to N2O on TiO2 surface. In this paper, 12 kinds of possible models of NO adsorbed on TiO2 perfect and defect surface were calculated by use of ab initio cluster method. We carried out optimization of the geometry, calculation of the chemisorption energy and analysis of the Mulliken population to those adsorption models. According to the calculation results, it can be got that the adsorbed decomposition of NO on defect surface is more advantageous and M6 and M12 are the important models to NO chemisorption and decomposition on TiO2 surface.
Ab initio theory for ultrafast magnetization dynamics with a dynamic band structure
Mueller, B. Y.; Haag, M.; Fähnle, M.
2016-09-01
Laser-induced modifications of magnetic materials on very small spatial dimensions and ultrashort timescales are a promising field for novel storage and spintronic devices. Therefore, the contribution of electron-electron spin-flip scattering to the ultrafast demagnetization of ferromagnets after an ultrashort laser excitation is investigated. In this work, the dynamical change of the band structure resulting from the change of the magnetization in time is taken into account on an ab initio level. We find a large influence of the dynamical band structure on the magnetization dynamics and we illustrate the thermalization and relaxation process after laser irradiation. Treating the dynamical band structure yields a demagnetization comparable to the experimental one.
A set of molecular models based on quantum mechanical ab initio calculations and thermodynamic data
Eckl, Bernhard; Hasse, Hans
2009-01-01
A parameterization strategy for molecular models on the basis of force fields is proposed, which allows a rapid development of models for small molecules by using results from quantum mechanical (QM) ab initio calculations and thermodynamic data. The geometry of the molecular models is specified according to the atom positions determined by QM energy minimization. The electrostatic interactions are modeled by reducing the electron density distribution to point dipoles and point quadrupoles located in the center of mass of the molecules. Dispersive and repulsive interactions are described by Lennard-Jones sites, for which the parameters are iteratively optimized to experimental vapor-liquid equilibrium (VLE) data, i.e. vapor pressure, saturated liquid density, and enthalpy of vaporization of the considered substance. The proposed modeling strategy was applied to a sample set of ten molecules from different substance classes. New molecular models are presented for iso-butane, cyclohexane, formaldehyde, dimethyl...
Ionescu, Andrei R; Whitfield, Dennis M; Zgierski, Marek Z; Nukada, Tomoo
2006-12-29
We present a constrained ab initio molecular dynamics method that allows the modeling of the conformational interconversions of glycopyranosyl oxacarbenium ions. The model was successfully tested by estimating the barriers to ring inversion for two 4-substituted tetrahydropyranosyl oxacarbenium ions. The model was further extended to predict the pathways that connect the (4)H(3) half-chair conformation of 2,3,4,6-tetra-O-methyl-d-glucopyranosyl cation to its inverted (5)S(1) conformation and the (4)H(3) half-chair conformation of 2,3,4,6-tetra-O-methyl-d-mannopyranosyl cation to its inverted (3)E conformation. The modeled interconversion pathways reconcile a large body of experimental work on the acid-catalyzed hydrolysis of glycosides and the mechanisms of a number of glucosidases and mannosidases.
Ab initio calculation of the growth of Te nanorods and Bi2Te3 nanoplatelets
Institute of Scientific and Technical Information of China (English)
Tian Xiao-Qing; Du Shi-Xuan; Gao Hong-Jun
2008-01-01
In this paper the growth mechanism of a Te/Bi2Te3 novel structure is studied by ab-initio calculations.The results show that the growth of Te nanorods is determined by the adsorption energy of Te atoms on different crystalline Te surfaces.The adsorption energy of Te on the Te (001) surface is 3.29 eV,which is about 0.25 eV higher than that of Te on the Te (110).This energy difference makes the preferential growth direction along the ＜ 001＞ direction.In addition,the higher surface energy of Bi2Te3 (110) and the lattice misfit between crystalline Bi2Te3 and Te along ＜ 001＞ direction are considered to explain the growth of the Bi2Te3 nanoplatelets,in which Volmer-Weber model is used.The theoretical results axe in agreement with experimental observation.
Comparison between phenomenological and ab-initio reaction and relaxation models in DSMC
Sebastião, Israel B.; Kulakhmetov, Marat; Alexeenko, Alina
2016-11-01
New state-specific vibrational-translational energy exchange and dissociation models, based on ab-initio data, are implemented in direct simulation Monte Carlo (DSMC) method and compared to the established Larsen-Borgnakke (LB) and total collision energy (TCE) phenomenological models. For consistency, both the LB and TCE models are calibrated with QCT-calculated O2+O data. The model comparison test cases include 0-D thermochemical relaxation under adiabatic conditions and 1-D normal shockwave calculations. The results show that both the ME-QCT-VT and LB models can reproduce vibrational relaxation accurately but the TCE model is unable to reproduce nonequilibrium rates even when it is calibrated to accurate equilibrium rates. The new reaction model does capture QCT-calculated nonequilibrium rates. For all investigated cases, we discuss the prediction differences based on the new model features.
Ab initio study of transport properties in defected carbon nanotubes: an O(N) approach
Energy Technology Data Exchange (ETDEWEB)
Biel, Blanca; GarcIa-Vidal, F J; Flores, Fernando [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Rubio, Angel [European Theoretical Spectroscopy Facility (ETSF), Departamento de Fisica de Materiales, Universidad PaIs Vasco, Edificio Korta, Avenida Tolosa 72, 20018 San Sebastian (Spain)], E-mail: blanca.biel@cea.fr
2008-07-23
A combination of ab initio simulations and linear-scaling Green's functions techniques is used to analyze the transport properties of long (up to 1 {mu}m) carbon nanotubes with realistic disorder. The energetics and the influence of single defects (monovacancies and divacancies) on the electronic and transport properties of single-walled armchair carbon nanotubes are analyzed as a function of the tube diameter by means of the local orbital first-principles Fireball code. Efficient O(N) Green's functions techniques framed within the Landauer-Buettiker formalism allow a statistical study of the nanotube conductance averaged over a large sample of defected tubes and thus extraction of the nanotube localization length. The cases of zero and room temperature are both addressed.
An Ab-Initio Calculation of Raman Spectra of Binary Sodium Silicates
Institute of Scientific and Technical Information of China (English)
尤静林; 蒋国昌; 侯怀宇; 陈辉; 吴永全; 徐匡迪
2004-01-01
Raman spectra of binary sodium silicates are calculated by self-consistent field (SCF) molecular orbital ab initio calculation of the quantum chemical method with several poly silicon-oxygen tetrahedral model clusters when both the basis sets of 6-31 G and 6-31 G(d) are applied. The symmetric stretching vibrational frequency of non-bridging oxygen in a high frequency range and its Raman optical activity and scattering cross section are deduced and analysed. The correlation between this vibrational Raman shift and its microscopic environment of the silicon-oxygen tetrahedron is found based on interior stress of configuration, which depends on the connecting topology of adjacent silicon-oxygen tetrahedra (SiOT). A newly established empirical stress index of tetrahedron is introduced to elucidate the above relationship.
Trivacancy in silicon: A combined DLTS and ab-initio modeling study
Energy Technology Data Exchange (ETDEWEB)
Markevich, V.P., E-mail: V.Markevich@manchester.ac.u [University of Manchester, Manchester M60 1QD (United Kingdom); Peaker, A.R. [University of Manchester, Manchester M60 1QD (United Kingdom); Lastovskii, S.B.; Murin, L.I. [Scientific-Practical Materials Research Center of NAS of Belarus, Minsk 220072 (Belarus); Coutinho, J.; Markevich, A.V.; Torres, V.J.B. [Department of Physics and I3N, University of Aveiro, 3810-193 Aveiro (Portugal); Briddon, P.R. [University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU (United Kingdom); Dobaczewski, L. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Monakhov, E.V.; Svensson, B.G. [Department of Physics, Oslo University, 0316 Oslo (Norway)
2009-12-15
Deep level transient spectroscopy and ab-initio modeling have been used for identification of energy levels and structure of trivacancy (V{sub 3}) in Si. It is found that in the neutral charge state the V{sub 3} is bistable, with the 'fourfold' configuration being lower in energy than the (1 1 0) planar configuration. V{sub 3} in the (1 1 0) planar configuration gives rise to two acceptor levels at E{sub c}-0.36 eV and E{sub c}-0.46 eV in the gap, while in the 'fourfold' configuration the defect has trigonal symmetry and an acceptor level at E{sub c}-0.075 eV.