WorldWideScience

Sample records for ab initio study

  1. An ab initio study of hydroxylated graphane

    Science.gov (United States)

    Buonocore, Francesco; Capasso, Andrea; Lisi, Nicola

    2017-09-01

    Graphene-based derivatives with covalent functionalization and well-defined stoichiometry are highly desirable in view of their application as functional surfaces. Here, we have evaluated by ab initio calculations the energy of formation and the phase diagram of hydroxylated graphane structures, i.e., fully functionalized graphene derivatives coordinated with -H and -OH groups. We compared these structures to different hydrogenated and non-hydrogenated graphene oxide derivatives, with high level of epoxide and hydroxyl groups functionalization. Based on our calculations, stable phases of hydroxylated graphane with low and high contents of hydrogen are demonstrated for high oxygen and hydrogen partial pressure, respectively. Stable phases of graphene oxide with a mixed carbon hybridization are also found. Notably, the synthesis of hydroxylated graphane has been recently reported in the literature.

  2. Ab Initio Studies of Stratospheric Ozone Depletion Chemistry

    Science.gov (United States)

    Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  3. Study of Nuclear Clustering from an Ab Initio Perspective

    Science.gov (United States)

    Kravvaris, Konstantinos; Volya, Alexander

    2017-08-01

    We put forward a new ab initio approach that seamlessly bridges the structure, clustering, and reactions aspects of the nuclear quantum many-body problem. The configuration interaction technique combined with the resonating group method based on a harmonic oscillator basis allows us to treat the reaction and multiclustering dynamics in a translationally invariant way and preserve the Pauli principle. Our presentation includes studies of Be,108 and an exploration of 3 α clustering in 12C.

  4. Ab Initio Studies of Metal Hexaboride Materials

    Science.gov (United States)

    Schmidt, Kevin M.

    Metal hexaborides are refractory ceramics with several qualities relevant to materials design, such as low work functions, high hardness, low thermal expansion coefficients, and high melting points, among many other properties of interest for industrial applications. Thermal and mechanical stability is a common feature provided by the covalently-bonded network boron atoms, and electronic properties can vary significantly with the resident metal. While these materials are currently employed as electron emitters and abrasives, promising uses of these materials also include catalytic applications for chemical dissociation reactions of various molecules such as hydrogen, water and carbon monoxide, for example. However, these extensions require a thorough understanding of particular mechanical and electronic properties. This dissertation is a collection of studies focused on understanding the behavior of metal hexaboride materials using computational modeling methods to investigate materials properties of these from both classical and quantum mechanical points of view. Classical modeling is performed using molecular dynamics methods with interatomic potentials obtained from density functional theory (DFT) calculations. Atomic mean-square displacements from the quasi-harmonic approximation and lattice energetic data are produced with DFT for developing the potentials. A generalized method was also developed for the inversion of cohesive energy curves of crystalline materials; pairwise interatomic potentials are extracted using detailed geometrical descriptions of the atomic interactions and a list of atomic displacements and degeneracies. The surface structure of metal hexaborides is studied with DFT using several model geometries to describe the terminal cation layouts, and these provide a basis for further studies on metal hexaboride interactions with hydrogen. The surface electronic structure calculations show that segregated regions of metal and boron

  5. Hydrogen Desorption from Mg Hydride: An Ab Initio Study

    Directory of Open Access Journals (Sweden)

    Simone Giusepponi

    2012-07-01

    Full Text Available Hydrogen desorption from hydride matrix is still an open field of research. By means of accurate first-principle molecular dynamics (MD simulations an Mg–MgH2 interface is selected, studied and characterized. Electronic structure calculations are used to determine the equilibrium properties and the behavior of the surfaces in terms of structural deformations and total energy considerations. Furthermore, extensive ab-initio molecular dynamics simulations are performed at several temperatures to characterize the desorption process at the interface. The numerical model successfully reproduces the experimental desorption temperature for the hydride.

  6. Ab initio study of alanine polypeptide chain twisting

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2006-01-01

    chains. These particular degrees of freedom are essential for the characterization of the proteins folding process. Calculations have been carried out within the ab initio theoretical framework based on the density functional theory and accounting for all the electrons in the system. We have determined...

  7. Relaxation of Small Molecules: an ab initio Study

    Institute of Scientific and Technical Information of China (English)

    CAO Yi-Gang; JIAO Zheng-Kuan; A. Antons; K. Schroeder; S. Blügel2

    2002-01-01

    Using an ab initio total energy and force method, we have relaxed several group IV and group V elementalclusters, in detail the arsenic and antimony dimers, silicon, phosphorus, arsenic and antimony tetramers. The obtainedbond lengths and cohesive energies are more accurate than other calculating methods, and in excellent agreement withthe experimental results.

  8. Structural flexibility of DABCO. Ab initio and DFT benchmark study

    Science.gov (United States)

    Nizovtsev, Anton S.; Ryzhikov, Maxim R.; Kozlova, Svetlana G.

    2017-01-01

    The energy and structural parameters of 1,4-diazabicyclo[2.2.2]octane (DABCO) obtained by various DFT methods are examined versus ab initio and experimental data. The features of twisting potentials of DABCO and closely-related species (1-azabicyclo[2.2.2]octane and bicyclo[2.2.2]octane) are discussed in light of computational schemes applied.

  9. Serine Proteases an Ab Initio Molecular Dynamics Study

    CERN Document Server

    De Santis, L

    1999-01-01

    In serine proteases (SP's), the H-bond between His-57 and Asp-102, and that between Gly-193 and the transition state intermediate play a crucial role for enzymatic function. To shed light on the nature of these interactions, we have carried out ab initio molecular dynamics simulations on complexes representing adducts between the reaction intermediate and elastase (one protein belonging to the SP family). Our calculations indicate the presence of a low--barrier H-bond between His-57 and Asp-102, in complete agreement with NMR experiments on enzyme--transition state analog complexes. Comparison with an ab initio molecular dynamics simulation on a model of the substrate--enzyme adduct indicates that the Gly-193--induced strong stabilization of the intermediate is accomplished by charge/dipole interactions and not by H-bonding as previously suggested. Inclusion of the protein electric field in the calculations does not affect significantly the charge distribution.

  10. Ab initio studies of niobium defects in uranium

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, S; Huang, H; Hsiung, L

    2007-06-01

    Uranium (U), with the addition of small amount of niobium (Nb), is stainless. The Nb is fully miscible with the high temperature phase of U and tends to segregate upon cooling below 647 C. The starting point of segregation is the configuration of Nb substitutional or interstitial defects. Using density-functional-theory based ab initio calculations, the authors find that the formation energy of a single vacancy is 1.08 eV, that of Nb substitution is 0.59 eV, that of Nb interstitial at octahedral site is 1.58 eV, and that of Nb interstitial at tetrahedral site is 2.35 eV; all with reference to a reservoir of {gamma} phase U and pure Nb. The formation energy of Nb defects correlates with the local perturbation of electron distribution; higher formation energy to larger perturbation. Based on this study, Nb atoms thermodynamically prefer to occupy substitutional sites in {gamma} phase U, and they prefer to be in individual substitutional defects than clusters.

  11. Ab initio study of phase equilibria in TiCx

    DEFF Research Database (Denmark)

    Korzhavyi, P.A.; Pourovskii, L.V.; Hugosson, H.W.

    2002-01-01

    The phase diagram for the vacancy-ordered structures in the substoichiometric TiCx (x = 0.5-1.0) has been established from Monte Carlo simulations with the long-range pair and multisite effective interactions obtained from ab initio calculations. Three ordered superstructures of vacancies (Ti2C, Ti......3C2, and Ti6C5) are found to be ground state configurations. Their stability has been verified by full-potential total energy calculations of the fully relaxed structures....

  12. Tailoring magnetoresistance at the atomic level: An ab initio study

    KAUST Repository

    Tao, Kun

    2012-01-05

    The possibility of manipulating the tunneling magnetoresistance (TMR) of antiferromagnetic nanostructures is predicted in the framework of ab initio calculations. By the example of a junction composed of an antiferromagnetic dimer and a spin-polarized scanning tunneling microscopy tip we show that the TMR can be tuned and even reversed in sign by lateral and vertical movements of the tip. Moreover, our finite-bias calculations demonstrate that the magnitude and the sign of the TMR can also be tuned by an external voltage. © 2012 American Physical Society.

  13. Ab-initio study of transition metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ramesh [Dept. of Physics, Feroze Gandhi Insititute of Engineering and Technology, Raebareli-229001 (India); Shukla, Seema, E-mail: sharma.yamini62@gmail.com; Dwivedi, Shalini, E-mail: sharma.yamini62@gmail.com; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com [Theoretical Condensed Matter Physics Laboratory, Dept. of Physics Feroze Gandhi College, Raebareli-229001 (India)

    2014-04-24

    We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.

  14. Lithium Insertion In Silicon Nanowires: An ab Initio Study

    KAUST Repository

    Zhang, Qianfan

    2010-09-08

    The ultrahigh specific lithium ion storage capacity of Si nanowires (SiNWs) has been demonstrated recently and has opened up exciting opportunities for energy storage. However, a systematic theoretical study on lithium insertion in SiNWs remains a challenge, and as a result, understanding of the fundamental interaction and microscopic dynamics during lithium insertion is still lacking. This paper focuses on the study of single Li atom insertion into SiNWs with different sizes and axis orientations by using full ab initio calculations. We show that the binding energy of interstitial Li increases as the SiNW diameter grows. The binding energies at different insertion sites, which can be classified as surface, intermediate, and core sites, are quite different. We find that surface sites are energetically the most favorable insertion positions and that intermediate sites are the most unfavorable insertion positions. Compared with the other growth directions, the [110] SiNWs with different diameters always present the highest binding energies on various insertion locations, which indicates that [110] SiNWs are more favorable by Li doping. Furthermore, we study Li diffusion inside SiNWs. The results show that the Li surface diffusion has a much higher chance to occur than the surface to core diffusion, which is consistent with the experimental observation that the Li insertion in SiNWs is layer by layer from surface to inner region. After overcoming a large barrier crossing surface-to-intermediate region, the diffusion toward center has a higher possibility to occur than the inverse process. © 2010 American Chemical Society.

  15. Ab initio study of alanine polypeptide chains twisting

    CERN Document Server

    Solovyov, I A; Solovyov, A V; Yakubovitch, A V; Greiner, Walter; Solov'yov, Andrey V.; Solov'yov, Ilia A.; Yakubovitch, Alexander V.

    2005-01-01

    We have investigated the potential energy surfaces for alanine chains consisting of three and six amino acids. For these molecules we have calculated potential energy surfaces as a function of the Ramachandran angles Phi and Psi, which are widely used for the characterization of the polypeptide chains. These particular degrees of freedom are essential for the characterization of proteins folding process. Calculations have been carried out within ab initio theoretical framework based on the density functional theory and accounting for all the electrons in the system. We have determined stable conformations and calculated the energy barriers for transitions between them. Using a thermodynamic approach, we have estimated the times of characteristic transitions between these conformations. The results of our calculations have been compared with those obtained by other theoretical methods and with the available experimental data extracted from the Protein Data Base. This comparison demonstrates a reasonable corres...

  16. Ab initio Molecular Dynamics Study on Small Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    叶林晖; 刘邦贵; 王鼎盛

    2001-01-01

    Ab initio molecular dynamics simulations are performed on small single wall nanotubes. By structural relaxation,the equilibrium C-C bond lengths and bond angles are determined. Our result shows that for both zigzag and armchair nanotubes there are two nonequivalent bond lengths. One bond stretches from that of the graphene sheet, while the other shrinks. Small variations on bond angles are also shown. Energy bands are calculated for the optimized structures. It is found that the intrinsic curvature of the very small nanotube greatly modifies the energy band which can no longer be well described in the tight-binding zone-folding picture. In our calculation very small nanotubes are metallic. The energy per atom fits quite well with the relation of E(R) = E0 + f/R2 even for the extreme small radius. The implications of the results on the properties of small nanotubes are discussed.

  17. Ab initio and kinetic modeling studies of formic acid oxidation

    DEFF Research Database (Denmark)

    Marshall, Paul; Glarborg, Peter

    2015-01-01

    A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...... as the fate of HOCO, determines the oxidation rate of formic acid. At lower temperatures HO2, formed from HOCO + O2, is an important chain carrier and modeling predictions become sensitive to the HOCHO + HO2 reaction. © 2014 The Combustion Institute....... on calculations with the kinetic model. Formic acid is consumed mainly by reaction with OH, yielding OCHO, which dissociates rapidly to CO2 + H, and HOCO, which may dissociate to CO + OH or CO2 + H, or react with H, OH, or O2 to form more stable products. The branching fraction of the HOCHO + OH reaction, as well...

  18. Ab initio study of II-(VI){sub 2} dichalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, P; Vidal, J; Lincot, D, E-mail: polsson@kth.se [Institut de R and D sur l' energie photovoltaique (IRDEP), UMR 7174-EDF-CNRS-ENSCP, 6 quai Watier, 78401 Chatou Cedex (France)

    2011-10-12

    The structural stabilities of the (Zn,Cd)(S,Se,Te){sub 2} dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe{sub 2} pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications. (paper)

  19. Ab initio study of the transition-metal carbene cations

    Institute of Scientific and Technical Information of China (English)

    李吉海; 冯大诚; 冯圣玉

    1999-01-01

    The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH2+ were investigated by ab initio molecular orbital theory (HF/LANL2DZ). All of MCH2+ are coplanar. In the closed shell structures the C bonds to M with double bonds; while in the open shell structures the partial double bonds are formed, because one of the σ and π orbitals is singly occupied. It is mainly the π-type overlap between the 2px orbital of C and 4px, 3dxz, orbitals of M+ that forms the π orbitals. The dissociation energies of C—M bond appear in periodic trend from Sc to Cu. Most of the calculated bond dissociation energies are close to the experimental ones.

  20. An ab initio study of plutonium oxides surfaces; Etude ab initio des surfaces d'oxydes de Pu

    Energy Technology Data Exchange (ETDEWEB)

    Jomard, G.; Bottin, F.; Amadon, B

    2007-07-01

    By means of first-principles calculations, we have studied the atomic structure as well as the thermodynamic stability of various plutonium dioxide surfaces in function of their environment (in terms of oxygen partial pressure and temperature). All these simulations have been performed with the ABINIT code. It is well known that DFT fails to describe correctly plutonium-based materials since 5f electrons in such systems are strongly correlated. In order to go beyond DFT, we have treated PuO{sub 2} and {beta}-Pu{sub 2}O{sub 3} in a DFT+U framework. We show that the couple of parameters (U,J) that works well for pure Pu is also well designed for describing ground state (GS) properties of these two oxides. The major improvement with respect with DFT is that we are able to predict an insulating GS in agreement with experiments. The presence of a gap in the DOS (Density of States) of plutonium oxides should play a significant role in the predicted surface reactivity. However, performing DFT+U calculations on surfaces of plutonium oxide from scratch was too ambitious. That is why we decided, as a first step, to study the stability of the (100), (110) and (111) surfaces of PuO{sub 2} in a DFT-GGA framework. For each of these orientations, we considered various terminations. These ab initio results have been introduced in a thermodynamic model which allows us to predict the relative stability of the different terminations as a function of temperature and oxygen partial pressure (p{sub O{sub 2}}). We conclude that at room temperature and for p{sub O{sub 2}}{approx}10 atm., the polar O{sub 2}-(100) termination is favoured. The stabilization of such a polar stoichiometric surface is surprising and should be confirmed by DFT+U calculations before any final conclusion. (authors)

  1. Virtual synthesis of crystals using ab initio MD: Case study on LiFePO4

    Science.gov (United States)

    Mishra, S. B.; Nanda, B. R. K.

    2017-05-01

    Molecular dynamics simulation technique is fairly successful in studying the structural aspects and dynamics of fluids. Here we study the ability of ab initio molecular dynamics (ab initio MD) to carry out virtual experiments to synthesize new crystalline materials and to predict their structures. For this purpose the olivine phosphate LiFePO4 (LFPO) is used as an example. As transition metal oxides in general are stabilized with layered geometry, we carried out ab initio MD simulations over a hypothetical layered configuration consisting of alternate LiPO2 and FeO2 layers. With intermittent steps of electron minimization, the resulted equilibrium lattice consist of PO4 tetrahedra and distorted Fe-O complexes similar to the one observed in the experimental lattice.

  2. An ab initio study on single electron transfer between ClO2 and phenol

    Institute of Scientific and Technical Information of China (English)

    崔崇威; 黄君礼

    2004-01-01

    The SET mechanism between chlorine dioxide (ClO2 ) and phenol was studied by using ab initio method at 4-31G* level. Geometries of the reactants, intermediate and products of the reaction were optimized and the single point energy calculations of the species were performed. The relative structure data of the reactants, intermediate and products are given. The SET mechanism between ClO2 and phenol was confirmed by ab initio calculations. The reaction is exothermic about 200. 88 k J/mol.

  3. Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations

    DEFF Research Database (Denmark)

    Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Rostrup-Nielsen, Jens;

    2006-01-01

    Mechanisms and energetics of graphene growth catalyzed by nickel nanoclusters were studied using ab initio density functional theory calculations. It is demonstrated that nickel step-edge sites act as the preferential growth centers for graphene layers on the nickel surface. Carbon is transported...

  4. Relativistic ab initio spectroscopy study of forbidden lines of singly ionized zinc

    NARCIS (Netherlands)

    Dixit, Gopal; Sahoo, Bijaya K.; Chaudhuri, Rajat K.; Majumder, Sonjoy

    2009-01-01

    The ab initio calculation has been carried out to study the astrophysically important forbidden electromagnetic transition rates of singly ionized zinc (Zn II). Electron correlations are considered to all orders using coupled-cluster theory in the relativistic framework. Calculated excitation energi

  5. Relativistic ab initio spectroscopy study of forbidden lines of singly ionized zinc

    NARCIS (Netherlands)

    Dixit, Gopal; Sahoo, Bijaya K.; Chaudhuri, Rajat K.; Majumder, Sonjoy

    2009-01-01

    The ab initio calculation has been carried out to study the astrophysically important forbidden electromagnetic transition rates of singly ionized zinc (Zn II). Electron correlations are considered to all orders using coupled-cluster theory in the relativistic framework. Calculated excitation

  6. The Pu–U–Am system: An ab initio informed CALPHAD thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Perron, A., E-mail: perron1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Turchi, P.E.A.; Landa, A.; Söderlind, P. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Ravat, B.; Oudot, B.; Delaunay, F. [CEA-Centre de Valduc, 21120 Is sur Tille (France)

    2015-03-15

    Highlights: • The ab initio informed CALPHAD assessment of the Am–U system has been realized. • A strong tendency toward phase separation across the whole composition range is predicted. • The ab initio informed Pu–U–Am thermodynamic database has been developed. • The solubility of Am and U in the liquid phase is improved by adding Pu. • The δ-Pu (fcc) phase is strongly stabilized by Am, on the contrary to the bcc phase. - Abstract: Phase diagram and thermodynamic properties of the Am–U system, that are experimentally unknown, are calculated using the CALPHAD method with input from ab initio electronic-structure calculations for the fcc and bcc phases. A strong tendency toward phase separation across the whole composition range is predicted. In addition, ab initio informed Pu–U and Am–Pu thermodynamic assessments are combined to build a Pu–U–Am thermodynamic database. Regarding the Pu-rich corner of the ternary system, predictions indicate that Am acts as a powerful δ-Pu (fcc) stabilizer. In the U-rich corner, similar predictions are made but to a lesser extent. In both cases, the bcc phase is destabilized and the fcc phase is enhanced. Finally, results and methodology are discussed and compared with previous assessments and guidelines are provided for further experimental studies.

  7. Ab initio and DFT Studies of Be(BH42

    Directory of Open Access Journals (Sweden)

    J. S. Al-Otaibi

    2016-03-01

    Full Text Available In this study, the Ab inito and DFT calculations of optimized geometries, energy and vibrational spectra for the Beryllium borohydride Be(BH42 at different levels are achieved by Hartre – Fock (HF, perturbation theory (MP2 and density functional theory (B3LYP methods. They utilize the 6-31G(d, 6-311G(d,p, 6-311+G(d,p and 6-311++G(d,p basis sets. The theoretical results showed that Beryllium borohydride with the D2d structure which contains two identical groups of double bridging hydrogen has the lowest energy at all levels. Consequently, this compound is considered as the most stable one and the results of IR and Raman Spectra at all levels support that. We found that both structures Cs, C3v have the structure of D2d kind at all levels. The values of bond lengths for these two structures are identical for the bond lengths to the structure D2d kind which confirms this theory.

  8. Relaxation of Small Molecules:an ab initio Study

    Institute of Scientific and Technical Information of China (English)

    CAOYi-Gang; A.Antons; 等

    2002-01-01

    Using an ab inito total energy and force method,we have relaxed several group IV and group V elemental clusters,in detail the arsenic and antimony dimers,silicon,phosphorus,arsenic and antimony tetraners,The obtained bond lengths and cohesive energies are more accurate than other calculating methods,and in excellent agreement with the experimental results.

  9. Optical and other material properties of SiO2 from ab initio studies

    Science.gov (United States)

    Warmbier, Robert; Mohammed, Faris; Quandt, Alexander

    2014-07-01

    The optical properties of photonic devices largely depend on the dielectric properties of the underlying materials. We apply modern ab initio methods to study crystalline SiO2 phases, which serve as toy models for amorphous glass. We discuss the dielectric response from the infrared to the VIS/UV, which is crucial for glass based photonic applications. Low density silica, like cristobalite, may provide a good basis for high transmission optical devices.

  10. Ab Initio Study on the Anti-HIV Activities of Hydroxyflavones

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu

    2005-01-01

    Flavone and 95 hydroxyflavones have been studied with ab initio method, and their total energies, atomic charges, dipole moments, multipole moments, molecular orbital compositions, orbital energies etc. were obtained. Among them the relationship between total atomic charges and activities against HIV is basically in accordance with the experimental results. The beneficial references are provided for the extraction and synthesis of strong active anti-HIV medicines.

  11. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Nalini; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University, Shimla(HP)-171005 (India); Thakur, Anil [Department of Physics, Govt. P. G. College Solan (HP)-173212 (India)

    2015-05-15

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.

  12. Liquid Be, Ca and Ba. An orbital-free ab-initio molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Rio, B. G. del; González, L. E. [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid (Spain)

    2015-08-17

    Several static and dynamic properties of liquid beryllium (l-Be), liquid calcium (l-Ca) and liquid barium (l-Ba) near their triple point have been evaluated by the orbital-free ab initio molecular dynamics method (OF-AIMD), where the interaction between valence electrons and ions is described by means of local pseudopotentials. These local pseudopotentials used were constructed through a force-matching process with those obtained from a Kohn-Sham ab initio molecular dynamics study (KS-AIMD) of a reduced system with non-local pseudopotentials. The calculated static structures show good agreement with the available experimental data, including an asymmetric second peak in the structure factor which has been linked to the existence of a marked icosahedral short-range order in the liquid. As for the dynamic properties, we obtain collective density excitations whose associated dispersion relations exhibit a positive dispersion.

  13. Ab initio simulations and neutron scattering studies of structure and dynamics in PdH

    CERN Document Server

    Totolici, I E

    2001-01-01

    The work presented in this PhD thesis is concerned with the interpretation of the neutron scattering measurements from the palladium hydrogen system by means of ab initio electronic structure calculations. The motivation of performing such calculations was due to recent neutron scattering studies on this system that showed a strong directional dependence to the dynamical structure factor together with a complex dependence on energy. Here we attempt to describe the origin of these features by ab initio simulations of the dynamical structure factor. The method assumes an adiabatic separation of the motion of the proton and palladium atoms. The proton wave functions are calculated by a direct solution of the associated single-particle Schroedinger equation using a plane wave basis set method and a mapping of the adiabatic surface. The Fourier components of the adiabatic potential are obtained from LDA pseudopotential calculations. Using Fermi's golden rule within the Born approximation we were then able to calcu...

  14. Ab initio study of proton dynamics on perovskite oxide surfaces

    Directory of Open Access Journals (Sweden)

    Fuyuki Shimojo

    2007-01-01

    Full Text Available First-principles studies of the proton dynamics in perovskite oxides and the water adsorption on various oxide surfaces are briefly reviewed. Recent progress in the study of the microscopic mechanism of the proton absorption from perovskite oxide surfaces is also presented. It is shown that dopant ions on the surface and oxygen vacancies in the inside just below the surface play an important role for the proton absorption, while oxygen vacancies on the surface are influential for the dissociative adsorption of water molecules.

  15. Ab initio molecular dynamics study of Fe-containing smectites

    NARCIS (Netherlands)

    Liu, X.; Meijer, E.J.; Lu, X.; Wang, R.

    2010-01-01

    In order to identify the influences imposed by Fe substitution, density functional theory-based Car-Parrinello molecular dynamics simulations were employed to study both oxidized and reduced Fe-bearing smectites. The following basic properties were investigated: local structures in the clay layer, h

  16. Ab-Initio Study of the Group 2 Hydride Anions

    Science.gov (United States)

    Harris, Joe P.; Wright, Timothy G.; Manship, Daniel R.

    2013-06-01

    The beryllium hydride (BeH)- dimer has recently been shown to be surprisingly strongly bound, with an electronic structure which is highly dependent on internuclear separation. At the equilibrium distance, the negative charge is to be found on the beryllium atom, despite the higher electronegativity of the hydrogen. The current study expands this investigation to the other Group 2 hydrides, and attempts to explain these effects. M. Verdicchio, G. L. Bendazzoli, S. Evangelisti, T. Leininger J. Phys. Chem. A, 117, 192, (2013)

  17. Time-resolved photoelectron spectroscopy and ab initio multiple spawning studies of hexamethylcyclopentadiene

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.

    2014-01-01

    Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom....

  18. Hydrogen adsorption on boron doped graphene: an {\\it ab initio} study

    OpenAIRE

    Miwa, R. H.; Martins, T B; Fazzio, A.

    2007-01-01

    The electronic and structural properties of (i) boron doped graphene sheets, and (ii) the chemisorption processes of hydrogen adatoms on the boron doped graphene sheets have been examined by {\\it ab initio} total energy calculations.

  19. Ab initio molecular dynamics study of liquid methanol

    CERN Document Server

    Handgraaf, J W; Meijer, E J; Handgraaf, Jan-Willem; Erp, Titus S. van; Meijer, Evert Jan

    2003-01-01

    We present a density-functional theory based molecular-dynamics study of the structural, dynamical, and electronic properties of liquid methanol under ambient conditions. The calculated radial distribution functions involving the oxygen and hydroxyl hydrogen show a pronounced hydrogen bonding and compare well with recent neutron diffraction data, except for an underestimate of the oxygen-oxygen correlation. We observe that, in line with infrared spectroscopic data, the hydroxyl stretching mode is significantly red-shifted in the liquid. A substantial enhancement of the dipole moment is accompanied by significant fluctuations due to thermal motion. Our results provide valuable data for improvement of empirical potentials.

  20. Ab Initio Study of Electronic States of Astrophysically Important Molecules

    Science.gov (United States)

    Valiev, R. R.; Berezhnoy, A. A.; Minaev, B. F.; Chernov, V. E.; Cherepanov, V. N.

    2016-08-01

    A study of electronic states of LiO, NaO, KO, MgO, and CaO molecules has been performed. Potential energy curves of the investigated molecules have been constructed within the framework of the XMC-QDPT2 method. Lifetimes and efficiencies of photolysis mechanisms of these monoxides have been estimated within the framework of an analytical model of photolysis. The results obtained show that oxides of the considered elements in the exospheres of the Moon and Mercury are destroyed by solar photons during the first ballistic flight.

  1. Ab-initio study of thermal expansion in pure graphene

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Sarita; Kumar, Ranjan; Jindal, V. K., E-mail: jindal@pu.ac.in [Department of Physics, Panjab University, Chandigarh-160014 (India); Rani, Pooja [D.A.V. College, Sec-10, Chandigarh-160010 (India)

    2016-05-23

    Graphene is a zero band gap semiconductor with exceptionally high thermal conductivity. The electronic properties having been studied, therole of phonon in contributing to thermal expansion, thermal conductivity and other thermodynamic properties, is required to be investigated. This paper focuses more on thermal expansion. Some others results like phonon dispersion, Grüneisenparameters and bulk modulus,which are essential to estimation of thermal expansion, are also presented. The dynamical matrix was calculated using VASP code using both DFT and DFPT and the phonon frequencies were calculated using phonopy code under harmonic approximation. The linear thermal expansion coefficient of graphene is found to be strongly dependent on temperature but remains negative upto 470 K and positive thereafter, with a room temperature value of −1.44×10{sup −6}. The negative expansion coefficient is very interesting and is found to be in conformity with experimental as well as with recent theoretical estimates. There is only qualitative agreement of our results with experimental data and motivates further investigation, primarily on the high negative values of Grüneisen parameters.

  2. Ab-initio study of thermal expansion in pure graphene

    Science.gov (United States)

    Mann, Sarita; Rani, Pooja; Kumar, Ranjan; Jindal, V. K.

    2016-05-01

    Graphene is a zero band gap semiconductor with exceptionally high thermal conductivity. The electronic properties having been studied, therole of phonon in contributing to thermal expansion, thermal conductivity and other thermodynamic properties, is required to be investigated. This paper focuses more on thermal expansion. Some others results like phonon dispersion, Grüneisenparameters and bulk modulus,which are essential to estimation of thermal expansion, are also presented. The dynamical matrix was calculated using VASP code using both DFT and DFPTand the phonon frequencies were calculated using phonopy code under harmonic approximation. The linear thermal expansion coefficient of graphene is found to be strongly dependent on temperature but remains negative upto 470 K and positive thereafter, with a room temperature value of -1.44×10-6. The negative expansion coefficient is very interesting and is found to be in conformity with experimental as well as with recent theoretical estimates. There is only qualitative agreement of our results with experimental data and motivates further investigation, primarily on the high negative values of Grüneisen parameters.

  3. Ab initio Study of Naptho-Homologated DNA Bases

    Energy Technology Data Exchange (ETDEWEB)

    Sumpter, Bobby G [ORNL; Vazquez-Mayagoitia, Alvaro [ORNL; Huertas, Oscar [Universitat de Barcelona; Fuentes-Cabrera, Miguel A [ORNL; Orozco, Modesto [Institut de Recerca Biomedica, Parc Cientific de Barcelona, Barcelona, Spain; Luque, Javier [Universitat de Barcelona

    2008-01-01

    Naptho-homologated DNA bases have been recently used to build a new type of size expanded DNA known as yyDNA. We have used theoretical techniques to investigate the structure, tautomeric preferences, base-pairing ability, stacking interactions, and HOMO-LUMO gaps of the naptho-bases. The structure of these bases is found to be similar to that of the benzo-fused predecessors (y-bases) with respect to the planarity of the aromatic rings and amino groups. Tautomeric studies reveal that the canonical-like form of naptho-thymine (yyT) and naptho-adenine (yyA) are the most stable tautomers, leading to hydrogen-bonded dimers with the corresponding natural nucleobases that mimic the Watson-Crick pairing. However, the canonical-like species of naptho-guanine (yyG) and naptho-cytosine (yyC) are not the most stable tautomers, and the most favorable hydrogen-bonded dimers involve wobble-like pairings. The expanded size of the naphto-bases leads to stacking interactions notably larger than those found for the natural bases, and they should presumably play a dominant contribution in modulating the structure of yyDNA duplexes. Finally, the HOMO-LUMO gap of the naptho-bases is smaller than that of their benzo-base counterparts, indicating that size-expansion of DNA bases is an efficient way of reducing their HOMO-LUMO gap. These results are examined in light of the available experimental evidence reported for yyT and yyC.

  4. Ab initio study of the thermopower of biphenyl-based single-molecule junctions

    Science.gov (United States)

    Bürkle, M.; Zotti, L. A.; Viljas, J. K.; Vonlanthen, D.; Mishchenko, A.; Wandlowski, T.; Mayor, M.; Schön, G.; Pauly, F.

    2012-09-01

    By employing ab initio electronic-structure calculations combined with the nonequilibrium Green's function technique, we study the dependence of the thermopower Q on the conformation in biphenyl-based single-molecule junctions. For the series of experimentally available biphenyl molecules, alkyl side chains allow us to gradually adjust the torsion angle ϕ between the two phenyl rings from 0∘ to 90∘ and to control in this way the degree of π-electron conjugation. Studying different anchoring groups and binding positions, our theory predicts that the absolute values of the thermopower decrease slightly towards larger torsion angles, following an a+bcos2ϕ dependence. The anchoring group determines the sign of Q and a,b simultaneously. Sulfur and amine groups give rise to Q,a,b>0, while for cyano, Q,a,bbinding positions can lead to substantial variations of the thermopower mostly due to changes in the alignment of the frontier molecular orbital levels and the Fermi energy. We explain our ab initio results in terms of a π-orbital tight-binding model and a minimal two-level model, which describes the pair of hybridizing frontier orbital states on the two phenyl rings. The variations of the thermopower with ϕ seem to be within experimental resolution.

  5. Thermodynamic Study of Hydrolysis Reactions in Aqueous Solution from Ab Initio Potential and Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    S. Tolosa

    2013-01-01

    Full Text Available A procedure for the theoretical study of chemical reactions in solution by means of molecular dynamics simulations of aqueous solution at infinite dilution is described using ab initio solute-solvent potentials and TIP3P water model to describe the interactions. The procedure is applied to the study of neutral hydrolysis of various molecules (HCONH2, HNCO, HCNHNH2, and HCOOCH3 via concerted and water-assisted mechanisms. We used the solvent as a reaction coordinate and the free energy curves for the calculation of the properties related with the reaction mechanism, namely, reaction and activation energies.

  6. Ab Initio MO Studies on the Reaction Mechanism for Carbonyl Insertion Catalyzed by Carbonyl Cobalt Complex

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Ab initio method, under the effective core potential(ECP) approximation at HF/LANL2DZ level, has been employed to study the reaction mechanism of the carbonyl insertion of olefin hydroformylation catalyzed by a carbonyl cobalt HCo(CO)3. The two reaction paths have been discussed. The calculated potential energy barriers for the carbonyl migration and the ethyl group migration are 105.0 kJ/mol and 39.17 kJ/mol, respectively. The results indicate that the reaction path via ethyl migration is more energetically favorable than that via carbonyl insertion.

  7. Raman and ab initio studies of simple and binary 1-alkyl-3-methylimidazolium ionic liquids

    DEFF Research Database (Denmark)

    Berg, R.W.; Deetlefs, M.; Seddon, K.R.

    2005-01-01

    Raman spectra of the ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF6]), 1-hexyl-3-methylimidazolium chloride ([C(6)mim]Cl), and 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)mim][PF6]), and binary mixtures thereof, have been assigned using ab initio MP2...... calculations. The previously reported anti and gauche forms of the [C(4)mim](+) cation have been observed, and this study reveals this to be a general feature of the long-chain I-alkyl derivatives. Analysis of mixtures Of [C(6)mim]Cl and [C(6)mim][PF6] has provided information on the nature of the hydrogen...

  8. Electronic excitation induced amorphization in titanate pyrochlores: an ab initio molecular dynamics study

    Science.gov (United States)

    Xiao, H. Y.; Weber, W. J.; Zhang, Y.; Zu, X. T.; Li, S.

    2015-01-01

    The response of titanate pyrochlores (A2Ti2O7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser, electron and ion irradiations. PMID:25660219

  9. Ab initio molecular dynamics simulation study of successive hydrogenation reactions of carbon monoxide producing methanol

    Science.gov (United States)

    Pham, Thi Nu; Ono, Shota; Ohno, Kaoru

    2016-04-01

    Doing ab initio molecular dynamics simulations, we demonstrate a possibility of hydrogenation of carbon monoxide producing methanol step by step. At first, the hydrogen atom reacts with the carbon monoxide molecule at the excited state forming the formyl radical. Formaldehyde was formed after adding one more hydrogen atom to the system. Finally, absorption of two hydrogen atoms to formaldehyde produces methanol molecule. This study is performed by using the all-electron mixed basis approach based on the time dependent density functional theory within the adiabatic local density approximation for an electronic ground-state configuration and the one-shot GW approximation for an electronic excited state configuration.

  10. Ab-initio density functional theory study of a WO3 NH3-sensing mechanism

    Institute of Scientific and Technical Information of China (English)

    Hu Ming; Zhang Jie; Wang Wei-Dan; Qin Yu-Xiang

    2011-01-01

    WO3 bulk and various surfaces are studied by an ab-initio density functional theory technique.The band structures and electronic density states of WO3 bulk are investigated.The surface energies of different WO3 surfaces are compared and then the(002)surface with minimum energy is computed for its NH3 sensing mechanism which explains the results in the experiments.Three adsorption sites are considered.According to the comparisons of the energy and the charge change between before and after adsorption in the optimal adsorption site O1c,the NH3 sensing mechanism is obtained.

  11. Ab initio study of the EFG at the N sites in imidazole

    Energy Technology Data Exchange (ETDEWEB)

    Brown Goncalves, Marcos, E-mail: browngon@if.usp.br [Universidade de Sao Paulo, Instituto de Fisica (Brazil); Di Felice, R. [National Center on Nanostructures and Biosystems at Surfaces (S3) of INFM-CNR (Italy); Poleshchuk, O. Kh. [Tomsk State Pedagogical University (Russian Federation); Petrilli, H. M. [Universidade de Sao Paulo, Instituto de Fisica (Brazil)

    2008-01-15

    We study the nuclear quadrupole interaction at the nitrogen sites in the molecular and crystalline phases of the imidazole compound. We use PAW which is a state-of-the-art method to calculate the electronic structure and electric field gradient at the nucleus in the framework of the density functional theory. The quadrupole frequencies at both imino and amino N sites are in excellent agreement with measurements. This is the first time that the electric field gradient at crystalline imidazole is correctly treated by an ab initio theoretical approach.

  12. Ab-initio study of several static and dynamic properties of liquid palladium and platinum

    Directory of Open Access Journals (Sweden)

    González L. E.

    2017-01-01

    Full Text Available We report a study on several static and dynamic properties of liquid Pd and Pt metals at thermodynamic conditions near their respective triple points. The calculations have been carried out by an ab initio molecular dynamics simulation technique. Results are reported for several static structural magnitudes which are compared with the available X-ray diffraction. As for the dynamic properties, results have been obtained for both single and collective dynamical magnitudes as well as for some transport coeffcients which are compared with the corresponding experimental data.

  13. Orbital free ab initio study of static and dynamic properties of some liquid transition metals

    Directory of Open Access Journals (Sweden)

    Bhuiyan G. M.

    2017-01-01

    Full Text Available Several static and dynamic properties of liquid transition metals Cr, Mn and Co are studied for the first time using the orbital free ab-initio molecular dynamics simulation (OF-AIMD. This method is based on the density functional theory (DFT which accounts for the electronic energy of the system whereas the interionic forces are derived from the electronic energy via the Hellman-Feynman theorem. The external energy functional is treated with a local pseudopotential. Results are reported for static structure factors, isothermal compressibility, diffusion coeffcients, sound velocity and viscosity and comparison is performed with the available experimental data and other theoretical calculations.

  14. Ab initio MO study of reaction mechanism for carbonyl migration of Co complex

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Ab initio method under the effective core potential (ECP) approximation is employed to study the reaction mechanism of carbonyl migration of the cycle of olefin hydroformylation catalyzed by a carbonyl cobalt HCo(CO)3 at Hartree-Fock (HF) level. The structures of the reactant, transition state and product for the reaction are determined. The energy of each stationary point is corrected at MP2/LAN2DZ//LANL2DZ+ZPE (zero-point energy) level. The calculated activation barrier is 28.89 kJ/mol.

  15. Ab initio study of the epitaxial growth of Ge on Si(100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Milman, V.; Pennycook, S.J.; Jesson, D.E. [Oak Ridge National Lab., TN (United States); Payne, M.C.; Stich, I. [Cambridge Univ. (United Kingdom). Dept. of Physics

    1993-11-01

    We identify the binding sites for adsorption of a single Ge atom on the Si(100) surface using ab initio total energy calculations. The calculated diffusion barriers are in excellent agreement with experimental estimates. Using a large supercell we resolve the controversy regarding the binding geometry and migration path for the adatom, and investigate the influence of the adatom on the buckling of Si dimers. The adatom induces a buckling defect that is frequently observed using scanning tunneling microscopy (STM); therefore the study of single adatoms may be experimentally accessible.

  16. Ab initio study of spin-dependent transport in carbon nanotubes with iron and vanadium adatoms

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka

    2008-01-01

    We present an ab initio study of spin-dependent transport in armchair carbon nanotubes with transition metal adsorbates: iron or vanadium. The method based on density functional theory and nonequilibrium Green's functions is used to compute the electronic structure and zero-bias conductance...... (majority or minority) being scattered depends on the adsorbate and is explained in terms of d-state filling. We contrast the single-walled carbon nanotube results to the simpler case of the adsorbate on a flat graphene sheet with periodic boundary conditions and corresponding width in the zigzag direction...

  17. Ab initio study of the structural properties of acetonitrile-water mixtures

    Science.gov (United States)

    Chen, Jinfan; Sit, Patrick H.-L.

    2015-08-01

    Structural properties of acetonitrile and acetonitrile-water mixtures are studied using Density Functional Theory (DFT) and ab initio molecular dynamics simulations. Stable molecular clusters consisted of several water and acetonitrile molecules are identified to provide microscopic understanding of the interaction among water and acetonitrile molecules. Ab initio molecular dynamics simulations are performed to study the liquid structure at the finite temperature. Three mixing compositions in which the mole fraction of acetonitrile equals 0.109, 0.5 and 0.891 are studied. These compositions correspond to three distinct structural regimes. At the 0.109 and 0.891 mole fraction of acetonitrile, the majority species are mostly connected among themselves and the minority species are either isolated or forming small clusters without disrupting the network of the majority species. At the 0.5 mole fraction of acetonitrile, large water and acetonitrile clusters persist throughout the simulation, exhibiting the microheterogeneous behavior in acetonitrile-water mixtures in the mid-range mixing ratio.

  18. Ab initio study of structural, electronic, and thermal properties of Ir1-xRhx alloys

    Directory of Open Access Journals (Sweden)

    Sh. Ahmed

    2015-06-01

    Full Text Available The structural, electronic, mechanical and thermal properties of Ir1-xRhx alloys was studied systematically using ab initio density functional theory at different concentration (x = 0.00, 0.25, 0.50, 0.75, 1.00. The Special Quasirandom Structure method was used to make the alloys with FCC structure with four atoms per unit cell. The ground state properties such as lattice constant and bulk modulus were calculated to find the equilibrium atomic position for stable alloys. The calculated ground state properties are in good agreement with the experimental and previously presented other theoretical data. The electronic band structure and density of states were calculated to study the electronic properties for these alloys at different concentration. The electronic properties substantiate metallic behavior of alloys. The first principle density functional perturbation theory as implemented in quasiharmonic approximation was used for the calculation of thermal properties. We have calculated the thermal properties such the Debye temperatures, vibration energy, entropy, constant-volume specific heat and internal energy. The ab initio linear-response method was used for phonon densities of states calculations.

  19. Ab initio molecular dynamics study of collective dynamics in liquid Tl: Thermo-viscoelastic analysis

    Science.gov (United States)

    Bryk, Taras; Demchuk, Taras

    2017-08-01

    We studied collective dynamics of pure liquid metal Tl using a combination of ab initio molecular dynamics (AIMD) simulations and a thermoviscoelastic model applied to calculations of dynamic eigenmodes and dispersion of collective excitations in particular. We found that for liquid Tl at ambient pressure the transverse current spectral functions obtained directly in ab initio simulations for wave numbers larger than first pseudo-Brillouin-zone boundary contain two low-and high-frequency peaks that is an evidence of emergence of the unusually high-frequency transverse modes as it was observed before in liquid Li at very high pressures. The thermo-viscoelastic dynamic model shows perfect reproduction of the simulation-derived longitudinal current autocorrelation functions, and the acoustic eigenmodes are in nice agreement with the peaks of the longitudinal current spectral functions up to the first pseudo-Brillouin-zone boundary. The deviation of the dynamic eigenmodes from peak positions at higher wave numbers gives evidence of L-T coupling effects.

  20. Conformational study of acyclic alcohols by NMR spectroscopic analysis, molecular force field and Ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Ito, K.; Suezawa, H.; Hirota, M.; Nishio, M.

    1986-10-01

    Conformations of a series of acyclic alcohols (CH/sub 3/CH(R)CH(OH)CH/sub 3/, CH/sub 3/CH(R)CH(OH)CH(R')CH/sub 3/, and CH/sub 3/CH(R)CH(OH)Bu/sup t/) were studied (1) by measuring vicinal H-H coupling constants (/sup 3/JH-H), (2) by lanthanoid-induced shift (LIS) analysis, (3) by molecular mechanics calculations (MM2), and (4) by ab initio (STO-3G, 4-31G geometry optimization) calculations. In the case of conformationally flexible alcohols as exemplified by 2-butanol and 3-pentanol, population of conformers determined by the LIS method do not agree with those determined by the /sup 3/JH-H, MM2, and ab initio methods. The discrepancy comes from the fact that the LIS measurement gives the most stable conformation of the alcohol in the LSR-alcohol complex and not of the free alcohol. In some flexible molecules, the most stable conformer in the complex can be different from that of the free molecule. In general, the conformational equilibrium is shifted by coordination of the shift reagent to the conformer whose alkyl chain stretches opposite to the direction of the coordination site of the shift reagent. 21 references, 1 figure, 6 tables.

  1. Evolution of atomic structure in Al75Cu25 liquid from experimental and ab initio molecular dynamics simulation studies.

    Science.gov (United States)

    Xiong, L H; Yoo, H; Lou, H B; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z; Xie, H L; Xiao, T Q; Jeon, S; Lee, G W

    2015-01-28

    X-ray diffraction and electrostatic levitation measurements, together with the ab initio molecular dynamics simulation of liquid Al(75)Cu(25) alloy have been performed from 800 to 1600 K. Experimental and ab initio molecular dynamics simulation results match well with each other. No abnormal changes were experimentally detected in the specific heat capacity over total hemispheric emissivity and density curves in the studied temperature range for a bulk liquid Al(75)Cu(25) alloy measured by the electrostatic levitation technique. The structure factors gained by the ab initio molecular dynamics simulation precisely coincide with the experimental data. The atomic structure analyzed by the Honeycutt-Andersen index and Voronoi tessellation methods shows that icosahedral-like atomic clusters prevail in the liquid Al(75)Cu(25) alloy and the atomic clusters evolve continuously. All results obtained here suggest that no liquid-liquid transition appears in the bulk liquid Al(75)Cu(25) alloy in the studied temperature range.

  2. Atomic carbon chains as spin-transmitters: An ab initio transport study

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka

    2010-01-01

    An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin-polarization of the transmi......An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin...

  3. Ab initio study of Ni2MnGa under shear deformation

    Directory of Open Access Journals (Sweden)

    Zelený Martin

    2015-01-01

    Full Text Available The effect of shear deformation on Ni2MnGa magnetic shape memory alloy has been investigated using ab initio electronic structure calculations. We used the projector-augmented wave method for the calculations of total energies and stresses as functions of applied affine shear deformation. The studied nonmodulated martensite (NM phase exhibits a tetragonally distorted L21 structure with c/a > 1. A large strain corresponding to simple shears in {001}, {100} and {100} systems was applied to describe a full path between two equivalent NM lattices. We also studied {101} shear which is related to twining of NM phase. Twin reorientation in this system is possible, because applied positive shear results in path with significantly smaller energetic barrier than for negative shear and for shears in other studied systems. When the full relaxation of lattice parameters is allowed, the barriers further strongly decrease and the structures along the twinning path can be considered as orthorhombic.

  4. Ab initio study of perovskite type oxide materials for solid oxide fuel cells

    Science.gov (United States)

    Lee, Yueh-Lin

    2011-12-01

    Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen

  5. Ab initio study of Mg(AlH4)2

    NARCIS (Netherlands)

    van Setten, M.J.; de Wijs, G.A.; Popa, V.A.; Popa, V.A.; Brocks, G.

    2005-01-01

    Magnesium alanate Mg(AlH4)2 has recently raised interest as a potential material for hydrogen storage. We apply ab initio calculations to characterize structural, electronic and energetic properties of Mg(AlH4)2. Density functional theory calculations within the generalized gradient approximation

  6. Ab initio study of energy-level alignments in polymer-dye blends

    NARCIS (Netherlands)

    Pasveer, W.F.; Bobbert, P.A.; Michels, M.A.J.; Langeveld-Voss, B.M.W.; Schoo, H.F.M.; Bastiaansen, J.J.A.M.

    2003-01-01

    Polymers with a small amount of dye blended in offer an attractive possibility to change the color of the emitted light by changing the dye. We present ab initio calculations within density-functional theory of the HOMO/ LUMO energies for dipyrrolomethane dyes, polyphenylenevinylene and polyfluorene

  7. An ab initio Valence Bond Study on Cyclopenta-Fused Naphthalenes and Fluoranthenes

    NARCIS (Netherlands)

    Havenith, R.W.A.; van Lenthe, J.H.; Jenneskens, L.W.

    2005-01-01

    To probe the effect of external cyclopenta-fusion on a naphthalene core, ab initio valence bond (VB) calculations have been performed, using strictly atomic benzene p-orbitals and p-orbitals that are allowed to delocalize, on naphthalene (1), acenaphthylene (2), pyracylene (3), cyclopenta[b,c]-acena

  8. Ab initio study of energy-level alignments in polymer-dye blends

    NARCIS (Netherlands)

    Pasveer, W.F.; Bobbert, P.A.; Michels, M.A.J.; Langeveld-Voss, B.M.W.; Schoo, H.F.M.; Bastiaansen, J.J.A.M.

    2003-01-01

    Polymers with a small amount of dye blended in offer an attractive possibility to change the color of the emitted light by changing the dye. We present ab initio calculations within density-functional theory of the HOMO/ LUMO energies for dipyrrolomethane dyes, polyphenylenevinylene and

  9. Ab initio study of long-period superstructures in close-packed A3B compounds

    DEFF Research Database (Denmark)

    Rosengaard, N. M.; Skriver, Hans Lomholt

    1994-01-01

    We have performed ab initio calculations of the stability of one-dimensional long-period superstructures in Cu3Pd, Cu3Al, and Ag3Mg by means of an interface Green's function technique based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The ene...

  10. Ab initio study of Mg(AlH4)2

    NARCIS (Netherlands)

    Setten, van M.J.; Wijs, de G.A.; Popa, V.A.; Brocks, G.

    2005-01-01

    Magnesium alanate Mg(AlH4)2 has recently raised interest as a potential material for hydrogen storage. We apply ab initio calculations to characterize structural, electronic and energetic properties of Mg(AlH4)2. Density functional theory calculations within the generalized gradient approximation (G

  11. Many-body ab initio study of antiferromagnetic {Cr7M } molecular rings

    Science.gov (United States)

    Chiesa, A.; Carretta, S.; Santini, P.; Amoretti, G.; Pavarini, E.

    2016-12-01

    Antiferromagnetic molecular rings are widely studied both for fundamental quantum-mechanical issues and for technological applications, particularly in the field of quantum information processing. Here we present a detailed first-principles study of two families—purple and green—of {Cr7M } antiferromagnetic rings, where M is a divalent transition metal ion (M =Ni2 + , Mn2 +, and Zn2 +). We employ a recently developed flexible and efficient scheme to build ab initio system-specific Hubbard models. From such many-body models we systematically derive the low-energy effective spin Hamiltonian for the rings. Our approach allows us to calculate isotropic as well as anisotropic terms of the spin Hamiltonian, without any a priori assumption on its form. For each compound we calculate magnetic exchange couplings, zero-field splitting tensors, and gyromagnetic tensors, finding good agreement with experimental results.

  12. Ab-initio study of magnetism behavior in TiO2 semiconductor with structural defects

    Science.gov (United States)

    Zarhri, Z.; Houmad, M.; Ziat, Y.; El Rhazouani, O.; Slassi, A.; Benyoussef, A.; El Kenz, A.

    2016-05-01

    Magnetic, electronic and structural properties of titanium dioxide material with different structural defects are studied using the first-principles ab-initio calculations and the Korringa-Kohn-Rostoker method (KKR) combined with the coherent potential approximation (CPA) method in connection with the local density approximation (LDA). We investigated all structural defects in rutile TiO2 such as Titanium interstitial (Tii), Titanium anti-sites (Tio), Titanium vacancies (VTi), Oxygen interstitial (Oi), Oxygen anti-sites (OTi) and oxygen vacancies (Vo). Mechanisms of hybridization and interaction between magnetic atoms are investigated. The transition temperature is computed using the Mean Field Approximation (MFA).Magnetic stability energy of ferromagnetic and disordered local moment states is calculated to determine the most stable state. Titanium anti-sites have a half-metallic aspect. We also studied the change type caused by structural defects in this material.

  13. EFFECT OF SCANDIUM ON HIDROGEN DISSOCIATION ENERGY AT MAGNESIUM SURFACE: AB INITIO DFT STUDY

    Directory of Open Access Journals (Sweden)

    I Wayan Sutapa

    2010-07-01

    Full Text Available The dissociative chemisorption of hydrogen on both pure and Sc-incorporated Mg(0001 surfaces have been studied by ab initio density functional theory (DFT calculation. The calculated dissociation energy of hydrogen molecule on a pure Mg(0001 surface (1.200 eV is in good agreement with comparable theoretical studies. For the Sc-incorporated Mg(0001 surface, the activated barrier decreases to 0.780 eV due to the strong interaction between the molecular orbital of hydrogen and the d metal state of Sc. This could explain the experimentally observed improvement in absorption kinetics of hydrogen when transition metals have been introduced into the magnesium materials.   Keywords: Dissociation, Adsorption, Chemisorptions, DFT, Magnesium

  14. Tunneling of electrons via rotor-stator molecular interfaces: combined ab initio and model study

    CERN Document Server

    Petreska, Irina; Pejov, Ljupco; Kocarev, Ljupco

    2015-01-01

    Tunneling of electrons through rotor-stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons' formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that confirmation dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previ...

  15. Binding of TNT to amplifying fluorescent polymers: an ab initio and molecular dynamics study.

    Science.gov (United States)

    Enlow, Mark A

    2012-03-01

    Molecular modeling techniques were employed to study the interaction of trinitrotoluene with an amplifying fluorescent polymer used in explosive sensor devices. The pentiptycene moiety present in these polymers appears to be the most energetically favorable binding site for trinitrotoluene. Surface features of the polymer suggest that the small cavity feature of the pentiptycene moiety may be more available for binding to analyte compounds due to steric crowding about the large cavity. Binding energies between model binding sites of the polymer and various analyte compounds were more rigorously estimated by semiempirical and ab initio techniques. Binding energies were found to be largest with trinitrotoluene and other nitroaromatic compounds. Electrostatic and π-stacking interactions between trinitrotoluene and the model host were investigated by studying a series of modified host compounds.

  16. Structural properties of iron nitride on Cu(100): An ab-initio molecular dynamics study

    KAUST Repository

    Heryadi, Dodi

    2011-01-01

    Due to their potential applications in magnetic storage devices, iron nitrides have been a subject of numerous experimental and theoretical investigations. Thin films of iron nitride have been successfully grown on different substrates. To study the structural properties of a single monolayer film of FeN we have performed an ab-initio molecular dynamics simulation of its formation on a Cu(100) substrate. The iron nitride layer formed in our simulation shows a p4gm(2x2) reconstructed surface, in agreement with experimental results. In addition to its structural properties, we are also able to determine the magnetization of this thin film. Our results show that one monolayer of iron nitride on Cu(100) is ferromagnetic with a magnetic moment of 1.67 μ B. © 2011 Materials Research Society.

  17. Molecular orbital ab initio and density functional theoretical study on reaction between PH2 and NO

    Institute of Scientific and Technical Information of China (English)

    HU; Zhengfa(胡正发); WANG; Zhenya(王振亚); LI; Haiyang(李海洋); ZHOU; Shikang(周士康)

    2002-01-01

    The theoretical study of reaction between PH2 and NO on the ground state potential energy surface is reported by using molecular orbital ab initio calculation and density function theory (DFT). Equilibrium structural parameters, harmonic vibrational frequencies, total energies and zero point energies of all species during reaction are computed by HF, MP2 (full) and B3LYP theory levels with the medium basis set 6-31G*. Theoretical results indicate that intermediate IM1(H2PNO) is firstly formed by overcoming a small energy barrier TS1, and then two four-membered ring transient states TS2 and TS5, with energy barriers 103.3 and 102.6 kJ/mol respectively,then H-migration and isomerization are completed and the products PN and H2O are formed. The reaction is exothermic one with -189.6 k J/mol released.

  18. Structural phase transition of CdTe: an ab initio study.

    Science.gov (United States)

    Alptekin, Sebahaddin

    2013-01-01

    A constant pressure ab initio MD technique and density functional theory with a generalized gradient approximation (GGA) was used to study the pressure-induced phase transition in zinc-blende CdTe. We found that CdTe undergoes a structural first-order phase transition to [Formula: see text] (binary β-tin) tetragonal structure in the constant pressure molecular dynamics simulation at 20 GPa. When the pressure was increased to 50 GPa, the phase of tetragonal structure converted to a new Imm2 orthorhombic structure. These phase transformations were also calculated by using the enthalpy calculations. Transition phases, lattice parameters and bulk properties we attained are comparable with experimental and theoretical data.

  19. Pressure-induced phase transition in wurtzite ZnTe: an ab initio study.

    Science.gov (United States)

    Alptekin, Sebahaddin

    2012-03-01

    A constant pressure ab initio MD technique and density functional theory with a generalized gradient approximation (GGA) was used to study the pressure-induced phase transition in wurtzite ZnTe. A first-order phase transition from the wurtzite structure to a Cmcm structure was successfully observed in a constant-pressure molecular dynamics simulation. This phase transformation was also analyzed using enthalpy calculations. We also investigated the stability of wurtzite (WZ) and zinc-blende (ZB) phases from energy-volume calculations, and found that both structures show quite similar equations of state and transform into a Cmcm structure at 16 GPa using enthalpy calculations, in agreement with experimental observations. The transition phase, lattice parameters and bulk properties we obtained are comparable with experimental and theoretical data.

  20. Ab initio study of transport properties in defected carbon nanotubes: an O(N) approach

    Energy Technology Data Exchange (ETDEWEB)

    Biel, Blanca; GarcIa-Vidal, F J; Flores, Fernando [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Rubio, Angel [European Theoretical Spectroscopy Facility (ETSF), Departamento de Fisica de Materiales, Universidad PaIs Vasco, Edificio Korta, Avenida Tolosa 72, 20018 San Sebastian (Spain)], E-mail: blanca.biel@cea.fr

    2008-07-23

    A combination of ab initio simulations and linear-scaling Green's functions techniques is used to analyze the transport properties of long (up to 1 {mu}m) carbon nanotubes with realistic disorder. The energetics and the influence of single defects (monovacancies and divacancies) on the electronic and transport properties of single-walled armchair carbon nanotubes are analyzed as a function of the tube diameter by means of the local orbital first-principles Fireball code. Efficient O(N) Green's functions techniques framed within the Landauer-Buettiker formalism allow a statistical study of the nanotube conductance averaged over a large sample of defected tubes and thus extraction of the nanotube localization length. The cases of zero and room temperature are both addressed.

  1. Voltage and capacity control of polyaniline based organic cathodes: An ab initio study

    Science.gov (United States)

    Chen, Yingqian; Manzhos, Sergei

    2016-12-01

    Polyaniline (PANI) is a promising organic cathode material for electrochemical batteries. Its specific capacity is limited by irreversible formation of pernigraniline base, and its energy density is limited by the voltage which could be improved. We present an ab initio study of PANI and PANI functionalized with functional groups which lead to increased voltage and stabilization of the pernigraniline salt. Specifically, the oxidation potential achieved by functionalization with CN on the nitrogen is computed to be 1.3 V higher than that of pristine PANI oligomer, leading to a higher voltage, and the formation of the pernigraniline base is predicted to be simultaneously suppressed, leading to a higher reversible capacity. Therefore, functionalized PANI could be a promising candidate organic cathode for Li-ion batteries.

  2. The Ab Initio Studies of NO Chemisorption on TiO2(110) Surface

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The studies of NO chemisorption on TiO2(110) surface are the base of research to NO decomposed to N2O on TiO2 surface. In this paper, 12 kinds of possible models of NO adsorbed on TiO2 perfect and defect surface were calculated by use of ab initio cluster method. We carried out optimization of the geometry, calculation of the chemisorption energy and analysis of the Mulliken population to those adsorption models. According to the calculation results, it can be got that the adsorbed decomposition of NO on defect surface is more advantageous and M6 and M12 are the important models to NO chemisorption and decomposition on TiO2 surface.

  3. Ab initio contribution to the study of complexes formed during dilute FeCu alloys radiation

    CERN Document Server

    Becquart, C S

    2003-01-01

    Cu plays an important role in the embrittlement of pressure vessel steels under radiation and entities containing both Cu atoms and vacancies seem to appear as a consequence of displacement cascades. The characterisation of the stability as well as the migration of small Cu-vacancy complexes is thus necessary to understand and simulate the formation of these entities. For instance, cascade ageing studied by kinetic Monte Carlo or by rate theory models requires a good characterisation of such complexes which are parameters for these methods. We have investigated, by ab initio calculations based on the density functional theory, point defects and small defects in dilute FeCu alloys. The structure of small Cu clusters and Cu-vacancy complexes has been determined, as well as their formation and binding energies. Their relative stability is discussed. Vacancy migration energies in the presence of Cu atoms have been calculated and analysed. All the results are compared to the figures obtained with empirical interat...

  4. Ab-initio Study of the Diffusion Mechanisms of Gallium in a Silicon Matrix

    Science.gov (United States)

    Levasseur-Smith, Kevin; Mousseau, Normand

    2007-03-01

    We present the results of a study into the diffusion mechanisms of Ga defects in crystalline Si. The dominant neutral configurations for single and multi-atom defects are established by ab-initio calculations using the density functional theory in the LDA approximation, with a LCAO basis as implemented in the SIESTA package. We find formation energies of 0.7 eV and 2.9 eV, respectively, for the substitutional and tetrahedral interstitial defects, while the diatomic substitutional-tetrahedral complex has a formation energy of 2.2 eV. Subsequent calculations using this same DFT package in conjunction with the activation relaxation technique (ART nouveau) allow us to determine possible diffusion pathways as well as their corresponding saddle points and energy barriers.

  5. Femtosecond Laser Processing of Germanium: An Ab Initio Molecular Dynamics Study

    CERN Document Server

    Ji, Pengfei

    2016-01-01

    An ab initio molecular dynamics study of femtosecond laser processing of germanium is presented in this paper. The method based on the finite temperature density functional theory is adopted to probe the structural change, thermal motion of the atoms, dynamic property of the velocity autocorrelation, and the vibrational density of states. Starting from a cubic system at room temperature (300 K) containing 64 germanium atoms with an ordered arrangement of 1.132 nm in each dimension, the femtosecond laser processing is simulated by imposing the Nose Hoover thermostat to the electronic subsystem lasting for ~100 fs and continuing with microcanonical ensemble simulation of ~200 fs. The simulation results show solid, liquid and gas phases of germanium under adjusted intensities of the femtosecond laser irradiation. We find the irradiated germanium distinguishes from the usual germanium crystal by analyzing their melting and dynamic properties.

  6. Ab initio study of heterojunction discontinuities in the ZnO/Cu2O system

    Science.gov (United States)

    Zemzemi, M.; Alaya, S.; Ben Ayadi, Z.

    2014-06-01

    Solar cells based on transparent conductive oxides such as ZnO/Cu2O constitute a very advanced way to build high-performance cells. In this work, we are interested in the characterization of the interface through nanoscale modeling based on ab initio approaches (density functional theory, local density approximation, and pseudopotential). This work aims to build a supercell containing a heterojunction ZnO/Cu2O and study the structural properties and the discontinuity of the valence band (band offset) from a semiconducting to another phase. We build a zinc oxide in the wurtzite structure along [0001] on which we place the copper oxide in the hexagonal (CdI2-type) structure. We choose the method of Van de Walle and Martin to calculate the energy offset. This approach fits well the density functional theory. Our calculation of the band offset gives a value that corresponds to other experimental and theoretical values.

  7. Ab-initio molecular dynamics study of lanthanides in liquid sodium

    Science.gov (United States)

    Li, Xiang; Samin, Adib; Zhang, Jinsuo; Unal, C.; Mariani, R. D.

    2017-02-01

    To mitigate the fuel cladding chemical interaction (FCCI) phenomena in liquid sodium cooled fast reactors, a fundamental understanding of the lanthanide (Ln) transport through liquid Nasbnd Cs filled pores in Usbnd Zr fuel is necessary. In this study, we investigate three abundant Ln fission products diffusion coefficients in liquid Na at multiple temperatures. By utilization of Ab-initio Molecular Dynamics, the Ln diffusivities are found to be in the magnitude order of liquid diffusion (10-5cm2 /s) and the temperature dependence of the diffusivity for different lanthanides in liquid sodium was explored. It is also observed that dilute concentration of Pr and Nd led to a significant change in Na diffusivity. The structural and electronic properties of Nasbnd Ln metallic systems have been investigated. The total coordination number shows dependence on both the temperature and the composition.

  8. Ab initio study of the optical properties of crystalline phenanthrene, including the excitonic effects

    Science.gov (United States)

    Dadsetani, Mehrdad; Nejatipour, Hajar; Ebrahimian, Ali

    2015-05-01

    Using the ab initio methods for solving the Bethe-Salpeter equation on the basis of the FPLAPW method, optical properties of crystalline phenanthrene were calculated, in a comparison to its isomer, anthracene. It was found that despite the similarity of the structural, electronic, and the overall optical properties in a 40 eV energy range, phenanthrene and anthracene show significant differences in their optical spectra in the energy range below band gaps. Phenanthrene has two spin singlet excitonic features whereas anthracene shows one. The singlet and the lowest triplet binding energies of phenanthrene were found to be larger than anthracene. In this study, in addition, a comparison has been made between the optical spectra in RPA and the existing experimental data.

  9. Ab initio density matrix renormalization group study of magnetic coupling in dinuclear iron and chromium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Travis V.; Morokuma, Keiji, E-mail: morokuma@fukui.kyoto-u.ac.jp [Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103 (Japan); Kurashige, Yuki; Yanai, Takeshi [Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585 (Japan)

    2014-02-07

    The applicability of ab initio multireference wavefunction-based methods to the study of magnetic complexes has been restricted by the quickly rising active-space requirements of oligonuclear systems and dinuclear complexes with S > 1 spin centers. Ab initio density matrix renormalization group (DMRG) methods built upon an efficient parameterization of the correlation network enable the use of much larger active spaces, and therefore may offer a way forward. Here, we apply DMRG-CASSCF to the dinuclear complexes [Fe{sub 2}OCl{sub 6}]{sup 2−} and [Cr{sub 2}O(NH{sub 3}){sub 10}]{sup 4+}. After developing the methodology through systematic basis set and DMRG M testing, we explore the effects of extended active spaces that are beyond the limit of conventional methods. We find that DMRG-CASSCF with active spaces including the metal d orbitals, occupied bridging-ligand orbitals, and their virtual double shells already capture a major portion of the dynamic correlation effects, accurately reproducing the experimental magnetic coupling constant (J) of [Fe{sub 2}OCl{sub 6}]{sup 2−} with (16e,26o), and considerably improving the smaller active space results for [Cr{sub 2}O(NH{sub 3}){sub 10}]{sup 4+} with (12e,32o). For comparison, we perform conventional MRCI+Q calculations and find the J values to be consistent with those from DMRG-CASSCF. In contrast to previous studies, the higher spin states of the two systems show similar deviations from the Heisenberg spectrum, regardless of the computational method.

  10. High pressure behaviour of uranium dicarbide (UC2): Ab-initio study

    Science.gov (United States)

    Sahoo, B. D.; Mukherjee, D.; Joshi, K. D.; Kaushik, T. C.

    2016-08-01

    The structural stability of uranium dicarbide has been examined under hydrostatic compression employing evolutionary structure search algorithm implemented in the universal structure predictor: evolutionary Xtallography (USPEX) code in conjunction with ab-initio electronic band structure calculation method. The ab-initio total energy calculations involved for this purpose have been carried out within both generalized gradient approximations (GGA) and GGA + U approximations. Our calculations under GGA approximation predict the high pressure structural sequence of tetragonal → monoclinic → orthorhombic for this material with transition pressures of ˜8 GPa and 42 GPa, respectively. The same transition sequence is predicted by calculations within GGA + U also with transition pressures placed at ˜24 GPa and ˜50 GPa, respectively. Further, on the basis of comparison of zero pressure equilibrium volume and equation of state with available experimental data, we find that GGA + U approximation with U = 2.5 eV describes this material better than the simple GGA approximation. The theoretically predicted high pressure structural phase transitions are in disagreement with the only high experimental study by Dancausse et al. [J. Alloys. Compd. 191, 309 (1993)] on this compound which reports a tetragonal to hexagonal phase transition at a pressure of ˜17.6 GPa. Interestingly, during lowest enthalpy structure search using USPEX, we do not see any hexagonal phase to be closer to the predicted monoclinic phase even within 0.2 eV/f. unit. More experiments with varying carbon contents in UC2 sample are required to resolve this discrepancy. The existence of these high pressure phases predicted by static lattice calculations has been further substantiated by analyzing the elastic and lattice dynamic stability of these structures in the pressure regimes of their structural stability. Additionally, various thermo-physical quantities such as equilibrium volume, bulk modulus, Debye

  11. Ab-initio study of magnetic properties and phase transitions in Ga (Mn) N with Monte Carlo approach

    Energy Technology Data Exchange (ETDEWEB)

    Sbai, Y.; Ait Raiss, A.; Salmani, E. [LMPHE (URAC 12), Faculty of Science, Mohammed V University, Av. Ibn Batouta, Rabat (Morocco); Bahmad, L., E-mail: Bahmad@fsr.ac.ma [LMPHE (URAC 12), Faculty of Science, Mohammed V University, Av. Ibn Batouta, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculty of Science, Mohammed V University, Av. Ibn Batouta, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco)

    2015-12-15

    On the basis of ab-initio calculations and Monte Carlo simulations the magnetic and electronic properties of Gallium nitride (GaN) doped with the transition metal Manganese (Mn) were studied. The ab initio calculations were done using the AKAI–KKR–CPA method within the Local Density Approximation (LDA) approximation. We doped our Diluted Magnetic Semiconductor (DMS), with different concentrations of magnetic impurities Mn and plotted the density of state (DOS) for each one. Showing a half-metallic behavior and ferromagnetic state especially for Ga{sub 0.95}Mn{sub 0.05}N making this DMS a strong candidate for spintronic applications. Moreover, the magnetization and susceptibility of our system as a function of the temperature has been calculated and give for various system size L to study the size effect. In addition, the transition temperature was deduced from the peak of the susceptibility. The Ab initio results are in good agreement with literature especially for (x=0.05) of Mn which gives the most interesting results. - Highlights: • The AKAI–KKR–CPA method has been applied to study the doped compound GaN:Mn. • The local density approximation (LDA) has been applied. • The ab-initio calculations have been performed. • The density of states (DOS) have been plotted for differents doping concentrations, using Monte Carlo simulations.

  12. Discovering chemistry with an ab initio nanoreactor

    OpenAIRE

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-01-01

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerat...

  13. Conformational space of clindamycin studied by ab initio and full-atom molecular dynamics.

    Science.gov (United States)

    Kulczycka-Mierzejewska, Katarzyna; Trylska, Joanna; Sadlej, Joanna

    2016-01-01

    Molecular dynamics (MD) simulations allow determining internal flexibility of molecules at atomic level. Using ab initio Born-Oppenheimer molecular dynamics (BOMD), one can simulate in a reasonable time frame small systems with hundreds of atoms, usually in vacuum. With quantum mechanics/molecular mechanics (QM/MM) or full-atom molecular dynamics (FAMD), the influence of the environment can also be simulated. Here, we compare three types of MD calculations: ab initio BOMD, hybrid QM/MM, and classical FAMD. As a model system, we use a small antibiotic molecule, clindamycin, which is one of the lincosamide antibiotics. Clindamycin acquires two energetically stable forms and we investigated the transition between these two experimentally known conformers. We performed 60-ps BOMD simulations in vacuum, 50-ps QM/MM, and 100-ns FAMD in explicit water. The transition between two antibiotic conformers was observed using both BOMD and FAMD methods but was not noted in the QM/MM simulations.

  14. Melting of sodium under high pressure. An ab-initio study

    Energy Technology Data Exchange (ETDEWEB)

    González, D. J.; González, L. E. [Departamento de Física Teórica, Atómica y Optica, Universidad de Valladolid, 47011 Valladolid (Spain)

    2015-08-17

    We report ab-initio molecular dynamics simulations of dense liquid/solid sodium for a pressure range from 0 to 100 GPa. The simulations have been performed with the orbital free ab-initio molecular dynamics method which, by using the electron density as the basic variable, allows to perform simulations with large samples and for long runs. The calculated melting curve shows a maximum at a pressure ≈ 30 GPa and it is followed by a long, steep decrease. These features are in good agreement with the experimental data. For various pressures along the melting curve, we have calculated several liquid static properties (pair distribution functions, static structure factors and short-range order parameters) in order to analyze the structural effects of pressure.

  15. Li ion diffusion mechanisms in LiFePO4: an ab initio molecular dynamics study.

    Science.gov (United States)

    Yang, Jianjun; Tse, John S

    2011-11-17

    The mechanisms for thermal (self) diffusion of Li ions in fully lithiated LiFePO(4) have been investigated with spin polarized ab initio molecular dynamics calculations. The effect of electron correlation is taken into account with the GGA+U formalism. It was found that Li ion diffusion is not a continuous process but through a series of jumps from one site to another. A dominant process is the hopping between neighboring Li sites around the PO(4) groups, which results in a zigzag pathway along the crystallographic b-axis. This observation is in agreement with a recent neutron diffraction experiment. A second process involves the collaborative movements of the Fe ions leading to the formation of antisite defects and promotes Li diffusion across the Li ion channels. The finding of the second mechanism demonstrates the benefit of ab initio molecular dynamics simulation in sampling diffusion pathways that may not be anticipated.

  16. Raman and ab initio studies of simple and binary 1-alkyl-3-methylimidazolium ionic liquids

    DEFF Research Database (Denmark)

    Berg, R.W.; Deetlefs, M.; Seddon, K.R.

    2005-01-01

    Raman spectra of the ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF6]), 1-hexyl-3-methylimidazolium chloride ([C(6)mim]Cl), and 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)mim][PF6]), and binary mixtures thereof, have been assigned using ab initio MP2...... bonding between the imidazolium headgroup and the anions, and the invariance of the essentially 50:50 mixture of the predominant conformers informs on the nature of glass formation in these systems....

  17. Ab initio study of antiphase boundaries and stacking faults in L12 and DO22 compounds

    DEFF Research Database (Denmark)

    Rosengaard, N. M.; Skriver, Hans Lomholt

    1994-01-01

    We have performed ab initio calculations of the energies of antiphase boundaries as well as complex and superlattice intrinsic stacking faults in nine intermetallic compounds observed in the face-centered-cubic L1(2) and DO22 structures. The calculations were performed by means of a Green's funct......'s function technique based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations....

  18. Ab initio study on the mechanism of rhodium-complexcatalyzed carbonylation of methanol to acetic acid

    Institute of Scientific and Technical Information of China (English)

    LEI; Ming

    2001-01-01

    [1]Thomas, R., Cundari, T. R., Computational studies of transition metal-main group multiple bonding, Chem. Rev., 2000,100: 807.[2]Maricel Torrent, Miquel Sola, Gernot Frenking, Theoretical studies of some transition-metal-mediated reactions of industrial and synthetic importance, Chem. Rev., 2000, 100: 439.[3]Paulik, F. E., Roth, J. F., Catalysts for the low-pressure carbonylation of menthanol to acetic acid, Chem. Commun., 1968,24: 1578.[4]Jiang Hua, Diao Kaisheng, Pan Pinglai et al., A new class of rhodium complexes containing free donor atoms and their intramolecular substitution reaction, Chin. J. Chem., 2000, 18: 752.[5]Jiang Dazhi, Li Xiaobao, Wang Enlai, Synthesis Chemistry ofCarbonylation, Beijing: Chemical Technology Press, 1996.[6]Adamson, G. W., Daly, J. J., Forster, D., Reduction of iolocarbonyl rhodium ions with methyl iodide, structure of the rho-dium acetyl complex: [Me3PhN+], [Rh2I6-(Me(O)2(CO)2)]2-, J. Organomet. Chem., 1974, 71: C 17.[7]Forster, D., On the mechanism of a rhodium-complex-catalyzed carbonylation of methanol to acetic acid, J. Am. Chem.Soc., 1976, 98: 846.[8]Hjortkjaer, J., Jensen, O. R., Rhodium complexes catalyzed methanol carbonylation, Ind. Eng. Chem. Prod. Dev., 1976, 15:46.[9]Jeffrey, P., Wadt, W. R., Ab initio effective core potentials for molecular calculations, Potentials for the transition metalatoms Sc to Hg, J. Chem. Phys., 1995, 82: 270.[10]Frisch, M. J., Trunks, G. W., Schlegel, H. B. et al., Gaussian 94, Pittsburgh PA: Gaussian, Inc., 1995.[11]Lei Ming, Feng Wenlin, Xu Zhenfeng et al., A theoretical study on the key reactions of hydroformylation cycle by modi-fied carbonyl cobalt, Chemical Journal of Chinese University, 2001, 22: 455.[12]Lei Ming, Feng Wenlin, Xu Zhenfeng, Ab initio MO study on the reaction mechanism for carbonyl insertion catalyzed by the carbonyl cobalt complex, Chemical Research in Chinese University, 2000, 19:31.

  19. Structural, Conformational and Vibrational Studies of Isocyanocyclopentane from Infrared, Raman Spectra and AB Initio Calculations

    Science.gov (United States)

    Sawant, Dattatray K.; Klaassen, Joshua J.; Durig, James R.

    2013-06-01

    The infrared and Raman spectra (3200 to 50 cm^{-1}) of the gas, liquid or solution, and solid have been recorded of isocyanocyclopentane, _{c}-C_{5}H_{9}NC. FT-microwave studies have also been carried out and 23 transitions were recorded for the envelope-axial (Ax) conformer. Variable temperature (-55 to -100°C) studies of the infrared spectra (3200 to 400 cm^{-1}) dissolved in liquid xenon have been carried out. From these data, both the Ax and envelope-equatorial (Eq) conformers have been identified and their relative stabilities obtained. The enthalpy difference has been determined to be 102 ± 10 cm^{-1} (1.21 ± 0.03 kJ mol^{-1}) with the Ax conformer the more stable form. The percentage of the Eq conformer is estimated to be 38 ± 1% at ambient temperature. The conformational stabilities have been predicted from ab initio calculations by utilizing several different basis sets up to aug-cc-pVTZ from both MP2(full) and density functional theory calculations by the B3LYP method. Vibrational assignments have been made for the observed bands for both conformers with initial predictions by MP2(full)/6-31G(d) ab initio calculations to obtain harmonic force constants, wavenumbers, infrared intensities, Raman activities and depolarization ratios for both conformers. The heavy atom distances (Å): C≡N = 1.176 ; C_{α}-N≡C= 1.432; C_{α}-C_{β},C_{β}' = 1.534; C_{β}-C_{γ}, C_{γ}' = 1.542; C_{γ}-C_{γ}' = 1.554 and angles (°:angleC_{α}-N≡C = 177.8; angleC_{β}C_{α}-N≡C = 110.4; angleC_{β}C_{α}C_{β}'= 102.9; angleC_{α}C_{β}C_{γ} = 103.6; angleC_{β}C_{γ}C_{γ}' = 105.9. The results are discussed and compared to the corresponding properties of some related molecules.

  20. Proton transport in triflic acid pentahydrate studied via ab initio path integral molecular dynamics.

    Science.gov (United States)

    Hayes, Robin L; Paddison, Stephen J; Tuckerman, Mark E

    2011-06-16

    Trifluoromethanesulfonic acid hydrates provide a well-defined system to study proton dissociation and transport in perfluorosulfonic acid membranes, typically used as the electrolyte in hydrogen fuel cells, in the limit of minimal water. The triflic acid pentahydrate crystal (CF(3)SO(3)H·5H(2)O) is sufficiently aqueous that it contains an extended three-dimensional water network. Despite it being extended, however, long-range proton transport along the network is structurally unfavorable and would require considerable rearrangement. Nevertheless, the triflic acid pentahydrate crystal system can provide a clear picture of the preferred locations of local protonic defects in the water network, which provides insights about related structures in the disordered, low-hydration environment of perfluorosulfonic acid membranes. Ab initio molecular dynamics simulations reveal that the proton defect is most likely to transfer to the closest water that has the expected presolvation and only contains water in its first solvation shell. Unlike the tetrahydrate of triflic acid (CF(3)SO(3)H·4H(2)O), there is no evidence of the proton preferentially transferring to a water molecule bridging two of the sulfonate groups. However, this could be an artifact of the crystal structure since the only such water molecule is separated from the proton by long O-O distances. Hydrogen bonding criteria, using the two-dimensional potential of mean force, are extracted. Radial distribution functions, free energy profiles, radii of gyration, and the root-mean-square displacement computed from ab initio path integral molecular dynamics simulations reveal that quantum effects do significantly extend the size of the protonic defect and increase the frequency of proton transfer events by nearly 15%. The calculated IR spectra confirm that the dominant protonic defect mostly exists as an Eigen cation but contains some Zundel ion characteristics. Chain lengths and ring sizes determined from the

  1. Sub-monolayers of carbon on alpha-iron facets: an ab-initio study

    CERN Document Server

    Riikonen, S; Nieminen, R M

    2010-01-01

    Motivated by recent in situ studies of carbon nanotube growth from large transition-metal nanoparticles, we study various alpha-iron (ferrite) facets at different carbon concentrations using ab initio methods. The studied (110), (100) and (111) facets show qualitatively different behaviour when carbon concentration changes. In particular, adsorbed carbon atoms repel each other on the (110) facet, resulting in carbon dimer and graphitic material formation. Carbon on the (100) facet forms stable structures at concentrations of about 0.5 monolayer and at 1.0 monolayer this facet becomes unstable due to a frustration of the top layer iron atoms. The stability of the (111) facet is weakly affected by the amount of adsorbed carbon and its stability increases further with respect to the (100) facet with increasing carbon concentration. The exchange of carbon atoms between the surface and sub-surface regions on the (111) facet is easier than on the other facets and the formation of carbon dimers is exothermic. These ...

  2. Ab initio study, investigation of NMR shielding tensors, NBO and vibrational frequency of catechol thioethers

    Directory of Open Access Journals (Sweden)

    A. Bagheri Gh

    2010-08-01

    Full Text Available The electrochemical oxidation of dopamine and 3,4-dihydroxymethamphetamine (HHMA has been studied in the presence of GSH and cysteine as a nucleophile. In order to determine the optimized geometries, energies, dipole moments, atomic charges, thermochemical analysis and other properties, we performed quantum chemical ab initio and density functional calculations at B3LYP level with 6-31G* basis set. The structural and vibrational properties of 5-S-glutathionyldopamine, 5-S-cysteinyldopamine and 5-S-N-acetylcysteinyldopamine are studied. The chemical shifts of anisotropy and Δδ are calculated. The gauge-invariant atomic orbital (GIAO method was employed to calculate isotropic atomic shielding of compounds. These calculations yield molecular geometries in good agreement with available experimental data. The bond lengths, bond angles, dipole moment, electron affinity, ionization potential, electronegativy, absolute hardness, highest occupied molecular orbital (HOMO and the energy of the lowest unoccupied molecular orbital (LUMO of the studied compounds were calculated in gas phase and water. NMR analysis of dopamine-o-quinone-glutathione conjugate revealed that the addition of glutathione was at C-5 to form glutathionyl-dopamine.

  3. Systematic ab initio study of half-Heusler materials for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Gruhn, Thomas; Felser, Claudia [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University, Mainz (Germany)

    2010-07-01

    The development of new, optimized optoelectronic devices depends crucially on the availability of semiconductors with taylored electronic and structural properties. At the moment, the majority of applications is based on a rather small set of semiconducting materials, while many more semiconductors exist in the huge class of ternary compounds. Especially, the class of 8-electron half-Heusler materials comprises a large number semiconducters with various properties. With the help of ab initio density functional theory we have studied essentially all 8-electron half-Heusler compounds that are of technological relevance. For more than 650 compounds we have determined the optimum configuration by varying the lattice constant and permuting the elements over the sublattices. Within this exceptionally large data set we have studied the band structure and the lattice constants as a function of the electronegativities of the elements, the arrangement of the atoms, and the atomic radii. The results are used to select suitable materials for the buffer layer in thin-film solar cells with a Cu(In,Ga)Se{sub 2} (CIGS) absorber layer. Considering the bandgap and the geometrical matching with the CIGS film, we have obtained a set of 29 compounds that are promissing materials for cadmium-free CIGS buffer layer.

  4. Ab Initio Molecular Dynamics Study on the Interactions between Carboxylate Ions and Metal Ions in Water.

    Science.gov (United States)

    Mehandzhiyski, Aleksandar Y; Riccardi, Enrico; van Erp, Titus S; Trinh, Thuat T; Grimes, Brian A

    2015-08-20

    The interaction between a carboxylate anion (deprotonated propanoic acid) and the divalent Mg(2+), Ca(2+), Sr(2+), Ba(2+) metal ions is studied via ab initio molecular dynamics. The main focus of the study is the selectivity of the carboxylate-metal ion interaction in aqueous solution. The interaction is modeled by explicitly accounting for the solvent molecules on a DFT level. The hydration energies of the metal ions along with their diffusion and mobility coefficients are determined and a trend correlated with their ionic radius is found. Subsequently, a series of 16 constrained molecular dynamics simulations for every ion is performed, and the interaction free energy is obtained from thermodynamic integration of the forces between the metal ion and the carboxylate ion. The results indicate that the magnesium ion interacts most strongly with the carboxylate, followed by calcium, strontium, and barium. Because the interaction free energy is not enough to explain the selectivity of the reaction observed experimentally, more detailed analysis is performed on the simulation trajectories to understand the steric changes in the reaction complex during dissociation. The solvent dynamics appear to play an important role during the dissociation of the complex and also in the observed selectivity behavior of the divalent ions.

  5. Ab Initio study of the diffusion mechanisms of gallium in a silicon matrix

    Science.gov (United States)

    Levasseur-Smith, K.; Mousseau, N.

    2008-07-01

    We present the results of a study into the diffusion mechanisms of Ga defects in crystalline Si using ab initio techniques. Five stable neutral configurations for single and multi-atom defects are identified by density-functional theory (DFT) calculations within the local density approximation and using a localized basis set as implemented in the SIESTA package. Formation energy (E_F) calculations on these stable structures show the most likely neutral single-atom defect to be the Ga substitutional, with an EF of 0.7 eV in good agreement with previous work. Charge state studies show the Ga tetrahedral interstitial defect to be in a +1 state for most doping conditions. They also indicate the possibility for a gallium substitutional-tetrahedral interstitial complex to act as a deactivating center for the Ga dopants except in n-doped regime, where the complex adopts a -1 charge state. Migration pathway calculations using SIESTA coupled with the activation relaxation technique (ART nouveau) allow us to determine possible migration paths from the stable configurations found, under various charge states. In general, diffusion barriers decrease as the charge state becomes more negative, suggesting that the presence of Si self-interstitials can enhance diffusion through the kicking out of substitutional Si and by adding negative charge carriers to the system. An overall picture of a possible Ga diffusion and complex formation mechanism is presented based on these results.

  6. Tunneling of electrons via rotor-stator molecular interfaces: Combined ab initio and model study

    Science.gov (United States)

    Petreska, Irina; Ohanesjan, Vladimir; Pejov, Ljupčo; Kocarev, Ljupčo

    2016-07-01

    Tunneling of electrons through rotor-stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons' formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that conformation-dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previous work where we investigated the coherent transport via strongly coupled delocalized orbital by application of Non-equilibrium Green's Function Formalism.

  7. Catalytic reaction mechanism of L-lactate dehydrogenase: an ab initio study

    Institute of Scientific and Technical Information of China (English)

    侯若冰; 陈志达; 义祥辉; 卞江; 徐光宪

    2000-01-01

    Studies on the catalytic reaction mechanism of L-lactate dehydrogenase have been carried out by using quantum chemical ab initio calculation at HF/6-31G* level. It is found that the interconversion reaction of pyruvate to L-lactate is dominated by the hydride ion HR- transfer, and the transfers of the hydride ion HR and proton HR+ are a quasi-coupled process, in which the energy barrier of the transition state is about 168.37 kJ/mol. It is shown that the reactant complex is 87.61 kJ/mol lower, in energy, than the product complex. The most striking features in our calculated results are that pyridine ring of the model cofactor is a quasi-boat-like configuration in the transited state, which differs from a planar conformation in some previous semiempirical quantum chemical studies. On the other hand, the similarity in the structure and charge between the HR transfer process and the hydrogen bonding with lower barrier indicates that the HR transfer process occurs by means of an unusual manner. In addition,

  8. Ab initio Studies on Intermolecular Interaction of Formamide and Hydroxyacetonitrile Dimers

    Institute of Scientific and Technical Information of China (English)

    JU Xue-hai; XIE Lun-jia; XIA Qi-ying; XIAO He-ming

    2004-01-01

    The structures, the binding energies and the thermodynamic properties of formamide and hydroxyacetonitrile(HAN) dimers have been studied by means of the self-consistent ab initio Hartree-Fock and the second-order Mφller-Plesset correlation energy correction methods. The counterpoise procedure was used to check the basis set superposition error(BSSE) of the binding energies. There exist cyclic structures in a formamide dimer(Ⅰ), a HAN dimer(Ⅱ) and their heterodimer(Ⅲ). The corrected binding energies for dimers Ⅰ, Ⅱ and Ⅲ are respectively -45.53, -45.83 and -43.89 kJ/mol at the MP2/aug-cc-p VDZ//HF/aug-cc-p VDZ level. The change of the Gibbs free energies(ΔG) in the process of Ⅰ+Ⅱ→2Ⅲ was predicted to be -2.74 kJ/mol at 298.15 K. Dimer Ⅲ can be spontaneously produced in the mixture of formamide and HAN, which is in agreement with the experimental fact that most cyanohydrins are capable of interacting with dipeptide cyclo-His-Phe(CHP).

  9. Tautomeric preferences and electron delocalization in biurets, thiobiurets, and dithiobiurets: An ab initio study

    Science.gov (United States)

    Adane, Legesse; Bharatam, Prasad V.

    In several literature reports biuret and its sulfur analogs are reported to exist in their diketo form with general formula H2N bond CX bond NH bond CY bond NH2 (X = O, Y = O, biuret; X = Y = S, dithiobiuret; and X = O, Y = S, thiobiuret). On the other hand, recently reported results on the electronic structure of biguanide analogs (X = Y = NH)demonstrated that a form equivalent to diketo is not the preferred structure. Thus, a systematic ab initio study on the tautomeric preferences of biuret and its sulfur analogs (dithiobiuret and thiobiuret) has been carried out. The results indicate that an interplay of conjugative stabilization and intramolecular hydrogen bonding to play a role in tautomeric preferences. Energy and geometric parameters, natural bond orbital analyses have been employed to understand the chemistry of the title compounds. The results indicate that unlike biguanides, these compounds prefer diketo forms containing hydrogen on the bridging nitrogen (N4) and in a trans-arrangement (1a-4a). However, tautomerization of these keto forms to the corresponding enol isomers was also found to be highly probable.

  10. Longitudinal, transverse, and single-particle dynamics in liquid Zn: Ab initio study and theoretical analysis

    Science.gov (United States)

    del Rio, B. G.; González, L. E.

    2017-06-01

    We perform ab initio molecular dynamics simulations of liquid Zn near the melting point in order to study the longitudinal and transverse dynamic properties of the system. We find two propagating excitations in both of them in a wide range of wave vectors. This is in agreement with some experimental observations of the dynamic structure factor in the region around half the position of the main peak. Moreover, the two-mode structure in the transverse and longitudinal current correlation functions had also been previously observed in high pressure liquid metallic systems. We perform a theoretical analysis in order to investigate the possible origin of such two components by resorting to mode-coupling theories. They are found to describe qualitatively the appearance of two modes in the dynamics, but their relative intensities are not quantitatively reproduced. We suggest some possible improvements of the theory through the analysis of the structure of the memory functions. We also analyze the single-particle dynamics embedded in the velocity autocorrelation function, and explain its characteristics through mode-coupling concepts.

  11. Ab initio study of C14 laves phases in Fe-based systems

    Directory of Open Access Journals (Sweden)

    Pavlu J.

    2012-01-01

    Full Text Available Structural properties and energetics of Fe-based C14 Laves phases at various compositions (i.e. Fe2Fe, Fe2X, X2Fe, X2X, where X stands for Si, Cr, Mo, W, Ta were investigated using the pseudopotential VASP (Vienna Ab initio Simulation Package code employing the PAW-PBE (Projector Augmented Wave - Perdew Burke-Ernzerhof pseudopotentials. Full relaxation was performed for all structures studied including the reference states of elemental constituents and the equilibrium structure parameters as well as bulk moduli were found. The structure parameters of experimentally found structures were very well reproduced by our calculations. It was also found that the lattice parameters and volumes of the unit cell decrease with increasing molar fraction of iron. Thermodynamic analysis shows that the Fe2X configurations of Laves phases are more stable than the X2Fe ones. Some of the X2Fe configurations are even unstable with respect to the weighted average of the Laves phases of elemental constituents. Our calculations predict the stability of Fe2Ta. On the other hand, Fe2Mo and Fe2W are slightly unstable (3.19 and 0.68 kJ.mol-1, respectively and hypothetical structures Fe2Cr and Fe2Si are found unstable as well.

  12. Ab initio computational study of vincristine as a biological active compound: NMR and NBO analyses

    Directory of Open Access Journals (Sweden)

    Shiva Joohari

    2015-06-01

    Full Text Available Vincristine is a biological active alkaloid that has been used clinically against a variety of neoplasms. In the current study we have theoretically investigated the magnetic properties of titled compound to predict physical and chemical properties of vincristine as a biological inhibitor. Ab initio computation using HF and B3LYP with 3-21G(d and 6-31G(d level of theory have been performed and then magnetic shielding tensor (, ppm, shielding asymmetry (, magnetic shielding anisotropy (aniso, ppm, the skew of a tensor (K, chemical shift anisotropy ( and chemical shift ( were calculated to indicate the details of the interaction mechanism between microtubules and vincristine. Moreover, EHOMO, ELUMO and Ebg were evaluated. The maximum and minimum values of Ebg were found in HF/3-21g and B3LYP/3-21g respectively. It was also uggested that O24, O37, O49 and O55 with minimum values of iso, are active sites of titled compound. Furthermore the calculated chemical shifts were compared with experimental data in DMSO and CDCl3 solvents.

  13. Characterization of Elastic Properties of Porous Graphene Using an Ab Initio Study

    Directory of Open Access Journals (Sweden)

    Reza Ansari

    2016-12-01

    Full Text Available Importance of covalent bonded two-dimensional monolayer nanostructures and also hydrocarbons is undeniably responsible for creation of new fascinating materials like polyphenylene polymer, a hydrocarbon super honeycomb network, so-called porous graphene. The mechanical properties of porous graphene such as its Young’s modulus, Poisson’s ratio and the bulk modulus as the determinative properties are calculated in this paper using ab initio calculations. To accomplish this aim, the density functional theory on the basis of generalized gradient approximation and the Perdew–Burke–Ernzerhof exchange correlation is employed. Density functional theory calculations are used to calculate strain energy of porous graphene with respect to applied strain. Selected numerical results are then presented to study the properties of porous graphene. Comparisons are made between the properties of porous graphene and those of other analogous nanostructures. The results demonstrated lower stiffness of porous graphene than those of graphene and graphyne, and higher stiffness than that of graphdyine and other graphyne families. Unlikely, Poisson’s ratio is observed to be more than that of graphene and also less than that of graphyne. It is further observed that the presence of porosity and also formation of C-H bond in the pore sites is responsible for these discrepancies. Porous graphene is found to behave as the isotropic material.

  14. A theoretical study of benzaldehyde derivatives as tyrosinase inhibitors using Ab initio calculated NQCC parameters

    Directory of Open Access Journals (Sweden)

    Marjan Rafiee

    2015-09-01

    Full Text Available Tyrosinase is a multifunctional copper-containing enzyme. It can catalyze two distinct reactions of melanin synthesis and benzaldehyde derivatives, which are potential tyrosinase inhibitors. To find the relationships between charge distributions of benzaldehyde and their pharmaceutical behavior, the present study aimed at investigating nuclear quadrupole coupling constants of quadrupolare nuclei in the functional benzaldehyde group and calculating some its derivatives. In addition, the differences between the electronic structures of various derivatives of this depigmenting drug were examined. All ab initio calculations were carried out using Gaussian 03. The results predicted benzaldehyde derivatives to be bicentral inhibitors; nevertheless, the oxygen or hydrogen contents of the aldehyde group were not found to be the only active sites. Furthermore with the presence of the aldehyde group, the terminal methoxy group in C4 was found to contribute to tyrosinase inhibitory activities. In addition, an oxygen atom with high charge density in the side chain was found to play an important role in its inhibitory effect.

  15. Yttrium aluminium garnet under pressure: Structural, elastic, and vibrational properties from ab initio studies

    Energy Technology Data Exchange (ETDEWEB)

    Monteseguro, V. [Departamento de Física and MALTA Consolider Team, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Rodríguez-Hernández, P.; Muñoz, A., E-mail: amunoz@ull.es [Departamento de Física and MALTA Consolider Team, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Instituto de Materiales y Nanotecnología. Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain)

    2015-12-28

    The structural, elastic, and vibrational properties of yttrium aluminum garnet Y{sub 3}Al{sub 5}O{sub 12} are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet is mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y{sub 3}Al{sub 5}O{sub 12} and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa.

  16. An ab initio study of the polytypism in InP

    Science.gov (United States)

    Dacal, Luis C. O.; Cantarero, A.

    2016-09-01

    The existence of polytypism in semiconductor nanostructures gives rise to the appearance of stacking faults which many times can be treated as quantum wells. In some cases, despite of a careful growth, the polytypism can be hardly avoided. In this work, we perform an ab initio study of zincblende stacking faults in a wurtzite InP system, using the supercell approach and taking the limit of low density of narrow stacking faults regions. Our results confirm the type II band alignment between the phases, producing a reliable qualitative description of the band gap evolution along the growth axis. These results show an spacial asymmetry in the zincblende quantum wells, that is expected due to the fact that the wurtzite stacking sequence (ABAB) is part of the zincblende one (ABCABC), but with an unexpected asymmetry between the valence and the conduction bands. We also present results for the complex dielectric function, clearly showing the influence of the stacking on the homostructure values and surprisingly proving that the correspondent bulk results can be used to reproduce the polytypism even in the limit we considered.

  17. Thermal decomposition of propargyl alcohol: single pulse shock tube experimental and ab initio theoretical study.

    Science.gov (United States)

    Sharath, N; Reddy, K P J; Arunan, E

    2014-08-07

    Thermal decomposition of propargyl alcohol (C3H3OH), a molecule of interest in interstellar chemistry and combustion, was investigated using a single pulse shock tube in the temperature ranging from 953 to 1262 K. The products identified include acetylene, propyne, vinylacetylene, propynal, propenal, and benzene. The experimentally observed overall rate constant for thermal decomposition of propargyl alcohol was found to be k = 10((10.17 ± 0.36)) exp(-(39.70 ± 1.83)/RT) s(-1). Ab initio theoretical calculations were carried out to understand the potential energy surfaces involved in the primary and secondary steps of propargyl alcohol thermal decomposition. Transition state theory was used to predict the rate constants, which were then used and refined in a kinetic simulation of the product profile. The first step in the decomposition is C-O bond dissociation, leading to the formation of two important radicals in combustion, OH and propargyl. This has been used to study the reverse OH + propargyl radical reaction, about which there appears to be no prior work. Depending on the site of attack, this reaction leads to propargyl alcohol or propenal, one of the major products at temperatures below 1200 K. A detailed mechanism has been derived to explain all the observed products.

  18. Ab initio study of Al(III) adsorption on stepped {100} surfaces of KDP crystals

    Energy Technology Data Exchange (ETDEWEB)

    Salter, E A; Wierzbicki, A; Land, T A

    2004-04-01

    Crystals of potassium dihydrogen phosphate (KH{sub 2}PO{sub 4}, KDP) are grown in large scale for use as nonlinear material in laser components. Traces of trivalent metal impurities are often added to the supernatant to achieve habit control during crystal growth, selectively inhibiting the growth of the {l_brace}100{r_brace} face. Model systems representing AlPO{sub 4}-doped KDP {l_brace}100{r_brace} stepped surfaces are prepared and studied using ab initio quantum methods. Results of Hartree-Fock partial optimizations are presented, including estimated energies of ion pair binding to the steps. We find that the PO{sub 4}{sup 3-} ion takes a position not unlike that of a standard phosphate in the crystal lattice, while the aluminum atom is displaced far from a K{sup +} ion position to establish coordinations with the PO{sub 4}{sup 3-} ion and to bind with another lattice-bound phosphate. Our optimized structures suggest that it is the formation of a fourth coordination of Al(III) to a third phosphate ion from solution, or perhaps from a nearby position in the lattice, that disrupts further deposition, pinning the steps.

  19. Ab initio study of a Y-doped Σ31 grain boundary in alumina

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The atomic structures and energetics of clean and Y-doped general grain boundary (GB) Σ31/(0001) models in α-Al2O3 are studied by a series of high precision ab initio calculations. A large supercell with 700 atoms and periodic boundary conditions is adopted for undoped and Y-doped GB with different substitution sites and con-centrations. It is shown that Y atoms preferably segregate to the central column of the 7-member Al ring. This is explained as more favorable bond formation for Y in this position and lower GB energy. The calculated GB formation energy for the clean and Y-doped cases is respectively 3.99 and 3.67 J/m2. On the average, the GB region in Σ31 has a slightly lower charge density than the bulk crystalline region. In addtition, the GB induces a long ranged asymmetric electrostatic potential distri-bution on each side of the grain boundary.

  20. Hydration of the cyanide ion: an ab initio quantum mechanical charge field molecular dynamics study.

    Science.gov (United States)

    Moin, Syed Tarique; Hofer, Thomas S

    2014-12-21

    This paper presents an ab initio quantum mechanical charge field molecular dynamics simulation study of the cyanide anion (CN(-)) in aqueous solution where hydrogen bond formation plays a dominant role in the hydration process. Preferential orientation of water hydrogens compared to oxygen atoms was quantified in terms of radial, angular as well as coordination number distributions. All structural results indicate that the water hydrogens are attracted towards CN(-) atoms, thus contributing to the formation of the hydration layer. Moreover, a clear picture of the local arrangement of water molecules around the ellipsoidal CN(-) ion is provided via angular-radial distribution and spatial distribution functions. Apart from the structural analysis, the evaluation of water dynamics in terms of ligand mean residence times and H-bond correlation functions indicates the weak structure making capacity of the CN(-) ion. The similar values of H-bond lifetimes obtained for the NHwat and CHwat bonds indicate an isokinetic behaviour of these H-bonds, since there is a very small difference in the magnitude of the lifetimes. On the other hand, the H-bond lifetimes between water molecules of the hydration shell, and between solute and solvent evidence the slightly stable hydration of the CN(-). Overall, the H-bonding dominates in the hydration process of the cyanide anion enabling it to become soluble in the aqueous environment associated to chemical and biological processes.

  1. Can DNA-binding proteins of replisome tautomerize nucleotide bases? Ab initio model study.

    Science.gov (United States)

    Brovarets', Ol'ha O; Yurenko, Yevgen P; Dubey, Igor Ya; Hovorun, Dmytro M

    2012-01-01

    Ab initio quantum-chemical study of specific point contacts of replisome proteins with DNA modeled by acetic acid with canonical and mutagenic tautomers of DNA bases methylated at the glycosidic nitrogen atoms was performed in vacuo and continuum with a low dielectric constant (ϵ ∼ 4) corresponding to a hydrophobic interface of protein-nucleic acid interaction. All tautomerized complexes were found to be dynamically unstable, because the electronic energies of their back-reaction barriers do not exceed zero-point vibrational energies associated with the vibrational modes whose harmonic vibrational frequencies become imaginary in the transition states of the tautomerization reaction. Additionally, based on the physicochemical arguments, it was demonstrated that the effects of biomolecular environment cannot ensure dynamic stabilization. This result allows suggesting that hypothetically generated by DNA-binding proteins of replisome rare tautomers will have no impact on the total spontaneous mutation due to the low reverse barrier allowing a quick return to the canonical form.

  2. A theoretical study of benzaldehyde derivatives as tyrosinase inhibitors using Ab initio calculated NQCC parameters

    Science.gov (United States)

    Rafiee, Marjan; Javaheri, Masoumeh

    2015-01-01

    Tyrosinase is a multifunctional copper-containing enzyme. It can catalyze two distinct reactions of melanin synthesis and benzaldehyde derivatives, which are potential tyrosinase inhibitors. To find the relationships between charge distributions of benzaldehyde and their pharmaceutical behavior, the present study aimed at investigating nuclear quadrupole coupling constants of quadrupolare nuclei in the functional benzaldehyde group and calculating some its derivatives. In addition, the differences between the electronic structures of various derivatives of this depigmenting drug were examined. All ab initio calculations were carried out using Gaussian 03. The results predicted benzaldehyde derivatives to be bicentral inhibitors; nevertheless, the oxygen or hydrogen contents of the aldehyde group were not found to be the only active sites. Furthermore with the presence of the aldehyde group, the terminal methoxy group in C4 was found to contribute to tyrosinase inhibitory activities. In addition, an oxygen atom with high charge density in the side chain was found to play an important role in its inhibitory effect. PMID:27844007

  3. Ab initio study of interaction of helium with edge and screw dislocations in tungsten

    Science.gov (United States)

    Bakaev, Alexander; Terentyev, Dmitry; Grigorev, Petr; Posselt, Matthias; Zhurkin, Evgeny E.

    2017-02-01

    The interaction of a single He atom with edge and screw dislocations in tungsten has been studied using ab initio calculations. It was revealed that He is strongly attracted to the core of both dislocations with the interaction energy of -1.3 and -3.0 eV for screw and edge dislocations, respectively, which corresponds to the detrapping temperature in thermal desorption spectroscopy experiments of about 500 K and 1050 K, respectively. The lowest energy positions for He around the dislocation cores are identified and the atomic structures are rationalized on the basis of elasticity theory considerations. Both types of dislocations exhibit a higher binding energy for He as compared to the He-He binding (known as self-trapping) and are weaker traps as compared to a single vacancy. It is, thus, concluded that the strong attraction to dislocation lines can contribute to the nucleation of He clusters in the temperature range which already excludes He self-trapping.

  4. Ab initio study of structural, electronic, and thermal properties of Pt1-xPdx alloys

    Science.gov (United States)

    Ahmed, Shabbir; Zafar, Muhammad; Shakil, M.; Choudhary, M. A.; Hashmi, Muhammad Raza-Ur-Rehman

    2017-01-01

    We report a systematic theoretical study of Pt1-xPdx alloys using ab initio density functional theory (DFT) by pseudo potential method. We have used super cell approach to investigate structural, electronic and thermal properties of Platinum (Pt), Palladium (Pd) and their alloys Pt1-xPdx(x = 0.00, 0.25, 0.50, 0.75, 1.00). The calculated lattice constants and bulk moduli are in good agreement with available literature data. The results of electronic properties revealed that the alloys are metallic in nature. The thermal properties were investigated through density functional perturbation theory (DFPT) and quasi-harmonic approximation. The contribution to the free energy from the lattice vibration was calculated using the phonon densities of states (DOS) derived by means of the linear-response theory. The DFPT with quasi-harmonic approximation methods was applied to determine the phonon DOS and thermal quantities i.e., the Debye temperatures, vibration energy, entropy and constant-volume specific heat.

  5. ab initio Studies on Molecular Conductor (BEDSe-TTF)2[Fe(CN)5NO

    Institute of Scientific and Technical Information of China (English)

    YAO Kai-Lun; TU Hai-Bo; WANG Wei-Zhong

    2001-01-01

    In this paper the ab initio study using pseudopotential plane wave method with the local spin density functional approximation is presented for the molecular conductor (BEDSe-TTF)2[Fe(CN)5NO]. The mean electronic density distributions are obtained, and we find that the extended π orbital of the selenium does not affect the properties of material as assumed in other papers and the "side-by-side" type S...S interaction is the primary interaction between donors. From band structure calculations we analyze the influence of the NO groups on the electronic structure and magnetic properties of molecule. It is shown that the itinerant electrons important to electronic properties in these types of hybrids are delocalized electrons contributed by NO groups, instead of by the 3d electrons of Fe. Additionally, we have found that the localized magnetic moment is also contributed by the NO groups in this molecular conductor. From total energy calculations the molecular structure with the lowest energy is found due to the interaction between split spins, and the particular positions of the NO groups are obtained.

  6. An ab initio molecular dynamics study of S{sub o} ketene fragmentation.

    Energy Technology Data Exchange (ETDEWEB)

    Forsythe, K.; Gray, S.; Klippenstein, S.; Hall, G.; Chemistry; Case Western Reserve Univ.; BNL

    2001-08-01

    The dynamical origins of product state distributions in the unimolecular dissociation of S{sub 0} ketene, CH{sub 2}CO ({tilde X}{sup 1}A{sub 1}) {yields} CH{sub 2}({tilde a} {sup 1}A{sub 1}) + CO, are studied with ab initio molecular dynamics. We focus on rotational distributions associated with ground vibrational state fragments. Trajectories are integrated between an inner, variational transition state (TS) and separated fragments in both the dissociative and associative directions. The average rotational energy in both CO and CH{sub 2} fragments decreases during the motion from the TS to separated fragments. However, the CO distribution remains slightly hotter than phase space theory (PST) predictions, whereas that for CH{sub 2} ends up significantly colder than PST, in good agreement with experiment. Our calculations do not, however, reproduce the experimentally observed correlations between CH{sub 2} and CO rotational states, in which the simultaneous formation of low rotational levels of each fragment is suppressed relative to PST. A limited search for nonstatistical behavior in the strong interaction region also fails to explain this discrepancy.

  7. Matrix Isolation and ab initio study of the noncovalent complexes between formamide and acetylene.

    Science.gov (United States)

    Mardyukov, Artur; Sánchez-García, Elsa; Sander, Wolfram

    2009-02-12

    Matrix isolation spectroscopy in combination with ab initio calculations is a powerful technique for the identification of weakly bound intermolecular complexes. Here, weak complexes between formamide and acetylene are studied, and three 1:1 complexes with binding energies of -2.96, -2.46, and -1.79 kcal/mol have been found at the MP2 level of theory (MP2/cc-pVTZ + ZPE + BSSE). The two most stable dimers A and B are identified in argon and nitrogen matrices by comparison between the experimental and calculated infrared frequencies. Both complexes are stabilized by the formamide C=O...HC acetylene and H...pi interactions. Large shifts have been observed experimentally for the C-H stretching vibrations of the acetylene molecule, in very good agreement with the calculated values. Eight 1:2 FMA-acetylene trimers (T-A to T-H) with binding energies between -5.44 and -2.62 kcal/mol (MP2/aug-cc-pVDZ + ZPE + BSSE) were calculated. The two most stable trimers T-A and T-B are very close in energy and have similar infrared spectra. Several weak bands that are in agreement with the calculated frequencies of the trimers T-A and T-B are observed under matrix isolation conditions. However, the differences are too small for a definitive assignment.

  8. The ab initio study of laser cooling of BBr and BCl.

    Science.gov (United States)

    Yang, Rong; Gao, Yufeng; Tang, Bin; Gao, Tao

    2015-01-21

    We investigate the feasibility of laser cooling BBr and BCl using ab initio quantum chemistry. The multi-reference configuration interaction method (MRCI) is used to calculate the ground state X(1)Σ(+) and the low-lying excited state A(1)Π, where Davidson modification with the Douglas-Kroll scalar relativistic correction is also taken into account. The calculated spectroscopic constants are in good agreement with available experimental values. The potential energy curves, permanent dipole moments (PDMs), transition dipole moments (TDMs) followed by Franck-Condon factors and radiative times for the transitions from the A(1)Π state to the ground state X(1)Σ(+) are obtained as well. The determined Franck-Condon factors are highly diagonally distributed and the evaluated radiative lifetimes are of the order of nanoseconds. Furthermore, the a(3)Π→ X(1)Σ(+) transitions of BBr and BCl are also strongly diagonal and the X(1)Σ(+)→ A(1)Π transitions perhaps can be followed by the X(1)Σ(+)→ a(3)Π transitions to attain a lower Doppler temperature. Long-range behavior of BBr and BCl has also been studied, and a double well is found in the A(1)Π state of BBr. The shallow long-range well might open up even more channels for laser cooling of BBr. The results demonstrate the possibility of laser cooling BBr and BCl, and provide a promising theoretical reference for further research on BBr and BCl.

  9. Ab initio study of He trapping, diffusion and clustering in Y2O3

    Science.gov (United States)

    Lai, Wensheng; Ou, Yidian; Lou, Xiaofeng; Wang, Fei

    2017-02-01

    Ab initio calculations have been performed to study the formation and migration energies of helium atoms and the stability of helium-vacancy clusters in a Y2O3 crystal. The calculated formation energies show that a helium atom is preferred to occupy an yttrium vacancy site with a large volume and low electron density. The migration energy of the helium atom by an interstitial mechanism is 0.31 eV. Calculations of the binding energies of an extra helium atom to the helium-vacancy clusters vary with the number of helium atoms in the clusters with a typical value of 0.4-0.7 eV. This turns negative when the He atoms reach saturation; that indicates that vacancy clusters can attract a limited number of helium atoms to form small stable helium-vacancy clusters. Our calculations suggest that the use of Y2O3 in oxide dispersion strengthened ferritic steels may reduce He gas bubble formation as it may act as sink for trapping helium atoms.

  10. On the hierarchical parallelization of ab initio simulations

    CERN Document Server

    Ruiz-Barragan, Sergi; Shiga, Motoyuki

    2016-01-01

    A hierarchical parallelization has been implemented in a new unified code PIMD-SMASH for ab initio simulation where the replicas and the Born-Oppenheimer forces are parallelized. It is demonstrated that ab initio path integral molecular dynamics simulations can be carried out very efficiently for systems up to a few tens of water molecules. The code was then used to study a Diels-Alder reaction of cyclopentadiene and butenone by ab initio string method. A reduction in the reaction energy barrier is found in the presence of hydrogen-bonded water, in accordance with experiment.

  11. Experimental (electrochemistry) and theoretical (ab initio and density functional theory) studies of hydrogen and sulfide adsorption on palladium (100) surface.

    OpenAIRE

    2001-01-01

    The adsorption of H And S2- species on Pd (100) has been studied with ab initio, density-functional calculations and electrochemical methods. A cluster of five Pd atoms with a frozen geometry described the surface. The computational calculations were performed through the GAUSSIAN94 program, and the basis functions adapted to a pseudo-potential obtained by using the Generator Coordinate Method adapted to the this program. Using the cyclic voltammetry technique through a Model 283 Potentiostat...

  12. Ab initio interaction potentials for X and B excited states of He-I{sub 2} for studying dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Prosmiti, Rita; Garcia-Gutierrez, Leonor; Delgado-Tellez, Laura; Valdes, Alvaro; Villarreal, Pablo; Delgado-Barrio, Gerardo, E-mail: rita@imaff.cfmac.csic.e [Instituto de Fisica Fundamental (CSIC), Serrano 123, 28006 Madrid (Spain)

    2009-11-01

    Ab initio CCSD(T) and MRCI approaches were employed to construct potential energy surfaces of the ground and the B electronic excited states of He-I{sub 2} complex, while full quantum mechanical methods were applied to study its spectroscopy and dynamics. A description of the approach adopted, together with the results obtained and their comparison with recent experimental data, as well as further improvements are presented.

  13. Electronic and thermoelectric properties of InN studied using ab initio density functional theory and Boltzmann transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Borges, P. D., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu; Scolfaro, L., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu [Department of Physics, Texas State University, San Marcos, Texas 78666 (United States)

    2014-12-14

    The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.

  14. Ab initio studies of ionization potentials of hydrated hydroxide and hydronium

    CERN Document Server

    Swartz, Charles W

    2013-01-01

    The ionization potential distributions of hydrated hydroxide and hydronium are computed with many-body approach for electron excitations with configurations generated by {\\it ab initio} molecular dynamics. The experimental features are well reproduced and found to be closely related to the molecular excitations. In the stable configurations, the ionization potential is mainly perturbed by water molecules within the first solvation shell. On the other hand, electron excitation is delocalized on both proton receiving and donating complex during proton transfer, which shifts the excitation energies and broadens the spectra for both hydrated ions.

  15. Charge carrier motion in disordered conjugated polymers: a multiscale ab-initio study

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    We developed an ab-initio multiscale method for simulation of carrier transport in large disordered systems, based on direct calculation of electronic states and electron-phonon coupling constants. It enabled us to obtain the never seen before rich microscopic details of carrier motion in conjugated polymers, which led us to question several assumptions of phenomenological models, widely used in such systems. The macroscopic mobility of disordered poly(3- hexylthiophene) (P3HT) polymer, extracted from our simulation, is in agreement with experimental results from the literature.

  16. Superconductivity in an expanded phase of ZnO: an ab initio study

    Science.gov (United States)

    Hapiuk, D.; Marques, M. A. L.; Mélinon, P.; Botti, S.; Masenelli, B.; Flores-Livas, J. A.

    2015-04-01

    It is known that covalent semiconductors become superconducting if conveniently doped with large concentration of impurities. In this article we investigate, using ab initio methods, if the same situation is possible for an ionic, large-band gap semiconductor such as ZnO. We concentrate on the cage-like sodalite phase, with very similar electronic and phononic properties as wurtzite ZnO, but allow for endohedral doping of the cages. We find that sodalite ZnO becomes superconducting for a variety of dopants, reaching a maximum critical temperature of 7 K. This value is comparable to the transition temperatures of doped silicon clathrates, cubic silicon, and diamond.

  17. Simple synthesis, structure and ab initio study of 1,4-benzodiazepine-2,5-diones

    Science.gov (United States)

    Jadidi, Khosrow; Aryan, Reza; Mehrdad, Morteza; Lügger, Thomas; Ekkehardt Hahn, F.; Ng, Seik Weng

    2004-04-01

    A simple procedure for the synthesis of pyrido[2,1-c][1,4] benzodiazepine-6,12-dione ( 1) and 1,4-benzodiazepine-2,5-diones ( 2a- 2d), using microwave irradiation and/or conventional heating is reported. The configuration of 1 was determined by single-crystal X-ray diffraction. A detailed ab initio B3LYP/6-31G* calculation of structural parameters and substituent effects on ring inversion barriers (Δ G#) and also free energy differences (Δ G0) for benzodiazepines are reported.

  18. Ab initio studies on the mechanic and magnetic properties of PdHx

    Institute of Scientific and Technical Information of China (English)

    Cui Xin; Liang Xi-Xia; Wang Jian-Tao; Zhao Guo-Zhong

    2011-01-01

    Based on ab initio total energy calculations, the structural, electronic, mechanic, and magnetic properties of PdHx are investigated. It is found that bulk modulus of PdHx is larger than the metal Pd with the hydrogen storage except Pd4H2. The calculated results for the magnetic moments show that the hydrogen addition weakens the magnetic properties of the PdHx systems. A strong magneto-volume effect is found in PdHx structures as well as Pd. The transition from paramagnetism to ferromagnetism is discussed. The corresponding densities of states for both structures are also shown to understand the magnetic behaviour.

  19. Ab-initio Study of Known and Hypothetical Metal-Organic Frameworks

    Science.gov (United States)

    Fuentes-Cabrera, Miguel; Nicholson, Don M.

    2004-03-01

    Rosi et al. [1] have found that microporous Metal-Organic Frameworks (MOF) materials are candidates for hydrogen storage applications. In particular, MOF-5 was found to adsorb hydrogen up to 4.5 weight percent at 78 kelvin and 1.0 weight percent at room temperature and pressure of 20 bar. We use ab-initio techniques to investigate hydrogen adsorption, stability, and the electronic properties of known and hypothetical Metal-Organic Frameworks. [1] N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'Keeffe, and O.M. Yaghi

  20. Ab initio study of energy-level alignments in polymer-dye blends

    Science.gov (United States)

    Pasveer, W. F.; Bobbert, P. A.; Michels, M. A. J.; Langeveld-Voss, B. M. W.; Schoo, H. F. M.; Bastiaansen, J. J. A. M.

    2003-11-01

    Polymers with a small amount of dye blended in offer an attractive possibility to change the color of the emitted light by changing the dye. We present ab initio calculations within density-functional theory of the HOMO/LUMO energies for dipyrrolomethane dyes, polyphenylenevinylene and polyfluorene. Special attention is paid to the trends in these energies with variation of the sidegroups of the dyes as observed in cyclic-voltammetry measurements. From the energy-level alignments between dye and polymer we can understand and predict electron and hole trapping, crucial processes for the functioning of light-emitting devices based on these blends.

  1. Trivacancy in silicon: A combined DLTS and ab-initio modeling study

    Science.gov (United States)

    Markevich, V. P.; Peaker, A. R.; Lastovskii, S. B.; Murin, L. I.; Coutinho, J.; Markevich, A. V.; Torres, V. J. B.; Briddon, P. R.; Dobaczewski, L.; Monakhov, E. V.; Svensson, B. G.

    2009-12-01

    Deep level transient spectroscopy and ab-initio modeling have been used for identification of energy levels and structure of trivacancy (V3) in Si. It is found that in the neutral charge state the V3 is bistable, with the "fourfold" configuration being lower in energy than the (1 1 0) planar configuration. V3 in the (1 1 0) planar configuration gives rise to two acceptor levels at Ec-0.36 eV and Ec-0.46 eV in the gap, while in the "fourfold" configuration the defect has trigonal symmetry and an acceptor level at Ec-0.075 eV.

  2. Detecting weak interactions between Au- and gas molecules: a photoelectron spectroscopic and ab initio study.

    Science.gov (United States)

    Gao, Yi; Huang, Wei; Woodford, Jeffrey; Wang, Lai-Sheng; Zeng, Xiao Cheng

    2009-07-15

    We show that anion photoelectron spectroscopy can be a very sensitive probe for weak intermolecular interactions between gold anion and a noble-gas atom or other nonreactive molecule. High-level ab initio calculations support the measured trend of relatively weak intermolecular interactions among various gold anion-atom complexes. The interaction between Au(-) and H(2)O is much stronger, comparable to a strong hydrogen bond. The interaction between Au(-) and O(2) is weaker than that between Au(-) and a noble-gas atom (Ar, Kr, or Xe).

  3. Ab-Initio-Based Approach to Study Complete Metalloproteins: Divide and Conquer Geometry Optimization of Nitric-Oxide Reductase

    Science.gov (United States)

    Yue, Yutao; Chachiyo, Teepanis; Rodriguez, Jorge H.

    2007-03-01

    The direct application of ab-initio methods (Hartree-Fock or density functional theory) to study complete biomolecules has been impossible due to the huge computational cost of fully quantum mechanical calculations. As an initial step towards overcoming this problem, we implemented an ab-initio-based method to predict geometric structures of large metalloproteins using the principle of ``divide and conquer.'' The method has been applied to small test systems showing satisfactory agreement with all-atom ab initio calculations. We have successfully applied the divide and conquer approach to partially optimize the geometry of a ligand-enzyme system, namely NO binding to nitric-oxide reductases (NOR, P450nor). NOR is a metalloenzyme that catalyzes the reduction of NO to N2O. To compare our results with all atom calculations we studied a biochemically relevant subsystem (375 atoms) of the ligand-enzyme complex. The deviation between the divide and conquer geometry and the all atom partial geometry optimization is minor, on order of 10-1 å for bond lengths. The computational cost of the method is moderately expensive making its application to large (bio) molecules plausible. Supported by NSF CAREER Award CHE-0349189 (JHR).

  4. An experimental and ab initio study on the abiotic reduction of uranyl by ferrous iron

    Science.gov (United States)

    Taylor, S. D.; Marcano, M. C.; Rosso, K. M.; Becker, U.

    2015-05-01

    It is important to understand the mechanisms controlling the removal of uranyl from solution from an environmental standpoint, particularly whether soluble Fe(II) is capable of reducing soluble U(VI) to insoluble U(IV). Experiments were performed to shed light into discrepancies of recent studies about precipitation of U-containing solids without changing oxidation states versus precipitation/reduction reactions, especially with respect to the kinetics of these reactions. To understand the atomistic mechanisms, thermodynamics, and kinetics of these redox processes, ab initio electron transfer (ET) calculations, using Marcus theory, were applied to study the reduction of U(VI)aq to U(V)aq by Fe(II)aq (the first rate-limiting ET-step). Outer-sphere (OS) and inner-sphere (IS) Fe-U complexes were modeled to represent simple species within a homogeneous environment through which ET could occur. Experiments on the chemical reduction were performed by reacting 1 mM Fe(II)aq at pH 7.2 with high (i.e., 0.16 mM) and lower (i.e., 0.02 mM) concentrations of U(VI)aq. At higher U concentration, a rapid decrease in U(VI)aq was observed within the first hour of reaction. XRD and XPS analyses of the precipitates confirmed the presence of (meta)schoepite phases, where up to ∼25% of the original U was reduced to U4+ and/or U5+-containing phases. In contrast, at 0.02 mM U, the U(VI)aq concentration remained fairly constant for the first 3 h of reaction and only then began to decrease due to slower precipitation kinetics. XPS spectra confirm the partial chemical reduction U associated with the precipitate (up to ∼30%). Thermodynamic calculations support that the reduction of U(VI)aq to U(IV)aq by Fe(II)aq is energetically unfavorable. The batch experiments in this study show U(VI) is removed from solution by precipitation and that transitioning to a heterogeneous system in turn enables the solid U phase to be partially reduced. Ab initio ET calculations revealed that OS ET is

  5. Ab initio based Monte Carlo studies of Cu-depleted CIS phases for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Christian; Gruhn, Thomas; Felser, Claudia [Institut fuer Anorganische and Analytische Chemie, Johannes Gutenberg-Universitaet Mainz (Germany); Windeln, Johannes [IBM Mainz (Germany)

    2011-07-01

    Thin film solar cells with a CuInSe{sub 2} (CIS) absorber layer have an increasing share of the solar cell market because of their low production costs and the high efficiency. One interesting aspect of CIS is the inherent resilience to defects and composition fluctuations. Beside the stable CuInSe{sub 2} phase, there are various Cu-poor phases along the Cu{sub 2}Se-In{sub 2}Se{sub 3} tie line, including the CuIn{sub 3}Se{sub 5} and the CuIn{sub 5}Se{sub 8} phase. We have used ab initio calculations of Cu-poor CIS configurations to make a cluster expansion of the configurational energy. In the configurations, Cu atoms, In atoms, and vacancies are distributed over the Cu and In sites of a CIS cell with fixed Se atoms. With the resulting energy expression, CuIn{sub 3}Se{sub 5} and CuIn{sub 5}Se{sub 8} systems have been studied in the canonical ensemble. By analyzing the free energy landscape the transition temperature between a low-temperature ordered and a high-temperature disordered CuIn{sub 5}Se{sub 8} phase has been determined. Furthermore, grandcanonical ensemble simulations have been carried out, which provide the equilibrium Cu and In concentrations as a function of the chemical potentials {mu}{sub Cu} and {mu}{sub In}. Plateau regions for the CuInSe{sub 2} and the CuIn{sub 5}Se{sub 8} phases have been found and analyzed for different temperatures.

  6. Ab initio molecular dynamics study of the interlayer and micropore structure of aqueous montmorillonite clays

    Science.gov (United States)

    Suter, James L.; Kabalan, Lara; Khader, Mahmoud; Coveney, Peter V.

    2015-11-01

    Ab initio molecular dynamics simulations have been performed to gain an understanding of the interfacial microscopic structure and reactivity of fully hydrated clay edges. The models studied include both micropore and interlayer water. We identify acidic sites through dissociation mechanisms; the resulting ions can be stabilized by both micropore and interlayer water. We find clay edges possess a complex amphoteric behavior, which depends on the face under consideration and the location of isomorphic substitution. For the neutral (1 1 0) surface, we do not observe any dissociation on the timescale accessible. The edge terminating hydroxyl groups participate in a hydrogen bonded network of water molecules that spans the interlayer between periodic images of the clay framework. With isomorphic substitutions in the tetrahedral layer of the (1 1 0) clay edge, we find the adjacent exposed apical oxygen behaves as a Brönsted base and abstracts a proton from a nearby water molecule, which in turn removes a proton from an AlOH2 group. With isomorphic substitutions in the octahedral layer of the (1 1 0) clay edge the adjacent exposed apical oxygen atom does not abstract a proton from the water molecules, but increases the number of hydrogen bonded water molecules (from one to two). Acid treated clays are likely to have both sites protonated. The (0 1 0) surface does not have the same interfacial hydrogen bonding structure; it is much less stable and we observe dissociation of half the terminal SiOH groups (tbnd Sisbnd Osbnd H → tbnd Sisbnd O- + H+) in our models. The resulting anions are stabilized by solvation from both micropore and interlayer water molecules. This suggests that, when fully hydrated, the (0 1 0) surface can act as a Brönsted acid, even at neutral pH.

  7. Diffusion within α-CuI studied using ab initio molecular dynamics simulations

    Science.gov (United States)

    Mohn, Chris E.; Stølen, Svein; Hull, Stephen

    2009-08-01

    The structure and dynamics of superionic α-CuI are studied in detail by means of ab initio Born-Oppenheimer molecular dynamics simulations. The extreme cation disorder and a soft immobile face centred cubic sublattice are evident from the highly diffuse atomic density profiles. The Cu-Cu pair distribution function and distribution of Cu-I-Cu bond angles possess distinct peaks at 2.6 Å and 60° respectively, which are markedly lower than the values expected from the average cationic density, pointing to the presence of pronounced short-range copper-copper correlations. Comparison with lattice static calculations shows that these correlations and the marked shift in the cationic density profile in the lang111rang directions are associated with a locally distorted cation sublattice, and that the movements within the tetrahedral cavities involve rapid jumps into and out of shallow basins on the system potential energy surface. On average, the iodines are surrounded by three coppers within their first coordination shell, with the fourth copper being located in a transition zone between two neighbouring iodine cavities. However, time-resolved analysis reveals that the local structure actually involves a mixture of threefold-, fourfold- and fivefold-coordinated iodines. Examination of the ionic trajectories shows that the copper ions jump rapidly to nearest neighbouring tetrahedral cavities (aligned in the lang100rang directions) following a markedly curved trajectory and often involving short-lived (~1 ps) interstitial positions. The nature of the correlated diffusion underlying the unusually high fraction of coppers with short residence time can be attributed to the presence of a large number of 'unsuccessful' jumps and the likelihood of cooperative motion of pairs of coppers. The calculated diffusion coefficient at 750 K, DCu = 2.8 × 10-5 cm2 s-1, is in excellent agreement with that found experimentally.

  8. An Ab Initio MP2 Study of HCN-HX Hydrogen Bonded Complexes

    Directory of Open Access Journals (Sweden)

    Araújo Regiane C.M.U.

    1998-01-01

    Full Text Available An ab initio MP2/6-311++G** study has been performed to obtain geometries, binding energies and vibrational properties of HCN-HX H-bonded complexes with X = F, Cl, NC, CN and CCH. These MP2/6-311++G** results have revealed that: (i the calculated H-bond lengths are in very good agreement with the experimental ones; (ii the H-bond strength is associated with the intermolecular charge transfer and follows the order: HCN-HNC ~ HCN-HF > HCN-HCl ~ HCN-HCN > HCN-HCCH; (iii BSSE correction introduces an average reduction of 2.4 kJ/mol on the MP2/6-311++G** binding energies, i.e. 11% of the uncorrected binding energy; (iv the calculated zero-point energies reduce the stability of these complexes and show a good agreement with the available experimental values; (v the H-X stretching frequency is shifted downward upon H-bond formation. This displacement is associated with the H-bond length; (vi The more pronounced effect on the infrared intensities occurs with the H-X stretching intensity. It is much enhanced after complexation due to the charge-flux term; (vii the calculated intermolecular stretching frequencies are in very good agreement with the experimental ones; and, finally, (viii the results obtained for the HCN-HX complexes follow the same profile as those found for the acetylene-HX series but, in the latter case, the effects on the properties of the free molecules due to complexation are less pronounced than those in HCN-HX.

  9. Theoretical study of silicon carbide under irradiation at the nano scale: classical and ab initio modelling; Etude theorique a l'echelle nanometrique du carbure de silicium sous irradiation: modelisation classique et ab initio

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, G

    2006-10-15

    The behaviour of silicon carbide under irradiation has been studied using classical and ab initio simulations, focusing on the nano scale elementary processes. First, we have been interested in the calculation of threshold displacement energies, which are difficult to determine both experimentally and theoretically, and also the associated Frenkel pairs. In the framework of this thesis, we have carried out simulations in classical and ab initio molecular dynamics. For the classical approach, two types of potentials have been used: the Tersoff potential, which led to non satisfactory results, and a new one which has been developed during this thesis. This potential allows a better modelling of SiC under irradiation than most of the empirical potentials available for SiC. It is based on the EDIP potential, initially developed to describe defects in silicon, that we have generalized to SiC. For the ab initio approach, the feasibility of the calculations has been validated and average energies of 19 eV for the C and 38 eV for the Si sublattices have been determined, close to the values empirically used in the fusion community. The results obtained with the new potential EDIP are globally in agreement with those values. Finally, the elementary processes involved in the crystal recovery have been studied by calculating the stability of the created Frenkel pairs and determining possible recombination mechanisms with the nudged elastic band method. (author)

  10. Ab initio study of the low-lying electronic states of the CaO molecule

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Hossain; Brites, Vincent; Quere, Frederic Le [Universite Paris-Est, Laboratoire de Modelisation et Simulation Multi Echelle, UMR 8208 CNRS, Batiment Lavoisier, 5 boulevard Descartes, Champs sur Marne, 77454 Marne-la-Vallee, Cedex 2 (France); Leonard, Celine, E-mail: celine.leonard@univ-paris-est.fr [Universite Paris-Est, Laboratoire de Modelisation et Simulation Multi Echelle, UMR 8208 CNRS, Batiment Lavoisier, 5 boulevard Descartes, Champs sur Marne, 77454 Marne-la-Vallee, Cedex 2 (France)

    2011-07-28

    Graphical abstract: Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure of the low-lying electronic states of the CaO molecule. The computations are done using the aug-cc-pV5Z basis set for O and the cc-pCV5Z for Ca. The potential energy curves for the molecular states correlating to the lowest three asymptotes are calculated at the CASSCF level. The potential curves of the lowest five molecular states, X{sup 1}{Sigma}{sup +}, a{sup 3}{Pi}, A'{sup 1{Pi}}, b{sup 3}{Sigma}{sup +} and A{sup 1}{Sigma}{sup +}, and the corresponding dipole moment functions have been determined using internally contracted multi-reference configuration interaction approaches. The spectroscopic constants associated with these electronic states are compared to experimental values. The corresponding electronic wavefunctions have also been analyzed using the dipole moment functions. Display Omitted Highlights: {yields} The five lowest electronic states of Cao have been determined ab initio at a high level of accuracy. {yields} Large active space, core-valence correlation and configuration interaction are required. {yields} The multi-configurational nature of the electronic ground state is confirmed as well as its monovalent and divalent ionic nature using dipole moment analysis. {yields} These interacting potentials will serve for future obtention of spin-rovibronic levels. - Abstract: Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure of the low-lying electronic states of the CaO molecule. The computations are done using the aug-cc-pV5Z basis set for O and the cc-pCV5Z for Ca. The potential energy curves for the molecular states correlating to the lowest three asymptotes are calculated at the CASSCF level. The potential curves of the lowest five molecular states, X{sup 1}{Sigma}{sup +}, a{sup 3}{Pi}, A'{sup 1}{Pi}, b{sup 3}{Sigma}{sup +} and A{sup 1

  11. Ab initio study of pressure induced structural and electronic properties in TmPo

    Energy Technology Data Exchange (ETDEWEB)

    Makode, Chandrabhan, E-mail: cbmakode@gmail.com; Pataiya, Jagdish; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal-462026 (India); Panwar, Y. S.; Aynyas, Mahendra [Department of Physics, C.S.A. Govt. P.G. College, Sehore-466001 (India)

    2015-06-24

    We report an ab initio calculation of pressure induced structural phase transition and electronic properties of Thulium Polonide (TmPo).The total energy as a function of volume is obtained by means of self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). It is found that TmPo is stable in NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-phase) structure of this compound in the pressure range of 7.0 GPa. We also calculate the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure and density of states. From energy diagram it is observed that TmPo exhibit metallic behavior. The calculated values of equilibrium lattice parameter and bulk modulus are in general good agreement.

  12. Ultrafast transformation of graphite to diamond: an ab initio study of graphite under shock compression.

    Science.gov (United States)

    Mundy, Christopher J; Curioni, Alessandro; Goldman, Nir; Will Kuo, I-F; Reed, Evan J; Fried, Laurence E; Ianuzzi, Marcella

    2008-05-14

    We report herein ab initio molecular dynamics simulations of graphite under shock compression in conjunction with the multiscale shock technique. Our simulations reveal that a novel short-lived layered diamond intermediate is formed within a few hundred of femtoseconds upon shock loading at a shock velocity of 12 kms (longitudinal stress>130 GPa), followed by formation of cubic diamond. The layered diamond state differs from the experimentally observed hexagonal diamond intermediate found at lower pressures and previous hydrostatic calculations in that a rapid buckling of the graphitic planes produces a mixture of hexagonal and cubic diamond (layered diamond). Direct calculation of the x-ray absorption spectra in our simulations reveals that the electronic structure of the final state closely resembles that of compressed cubic diamond.

  13. Relaxation of the excited -(2-hydroxy benzylidene) aniline molecule: An ab initio and TD DFT study

    Indian Academy of Sciences (India)

    Biswajit Chowdhury; Rina De; Pinaky Sett; Joydeep Chowdhury

    2010-11-01

    The photophysical behaviour of N-(2-hydroxy benzylidene) aniline or most commonly known as salicylideneaniline (SA) has been investigated using the ab initio and DFT levels of theory. The quantum chemical calculations show that the optimized non planar enol (1) form of the SA molecule is the most stable conformer in the ground state and is marked by the twisting of the phenolic and anilino rings of the molecule. The geometry optimizations and the subsequent frequency calculations of the excited singlet electronic states of the various tautomeric forms of SA molecule were performed with the CIS level of theory. A detail theoretical investigation on the relaxation dynamics of the SA molecule has been presented. Possible explanation on the excitation wavelength dependence of the photochromic yield of the molecule is also reported.

  14. Ab initio STUDIES ON MAGNETISM OF 3d TRANSITION METAL DIMERS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ab initio calculations with the self-consistent full-potential linearized augmented-plane-wave method (FLAPW), under generalized gradient approximation, have been carried out to describe the electronic and magnetic properties of 3d transition metal dimers. It predicted the antiferromagneticity of Cr2 and ferromagneticity of other species. The Mn2 dimer was shown to be ferromagnetic coupling with a local magnetic moment of 5μB. Retaining the value of its free atom state. The V2 and Ni2 exhibited low spin-polarization with local magnetic moment of only 1μB per atom. On the other hand, Fe2 and Co2 were highly spin-polarized with local magnetic moments of 3 and 2μB.

  15. Ab initio and DFT studies on vibrational spectra of some halides of group IIIB elements

    Science.gov (United States)

    Zhang, Yu; Zhao, Jianying; Tang, Guodong; Zhu, Longgen

    2005-11-01

    The vibrational spectra of some group IIIB elements halides MX 3 and their dimmers, M 2X 6 (M = Sc(III), Y(III), La(III); X = F, Cl, Br, I), have been systematically investigated by ab initio restricted Hartree-Fock (RHF) and density functional B3LYP methods with LanL2DZ and SDD basis sets. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational frequencies, calculated by two methods with different basis sets, are compared to each other. The effect of the methods and the basis sets used on the calculated vibrational frequencies are discussed. Some vibrational frequencies of these complexes are also predicted.

  16. Piezoelectricity in two-dimensional materials: Comparative study between lattice dynamics and ab initio calculations

    Science.gov (United States)

    Michel, K. H.; ćakır, D.; Sevik, C.; Peeters, F. M.

    2017-03-01

    The elastic constant C11 and piezoelectric stress constant e1 ,11 of two-dimensional (2D) dielectric materials comprising h-BN, 2 H -MoS2 , and other transition-metal dichalcogenides and dioxides are calculated using lattice dynamical theory. The results are compared with corresponding quantities obtained with ab initio calculations. We identify the difference between clamped-ion and relaxed-ion contributions with the dependence on inner strains which are due to the relative displacements of the ions in the unit cell. Lattice dynamics allows us to express the inner-strain contributions in terms of microscopic quantities such as effective ionic charges and optoacoustical couplings, which allows us to clarify differences in the piezoelectric behavior between h-BN and MoS2. Trends in the different microscopic quantities as functions of atomic composition are discussed.

  17. Ab initio study of the electronic structure andelastic properties of Al5C3N

    Institute of Scientific and Technical Information of China (English)

    Xu Xue-Wen; Hu Long; Yu Xiao; Lu Zun-Ming; Fan Ying; Li Yang-xian; Tang Cheng-Chun

    2011-01-01

    We investigate the electronic structure,chemical bonding and elastic properties of the hexagonal aluminum carbonitride,Al5C3N,by ab initio calculations.Al5C3N is a semiconductor with a narrow indirect gap of 0.81 eV.The valence bands below the Fermi level (EF) originate from the hybridized Al p-C p and Al p-N p states.The calculated bulk and Young's moduli are 201 GPa and 292 GPa,which are slightly lower than those of Ti3SiC2.The values of the bulk-to-shear-modulus and bulk-modulus-to-c44 are 1.73 and 1.97,respectively,which axe higher than those of Ti2AlCand Ti2AlN,indicating that Al5C3N is a ductile ceramic.

  18. Ab initio molecular dynamics study of hydrogen removal by ion-surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Johanna [Materials Chemistry, RWTH-Aachen, D-52056 Aachen (Germany); Larsson, Karin [Department of Materials Chemistry, Angstroem Laboratory, Uppsala University, Box 538, 751 21 Uppsala (Sweden); Schneider, Jochen M [Materials Chemistry, RWTH-Aachen, D-52056 Aachen (Germany)

    2005-04-20

    The energy dependence of surface reactions has been investigated through ab initio MD simulations for collisions between Al{sup 1+} and a gibbsite surface. No change in surface composition was observed for 0 eV initial kinetic energy of Al{sup 1+}. An increase in energy to 3.5 eV resulted in extended surface migration of hydrogen, subsequent H{sub 2} formation and desorption from the surface. These results may be understood based on thermodynamics and an increase in entropy upon H{sub 2} formation. They are of fundamental importance for an increased understanding of thin film growth through the correlation between ion energy and film composition. They may also indicate a pathway to affect impurity incorporation during film growth. (letter to the editor)

  19. Tailoring oxygen vacancies at ZnO( 1 1 ¯ 00 ) surface: An ab initio study

    Science.gov (United States)

    Korir, K. K.; Catellani, A.; Cicero, G.

    2016-09-01

    Oxygen vacancies in ZnO crystals have significant impacts on its properties and applications. On the basis of ab initio results, we describe the oxygen vacancy distribution and diffusion paths away from the ZnO( 1 1 ¯ 00 ) surface, aiming to elucidate thermodynamics and kinetic stability of the vacancies and a possible control mechanism. In view of defect engineering and sensor applications, we propose efficient routes to chemically control the equilibrium concentration of the oxygen vacancies at ZnO surfaces by exposure to specific reactive gases: we show that the oxygen vacancy concentration can be increased using sulfur oxide as post-growth treatment, while under exposure to ozone, no significant amount of oxygen vacancies can be sustained on the surface.

  20. Ab initio study of the phononic origin of negative thermal expansion

    Science.gov (United States)

    Argaman, Uri; Eidelstein, Eitan; Levy, Ohad; Makov, Guy

    2016-11-01

    Negative thermal expansion is an uncommon phenomenon of theoretical interest. Multiple hypotheses regarding its microscopic origins have been suggested. In this paper, the thermal expansion of a representative semiconductor, Si, and a representative metal, Ti, are calculated ab initio using density-functional perturbation theory. The phonon modes' contributions to the thermal expansion are analyzed and the negative thermal expansion is shown to be dominated by negative mode Grüneisen parameters at specific points on the Brillouin zone boundaries. Thus, the elastic (Debye) theory for negative thermal expansion is shown to be irrelevant for these phenomena. The anomalous behavior of these modes in Ti is shown to be unaffected by an electronic topological transition as previously suggested, instead it arises from complex interplay of atomic displacements of the anomalous mode.

  1. A correlation study of quinoline derivatives and their pharmaceutical behavior by ab initio calculated NQR parameters.

    Science.gov (United States)

    Rafiee, Marjan A; Hadipour, Nasser L; Naderi-manesh, Hossein

    2004-03-01

    In this paper, ab initio calculated NQR parameters for some quinoline-containing derivatives are presented. The calculations are carried out in a search for the relationships between the charge distribution of these compounds and their ability to interact with haematin. On the basis of NQR parameters, pi-electron density on the nitrogen atom of the quinoline ring plays a dominant role in determining the ability of quinolines to interact with haematin. This point was confirmed with investigation of Fe+3 cation-pi quinoline ring interactions in 2- and 4-aminoquinoline. However, our results do not show any preference for those carbon atoms of the quinoline ring which previous reports have noted. In order to calculate the NQR parameters, the electric field gradient (EFG) should be evaluated at the site of a quadrupolar nucleus in each compound. EFGs are calculated by the Gaussian 98 program using the B3LYP/6-31 G* level of theory.

  2. The ideal strength of gold under uniaxial stress: an ab initio study.

    Science.gov (United States)

    Wang, Hao; Li, Mo

    2010-07-28

    We employ an ab initio calculation based on density functional theory to investigate the ideal strength of face-centered cubic crystal Au under uniaxial stress along the [100] direction. We show that the stability of the perfect Au crystal under tensile stress is determined by the tetragonal shear stiffness modulus, with an ideal tensile strength of 4.2 GPa and the corresponding Lagrangian tensile strain of ∼ 0.07. The potential bifurcation from the primary uniaxial loading path is along the tetragonal shear. Under compressive stress, there is a stress-free body-centered cubic phase, which is unstable and ready to transform to a stress-free body-centered tetragonal phase with lower internal energy. The stable region is from - 1.6 to 4.2 GPa in the ideal strength, or from - 0.07 to 0.07 in the Lagrangian strain.

  3. Ab initio study of adsorption of molecular hydrogen on microporous metal-organic frameworks.

    Science.gov (United States)

    Hamel, Sébastien; Côté, Michel

    2004-03-01

    In the ongoing search for promising compounds for hydrogen storage, novel porous metal-organic frameworks (MOF) have been discovered recently [1]. Well defined binding sites were deduced from inelastic neutron scattering (INS) spectroscopy of the rotational transitions of the adsorbed molecular hydrogen. In light of this discovery we performed ab initio density functional theory (DFT) calculations of the adsorption of molecular hydrogen on this class of microporous MOF to compare different adsorption sites. Different approximations for the exchange-correlation potentials were accessed for a set of relevant properties such as binding energy, energetically favored configuration and distance between the adsorbents and adsorbates. In particular, theoretical rotational spectra of the adsorbed H2 were obtained that could be compared to the experimental INS spectra. [1] Rosi et al., Science Vol. 300, 1127 (2003)

  4. HCO+ dissociation in a strong laser field: An ab initio classical trajectory study

    Science.gov (United States)

    Lee, Suk Kyoung; Li, Wen; Bernhard Schlegel, H.

    2012-05-01

    We have investigated the photodissociation of HCO+ in a strong field with a wavelength of 10 μm using ab initio molecular dynamics. Classical trajectories were calculated at three field intensities. At 2.9 × 1014 W/cm2 and phase ϕ = 0, protons have two distinct dissociation times, mainly due to the reorientation of HCO+ relative to the field direction prior to dissociation. The kinetic energy distribution at this intensity agrees with Wardlaw's wagging tail model, suggesting that dissociation occurs through barrier-suppression. At 1.7 × 1014 and 8.8 × 1013 W/cm2, barrier suppression is incomplete and the maximum kinetic energy is less than predicted by the wagging tail model.

  5. Ab initio study on the dynamics of furfural at the liquid-solid interfaces

    Science.gov (United States)

    Dang, Hongli; Xue, Wenhua; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2013-03-01

    Catalytic biomass conversion sometimes occurs at the liquid-solid interfaces. We report ab initio molecular dynamics simulations at finite temperatures for the catalytic reactions involving furfural at the water-Pd and water-Cu interfaces. We found that, during the dynamic process, the furan ring of furfural prefers to be parallel to the Pd surface and the aldehyde group tends to be away from the Pd surface. On the other hand, at the water-Cu(111) interface, furfural prefers to be tilted to the Cu surface while the aldehyde group is bonded to the surface. In both cases, interaction of liquid water and furfural is identified. The difference of dynamic process of furfural at the two interfaces suggests different catalytic reaction mechanisms for the conversion of furfural, consistent with the experimental investigations. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSED's and NERSC's supercomputers

  6. Trivacancy in silicon: A combined DLTS and ab-initio modeling study

    Energy Technology Data Exchange (ETDEWEB)

    Markevich, V.P., E-mail: V.Markevich@manchester.ac.u [University of Manchester, Manchester M60 1QD (United Kingdom); Peaker, A.R. [University of Manchester, Manchester M60 1QD (United Kingdom); Lastovskii, S.B.; Murin, L.I. [Scientific-Practical Materials Research Center of NAS of Belarus, Minsk 220072 (Belarus); Coutinho, J.; Markevich, A.V.; Torres, V.J.B. [Department of Physics and I3N, University of Aveiro, 3810-193 Aveiro (Portugal); Briddon, P.R. [University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU (United Kingdom); Dobaczewski, L. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Monakhov, E.V.; Svensson, B.G. [Department of Physics, Oslo University, 0316 Oslo (Norway)

    2009-12-15

    Deep level transient spectroscopy and ab-initio modeling have been used for identification of energy levels and structure of trivacancy (V{sub 3}) in Si. It is found that in the neutral charge state the V{sub 3} is bistable, with the 'fourfold' configuration being lower in energy than the (1 1 0) planar configuration. V{sub 3} in the (1 1 0) planar configuration gives rise to two acceptor levels at E{sub c}-0.36 eV and E{sub c}-0.46 eV in the gap, while in the 'fourfold' configuration the defect has trigonal symmetry and an acceptor level at E{sub c}-0.075 eV.

  7. Ab-initio Hartree-Fock study of tritium desorption from Li{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Masaki; Tanaka, Satoru [Tokyo Univ. (Japan). Faculty of Engineering

    1998-03-01

    Dissociative adsorption of hydrogen on Li{sub 2}O (110) surface has been investigated with ab-initio Hartree-Fock quantum chemical calculation technique. Heat of adsorption and potential energy surface for H{sub 2} dissociative adsorption was evaluated by calculating the total energy of the system. Calculation results on adsorption heat indicated that H{sub 2} adsorption is endothermic. However, when oxygen vacancy exists adjacent to the adsorption sites, heat of adsorption energy became less endothermic and the activation energy required to dissociate the H-H bonding was smaller than that for the terrace site. This is considered to be caused by the excess charge localized near the defect. (author)

  8. Ab initio studies of methane and carbon dioxide affinity to carbon compounds and minerals

    Science.gov (United States)

    Wlazlo, Mateusz; Siklitskaya, Alexandra; Majewski, Jacek

    2017-04-01

    Understanding of physico-chemistry of capture and storage of carbon dioxide and methane might be crucial for development of the novel technologies meant: (i) to deal with the global warming process through the reduction of the CO2 atmospheric concentration by sequestration, and (ii) to enhance oil recovery, on the other hand. The accurate description of CO2 and CH4 adsorption to minerals and carbonaceous systems (which constitute the main component of sedimentary rocks) is essential to reach this goal. We have employed the ab initio molecular dynamics AIMD) based on the density functional theory (DFT) to study the affinity of CO2 and CH4 from gaseous phase, also at elevated temperatures and hydrostatic pressure, to pristine and defected graphene, spiral carbon nanoparticles (spiroids), calcite rocks (represented by the most stable (10-14) surface of CaCoO3), CaO, MgO, illite, and kaolonite. In the case of kaolonite that exhibits layered crystallographic structure, we have also studied the intercalation of CO2. These studies provide valuable quantitative predictions and shed light on physical mechanisms governing the processes of chemisorption and physisorption of the CO2 and CH4 molecules, revealing also the essential role of Van der Waals interaction. In particular, we find out that CO2 molecules in supercritical gaseous phase (i.e. at temperature of order 60oC and moderate hydrostatic pressure of 20-30 MPa) change their shape from linear one to the water like bended V-shape with angle between C-O chemical bonds smaller than 180 degrees. This shape change of CO2 molecules facilitates the CO2 adsorption. Therefore, in the temperature-pressure conditions of shale deposits, the adsorption probability of CO2 can be enhanced in comparison to the ambient conditions. It turns out that the carbon atoms in the surrounding of characteristic Stone-Wales (or 5-7) defects in graphene are more reactive towards adsorption of CO2 and CH4 molecules. In the case of CO2 adsorption

  9. Origin of the Hadži ABC structure: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoozen, Brian L.; Petersen, Poul B. [Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 (United States)

    2015-11-14

    Medium and strong hydrogen bonds are well known to give rise to broad features in the vibrational spectrum often spanning several hundred wavenumbers. In some cases, these features can span over 1000 cm{sup −1} and even contain multiple broad peaks. One class of strongly hydrogen-bonded dimers that includes many different phosphinic, phosphoric, sulfinic, and selenic acid homodimers exhibits a three-peaked structure over 1500 cm{sup −1} broad. This unusual feature is often referred to as the Hadži ABC structure. The origin of this feature has been debated since its discovery in the 1950s. Only a couple of theoretical studies have attempted to interpret the origin of this feature; however, no previous study has been able to reproduce this feature from first principles. Here, we present the first ab initio calculation of the Hadži ABC structure. Using a reduced dimensionality calculation that includes four vibrational modes, we are able to reproduce the three-peak structure and much of the broadness of the feature. Our results indicate that Fermi resonances of the in-plane bend, out-of-plane bend, and combination of these bends play significant roles in explaining this feature. Much of the broadness of the feature and the ability of the OH stretch mode to couple with many overtone bending modes are captured by including an adiabatically separated dimer stretch mode in the model. This mode modulates the distance between the monomer units and accordingly the strength of the hydrogen-bonds causing the OH stretch frequency to shift from 2000 to 3000 cm{sup −1}. Using this model, we were also able to reproduce the vibrational spectrum of the deuterated isotopologue which consists of a single 500 cm{sup −1} broad feature. Whereas previous empirical studies have asserted that Fermi resonances contribute very little to this feature, our study indicates that while not appearing as a separate peak, a Fermi resonance of the in-plane bend contributes substantially to

  10. Ab initio electronic structure study of one-electron reduction of polychlorinated ethylenes.

    Science.gov (United States)

    Bylaska, Eric J; Dupuis, Michel; Tratnyek, Paul G

    2005-07-07

    Polychlorethylene radicals, anions, and radical anions are potential intermediates in the reduction of polychlorinated ethylenes (C(2)Cl(4), C(2)HCl(3), trans-C(2)H(2)Cl(2), cis-C(2)H(2)Cl(2), 1,1-C(2)H(2)Cl(2), C(2)H(3)Cl). Ab initio electronic structure methods were used to calculate the thermochemical properties, (298.15 K), S degrees (298.15 K,1 bar), and DeltaG(S)(298.15 K, 1 bar) of 37 different polychloroethylenyl radicals, anions, and radical anion complexes, C(2)H(y)Cl(3)(-)(y)(*), C(2)H(y)Cl(3)(-)(y)(-), and C(2)H(y))Cl(4)(-)(y)(*)(-) for y = 0-3, for the purpose of characterizing reduction mechanisms of polychlorinated ethylenes. In this study, 8 radicals, 7 anions, and 22 radical anions were found to have stable structures, i.e., minima on the potential energy surfaces. This multitude of isomers for C(2)H(y)Cl(4)(-)(y)(*)(-) radical anion complexes are pi*, sigma*, and -H...Cl(-) structures. Several stable pi* radical anionic structures were obtained for the first time through the use of restricted open-shell theories. On the basis of the calculated thermochemical estimates, the overall reaction energetics (in the gas phase and aqueous phase) for several mechanisms of the first electron reduction of the polychlorinated ethylenes were determined. In almost all of the gas-phase reactions, the thermodynamically most favorable pathways involve -H...Cl(-) complexes of the C(2)H(y)Cl(4)(-)(y)(*)(-) radical anion, in which a chloride ion is loosely bound to a hydrogen of a C(2)H(x)Cl(2)(-)(x))(*) radical. The exception is for C(2)Cl(4), in which the most favorable anionic structure is a loose sigma* radical anion complex, with a nearly iso-energetic pi* radical anion. Solvation significantly changes the product energetics with the thermodynamically most favorable pathway leading to C(2)H(y)Cl(3)(-)(y)(*) + Cl(-). The results suggest that a higher degree of chlorination favors reduction, and that reduction pathways involving the C(2)H(y)Cl(3)(-)(y)(-) anions

  11. Ab initio study of H2O and water-chain-induced properties of carbon nanotubes

    Science.gov (United States)

    Agrawal, B. K.; Singh, V.; Pathak, A.; Srivastava, R.

    2007-05-01

    We perform an ab initio study of the motion of the nano sized water dimer through a single-walled carbon nanotube (SWCNT), the stability of an encapsulated one-dimensional (1D) water chain inside SWCNT, and the H2O -induced structural, energetic, electronic, and optical properties of the SWCNTs. The adsorption of the water molecules is caused by the dispersion forces, i.e., the van der Waals (vdW) interactions. Thus, the role of the vdW interactions in the estimation of the BE for the weakly bound adsorbates cannot be ignored as has been done in several earlier publications. We find that a single H2O molecule or single water dimer or a 1D chain of water dimers is trapped inside the medium-sized (6,6) carbon nanotube placed in vacuum. However, the H2O molecule or water dimer may be transmitted in case the tube is surrounded by water or water vapor at high vapor pressure at high temperatures. On the other hand, a chain of single H2O molecules or more number of the encapsulated H2O molecules is very weakly coupled to the wide (10,10) carbon nanotube and can, thus, easily transmit through the carbon nanotube in agreement with the recent experiments. Further, appreciable adsorption both inside and on the surface of the (10,10) carbon nanotube is predicted in concurrence with the experiments. The small (medium-sized) diameter tubes will adsorb strongly (accommodate) the water molecules outside (inside) the nanotubes. The H2O adsorption converts the conducting small-diameter zigzag (5,0) tube into a semiconductor. Further, the adsorption reduces the band gap of the semiconducting achiral zigzag (10,0) nanotube but increases the band gap of a chiral semiconducting (4,2) tube. The adsorbed H2O molecules increase the electrical conductivity in agreement with the experiment. The overall peak structure in the optical absorption for the pristine tube is not altered significantly by the adsorption except for small alterations in the energy locations and the relative intensities

  12. Ab initio studies on the adsorption and implantation of Al and Fe to nitride materials

    Energy Technology Data Exchange (ETDEWEB)

    Riedl, H., E-mail: helmut.riedl@tuwien.ac.at [Christian Doppler Laboratory for Application Oriented Coating Development at the Institute of Materials Science and Technology, TU Wien, A-1040 Wien (Austria); Zálešák, J. [Erich Schmid Institute for Materials Science, Austria Academy of Science, A-8700 Leoben (Austria); Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben (Austria); Arndt, M. [Oerlikon Balzers, Oerlikon Surface Solutions AG, LI-9496 Balzers (Liechtenstein); Polcik, P. [Plansee Composite Materials GmbH, D-86983 Lechbruck am See (Germany); Holec, D. [Christian Doppler Laboratory for Application Oriented Coating Development at the Institute of Materials Science and Technology, TU Wien, A-1040 Wien (Austria); Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben (Austria); Mayrhofer, P. H. [Christian Doppler Laboratory for Application Oriented Coating Development at the Institute of Materials Science and Technology, TU Wien, A-1040 Wien (Austria); Institute of Materials Science and Technology, TU Wien, A-1040 Vienna (Austria)

    2015-09-28

    The formation of transfer material products on coated cutting and forming tools is a major failure mechanism leading to various sorts of wear. To describe the atomistic processes behind the formation of transfer materials, we use ab initio to study the adsorption energy as well as the implantation barrier of Al and Fe atoms for (001)-oriented surfaces of TiN, Ti{sub 0.50}Al{sub 0.50}N, Ti{sub 0.90}Si{sub 0.10}N, CrN, and Cr{sub 0.90}Si{sub 0.10}N. The interactions between additional atoms and nitride-surfaces are described for pure adhesion, considering no additional stresses, and for the implantation barrier. The latter, we simplified to the stress required to implant Al and Fe into sub-surface regions of the nitride material. The adsorption energies exhibit pronounced extrema at high-symmetry positions and are generally highest at nitrogen sites. Here, the binary nitrides are comparable to their ternary counterparts and the average adhesive energy is higher (more negative) on CrN than TiN based systems. Contrary, the implantation barrier for Al and Fe atoms is higher for the ternary systems Ti{sub 0.50}Al{sub 0.50}N, Ti{sub 0.90}Si{sub 0.10}N, and Cr{sub 0.90}Si{sub 0.10}N than for their binary counterparts TiN and CrN. Based on our results, we can conclude that TiN based systems outperform CrN based systems with respect to pure adhesion, while the Si-containing ternaries exhibit higher implantation barriers for Al and Fe atoms. The data obtained are important to understand the atomistic interaction of metal atoms with nitride-based materials, which is valid not just for machining operations but also for any combination such as interfaces between coatings and substrates or multilayer and phase arrangements themselves.

  13. Ab initio and experimental studies of glow-discharge polymer used in laser mégajoule capsules

    Science.gov (United States)

    Colin-Lalu, P.; Recoules, V.; Salin, G.; Huser, G.

    2017-01-01

    The equations of state tables used in Inertial Confinement Fusion Capsule design tools are highly dependent on the cold curve in the multimegabar pressure range. Original ab initio molecular dynamic simulations were performed to get accurate cold curves of glow-discharge polymer (GDP) plastics. Furthermore the effect of oxygen absorption by GDP structure is studied on the cold curve, as well as its impact on the Hugoniot curves. Results are compared with the Hugoniot experimental data obtained in a recent experiment at the LULI2000 laser facility in France. This study leads to improve the equation of states knowledge of ablator materials, which is of primary importance for NIF and LMJ experiments.

  14. NO sub 3 , the study of molecular properties and photodissociation by ab initio method, spectroscopy, and translational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.

    1990-10-01

    This report discusses the following topics: molecular structure of NO{sub 3} radical studied by laser induced fluorescence; photodissociation and fluorescence spectroscopy of NO{sub 3} in molecular beam; vertical electronic spectrum of NO{sub 3}:{sup 2}A{prime}{sub 2}, {sup 2}E{double prime}({sup 2}A{sub 2}{sup 2}B{sub 1}), and {sup 2}E{prime} states; and Ab initio study of the vibrational spectra of NO{sub 3}.

  15. Ab initio valence calculations in chemistry

    CERN Document Server

    Cook, D B

    1974-01-01

    Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge

  16. Ab initio study of the spin distribution and conductive properties of a Malonato-bridged gadolinium (III) complex

    Science.gov (United States)

    Zhu, L.; Yao, K. L.; Liu, Z. L.

    2007-10-01

    Ab initio computations within the full potential linearized augmented plane wave method with the generalized gradient approximation plus Hubbard potential approach were applied in the study of the electronic structures of the compound [Gd2(mal)3(H2O)6] . The present calculations show that the major part of the spin magnetic moment is from Gd(III) ions, and the origin of the ferromagnetic intermolecular interaction of the two interacting Gd(III) ions comes from the spin polarization effect through the oxo-carboxylato and carboxylato bridges. By analysis of the band structure, we find that the compound has a metallic property.

  17. Ab initio study of ferromagnetic La0.5Ba0.5CoO3

    Indian Academy of Sciences (India)

    Umesh V Waghmare

    2003-10-01

    We study structure and magnetic properties of La0.5Ba0.5CoO3 (LBCO) using ab initio density functional theory (DFT) method based on pseudopotentials and a plane-wave basis. We find the cubic structure of LBCO is ferromagnetic and lower in energy than the nonmagnetic rhombohedral structure. Through the calculation of -point phonons of LBCO in the cubic structure, we determine its structural instabilities and find that they correspond to the structural phase transition accompanying a para-ferromagnetic transition observed recently.

  18. Proton Exchange in a Paramagnetic Chemical Exchange Saturation Transfer Agent from Experimental Studies and ab Initio Metadynamics Simulation.

    Science.gov (United States)

    Pollet, Rodolphe; Bonnet, Célia S; Retailleau, Pascal; Durand, Philippe; Tóth, Éva

    2017-03-27

    The proton-exchange process between water and a carbamate has been studied experimentally and theoretically in a lanthanide-based paramagnetic chemical exchange saturation transfer agent endowed with potential multimodality detection capabilities (optical imaging, or T1 MRI for the Gd(III) analogue). In addition to an in-depth structural analysis by a combined approach (using X-ray crystallography, NMR, and molecular dynamics), our ab initio simulation in aqueous solution sheds light on the reaction mechanism for this proton exchange, which involves structural Grotthuss diffusion.

  19. Ab initio based potential energy surface and kinetics study of the OH + NH3 hydrogen abstraction reaction.

    Science.gov (United States)

    Monge-Palacios, M; Rangel, C; Espinosa-Garcia, J

    2013-02-28

    A full-dimensional analytical potential energy surface (PES) for the OH + NH3 → H2O + NH2 gas-phase reaction was developed based exclusively on high-level ab initio calculations. This reaction presents a very complicated shape with wells along the reaction path. Using a wide spectrum of properties of the reactive system (equilibrium geometries, vibrational frequencies, and relative energies of the stationary points, topology of the reaction path, and points on the reaction swath) as reference, the resulting analytical PES reproduces reasonably well the input ab initio information obtained at the coupled-cluster single double triple (CCSD(T)) = FULL/aug-cc-pVTZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical PES we perform an extensive kinetics study using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 200-2000 K. The forward rate constants reproduce the experimental measurements, while the reverse ones are slightly underestimated. However, the detailed analysis of the experimental equilibrium constants (from which the reverse rate constants are obtained) permits us to conclude that the experimental reverse rate constants must be re-evaluated. Another severe test of the new surface is the analysis of the kinetic isotope effects (KIEs), which were not included in the fitting procedure. The KIEs reproduce the values obtained from ab initio calculations in the common temperature range, although unfortunately no experimental information is available for comparison.

  20. Carbonate-Bridged Lanthanoid Triangles: Single-Molecule Magnet Behavior, Inelastic Neutron Scattering, and Ab Initio Studies.

    Science.gov (United States)

    Giansiracusa, Marcus J; Vonci, Michele; Van den Heuvel, Willem; Gable, Robert W; Moubaraki, Boujemaa; Murray, Keith S; Yu, Dehong; Mole, Richard A; Soncini, Alessandro; Boskovic, Colette

    2016-06-06

    Optimization of literature synthetic procedures has afforded, in moderate yield, homogeneous and crystalline samples of the five analogues Na11[{RE(OH2)}3CO3(PW9O34)2] (1-RE; RE = Y, Tb, Dy, Ho, and Er). Phase-transfer methods have allowed isolation of the mixed salts (Et4N)9Na2[{RE(OH2)}3CO3(PW9O34)2] (2-RE; RE = Y and Er). The isostructural polyanions in these compounds are comprised of a triangular arrangement of trivalent rare-earth ions bridged by a μ3-carbonate ligand and sandwiched between two trilacunary Keggin {PW9O34} polyoxometalate ligands. Alternating-current (ac) magnetic susceptibility studies of 1-Dy, 1-Er, and 2-Er reveal the onset of frequency dependence for the out-of-phase susceptibility in the presence of an applied magnetic field at the lowest measured temperatures. Inelastic neutron scattering (INS) spectra of 1-Ho and 1-Er exhibit transitions between the lowest-lying crystal-field (CF) split states of the respective J = 8 and (15)/2 ground-state spin-orbit multiplets of the Ho(III) and Er(III) ions. Complementary ab initio calculations performed for these two analogues allow excellent reproduction of the experimental magnetic susceptibility and low-temperature magnetization data and are in reasonable agreement with the experimental INS data. The ab initio calculations reveal that the slight difference in coordination environments of the three Ln(III) ions in each complex gives rise to differences in the CF splitting that are not insignificant. This theoretical result is consistent with the observation of multiple relaxation processes by ac magnetic susceptibility and the broadness of the measured INS peaks. The ab initio calculations also indicate substantial mixing of the MJ contributions to the CF split energy levels of each Ln(III) ion. Calculations indicate that the CF ground states of the Ho(III) centers in 1-Ho are predominantly comprised of contributions from small MJ, while those of the Er(III) centers in 1-Er are predominantly

  1. Protonation sites in gaseous pyrrole and imidazole: a neutralization-reionization and ab initio study.

    Science.gov (United States)

    Nguyen, V Q; Turecek, F

    1996-10-01

    Mild gas-phase acids C4H9+ and NH4+ protonate pyrrole at C-2 and C-3 but not at the nitrogen atom, as determined by deuterium labeling and neutralization-reionization mass spectrometry. Proton affinities in pyrrole are calculated by MP2/6-311G(2d,p) as 866, 845 and 786 kJ mol-1 for protonation at C-2, C-3 and N, respectively. Vertical neutralization of protonated pyrrole generates bound radicals that in part dissociate by loss of hydrogen atoms. Unimolecular loss of hydrogen atom from C-2- and C-3-protonated pyrrole cations is preceded by proton migration in the ring. Protonation of gaseous imidazole is predicted to occur exclusively at the N-3 imine nitrogen to yield a stable aromatic cation. Proton affinities in imidazole are calculated as 941, 804, 791, 791 and 724 for the N-3, C-4, C-2, C-5 and N-1 positions, respectively. Radicals derived from protonated imidazole are only weakly bound. Vertical neutralization of N-3-protonated imidazole is accompanied by large Franck-Condon effects which deposit on average 183 kJ mol-1 vibrational energy in the radicals formed. The radicals dissociate unimolecularly by loss of hydrogen atom, which involves both direct N-H bond cleavage and isomerization to the more stable C-2 H-isomer. Potential energy barriers to isomerizations and dissociations in protonated pyrrole and imidazole isomers and their radicals were investigated by ab initio calculations.

  2. Direct ab initio molecular dynamics study of the two photodissociation channels of formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Yuzuru; Yokoyama, Keiichi; Teranishi, Yoshiaki

    2005-01-31

    A total of {approx}1200 trajectories have been integrated for the two photodissociation channels of formic acid, HCOOH {yields} H{sub 2}O + CO (1) and HCOOH {yields} CO{sub 2} + H{sub 2} (2), which occur with 248 and 193 nm photons, using the direct ab initio molecular dynamics method at the RMP2(full)/cc-pVDZ level of theory. It was found that the percentage of the energy distributed to a relative translational mode in reaction is much larger than that in reaction . This is mainly due to the difference in the geometry of transition state (TS); the H{sub 2}O geometry in the TS of reaction was predicted to significantly deviate from the equilibrium one, whereas the CO{sub 2} and H{sub 2} geometries in the TS of reaction were found to be more similar to their equilibrium ones. It was also found that the product diatomic molecules, CO and H{sub 2}, are both vibrationally and rotationally excited. The calculated relative population of the vibrationally excited CO for the 248 nm photodissociation was consistent with experiment.

  3. Ab initio energetic study of oxide ceramics with rare-earth elements

    Institute of Scientific and Technical Information of China (English)

    WU Bo; Matvei Zinkevich; WANG Chong; Fritz Aldinger

    2006-01-01

    Ab initio energetic calculations based on the density functional theory (DFT) and the projector augmented wave method (PAW) for determining the polymorphisms of lanthanide sesquioxides Ln2O3 (where Ln = rare-earth element. Y,and Sc), LnMO3 perovskites (where M = Al and Ga), and Ln2B2O7 pyrochlores (where B = Ti, Zr, and Hf) were reported. The relative lattice stabilities agreed well with the critically assessed results or the experimental results except the C-type Ln2O3 with a cubic structure, for which the calculated total energies were considerably more negative. With the increase of the Ln3+-cation radius, the polymorphic structures showed a degenerative tendency. The tendencies and quantities of the enthalpies of formation of the ternary oxide ceramics synthesized from their constituent binary oxides reasonably agreed with the available experimental results, and valuable thermodynamic properties were afforded to the compound, for which no experimental data is available. The enthalpies of formation of both perovskites and pyrochlores tend to become more negative with the increase of the Ln3+-cation radius.

  4. Synthesis, FTIR, FT-Raman, UV-visible, ab initio and DFT studies on benzohydrazide.

    Science.gov (United States)

    Arjunan, V; Rani, T; Mythili, C V; Mohan, S

    2011-08-01

    A systematic vibrational spectroscopic assignment and analysis of benzohydrazide (BH) has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis were aided by electronic structure calculations--ab initio (RHF) and hybrid density functional methods (B3LYP and B3PW91) performed with 6-31G(d,p) and 6-311++G(d,p) basis sets. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λ(max) were determined by time-dependent DFT (TD-DFT) method. The geometrical, thermodynamical parameters and absorption wavelengths were compared with the experimental data. The interactions of carbonyl and hydrazide groups on the benzene ring skeletal modes were investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Ab initio atomistic thermodynamics study on the oxidation mechanism of binary and ternary alloy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shi-Yu, E-mail: buaasyliu@gmail.com [College of Physics and Electronic Information Science, Tianjin Normal University, Tianjin 300387 (China); Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Liu, Shiyang [Institute of Information Optics, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China); Li, De-Jun [College of Physics and Electronic Information Science, Tianjin Normal University, Tianjin 300387 (China); Wang, Sanwu, E-mail: sanwu-wang@utulsa.edu [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, Oklahoma 74104 (United States); Guo, Jing; Shen, Yaogen, E-mail: meshen@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2015-02-14

    Utilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustained complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively. Furthermore, by revealing the framework of thermodynamics for the oxidation mechanism of ternary alloys through the comparison of the surface energies of two separated binary alloys, we provide an understanding for the selective oxidation behavior of the Nb ternary alloy surfaces. Using these general microscopic mechanisms, one could predict the oxidation behavior of any binary and multi-component alloy surfaces based on thermodynamics considerations.

  6. Ab Initio Study of Thermodynamic Properties of Lithium, Sodium, and Potassium Sulfates

    Science.gov (United States)

    Zhuravlev, Yu. N.; Bugaeva, I. A.; Zhuravleva, L. V.

    2013-11-01

    The thermodynamic parameters of lithium, sodium, and potassium single and double sulfate crystals are determined by the method of ab initio calculation of a linear combination of atomic orbitals in the gradient approximation of density functional theory using the software package CRYSTAL09 within the framework of the quasi-harmonic approximation of the Debye theory. It is demonstrated that the standard entropies and heat capacities as well as the temperature dependences are in satisfactory agreement with the available experimental data. The average frequency, Debye temperature, and thermal conductivity coefficient increase with external pressure, whereas the Gruneisen parameter decreases. The dependences of the potentials of free and internal energies on the temperature and volume are expressed through the Birch-Murnaghan equation of state and a square-law dependence on these parameters of their vibrational components. The thermodynamic parameters of lithium-potassium sulfate appear closer to potassium sulfate, whereas for sodium-potassium, they lie between the corresponding parameters for single compounds.

  7. Structural Rearrangement of Au-Pd Nanoparticles under Reaction Conditions: An ab Initio Molecular Dynamics Study.

    Science.gov (United States)

    Xu, Cong-Qiao; Lee, Mal-Soon; Wang, Yang-Gang; Cantu, David C; Li, Jun; Glezakou, Vassiliki-Alexandra; Rousseau, Roger

    2017-02-28

    The structure, composition, and atomic distribution of nanoalloys under operating conditions are of significant importance for their catalytic activity. In the present work, we use ab initio molecular dynamics simulations to understand the structural behavior of Au-Pd nanoalloys supported on rutile TiO2 under different conditions. We find that the Au-Pd structure is strongly dependent on the redox properties of the support, originating from strong metal-support interactions. Under reducing conditions, Pd atoms are inclined to move toward the metal/oxide interface, as indicated by a significant increase of Pd-Ti bonds. This could be attributed to the charge localization at the interface that leads to Coulomb attractions to positively charged Pd atoms. In contrast, under oxidizing conditions, Pd atoms would rather stay inside or on the exterior of the nanoparticle. Moreover, Pd atoms on the alloy surface can be stabilized by hydrogen adsorption, forming Pd-H bonds, which are stronger than Au-H bonds. Our work offers critical insights into the structure and redox properties of Au-Pd nanoalloy catalysts under working conditions.

  8. Ferromagnetic ordering of Cr and Fe doped p-type diamond: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Benecha, E. M. [Department of Physics, University of South Africa, P.O Box 392, UNISA 0003, Pretoria (South Africa); Lombardi, E. B. [College of Graduate Studies, University of South Africa, P.O Box 392, UNISA 0003, Pretoria (South Africa)

    2014-02-21

    Ferromagnetic ordering of transition metal dopants in semiconductors holds the prospect of combining the capabilities of semiconductors and magnetic systems in single hybrid devices for spintronic applications. Various semiconductors have so far been considered for spintronic applications, but low Curie temperatures have hindered room temperature applications. We report ab initio DFT calculations on the stability and magnetic properties of Fe and Cr impurities in diamond, and show that their ground state magnetic ordering and stabilization energies depend strongly on the charge state and type of co-doping. We predict that divacancy Cr{sup +2} and substitutional Fe{sup +1} order ferromagnetically in p-type diamond, with magnetic stabilization energies (and magnetic moment per impurity ion) of 16.9 meV (2.5 μ{sub B}) and 33.3 meV (1.0 μ{sub B}), respectively. These magnetic stabilization energies are much larger than what has been achieved in other semiconductors at comparable impurity concentrations, including the archetypal dilute magnetic semiconductor GaAs:Mn. In addition, substitutional Fe{sup +1} exhibits a strong half-metallic character, with the Fermi level crossing bands in only the spin down channel. These results, combined with diamond’s extreme properties, demonstrate that Cr or Fe dopedp-type diamond may successfully be considered in the search for room temperature spintronic materials.

  9. Amino acid anions in organic ionic compounds. An ab initio study of selected ion pairs.

    Science.gov (United States)

    Benedetto, A; Bodo, E; Gontrani, L; Ballone, P; Caminiti, R

    2014-03-06

    The combination of amino acids in their deprotonated and thus anionic form with a choline cation gives origin to a new and potentially important class of organic ionic compounds. A series of such neutral ion pairs has been investigated by first principle methods. The results reveal intriguing structural motives as well as regular patterns in the charge distribution and predict a number of vibrational and optical properties that could guide the experimental investigation of these compounds. The replacement of choline with its phosphocholine analogue causes the spontaneous reciprocal neutralization of cations and anions, taking place through the transfer of a proton between the two ions. Systems of this kind, therefore, provide a wide and easily accessible playground to probe the ionic/polar transition in organic systems, while the easy transfer of H(+) among neutral and ionic species points to their potential application as proton conductors. The analysis of the ab initio data highlights similarities as well as discrepancies from the rigid-ions force-field picture and suggests directions for the improvement of empirical models.

  10. Ab initio Mechanism Study on the Reaction of Chlorine Atom with Formic Acid

    Institute of Scientific and Technical Information of China (English)

    于海涛; 付宏刚; 等

    2003-01-01

    The potential energy surface(PES) for the reaction of Cl atom with HCOOH is predicted using ab initio molecular orbital calculation methods at UQCIDS(T,full)6-311++G(3df,2p)//UMP2(full)/6-311+G(d,P) level of theory with zero-point vibrational energy (ZPVE) correction.The calculated results show that the reaction mechanism of Cl atom with formic acid is a C-site hydrogen abstraction reaction from cis-HOC(H)O molecule by Cl atom with a 3.73kJ/mol reaction barrier height,leading to the formation of cis-HOCO radical which will reacts with Cl atom or other molecules in such a reaction system.Because the reaction barrier height of O-site hydrogen abstraction reaction from cis-HOC(H)O molecule by Cl atom which leads to the formation of HCO2 radical is 67.95kJ/mol,it is a secondary reaction channel in experiment,This is in good agreement with the prediction based on the previous experiments.

  11. Ab initio study on the mechanism of reaction HNCO+NH2

    Institute of Scientific and Technical Information of China (English)

    冀永强; 雷鸣; 冯文林; 徐振峰

    2002-01-01

    Ab initio UMP2 and UQCISD(T) calculations, with 6-311G** basis sets, were performed for the titled reactions. The results show that the reactions have two product channels: NH2+ HNCO→NH3+NCO (1) and NH2+HNCO-N2H3+CO (2), where reaction (1) is a hydrogen abstraction reaction via an H-bonded complex (HBC), lowering the energy by 32.48 kJ/mol relative to reactants. The calculated QCISD(T)//MP2(full) energy barrier is 29.04 kJ/mol, which is in excellent accordance with the experimental value of 29.09 kJ/mol. In the range of reaction temperature 2300-2700 K, transition theory rate constant for reaction (1) is 1.68 × 1011- 3.29 × 1011 mL · mol-1· s-1, which is close to the experimental one of 5.0 ×1011 mL× mol-1· s-1 or less. However, reaction (2) is a stepwise reaction proceeding via two orientation modes, cis and trans, and the energy barriers for the rate-control step at our best calculations are 92.79 kJ/mol (for cis-mode) and 147.43 kJ/mol (for trans-mode), respectively, which is much higher than

  12. Laser spectroscopy and ab initio studies of metal-containing free radicals

    CERN Document Server

    Greetham, G M

    2000-01-01

    strontium-containing free radical is reported, that of SrCCH. This new excited electronic state is accessed by the orbitally-forbidden B-tilde' sup 2 DELTA-X-tilde sup 2 SIGMA sup + transition. Spin-orbit and vibrational structure have been seen in spectra of SrCCH and SrCCD and confirmed the assignment. Finally, observation of a new transition in an unidentified gallium-containing molecule is reported. Two progressions corresponding to two different vibrational modes of the molecule are seen in the spectrum. Potential spectral carriers, including Ga sub x clusters and other gallium-containing molecules formed by reaction with impurities, are discussed in an attempt to explain the observed spectrum. This work describes the use of laser spectroscopy and ab initio calculations in the investigation of several new electronic transitions in metal-containing free radicals. These free radicals were prepared in a supersonic jet by laser ablation of solid metal samples in the presence of appropriate precursor molecule...

  13. Photo-exfoliation of graphene from graphite: An ab initio study

    Science.gov (United States)

    Zhang, Hong; Miyamoto, Yoshiyuki; Tománek, David

    2010-03-01

    Mass production of high-quality graphene monolayers is an essential prerequisite for producing graphene devices [1]. Flaws of current synthesis techniques, such as chemical exfoliation combined with sonication[2] are remaining contaminants, and CVD synthesis [3] suffers from the influence of the substrate [3]. The best quality graphene monolayers are still obtained using the scotch-tape technique [1], which is ill-suited for mass production. By performing ab initio TDDFT-MD calculations, we have identified irradiation by ultra-short laser pulses as a suitable technique to produce graphene monolayers by photo-exfoliating graphite without the above drawbacks. Our simulations indicate that exposing graphite to 800 nm laser pulses with a suitable pulse shape and intensity may cause detachment of single graphene layers due to a non-equilibrium charge redistribution in a vibrationally cold substrate [4] [1] K. S. Novoselov et al., Science 306, 666 (2004), and supporting mat. [2] X. Li et al., Science 319, 1229 (2008). [3] A. Reina et al., Nano Lett. 9, 30 (2008); X. Li et al., Science 324, 1312 (2009). [4] Y. Miyamoto, H. Zhang, and D. Tom'anek, submitted.

  14. Ab initio study of charge, spin and orbital ordering in manganites

    CERN Document Server

    Tyer, R

    2001-01-01

    The subject of this thesis was the calculation of the electronic structure for the manganites LaMnO sub 3 and CaMnO sub 3. The implementation of the Self-Interaction Corrected Local Spin Density (SIC-LSD) formalism within the Tight Binding Linear Muffin-Tin Orbital method in conjunction with the Atomic Sphere Approximation was used for these calculations. The SIC-LSD total energy functional has been used to investigate the spin ordering and valency of CaMnO sub 3 and LaMnO sub 3. In order to assess the role of the structural distortion in LaMnO sub 3 , these calculations were performed for an idealised cubic structure as well as for the observed distorted orthorhombic structure. Orbital rotations of the localised (SIC corrected) states were implemented. These orbital rotations were then used to perform the first ab-initio investigation of orbital ordering in LaMnO sub 3. For the experimentally observed A-type antiferromagnetic ordering, the correct orbital structure of alternating manganese d sub 3 sub x sub ...

  15. Stabilization of peptide helices by length and vibrational free energies: Ab initio case study of polyalanine

    Science.gov (United States)

    Rossi, Mariana; Blum, Volker; Scheffler, Matthias

    2012-02-01

    Helices are one of the most abundant secondary structure ``building blocks" of polypeptides and proteins. Here, we explore helix stabilization as a function of peptide length and temperature [harmonic approximation to the vibrational free energy (FE)], for the alanine-based peptide, Ac-Alan-LysH^+ n=4-15, in the gas phase. For n=4-8, we predict the lowest energy structures in density-functional theory, using the van der Waals (vdW) corrected[1] PBE exchange-correlation potential. α-helices become the lowest energy structures at n 7-8 on the potential energy surface, but only barely and if including vdW interactions. At finite temperatures, the helices are further stabilized over compact conformers. While the vibrational entropy is the leading stabilizing term at 300 K, also the zero-point-energies favor the helical structures. For n>=8, the α-helix should be the only accessible conformer in the FE surface at 300 K, in agreement with experiment[2] and with our own comparison[3] of calculated ab initio anharmonic IR spectra to experimental IR multiple photon dissociation data for n=5, 10, and 15. [1] Tkatchenko and Scheffler, PRL 102, 073055 (2009); [2] Kohtani and Jarrold, JACS 108, 8454 (2004); [3] Rossi et al., JPCL 1, 3465 (2010).

  16. Mechanism of GeSbTe phase change materials: an ab initio molecular dynamics study

    Science.gov (United States)

    Raty, Jean-Yves; Otjacques, Céline; Gaspard, Jean-Pierre; Bichara, Christophe

    2008-03-01

    Among phase change materials, Ge2Sb2Te5 (225) is one of the most successfully used in applications. Accepted models are based on EXAFS spectra and suppose a complete reorganization of bonds during amorphization, with Ge changing from sixfold to tetrahedral coordination. We perform ab initio MD simulations of the (225), (124) and (415) liquid alloys. We show that the crystalline, liquid and amorphous structure of these systems are similar, with very little sp3 hybridization around Ge atoms and a majority of p-sigma bonds. Using a set of quenched liquid configurations we reproduce the EXAFS measurements on the (225) composition and explain how the static Debye Waller factor due to the vacancies in the crystal phase leads to a cancellation of individual neighbors contribution to the EXAFS signal while in the amorphous, a larger coherence occurs, enhancing the EXAFS signal. The computed electrical conductivities of the three phases (cubic solid, liquid and amorphous) prove to be very different, accordingly with the experiment.

  17. Ab initio studies on the structure of and atomic interactions in cellulose III(I) crystals.

    Science.gov (United States)

    Ishikawa, Tetsuya; Hayakawa, Daichi; Miyamoto, Hitomi; Ozawa, Motoyasu; Ozawa, Tomonaga; Ueda, Kazuyoshi

    2015-11-19

    The crystal structure of cellulose III(I)was analyzed using first-principles density functional theory (DFT). The geometry was optimized using variable-cell relaxation, as implemented in Quantum ESPRESSO. The Perdew-Burke-Ernzerhof (PBE) functional with a correction term for long-range van der Waals interactions (PBE-D) reproduced the experimental structure well. By using the optimized crystal structure, the interactions existed among the cellulose chains in the crystal were precisely investigated using the NBO analysis. The results showed that the weak bonding nature of CH/O and the hydrogen bonding occur among glucose molecules in the optimized crystal structure. To investigate the strength of interaction, dimeric and trimeric glucose units were extracted from the crystal, and analyzed using MP2 ab initio counterpoise methods with BSSE correction. The results estimated the strength of the interactions. That is, the packed chains along with a-axis interacts with weak bonding nature of CH/O and dispersion interactions by -7.50 kcal/mol, and two hydrogen bonds of O2HO2…O6 and O6HO6…O2 connect the neighboring packed chains with -11.9 kcal/mol. Moreover, FMO4 calculation was also applied to the optimized crystal structure to estimate the strength of the interactions. These methods can well estimate the interactions existed in the crystal structure of cellulose III(I).

  18. Switchable magnetic moment in cobalt-doped graphene bilayer on Cu(111): An ab initio study

    Science.gov (United States)

    Souza, Everson S.; Scopel, Wanderlã L.; Miwa, R. H.

    2016-06-01

    In this work, we have performed an ab initio theoretical investigation of substitutional cobalt atoms in the graphene bilayer supported on the Cu(111) surface (Co/GBL/Cu). Initially, we examined the separated systems, namely, graphene bilayer adsorbed on Cu(111) (GBL/Cu) and a free standing Co-doped GBL (Co/GBL). In the former system, the GBL becomes n -type doped, where we map the net electronic charge density distribution along the GBL-Cu(111) interface. The substitutional Co atom in Co/GBL lies between the graphene layers, and present a net magnetic moment mostly due to the unpaired Co-3 dz2 electrons. In Co/GBL/Cu, we found that the Cu(111) substrate rules (i) the energetic stability, and (ii) the magnetic properties of substitutional Co atoms in the graphene bilayer. In (i), the substitutional Co atom becomes energetically more stable lying on the GBL surface, and in (ii), the magnetic moment of Co/GBL has been quenched due to the Cu(111) → Co/GBL electronic charge transfer. We verify that such a charge transfer can be tuned upon the application of an external electric field, and thus mediated by a suitable change on the electronic occupation of the Co-dz2 orbitals, we found a way to switch-on and -off the magnetization of the Co-doped GBL adsorbed on the Cu(111) surface.

  19. Ab-initio study of germanium di-interstitial using a hybrid functional (HSE)

    Science.gov (United States)

    Igumbor, E.; Ouma, C. N. M.; Webb, G.; Meyer, W. E.

    2016-01-01

    In this work, we present ab-initio calculation results of Ge di-interstitials (I2(Ge)) in the framework of the density functional theory (DFT) using the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional. The formation energy, transition levels and minimum energy configurations were obtained for I2(Ge) -2, -1, 0, +1 and +2 charge states. The calculated formation energies show that for all charge states of I2(Ge), the double tetrahedral (T) configuration formed the most stable defect with a binding energy of 1.24 eV in the neutral state. We found the (+2/+1) charge state transition level for the T lying below the conduction band minimum and (+2/+1) for the split[110]-tetrahedral configuration lying deep at 0.41 eV above the valence band maximum. The di-interstitials in Ge exhibited the properties of both shallow and deep donor levels at (+2/+1) within the band gap and depending on the configurations. I2(Ge) gave rise to negative-U, with effective-U values of -0.61 and -1.6 eV in different configurations. We have compared our results with calculations of di-interstitials in silicon and available experimental data.

  20. Electronic states of neutral and ionized tetrahydrofuran studied by VUV spectroscopy and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Giuliani, A. [Synchrotron Soleil, DISCO beamline, L' Orme des Merisiers, 91 - Gif-sur-Yvette (France); Giuliani, A. [Cepia, Institut National de la Recherche Agronomique (INRA), 44 - Nantes (France); Limiao-Vieira, P. [Lisboa Univ. Nova, Lab. de Colisoes Atomicas e Moleculares, CEFITEC, Dept. de Fysica, Caparica (Portugal); Limao-Vieira, P.; Mason, N. [Open Univ., Centre of Molecular and Optical Sciences, Dept. of Physics and Astronomy, Milton Keynes, MK (United Kingdom); Duflot, D. [Lille Univ. des Sciences et Technologies, Lab. de Physique des Lasers, Atomes et Molecules (PhLAM), UMR CNRS 8523, Centre d' Etudes et de Recherches Lasers et Applications, CERLA, FR CNRS 2416, 59 - Villeneuve d' Ascq (France); Milosavljevic, A.R.; Marinkovic, B.P. [Laboratory for atomic collision processes, Institute of Physics, Belgrade, Serbia (Yugoslavia); Hoffmann, S.V. [Aarhus Univ., Institute for Storage Ring Facilities (Denmark); Delwiche, J.; Hubin-Franskin, M.J. [Liege Univ., Laboratoire de Spectroscopie d' Electrons Diffuses, Institut de Chimie (Belgium)

    2009-01-15

    The electronic spectroscopy of isolated tetrahydrofuran (THF) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 5.8 - 10.6 eV with absolute cross-section measurements derived. In addition, an electron energy loss spectrum was recorded at 100 eV and 10 degrees over the 5 - 11.4 eV range. The He(I) photoelectron spectrum was also collected to quantify ionisation energies in the 9 - 16.1 eV spectral region. These experiments are supported by the first high-level ab initio calculations performed on the excited states of the neutral molecule and on the ground state of the positive ion. The excellent agreement between the theoretical results and the measurements allows us to solve several discrepancies concerning the electronic state spectroscopy of THF. The present work reconsiders the question of the lowest energy conformers of the molecule and its population distribution at room temperature. (authors)

  1. X-ray absorption of liquid water studied by advanced ab initio methods

    Science.gov (United States)

    Sun, Zhaoru; Wang, Jianping; Kang, Wei; Car, Roberto; Wu, Xifan

    Oxygen K-edge X-ray absorption spectra (XAS) provide a sensitive local probe of the H-bond structure of liquid water. Based on the static COHSEX approach, we computed the XAS spectra of liquid water from molecular structures generated by ab initio molecular dynamics (AIMD) simulations using a van der Waals (vdW) inclusive hybrid functional (PBE0) that gives ambient water structure in quantitative agreement with experiment [JCP 141, 084502 (2014)]. We find that good agreement between experimental and theoretical XAS requires both improved molecular modeling and excitation treatment. In our simulation the over-structured H-bond network resulting from GGA-AIMD is systematically reduced as the directional H-bond strength is lowered by the mitigated self-interaction error in PBE0 and the increased population of interstitial water molecules promoted by vdW interactions. The better H-bond structure in turn gives improved XAS spectra. Moreover, we find that the orbitals obtained from the self-consistent diagonalization of the self-energy are crucial in obtaining spectra that compare well with experiment. Doe SciDAC: DE-SC0008626 and DE-SC0008726.

  2. Giant magnetoresistance An ab-initio description

    CERN Document Server

    Binder, J

    2000-01-01

    A new theoretical concept to study the microscopic origin of Giant Magnetoresistance (GMR) from first principles is presented. The method is based on ab-initio electronic structure calculations within the spin density functional theory using a Screened KORRINGA-KOHNROSTOKER method. Scattering at impurity atoms in the multilayers is described by means of a GREEN's-function method. The scattering potentials are calculated self-consistently. The transport properties are treated quasi-classically solving the BOLTZMANN equation including the electronic structure of the layered system and the anisotropic scattering. The solution of the BOLTZMANN equation is performed iteratively taking into account both scattering out and scattering in terms (vertex corrections). The method is applied to Co/Cu and Fe/Cr multilayers. Trends of scattering cross sections, residual resistivities and GMR ratios are discussed for various transition metal impurities at different positions in the Co/Cu or Fe/Cr multilayers. Furthermore the...

  3. Discovering chemistry with an ab initio nanoreactor

    Science.gov (United States)

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-12-01

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provide detailed physical insight. Although theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor—a highly accelerated first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor, we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, which provide new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery, in addition to its traditional role of interpreting experimental findings.

  4. Ab initio study of structural, electronic, and thermal properties of Ir_{1-x}Rh_{x} alloys

    Directory of Open Access Journals (Sweden)

    Sh. Ahmed

    2015-06-01

    Full Text Available The structural, electronic, mechanical and thermal properties of Ir_{1-x}Rh_{x} alloys was studied systematically using ab initio density functional theory at different concentration (x = 0.00, 0.25, 0.50, 0.75, 1.00. The Special Quasirandom Structure method was used to make the alloys with FCC structure with four atoms per unit cell. The ground state properties such as lattice constant and bulk modulus were calculated to find the equilibrium atomic position for stable alloys. The calculated ground state properties are in good agreement with the experimental and previously presented other theoretical data. The electronic band structure and density of states were calculated to study the electronic properties for these alloys at different concentration. The electronic properties substantiate metallic behavior of alloys. The first principle density functional perturbation theory as implemented in quasiharmonic approximation was used for the calculation of thermal properties. We have calculated the thermal properties such the Debye temperatures, vibration energy, entropy, constant-volume specific heat and internal energy. The ab initio linear-response method was used for phonon densities of states calculations.

  5. Nuclear quantum effect on intramolecular hydrogen bond of hydrogen maleate anion: An ab initio path integral molecular dynamics study

    Science.gov (United States)

    Kawashima, Yukio; Tachikawa, Masanori

    2013-05-01

    Ab initio path integral molecular dynamics simulation was performed to understand the nuclear quantum effect on the hydrogen bond of hydrogen malonate anion. Static calculation predicted the proton transfer barrier as 0.12 kcal/mol. Conventional ab initio molecular dynamics simulation at 300 K found proton distribution with a double peak on the proton transfer coordinate. Inclusion of thermal effect alone elongates the hydrogen bond length, which increases the barrier height. Inclusion of nuclear quantum effect washes out this barrier, and distributes a single broad peak in the center. H/D isotope effect on the proton transfer is also discussed.

  6. Hydration of potassium iodide dimer studied by photoelectron spectroscopy and ab initio calculations

    Science.gov (United States)

    Li, Ren-Zhong; Zeng, Zhen; Hou, Gao-Lei; Xu, Hong-Guang; Zhao, Xiang; Gao, Yi Qin; Zheng, Wei-Jun

    2016-11-01

    We measured the photoelectron spectra of (KI)2-(H2O)n (n = 0-3) and conducted ab initio calculations on (KI)2-(H2O)n anions and their corresponding neutrals up to n = 6. Two types of spectral features are observed in the experimental spectra of (KI)2-(H2O) and (KI)2-(H2O)2, indicating that two types of isomers coexist, in which the high EBE feature corresponds to the hydrated chain-like (KI)2- while the low EBE feature corresponds to the hydrated pyramidal (KI)2-. In (KI)2-(H2O)3, the (KI)2- unit prefers a pyramidal configuration, and one of the K-I distances is elongated significantly, thus a K atom is firstly separated out from the (KI)2- unit. As for the neutrals, the bare (KI)2 has a rhombus structure, and the structures of (KI)2(H2O)n are evolved from the rhombus (KI)2 unit by the addition of H2O. When the number of water molecules reaches 4, the K-I distances have significant increment and one of the I atoms prefers to leave the (KI)2 unit. The comparison of (KI)2(H2O)n and (NaI)2(H2O)n indicates that it is slightly more difficult to pry apart (KI)2 than (NaI)2 via hydration, which is in agreement with the lower solubility of KI compared to that of NaI.

  7. Ab initio study of effects of substitutional additives on the phase stability of {gamma}-alumina

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Kaiyun; Music, Denis; Sarakinos, Kostas; Schneider, Jochen M, E-mail: jiang@mch.rwth-aachen.d [Materials Chemistry, RWTH Aachen University, Mies van der Rohe Strasse 10, D-52074 Aachen (Germany)

    2010-12-22

    Using ab initio calculations, we have evaluated two structural descriptions of {gamma}-Al{sub 2}O{sub 3}, spinel and tetragonal hausmannite, and explored the relative stability of {gamma}-Al{sub 2}O{sub 3} with respect to {alpha}-Al{sub 2}O{sub 3} with 2.5 at.% of Si, Cr, Ti, Sc, and Y additives to identify alloying element induced electronic structure changes that impede the {gamma} to {alpha} transition. The total energy calculations indicate that Si stabilizes {gamma}-Al{sub 2}O{sub 3}, while Cr stabilizes {alpha}-Al{sub 2}O{sub 3}. As Si is added, a bond length increase in {alpha}-Al{sub 2}O{sub 3} is observed, while strong and short Si-O bonds are formed in {gamma}-Al{sub 2}O{sub 3}, consequently stabilizing this phase. On the other hand, Cr additions induce a smaller bond length increase in {alpha}-Al{sub 2}O{sub 3} than in {gamma}-Al{sub 2}O{sub 3}, therefore stabilizing the {alpha}-phase. The bulk moduli of {gamma}-Al{sub 2}O{sub 3} with these additives show no significant changes. The phase stability and elastic property data discussed here underline the application potential of Si alloyed {gamma}-Al{sub 2}O{sub 3} for applications at elevated temperatures. Furthermore it is evident that the tetragonal hausmannite structure is a suitable description for {gamma}-Al{sub 2}O{sub 3}.

  8. Ab Initio Study of the Rotational-Torsional Spectrum of Methyl Formate

    Science.gov (United States)

    Senent, M. L.; Villa, M.; Meléndez, F. J.; Domínguez-Gómez, R.

    2005-07-01

    The molecular structure of methyl formate is determined from ab initio calculations. The molecule presents two conformers (cis and trans) with a 5.3 kcal mol-1 difference in energy. In the most stable cis conformer, the carbonyl group eclipses the methyl group. The internal rotation barriers are V3(cis)=368 cm-1 and V3(trans)=26 cm-1 for the methyl group and VCO=4826 cm-1 for the CO group. The dependence of the spectroscopic parameters on the torsional motions is detailed. The rotational-torsional energy levels have been calculated variationally up to J=6 using a flexible model depending on the two torsional modes. Far-infrared frequencies and intensities are determined at room temperature. The rotational parameters have been computed to be A=20,040.473 MHz, B=6974.140 MHz, C=5350.705 MHz, DJ=-0.510 kHz, DJK=1.566 kHz, and DK=-0.619 kHz; and A=20,040.492 MHz, B=6974.399 MHz, C=5350.851 MHz, DJ=2.070 kHz, DJK=14.712 kHz, and DK=5.898 kHz at the symmetric and E components of the cis ground state, respectively. The corresponding values for trans-methyl formate are A=47,380.066 MHz, B=4738.781 MHz, and C=4430.339 MHz; and A=47,389.697 MHz, B=4737.751 MHz, and C=4429.607 MHz.

  9. Ab initio studies on the spin-forbidden cooling transitions of the LiRb molecule.

    Science.gov (United States)

    You, Yang; Yang, Chuan-Lu; Zhang, Qing-Qing; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang

    2016-07-20

    The spin-forbidden cooling of the LiRb molecule is investigated based on ab initio quantum chemistry calculations. The multireference configuration interaction method is used to generate the potential energy curves (PECs) of the ground state X(1)Σ(+) and the low-lying excited states a(3)Σ(+), B(1)Π, and b(3)Π. The spin-orbit coupling effects for the PECs and the transition dipole moments (TDMs) between the X(1)Σ(+), b(3)Π and a(3)Σ(+) states are also calculated. The analytical functions for the PECs are deduced. The rovibrational energy levels, the spectroscopic parameters and the Franck-Condon factors (FCF) are determined by solving the Schrödinger equation of nuclear movement with the obtained analytical functions. The b(3)Π0 ↔ X(1)Σ(+) and b(3)Π1 ↔ X(1)Σ(+) transitions have highly diagonal distributed FCFs and non-zero TDMs, demonstrating that the LiRb molecule could be a very promising candidate for laser cooling. Therefore, a three-cycle laser cooling scheme for the molecule has been proposed based on these two spin-forbidden transitions. Using the radiative lifetime and linewidth calculated from the obtained TDM functions, we present further analysis of the cooling of LiRb and the corresponding KRb molecule. The transition b(3)Π0 ↔ X(1)Σ(+) is found to be a practical transition to cool the LiRb molecule, and a sub-microkelvin cool temperature could be reached for the KRb molecule using a similar laser cooling scheme.

  10. Laser cooling of BH and GaF: insights from an ab initio study.

    Science.gov (United States)

    Gao, Yu-feng; Gao, Tao

    2015-04-28

    The feasibility of laser cooling BH and GaF is investigated using ab initio quantum chemistry. The ground state X (1)Σ(+) and first two excited states (3)Π and (1)Π of BH and GaF are calculated using the multireference configuration interaction (MRCI) level of theory. For GaF, the spin-orbit coupling effect is also taken into account in the electronic structure calculations at the MRCI level. Calculated spectroscopic constants for BH and GaF show good agreement with available theoretical and experimental results. The highly diagonal Franck-Condon factors (BH: f00 = 0.9992, f11 = 0.9908, f22 = 0.9235; GaF: f00 = 0.997, f11 = 0.989, f22 = 0.958) for the (1)Π (v' = 0-2) → X (1)Σ(+) (v = 0-2) transitions in BH and GaF are determined, which are found to be in good agreement with the theoretical and experimental data. Radiative lifetime calculations of the (1)Π (v' = 0-2) state (BH: 131, 151, and 187 ns; GaF: 2.26, 2.36, and 2.48 ns) are found to be short enough for rapid laser cooling. The proposed laser cooling schemes that drive the (1)Π (v' = 0) → X (1)Σ(+) (v = 0) transition use just one laser wavelength λ00 (BH: 436 nm, GaF: 209 nm). Though the cooling wavelength of GaF is deep in the UVC, a frequency quadrupled Ti:sapphire laser (189-235 nm) could be capable of generating useful quantities of light at this wavelength. The present results indicate that BH and GaF are two good choices of molecules for laser cooling.

  11. Length dependence of the thermal conductance of alkane-based single-molecule junctions: An ab initio study

    Science.gov (United States)

    Klöckner, J. C.; Bürkle, M.; Cuevas, J. C.; Pauly, F.

    2016-11-01

    Motivated by recent experiments, we present here a systematic ab initio study of the length dependence of the thermal conductance of single-molecule junctions. We make use of a combination of density functional theory with nonequilibrium Green's function techniques to investigate the length dependence of the phonon transport in single-alkane chains, contacted with gold electrodes via both thiol and amine anchoring groups. Additionally, we study the effect of the substitution of the hydrogen atoms in the alkane chains by heavier fluorine atoms to form polytetrafluoroethylenes. Our results demonstrate that (i) the room-temperature thermal conductance is fairly length independent for chains with more than 5 methylene units and (ii) the efficiency of the thermal transport is strongly influenced by the strength of the phononic metal-molecule coupling. Our study sheds light on the phonon transport in molecular junctions, and it provides clear guidelines for the design of molecular junctions for thermal management.

  12. Reciprocity Theorems for Ab Initio Force Calculations

    CERN Document Server

    Wei, C; Mele, E J; Rappe, A M; Lewis, Steven P.; Rappe, Andrew M.

    1996-01-01

    We present a method for calculating ab initio interatomic forces which scales quadratically with the size of the system and provides a physically transparent representation of the force in terms of the spatial variation of the electronic charge density. The method is based on a reciprocity theorem for evaluating an effective potential acting on a charged ion in the core of each atom. We illustrate the method with calculations for diatomic molecules.

  13. Highly scalable Ab initio genomic motif identification

    KAUST Repository

    Marchand, Benoit

    2011-01-01

    We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.

  14. Ab initio Bogoliubov coupled cluster theory

    Science.gov (United States)

    Signoracci, Angelo; Hagen, Gaute; Duguet, Thomas

    2014-09-01

    Coupled cluster (CC) theory has become a standard method in nuclear theory for realistic ab initio calculations of medium mass nuclei, but remains limited by its requirement of a Slater determinant reference state which reasonably approximates the nuclear system of interest. Extensions of the method, such as equation-of-motion CC, permit the calculation of nuclei with one or two nucleons added or removed from a doubly magic core, yet still only a few dozen nuclei are accessible with modern computational restrictions. In order to extend the applicability of ab initio methods to open-shell systems, the superfluid nature of nuclei must be taken into account. By utilizing Bogoliubov algebra and employing spontaneous symmetry breaking with respect to particle number conservation, superfluid systems can be treated by a single reference state. An ab initio theory to include correlations on top of a Bogoliubov reference state has been developed in the guise of standard CC theory. The formalism and first results of this Bogoliubov coupled cluster theory will be presented to demonstrate the applicability of the method.

  15. Hydrogen Bonding in Ion-pair Molecules in Vapors over ionic liquids, studied by Raman Spectroscopy and ab initio Calculations

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    -H-Br] [ref 2] and (3) the 1-methylimidazolium ethano-ate, [mim-H-O2CCH3] found [ref 3] to have a less likely existence in the vapor of the corresponding liquid in ampouls at ~200°C (Fig. 2). Experimental Raman results will be compared to ab initio calculated spectra. Fig. 1. Likely gaseous ion pair molecule...

  16. Structural, dynamical, electronic, and bonding properties of laser-heated silicon: An ab initio molecular-dynamics study

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1997-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to simulate laser heating of crystalline silicon. We found that a high concentration of excited electrons dramatically weakens the covalent bonding. As a result the system undergoes a melting t

  17. Magnetic Transitions in Iron Porphyrin Halides by Inelastic Neutron Scattering and Ab Initio Studies of Zero-Field Splittings.

    Science.gov (United States)

    Stavretis, Shelby E; Atanasov, Mihail; Podlesnyak, Andrey A; Hunter, Seth C; Neese, Frank; Xue, Zi-Ling

    2015-10-19

    Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H₂TPP = tetraphenylporphyrin) have been directly determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm⁻¹ for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm⁻¹, E = 0.1(2) cm⁻¹ and D = 13.4(6) cm⁻¹, E = 0.3(6) cm⁻¹ for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm⁻¹ for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series. The electronic structure of [Fe(TPP)X] (X = F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the ⁶A₁ ground state. D was calculated from wave functions of the electronic multiplets spanned by the d⁵ configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX₆³⁻ complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the π- and σ-antibonding energies e(λ)(X) (λ = σ, π) in the series from X = F to I. Analysis of this correlation using second-order perturbation theory expressions in terms of angular overlap parameters rationalizes the

  18. Ab-initio study of the magneto-optical properties of the ultrathin films of Fen/Au(001)

    Science.gov (United States)

    Boukelkoul, Mebarek; Haroun, Mohamed Fahim; Haroun, Abdelhalim

    2016-12-01

    With the aim of understand the microscopic origin of the magneto-optical response in the Fe ultrathin films, we used the first principle full-relativistic Spin-Polarized Relativistic Linear Muffin-Tin Orbitals with Atomic Sphere Approximation. We performed an ab-initio study of the structural, magnetic and magneto-optical properties of Fe deposited on semi-infinite Au(001). The structure and growth of the film leads to a pseudomorphic body centered tetragonal structure with tetragonality ratio c/a=1.62, and the pseudomorphic growth is found to be larger than 3 monolayers. The magnetic study revealed a ferromagnetic phase with a large magnetic moment compared to the bulk one. The magneto-optical response is calculated via the polar magneto-optical Kerr effect over a photon energy range up to 10 eV. The most important features of the Kerr rotation spectra are interpreted trough the interband transitions between localized states.

  19. Quantization and topological states in the spin Hall conductivity of low-dimensional systems: An ab initio study

    Science.gov (United States)

    Matthes, L.; Küfner, S.; Furthmüller, J.; Bechstedt, F.

    2016-03-01

    Ab initio relativistic band structure calculations are performed for the frequency-dependent spin Hall conductivity of two-dimensional atomically thin crystals and one-dimensional nanoribbons. We study the influence of topology, quantization, and topological edge states. As model systems fully halogenated germanene, GeI, and its zigzag nanoribbons are investigated. GeI represents a topological insulator (TI). For comparison, also the TI germanene and the trivial insulator hydrogenated germanene are studied. For the TIs we demonstrate the quantization of the static spin Hall conductivity. It is hardly influenced by temperature and Fermi level shift. Its frequency dependence is governed by the band-structure details. Topological edge states influence the conductivity mainly for vanishing frequencies.

  20. Ab initio correlated study of the Al13H- anion: Isomers, their kinetic stability and vertical detachment energies

    Science.gov (United States)

    Moc, Jerzy

    2012-01-01

    We report correlated ab initio calculations for the Al13H- cluster anion isomers, their kinetic stability and vertical detachment energies (VDEs). Of the two most energetically favored anion structures involving H atom in terminal and threefold bridged sites of the icosahedral Al13-, the higher energy ‘threefold bridged' isomer is shown to be of low kinetic stability. Our results are consistent with the recent photoelectron spectroscopy (PE) study of Grubisic et al. who observed two distinct Al13H- isomers, one of them identified as ‘metastable'. The VDE energies computed at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVDZ level for the ‘terminal' and ‘threefold bridged' Al13H- isomers of 3.21 and 2.32 eV are in good agreement with those determined in the PE study.

  1. Van der Waals Interactions in Pyridine and Pyridine-like Molecular Crystals: An ab initio Molecular Dynamics Study

    Science.gov (United States)

    Ko, Hsin-Yu; Distasio, Robert A., Jr.; Santra, Biswajit; Car, Roberto

    2014-03-01

    Pyridine has recently been investigated as a potentially effective material for use in artificial light harvesting.In this work, we propose the use of ab initio molecular dynamics (AIMD) to gain valuable physical insight into the artificial photosynthetic processes occurring in condensed-phase pyridine, the study of which has been limited to semi-empirical force fields to date.For this purpose, we introduce an accurate and efficient AIMD method, based on density functional theory (DFT) and a self-consistent pairwise description of van der Waals (vdW) interactions, for use in finite temperature and pressure (NPT) simulations on pyridine and several pyridine-like molecular crystals (PLMCs). Utilizing this approach, we demonstrate that vdW forces play a crucial role in the theoretical prediction of the structure and density of pyridine and PLMCs, and therefore must be accounted for in studies of these potential alternative energy materials. DOE: DE-SC0008626, NSF: DMS-1065894.

  2. Study of the Molecular Geometry, Electronic Structure, and Thermal Stability of Phosphazene and Heterophosphazene Rings with ab Initio Molecular Orbital Calculations

    NARCIS (Netherlands)

    Jaeger, C.R.; Debowski, M.A.; Manners, I.; Vancso, G.J.

    1999-01-01

    Ab initio molecular orbital calculations at the MP2/6-31G* level of theory have been used to study the molecular geometry, electronic structure, and the thermal stability of six-membered phosphazene and heterophosphazene rings. The studies included the phosphazene ring [NPCl2]3, the carbophosphazene

  3. Ab initio molecular orbital and infrared spectroscopic study of the conformation of secondary amides: derivatives of formanilide, acetanilide and benzylamides

    Science.gov (United States)

    Ilieva, S.; Hadjieva, B.; Galabov, B.

    1999-09-01

    Ab initio molecular orbital calculations at HF/4-31G level and infrared spectroscopic data for the frequencies are applied to analyse the grouping in a series model aromatic secondary amides: formanilide; acetanilide; o-methylacetanilide; 2,6-dimethylformanilide, 2,6-dimethylacetanilide; N-benzylacetamide and N-benzylformamide. The theoretical and experimental data obtained show that the conformational state of the molecules studied is determined by the fine balance of several intramolecular factors: resonance effect between the amide group and the aromatic ring, steric interaction between various substituents around the -NH-CO- grouping in the aromatic ring, conjugation between the carbonyl bond and the nitrogen lone pair as well as direct field influences inside the amide group.

  4. Reaction of Np atom with H₂O in the gas phase: reaction mechanisms and ab initio molecular dynamics study.

    Science.gov (United States)

    Li, Peng; Niu, Wenxia; Gao, Tao; Wang, Hongyan

    2014-10-01

    The gas-phase reaction of an Np atom with H2O was investigated using density functional theory and ab initio molecular dynamics. The reaction mechanisms and the corresponding potential energy profiles for different possible spin states were analyzed. Three reaction channels were found in the mechanism study: the isomerization channel, the H2 elimination channel, and the H atom elimination channel. The latter two were observed in the dynamics simulation. It was found that the branching ratio of the title reaction depends on the initial kinetic energy along the transition vector. Product energy distributions for the reaction were evaluated by performing direct classical trajectory calculations on the lowest sextet potential energy surface. The results indicate that most of the available energy appears as the translational energy of the products. The overall results indicate that the H2 elimination channel with low kinetic energy is thermodynamically favored but competes with the H atom elimination channel with higher kinetic energy.

  5. Ab initio study of the diatomic fluorides FeF, CoF, NiF, and CuF.

    Science.gov (United States)

    Koukounas, Constantine; Mavridis, Aristides

    2008-11-06

    The late-3d transition-metal diatomic fluorides MF = FeF, CoF, NiF, and CuF have been studied using variational multireference (MRCI) and coupled-cluster [RCCSD(T)] methods, combined with large to very large basis sets. We examined a total of 35 (2S+1)|Lambda| states, constructing as well 29 full potential energy curves through the MRCI method. All examined states are ionic, diabatically correlating to M(+)+F(-)((1)S). Notwithstanding the "eccentric" character of the 3d transition metals and the difficulties to accurately be described with all-electron ab initio methods, our results are, in general, in very good agreement with available experimental numbers.

  6. An ab initio study of the structure and atomic transport in bulk liquid Ag and its liquid-vapor interface

    Science.gov (United States)

    del Rio, Beatriz G.; González, David J.; González, Luis E.

    2016-10-01

    Several static and dynamic properties of bulk liquid Ag at a thermodynamic state near its triple point have been calculated by means of ab initio molecular dynamics simulations. The calculated static structure shows a very good agreement with the available experimental data. The dynamical structure reveals propagating excitations whose dispersion at long wavelengths is compatible with the experimental sound velocity. Results are also reported for other transport coefficients. Additional simulations have also been performed so as to study the structure of the free liquid surface. The calculated longitudinal ionic density profile shows an oscillatory behaviour, whose properties are analyzed through macroscopic and microscopic methods. The intrinsic X-ray reflectivity of the surface is predicted to show a layering peak associated to the interlayer distance.

  7. Phosphorous bonding in PCl3:H2O adducts: A matrix isolation infrared and ab initio computational studies

    Science.gov (United States)

    Joshi, Prasad Ramesh; Ramanathan, N.; Sundararajan, K.; Sankaran, K.

    2017-01-01

    Non-covalent interaction between PCl3 and H2O was studied using matrix isolation infrared spectroscopy and ab initio computations. Computations indicated that the adducts are stabilized through novel P⋯O type phosphorus bonding and conventional Psbnd Cl⋯H type hydrogen bonding interactions, where the former adduct is the global minimum. Experimentally, the P⋯O phosphorus bonded adduct was identified in N2 matrix, which was evidenced from the shifts in the vibrational wavenumbers of the modes involving PCl3 and H2O sub-molecules. Atoms in Molecules and Natural Bond Orbital analyses have been performed to understand the nature of interactions in the phosphorus and hydrogen bonded adducts. Interestingly, experimental evidence for the formation of higher PCl3sbnd H2O adduct was also observed in N2 matrix.

  8. Ab initio path integral molecular dynamics simulation study on the dihydrogen bond of NH4+⋯BeH2

    Science.gov (United States)

    Hayashi, Aiko; Shiga, Motoyuki; Tachikawa, Masanori

    2005-07-01

    An ab initio path integral molecular dynamics simulation has been performed to study the quantum and thermal effects of a dihydrogen bonded cation, NH4+⋯BeH2. In this system, an attractive interaction exists between two neighboring hydrogen atoms as N δ- H δ+ ⋯H δ- Be δ+ involving large-amplitude of vibration. Some properties playing a key role for this dihydrogen bonded system, such as the bond length, bond angle, and distribution of atomic charges, are investigated in detail by comparing the results of path integral and classical molecular dynamics with those of the equilibrium structure. It was found that the atomic charges of H δ+ and H δ- are decreased and the dihydrogen H δ+ ⋯H δ- bond length is expanded as the thermal and zero-point quantum effects.

  9. Optimizing electronic structure and quantum transport at the graphene-Si(111) interface: an ab initio density-functional study.

    Science.gov (United States)

    Tayran, Ceren; Zhu, Zhen; Baldoni, Matteo; Selli, Daniele; Seifert, Gotthard; Tománek, David

    2013-04-26

    We use ab initio density-functional calculations to determine the interaction of a graphene monolayer with the Si(111) surface. We find that graphene forms strong bonds to the bare substrate and accommodates the 12% lattice mismatch by forming a wavy structure consisting of free-standing conductive ridges that are connected by ribbon-shaped regions of graphene, which bond covalently to the substrate. We perform quantum transport calculations for different geometries to study changes in the transport properties of graphene introduced by the wavy structure and bonding to the Si substrate. Our results suggest that wavy graphene combines high mobility along the ridges with efficient carrier injection into Si in the contact regions.

  10. Fingerprints of antiaromaticity in the negative ion (Li_3Al_4)^- via an ab initio quantum-chemical study

    CERN Document Server

    Grassi, A; Angilella, G G N; March, N H; Pucci, R

    2012-01-01

    Fingerprints of antiaromaticity in the negative ion (Li_3Al_4)^-, this species being realizable via a laser vaporization technique, are revealed by means of an ab initio quantum-chemical investigation. First, the ground-state equilibrium geometry of this ion is predicted. Also, the characteristics of the HOMO are studied, both for the square and the rectangular Al_4 geometry in two low-lying isomers of the negative ion. There is no particular sensitivity to the change in geometry of the Al_4 configuration. Therefore, we have calculated theoretically chemical shifts, which contain remarkable fingerprints of antiaromaticity. As to future directions, some comments are added in relation to the Shannon entropy.

  11. Ab initio molecular dynamics study of the properties of cerium in liquid sodium at 1000 K temperature

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib; Li, Xiang; Zhang, Jinsuo [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States); Mariani, R. D. [Idaho National Laboratory, Materials and Fuels Complex, Idaho Falls, Idaho 83415 (United States); Unal, Cetin [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)

    2015-12-21

    For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 × 10{sup −9} m{sup 2}/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of the liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions.

  12. Ab initio molecular dynamics study of the properties of cerium in liquid sodium at 1000 K temperature

    Science.gov (United States)

    Samin, Adib; Li, Xiang; Zhang, Jinsuo; Mariani, R. D.; Unal, Cetin

    2015-12-01

    For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 × 10-9 m2/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of the liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions.

  13. New high-pressure phase of MgH2: An ab initio constant-pressure study

    Science.gov (United States)

    Durandurdu, Murat

    2014-02-01

    The stability of magnesium hydride (MgH2) at high pressure is studied using a constant-pressure ab initio technique. Two phase transformations are successfully observed through the simulations. The rutile structure undergoes a phase transformation into a CaCl2-type phase. Further increase in pressure results into a first-order phase transition into an orthorhombic state within Pbcm symmetry. This phase can be considered as a distorted CaF2-type crystal and does not correspond to the previously proposed MgH2 phases. The transformation mechanism of the CaCl2-Pbcm phase change at the atomistic level is successfully characterized and it is found that the CaCl2-to-Pbcm phase change proceeds via an ideal CaF2-type intermediate phase. These phase transformations are also analyzed using total energy-volume calculations.

  14. Ab initio study of the structural, elastic, thermodynamic, electronic and vibration properties of TbMg intermetallic compound

    Science.gov (United States)

    Mogulkoc, Y.; Ciftci, Y. O.; Kabak, M.; Colakoglu, K.

    2014-07-01

    The structural, elastic, thermodynamic, electronic and vibrational properties of CsCl-type TbMg have been studied by performing ab initio calculations based on density functional theory using the Vienna Ab initio Simulation Package (VASP). The exchange correlation potential within the generalized-gradient approximation (GGA) of projector augmented wave (PAW) method is used. The calculated structural parameters, such as the lattice constant, bulk modulus, its pressure derivative, formation energy and second-order elastic constants are presented in this paper. The obtained results are compared with related experimental and theoretical studies. The electronic band calculations, total density of states (DOS), partial DOS and charge density are also presented. Formation enthalpy and Cauchy pressure are determined. In order to obtain more information the elastic properties such as Zener anisotropy factor, Poisson’s ratio, Young modulus, isotropic shear modulus, Debye temperature and melting point have been carried out. The elastic constants are calculated in zero and different pressure ranges (0-50 GPa) with bulk modulus. We have performed the thermodynamic properties of TbMg by using quasi-harmonic Debye model. The temperature and pressure variation of the volume, bulk modulus, and thermal expansion coefficient have been predicted over a pressure range of 0-25 GPa for of TbMg. Pressure dependence of the anisotropy factors, Young’s modulus, Poisson’s ratios, bulk modulus and axis compressibility of TbMg are presented along different directions and planes. Finally, the phonon dispersion curves are presented for TbMg.

  15. Ab initio simulation of dislocation cores in metals; Simulation ab initio des coeurs de dislocation dans les metaux

    Energy Technology Data Exchange (ETDEWEB)

    Ventelon, L. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SRMP), 91 - Gif-sur-Yvette (France)

    2008-07-01

    In the framework of the multi scale simulation of metals and alloys plasticity, the aim of this study is to develop a methodology of ab initio dislocations study and to apply it to the [111] screw dislocation in the bc iron. (A.L.B.)

  16. Ab initio studies of O2-(H2O)n and O3-(H2O)n anionic molecular clusters, n≤12

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurtén, T.; Enghoff, Martin Andreas Bødker

    2011-01-01

    An ab initio study of gaseous clusters of O2− and O2− with water is presented. Based on thorough scans of configurational space, we determine the thermodynamics of cluster growth. The results are in good agreement with benchmark computational methods and existing experimental data. We find...

  17. Bicanonical ab Initio Molecular Dynamics for Open Systems.

    Science.gov (United States)

    Frenzel, Johannes; Meyer, Bernd; Marx, Dominik

    2017-08-08

    Performing ab initio molecular dynamics simulations of open systems, where the chemical potential rather than the number of both nuclei and electrons is fixed, still is a challenge. Here, drawing on bicanonical sampling ideas introduced two decades ago by Swope and Andersen [ J. Chem. Phys. 1995 , 102 , 2851 - 2863 ] to calculate chemical potentials of liquids and solids, an ab initio simulation technique is devised, which introduces a fictitious dynamics of two superimposed but otherwise independent periodic systems including full electronic structure, such that either the chemical potential or the average fractional particle number of a specific chemical species can be kept constant. As proof of concept, we demonstrate that solvation free energies can be computed from these bicanonical ab initio simulations upon directly superimposing pure bulk water and the respective aqueous solution being the two limiting systems. The method is useful in many circumstances, for instance for studying heterogeneous catalytic processes taking place on surfaces where the chemical potential of reactants rather than their number is controlled and opens a pathway toward ab initio simulations at constant electrochemical potential.

  18. Ab initio phase diagram of iridium

    Science.gov (United States)

    Burakovsky, L.; Burakovsky, N.; Cawkwell, M. J.; Preston, D. L.; Errandonea, D.; Simak, S. I.

    2016-09-01

    The phase diagram of iridium is investigated using the Z methodology. The Z methodology is a technique for phase diagram studies that combines the direct Z method for the computation of melting curves and the inverse Z method for the calculation of solid-solid phase boundaries. In the direct Z method, the solid phases along the melting curve are determined by comparing the solid-liquid equilibrium boundaries of candidate crystal structures. The inverse Z method involves quenching the liquid into the most stable solid phase at various temperatures and pressures to locate a solid-solid boundary. Although excellent agreement with the available experimental data (to ≲65 GPa) is found for the equation of state (EOS) of Ir, it is the third-order Birch-Murnaghan EOS with B0'=5 rather than the more widely accepted B0'=4 that describes our ab initio data to higher pressure (P ) . Our results suggest the existence of a random-stacking hexagonal close-packed structure of iridium at high P . We offer an explanation for the 14-layer hexagonal structure observed in experiments by Cerenius and Dubrovinsky.

  19. Ab Initio Calculations of Oxosulfatovanadates

    DEFF Research Database (Denmark)

    Frøberg, Torben; Johansen, Helge

    1996-01-01

    Restricted Hartree-Fock and multi-configurational self-consistent-field calculations together with secondorder perturbation theory have been used to study the geometry, the electron density, and the electronicspectrum of (VO2SO4)-. A bidentate sulphate attachment to vanadium was found to be stable...

  20. Effect of pressure on the metastable phase formation of equilibrium immiscible Ti-Mg system studied by ab initio technique and mechanical milling

    CSIR Research Space (South Africa)

    Phasha, MJ

    2008-11-01

    Full Text Available on the metastable phase formation of equilibrium immiscible Ti-Mg system studied by ab initio technique and mechanical milling MJ PHASHA1,2, M KASONDE1, P E NGOEPE1,2 1CSIR Materials Science and Manufacturing, PO Box 395, Pretoria, 0001 2Materials Modelling... to predict the possible metastable phases of A3B, AB and AB3 type in the Ti-Mg system, which has no alloy phase over the entire composition range. RESULTS CONCLUSION 1 The hypothetical crystalline structures of Ti-Mg system were successfully cal...

  1. HN2(2A') electronic manifold. I. A global ab initio study of first two states.

    Science.gov (United States)

    Mota, Vinícius C; Varandas, António J C

    2007-10-18

    A detailed ab initio multireference configuration interaction calculation with a standard aug-cc-pVTZ basis set is reported for the 1(2)A' and 2(2)A' states of the title system. The aim is to establish the dissociation scheme of all channels, while revealing the 2(2)A'/3(2)A' seam of conical intersections consistent with the crossings in the diatomic fragments. An ab initio mapping of linear NNH and T-shaped and linear NHN loci of conical intersections is also reported, jointly with a discussion of the topological features associated to a newly reported 2(2)A'/3(2)A' crossing seam.

  2. Theoretical study of ionic liquids based on the cholinium cation. Ab initio simulations of their condensed phases

    Science.gov (United States)

    Campetella, Marco; Bodo, Enrico; Montagna, Maria; De Santis, Serena; Gontrani, Lorenzo

    2016-03-01

    We have explored by means of ab initio molecular dynamics the homologue series of 11 different ionic liquids based on the combination of the cholinium cation with deprotonated amino acid anions. We present a structural analysis of the liquid states of these compounds as revealed by accurate ab initio computations of the forces. We highlight the persistent structural motifs that see the ionic couple as the basic building block of the liquid whereby a strong hydrogen bonding network substantially determines the short range structural behavior of the bulk state. Other minor docking features of the interaction network are also discovered and described. Special cases along the series such as Cysteine and Phenylalanine are discussed in the view of their peculiar properties due to zwitterion formation and additional long-range structural organization.

  3. Ab initio study of the electron energy loss function in a graphene-sapphire-graphene composite system

    Science.gov (United States)

    Despoja, Vito; Djordjević, Tijana; Karbunar, Lazar; Radović, Ivan; Mišković, Zoran L.

    2017-08-01

    The propagator of a dynamically screened Coulomb interaction W in a sandwichlike structure consisting of two graphene layers separated by a slab of Al2O3 (or vacuum) is derived from single-layer graphene response functions and by using a local dielectric function for the bulk Al2O3 . The response function of graphene is obtained using two approaches within the random phase approximation (RPA): an ab initio method that includes all electronic bands in graphene and a computationally less demanding method based on the massless Dirac fermion (MDF) approximation for the low-energy excitations of electrons in the π bands. The propagator W is used to derive an expression for the effective dielectric function of our sandwich structure, which is relevant for the reflection electron energy loss spectroscopy of its surface. Focusing on the range of frequencies from THz to mid-infrared, special attention is paid to finding an accurate optical limit in the ab initio method, where the response function is expressed in terms of a frequency-dependent conductivity of graphene. It was shown that the optical limit suffices for describing hybridization between the Dirac plasmons in graphene layers and the Fuchs-Kliewer phonons in both surfaces of the Al2O3 slab, and that the spectra obtained from both the ab initio method and the MDF approximation in the optical limit agree perfectly well for wave numbers up to about 0.1 nm-1. Going beyond the optical limit, the agreement between the full ab initio method and the MDF approximation was found to extend to wave numbers up to about 0.3 nm-1 for doped graphene layers with the Fermi energy of 0.2 eV.

  4. Kinetic study on the H + SiH4 abstraction reaction using an ab initio potential energy surface.

    Science.gov (United States)

    Cao, Jianwei; Zhang, Zhijun; Zhang, Chunfang; Bian, Wensheng; Guo, Yin

    2011-01-14

    Variational transition state theory calculations with the correction of multidimensional tunneling are performed on a 12-dimensional ab initio potential energy surface for the H + SiH(4) abstraction reaction. The surface is constructed using a dual-level strategy. For the temperature range 200-1600 K, thermal rate constants are calculated and kinetic isotope effects for various isotopic species of the title reaction are investigated. The results are in very good agreement with available experimental data.

  5. Intramolecular SN2 reaction caused by photoionization of benzene chloride-NH3 complex: direct ab initio molecular dynamics study.

    Science.gov (United States)

    Tachikawa, Hiroto

    2006-01-12

    Ionization processes of chlorobenzene-ammonia 1:1 complex (PhCl-NH3) have been investigated by means of full dimensional direct ab initio molecular dynamics (MD) method, static ab initio calculations, and density functional theory (DFT) calculations. The static ab initio and DFT calculations of neutral PhCl-NH3 complex showed that one of the hydrogen atoms of NH3 orients toward a carbon atom in the para-position of PhCl. The dynamics calculation for ionization of PhCl-NH3 indicated that two reaction channels are competitive with each other as product channels: one is an intramolecular SN2 reaction expressed by a reaction scheme [PhCl-NH3]+-->SN2 intermediate complex-->PhNH3++Cl, and the other is ortho-NH3 addition complex (ortho complex) in which NH3 attacks the ortho-carbon of PhCl+ and the trajectory leads to a bound complex expressed by (PhCl-NH3)+. The mechanism of the ionization of PhCl-NH3 is discussed on the basis of the theoretical results.

  6. Matrix Isolation FTIR and AB Initio Studies on the Conformations of Dimethyl and Diethyl Carbonate and Their Complexes with Water

    Science.gov (United States)

    Kar, Bishnu Prasad; Ramanathan, N.; Sundararajan, K.; Viswanathan, K. S.

    2011-06-01

    Dimethyl carbonate (DMC) and diethyl carbonate (DEC) have been studied for their conformations using matrix isolation infrared spectroscopy and ab initio computations. In addition to the above studies, the complexes of the two compounds with water have also been studied. The experiments were corroborated with ab initio calculations at the B3LYP/6-31++G** level. The organic carbonates were trapped in argon and nitrogen matrixes using an effusive source maintained at two different temperatures; i.e. room temperature and 170°C. In addition the matrix was also deposited using a supersonic jet source. These experiments were performed to alter the relative population of the various conformations, to aid us in the assignments of the vibrational features. The conformation of DMC corresponding to the global minimum of DMC was found to be a cis-cis conformer where the two methyl groups are found to be at cis position with respect to the carbonyl oxygen. The next higher energy conformer corresponded to a cis-trans structure with a near trans-near trans structure being the highest energy conformer. In our experimental matrix isolation spectra of DMC, we were able to assign features due to the cis-cis and cis-trans conformers. The features of the higher energy cis-trans conformer was confirmed with our experiments using the elevated temperature effusive source and the supersonic source. DEC displays a richer conformational landscape due to the presence of a longer carbon chain. The computational and experimental indicate that the ground state conformer for this compound is one in which carbon attached to oxygen adopts a cis configuration with respect to the carbonyl oxygen, while the terminal carbon adopts an anti conformation. A detailed study of the conformational picture of DEC will be presented. In addition to the above conformational studies, 1:1 hydrogen bonded complexes of DMC and DEC with water were also observed in the matrix, which was corroborated by our

  7. Magnetism of coherent Co and Ni thin films on Cu(111) and Au(111) substrates: An ab initio study

    Science.gov (United States)

    Zelený, Martin; Dlouhý, Ivo

    2017-02-01

    We present an ab initio study of structural and magnetic properties of coherent Co and Ni thin films on Cu(111) and Au(111) substrates with thicknesses of up to 6 monolayers. All studied films on Cu(111) substrates prefer structures close their ground state (hcp for Co and fcc for Ni), whereas only the hcp stacking sequence has been found for both films on Au(111) substrates. All studied films exhibit instability of the first monolayer with respect to decomposition into 2-monolayer- or 3-monolayer-high islands, which is in agreement with experimental findings. All studied films are also ferromagnetic, nevertheless the Ni/Cu(111) films reduce their magnetic moments in the layer adjacent to the substrate due to a stronger Cu-Ni interaction at the interface. The magnetic anisotropy of a Co film does not depend on the film thickness: all the studied Co/Au(111) films exhibit a perpendicular magnetic anisotropy, whereas all the Co/Cu(111) films prefer in-plane magnetization. On the other hand, both Ni films change their preference for in-plane orientation of their easy axis to out-of-plane orientation at a critical thickness of 2 monolayers, however, the magnetic anisotropy energies for films thicker than 1 monolayer are smaller than 1 meV/Ni atom. These behaviors of magnetic anisotropy do not depend on the structure of the studied films.

  8. Fermi surface studies of Co-based Heusler alloys: Ab-initio study

    Science.gov (United States)

    Ram, Swetarekha; Kanchana, V.

    2013-02-01

    The electronic, Fermi surface (FS) and magnetic properties of ferromagnetic Heusler alloys Co2XY (X = Cr, Mn, Fe; Y=Al, Ga) have been investigated by means of first principles calculation. Out of these compounds, Co2CrAl is found to be perfectly half-metallic (HM) at ambient. Under pressure HM to nearly HM (NHM) transition is observed around 75 GPa for Co2CrAl and NHM to HM transition is observed around 40 GPa and 18 GPa for Co2CrGa and Co2MnAl, respectively, while no transition is observed for other compounds under study and is also analyzed from the FS studies. The states at the Fermi level in the majority spin are strongly hybridized Co-d and X-d like states. The majority band FS topology change is observed under pressure for the compounds where we observe a transition, while the minority band FS remain unaltered under pressure for all compounds except in Co2FeGa, where we observed an electron sheet at X point instead of hole pocket at Γ point.

  9. Efficient calculation of chiral three-nucleon forces up to N3LO for ab initio studies

    CERN Document Server

    Hebeler, K; Epelbaum, E; Golak, J; Skibinski, R

    2015-01-01

    We present a novel framework to decompose three-nucleon forces in a momentum space partial-wave basis. The new approach is computationally much more efficient than previous methods and opens the way to ab initio studies of few-nucleon scattering processes, nuclei and nuclear matter based on higher-order chiral 3N forces. We use the new framework to calculate matrix elements of chiral three-nucleon forces at N2LO and N3LO in large basis spaces and carry out benchmark calculations for neutron matter and symmetric nuclear matter. We also study the size of the individual three-nucleon force contributions for $^3$H. For nonlocal regulators, we find that the sub-leading terms, which have been neglected in most calculations so far, provide important contributions. All matrix elements are calculated and stored in a user-friendly way, such that values of low-energy constants as well as the form of regulator functions can be chosen freely.

  10. Ab initio studies on [bmim][PF6]–CO2 mixture and CO2 clusters

    Indian Academy of Sciences (India)

    B L Bhargava; M Saharay; S Balasubramanian

    2008-06-01

    Ab initio molecular dynamics studies have been carried out on the room temperature ionic liquid, 1,n-butyl,3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and supercritical carbon dioxide mixture at room temperature and experimental density. Partial radial distribution functions (RDF) for different sites have been computed to see the organization of CO2 molecules around the ionic liquid. Several partial RDFs around the carbon atom of CO2 molecule are compared to find out that the CO2 has specific interaction with a carbon atom present in the imidazolium ring. The CO2 is also found to be very well organized around the terminal carbon atom of the butyl chain. The partial RDFs for the oxygen atoms around oxygen and carbon atoms of the CO2 suggests that there is very good organization of CO2 molecules around themselves even in the [bmim][PF6] – CO2 mixture. The instantaneous quadrupole moment tensor has been calculated for the anion and the cation. The ensemble average of diagonal components of quadrupole moment tensor of the cation have finite values, whereas the off-diagonal components of the cation and both the diagonal and off-diagonal components of the anion have the value of zero with a large standard deviation. The CPMD studies performed on CO2 clusters reveals the greater tendency of the clusters with more CO2 units, to deviate from the linear geometry.

  11. Ab initio studies of coherent spin transport in Fe-hBN/graphene van der Waals multilayers

    Science.gov (United States)

    Magnus Ukpong, Aniekan

    2017-07-01

    This paper presents the results of ab initio studies of the electronic spin inversion and filtering in a ferromagnetic multilayer heterostructure. Spin-polarized electronic structure calculations are performed based on van der Waals density functional theory to give unique insights in to the generation, manipulation and transport of coherent spin conductance. By using an exact theory of the self-consistent ground state of the Fe-hBN/graphene multilayer as a model of the magnetic tunnel junction, hidden asymmetries are unraveled in the spin-resolved charge densities. It is shown that the injection of spin into the graphene/boron nitride tunnel layer from a ferromagnetic contact gives rise to coherent spin current. The projected Fermi surfaces of the up and down spin channels are analyzed to reveal Fermi arc topologies and spin anisotropies. It is also demonstrated that the coherent transport of pure spin-down current in the topological Weyl semimetal phase is robust. The implications of the results on out-of-plane transport of spin polarized conductance in van der Waals multilayer spintronic devices is discussed. The insights derived from this study are expected to open up prospects for further exploration of van der Waals magnetic multilayer heterostructures as a versatile platform for developing materials for Weyltronic applications.

  12. Ab initio study of the enantio-selective magnetic-field-induced second harmonic generation in chiral molecules.

    Science.gov (United States)

    Rizzo, Antonio; Rikken, G L J A; Mathevet, R

    2016-01-21

    We present a systematic ab initio study of enantio-selective magnetic-field-induced second harmonic generation (MFISHG) on a set of chiral systems ((l)-alanine, (l)-arginine and (l)-cysteine; 3,4-dehydro-(l)-proline; (S)-α-phellandrene; (R,S)- and (S,S)-cystine disulphide; N-(4-nitrophenyl)-(S)-prolinol, N-(4-(2-nitrovinyl)-phenyl)-(S)-prolinol, N-(4-tricyanovinyl-phenyl)-(S)-prolinol, (R)-BINOL, (S)-BINAM and 6-(M)-helicene). The needed electronic frequency dependent cubic response calculations are performed within a density functional theory (DFT) approach. A study of the dependence of the property on the choice of electron correlation, on one-electron basis set extension and on the choice of magnetic gauge origin is carried out on a prototype system (twisted oxygen peroxide). The magnetic gauge dependence analysis is extended also to the molecules of the set. An attempt to analyze the structure-property relationships is also made, based on the results obtained for biphenyl (in a frozen twisted conformation), for prolinol and for some of their derivatives. The strength of the effect is discussed, in order to establish its measurability with a proposed experimental setup.

  13. Coupling of temperature with pressure induced initial decomposition mechanisms of two molecular crystals: An ab initio molecular dynamics study

    Indian Academy of Sciences (India)

    QIONG WU; DONG XIANG; GUOLIN XIONG; WEIHUA ZHU; HEMING XIAO

    2016-05-01

    Ab initio molecular dynamics simulations were performed to study the initiation of decompositionand formation of first products of two molecular crystals pentaerythritol tetranitrate (PETN) and 5-nitro-2,4-dihydro-1,2,4-triazole-3-one (NTO) under thermal decomposition temperature (475 K for PETN and 531 Kfor NTO) coupled with different pressures (1-5 GPa). The pressure effects on the initial decomposition stepsand initially generated products on PETN and NTO were very different. PETN was triggered by C-H... O intermolecular hydrogen transfer. The initial decomposition mechanism was independent of the pressure. ForNTO, two different initial decomposition mechanisms were found. At 1, 2, and 3 GPa, it was triggered by NH....O intermolecular hydrogen transfer, while at 4 and 5 GPa, it was triggered by N-H.....N intermolecularhydrogen transfer. This indicates that the initial decomposition mechanism was dependent on the pressure.Our study may provide new insights into initial mechanisms and decomposition reactions of molecular crystalexplosives under thermal decomposition temperature coupled with different pressures with details at atomiclevel.

  14. Multireference ab initio studies of zero-field splitting and magnetic circular dichroism spectra of tetrahedral Co(II) complexes.

    Science.gov (United States)

    Sundararajan, Mahesh; Ganyushin, Dmitry; Ye, Shengfa; Neese, Frank

    2009-08-14

    A newly developed multireference (MR) ab initio method for the calculation of magnetic circular dichroism (MCD) spectra was calibrated through the calculation of the ground- and excited state properties of seven high-spin (S = 3/2) Co(II) complexes. The MCD spectra were computed by the explicit treatment of spin-orbit coupled (SOC) and spin-spin coupled (SSC) N-electron states. For the complexes studied in this work, we found that the SOC is more important than the SSC for determining the ground state zero field splitting (ZFS). Our computed ZFS parameter D for the [Co(PPh(3))(2)Cl(2)] model complex is -17.6 cm(-1), which is reasonably close to the experimental value of -14.8 cm(-1). Generally, the computed absorption and MCD spectra are in fair agreement with experiment for all investigated complexes. Thus, reliable electronic structure and spectroscopic predictions for medium sized transition metal complexes are feasible on the basis of this methodology. This characterizes the presented method as a promising tool for MCD spectra interpretations of transition metal complexes in a variety of areas of chemistry and biology.

  15. Vibrational lifetimes of hydrogen on lead films: An ab initio molecular dynamics with electronic friction (AIMDEF) study

    Energy Technology Data Exchange (ETDEWEB)

    Saalfrank, Peter [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam (Germany); Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Juaristi, J. I. [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián (Spain); Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20018 Donostia-San Sebastián (Spain); Alducin, M.; Muiño, R. Díez [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián (Spain); Blanco-Rey, M. [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20018 Donostia-San Sebastián (Spain)

    2014-12-21

    Using density functional theory and Ab Initio Molecular Dynamics with Electronic Friction (AIMDEF), we study the adsorption and dissipative vibrational dynamics of hydrogen atoms chemisorbed on free-standing lead films of increasing thickness. Lead films are known for their oscillatory behaviour of certain properties with increasing thickness, e.g., energy and electron spillout change in discontinuous manner, due to quantum size effects [G. Materzanini, P. Saalfrank, and P. J. D. Lindan, Phys. Rev. B 63, 235405 (2001)]. Here, we demonstrate that oscillatory features arise also for hydrogen when chemisorbed on lead films. Besides stationary properties of the adsorbate, we concentrate on finite vibrational lifetimes of H-surface vibrations. As shown by AIMDEF, the damping via vibration-electron hole pair coupling dominates clearly over the vibration-phonon channel, in particular for high-frequency modes. Vibrational relaxation times are a characteristic function of layer thickness due to the oscillating behaviour of the embedding surface electronic density. Implications derived from AIMDEF for frictional many-atom dynamics, and physisorbed species will also be given.

  16. Pairs of Ln(III) dopant ions in crystalline solid luminophores:an ab initio computational study

    Institute of Scientific and Technical Information of China (English)

    A Shyichuk; G Meinrath; S Lis

    2016-01-01

    Formation of dopant ions clusters in solid (glass) luminophores may affect efficiency of non-radiative energy transfer proc-esses between dopant (photoactivator) ions via shortening of the effective distance between them. This study was based on the as-sumption that the distance between the dopant ions affects the energy of crystal volume at proximity. According to this idea, semi-empirical and ab initio density functional theory (DFT) calculations were performed on various supercells of YVO4:Eu3+as a model system. It was noted that a shorter Eu–Eu distance resulted in lower total energy of the system, compared to an analogous structure with distant Eu3+ions. As lower energy configurations are preferred, the observed phenomenon was considered to be related to dopant ions clusters formation. Additionally, the values of energies obtained from DFT calculations were used to estimate the per-centage of dopant ions occurring as pairs, for different dopant concentrations. The estimation agreed quite well with the available lit-erature data.

  17. Ab initio study of a TiO{sub 2}/LaAlO{sub 3} heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Weissmann, M; Ferrari, V, E-mail: weissman@cnea.gov.a, E-mail: ferrari@tandar.cnea.gov.a [Departamento de Fisica, Comision Nacional de EnergIa Atomica, Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina)

    2009-05-01

    In this work we explore the origin of the ferromagnetism appearing when a TiO{sub 2} film is grown on another non-magnetic oxide as a substrate such as LaAlO{sub 3} (001), concentrating on the role played by the oxygen vacancies in this phenomenon. Using Density Functional Theory ab-initio methods, we study the free-standing anatase film as well as the interfaces with either the LaO or AlO{sub 2} planes of LaAlO{sub 3}. Our results show that the interface LaO/TiO{sub 2} is favored against the AlO{sub 2}/TiO{sub 2} one if no oxygen vacancies are present in the interface whereas the contrary happens when there are oxygen vacancies. In both cases, the cohesive energy is of the same order of magnitude but only at AlO{sub 2}/TiO{sub 2} we found a magnetic solution.

  18. Experimental and ab initio molecular dynamics study of the structure and physical properties of liquid GeTe

    Science.gov (United States)

    Weber, Hans; Schumacher, Mathias; Jóvári, Pál; Tsuchiya, Yoshimi; Skrotzki, Werner; Mazzarello, Riccardo; Kaban, Ivan

    2017-08-01

    GeTe is a prototypical phase-change material employed in data storage devices. In this work, the atomic structure of liquid GeTe is studied by x-ray and neutron diffraction in the temperature range from 1197 to 998 K. The dynamic viscosity is measured from 1273 to 953 K, which is 55 K below the solidification point, using an oscillating-cup viscometer. The density of liquid GeTe between 1293 and 973 K is determined by the high-energy γ -ray attenuation method. The experiments are complemented with ab initio molecular dynamics (AIMD) simulations based on density functional theory (DFT). Compatibility of the AIMD-DFT models with the diffraction data is proven by simultaneous fitting of all data sets in the frame of the reverse Monte Carlo simulation technique. It is shown that octahedral order dominates in liquid GeTe, although tetrahedral structures are also present. The viscosity of the equilibrium and weakly undercooled liquid GeTe obeys the Arrhenius law with a small activation energy of the order of 0.3 eV, which is indicative of a highly fragile liquid. The calculated density of states and electronic wave functions point to the existence of a pseudogap and localized electron states within the gap in the equilibrium liquid near the melting point as well as in the undercooled liquid.

  19. Effects of energy correlations and superexchange on charge transport and exciton formation in amorphous molecular semiconductors: An ab initio study

    Science.gov (United States)

    Massé, Andrea; Friederich, Pascal; Symalla, Franz; Liu, Feilong; Meded, Velimir; Coehoorn, Reinder; Wenzel, Wolfgang; Bobbert, Peter A.

    2017-03-01

    In this study, we investigate on the basis of ab initio calculations how the morphology, molecular on-site energies, reorganization energies, and charge transfer integral distribution affect the hopping charge transport and the exciton formation process in disordered organic semiconductors. We focus on three materials applied frequently in organic light-emitting diodes: α -NPD , TCTA, and Spiro-DPVBi. Spatially correlated disorder and, more importantly, superexchange contributions to the transfer integrals, are found to give rise to a significant increase of the electric field dependence of the electron and hole mobility. Furthermore, a material-specific correlation is found between the HOMO and LUMO energy on each specific molecular site. For α -NPD and TCTA, we find a positive correlation between the HOMO and LUMO energies, dominated by a Coulombic contribution to the energies. In contrast, Spiro-DPVBi shows a negative correlation, dominated by a conformational contribution. The size and sign of this correlation have a strong influence on the exciton formation rate.

  20. [Structural and Dipole Structure Peculiarities of Hoogsteen Base Pairs Formed in Complementary Nucleobases according to ab initio Quantum Mechanics Studies].

    Science.gov (United States)

    Petrenko, Y M

    2015-01-01

    Ab initio quantum mechanics studies for the detection of structure and dipole structure peculiarities of Hoogsteen base pairs relative to Watson-Crick base pairs, were performed during our work. These base pairs are formed as a result of complementary interactions. It was revealed, that adenine-thymine Hoogsteen base pair and adenine-thymine Watson-Crick base pairs can be formed depending on initial configuration. Cytosine-guanine Hoogsteen pairs are formed only when cytosine was originally protonated. Both types of Hoogsteen pairs have noticeable difference in the bond distances and angles. These differences appeared in purine as well as in pyrimidine parts of the pairs. Hoogsteen pairs have mostly shorter hydrogen bond lengths and significantly larger angles of hydrogen bonds and larger angles between the hydrogen bonds than Watson-Crick base pairs. Notable differences are also observed with respect to charge distribution and dipole moment. Quantitative data on these differences are shown in our work. It is also reported that the values of local parameters (according to Cambridge classification of the parameters which determine DNA properties) in Hoogsteen base pairs, are greatly different from Watson-Crick ones.

  1. Orbital-free ab initio molecular dynamics study of the static structure and dynamic properties of the free liquid surface of Sn

    Directory of Open Access Journals (Sweden)

    del Rio B. G.

    2017-01-01

    Full Text Available We report results of an orbital-free ab initio molecular dynamics (OF-AIMD study of the free liquid surface (FLS of Sn at 1000 K and 600 K. A key ingredient in the OF-AIMD method is the local pseudopotential describing the ions-valence electrons interaction. We have used a force-matching method to derive a local pseudopotential suitable to account for the variation of the forces from the bulk to the FLS. We obtain very good results for structural properties, such as the reflectivity, including the characteristic shoulder it presents in x-ray experiments. Moreover we have been able to study ab initio for the first time the evolution in some dynamical properties as we move from the central region, where the system behaves like the bulk liquid, to the FLS.

  2. Orbital-free ab initio molecular dynamics study of the static structure and dynamic properties of the free liquid surface of Sn

    Science.gov (United States)

    del Rio, B. G.; González, L. E.

    2017-08-01

    We report results of an orbital-free ab initio molecular dynamics (OF-AIMD) study of the free liquid surface (FLS) of Sn at 1000 K and 600 K. A key ingredient in the OF-AIMD method is the local pseudopotential describing the ions-valence electrons interaction. We have used a force-matching method to derive a local pseudopotential suitable to account for the variation of the forces from the bulk to the FLS. We obtain very good results for structural properties, such as the reflectivity, including the characteristic shoulder it presents in x-ray experiments. Moreover we have been able to study ab initio for the first time the evolution in some dynamical properties as we move from the central region, where the system behaves like the bulk liquid, to the FLS.

  3. Exploring the impact of semicore level electronic relaxation on polaron dynamics: An adiabatic ab initio study of FePO4

    Science.gov (United States)

    Wang, Zi; Bevan, Kirk H.

    2016-01-01

    In the present work, we study the effects of the electronic relaxation of semicore levels on polaron activation energies and dynamics. Within the framework of adiabatic ab initio theory, we utilize both static transition state theory and molecular dynamics methods for an in-depth study of polaronic hopping in delithiated LiFePO4 (FePO4). Our results show that electronic relaxation of semicore states is significant in FePO4, resulting in a lower activation barrier and kinetics that is one to two orders faster compared to the result of calculations that do not incorporate semicore states. In general, the results suggest that the relaxation of states far below the Fermi energy could dramatically impact the ab initio polaronic barrier estimates for many transition metal oxides and phosphates.

  4. Uniaxial Phase Transition in Si : Ab initio Calculations

    OpenAIRE

    Cheng, C.

    2002-01-01

    Based on a previously proposed thermodynamic analysis, we study the relative stabilities of five Si phases under uniaxial compression using ab initio methods. The five phases are diamond, beta-tin, sh, sc, and hcp structures. The possible phase-transition patterns were investigated by considering the phase transitions between any two chosen phases of the five phases. By analyzing the different conributions to the relative pahse stability, we identified the most important factors in reducing t...

  5. Operator evolution for ab initio nuclear theory

    CERN Document Server

    Schuster, Micah D; Johnson, Calvin W; Jurgenson, Eric D; Navratil, Petr

    2014-01-01

    The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency, however, one ought to apply the same transformation to other operators when calculating transitions and mean values from the eigenstates of the renormalized Hamiltonian. Working in a translationally-invariant harmonic oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square-radius and total dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix elements in the 4He nucleus all but completely restores the invariance of the expectation values under the transformation. We also consider a Gaussian operator with adjustable range and find at short ranges an increased contribution from such ind...

  6. Discovering chemistry with an ab initio nanoreactor

    Science.gov (United States)

    Martinez, Todd

    Traditional approaches for modeling chemical reaction networks such as those involved in combustion have focused on identifying individual reactions and using theoretical approaches to explore the underlying mechanisms. Recent advances involving graphical processing units (GPUs), commodity products developed for the videogaming industry, have made it possible to consider a distinct approach wherein one attempts to discover chemical reactions and mechanisms. We provide a brief summary of these developments and then discuss the concept behind the ``ab initio nanoreactor'' which explores the space of possible chemical reactions and molecular species for a given stoichiometry. The nanoreactor concept is exemplified with an example to the Urey-Miller reaction network which has been previously advanced as a potential model for prebiotic chemistry. We briefly discuss some of the future directions envisioned for the development of this nanoreactor concept.

  7. Ab initio alpha-alpha scattering

    CERN Document Server

    Elhatisari, Serdar; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-01-01

    Processes involving alpha particles and alpha-like nuclei comprise a major part of stellar nucleosynthesis and hypothesized mechanisms for thermonuclear supernovae. In an effort towards understanding alpha processes from first principles, we describe in this letter the first ab initio calculation of alpha-alpha scattering. We use lattice effective field theory to describe the low-energy interactions of nucleons and apply a technique called the adiabatic projection method to reduce the eight-body system to an effective two-cluster system. We find good agreement between lattice results and experimental phase shifts for S-wave and D-wave scattering. The computational scaling with particle number suggests that alpha processes involving heavier nuclei are also within reach in the near future.

  8. Kinetics study of the CN + CH4 hydrogen abstraction reaction based on a new ab initio analytical full-dimensional potential energy surface.

    Science.gov (United States)

    Espinosa-Garcia, Joaquin; Rangel, Cipriano; Suleimanov, Yury V

    2017-07-26

    We have developed an analytical full-dimensional potential energy surface, named PES-2017, for the gas-phase hydrogen abstraction reaction between the cyano radical and methane. This surface is fitted using high-level ab initio information as input. Using the PES-2017 surface, a kinetics study was performed via two theoretical approaches: variational transition-state theory with multidimensional tunnelling (VTST-MT) and ring polymer molecular dynamics (RPMD). The results are compared with the experimental data. In the whole temperature range analysed, 300-1500 K, both theories agree within a factor of kinetic isotope effects are important, reproducing the scarce experimental evidence. The good agreement with the ab initio information used in the fitting process (self-consistency test) and with the kinetic behaviour in a wide temperature range gives confidence and strength to the new surface.

  9. Orbital free ab initio molecular dynamics simulation study of some static and dynamic properties of liquid noble metals

    Directory of Open Access Journals (Sweden)

    G.M. Bhuiyan

    2012-10-01

    Full Text Available Several static and dynamic properties of liquid Cu, Ag and Au at thermodynamic states near their respective melting points, have been evaluated by means of the orbital free ab-initio molecular dynamics simulation method. The calculated static structure shows good agreement with the available X-ray and neutron diffraction data. As for the dynamic properties, the calculated dynamic structure factors point to the existence of collective density excitations along with a positive dispersion for l-Cu and l-Ag. Several transport coefficients have been obtained which show a reasonable agreement with the available experimental data.

  10. Electric fields acting as catalysts in chemical reactions. An ab initio study of the walden inversion reaction

    Science.gov (United States)

    Andrés, J. L.; Lledós, A.; Duran, M.; Bertrán, J.

    1988-12-01

    Ab initio SCF calculations have been carried out on the fluoride exchange reaction F -+CH 3F→FCH 3+F -. An external uniform electric field along the FCF axis has been incorporated by proper changes in the one-electron part of the Fock matrix. The reaction profile has been found to be dramatically modified with increase in strength of the applied field. The electric field is found to be essential to describe the potential energy hypersurface so that it intervenes in the reaction coordinate. It is concluded that strong electric fields open a new way to catalyze reactions.

  11. Orbital free ab initio molecular dynamics simulation study of some static and dynamic properties of liquid noble metals

    CERN Document Server

    Bhuiyan, G M; González, D J; 10.5488/CMP.15.33604

    2012-01-01

    Several static and dynamic properties of liquid Cu, Ag and Au at thermodynamic states near their respective melting points, have been evaluated by means of the orbital free ab-initio molecular dynamics simulation method. The calculated static structure shows good agreement with the available X-ray and neutron diffraction data. As for the dynamic properties, the calculated dynamic structure factors point to the existence of collective density excitations along with a positive dispersion for l-Cu and l-Ag. Several transport coefficients have been obtained which show a reasonable agreement with the available experimental data.

  12. Study on the effects of fluorine and oxygen deficiency on YBa2Cu3O7 by ab initio method

    Institute of Scientific and Technical Information of China (English)

    刘洪霖; 曹晓卫; 瞿丽曼; 陈念贻

    1997-01-01

    The calculations of clusters modeling the fluorine-doping and oxygen deficiency of YBa2Cu3O2,have been performed by the method of all-electron ab initio Hartree-Fock with self-consistent crystal field Results show that in CuO planes electric charge significantly increases,the chemical valence of Cu decreases and the covalent bonding of Cu-O greatly weakens owing to oxygen deficiency,while the effect of F restores the local electronic structure of YBa2Cu3O7 The reported opinion that F occupied the oxygen vacancy in Cu-O chains seems disputable according to the calculated bonding characteristics.

  13. Ab initio time-dependent method to study the hydrogen molecule exposed to intense ultrashort laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Sanz-Vicario, J.L. [Departamento de Quimica, C-IX, Universidad Autonoma de Madrid, 28049-Madrid (Spain); Sede de Investigacion Universitaria (SIU). Instituto de Fisica, Universidad de Antioquia, Medellin (Colombia)], E-mail: joseluis.sanzvicario@uam.es; Palacios, A. [Departamento de Quimica, C-IX, Universidad Autonoma de Madrid, 28049-Madrid (Spain); Cardona, J.C. [Sede de Investigacion Universitaria (SIU). Instituto de Fisica, Universidad de Antioquia, Medellin (Colombia); Bachau, H. [Centre des Lasers Intenses et Applications, UMR 5107 du CNRS-Universite bordeaux I-CEA, Universite Bordeaux I, 33405 Talence Cedex (France); Martin, F. [Departamento de Quimica, C-IX, Universidad Autonoma de Madrid, 28049-Madrid (Spain)

    2007-10-15

    An ab initio non-perturbative time dependent method to describe ionization of molecular systems by ultrashort (femtosecond) laser pulses has been developed. The method allows one to describe competing processes such as non dissociative ionization, dissociative ionization and dissociation into neutrals, including the possibility of autoionization. In this work we assess the validity of the method by applying it to different physical situations and by comparing with results previously obtained within stationary perturbation theory. In particular, it is shown that inclusion of the nuclear motion is essential to describe H{sub 2} resonance enhanced multiphoton ionization and interferences mediated by H{sub 2} autoionizing states.

  14. Time-domain ab initio study of Auger and phonon-assisted auger processes in a semiconductor quantum dot.

    Science.gov (United States)

    Hyeon-Deuk, Kim; Prezhdo, Oleg V

    2011-04-13

    We developed time-domain ab initio simulation of Auger phenomena, including multiple exciton generation (MEG) and recombination (MER). It is the first approach describing phonon-assisted processes and early dynamics. MEG starts below the electronic threshold, strongly accelerating with energy. Ligands are particularly important to phonon-assisted MEG, which therefore can be probed with infrared spectroscopy. Short-time gaussian component gives 5-10% of MEG, justifying rate theories that assume exponential dynamics. MER is preceded by electron-phonon relaxation to low energies.

  15. Ab Initio Studies on the Preferred Site of Protonation in Cytisine in the Gas Phase and Water

    Directory of Open Access Journals (Sweden)

    Małgorzata Darowska

    2005-01-01

    Full Text Available Abstract: Ab initio calculations (HF, MP2, DFT for isolated and PCM for solvated molecules were performed for cytisine (1 and its model compounds: N-methyl-2-pyridone (2 and piperidine (3. Among three heteroatomic functions (carbonyl oxygen, pyridone and piperidine nitrogens considered as the possible sites of protonation in 1, surprisingly the carbonyl oxygen takes preferentially the proton in the gas phase whereas in water the piperidine nitrogen is firstly protonated. For model compounds, the piperidine nitrogen in 3 is more basic than the carbonyl oxygen in 2 in both, the gas phase and water.

  16. Physical properties of ternary silicide superconductors Li2XSi3 (X = Rh, Os): An ab initio study

    Science.gov (United States)

    Alam, M. A.; Zilani, M. A. K.; Parvin, F.; Hadi, M. A.

    2017-08-01

    An ab initio method, based on the plane wave pseudopotential and the generalized gradient approximation (GGA), is performed to investigate the physical properties such as structural, elastic, electronic and bonding properties of newly synthesized Li2RhSi3 and predicted Li2OsSi3 ternary silicide superconductors for the first time. Both of these compounds are mechanically stable and are brittle in nature. They also have good machinability. Electronic band structures reveal that these compounds have metallic characteristics. They possess complex bonding nature (metallic, covalent and ionic). According to theoretical Vickers hardness, Li2RhSi3 is softer than Li2OsSi3.

  17. Energetics and bonding study of hexamethylenetetramine and fourteen related cage molecules: An ab initio G3(MP2 investigation

    Directory of Open Access Journals (Sweden)

    HO-ON HO

    2005-04-01

    Full Text Available The ab initio G3(MP2method has been applied to hexamethylenetetramine (HMT and fourteen related cage systems. The agreement between the calculated and experimental molecular dimensions, which are available for five of the 15 cage species, ranges from satisfactory to excellent. In addition, the G3(MP2 heat of formation at 298 K for HMT is in excellent accord with experimental results. Hence, the calculated heats of formation for the other 14 cage systems should be reliable estimates.

  18. Ab-initio study of high temperature lattice dynamics of BCC zirconium (β-Zr) and uranium (γ-U)

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Partha S., E-mail: parthasarathi13@gmail.com; Arya, A., E-mail: parthasarathi13@gmail.com; Dey, G. K., E-mail: parthasarathi13@gmail.com [Materials Science Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2014-04-24

    Using self consistent ab-initio lattice dynamics calculations, we show that bcc structures of Zr and U phases become stable at high temperature by phonon-phonon interactions. The calculated temperature dependent phonon dispersion curve (PDC) of β-Zr match excellently with experimental PDC. But the calculated PDC for γ-U shows negative phonon frequencies even at solid to liquid transition temperature. We show that this discrepancy is due to an overestimation of instability depth of bcc U phase which is removed by incorporation of spin-orbit coupling in the electronic structure calculations.

  19. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Draayer, Jerry P. [Louisiana State Univ., Baton Rouge, LA (United States)

    2014-09-28

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  20. The T2 phase in the Nb-Si-B system studied by ab initio calculations and synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, J.-M., E-mail: jean-marc.joubert@icmpe.cnrs.fr [Chimie Metallurgique des Terres Rares, Institut de Chimie et des Materiaux Paris-Est, CNRS, Universite Paris-Est, UMR 7182, 2-8 rue Henri Dunant, F-94320 Thiais, France. (France); Colinet, C. [Science et Ingenierie des Materiaux et Procedes, Grenoble INP, UJF, CNRS, 38402 Saint Martin d' Heres Cedex (France); Rodrigues, G. [Laboratorio de Materiais e Metalurgia, Instituto de Engenharia Mecanica, Universidade Federal de Itajuba, Av. BPS 1303, 37500-903 Itajuba-MG (Brazil); Mestrado Profissional em Materiais, Centro Universitario de Volta Redonda, Av. Paulo Erlei Alves Abrantes 1325, 27240-560 Volta Redonda-RJ (Brazil); Suzuki, P.A.; Nunes, C.A. [Departamento de Engenharia de Materiais, Escola de Engenharia de Lorena, Universidade de Sao Paulo, Caixa Posta 116, 12600-970 Lorena-SP (Brazil); Coelho, G.C. [Mestrado Profissional em Materiais, Centro Universitario de Volta Redonda, Av. Paulo Erlei Alves Abrantes 1325, 27240-560 Volta Redonda-RJ (Brazil); Departamento de Engenharia de Materiais, Escola de Engenharia de Lorena, Universidade de Sao Paulo, Caixa Posta 116, 12600-970 Lorena-SP (Brazil); Tedenac, J.-C. [Institut de Chimie Moleculaire et des Materiaux I.C.G., UMR-CNRS 5253, Universite Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5 (France)

    2012-06-15

    The solid solution based on Nb{sub 5}Si{sub 3} (Cr{sub 5}B{sub 3} structure type, D8{sub l}, tI32, I4/mcm, No140, a=6.5767 A, c=11.8967 A) in the Nb-Si-B system was studied from the structural and thermodynamic point of view both experimentally and by ab initio calculations. Rietveld refinement of powder X-ray synchrotron data allowed to determine the boron to silicon substitution mechanism and the structural parameters. Ab initio calculations of different ordered compounds and selected disordered alloys allowed to obtain in addition to the enthalpy of formation of the solution, substitution mechanism and structural parameters which are in excellent agreement with the experimental data. The stability of the phase is discussed. - Graphial abstract: Valence-charge electron localization function in the z=0 plane of the D8{sub l} structure for the ordered compound Nb{sub 5}SiB{sub 2}. Highlights: Black-Right-Pointing-Pointer Coupling between ab initio data and experimental results from synchrotron powder diffraction. Black-Right-Pointing-Pointer Excellent agreement between the two techniques for the site occupancies and internal coordinates. Black-Right-Pointing-Pointer Explanation of the phase stability up to Nb{sub 5}SiB{sub 2}.

  1. Ab-Initio Modelling Of Surface Site Reactivity And Fluid Transport In Clay Minerals Case Study: Pyrophyllite

    Energy Technology Data Exchange (ETDEWEB)

    Churakov, S.V

    2005-03-01

    Pyrophyllite, Al{sub 2}[Si{sub 4}O{sub 10}](OH){sub 2}, is the simplest structural prototype for 2:1 dioctahedral phyllosilicate. Because the net electric charge in pyrophyllite is zero, it is the best candidate for investigating the non electrostatic contribution to sorption and transport phenomena in clays. Using ab-initio simulations, we have investigated the reactivity and structure of the water-solid interface on the basal plane and edge sites of pyrophyllite. The calculations predict slightly hydrophobic behaviour of the basal plane. For the high water coverage (100), (110) and (-110), lateral facets have a lower energy than for the (010), (130) and (-130) surfaces. Analysis of the surface reactivity reveals that the =Al-OH groups are most easily protonated on the (010), (130) and (-130) facets. The =Al-O-Si= sites will be protonated on the (100), (130), (110), (-110) and (-130) surfaces. The =Al-OH{sub 2} complexes are more easily de-protonated than the =Si-OH and =Al-OH sites. A spontaneous, reversible exchange of the protons between the solution and the edge sites has been observed in ab-initio molecular dynamics simulations at 300 K. Such near-surface proton diffusion may result in a significant contribution to the diffusion coefficients measured in neutron scattering experiments. (author)

  2. Substituent Inductive Effects on the Electrochemical Oxidation of Flavonoids Studied by Square Wave Voltammetry and Ab Initio Calculations.

    Science.gov (United States)

    Arroyo-Currás, Netzahualcóyotl; Rosas-García, Víctor M; Videa, Marcelo

    2016-10-27

    Flavonoids are natural products commonly found in the human diet that show antioxidant, anti-inflammatory and anti-hepatotoxic activities. These nutraceutical properties may relate to the electrochemical activity of flavonoids. To increase the understanding of structure-electrochemical activity relations and the inductive effects that OH substituents have on the redox potential of flavonoids, we carried out square-wave voltammetry experiments and ab initio calculations of eight flavonoids selected following a systematic variation in the number of hydroxyl substituents and their location on the flavan backbone: three flavonols, three anthocyanidins, one anthocyanin and the flavonoid backbone flavone. We compared the effect that the number of -OH groups in the ring B of flavan has on the oxidation potential of the flavonoids considered, finding linear correlations for both flavonols and anthocyanidins ( R 2 = 0.98 ). We analyzed the effects that position and number of -OH substituents have on electron density distributions via ab initio quantum chemical calculations. We present direct correlations between structural features and oxidation potentials that provide a deeper insight into the redox chemistry of these molecules.

  3. Unravelling the impact of hydrocarbon structure on the fumarate addition mechanism--a gas-phase ab initio study.

    Science.gov (United States)

    Bharadwaj, Vivek S; Vyas, Shubham; Villano, Stephanie M; Maupin, C Mark; Dean, Anthony M

    2015-02-14

    The fumarate addition reaction mechanism is central to the anaerobic biodegradation pathway of various hydrocarbons, both aromatic (e.g., toluene, ethyl benzene) and aliphatic (e.g., n-hexane, dodecane). Succinate synthase enzymes, which belong to the glycyl radical enzyme family, are the main facilitators of these biochemical reactions. The overall catalytic mechanism that converts hydrocarbons to a succinate molecule involves three steps: (1) initial H-abstraction from the hydrocarbon by the radical enzyme, (2) addition of the resulting hydrocarbon radical to fumarate, and (3) hydrogen abstraction by the addition product to regenerate the radical enzyme. Since the biodegradation of hydrocarbon fuels via the fumarate addition mechanism is linked to bio-corrosion, an improved understanding of this reaction is imperative to our efforts of predicting the susceptibility of proposed alternative fuels to biodegradation. An improved understanding of the fuel biodegradation process also has the potential to benefit bioremediation. In this study, we consider model aromatic (toluene) and aliphatic (butane) compounds to evaluate the impact of hydrocarbon structure on the energetics and kinetics of the fumarate addition mechanism by means of high level ab initio gas-phase calculations. We predict that the rate of toluene degradation is ∼100 times faster than butane at 298 K, and that the first abstraction step is kinetically significant for both hydrocarbons, which is consistent with deuterium isotope effect studies on toluene degradation. The detailed computations also show that the predicted stereo-chemical preference of the succinate products for both toluene and butane are due to the differences in the radical addition rate constants for the various isomers. The computational and kinetic modeling work presented here demonstrates the importance of considering pre-reaction and product complexes in order to accurately treat gas phase systems that involve intra and inter

  4. How stable is a collagen triple helix? An ab initio study on various collagen and beta-sheet forming sequences.

    Science.gov (United States)

    Pálfi, Villo K; Perczel, András

    2008-07-15

    Collagen forms the well characterized triple helical secondary structure, stabilized by interchain H-bonds. Here we have investigated the stability of fully optimized collagen triple helices and beta-pleated sheets by using first principles (ab initio and DFT) calculations so as to determine the secondary structure preference depending on the amino acid composition. Models composed of a total of 18 amino acid residues were studied at six different amino acid compositions: (i) L-alanine only, (ii) glycine only, (iii) L-alanines and glycine, (iv) L-alanines and D-alanine, (v) L-prolines with glycine, (vi) L-proline, L-hydroxyproline, and glycine. The last two, v and vi, were designed to mimic the core part of collagen. Furthermore, ii, iii, and iv model the binding and/or recognition sites of collagen. Finally, i models the G-->A replacement, rare in collagen. All calculated structures show great resemblance to those determined by X-ray crystallography. Calculated triple helix formation affinities correlate well with experimentally determined stabilities derived from melting point (T(m)) data of different collagen models. The stabilization energy of a collagen triple helical structure over that of a beta-pleated sheet is 2.1 kcal mol(-1) per triplet for the [(-Pro-Hyp-Gly-)(2)](3) collagen peptide. This changes to 4.8 kcal mol(-1) per triplet of destabilization energy for the [(-Ala-Ala-Gly-)(2)](3) sequence, known to be disfavored in collagen. The present study proves that by using first principles methods for calculating stabilities of supramolecular complexes, such as collagen and beta-pleated sheets, one can obtain stability data in full agreement with experimental observations, which envisage the applicability of QM in molecular design.

  5. Ab initio quantum mechanical study of the structure and stability of the alkaline earth metal oxides and peroxides

    Energy Technology Data Exchange (ETDEWEB)

    Koenigstein, M.; Catlow, C.R.A. [Royal Institution of Great Britain, London (United Kingdom). Davy Faraday Research Lab.

    1998-10-01

    The authors report a detailed computational study of the stability of the alkaline earth metal peroxides MO{sub 2} (M = Ba, Sr, Ca, Mg, Be) with respect to decomposition into the corresponding oxides Mo and molecular oxygen using Hartree-Fock and density functional theory (DFT) techniques. A comparison between calculated and experimental binding energies indicates that the DFT method is most suitable for a correct description of the peroxide bond. The DFT reaction energies for the peroxide decomposition MO{sub 2} {yields} MO + {1/2}O{sub 2} show that only BaO{sub 2} and SrO{sub 2} are thermodynamically stable compounds, while CaO{sub 2} (in the calcium carbide structure), MgO{sub 2}, and BeO{sub 2} (in the pyrite structure) are energetically unstable with reaction energies of {minus}24.7, {minus}26.8, and {minus}128.7 kJ/mol, respectively, and are therefore unlikely to exist as pure compounds. The published calcium carbide structure for CaO{sub 2} is probably incorrect, at least for pure calcium peroxide, since apart from the thermodynamical instability the compound is more stable in the pyrite structure by 25.5 kJ/mol. The analysis suggests that the water and/or hydrogen peroxide content of experimentally prepared MgO{sub 2} samples is necessary for the stabilization of the structure, while BeO{sub 2} is clearly unstable under ambient conditions. The authors studied also the effect of the zero point energies and the entropies on the decomposition free energies and, for this purpose, performed atomistic lattice simulations based on interatomic potentials, which they derived from their ab initio data; the results indicate a negligible effect of the zero point energies, while the entropy terms favor the decomposition reaction by ca. 20 kJ/mol at 298.15 K.

  6. Gas-phase protonation of pyridine. A variable-time neutralization-reionization and Ab initio study of pyridinium radicals.

    Science.gov (United States)

    Nguyen, V Q; Turecek, F

    1997-01-01

    Gas-phase protonation of pyridine with CH3NH3+, NH4+, t-C4H9+, H3O+ and CH5+ under thermal conditions was studied by variable-time neutralization-reionization mass spectrometry and ab initio calculations. N-Protonation was found to occur exclusively for CH3NH3+ through H3O+ and predominantly for CH5+. The calculated MP2/6-311G(2d,p) energies gave the proton affinities of N, C-2, C-3 and C-4 in pyridine as 924, 658, 686 and 637 kJ mol-1, respectively, which were in good agreement with previous experimental and theoretical results. Vertical neutralization of the N-protonated isomer (1H+) was accompanied by moderate Franck-Condon effects that deposited 20-21 kJ mol-1 in the 1H-pyridinium radicals (1H) formed. 1H was calculated by UMP2/6-311G(2d,p) and B3LYP/6-311G(2d,p) to be a bound species in its ground electronic state. A substantial fraction of stable 1H was detected in the spectra, which depended on the precursor ion internal energy. Deuterium labeling showed a specific loss of the N-bound hydrogen or deuterium in the radicals. The specificity increased with increasing internal energy in the radicals and decreasing contribution of ion dissociations following reionization. Variable-time measurements established specific loss of the N-bound deuterium also in dissociating low-energy 1D. Loss of hydrogen from 1H+ cations following reionization was highly endothermic and was accompanied by rearrangements that partially scrambled the ring hydrogens.

  7. Ab initio study of the binding of collagen amino acids to graphene and A-doped (A = H, Ca) graphene

    Energy Technology Data Exchange (ETDEWEB)

    Cazorla, Claudio, E-mail: c.silva@ucl.ac.u

    2010-09-30

    We present a theoretical study of the binding of collagen amino acids (AA, namely glycine, Gly; proline, Pro; and hydroxyproline, Hyp) to graphene (Gr), Ca-doped graphene and graphane (Gra) using density functional theory calculations and ab initio molecular dynamics (AIMD) simulations. It is found that binding of Gly, Pro and Hyp to Gr and Gra is thermodynamically favorable yet dependent on the amino acid orientation and always very weak (adsorption energies E{sub ads} range from -90 to -20 meV). AIMD simulations reveal that room-temperature thermal excitations are enough to induce detachment of Gly and Pro from Gr and of all three amino acids from Gra. Interestingly, we show that collagen AA binding to Gr is enhanced dramatically by doping the carbon surface with calcium atoms (corresponding E{sub ads} values decrease by practically two orders of magnitude with respect to the non-doped case). This effect is result of electronic charge transfers from the Ca impurity (donor) to Gr (acceptor) and the carboxyl group (COOH) of the amino acid (acceptor). The possibility of using Gr and Gra as nanoframes for sensing of collagen amino acids has also been investigated by performing electronic density of states analysis. It is found that, whether Gr is hardly sensitive, the electronic band gap of Gra can be modulated by attaching different number and species of AAs onto it. The results presented in this work provide fundamental insights on the quantum interactions of collagen protein components with carbon-based nanostructures and can be useful for developments in bio and nanotechnology fields.

  8. Ab initio study of nitrogen and position-specific oxygen kinetic isotope effects in the NO + O3 reaction

    Science.gov (United States)

    Walters, Wendell W.; Michalski, Greg

    2016-12-01

    Ab initio calculations have been carried out to investigate nitrogen (k15/k14) and position-specific oxygen (k17/k16O & k18/k16) kinetic isotope effects (KIEs) for the reaction between NO and O3 using CCSD(T)/6-31G(d) and CCSD(T)/6-311G(d) derived frequencies in the complete Bigeleisen equations. Isotopic enrichment factors are calculated to be -6.7‰, -1.3‰, -44.7‰, -14.1‰, and -0.3‰ at 298 K for the reactions involving the 15N16O, 14N18O, 18O16O16O, 16O18O16O, and 16O16O18O isotopologues relative to the 14N16O and 16O3 isotopologues, respectively (CCSD(T)/6-311G(d)). Using our oxygen position-specific KIEs, a kinetic model was constructed using Kintecus, which estimates the overall isotopic enrichment factors associated with unreacted O3 and the oxygen transferred to NO2 to be -19.6‰ and -22.8‰, respectively, (CCSD(T)/6-311G(d)) which tends to be in agreement with previously reported experimental data. While this result may be fortuitous, this agreement suggests that our model is capturing the most important features of the underlying physics of the KIE associated with this reaction (i.e., shifts in zero-point energies). The calculated KIEs will useful in future NOx isotopic modeling studies aimed at understanding the processes responsible for the observed tropospheric isotopic variations of NOx as well as for tropospheric nitrate.

  9. Triangle Type Trinuclear Copper Complexes with Triplet -excitation Luminescent Property, an Ab Initio Study

    Institute of Scientific and Technical Information of China (English)

    MANG Chao-Yong; ZHANG Ming-Xin; WU Ke-Chen

    2006-01-01

    The luminescent mechanism and properties of a triangular Cu(I) complex, (CuPz)3, have been studied by CIS method. The ground and lowest triplet excitation state geometries were optimized at MP2/SBKJC and CIS/SBKJC levels, respectively. A remarkable geometry distortion of the lowest triplet state was found and believed to cause the emission spectra to red shift.

  10. Ab initio Study of Nuclear Quadrupole Interactions in Selenium and Tellurium

    Science.gov (United States)

    Maharjan, N. B.; Paudyal, D. D.; Mishra, D. R.; Byahut, S. P.; Cho, Hwa-Suck; Scheicher, R. H.; Jeong, Junho; Das, T. P.

    2004-03-01

    We are systematically studying the influence of impurities in calcogenide glasses on the glass transition temperature using the first-principles Hartree-Fock cluster method. Results of our calculations on the electronic structures of pure selenium and tellurium chain systems, and with Te and Se impurities respectively, will be reported. By comparing the theoretically obtained nuclear quadrupole interaction (NQI) tensors for ^77Se and ^125Te with available experimental NQI tensors, we were able to test the accuracy of the calculated electronic structures. Good agreement for both the pure and the impurity systems has been found. We have also studied ^125Te NQI tensors in Te-Thiourea and compared our result with experimental data to check on the choice of the ^125Te quadrupole moment used.

  11. Ab initio prediction of the polymorphic structures of pyrazinamide: A validation study

    Directory of Open Access Journals (Sweden)

    David Stephen Arputhara

    2016-01-01

    Full Text Available A validation study to predict the possible stable polymorphs of Pyrazinamide within a low energy conformational region of the flexible torsion angle was made through a potential energy surface (PES scan by gas phase optimisation using the MP2/6-31G(d,p method. Hypothetical crystal structures with favourable packing density for each of the stable conformers generated from the PES scan were generated using a global search with a repulsion only potential field. The densest crystal structures with stable energy were analyzed with more accurate lattice energy minimisation via distributed multipole analysis using a repulsion-dispersion potential. The stability of the predicted crystal structures with similar close packing to the known experimental polymorphs of Pyrazinamide molecule was analyzed by inspecting their intermolecular short contacts. Studies to analyze the second derivative mechanical properties from the hessian matrix were carried out to emphasise the thermodynamic stability of predicted polymorphs of Pyrazinamide.

  12. Ab-initio study of the relation between electric polarization and electric field gradients in ferroelectrics

    CERN Document Server

    Gonçalves, J N; Correia, J G; Butz, T; Picozzi, S; Fenta, A S; Amaral, V S

    2012-01-01

    The hyperfine interaction between the quadrupole moment of atomic nuclei and the electric field gradient (EFG) provides information on the electronic charge distribution close to a given atomic site. In ferroelectric materials, the loss of inversion symmetry of the electronic charge distribution is necessary for the appearance of the electric polarization. We present first-principles density functional theory calculations of ferroelectrics such as BaTiO$_{3}$, KNbO$_{3}$, PbTiO$_{3}$ and other oxides with perovskite structures, by focusing on both EFG tensors and polarization. We analyze the EFG tensor properties such as orientation and correlation between components and their relation with electric polarization. This work supports previous studies of ferroelectric materials where a relation between EFG tensors and polarization was observed, which may be exploited to study the ferroelectric order when standard techniques to measure polarization are not easily applied.

  13. Structure-function studies of DNA damage using AB INITIO quantum mechanics and molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.; Miaskiewicz, K. [Pacific Northwest Lab., Richland, WA (United States); Osman, R. [Mount Sinai School of Medicine, New York, NY (United States). Dept. of Physiology and Biophysics

    1993-12-01

    Studies of ring-saturated pyrimidine base lesions are used to illustrate an integrated modeling approach that combines quantum-chemical calculations with molecular dynamics simulation. Electronic-structure calculations on the lesions in Isolation reveal strong conformational preferences due to interactions between equatorial substituents to the pyrimidine ring. Large distortions of DNA should result when these interactions force the methyl group of thymine to assume an axial orientation, as is the case for thymine glycol but not for dihydrothymine. Molecular dynamics simulations of the dodecamer d(CGCGAATTCGCG){sub 2} with and without a ring-saturated thymine lesion at position T7 support this conclusion. Implications of these studies for recognition of thymine lesions by endonuclease III are also discussed.

  14. Pressure induced structural phase transition in SnS—An ab initio study

    Indian Academy of Sciences (India)

    M Rajagopalan; G Kalpana; V Priyamvadha

    2006-02-01

    The structural behaviour of SnS under pressure has been investigated by first principle density functional calculations of the total energy by the TB–LMTO approach. We find that SnS undergoes a structural phase transition from orthorhombic type to monoclinic type structure around 17 GPa which is in good agreement with the recent experimental study. In addition, the ground state properties are computed and compared with the available results.

  15. Ab initio calculation of the Hoyle state

    CERN Document Server

    Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G

    2011-01-01

    The Hoyle state plays a crucial role in the hydrogen burning of stars heavier than our sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle^{1} as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago^{2,3}, nuclear theorists have not yet uncovered the nature of this state from first principles. In this letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of properties of the Hoyle state and in agreement with the experimentally observed energy. These lattice simulations provide insight into the structure of this unique state and new clues as to the amount of fine...

  16. Phonocatalysis. An ab initio simulation experiment

    Directory of Open Access Journals (Sweden)

    Kwangnam Kim

    2016-06-01

    Full Text Available Using simulations, we postulate and show that heterocatalysis on large-bandgap semiconductors can be controlled by substrate phonons, i.e., phonocatalysis. With ab initio calculations, including molecular dynamic simulations, the chemisorbed dissociation of XeF6 on h-BN surface leads to formation of XeF4 and two surface F/h-BN bonds. The reaction pathway and energies are evaluated, and the sorption and reaction emitted/absorbed phonons are identified through spectral analysis of the surface atomic motion. Due to large bandgap, the atomic vibration (phonon energy transfer channels dominate and among them is the match between the F/h-BN covalent bond stretching and the optical phonons. We show that the chemisorbed dissociation (the pathway activation ascent requires absorption of large-energy optical phonons. Then using progressively heavier isotopes of B and N atoms, we show that limiting these high-energy optical phonons inhibits the chemisorbed dissociation, i.e., controllable phonocatalysis.

  17. Ab initio phonon scattering by dislocations

    Science.gov (United States)

    Wang, Tao; Carrete, Jesús; van Roekeghem, Ambroise; Mingo, Natalio; Madsen, Georg K. H.

    2017-06-01

    Heat management in thermoelectric and power devices as well as in random access memories poses a grand challenge and can make the difference between a working and an abandoned device design. Despite the prevalence of dislocations in all these technologies, the modeling of their thermal resistance is based on 50-year-old analytical approximations, whose simplicity was driven by practical limitations rather than physical insight. We introduce an efficient ab initio approach based on Green's functions computed by two-dimensional reciprocal space integration. By combining elasticity theory and density functional theory, we calculate the scattering strength of a 90∘ misfit edge dislocation in Si. Because of the breakdown of the Born approximation, earlier literature models fail, even qualitatively. We find that a dislocation density larger than 109cm-2 is necessary to substantially influence thermal conductivity at room temperature and above. We quantify how much of the reduction of thermal conductivity measured in nanograined samples can be explained by realistic dislocation concentrations.

  18. Thermodynamic Properties of Compressed CuX (X = Cl, Br) Compounds: Ab Initio Study

    Science.gov (United States)

    Bioud, Nadhira; Kassali, Kamel; Bouarissa, Nadir

    2017-04-01

    A pseudopotential plane wave method based on the density functional theory has been employed to study some thermodynamic properties of copper chloride (CuCl) and copper bromide (CuBr) compounds under the effect of temperature and pressure. The phase transition pressure, the unit cell volume, the isothermal bulk modulus, the constant volume heat capacity, the entropy, the Debye temperature, the Grüneisen parameter and the volumetric thermal expansion coefficient are studied in the pressure range 0-10 GPa, and for temperatures ranging from 0 K up to 650 K and 750 K for CuCl and CuBr, respectively. The phase transition pressure is found to be around 7.8 and 6.95 GPa for CuCI and CuBr, respectively. These values are respectively in reasonably good agreement with the experimental ones of 8.2 GPa and 6.8 GPa reported in the literature. Moreover, at room temperature and zero pressure, the heat capacity at constant volume and the Grüneisen parameter of both compounds of interest are found to be in good agreement with the available experimental and theoretical data. The information gathered from the present investigation may be useful for the study of the behavior of the fundamental properties of CuCI and CuBr under the influence of high temperature and pressure.

  19. Enhanced atomic oxygen adsorption on defective nickel surfaces: An ab initio study

    Science.gov (United States)

    Cherbal, N.; Megchiche, E. H.; Zenia, H.; Lounis, K.; Amarouche, M.

    2017-09-01

    In this work we have examined the influence of the presence of a monovacancy on the atomic oxygen adsorption process at nickel surfaces of orientation (111), (100), and (110). The presence of such a defect was neglected in earlier studies. And for the first time, we have studied oxygen segregation on a defective (111) surface. The results reveal a varying sensitivity of the oxygen adsorption energy to the state of the surfaces. When compared to the perfect surface, we have registered an energy gain of 0.22 eV in the process of oxygen adsorption on the (111) surface when a vacancy is present on it. However, the energetic gains for the other two surfaces, (100) and (110), are much less than that of the (111) surface: they are of the order of 0.1 eV. Comparing to the perfect surfaces, we have found that charge reconstruction in the neighborhood of the vacancy plays a major role in giving rise to the aforementioned energetic gains. Indeed, we find an increase in the charge density on the nickel atoms surrounding the vacancy, which leads to strengthening of the ionic Ni-O bond if the oxygen is adsorbed in its vicinity. As a means of studying the effect of the presence of the vacancy on the first stages of the growth of an oxide layer, we have looked at the segregation process of oxygen atoms at the three surfaces. Our results show that up to four oxygen atoms can aggregate favorably at the adsorption sites inside and in the vicinity of the monovacancy at the (111) surface. This number is reduced to two oxygen atoms at the (110) surface, and to only one oxygen atom at the (100) surface.

  20. Reduction of Copper Oxide by Formic Acid an ab-initio study

    CERN Document Server

    Schmeißer, Martin

    2012-01-01

    Four cluster models for a copper(I)oxide (111) surface have been designed, of which three were studied with respect to their applicability in density functional calculations in the general gradient approximation. Formic acid adsorption on these systems was modelled and yielded four different adsorption structures, of which two were found to have a high adsorption energy. The energetically most favourable adsorption structure was further investigated with respect to its decomposition and a few reactions with adsorbed H and OH species using synchronous transit methods to estimate reaction barriers and single point energy calculations for the reaction energy.

  1. An ab initio study of WO sub 3 under pressure up to 30 GPa

    CERN Document Server

    Pagnier, T

    2003-01-01

    High-pressure polymorphs of WO sub 3 have been studied with a first-principles pseudopotential method. The medium-range (0.01-20 GPa) and high-range (20-30 GPa) polymorphs have been characterized and are compared with recent experimental results. The main new feature is the appearance of a sevenfold coordinated tungsten in the high-pressure polymorph. The subtle phase transitions that were induced from Raman spectra evolutions have not been confirmed. However, changes in the W-O distances and O-W-O and W-O-W angles may explain the changes in Raman spectra.

  2. Ab initio study of DNA nucleotides sandwiched between Au(111) electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Bogdan, Diana; Bratfalean, Radu; Isai, Radu; Morari, Cristian, E-mail: cristian.morari@itim-cj.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    Using first-principles calculations, we study the electronic properties of the four DNA nucleotides sandwiched between two Au(111) electrodes. The geometrical structure of the systems is a realistic model of the recently proposed devices for DNA sequencing. For these metal-molecule-metal systems, we calculate the total and local density of states (DOS, LDOS), and the metal-molecule charge transfers. Our results suggest that the qualitative differences between the four systems are sufficient to ensure the recognition of the DNA bases by the proposed device. Nevertheless, the full investigation of the quantitative features of the current-voltage curves is needed to decide if the practical use is possible.

  3. p Doping in Expanded Phases of ZnO: An Ab Initio Study

    Science.gov (United States)

    Hapiuk, D.; Marques, Miguel A. L.; Melinon, P.; Flores-Livas, José A.; Botti, Silvana; Masenelli, B.

    2012-03-01

    The issue of p doping in nanostructured cagelike ZnO is investigated by state-of-the-art calculations. Our study is focused on one prototypical structure, namely, sodalite, for which we show that p-type doping is possible for elements of the V, VI, and VII columns of the periodic table. However, some dopants tend to form dimers, thus impairing the stability of this kind of doping. This difference of behavior is discussed, and two criteria are proposed to ensure stable p doping.

  4. Electronic and thermal properties of TiFe{sub 2} compound: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Sathyakumari, V. S.; Sankar, S., E-mail: drshreemit@gmail.com; Mahalakshmi, K.; Subashree, G.; Krithiga, R. [Condensed Matter Laboratory, Department of Physics, Madras Institute of Technology Campus, Anna University, Chennai-600044, Tamilnadu (India)

    2015-06-24

    A systematic study of electronic, and thermal properties such as the Density of states, Fermi energy, Debye temperature and specific heat coefficient, has been carried out using the results of electronic bandstructure and related characteristics of the Laves phase compound, TiFe{sub 2}. Computation of electronic bandstructure and associated properties has been carried out using the tight-binding-linear-muffin-tin-orbital (TB-LMTO) method within atomic sphere approximation (ASA). The calculated values are compared with the available results of literature.

  5. Equation of State for Shock Compressed Xenon in the Ionization Regime:ab Initio Study

    Institute of Scientific and Technical Information of China (English)

    王聪; 顾云军; 陈其峰; 贺贤土; 张平

    2012-01-01

    Quantum molecular dynamic (QMD) simulations have been applied to study the thermophysical properties of liquid xenon under dynamic compressions. The equation of state (EOS) obtained from QMD calculations are corrected according to Saha equation, and contributions from atomic ionization, which are of predominance in determining the EOS at high temperature and pressure, are considered. For the pressures below 160 GPa, the necessity in accounting for the atomic ionization has been demonstrated by the Hugoniot curve, which shows excellent agreement with previous experimental measurements, and three levels of ionization have been proved to be sufficient at this stage.

  6. An ab initio study of the electronic structure of indium and gallium chalcogenide bilayers

    Science.gov (United States)

    Ayadi, T.; Debbichi, L.; Said, M.; Lebègue, S.

    2017-09-01

    Using first principle calculations, we have studied the structural and electronic properties of two dimensional bilayers of indium and gallium chalcogenides. With density functional theory corrected for van der Waals interactions, the different modes of stacking were investigated in a systematic way, and several of them were found to compete in energy. Then, their band structures were obtained with the GW approximation and found to correspond to indirect bandgap semiconductors with a small dependency on the mode of stacking. Finally, by analysing the electron density, it appeared that GaSe-InS is a promising system for electron-hole separation.

  7. Ab initio study of the trapping of polonium on noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Rijpstra, Kim; Van Yperen-De Deyne, Andy [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Ghent (Belgium); Maugeri, Emilio Andrea; Neuhausen, Jörg [Laboratory for Radiochemistry, Paul Scherrer Institute (PSI), 5232 Villigen (Switzerland); Waroquier, Michel; Van Speybroeck, Veronique [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Ghent (Belgium); Cottenier, Stefaan, E-mail: stefaan.cottenier@ugent.be [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Ghent (Belgium); Department of Materials Science and Engineering, Ghent University, Technologiepark 903, 9052 Ghent (Belgium)

    2016-04-15

    In the future MYRRHA reactor, lead bismuth eutectic (LBE) will be used both as coolant and as spallation target. Due to the high neutron flux a small fraction of the bismuth will transmute to radiotoxic {sup 210}Po. Part of this radiotoxic element will evaporate into the gas above the coolant. Extracting it from the gas phase is necessary to ensure a safe handling of the reactor. An issue in the development of suitable filters is the lack of accurate knowledge on the chemical interaction between a candidate filter material and either elemental polonium or polonium containing molecules. Experimental work on this topic is complicated by the high radiotoxicity of polonium. Therefore, we present in this paper a first-principles study on the adsorption of polonium on noble metals as filter materials. The adsorption of monoatomic Po is considered on the candidate filter materials palladium, platinum, silver and gold. The case of the gold filter is looked upon in more detail by examining how bismuth pollution affects its capability to capture polonium and by studying the adsorption of the heavy diatomic molecules Po{sub 2}, PoBi and PoPb on this gold filter.

  8. Fermiology of 122 family of Fe-based superconductors: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Smritijit, E-mail: smritijit.sen@gmail.com; Ghosh, Haranath

    2015-04-17

    Fermiology of various 122 systems are studied through first principles simulation. Electron doping causes expansion of electron and shrinkage of hole Fermi pockets. Isovalent Ru substitution (up to 35%) makes no visible modification in the electron- and hole-like Fermi surfaces (FSs) providing no clue regarding the nature of charge carrier doping. However, in case of 32% P doping there are considerable changes in the hole FSs. From our calculations, it is very clear that two-dimensionality of FSs may favour electron pair scattering between quasi-nested FSs which has important bearings in various orders (magnetic, orbital, superconducting) present in Fe-based superconductors. - Highlights: • DFT-based simulated Fermi surfaces of 122 family of Fe-based superconductors are studied. • Room-temperature experimental structural parameters are used as input of our calculations. • Topological changes in the FS structures for various kinds of doping are presented. • Influence of dimensional cross-over of FS structures in magnetism and superconductivity is investigated.

  9. Ab initio study of Mn adsorption on w-BN(0 0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Perez, W. Lopez [GFMC, Departamento de Matematicas y Fisica, Universidad del Norte, A. A. 1569, Barranquilla (Colombia)], E-mail: wlopez@uninorte.edu.co; Rodriguez Martinez, J.A.; Fajardo, F.; Cardona, R. [GEMA - Grupo de estudio de materiales, Departamento de Fisica, Universidad Nacional de Colombia, A. A. 5997, Bogota (Colombia)

    2008-07-15

    We have carried out total energy calculations to study the adsorption energy of Mn on w-BN(0 0 0 1) surface in a 2x2 structure. The surface is modeled using the repeated slabs approach. The calculation was performed solving the Kohn-Sham equation with a plane wave-pseudopotential approach and the generalized gradient approximation (GGA), using the Quantum-Espresso package. We find that with a Mn adatom, the w-BN(0 0 0 1) lateral surface relaxation was around some hundredth of A. To study the most favorable Mn adsorption configuration we considered T{sub 1}, T{sub 4} and H{sub 3} special points. We predict that the Mn-T{sub 4} structure is the most energetically favorable. We find that the adsorption of a Mn atom on top of a B atom (T{sub 1} site) is totally unfavorable. The calculated potential energy to describe the diffusion of a Mn atom on w-BN(0 0 0 1) shows an energy barrier of 0.708 eV. From the density of states with polarized spin we discuss the magnetic effect of Mn on w-BN(0 0 0 1) surface.

  10. Graphene allotropes under extreme uniaxial strain: an ab initio theoretical study.

    Science.gov (United States)

    Fthenakis, Zacharias G; Lathiotakis, Nektarios N

    2015-07-01

    Using density functional theory calculations, we study the response of three representative graphene allotropes (two pentaheptites and octagraphene) as well as graphene, to uniaxial strain up to their fracture limit. Those allotropes can be seen as distorted graphene structures formed upon periodically arranged Stone-Walles transformations. We calculate their mechanical properties (Young's modulus, Poisson's ratio, speed of sound, ultimate tensile strength and the corresponding strain), and we describe the pathways of their fracture. Finally, we study strain as a factor for the conversion of graphene into those allotropes upon Stone-Walles transformations. For specific sets of Stone-Walles transformations leading to an allotrope, we determine the strain directions and the corresponding minimum strain value, for which the allotrope is more favorable energetically than graphene. We find that the minimum strain values which favor those conversions are of the order of 9-13%. Moreover, we find that the energy barriers for the Stone-Walles transformations decrease dramatically under strain, however, they remain prohibitive for structural transitions. Thus, strain alone cannot provide a synthetic route to these allotropes, but could be a part of composite procedures for this purpose.

  11. Ab initio study of the trapping of polonium on noble metals

    Science.gov (United States)

    Rijpstra, Kim; Van Yperen-De Deyne, Andy; Maugeri, Emilio Andrea; Neuhausen, Jörg; Waroquier, Michel; Van Speybroeck, Veronique; Cottenier, Stefaan

    2016-04-01

    In the future MYRRHA reactor, lead bismuth eutectic (LBE) will be used both as coolant and as spallation target. Due to the high neutron flux a small fraction of the bismuth will transmute to radiotoxic 210Po. Part of this radiotoxic element will evaporate into the gas above the coolant. Extracting it from the gas phase is necessary to ensure a safe handling of the reactor. An issue in the development of suitable filters is the lack of accurate knowledge on the chemical interaction between a candidate filter material and either elemental polonium or polonium containing molecules. Experimental work on this topic is complicated by the high radiotoxicity of polonium. Therefore, we present in this paper a first-principles study on the adsorption of polonium on noble metals as filter materials. The adsorption of monoatomic Po is considered on the candidate filter materials palladium, platinum, silver and gold. The case of the gold filter is looked upon in more detail by examining how bismuth pollution affects its capability to capture polonium and by studying the adsorption of the heavy diatomic molecules Po2, PoBi and PoPb on this gold filter.

  12. Ab initio materials physics and microscopic electrodynamics of media

    OpenAIRE

    2016-01-01

    We argue that the amazing progress of first-principles materials physics necessitates a revision of the Standard Approach to electrodynamics of media. We hence subject this Standard Approach to a thorough critique, which shows both its inherent conceptual problems and its practical inapplicability to modern ab initio calculations. We then go on to show that the common practice in ab initio materials physics has overcome these difficulties by taking a different, microscopic approach to electro...

  13. Electronic and magnetic properties of modified silicene/graphene hybrid: Ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Suman; Jana, Debnarayan, E-mail: cujanad@yahoo.com

    2016-11-01

    Among other two-dimensional (2D) novel materials, graphene and silicene both have drawn intense research interest among the researchers because they possess some unique intriguing properties which can change the scenario of the current electronic industry. In this work we have studied the electronic and the magnetic properties of a new kind of materials which is the hybrid of these two materials. Density functional theory (DFT) has been employed to calculate the relevant electronic and magnetic properties of this hybrid material. The pristine structure is modified by substitutional doping or by creating vacancy (Y-X, where one Y atom (Si or C) has been replaced by one X atom (B, N, Al, P or void)). The calculations have revealed that void systems are unstable while Si-B and Si-N are most stable ones. It has been noticed that some of these doped structures are magnetic in nature having induced mid-gap states in the system. In particular, Si-void structure is unstable yet it possess the highest magnetic moment of the order of 4 μ{sub B} (μ{sub B} being the Bohr magneton). The estimated band gaps of modified silicene/graphene hybrid from spin polarized partial density of states (PDOS) vary between 1.43–2.38 eV and 1.58–2.50 eV for spin-up and spin-down channel respectively. The implication of midgap states has been critically analysed in the light of magnetic nature. This study may be useful to build hybrid spintronic devices with controllable gap for spin up and spin down states. - Graphical abstract: We have studied the electronic and magnetic properties of silicene/graphene hybrid by employing density functional theory (DFT). - Highlights: • Electronic and magnetic properties of two dimensional graphene/silicene hybrid have been explored. • There is no magnetism in the system for a single carbon atom vacancy. • A net magnetic moment of 4.0 Bohr magneton is observed for a single silicon atom vacancy. • Unpaired electrons introduce mid-gap states which

  14. Photoionization of multishell fullerenes studied by ab initio and model approaches

    CERN Document Server

    Verkhovtsev, Alexey; Solov'yov, Andrey V

    2016-01-01

    Photoionization of two buckyonions, C$_{60}$@C$_{240}$ and C$_{20}$@C$_{60}$, is investigated by means of time-dependent density-functional theory (TDDFT). The TDDFT-based photoabsorption spectrum of C$_{60}$@C$_{240}$, calculated in a broad photon energy range, resembles the sum of spectra of the two isolated fullerenes, thus illustrating the absence of strong plasmonic coupling between the fullerenes which was proposed earlier. The calculated spectrum of the smaller buckyonion, C$_{20}$@C$_{60}$, differs significantly from the sum of the cross sections of the individual fullerenes because of strong geometrical distortion of the system. The contribution of collective electron excitations arising in individual fullerenes is evaluated by means of plasmon resonance approximation (PRA). An extension of the PRA formalism is presented, which allows for the study of collective electron excitations in multishell fullerenes under photon impact. An advanced analysis of photoionization of buckyonions, performed using m...

  15. Pentagonal dodecahedron methane hydrate cage and methanol system—An ab initio study

    Indian Academy of Sciences (India)

    Snehanshu Pal; T K Kundu

    2013-03-01

    Density functional theory based studies have been performed to elucidate the role of methanol as an methane hydrate inhibitor. A methane hydrate pentagonal dodecahedron cage’s geometry optimization, natural bond orbital (NBO) analysis, Mullikan charge determination, electrostatic potential evaluation and vibrational frequency calculation with and without the presence of methanol using WB97XD/6-31++G(d,p) have been carried out. Calculated geometrical parameters and interaction energies indicate that methanol destabilizes pentagonal dodecahedron methane hydrate cage (1CH4@512) with and without the presence of sodium ion. NBO analysis and red shift of vibrational frequency reveal that hydrogen bond formation between methanol and water molecules of 1CH4@512 cage is favourable subsequently after breaking its original hydrogen bonded network.

  16. Properties of molten Ge chalcogenides an ab initio molecular dynamics study

    CERN Document Server

    Raty, J Y; Bichara, C

    2003-01-01

    In this study, we perform first-principles molecular dynamics simulations of the eutectic alloy Ge sub 1 sub 5 Te sub 8 sub 5 at five different densities and temperatures. We obtain structures in agreement with the available diffraction data and obtain a new view of the molten Ge chalcogenides. We show that the anomalous volume contraction observed in the liquid 30 K above the eutectic temperature corresponds to a significant change of the Ge-Te partial structure factor. The detailed structural analysis shows that volume variations observed upon melting in Ge sub 1 sub 5 Te sub 8 sub 5 , as in liquid GeSe and GeTe, can be explained in terms of the competition between two types of local environment of the germanium atoms. A symmetrical coordination octahedron is entropically favoured at high temperature, while an asymmetrical octahedron resulting from the local manifestation of the Peierls distortion is electronically favoured at lower temperatures.

  17. AB INITIO STUDY OF ADVANCED METALLIC NUCLEAR FUELS FOR FAST BREEDER REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Landa, A; Soderlind, P; Grabowski, B; Turchi, P A; Ruban, A V; Vitos, L

    2012-04-23

    Density-functional formalism is applied to study the ground state properties of {gamma}-U-Zr and {gamma}-U-Mo solid solutions. Calculated heats of formation are compared with CALPHAD assessments. We discuss how the heat of formation in both alloys correlates with the charge transfer between the alloy components. The decomposition curves for {gamma}-based U-Zr and U-Mo solid solutions are derived from Ising-type Monte Carlo simulations. We explore the idea of stabilization of the {delta}-UZr{sub 2} compound against the {alpha}-Zr (hcp) structure due to increase of Zr d-band occupancy by the addition of U to Zr. We discuss how the specific behavior of the electronic density of states in the vicinity of the Fermi level promotes the stabilization of the U{sub 2}Mo compound. The mechanism of possible Am redistribution in the U-Zr and U-Mo fuels is also discussed.

  18. Ab initio study of native defects in SnO under strain

    KAUST Repository

    Bianchi Granato, Danilo

    2014-04-01

    Tin monoxide (SnO) has promising properties to be applied as a p-type semiconductor in transparent electronics. To this end, it is necessary to understand the behaviour of defects in order to control them. We use density functional theory to study native defects of SnO under tensile and compressive strain. We show that Sn vacancies are less stable under tension and more stable under compression, irrespectively of the charge state. In contrast, O vacancies behave differently for different charge states. It turns out that the most stable defect under compression is the +1 charged O vacancy in an Sn-rich environment and the charge neutral O interstitial in an O-rich environment. Therefore, compression can be used to transform SnO from a p-type into either an n-type or an undoped semiconductor. Copyright © EPLA, 2014.

  19. Ab-initio studies of Au-induced atomic wires on Ge(001)

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, Simeon [Institut fuer Festkoerpertheorie und -optik, Universitaet Jena, D-07743 Jena (Germany); Physikalisches Institut, Universitaet Freiburg, D-79104 Freiburg (Germany); Fuchs, Frank; Bechstedt, Friedhelm [Institut fuer Festkoerpertheorie und -optik, Universitaet Jena, D-07743 Jena (Germany); Blumenstein, Christian; Schaefer, Joerg [Physikalisches Institut, Universitaet Wuerzburg, D-97074 Wuerzburg (Germany)

    2010-07-01

    Au-induced atomic wires on Ge(001) are a promising model system to study the physics of one-dimensional electron liquids. However, the results of scanning tunneling microscopy (STM) experiments do not permit to unambiguously determine the arrangement of surface atoms. Several questions remain unresolved: Are the observed protrusions formed by Au atoms only or do they incorporate Ge as well? What is their absolute height? Therefore, we theoretically investigate possible atomic geometries of the surface in the framework of density functional theory. For each model, features like surface energy, STM images, and band structure are calculated. The computed properties are compared to experimental data and used to evaluate the different models. Due to the large variety of possible geometries no final statement about the atomic structure of the surface can be made. However, the calculations give good indications towards the correct geometry, e.g. ruling out models proposed in literature or identifying stabilizing building blocks.

  20. Ab initio powder structure analysis and theoretical study of two thiazole derivatives

    Science.gov (United States)

    Hazra, Dipak K.; Mukherjee, Monika; Mukherjee, Alok K.

    2013-05-01

    Crystal structures of 2-amino-5-methylthiazole (1) and 4-(6-methyl-2-benzothiazolyl) aniline (2) have been determined from laboratory X-ray powder diffraction data along with an analysis of the Hirshfeld surfaces and 2D-fingerprint plots, facilitating a comparison of intermolecular interactions. The DFT optimized molecular geometries in (1) and (2) agree closely with those obtained from the crystallographic studies. An interplay of Nsbnd H⋯N/S hydrogen bonds and C/Nsbnd H⋯π interactions connects the molecules of (1) and (2) into two-dimensional framework. Hirshfeld surface analysis of (1) indicates that the H⋯H and H⋯π contacts can account for 56.9% of the Hirshfeld surface area, whereas the corresponding fraction in (2) is 80.5%.

  1. Possible doping strategies for MoS 2 monolayers: An ab initio study

    KAUST Repository

    Dolui, Kapildeb

    2013-08-14

    Density functional theory is used to systematically study the electronic properties of doped MoS2 monolayers, where the dopants are incorporated both via S/Mo substitution or as adsorbates. Among the possible substitutional dopants at the Mo site, Nb is identified as suitable p-type dopant, while Re is the donor with the lowest activation energy. When dopants are simply adsorbed on a monolayer we find that alkali metals shift the Fermi energy into the MoS2 conduction band, making the system n type. Finally, the adsorption of charged molecules is considered, mimicking an ionic liquid environment. We find that molecules adsorption can lead to both n- and p-type conductivity, depending on the charge polarity of the adsorbed species. © 2013 American Physical Society.

  2. Ab initio design of nanostructures for solar energy conversion: a case study on silicon nitride nanowire.

    Science.gov (United States)

    Pan, Hui

    2014-01-01

    Design of novel materials for efficient solar energy conversion is critical to the development of green energy technology. In this work, we present a first-principles study on the design of nanostructures for solar energy harvesting on the basis of the density functional theory. We show that the indirect band structure of bulk silicon nitride is transferred to direct bandgap in nanowire. We find that intermediate bands can be created by doping, leading to enhancement of sunlight absorption. We further show that codoping not only reduces the bandgap and introduces intermediate bands but also enhances the solubility of dopants in silicon nitride nanowires due to reduced formation energy of substitution. Importantly, the codoped nanowire is ferromagnetic, leading to the improvement of carrier mobility. The silicon nitride nanowires with direct bandgap, intermediate bands, and ferromagnetism may be applicable to solar energy harvesting.

  3. Ab initio study of hydrogenic effective mass impurities in Si nanowires.

    Science.gov (United States)

    Peelaers, H; Durgun, E; Partoens, B; Bilc, D I; Ghosez, Ph; Van de Walle, C G; Peeters, F M

    2017-03-08

    The effect of B and P dopants on the band structure of Si nanowires is studied using electronic structure calculations based on density functional theory. At low concentrations a dispersionless band is formed, clearly distinguishable from the valence and conduction bands. Although this band is evidently induced by the dopant impurity, it turns out to have purely Si character. These results can be rigorously analyzed in the framework of effective mass theory. In the process we resolve some common misconceptions about the physics of hydrogenic shallow impurities, which can be more clearly elucidated in the case of nanowires than would be possible for bulk Si. We also show the importance of correctly describing the effect of dielectric confinement, which is not included in traditional electronic structure calculations, by comparing the obtained results with those of G0W0 calculations.

  4. Enhancing mechanical properties of calcite by Mg substitutions: An ab initio study

    Science.gov (United States)

    Elstnerova, Pavlina; Friak, Martin; Hickel, Tilmann; Fabritius, Helge Otto; Lymperakis, Liverios; Petrov, Michal; Raabe, Dierk; Neugebauer, Joerg; Nikolov, Svetoslav; Zigler, Andreas; Hild, Sabine

    2011-03-01

    Arthropoda representing a majority of all known animal species are protected by an exoskeleton formed by their cuticle. The cuticle represents a hierarchically structured multifunctional bio-composite based on chitin and proteins. Some groups like Crustacea reinforce the load-bearing parts of their cuticle with calcite. As the calcite sometimes contains Mg it was speculated that Mg may have a stiffening impact on the mechanical properties of the cuticle. We present a theoretical parameter-free quantum-mechanical study of thermodynamic, structural and elastic properties of Mg-substituted calcite. Our results show that substituting Ca by Mg causes an almost linear decrease in the crystal volume with Mg concentration and of substituted crystals. As a consequence the calcite crystals become stiffer giving rise e.g. to substantially increased bulk moduli.

  5. Hydration and translocation of an excess proton in water clusters: An ab initio molecular dynamics study

    Indian Academy of Sciences (India)

    Arindam Bankura; Amalendu Chandra

    2005-10-01

    The hydration structure and translocation of an excess proton in hydrogen bonded water clusters of two different sizes are investigated by means of finite temperature quantum simulations. The simulations are performed by employing the method of Car–Parrinello molecular dynamics where the forces on the nuclei are obtained directly from `on the fly' quantum electronic structure calculations. Since no predefined interaction potentials are used in this scheme, it is ideally suited to study proton translocation processes which proceed through breaking and formation of chemical bonds. The coordination number of the hydrated proton and the index of oxygen to which the excess proton is attached are calculated along the simulation trajectories for both the clusters.

  6. Ab initio electronic band structure study of III-VI layered semiconductors

    Science.gov (United States)

    Olguín, Daniel; Rubio-Ponce, Alberto; Cantarero, Andrés

    2013-08-01

    We present a total energy study of the electronic properties of the rhombohedral γ-InSe, hexagonal ɛ-GaSe, and monoclinic GaTe layered compounds. The calculations have been done using the full potential linear augmented plane wave method, including spin-orbit interaction. The calculated valence bands of the three compounds compare well with angle resolved photoemission measurements and a discussion of the small discrepancies found has been given. The present calculations are also compared with recent and previous band structure calculations available in the literature for the three compounds. Finally, in order to improve the calculated band gap value we have used the recently proposed modified Becke-Johnson correction for the exchange-correlation potential.

  7. Experimental and ab initio studies of the novel piperidine-containing acetylene glycols

    CERN Document Server

    Mirsakiyeva, Amina; Elgammal, Karim; Ten, Assel; Hugosson, Håkan W; Delin, Anna; Yu, Valentina K

    2015-01-01

    Synthesis routes of novel piperidine-containing diacetylene are presented. The new molecules are expected to exhibit plant growth stimulation properties. In particular, the yield in a situation of drought is expected to increase. The synthesis makes use of the Favorskii reaction between cycloketones/piperidone and triple-bond containing glycols. The geometries of the obtained molecules were determined using nuclear magnetic resonance (NMR). The electronic structure and geometries of the molecules were studied theoretically using first-principles calculations based on density functional theory. The calculated geometries agree very well with the experimentally measured ones, and also allow us to determine bond lengths, angles and charge distributions inside the molecules. The stability of the OH-radicals located close to the triple bond and the piperidine/cyclohexane rings was proven by both experimental and theoretical analyses. The HOMO/LUMO analysis was done in order to characterize the electron density of t...

  8. Structure and energy of point defects in TiC: An ab initio study

    Science.gov (United States)

    Sun, Weiwei; Ehteshami, Hossein; Korzhavyi, Pavel A.

    2015-04-01

    We employ first-principles calculations to study the atomic and electronic structure of various point defects such as vacancies, interstitials, and antisites in the stoichiometric as well as slightly off-stoichiometric Ti1 -cCc (including both C-poor and C-rich compositions, 0.49 ≤c ≤0.51 ). The atomic structure analysis has revealed that both interstitial and antisite defects can exist in split conformations involving dumbbells. To characterize the electronic structure changes caused by a defect, we introduce differential density of states (dDOS) defined as a local perturbation of the density of states (DOS) on the defect site and its surrounding relative to the perfect TiC. This definition allows us to identify the DOS peaks characteristic of the studied defects in several conformations. So far, characteristic defect states have been discussed only in connection with carbon vacancies. Here, in particular, we have identified dDOS peaks of carbon interstitials and dumbbells, which can be used for experimental detection of such defects in TiC. The formation energies of point defects in TiC are derived in the framework of a grand-canonical formalism. Among the considered defects, carbon vacancies and interstitials are shown to have, respectively, the lowest and the second-lowest formation energies. Their formation energetics are consistent with the thermodynamic data on the phase stability of nonstoichiometric TiC. A cluster type of point defect is found to be next in energy, a titanium [100] dumbbell terminated by two carbon vacancies.

  9. Ab Initio Study of the Electron Transfer in an Ionized Stacked Complex of Guanines

    Science.gov (United States)

    Cauët, Emilie; Liévin, Jacques

    2009-08-01

    The charge transfer process in an ionized stacking of two consecutive guanines (G5'G3')+ has been studied by means of state-averaged CASSCF/MRCI and RASSCF/RASPT2 calculations. The ground and two first excited states of the radical cation have been characterized, and the topology of the corresponding potential energy surfaces (PESs) has been studied as a function of all intermolecular geometrical parameters. The results demonstrate that the charge transfer process in (G5'G3')+ is governed by the avoiding crossing between the ground and first excited states of the complex. Relative translation motions of both guanines in their molecular planes are shown to lead to the charge migration between G5' and G3'. Five stationary points (three minima and two saddle points) have been characterized along the reaction path describing the passage of the positive charge from G5' to G3'. The global minimum on the PES is found to correspond to the charge configuration G5'+G3'. The existence of an intermediate minimum along the reaction path has been established, characterizing a structure where the positive charge is equally distributed between the two guanines. The calculated energy profile allowed us to determine the height of the potential energy barrier (7.33 kcal/mol) and to evaluate the electronic coupling at a geometry close to the avoiding crossing (3.6 kcal/mol). Test calculations showed that the topology of the ground state PES of the complex GG+ is qualitatively conserved upon optimization of the intramolecular geometrical parameters of the stationary points.

  10. The atomistic structure of yttria stabilised zirconia at 6.7 mol%: an ab initio study.

    Science.gov (United States)

    Parkes, Michael A; Tompsett, David A; d'Avezac, Mayeul; Offer, Gregory J; Brandon, Nigel P; Harrison, Nicholas M

    2016-11-16

    Yttria stabilized zirconia (YSZ) is an important oxide ion conductor used in solid oxide fuel cells, oxygen sensing devices, and for oxygen separation. Doping pure zirconia (ZrO2) with yttria (Y2O3) stabilizes the cubic structure against phonon induced distortions and this facilitates high oxide ion conductivity. The local atomic structure of the dopant is, however, not fully understood. X-ray and neutron diffraction experiments have established that, for dopant concentrations below 40 mol% Y2O3, no long range order is established. A variety of local structures have been suggested on the basis of theoretical and computational models of dopant energetics. These studies have been restricted by the difficulty of establishing force field models with predictive accuracy or exploring the large space of dopant configurations with first principles theory. In the current study a comprehensive search for all symmetry independent configurations (2857 candidates) is performed for 6.7 mol% YSZ modelled in a 2 × 2 × 2 periodic supercell using gradient corrected density functional theory. The lowest energy dopant structures are found to have oxygen vacancy pairs preferentially aligned along the 〈210〉 crystallographic direction in contrast to previous results which have suggested that orientation along the 〈111〉 orientation is favourable. Analysis of the defect structures suggests that the Y(3+)-Ovac interatomic separation is an important parameter for determining the relative configurational energies. Current force field models are found to be poor predictors of the lowest energy structures. It is suggested that the energies from a simple point charge model evaluated at unrelaxed geometries is actually a better descriptor of the energy ordering of dopant structures. Using these observations a pragmatic procedure for identifying low energy structures in more complicated material models is suggested. Calculation of the oxygen vacancy migration activation energies within

  11. Comparative Ab-Initio Study of Substituted Norbornadiene-Quadricyclane Compounds for Solar Thermal Storage.

    Science.gov (United States)

    Kuisma, Mikael J; Lundin, Angelica M; Moth-Poulsen, Kasper; Hyldgaard, Per; Erhart, Paul

    2016-02-25

    Molecular photoswitches that are capable of storing solar energy, so-called molecular solar thermal storage systems, are interesting candidates for future renewable energy applications. In this context, substituted norbornadiene-quadricyclane systems have received renewed interest due to recent advances in their synthesis. The optical, thermodynamic, and kinetic properties of these systems can vary dramatically depending on the chosen substituents. The molecular design of optimal compounds therefore requires a detailed understanding of the effect of individual substituents as well as their interplay. Here, we model absorption spectra, potential energy storage, and thermal barriers for back-conversion of several substituted systems using both single-reference (density functional theory using PBE, B3LYP, CAM-B3LYP, M06, M06-2x, and M06-L functionals as well as MP2 calculations) and multireference methods (complete active space techniques). Already the diaryl substituted compound displays a strong red-shift compared to the unsubstituted system, which is shown to result from the extension of the conjugated π-system upon substitution. Using specific donor/acceptor groups gives rise to a further albeit relatively smaller red-shift. The calculated storage energy is found to be rather insensitive to the specific substituents, although solvent effects are likely to be important and require further study. The barrier for thermal back-conversion exhibits strong multireference character and as a result is noticeably correlated with the red-shift. Two possible reaction paths for the thermal back-conversion of diaryl substituted quadricyclane are identified and it is shown that among the compounds considered the path via the acceptor side is systematically favored. Finally, the present study establishes the basis for high-throughput screening of norbornadiene-quadricyclane compounds as it provides guidelines for the level of accuracy that can be expected for key properties from

  12. Ab initio studies of aspartic acid conformers in gas phase and in solution

    Science.gov (United States)

    Chen, Mingliang; Lin, Zijing

    2007-10-01

    Systematic and extensive conformational searches of aspartic acid in gas phase and in solution have been performed. For the gaseous aspartic acid, a total of 1296 trial canonical structures and 216 trial zwitterionic structures were generated by allowing for all combinations of internal single-bond rotamers. All the trial structures were optimized at the B3LYP /6-311G* level and then subjected to further optimization at the B3LYP /6-311++G** level. A total of 139 canonical conformers were found, but no stable zwitterionic structure was found. The rotational constants, dipole moments, zero-point vibrational energies, harmonic frequencies, and vertical ionization energies of the canonical conformers were determined. Single-point energies were also calculated at the MP2/6-311++G** and CCSD /6-311++G** levels. The equilibrium distributions of the gaseous conformers at various temperatures were calculated. The proton affinity and gas phase basicity were calculated and the results are in excellent agreement with the experiments. The conformations in the solution were studied with different solvation models. The 216 trial zwitterionic structures were first optimized at the B3LYP /6-311G* level using the Onsager self-consistent reaction field model (SCRF) and then optimized at the B3LYP /6-311++G** level using the conductorlike polarized continuum model (CPCM) SCRF theory. A total of 22 zwitterions conformers were found. The gaseous canonical conformers were combined with the CPCM model and optimized at the B3LYP /6-311++G** level. The solvated zwitterionic and canonical structures were further examined by the discrete/SCRF model with one and two water molecules. The incremental solvation of the canonical and zwitterionic structures with up to six water molecules in gas phase was systematically examined. The studies show that combining aspartic acid with at least six water molecules in the gas phase or two water molecules and a SCRF solution model is required to provide

  13. Ab Initio Molecular Dynamics Study of Aqueous Solvation of Ethanol and Ethylene

    CERN Document Server

    Van Erp, T S; Erp, Titus S. van; Meijer, Evert Jan

    2002-01-01

    The structure and dynamics of aqueous solvation of ethanol and ethylene are studied by DFT-based Car-Parrinello molecular dynamics. We did not find an enhancement of the structure of the hydrogen bonded network of hydrating water molecules. Both ethanol and ethylene can easily be accommodated in the hydrogen-bonded network of water molecules without altering its structure. This is supports the conclusion from recent neutron diffraction experiments that there is no hydrophobic hydration around small hydrophobic groups. Analysis of the electronic charge distribution using Wannier functions shows that the dipole moment of ethanol increases from 1.8 D to 3.1 D upon solvation, while the apolar ethylene molecule attains an average dipole moment of 0.5 D. For ethylene, we identified configurations with $\\pi$-H bonded water molecules, that have rare four-fold hydrogen-bonded water coordination, yielding instantaneous dipole moments of ethylene of up to 1 D. The results provide valuable information for the improvement...

  14. The ionic states of iodobenzene studied by photoionization and ab initio configuration interaction and DFT computations

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, Michael H., E-mail: m.h.palmer@ed.ac.uk, E-mail: tr01@staffmail.ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it; Ridley, Trevor [School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland (United Kingdom); Hoffmann, Søren Vrønning; Jones, Nykola C. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Coreno, Marcello [CNR-IMIP, Montelibretti, c/o Laboratorio Elettra, Trieste (Italy); Simone, Monica de [CNR-IOM Laboratorio TASC, Trieste (Italy); Grazioli, Cesare [CNR-IOM Laboratorio TASC, Trieste (Italy); Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste (Italy); Biczysko, Malgorzata [National Research Council ICCOM-CNR, UOS di Pisa, Via G. Moruzzi 1, I-56124 Pisa (Italy); Scuola Normale Superiore, Piazza Cavalieri 7, 56126 Pisa (Italy); Baiardi, Alberto [Scuola Normale Superiore, Piazza Cavalieri 7, 56126 Pisa (Italy)

    2015-04-07

    New valence electron photoelectron spectra of iodobenzene obtained using synchrotron radiation have been recorded. Ionization energies (IEs) determined using multi-configuration SCF calculation (MCSCF) procedures confirmed the adiabatic IE order as: X{sup 2}B{sub 1}studies. The calculated Franck-Condon vibrational spectral envelopes, including hot band contributions, for the first four ionic states reproduce the observed peak positions and intensities with reasonable accuracy. In order to simulate the observed spectra, different bandwidths are required for different states. The increase in the required bandwidths for the A{sup 2}A{sub 2} and B{sup 2}B{sub 2} states is attributed to internal conversion to lower-lying states. The presence of relatively high intensity sequence bands leads to asymmetry of each of the X{sup 2}B{sub 1} state bands.

  15. Neutron scattering and ab initio molecular dynamics study of cross-linking in biomedical phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, A J; Ahmed, I; Rudd, C D [Division of Materials, Mechanics and Structures, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Cuello, G J; Pellegrini, E; Richard, D; Johnson, M R, E-mail: andrew.parsons@nottingham.ac.uk [Institut Laue-Langevin, BP 156, 38042 Grenoble (France)

    2010-12-08

    Details of the microscopic structure of phosphate glasses destined for biomedical applications, which include sodium, magnesium and calcium cations, have been obtained from the static structure factor measured by means of neutron scattering. A complementary, molecular dynamics study has been performed on a range of phosphate glasses using density functional theory methods, which allow structural fluctuations, including bond breaking, in the liquid phase before quenching to the glass phase. Good agreement between experiment and simulation allows the molecular dynamics trajectories to be analysed in detail. In particular, attention is focused on the cross-linking of divalent cations in contrast with the structural aspects associated with monovalent cations. Magnesium cations are found equidistant and bridging between the phosphorus atoms of different phosphate chains, leading to a shorter phosphorus-phosphorus second neighbour distance (that is, a more compact packing of neighbouring phosphate chains) compared to the effect of sodium cations. Calcium cations show behaviour intermediate between those of magnesium and sodium. Molecular dynamics simulations give access to the cation mobility, which is lowest for magnesium, reflecting its structural, cross-linking role.

  16. Ab initio study of ZnCoO diluted magnetic semiconductor and its magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Lardjane, S., E-mail: soumia.lardjane@utbm.fr [Laboratoire d' Etudes et de Recherches, les Procedes et les Surfaces, IRTES-LERMPS, UTBM, Site de Montbeliard, 90010 Belfort Cedex (France); Laboratoire d' Etude et Prediction des Materiaux, Unite de Recherche Materiaux et Energies Renouvelables, LEPM-URMER, Universite de Tlemcen (Algeria); Merad, G. [Laboratoire d' Etude et Prediction des Materiaux, Unite de Recherche Materiaux et Energies Renouvelables, LEPM-URMER, Universite de Tlemcen (Algeria); Fenineche, N.; Billard, A. [Laboratoire d' Etudes et de Recherches, les Procedes et les Surfaces, IRTES-LERMPS, UTBM, Site de Montbeliard, 90010 Belfort Cedex (France); Faraoun, H.I. [Laboratoire d' Etude et Prediction des Materiaux, Unite de Recherche Materiaux et Energies Renouvelables, LEPM-URMER, Universite de Tlemcen (Algeria)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer We have studied the electronic and magnetic properties of ZnCoO using the GGA and GGA + U. Black-Right-Pointing-Pointer The GGA + U calculations show that the ZnCoO system shows semiconductor band structures. Black-Right-Pointing-Pointer The obtained magnetic moment on Co is larger in the GGA + U case. Black-Right-Pointing-Pointer Antiferromagnetic order between nearest-neighbour magnetic ions was predicted. Black-Right-Pointing-Pointer Our results suggest that the range of magnetic interaction is short in ZnCoO. - Abstract: Transition metal-doped wide band gap semiconductors, such as ZnO, attract much attention due to the theoretical prediction that ZnO is a room temperature ferromagnetic semiconductor [1,2]. Very controversial experimental and theoretical papers have been published to discuss the origin of ferromagnetic ordering and the relevance of the Curie temperature (T{sub C}) of Co-doped ZnO [3-5]. In order to get better insight, electronic structure of Co{sub x}Zn{sub 1-x}O magnetic semiconductor was investigated via first principle calculations. The generalised gradient approximations (GGA) and the GGA with Hubbard U correction (GGA + U) in the framework of density functional theory (DFT) have been used. Calculations are done for different doping concentrations to discuss the contribution of different atoms in magnetic moments and magnetic coupling.

  17. Z-contrast imaging and ab initio study on "d" superstructure in sedimentary dolomite

    CERN Document Server

    Shen, Zhizhang; Szlufarska, Izabela; Brown, Philip E; Xu, Huifang

    2016-01-01

    Nano-precipitates with tripled periodicity along the c-axis are observed in a Ca-rich dolomite sample from Proterozoic carbonate rocks with "molar tooth" structure. This observation is consistent with previous description of d reflections. High-angle annular dark-field STEM imaging (or Z-contrast imaging) that avoids dynamic diffraction as seen in electron diffraction and high-resolution TEM imaging modes, confirms that d reflections correspond to nanoscale precipitates aligned parallel to (001) of the host dolomite. The lamellae precipitates have a cation ordering sequence of Ca-Ca-Mg-Ca-Ca- Mg along the c direction resulting in a chemical composition of Ca0.67Mg0.33CO3. This superstructure is attributed to the extra or d reflections, thus is referred to as the d superstructure in this study. The structure can be simply described as interstratified calcite/dolomite. The crystal structure of the d superstructure calculated from density functional theory (DFT) has a space group of P31c and has a and c unit-cel...

  18. Ab initio study of semiconductor atoms impurities in zigzag edge (10,0) carbon nanotubes

    Science.gov (United States)

    Muttaqien, Fahdzi; Suprijadi

    2015-04-01

    The substitutional impurities in zigzag edge (10,0) carbon nanotubes have been studied by using first principles calculations. Silicon (Si), gallium (Ga), and arsenic (As) atom have been chosen as semiconductor based-atom for replacing carbon atoms in CNT's surface. The silicon atom changes the energy gap of pristine zigzag (10,0) CNT, it is 0.19 eV more narrow than that of pristine CNT. Geometrically, the silicon atom creates sp3 bond with three adjacent carbon atoms, where the tetrahedral form of its sp3 bond is consisted of free unoccupied state. The silicon atom does not induce magnetism to zigzag CNT. Due to gallium (Ga) and arsenic (As) atom substitution, the zigzag CNT becomes metallic and has magnetic moment of 1 µB. The valance and conduction band are crossed each other, then the energy gap is vanished. The electronic properties of GaAs-doped CNT are dominantly affected by gallium atom and its magnetic properties are dominantly affected by arsenic atom. These results prove that the CNT with desired properties can be obtained with substitutional impurities without any giving structural defect.

  19. Ab initio study of TaON, an active photocatalyst under visible light irradiation.

    Science.gov (United States)

    Reshak, A H

    2014-06-14

    Tantalum oxynitride has been studied as an active photocatalyst under visible light, using a full potential linearized augmented plane wave method within the framework of density functional theory. The electronic and optical properties of TaON are calculated using local density approximation (LDA), generalized gradient approximation (GGA), Engel-Vosko generalized gradient approximation (EVGGA) and the modified Becke-Johnson (mBJ) potential approximation to describe the exchange-correlation potential. The calculated band gap value obtained by the mBJ approximation approach (2.5 eV) is very close to the experimental result (2.5 eV). We found that hybridization among the Ta-d, O-p and N-p states results in the formation of a covalent bond between Ta-N and Ta-O. The calculated optical properties confirm that the TaON is an active photocatalyst under visible light irradiation. TaON has a high dielectric constant and the components show anisotropy in the energy range between 3.0 eV and 10.0 eV. A high refractive index of 2.47 at 632.8 nm is obtained which shows better agreement with the experimental value (2.5 at 632.8 nm) than previous results.

  20. Ab initio thermodynamic study on two-dimensional atomic nucleation on ZnO polar surfaces

    Science.gov (United States)

    Zhu, Rui; Zhao, Qing; Xu, Jun; Liu, Banggui; Leprince-Wang, Yamin; Yu, Dapeng

    2017-08-01

    Structures of the two-dimensional atomic nuclei on ZnO (0001)-Zn and (000 1 bar)-O polar surfaces were studied by first principles density functional theory. The polarity-dependent nucleation dynamics was investigated by simulating two-dimensional (2D) nuclei consisting of 1-8 ZnO monomers on both polar surfaces. According to total energy calculations, average binding energy per ZnO monomer of the surface nuclei was analyzed to investigate if the nucleation and growth will proceed reasonably in physics. We found nucleation on (0001)-Zn surface was easier than that on (000 1 bar)-O surface. By using atomistic thermodynamics analysis, we calculated the Gibbs free energy of formation of these nuclei and made a comparison between the two polar surfaces. On (0001)-Zn surface, the critical Gibbs free energy of formation is much lower than that on (000 1 bar)-O surface under the same supersaturation, which leads to a much larger ZnO growth rate and rougher morphology, in accordance with experimental results. In addition, energetic analysis of nucleation at real thermodynamic conditions was achieved by introducing the temperature- and pressure-dependent chemical potentials of ZnO precursors.

  1. Electrostatically enhanced FF interactions through hydrogen bonding, halogen bonding and metal coordination: an ab initio study.

    Science.gov (United States)

    Bauzá, Antonio; Frontera, Antonio

    2016-07-27

    In this manuscript the ability of hydrogen and halogen bonding interactions, as well as metal coordination to enhance FF interactions involving fluorine substituted aromatic rings has been studied at the RI-MP2/def2-TZVPD level of theory. We have used 4-fluoropyridine, 4-fluorobenzonitrile, 3-(4-fluorophenyl)propiolonitrile and their respective meta derivatives as aromatic compounds. In addition, we have used HF and IF as hydrogen and halogen bond donors, respectively, and Ag(i) as the coordination metal. Furthermore, we have also used HF as an electron rich fluorine donor entity, thus establishing FF interactions with the above mentioned aromatic systems. Moreover, a CSD (Cambridge Structural Database) search has been carried out and some interesting examples have been found, highlighting the impact of FF interactions involving aromatic fluorine atoms in solid state chemistry. Finally, cooperativity effects between FF interactions and both hydrogen and halogen bonding interactions have been analyzed and compared. We have also used Bader's theory of "atoms in molecules" to further describe the cooperative effects.

  2. Ab initio study of interstitial cluster interaction with Re, Os, and Ta in W

    Science.gov (United States)

    Setyawan, Wahyu; Nandipati, Giridhar; Kurtz, Richard J.

    2017-02-01

    The stability of tungsten self-interstitial atom (SIA) clusters is studied using first-principles methods. Clusters from one to seven SIAs are systematically explored from 1264 unique configurations. Finite-size effect of the simulation cell is corrected based on the scaling of formation energy versus inverse volume cell. Furthermore, the accuracy of the calculations is improved by treating the 5p semicore states as valence states. Configurations of the three most stable clusters in each cluster size n are presented, which consist of parallel [111] dumbbells. The evolution of these clusters leading to small dislocation loops is discussed. The binding energy of size-n clusters is analyzed relative to an n → (n-1) + 1 dissociation and is shown to increase with size. Extrapolation for n > 7 is presented using a dislocation loop model. In addition, the interaction of these clusters with a substitutional Re, Os, or Ta solute is explored by replacing one of the dumbbells with the solute. Re and Os strongly attract these clusters, but Ta strongly repels. The strongest interaction is found when the solute is located on the periphery of the cluster rather than in the middle. The magnitude of this interaction decreases with cluster size. Empirical fits to describe the trend of the solute binding energy are presented.

  3. Conformers and non-covalent interactions studied by laser spectroscopies and ab initio calculations

    CERN Document Server

    Ullrich, S

    2001-01-01

    The model peptides, formanilide and acetanilide, and their weakly bound complexes were studied in the gas-phase using resonance enhanced multi-photon ionisation (REMPI) and zero electron kinetic energy (ZEKE) photoelectron spectroscopy. Both, cis- and trans-isomers of formanilide, were observed under molecular beam conditions. Trans-formanilide displayed predominantly in-plane vibrational excitation indicative of a planar geometry with modest geometry changes upon excitation and ionisation. In cis-formanilide the side-chain is twisted compared to the phenyl plane in the S sub 0 state, but planar in the S sub 1 and D sub 0 states, revealed in characteristic side-chain torsional and out-of-plane bending excitations. Additionally, the ZEKE spectra provide evidence that excess cationic charge is delocalised from the aromatic ring to the side chain. The work on trans-formanilide was extended to its van der Waals complex with Argon with the purpose of investigating the torsional potential of the side-chain and prob...

  4. Pulse-induced nonequilibrium dynamics of acetylene inside carbon nanotube studied by an ab initio approach.

    Science.gov (United States)

    Miyamoto, Yoshiyuki; Zhang, Hong; Rubio, Angel

    2012-06-05

    Nanoscale molecular confinement substantially modifies the functionality and electronic properties of encapsulated molecules. Many works have approached this problem from the perspective of quantifying ground-state molecular changes, but little is known about the nonequilibrium dynamics of encapsulated molecular system. In this letter, we report an analysis of the nonequilibrium dynamics of acetylene (C(2)H(2)) inside a semiconducting carbon nanotube (CNT). An ultrashort high-intense laser pulse (2 fs width and 10(15) W/cm(2) intensity) brings the systems out of equilibrium. This process is modeled by comprehensive first-principles time-dependent density-functional simulations. When encapsulated, acetylene dimer, unlike a single acetylene molecule, exhibits correlated vibrational dynamics (C-C bond rotation and H-C-C bending) that is markedly different from the dynamics observed in the gas phase. This result highlights the role of CNT in modulating the optical electric field within the tube. At longer simulation timescales (> 20 fs) in the largest-diameter tube studied here [CNT(14,0)], we observe synchronized rotation about the C-C axes in the dimer and ultimately ejection of one of the four hydrogen atoms. Our results illustrate the richness of photochemical phenomena in confined geometries.

  5. Ab-initio study of C and O impurities in uranium nitride

    Science.gov (United States)

    Lopes, Denise Adorno; Claisse, Antoine; Olsson, Pär

    2016-09-01

    Uranium nitride (UN) has been considered a potential fuel for Generation IV (GEN-IV) nuclear reactors as well as a possible new fuel for Light Water Reactors (LWR), which would permit an extension of the fuel residence time in the reactor. Carbon and oxygen impurities play a key role in the UN microstructure, influencing important parameters such as creep, swelling, gas release under irradiation, compatibility with structural steel and coolants, and thermal stability. In this work, a systematic study of the electronic structure of UN containing C and O impurities using first-principles calculations by the Density Functional Theory (DFT) method is presented. In order to describe accurately the localized U 5f electrons, the DFT + U formalism was adopted. Moreover, to avoid convergence toward metastable states, the Occupation Matrix Control (OMC) methodology was applied. The incorporation of C and O in the N-vacancy is found to be energetically favorable. In addition, only for O, the incorporation in the interstitial position is energetically possible, showing some degree of solubility for this element in this site. The binding energies show that the pairs (Csbnd Nvac) and (Osbnd Nvac) interact much further than the other defects, which indicate the possible occurrence of vacancy drag phenomena and clustering of these impurities in grain boundaries, dislocations and free surfaces. The migration energy of an impurity by single N-vacancy show that C and O employ different paths during diffusion. Oxygen migration requires significantly lower energy than carbon. This fact is due to flexibility in the Usbnd O chemical bonds, which bend during the diffusion forming a pseudo UO2 coordination. On the other hand, C and N have a directional and inflexible chemical bond with uranium; always requiring the octahedral coordination. These findings provide detailed insight into how these impurities behave in the UN matrix, and can be of great interest for assisting the development of

  6. Ab initio study of gas phase and water-assisted tautomerization of maleimide and formamide

    Indian Academy of Sciences (India)

    Susheel Kalia; Anju Sharma; B S Kaith

    2007-11-01

    Maleimide serves as an important starting material in the synthesis of drugs and enzyme inhibitors. In the present paper, knowing the importance of tautomerization in maleimide for its drug action, potential energy surface of maleimide is studied and its tautomerization has been discussed and compared with tautomerization of formamide. Gas phase tautomerization of maleimide requires large amount of energy (23.21 kcal/mol) in comparison to formamide (15.05 kcal/mol) at HF/6-31+G* level. Thus making the proton transfer reaction a difficult process in gas phase. Water molecule lowers the energy barrier of tautomerization thus facilitating the tautomerization of maleimide to 5-hydroxy-pyrrol-2-one. Water assisted tautomerization of maleimide requires 19.60 kcal/mol energy at HF/6-31+G* and 17.63 kcal/mol energy at B3LYP/6-31+G* level, a decrease of 3.61 and 5.96 kcal/mol over gas phase tautomerization. Whereas, tautomerization of formamide requires 14.16 and 12.84 kcal/mol energy, a decrease of 0.89 and 2.01 kcal/mol energy over gas phase tautomerization at HF/6-31+G* and B3LYP/6-31+G* level, respectively. Water-assisted tautomerization in maleimide and formamide showed that difference in energy barrier reduces to 2.83 kcal/mol from 10.41 kcal/mol (in gas phase) at B3LYP level, which resulted that maleimide readily undergoes tautomerization in water molecule.

  7. Interplay between the structure and dynamics in liquid and undercooled boron: An ab initio molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Jakse, N.; Pasturel, A. [Sciences et Ingénierie des Matériaux et Procédés, UMR CNRS 5266, Grenoble INP, BP 75, 38402 Saint-Martin d’Hères Cedex (France)

    2014-12-21

    In the present work, the structural and dynamic properties of liquid and undercooled boron are investigated by means of ab initio molecular dynamics simulation. Our results show that both liquid and undercooled states present a well pronounced short-range order (SRO) mainly due to the formation of inverted umbrella structural units. Moreover, we observe the development of a medium-range order (MRO) in the undercooling regime related to the increase of inverted umbrella structural units and of their interconnection as the temperature decreases. We also evidence that this MRO leads to a partial crystallization in the β-rhombohedral crystal below T = 1900 K. Finally, we discuss the role played by the SRO and MRO in the nearly Arrhenius evolution of the diffusion and the non-Arrhenius temperature dependence of the shear viscosity, in agreement with the experiment.

  8. Ab initio study of magnesium and magnesium hydride nanoclusters and nanocrystals: examining optimal structures and compositions for efficient hydrogen storage.

    Science.gov (United States)

    Koukaras, Emmanuel N; Zdetsis, Aristides D; Sigalas, Michael M

    2012-09-26

    On the basis of the attractive possibility of efficient hydrogen storage in light metal hydrides, we have examined a large variety of Mg(n)H(m) nanoclusters and (MgH(2))(n) nanocrystals (n = 2-216, m = 2-436) using high level coupled cluster, CCSD(T), ab initio methods, and judicially chosen density functional calculations of comparable quality and (near chemical) accuracy. Our calculated desorption energies as a function of size and percentage of hydrogen have pinpointed optimal regions of sizes and concentrations of hydrogen which are in full agreement with recent experimental findings. Furthermore, our results reproduce the experimental desorption energy of 75.5 kJ/mol for the infinite system with remarkable accuracy (76.5 ± 1.5 kJ/mol).

  9. Ab initio study of the modification of elastic properties of {alpha}-iron by hydrostatic strain and by hydrogen interstitials

    Energy Technology Data Exchange (ETDEWEB)

    Psiachos, D., E-mail: dpsiachos@gmail.com [ICAMS, Ruhr-Universitaet Bochum, Bochum (Germany); Hammerschmidt, T., E-mail: thomas.hammerschmidt@icams.rub.de [ICAMS, Ruhr-Universitaet Bochum, Bochum (Germany); Drautz, R., E-mail: ralf.drautz@icams.rub.de [ICAMS, Ruhr-Universitaet Bochum, Bochum (Germany)

    2011-06-15

    The effect of hydrostatic strain and of interstitial hydrogen on the elastic properties of {alpha}-iron is investigated using ab initio density-functional theory calculations. We find that the cubic elastic constants and the polycrystalline elastic moduli to a good approximation decrease linearly with increasing hydrogen concentration. This net strength reduction can be partitioned into a strengthening electronic effect which is overcome by a softening volumetric effect. The calculated hydrogen-dependent elastic constants are used to determine the polycrystalline elastic moduli and anisotropic shear moduli. For the key slip planes in {alpha}-iron, [11-bar0] and [112-bar], we find a shear modulus reduction of approximately 1.6% per at.% H.

  10. Hydrogen-hydrogen bonds in highly branched alkanes and in alkane complexes: A DFT, ab initio, QTAIM, and ELF study.

    Science.gov (United States)

    Monteiro, Norberto K V; Firme, Caio L

    2014-03-06

    The hydrogen-hydrogen (H-H) bond or hydrogen-hydrogen bonding is formed by the interaction between a pair of identical or similar hydrogen atoms that are close to electrical neutrality and it yields a stabilizing contribution to the overall molecular energy. This work provides new, important information regarding hydrogen-hydrogen bonds. We report that stability of alkane complexes and boiling point of alkanes are directly related to H-H bond, which means that intermolecular interactions between alkane chains are directional H-H bond, not nondirectional induced dipole-induced dipole. Moreover, we show the existence of intramolecular H-H bonds in highly branched alkanes playing a secondary role in their increased stabilities in comparison with linear or less branched isomers. These results were accomplished by different approaches: density functional theory (DFT), ab initio, quantum theory of atoms in molecules (QTAIM), and electron localization function (ELF).

  11. Structural, magnetic and electronic properties of FexCoyIrz (x + y + z = 5, 6) clusters: an ab initio study

    KAUST Repository

    Devi, Assa Aravindh Sasikala

    2014-05-01

    Investigations on freestanding binary and ternary clusters of Fe (x) Co (y) Ir (z) (x + y + z = 5, 6) are carried out using ab initio density functional theory techniques. The geometry, chemical order, binding energy, magnetic moment and electronic structure of the clusters are analyzed for the entire range of composition. Composition dependent structural transition is observed in the five atom clusters, while octahedral geometry prevailed in clusters with six atoms. Both the clusters show increment in binding energy with the increase in number of heterogeneous bonds. Analysis based on the chemical order parameter indicates that clusters favor mixing rather than segregation. The clusters exhibit ferromagnetic ordering and the inter-dependence of optimal cluster geometry to the magnetic moments and electronic structure is observed.

  12. A Theoretical Study on a Reaction of Iron(III) Hydroxide with Boron Trichloride by Ab Initio Calculation

    CERN Document Server

    Ichikawa, Kazuhide; Fukushima, Akinori; Ishihara, Yoshio; Isaki, Ryuichiro; Takeguchi, Toshio; Tachibana, Akitomo; 10.1016/j.theochem.2009.08.026

    2009-01-01

    We investigate a reaction of boron trichloride (BCl3) with iron(III) hydroxide (Fe(OH)3) by ab initio quantum chemical calculation as a simple model for a reaction of iron impurities in BCl3 gas. We also examine a reaction with water. We find that compounds such as Fe(Cl)(OBCl2)2(OHBCl2) and Fe(Cl)2(OBCl2)(OHBCl2) are formed while producing HCl and reaction paths to them are revealed. We also analyze the stabilization mechanism of these paths using newly-developed interaction energy density derived from electronic stress tensor in the framework of the Regional DFT (Density Functional Theory) and Rigged QED (Quantum ElectroDynamics).

  13. Communication: Energy transfer and reaction dynamics for DCl scattering on Au(111): An ab initio molecular dynamics study

    Science.gov (United States)

    Kolb, Brian; Guo, Hua

    2016-07-01

    Scattering and dissociative chemisorption of DCl on Au(111) are investigated using ab initio molecular dynamics with a slab model, in which the top two layers of Au are mobile. Substantial kinetic energy loss in the scattered DCl is found, but the amount of energy transfer is notably smaller than that observed in the experiment. On the other hand, the dissociative chemisorption probability reproduces the experimental trend with respect to the initial kinetic energy, but is about one order of magnitude larger than the reported initial sticking probability. While the theory-experiment agreement is significantly improved from the previous rigid surface model, the remaining discrepancies are still substantial, calling for further scrutiny in both theory and experiment.

  14. Ab initio study of the interplay between superconductivity and magnetic fields in MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Aperis, Alexandros; Maldonado, Pablo; Oppeneer, Peter M. [Uppsala University, Uppsala (Sweden)

    2015-07-01

    Among the bulk superconductors broadly accepted to be mediated by phonons, MgB{sub 2} exhibits a record high critical temperature of T{sub c}=39 K. The relatively simple crystal structure of this material makes it an ideal platform to investigate fundamental phenomena, such as the interplay between superconductivity and the Zeeman effect, at the ab initio level. Here we combine DFT calculations providing electronic band and phonon dispersions with numerical solutions of the fully anisotropic Eliashberg equations, to provide a complete picture of the modification of the two-band superconductivity in this compound at finite external magnetic fields and temperature. We predict interesting signatures in the H - T phase diagram which could be experimentally probed.

  15. Why Static O-H Bond Parameters Cannot Characterize the Free Radical Scavenging Activity of Phenolic Antioxidants: ab initio Study

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The static O-H bond parameters including O-H bond length, O-H charge difference, O-H Mulliken population and O-H bond stretching force constant (k) for 17 phenols were calculated by ab initio method HF/6-31G**. In combination with the O-H bond dissociation enthalpies (BDE) of the phenols determined by experiment, it was found that there were poor correlationships between the static O-H bond parameters and O-H BDE. Considering the good correlationship between O-H BDE and logarithm of free radical scavenging rate constant for phenolic antioxidant, it is reasonable to believe that the ineffectiveness of static O-H bond parameters in characterizing antioxidant activity arises from the fact that they cannot measure the O-H BDE.

  16. Self-Assembly and Dynamics of Organic 2D Molecular Sieves: Ab Initio and Molecular Dynamics Studies

    Science.gov (United States)

    St. John, Alexander; Wexler, Carlos

    2015-03-01

    Spontaneous molecular self-assembly is a promising route for bottom-up manufacturing of two-dimensional (2D) nanostructures with specific topologies on atomically flat surfaces. Of particular interest is the possibility of selective lock-and-key interaction of guest molecules inside cavities formed by complex self-assembled host structures. Our host structure is a monolayer consisting of interdigitated 1,3,5-tristyrylbenzene substituted by alkoxy peripheral chains containing n = 6, 8, 10, 12, or 14 carbon atoms (TSB3,5-C n) deposited on a highly ordered pyrolytic graphite (HOPG) surface. Using ab initio methods from quantum chemistry and molecular dynamics simulations, we construct and analyze the structure and functionality of the TSB3,5-C n monolayer as a molecular sieve. Supported by ACS-PRF 52696-ND5.

  17. Ab-initio study of C and O impurities in uranium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Denise Adorno; Claisse, Antoine; Olsson, Pär, E-mail: polsson@kth.se

    2016-09-15

    Uranium nitride (UN) has been considered a potential fuel for Generation IV (GEN-IV) nuclear reactors as well as a possible new fuel for Light Water Reactors (LWR), which would permit an extension of the fuel residence time in the reactor. Carbon and oxygen impurities play a key role in the UN microstructure, influencing important parameters such as creep, swelling, gas release under irradiation, compatibility with structural steel and coolants, and thermal stability. In this work, a systematic study of the electronic structure of UN containing C and O impurities using first-principles calculations by the Density Functional Theory (DFT) method is presented. In order to describe accurately the localized U 5f electrons, the DFT + U formalism was adopted. Moreover, to avoid convergence toward metastable states, the Occupation Matrix Control (OMC) methodology was applied. The incorporation of C and O in the N-vacancy is found to be energetically favorable. In addition, only for O, the incorporation in the interstitial position is energetically possible, showing some degree of solubility for this element in this site. The binding energies show that the pairs (C−N{sub vac}) and (O−N{sub vac}) interact much further than the other defects, which indicate the possible occurrence of vacancy drag phenomena and clustering of these impurities in grain boundaries, dislocations and free surfaces. The migration energy of an impurity by single N-vacancy show that C and O employ different paths during diffusion. Oxygen migration requires significantly lower energy than carbon. This fact is due to flexibility in the U−O chemical bonds, which bend during the diffusion forming a pseudo UO{sub 2} coordination. On the other hand, C and N have a directional and inflexible chemical bond with uranium; always requiring the octahedral coordination. These findings provide detailed insight into how these impurities behave in the UN matrix, and can be of great interest for assisting the

  18. Dopants Control Electron-Hole Recombination at Perovskite-TiO₂ Interfaces: Ab Initio Time-Domain Study.

    Science.gov (United States)

    Long, Run; Prezhdo, Oleg V

    2015-11-24

    TiO2 sensitized with organohalide perovskites gives rise to solar-to-electricity conversion efficiencies reaching close to 20%. Nonradiative electron-hole recombination across the perovskite/TiO2 interface constitutes a major pathway of energy losses, limiting quantum yield of the photoinduced charge. In order to establish the fundamental mechanisms of the energy losses and to propose practical means for controlling the interfacial electron-hole recombination, we applied ab initio nonadiabatic (NA) molecular dynamics to pristine and doped CH3NH3PbI3(100)/TiO2 anatase(001) interfaces. We show that doping by substitution of iodide with chlorine or bromine reduces charge recombination, while replacing lead with tin enhances the recombination. Generally, lighter and faster atoms increase the NA coupling. Since the dopants are lighter than the atoms they replace, one expects a priori that all three dopants should accelerate the recombination. We rationalize the unexpected behavior of chlorine and bromine by three effects. First, the Pb-Cl and Pb-Br bonds are shorter than the Pb-I bond. As a result, Cl and Br atoms are farther away from the TiO2 surface, decreasing the donor-acceptor coupling. In contrast, some iodines form chemical bonds with Ti atoms, increasing the coupling. Second, chlorine and bromine reduce the NA electron-vibrational coupling, because they contribute little to the electron and hole wave functions. Tin increases the coupling, since it is lighter than lead and contributes to the hole wave function. Third, higher frequency modes introduced by chlorine and bromine shorten quantum coherence, thereby decreasing the transition rate. The recombination occurs due to coupling of the electronic subsystem to low-frequency perovskite and TiO2 modes. The simulation shows excellent agreement with the available experimental data and advances our understanding of electronic and vibrational dynamics in perovskite solar cells. The study provides design principles

  19. Elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys studied by the combinatorial thin film approach and ab initio calculations.

    Science.gov (United States)

    Reeh, S; Kasprzak, M; Klusmann, C D; Stalf, F; Music, D; Ekholm, M; Abrikosov, I A; Schneider, J M

    2013-06-19

    The elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young's modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe-Mn can be predicted by the DLM model.

  20. Ab-initio study of the electronic structure of sup 1 sup 9 F implanted in GaAs and GaN crystals

    CERN Document Server

    Park, J H; Cho, H S; Shin, Y N

    1998-01-01

    We have studied the nuclear quadrupole interaction of a fluorine atom implanted in gallium arsenide and gallium nitride cluster models using the ab-initio Hartree-Fock theory. For the three possible fluorine sites in GaAs and GaN, we have determined the location of the implanted fluorine atom by using a self-consistent calculation, the electric field gradient at the implanted atom, and the electronic structure. Good agreement is found with experimental data wherever they are available. Predictions are made for the implanted fluorine site associated with the total energy and the electric field gradient which are expected to be measurable by a variety of experimental techniques.

  1. Ab Initio Density Functional Calculations and Infra-Red Study of CO Interaction with Pd Atoms on θ-Al2O3 (010) Surface.

    Science.gov (United States)

    Narula, Chaitanya K; Allard, Lawrence F; Wu, Zili

    2017-07-24

    The ab initio density functional theoretical studies show that energetics favor CO oxidation on single Pd atoms supported on θ-alumina. The diffuse reflectance infra-red spectroscopy (DRIFTS) results show that carbonates are formed as intermediates when single supported Pd atoms are exposed to a gaseous mixture of CO + O2. The rapid agglomeration of Pd atoms under CO oxidation conditions even at 6 °C leads to the presence of Pd particles along with single atoms during CO oxidation experiments. Thus, the observed CO oxidation has contributions from both single Pd atoms and Pd particles.

  2. Conformational and structural studies of 1-chloropropane and 1-bromopropane from temperature-dependant FT-IR spectra of rare gas solutions and ab initio calculations

    Science.gov (United States)

    Durig, J. R.; Zhu, X.; Shen, S.

    2001-08-01

    Variable temperature (-55 to -150°C) studies of the infrared spectra (3500-400 cm -1) of 1-chloropropane (CH 3CH 2CH 2Cl) and 1-bromopropane (CH 3CH 2CH 2Br) dissolved in liquid krypton and xenon, respectively, have been recorded. Utilizing two conformer pairs in krypton solution for chloride and three conformer pairs in xenon solution for bromide, enthalpy differences of 52±3 cm -1 (0.62±0.06 kJ/mol) and 72±7 cm -1 (0.86±0.08 kJ/mol) were obtained for the chloride and bromide, respectively, with the gauche form being the more stable conformer for both molecules. From these data, it is estimated that 28 and 26% of trans form are present at ambient temperature for the chloride and bromide, respectively. The conformation stabilities, harmonic force constants, fundamental frequencies, infrared intensities and Raman activities have been obtained from RHF/6-31G(d) and/or MP2/6-31G(d) ab initio calculations for both halopropanes and these quantities have been compared to the experimental values when appropriate. The optimized geometries have also been obtained with several different ab initio basis sets with full electron correlation by the perturbation method up to MP2/6-311+G(2d,2p). The r0 structural parameters of both halopropanes have been obtained by combining the ab initio data with the previously reported microwave rotational constants for both conformers. The quantities are compared to the corresponding results for some similar molecules.

  3. Ab initio modeling of small proteins by iterative TASSER simulations

    Directory of Open Access Journals (Sweden)

    Zhang Yang

    2007-05-01

    Full Text Available Abstract Background Predicting 3-dimensional protein structures from amino-acid sequences is an important unsolved problem in computational structural biology. The problem becomes relatively easier if close homologous proteins have been solved, as high-resolution models can be built by aligning target sequences to the solved homologous structures. However, for sequences without similar folds in the Protein Data Bank (PDB library, the models have to be predicted from scratch. Progress in the ab initio structure modeling is slow. The aim of this study was to extend the TASSER (threading/assembly/refinement method for the ab initio modeling and examine systemically its ability to fold small single-domain proteins. Results We developed I-TASSER by iteratively implementing the TASSER method, which is used in the folding test of three benchmarks of small proteins. First, data on 16 small proteins (α-root mean square deviation (RMSD of 3.8Å, with 6 of them having a Cα-RMSD α-RMSD α-RMSD of the I-TASSER models was 3.9Å, whereas it was 5.9Å using TOUCHSTONE-II software. Finally, 20 non-homologous small proteins (α-RMSD of 3.9Å was obtained for the third benchmark, with seven cases having a Cα-RMSD Conclusion Our simulation results show that I-TASSER can consistently predict the correct folds and sometimes high-resolution models for small single-domain proteins. Compared with other ab initio modeling methods such as ROSETTA and TOUCHSTONE II, the average performance of I-TASSER is either much better or is similar within a lower computational time. These data, together with the significant performance of automated I-TASSER server (the Zhang-Server in the 'free modeling' section of the recent Critical Assessment of Structure Prediction (CASP7 experiment, demonstrate new progresses in automated ab initio model generation. The I-TASSER server is freely available for academic users http://zhang.bioinformatics.ku.edu/I-TASSER.

  4. The benzoic acid-water complex: a potential atmospheric nucleation precursor studied using microwave spectroscopy and ab initio calculations.

    Science.gov (United States)

    Schnitzler, Elijah G; Jäger, Wolfgang

    2014-02-14

    The pure rotational, high-resolution spectrum of the benzoic acid-water complex was measured in the range of 4-14 GHz, using a cavity-based molecular beam Fourier-transform microwave spectrometer. In all, 40 a-type transitions and 2 b-type transitions were measured for benzoic acid-water, and 12 a-type transitions were measured for benzoic acid-D2O. The equilibrium geometry of benzoic acid-water was determined with ab initio calculations, at the B3LYP, M06-2X, and MP2 levels of theory, with the 6-311++G(2df,2pd) basis set. The experimental rotational spectrum is most consistent with the B3LYP-predicted geometry. Narrow splittings were observed in the b-type transitions, and possible tunnelling motions were investigated using the B3LYP/6-311++G(d,p) level of theory. Rotation of the water moiety about the lone electron pair hydrogen-bonded to benzoic acid, across a barrier of 7.0 kJ mol(-1), is the most likely cause for the splitting. Wagging of the unbound hydrogen atom of water is barrier-less, and this large amplitude motion results in the absence of c-type transitions. The interaction and spectroscopic dissociation energies calculated using B3LYP and MP2 are in good agreement, but those calculated using M06-2X indicate excess stabilization, possibly due to dispersive interactions being over-estimated. The equilibrium constant of hydration was calculated by statistical thermodynamics, using ab initio results and the experimental rotational constants. This allowed us to estimate the changes in percentage of hydrated benzoic acid with variations in the altitude, region, and season. Using monitoring data from Calgary, Alberta, and the MP2-predicted dissociation energy, a yearly average of 1% of benzoic acid is expected to be present in the form of benzoic acid-water. However, this percentage depends sensitively on the dissociation energy. For example, when using the M06-2X-predicted dissociation energy, we find it increases to 18%.

  5. Sites and reactivity of sulfides in hydro-treatment catalysis: theoretical ab-initio study; Sites et reactivite des sulfures en catalyse d`hydrotraitement: etude theorique ab-initio

    Energy Technology Data Exchange (ETDEWEB)

    Raybaud, P.

    1998-10-28

    Ab-initio calculations within the DFT and GGA have been carried out in an attempt to understand better which property sets the activity of transition metal sulfides (TMS) in the hydro-desulfurization reaction (HDS), a most important step in the refining of crude oil. A systematic study of the structural cohesive and electronic properties of more than thirty bulk TMS has allowed us to find a new simple relationship between the experimental catalytic activities known in HDS, and the properly defined sulfur-metal (S-M) bond energy. On this volcano curve reminiscent of the Sabatier principles, ionic metallic sulfides (as Ni{sub 3}S{sub 2}, Ci{sub 9}S{sub 8}) exhibit the weakest bonds whereas ion-covalent semi-conductors (as MoS{sub 2}) exhibit the strongest bonds: the highest activities correspond to intermediate bond strengths (RuS{sub 2}). Our study of the electronic structure of the MoS{sub 2} edge surfaces has revealed acceptor surface states localized on Coordinatively Unsaturated Mo ions and the significance of those states for the activation of hetero-aromatic molecules like thiophene. On such surfaces, the energetic profiles we establish for the thiophene HDS reaction point out the surface anionic vacancy regeneration steps as rate determining. We have calculated the optimal positions of Co (Ni) in decoration on the MoS{sub 2} edge planes, in excellent agreement with available EXAFS data on real catalysts. Introducing the promoter Co (Ni) induces a lower optimal sulfur coverage and a lower surface S-M bond strength in proportion of the Co (Ni) coverage, and lower for Ni than for Co. Simplified energy profiles for the thiophene HDS reactions on promoted (101-bar 0) surfaces show that the C-S scission step is likely to become rate determining. Our results show altogether that bulk and surface S-M strengths in TMS systems show similar trends, insofar as they are primarily determined by the local electronic structure. (author)

  6. Taming the resistive switching in Fe/MgO/V/Fe magnetic tunnel junctions: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar-Hualde, J.M. [IPhT, CEA/Saclay, Orme des Merisiers, 91190 Gif-sur-Yvette Cedex (France); Alouani, M. [IPCMS, UMR 7504 CNRS-UdS, 23 rue du Loess, Strasbourg 67034 (France)

    2014-12-15

    A possible mechanism for the resistive switching observed experimentally in Fe/MgO/V/Fe junctions is presented. Ab initio total energy calculations within the local density approximation and pseudopotential theory shows that by moving the oxygen ions across the MgO/V interface one obtains a metastable state. It is argued that this state can be reached by applying an electric field across the interface. In addition, the ground state and the metastable state show different electric conductances. The latter results are discussed in terms of the changes of the density of states at the Fermi level and the charge transfer at the interface due to the oxygen ion motion. - Highlights: • Local minima are found for oxygen near the interface with at least one oxygen moved. • Relaxation of a small unit cell preserves this result and lowers energy barrier. • V on the top of Mg exhibits the minimum and a reasonable energy barrier. • Sense of switching: experimental evidence of the configuration (V on O or V on Mg). • Sense of switching can be understood in terms of charge oscillations induced by the O.

  7. N2O + CO reaction over Si- and Se-doped graphenes: An ab initio DFT study

    Science.gov (United States)

    Gholizadeh, Reza; Yu, Yang-Xin

    2015-12-01

    Catalytic conversion of non-CO2 green house gases and other harmful gases is a promising way to protect the atmospheric environment. Non-metal atom-doped graphene is attractive for use as a catalyst in the conversion due to its unique electronic properties, relatively low price and leaving no burden to the environment. To make an attempt on the development of green catalysts for the conversion, ab initio density functional theory is used to investigate the mechanisms of N2O reduction by CO on Si- and Se-doped graphenes. We have calculated the geometries and adsorption energies of reaction species (N2O, CO, N2 and CO2) as well as energy profiles along the reaction pathways. The activation energies of N2O decomposition and CO oxidation on both Si- and Se-doped graphenes have been obtained. Our calculated results indicate that the catalytic activity of Si-doped graphene is better than the Fe+ in gas phase and comparable to the single Fe atom embedded on graphene. In the calculations, we found that van der Waals interactions and zero-point energy are two non-negligible factors for the predictions of the activation energies. Further discussion shows that Si-doped graphene can be one of efficient green catalysts for conversion of the airborne pollutants and Se-doped graphene can be a candidate for oxidizing CO by atomic oxygen.

  8. Ab initio study on the electronic states and laser cooling of AlCl and AlBr

    Science.gov (United States)

    Rong, Yang; Bin, Tang; Tao, Gao

    2016-04-01

    We investigate whether AlCl and AlBr are promising candidates for laser cooling. We report new ab initio calculations on the ground state X1Σ+ and two low-lying states (A1Π and a3Π) of AlCl and AlBr. The calculated spectroscopic constants show good agreement with available theoretical and experimental results. We also obtain the permanent dipole moments (PDMs) curve at multi-reference configuration interaction (MRCI) level of theory. The transition properties of A1Π and a3Π states are predicted, including the transition dipole moments (TDMs), Franck-Condon factors (FCFs), radiative times and radiative width. The calculated radiative lifetimes are of the order of a nanosecond, implying that they are sufficiently short for rapid laser cooling. Both AlCl and AlBr have highly diagonally distributed FCFs which are crucial requirement for molecular laser cooling. The results demonstrate the feasibility of laser cooling AlCl and AlBr, and we propose laser cooling schemes for AlCl and AlBr.

  9. The Raman Spectrum of the Squarate (C4O4-2 Anion: An Ab Initio Basis Set Dependence Study

    Directory of Open Access Journals (Sweden)

    Miranda Sandro G. de

    2002-01-01

    Full Text Available The Raman excitation profile of the squarate anion, C4O4-2 , was calculated using ab initio methods at the Hartree-Fock using Linear Response Theory (LRT for six excitation frequencies: 632.5, 514.5, 488.0, 457.9, 363.8 and 337.1 nm. Five basis set functions (6-31G*, 6-31+G*, cc-pVDZ, aug-cc-pVDZ and Sadlej's polarizability basis set were investigated aiming to evaluate the performance of the 6-31G* set for numerical convergence and computational cost in relation to the larger basis sets. All basis sets reproduce the main spectroscopic features of the Raman spectrum of this anion for the excitation interval investigated. The 6-31G* basis set presented, on average, the same accuracy of numerical results as the larger sets but at a fraction of the computational cost showing that it is suitable for the theoretical investigation of the squarate dianion and its complexes and derivatives.

  10. Nonradiative Electron--Hole Recombination Rate Is Greatly Reduced by Defects in Monolayer Black Phosphorus: Ab Initio Time Domain Study.

    Science.gov (United States)

    Long, Run; Fang, Weihai; Akimov, Alexey V

    2016-02-18

    We report ab initio time-domain simulations of nonradiative electron-hole recombination and electronic dephasing in ideal and defect-containing monolayer black phosphorus (MBP). Our calculations predict that the presence of phosphorus divacancy in MBP (MBP-DV) substantially reduces the nonradiative recombination rate, with time scales on the order of 1.57 ns. The luminescence line width in ideal MBP of 150 meV is 2.5 times larger than MBP-DV at room temperature, and is in excellent agreement with experiment. We find that the electron-hole recombination in ideal MBP is driven by the 450 cm(-1) vibrational mode, whereas the recombination in the MBP-DV system is driven by a broad range of vibrational modes. The reduced electron-phonon coupling and increased bandgap in MBP-DV rationalize slower recombination in this material, suggesting that electron-phonon energy losses in MBP can be minimized by creating suitable defects in semiconductor device material.

  11. Magnetoelectric properties of multiferroic CuCrO2 studied by means of ab initio calculations and Monte Carlo simulations

    Science.gov (United States)

    Albaalbaky, Ahmed; Kvashnin, Yaroslav; Ledue, Denis; Patte, Renaud; Frésard, Raymond

    2017-08-01

    Motivated by the discovery of multiferroicity in the geometrically frustrated triangular antiferromagnet CuCrO2 below its Néel temperature TN, we investigate its magnetic and ferroelectric properties using ab initio calculations and Monte Carlo simulations. Exchange interactions up to the third nearest neighbors in the a b plane, interlayer interaction, and single ion anisotropy constants in CuCrO2 are estimated by a series of density functional theory calculations. In particular, our results evidence a hard axis along the [110] direction due to the lattice distortion that takes place along this direction below TN. Our Monte Carlo simulations indicate that the system possesses a Néel temperature TN≈27 K very close to the ones reported experimentally (TN=24 -26 K). Also we show that the ground state is a proper-screw magnetic configuration with an incommensurate propagation vector pointing along the [110] direction. Moreover, our work reports the emergence of spin helicity below TN which leads to ferroelectricity in the extended inverse Dzyaloshinskii-Moriya model. We confirm the electric control of spin helicity by simulating P -E hysteresis loops at various temperatures.

  12. Is there theoretical evidence for mutual influence between halogen and pnicogen-hydride bonds? An ab initio study

    Indian Academy of Sciences (India)

    ELAHE PARVINI; MORTEZA VATANPARAST; ESMAIL VESSALLY; ALI BAHADORI

    2016-12-01

    Ab initio MP2/6-311++G(d,p) level calculations have been carried out to investigate the interplay between the halogen and pnicogen-hydride bonds in NCX...OPH₃...HMgY complexes (X = F, Cl, Br; Y = F, Cl, Br, H). The results indicated that the cooperative effects are obvious in the target complexes. These effects were considered in detail in terms of electrostatic potential, energetic, geometric, charge-transfer and electron density properties of the complexes. The values of cooperative energy (Ecoop) were ranging from −0.41 to −0.60 kJ/mol, −1.02 to −1.57 kJ/mol and −1.50 to −2.28 kJ/mol for X = F, Cl and Br, respectively. Based on many-body analysis, two and three-body terms of interaction energies have a positive contribution to the total interaction energy. It was found that the amount of charge transfer in the triads is higher than that in the corresponding dyads. AIM analyses showed that the halogen and pnicogen-hydride bonds in the triads are amplified with respect to the dyads

  13. Mechanical and magneto-opto-electronic investigation of transition metal based fluoro-perovskites: An ab-initio DFT study

    Science.gov (United States)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-09-01

    Detailed ab-initio calculations are performed to investigate structural, elastic, mechanical, magneto-electronic and optical properties of the KXF3 (X = V, Fe, Co, Ni) fluoro-perovskites using Full Potential Linearized Augmented Plane Wave (FP-LAPW) method within the framework of density functional theory (DFT). The calculated structural parameters by DFT and analytical methods are found consistent with the experimental results. From the elastic and mechanical properties, it can be inferred that these compounds are elastically stable and anisotropic while KCoF3 is harder than rest of the compounds. Furthermore, thermal behavior of these compounds is analyzed by calculating Debye temperature (θD). The calculated spin dependent magneto-electronic properties in these compounds reveal that exchange splitting is dominated by N-3d orbital. The stable magnetic phase optimizations verify the experimental observations at low temperature. Type of chemical bonding is analyzed with the help of variations in electron density difference distribution that is induced due to changes of the second cation. The linear optical properties are also discussed in terms of optical spectra. The present methodology represents an influential approach to calculate the whole set of mechanical and magneto-opto-electronic parameters, which would support to understand various physical phenomena and empower device engineers for implementing these materials in spintronic applications.

  14. Communication: Ab initio study of O{sub 4}H{sup +}: A tracer molecule in the interstellar medium?

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, George D.; Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón, E-mail: ramon@uaem.mx [Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, Morelos (Mexico)

    2014-08-28

    The structure and energetics of the protonated molecular oxygen dimer calculated via ab initio methods is reported. We find structures that share analogies with the eigen and zundel forms for the protonated water dimer although the symmetrical sharing of the proton is more prevalent. Analysis of different fragmentation channels show charge transfer processes which indicate the presence of conical intersections for various states including the ground state. An accurate estimate for the proton affinity of O{sub 4} leads to a significantly larger value (5.6 eV) than for O{sub 2} (4.4 eV), implying that the reaction H{sub 3}{sup +} + O{sub 4} → O{sub 4}H{sup +} + H{sub 2} is exothermic by 28 Kcal/mol as opposed to the case of O{sub 2} which is nearly thermoneutral. This opens up the possibility of using O{sub 4}H{sup +} as a tracer molecule for oxygen in the interstellar medium.

  15. A combined photoelectron spectroscopy and relativistic ab initio studies of the electronic structures of UFO and UFO-

    Science.gov (United States)

    Roy, Soumendra K.; Jian, Tian; Lopez, Gary V.; Li, Wei-Li; Su, Jing; Bross, David H.; Peterson, Kirk A.; Wang, Lai-Sheng; Li, Jun

    2016-02-01

    The observation of the gaseous UFO- anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO- is linear with an O-U-F structure and a 3H4 spectral term derived from a U 7sσ25fφ15fδ1 electron configuration, whereas the ground state of neutral UFO has a 4H7/2 spectral term with a U 7sσ15fφ15fδ1 electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.

  16. Sulfur dioxide in water: structure and dynamics studied by an ab initio quantum mechanical charge field molecular dynamics simulation.

    Science.gov (United States)

    Moin, Syed Tarique; Lim, Len Herald V; Hofer, Thomas S; Randolf, Bernhard R; Rode, Bernd M

    2011-04-18

    An ab initio Quantum Mechanical Charge Field Molecular Dynamics Simulation (QMCF MD) was performed to investigate structure and dynamics behavior of hydrated sulfur dioxide (SO(2)) at the Hartree-Fock level of theory employing Dunning DZP basis sets for solute and solvent molecules. The intramolecular structural characteristics of SO(2), such as S═O bond lengths and O═S═O bond angle, are in good agreement with the data available from a number of different experiments. The structural features of the hydrated SO(2) were primarily evaluated in the form of S-O(wat) and O(SO(2))-H(wat) radial distribution functions (RDFs) which gave mean distances of 2.9 and 2.2 Å, respectively. The dynamical behavior characterizes the solute molecule to have structure making properties in aqueous solution or water aerosols, where the hydrated SO(2) can easily get oxidized to form a number of sulfur(VI) species, which are believed to play an important role in the atmospheric processes.

  17. Ionic dissociations of chlorosulfonic acid in microsolvated clusters: A density functional theory and ab initio MO study

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Ionic dissociation of chlorosulfonic acid (HSO3Cl) in the molecular clusters HSO3Cl-(H2O)n (n = 1-4) and HSO3Cl-NH3-(H2O)n (n = 0-3) was investigated by density functional theory and ab initio molecular orbital theory. The equilibrium structures, binding energies, and thermodynamic properties, such as relative enthalpy and relative Gibbs free energy, and were calculated using the hybrid density func- tional (B3LYP) method and the second order M?ller-Plesset approximation (MP2) method with the 6-311++G** basis set. Chlorosulfonic acid was found to require a minimum of three water molecules for ionization to occur and at least one water molecule to protonate ammonia. The corresponding clusters with fewer water molecules were found to be strongly hydrogen-bonded. The related properties and acid strength of chlorosulfonic acid were discussed and compared to the acid strengths of perchloric acid and sulfuric acid in the context of clusters with ammonia and water. The relative stabilities of these clusters were also investigated.

  18. Ab initio Study of the Structural, Tautomeric, Pairing and Electronic Properties of Seleno-Derivatives of Thymine

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez-Mayagoitia, Alvaro [ORNL; Fuentes-Cabrera, Miguel A [ORNL; Sumpter, Bobby G [ORNL; Luque, Javier [Universitat de Barcelona; Huertas, Oscar [Universitat de Barcelona; Orozco, Modesto [Institut de Recerca Biomedica, Parc Cientific de Barcelona, Barcelona, Spain; Felice, Rosa [INFM-CNR National Research Center S3; Brancolini, Giorgia [ORNL; Migliore, Agostino [University of Pennsylvania

    2009-01-01

    The structural, tautomeric, hydrogen-bonding, stacking and electronic properties of a seleno-derivative of thymine (T), denoted here as 4SeT and created by replacing O4 in T with Se, are investigated by means of ab initio computational techniques. The structural properties of T and 4SeT are very similar and the geometrical differences are mainly limited to the adjacent environment of the C-Se bond. The canonical keto form is the most stable tautomer, in gas phase and in aqueous solution, for both T and 4SeT. It is argued that the competition between two opposite trends, i.e. a decrease in the base-pairing ability and an increase of the stacking interaction upon incorporation of 4SeT into a duplex, likely explains the similar experimental melting points of a seleno-derivative duplex (Se-DNA) and its native counterpart. Interestingly, the underlying electronic structure shows that replacement of O4 with Se promotes a reduction in the HOMO-LUMO gap and an increase in inter-plane coupling, which suggests that Se-DNA could be potentially useful for nanodevice applications. This finding is further supported by the fact that transfer integrals between 4SeT---A stacked base pairs are larger than those determined for similarly stacked natural T---A pairs.

  19. Study on Exploration of Azeotropic Point of Pb-Sb Alloys by Vacuum Distillation and Ab Initio Molecular Dynamic Simulation

    Science.gov (United States)

    Song, Bingyi; Jiang, Wenlong; Yang, Bin; Chen, Xiumin; Xu, Baoqiang; Kong, Lingxin; Liu, Dachun; Dai, Yongnian

    2016-10-01

    The possibility of the separation of Pb-Sb alloys by vacuum distillation was investigated theoretically. The results show that Pb and Sb can be separated by vacuum distillation. However, the experimental results show that vacuum distillation technique does not provide clear separation. According to the literature, Pb-Sb alloys belong to azeotropic compounds under some certain temperature; the experiment and computer simulation were carried out based on the exceptional condition so as to analyze the reason from the experiment and microstructure of Pb-Sb alloys perspective. The separation of Pb-Sb alloys by vacuum distillation was experimentally carried out to probe the azeotropic point. Also, the functions, such as partial radial distributions functions, the structure factor, mean square displacement, and the density of state, were calculated by ab-initio molecular dynamics for the representation of the structure and properties of Pb-Sb alloys with different composition of Sb. The experimental results indicate that there exists common volatilization for Pb-Sb alloys when Sb content is 16.5 wt pct. On the other hand, the calculation results show that there is an intense interaction between Pb and Sb when Sb content is 22 wt pct, which supports the experimental results although Sb content is slightly deviation.

  20. The evolution of the structural, vibrational and electronic properties of the cyclic ethers - on ring size. An ab initio study

    Science.gov (United States)

    Ford, Thomas A.

    2014-09-01

    The molecular structures, vibrational spectra and atomic charges of the alicyclic ethers containing from two to five carbon atoms have been determined by means of ab initio calculations, at the level of second order Møller-Plesset perturbation theory and using Dunning's augmented correlation-consistent polarized valence triple-zeta basis set. Two isomers of the oxetane, tetrahydrofuran and tetrahydropyran molecules have been identified and their relative energies determined. Structural properties, such as the COC bond angles and the CH bond lengths, are found to increase steadily with increasing ring size and with decreasing ionization energy. The mean CH2 stretching and bending wavenumbers exhibit the reverse behaviour, while the mean wavenumbers of the CH2 wagging and twisting modes follow the same trend as the structural features. The ring mode wavenumbers vary in a less regular way. The charges of the oxygen, α-carbon and axial and equatorial α- and β-hydrogen atoms also do not show systematic dependences on ring size or ionization energy. The trends in the values of these properties have been rationalized.

  1. Static, dynamic and electronic properties of expanded fluid mercury in the metal-nonmetal transition range. An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    CalderIn, L [Research Computing and Cyberinfrastructure, The Pennsylvania State University, University Park, PA 16802 (United States); Gonzalez, L E; Gonzalez, D J, E-mail: david@liq1.fam.cie.uva.es [Departamento de Fisica Teorica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain)

    2011-09-21

    Fluid Hg undergoes a metal-nonmetal (M-NM) transition when expanded toward a density of around 9 g cm{sup -3}. We have performed ab initio molecular dynamics simulations for several thermodynamic states around the M-NM transition range and the associated static, dynamic and electronic properties have been analyzed. The calculated static structure shows a good agreement with the available experimental data. It is found that the volume expansion decreases the number of nearest neighbors from 10 (near the triple point) to around 8 at the M-NM transition region. Moreover, these neighbors are arranged into two subshells and the decrease in the number of neighbors occurs in the inner subshell. The calculated dynamic structure factors agree fairly well with their experimental counterparts obtained by inelastic x-ray scattering experiments, which display inelastic side peaks. The derived dispersion relation exhibits some positive dispersion for all the states, although its value around the M-NM transition region is not as marked as suggested by the experiment. We have also calculated the electronic density of states, which shows the appearance of a gap at a density of around 8.3 g cm{sup -3}. (paper)

  2. A computational ab initio study of surface diffusion of sulfur on the CdTe (111 surface

    Directory of Open Access Journals (Sweden)

    Ebadollah Naderi

    2016-08-01

    Full Text Available In order to discern the formation of epitaxial growth of CdS shell over CdTe nanocrystals, kinetics related to the initial stages of the growth of CdS on CdTe is investigated using ab-initio methods. We report diffusion of sulfur adatom on the CdTe (111 A-type (Cd-terminated and B-type (Te-terminated surfaces within the density functional theory (DFT. The barriers are computed by applying the climbing Nudge Elastic Band (c-NEB method. From the results surface hopping emerges as the major mode of diffusion. In addition, there is a distinct contribution from kick-out type diffusion in which a CdTe surface atom is kicked out from its position and is replaced by the diffusing sulfur atom. Also, surface vacancy substitution contributes to the concomitant dynamics. There are sites on the B- type surface that are competitively close in terms of the binding energy to the lowest energy site of epitaxy on the surface. The kick-out process is more likely for B-type surface where a Te atom of the surface is displaced by a sulfur adatom. Further, on the B-type surface, subsurface migration of sulfur is indicated. Furthermore, the binding energies of S on CdTe reveal that on the A-type surface, epitaxial sites provide relatively higher binding energies and barriers than on B-type.

  3. Ab initio study of H and He migrations in β-phase Sc, Y, and Er hydrides

    Institute of Scientific and Technical Information of China (English)

    Chen Ru-Cheng; Yang Li; Dai Yun-Ya; Zhu Zi-Qiang; Peng Shu-Ming; Long Xing-Gui; Gao Fei; Zu Xiao-Tao

    2012-01-01

    Ab initio calculations based on the density functional theory have been performed to investigate the migrations of hydrogen(H)and helium(He)atoms in β-phase scandium(Sc),yttrium(Y),and erbium(Er)hydrides with three different ratios of H to metal.The results show that the migration mechanisms of H and He atoms mainly depend on the crystal structures of hydrides,but their energy barriers are affected by the host-lattice in metal hydrides.The formation energies of octahedral-occupancy H(Hoct)and tetrahedral vacancy(Vtet)pairs are almost the same(about 1.2 eV).It is of interest to note that the migration barriers of H increase with increasing host-lattice atomic number.In addition,the results show that the favorable migration mechanism of He depends slightly on the Vtet in the Sc hydride,but strongly on that in the Y and Er hydrides,which may account for different behaviours of initial He release from ScT2 and ErT2.

  4. LDA or GGA? A combined experimental inelastic neutron scattering and ab initio lattice dynamics study of alkali metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, G.D. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Departamento de Quimica, Universidad Nacional de la Patagonia SJB, Ciudad Universitaria, 9005 Comodoro Rivadavia (Argentina); Colognesi, D. [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano s.n.c., 50019 Sesto Fiorentino (Finland) (Italy); Mitchell, P.C.H. [School of Chemistry, University of Reading, RG6 6AD (United Kingdom); Ramirez-Cuesta, A.J. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); School of Chemistry, University of Reading, RG6 6AD (United Kingdom)], E-mail: a.j.ramirez-cuesta@rl.ac.uk

    2005-10-31

    In a previous work, we carried out inelastic neutron scattering (INS) spectroscopy experiments and preliminary first principles calculations on alkali metal hydrides. The complete series of alkali metal hydrides, LiH, NaH, KH, RbH and CsH was measured in the high-resolution TOSCA INS spectrometer at ISIS. Here, we present the results of ab initio electronic structure calculations of the properties of the alkali metal hydrides using both the local density approximation (LDA) and the generalized gradient approximation (GGA), using the Perdew-Burke-Ernzerhof (PBE) parameterization. Properties calculated were lattice parameters, bulk moduli, dielectric constants, effective charges, electronic densities and inelastic neutron scattering (INS) spectra. We took advantage of the currently available computer power to use full lattice dynamics theory to calculate thermodynamic properties for these materials. For the alkali metal hydrides (LiH, NaH, KH, RbH and CsH) using lattice dynamics, we found that the INS spectra calculated using LDA agreed better with the experimental data than the spectra calculated using GGA. Both zero-point effects and thermal contributions to free energies had an important effect on INS and several thermodynamic properties.

  5. Interaction between thymine dimer and flavin-adenine dinucleotide: a DFT and direct ab initio molecular dynamics study.

    Science.gov (United States)

    Tachikawa, Hiroto; Kawabata, Hiroshi

    2008-06-19

    The interaction between the fully reduced flavin-adenine dinucleotide (FADH (-)) and thymine dimer (T) 2 has been investigated by means of density functional theory (DFT) calculations. The charges of FADH (-) and (T) 2 were calculated to be -0.9 and -0.1, respectively, at the ground state. By photoirradiation, an electron transfer occurred from FADH (-) to (T) 2 at the first excited state. Next, the reaction dynamics of electron capture of (T) 2 have been investigated by means of the direct ab initio molecular dynamics (MD) method (HF/3-21G(d) and B3LYP/6-31G(d) levels) in order to elucidate the mechanism of the repair process of thymine dimer caused by the photoenzyme. The thymine dimer has two C-C single bonds between thymine rings (C 5-C 5' and C 6-C 6' bonds) at the neutral state, which is expressed by (T) 2. After the electron capture of (T) 2, the C 5-C 5' bond was gradually elongated and then it was preferentially broken. The time scale of the C-C bond breaking and formation of the intermediate with a single bond (T) 2 (-) was estimated to be 100-150 fs. The present calculations confirmed that the repair reaction of thymine dimer takes place efficiently via an electron-transfer process from the FADH (-) enzyme.

  6. Nuclear Quantum Effects in Liquid Water: A Highly Accurate ab initio Path-Integral Molecular Dynamics Study

    Science.gov (United States)

    Distasio, Robert A., Jr.; Santra, Biswajit; Ko, Hsin-Yu; Car, Roberto

    2014-03-01

    In this work, we report highly accurate ab initio path-integral molecular dynamics (AI-PIMD) simulations on liquid water at ambient conditions utilizing the recently developed PBE0+vdW(SC) exchange-correlation functional, which accounts for exact exchange and a self-consistent pairwise treatment of van der Waals (vdW) or dispersion interactions, combined with nuclear quantum effects (via the colored-noise generalized Langevin equation). The importance of each of these effects in the theoretical prediction of the structure of liquid water will be demonstrated by a detailed comparative analysis of the predicted and experimental oxygen-oxygen (O-O), oxygen-hydrogen (O-H), and hydrogen-hydrogen (H-H) radial distribution functions as well as other structural properties. In addition, we will discuss the theoretically obtained proton momentum distribution, computed using the recently developed Feynman path formulation, in light of the experimental deep inelastic neutron scattering (DINS) measurements. DOE: DE-SC0008626, DOE: DE-SC0005180.

  7. The Role of Anharmonicity and Nuclear Quantum Effects in the Pyridine Molecular Crystal: An ab initio Molecular Dynamics Study

    Science.gov (United States)

    Ko, Hsin-Yu; Distasio, Robert A., Jr.; Santra, Biswajit; Car, Roberto

    Molecular crystal structure prediction has posed a substantial challenge to first-principles methods and requires sophisticated electronic structure methods to determine the stabilities of nearly degenerate polymorphs. In this work, we demonstrate that the anharmonicity from van der Waals interactions is relevant to the finite-temperature structures of pyridine and pyridine-like molecular crystals. Using such an approach, we find that the equilibrium structures are well captured with classical ab initio molecular dynamics (AIMD), despite the presence of light atoms such as hydrogen. Employing path integral AIMD simulations, we demonstrate that the success of classical AIMD results from a separation of nuclear quantum effects between the intermolecular and intramolecular degrees of freedom. In this separation, the quasiclassical and anharmonic intermolecular degrees of freedom determine the equilibrium structure, while the quantum and harmonic intramolecular degrees of freedom are averaging to the correct intramolecular structure. This work has been supported by the Department of Energy under Grants No. DE-FG02-05ER46201 and DE-SC0008626.

  8. What is Different Between Borazine-Acetylene and Benzene-Acetylene a Matrix Isolation and Ab-Initio Study.

    Science.gov (United States)

    Verma, Kanupriya; Viswanathan, K. S.

    2016-06-01

    Borazine (B_3N_3H_6)-C_2H_2 system was studied experimentally, using matrix isolation infrared spectroscopy and supported by ab-initio computations. B_3N_3H_6, also referred to as inorganic benzene, presents an interesting comparison with C_6H_6. While C_6H_6 has a delocalized π system, B_3N_3H_6 has electron density centered on the nitrogen atoms, while the boron atoms are electron deficient. In addition, B_3N_3H_6 can also serve as a proton donor through N-H group. Similarly, C_2H_2 can act both as a proton donor, using the hydrogen attached to the sp carbon or as a proton acceptor at its π-cloud. At the MP2/aug-cc-pVDZ level of theory, C_6H_6-C_2H_2 system showed three minimaThe. global minimum was a structure where the C_2H_2 was the proton donor to the C_6H_6 π system. The next was a local minimum where the C_6H_6 was the proton donor to C_2H_2 and the third was a π stacked structure. B_3N_3H_6-C_2H_2 also shows three minima at the same level of theory mentioned above. One was a structure where C_2H_2 donates a proton to B_3N_3H_6, approaching it from above the plane of the ring, much like in C_6H_6-C_2H_2. A second near degenerate structure was also located where the C_2H_2 serves as a proton acceptor towards the N-H group of B_3N_3H_6. A similar structure in C_6H_6-C_2H_2 was a local minimum. While in the case of C_6H_6-C_2H_2, the global minimum was the only one observed in the experiments, in the case of B_3N_3H_6-C_2H_2, both near degenerate minima mentioned above were observed in the matrix. B_3N_3H_6-C_2H_2 therefore reveals similarities and differences from the C_6H_6-C_2H_2 system. A π-stacked local minimum was also computationally indicated in the B_3N_3H_6-C_2H_2 system, though it was not observed in our experiments. Our earlier work comparing B_3N_3H_6-H_2O to C_6H_6-H_2O also yielded a similar behavioral pattern. Details of the experimental data and computational results will be presented. References: 1. M. Majumder, B. K. Mishra, N

  9. Energy loss and surface temperature effects in ab initio molecular dynamics simulations: N adsorption on Ag(111) as a case study

    Science.gov (United States)

    Novko, Dino; Lončarić, Ivor; Blanco-Rey, María; Juaristi, J. Iñaki; Alducin, Maite

    2017-08-01

    We study surface temperature effects on the adsorption and relaxation of N atoms on Ag(111). To this aim, we perform ab initio molecular dynamics simulations with electronic friction, in which the surface is coupled to a thermostat that fixes the desired surface temperature. Simulations performed at 80 and 700 K show that the surface temperature has minor effects on magnitudes such as the initial adsorption probability, the relaxation rate of the adsorbing N, and the energy lost in electronic excitations. Slight differences are identified in the adsorption paths with the appearance of subsurface absorption events at 700 K that are not observed at 80 K. Furthermore, we perform additional simulations without a thermostat in order to examine the validity of commonly used ab initio molecular dynamics simulations in which no heat dissipation from the simulation cell is allowed. Our results show that such a methodology may not suffice to simulate the low-temperature regime since the surface becomes unphysically heated within a few picoseconds upon adsorption of the N atom. However, neither in this unfavorable case are the magnitudes defining the dynamics of the adsorbates at the same time scale significantly modified from those obtained at constant surface temperature.

  10. Recent achievements in ab initio modelling of liquid water

    CERN Document Server

    Khaliullin, Rustam Z

    2013-01-01

    The application of newly developed first-principle modeling techniques to liquid water deepens our understanding of the microscopic origins of its unusual macroscopic properties and behaviour. Here, we review two novel ab initio computational methods: second-generation Car-Parrinello molecular dynamics and decomposition analysis based on absolutely localized molecular orbitals. We show that these two methods in combination not only enable ab initio molecular dynamics simulations on previously inaccessible time and length scales, but also provide unprecedented insights into the nature of hydrogen bonding between water molecules. We discuss recent applications of these methods to water clusters and bulk water.

  11. Use of ab initio quantum chemical methods in battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Deiss, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Ab initio quantum chemistry can nowadays predict physical and chemical properties of molecules and solids. An attempt should be made to use this tool more widely for predicting technologically favourable materials. To demonstrate the use of ab initio quantum chemistry in battery technology, the theoretical energy density (energy per volume of active electrode material) and specific energy (energy per mass of active electrode material) of a rechargeable lithium-ion battery consisting of a graphite electrode and a nickel oxide electrode has been calculated with this method. (author) 1 fig., 1 tab., 7 refs.

  12. P-V Relation for Mercuric Calcogenides: Ab Initio Method

    Directory of Open Access Journals (Sweden)

    G. Misra

    2011-01-01

    Full Text Available Mercuric Calcogenides found many applications in electronic and optical devices as semiconducting materials. An equation of state provides useful information about the relationship between pressure (P, volume (V and temperature (T that helps to understand the behaviour of materials under the effect of high pressure and high temperature. The present paper sheds light on the electronic structure of Mercuric Calcogenides by simulating its electronic properties through ab initio method. This ab initio method is extended to derive the equation of state for Mercuric Calcogenides. The present equation of state has also been tested for the prediction of End Point. The computed results compare well with Quantum statistical data.

  13. \\emph{Ab initio} study on the Herzberg-Teller effect in the optical excitation spectrum of silicon-vacancy center in diamond

    CERN Document Server

    Londero, Elisa; Bijeikytė, Monika; Maze, Jeromino R; Alkauskas, Audrius; Gali, Adam

    2016-01-01

    Understanding optical excitation spectra of point defects is still a scientific challenge. We demonstrate by \\emph{ab initio} calculations that a prominent sharp feature in the photoluminescence (PL) spectrum of the negatively charged silicon-vacancy defect in diamond can be only explained within the Herzberg-Teller approximation that goes beyond the commonly applied Franck-Condon approximation. The effect of the dynamic Jahn-Teller effect on the PL spectrum is also discussed. Our implementation of Herzberg-Teller theory paves the way for full \\emph{ab initio} description of the optical excitation spectrum of point defects in solids

  14. An ab initio study of the nickel-catalyzed transformation of amorphous carbon into graphene in rapid thermal processing

    Science.gov (United States)

    Chen, Shuang; Xiong, Wei; Zhou, Yun Shen; Lu, Yong Feng; Zeng, Xiao Cheng

    2016-05-01

    Ab initio molecular dynamics (AIMD) simulations are employed to investigate the chemical mechanism underlying the Ni-catalyzed transformation of amorphous carbon (a-C) into graphene in the rapid thermal processing (RTP) experiment to directly grow graphene on various dielectric surfaces via the evaporation of surplus Ni and C at 1100 °C (below the melting point of bulk Ni). It is found that the a-C-to-graphene transformation entails the metal-induced crystallization and layer exchange mechanism, rather than the conventional dissolution/precipitation mechanism typically involved in Ni-catalyzed chemical vapor deposition (CVD) growth of graphene. The multi-layer graphene can be tuned by changing the relative thicknesses of deposited a-C and Ni thin films. Our AIMD simulations suggest that the easy evaporation of surplus Ni with excess C is likely attributed to the formation of a viscous-liquid-like Ni-C solution within the temperature range of 900-1800 K and to the faster diffusion of C atoms than that of Ni atoms above 600 K. Even at room temperature, sp3-C atoms in a-C are quickly converted to sp2-C atoms in the course of the simulation, and the graphitic C formation can occur at low temperature. When the temperature is as high as 1200 K, the grown graphitic structures reversely dissolve into Ni. Because the rate of temperature increase is considerably faster in the AIMD simulations than in realistic experiments, defects in the grown graphitic structures are kinetically trapped. In this kinetic growth stage, the carbon structures grown from sp3-carbon or from sp2-carbon exhibit marked differences.Ab initio molecular dynamics (AIMD) simulations are employed to investigate the chemical mechanism underlying the Ni-catalyzed transformation of amorphous carbon (a-C) into graphene in the rapid thermal processing (RTP) experiment to directly grow graphene on various dielectric surfaces via the evaporation of surplus Ni and C at 1100 °C (below the melting point of bulk

  15. Ab initio localized basis set study of structural parameters and elastic properties of HfO{sub 2} polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, M A [Facultad de Ingenieria, Universidad Nacional del Nordeste, Avenida Las Heras 727, 3500-Resistencia (Argentina); Casali, R A [Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avenida Libertad, 5600-Corrientes (Argentina)

    2005-09-21

    The SIESTA approach based on pseudopotentials and a localized basis set is used to calculate the electronic, elastic and equilibrium properties of P 2{sub 1}/c, Pbca, Pnma, Fm3m, P4{sub 2}nmc and Pa3 phases of HfO{sub 2}. Using separable Troullier-Martins norm-conserving pseudopotentials which include partial core corrections for Hf, we tested important physical properties as a function of the basis set size, grid size and cut-off ratio of the pseudo-atomic orbitals (PAOs). We found that calculations in this oxide with the LDA approach and using a minimal basis set (simple zeta, SZ) improve calculated phase transition pressures with respect to the double-zeta basis set and LDA (DZ-LDA), and show similar accuracy to that determined with the PPPW and GGA approach. Still, the equilibrium volumes and structural properties calculated with SZ-LDA compare better with experiments than the GGA approach. The bandgaps and elastic and structural properties calculated with DZ-LDA are accurate in agreement with previous state of the art ab initio calculations and experimental evidence and cannot be improved with a polarized basis set. These calculated properties show low sensitivity to the PAO localization parameter range between 40 and 100 meV. However, this is not true for the relative energy, which improves upon decrease of the mentioned parameter. We found a non-linear behaviour in the lattice parameters with pressure in the P 2{sub 1}/c phase, showing a discontinuity of the derivative of the a lattice parameter with respect to external pressure, as found in experiments. The common enthalpy values calculated with the minimal basis set give pressure transitions of 3.3 and 10.8?GPa for P2{sub 1}/c {yields} Pbca and Pbca {yields} Pnma, respectively, in accordance with different high pressure experimental values.

  16. An ab initio study of the nickel-catalyzed transformation of amorphous carbon into graphene in rapid thermal processing.

    Science.gov (United States)

    Chen, Shuang; Xiong, Wei; Zhou, Yun Shen; Lu, Yong Feng; Zeng, Xiao Cheng

    2016-05-14

    Ab initio molecular dynamics (AIMD) simulations are employed to investigate the chemical mechanism underlying the Ni-catalyzed transformation of amorphous carbon (a-C) into graphene in the rapid thermal processing (RTP) experiment to directly grow graphene on various dielectric surfaces via the evaporation of surplus Ni and C at 1100 °C (below the melting point of bulk Ni). It is found that the a-C-to-graphene transformation entails the metal-induced crystallization and layer exchange mechanism, rather than the conventional dissolution/precipitation mechanism typically involved in Ni-catalyzed chemical vapor deposition (CVD) growth of graphene. The multi-layer graphene can be tuned by changing the relative thicknesses of deposited a-C and Ni thin films. Our AIMD simulations suggest that the easy evaporation of surplus Ni with excess C is likely attributed to the formation of a viscous-liquid-like Ni-C solution within the temperature range of 900-1800 K and to the faster diffusion of C atoms than that of Ni atoms above 600 K. Even at room temperature, sp(3)-C atoms in a-C are quickly converted to sp(2)-C atoms in the course of the simulation, and the graphitic C formation can occur at low temperature. When the temperature is as high as 1200 K, the grown graphitic structures reversely dissolve into Ni. Because the rate of temperature increase is considerably faster in the AIMD simulations than in realistic experiments, defects in the grown graphitic structures are kinetically trapped. In this kinetic growth stage, the carbon structures grown from sp(3)-carbon or from sp(2)-carbon exhibit marked differences.

  17. Chemical interaction of water molecules with framework Al in acid zeolites: a periodic ab initio study on H-clinoptilolite.

    Science.gov (United States)

    Valdiviés-Cruz, Karell; Lam, Anabel; Zicovich-Wilson, Claudio M

    2015-09-28

    Periodic quantum-chemistry methods as implemented in the CRYSTAL14 code were considered to analyse the interaction of acid clinoptilolite with water. Initially adsorbed molecules hydrolyse the Al-O bonds, giving rise to defective dealuminated materials. A suitable and representative periodic model of the partially disordered hydrated H-zeolite is the primitive cell (18 T sites) of a decahydrated trialuminated structure of HEU topology. The water distribution inside the material cavities was initially investigated. The model considered for further dealumination was the most stable one from those generated through a combined force field Monte Carlo and ab initio optimization strategy. Optimizations and energy estimations were made at the hybrid DFT level of theory (PBE0 functional) with an atomic basis set of VDZP quality. The energetics of the different pathways involved in the dealumination process was addressed by considering the Gibbs free energy with thermal and zero-point corrections through phonon analysis. It arises that hydrated models exhibit protonated water clusters stabilized by different kinds of H-bonds. The first Al extraction is slightly more energetically favourable from T3 than T2 sites, but at the same time the latter is more probable owing to its larger Al population. However, concerning the second dealumination step, it is more favourable removing the Al atom from both remaining sites after a starting abstraction from T2 rather than T3. These facts determine that the most probable overall pathways go through a first Al removal from T2. The agreement with experimental results is discussed.

  18. Evidence for phosphorus bonding in phosphorus trichloride-methanol adduct: a matrix isolation infrared and ab initio computational study.

    Science.gov (United States)

    Joshi, Prasad Ramesh; Ramanathan, N; Sundararajan, K; Sankaran, K

    2015-04-09

    The weak interaction between PCl3 and CH3OH was investigated using matrix isolation infrared spectroscopy and ab initio computations. In a nitrogen matrix at low temperature, the noncovalent adduct was generated and characterized using Fourier transform infrared spectroscopy. Computations were performed at B3LYP/6-311++G(d,p), B3LYP/aug-cc-pVDZ, and MP2/6-311++G(d,p) levels of theory to optimize the possible geometries of PCl3-CH3OH adducts. Computations revealed two minima on the potential energy surface, of which, the global minimum is stabilized by a noncovalent P···O interaction, known as a pnictogen bonding (phosphorus bonding or P-bonding). The local minimum corresponded to a cyclic adduct, stabilized by the conventional hydrogen bonding (Cl···H-O and Cl···H-C interactions). Experimentally, 1:1 P-bonded PCl3-CH3OH adduct in nitrogen matrix was identified, where shifts in the P-Cl modes of PCl3, O-C, and O-H modes of CH3OH submolecules were observed. The observed vibrational frequencies of the P-bonded adduct in a nitrogen matrix agreed well with the computed frequencies. Furthermore, computations also predicted that the P-bonded adduct is stronger than H-bonded adduct by ∼1.56 kcal/mol. Atoms in molecules and natural bond orbital analyses were performed to understand the nature of interactions and effect of charge transfer interaction on the stability of the adducts.

  19. Insights on co-catalyst-promoted enamine formation between dimethylamine and propanal through ab initio and density functional theory study.

    Science.gov (United States)

    Patil, Mahendra P; Sunoj, Raghavan B

    2007-10-26

    The mechanistic details on enamine formation between dimethylamine and propanal are unraveled using the ab initio and density functional theory methods. The addition of secondary amine to the electrophile and simultaneous proton transfer results in a carbinolamine intermediate, which subsequently undergoes dehydration to form enamine. The direct addition of amine as well as the dehydration of the resulting carbinolamine intermediate is predicted to possess fairly high activation barrier implying that a unimolecular process is unlikely to be responsible for enamine formation. Different models are therefore proposed which could explain the relative ease of enamine formation under neat condition as well as under the influence of methanol as the co-catalyst. The explicit inclusion of either the reagent or the co-catalyst is considered in the transition states as stabilizing agents. The participation of the reagent or the co-catalyst as a monofunctional ancillary species is found to stabilize the transition states relative to the unassisted or the direct addition/dehydration pathways. The reduction in enthalpy of activation is found to be much more dramatic when two co-catalysts participate in an active bifunctional mode in the rate-determining dehydration step. The transition structures exhibited characteristic features of a relay proton transfer mechanism. The free energy of activation associated with the two methanol-assisted pathway is found to be 16.7 kcal/mol lower than that of the unassisted pathway. The results are found to be in concurrence with the available reports on the rate acceleration by co-catalysts in the Michael reaction between enamine and methyl vinyl ketone under neat conditions.

  20. A combined photoelectron spectroscopy and relativistic ab initio studies of the electronic structures of UFO and UFO(-).

    Science.gov (United States)

    Roy, Soumendra K; Jian, Tian; Lopez, Gary V; Li, Wei-Li; Su, Jing; Bross, David H; Peterson, Kirk A; Wang, Lai-Sheng; Li, Jun

    2016-02-28

    The observation of the gaseous UFO(-) anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO(-) is linear with an O-U-F structure and a (3)H4 spectral term derived from a U 7sσ(2)5fφ(1)5fδ(1) electron configuration, whereas the ground state of neutral UFO has a (4)H(7/2) spectral term with a U 7sσ(1)5fφ(1)5fδ(1) electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.

  1. Rotational study of the CH{sub 4}–CO complex: Millimeter-wave measurements and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Surin, L. A., E-mail: surin@ph1.uni-koeln.de [I. Physikalisches Institut, University of Cologne, Zülpicher St. 77, 50937 Cologne (Germany); Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya St. 5, 142190 Troitsk, Moscow (Russian Federation); Tarabukin, I. V.; Panfilov, V. A. [Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya St. 5, 142190 Troitsk, Moscow (Russian Federation); Schlemmer, S. [I. Physikalisches Institut, University of Cologne, Zülpicher St. 77, 50937 Cologne (Germany); Kalugina, Y. N. [Department of Optics and Spectroscopy, Tomsk State University, 36 Lenin Ave., 634050 Tomsk (Russian Federation); Faure, A.; Rist, C. [University Grenoble Alpes, IPAG, F-38000 Grenoble (France); CNRS, IPAG, F-38000 Grenoble (France); Avoird, A. van der, E-mail: A.vanderAvoird@theochem.ru.nl [Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2015-10-21

    The rotational spectrum of the van der Waals complex CH{sub 4}–CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 110–145 GHz. Newly observed and assigned transitions belong to the K = 2–1 subband correlating with the rotationless j{sub CH4} = 0 ground state and the K = 2–1 and K = 0–1 subbands correlating with the j{sub CH4} = 2 excited state of free methane. The (approximate) quantum number K is the projection of the total angular momentum J on the intermolecular axis. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the CH{sub 4}–CO complex. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of CH{sub 4}–CO have been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations [CCSD(T)-F12a] and an augmented correlation-consistent triple zeta (aVTZ) basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the CH{sub 4} face closest to the CO subunit and binding energy D{sub e} = 177.82 cm{sup −1}. The bound rovibrational levels of the CH{sub 4}–CO complex were calculated for total angular momentum J = 0–6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D{sub 0} are 91.32, 94.46, and 104.21 cm{sup −1} for A (j{sub CH4} = 0), F (j{sub CH4} = 1), and E (j{sub CH4} = 2) nuclear spin modifications of CH{sub 4}–CO, respectively.

  2. Gas phase ion chemistry of coumarins: ab initio calculations used to ...

    African Journals Online (AJOL)

    Gas phase ion chemistry of coumarins: ab initio calculations used to justify ... and quadrupole mass spectrometer (qMS) coupled to a gas chromatograph is ... Ab Initio calculations, Electron ionization, Positive chemical ionization, Negative ...

  3. Ab-initio study of the magnetism, structure and spin dependent electronic states of Ti substituted MO (M = Mg, Ca, Sr)

    Energy Technology Data Exchange (ETDEWEB)

    Jaiganesh, G., E-mail: jaiganesh@igcar.gov.in; Jaya, S. Mathi [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102 (India)

    2015-06-24

    The magnetism, structure and spin polarized electronic structure of Ti substituted MO (M = Mg, Ca, Sr) are studied using the ab-initio techniques within the framework of the density functional theory. Appropriately constructed supercell along with the full structural optimization of these cells is used for studying the influence of Ti substitution on the magnetism and electronic structure of these compounds. We find from our calculations that the Ti substituted MO compounds energetically favor magnetically ordered state. The Ti concentration is found to be important in deciding the magnetic order and we have observed antiferromagnetic order for the Ti concentration of 0.25. The Ti substituted MO compounds are thus an interesting class of materials that deserve further studies.

  4. Ab initio molecular dynamics simulation of laser melting of silicon

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite temperature density functional theory, is used to simulate laser heating of crystal silicon. We have found that a high concentration of excited electrons dramatically weakens the covalent bond. As a result, the system undergoes a melting tr

  5. Resonance and Aromaticity : An Ab Initio Valence Bond Approach

    NARCIS (Netherlands)

    Rashid, Zahid; van Lenthe, Joop H.; Havenith, Remco W. A.

    2012-01-01

    Resonance energy is one of the criteria to measure aromaticity. The effect of the use of different orbital models is investigated in the calculated resonance energies of cyclic conjugated hydrocarbons within the framework of the ab initio Valence Bond Self-Consistent Field (VBSCF) method. The VB wav

  6. Ab initio calculations and modelling of atomic cluster structure

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Lyalin, Andrey G.; Greiner, Walter

    2004-01-01

    The optimized structure and electronic properties of small sodium and magnesium clusters have been investigated using it ab initio theoretical methods based on density-functional theory and post-Hartree-Fock many-body perturbation theory accounting for all electrons in the system. A new theoretical...

  7. Ab initio interatomic potentials and the thermodynamic properties of fluids

    Science.gov (United States)

    Vlasiuk, Maryna; Sadus, Richard J.

    2017-07-01

    Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.

  8. Ab-Initio Theory of Charge Transport in Organic Crystals

    Science.gov (United States)

    Hannewald, K.; Bobbert, P. A.

    2005-06-01

    A theory of charge transport in organic crystals is presented. Using a Holstein-Peierls model, an explicit expression for the charge-carrier mobilities as a function of temperature is obtained. Calculating all material parameters from ab initio calculations, the theory is applied to oligo-acene crystals and a brief comparison to experiment is given.

  9. Ab initio study of the structural, thermodynamic and electronic properties of the Cu{sub 10}In{sub 7} intermetallic phase

    Energy Technology Data Exchange (ETDEWEB)

    Ramos de Debiaggi, S., E-mail: sbramos@yahoo.com [Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, (8300) Neuquen (Argentina); CONICET (Argentina); Cabeza, G.F. [CONICET (Argentina); Dpto. de Fisica, Universidad Nacional del Sur, Bahia Blanca (Argentina); Toro, C. Deluque [Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, (8300) Neuquen (Argentina); Monti, A.M. [CNEA e Instituto Sabato (Univ. Nac. de San Martin/CNEA), Centro Atomico Constituyentes, Avda. General Paz 1499, B1650KNA, San Martin, Buenos Aires (Argentina); Sommadossi, S. [Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, (8300) Neuquen (Argentina); CONICET (Argentina); Guillermet, A. Fernandez [CONICET (Argentina); Centro Atomico Bariloche e Instituto Balseiro, Avda. Bustillo 9500, (8400) Bariloche (Argentina)

    2011-02-17

    Research highlights: > Cu{sub 10}In{sub 7} and Cu{sub 11}In{sub 9} are thermodynamically stable with respect to elements at 0 K. > Cu{sub 10}In{sub 7} phase is more stable than the modelled Cu{sub 11}In{sub 9} compound by only 0.92 kJ/mol. > The present ab initio results reproduce very well the available structural data. > Similar DOS for both phases, the most prominent bonding band comes from Cu-d states. > Enhanced relative thermodynamic stability is predicted for phases with 40-45 at.% In. - Abstract: The physico-chemical properties of the intermetallic phases in the Cu-In system have been a matter of considerable theoretical and experimental interest in connection with, i.a., the application of In-Sn alloys as lead-free micro-soldering alloys. Recently, a new binary compound with the chemical formula Cu{sub 10}In{sub 7} has been detected in a study of the {eta}-phase field. The structure of the Cu{sub 10}In{sub 7} phase has been determined as closely related to that of the Cu{sub 11}In{sub 9} compound occurring in the phase diagram, but no experimental or theoretical information on its electronic structure, thermodynamic and equation-of-state properties has yet been reported. In the present work we report the lattice parameters, bulk modulus, energy of formation from the constituent elements and the electronic structure of the new phase, calculated by applying an ab initio density-functional-theory method. Our calculation technique uses the projector augmented wave potentials and the exchange-correlation functions of Perdew and Wang in the generalized gradient approximation. The present results for the Cu{sub 10}In{sub 7} phase are compared with the experimental data available, and with the trends in structural and thermodynamic properties emerging from ab initio calculations also performed in the present study for various structurally related and neighboring compounds in the Cu-In phase diagram, viz., the ideal B8{sub 2}-Cu{sub 2}In, B8{sub 1}-CuIn, B8{sub 2

  10. Ab initio study of the {sup 57}Fe quadrupole splitting in the heme models of {alpha}- and {beta}-subunits in tetrameric deoxyhemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Yuryeva, E. I. [Ural Branch of the Russian Academy of Sciences, Institute of Solid State Chemistry (Russian Federation); Oshtrakh, M. I., E-mail: oshtrakh@mail.utnet.ru [Ural State Technical University - UPI, Division of Applied Biophysics, Faculty of Physical Techniques and Devices for Quality Control (Russian Federation)

    2005-09-15

    Ab initio X{alpha} discrete variation method was used for calculation of quadrupole splitting for the rough heme models in {alpha}- and {beta}-subunits of tetrameric deoxyhemoglobin accounting small stereochemical variations. The differences of theoretical values of quadrupole splitting for these heme models were obtained.

  11. Active-Site α-Helix in Papain and the Stability of the Ion Pair RS- · · · ImH+. Ab initio Molecular Orbital Study

    NARCIS (Netherlands)

    Duijnen, P.Th. van; Thole, B.Th.; Broer, Ria; Nieuwpoort, W.C.

    1980-01-01

    Ab initio MO calculations, using both minimal (STO-3G) and extended (Roos-Siegbahn) basis sets are reported for the systems methanethiol-imidazole, methanethiol-imidazole-formaldehyde, and methanethiol-imidazole-formamide, which, together with a point-change representation of a long α-helix, form mo

  12. Ab initio molecular dynamics studies on effect of Zr on oxidation resistance of TiAlN coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pi, Jingwu [State Key Lab of Powder Metallurgy, Central South University, Changsha,Hunan 410083 (China); Kong, Yi, E-mail: yikong@csu.edu.cn [State Key Lab of Powder Metallurgy, Central South University, Changsha,Hunan 410083 (China); Chen, Li [State Key Lab of Powder Metallurgy, Central South University, Changsha,Hunan 410083 (China); Zhuzhou Cemented Carbide Cutting Tools Co., Ltd., Zhuzhou, Hunan 412007 (China); Du, Yong [State Key Lab of Powder Metallurgy, Central South University, Changsha,Hunan 410083 (China)

    2016-08-15

    Highlights: • The lowest bonding energy sequence for dimers in the vacuum: Zr−O < Ti−O < Al−O. • The lowest bonding energy sequence for oxygen above the surface: Ti−O < Zr−O < Al−O. • At 300 K, the addition of Zr benefitting the formation of vacancy and TiO{sub 2}. • At 1123 K, the addition of Zr leading to a more stable surface. • Our findings explain that the oxidation resistance of TiAlZrN superior to TiAlN at 1123 K as well as TiAlZrN at 300 K. - Abstract: It was demonstrated experimentally that doping Zr into TiAlN coatings at room temperature will detriment its oxidation resistance. On the other hand, there are evidences that doping Zr into TiAlN at high temperature will improve coating's oxidation resistance. In the present work, we address the effect of Zr on the oxidation resistance of TiAlN by means of ab initio molecular dynamics simulations. The TiAlN and TiAlZrN (1 Zr atom replacing 1 Ti atom) surfaces covered with 4 oxygen atoms at 300 K and 1123 K were simulated. Based on the analysis of the atomic motion, bond formation after relaxation, and the charge density difference maps we find that at 300 K, the addition of Zr induces escape of Ti atoms from the surface, resulting in formation of surface vacancies and subsequently TiO{sub 2}. Comparison of metal-oxygen dimers in the vacuum and above the TiAlZrN surface further shows that the addition of Zr in the TiAlN surface will change the lowest bonding energy sequence from Zr−O < Ti−O < Al−O in the vacuum to Ti−O < Zr−O < Al−O above the TiAlZrN surface. From Molecular Dynamics simulations at 1123 K, it is find that no Ti vacancies were generated in the surface. Moreover, less charge is transferred from metal to N atoms and the bond lengths between Ti and O atoms become shorter at 1123 K as compared with 300 K, suggesting that the addition of Zr atom promotes the interaction of Ti and O at TiAlZrN surface at 1123 K, leading to a more stable surface. Our simulation

  13. Rotational study of the NH{sub 3}–CO complex: Millimeter-wave measurements and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Surin, L. A., E-mail: surin@ph1.uni-koeln.de [I. Physikalisches Institut, University of Cologne, Zülpicher Str. 77, 50937 Cologne (Germany); Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya Str. 5, 142190 Troitsk, Moscow (Russian Federation); Potapov, A.; Schlemmer, S. [I. Physikalisches Institut, University of Cologne, Zülpicher Str. 77, 50937 Cologne (Germany); Dolgov, A. A.; Tarabukin, I. V.; Panfilov, V. A. [Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya Str. 5, 142190 Troitsk, Moscow (Russian Federation); Kalugina, Y. N. [Department of Optics and Spectroscopy, Tomsk State University, 36 Lenin av., 634050 Tomsk (Russian Federation); Faure, A. [Université de Grenoble Alpes, IPAG, F-38000 Grenoble (France); CNRS, IPAG, F-38000 Grenoble (France); Avoird, A. van der, E-mail: A.vanderAvoird@theochem.ru.nl [Theoretical Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2015-03-21

    The rotational spectrum of the van der Waals complex NH{sub 3}–CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 112–139 GHz. Newly observed and assigned transitions belong to the K = 0–0, K = 1–1, K = 1–0, and K = 2–1 subbands correlating with the rotationless (j{sub k}){sub NH3} = 0{sub 0} ground state of free ortho-NH{sub 3} and the K = 0–1 and K = 2–1 subbands correlating with the (j{sub k}){sub NH3} = 1{sub 1} ground state of free para-NH{sub 3}. The (approximate) quantum number K is the projection of the total angular momentum J on the intermolecular axis. Some of these transitions are continuations to higher J values of transition series observed previously [C. Xia et al., Mol. Phys. 99, 643 (2001)], the other transitions constitute newly detected subbands. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the ortho-NH{sub 3}–CO and para-NH{sub 3}–CO complexes. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of NH{sub 3}–CO has been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations and an augmented correlation-consistent triple zeta basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the N atom closest to the CO subunit and binding energy D{sub e} = 359.21 cm{sup −1}. The bound rovibrational levels of the NH{sub 3}–CO complex were calculated for total angular momentum J = 0–6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D{sub 0} are 210.43 and 218.66 cm{sup −1} for ortho-NH{sub 3}–CO and para-NH{sub 3}–CO, respectively.

  14. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kolorenč, Přemysl, E-mail: kolorenc@mbox.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Institute of Theoretical Physics, V Holešovičkách 2, 180 00 Prague (Czech Republic); Sisourat, Nicolas [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France)

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  15. Ab initio dynamical exchange interactions in frustrated antiferromagnets

    Science.gov (United States)

    Simoni, Jacopo; Stamenova, Maria; Sanvito, Stefano

    2017-08-01

    The ultrafast response to an optical pulse excitation of the spin-spin exchange interaction in transition metal antiferromagnets is studied within the framework of the time-dependent spin-density functional theory. We propose a formulation for the full dynamical exchange interaction, which is nonlocal in space, and it is derived starting from ab initio arguments. Then, we investigate the effect of the laser pulse on the onset of the dynamical process. It is found that we can distinguish two types of excitations, both activated immediately after the action of the laser pulse. While the first one can be associated to a Stoner-like excitation and involves the transfer of spin from one site to another, the second one is related to the ultrafast modification of a Heisenberg-like exchange interaction and can trigger the formation of spin waves in the first few hundred femtoseconds of the time evolution.

  16. Quantum plasmonics: from jellium models to ab initio calculations

    Directory of Open Access Journals (Sweden)

    Varas Alejandro

    2016-08-01

    Full Text Available Light-matter interaction in plasmonic nanostructures is often treated within the realm of classical optics. However, recent experimental findings show the need to go beyond the classical models to explain and predict the plasmonic response at the nanoscale. A prototypical system is a nanoparticle dimer, extensively studied using both classical and quantum prescriptions. However, only very recently, fully ab initio time-dependent density functional theory (TDDFT calculations of the optical response of these dimers have been carried out. Here, we review the recent work on the impact of the atomic structure on the optical properties of such systems. We show that TDDFT can be an invaluable tool to simulate the time evolution of plasmonic modes, providing fundamental understanding into the underlying microscopical mechanisms.

  17. Theoretical study of the VUV spectroscopy of Ce3+ and Tb3+ in BaBPO5 crystal using an empirical-ab initio hybrid method

    Institute of Scientific and Technical Information of China (English)

    HU

    2010-01-01

    The f-d transition of Ce3+and Tb3+in BaBPO5 was studied theoretically using the parametric Hamiltonian model.In order to overcome the difficulty in determining many of the parameter values,we adopted the model-space effective Hamiltonian method to determine the crystal-field parameters and spin-orbit parameters values.The method made use of the energies and eigenvectors,which were obtained from an ab initio calculation using the relativistic self-consistent discrete variational Slater software package(DV-Xα).Other parameters,which were less dependent on host crystals,were taken from published data.The calculated values of parameters were reasonable,and the energy-levels and f-d transition spectra agreed reasonably well with the measured excitation spectra of 5d-4f emission.

  18. Experimental and ab initio study of the hyperfine parameters of ZnFe {sub 2}O{sub 4} with defects

    Energy Technology Data Exchange (ETDEWEB)

    Quintero, J. Melo; Salcedo Rodríguez, K. L.; Pasquevich, G. A.; Zélis, P. Mendoza; Stewart, S. J., E-mail: stewart@fisica.unlp.edu.ar; Rodríguez Torres, C. E.; Errico, L. A. [Universidad Nacional de La Plata, IFLP-CCT- La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas, C. C. 67 (Argentina)

    2016-12-15

    We present a combined Mössbauer and ab initio study on the influence of oxygen-vacancies on the hyperfine and magnetic properties of the ZnFe {sub 2}O{sub 4} spinel ferrite. Samples with different degree of oxygen-vacancies were obtained from zinc ferrite powder that was thermally treated at different temperatures up to 650 {sup ∘}C under vacuum.Theoretical calculations of the hyperfine parameters, magnetic moments and magnetic alignment have been carried out considering different defects such as oxygen vacancies and cation inversion. We show how theoretical and experimental approaches are complementary to characterize the local structure around Fe atoms and interpret the observed changes in the hyperfine parameters as the level of defects increases.

  19. Local minima conformations of the Sc3N @C80 endohedral complex: Ab initio quantum chemical study and suggestions for experimental verification

    Science.gov (United States)

    Yanov, Ilya; Kholod, Yana; Simeon, Tomekia; Kaczmarek, Anna; Leszczynski, Jerzy

    The results of an ab initio quantum chemical study of the Sc3N@C80 endohedral complex are reported. The Hartree-Fock (HF) and B3LYP levels of theory were employed in conjunction with STO-3G and 6-31G(d) basis sets to determine the geometry and properties of the local minima conformations of Sc3N cluster inside the C80 cage. Weak bonding between the Sc3N and C80 molecule and a number of very close geometry and nearly identical by energy local minima structures can explain the large mobility of the endohedral cluster, but complicate determination of the global minimum structure. The effect of the endohedral cluster on the vibrational spectrum of Sc3N@C80 is revealed. Based on the theoretical infrared (IR) spectra, the experimental method to distinguish local minima structures of Sc3N@C80 is proposed.

  20. Guided-Ion-Beam and ab Initio Study of the Li+, K+, and Rb+ Association Reactions with Gas-Phase Butanone and Cyclohexanone in Their Ground Electronic States

    Science.gov (United States)

    Lucas, J. M.; de Andrés, J.; López, E.; Albertí, M.; Bofill, J. M.; Bassi, D.; Ascenzi, D.; Tosi, P.; Aguilar, A.

    2009-08-01

    The association reactions between Li+, K+, and Rb+ (M) and butanone and cyclohexanone molecules under single collision conditions have been studied using a radiofrequency-guided ion-beam apparatus, characterizing the adducts by mass spectrometry. The excitation function for the [M-(molecule)]+ adducts (in arbitrary units) has been obtained at low collision energies in the 0.10 eV up to a few eV range in the center of mass frame. The measured relative cross sections decrease when collision energy increases, showing the expected energy dependence for adduct formation. The energetics and structure of the different adducts have been calculated ab initio at the MP2(full) level, showing that the M+-molecule interaction takes place through the carbonyl oxygen atom, as an example of a nontypical covalent chemical bond. The cross-section energy dependence and the role of radiative cooling rates allowing the stabilization of the collision complexes are also discussed.

  1. Quantitative structure-property relationship study of the solubility of thiazolidine-4-carboxylic acid derivatives using ab initio and genetic algorithm-partial least squares

    Institute of Scientific and Technical Information of China (English)

    Ali Niazi; Saeed Jameh-Bozorghi; Davood Nori-Shargh

    2007-01-01

    A quantitative structure-activity relationships (QSAR) study is suggested for the prediction of solubility of some thiazolidine-4-carboxylic acid derivatives in aqueous solution. Ab initio theory was used to calculate some quantum chemical descriptors including electrostatic potentials and local charges at each atom, HOMO and LUMO energies, etc. Modeling of the solubility of thiazolidine4-carboxylic acid derivatives as a function of molecular structures was established by means of the partial least squares (PLS). The subset of descriptors, which resulted in the low prediction error, was selected by genetic algorithm. This model was applied for the prediction of the solubility of some thiazolidine-4-carboxylic acid derivatives, which were not in the modeling procedure. The relative errors of prediction lower that -4% was obtained by using GA-PLS method. The resulted model showed high prediction ability with RMSEP of 3.8836 and 2.9500 for PLS and GA-PLS models, respectively.

  2. Ab initio study of coherent anti-Stokes Raman scattering (CARS) of the 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) explosive

    Science.gov (United States)

    Mohammed, Abdelsalam; Ågren, Hans; Thorvaldsen, Andreas J.; Ruud, Kenneth

    2010-01-01

    Coherent anti-Stokes Raman scattering (CARS) of the 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) C 3H 6N 6O 6 molecule is studied by ab initio methods. The results are compared to available experimental observations and against calculations and experimental observations of the conventional non-resonant Raman spectrum for RDX. It is found that all intense bands in the observed CARS spectrum and all Raman differential cross sections are well reproduced by the calculations. The features of the resonant CARS signal vary strongly from the corresponding Raman signal, and are obtained with a considerably larger cross section, a fact that could further facilitate the use of CARS spectroscopy in applications of stand-off detection of gaseous samples at ultra-low concentrations.

  3. A combined study of the equation of state of monazite-type lanthanum orthovanadate using in situ high-pressure diffraction and ab initio calculations.

    Science.gov (United States)

    Ermakova, Olga; López-Solano, Javier; Minikayev, Roman; Carlson, Stefan; Kamińska, Agata; Głowacki, Michał; Berkowski, Marek; Mujica, Andrés; Muñoz, Alfonso; Paszkowicz, Wojciech

    2014-06-01

    Lanthanum orthovanadate (LaVO4) is the only stable monazite-type rare-earth orthovanadate. In the present paper the equation of state of LaVO4 is studied using in situ high-pressure powder diffraction at room temperature, and ab initio calculations within the framework of the density functional theory. The parameters of a second-order Birch-Murnaghan equation of state, i.e. those fitted to the experimental and theoretical data, are found to be in perfect agreement - in particular, the bulk moduli are almost identical, with values of 106 (1) and 105.8 (5) GPa, respectively. In agreement with recent reported experimental data, the compression is shown to be anisotropic. Its nature is comparable to that of some other monazite-type compounds. The softest compression direction is determined.

  4. An ab initio study of the low-lying electronic states of YO2 and Franck-Condon simulation of the first photodetachment band of YO2(-).

    Science.gov (United States)

    Lee, Edmond P F; Dyke, John M; Mok, Daniel K W; Chau, Foo-tim

    2008-05-15

    A variety of density functional theory and ab initio methods, including B3LYP, B98, BP86, CASSCF, CASSCF/RS2, CASSCF/MRCI, BD, BD(T), and CCSD(T), with ECP basis sets of up to the quintuple-zeta quality for Y, have been employed to study the X(2)B2 state of YO2 and the X(1)A1 state of YO2(-). Providing that the Y 4s(2)4p(6) outer-core electrons are included in the correlation treatment, the RCCSD(T) method gives the most consistent results and is concluded to be the most reliable and practical computational method for YO2 and YO2(-). In addition, RCCSD(T) potential energy functions (PEFs) of the X(2)B2 state of YO2 and the X(1)A1 state of YO2(-) were computed, employing the ECP28MDF_aug-cc-pwCVTZ and aug-cc-pVTZ basis sets for Y and O, respectively. Franck-Condon factors, which include allowance for Duschinsky rotation and anharmonicity, were calculated using the computed RCCSD(T) PEFs and were used to simulate the first photodetachment band of YO2(-). The simulated spectrum matches very well with the corresponding experimental 355 nm photodetachment spectrum of Wu, H.; Wang, L.-S. J. Phys. Chem. A 1998, 102, 9129, confirming the reliability of the RCCSD(T) PEFs used. Further calculations on low-lying electronic states of YO2 gave T(e)'s and T(vert)'s of the A(2)A1, B(2)B1, and C(2)A2 states of YO2, as well as EAs and VDEs to these states from the X(1)A1 state of YO2(-). On the basis of the ab initio VDEs obtained in the present study, previous assignments of the second and third photodetachment bands of YO2(-) have been revised.

  5. Reply to Comment on "Ab Initio Study of 40Ca with an Importance Truncated No-Core Shell Model"

    Energy Technology Data Exchange (ETDEWEB)

    Roth, R; Navratil, P

    2008-01-04

    In their comment on our recent Letter [1] Dean et al. [2] criticize the calculations for the ground-state energy of {sup 40}Ca within the importance truncated no-core shell model (NCSM). In particular they address the role of configurations beyond the 3p3h level, which have not been included in the {sup 40}Ca calculations for large N{sub max} {h_bar}{Omega} model spaces. Before responding to this point, the following general statements are in order. For the atomic nucleus as a self-bound system, translational invariance is an important symmetry. The only possibility to preserve translational invariance when working with a Slater determinant basis is to use the harmonic oscillator (HO) basis in conjunction with a basis truncation according to the total HO excitation energy, i.e. N{sub max} {h_bar}{Omega}, as done in the ab initio NCSM. This is important not only for obtaining proper binding or excitation energies, but also for a correct extraction of physical wavefunctions. The spurious center-of-mass components can be exactly removed only if the HO basis and the N{sub max} {h_bar}{Omega} truncation are employed. The minimal violation of the translational invariance was one of the main motivations for developing the importance-truncation scheme introduced in the Letter. In this scheme, we start with the complete N{sub max} {h_bar}{Omega} HO basis space and select important configurations via perturbation theory. All symmetries are under control and our importance-truncated NCSM calculations are completely variational and provide an upper bound of the ground-state energy of the system. The restriction to the 3p3h level, made for computational reasons in the N{sub max} > 8 calculations for {sup 40}Ca, is not inherent to the importance truncation scheme. The explicit inclusion of 4p4h configurations--though computationally more demanding--is straight-forward, even for the largest N{sub max} {h_bar}{Omega} model spaces discussed. To demonstrate this fact we have

  6. Ab initio many-electron study for the low-lying states of the alkali hydride cations in the adiabatic representation.

    Science.gov (United States)

    Yan, Lingling; Qu, Yizhi; Liu, Chunhua; Wang, Jianguo; Buenker, Robert J

    2012-03-28

    An ab initio multireference single- and double-excitation configuration interaction (CI) study is carried out for the ground and excited electronic states of alkali-hydride cations (LiH(+), NaH(+), KH(+), RbH(+), and CsH(+)). For all alkali-metal atoms, the first inner-shell and valence electrons (nine active electrons, three for Li) are considered explicitly in the ab initio self-consistent-field and CI calculations. The adiabatic potential energy curves, radial and rotational couplings are calculated and presented. Short-range (∼3 a.u.) potential wells produced by the excitation of the inner-shell electrons are found. The depths of the inner potential wells are much greater than those of the outer wells for the CsH(+) system. The computed spectroscopic constants for the long-range potential well of the 2 (2)Σ(+) state are very close to the available theoretical and experimental data. The electronic states of alkali-hydrogen cations are also compared with each other, it is found that the positions of the potential wells shift to larger internuclear distances gradually, and the depths of these potential wells become greater with increasing alkali-metal atomic number. The relationships between structures of the radial coupling matrix elements and the avoiding crossings of the potential curves are analyzed. From NaH(+) to CsH(+), radial coupling matrix elements display more and more complex structures due to the gradual decrease of energy separations for avoided crossings. Finally, the behavior of some rotational couplings is also shown.

  7. Electron Transport through Polyene Junctions in between Carbon Nanotubes: an Ab Initio Realization

    Science.gov (United States)

    Chen, Yiing-Rei; Chen, Kai-Yu; Dou, Kun-Peng; Tai, Jung-Shen; Lee, Hsin-Han; Kaun, Chao-Cheng

    With both ab initio and tight-binding model calculations, we study a system of polyene bridged armchair carbon nanotube electrodes, considering one-polyene and two-polyene cases, to address aspects of quantum transport through junctions with multiple conjugated molecules. The ab initio results of the two-polyene cases not only show the interference effect in transmission, but also the sensitive dependence of such effect on the combination of relative contact sites, which agrees nicely with the tight-binding model. Moreover, we show that the discrepancy mainly brought by ab initio relaxation provides an insight into the influence upon transmission spectra, from the junction's geometry, bonding and effective potential. This work was supported by the Ministry of Science and Technology of the Republic of China under Grant Nos. 99-2112-M-003-012-MY2 and 103-2622-E-002-031, and the National Center for Theoretical Sciences of Taiwan.

  8. Electrical resistivity of NaPb compound-forming liquid alloy using ab initio pseudopotentials

    Indian Academy of Sciences (India)

    Anil Thakur; N S Negi; P K Ahluwalla

    2005-08-01

    The study of electrical resistivity of compound-forming liquid alloy, NaPb, is presented as a function of concentration. Hard sphere diameters of Na and Pb are obtained through the interionic pair potentials evaluated using Troullier and Martins ab initio pseudopotential, which have been used to calculate the partial structure factors (). Considering the liquid alloy to be a ternary mixture, Ziman formula, modified for complex formation has been used for calculating resistivity of binary liquid alloys. Form factors are calculated using ab initio pseudopotentials. The results suggest that Ziman formalism, when used with ab initio pseudopotentials, are quite successful in explaining the electrical resistivity data of compound-forming binary liquid alloys.

  9. A Comparative X-ray Diffraction Study and Ab Initio Calculation on RU60358, a New Pyrethroid

    Directory of Open Access Journals (Sweden)

    Gérard Vergoten

    2006-08-01

    Full Text Available The crystal structure of RU60358, C20H21NO3, has been determined using X-raydiffraction to establish the configuration and stereochemistry of the molecule around theC15-C16 triple bond. The compound crystallises in the orthorhombic space group P212121, a= 7.7575, b = 11.3182, c = 21.3529å, V = 1874.80å3 and Z = 4. The structure has beenrefined to a final R = 0.068 for the observed structure factors with I ≥ 3σ (I. The refinedstructure was found to be significantly non planar. A comparative study, using the ab initiocalculations of the structure at B3LYP/6-31G** levels of theory, shows good geometricalagreement with the X-ray diffraction data. Standard deviations between the calculated andexperimental bond values have been shown to be 0.01 å and 0.5° for bond angles.Vibrational wavenumbers were obtained from a normal mode analysis using the ab initiocalculations.

  10. Ab initio study of the n-π* electronic transition in acetone: Symmetry-forbidden vibronic spectra

    Science.gov (United States)

    Liao, D. W.; Mebel, A. M.; Hayashi, M.; Shiu, Y. J.; Chen, Y. T.; Lin, S. H.

    1999-07-01

    Ab initio calculations of geometry and vibrational frequencies of the first singlet excited 1A2(1A″) state of acetone corresponding to the n-π* electronic transition have been carried out at the CASSCF/6-311G** level. The major geometry changes in this state as compared to the ground state involve CO out-of-plane wagging, CO stretch and torsion of the methyl groups, and the molecular symmetry changes from C2v to Cs. The most pronounced frequency changes in the 1A″ state are the decrease of the CO stretch frequency v3 by almost 500 cm-1 and the increase of the CH3 torsion frequency v12 from 22 to 170 cm-1. The optimized geometries and normal modes are used to compute the normal mode displacements which are applied for calculations of Franck-Condon factors. Transition matrix elements over the one-electron electric field operator at various atomic centers calculated at the state-average CASSCF/6-311+G** level are used to compute vibronic couplings between the ground 1A1, 1A2, and Rydberg 1B2(n-3s), 2 1A1(n-3py), 2 1A2(n-3px), 2 1B2(n-3pz), and 1B1(n-3dxy) electronic states, and the Herzberg-Teller expansion of the electronic wave function is applied to derive the transition dipole moment for 1A1→1A2 as a function of normal coordinates. The results show that the intensity for this transition is mostly borrowed from the allowed 1A1-1B2(n-3s) transition due to vibronic coupling between 1A2 and 1B2 through normal modes Q20, Q22, and Q23 and, to some extent, from the 1A1-1B1 transition due to Q19 (CO in-plane bend) which couples 1A2 with 1B1(n-3dxy). The calculated total oscillator strength for the n-π* transition through the intensity-borrowing mechanism, 3.62×10-4, is in close agreement with the experimental value of 4.14×10-4. Ninety-four percent of the oscillator strength comes from the perpendicular component (b1 inducing modes) and 6% from the parallel component (b2 modes). Calculated spectral origin, 30 115 cm-1 at the MRCI/6-311G** level, underestimates

  11. Ab initio calculations of third-order elastic constants and related properties for selected semiconductors

    OpenAIRE

    Lopuszynski, Michal; Majewski, Jacek A.

    2007-01-01

    We present theoretical studies for the third-order elastic constants $C_{ijk}$ in zinc-blende nitrides AlN, GaN, and InN. Our predictions for these compounds are based on detailed ab initio calculations of strain-energy and strain-stress relations in the framework of the density functional theory. To judge the computational accuracy, we compare the ab initio calculated results for $C_{ijk}$ with experimental data available for Si and GaAs. We also underline the relation of the third-order ela...

  12. The density matrix renormalization group for ab initio quantum chemistry

    CERN Document Server

    Wouters, Sebastian

    2014-01-01

    During the past 15 years, the density matrix renormalization group (DMRG) has become increasingly important for ab initio quantum chemistry. Its underlying wavefunction ansatz, the matrix product state (MPS), is a low-rank decomposition of the full configuration interaction tensor. The virtual dimension of the MPS, the rank of the decomposition, controls the size of the corner of the many-body Hilbert space that can be reached with the ansatz. This parameter can be systematically increased until numerical convergence is reached. The MPS ansatz naturally captures exponentially decaying correlation functions. Therefore DMRG works extremely well for noncritical one-dimensional systems. The active orbital spaces in quantum chemistry are however often far from one-dimensional, and relatively large virtual dimensions are required to use DMRG for ab initio quantum chemistry (QC-DMRG). The QC-DMRG algorithm, its computational cost, and its properties are discussed. Two important aspects to reduce the computational co...

  13. Spin-orbit decomposition of ab initio wavefunctions

    CERN Document Server

    Johnson, Calvin W

    2014-01-01

    Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum $j$, leading to $j$-$j$ coupling, phenomenological models suggested decades ago that for $0p$-shell nuclides a simpler picture can be realized via coupling of total spin $S$ and total orbital angular momentum $L$. I revisit this idea with large-basis, no-core shell model (NCSM) calculations using modern \\textit{ab initio} two-body interactions, and dissect the resulting wavefunctions into their component $L$- and $S$-components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly fifty years and six orders of magnitude in basis dimensions. I suggest $L$-$S$ may be a useful tool for analyzing \\textit{ab initio} wavefunctions of light nuclei, for example in the case of rotational bands.

  14. Spin-orbit decomposition of ab initio nuclear wave functions

    Science.gov (United States)

    Johnson, Calvin W.

    2015-03-01

    Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.

  15. High Level Ab Initio Kinetics as a Tool for Astrochemistry

    Science.gov (United States)

    Klippenstein, Stephen

    2015-05-01

    We will survey the application of ab initio theoretical kinetics to reactions of importance to astrochemistry. Illustrative examples will be taken from our calculations for (i) interstellar chemistry, (ii) Titan's atmospheric chemistry, and (iii) the chemistry of extrasolar giant planets. The accuracy of various aspects of the calculations will be summarized including (i) the underlying ab initio electronic structure calculations, (ii) the treatment of the high pressure recombination process, and (iii) the treatment of the pressure dependence of the kinetics. The applications will consider the chemistry of phosphorous on giant planets, the kinetics of water dimerization, the chemistry of nitrogen on Titan's atmosphere, as well as various reactions of interstellar chemistry interest such as the recombination of OH with H, and O(3P) reacting with C2H5, CH2, and CCS. Chemical Sciences and Engineering Division.

  16. Toward the Ab-initio Description of Medium Mass Nuclei

    CERN Document Server

    Barbieri, C; Soma, V; Duguet, T; Navratil, P

    2012-01-01

    As ab-initio calculations of atomic nuclei enter the A=40-100 mass range, a great challenge is how to approach the vast majority of open-shell (degenerate) isotopes. We add realistic three-nucleon interactions to the state of the art many-body Green's function theory of closed-shells, and find that physics of neutron driplines is reproduced with very good quality. Further, we introduce the Gorkov formalism to extend ab-initio theory to semi-magic, fully open-shell, isotopes. Proof-of-principle calculations for Ca-44 and Ni-74 confirm that this approach is indeed feasible. Combining these two advances (open-shells and three-nucleon interactions) requires longer, technical, work but it is otherwise within reach.

  17. Ab initio theories for light nuclei and neutron stars

    Science.gov (United States)

    Gezerlis, Alexandros

    2016-09-01

    In this talk I will touch upon several features of modern ab initio low-energy nuclear theory. I will start by discussing what ``ab initio'' means in this context. Specifically, I will spend some time going over nucleon-nucleon and three-nucleon interactions and their connections with the underlying theory of Quantum Chromodynamics. I will then show how these interactions are used to describe light nuclei using essentially exact few-body methods. I will then discuss heavier systems, especially those of astrophysical relevance, as well as the methods used to tackle them. This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Foundation for Innovation (CFI).

  18. Ab initio calculation of tight-binding parameters

    Energy Technology Data Exchange (ETDEWEB)

    McMahan, A.K.; Klepeis, J.E.

    1997-12-01

    We calculate ab initio values of tight-binding parameters for the f- electron metal Ce and various phases of Si, from local-density functional one-electron Hamiltonian and overlap matrix elements. Our approach allows us to unambiguously test the validity of the common minimal basis and two-center approximations as well as to determine the degree of transferability of both nonorthogonal and orthogonal hopping parameters in the cases considered.

  19. Ab Initio-Based Predictions of Hydrocarbon Combustion Chemistry

    Science.gov (United States)

    2015-07-15

    144306  (2010)]  and  the   cubic -­‐ spline -­‐fitted   PES   reported   by   Xu,   Xie,   Zhang,   Lin,   and   Guo...SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15. SUBJECT TERMS b ...accurate global PESs and for direct dynamics simulations using interpolating moving least squares (IMLS) that guarantee high fidelity to ab initio data. A

  20. GAUSSIAN 76: An ab initio Molecular Orbital Program

    Science.gov (United States)

    Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.

    1978-01-01

    Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.

  1. Nuclear forces and ab initio calculations of atomic nuclei

    OpenAIRE

    Meißner, Ulf-G.

    2014-01-01

    Nuclear forces and the nuclear many-body problem have been some of Gerry Brown's main topics in his so productive life as a theoretical physicist. In this talk, I outline how Gerry's work laid the foundations of the modern theory of nuclear forces and ab initio calculations of atomic nuclei. I also present some recent developments obtained in the framework of nuclear lattice simulations.

  2. Thermochemical data for CVD modeling from ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ho, P. [Sandia National Labs., Albuquerque, NM (United States); Melius, C.F. [Sandia National Labs., Livermore, CA (United States)

    1993-12-31

    Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.

  3. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics.

    Science.gov (United States)

    Makhov, Dmitry V; Glover, William J; Martinez, Todd J; Shalashilin, Dmitrii V

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  4. Ab initio molecular dynamics using hybrid density functionals

    Science.gov (United States)

    Guidon, Manuel; Schiffmann, Florian; Hutter, Jürg; Vandevondele, Joost

    2008-06-01

    Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.

  5. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Makhov, Dmitry V.; Shalashilin, Dmitrii V. [Department of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom); Glover, William J.; Martinez, Todd J. [Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  6. An ab-initio study of a1B3u→X1Ag transition in a neutral molecular N2 dimer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Presents the ab-initio calculations performed for differentsymmetry groups of neutral molecular N2 dimer, and the calculation of ground state and low-lying singlet excited states for each symmetry group and concludes from the results that there is an electric dipole transition between X1Ag and a1B3u (singlet-singlet) excited states belonging to D2h group symmetry, and discusses the vibrational energy levels and emission spectra calculates for this transition.

  7. Structure of the glass-forming metallic liquids by ab-initio and classical molecular dynamics, a case study: Quenching the Cu60Ti20Zr20 alloy

    Science.gov (United States)

    Amokrane, S.; Ayadim, A.; Levrel, L.

    2015-11-01

    We consider the question of the amorphization of metallic alloys by melt quenching, as predicted by molecular dynamics simulations with semi-empirical potentials. The parametrization of the potentials is discussed on the example of the ternary Cu-Ti-Zr transition metals alloy, using the ab-initio simulation as a reference. The pair structure in the amorphous state is computed from a potential of the Stillinger-Weber form. The transferability of the parameters during the quench is investigated using two parametrizations: from solid state data, as usual and from a new parametrization on the liquid structure. When the adjustment is made on the pair structure of the liquid, a satisfactory transferability is found between the pure components and their alloys. The liquid structure predicted in this way agrees well with experiment, in contrast with the one obtained using the adjustment on the solid. The final structure, after quenches down to the amorphous state, determined with the new set of parameters is shown to be very close to the ab-initio one, the latter being in excellent agreement with recent X-rays diffraction experiments. The corresponding critical temperature of the glass transition is estimated from the behavior of the heat capacity. Discussion on the consistency between the structures predicted using semi-empirical potentials and ab-initio simulation, and comparison of different experimental data underlines the question of the dependence of the final structure on the thermodynamic path followed to reach the amorphous state.

  8. Ab initio calculation of the potential bubble nucleus 34Si

    Science.gov (United States)

    Duguet, T.; Somà, V.; Lecluse, S.; Barbieri, C.; Navrátil, P.

    2017-03-01

    Background: The possibility that an unconventional depletion (referred to as a "bubble") occurs in the center of the charge density distribution of certain nuclei due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. Based on a mean-field rationale, a correlation between the occurrence of such a semibubble and an anomalously weak splitting between low angular-momentum spin-orbit partners has been further conjectured. Energy density functional and valence-space shell model calculations have been performed to identify and characterize the best candidates, among which 34Si appears as a particularly interesting case. While the experimental determination of the charge density distribution of the unstable 34Si is currently out of reach, (d ,p ) experiments on this nucleus have been performed recently to test the correlation between the presence of a bubble and an anomalously weak 1 /2--3 /2- splitting in the spectrum of 35Si as compared to 37S. Purpose: We study the potential bubble structure of 34Si on the basis of the state-of-the-art ab initio self-consistent Green's function many-body method. Methods: We perform the first ab initio calculations of 34Si and 36S. In addition to binding energies, the first observables of interest are the charge density distribution and the charge root-mean-square radius for which experimental data exist in 36S. The next observable of interest is the low-lying spectroscopy of 35Si and 37S obtained from (d ,p ) experiments along with the spectroscopy of 33Al and 35P obtained from knock-out experiments. The interpretation in terms of the evolution of the underlying shell structure is also provided. The study is repeated using several chiral effective field theory Hamiltonians as a way to test the robustness of the results with respect to input internucleon interactions. The convergence of the results with respect to the truncation of the many-body expansion, i.e., with respect to

  9. Towards hydrogen metallization: an Ab initio approach; Vers la metallisation de l`hydrogene: approche AB initio

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, St

    1998-12-31

    The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H{sub 2}){sub 2} which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author) 109 refs.

  10. Ab-initio study of the physics and chemistry of metals in planetary core materials and nanomaterials at relevant thermodynamics conditions

    Science.gov (United States)

    Alnemrat, Sufian

    Material science investigates the relationship between the structure of materials at the atomic or molecular scales and their macroscopic properties. Ab-initio DFT, atomistic force-field, and molecular dynamic simulations have been used to investigate the electronic, optical, structural, magnetic properties of group II-VI semiconductor nanoparticles, metal organic frameworks, amide-water complexes, and planetary core materials at the atomic and/or molecular level. Structure, density of electronic states, magnetic dipole moments, and HOMO-LUMO gaps of surface-passivated ZnnSem, Cd nTem, CdTe-core/ZnTe-shell, and ZnSe-core/CdSe-shell nanocrystals are calculated using a first principles. The intrinsic magnetic dipole moments are found to be strongly size dependent. The detailed analysis of the dipole moment as a function of particle size shows the appearance of zincblende-wurtzite polymorphism in these nano-particles. Energy-efficient adsorption processes are considered promising alternatives to traditional separation techniques. Mg-MOF-74, a magnesium-based metal organic framework, has been used as an efficient adsorbent structure for several gas separation purposes. Adsorption equilibria and kinetics of ethane, ethylene, propane, and propylene on Mg-MOF-74 were determined at temperatures of 278, 298, and 318 K and pressures up to 100 kPa. A grand canonical Monte Carlo simulation was conducted to calculate the adsorption isotherms and to explore adsorption mechanisms. I found that propylene and propane have a stronger affinity to the Mg-MOF-74 adsorbent than ethane and ethylene because of their significant dipole moments. Ab-initio molecular dynamics simulations were carried out to study the role of equilibrium volume and magnetism in Fe and FeX alloys (X=Ni, O) and their stability at earth core conditions. This study provides new insights into the pressure dependence of magnetism by tracking the hybridization between crystal orbitals for pressures up to 600 GPa in

  11. Doping-enhanced hyperpolarizabilities of silicon clusters: a global ab initio and density functional theory study of Si10 (Li, Na, K)n (n=1, 2) clusters.

    Science.gov (United States)

    Karamanis, Panaghiotis; Marchal, Remi; Carbonniére, Philippe; Pouchan, Claude

    2011-07-28

    A global theoretical study of the (hyper)polarizabilities of alkali doped Si(10) is presented and discussed. First, a detailed picture about the low lying isomers of Si(10)Li, Si(10)Na, Si(10)K, Si(10)Li(2), Si(10)Na(2), and Si(10)K(2) has been obtained in a global manner. Then, the microscopic first (hyper)polarizabilities of the most stable configurations have been determined by means of ab initio methods of high predictive capability such as those based on the Møller-Plesset perturbation and coupled cluster theory, paying extra attention to the (hyper)polarizabilities of the open shell mono-doped systems Si(10)Li, Si(10)Na, Si(10)K, and the influence of spin contamination. These results were used to assess the performance of methods of low computational cost based on density functional theory (DFT) in the reliable computation of these properties in order to proceed with an in-depth study of their evolution as a function of the alkali metal, the cluster composition, and the cluster structure. The most interesting outcomes of the performed (hyper)polarizability study indicate that while alkali doping leaves the per atom polarizability practically unaffected, influences dramatically the hyperpolarizabilities of Si(10). The lowest energy structures of the mono-doped clusters are characterized by significantly enhanced hyperpolarizabilities as compared to the analogue neutral or charged bare silicon clusters Si(10) and Si(11), while, certain patterns governed by the type and the number of the doping agents are followed. The observed hyperpolarizability increase is found to be in close connection with specific cluster to alkali metal charge transfer excited states and to the cluster structures. Moreover, an interesting correlation between the anisotropy of the electron density, and the hyperpolarizabilities of these systems has been observed. Finally, it is important to note that the presented method assessment points out that among the various DFT functionals used

  12. Ab initio study of the cohesive properties, electronic structure and thermodynamic stability of the Ni–In and Ni–Sn intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Ramos de Debiaggi, S., E-mail: sbramos@yahoo.com [Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); CONICET (Argentina); Deluque Toro, C. [Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Cabeza, G.F. [CONICET (Argentina); Dpto. de Física, Universidad Nacional del Sur, Alem 1253, 8000 Bahía Blanca (Argentina); Fernández Guillermet, A. [CONICET (Argentina); Centro Atómico Bariloche e Instituto Balseiro, Avda. Bustillo 9500, 8400 Bariloche (Argentina)

    2013-11-05

    Graphical abstract: -- Highlights: •A DFT study of Ni–In and Ni–Sn compounds in Ni–In–Sn soldering alloys is reported. •Cohesive, electronic structure, and thermodynamic stability trends are established. •Phase-stabilities at low T are well reproduced by the 0 K thermodynamic values. •Available structural and equation-of-state data are satisfactorily accounted for. •Ab initio and CALPHAD data of hypothetical phases involved in sublattice models are compared. -- Abstract: A comprehensive study of the structural, cohesive and electronic properties of several stable, metastable and non-stable intermetallic phases (IPs) of the Ni–In and Ni–Sn systems have been performed by ab initio density-funcional-theory (DFT) methods. Using the projector augmented wave method we have performed systematic spin polarized calculations with the exchange and correlation functions of Perdew and Wang in the generalized gradient approximation (GGA), as well as those by Ceperley and Alder in the local-density-approximation (LDA). Structural properties, the energy-of-formation (EOF) from the elements and the cohesive properties of the various phases have been established by minimizing the internal structural parameters. We present trends at 0 K in the composition dependence of the molar volumen, bulk modulus and its pressure derivative, electronic density of states, magnetic moments and the EOF of several stable and metastable IPs reported in the Ni–In and Ni–Sn systems as well as various non-stable (hypothetical) compounds which are relevant in connection with the thermodynamic analysis of the Ni–In and Ni–Sn systems using Gibbs energy models and the so-called CALPHAD techniques. The results are compared with the available experimental data and with previously reported theoretical results. The present study of the thermodynamic and cohesive properties of Ni–In/Sn intermetallic phases should contribute to the understanding of the phase-stability systematics in

  13. Ab initio Defect Energetics in LaBO3 Perovskite Solid Oxide Fuel Cell Materials

    DEFF Research Database (Denmark)

    Lee, Yueh-Lin; Morgan, Dane; Kleis, Jesper;

    2009-01-01

    Perovskite materials of the form ABO3 are a promising family of compounds for use in solid oxide fuel cell (SOFC) cathodes. Study of the physics of these compounds under SOFC conditions with ab initio methods is particularly challenging due to high temperatures, exchange of oxygen with O2 gas...

  14. Ab initio molecular crystal structures, spectra, and phase diagrams.

    Science.gov (United States)

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  15. Computer simulation of acetonitrile and methanol with ab initio-based pair potentials

    Science.gov (United States)

    Hloucha, M.; Sum, A. K.; Sandler, S. I.

    2000-10-01

    This study address the adequacy of ab initio pair interaction energy potentials for the prediction of macroscopic properties. Recently, Bukowski et al. [J. Phys. Chem. A 103, 7322 (1999)] performed a comprehensive study of the potential energy surfaces for several pairs of molecules using symmetry-adapted perturbation theory. These ab initio energies were then fit to an appropriate site-site potential form. In an attempt to bridge the gap between ab initio interaction energy information and macroscopic properties prediction, we performed Gibbs ensemble Monte Carlo (GEMC) simulations using their developed pair potentials for acetonitrile and methanol. The simulations results show that the phase behavior of acetonitrile is well described by just the pair interaction potential. For methanol, on the other hand, pair interactions are insufficient to properly predict its vapor-liquid phase behavior, and its saturated liquid density. We also explored simplified forms for representing the ab initio interaction energies by refitting a selected range of the data to a site-site Lennard-Jones and to a modified Buckingham (exponential-6) potentials plus Coulombic interactions. These were also used in GEMC simulations in order to evaluate the quality and computational efficiency of these different potential forms. It was found that the phase behavior prediction for acetonitrile and methanol are highly dependent on the details of the interaction potentials developed.

  16. Ab initio charge-carrier mobility model for amorphous molecular semiconductors

    Science.gov (United States)

    Massé, Andrea; Friederich, Pascal; Symalla, Franz; Liu, Feilong; Nitsche, Robert; Coehoorn, Reinder; Wenzel, Wolfgang; Bobbert, Peter A.

    2016-05-01

    Accurate charge-carrier mobility models of amorphous organic molecular semiconductors are essential to describe the electrical properties of devices based on these materials. The disordered nature of these semiconductors leads to percolative charge transport with a large characteristic length scale, posing a challenge to the development of such models from ab initio simulations. Here, we develop an ab initio mobility model using a four-step procedure. First, the amorphous morphology together with its energy disorder and intermolecular charge-transfer integrals are obtained from ab initio simulations in a small box. Next, the ab initio information is used to set up a stochastic model for the morphology and transfer integrals. This stochastic model is then employed to generate a large simulation box with modeled morphology and transfer integrals, which can fully capture the percolative charge transport. Finally, the charge-carrier mobility in this simulation box is calculated by solving a master equation, yielding a mobility function depending on temperature, carrier concentration, and electric field. We demonstrate the procedure for hole transport in two important molecular semiconductors, α -NPD and TCTA. In contrast to a previous study, we conclude that spatial correlations in the energy disorder are unimportant for α -NPD. We apply our mobility model to two types of hole-only α -NPD devices and find that the experimental temperature-dependent current density-voltage characteristics of all devices can be well described by only slightly decreasing the simulated energy disorder strength.

  17. Structure, energetics, and electronic properties of the surface of a promoted MoS{sub 2} catalyst: An ab initio local density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Raybaud, P.; Hafner, J.; Kresse, G.; Kasztelan, S.; Toulhoat, H.

    2000-02-15

    The determination of the local structure of cobalt- or nickel-promoted MoS{sub 2}-based hydrodesulfurization catalysts is of interest for understanding the mechanism leading to an increased activity brought by cobalt or nickel, the so-called synergetic effect. For that reason, the authors carried out ab initio calculations using density functional theory under the generalized gradient approximation for periodic systems. The edge substitution model emerges as the most stable structure and provides an excellent agreement with local structures experimentally determined on real catalysts by in situ extended X-ray absorption fine structure. The authors studied the absorption of sulfur on the active edge surface of the promoted MoS{sub 2} catalyst and determined the equilibrium coverage under sulfiding conditions. It is demonstrated that the incorporation of promoter atoms has a strong influence on the sulfur-metal bond energy at the surface and in particular leads to a reduction of the equilibrium S coverage of the active metal sites. A comparative study on the effects of Co, Ni, and Cu atoms as promoters was performed. Detailed results on the surface electronic structure of promoted MoS{sub 2} are presented.

  18. Ab initio calculation of UV-absorption spectra of chlorophyll a: Comparison study between RHF/CIS, TDDFT, and semi-empirical methods

    Directory of Open Access Journals (Sweden)

    Veinardi Suendo

    2012-07-01

    Full Text Available Chlorophyll a is one the most abundant pigment on Earth that responsible for trapping the light energy to perform photosynthesis in green plants. This molecule has been studied for many years from different point of views in both experimental and theoretical interests. In this study, the restricted Hartree-Fock configuration interaction single (RHF/CIS, time-dependent density functional theory (TDDFT and several semi-empirical methods (CNDO/s and ZINDO calculations were carried out to reconstruct the UV-Vis absorption spectra of chlorophyll a. In some extend, the calculation results based on single molecule approach were succeeded to reconstruct the absorption spectra but required to be rescaled to fit the experimental one. In general, the semi-empirical methods provide better energy scaling factor that closer to unity. However, they lack of vertical transition fine features with respect to the spectrum obtained experimentally. Here, the ab initio calculations provide more complete features, especially the TDDFT at high level of basis sets that also has a good accuracy in the transition energies. The contribution of ground states and excited states orbitals in the main vertical transitions is discussed based on delocalization nature of the wavefunctions and the presence of solvent through polarizable continuum model (PCM.

  19. Ab initio calculation of UV-absorption spectra of chlorophyll a: Comparison study between RHF/CIS, TDDFT, and semi-empirical methods

    CERN Document Server

    Suendo, Veinardi

    2011-01-01

    Chlorophyll a is one the most abundant pigment on Earth, which is responsible for trapping the light energy to perform the photosynthesis process in green plants. This molecule is a metal-complex compound that consists of a porphyrins ring with high symmetry that acts as ligands with magnesium as the central ion. Chlorophyll a has been studied for many years from different point of views for both experimental and theoretical interests. In this study, the restricted Hartree-Fock configuration interaction single (RHF/CIS), time-dependent density functional theory (TDDFT) and some semi-empirical methods (CNDO/s and ZINDO) calculations were carried out and compared to reconstruct the UV-Vis absorption spectra of chlorophyll a. In some extend, the calculation results based on a single molecule calculation were succeeded to reconstruct the absorption spectra but required to be scaling and broaden to match the experimental one. Different computational methods (ab initio and semi-empirical) exhibits the differences i...

  20. Onset of the Electronic Absorption Spectra of Isolated and π-Stacked Oligomers of 5,6-Dihydroxyindole: An Ab Initio Study of the Building Blocks of Eumelanin.

    Science.gov (United States)

    Tuna, Deniz; Udvarhelyi, Anikó; Sobolewski, Andrzej L; Domcke, Wolfgang; Domratcheva, Tatiana

    2016-04-14

    Eumelanin is a naturally occurring skin pigment which is responsible for developing a suntan. The complex structure of eumelanin consists of π-stacked oligomers of various indole derivatives, such as the monomeric building block 5,6-dihydroxyindole (DHI). In this work, we present an ab initio wave-function study of the absorption behavior of DHI oligomers and of doubly and triply π-stacked species of these oligomers. We have simulated the onset of the electronic absorption spectra by employing the MP2 and the linear-response CC2 methods. Our results demonstrate the effect of an increasing degree of oligomerization of DHI and of an increasing degree of π-stacking of DHI oligomers on the onset of the absorption spectra and on the degree of red-shift toward the visible region of the spectrum. We find that π-stacking of DHI and its oligomers substantially red-shifts the onset of the absorption spectra. Our results also suggest that the optical properties of biological eumelanin cannot be simulated by considering the DHI building blocks alone, but instead the building blocks indole-semiquinone and indole-quinone have to be considered as well. This study contributes to advancing the understanding of the complex photophysics of the eumelanin biopolymer.

  1. Probing the Properties of Polynuclear Superhalogens without Halogen Ligand via ab Initio Calculations: A Case Study on Double-Bridged [Mg2 (CN)5 ](-1) Anions.

    Science.gov (United States)

    Li, Jin-Feng; Li, Miao-Miao; Bai, Hongcun; Sun, Yin-Yin; Li, Jian-Li; Yin, Bing

    2015-12-01

    An ab initio study of the superhalogen properties of eighteen binuclear double-bridged [Mg2 (CN)5 ](-1) clusters is reported herein by using various theoretical methods. High-level CCSD(T) results indicate that all the clusters possess strong superhalogen properties owing to their high vertical electron detachment energies (VDEs), which exceed 6.8 eV (highest: 8.15 eV). The outer valence Green's function method provides inaccurate relative VDE values; hence, this method is not suitable for this kind of polynuclear superhalogens. Both the HF and MP2 results are generally consistent with the CCSD(T) level regarding the relative VDE values and-especially interesting-the average values of the HF and MP2 VDEs are extremely close to the CCSD(T) results. The distributions of the extra electrons of the anions are mainly aggregated into the terminal CN units. These distributions are apparently different from those of previously reported triple-bridged isomers and may be the reason for the decreased VDE values of the clusters. In addition, comparisons of the VDEs of binuclear and mononuclear superhalogens as well as studies of the thermodynamic stabilities with respect to the detachment of various CN(-1) ligands are also performed. These results confirm that polynuclear structures with pseudohalogen ligands can be considered as probable new superhalogens with enhanced properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Melting curves of metals by ab initio calculations

    Science.gov (United States)

    Minakov, Dmitry; Levashov, Pavel

    2015-06-01

    In this work we used several ab initio approaches to reproduce melting curves and discussed their abilities, advantages and drawbacks. We used quasiharmonic appoximation and Lindemann criterion to build melting curves in wide region of pressures. This approach allows to calculate the total free energy of electrons and phonons, so it is possible to obtain all thermodynamic properties in the crystalline state. We also used quantum molecular dynamics simulations to investigate melting at various pressures. We explored the size-effect of the heat until it melts (HUM) method in detail. Special attention was paid to resolve the boundaries of the melting region on density. All calculations were performed for aluminum, copper and gold. Results were in good agreement with available experimental data. Also we studied the influence of electronic temperature on melting curves. It turned out that the melting temperature increased with the rise of electron temperature at normal density and had non-monotonic behavior at higher densities. This work is supported by the Ministry of Education and Science of the Russian Federation (Project No. 3.522.2014/K).

  3. Exploring the free energy surface using ab initio molecular dynamics

    Science.gov (United States)

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-01

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti.

  4. Ab initio calculation of the potential bubble nucleus $^{34}$Si

    CERN Document Server

    Duguet, T; Lecluse, S; Barbieri, C; Navrátil, P

    2016-01-01

    The possibility that an unconventional depletion in the center of the charge density distribution of certain nuclei occurs due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. We report on ab initio self-consistent Green's function calculations of one of such candidates, $^{34}$Si, together with its Z+2 neighbour $^{36}$S. Binding energies, rms radii and density distributions of the two nuclei as well as low-lying spectroscopy of $^{35}$Si, $^{37}$S, $^{33}$Al and $^{35}$P are discussed. The interpretation of one-nucleon removal and addition spectra in terms of the evolution of the underlying shell structure is also provided. The study is repeated using several chiral effective field theory Hamiltonians as a way to test the robustness of the results with respect to input inter-nucleon interactions. The prediction regarding the (non-)existence of the bubble structure in $^{34}$Si varies significantly with the nuclear Hamiltonian used. However, demandin...

  5. Rational design of electrolyte components by ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Patrik; Jacobsson, Per [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)

    2006-02-28

    This paper is a small review of the use of computer simulations and especially the use of standard quantum-mechanical ab initio electronic structure calculations to rationally design and investigate different choices of chemicals/systems for lithium battery electrolytes. Covered systems and strategies to enhance the performance of electrolytes will range from assisting the interpretation of vibrational spectroscopy experiments over development of potentials for molecular dynamics simulations, to the design of new lithium salts and the lithium ion coordination in liquid, polymer, and gel polymer electrolytes. Examples of studied properties include the vibrational spectra of anions and ion pairs to characterize the nature and extent of the interactions present, the lithium ion affinities of anions, important for the salt solvation and the ability to provide a high concentration of charge carriers, the HOMO energies of the anions to estimate the stability versus oxidation, the anion volumes that correlate to the anion mobility, the lithium ion coordination and dynamics to reveal the limiting steps of lithium ion transport, etc. (author)

  6. Local Environment Distribution in Ab Initio Liquid Water

    Science.gov (United States)

    Santra, Biswajit; Distasio, Robert A., Jr.; Car, Roberto

    2013-03-01

    We have analyzed the distribution of local environments in liquid water at ambient conditions and its inherent potential energy surface (IPES) based on state-of-the-art ab initio molecular dynamics simulations performed on 128 molecules implementing hybrid PBE0 exchange [PRB 79, 085102 (2009)] and van der Waals (vdW) interactions [PRL 102, 073005 (2009)]. The local environments of molecules are characterized in terms of the local structure index (LSI) [JCP 104, 7671 (1996)] which is able to distinguish high- and low-density molecular environments. In agreement with simulations based on model potentials, we find that the distribution of LSI is unimodal at ambient conditions and bimodal in the IPES, consistent with the existence of polymorphism in amorphous phases of water. At ambient conditions spatial LSI fluctuations extend up to ~7 Å and their dynamical correlation decays on a time scale of ~3 ps, as found for density fluctuations in a recent study [PRL 106, 037801 (2011)]. DOE: DE-SC0008626, DOE: DE-SC0005180, NSF: CHE-0956500

  7. Relative stability of major types of beta-turns as a function of amino acid composition: a study based on Ab initio energetic and natural abundance data.

    Science.gov (United States)

    Perczel, András; Jákli, Imre; McAllister, Michael A; Csizmadia, Imre G

    2003-06-06

    Folding properties of small globular proteins are determined by their amino acid sequence (primary structure). This holds both for local (secondary structure) and for global conformational features of linear polypeptides and proteins composed from natural amino acid derivatives. It thus provides the rational basis of structure prediction algorithms. The shortest secondary structure element, the beta-turn, most typically adopts either a type I or a type II form, depending on the amino acid composition. Herein we investigate the sequence-dependent folding stability of both major types of beta-turns using simple dipeptide models (-Xxx-Yyy-). Gas-phase ab initio properties of 16 carefully selected and suitably protected dipeptide models (for example Val-Ser, Ala-Gly, Ser-Ser) were studied. For each backbone fold most probable side-chain conformers were considered. Fully optimized 321G RHF molecular structures were employed in medium level [B3LYP/6-311++G(d,p)//RHF/3-21G] energy calculations to estimate relative populations of the different backbone conformers. Our results show that the preference for beta-turn forms as calculated by quantum mechanics and observed in Xray determined proteins correlates significantly.

  8. Adsorption of atomic oxygen, electron structure and elastic moduli of TiC(0 0 1) surface during its laser reconstruction: Ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Ilyasov, V.V., E-mail: viily@mail.ru; Pham, Khang D., E-mail: dinhkhang307@gmail.com; Holodova, O.M.; Ershov, I.V., E-mail: thijd@mail.ru

    2015-10-01

    We have performed ab initio simulation of oxygen atom adsorption on TiC(0 0 1) laser-reconstructed surface. Relaxed atomic structures of the O/Ti{sub x}C{sub y}(0 0 1) surface observed upon thermal impact have been studied. DFT calculations of their thermodynamic, electronic, and elastic properties have been carried out. For the first time we have established the bond length and adsorption energy for various reconstructions of the O/Ti{sub x}C{sub y}(0 0 1) surface atomic structure. We have examined the effects of the oxygen adatom upon the band and electron spectra of the O/TiC(0 0 1) surface in its various reconstructions. For the first time we have established a correlation between the energy level of flat bands (−5.4 eV and −5.8 eV) responsible for the doublet of singular peaks of partial densities of oxygen 2p electrons, and the adsorption energy of oxygen atom in non-stoichiometric O/TiC{sub y}(0 0 1) systems. Effective charges of titanium and carbon atoms surrounding the oxygen adatom in various reconstructions have been identified. We have established charge transfer from titanium atom to oxygen and carbon atoms determined by the reconstruction of local atomic and electron structures which correlate with atomic electronegativity values and chemisorption processes. Potential mechanisms for laser nanostructuring of titanium carbide surface have been suggested.

  9. Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C-H Region of DMSO as a Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sean A.; Ueltschi, Tyler W.; El-Khoury, Patrick Z.; Mifflin, Amanda L.; Hess, Wayne P.; Wang, Hongfei; Cramer, Christopher J.; Govind, Niranjan

    2016-03-03

    Carbon-hydrogen (C-H) vibration modes serve as key probes in the chemical iden- tication of hydrocarbons and in vibrational sum-frequency generation (SFG) spec- *troscopy of hydrocarbons at the liquid/gas interface. Their assignments pose a chal- lenge from a theoretical viewpoint. In this work, we present a detailed study of the C-H stretching region of dimethyl sulfoxide (DMSO) using a new Gaussian basis set- based ab initio molecular dynamics (AIMD) module that we have implemented in the NWChem computational chemistry program. By combining AIMD simulations and static normal mode analysis, we interpret experimental infrared and Raman spectra and explore the role of anharmonic effects in this system. Our anharmonic normal mode analysis of the in-phase and out-of-phase symmetric C-H stretching modes chal- lenges the previous experimental assignment of the shoulder in the symmetric C-H stretching peak as an overtone or Fermi resonance. In addition, our AIMD simulations also show signicant broadening of the in-phase symmetric C-H stretching resonance, which suggests that the experimentally observed shoulder is due to thermal broadening of the symmetric stretching resonance.

  10. Emergence of Metallic Properties at LiFePO4 Surfaces and LiFePO4/Li2S Interfaces: An Ab Initio Study.

    Science.gov (United States)

    Timoshevskii, Vladimir; Feng, Zimin; Bevan, Kirk H; Zaghib, Karim

    2015-08-26

    The atomic and electronic structures of the LiFePO4 (LFP) surface, both bare and reconstructed upon possible oxygenation, are theoretically studied by ab initio methods. On the basis of total energy calculations, the atomic structure of the oxygenated surface is proposed, and the effect of surface reconstruction on the electronic properties of the surface is clarified. While bare LFP(010) surface is insulating, adsorption of oxygen leads to the emergence of semimetallic behavior by inducing the conducting states in the band gap of the system. The physical origin of these conducting states is investigated. We further demonstrate that deposition of Li2S layers on top of oxygenated LFP(010) surface leads to the formation of additional conducting hole states in the first layer of Li2S surface because of the charge transfer from sulfur p-states to the gap states of LFP surface. This demonstrates that oxygenated LFP surface not only provides conducting layers itself, but also induces conducting channels in the top layer of Li2S. These results help to achieve further understanding of potential role of LFP particles in improving the performance of Li-S batteries through emergent interface conductivity.

  11. Are polynuclear superhalogens without halogen atoms probable? A high-level ab initio case study on triple-bridged binuclear anions with cyanide ligands

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Bing, E-mail: rayinyin@gmail.com; Wen, Zhen-Yi [MOE Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China); Institute of Modern Physics, Northwest University, Xi' an 710069 (China); Li, Teng; Li, Jin-Feng; Yu, Yang; Li, Jian-Li [MOE Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China); Jiang, Zhen-Yi [Institute of Modern Physics, Northwest University, Xi' an 710069 (China)

    2014-03-07

    The first theoretical exploration of superhalogen properties of polynuclear structures based on pseudohalogen ligand is reported here via a case study on eight triply-bridged [Mg{sub 2}(CN){sub 5}]{sup −} clusters. From our high-level ab initio results, all these clusters are superhalogens due to their high vertical electron detachment energies (VDE), of which the largest value is 8.67 eV at coupled-cluster single double triple (CCSD(T)) level. Although outer valence Green's function results are consistent with CCSD(T) in most cases, it overestimates the VDEs of three anions dramatically by more than 1 eV. Therefore, the combined usage of several theoretical methods is important for the accuracy of purely theoretical prediction of superhalogen properties of new structures. Spatial distribution of the extra electron of high-VDE anions here indicates two features: remarkable aggregation on bridging CN units and non-negligible distribution on every CN unit. These two features lower the potential and kinetic energies of the extra electron respectively and thus lead to high VDE. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to detachment of CN{sup −1} were also investigated for these anions. The collection of these results indicates that polynuclear structures based on pseudohalogen ligand are promising candidates for new superhalogens with enhanced properties.

  12. Are polynuclear superhalogens without halogen atoms probable? A high-level ab initio case study on triple-bridged binuclear anions with cyanide ligands

    Science.gov (United States)

    Yin, Bing; Li, Teng; Li, Jin-Feng; Yu, Yang; Li, Jian-Li; Wen, Zhen-Yi; Jiang, Zhen-Yi

    2014-03-01

    The first theoretical exploration of superhalogen properties of polynuclear structures based on pseudohalogen ligand is reported here via a case study on eight triply-bridged [Mg2(CN)5]- clusters. From our high-level ab initio results, all these clusters are superhalogens due to their high vertical electron detachment energies (VDE), of which the largest value is 8.67 eV at coupled-cluster single double triple (CCSD(T)) level. Although outer valence Green's function results are consistent with CCSD(T) in most cases, it overestimates the VDEs of three anions dramatically by more than 1 eV. Therefore, the combined usage of several theoretical methods is important for the accuracy of purely theoretical prediction of superhalogen properties of new structures. Spatial distribution of the extra electron of high-VDE anions here indicates two features: remarkable aggregation on bridging CN units and non-negligible distribution on every CN unit. These two features lower the potential and kinetic energies of the extra electron respectively and thus lead to high VDE. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to detachment of CN-1 were also investigated for these anions. The collection of these results indicates that polynuclear structures based on pseudohalogen ligand are promising candidates for new superhalogens with enhanced properties.

  13. Photolysis of n-butyl nitrite and isoamyl nitrite at 355 nm: A time-resolved Fourier transform infrared emission spectroscopy and ab initio study

    CERN Document Server

    Ji, Min; Zhang, Qun; Chen, Yang

    2009-01-01

    We report on the photodissociation dynamics study of n-butyl nitrite (n-C_4H_9ONO) and isoamyl nitrite ((CH_3)_2C_3H_5ONO) by means of time-resolved Fourier transform infrared (TR-FTIR) emission spectroscopy. The obtained TR-FTIR emission spectra of the nascent NO fragments produced in the 355-nm laser photolysis of the two alkyl nitrite species showed an almost identical rotational temperature and vibrational distributions of NO. In addition, a close resemblance between the two species was also found in the measured temporal profiles of the IR emission of NO and the recorded UV absorption spectra. The experimental results are consistent with our ab initio calculations using the time-dependent density functional theory at the B3LYP/6-311G(d,p) level, which indicate that the substitution of one of the two {gamma}-H atoms in n-C_4H_9ONO with a methyl group to form (CH_3)_2C_3H_5ONO has only a minor effect on the photodissociation dynamics of the two molecules.

  14. Quasi-classical trajectory study of the reaction H' + HS on a new ab initio potential energy surface H2S (3A")

    Indian Academy of Sciences (India)

    Jinghan Zou; Shuhui Yin; Dan Wu; Mingxing Guo; Xuesong Xu; Hong Gao; Lei Li; Li Che

    2013-09-01

    Theoretical study on the dynamics of reactions H' + HS( = 0, = 0)→H2 + S and H' + HS( =0, = 0)→ H + H'S is performed with quasi-classical trajectory (QCT) method on a new ab initio potential energy surface for the lowest triplet state of H2S (3A") constructed in 2012 by Lv et al. The QCT-calculated reaction integral cross-sections are in good agreement with previous quantum wave packet results over the collision energy range of 0-50 kcal/mol. Both the abstraction and exchange reactions are governed by direct reaction dynamics and the trajectories follow the minimum energy path. The rotational angular momentum vector ' of products in the two reaction channels are not only aligned perpendicular to scattering plane but also oriented along the negative direction of the axis perpendicular to the scattering plane. With the increase in collision energy, the variation trends of product polarization in the two reaction channels are different and that may be attributed to the obviously different characteristic of the two channels on the potential energy surface.

  15. Full-dimensional quantum dynamics study of the H2 + C2H → H + C2H2 reaction on an ab initio potential energy surface

    Science.gov (United States)

    Chen, Liuyang; Shao, Kejie; Chen, Jun; Yang, Minghui; Zhang, Dong H.

    2016-05-01

    This work performs a time-dependent wavepacket study of the H2 + C2H → H + C2H2 reaction on a new ab initio potential energy surface (PES). The PES is constructed using neural network method based on 68 478 geometries with energies calculated at UCCSD(T)-F12a/aug-cc-pVTZ level and covers H2 + C2H↔H + C2H2, H + C2H2 → HCCH2, and HCCH2 radial isomerization reaction regions. The reaction dynamics of H2 + C2H → H + C2H2 are investigated using full-dimensional quantum dynamics method. The initial-state selected reaction probabilities are calculated for reactants in eight vibrational states. The calculated results showed that the H2 vibrational excitation predominantly enhances the reactivity while the excitation of bending mode of C2H slightly inhibits the reaction. The excitations of two stretching modes of C2H molecule have negligible effect on the reactivity. The integral cross section is calculated with J-shift approximation and the mode selectivity in this reaction is discussed. The rate constants over 200-2000 K are calculated and agree well with the experimental measured values.

  16. Modelling of nuclear glasses by classical and ab initio molecular dynamics; Modelisation de verres intervenant dans le conditionnement des dechets radioactifs par dynamiques moleculaires classique et ab initio

    Energy Technology Data Exchange (ETDEWEB)

    Ganster, P

    2004-10-15

    A calcium aluminosilicate glass of molar composition 67 % SiO{sub 2} - 12 % Al{sub 2}O{sub 3} - 21 % CaO was modelled by classical and ab initio molecular dynamics. The size effect study in classical MD shows that the systems of 100 atoms are more ordered than the larger ones. These effects are mainly due to the 3-body terms in the empirical potentials. Nevertheless, these effects are small and the structures generated are in agreement with experimental data. In such kind of glass, we denote an aluminium avoidance and an excess of non bridging oxygens which can be compensated by tri coordinated oxygens. When the dynamics of systems of 100 and 200 atoms is followed by ab initio MD, some local arrangements occurs (bond length, angular distributions). Thus, more realistic vibrational properties are obtained in ab initio MD. The modelling of thin films shows that aluminium atoms extend to the most external part of the surface and they are all tri-coordinated. Calcium atoms are set in the sub layer part of the surface and they produce a depolymerization of the network. In classical MD, tri-coordinated aluminium atoms produce an important electric field above the surface. With non bridging oxygens, they constitute attractive sites for single water molecules. (author)

  17. Ab initio lattice dynamics of complex structures

    DEFF Research Database (Denmark)

    Voss, Johannes

    2008-01-01

    systems in particular. A more detailed analysis of the phonon spectrum has been performed for the compound Mg(BH4)2, where several crystal symmetries have been proposed theoretically and experimentally. By means of an analysis of the instabilities of these structures, a new, stable phase has been......In this thesis, density functional theory is applied in a study of thermodynamic properties of so-called complex metal hydrides, which are promising materials for hydrogen storage applications. Since the unit cells of these crystals can be relatively large with many symmetrically inequivalent...... determined. Aiming at finding scaling relationships between alloy stabilities and computationally inexpensive properties, the stabilities of cation-alloyed metal aluminum hexahydrides have been studied. The analysis shows that charge density symmetries are correlated to the stability. In addition...

  18. Benchmarks of the ab initio FCI, MCSM and NCFC methods

    CERN Document Server

    Abe, T; Otsuka, T; Shimizu, N; Utsuno, Y; Vary, J P

    2012-01-01

    We report ab initio no-core solutions for properties of light nuclei with three different approaches in order to assess the accuracy and convergence rates of each method. Full Configuration Interaction (FCI), Monte Carlo Shell Model (MCSM) and No Core Full Configuration (NCFC) approaches are solved separately for the ground state energy and other properties of seven light nuclei using the realistic JISP16 nucleon-nucleon interaction. The results are consistent among the different approaches. The methods differ significantly in how the required computational resources scale with increasing particle number for a given accuracy.

  19. Accelerating Ab Initio Nuclear Physics Calculations with GPUs

    CERN Document Server

    Potter, Hugh; Maris, Pieter; Sosonkina, Masha; Vary, James; Binder, Sven; Calci, Angelo; Langhammer, Joachim; Roth, Robert; Çatalyürek, Ümit; Saule, Erik

    2014-01-01

    This paper describes some applications of GPU acceleration in ab initio nuclear structure calculations. Specifically, we discuss GPU acceleration of the software package MFDn, a parallel nuclear structure eigensolver. We modify the matrix construction stage to run partly on the GPU. On the Titan supercomputer at the Oak Ridge Leadership Computing Facility, this produces a speedup of approximately 2.2x - 2.7x for the matrix construction stage and 1.2x - 1.4x for the entire run.

  20. Ab initio electronic properties of dual phosphorus monolayers in silicon

    DEFF Research Database (Denmark)

    Drumm, Daniel W.; Per, Manolo C.; Budi, Akin

    2014-01-01

    In the midst of the epitaxial circuitry revolution in silicon technology, we look ahead to the next paradigm shift: effective use of the third dimension - in particular, its combination with epitaxial technology. We perform ab initio calculations of atomically thin epitaxial bilayers in silicon......, investigating the fundamental electronic properties of monolayer pairs. Quantitative band splittings and the electronic density are presented, along with effects of the layers’ relative alignment and comments on disordered systems, and for the first time, the effective electronic widths of such device...

  1. Spin-orbit decomposition of ab initio wavefunctions

    OpenAIRE

    Johnson, Calvin W.

    2014-01-01

    Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum $j$, leading to $j$-$j$ coupling, phenomenological models suggested decades ago that for $0p$-shell nuclides a simpler picture can be realized via coupling of total spin $S$ and total orbital angular momentum $L$. I revisit this idea with large-basis, no-core shell model (NCSM) calculations using modern \\textit{ab initio} two-body interactions, and dissect the resulti...

  2. Ab initio structure determination via powder X-ray diffraction

    Indian Academy of Sciences (India)

    Digamber G Porob; T N Guru Row

    2001-10-01

    Structure determination by powder X-ray diffraction data has gone through a recent surge since it has become important to get to the structural information of materials which do not yield good quality single crystals. Although the method of structure completion when once the starting model is provided is facile through the Rietveld refinement technique, the structure solution ab initio os still not push-button technology. In this article a survey of the recent development in this area is provided with an illustration of the structure determination of -NaBi3V2O10.

  3. Morphing ab initio potential energy curve of beryllium monohydride

    Science.gov (United States)

    Špirko, Vladimír

    2016-12-01

    Effective (mass-dependent) potential energy curves of the ground electronic states of 9BeH, 9BeD, and 9BeT are constructed by morphing a very accurate MR-ACPF ab initio potential of Koput (2011) within the framework of the reduced potential energy curve approach of Jenč (1983). The morphing is performed by fitting the RPC parameters to available experimental ro-vibrational data. The resulting potential energy curves provide a fairly quantitative reproduction of the fitted data. This allows for a reliable prediction of the so-far unobserved molecular states in terms of only a small number of fitting parameters.

  4. Ab initio study of {sup 2}H(d,{gamma}){sup 4}He, {sup 2}H(d,p){sup 3}H, and {sup 2}H(d,n){sup 4}He reactions and the tensor force

    Energy Technology Data Exchange (ETDEWEB)

    Arai, K.; Aoyama, S.; Suzuki, Y.; Descouvemont, P.; Baye, D. [Division of General Education, Nagaoka National College of Technology, 888 Nishikatakai, Nagaoka, Niigata, 940-8532 (Japan); Center for Academic Information Service, Niigata University, Niigata 950-2181 (Japan); Department of Physics, Niigata University, Niigata 950-2181, Japan and RIKEN Nishina Center, Wako 351-0198 (Japan); Physique Nucleaire Theorique et Physique Mathematique, C.P.229, Universite Libre de Bruxelles, B 1050 Brussels (Belgium); Physique Quantique, CP165/82, Universite Libre de Bruxelles, B-1050 Brussels (Belgium)

    2012-11-12

    The {sup 2}H(d,p){sup 3}H, {sup 2}H(d,n){sup 3}He, and {sup 2}H(d,{gamma}){sup 4}He reactions at low energies are studied with realistic nucleon-nucleon interactions in an ab initio approach. The obtained astrophysical S-factors are all in very good agreement with experiment. The most important channels for both transfer and radiative capture are all found to dominate thanks to the tensor force.

  5. SN2 and SN2' reaction dynamics of cyclopropenyl chloride with halide ion : A direct ab initio molecular dynamics (MD) study

    OpenAIRE

    Tachikawa, Hiroto

    2005-01-01

    Direct ab initio molecular dynamics (MD) calculations have been carried out for the reaction of cyclopropenyl chloride with halide ion (F–) (F– + (CH)3Cl → F(CH)3 + Cl–) in gas phase. Both SN2 and SN2′ channels were found as product channels. These channels are strongly dependent on the collision angle of F– to the target (CH)3Cl molecule. The collision at one of the carbon atoms of the C=C double bond leads to the SN2′ reaction channel; whereas the collision at the methylene carbon atom lead...

  6. Molecular determinants for drug-receptor interactions. Part 2. An ab initio molecular orbital and dipole moment study of the novel nootropic agent piracetam (2-oxopyrrolidin-1-ylacetamide)

    Science.gov (United States)

    Lumbroso, H.; Liégeois, C.; Pappalardo, G. C.; Grassi, A.

    From the ab initio molecular energies of the possible conformers and from a classical dipole moment analysis of 2-oxopyrrolidin-l-ylacetamide (μ = 4.02 D in dioxan at 30.0°C), the preferred conformation in solution of this novel nootropic agent has been determined. The exocyclic N-CH 2 bond is rotated in one sense by 90° and the exocyclic CH 2-C bond rotated in the same sense by 120° from the "planar" ( OO)- cis conformation. The structures of the two enantiomers in solution differ from that of the crystalline molecule.

  7. Equations of state of heavy metals: ab initio approaches; Equations d'etat des metaux lourds: approches ab initio

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, S.; Jollet, F.; Jomard, G.; Siberchicot, B.; Torrent, M.; Zerah, G.; Amadon, B.; Bouchet, J.; Richard, N.; Robert, G. [CEA Bruyeres-le-Chatel, 91 (France)

    2005-07-01

    The determination of equations of states of heavy metals through ab initio calculation, i.e. without any adjustable parameter, allows to access to pressure and temperature thermodynamic conditions sometimes inaccessible to experiment. To perform such calculations, density functional theory (DFT) is a good starting point: when electronic densities are homogeneous enough, the local density approximation (LDA) remarkably accounts for thermodynamic properties of heavy metals, such as tantalum, or the light actinides, as well for static properties - equilibrium volume, elastic constants - as for dynamical quantities like phonon spectra. For heavier elements, like neptunium or plutonium, relativistic effects and strong electronic interactions must be taken into account, which requires more sophisticated theoretical approaches. (authors)

  8. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Elenewski, Justin E.; Hackett, John C, E-mail: jchackett@vcu.edu [Department of Physiology and Biophysics and The Massey Cancer Center, School of Medicine, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23219-1540 (United States)

    2015-02-14

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

  9. Unified ab initio approaches to nuclear structure and reactions

    CERN Document Server

    Navratil, Petr; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo

    2016-01-01

    The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in {\\em ab initio} nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches - built upon the No-Core Shell Model - that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the $^6$He halo nucleus, of five- and six...

  10. Finite Elements in Ab Initio Electronic-Structure Calulations

    Science.gov (United States)

    Pask, J. E.; Sterne, P. A.

    Over the course of the past two decades, the density functional theory (DFT) (see e.g., [1]) of Hohenberg, Kohn, and Sham has proven to be an accurate and reliable basis for the understanding and prediction of a wide range of materials properties from first principles (ab initio), with no experimental input or empirical parameters. However, the solution of the Kohn-Sham equations of DFT is a formidable task and this has limited the range of physical systems which can be investigated by such rigorous, quantum mechanical means. In order to extend the interpretive and predictive power of such quantum mechanical theories further into the domain of "real materials", involving nonstoichiometric deviations, defects, grain boundaries, surfaces, interfaces, and the like; robust and efficient methods for the solution of the associated quantum mechanical equations are critical. The finite-element (FE) method (see e.g., [2]) is a general method for the solution of partial differential and integral equations which has found wide application in diverse fields ranging from particle physics to civil engineering. Here, we discuss its application to large-scale ab initio electronic-structure calculations.

  11. Ab initio calculations of reactions of light nuclei

    Science.gov (United States)

    Hupin, Guillaume; Quaglioni, Sofia; Navrátil, Petr

    2017-09-01

    An ab initio (i.e., from first principles) theoretical framework capable of providing a unified description of the structure and low-energy reaction properties of light nuclei is desirable as a support tool for accurate evaluations of crucial reaction data for nuclear astrophysics, fusion-energy research, and other applications. We present an efficient many-body approach to nuclear bound and scattering states alike, known as the ab initio no-core shell model with continuum. In this approach, square-integrable energy eigenstates of the A-nucleon system are coupled to (A-A)+A target-plus-projectile wave functions in the spirit of the resonating group method to obtain an efficient description of the many-body nuclear dynamics both at short and medium distances and at long ranges. We show that predictive results for nucleon and deuterium scattering on 4He nuclei can be obtained from the direct solution of the Schröedinger equation with modern nuclear potentials.

  12. Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Chaka, Anne M.; Felmy, Andrew R.

    2014-03-28

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  13. Ab initio thermodynamic model for magnesium carbonates and hydrates.

    Science.gov (United States)

    Chaka, Anne M; Felmy, Andrew R

    2014-09-04

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  14. Cosmic-Ray Modulation: an Ab Initio Approach

    Science.gov (United States)

    Engelbrecht, N. E.; Burger, R. A.

    2014-10-01

    A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three-dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented.

  15. Photoelectron spectroscopy and ab initio study of the doubly antiaromatic B(6) (2-) dianion in the LiB(6) (-) cluster.

    Science.gov (United States)

    Alexandrova, Anastassia N; Boldyrev, Alexander I; Zhai, Hua-Jin; Wang, Lai-Sheng

    2005-02-01

    A metal-boron mixed cluster LiB(6) (-) was produced and characterized by photoelectron spectroscopy and ab initio calculations. A number of electronic transitions were observed and used to compare with theoretical calculations. An extensive search for the global minimum of LiB(6) (-) was carried out via an ab initio genetic algorithm technique. The pyramidal C(2v) ((1)A(1)) molecule was found to be the most stable at all levels of theory. The nearest low-lying isomer was found to be a triplet C(2) ((3)B) structure, 9.2 kcal/mol higher in energy. Comparison of calculated detachment transitions from LiB(6) (-) and the experimental photoelectron spectra confirmed the C(2v) pyramidal global minimum structure. Natural population calculation revealed that LiB(6) (-) is a charge-transfer complex, Li(+)B(6) (2-), in which Li(+) and B(6) (2-) interact in a primarily ionic manner. Analyses of the molecular orbitals and chemical bonding of B(6) (2-) showed that the planar cluster is twofold (pi- and sigma-) antiaromatic, which can be viewed as the fusion of two aromatic B(3) (-) units.

  16. Ab initio and relativistic DFT study of spin-rotation and NMR shielding constants in XF6 molecules, X = S, Se, Te, Mo, and W

    Science.gov (United States)

    Ruud, Kenneth; Demissie, Taye B.; Jaszuński, Michał

    2014-05-01

    We present an analysis of the spin-rotation and absolute shielding constants of XF6 molecules (X = S, Se, Te, Mo, W) based on ab initio coupled cluster and four-component relativistic density-functional theory (DFT) calculations. The results show that the relativistic contributions to the spin-rotation and shielding constants are large both for the heavy elements as well as for the fluorine nuclei. In most cases, incorporating the computed relativistic corrections significantly improves the agreement between our results and the well-established experimental values for the isotropic spin-rotation constants and their anisotropic components. This suggests that also for the other molecules, for which accurate and reliable experimental data are not available, reliable values of spin-rotation and absolute shielding constants were determined combining ab initio and relativistic DFT calculations. For the heavy nuclei, the breakdown of the relationship between the spin-rotation constant and the paramagnetic contribution to the shielding constant, due to relativistic effects, causes a significant error in the total absolute shielding constants.

  17. Ab initio and relativistic DFT study of spin–rotation and NMR shielding constants in XF{sub 6} molecules, X = S, Se, Te, Mo, and W

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø (Norway); Demissie, Taye B. [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø (Norway); Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44 (Poland); Jaszuński, Michał, E-mail: michal.jaszunski@icho.edu.pl [Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44 (Poland)

    2014-05-21

    We present an analysis of the spin–rotation and absolute shielding constants of XF{sub 6} molecules (X = S, Se, Te, Mo, W) based on ab initio coupled cluster and four-component relativistic density-functional theory (DFT) calculations. The results show that the relativistic contributions to the spin–rotation and shielding constants are large both for the heavy elements as well as for the fluorine nuclei. In most cases, incorporating the computed relativistic corrections significantly improves the agreement between our results and the well-established experimental values for the isotropic spin–rotation constants and their anisotropic components. This suggests that also for the other molecules, for which accurate and reliable experimental data are not available, reliable values of spin–rotation and absolute shielding constants were determined combining ab initio and relativistic DFT calculations. For the heavy nuclei, the breakdown of the relationship between the spin–rotation constant and the paramagnetic contribution to the shielding constant, due to relativistic effects, causes a significant error in the total absolute shielding constants.

  18. Close shell interactions in 3-ethoxycarbonyl-4-hydroxy-6-methoxymethyleneoxy-1-methyl-2-quinolone: 100 K single crystal neutron diffraction study and ab initio calculations

    Science.gov (United States)

    Pozzi, C. G.; Fantoni, A. C.; Goeta, A. E.; Wilson, C. C.; Autino, J. C.; Punte, G.

    2005-10-01

    The molecular and crystal structures of the title compound have been determined from a single crystal neutron diffraction experiment at 100 K. A comparison between the main geometrical features and related properties of the in-crystal and the ab initio optimized free molecule structures has shown that crystal packing induces a significant distortion in the molecular geometry. Packing instead would only have a moderate effect on the observed intramolecular resonance assisted hydrogen bond. Supermolecular ab initio molecular orbital calculations have been performed on the six different dimers one molecule forms with its nine nearest neighbours. The obtained results clearly show that dispersion contributions dominate in the most strongly interacting dimers, in good qualitative accord with the predictions made by using different empirical potentials. A qualitative description of the most prominent inductive effects determined from the electron density deformation upon dimer formation is presented. Topological analyses of the dimers charge densities have been performed in the framework of the Bader's AIM theory and all the intermolecular bond critical points have been identified. An attempt to determine some of the interaction energies only from topological quantities made evident the practical limitations of such an approach.

  19. Structural and vibrational study of 2-MethoxyEthylAmmonium Nitrate (2-OMeEAN): Interpretation of experimental results with ab initio molecular dynamics

    Science.gov (United States)

    Campetella, M.; Bovi, D.; Caminiti, R.; Guidoni, L.; Bencivenni, L.; Gontrani, L.

    2016-07-01

    In this work we report an analysis of the bulk phase of 2-methoxyethylammonium nitrate based on ab initio molecular dynamics. The structural and dynamical features of the ionic liquid have been characterized and the computational findings have been compared with the experimental X-ray diffraction patterns, with infrared spectroscopy data, and with the results obtained from molecular dynamics simulations. The experimental infrared spectrum was interpreted with the support of calculated vibrational density of states as well as harmonic frequency calculations of selected gas phase clusters. Particular attention was addressed to the high frequency region of the cation (ω > 2000 cm-1), where the vibrational motions involve the NH3+ group responsible for hydrogen bond formation, and to the frequency range 1200-1400 cm-1 where the antisymmetric stretching mode (ν3) of nitrate is found. Its multiple absorption lines in the liquid arise from the removal of the degeneracy present in the D3h symmetry of the isolated ion. Our ab initio molecular dynamics leads to a rationalization of the frequency shifts and splittings, which are inextricably related to the structural modifications induced by a hydrogen bonding environment. The DFT calculations lead to an inhomogeneous environment.

  20. Pressure effects on the electronic and magnetic properties of Ga{sub x}V{sub 1-x}N compounds: Ab-initio study

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Hernandez, Rafael [GFMC, Departamento de Fisica, Universidad del Norte, A.A. 1569, Barranquilla (Colombia); GEMA, Departamento de Fisica, Universidad Nacional de Colombia, A.A. 5997, Bogota (Colombia)], E-mail: rgonzalezh@unal.edu.co; Lopez Perez, William [GFMC, Departamento de Fisica, Universidad del Norte, A.A. 1569, Barranquilla (Colombia)], E-mail: wlopez@uninorte.edu.co; Fajardo, F. [GEMA, Departamento de Fisica, Universidad Nacional de Colombia, A.A. 5997, Bogota (Colombia); Rodriguez M, Jairo Arbey [GEMA, Departamento de Fisica, Universidad Nacional de Colombia, A.A. 5997, Bogota (Colombia)], E-mail: jarodriguezm@bt.unal.edu.co

    2009-07-25

    We report an ab-initio study of the pressure effects on the electronic and the magnetic properties of Ga{sub x}V{sub 1-x}N compounds (x=0.25, 0.50 and 0.75) in wurtzite-derived structures. We use the full-potential linearized augmented plane wave plus local orbitals method (LAPW + lo) within of the spin density functional theory framework. The lattice constant is found to vary linearly with Ga-concentration. The magnetic moment changes for a critical pressure. At x=0.75, a rather abrupt onset of the magnetic moment from 0 to 2 {mu}{sub B} at P{sub cr}{approx}22.8 GPa is observed. For x=0.25 and 0.50 Ga concentrations, the magnetic moment increases gradually when the pressure decreases toward the equilibrium value. We study the transition pressure dependence to a ferromagnetic phase near the onset of magnetic moment for each Ga{sub x}V{sub 1-x}N compounds. The calculation of the density of states with Ga concentration is carried out considering two spin polarizations. The results reveal that for x=0.75 the compound behaves as a conductor for the spin-up polarization and that the density of states for spin-down polarization is zero at the Fermi level. At this concentration the compound presents a half metallic behavior; therefore this material could be potentially useful as spin injector. At high pressures P>P{sub cr} the compounds exhibit a metallic behavior.