Ab Initio Study on Hypothetical Silver Nitride
Institute of Scientific and Technical Information of China (English)
DELIGOZ Engin; COLAKOGLU Kemal; CIFTCI Yasemin Oztekin
2008-01-01
We perform the ab initio calculations based on norm-conserving pseudopotentials and density functional theory to investigate the structural, elastic, and thermodynamical properties for silver nitride (AgN) compound that is a member of the 4d transition metal group and has not been synthesized yet. The obtained results are compared with the other available theoretical data, and the agreement is, generally, quite good. We also present the pressure-dependent behaviour of some mechanical and thermodynamical properties for the same compounds.
Ab Initio Studies of Stratospheric Ozone Depletion Chemistry
Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
Ab initio Study of He Stability in hcp-Ti
Institute of Scientific and Technical Information of China (English)
DAI Yun-Ya; YANG Li; PENG Shu-Ming; LONG Xing-Gui; GAO Fei; ZU Xiao-Tao
2010-01-01
@@ The stability of He in hcp-Ti is studied using the ab initio method based on the density functional theory.The results indicate that a single He atom prefers to occupy the tetrahedral site rather than the octahedral site.The interaction of He defects with Ti atoms is employed to explain the relative stabilities of He point defects in hcp-Ti.The relative stability of He defects in hcp-Ti is useful for He clustering and bubble nucleation in metal tritides,which provides the basis for development of improved atomistic models.
Polymeric nitrogen in a graphene matrix: An ab initio study
Timoshevskii, V.; Ji, Wei; Abou-Rachid, Hakima; Lussier, Louis-Simon; Guo, H.
2009-09-01
A hybrid material where polymeric nitrogen chains are sandwiched between graphene sheets in the form of a three-dimensional crystal, is predicted by means of ab initio simulations. It is demonstrated that chainlike polymeric nitrogen phase becomes stable at ambient pressure when intercalated in a multilayer graphene matrix. The physical origin of this stabilization is identified by studying the electronic properties of the system. This approach of stabilizing polymeric nitrogen by means of external three-dimensional matrix constitutes a path toward synthesizing different types of nitrogen-based high-energy materials.
Relaxation of Small Molecules: an ab initio Study
Institute of Scientific and Technical Information of China (English)
CAO Yi-Gang; JIAO Zheng-Kuan; A. Antons; K. Schroeder; S. Blügel2
2002-01-01
Using an ab initio total energy and force method, we have relaxed several group IV and group V elementalclusters, in detail the arsenic and antimony dimers, silicon, phosphorus, arsenic and antimony tetramers. The obtainedbond lengths and cohesive energies are more accurate than other calculating methods, and in excellent agreement withthe experimental results.
Molecular ion LiHe+: ab initio study
International Nuclear Information System (INIS)
Highlights: ► Excited electronic states of LiHe+ are studied. ► Potential energy curves of thirteen states are calculated. ► Dipole moment and transition dipole moment functions are determined. ► Basic spectroscopic properties of the electronic states are derived. - Abstract: High level ab initio calculations are performed on the molecular ion LiHe+. Potential energy curves for the low-lying singlet and triplet electronic states are calculated using the multi-reference configuration interaction and single-reference coupled cluster methods with large basis sets. The corresponding dipole moments and transition dipole moments functions are also determined. The basic spectroscopic properties and excitation energies of the electronic states are derived from rovibrational bound state calculations.
Ab Initio Study of KCl and NaCl Clusters
Brownrigg, Clifton; Hira, Ajit; Pacheco, Jose; Salazar, Justin
2013-03-01
We continue our interest in the theoretical study of molecular clusters to examine the chemical properties of small KnCln and NanCln clusters (n = 2 - 15). The potentially important role of these molecular species in biochemical and medicinal processes is well known. This work applies the hybrid ab initio methods of quantum chemistry to derive the different alkali-halide (MnHn) geometries. Of particular interest is the competition between hexagonal ring geometries and rock salt structures. Electronic energies, rotational constants, dipole moments, and vibrational frequencies for these geometries are calculated. Magic numbers for cluster stability are identified and are related to the property of cluster compactness. Mapping of the singlet, triplet, and quintet, potential energy surfaces is performed. Calculations have been performed to examine the interactions of these clusters with some atoms and molecules of biological interest, including O, O2, and Fe. The potential for design of new medicinal drugs is explored.
Serine Proteases an Ab Initio Molecular Dynamics Study
De Santis, L
1999-01-01
In serine proteases (SP's), the H-bond between His-57 and Asp-102, and that between Gly-193 and the transition state intermediate play a crucial role for enzymatic function. To shed light on the nature of these interactions, we have carried out ab initio molecular dynamics simulations on complexes representing adducts between the reaction intermediate and elastase (one protein belonging to the SP family). Our calculations indicate the presence of a low--barrier H-bond between His-57 and Asp-102, in complete agreement with NMR experiments on enzyme--transition state analog complexes. Comparison with an ab initio molecular dynamics simulation on a model of the substrate--enzyme adduct indicates that the Gly-193--induced strong stabilization of the intermediate is accomplished by charge/dipole interactions and not by H-bonding as previously suggested. Inclusion of the protein electric field in the calculations does not affect significantly the charge distribution.
Tailoring magnetoresistance at the atomic level: An ab initio study
Tao, Kun
2012-01-05
The possibility of manipulating the tunneling magnetoresistance (TMR) of antiferromagnetic nanostructures is predicted in the framework of ab initio calculations. By the example of a junction composed of an antiferromagnetic dimer and a spin-polarized scanning tunneling microscopy tip we show that the TMR can be tuned and even reversed in sign by lateral and vertical movements of the tip. Moreover, our finite-bias calculations demonstrate that the magnitude and the sign of the TMR can also be tuned by an external voltage. © 2012 American Physical Society.
Ab initio study of neutron drops with chiral Hamiltonians
Directory of Open Access Journals (Sweden)
H.D. Potter
2014-12-01
Full Text Available We report ab initio calculations for neutron drops in a 10 MeV external harmonic-oscillator trap using chiral nucleon–nucleon plus three-nucleon interactions. We present total binding energies, internal energies, radii and odd–even energy differences for neutron numbers N=2–18 using the no-core shell model with and without importance truncation. Furthermore, we present total binding energies for N=8,16,20,28,40,50 obtained in a coupled-cluster approach. Comparisons with quantum Monte Carlo results, where available, using Argonne v8′ with three-nucleon interactions reveal important dependences on the chosen Hamiltonian.
Ab-initio study of transition metal hydrides
Energy Technology Data Exchange (ETDEWEB)
Sharma, Ramesh [Dept. of Physics, Feroze Gandhi Insititute of Engineering and Technology, Raebareli-229001 (India); Shukla, Seema, E-mail: sharma.yamini62@gmail.com; Dwivedi, Shalini, E-mail: sharma.yamini62@gmail.com; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com [Theoretical Condensed Matter Physics Laboratory, Dept. of Physics Feroze Gandhi College, Raebareli-229001 (India)
2014-04-24
We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.
Ab initio study of phase equilibria in TiCx
DEFF Research Database (Denmark)
Korzhavyi, P.A.; Pourovskii, L.V.; Hugosson, H.W.;
2002-01-01
The phase diagram for the vacancy-ordered structures in the substoichiometric TiCx (x = 0.5-1.0) has been established from Monte Carlo simulations with the long-range pair and multisite effective interactions obtained from ab initio calculations. Three ordered superstructures of vacancies (Ti2C, Ti......3C2, and Ti6C5) are found to be ground state configurations. Their stability has been verified by full-potential total energy calculations of the fully relaxed structures....
Lithium Insertion In Silicon Nanowires: An ab Initio Study
Zhang, Qianfan
2010-09-08
The ultrahigh specific lithium ion storage capacity of Si nanowires (SiNWs) has been demonstrated recently and has opened up exciting opportunities for energy storage. However, a systematic theoretical study on lithium insertion in SiNWs remains a challenge, and as a result, understanding of the fundamental interaction and microscopic dynamics during lithium insertion is still lacking. This paper focuses on the study of single Li atom insertion into SiNWs with different sizes and axis orientations by using full ab initio calculations. We show that the binding energy of interstitial Li increases as the SiNW diameter grows. The binding energies at different insertion sites, which can be classified as surface, intermediate, and core sites, are quite different. We find that surface sites are energetically the most favorable insertion positions and that intermediate sites are the most unfavorable insertion positions. Compared with the other growth directions, the [110] SiNWs with different diameters always present the highest binding energies on various insertion locations, which indicates that [110] SiNWs are more favorable by Li doping. Furthermore, we study Li diffusion inside SiNWs. The results show that the Li surface diffusion has a much higher chance to occur than the surface to core diffusion, which is consistent with the experimental observation that the Li insertion in SiNWs is layer by layer from surface to inner region. After overcoming a large barrier crossing surface-to-intermediate region, the diffusion toward center has a higher possibility to occur than the inverse process. © 2010 American Chemical Society.
Ab initio and kinetic modeling studies of formic acid oxidation
DEFF Research Database (Denmark)
Marshall, Paul; Glarborg, Peter
2015-01-01
A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism ...... as the fate of HOCO, determines the oxidation rate of formic acid. At lower temperatures HO2, formed from HOCO + O2, is an important chain carrier and modeling predictions become sensitive to the HOCHO + HO2 reaction. © 2014 The Combustion Institute.......A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...... on calculations with the kinetic model. Formic acid is consumed mainly by reaction with OH, yielding OCHO, which dissociates rapidly to CO2 + H, and HOCO, which may dissociate to CO + OH or CO2 + H, or react with H, OH, or O2 to form more stable products. The branching fraction of the HOCHO + OH reaction, as well...
Ab initio study of the transition-metal carbene cations
Institute of Scientific and Technical Information of China (English)
李吉海; 冯大诚; 冯圣玉
1999-01-01
The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH2+ were investigated by ab initio molecular orbital theory （HF/LANL2DZ）. All of MCH2+ are coplanar. In the closed shell structures the C bonds to M with double bonds; while in the open shell structures the partial double bonds are formed, because one of the σ and π orbitals is singly occupied. It is mainly the π-type overlap between the 2px orbital of C and 4px, 3dxz, orbitals of M+ that forms the π orbitals. The dissociation energies of C—M bond appear in periodic trend from Sc to Cu. Most of the calculated bond dissociation energies are close to the experimental ones.
Highly anisotropic thermal conductivity of arsenene: An ab initio study
Zeraati, Majid; Vaez Allaei, S. Mehdi; Abdolhosseini Sarsari, I.; Pourfath, Mahdi; Donadio, Davide
2016-02-01
Elemental two-dimensional (2D) materials exhibit intriguing heat transport and phononic properties. Here we have investigated the lattice thermal conductivity of newly proposed arsenene, the 2D honeycomb structure of arsenic, using ab initio calculations. Solving the Boltzmann transport equation for phonons, we predict a highly anisotropic thermal conductivity of 30.4 and 7.8 W/mK along the zigzag and armchair directions, respectively, at room temperature. Our calculations reveal that phonons with mean free paths between 20 nm and 1 μ m provide the main contribution to the large thermal conductivity in the zigzag direction; mean free paths of phonons contributing to heat transport in the armchair directions range between 20 and 100 nm. The obtained anisotropic thermal conductivity and feasibility of synthesis, in addition to high electron mobility reported elsewhere, make arsenene a promising material for nanoelectronic applications and thermal management.
Ab initio study of II-(VI){sub 2} dichalcogenides
Energy Technology Data Exchange (ETDEWEB)
Olsson, P; Vidal, J; Lincot, D, E-mail: polsson@kth.se [Institut de R and D sur l' energie photovoltaique (IRDEP), UMR 7174-EDF-CNRS-ENSCP, 6 quai Watier, 78401 Chatou Cedex (France)
2011-10-12
The structural stabilities of the (Zn,Cd)(S,Se,Te){sub 2} dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe{sub 2} pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications. (paper)
Ab initio Molecular Dynamics Study on Small Carbon Nanotubes
Institute of Scientific and Technical Information of China (English)
叶林晖; 刘邦贵; 王鼎盛
2001-01-01
Ab initio molecular dynamics simulations are performed on small single wall nanotubes. By structural relaxation,the equilibrium C-C bond lengths and bond angles are determined. Our result shows that for both zigzag and armchair nanotubes there are two nonequivalent bond lengths. One bond stretches from that of the graphene sheet, while the other shrinks. Small variations on bond angles are also shown. Energy bands are calculated for the optimized structures. It is found that the intrinsic curvature of the very small nanotube greatly modifies the energy band which can no longer be well described in the tight-binding zone-folding picture. In our calculation very small nanotubes are metallic. The energy per atom fits quite well with the relation of E(R) = E0 + f/R2 even for the extreme small radius. The implications of the results on the properties of small nanotubes are discussed.
Ab initio studies of phoshorene island single electron transistor.
Ray, S J; Venkata Kamalakar, M; Chowdhury, R
2016-05-18
Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications. PMID:27093536
Ab initio studies of phosphorene island single electron transistor
Ray, S. J.; Venkata Kamalakar, M.; Chowdhury, R.
2016-05-01
Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications.
An ab initio study of plutonium oxides surfaces; Etude ab initio des surfaces d'oxydes de Pu
Energy Technology Data Exchange (ETDEWEB)
Jomard, G.; Bottin, F.; Amadon, B
2007-07-01
By means of first-principles calculations, we have studied the atomic structure as well as the thermodynamic stability of various plutonium dioxide surfaces in function of their environment (in terms of oxygen partial pressure and temperature). All these simulations have been performed with the ABINIT code. It is well known that DFT fails to describe correctly plutonium-based materials since 5f electrons in such systems are strongly correlated. In order to go beyond DFT, we have treated PuO{sub 2} and {beta}-Pu{sub 2}O{sub 3} in a DFT+U framework. We show that the couple of parameters (U,J) that works well for pure Pu is also well designed for describing ground state (GS) properties of these two oxides. The major improvement with respect with DFT is that we are able to predict an insulating GS in agreement with experiments. The presence of a gap in the DOS (Density of States) of plutonium oxides should play a significant role in the predicted surface reactivity. However, performing DFT+U calculations on surfaces of plutonium oxide from scratch was too ambitious. That is why we decided, as a first step, to study the stability of the (100), (110) and (111) surfaces of PuO{sub 2} in a DFT-GGA framework. For each of these orientations, we considered various terminations. These ab initio results have been introduced in a thermodynamic model which allows us to predict the relative stability of the different terminations as a function of temperature and oxygen partial pressure (p{sub O{sub 2}}). We conclude that at room temperature and for p{sub O{sub 2}}{approx}10 atm., the polar O{sub 2}-(100) termination is favoured. The stabilization of such a polar stoichiometric surface is surprising and should be confirmed by DFT+U calculations before any final conclusion. (authors)
An ab initio study on single electron transfer between ClO2 and phenol
Institute of Scientific and Technical Information of China (English)
崔崇威; 黄君礼
2004-01-01
The SET mechanism between chlorine dioxide (ClO2 ) and phenol was studied by using ab initio method at 4-31G* level. Geometries of the reactants, intermediate and products of the reaction were optimized and the single point energy calculations of the species were performed. The relative structure data of the reactants, intermediate and products are given. The SET mechanism between ClO2 and phenol was confirmed by ab initio calculations. The reaction is exothermic about 200. 88 k J/mol.
Relativistic ab initio spectroscopy study of forbidden lines of singly ionized zinc
Dixit, Gopal; Sahoo, Bijaya K.; Chaudhuri, Rajat K.; Majumder, Sonjoy
2009-01-01
The ab initio calculation has been carried out to study the astrophysically important forbidden electromagnetic transition rates of singly ionized zinc (Zn II). Electron correlations are considered to all orders using coupled-cluster theory in the relativistic framework. Calculated excitation energi
The Pu–U–Am system: An ab initio informed CALPHAD thermodynamic study
Energy Technology Data Exchange (ETDEWEB)
Perron, A., E-mail: perron1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Turchi, P.E.A.; Landa, A.; Söderlind, P. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Ravat, B.; Oudot, B.; Delaunay, F. [CEA-Centre de Valduc, 21120 Is sur Tille (France)
2015-03-15
Highlights: • The ab initio informed CALPHAD assessment of the Am–U system has been realized. • A strong tendency toward phase separation across the whole composition range is predicted. • The ab initio informed Pu–U–Am thermodynamic database has been developed. • The solubility of Am and U in the liquid phase is improved by adding Pu. • The δ-Pu (fcc) phase is strongly stabilized by Am, on the contrary to the bcc phase. - Abstract: Phase diagram and thermodynamic properties of the Am–U system, that are experimentally unknown, are calculated using the CALPHAD method with input from ab initio electronic-structure calculations for the fcc and bcc phases. A strong tendency toward phase separation across the whole composition range is predicted. In addition, ab initio informed Pu–U and Am–Pu thermodynamic assessments are combined to build a Pu–U–Am thermodynamic database. Regarding the Pu-rich corner of the ternary system, predictions indicate that Am acts as a powerful δ-Pu (fcc) stabilizer. In the U-rich corner, similar predictions are made but to a lesser extent. In both cases, the bcc phase is destabilized and the fcc phase is enhanced. Finally, results and methodology are discussed and compared with previous assessments and guidelines are provided for further experimental studies.
Relaxation of Small Molecules：an ab initio Study
Institute of Scientific and Technical Information of China (English)
CAOYi－Gang; A.Antons; 等
2002-01-01
Using an ab inito total energy and force method,we have relaxed several group IV and group V elemental clusters,in detail the arsenic and antimony dimers,silicon,phosphorus,arsenic and antimony tetraners,The obtained bond lengths and cohesive energies are more accurate than other calculating methods,and in excellent agreement with the experimental results.
Ab initio studies of equations of state and chemical reactions of reactive structural materials
Zaharieva, Roussislava
subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio techniques or quantum mechanics based approaches consists of the ab initio or ab initio-molecular dynamics studies in related fields that contain a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: (1) Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. (2) Equations of state of mixtures of reactive material structures from ab initio methods. (3) Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated
Ab Initio Study on the Anti-HIV Activities of Hydroxyflavones
Institute of Scientific and Technical Information of China (English)
ZHANG Yu
2005-01-01
Flavone and 95 hydroxyflavones have been studied with ab initio method, and their total energies, atomic charges, dipole moments, multipole moments, molecular orbital compositions, orbital energies etc. were obtained. Among them the relationship between total atomic charges and activities against HIV is basically in accordance with the experimental results. The beneficial references are provided for the extraction and synthesis of strong active anti-HIV medicines.
Ab Initio Studies on Hematite Surface and the Adsorption of Phosphate
Swati Chaudhury; Chandrika Varadachari; Kunal Ghosh
2014-01-01
This investigation explores the ab initio DFT method for understanding surface structure of hematite and the nature and energetics of phosphate adsorption. Using the full potential linearized plane wave method (FP-LAPW), we derived the structure and energies of various magnetic forms of hematite. The antiferromagnetic (AFM) form was observed to be the most stable. Hematite surfaces with Fe-termination, O-termination, or OH-termination were studied. The OH-terminated surface was the most stabl...
Ab initio study on the magnetostructural properties of MnAs
Sanvito, Stefano; RUNGGER, IVAN
2006-01-01
The magnetic and structural properties of MnAs are studied with ab initio methods, and by mapping total energies onto a Heisenberg model. The stability of the different phases is found to depend mainly on the volume and on the amount of magnetic order, confirming previous experimental findings and phenomenological models. It is generally found that for large lattice constants the ferromagnetic state is favored, whereas for small lattice constants different antiferromagnetic states can be stab...
Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2016-05-01
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg10In90, Hg30In70,. Hg50In50, Hg70In30, and Hg90Pb10) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.
Liquid Be, Ca and Ba. An orbital-free ab-initio molecular dynamics study
Energy Technology Data Exchange (ETDEWEB)
Rio, B. G. del; González, L. E. [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid (Spain)
2015-08-17
Several static and dynamic properties of liquid beryllium (l-Be), liquid calcium (l-Ca) and liquid barium (l-Ba) near their triple point have been evaluated by the orbital-free ab initio molecular dynamics method (OF-AIMD), where the interaction between valence electrons and ions is described by means of local pseudopotentials. These local pseudopotentials used were constructed through a force-matching process with those obtained from a Kohn-Sham ab initio molecular dynamics study (KS-AIMD) of a reduced system with non-local pseudopotentials. The calculated static structures show good agreement with the available experimental data, including an asymmetric second peak in the structure factor which has been linked to the existence of a marked icosahedral short-range order in the liquid. As for the dynamic properties, we obtain collective density excitations whose associated dispersion relations exhibit a positive dispersion.
Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Sharma, Nalini; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University, Shimla(HP)-171005 (India); Thakur, Anil [Department of Physics, Govt. P. G. College Solan (HP)-173212 (India)
2015-05-15
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.
Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics
International Nuclear Information System (INIS)
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg10In90, Hg30In70, Hg50In50, Hg70In30 and Hg90In10) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys
Silicene on metal and metallized surfaces: ab initio studies
International Nuclear Information System (INIS)
The deposition of silicene on several metals is investigated. For fcc crystals the (111) surfaces while for hexagonal ones the (0001) surfaces are used. The Ca(111)1 × 1 substrate is found to be the most promising candidate. The silicene adsorption on Ca-functionalized Si(111)1 × 1 and 2 × 1 surfaces is also studied. The 1 × 1 substrates lead to overlayer silicene with hexagonal symmetry and Dirac cones. However, the Dirac points are below the Fermi level, and small energy gaps are opened. In the case of 2 × 1 surfaces, strong lattice relaxation occurs. Only rudiments of conical linear bands remain visible. (paper)
Ab initio molecular dynamics study of liquid methanol
Handgraaf, J W; Meijer, E J; Handgraaf, Jan-Willem; Erp, Titus S. van; Meijer, Evert Jan
2003-01-01
We present a density-functional theory based molecular-dynamics study of the structural, dynamical, and electronic properties of liquid methanol under ambient conditions. The calculated radial distribution functions involving the oxygen and hydroxyl hydrogen show a pronounced hydrogen bonding and compare well with recent neutron diffraction data, except for an underestimate of the oxygen-oxygen correlation. We observe that, in line with infrared spectroscopic data, the hydroxyl stretching mode is significantly red-shifted in the liquid. A substantial enhancement of the dipole moment is accompanied by significant fluctuations due to thermal motion. Our results provide valuable data for improvement of empirical potentials.
Ab Initio Study of Electronic States of Astrophysically Important Molecules
Valiev, R. R.; Berezhnoy, A. A.; Minaev, B. F.; Chernov, V. E.; Cherepanov, V. N.
2016-08-01
A study of electronic states of LiO, NaO, KO, MgO, and CaO molecules has been performed. Potential energy curves of the investigated molecules have been constructed within the framework of the XMC-QDPT2 method. Lifetimes and efficiencies of photolysis mechanisms of these monoxides have been estimated within the framework of an analytical model of photolysis. The results obtained show that oxides of the considered elements in the exospheres of the Moon and Mercury are destroyed by solar photons during the first ballistic flight.
Ab initio studies of isolated hydrogen vacancies in graphane
Mapasha, R. E.; Molepo, M. P.; Chetty, N.
2016-05-01
We present a density functional study of various hydrogen vacancies located on a single hexagonal ring of graphane (fully hydrogenated graphene) considering the effects of charge states and the position of the Fermi level. We find that uncharged vacancies that lead to a carbon sublattice balance are energetically favorable and are wide band gap systems just like pristine graphane. Vacancies that do create a sublattice imbalance introduce spin polarized states into the band gap, and exhibit a half-metallic behavior with a magnetic moment of 1.00 μB per vacancy. The results show the possibility of using vacancies in graphane for novel spin-based applications. When charging such vacancy configurations, the deep donor (+1/0) and deep acceptor (0/-1) transition levels within the band gap are noted. We also note a half-metallic to metallic transition and a significant reduction of the induced magnetic moment due to both negative and positive charge doping.
Ab-initio study of thermal expansion in pure graphene
Mann, Sarita; Rani, Pooja; Kumar, Ranjan; Jindal, V. K.
2016-05-01
Graphene is a zero band gap semiconductor with exceptionally high thermal conductivity. The electronic properties having been studied, therole of phonon in contributing to thermal expansion, thermal conductivity and other thermodynamic properties, is required to be investigated. This paper focuses more on thermal expansion. Some others results like phonon dispersion, Grüneisenparameters and bulk modulus,which are essential to estimation of thermal expansion, are also presented. The dynamical matrix was calculated using VASP code using both DFT and DFPTand the phonon frequencies were calculated using phonopy code under harmonic approximation. The linear thermal expansion coefficient of graphene is found to be strongly dependent on temperature but remains negative upto 470 K and positive thereafter, with a room temperature value of -1.44×10-6. The negative expansion coefficient is very interesting and is found to be in conformity with experimental as well as with recent theoretical estimates. There is only qualitative agreement of our results with experimental data and motivates further investigation, primarily on the high negative values of Grüneisen parameters.
Ab initio study of tungsten defects near the surface
Guerrero, C. L.; Gordillo, N.; Iglesias, R.; Perlado, J. M.; Gonzalez, C.
2016-05-01
A first principles analysis of the behaviour of point defects, namely, self-interstitial atoms, a single vacancy and light impurity atoms such as H and He in tungsten is reported. These defects can be produced in the first wall of the future nuclear fusion reactors due to the high radiation fluxes present. The evolution of defects that appear in the bulk and end up reaching the surface has been followed. An energetic study has been combined with a detailed charge density analysis of the system by means of the SIESTA code. The resulting data have been validated by confronting them with those obtained with a more precise plane wave code, namely VASP. Meanwhile, the structural and the mechanical properties of the system have been positively compared with experimental measurements. Such comparisons have led us to present a new SIESTA basis for tungsten. This complete analysis establishes a nanoscopic view of the phenomena involving the presence of light atoms at native defects in tungsten, paying special attention to the vicinity of surfaces.
Ab initio Study of Naptho-Homologated DNA Bases
Energy Technology Data Exchange (ETDEWEB)
Sumpter, Bobby G [ORNL; Vazquez-Mayagoitia, Alvaro [ORNL; Huertas, Oscar [Universitat de Barcelona; Fuentes-Cabrera, Miguel A [ORNL; Orozco, Modesto [Institut de Recerca Biomedica, Parc Cientific de Barcelona, Barcelona, Spain; Luque, Javier [Universitat de Barcelona
2008-01-01
Naptho-homologated DNA bases have been recently used to build a new type of size expanded DNA known as yyDNA. We have used theoretical techniques to investigate the structure, tautomeric preferences, base-pairing ability, stacking interactions, and HOMO-LUMO gaps of the naptho-bases. The structure of these bases is found to be similar to that of the benzo-fused predecessors (y-bases) with respect to the planarity of the aromatic rings and amino groups. Tautomeric studies reveal that the canonical-like form of naptho-thymine (yyT) and naptho-adenine (yyA) are the most stable tautomers, leading to hydrogen-bonded dimers with the corresponding natural nucleobases that mimic the Watson-Crick pairing. However, the canonical-like species of naptho-guanine (yyG) and naptho-cytosine (yyC) are not the most stable tautomers, and the most favorable hydrogen-bonded dimers involve wobble-like pairings. The expanded size of the naphto-bases leads to stacking interactions notably larger than those found for the natural bases, and they should presumably play a dominant contribution in modulating the structure of yyDNA duplexes. Finally, the HOMO-LUMO gap of the naptho-bases is smaller than that of their benzo-base counterparts, indicating that size-expansion of DNA bases is an efficient way of reducing their HOMO-LUMO gap. These results are examined in light of the available experimental evidence reported for yyT and yyC.
Hydrogen adsorption on boron doped graphene: an {\\it ab initio} study
Miwa, R. H.; Martins, T B; Fazzio, A.
2007-01-01
The electronic and structural properties of (i) boron doped graphene sheets, and (ii) the chemisorption processes of hydrogen adatoms on the boron doped graphene sheets have been examined by {\\it ab initio} total energy calculations.
DEFF Research Database (Denmark)
Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.;
2014-01-01
Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom....
An ab initio molecular dynamics study of the roaming mechanism of the H2+HOC+ reaction
Yu, Hua-Gen
2011-08-01
We report here a direct ab initio molecular dynamics study of the p-/o-H2+HOC+ reaction on the basis of the accurate SAC-MP2 potential energy surface. The quasi-classical trajectory method was employed. This work largely focuses on the study of reaction mechanisms. A roaming mechanism was identified for this molecular ion-molecule reaction. The driving forces behind the roaming mechanism were thoroughly investigated by using a trajectory dynamics approach. In addition, the thermal rate coefficients of the H2+HOC+ reaction were calculated in the temperature range [25, 300] K and are in good agreement with experiments.
DEFF Research Database (Denmark)
Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Rostrup-Nielsen, Jens;
2006-01-01
Mechanisms and energetics of graphene growth catalyzed by nickel nanoclusters were studied using ab initio density functional theory calculations. It is demonstrated that nickel step-edge sites act as the preferential growth centers for graphene layers on the nickel surface. Carbon is transported...... from the deposition site at the free nickel surface to the perimeter of the growing graphene layer via surface or subsurface diffusion. Three different processes are identified to govern the growth of graphene layers, depending on the termination of the graphene perimeter at the nickel surface...
Ab initio study of spin-dependent transport in carbon nanotubes with iron and vanadium adatoms
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka;
2008-01-01
We present an ab initio study of spin-dependent transport in armchair carbon nanotubes with transition metal adsorbates: iron or vanadium. The method based on density functional theory and nonequilibrium Green's functions is used to compute the electronic structure and zero-bias conductance...... (majority or minority) being scattered depends on the adsorbate and is explained in terms of d-state filling. We contrast the single-walled carbon nanotube results to the simpler case of the adsorbate on a flat graphene sheet with periodic boundary conditions and corresponding width in the zigzag direction...
Ab-initio density functional theory study of a WO3 NH3-sensing mechanism
Institute of Scientific and Technical Information of China (English)
Hu Ming; Zhang Jie; Wang Wei-Dan; Qin Yu-Xiang
2011-01-01
WO3 bulk and various surfaces are studied by an ab-initio density functional theory technique.The band structures and electronic density states of WO3 bulk are investigated.The surface energies of different WO3 surfaces are compared and then the(002)surface with minimum energy is computed for its NH3 sensing mechanism which explains the results in the experiments.Three adsorption sites are considered.According to the comparisons of the energy and the charge change between before and after adsorption in the optimal adsorption site O1c,the NH3 sensing mechanism is obtained.
Ab initio MO study of reaction mechanism for carbonyl migration of Co complex
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Ab initio method under the effective core potential (ECP) approximation is employed to study the reaction mechanism of carbonyl migration of the cycle of olefin hydroformylation catalyzed by a carbonyl cobalt HCo(CO)3 at Hartree-Fock (HF) level. The structures of the reactant, transition state and product for the reaction are determined. The energy of each stationary point is corrected at MP2/LAN2DZ//LANL2DZ+ZPE (zero-point energy) level. The calculated activation barrier is 28.89 kJ/mol.
Ab initio, density functional theory and structural studies of 4-amino-2-methylquinoline
Arjunan, V.; Saravanan, I.; Ravindran, P.; Mohan, S.
2009-10-01
The Fourier transform infrared (FTIR) and FT-Raman spectra of 4-amino-2-methylquinoline (AMQ) have been recorded in the range 4000-400 and 4000-100 cm -1, respectively. The experimental vibrational frequency was compared with the wavenumbers obtained theoretically by ab initio HF and DFT-B3LYP gradient calculations employing the standard 6-31G** and high level 6-311++G** basis sets for optimised geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compounds were carried out using the experimental FTIR and FT-Raman data, and quantum mechanical studies. The geometry and normal modes of vibration obtained from the HF and DFT methods are in good agreement with the experimental data. The potential energy distribution of the fundamental modes was calculated with ab initio force fields utilising Wilson's FG matrix method. The NH -π interactions and the influence of amino and methyl groups on the skeletal modes are investigated.
Comparative studies of the spectroscopy of CuCl2: DFT versus standard ab initio approaches.
Ramírez-Solís, A; Poteau, R; Vela, A; Daudey, J P
2005-04-22
The X2Pi g-2Sigma g+, X2Pi g-2Delta g, X2Pi g-2Sigma u+, X2Pi g-2Pi u transitions on CuCl2 have been studied using several exchange-correlation functionals from the various types of density functional theory (DFT) approaches like local density approximation (LDA), generalized gradient approximation (GGA), hybrid and meta-GGA. The results are compared with the experience and with those coming from the most sophisticated nondynamic and dynamic electronic correlation treatments using the same relativistic effective core potentials and especially developed basis sets to study the electronic structure of the five lowest states and the corresponding vertical and adiabatic transition energies. The calculated transition energies for three of the hybrid functionals (B3LYP, B97-2, and PBE0) are in very good agreement with the benchmark ab initio results and experimental figures. All of the other functionals largely overestimate the X2Pi g-2Sigma g+ and X2Pi g-2Delta g transition energies, many of them even placing the 2Delta g ligand field state above the charge transfer 2Pi u and 2Sigma u+ states. The relative weight of the Hartree-Fock exchange in the definition of the functional used appears to play a key role in the accurate description of the LambdaSSigma density defined by the orientation of the 3d hole (sigma, pi, or delta) on Cu in the field of both chlorine atoms, but no simple connection of this weight with the quality of the spectra has been found. Mulliken charges and spin densities are carefully analyzed; a possible link between the extent of spin density on the metal for the X2Pi g state and the performance of the various functionals was observed, suggesting that those that lead to the largest values (close to 0.65) are the ones that best reproduce these four transitions. Most functionals lead to a remarkably low ionicity for the three ligand field states even for the best performing functionals, compared to the complete active space (SCF) (21, 14) ab initio
Hydrogen-Water Mixtures in Giant Planet Interiors Studied with Ab Initio Simulations
Soubiran, Francois
2015-01-01
We study water-hydrogen mixtures under planetary interior conditions using ab initio molecular dynamics simulations. We determine the thermodynamic properties of various water-hydrogen mixing ratios at temperatures of 2000 and 6000 K for pressures of a few tens of GPa. These conditions are relevant for ice giant planets and for the outer envelope of the gas giants. We find that at 2000 K the mixture is in a molecular regime, while at 6000 K the dissociation of hydrogen and water is important and affects the thermodynamic properties. We study the structure of the liquid and analyze the radial distribution function. We provide estimates for the transport properties, diffusion and viscosity, based on autocorrelation functions. We obtained viscosity estimates of the order of a few tenths of mPa.s for the conditions under consideration. These results are relevant for dynamo simulations of ice giant planets.
Binding of TNT to amplifying fluorescent polymers: an ab initio and molecular dynamics study.
Enlow, Mark A
2012-03-01
Molecular modeling techniques were employed to study the interaction of trinitrotoluene with an amplifying fluorescent polymer used in explosive sensor devices. The pentiptycene moiety present in these polymers appears to be the most energetically favorable binding site for trinitrotoluene. Surface features of the polymer suggest that the small cavity feature of the pentiptycene moiety may be more available for binding to analyte compounds due to steric crowding about the large cavity. Binding energies between model binding sites of the polymer and various analyte compounds were more rigorously estimated by semiempirical and ab initio techniques. Binding energies were found to be largest with trinitrotoluene and other nitroaromatic compounds. Electrostatic and π-stacking interactions between trinitrotoluene and the model host were investigated by studying a series of modified host compounds.
Ab-initio study of magnetism behavior in TiO2 semiconductor with structural defects
Zarhri, Z.; Houmad, M.; Ziat, Y.; El Rhazouani, O.; Slassi, A.; Benyoussef, A.; El Kenz, A.
2016-05-01
Magnetic, electronic and structural properties of titanium dioxide material with different structural defects are studied using the first-principles ab-initio calculations and the Korringa-Kohn-Rostoker method (KKR) combined with the coherent potential approximation (CPA) method in connection with the local density approximation (LDA). We investigated all structural defects in rutile TiO2 such as Titanium interstitial (Tii), Titanium anti-sites (Tio), Titanium vacancies (VTi), Oxygen interstitial (Oi), Oxygen anti-sites (OTi) and oxygen vacancies (Vo). Mechanisms of hybridization and interaction between magnetic atoms are investigated. The transition temperature is computed using the Mean Field Approximation (MFA).Magnetic stability energy of ferromagnetic and disordered local moment states is calculated to determine the most stable state. Titanium anti-sites have a half-metallic aspect. We also studied the change type caused by structural defects in this material.
Tunneling of electrons via rotor-stator molecular interfaces: combined ab initio and model study
Petreska, Irina; Pejov, Ljupco; Kocarev, Ljupco
2015-01-01
Tunneling of electrons through rotor-stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons' formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that confirmation dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previ...
Raman and ab initio studies of simple and binary 1-alkyl-3-methylimidazolium ionic liquids
DEFF Research Database (Denmark)
Berg, R.W.; Deetlefs, M.; Seddon, K.R.;
2005-01-01
Raman spectra of the ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF6]), 1-hexyl-3-methylimidazolium chloride ([C(6)mim]Cl), and 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)mim][PF6]), and binary mixtures thereof, have been assigned using ab initio MP2...
Ab initio study of energy-level alignments in polymer-dye blends
Pasveer, W.F.; Bobbert, P.A.; Michels, M.A.J.; Langeveld-Voss, B.M.W.; Schoo, H.F.M.; Bastiaansen, J.J.A.M.
2003-01-01
Polymers with a small amount of dye blended in offer an attractive possibility to change the color of the emitted light by changing the dye. We present ab initio calculations within density-functional theory of the HOMO/ LUMO energies for dipyrrolomethane dyes, polyphenylenevinylene and polyfluorene
Study on the surface hydroxyl group on solid breeding materials by ab-initio calculations
Energy Technology Data Exchange (ETDEWEB)
Tanaka, Satoru; Taniguchi, Masaki [Tokyo Univ. (Japan). Faculty of Engineering
1996-10-01
The nature of -OH on the surface of Li{sub 2}O was analyzed with the ab-initio quantum chemical calculation technique. Calculation results showed that the stretching vibration of O-H is affected by the chemical species around the -OH. (author)
Structural and electronic properties of lead nanowires: Ab-initio study
International Nuclear Information System (INIS)
Highlights: → In the present revised manuscript entitled 'Structural and Electronic Properties of Lead Nanowires: Ab-initio study', we have analyzed the stability, electronic properties as well as ground state properties of various atomic configurations of Lead nanowires. → The two-atom zigzag shaped lead nanowire with highest binding energy and lowest total energy has been confirmed as the most stable structure out of the six atomic configurations taken into consideration. → The electronic band structure and density of states have been described in detail with a remarkable observation in case of three-atom triangular lead nanowire having a very small band gap while other atomic configurations are found to be metallic. → The bulk modulus and pressure derivatives for all the stable geometries have also been computed and discussed in the manuscript. The mechanical strength of nanowires has also been discussed in terms of its bulk modulus. → The two-atom ladder shaped nanowire with highest bulk modulus, defends this structure as mechanically stronger than the other tested structure. - Abstract: Ab-initio self-consistent study has been performed to analyze the stability of lead nanowires in its six stable configurations like linear, zigzag, triangular, ladder, square and dumbbell. In the present study, the lowest energy structures have been analyzed under the revised Perdew-Burke-Ernzerhof (revPBE) parameterization of generalized gradient approximation (GGA) potential. The two-atom zigzag shaped atomic configuration with highest binding energy and lowest total energy has been confirmed as the most stable structure out of the six atomic configurations. The electronic band structure and density of states have been discussed in detail with a remarkable observation in case of three-atom triangular lead nanowire having a very small band gap while other configurations are found to be metallic. Bulk modulus, pressure derivatives and lattice parameters for different
Ab Initio Studies on Hematite Surface and the Adsorption of Phosphate
Directory of Open Access Journals (Sweden)
Swati Chaudhury
2014-01-01
Full Text Available This investigation explores the ab initio DFT method for understanding surface structure of hematite and the nature and energetics of phosphate adsorption. Using the full potential linearized plane wave method (FP-LAPW, we derived the structure and energies of various magnetic forms of hematite. The antiferromagnetic (AFM form was observed to be the most stable. Hematite surfaces with Fe-termination, O-termination, or OH-termination were studied. The OH-terminated surface was the most stable. Stability of hematite surfaces follows the order OH-termination > Fe-termination > O-termination. Thus, surface reaction with hematite would occur with the OH at the surface and not with Fe atoms. The structure of phosphate adsorbed on hematite was derived. Bonding is through the H atom of the OH at the surface. An alternative mechanism of phosphate adsorption on hematite has been derived. Adsorption energy is high and suggests chemisorption rather than physisorption of phosphate on hematite.
Femtosecond Laser Processing of Germanium: An Ab Initio Molecular Dynamics Study
Ji, Pengfei
2016-01-01
An ab initio molecular dynamics study of femtosecond laser processing of germanium is presented in this paper. The method based on the finite temperature density functional theory is adopted to probe the structural change, thermal motion of the atoms, dynamic property of the velocity autocorrelation, and the vibrational density of states. Starting from a cubic system at room temperature (300 K) containing 64 germanium atoms with an ordered arrangement of 1.132 nm in each dimension, the femtosecond laser processing is simulated by imposing the Nose Hoover thermostat to the electronic subsystem lasting for ~100 fs and continuing with microcanonical ensemble simulation of ~200 fs. The simulation results show solid, liquid and gas phases of germanium under adjusted intensities of the femtosecond laser irradiation. We find the irradiated germanium distinguishes from the usual germanium crystal by analyzing their melting and dynamic properties.
Structural phase transition of CdTe: an ab initio study.
Alptekin, Sebahaddin
2013-01-01
A constant pressure ab initio MD technique and density functional theory with a generalized gradient approximation (GGA) was used to study the pressure-induced phase transition in zinc-blende CdTe. We found that CdTe undergoes a structural first-order phase transition to [Formula: see text] (binary β-tin) tetragonal structure in the constant pressure molecular dynamics simulation at 20 GPa. When the pressure was increased to 50 GPa, the phase of tetragonal structure converted to a new Imm2 orthorhombic structure. These phase transformations were also calculated by using the enthalpy calculations. Transition phases, lattice parameters and bulk properties we attained are comparable with experimental and theoretical data.
Pressure-induced phase transition in wurtzite ZnTe: an ab initio study.
Alptekin, Sebahaddin
2012-03-01
A constant pressure ab initio MD technique and density functional theory with a generalized gradient approximation (GGA) was used to study the pressure-induced phase transition in wurtzite ZnTe. A first-order phase transition from the wurtzite structure to a Cmcm structure was successfully observed in a constant-pressure molecular dynamics simulation. This phase transformation was also analyzed using enthalpy calculations. We also investigated the stability of wurtzite (WZ) and zinc-blende (ZB) phases from energy-volume calculations, and found that both structures show quite similar equations of state and transform into a Cmcm structure at 16 GPa using enthalpy calculations, in agreement with experimental observations. The transition phase, lattice parameters and bulk properties we obtained are comparable with experimental and theoretical data.
Wood, Brandon; Choi, Woon Ih; Schwegler, Eric; Ogitsu, Tadashi
2013-03-01
Photoelectrodes made of III-V semiconductors are known to exhibit very high solar-to-hydrogen conversion efficiency (from solar energy to chemical energy as H2 bond); however, photocorrosion of the electrode in electrolyte solution remains an issue. Based on ab-initio molecular dynamics simulations, we study the structure, stability, and chemical activity of GaP/InP(001) semiconductor electrodes in contact with water. We will show how surface oxygen and hydroxyl change the electronic and chemical properties of water at the interface, leading to the formation of a strong hydrogen-bond network where fast surface hydrogen transport seems to be realized. Implications from our findings will be discussed in detail at the presentation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344.
Ab initio study of heterojunction discontinuities in the ZnO/Cu2O system
Zemzemi, M.; Alaya, S.; Ben Ayadi, Z.
2014-06-01
Solar cells based on transparent conductive oxides such as ZnO/Cu2O constitute a very advanced way to build high-performance cells. In this work, we are interested in the characterization of the interface through nanoscale modeling based on ab initio approaches (density functional theory, local density approximation, and pseudopotential). This work aims to build a supercell containing a heterojunction ZnO/Cu2O and study the structural properties and the discontinuity of the valence band (band offset) from a semiconducting to another phase. We build a zinc oxide in the wurtzite structure along [0001] on which we place the copper oxide in the hexagonal (CdI2-type) structure. We choose the method of Van de Walle and Martin to calculate the energy offset. This approach fits well the density functional theory. Our calculation of the band offset gives a value that corresponds to other experimental and theoretical values.
An ab initio study of three (ethane-1,2 diol/water) complexes
Manivet, Philippe; Masella, Michel
1998-05-01
Three (ethane-1,2 diol/water) complexes have been studied using ab initio calculations at the MP2 level. In two complexes, the ethane-1,2 diol structure is close to its gas phase experimental structure (presence of an intramolecular hydrogen bond HB and the O-C-C-O dihedral angle is gauche) while the intramolecular HB is disrupted by the presence of a water molecule in the third ( tGg'a). Computations have shown that most of the experimental observations regarding the solvation of ethane-1,2 diol in water may be reproduced only by considering the tGg'a complex (absence of intramolecular HB, O-C-C-O dihedral angle of 72-74°), which is also more stable than the other two by 2 kcal mol -1.
Ab initio study of one-dimensional disorder on III-V semiconductor surfaces
Energy Technology Data Exchange (ETDEWEB)
Romanyuk, O. [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 00 Prague 6 (Czech Republic); Grosse, F.; Braun, W. [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)
2010-02-15
Atomic disorder on GaSb(001) and GaAs(001) surfaces is studied by ab initio calculations within density functional theory (DFT). Surface energies are computed for GaSb(001) {beta} (4 x 3), {beta} (4 x 3)A{sub 1}, (4 x 6), and GaAs(001) {beta} 2(2 x 4), c (4 x 4) reconstructions. The computed energy differences do not exceed 1 meV / (1 x 1) which is in agreement with observed one-dimensional disorder on GaSb(001) and GaAs(001) surfaces at elevated temperatures for {beta} and {beta} 2 stoichiometries, respectively. Deviations in bond lengths due to disorder with respect to the ordered ground state phases are calculated (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Molecular orbital ab initio and density functional theoretical study on reaction between PH2 and NO
Institute of Scientific and Technical Information of China (English)
胡正发; 王振亚; 李海洋; 周士康
2002-01-01
The theoretical study of reaction between PH2 and NO on the ground state potential energy surface is reported by using molecular orbital ab initio calculation and density function theory (DFT). Equilibrium structural parameters, harmonic vibrational frequencies, total energies and zero point energies of all species during reaction are computed by HF, MP2 (full) and B3LYP theory levels with the medium basis set 6-31G*. Theoretical results indicate that intermediate IM1(H2PNO) is firstly formed by overcoming a small energy barrier TS1, and then two four-membered ring transient states TS2 and TS5, with energy barriers 103.3 and 102.6 kJ/mol respectively,then H-migration and isomerization are completed and the products PN and H2O are formed. The reaction is exothermic one with -189.6 k J/mol released.
The CH3OH+Cl Hydrogen Abstraction Reactions: An ab initio Study
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The two channels of the CH3OH+Cl hydrogen abstraction reaction, leading to the final products CH2OH+HCl (i) and CH3O+HCl (ii), have been studied by performing ab initio MP2 calculations with the triplet split-valence polarization basis sets. For each of the two channels the following simple reaction path is predicted: reactants → transition state → intermediate → products. The previously reported complicated paths2 calculated without using the IRC technique are criticized. Our calculations indicate that channel (i) is exothermic and has a negligible energy barrier while channel (ii) is endothermic and has a substantial energy barrier. These results imply that channel (i) is favorable, which is in line with experiment.
Structural properties of iron nitride on Cu(100): An ab-initio molecular dynamics study
Heryadi, Dodi
2011-01-01
Due to their potential applications in magnetic storage devices, iron nitrides have been a subject of numerous experimental and theoretical investigations. Thin films of iron nitride have been successfully grown on different substrates. To study the structural properties of a single monolayer film of FeN we have performed an ab-initio molecular dynamics simulation of its formation on a Cu(100) substrate. The iron nitride layer formed in our simulation shows a p4gm(2x2) reconstructed surface, in agreement with experimental results. In addition to its structural properties, we are also able to determine the magnetization of this thin film. Our results show that one monolayer of iron nitride on Cu(100) is ferromagnetic with a magnetic moment of 1.67 μ B. © 2011 Materials Research Society.
Ab initio study of transport properties in defected carbon nanotubes: an O(N) approach
Energy Technology Data Exchange (ETDEWEB)
Biel, Blanca; GarcIa-Vidal, F J; Flores, Fernando [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Rubio, Angel [European Theoretical Spectroscopy Facility (ETSF), Departamento de Fisica de Materiales, Universidad PaIs Vasco, Edificio Korta, Avenida Tolosa 72, 20018 San Sebastian (Spain)], E-mail: blanca.biel@cea.fr
2008-07-23
A combination of ab initio simulations and linear-scaling Green's functions techniques is used to analyze the transport properties of long (up to 1 {mu}m) carbon nanotubes with realistic disorder. The energetics and the influence of single defects (monovacancies and divacancies) on the electronic and transport properties of single-walled armchair carbon nanotubes are analyzed as a function of the tube diameter by means of the local orbital first-principles Fireball code. Efficient O(N) Green's functions techniques framed within the Landauer-Buettiker formalism allow a statistical study of the nanotube conductance averaged over a large sample of defected tubes and thus extraction of the nanotube localization length. The cases of zero and room temperature are both addressed.
High pressure behaviour of uranium dicarbide (UC2): Ab-initio study
Sahoo, B. D.; Mukherjee, D.; Joshi, K. D.; Kaushik, T. C.
2016-08-01
The structural stability of uranium dicarbide has been examined under hydrostatic compression employing evolutionary structure search algorithm implemented in the universal structure predictor: evolutionary Xtallography (USPEX) code in conjunction with ab-initio electronic band structure calculation method. The ab-initio total energy calculations involved for this purpose have been carried out within both generalized gradient approximations (GGA) and GGA + U approximations. Our calculations under GGA approximation predict the high pressure structural sequence of tetragonal → monoclinic → orthorhombic for this material with transition pressures of ˜8 GPa and 42 GPa, respectively. The same transition sequence is predicted by calculations within GGA + U also with transition pressures placed at ˜24 GPa and ˜50 GPa, respectively. Further, on the basis of comparison of zero pressure equilibrium volume and equation of state with available experimental data, we find that GGA + U approximation with U = 2.5 eV describes this material better than the simple GGA approximation. The theoretically predicted high pressure structural phase transitions are in disagreement with the only high experimental study by Dancausse et al. [J. Alloys. Compd. 191, 309 (1993)] on this compound which reports a tetragonal to hexagonal phase transition at a pressure of ˜17.6 GPa. Interestingly, during lowest enthalpy structure search using USPEX, we do not see any hexagonal phase to be closer to the predicted monoclinic phase even within 0.2 eV/f. unit. More experiments with varying carbon contents in UC2 sample are required to resolve this discrepancy. The existence of these high pressure phases predicted by static lattice calculations has been further substantiated by analyzing the elastic and lattice dynamic stability of these structures in the pressure regimes of their structural stability. Additionally, various thermo-physical quantities such as equilibrium volume, bulk modulus, Debye
An ab initio study of the structural and physical properties of a novel rigid-rod polymer : PIPD
Hageman, J.C.L.; Horst, J.W. van der; Groot, R.A. de
1999-01-01
In this article, we present the first ab initio calculations on the novel rigid-rod polymer PIPD using density functional techniques. The behaviour of the molecular chain under strain is studied and the chain modulus agrees excellently with experiment. Two crystal structures are considered and hydro
A Photoelectron Spectroscopy and ab initio Study of B3- and B4- Anions and Their Neutrals
Energy Technology Data Exchange (ETDEWEB)
Zhai, Hua-Jin; Wang, Lai S.; Alexandrova, A N.; Boldyrev, Alexander I.; Zakrzewski, V G.
2003-11-06
The two smallest boron clusters (B3 and B4) in their neutral and anionic forms were studied by photoelectron spectroscopy and ab initio calculations. Vibrationally resolved photoelectron spectra were observed for B3- at three photon energies (355, 266, and 193 nm) and the electron affinity of B3 was measured to be+0.02 eV.
Ab-initio study of magnetic properties and phase transitions in Ga (Mn) N with Monte Carlo approach
Energy Technology Data Exchange (ETDEWEB)
Sbai, Y.; Ait Raiss, A.; Salmani, E. [LMPHE (URAC 12), Faculty of Science, Mohammed V University, Av. Ibn Batouta, Rabat (Morocco); Bahmad, L., E-mail: Bahmad@fsr.ac.ma [LMPHE (URAC 12), Faculty of Science, Mohammed V University, Av. Ibn Batouta, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculty of Science, Mohammed V University, Av. Ibn Batouta, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco)
2015-12-15
On the basis of ab-initio calculations and Monte Carlo simulations the magnetic and electronic properties of Gallium nitride (GaN) doped with the transition metal Manganese (Mn) were studied. The ab initio calculations were done using the AKAI–KKR–CPA method within the Local Density Approximation (LDA) approximation. We doped our Diluted Magnetic Semiconductor (DMS), with different concentrations of magnetic impurities Mn and plotted the density of state (DOS) for each one. Showing a half-metallic behavior and ferromagnetic state especially for Ga{sub 0.95}Mn{sub 0.05}N making this DMS a strong candidate for spintronic applications. Moreover, the magnetization and susceptibility of our system as a function of the temperature has been calculated and give for various system size L to study the size effect. In addition, the transition temperature was deduced from the peak of the susceptibility. The Ab initio results are in good agreement with literature especially for (x=0.05) of Mn which gives the most interesting results. - Highlights: • The AKAI–KKR–CPA method has been applied to study the doped compound GaN:Mn. • The local density approximation (LDA) has been applied. • The ab-initio calculations have been performed. • The density of states (DOS) have been plotted for differents doping concentrations, using Monte Carlo simulations.
Ab initio study of AlxMoNbTiV high-entropy alloys.
Cao, Peiyu; Ni, Xiaodong; Tian, Fuyang; Varga, Lajos K; Vitos, Levente
2015-02-25
The Al(x)MoNbTiV (x = 0-1.5) high-entropy alloys (HEAs) adopt a single solid-solution phase, having the body centered cubic (bcc) crystal structure. Here we employ the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation to investigate the equilibrium volume, elastic constants, and polycrystalline elastic moduli of Al(x)MoNbTiV HEAs. A comparison between the ab initio and experimental equilibrium volumes demonstrates the validity and accuracy of the present approach. Our results indicate that Al addition decreases the thermodynamic stability of the bcc structure with respect to face-centered cubic and hexagonal close packed lattices. For the elastically isotropic Al(0.4)MoNbTiV HEAs, the valence electron concentration (VEC) is about 4.82, which is slightly different from VEC ∼ 4.72 obtained for the isotropic Gum metals and refractory--HEAs. PMID:25640032
Melting of sodium under high pressure. An ab-initio study
Energy Technology Data Exchange (ETDEWEB)
González, D. J.; González, L. E. [Departamento de Física Teórica, Atómica y Optica, Universidad de Valladolid, 47011 Valladolid (Spain)
2015-08-17
We report ab-initio molecular dynamics simulations of dense liquid/solid sodium for a pressure range from 0 to 100 GPa. The simulations have been performed with the orbital free ab-initio molecular dynamics method which, by using the electron density as the basic variable, allows to perform simulations with large samples and for long runs. The calculated melting curve shows a maximum at a pressure ≈ 30 GPa and it is followed by a long, steep decrease. These features are in good agreement with the experimental data. For various pressures along the melting curve, we have calculated several liquid static properties (pair distribution functions, static structure factors and short-range order parameters) in order to analyze the structural effects of pressure.
Experimental studies and ab initio calculations on characteristics of the C state of SF2 radical
International Nuclear Information System (INIS)
SF2 radicals were generated by a pulsed dc discharge in the mixture gas beam of SF2 and Ar. The (2+1) resonance-enhanced multiphoton ionization (REMPI) excitation spectroscopy of SF2 radical was obtained between 325 and 365 nm. The SF+ ion signals were also observed in the same wavelength range. The analysis shows that the spectrum can be assigned as the two-photon resonant excitation of SF2 radical (B-tilde1 B1 and (C-tilde1 A1 states). And also, ab initio calculations suggest that the C-tilde state is a bonding state with Rydberg characteristic. The potential energy surfaces (PESs) of SF2 and SF2+ by ab initio calculations suggest that SF+ ions originate from dissociation processes of excited SF2+ ions. (author)
Ab initio molecular dynamics study of liquid sodium and cesium up to critical point
Energy Technology Data Exchange (ETDEWEB)
Yuryev, Anatoly A. [Institute of Metallurgy of Ural Branch of the Russian Academy of Sciences, Amundsen st. 101,620016, Yekaterinburg (Russian Federation); Ural Federal University, Vira st. 19, 620002, Yekaterinburg (Russian Federation); Gelchinski, Boris R. [Institute of Metallurgy of Ural Branch of the Russian Academy of Sciences, Amundsen st. 101,620016, Yekaterinburg (Russian Federation)
2015-08-17
Ab initio modeling of liquid metals Na and K is carried out using the program SIESTA. We have determined the parameters of the model (the optimal step, the number of particles, the initial state etc) and calculated a wide range of properties: the total energy, pair correlation function, coefficient of self-diffusion, heat capacity, statistics of Voronoi polyhedra, the density of electronic states up to the critical temperature.
Kühne, Thomas D
2012-01-01
Computer simulations and molecular dynamics in particular, is a very powerful method to provide detailed and essentially exact informations of classical many-body problems. With the advent of \\textit{ab-initio} molecular dynamics, where the forces are computed on-the-fly by accurate electronic structure calculations, the scope of either method has been greatly extended. This new approach, which unifies Newton's and Schr\\"odinger's equations, allows for complex simulations without relying on any adjustable parameter. This review is intended to outline the basic principles as well as a survey of the field. Beginning with the derivation of Born-Oppenheimer molecular dynamics, the Car-Parrinello method as well as novel hybrid scheme that unifies best of either approach are discussed. The predictive power is demonstrated by a series of applications ranging from insulators to semiconductors and even metals in condensed phases.
Sub-monolayers of carbon on alpha-iron facets: an ab-initio study
Riikonen, S; Nieminen, R M
2010-01-01
Motivated by recent in situ studies of carbon nanotube growth from large transition-metal nanoparticles, we study various alpha-iron (ferrite) facets at different carbon concentrations using ab initio methods. The studied (110), (100) and (111) facets show qualitatively different behaviour when carbon concentration changes. In particular, adsorbed carbon atoms repel each other on the (110) facet, resulting in carbon dimer and graphitic material formation. Carbon on the (100) facet forms stable structures at concentrations of about 0.5 monolayer and at 1.0 monolayer this facet becomes unstable due to a frustration of the top layer iron atoms. The stability of the (111) facet is weakly affected by the amount of adsorbed carbon and its stability increases further with respect to the (100) facet with increasing carbon concentration. The exchange of carbon atoms between the surface and sub-surface regions on the (111) facet is easier than on the other facets and the formation of carbon dimers is exothermic. These ...
Tunneling of electrons via rotor-stator molecular interfaces: Combined ab initio and model study
Petreska, Irina; Ohanesjan, Vladimir; Pejov, Ljupčo; Kocarev, Ljupčo
2016-07-01
Tunneling of electrons through rotor-stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons' formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that conformation-dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previous work where we investigated the coherent transport via strongly coupled delocalized orbital by application of Non-equilibrium Green's Function Formalism.
Singh, Ram Sevak; Solanki, Ankit
2016-03-01
Silicon carbide nanotubes (SiCNTs) have received a great deal of scientific and commercial interest due to their intriguing properties that include high temperature stability and electronic properties. For their efficient and widespread applications, tuning of electronic properties of SiCNTs is an attractive study. In this article, electronic properties of sulphur doped (S-doped) zigzag (9 , 0) SiCNT is investigated by ab initio calculations based on density functional theory (DFT). Energy band structures and density of states of fully optimized undoped and doped structures with varying dopant concentration are calculated. S-doped on C-site of the nanotube exhibits a monotonic reduction of energy gap with increase in dopant concentration, and the nanotube transforms from semiconductor to metal at high dopant concentration. In case of S-doped on Si-site doping has less influence on modulating electronic structures, which results in reduction of energy gap up to a moderate doping concentration. Importantly, S preferential substitutes of Si-sites and the nanotube with S-doped on Si-site are energetically more stable as compared to the nanotube with S-doped on C-site. The study of tunable electronic properties in S-doped SiCNT may have potential in fabricating nanoelectronic devices, hydrogen storage and gas sensing applications.
Mehandzhiyski, Aleksandar Y; Riccardi, Enrico; van Erp, Titus S; Trinh, Thuat T; Grimes, Brian A
2015-08-20
The interaction between a carboxylate anion (deprotonated propanoic acid) and the divalent Mg(2+), Ca(2+), Sr(2+), Ba(2+) metal ions is studied via ab initio molecular dynamics. The main focus of the study is the selectivity of the carboxylate-metal ion interaction in aqueous solution. The interaction is modeled by explicitly accounting for the solvent molecules on a DFT level. The hydration energies of the metal ions along with their diffusion and mobility coefficients are determined and a trend correlated with their ionic radius is found. Subsequently, a series of 16 constrained molecular dynamics simulations for every ion is performed, and the interaction free energy is obtained from thermodynamic integration of the forces between the metal ion and the carboxylate ion. The results indicate that the magnesium ion interacts most strongly with the carboxylate, followed by calcium, strontium, and barium. Because the interaction free energy is not enough to explain the selectivity of the reaction observed experimentally, more detailed analysis is performed on the simulation trajectories to understand the steric changes in the reaction complex during dissociation. The solvent dynamics appear to play an important role during the dissociation of the complex and also in the observed selectivity behavior of the divalent ions.
International Nuclear Information System (INIS)
We have studied the correlation between chemical composition, structure, chemical bonding and elastic properties of amorphous B6O based solids using ab initio molecular dynamics. These solids are of different chemical compositions, but the elasticity data appear to be a function of density. This is in agreement with previous experimental observations. As the density increases from 1.64 to 2.38 g cm-3, the elastic modulus increases from 74 to 253 GPa. This may be understood by analyzing the cohesive energy and the chemical bonding of these compounds. The cohesive energy decreases from -7.051 to -7.584 eV/atom in the elastic modulus range studied. On the basis of the electron density distributions, Mulliken analysis and radial distribution functions, icosahedral bonding is the dominating bonding type. C and N promote cross-linking of icosahedra and thus increase the density, while H hinders the cross-linking by forming OH groups. The presence of icosahedral bonding is independent of the density
Numerical study of two-photon ionization of helium using an ab initio numerical framework
International Nuclear Information System (INIS)
Few-photon-induced breakup of helium is studied using a newly developed ab initio numerical framework for solving the six-dimensional time-dependent Schroedinger equation. We present details of the method and calculate (generalized) cross sections for the process of two-photon nonsequential (direct) double ionization at photon energies ranging from 39.4 to 54.4 eV, a process that has been very much debated in recent years and is not yet fully understood. In particular, we have studied the convergence property of the total cross section in the vicinity of the upper threshold (∼ 54.4 eV) versus the pulse duration of the applied laser field. We find that the cross section exhibits an increasing trend near the threshold, as has also been observed by others, and show that this rise cannot solely be attributed to an unintended inclusion of the sequential two-photon double ionization process caused by the bandwidth of the applied field.
Collective rotation from ab initio theory
Caprio, M A; Vary, J P; Smith, R
2015-01-01
Through ab initio approaches in nuclear theory, we may now seek to quantitatively understand the wealth of nuclear collective phenomena starting from the underlying internucleon interactions. No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. In this review, NCCI calculations of 7-9Be are used to illustrate and explore ab initio rotational structure, and the resulting predictions for rotational band properties are compared with experiment. We highlight the robustness of ab initio rotational predictions across different choices for the internucleon interaction.
Energy Technology Data Exchange (ETDEWEB)
Monteseguro, V. [Departamento de Física and MALTA Consolider Team, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Rodríguez-Hernández, P.; Muñoz, A., E-mail: amunoz@ull.es [Departamento de Física and MALTA Consolider Team, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Instituto de Materiales y Nanotecnología. Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain)
2015-12-28
The structural, elastic, and vibrational properties of yttrium aluminum garnet Y{sub 3}Al{sub 5}O{sub 12} are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet is mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y{sub 3}Al{sub 5}O{sub 12} and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa.
Ab initio study of a Y-doped ∑31 grain boundary in alumina
Institute of Scientific and Technical Information of China (English)
CHEN Jun; XU Yun; CHEN DongQuan; ZHANG JingLin
2008-01-01
The atomic structures and energetics of clean and Y-doped general grain boundary (GB) ∑31/(0001) models in α-Al2O3 are studied by a series of high precision ab initio calculations. A large supercell with 700 atoms and periodic boundary conditions is adopted for undoped and Y-doped GB with different substitution sites and con-centrations. It is shown that Y atoms preferably segregate to the central column of the 7-member Al ring. This is explained as more favorable bond formation for Y in this position and lower GB energy. The calculated GB formation energy for the clean and Y-doped cases is respectively 3.99 and 3.67 J/m2. On the average, the GB region in ∑31 has a slightly lower charge density than the bulk crystalline region. In addtition, the GB induces a long ranged asymmetric electrostatic potential distri-bution on each side of the grain boundary.
Ab initio computational studies on molecular conformation of N-methyl-glyphosate
Kaliannan, P.; Naseer Ali, M. Mohamed; Venuvanalingam, P.
Conformational analysis of N-methyl-glyphosate has been carried out using an ab initio molecular orbital (MO) method at the HF/3-21G* levels of theory and the results are compared with the results of a previously studied compound, namely glyphosate. The potential energy surface of the molecule obtained by varying the central torsion angles (Φ, Ψ) was investigated in detail. Fourteen conformers with 5 kcal mol-1 energy cut-off have been selected from the potential energy surface for geometry optimization to locate the true minimum on the conformational space. The minimum has been found to be at (-62°, 110°) for the central torsion angles. This conformation is stabilized by hydrogen bond interactions (O-H···O and C-H···O) and the interactions due to protons nearer to each other. This cationic field leads to the formation of a hydrophobic patch in this structure, as well as in the structures closer to the global minimum. This patch may destabilize the favourable interaction of N-methyl-glyphosate with the surrounding amino acid residues in the binding cavity as they form the cationic field throughout the glyphosate binding region.
Ab initio study of a Y-doped Σ31 grain boundary in alumina
Institute of Scientific and Technical Information of China (English)
2008-01-01
The atomic structures and energetics of clean and Y-doped general grain boundary (GB) Σ31/(0001) models in α-Al2O3 are studied by a series of high precision ab initio calculations. A large supercell with 700 atoms and periodic boundary conditions is adopted for undoped and Y-doped GB with different substitution sites and con-centrations. It is shown that Y atoms preferably segregate to the central column of the 7-member Al ring. This is explained as more favorable bond formation for Y in this position and lower GB energy. The calculated GB formation energy for the clean and Y-doped cases is respectively 3.99 and 3.67 J/m2. On the average, the GB region in Σ31 has a slightly lower charge density than the bulk crystalline region. In addtition, the GB induces a long ranged asymmetric electrostatic potential distri-bution on each side of the grain boundary.
Directory of Open Access Journals (Sweden)
Marjan Rafiee
2015-09-01
Full Text Available Tyrosinase is a multifunctional copper-containing enzyme. It can catalyze two distinct reactions of melanin synthesis and benzaldehyde derivatives, which are potential tyrosinase inhibitors. To find the relationships between charge distributions of benzaldehyde and their pharmaceutical behavior, the present study aimed at investigating nuclear quadrupole coupling constants of quadrupolare nuclei in the functional benzaldehyde group and calculating some its derivatives. In addition, the differences between the electronic structures of various derivatives of this depigmenting drug were examined. All ab initio calculations were carried out using Gaussian 03. The results predicted benzaldehyde derivatives to be bicentral inhibitors; nevertheless, the oxygen or hydrogen contents of the aldehyde group were not found to be the only active sites. Furthermore with the presence of the aldehyde group, the terminal methoxy group in C4 was found to contribute to tyrosinase inhibitory activities. In addition, an oxygen atom with high charge density in the side chain was found to play an important role in its inhibitory effect.
Ha, Viet-Anh; Waroquiers, David; Rignanese, Gian-Marco; Hautier, Geoffroy
2016-05-01
Transparent conducting oxides (TCOs) are essential to many technologies. These materials are doped (n- or p-type) oxides with a large enough band gap (ideally >3 eV) to ensure transparency. However, the high carrier concentration present in TCOs leads additionally to the possibility for optical transitions from the occupied conduction bands to higher states for n-type materials and from lower states to the unoccupied valence bands for p-type TCOs. The "second gap" formed by these transitions might limit transparency, and a large second gap has been sometimes proposed as a design criteria for high performance TCOs. Here, we study the influence of this second gap on optical absorption using ab initio computations for several well-known n- and p-type TCOs. Our work demonstrates that most known n-type TCOs do not suffer from second gap absorption in the visible even at very high carrier concentrations. On the contrary, p-type oxides show lowering of their optical transmission for high carrier concentrations due to second gap effects. We link this dissimilarity to the different chemistries involved in n- versus typical p-type TCOs. Quantitatively, we show that second gap effects lead to only moderate loss of transmission (even in p-type TCOs) and suggest that a wide second gap, while beneficial, should not be considered as a needed criteria for a working TCO.
Ab initio study of the magnetostructural properties of MnAs
Rungger, Ivan; Sanvito, Stefano
2006-07-01
The magnetic and structural properties of MnAs are studied with ab initio methods and by mapping total energies onto a Heisenberg model. The stability of the different phases is found to depend mainly on the volume and on the amount of magnetic order, confirming previous experimental findings and phenomenological models. It is generally found that for large lattice constants the ferromagnetic state is favored, whereas for small lattice constants different antiferromagnetic states can be stabilized. In the ferromagnetic state the structure with minimal energy is always hexagonal, whereas it becomes orthorhombically distorted if there is an antiferromagnetic alignment of the magnetic moments in the hexagonal plane. For the paramagnetic state the stable cell is found to be orthorhombic up to a critical lattice constant of about 3.7Å , above which it remains hexagonal. This leads to the second-order structural phase transition between paramagnetic states at about 400K , where the lattice parameter increases above this critical value with rising temperature due to the thermal expansion. We also evaluate the magnetic susceptibility as a function of temperature, from which a semiquantitative description of the MnAs phase diagram emerges.
Ab initio computational study of vincristine as a biological active compound: NMR and NBO analyses
Directory of Open Access Journals (Sweden)
Shiva Joohari
2015-06-01
Full Text Available Vincristine is a biological active alkaloid that has been used clinically against a variety of neoplasms. In the current study we have theoretically investigated the magnetic properties of titled compound to predict physical and chemical properties of vincristine as a biological inhibitor. Ab initio computation using HF and B3LYP with 3-21G(d and 6-31G(d level of theory have been performed and then magnetic shielding tensor (, ppm, shielding asymmetry (, magnetic shielding anisotropy (aniso, ppm, the skew of a tensor (K, chemical shift anisotropy ( and chemical shift ( were calculated to indicate the details of the interaction mechanism between microtubules and vincristine. Moreover, EHOMO, ELUMO and Ebg were evaluated. The maximum and minimum values of Ebg were found in HF/3-21g and B3LYP/3-21g respectively. It was also uggested that O24, O37, O49 and O55 with minimum values of iso, are active sites of titled compound. Furthermore the calculated chemical shifts were compared with experimental data in DMSO and CDCl3 solvents.
ab initio Studies on Molecular Conductor (BEDSe-TTF)2[Fe(CN)5NO
Institute of Scientific and Technical Information of China (English)
YAO Kai-Lun; TU Hai-Bo; WANG Wei-Zhong
2001-01-01
In this paper the ab initio study using pseudopotential plane wave method with the local spin density functional approximation is presented for the molecular conductor (BEDSe-TTF)2[Fe(CN)5NO]. The mean electronic density distributions are obtained, and we find that the extended π orbital of the selenium does not affect the properties of material as assumed in other papers and the "side-by-side" type S...S interaction is the primary interaction between donors. From band structure calculations we analyze the influence of the NO groups on the electronic structure and magnetic properties of molecule. It is shown that the itinerant electrons important to electronic properties in these types of hybrids are delocalized electrons contributed by NO groups, instead of by the 3d electrons of Fe. Additionally, we have found that the localized magnetic moment is also contributed by the NO groups in this molecular conductor. From total energy calculations the molecular structure with the lowest energy is found due to the interaction between split spins, and the particular positions of the NO groups are obtained.
Ab initio study of C14 laves phases in Fe-based systems
Directory of Open Access Journals (Sweden)
Pavlu J.
2012-01-01
Full Text Available Structural properties and energetics of Fe-based C14 Laves phases at various compositions (i.e. Fe2Fe, Fe2X, X2Fe, X2X, where X stands for Si, Cr, Mo, W, Ta were investigated using the pseudopotential VASP (Vienna Ab initio Simulation Package code employing the PAW-PBE (Projector Augmented Wave - Perdew Burke-Ernzerhof pseudopotentials. Full relaxation was performed for all structures studied including the reference states of elemental constituents and the equilibrium structure parameters as well as bulk moduli were found. The structure parameters of experimentally found structures were very well reproduced by our calculations. It was also found that the lattice parameters and volumes of the unit cell decrease with increasing molar fraction of iron. Thermodynamic analysis shows that the Fe2X configurations of Laves phases are more stable than the X2Fe ones. Some of the X2Fe configurations are even unstable with respect to the weighted average of the Laves phases of elemental constituents. Our calculations predict the stability of Fe2Ta. On the other hand, Fe2Mo and Fe2W are slightly unstable (3.19 and 0.68 kJ.mol-1, respectively and hypothetical structures Fe2Cr and Fe2Si are found unstable as well.
Ab initio Studies on Intermolecular Interaction of Formamide and Hydroxyacetonitrile Dimers
Institute of Scientific and Technical Information of China (English)
JU Xue-hai; XIE Lun-jia; XIA Qi-ying; XIAO He-ming
2004-01-01
The structures, the binding energies and the thermodynamic properties of formamide and hydroxyacetonitrile(HAN) dimers have been studied by means of the self-consistent ab initio Hartree-Fock and the second-order Mφller-Plesset correlation energy correction methods. The counterpoise procedure was used to check the basis set superposition error(BSSE) of the binding energies. There exist cyclic structures in a formamide dimer(Ⅰ), a HAN dimer(Ⅱ) and their heterodimer(Ⅲ). The corrected binding energies for dimers Ⅰ, Ⅱ and Ⅲ are respectively -45.53, -45.83 and -43.89 kJ/mol at the MP2/aug-cc-p VDZ//HF/aug-cc-p VDZ level. The change of the Gibbs free energies(ΔG) in the process of Ⅰ+Ⅱ→2Ⅲ was predicted to be -2.74 kJ/mol at 298.15 K. Dimer Ⅲ can be spontaneously produced in the mixture of formamide and HAN, which is in agreement with the experimental fact that most cyanohydrins are capable of interacting with dipeptide cyclo-His-Phe(CHP).
On the hierarchical parallelization of ab initio simulations
Ruiz-Barragan, Sergi; Shiga, Motoyuki
2016-01-01
A hierarchical parallelization has been implemented in a new unified code PIMD-SMASH for ab initio simulation where the replicas and the Born-Oppenheimer forces are parallelized. It is demonstrated that ab initio path integral molecular dynamics simulations can be carried out very efficiently for systems up to a few tens of water molecules. The code was then used to study a Diels-Alder reaction of cyclopentadiene and butenone by ab initio string method. A reduction in the reaction energy barrier is found in the presence of hydrogen-bonded water, in accordance with experiment.
AB INITIO HF AND DFT STUDIES ON MOLECULAR STRUCTURE AND VIBRATIONAL ANALYSIS OF 2,5-DIBROMOPYRIDINE
ÇIRAK, Çağrı; KOÇ, Nurettin
2014-01-01
Theoretical study on molecular structure and vibrational spectra of 2,5-dibromopyridine (2,5-DBP) have been investigated. The optimized geometry, theoretical vibration frequencies and intensities were calculated by using ab initio Hartree-Fock and density functional B3LYP method with 6-31G(d,p) basis sets. The vibrational analysis of title molecule was done and its optimized geometry parameters (bond lengths and bond angles) were given. Scaled theoretical frequencies have been compared with e...
Ab initio interaction potentials for X and B excited states of He-I{sub 2} for studying dynamics
Energy Technology Data Exchange (ETDEWEB)
Prosmiti, Rita; Garcia-Gutierrez, Leonor; Delgado-Tellez, Laura; Valdes, Alvaro; Villarreal, Pablo; Delgado-Barrio, Gerardo, E-mail: rita@imaff.cfmac.csic.e [Instituto de Fisica Fundamental (CSIC), Serrano 123, 28006 Madrid (Spain)
2009-11-01
Ab initio CCSD(T) and MRCI approaches were employed to construct potential energy surfaces of the ground and the B electronic excited states of He-I{sub 2} complex, while full quantum mechanical methods were applied to study its spectroscopy and dynamics. A description of the approach adopted, together with the results obtained and their comparison with recent experimental data, as well as further improvements are presented.
Energy Technology Data Exchange (ETDEWEB)
Borges, P. D., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu; Scolfaro, L., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu [Department of Physics, Texas State University, San Marcos, Texas 78666 (United States)
2014-12-14
The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.
Ab initio studies of ionization potentials of hydrated hydroxide and hydronium
Swartz, Charles W
2013-01-01
The ionization potential distributions of hydrated hydroxide and hydronium are computed with many-body approach for electron excitations with configurations generated by {\\it ab initio} molecular dynamics. The experimental features are well reproduced and found to be closely related to the molecular excitations. In the stable configurations, the ionization potential is mainly perturbed by water molecules within the first solvation shell. On the other hand, electron excitation is delocalized on both proton receiving and donating complex during proton transfer, which shifts the excitation energies and broadens the spectra for both hydrated ions.
Ab initio study of beryllium-decorated fullerenes for hydrogen storage
Lee, Hoonkyung; Huang, Bing; Duan, Wenhui; Ihm, Jisoon
2010-01-01
We have found that a beryllium (Be) atom on nanostructured materials with H2 molecules generates a Kubas-like dihydrogen complex [H. Lee et al. arXiv:1002.2247v1 (2010)]. Here, we investigate the feasibility of Be-decorated fullerenes for hydrogen storage using ab initio calculations. We find that the aggregation of Be atoms on pristine fullerenes is energetically preferred, resulting in the dissociation of the dihydrogen. In contrast, for boron (B)-doped fullerenes, Be atoms prefer to be ind...
Ab initio studies on the mechanic and magnetic properties of PdHx
Institute of Scientific and Technical Information of China (English)
Cui Xin; Liang Xi-Xia; Wang Jian-Tao; Zhao Guo-Zhong
2011-01-01
Based on ab initio total energy calculations, the structural, electronic, mechanic, and magnetic properties of PdHx are investigated. It is found that bulk modulus of PdHx is larger than the metal Pd with the hydrogen storage except Pd4H2. The calculated results for the magnetic moments show that the hydrogen addition weakens the magnetic properties of the PdHx systems. A strong magneto-volume effect is found in PdHx structures as well as Pd. The transition from paramagnetism to ferromagnetism is discussed. The corresponding densities of states for both structures are also shown to understand the magnetic behaviour.
An Ab initio Theoretical Study on the Nonadiabatic Coupling for Na＋I2 Collision System
Institute of Scientific and Technical Information of China (English)
孙孝敏; 蔡政亭; 冯大诚
2003-01-01
The ionic and neutral state potential energy surfaces (PESs) of Na+I2 collision system have been calculated on QCISD(T) level by using ab initio method.The location and depth of the potential well,the collision radius and their fine structures have been analyzed at the equilibrium geometry of I2 molecule.The electronic transfer probabilities are also calculated in terms of Landau-Zener model.The lifetime of scattering resonance state is evaluated by the uncertainty principle.All the results have been compared with those obtained according to the Aten-Lanting-Los PES and Feng's PES.
Revealing halogen bonding interactions with anomeric systems: an ab initio quantum chemical studies.
Lo, Rabindranath; Ganguly, Bishwajit
2015-02-01
A computational study has been performed using MP2 and CCSD(T) methods on a series of O⋯X (X=Br, Cl and I) halogen bonds to evaluate the strength and characteristic of such highly directional noncovalent interactions. The study has been carried out on a series of dimeric complexes formed between interhalogen compounds (such as BrF, BrCl and BrI) and oxygen containing electron donor molecule. The existence and consequences of the anomeric effect of the electron donor molecule has also been investigated through an exploration of halogen bonding interactions in this halogen bonded complexes. The ab initio quantum chemical calculations have been employed to study both the nature and directionality of the halogen molecules toward the sp(3) oxygen atom in anomeric systems. The presence of anomeric nO→σ*CN interaction involves a dominant role for the availability of the axial and equatorial lone pairs of donor O atom to participate with interhalogen compounds in the halogen-bonded complexes. The energy difference between the axial and equatorial conformers with interhalogen compounds reaches up to 4.60 kJ/mol, which however depends upon the interacting halogen atoms and its attaching atoms. The energy decomposition analysis further suggests that the total halogen bond interaction energies are mainly contributed by the attractive electrostatic and dispersion components. The role of substituents attached with the halogen atoms has also been evaluated in this study. With the increase of halogen atom size and the positive nature of σ-hole, the halogen atom interacted more with the electron donor atom and the electrostatic contribution to the total interaction energy enhances appreciably. Further, noncovalent interaction (NCI) studies have been carried out to locate the noncovalent halogen bonding interactions in real space. PMID:25522359
Arjunan, V.; Mohan, S.; Ravindran, P.; Mythili, C. V.
2009-05-01
The Fourier transform infrared (FTIR) and FT-Raman spectra of 7-bromo-5-chloro-8-hydroxyquinoline (BCHQ) have been measured in the range 4000-400 and 4000-100 cm -1, respectively. Complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the observed FTIR and FT-Raman data. The geometry was optimised without any symmetry constrains using the DFT/B3LYP and HF methods with 6-31G** basis set. The vibrational frequencies which were determined experimentally are compared with those obtained theoretically from ab initio HF and density functional theory (DFT) gradient calculations employing the HF/6-31G** and B3LYP/6-31G** methods for the optimised geometry of the compound. The structural parameters and normal modes of vibration obtained from HF and DFT methods are in good agreement with the experimental data. Normal coordinate analysis was also carried out with ab initio force fields utilising Wilson's FG matrix method.
Atomic carbon chains as spin-transmitters: An ab initio transport study
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka
2010-01-01
An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin-polarization of the transmi......An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin......-polarization of the transmission in large energy ranges. The effect is due to the spin-polarized zig-zag edge terminating each graphene flake causing a spin-splitting of the graphene pi(z) bands, and the chain states. Transmission occurs when the graphene p-states resonate with similar states in the strongly hybridized edges...... and chain. This effect should in general hold for any p-conjugated molecules bridging the zig-zag edges of graphene electrodes. The polarization of the transmission can be controlled by chemically or mechanically modifying the molecule, or by applying an electrical gate....
An experimental and ab initio study on the abiotic reduction of uranyl by ferrous iron
Taylor, S. D.; Marcano, M. C.; Rosso, K. M.; Becker, U.
2015-05-01
It is important to understand the mechanisms controlling the removal of uranyl from solution from an environmental standpoint, particularly whether soluble Fe(II) is capable of reducing soluble U(VI) to insoluble U(IV). Experiments were performed to shed light into discrepancies of recent studies about precipitation of U-containing solids without changing oxidation states versus precipitation/reduction reactions, especially with respect to the kinetics of these reactions. To understand the atomistic mechanisms, thermodynamics, and kinetics of these redox processes, ab initio electron transfer (ET) calculations, using Marcus theory, were applied to study the reduction of U(VI)aq to U(V)aq by Fe(II)aq (the first rate-limiting ET-step). Outer-sphere (OS) and inner-sphere (IS) Fe-U complexes were modeled to represent simple species within a homogeneous environment through which ET could occur. Experiments on the chemical reduction were performed by reacting 1 mM Fe(II)aq at pH 7.2 with high (i.e., 0.16 mM) and lower (i.e., 0.02 mM) concentrations of U(VI)aq. At higher U concentration, a rapid decrease in U(VI)aq was observed within the first hour of reaction. XRD and XPS analyses of the precipitates confirmed the presence of (meta)schoepite phases, where up to ∼25% of the original U was reduced to U4+ and/or U5+-containing phases. In contrast, at 0.02 mM U, the U(VI)aq concentration remained fairly constant for the first 3 h of reaction and only then began to decrease due to slower precipitation kinetics. XPS spectra confirm the partial chemical reduction U associated with the precipitate (up to ∼30%). Thermodynamic calculations support that the reduction of U(VI)aq to U(IV)aq by Fe(II)aq is energetically unfavorable. The batch experiments in this study show U(VI) is removed from solution by precipitation and that transitioning to a heterogeneous system in turn enables the solid U phase to be partially reduced. Ab initio ET calculations revealed that OS ET is
Diffusion within α-CuI studied using ab initio molecular dynamics simulations
Mohn, Chris E.; Stølen, Svein; Hull, Stephen
2009-08-01
The structure and dynamics of superionic α-CuI are studied in detail by means of ab initio Born-Oppenheimer molecular dynamics simulations. The extreme cation disorder and a soft immobile face centred cubic sublattice are evident from the highly diffuse atomic density profiles. The Cu-Cu pair distribution function and distribution of Cu-I-Cu bond angles possess distinct peaks at 2.6 Å and 60° respectively, which are markedly lower than the values expected from the average cationic density, pointing to the presence of pronounced short-range copper-copper correlations. Comparison with lattice static calculations shows that these correlations and the marked shift in the cationic density profile in the lang111rang directions are associated with a locally distorted cation sublattice, and that the movements within the tetrahedral cavities involve rapid jumps into and out of shallow basins on the system potential energy surface. On average, the iodines are surrounded by three coppers within their first coordination shell, with the fourth copper being located in a transition zone between two neighbouring iodine cavities. However, time-resolved analysis reveals that the local structure actually involves a mixture of threefold-, fourfold- and fivefold-coordinated iodines. Examination of the ionic trajectories shows that the copper ions jump rapidly to nearest neighbouring tetrahedral cavities (aligned in the lang100rang directions) following a markedly curved trajectory and often involving short-lived (~1 ps) interstitial positions. The nature of the correlated diffusion underlying the unusually high fraction of coppers with short residence time can be attributed to the presence of a large number of 'unsuccessful' jumps and the likelihood of cooperative motion of pairs of coppers. The calculated diffusion coefficient at 750 K, DCu = 2.8 × 10-5 cm2 s-1, is in excellent agreement with that found experimentally.
Ab initio studies on the adsorption and implantation of Al and Fe to nitride materials
International Nuclear Information System (INIS)
The formation of transfer material products on coated cutting and forming tools is a major failure mechanism leading to various sorts of wear. To describe the atomistic processes behind the formation of transfer materials, we use ab initio to study the adsorption energy as well as the implantation barrier of Al and Fe atoms for (001)-oriented surfaces of TiN, Ti0.50Al0.50N, Ti0.90Si0.10N, CrN, and Cr0.90Si0.10N. The interactions between additional atoms and nitride-surfaces are described for pure adhesion, considering no additional stresses, and for the implantation barrier. The latter, we simplified to the stress required to implant Al and Fe into sub-surface regions of the nitride material. The adsorption energies exhibit pronounced extrema at high-symmetry positions and are generally highest at nitrogen sites. Here, the binary nitrides are comparable to their ternary counterparts and the average adhesive energy is higher (more negative) on CrN than TiN based systems. Contrary, the implantation barrier for Al and Fe atoms is higher for the ternary systems Ti0.50Al0.50N, Ti0.90Si0.10N, and Cr0.90Si0.10N than for their binary counterparts TiN and CrN. Based on our results, we can conclude that TiN based systems outperform CrN based systems with respect to pure adhesion, while the Si-containing ternaries exhibit higher implantation barriers for Al and Fe atoms. The data obtained are important to understand the atomistic interaction of metal atoms with nitride-based materials, which is valid not just for machining operations but also for any combination such as interfaces between coatings and substrates or multilayer and phase arrangements themselves
Reaction mechanisms and kinetics of the iminovinylidene radical with NO: Ab initio study
Energy Technology Data Exchange (ETDEWEB)
Hsiao, Ming-Kai; Chung, Yi-Hua; Hung, Yu-Ming; Chen, Hui-Lung, E-mail: chl3@faculty.pccu.edu.tw [Department of Chemistry and Institute of Applied Chemistry, Chinese Culture University, Taipei 111, Taiwan (China)
2014-05-28
The nitric oxide (NO) is a notorious compound for polluting environment. Recent year, removing nitric oxide from the atmosphere becomes a focus of the investigation. In our work, we study the iminovinylidene (HNCC) radical reacted with NO molecule. The mechanism and kinetic for reaction of the HNCC radical with the NO molecule is investigated via considering the possible channels of the N and O atoms of NO attacking the N and C atoms of the HNCC based on the high level ab initio molecular orbital calculations in conjunction with variational TST and RRKM calculations. The species involved have been optimized at the B3LYP/6-311++G(3df,2p) level and their single-point energies are refined by the CCSD(T)/aug-cc-PVQZ//B3LYP/6-311++G(3df,2p) method. The calculated potential energy surfaces indicated that energetically the most favorable channel for the HNCC + NO reaction was predicted to be the formation of HNC+CNO (P8) product via the addition reaction of the C atom of HNCC radical and the N atom of NO with the head to head orientation. To rationalize the scenario of the calculated results, we also employ the Fukui functions and HSAB theory to seek for a possible explanation. In addition, the reaction rate constants were calculated using VariFlex code, and the results show that the total rate coefficient, k{sub total}, at Ar pressure 760 Torr can be represented with an equation: k{sub total} = 6.433 × 10{sup −11} T {sup 0.100} exp(0.275 kcal mol{sup −1}/RT) at T = 298–3000 K, in units of cm{sup 3} molecule{sup −1} s{sup −1}.
Suter, James L.; Kabalan, Lara; Khader, Mahmoud; Coveney, Peter V.
2015-11-01
Ab initio molecular dynamics simulations have been performed to gain an understanding of the interfacial microscopic structure and reactivity of fully hydrated clay edges. The models studied include both micropore and interlayer water. We identify acidic sites through dissociation mechanisms; the resulting ions can be stabilized by both micropore and interlayer water. We find clay edges possess a complex amphoteric behavior, which depends on the face under consideration and the location of isomorphic substitution. For the neutral (1 1 0) surface, we do not observe any dissociation on the timescale accessible. The edge terminating hydroxyl groups participate in a hydrogen bonded network of water molecules that spans the interlayer between periodic images of the clay framework. With isomorphic substitutions in the tetrahedral layer of the (1 1 0) clay edge, we find the adjacent exposed apical oxygen behaves as a Brönsted base and abstracts a proton from a nearby water molecule, which in turn removes a proton from an AlOH2 group. With isomorphic substitutions in the octahedral layer of the (1 1 0) clay edge the adjacent exposed apical oxygen atom does not abstract a proton from the water molecules, but increases the number of hydrogen bonded water molecules (from one to two). Acid treated clays are likely to have both sites protonated. The (0 1 0) surface does not have the same interfacial hydrogen bonding structure; it is much less stable and we observe dissociation of half the terminal SiOH groups (tbnd Sisbnd Osbnd H → tbnd Sisbnd O- + H+) in our models. The resulting anions are stabilized by solvation from both micropore and interlayer water molecules. This suggests that, when fully hydrated, the (0 1 0) surface can act as a Brönsted acid, even at neutral pH.
Diffusion within α-CuI studied using ab initio molecular dynamics simulations
International Nuclear Information System (INIS)
The structure and dynamics of superionic α-CuI are studied in detail by means of ab initio Born-Oppenheimer molecular dynamics simulations. The extreme cation disorder and a soft immobile face centred cubic sublattice are evident from the highly diffuse atomic density profiles. The Cu-Cu pair distribution function and distribution of Cu-I-Cu bond angles possess distinct peaks at 2.6 A and 60 deg. respectively, which are markedly lower than the values expected from the average cationic density, pointing to the presence of pronounced short-range copper-copper correlations. Comparison with lattice static calculations shows that these correlations and the marked shift in the cationic density profile in the (111) directions are associated with a locally distorted cation sublattice, and that the movements within the tetrahedral cavities involve rapid jumps into and out of shallow basins on the system potential energy surface. On average, the iodines are surrounded by three coppers within their first coordination shell, with the fourth copper being located in a transition zone between two neighbouring iodine cavities. However, time-resolved analysis reveals that the local structure actually involves a mixture of threefold-, fourfold- and fivefold-coordinated iodines. Examination of the ionic trajectories shows that the copper ions jump rapidly to nearest neighbouring tetrahedral cavities (aligned in the (100) directions) following a markedly curved trajectory and often involving short-lived (∼1 ps) interstitial positions. The nature of the correlated diffusion underlying the unusually high fraction of coppers with short residence time can be attributed to the presence of a large number of 'unsuccessful' jumps and the likelihood of cooperative motion of pairs of coppers. The calculated diffusion coefficient at 750 K, DCu = 2.8 x 10-5 cm2 s-1, is in excellent agreement with that found experimentally.
Ab initio study of the low-lying electronic states of the CaO molecule
International Nuclear Information System (INIS)
Graphical abstract: Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure of the low-lying electronic states of the CaO molecule. The computations are done using the aug-cc-pV5Z basis set for O and the cc-pCV5Z for Ca. The potential energy curves for the molecular states correlating to the lowest three asymptotes are calculated at the CASSCF level. The potential curves of the lowest five molecular states, X1Σ+, a3Π, A'1Π, b3Σ+ and A1Σ+, and the corresponding dipole moment functions have been determined using internally contracted multi-reference configuration interaction approaches. The spectroscopic constants associated with these electronic states are compared to experimental values. The corresponding electronic wavefunctions have also been analyzed using the dipole moment functions. Display Omitted Highlights: → The five lowest electronic states of Cao have been determined ab initio at a high level of accuracy. → Large active space, core-valence correlation and configuration interaction are required. → The multi-configurational nature of the electronic ground state is confirmed as well as its monovalent and divalent ionic nature using dipole moment analysis. → These interacting potentials will serve for future obtention of spin-rovibronic levels. - Abstract: Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure of the low-lying electronic states of the CaO molecule. The computations are done using the aug-cc-pV5Z basis set for O and the cc-pCV5Z for Ca. The potential energy curves for the molecular states correlating to the lowest three asymptotes are calculated at the CASSCF level. The potential curves of the lowest five molecular states, X1Σ+, a3Π, A'1Π, b3Σ+ and A1Σ+, and the corresponding dipole moment functions have been determined using internally contracted multi-reference configuration interaction approaches
Ab initio study of the low-lying electronic states of the CaO molecule
Energy Technology Data Exchange (ETDEWEB)
Khalil, Hossain; Brites, Vincent; Quere, Frederic Le [Universite Paris-Est, Laboratoire de Modelisation et Simulation Multi Echelle, UMR 8208 CNRS, Batiment Lavoisier, 5 boulevard Descartes, Champs sur Marne, 77454 Marne-la-Vallee, Cedex 2 (France); Leonard, Celine, E-mail: celine.leonard@univ-paris-est.fr [Universite Paris-Est, Laboratoire de Modelisation et Simulation Multi Echelle, UMR 8208 CNRS, Batiment Lavoisier, 5 boulevard Descartes, Champs sur Marne, 77454 Marne-la-Vallee, Cedex 2 (France)
2011-07-28
Graphical abstract: Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure of the low-lying electronic states of the CaO molecule. The computations are done using the aug-cc-pV5Z basis set for O and the cc-pCV5Z for Ca. The potential energy curves for the molecular states correlating to the lowest three asymptotes are calculated at the CASSCF level. The potential curves of the lowest five molecular states, X{sup 1}{Sigma}{sup +}, a{sup 3}{Pi}, A'{sup 1{Pi}}, b{sup 3}{Sigma}{sup +} and A{sup 1}{Sigma}{sup +}, and the corresponding dipole moment functions have been determined using internally contracted multi-reference configuration interaction approaches. The spectroscopic constants associated with these electronic states are compared to experimental values. The corresponding electronic wavefunctions have also been analyzed using the dipole moment functions. Display Omitted Highlights: {yields} The five lowest electronic states of Cao have been determined ab initio at a high level of accuracy. {yields} Large active space, core-valence correlation and configuration interaction are required. {yields} The multi-configurational nature of the electronic ground state is confirmed as well as its monovalent and divalent ionic nature using dipole moment analysis. {yields} These interacting potentials will serve for future obtention of spin-rovibronic levels. - Abstract: Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure of the low-lying electronic states of the CaO molecule. The computations are done using the aug-cc-pV5Z basis set for O and the cc-pCV5Z for Ca. The potential energy curves for the molecular states correlating to the lowest three asymptotes are calculated at the CASSCF level. The potential curves of the lowest five molecular states, X{sup 1}{Sigma}{sup +}, a{sup 3}{Pi}, A'{sup 1}{Pi}, b{sup 3}{Sigma}{sup +} and A{sup 1
Energy Technology Data Exchange (ETDEWEB)
Lucas, G
2006-10-15
The behaviour of silicon carbide under irradiation has been studied using classical and ab initio simulations, focusing on the nano scale elementary processes. First, we have been interested in the calculation of threshold displacement energies, which are difficult to determine both experimentally and theoretically, and also the associated Frenkel pairs. In the framework of this thesis, we have carried out simulations in classical and ab initio molecular dynamics. For the classical approach, two types of potentials have been used: the Tersoff potential, which led to non satisfactory results, and a new one which has been developed during this thesis. This potential allows a better modelling of SiC under irradiation than most of the empirical potentials available for SiC. It is based on the EDIP potential, initially developed to describe defects in silicon, that we have generalized to SiC. For the ab initio approach, the feasibility of the calculations has been validated and average energies of 19 eV for the C and 38 eV for the Si sublattices have been determined, close to the values empirically used in the fusion community. The results obtained with the new potential EDIP are globally in agreement with those values. Finally, the elementary processes involved in the crystal recovery have been studied by calculating the stability of the created Frenkel pairs and determining possible recombination mechanisms with the nudged elastic band method. (author)
AB INITIO STUDY ON VALENCE INDICES AND REACTIVITIES OF SOME BORAENS
Institute of Scientific and Technical Information of China (English)
曹阳; 王友良
1991-01-01
In the pressnt paper, 3-21G ab initio molecular orbital calculations arc performed on diborane B2H6 and the substituted bridged-atom species H4B2X2(X=F, C1, OH, NH2, CH3),and these geometries are optimized with the energy gradient technique. According to the quantum chemical definition of atomic valence, the valences of the bridged-atoms are calculated to studtd the characteristion of the bridging bond B-X-B. Some larger boranes B4H10, B5H9, and B5H11 are also calculated to discuss the valence indices and analyze the reactiveities of the bridged-atoms.
Ab-initio Hartree-Fock study of tritium desorption from Li{sub 2}O
Energy Technology Data Exchange (ETDEWEB)
Taniguchi, Masaki; Tanaka, Satoru [Tokyo Univ. (Japan). Faculty of Engineering
1998-03-01
Dissociative adsorption of hydrogen on Li{sub 2}O (110) surface has been investigated with ab-initio Hartree-Fock quantum chemical calculation technique. Heat of adsorption and potential energy surface for H{sub 2} dissociative adsorption was evaluated by calculating the total energy of the system. Calculation results on adsorption heat indicated that H{sub 2} adsorption is endothermic. However, when oxygen vacancy exists adjacent to the adsorption sites, heat of adsorption energy became less endothermic and the activation energy required to dissociate the H-H bonding was smaller than that for the terrace site. This is considered to be caused by the excess charge localized near the defect. (author)
Electronic and optical properties of K-doped ZnO: Ab initio study
Aimouch, D. E.; Meskine, S.; Hayn, R.; Zaoui, A.; Boukortt, A.
2016-08-01
We present the results of ab initio calculations of K-doped ZnO in the wurtzite structure using a supercell of 32 atoms and density functional theory. A complete analysis of its electronic, optical and magnetic properties is provided. The local spin density approximation (LSDA) has been used to analyze the density of states and to understand the K influence at different concentration values. The material is revealed to become a p-type doped semiconductor. The optical constant or refractive index, the dielectric function, and the absorption coefficient were determined and show a good agreement with available experimental data. Potassium doping leads to an absorption peak at about 380 nm. That peak might improve the absorption characteristics of ZnO for solar cell or optical applications.
Ab initio and DFT studies on vibrational spectra of some halides of group IIIB elements
Zhang, Yu; Zhao, Jianying; Tang, Guodong; Zhu, Longgen
2005-11-01
The vibrational spectra of some group IIIB elements halides MX 3 and their dimmers, M 2X 6 (M = Sc(III), Y(III), La(III); X = F, Cl, Br, I), have been systematically investigated by ab initio restricted Hartree-Fock (RHF) and density functional B3LYP methods with LanL2DZ and SDD basis sets. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational frequencies, calculated by two methods with different basis sets, are compared to each other. The effect of the methods and the basis sets used on the calculated vibrational frequencies are discussed. Some vibrational frequencies of these complexes are also predicted.
Ab initio and phenomenological studies of the static response of neutron matter
Buraczynski, Mateusz
2016-01-01
We investigate the problem of periodically modulated strongly interacting neutron matter. We carry out ab initio non-perturbative auxiliary-field diffusion Monte Carlo calculations using an external sinusoidal potential in addition to phenomenological two- and three-nucleon interactions. Several choices for the wave function ansatz are explored and special care is taken to extrapolate finite-sized results to the thermodynamic limit. We perform calculations at various densities as well as at different strengths and periodicities of the one-body potential. Our microscopic results are then used to constrain the isovector term from energy-density functional theories of nuclei at many different densities, while making sure to separate isovector contributions from bulk properties. Lastly, we use our results to extract the static density-density linear response function of neutron matter at different densities. Our findings provide insights into inhomogeneous neutron matter and are related to the physics of neutron-...
Relaxation of the excited -(2-hydroxy benzylidene) aniline molecule: An ab initio and TD DFT study
Indian Academy of Sciences (India)
Biswajit Chowdhury; Rina De; Pinaky Sett; Joydeep Chowdhury
2010-11-01
The photophysical behaviour of N-(2-hydroxy benzylidene) aniline or most commonly known as salicylideneaniline (SA) has been investigated using the ab initio and DFT levels of theory. The quantum chemical calculations show that the optimized non planar enol (1) form of the SA molecule is the most stable conformer in the ground state and is marked by the twisting of the phenolic and anilino rings of the molecule. The geometry optimizations and the subsequent frequency calculations of the excited singlet electronic states of the various tautomeric forms of SA molecule were performed with the CIS level of theory. A detail theoretical investigation on the relaxation dynamics of the SA molecule has been presented. Possible explanation on the excitation wavelength dependence of the photochromic yield of the molecule is also reported.
Isomerism of OBe3F3+ cation: an ab initio study
International Nuclear Information System (INIS)
Ab initio MP2/6-31G*/HF/6-31G*+ZPE(HF/6-31G*) calculations of the potential energy surface in the vicinity of stationary points and the pathways of intramolecular rearrangements between low-lying structures of the OBe3F3+ cation detected in the mass spectra of μ4-Be4O(CF3COO)6 were carried out. Ten stable isomers with di- and tricoordinate oxygen atoms were localized. The relative energies of six structures lie in the range 0-8 kcal mol-1 and those of the rest four structures lie in the range 20-40 kcal mol-1. two most favorable isomers are a planar C2, isomer and a pyramidal C3 isomer
Ab initio study of beryllium-decorated fullerenes for hydrogen storage
Lee, Hoonkyung; Huang, Bing; Duan, Wenhui; Ihm, Jisoon
2010-04-01
We have found that a beryllium (Be) atom on nanostructured materials with H2 molecules generates a Kubas-like dihydrogen complex [Lee, Huang, Duan, and Ihm, Appl. Phys. Lett. 96, 143120 (2010)]. Here, we investigate the feasibility of Be-decorated fullerenes for hydrogen storage using ab initio calculations. We find that the aggregation of Be atoms on pristine fullerenes is energetically preferred, resulting in the dissociation of the dihydrogen. In contrast, for boron (B)-doped fullerenes, Be atoms prefer to be individually attached to B sites of the fullerenes, and a maximum of one H2 molecule binds to each Be atom in a form of dihydrogen with a binding energy of ˜0.3 eV. Our results show that individual dispersed Be-decorated B-doped fullerenes can serve as a room-temperature hydrogen storage medium.
Ab initio molecular dynamics study of hydrogen removal by ion-surface interactions
Energy Technology Data Exchange (ETDEWEB)
Rosen, Johanna [Materials Chemistry, RWTH-Aachen, D-52056 Aachen (Germany); Larsson, Karin [Department of Materials Chemistry, Angstroem Laboratory, Uppsala University, Box 538, 751 21 Uppsala (Sweden); Schneider, Jochen M [Materials Chemistry, RWTH-Aachen, D-52056 Aachen (Germany)
2005-04-20
The energy dependence of surface reactions has been investigated through ab initio MD simulations for collisions between Al{sup 1+} and a gibbsite surface. No change in surface composition was observed for 0 eV initial kinetic energy of Al{sup 1+}. An increase in energy to 3.5 eV resulted in extended surface migration of hydrogen, subsequent H{sub 2} formation and desorption from the surface. These results may be understood based on thermodynamics and an increase in entropy upon H{sub 2} formation. They are of fundamental importance for an increased understanding of thin film growth through the correlation between ion energy and film composition. They may also indicate a pathway to affect impurity incorporation during film growth. (letter to the editor)
Ab initio study of pressure induced structural and electronic properties in TmPo
Energy Technology Data Exchange (ETDEWEB)
Makode, Chandrabhan, E-mail: cbmakode@gmail.com; Pataiya, Jagdish; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal-462026 (India); Panwar, Y. S.; Aynyas, Mahendra [Department of Physics, C.S.A. Govt. P.G. College, Sehore-466001 (India)
2015-06-24
We report an ab initio calculation of pressure induced structural phase transition and electronic properties of Thulium Polonide (TmPo).The total energy as a function of volume is obtained by means of self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). It is found that TmPo is stable in NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-phase) structure of this compound in the pressure range of 7.0 GPa. We also calculate the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure and density of states. From energy diagram it is observed that TmPo exhibit metallic behavior. The calculated values of equilibrium lattice parameter and bulk modulus are in general good agreement.
Ab initio study on the dynamics of furfural at the liquid-solid interfaces
Dang, Hongli; Xue, Wenhua; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu
2013-03-01
Catalytic biomass conversion sometimes occurs at the liquid-solid interfaces. We report ab initio molecular dynamics simulations at finite temperatures for the catalytic reactions involving furfural at the water-Pd and water-Cu interfaces. We found that, during the dynamic process, the furan ring of furfural prefers to be parallel to the Pd surface and the aldehyde group tends to be away from the Pd surface. On the other hand, at the water-Cu(111) interface, furfural prefers to be tilted to the Cu surface while the aldehyde group is bonded to the surface. In both cases, interaction of liquid water and furfural is identified. The difference of dynamic process of furfural at the two interfaces suggests different catalytic reaction mechanisms for the conversion of furfural, consistent with the experimental investigations. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSED's and NERSC's supercomputers
Ab initio study of the electronic properties of the planar Ga5N5 cluster
Institute of Scientific and Technical Information of China (English)
Zheng Hao-Ping; Hao Jing-An
2005-01-01
The first-principles, all electron, ab initio calculations have been performed for an the amazing stable planar structure of Ga5N5 cluster based on the density functional theory. Electronic structure, Electron affinity, ionization potential, and binding energy are obtained. No spin magnetic moment is found. The results show that the planar structure of the Ga5N5 cluster is stable. It is found that for the planar structure of Ga5N5 cluster, three nitrogen atoms in the N3 subunit bind together with large electon transfer although no free N3 can exist. This may be important to the stability of the planar structure of the Ga5N5 cluster which has the lowest ground-state energy.
Mundy, Christopher J; Curioni, Alessandro; Goldman, Nir; Will Kuo, I-F; Reed, Evan J; Fried, Laurence E; Ianuzzi, Marcella
2008-05-14
We report herein ab initio molecular dynamics simulations of graphite under shock compression in conjunction with the multiscale shock technique. Our simulations reveal that a novel short-lived layered diamond intermediate is formed within a few hundred of femtoseconds upon shock loading at a shock velocity of 12 kms (longitudinal stress>130 GPa), followed by formation of cubic diamond. The layered diamond state differs from the experimentally observed hexagonal diamond intermediate found at lower pressures and previous hydrostatic calculations in that a rapid buckling of the graphitic planes produces a mixture of hexagonal and cubic diamond (layered diamond). Direct calculation of the x-ray absorption spectra in our simulations reveals that the electronic structure of the final state closely resembles that of compressed cubic diamond.
Ionization dynamics of the water trimer: A direct ab initio MD study
Energy Technology Data Exchange (ETDEWEB)
Tachikawa, Hiroto, E-mail: hiroto@eng.hokudai.ac.jp [Division of Materials Chemistry, Graduate School of Engineering, Hokkaido University, Kita-ku, Sapporo 060-8628 (Japan); Takada, Tomoya [Department of Material Chemistry, Asahikawa National College of Technology, Syunkodai, Asahikawa 071-8142 (Japan)
2013-03-29
Highlights: ► We calculated ionization dynamics of water trimer. ► Direct ab initio molecular dynamics (MD) method is applied. ► Proton transfer dynamics were discussed. ► The proton transfer process calculated are well reproduced in recent experiments. - Abstract: Ionization dynamics of the cyclic water trimer (H{sub 2}O){sub 3} have been investigated by means of direct ab initio molecular dynamics (AIMD) method. Two reaction channels, complex formation and OH dissociation, were found following the ionization of (H{sub 2}O){sub 3}. In both channels, first, a proton was rapidly transferred from H{sub 2}O{sup +} to H{sub 2}O (time scale is ∼15 fs after the ionization). In complex channel, an ion–radical contact pair (H{sub 3}O{sup +}–OH) solvated by the third water molecule was formed as a long-lived H{sub 3}O{sup +}(OH)H{sub 2}O complex. In OH dissociation channel, the second proton transfer further takes place from H{sub 3}O{sup +}(OH) to H{sub 2}O (time scale is 50–100 fs) and the OH radical is separated from the H{sub 3}O{sup +}. At the same time, the OH dissociation takes place when the excess energy is efficiently transferred into the kinetic energy of OH radical. The OH dissociation channel is significantly minor, and almost all product channels were the complex formation. The reaction mechanism was discussed on the basis of theoretical results.
International Nuclear Information System (INIS)
Graphical abstract: Halothane and enflurane form the blue-shifting hydrogen bonded C-H...complexes with benzene. The CCSD(T)/CBS calculated stabilization energies are about -10 kcal mol-1. - Abstract: For many years halothane and enflurane have been used clinically as volatile anaesthetics, however, their mechanism of action is still not fully understood. Recently, it has been suggested that they can act by a direct bonding to neuroreceptors containing the aromatic groups. In this work, the halothane...benzene and enflurane...benzene complexes were studied by the ab initio MP2 and CCSD(T) methods. All possible structures of the complexes were calculated by means of the counterpoise CP-corrected gradient optimization technique. It has been found that among these species, the C-H...π hydrogen bonded complexes are the most stable. The CCSD(T)/CBS calculated stabilization energies for halothane and enflurane complexes are: -10.56 and -9.72 kcal mol-1, respectively. The interaction energy is mainly dominated by the dispersion attraction. In the case of enflurane, the C-H bond shows a very small contraction (by -0.0008 A) upon complexation. This change is accompanied by the blue-shift (20 cm-1) of the C-H stretching frequency and an increase of the infrared intensity of the corresponding mode by 7 km mol-1. Similar results were obtained for the halothane complex: a small contraction of the C-H bond; an increase of the C-H stretching frequency by 11 cm-1 (blue-shift); and an increase of the infrared intensity by 37 km mol-1. In order to explain the nature of these effects, the halothane and enflurane molecules were studied in the electric field generated by benzene atoms, and Natural Bond Orbital (NBO) analyses were performed. The molecular dipole moments of these molecules were calculated with respect to the C-H bond changes. The positive dipole moment derivative obtained for halothane is in agreement with the literature data, while, in the case of enflurane, an unusual
Ab initio study of different structures of CaC: Magnetism, bonding, and lattice dynamics
Energy Technology Data Exchange (ETDEWEB)
Nourbakhsh, Zahra, E-mail: z.nourbakhsh@ph.iut.ac.ir; Hashemifar, S. Javad, E-mail: hashemifar@cc.iut.ac.ir; Akbarzadeh, Hadi
2013-12-05
Highlights: •Electronic structure and phonon calculations are performed on seven CaC structures. •The more covalent structures have lower energies and nonmagnetic ground state. •Ferromagnetism in the ionic phases comes from the sharp C p band at the Fermi level. •Tendency of C atoms for dimerization may lead to structural instabilities in CaC. •Nonmagnetic B33 CaC is stable in a wide range of temperatures and pressures. -- Abstract: On the basis of ab initio pseudopotential calculations, we study structural, magnetic, dynamical, and mechanical properties of the hypothetical CaC ionic compound in the rock-salt (RS), B2, zinc-blende (ZB), wurtzite (WZ), NiAs (NA), anti-NiAs (NA{sup ∗}), and CrB (B33) structures. It is argued that the ZB, WZ, NA, and RS structures are more ionic while the NA{sup ∗}, B2, and B33 structures are more covalent systems. As a result of that, the nonmagnetic B33–CaC is the energetically preferred system, while the more ionic structures prefer a ferromagnetic ground state with high Fermi level spin polarization. The observed ferromagnetism in the more ionic systems is attributed to the sharp partially filled p states of carbon atom in the system. In the framework of density functional perturbation theory, the phonon spectra of these systems are computed and the observed dynamical instabilities of the NA{sup ∗} and B2 structures are explained in terms of the covalent bonds between carbon atoms. The calculated Helmholtz and Enthalpy free energies indicate the highest stability of the B33 structure in a wide range of temperatures and pressures. Among the ferromagnetic structures, RS–CaC and ZB–CaC are reported, respectively, to be the most and the least metastable systems in various thermodynamics conditions. Several mechanical properties of the dynamically stable structures of CaC are determined from their phonon spectra.
Ab initio studies on the adsorption and implantation of Al and Fe to nitride materials
Energy Technology Data Exchange (ETDEWEB)
Riedl, H., E-mail: helmut.riedl@tuwien.ac.at [Christian Doppler Laboratory for Application Oriented Coating Development at the Institute of Materials Science and Technology, TU Wien, A-1040 Wien (Austria); Zálešák, J. [Erich Schmid Institute for Materials Science, Austria Academy of Science, A-8700 Leoben (Austria); Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben (Austria); Arndt, M. [Oerlikon Balzers, Oerlikon Surface Solutions AG, LI-9496 Balzers (Liechtenstein); Polcik, P. [Plansee Composite Materials GmbH, D-86983 Lechbruck am See (Germany); Holec, D. [Christian Doppler Laboratory for Application Oriented Coating Development at the Institute of Materials Science and Technology, TU Wien, A-1040 Wien (Austria); Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben (Austria); Mayrhofer, P. H. [Christian Doppler Laboratory for Application Oriented Coating Development at the Institute of Materials Science and Technology, TU Wien, A-1040 Wien (Austria); Institute of Materials Science and Technology, TU Wien, A-1040 Vienna (Austria)
2015-09-28
The formation of transfer material products on coated cutting and forming tools is a major failure mechanism leading to various sorts of wear. To describe the atomistic processes behind the formation of transfer materials, we use ab initio to study the adsorption energy as well as the implantation barrier of Al and Fe atoms for (001)-oriented surfaces of TiN, Ti{sub 0.50}Al{sub 0.50}N, Ti{sub 0.90}Si{sub 0.10}N, CrN, and Cr{sub 0.90}Si{sub 0.10}N. The interactions between additional atoms and nitride-surfaces are described for pure adhesion, considering no additional stresses, and for the implantation barrier. The latter, we simplified to the stress required to implant Al and Fe into sub-surface regions of the nitride material. The adsorption energies exhibit pronounced extrema at high-symmetry positions and are generally highest at nitrogen sites. Here, the binary nitrides are comparable to their ternary counterparts and the average adhesive energy is higher (more negative) on CrN than TiN based systems. Contrary, the implantation barrier for Al and Fe atoms is higher for the ternary systems Ti{sub 0.50}Al{sub 0.50}N, Ti{sub 0.90}Si{sub 0.10}N, and Cr{sub 0.90}Si{sub 0.10}N than for their binary counterparts TiN and CrN. Based on our results, we can conclude that TiN based systems outperform CrN based systems with respect to pure adhesion, while the Si-containing ternaries exhibit higher implantation barriers for Al and Fe atoms. The data obtained are important to understand the atomistic interaction of metal atoms with nitride-based materials, which is valid not just for machining operations but also for any combination such as interfaces between coatings and substrates or multilayer and phase arrangements themselves.
Energy Technology Data Exchange (ETDEWEB)
Kim, B.
1990-10-01
This report discusses the following topics: molecular structure of NO{sub 3} radical studied by laser induced fluorescence; photodissociation and fluorescence spectroscopy of NO{sub 3} in molecular beam; vertical electronic spectrum of NO{sub 3}:{sup 2}A{prime}{sub 2}, {sup 2}E{double prime}({sup 2}A{sub 2}{sup 2}B{sub 1}), and {sup 2}E{prime} states; and Ab initio study of the vibrational spectra of NO{sub 3}.
An ab initio molecular dynamics study of the roaming mechanism of the H{sub 2}+HOC{sup +} reaction
Energy Technology Data Exchange (ETDEWEB)
Yu Huagen, E-mail: hgy@bnl.gov [Department of Chemistry, Brookhaven National Laboratory, Upton, NY 11973 (United States)
2011-08-01
We report here a direct ab initio molecular dynamics study of the p-/o-H{sub 2}+HOC{sup +} reaction on the basis of the accurate SAC-MP2 potential energy surface. The quasi-classical trajectory method was employed. This work largely focuses on the study of reaction mechanisms. A roaming mechanism was identified for this molecular ion-molecule reaction. The driving forces behind the roaming mechanism were thoroughly investigated by using a trajectory dynamics approach. In addition, the thermal rate coefficients of the H{sub 2}+HOC{sup +} reaction were calculated in the temperature range [25, 300] K and are in good agreement with experiments.
Ab initio study of ferromagnetic La0.5Ba0.5CoO3
Indian Academy of Sciences (India)
Umesh V Waghmare
2003-10-01
We study structure and magnetic properties of La0.5Ba0.5CoO3 (LBCO) using ab initio density functional theory (DFT) method based on pseudopotentials and a plane-wave basis. We find the cubic structure of LBCO is ferromagnetic and lower in energy than the nonmagnetic rhombohedral structure. Through the calculation of -point phonons of LBCO in the cubic structure, we determine its structural instabilities and find that they correspond to the structural phase transition accompanying a para-ferromagnetic transition observed recently.
Chemisorption of group-III metals on the Si(111) and Ge(111) surfaces: An ab initio study
Ricart, J M; Rubio Martínez, Jaime; Illas i Riera, Francesc
1990-01-01
Chemisorption of group-III metal adatoms on Si(111) and Ge(111) has been studied through the ab initio Hartree-Fock method including nonempirical pseudopotentials and using cluster models to simulate the surface. Three different high-symmetry sites (atop, eclipsed, and open) have been considered by using X4H9, X4H7, and X6H9 (X=Si,Ge) cluster models. In a first step, ideal surface geometries have been used. Metal-induced reconstruction upon chemisorption has also been taken into account. Equi...
DEFF Research Database (Denmark)
Tao, Kun; Stepanyuk, V.S.; Bruno, P.;
2008-01-01
The state of the art ab initio calculations reveal the effect of a scanning tunneling microscopy tip on magnetic properties and conductance of a benzene-adatom sandwich on Cu(001). We concentrate on a benzene-Co system interacting with a Cr tip. Our studies give a clear evidence that magnetism...... and conductance in molecule-adatom junctions can be tailored by the STM tip. Varying the tip-substrate distance the magnetic moment of the Co adatom can be switched on/off. The interplay between spin-polarized electron transport through the junction and its magnetic properties is demonstrated. A spin...
Ab initio study of vibronic transitions between x2π and 12Σ+ electronic states of HCP+ ion
Directory of Open Access Journals (Sweden)
Stojanović Ljiljana
2013-01-01
Full Text Available The ground and low-lying excited doublet electronic states of the HCP+ ion were studied by means of multireference configuration interaction method. Vibronic energy levels of the X2Π state of Σ, Π, Δ, and Φ symmetry, up to the 2500 cm-1, have been calculated variationally, employing previously developed ab initio methods which take into account vibronic and spin-orbit interactions. Obtained vibronic wave functions were used to estimate transition moments between vibronic energy levels of the X2Π and 12Σ+ electronic states. Results were compared to available experimental and theoretical data. [Projekat Ministarstva nauke Republike Srbije, br. 172040
Ab initio valence calculations in chemistry
Cook, D B
1974-01-01
Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge
Guo, Xun; Zhang, Xitong; Zhao, Shijun; Huang, Qing; Xue, Jianming
2016-01-01
Density functional theory (DFT) calculation is employed to study the adsorption properties of Pb and Cu on recently synthesized two-dimensional materials MXenes, including Ti3C2, V2C1 and Ti2C1. The influence of surface decoration with functional groups such as H, OH and F have also been investigated. Most of these studied MXenes exhibit excellent capability to adsorb Pb and Cu, especially the adsorption capacity of Pb on Ti2C1 is as high as 2560 mg g(-1). Both the binding energies and the adsorption capacities are sensitive to the functional groups attached to the MXenes' surface. Ab initio molecular dynamics (ab-init MD) simulation confirms that Ti2C1 remains stable at room temperature after adsorbing Pb atoms. Our calculations imply that these newly emerging two-dimensional MXenes are promising candidates for wastewater treatment and ion separation. PMID:26602974
A Comparative Study of Ab-Initio Thermal Conductivity Approaches: The Case of Cubic Boron Nitride
Mukhopadhyay, Saikat; Lindsay, Lucas; Broido, David; Stewart, Derek
2013-03-01
Given its high strength and large thermal conductivity, cubic boron nitride (cBN) provides an important complement to diamond films for heat spreading applications. However, cBN, in contrast to diamond, is a polar material with significant LO-TO splitting in the phonon dispersion. In this talk, we examine the lattice thermal conductivity of cBN using several approaches based on first principles calculations. These approaches include: (1) an analytic modified Callaway-Debye model that relies on parameters from ab-initio harmonic force constants, (2) a fully self-consistent calculation of the thermal conductivity that links an iterative solution of the phonon Boltzmann transport equation (BTE) with harmonic and anharmonic interatomic force constants. The force constants for the BTE are calculated using two approaches: density functional perturbation theory and a real-space supercell approach. We will compare the results from these approaches, highlight the role of normal phonon-phonon scattering, and also examine the impact of optical modes and LO-TO splitting. In addition, we will discuss how isotope scattering affects thermal conductivity and compare this to other boron nitride structures (hexagonal BN, BN sheets and BN nanotubes).
Ab initio study of the unusual thermal transport properties of boron arsenide and related materials
Broido, D. A.; Lindsay, L.; Reinecke, T. L.
2013-12-01
Recently, using a first principles approach, we predicted that zinc blende boron arsenide (BAs) will have an ultrahigh lattice thermal conductivity, κ, of over 2000 Wm-1K-1 at room temperature (RT), comparable to that of diamond. Here, we provide a detailed ab initio examination of phonon thermal transport in boron arsenide, contrasting its unconventional behavior with that of other related materials, including the zinc blende crystals boron nitride (BN), boron phosphide, boron antimonide, and gallium nitride (GaN). The unusual vibrational properties of BAs contribute to its weak phonon-phonon scattering and phonon-isotope scattering, which are responsible for its exceptionally high κ. The thermal conductivity of BAs has contributions from phonons with anomalously large mean free paths (˜2 μm), two to three times those of diamond and BN. This makes κ in BAs sensitive to phonon scattering from crystal boundaries. An order of magnitude smaller RT thermal conductivity in a similar material, zinc blende GaN, is connected to more separated acoustic phonon branches, larger anharmonic force constants, and a large isotope mixture on the heavy rather than the light constituent atom. The striking difference in κ for BAs and GaN demonstrates the importance of using a microscopic first principles thermal transport approach for calculating κ. BAs also has an advantageous RT coefficient of thermal expansion, which, combined with the high κ value, suggests that it is a promising material for use in thermal management applications.
International Nuclear Information System (INIS)
Utilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustained complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively. Furthermore, by revealing the framework of thermodynamics for the oxidation mechanism of ternary alloys through the comparison of the surface energies of two separated binary alloys, we provide an understanding for the selective oxidation behavior of the Nb ternary alloy surfaces. Using these general microscopic mechanisms, one could predict the oxidation behavior of any binary and multi-component alloy surfaces based on thermodynamics considerations
Energy Technology Data Exchange (ETDEWEB)
Liu, Shi-Yu, E-mail: buaasyliu@gmail.com [College of Physics and Electronic Information Science, Tianjin Normal University, Tianjin 300387 (China); Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Liu, Shiyang [Institute of Information Optics, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China); Li, De-Jun [College of Physics and Electronic Information Science, Tianjin Normal University, Tianjin 300387 (China); Wang, Sanwu, E-mail: sanwu-wang@utulsa.edu [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, Oklahoma 74104 (United States); Guo, Jing; Shen, Yaogen, E-mail: meshen@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)
2015-02-14
Utilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustained complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively. Furthermore, by revealing the framework of thermodynamics for the oxidation mechanism of ternary alloys through the comparison of the surface energies of two separated binary alloys, we provide an understanding for the selective oxidation behavior of the Nb ternary alloy surfaces. Using these general microscopic mechanisms, one could predict the oxidation behavior of any binary and multi-component alloy surfaces based on thermodynamics considerations.
Ab initio energetic study of oxide ceramics with rare-earth elements
Institute of Scientific and Technical Information of China (English)
WU Bo; Matvei Zinkevich; WANG Chong; Fritz Aldinger
2006-01-01
Ab initio energetic calculations based on the density functional theory (DFT) and the projector augmented wave method (PAW) for determining the polymorphisms of lanthanide sesquioxides Ln2O3 (where Ln = rare-earth element. Y,and Sc), LnMO3 perovskites (where M = Al and Ga), and Ln2B2O7 pyrochlores (where B = Ti, Zr, and Hf) were reported. The relative lattice stabilities agreed well with the critically assessed results or the experimental results except the C-type Ln2O3 with a cubic structure, for which the calculated total energies were considerably more negative. With the increase of the Ln3+-cation radius, the polymorphic structures showed a degenerative tendency. The tendencies and quantities of the enthalpies of formation of the ternary oxide ceramics synthesized from their constituent binary oxides reasonably agreed with the available experimental results, and valuable thermodynamic properties were afforded to the compound, for which no experimental data is available. The enthalpies of formation of both perovskites and pyrochlores tend to become more negative with the increase of the Ln3+-cation radius.
Laser spectroscopy and ab initio studies of metal-containing free radicals
Greetham, G M
2000-01-01
strontium-containing free radical is reported, that of SrCCH. This new excited electronic state is accessed by the orbitally-forbidden B-tilde' sup 2 DELTA-X-tilde sup 2 SIGMA sup + transition. Spin-orbit and vibrational structure have been seen in spectra of SrCCH and SrCCD and confirmed the assignment. Finally, observation of a new transition in an unidentified gallium-containing molecule is reported. Two progressions corresponding to two different vibrational modes of the molecule are seen in the spectrum. Potential spectral carriers, including Ga sub x clusters and other gallium-containing molecules formed by reaction with impurities, are discussed in an attempt to explain the observed spectrum. This work describes the use of laser spectroscopy and ab initio calculations in the investigation of several new electronic transitions in metal-containing free radicals. These free radicals were prepared in a supersonic jet by laser ablation of solid metal samples in the presence of appropriate precursor molecule...
Ab initio studies of transition metal complexes and related electron transfer properties
International Nuclear Information System (INIS)
Ab initio electronic structure calculations have been carried out for various aquo and ammine complexes of Fe, Co, and Ru in their 2+ and 3+ oxidation states. The results of these calculations are used as assessing a variety of factors controlling electron transfer kinetics including the charge-state dependence of various inner shell geometrical parameters and associated vibrational frequencies (metal-ligand and intra-ligand and intra-ligand stretching modes, and librational modes), and the dependence of electron transfer matrix elements on the nature of the ligand and the metal orbital type (/sup t/2/sub g/ vs. e/sub g/). The charge-state dependence of the OH bond lengths in hexa-aquo ions is predicted to yield H/D isotope effects (i.e., fractionation between bulk and first shell water), which should be detectable by neutron scattering experiments on appropriate aqueous solutions. The relationship between these thermodynamic isotope effects, which depend critically on strong OH triple bond O hydrogen bonding between first and second-shell water molecules, and kinetic H/D isotope effects in electron exchange involving hexa-aquo ions will be discussed
Ab initio Study on Structures and Isomerization of Magnesium Fluorosilylenoid H2SiFMgF
Institute of Scientific and Technical Information of China (English)
Yi-jian Zhang; Mei-jiang Li; Guo-qiao Lai; Da-cheng Feng; Sheng-yu Feng
2008-01-01
The structures and isomerization of magnesium fluorosilylenoid H2SiFMgF were investigated by ab initio molecular orbital theory. Four equilibrium structures and three isomeric transition states were located and fully optimized at the B3LYP/6-31G(d,p) and G3MP2B3 levels, respectively. Based on the B3LYP/6-31G(d,p) optimized geometries, harmonic frequencies of various structures were obtained and 29Si chemical shifts were calculated. The solvent effects were investigated by means of the polarizable continuum model using THF as a solvent at B3LYP/6-31G(d,p) level. Isomerization paths for isomers were confirmed by in-trinsic reaction coordinate calculations. The calculated results show that tetrahedral structure has the lowest energy and is the most stable; tetrahedral, three-membered ring, and p-complex structures are suggested to be the experimentally detectable ones; and σ-complex structure has the highest energy and will not exist.
Switchable magnetic moment in cobalt-doped graphene bilayer on Cu(111): An ab initio study
Souza, Everson S.; Scopel, Wanderlã L.; Miwa, R. H.
2016-06-01
In this work, we have performed an ab initio theoretical investigation of substitutional cobalt atoms in the graphene bilayer supported on the Cu(111) surface (Co/GBL/Cu). Initially, we examined the separated systems, namely, graphene bilayer adsorbed on Cu(111) (GBL/Cu) and a free standing Co-doped GBL (Co/GBL). In the former system, the GBL becomes n -type doped, where we map the net electronic charge density distribution along the GBL-Cu(111) interface. The substitutional Co atom in Co/GBL lies between the graphene layers, and present a net magnetic moment mostly due to the unpaired Co-3 dz2 electrons. In Co/GBL/Cu, we found that the Cu(111) substrate rules (i) the energetic stability, and (ii) the magnetic properties of substitutional Co atoms in the graphene bilayer. In (i), the substitutional Co atom becomes energetically more stable lying on the GBL surface, and in (ii), the magnetic moment of Co/GBL has been quenched due to the Cu(111) → Co/GBL electronic charge transfer. We verify that such a charge transfer can be tuned upon the application of an external electric field, and thus mediated by a suitable change on the electronic occupation of the Co-dz2 orbitals, we found a way to switch-on and -off the magnetization of the Co-doped GBL adsorbed on the Cu(111) surface.
Ab-initio study of the dielectric response of high-permittivity perovskites for energy storage
International Nuclear Information System (INIS)
Many of materials based on transition metals have a wide range of applications, such as the storage of energy, due to their peculiar properties (high-dielectric constants, ferro-electricity,...). The knowledge of their bulk properties is essential in designing targeted devices with high performance. For instance, ABO3 perovskites are peculiarly interesting for their atomic structural flexibility, allowing high number of atoms substitution and giving them specific chemical and electrical properties compared to the pure compounds. In this context, first principles calculations can be useful to understand the structural and electronic properties of these materials. The pressure-induced giant dielectric anomaly of ABO3 perovskites has been investigated at the ab initio level. Its mechanism has been analyzed in terms of thermodynamic phase stability, structural and phonon contributions and Born effective charges. It is shown that the IR-active soft phonon is responsible for the anomaly. This mode always involves a displacement and a deformation of the oxygen octahedra, while the roles of A and B ions vary among the materials and between high- and low-pressure phase transitions. A sharp increase in the phonon amplitude near the phase transition gives rise to the dielectric anomaly. The use of hybrid functionals is required for agreement with experimental data. The calculations show that the dielectric anomaly in the pressure-induced phase transitions of these perovskites is a property of the bulk material. (author)
Ab-initio study of germanium di-interstitial using a hybrid functional (HSE)
Igumbor, E.; Ouma, C. N. M.; Webb, G.; Meyer, W. E.
2016-01-01
In this work, we present ab-initio calculation results of Ge di-interstitials (I2(Ge)) in the framework of the density functional theory (DFT) using the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional. The formation energy, transition levels and minimum energy configurations were obtained for I2(Ge) -2, -1, 0, +1 and +2 charge states. The calculated formation energies show that for all charge states of I2(Ge), the double tetrahedral (T) configuration formed the most stable defect with a binding energy of 1.24 eV in the neutral state. We found the (+2/+1) charge state transition level for the T lying below the conduction band minimum and (+2/+1) for the split[110]-tetrahedral configuration lying deep at 0.41 eV above the valence band maximum. The di-interstitials in Ge exhibited the properties of both shallow and deep donor levels at (+2/+1) within the band gap and depending on the configurations. I2(Ge) gave rise to negative-U, with effective-U values of -0.61 and -1.6 eV in different configurations. We have compared our results with calculations of di-interstitials in silicon and available experimental data.
Ab initio study of Cr interactions with point defects in bcc Fe
International Nuclear Information System (INIS)
Full text of publication follows. Ferritic martensitic steels are candidate structural materials for fast neutron reactors, and in particular high-Cr reduced-activation steels. In Fe-Cr alloys, Cr plays a major role in the radiation-induced evolution of the mechanical properties. Using ab initio calculations based on density functional theory, the properties of Cr in α-Fe have been investigated. The intrinsic point defect formation energies were found to be larger in model bcc Cr as compared to those in ferromagnetic bcc Fe. The interactions of Cr with point defects (vacancy and self interstitials) have been characterised. Single Cr atoms interact weakly with vacancies but significantly with self-interstitial atoms. Mixed interstitials of any interstitial symmetry are bound. Configurations where two Cr atoms are in nearest neighbour position are generally unfavourable in bcc Fe except when they are a part of a interstitial complex. Mixed interstitials do not have as strong directional stability as pure Fe interstitials have. The effects on the results using the atom description scheme of either the ultrasoft pseudo-potential (USPP) or the projector augmented wave (PAW) formalisms are connected to the differences in local magnetic moments that the two methods predict. As expected for the Fe-Cr system, the results obtained using the PAW method are more reliable than the ones obtained with USPP. (authors)
Ab initio Mechanism Study on the Reaction of Chlorine Atom with Formic Acid
Institute of Scientific and Technical Information of China (English)
于海涛; 付宏刚; 等
2003-01-01
The potential energy surface(PES) for the reaction of Cl atom with HCOOH is predicted using ab initio molecular orbital calculation methods at UQCIDS(T,full)6-311++G(3df,2p)//UMP2(full)/6-311+G(d,P) level of theory with zero-point vibrational energy (ZPVE) correction.The calculated results show that the reaction mechanism of Cl atom with formic acid is a C-site hydrogen abstraction reaction from cis-HOC(H)O molecule by Cl atom with a 3.73kJ/mol reaction barrier height,leading to the formation of cis-HOCO radical which will reacts with Cl atom or other molecules in such a reaction system.Because the reaction barrier height of O-site hydrogen abstraction reaction from cis-HOC(H)O molecule by Cl atom which leads to the formation of HCO2 radical is 67.95kJ/mol,it is a secondary reaction channel in experiment,This is in good agreement with the prediction based on the previous experiments.
Rogers, D W; McLafferty, F J
2001-02-23
Accurate G3(MP2) calculations of the enthalpies of formation (Delta(f)H298) of organic molecules permit replication and extension of calculations that were formerly dependent on experimental thermochemical results. A case in point is Kistiakowski's classical calculation of the total stabilization enthalpy of benzene relative to that of cyclohexene, called for many years the "resonance energy". This paper investigates extension of the classical calculation to substituted benzenes. Slight modification of the usual procedure for Delta(f)H298 determination permits exclusion of all empirical information, leaving a purely ab initio result. Stabilization enthalpies relative to the corresponding 4-substituted cyclohexenes are presented for benzene, toluene, aniline, phenol, phenylacetylene, styrene, ethylbenzene, and phenylhydrazine. In the process of calculating these stabilization enthalpies, we have also obtained 42 values of Delta(f)H298 for monosubstituted benzenes, cyclohexenes, and cyclohexanes, 24 of which are not in the standard reference literature. For the remaining 18 G3(MP2) results, the unsigned mean difference between calculated Delta(f)H298 values and experimental results is +/-0.91 kcal x mol(-1). PMID:11312942
Energy Technology Data Exchange (ETDEWEB)
Bakaev, A. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol B2400 (Belgium); Center for Molecular Modeling, Department of Physics and Astronomy, Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium); Department of Experimental Nuclear Physics K-89, Faculty of Physics and Mechanics, St. Petersburg State Polytechnical University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation); Terentyev, D., E-mail: dterenty@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol B2400 (Belgium); Bonny, G. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol B2400 (Belgium); Klaver, T.P.C. [Department of Materials Science and Engineering, Faculty of 3mE, TU Delft, Mekelweg 2, 2628 CD Delft (Netherlands); Olsson, P. [Department of Neutron Research, Angstrom Laboratory, Uppsala University, Box 525, SE-75120 Uppsala (Sweden); Van Neck, D. [Center for Molecular Modeling, Department of Physics and Astronomy, Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium)
2014-01-15
Highlights: • The interaction of Mo, W, Nb, Ta, V, Mn, Si with point and extended defects is characterized. • Mn and Si exhibit peculiar interaction with both point and extended lattice defects. • The results for substitutional atoms of the refractory metals well follow one specific trend. -- Abstract: Basic properties of minor alloying elements, namely Mo, W, Nb, Ta, V, Mn, Si entering the conventional and reduced-activation structural Fe–(9–12)Cr steels have been analyzed using ab initio calculations. The electronic structure calculations were applied to study the interaction of minor alloying elements with a number of important and well defined lattice structures, such as point defects, the 1/2〈1 1 1〉 screw dislocation core, high angle symmetric grain boundaries and free surfaces. The studied elements were classified according to their similarities and discrepancies regarding the interaction with the above mentioned defects. The refractory alloying elements are found to follow the same trend whereas Mn and Si exhibit peculiar behavior with respect to the interaction with both point and extended lattice defects. The obtained results are discussed and compared with previously published ab initio and available experimental data.
A theoretical-spectroscopy, ab-initio-based study of the electronic ground state of 121SbH3
Yurchenko, Sergei N.; Carvajal Zaera, Miguel; Yachmenev, Andrey; Thiel, Walter; Jensen, Per
2010-01-01
For the stibine isotopologue (SbH3)-Sb-121, we report improved theoretical calculations of the vibrational energies below 8000 cm- and simulations of the rovibrational spectrum in the 0-8000 cm(-1) region. The calculations are based on a refined ab initio potential energy surface and on a new dipole moment surface obtained at the coupled cluster CCSD(T) level. The theoretical results are compared with the available experimental data in order to validate the ab initio surfaces and the TROVE co...
Rotational study of the CH4-CO complex: Millimeter-wave measurements and ab initio calculations
Surin, L. A.; Tarabukin, I. V.; Panfilov, V. A.; Schlemmer, S.; Kalugina, Y. N.; Faure, A.; Rist, C.; van der Avoird, A.
2015-10-01
The rotational spectrum of the van der Waals complex CH4-CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 110-145 GHz. Newly observed and assigned transitions belong to the K = 2-1 subband correlating with the rotationless jCH4 = 0 ground state and the K = 2-1 and K = 0-1 subbands correlating with the jCH4 = 2 excited state of free methane. The (approximate) quantum number K is the projection of the total angular momentum J on the intermolecular axis. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the CH4-CO complex. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of CH4-CO have been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations [CCSD(T)-F12a] and an augmented correlation-consistent triple zeta (aVTZ) basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the CH4 face closest to the CO subunit and binding energy De = 177.82 cm-1. The bound rovibrational levels of the CH4-CO complex were calculated for total angular momentum J = 0-6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D0 are 91.32, 94.46, and 104.21 cm-1 for A (jCH4 = 0), F (jCH4 = 1), and E (jCH4 = 2) nuclear spin modifications of CH4-CO, respectively.
Ab initio studies on the spin-forbidden cooling transitions of the LiRb molecule.
You, Yang; Yang, Chuan-Lu; Zhang, Qing-Qing; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang
2016-07-20
The spin-forbidden cooling of the LiRb molecule is investigated based on ab initio quantum chemistry calculations. The multireference configuration interaction method is used to generate the potential energy curves (PECs) of the ground state X(1)Σ(+) and the low-lying excited states a(3)Σ(+), B(1)Π, and b(3)Π. The spin-orbit coupling effects for the PECs and the transition dipole moments (TDMs) between the X(1)Σ(+), b(3)Π and a(3)Σ(+) states are also calculated. The analytical functions for the PECs are deduced. The rovibrational energy levels, the spectroscopic parameters and the Franck-Condon factors (FCF) are determined by solving the Schrödinger equation of nuclear movement with the obtained analytical functions. The b(3)Π0 ↔ X(1)Σ(+) and b(3)Π1 ↔ X(1)Σ(+) transitions have highly diagonal distributed FCFs and non-zero TDMs, demonstrating that the LiRb molecule could be a very promising candidate for laser cooling. Therefore, a three-cycle laser cooling scheme for the molecule has been proposed based on these two spin-forbidden transitions. Using the radiative lifetime and linewidth calculated from the obtained TDM functions, we present further analysis of the cooling of LiRb and the corresponding KRb molecule. The transition b(3)Π0 ↔ X(1)Σ(+) is found to be a practical transition to cool the LiRb molecule, and a sub-microkelvin cool temperature could be reached for the KRb molecule using a similar laser cooling scheme. PMID:27388722
Ab initio studies on the spin-forbidden cooling transitions of the LiRb molecule.
You, Yang; Yang, Chuan-Lu; Zhang, Qing-Qing; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang
2016-07-20
The spin-forbidden cooling of the LiRb molecule is investigated based on ab initio quantum chemistry calculations. The multireference configuration interaction method is used to generate the potential energy curves (PECs) of the ground state X(1)Σ(+) and the low-lying excited states a(3)Σ(+), B(1)Π, and b(3)Π. The spin-orbit coupling effects for the PECs and the transition dipole moments (TDMs) between the X(1)Σ(+), b(3)Π and a(3)Σ(+) states are also calculated. The analytical functions for the PECs are deduced. The rovibrational energy levels, the spectroscopic parameters and the Franck-Condon factors (FCF) are determined by solving the Schrödinger equation of nuclear movement with the obtained analytical functions. The b(3)Π0 ↔ X(1)Σ(+) and b(3)Π1 ↔ X(1)Σ(+) transitions have highly diagonal distributed FCFs and non-zero TDMs, demonstrating that the LiRb molecule could be a very promising candidate for laser cooling. Therefore, a three-cycle laser cooling scheme for the molecule has been proposed based on these two spin-forbidden transitions. Using the radiative lifetime and linewidth calculated from the obtained TDM functions, we present further analysis of the cooling of LiRb and the corresponding KRb molecule. The transition b(3)Π0 ↔ X(1)Σ(+) is found to be a practical transition to cool the LiRb molecule, and a sub-microkelvin cool temperature could be reached for the KRb molecule using a similar laser cooling scheme.
Matthes, L.; Küfner, S.; Furthmüller, J.; Bechstedt, F.
2016-03-01
Ab initio relativistic band structure calculations are performed for the frequency-dependent spin Hall conductivity of two-dimensional atomically thin crystals and one-dimensional nanoribbons. We study the influence of topology, quantization, and topological edge states. As model systems fully halogenated germanene, GeI, and its zigzag nanoribbons are investigated. GeI represents a topological insulator (TI). For comparison, also the TI germanene and the trivial insulator hydrogenated germanene are studied. For the TIs we demonstrate the quantization of the static spin Hall conductivity. It is hardly influenced by temperature and Fermi level shift. Its frequency dependence is governed by the band-structure details. Topological edge states influence the conductivity mainly for vanishing frequencies.
Stavretis, Shelby E; Atanasov, Mihail; Podlesnyak, Andrey A; Hunter, Seth C; Neese, Frank; Xue, Zi-Ling
2015-10-19
Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H₂TPP = tetraphenylporphyrin) have been directly determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm⁻¹ for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm⁻¹, E = 0.1(2) cm⁻¹ and D = 13.4(6) cm⁻¹, E = 0.3(6) cm⁻¹ for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm⁻¹ for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series. The electronic structure of [Fe(TPP)X] (X = F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the ⁶A₁ ground state. D was calculated from wave functions of the electronic multiplets spanned by the d⁵ configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX₆³⁻ complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the π- and σ-antibonding energies e(λ)(X) (λ = σ, π) in the series from X = F to I. Analysis of this correlation using second-order perturbation theory expressions in terms of angular overlap parameters rationalizes the
Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.
1997-01-01
The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to simulate laser heating of crystalline silicon. We found that a high concentration of excited electrons dramatically weakens the covalent bonding. As a result the system undergoes a melting t
Ab initio study of the lattice stability of β-SiC under intense laser irradiation
Energy Technology Data Exchange (ETDEWEB)
Shen, Yanhong; Gao, Tao, E-mail: gaotao@scu.edu.cn
2015-10-05
Highlights: • The band gap of β-SiC vanishes and its metallic character is presented when T{sub e} > 6 eV. • The TA modes of β-SiC are found to be negative T{sub e} = 3.39 eV. • The LO–TO splitting degree of β-SiC at Γ point begin to decline as T{sub e} > 4.5 eV. • The ionic strength of β-SiC is related to laser radiation intensity. - Abstract: We have performed ab initio calculation of electronic properties, lattice-dynamical properties, charge density difference and charge density of β-SiC at different electronic temperatures (T{sub e}) using local density approximation (LDA) pseudopotential method within the density functional perturbation theory (DFPT). The results of electronic density of state display that β-SiC is still semiconductor with band gap of 1.51 eV at T{sub e} = 0 eV. But, beyond a temperature of 6 eV, the band gap of β-SiC vanishes and its metallic character is presented. The calculated phonon frequencies of β-SiC at T{sub e} = 0 eV show a good agreement with the experimental values and other calculations. However, when β-SiC undergoes a sharp increase of its electronic temperature, the phonon frequencies of β-SiC have a significant softening. The transverse acoustic modes of β-SiC are found to be negative T{sub e} = 3.39 eV which lead to the lattice instability. Moreover, the LO–TO splitting degree of β-SiC at Γ point increases at first and then reduces as T{sub e} is raised, the turning point is at T{sub e} = 4.5 eV. By using CUT3D, the results of the charge density difference and charge density of β-SiC indicate that when radiation intensity is only strong enough (e.g. T{sub e} > 4.5 eV), it will make the ionic strength of β-SiC weaken. Otherwise, when radiation intensity is not very high (e.g. 0–4.5 eV), the ionic strength of β-SiC will increase with the rise of T{sub e}.
Ab initio mass tensor molecular dynamics
Tsuchida, Eiji
2010-01-01
Mass tensor molecular dynamics was first introduced by Bennett [J. Comput. Phys. 19, 267 (1975)] for efficient sampling of phase space through the use of generalized atomic masses. Here, we show how to apply this method to ab initio molecular dynamics simulations with minimal computational overhead. Test calculations on liquid water show a threefold reduction in computational effort without making the fixed geometry approximation. We also present a simple recipe for estimating the optimal ato...
Reciprocity Theorems for Ab Initio Force Calculations
Wei, C; Mele, E J; Rappe, A M; Lewis, Steven P.; Rappe, Andrew M.
1996-01-01
We present a method for calculating ab initio interatomic forces which scales quadratically with the size of the system and provides a physically transparent representation of the force in terms of the spatial variation of the electronic charge density. The method is based on a reciprocity theorem for evaluating an effective potential acting on a charged ion in the core of each atom. We illustrate the method with calculations for diatomic molecules.
Highly scalable Ab initio genomic motif identification
Marchand, Benoît
2011-01-01
We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.
Yousaf, Masood; Shin, Dongbin; Ruoff, Rodney; Park, Noejung
2015-12-17
We used ab initio molecular dynamics (AIMD) to investigate the effect of a monochromatic oscillating electric field in resonance with a particular molecular vibration on surfaces. As a case study, AIMD simulations were carried out for hydroxyl functional groups on graphene. When the frequency of the applied field matches with the C-OH vibration frequency, the amplitude is monotonically amplified, leading to a complete desorption from the surface, overcoming the substantial barrier. This suggests the possibility of activating a particular bond without damaging the remaining surface. We extended this work to the case of the amination of sp(2)-bonded carbon surfaces and discussed the general perspective that, in general, an unfavorable chemical process can be activated by applying an external electric field with an appropriate resonance frequency.
Energy Technology Data Exchange (ETDEWEB)
Samin, Adib; Li, Xiang; Zhang, Jinsuo [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States); Mariani, R. D. [Idaho National Laboratory, Materials and Fuels Complex, Idaho Falls, Idaho 83415 (United States); Unal, Cetin [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)
2015-12-21
For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 × 10{sup −9} m{sup 2}/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of the liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions.
Ab initio study of the diatomic fluorides FeF, CoF, NiF, and CuF.
Koukounas, Constantine; Mavridis, Aristides
2008-11-01
The late-3d transition-metal diatomic fluorides MF = FeF, CoF, NiF, and CuF have been studied using variational multireference (MRCI) and coupled-cluster [RCCSD(T)] methods, combined with large to very large basis sets. We examined a total of 35 (2S+1)|Lambda| states, constructing as well 29 full potential energy curves through the MRCI method. All examined states are ionic, diabatically correlating to M(+)+F(-)((1)S). Notwithstanding the "eccentric" character of the 3d transition metals and the difficulties to accurately be described with all-electron ab initio methods, our results are, in general, in very good agreement with available experimental numbers.
Samin, Adib; Li, Xiang; Zhang, Jinsuo; Mariani, R. D.; Unal, Cetin
2015-12-01
For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 × 10-9 m2/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of the liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions.
Izmaylov, Artur F; Shchegoleva, Lyudmila N; Scuseria, Gustavo E; Zaitsevskii, Andréi
2005-12-01
We present an ab initio study of the lowest states of five temporary anions: C6H6(-), C6H5F(-), 1,4-C6H4F2(-), 1,2,3-C6H3F3(-), and 1,3,5-C6H3F3(-). Vertical positions and widths of anionic resonances have been calculated within the stabilization graph approach using the multipartitioning form of the many-body perturbation theory for state-selective effective Hamiltonians restricted to second order (MPPT-R). Good agreement with experimentally derived estimates justifies application of the MPPT-R method for theoretical investigation of haloaromatic temporary anion radicals. PMID:19810321
Calderín, L; González, L E; González, D J
2009-05-21
We report a study on several static, dynamic, and electronic properties of liquid Hg at room temperature. We have performed ab initio molecular dynamics simulations using Kohn-Sham density functional theory combined with a nonlocal ultrasoft pseudopotential. The calculated static structure shows good agreement with the available experimental data. We present results for the single-particle dynamics, and recent experimental data are analyzed. The calculated dynamic structure factors S(q,omega) fairly agree with their experimental counterparts as measured by inelastic x-ray (and neutron) scattering experiments. The dispersion relation exhibits a positive dispersion, which however is not so marked as suggested by the experiment; moreover, its slope at the long-wavelength limit provides a good estimate of the experimental sound velocity. We have also analyzed the dynamical processes behind the S(q,omega) in terms of a model including a relaxation mechanism with both fast and slow characteristic time scales. PMID:19466841
Grassi, A; Angilella, G G N; March, N H; Pucci, R
2012-01-01
Fingerprints of antiaromaticity in the negative ion (Li_3Al_4)^-, this species being realizable via a laser vaporization technique, are revealed by means of an ab initio quantum-chemical investigation. First, the ground-state equilibrium geometry of this ion is predicted. Also, the characteristics of the HOMO are studied, both for the square and the rectangular Al_4 geometry in two low-lying isomers of the negative ion. There is no particular sensitivity to the change in geometry of the Al_4 configuration. Therefore, we have calculated theoretically chemical shifts, which contain remarkable fingerprints of antiaromaticity. As to future directions, some comments are added in relation to the Shannon entropy.
Mogulkoc, Y.; Ciftci, Y. O.; Kabak, M.; Colakoglu, K.
2014-07-01
The structural, elastic, thermodynamic, electronic and vibrational properties of CsCl-type TbMg have been studied by performing ab initio calculations based on density functional theory using the Vienna Ab initio Simulation Package (VASP). The exchange correlation potential within the generalized-gradient approximation (GGA) of projector augmented wave (PAW) method is used. The calculated structural parameters, such as the lattice constant, bulk modulus, its pressure derivative, formation energy and second-order elastic constants are presented in this paper. The obtained results are compared with related experimental and theoretical studies. The electronic band calculations, total density of states (DOS), partial DOS and charge density are also presented. Formation enthalpy and Cauchy pressure are determined. In order to obtain more information the elastic properties such as Zener anisotropy factor, Poisson’s ratio, Young modulus, isotropic shear modulus, Debye temperature and melting point have been carried out. The elastic constants are calculated in zero and different pressure ranges (0-50 GPa) with bulk modulus. We have performed the thermodynamic properties of TbMg by using quasi-harmonic Debye model. The temperature and pressure variation of the volume, bulk modulus, and thermal expansion coefficient have been predicted over a pressure range of 0-25 GPa for of TbMg. Pressure dependence of the anisotropy factors, Young’s modulus, Poisson’s ratios, bulk modulus and axis compressibility of TbMg are presented along different directions and planes. Finally, the phonon dispersion curves are presented for TbMg.
An experimental and ab initio study of the electronic spectrum of the jet-cooled F2BO free radical
International Nuclear Information System (INIS)
We have studied the B~2A1–X~2B2 laser-induced fluorescence (LIF) spectrum of the jet-cooled F2BO radical for the first time. The transition consists of a strong 000 band at 446.5 nm and eight weak sequence bands to shorter wavelengths. Single vibronic level emission spectra obtained by laser excitation of individual levels of the B~ state exhibit two electronic transitions: a very weak, sparse B~–X~ band system in the 450–500 nm region and a stronger, more extensive set of B~2A1–A~2B1 bands in the 580–650 nm region. We have also performed a series of high level ab initio calculations to predict the electronic energies, molecular structures, vibrational frequencies, and rotational and spin-rotation constants in the X~2B2, A~2B1 and B~2A1 electronic states as an aid to the analysis of the experimental data. The theoretical results have been used as input for simulations of the rotationally resolved B~2A1–X~2B2 000 LIF band and Franck-Condon profiles of the LIF and single vibronic level emission spectra. The agreement between the simulations obtained with purely ab initio parameters and the experimental spectra validates the geometries calculated for the ground and excited states and the conclusion that the radical has C2v symmetry in the X~, A~, and B~ states. The spectra provide considerable new information about the vibrational energy levels of the X~ and A~ states, but very little for the B~ state, due to the very restrictive Franck-Condon factors in the LIF spectra
Campetella, Marco; Bodo, Enrico; Montagna, Maria; De Santis, Serena; Gontrani, Lorenzo
2016-03-01
We have explored by means of ab initio molecular dynamics the homologue series of 11 different ionic liquids based on the combination of the cholinium cation with deprotonated amino acid anions. We present a structural analysis of the liquid states of these compounds as revealed by accurate ab initio computations of the forces. We highlight the persistent structural motifs that see the ionic couple as the basic building block of the liquid whereby a strong hydrogen bonding network substantially determines the short range structural behavior of the bulk state. Other minor docking features of the interaction network are also discovered and described. Special cases along the series such as Cysteine and Phenylalanine are discussed in the view of their peculiar properties due to zwitterion formation and additional long-range structural organization.
Ab Initio Calculations of Oxosulfatovanadates
DEFF Research Database (Denmark)
Frøberg, Torben; Johansen, Helge
1996-01-01
Restricted Hartree-Fock and multi-configurational self-consistent-field calculations together with secondorder perturbation theory have been used to study the geometry, the electron density, and the electronicspectrum of (VO2SO4)-. A bidentate sulphate attachment to vanadium was found to be stable...... with anO-V-O angle of 72.5 degrees . The calculated spectrum shows bands in reasonable agreement with anexperimental spectrum which has been attributed to (VO2SO4)-. The geometry and the electron density fortwo binuclear vanadium complexes proposed as intermediates in the vanadium catalyzed SO2...
Ab Initio Molecular Dynamics: A Virtual Laboratory
Hobbi Mobarhan, Milad
2014-01-01
In this thesis, we perform ab initio molecular dynamics (MD) simulations at the Hartree-Fock level, where the forces are computed on-the-fly using the Born-Oppenheimer approximation. The theory behind the Hartree-Fock method is discussed in detail and an implementation of this method based on Gaussian basis functions is explained. We also demonstrate how to calculate the analytic energy derivatives needed for obtaining the forces acting on the nuclei. Hartree-Fock calculations on the ground s...
Rizzo, Antonio; Rikken, G L J A; Mathevet, R
2016-01-21
We present a systematic ab initio study of enantio-selective magnetic-field-induced second harmonic generation (MFISHG) on a set of chiral systems ((l)-alanine, (l)-arginine and (l)-cysteine; 3,4-dehydro-(l)-proline; (S)-α-phellandrene; (R,S)- and (S,S)-cystine disulphide; N-(4-nitrophenyl)-(S)-prolinol, N-(4-(2-nitrovinyl)-phenyl)-(S)-prolinol, N-(4-tricyanovinyl-phenyl)-(S)-prolinol, (R)-BINOL, (S)-BINAM and 6-(M)-helicene). The needed electronic frequency dependent cubic response calculations are performed within a density functional theory (DFT) approach. A study of the dependence of the property on the choice of electron correlation, on one-electron basis set extension and on the choice of magnetic gauge origin is carried out on a prototype system (twisted oxygen peroxide). The magnetic gauge dependence analysis is extended also to the molecules of the set. An attempt to analyze the structure-property relationships is also made, based on the results obtained for biphenyl (in a frozen twisted conformation), for prolinol and for some of their derivatives. The strength of the effect is discussed, in order to establish its measurability with a proposed experimental setup.
Efficient calculation of chiral three-nucleon forces up to N3LO for ab initio studies
Hebeler, K; Epelbaum, E; Golak, J; Skibinski, R
2015-01-01
We present a novel framework to decompose three-nucleon forces in a momentum space partial-wave basis. The new approach is computationally much more efficient than previous methods and opens the way to ab initio studies of few-nucleon scattering processes, nuclei and nuclear matter based on higher-order chiral 3N forces. We use the new framework to calculate matrix elements of chiral three-nucleon forces at N2LO and N3LO in large basis spaces and carry out benchmark calculations for neutron matter and symmetric nuclear matter. We also study the size of the individual three-nucleon force contributions for $^3$H. For nonlocal regulators, we find that the sub-leading terms, which have been neglected in most calculations so far, provide important contributions. All matrix elements are calculated and stored in a user-friendly way, such that values of low-energy constants as well as the form of regulator functions can be chosen freely.
Indian Academy of Sciences (India)
QIONG WU; DONG XIANG; GUOLIN XIONG; WEIHUA ZHU; HEMING XIAO
2016-05-01
Ab initio molecular dynamics simulations were performed to study the initiation of decompositionand formation of first products of two molecular crystals pentaerythritol tetranitrate (PETN) and 5-nitro-2,4-dihydro-1,2,4-triazole-3-one (NTO) under thermal decomposition temperature (475 K for PETN and 531 Kfor NTO) coupled with different pressures (1-5 GPa). The pressure effects on the initial decomposition stepsand initially generated products on PETN and NTO were very different. PETN was triggered by C-H... O intermolecular hydrogen transfer. The initial decomposition mechanism was independent of the pressure. ForNTO, two different initial decomposition mechanisms were found. At 1, 2, and 3 GPa, it was triggered by NH....O intermolecular hydrogen transfer, while at 4 and 5 GPa, it was triggered by N-H.....N intermolecularhydrogen transfer. This indicates that the initial decomposition mechanism was dependent on the pressure.Our study may provide new insights into initial mechanisms and decomposition reactions of molecular crystalexplosives under thermal decomposition temperature coupled with different pressures with details at atomiclevel.
Ab initio studies on [bmim][PF6]–CO2 mixture and CO2 clusters
Indian Academy of Sciences (India)
B L Bhargava; M Saharay; S Balasubramanian
2008-06-01
Ab initio molecular dynamics studies have been carried out on the room temperature ionic liquid, 1,n-butyl,3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and supercritical carbon dioxide mixture at room temperature and experimental density. Partial radial distribution functions (RDF) for different sites have been computed to see the organization of CO2 molecules around the ionic liquid. Several partial RDFs around the carbon atom of CO2 molecule are compared to find out that the CO2 has specific interaction with a carbon atom present in the imidazolium ring. The CO2 is also found to be very well organized around the terminal carbon atom of the butyl chain. The partial RDFs for the oxygen atoms around oxygen and carbon atoms of the CO2 suggests that there is very good organization of CO2 molecules around themselves even in the [bmim][PF6] – CO2 mixture. The instantaneous quadrupole moment tensor has been calculated for the anion and the cation. The ensemble average of diagonal components of quadrupole moment tensor of the cation have finite values, whereas the off-diagonal components of the cation and both the diagonal and off-diagonal components of the anion have the value of zero with a large standard deviation. The CPMD studies performed on CO2 clusters reveals the greater tendency of the clusters with more CO2 units, to deviate from the linear geometry.
Kopplung von Dichtefunktional- und ab-initio-Methoden
Goll, Erich
2008-01-01
Im Rahmen der Doktorarbeit wurde untersucht, inwieweit die Kopplung von Dichtefunktionalmethoden und ab-initio-Korrelationsmethoden der Quantenchemie eine Verbesserung bezüglich beider Grenzmethoden erbringt. Die Kopplung erfolgt durch eine Aufspaltung des interelektronischen Hamiltonoperators (abstoßende Coulombwechselwirkung). Die kurzreichweitige Wechselwirkung wird mit Dichtefunktionaltheorie behandelt, die langreichweitige mit Hilfe von ab-initio-Methoden. Diese Aufteilung soll dazu dien...
Pairs of Ln(III) dopant ions in crystalline solid luminophores:an ab initio computational study
Institute of Scientific and Technical Information of China (English)
A Shyichuk; G Meinrath; S Lis
2016-01-01
Formation of dopant ions clusters in solid (glass) luminophores may affect efficiency of non-radiative energy transfer proc-esses between dopant (photoactivator) ions via shortening of the effective distance between them. This study was based on the as-sumption that the distance between the dopant ions affects the energy of crystal volume at proximity. According to this idea, semi-empirical and ab initio density functional theory (DFT) calculations were performed on various supercells of YVO4:Eu3+as a model system. It was noted that a shorter Eu–Eu distance resulted in lower total energy of the system, compared to an analogous structure with distant Eu3+ions. As lower energy configurations are preferred, the observed phenomenon was considered to be related to dopant ions clusters formation. Additionally, the values of energies obtained from DFT calculations were used to estimate the per-centage of dopant ions occurring as pairs, for different dopant concentrations. The estimation agreed quite well with the available lit-erature data.
Critical analysis of the vacancy induced magnetism in Scandium Nitride (ScN): An ab-initio study
Missaoui, Jamil; Hamdi, Ilyes; Meskini, Noureddine
2016-09-01
We have studied the origin of the magnetism induced by a neutral cation vacancy in rocksalt ScN using ab-initio calculations based on spin density functional theory. Our results showed that Sc vacancy induces a total local magnetic moment of 0.50μB. The main contributors to this induced magnetism are the 2 p orbitals of nearest nitrogen atoms surrounding the vacancy. The spin polarization energy (defined as the energy difference between the spin polarized and non-polarized states) is well above the room-temperature energy. Furthermore, we have investigated the effect of an external strain on the induced magnetism. Our calculations showed that applying an external strain leads to a decrease of the stability of the magnetic state. Moreover, calculations of the magnetic interactions showed that the most stable configuration corresponds to the fifth nearest neighbor distance with a ferromagnetic state. Finally, using thermodynamic considerations, we demonstrated that the minimum defect concentration to achieve magnetic percolation cannot be reached at equilibrium conditions. However, we found that by applying an external strain, we could reduce the formation energy of the defect, achieving therefore the magnetic percolation.
Energy Technology Data Exchange (ETDEWEB)
Saalfrank, Peter [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam (Germany); Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Juaristi, J. I. [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián (Spain); Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20018 Donostia-San Sebastián (Spain); Alducin, M.; Muiño, R. Díez [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián (Spain); Blanco-Rey, M. [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20018 Donostia-San Sebastián (Spain)
2014-12-21
Using density functional theory and Ab Initio Molecular Dynamics with Electronic Friction (AIMDEF), we study the adsorption and dissipative vibrational dynamics of hydrogen atoms chemisorbed on free-standing lead films of increasing thickness. Lead films are known for their oscillatory behaviour of certain properties with increasing thickness, e.g., energy and electron spillout change in discontinuous manner, due to quantum size effects [G. Materzanini, P. Saalfrank, and P. J. D. Lindan, Phys. Rev. B 63, 235405 (2001)]. Here, we demonstrate that oscillatory features arise also for hydrogen when chemisorbed on lead films. Besides stationary properties of the adsorbate, we concentrate on finite vibrational lifetimes of H-surface vibrations. As shown by AIMDEF, the damping via vibration-electron hole pair coupling dominates clearly over the vibration-phonon channel, in particular for high-frequency modes. Vibrational relaxation times are a characteristic function of layer thickness due to the oscillating behaviour of the embedding surface electronic density. Implications derived from AIMDEF for frictional many-atom dynamics, and physisorbed species will also be given.
Energy Technology Data Exchange (ETDEWEB)
Wu, Linmin; Zhang, Jing, E-mail: jz29@iupui.edu [Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202 (United States)
2015-12-14
The mechanical properties of Li{sub x}CoO{sub 2} under various Li concentrations and associated anisotropy have been systematically studied using the first principles method. During the lithium intercalation process, the Young's modulus, bulk modulus, shear modulus, and ultimate strength increase with increasing lithium concentration. Strong anisotropy of mechanical properties between a-axis and c-axis in Li{sub x}CoO{sub 2} is identified at low lithium concentrations, and the anisotropy decreases with increasing lithium concentration. The observed lithium concentration dependence and anisotropy are explained by analyzing the charge transfer using Bader charge analysis, bond order analysis, and bond strength by investigating partial density of states and charge density difference. With the decrease of Li concentration, the charge depletion in the bonding regions increases, indicating a weaker Co-O bond strength. Additionally, the Young's modulus, bulk modulus, shear modulus, and toughness are obtained by simulating ab initio tensile tests. From the simulated stress-strain curves, Li{sub x}CoO{sub 2} shows the highest toughness, which is in contraction with Pugh criterion prediction based on elastic properties only.
Wang, Zi; Bevan, Kirk H.
2016-01-01
In the present work, we study the effects of the electronic relaxation of semicore levels on polaron activation energies and dynamics. Within the framework of adiabatic ab initio theory, we utilize both static transition state theory and molecular dynamics methods for an in-depth study of polaronic hopping in delithiated LiFePO4 (FePO4). Our results show that electronic relaxation of semicore states is significant in FePO4, resulting in a lower activation barrier and kinetics that is one to two orders faster compared to the result of calculations that do not incorporate semicore states. In general, the results suggest that the relaxation of states far below the Fermi energy could dramatically impact the ab initio polaronic barrier estimates for many transition metal oxides and phosphates.
Directory of Open Access Journals (Sweden)
G.M. Bhuiyan
2012-10-01
Full Text Available Several static and dynamic properties of liquid Cu, Ag and Au at thermodynamic states near their respective melting points, have been evaluated by means of the orbital free ab-initio molecular dynamics simulation method. The calculated static structure shows good agreement with the available X-ray and neutron diffraction data. As for the dynamic properties, the calculated dynamic structure factors point to the existence of collective density excitations along with a positive dispersion for l-Cu and l-Ag. Several transport coefficients have been obtained which show a reasonable agreement with the available experimental data.
Iolanta I. Balan; Natalia N. Gorinchoy
2011-01-01
The four-stage mechanism of reaction of the rhodium trihydride complex [(triphos)RhH3] (triphos=1,1,1-tris(diphenylphosphanylmethyl)ethane) with the white phosphorus molecule resulting in the phosphane and the cyclo-P3 complex [(triphos)M(η3-P3] is analyzed on the basis of ab initio calculations of reactants, products, and intermediate complexes of reaction. It is shown that generation of the transient complex [(triphos)RhH(η1:η1-P4)] followed by intramolecular hydrogen atom migration from t...
Vonci, Michele; Giansiracusa, Marcus J; Gable, Robert W; Van den Heuvel, Willem; Latham, Kay; Moubaraki, Boujemaa; Murray, Keith S; Yu, Dehong; Mole, Richard A; Soncini, Alessandro; Boskovic, Colette
2016-02-01
Ab initio calculations carried out on the Tb analogue of the single-molecule magnet family Na9[Ln(W5O18)2] (Ln = Nd, Gd, Ho and Er) have allowed interpretation of the inelastic neutron scattering spectra. The combined experimental and theoretical approach sheds new light on the sensitivity of the electronic structure of the Tb(III) ground and excited states to small structural distortions from axial symmetry, thus revealing the subtle relationship between molecular geometry and magnetic properties of the two isostructural species that comprise the sample. PMID:26690503
Study on the effects of fluorine and oxygen deficiency on YBa2Cu3O7 by ab initio method
Institute of Scientific and Technical Information of China (English)
刘洪霖; 曹晓卫; 瞿丽曼; 陈念贻
1997-01-01
The calculations of clusters modeling the fluorine-doping and oxygen deficiency of YBa2Cu3O2,have been performed by the method of all-electron ab initio Hartree-Fock with self-consistent crystal field Results show that in CuO planes electric charge significantly increases,the chemical valence of Cu decreases and the covalent bonding of Cu-O greatly weakens owing to oxygen deficiency,while the effect of F restores the local electronic structure of YBa2Cu3O7 The reported opinion that F occupied the oxygen vacancy in Cu-O chains seems disputable according to the calculated bonding characteristics.
Ab-initio study of high temperature lattice dynamics of BCC zirconium (β-Zr) and uranium (γ-U)
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Partha S., E-mail: parthasarathi13@gmail.com; Arya, A., E-mail: parthasarathi13@gmail.com; Dey, G. K., E-mail: parthasarathi13@gmail.com [Materials Science Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)
2014-04-24
Using self consistent ab-initio lattice dynamics calculations, we show that bcc structures of Zr and U phases become stable at high temperature by phonon-phonon interactions. The calculated temperature dependent phonon dispersion curve (PDC) of β-Zr match excellently with experimental PDC. But the calculated PDC for γ-U shows negative phonon frequencies even at solid to liquid transition temperature. We show that this discrepancy is due to an overestimation of instability depth of bcc U phase which is removed by incorporation of spin-orbit coupling in the electronic structure calculations.
Augmented wave ab initio EFG calculations: some methodological warnings
Energy Technology Data Exchange (ETDEWEB)
Errico, Leonardo A. [Departamento de Fisica-IFLP (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC67 (1900) La Plata (Argentina); Renteria, Mario [Departamento de Fisica-IFLP (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC67 (1900) La Plata (Argentina); Petrilli, Helena M. [Instituto de Fisica-DFMT, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil)]. E-mail: hmpetril@macbeth.if.usp.br
2007-02-01
We discuss some accuracy aspects inherent to ab initio electronic structure calculations in the understanding of nuclear quadrupole interactions. We use the projector augmented wave method to study the electric-field gradient (EFG) at both Sn and O sites in the prototype cases SnO and SnO{sub 2}. The term ab initio is used in the standard context of the also called first principles methods in the framework of the Density Functional Theory. As the main contributions of EFG calculations to problems in condensed matter physics are related to structural characterizations on the atomic scale, we discuss the 'state of the art' on theoretical EFG calculations and make a brief critical review on the subject, calling attention to some fundamental theoretical aspects.
Ab-initio calculations on melting of thorium
Mukherjee, D.; Sahoo, B. D.; Joshi, K. D.; Kaushik, T. C.; Gupta, Satish C.
2016-05-01
Ab-initio molecular dynamics study has been performed on face centered cubic structured thorium to determine its melting temperature at room pressure. The ion-electron interaction potential energy calculated as a function of temperature for three volumes (a0)3 and (1.02a0)3 and (1.04a0)3 increases gradually with temperature and undergoes a sharp jump at ~2200 K, ~2100 K and ~1800 K, respectively. Here, a0 = 5.043 Å is the equilibrium lattice parameter at 0 K obtained from ab-initio calculations. These jumps in interaction energy are treated as due to the onset of melting and corresponding temperatures as melting point. The melting point of 2100 K is close to the experimental value of 2023K. Further, the same has been verified by plotting the atomic arrangement evolved at various temperatures and corresponding pair correlation functions.
Ab initio alpha-alpha scattering
Elhatisari, Serdar; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G
2015-01-01
Processes involving alpha particles and alpha-like nuclei comprise a major part of stellar nucleosynthesis and hypothesized mechanisms for thermonuclear supernovae. In an effort towards understanding alpha processes from first principles, we describe in this letter the first ab initio calculation of alpha-alpha scattering. We use lattice effective field theory to describe the low-energy interactions of nucleons and apply a technique called the adiabatic projection method to reduce the eight-body system to an effective two-cluster system. We find good agreement between lattice results and experimental phase shifts for S-wave and D-wave scattering. The computational scaling with particle number suggests that alpha processes involving heavier nuclei are also within reach in the near future.
Ab initio molar volumes and Gaussian radii.
Parsons, Drew F; Ninham, Barry W
2009-02-12
Ab initio molar volumes are calculated and used to derive radii for ions and neutral molecules using a spatially diffuse model of the electron distribution with Gaussian spread. The Gaussian radii obtained can be used for computation of nonelectrostatic ion-ion dispersion forces that underlie Hofmeister specific ion effects. Equivalent hard-sphere radii are also derived, and these are in reasonable agreement with crystalline ionic radii. The Born electrostatic self-energy is derived for a Gaussian model of the electronic charge distribution. It is shown that the ionic volumes used in electrostatic calculations of strongly hydrated cosmotropic ions ought best to include the first hydration shell. Ionic volumes for weakly hydrated chaotropic metal cations should exclude electron overlap (in electrostatic calculations). Spherical radii are calculated as well as nonisotropic ellipsoidal radii for nonspherical ions, via their nonisotropic static polarizability tensors. PMID:19140766
Ab Initio Path to Heavy Nuclei
Binder, Sven; Calci, Angelo; Roth, Robert
2014-01-01
We present the first ab initio calculations of nuclear ground states up into the domain of heavy nuclei, spanning the range from 16-O to 132-Sn based on two- plus three-nucleon interactions derived within chiral effective field theory. We employ the similarity renormalization group for preparing the Hamiltonian and use coupled-cluster theory to solve the many-body problem for nuclei with closed sub-shells. Through an analysis of theoretical uncertainties resulting from various truncations in this framework, we identify and eliminate the technical hurdles that previously inhibited the step beyond medium-mass nuclei, allowing for reliable validations of nuclear Hamiltonians in the heavy regime. Following this path we show that chiral Hamiltonians qualitatively reproduce the systematics of nuclear ground-state energies up to the neutron-rich Sn isotopes.
Ab initio alpha-alpha scattering
Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Luu, Thomas; Meißner, Ulf-G.
2015-12-01
Processes such as the scattering of alpha particles (4He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei—nuclei with even and equal numbers of protons and neutrons—is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the ‘adiabatic projection method’ to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of
Ab initio alpha-alpha scattering.
Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G
2015-12-01
Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of
Zemen, J.; Mašek, J.; Kučera, J.; Mol, J. A.; Motloch, P.; Jungwirth, T.
2014-04-01
An empirical multiorbital (spd) tight binding (TB) model including magnetism and spin-orbit coupling is applied to calculations of magnetic anisotropy energy (MAE) in CoPt L10 structure. A realistic Slater-Koster parametrisation for single-element transition metals is adapted for the ordered binary alloy. Spin magnetic moment and density of states are calculated using a full-potential linearised augmented plane-wave (LAPW) ab initio method and our TB code with different variants of the interatomic parameters. Detailed mutual comparison of this data allows for determination of a subset of the compound TB parameters tuning of which improves the agreement of the TB and LAPW results. MAE calculated as a function of band filling using the refined parameters is in broad agreement with ab initio data for all valence states and in quantitative agreement with ab initio and experimental data for the natural band filling. Our work provides a practical basis for further studies of relativistic magnetotransport anisotropies by means of local Green's function formalism which is directly compatible with our TB approach.
Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes
Energy Technology Data Exchange (ETDEWEB)
Draayer, Jerry P. [Louisiana State Univ., Baton Rouge, LA (United States)
2014-09-28
We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).
Jiménez-Hoyos, Carlos A; Scuseria, Gustavo E
2014-01-01
Most {\\em ab initio} calculations on fullerene molecules have been carried out based on the paradigm of the H\\"uckel model. This is consistent with the restricted nature of the independent-particle model underlying such calculations, even in single-reference-based correlated approaches. On the other hand, previous works on some of these molecules using model Hamiltonians have clearly indicated the importance of short-range inter-atomic spin-spin correlations. In this work, we consider {\\em ab initio} non-collinear Hartree--Fock (HF) solutions for representative fullerene systems: the bowl, cage, ring, and pentagon isomers of C$_{20}$, and the larger C$_{30}$, C$_{36}$, C$_{60}$, C$_{70}$, and C$_{84}$ fullerene cages. In all cases but the ring we find that the HF minimum corresponds to a truly non-collinear solution with a torsional spin density wave. Optimized geometries at the generalized HF (GHF) level lead to fully symmetric structures, even in those cases where Jahn-Teller distortions have been previousl...
International Nuclear Information System (INIS)
We present a comparative ab initio study of Li, Na, and Mg storage in tin, including phononic effects and phase competition between α and β Sn. Mg doping at low concentration is found to stabilize the β phase. On the contrary, Li and Na doping is shown to reverse the stability of the phases at room temperature: Li/Na-doped α-Sn is more stable than Li/Na-doped β-Sn up to a temperature of around 380/400 K. This may rationalize the formation of α-Sn upon lithiation and delithiation of β-Sn anodes reported in experimental studies. The changes in phase stability with Li/Na/Mg doping are directly related to the intercalation energies of Li/Na/Mg in one phase versus the other: at 300 K, Li/Na is easier intercalated in α-Sn (−0.37/−0.08 eV) than in β-Sn (0.06/0.49 eV), while Mg intercalation energy is, although positive (i.e., unfavored intercalation), lower in β-Sn (0.53 eV) than in α-Sn (0.66 eV). The temperature effect is found to affect significantly the intercalation energy, by up to 0.13 eV at 300 K. Analysis of diffusion barriers shows that Li, Na, and Mg diffusion in β-Sn is anisotropic with migration barriers along the (001) direction (respectively, 0.01, 0.22, and 0.07 eV) significantly lower than those in α-Sn (respectively, 0.20, 0.52, and 0.40 eV)
Energy Technology Data Exchange (ETDEWEB)
Witczak, Przemysław; Kempisty, Pawel; Strak, Pawel [Institute of High Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw (Poland); Krukowski, Stanisław, E-mail: stach@unipress.waw.pl [Institute of High Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland and Interdisciplinary Centre for Modelling, University of Warsaw, Pawińskiego 5a, 02-106 Warsaw (Poland)
2015-11-15
Ab initio studies of a GaN(0001)-Ga system with various thicknesses of a metallic Ga layer were undertaken. The studied systems extend from a GaN(0001) surface with a fractional coverage of gallium atoms to a Ga-GaN metal–semiconductor (m–s) contact. Electronic properties of the system are simulated using density functional theory calculations for different doping of the bulk semiconductor. It is shown that during transition from a bare GaN(0001) surface to a m–s heterostructure, the Fermi level stays pinned at a Ga-broken bond highly dispersive surface state to Ga–Ga states at the m–s interface. Adsorption of gallium leads to an energy gain of about 4 eV for a clean GaN(0001) surface and the energy decreases to 3.2 eV for a thickly Ga-covered surface. The transition to the m–s interface is observed. For a thick Ga overlayer such interface corresponds to a Schottky contact with a barrier equal to 0.9 and 0.6 eV for n- and p-type, respectively. Bond polarization-related dipole layer occurring due to an electron transfer to the metal leads to a potential energy jump of 1.5 eV, independent on the semiconductor doping. Additionally high electron density in the Ga–Ga bond region leads to an energy barrier about 1.2 eV high and 4 Å wide. This feature may adversely affect the conductivity of the n-type m–s system.
Energy Technology Data Exchange (ETDEWEB)
Koenigstein, M.; Catlow, C.R.A. [Royal Institution of Great Britain, London (United Kingdom). Davy Faraday Research Lab.
1998-10-01
The authors report a detailed computational study of the stability of the alkaline earth metal peroxides MO{sub 2} (M = Ba, Sr, Ca, Mg, Be) with respect to decomposition into the corresponding oxides Mo and molecular oxygen using Hartree-Fock and density functional theory (DFT) techniques. A comparison between calculated and experimental binding energies indicates that the DFT method is most suitable for a correct description of the peroxide bond. The DFT reaction energies for the peroxide decomposition MO{sub 2} {yields} MO + {1/2}O{sub 2} show that only BaO{sub 2} and SrO{sub 2} are thermodynamically stable compounds, while CaO{sub 2} (in the calcium carbide structure), MgO{sub 2}, and BeO{sub 2} (in the pyrite structure) are energetically unstable with reaction energies of {minus}24.7, {minus}26.8, and {minus}128.7 kJ/mol, respectively, and are therefore unlikely to exist as pure compounds. The published calcium carbide structure for CaO{sub 2} is probably incorrect, at least for pure calcium peroxide, since apart from the thermodynamical instability the compound is more stable in the pyrite structure by 25.5 kJ/mol. The analysis suggests that the water and/or hydrogen peroxide content of experimentally prepared MgO{sub 2} samples is necessary for the stabilization of the structure, while BeO{sub 2} is clearly unstable under ambient conditions. The authors studied also the effect of the zero point energies and the entropies on the decomposition free energies and, for this purpose, performed atomistic lattice simulations based on interatomic potentials, which they derived from their ab initio data; the results indicate a negligible effect of the zero point energies, while the entropy terms favor the decomposition reaction by ca. 20 kJ/mol at 298.15 K.
Energy Technology Data Exchange (ETDEWEB)
Legrain, F.; Manzhos, S., E-mail: mpemanzh@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 117576 Singapore (Singapore); Malyi, O. I. [Centre for Materials Science and Nanotechnology, University of Oslo, NO-0316 Oslo (Norway); Persson, C. [Centre for Materials Science and Nanotechnology, University of Oslo, NO-0316 Oslo (Norway); Department of Physics, University of Oslo, NO-0316 Oslo (Norway)
2015-11-28
We present a comparative ab initio study of Li, Na, and Mg storage in tin, including phononic effects and phase competition between α and β Sn. Mg doping at low concentration is found to stabilize the β phase. On the contrary, Li and Na doping is shown to reverse the stability of the phases at room temperature: Li/Na-doped α-Sn is more stable than Li/Na-doped β-Sn up to a temperature of around 380/400 K. This may rationalize the formation of α-Sn upon lithiation and delithiation of β-Sn anodes reported in experimental studies. The changes in phase stability with Li/Na/Mg doping are directly related to the intercalation energies of Li/Na/Mg in one phase versus the other: at 300 K, Li/Na is easier intercalated in α-Sn (−0.37/−0.08 eV) than in β-Sn (0.06/0.49 eV), while Mg intercalation energy is, although positive (i.e., unfavored intercalation), lower in β-Sn (0.53 eV) than in α-Sn (0.66 eV). The temperature effect is found to affect significantly the intercalation energy, by up to 0.13 eV at 300 K. Analysis of diffusion barriers shows that Li, Na, and Mg diffusion in β-Sn is anisotropic with migration barriers along the (001) direction (respectively, 0.01, 0.22, and 0.07 eV) significantly lower than those in α-Sn (respectively, 0.20, 0.52, and 0.40 eV)
Marqués, M.; González, D. J.; González, L. E.
2016-07-01
The melting curve of sodium for a pressure range up to 100 GPa has been evaluated by the orbital free ab initio molecular dynamics method. This method uses the electronic density as the basic variable combined with an approximate electronic kinetic energy functional and a local ionic pseudopotential and makes it possible to perform simulations with a large number of particles and for long simulation times. The calculated melting curve shows a maximum melting temperature at a pressure around 30 GPa followed by a steep decrease up to 100 GPa. For various pressures and temperatures we have evaluated several static properties, including average and local structure, electronic properties, like the electron localization function (ELF), and dynamic properties, both single-particle and collective ones, from which some transport coefficients are deduced. Despite the accurate reproduction of the available experimental data, we do not observe any indication of an early transition from a bcc-like to an fcc-like liquid, as suggested previously by other authors, but rather pressure-induced change in the variation of icosahedral-like order and bcc-like order, with no sign of fcc-like structures in the whole liquid range studied. We also consider the evolution of the ELF within this type of local arrangement upon pressurization. In the dynamic realm, we find an enlarged wave-vector region where atomic collisions play an important role in the dynamic properties of the system as pressure is increased and temperature decreased along the melting line, leading to a peculiar behavior of the dynamic properties.
Homologous series of layered structures in binary and ternary Bi-Sb-Te-Se systems: Ab initio study
Govaerts, K.; Sluiter, M. H. F.; Partoens, B.; Lamoen, D.
2014-02-01
In order to account explicitly for the existence of long-periodic layered structures and the strong structural relaxations in the most common binary and ternary alloys of the Bi-Sb-Te-Se system, we have developed a one-dimensional cluster expansion (CE) based on first-principles electronic structure calculations, which accounts for the Bi and Sb bilayer formation. Excellent interlayer distances are obtained with a van der Waals density functional. It is shown that a CE solely based on pair interactions is sufficient to provide an accurate description of the ground-state energies of Bi-Sb-Te-Se binary and ternary systems without making the data set of ab initio calculated structures unreasonably large. For the binary alloys A1-xQx (A =Sb, Bi; Q =Te, Se), a ternary CE yields an almost continuous series of (meta)stable structures consisting of consecutive A bilayers next to consecutive A2Q3 for 00.6, the binary alloy segregates into pure Q and A2Q3. The Bi-Sb system is described by a quaternary CE and is found to be an ideal solid solution stabilized by entropic effects at T ≠0 K but with an ordered structure of alternating Bi and Sb layers for x =0.5 at T =0 K. A quintuple CE is used for the ternary Bi-Sb-Te system, where stable ternary layered compounds with an arbitrary stacking of Sb2Te3,Bi2Te3, and Te-Bi-Te-Sb-Te quintuple units are found, optionally separated by mixed Bi/Sb bilayers. Electronic properties of the stable compounds were studied taking spin-orbit coupling into account.
Ab initio derivation of model energy density functionals
Dobaczewski, Jacek
2016-08-01
I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for linking properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results.
Elastic properties of 5d transition-metal carbides: An ab initio study
Directory of Open Access Journals (Sweden)
L. Mex
2015-09-01
Full Text Available We have systematically studied the mechanical stability of group V transition metal carbides TMC2 (TM=Hf, Ta, W, Re, Os, Ir, Pt, and Au in the pyrite and fluorite phase, by calculating their elastic constants within the density functional theory scheme. It was found that all but ReC2 and OsC2 are stable in pyrite phase. On the other hand, all metal carbides studied were unstable in the fluorite phase.
Energy Technology Data Exchange (ETDEWEB)
Miller, J.; Miaskiewicz, K. [Pacific Northwest Lab., Richland, WA (United States); Osman, R. [Mount Sinai School of Medicine, New York, NY (United States). Dept. of Physiology and Biophysics
1993-12-01
Studies of ring-saturated pyrimidine base lesions are used to illustrate an integrated modeling approach that combines quantum-chemical calculations with molecular dynamics simulation. Electronic-structure calculations on the lesions in Isolation reveal strong conformational preferences due to interactions between equatorial substituents to the pyrimidine ring. Large distortions of DNA should result when these interactions force the methyl group of thymine to assume an axial orientation, as is the case for thymine glycol but not for dihydrothymine. Molecular dynamics simulations of the dodecamer d(CGCGAATTCGCG){sub 2} with and without a ring-saturated thymine lesion at position T7 support this conclusion. Implications of these studies for recognition of thymine lesions by endonuclease III are also discussed.
Energy Technology Data Exchange (ETDEWEB)
Chandel, Surjeet Kumar; Ahluwalia, P. K.; Sharma, Raman [Department of Physics, Himachal Pradesh University, Shimla, Himachal Pradesh-171005 (India); Kumar, Arun, E-mail: arun242493@yahoo.com [Department of Physics, Govt. College Banjar, Kullu, Himachal Pradesh-175123 (India)
2015-06-24
First principle calculations based on DFT have been performed to study the interaction of monoatomically thin Cu wire with silicon nanotube in armchair configuration having chirality (6, 6) both by placing it inside (encapsulation) and outside (functionalisation) the tube. The lowest energy for positioning monoatomically thin Cu wire inside and outside surfaces of SiNT were found to possess cohesive energies of 4.03 eV and 4.02 eV respectively and hence the stability of both SiNTs is found to be almost same. However, From the electronic band structures study, the conductance in case of SiNT for the encapsulated and functionalized positioning of the Cu wire have been found to be 2G{sub 0} and 4G{sub 0} respectively showing enhanced conductance for the functionalized SiNT.
Ab initio prediction of the polymorphic structures of pyrazinamide: A validation study
Directory of Open Access Journals (Sweden)
David Stephen Arputhara
2016-01-01
Full Text Available A validation study to predict the possible stable polymorphs of Pyrazinamide within a low energy conformational region of the flexible torsion angle was made through a potential energy surface (PES scan by gas phase optimisation using the MP2/6-31G(d,p method. Hypothetical crystal structures with favourable packing density for each of the stable conformers generated from the PES scan were generated using a global search with a repulsion only potential field. The densest crystal structures with stable energy were analyzed with more accurate lattice energy minimisation via distributed multipole analysis using a repulsion-dispersion potential. The stability of the predicted crystal structures with similar close packing to the known experimental polymorphs of Pyrazinamide molecule was analyzed by inspecting their intermolecular short contacts. Studies to analyze the second derivative mechanical properties from the hessian matrix were carried out to emphasise the thermodynamic stability of predicted polymorphs of Pyrazinamide.
Pan, Hui
2014-01-01
Design of novel materials for efficient solar energy conversion is critical to the development of green energy technology. In this work, we present a first-principles study on the design of nanostructures for solar energy harvesting on the basis of the density functional theory. We show that the indirect band structure of bulk silicon nitride is transferred to direct bandgap in nanowire. We find that intermediate bands can be created by doping, leading to enhancement of sunlight absorption. W...
Ab initio studies of electronic and structural transitions in low-Z liquids under extreme conditions
Bonev, Stanimir
2007-06-01
The liquids of group I elements (H, Li, Na, and K) are studied using first principles theory. It will be shown that they undergo electronic and structural transitions analogous to that observed in their solids, but commencing at much lower pressure in the presence of disorder. These changes result in exotic melting behavior and in molten phases with unusual properties. The theoretical predictions will be compared with experimental data and ways for further experimental verification of the theoretical results will be suggested.
Pressure induced structural phase transition in SnS—An ab initio study
Indian Academy of Sciences (India)
M Rajagopalan; G Kalpana; V Priyamvadha
2006-02-01
The structural behaviour of SnS under pressure has been investigated by first principle density functional calculations of the total energy by the TB–LMTO approach. We find that SnS undergoes a structural phase transition from orthorhombic type to monoclinic type structure around 17 GPa which is in good agreement with the recent experimental study. In addition, the ground state properties are computed and compared with the available results.
Magnetism in Sr2CrMoO6 : A combined ab initio and model study
Sanyal, Prabuddha; Halder, Anita; Si, Liang; Wallerberger, Markus; Held, Karsten; Saha-Dasgupta, Tanusri
2016-07-01
Using a combination of first-principles density functional theory (DFT) calculations and exact diagonalization studies of a first-principles derived model, we carry out a microscopic analysis of the magnetic properties of the half-metallic double perovskite compound Sr2CrMoO6 , a sister compound of the much discussed material Sr2FeMoO6 . The electronic structure of Sr2CrMoO6 , though appearing similar to Sr2FeMoO6 at first glance, shows nontrivial differences with that of Sr2FeMoO6 on closer examination. In this context, our study highlights the importance of charge transfer energy between the two transition metal sites. The change in charge transfer energy due to a shift of Cr d states in Sr2CrMoO6 compared to Fe d in Sr2FeMoO6 suppresses the hybridization between Cr t2 g and Mo t2 g. This strongly weakens the hybridization-driven mechanism of magnetism discussed for Sr2FeMoO6 . Our study reveals that, nonetheless, the magnetic transition temperature of Sr2CrMoO6 remains high since an additional superexchange contribution to magnetism arises with a finite intrinsic moment developed at the Mo site. We further discuss the situation in comparison to another related double perovskite compound, Sr2CrWO6 . We also examine the effect of correlation beyond DFT, using dynamical mean field theory.
Ab-Initio Study of Magnetic Properties of Mn-doped MgSiN
Rufinus, Jeffrey
2010-03-01
The current interest in the field of semiconductor spintronics is mostly focused on transition metal-doped binary materials. Recently, however, the explorations of transition metal-dopd ternary semiconductors have gained attention, duel to experimental confirmations of possible high Curie temperature in chalcopyrite compounds. A density functional theory study was performed on Mn-doped ternary material MgSiN2. Our results show Mn-doped MgSiN2 to be antiferromagnetic for MnMg (Mn substitutes Mg site) and ferromagnetic for MnSi (Mn substitutes Si site).
Equation of State for Shock Compressed Xenon in the Ionization Regime：ab Initio Study
Institute of Scientific and Technical Information of China (English)
王聪; 顾云军; 陈其峰; 贺贤土; 张平
2012-01-01
Quantum molecular dynamic （QMD） simulations have been applied to study the thermophysical properties of liquid xenon under dynamic compressions. The equation of state （EOS） obtained from QMD calculations are corrected according to Saha equation, and contributions from atomic ionization, which are of predominance in determining the EOS at high temperature and pressure, are considered. For the pressures below 160 GPa, the necessity in accounting for the atomic ionization has been demonstrated by the Hugoniot curve, which shows excellent agreement with previous experimental measurements, and three levels of ionization have been proved to be sufficient at this stage.
Ab initio study of double perovskites Ba2DySbO6
Jha, Dhiraj Kumar; Mandal, Golak; Ray, Chandan; Himanshu, A. K.; Singh, B. K.; Kumar, Uday; Choudhary, B. K.
2016-05-01
First principle study of the electronic band structure of Ba2DySbO6 synthesied by the solid state reaction technique have been performed within the framework of density function theory using WIEN2K. It has been shown in the absence of electron-electron interaction (U=0), BaDySO6 behaves like a half-metal. Even in the presence of DFT+U, electron-electron interaction via the Hubbard term (from U = 0, 2.72e -7.02eV), it still shows half metals.
Fermiology of 122 family of Fe-based superconductors: An ab initio study
International Nuclear Information System (INIS)
Fermiology of various 122 systems are studied through first principles simulation. Electron doping causes expansion of electron and shrinkage of hole Fermi pockets. Isovalent Ru substitution (up to 35%) makes no visible modification in the electron- and hole-like Fermi surfaces (FSs) providing no clue regarding the nature of charge carrier doping. However, in case of 32% P doping there are considerable changes in the hole FSs. From our calculations, it is very clear that two-dimensionality of FSs may favour electron pair scattering between quasi-nested FSs which has important bearings in various orders (magnetic, orbital, superconducting) present in Fe-based superconductors. - Highlights: • DFT-based simulated Fermi surfaces of 122 family of Fe-based superconductors are studied. • Room-temperature experimental structural parameters are used as input of our calculations. • Topological changes in the FS structures for various kinds of doping are presented. • Influence of dimensional cross-over of FS structures in magnetism and superconductivity is investigated
Ab initio study of the epitaxial ZrO2 /Si interface
Dogan, Mehmet; Kumah, Divine; Ahn, Charles; Walker, Frederick; Ismail-Beigi, Sohrab
2015-03-01
Growing thin films of crystalline metal oxides on semiconductors has been of much scientific interest because of the potential applications of such systems in electronic devices. One particular research goal is to achieve ferroelectricity in a crystalline and thin oxide film that is epitaxial on a semiconductor. This would enable one to realize non-volatile field-effect transistors where the state of the system is encoded in the polarization direction of the oxide. In this work, we study oxides that are not ferroelectric in the bulk but become ferroelectric as an ultrathin film on a semiconductor such as silicon. Recent developments in epitaxial growth methods also permit fabrication of such systems. Here, we use density functional theory to study the interface between ZrO2 and Si. When the oxide is only 1 monolayer thick, we find a set of stable structures with a variety of positive and negative out-of-plane ferroelectric polarizations. We present an analysis of these structures as a function of oxide thickness and the size of interface unit cell. Furthermore, the ZrO2 can be used as a buffer layer to induce ferroelectricity in ultrathin perovskite oxides such as SrTiO3 on Si which can couple the oxide polarization to the silicon carrier density. This work is supported by the National Science Foundation through Grant MRSEC NSF DMR-1119826.
Ab initio study of the trapping of polonium on noble metals
Rijpstra, Kim; Van Yperen-De Deyne, Andy; Maugeri, Emilio Andrea; Neuhausen, Jörg; Waroquier, Michel; Van Speybroeck, Veronique; Cottenier, Stefaan
2016-04-01
In the future MYRRHA reactor, lead bismuth eutectic (LBE) will be used both as coolant and as spallation target. Due to the high neutron flux a small fraction of the bismuth will transmute to radiotoxic 210Po. Part of this radiotoxic element will evaporate into the gas above the coolant. Extracting it from the gas phase is necessary to ensure a safe handling of the reactor. An issue in the development of suitable filters is the lack of accurate knowledge on the chemical interaction between a candidate filter material and either elemental polonium or polonium containing molecules. Experimental work on this topic is complicated by the high radiotoxicity of polonium. Therefore, we present in this paper a first-principles study on the adsorption of polonium on noble metals as filter materials. The adsorption of monoatomic Po is considered on the candidate filter materials palladium, platinum, silver and gold. The case of the gold filter is looked upon in more detail by examining how bismuth pollution affects its capability to capture polonium and by studying the adsorption of the heavy diatomic molecules Po2, PoBi and PoPb on this gold filter.
Graphene allotropes under extreme uniaxial strain: an ab initio theoretical study.
Fthenakis, Zacharias G; Lathiotakis, Nektarios N
2015-07-01
Using density functional theory calculations, we study the response of three representative graphene allotropes (two pentaheptites and octagraphene) as well as graphene, to uniaxial strain up to their fracture limit. Those allotropes can be seen as distorted graphene structures formed upon periodically arranged Stone-Walles transformations. We calculate their mechanical properties (Young's modulus, Poisson's ratio, speed of sound, ultimate tensile strength and the corresponding strain), and we describe the pathways of their fracture. Finally, we study strain as a factor for the conversion of graphene into those allotropes upon Stone-Walles transformations. For specific sets of Stone-Walles transformations leading to an allotrope, we determine the strain directions and the corresponding minimum strain value, for which the allotrope is more favorable energetically than graphene. We find that the minimum strain values which favor those conversions are of the order of 9-13%. Moreover, we find that the energy barriers for the Stone-Walles transformations decrease dramatically under strain, however, they remain prohibitive for structural transitions. Thus, strain alone cannot provide a synthetic route to these allotropes, but could be a part of composite procedures for this purpose.
Fermiology of 122 family of Fe-based superconductors: An ab initio study
Energy Technology Data Exchange (ETDEWEB)
Sen, Smritijit, E-mail: smritijit.sen@gmail.com; Ghosh, Haranath
2015-04-17
Fermiology of various 122 systems are studied through first principles simulation. Electron doping causes expansion of electron and shrinkage of hole Fermi pockets. Isovalent Ru substitution (up to 35%) makes no visible modification in the electron- and hole-like Fermi surfaces (FSs) providing no clue regarding the nature of charge carrier doping. However, in case of 32% P doping there are considerable changes in the hole FSs. From our calculations, it is very clear that two-dimensionality of FSs may favour electron pair scattering between quasi-nested FSs which has important bearings in various orders (magnetic, orbital, superconducting) present in Fe-based superconductors. - Highlights: • DFT-based simulated Fermi surfaces of 122 family of Fe-based superconductors are studied. • Room-temperature experimental structural parameters are used as input of our calculations. • Topological changes in the FS structures for various kinds of doping are presented. • Influence of dimensional cross-over of FS structures in magnetism and superconductivity is investigated.
Carbon- and silicon-capped silicon carbide nanotubes: An ab initio study
Adhikari, K.; Ray, A. K.
2011-04-01
A systematic study of fullerene hemisphere capped finite SiC nanotubes is presented. The tubes are spin optimized using the hybrid functional B3LYP (Becke's three-parameter exchange and the Lee-Yang-Parr correlation functionals) and an all electron 3-21G * basis. Capping of a SiC nanotube changes cohesive energy, HOMO-LUMO gap and other electronic and geometric properties of a SiC nanotube. Also, the carbon-capped SiC nanotubes are energetically preferable compared to silicon-capped tubes. For example, the binding energy per atom for hydrogen-terminated “infinite” SiC nanotube (5,5) having five unit cells is 4.993 eV, the corresponding numbers being 5.989 eV and 4.812 eV for C-capped and Si-capped nanotubes, respectively.
Properties of molten Ge chalcogenides an ab initio molecular dynamics study
Raty, J Y; Bichara, C
2003-01-01
In this study, we perform first-principles molecular dynamics simulations of the eutectic alloy Ge sub 1 sub 5 Te sub 8 sub 5 at five different densities and temperatures. We obtain structures in agreement with the available diffraction data and obtain a new view of the molten Ge chalcogenides. We show that the anomalous volume contraction observed in the liquid 30 K above the eutectic temperature corresponds to a significant change of the Ge-Te partial structure factor. The detailed structural analysis shows that volume variations observed upon melting in Ge sub 1 sub 5 Te sub 8 sub 5 , as in liquid GeSe and GeTe, can be explained in terms of the competition between two types of local environment of the germanium atoms. A symmetrical coordination octahedron is entropically favoured at high temperature, while an asymmetrical octahedron resulting from the local manifestation of the Peierls distortion is electronically favoured at lower temperatures.
Possible doping strategies for MoS 2 monolayers: An ab initio study
Dolui, Kapildeb
2013-08-14
Density functional theory is used to systematically study the electronic properties of doped MoS2 monolayers, where the dopants are incorporated both via S/Mo substitution or as adsorbates. Among the possible substitutional dopants at the Mo site, Nb is identified as suitable p-type dopant, while Re is the donor with the lowest activation energy. When dopants are simply adsorbed on a monolayer we find that alkali metals shift the Fermi energy into the MoS2 conduction band, making the system n type. Finally, the adsorption of charged molecules is considered, mimicking an ionic liquid environment. We find that molecules adsorption can lead to both n- and p-type conductivity, depending on the charge polarity of the adsorbed species. © 2013 American Physical Society.
Pentagonal dodecahedron methane hydrate cage and methanol system—An ab initio study
Indian Academy of Sciences (India)
Snehanshu Pal; T K Kundu
2013-03-01
Density functional theory based studies have been performed to elucidate the role of methanol as an methane hydrate inhibitor. A methane hydrate pentagonal dodecahedron cage’s geometry optimization, natural bond orbital (NBO) analysis, Mullikan charge determination, electrostatic potential evaluation and vibrational frequency calculation with and without the presence of methanol using WB97XD/6-31++G(d,p) have been carried out. Calculated geometrical parameters and interaction energies indicate that methanol destabilizes pentagonal dodecahedron methane hydrate cage (1CH4@512) with and without the presence of sodium ion. NBO analysis and red shift of vibrational frequency reveal that hydrogen bond formation between methanol and water molecules of 1CH4@512 cage is favourable subsequently after breaking its original hydrogen bonded network.
Ab initio powder structure analysis and theoretical study of two thiazole derivatives
Hazra, Dipak K.; Mukherjee, Monika; Mukherjee, Alok K.
2013-05-01
Crystal structures of 2-amino-5-methylthiazole (1) and 4-(6-methyl-2-benzothiazolyl) aniline (2) have been determined from laboratory X-ray powder diffraction data along with an analysis of the Hirshfeld surfaces and 2D-fingerprint plots, facilitating a comparison of intermolecular interactions. The DFT optimized molecular geometries in (1) and (2) agree closely with those obtained from the crystallographic studies. An interplay of Nsbnd H⋯N/S hydrogen bonds and C/Nsbnd H⋯π interactions connects the molecules of (1) and (2) into two-dimensional framework. Hirshfeld surface analysis of (1) indicates that the H⋯H and H⋯π contacts can account for 56.9% of the Hirshfeld surface area, whereas the corresponding fraction in (2) is 80.5%.
Experimental and ab initio studies of the novel piperidine-containing acetylene glycols
Mirsakiyeva, Amina; Elgammal, Karim; Ten, Assel; Hugosson, Håkan W; Delin, Anna; Yu, Valentina K
2015-01-01
Synthesis routes of novel piperidine-containing diacetylene are presented. The new molecules are expected to exhibit plant growth stimulation properties. In particular, the yield in a situation of drought is expected to increase. The synthesis makes use of the Favorskii reaction between cycloketones/piperidone and triple-bond containing glycols. The geometries of the obtained molecules were determined using nuclear magnetic resonance (NMR). The electronic structure and geometries of the molecules were studied theoretically using first-principles calculations based on density functional theory. The calculated geometries agree very well with the experimentally measured ones, and also allow us to determine bond lengths, angles and charge distributions inside the molecules. The stability of the OH-radicals located close to the triple bond and the piperidine/cyclohexane rings was proven by both experimental and theoretical analyses. The HOMO/LUMO analysis was done in order to characterize the electron density of t...
Ab initio study of native defects in SnO under strain
Granato, Danilo B.
2014-04-01
Tin monoxide (SnO) has promising properties to be applied as a p-type semiconductor in transparent electronics. To this end, it is necessary to understand the behaviour of defects in order to control them. We use density functional theory to study native defects of SnO under tensile and compressive strain. We show that Sn vacancies are less stable under tension and more stable under compression, irrespectively of the charge state. In contrast, O vacancies behave differently for different charge states. It turns out that the most stable defect under compression is the +1 charged O vacancy in an Sn-rich environment and the charge neutral O interstitial in an O-rich environment. Therefore, compression can be used to transform SnO from a p-type into either an n-type or an undoped semiconductor. Copyright © EPLA, 2014.
Photoionization of multishell fullerenes studied by ab initio and model approaches
Verkhovtsev, Alexey; Solov'yov, Andrey V
2016-01-01
Photoionization of two buckyonions, C$_{60}$@C$_{240}$ and C$_{20}$@C$_{60}$, is investigated by means of time-dependent density-functional theory (TDDFT). The TDDFT-based photoabsorption spectrum of C$_{60}$@C$_{240}$, calculated in a broad photon energy range, resembles the sum of spectra of the two isolated fullerenes, thus illustrating the absence of strong plasmonic coupling between the fullerenes which was proposed earlier. The calculated spectrum of the smaller buckyonion, C$_{20}$@C$_{60}$, differs significantly from the sum of the cross sections of the individual fullerenes because of strong geometrical distortion of the system. The contribution of collective electron excitations arising in individual fullerenes is evaluated by means of plasmon resonance approximation (PRA). An extension of the PRA formalism is presented, which allows for the study of collective electron excitations in multishell fullerenes under photon impact. An advanced analysis of photoionization of buckyonions, performed using m...
Ab-initio studies of Au-induced atomic wires on Ge(001)
Energy Technology Data Exchange (ETDEWEB)
Sauer, Simeon [Institut fuer Festkoerpertheorie und -optik, Universitaet Jena, D-07743 Jena (Germany); Physikalisches Institut, Universitaet Freiburg, D-79104 Freiburg (Germany); Fuchs, Frank; Bechstedt, Friedhelm [Institut fuer Festkoerpertheorie und -optik, Universitaet Jena, D-07743 Jena (Germany); Blumenstein, Christian; Schaefer, Joerg [Physikalisches Institut, Universitaet Wuerzburg, D-97074 Wuerzburg (Germany)
2010-07-01
Au-induced atomic wires on Ge(001) are a promising model system to study the physics of one-dimensional electron liquids. However, the results of scanning tunneling microscopy (STM) experiments do not permit to unambiguously determine the arrangement of surface atoms. Several questions remain unresolved: Are the observed protrusions formed by Au atoms only or do they incorporate Ge as well? What is their absolute height? Therefore, we theoretically investigate possible atomic geometries of the surface in the framework of density functional theory. For each model, features like surface energy, STM images, and band structure are calculated. The computed properties are compared to experimental data and used to evaluate the different models. Due to the large variety of possible geometries no final statement about the atomic structure of the surface can be made. However, the calculations give good indications towards the correct geometry, e.g. ruling out models proposed in literature or identifying stabilizing building blocks.
Indian Academy of Sciences (India)
Arindam Bankura; Amalendu Chandra
2005-10-01
The hydration structure and translocation of an excess proton in hydrogen bonded water clusters of two different sizes are investigated by means of finite temperature quantum simulations. The simulations are performed by employing the method of Car–Parrinello molecular dynamics where the forces on the nuclei are obtained directly from `on the fly' quantum electronic structure calculations. Since no predefined interaction potentials are used in this scheme, it is ideally suited to study proton translocation processes which proceed through breaking and formation of chemical bonds. The coordination number of the hydrated proton and the index of oxygen to which the excess proton is attached are calculated along the simulation trajectories for both the clusters.
AB INITIO STUDY OF ADVANCED METALLIC NUCLEAR FUELS FOR FAST BREEDER REACTORS
Energy Technology Data Exchange (ETDEWEB)
Landa, A; Soderlind, P; Grabowski, B; Turchi, P A; Ruban, A V; Vitos, L
2012-04-23
Density-functional formalism is applied to study the ground state properties of {gamma}-U-Zr and {gamma}-U-Mo solid solutions. Calculated heats of formation are compared with CALPHAD assessments. We discuss how the heat of formation in both alloys correlates with the charge transfer between the alloy components. The decomposition curves for {gamma}-based U-Zr and U-Mo solid solutions are derived from Ising-type Monte Carlo simulations. We explore the idea of stabilization of the {delta}-UZr{sub 2} compound against the {alpha}-Zr (hcp) structure due to increase of Zr d-band occupancy by the addition of U to Zr. We discuss how the specific behavior of the electronic density of states in the vicinity of the Fermi level promotes the stabilization of the U{sub 2}Mo compound. The mechanism of possible Am redistribution in the U-Zr and U-Mo fuels is also discussed.
Storing of molecular hydrogen in graphite cell. An ab initio study
International Nuclear Information System (INIS)
Full text: Weakly-bounded hydrogen bonds are of fundamental importance in structural chemistry and biology, supramolecular chemistry and crystal engineering. Molecular hydrogen (H2) holds a promise of the ideal energy source for production of electricity in transportable devices. Carbon-based materials, such as nano-structured graphite platelets (graphene) or cells are among the most attractive physisorption substrates. A computationally tractable model of graphene is provided by polycyclic aromatic hydrocarbons (PAH's) such as benzene. The importance of benzene and molecular hydrogen complex as a model system for molecular hydrogen storage in graphite cells as well as the importance of noncovalent interactions in a variety of different systems prompted us to study the H2-π interaction. Adequate quantum-chemical description of H2-PAH interactions require post-Hartree-Fock treatment of electron correlation and of basis set superposition error (BSSE) effects. In a previous study we analyzed the weakly-bounded hydrogen bonds between acetylene and different proton donors as a model of C-H-π interaction. Important BSSE effects have been found due to the long range interaction of electron correlation, especially for the dispersion energy component. Similar effects can be found in case of benzene and molecular hydrogen complex. To treat this effect, we use the well-known a posteriori counterpoise (CP) BSSE correction scheme introduced by Boys and Bernardi. The theoretical values of interaction energies between the benzene ring and the molecular hydrogen as well as the intermolecular distances between them show an important BSSE and basis size effects. (author)
Ab Initio Study of the Electron Transfer in an Ionized Stacked Complex of Guanines
Cauët, Emilie; Liévin, Jacques
2009-08-01
The charge transfer process in an ionized stacking of two consecutive guanines (G5'G3')+ has been studied by means of state-averaged CASSCF/MRCI and RASSCF/RASPT2 calculations. The ground and two first excited states of the radical cation have been characterized, and the topology of the corresponding potential energy surfaces (PESs) has been studied as a function of all intermolecular geometrical parameters. The results demonstrate that the charge transfer process in (G5'G3')+ is governed by the avoiding crossing between the ground and first excited states of the complex. Relative translation motions of both guanines in their molecular planes are shown to lead to the charge migration between G5' and G3'. Five stationary points (three minima and two saddle points) have been characterized along the reaction path describing the passage of the positive charge from G5' to G3'. The global minimum on the PES is found to correspond to the charge configuration G5'+G3'. The existence of an intermediate minimum along the reaction path has been established, characterizing a structure where the positive charge is equally distributed between the two guanines. The calculated energy profile allowed us to determine the height of the potential energy barrier (7.33 kcal/mol) and to evaluate the electronic coupling at a geometry close to the avoiding crossing (3.6 kcal/mol). Test calculations showed that the topology of the ground state PES of the complex GG+ is qualitatively conserved upon optimization of the intramolecular geometrical parameters of the stationary points.
Conformers and non-covalent interactions studied by laser spectroscopies and ab initio calculations
Ullrich, S
2001-01-01
The model peptides, formanilide and acetanilide, and their weakly bound complexes were studied in the gas-phase using resonance enhanced multi-photon ionisation (REMPI) and zero electron kinetic energy (ZEKE) photoelectron spectroscopy. Both, cis- and trans-isomers of formanilide, were observed under molecular beam conditions. Trans-formanilide displayed predominantly in-plane vibrational excitation indicative of a planar geometry with modest geometry changes upon excitation and ionisation. In cis-formanilide the side-chain is twisted compared to the phenyl plane in the S sub 0 state, but planar in the S sub 1 and D sub 0 states, revealed in characteristic side-chain torsional and out-of-plane bending excitations. Additionally, the ZEKE spectra provide evidence that excess cationic charge is delocalised from the aromatic ring to the side chain. The work on trans-formanilide was extended to its van der Waals complex with Argon with the purpose of investigating the torsional potential of the side-chain and prob...
Renner-Teller nonadiabatic coupling terms: An ab-initio study of the HNH molecule
Halász, G. J.; Vibók, Á.; Baer, R.; Baer, M.
2006-02-01
In this Communication we present the first theoretical/numerical treatment of nonadiabatic coupling terms (NACT) that originate from the Renner-Teller (RT) model, namely, those that follow from the splitting of an electronic level of a linear molecule when it becomes bent. These two newly formed states are characterized by different symmetries and are designated as A and B. Our main findings: (1) The RT NACTs are quantized as long as they are calculated close enough to collinear configuration of the molecule (in this case HNH). Their value is τ =1 (the Jahn-Teller values in similar situations, are τ =1/2). (2) Calculation of RT NACTs at bent configurations (i.e., at a distance from the linear axis) yield decreased values, sometimes by more than 50%. This last finding implies that in strongly bent configurations the two-state Hilbert subspace (formed by the above mentioned A and B states) is affected by upper states, most likely via Jahn-Teller conical intersections. (3) This study has also important practical implications. The fact that the RT NACTs decrease in (strongly) bent situations implies that analyzing spectroscopic data employing only the two Π-states may not be sufficient in order to achieve the required accuracy.
Energy Technology Data Exchange (ETDEWEB)
Dixit, Vivek; Nandadasa, Chandani N.; Kim, Seong-Gon, E-mail: kimsg@ccs.msstate.edu [Department of Physics and Astronomy, Mississippi State University, Mississippi State, Mississippi 39762, USA and Center for Computational Sciences, Mississippi State University, Mississippi State, Mississippi 39762 (United States); Kim, Sungho [Center for Computational Sciences, Mississippi State University, Mississippi State, Mississippi 39762 (United States); Park, Jihoon; Hong, Yang-Ki [Department of Electrical and Computer Engineering and MINT Center, The University of Alabama, Tuscaloosa, Alabama 35487 (United States)
2015-11-28
The first-principles density functional theory has been used to study Ga/In-substituted strontium hexaferrite (SrFe{sub 12}O{sub 19}). Based on the calculation of the substitution energy of Ga and In in SrFe{sub 12}O{sub 19} and the formation probability analysis, we conclude that in SrFe{sub 12−x}Ga{sub x}O{sub 19} the substituted Ga atoms prefer to occupy the 12k, 2a, and 4f{sub 1} sites, while In atoms in SrFe{sub 12−x}In{sub x}O{sub 19} occupy the 12k, 4f{sub 2}, and 4f{sub 1} sites. We used the site occupation probabilities to calculate the magnetic properties of the substituted SrFe{sub 12}O{sub 19}. It was found that as the fraction of Ga atoms in SrFe{sub 12−x}Ga{sub x}O{sub 19} increases, the saturation magnetization (M{sub s}) as well as magnetic anisotropy energy (MAE) decrease, while the anisotropy field (H{sub a}) increases. In the case of SrFe{sub 12−x}In{sub x}O{sub 19}, M{sub s}, MAE, and H{sub a} decrease with an increase of the concentration of In atoms.
Elastic, Electronic, Optical and Thermal Properties of Na2Po: An Ab Initio Study
Baki, N.; Eithiraj, R. D.; Khachai, H.; Khenata, R.; Murtaza, G.; Bouhemadou, A.; Seddik, T.; Bin-Omran, S.
2016-01-01
The structural, elastic, electronic, optical and thermodynamic properties of the sodium polonide Na2Po compound have been studied through the full potential linearized augmented plane wave plus local orbitals (FP-LAPW + lo) and tight-binding linear muffin-tin orbital (TB-LMTO) methods. The exchange-correlation potential was treated within the local density approximation for the TB-LMTO calculations and within the generalized gradient approximation for the FP-LAPW + lo calculations. In addition, Tran and Blaha-modified Becke-Johnson (TB-mBJ) potential and Engel-Vosko generalized gradient approximation were used for the electronic and optical properties. Ground state properties such as the equilibrium lattice constant, bulk modulus and its pressure derivative were calculated and compared with available data. The single-crystal and polycrystalline elastic constants of the considered compound were calculated via the total energy versus strain in the framework of the FP-LAPW + lo approach. The calculated electronic structure reveals that Na2Po is a direct band gap semiconductor. The frequency-dependent dielectric function, refractive index, extinction coefficient, reflectivity coefficient and electron energy loss function spectra are calculated for a wide energy range. The variations of the lattice constant, bulk modulus, heat capacity, volume expansion coefficient and Debye temperature with temperature and pressure were calculated successfully using the FP-LAPW + lo method in combination with the quasi-harmonic Debye model.
Ab Initio Molecular Dynamics Study of Aqueous Solvation of Ethanol and Ethylene
Van Erp, T S; Erp, Titus S. van; Meijer, Evert Jan
2002-01-01
The structure and dynamics of aqueous solvation of ethanol and ethylene are studied by DFT-based Car-Parrinello molecular dynamics. We did not find an enhancement of the structure of the hydrogen bonded network of hydrating water molecules. Both ethanol and ethylene can easily be accommodated in the hydrogen-bonded network of water molecules without altering its structure. This is supports the conclusion from recent neutron diffraction experiments that there is no hydrophobic hydration around small hydrophobic groups. Analysis of the electronic charge distribution using Wannier functions shows that the dipole moment of ethanol increases from 1.8 D to 3.1 D upon solvation, while the apolar ethylene molecule attains an average dipole moment of 0.5 D. For ethylene, we identified configurations with $\\pi$-H bonded water molecules, that have rare four-fold hydrogen-bonded water coordination, yielding instantaneous dipole moments of ethylene of up to 1 D. The results provide valuable information for the improvement...
A comprehensive ab initio study of doping in bulk ZnO with group V elements
Petretto, Guido; Bruneval, Fabien
2014-03-01
Zinc-oxyde, despite being a promising candidate for several electronic applications, up to now has provided several challenges to the scientific community, both from an experimental and theoretical point of view. In fact, a reliable p-type doping still has not been achieved and standard density functional theory (DFT) calculations has often provided unsatisfactory results and failed to help in the search for better configurations to obtain such property. To solve the band gap underestimation problem we have made use of the HSE hybrid functional, tuning the admixing parameter to match the experimental band gap. Within this framework, we extensively studied the formation and transition energies of group V elements related defects. These include simple substitutional defects XO, XZn (X=N, P, As, Sb) and complexes of the form XZn-2VZn and XZn-VZn. The stability of these complexes is also addressed. We show that it is unlikely to obtain good acceptor states from these elements due to deep transition energies and the presence of donor-like defects.
Ab initio study of pressure-induced magnetic transition in manganese pnictides
Prathiba, G.; Naanci, B. Anto; Rajagopalan, M.
2007-02-01
We report a density functional calculation on the NiAs-type Mn-based pnictides. The total energy as a function of volume is obtained by means of self-consistent tight-binding linear muffin-tin orbital method by performing spin and non-spin polarized calculation. From the present study, we predict a magnetic-phase transition from ferromagnetic (FM) to non-magnetic (NM) around 49 and 35.7 GPa for MnAs and MnSb, respectively. The pressure-induced transition is found to be a second-order transition. The band structure and density of states (DOS) are plotted for FM and NM states. Apart from this the ground-state properties like magnetic moment, lattice parameter and bulk modulus are calculated and are compared with the available results. Under large volume expansion these compounds exist in zinc-blende (ZB) structure, which shows half metallicity. The magnetic moment and equilibrium lattice constants for ZB structure are obtained as well as band structure and DOS are presented.
Ab initio study of structural stability of InAs nanowires
International Nuclear Information System (INIS)
We have studied the structural stability of InAs nanowires with different diameters by using density functional theory - pseudopotential computations. The stable structure of bulk InAs is Zinc Blende (ZB) although under special experimental conditions Wurtzite (WZ) InAs has also been observed. Due to the high symmetry and low ratio of dangling bonds, we have considered hexagonal and triangular WZ nanowires in[0001] direction and hexagonal ZB nanowires in[111] direction. In order to select facets of the nanowires, we calculated formation energy of nonpolar surfaces of both structures and found that ZB(110) and WZ(10 anti 10) surfaces are more stable than others. All nanowires were calculated in the optimized and relaxed supercells. Calculating the cohesive energy of nanowires with small diameters, we found WZ structure more stable than ZB, in good agreement with experimental results. The obtained cohesive energy of the small diameter nanowires were fitted by a phenomenological model to obtain dangling bond energies and then extrapolate the cohesive energy of large diameter nanowires. The extrapolated results indicate that for diameters up to 50 Angstrom, the WZ nanowires are more stable than ZB nanowires while for larger diameters, the contribution of dangling bonds reduces and the results converge to that of bulk InAs.
Ab initio study of TaON, an active photocatalyst under visible light irradiation.
Reshak, A H
2014-06-14
Tantalum oxynitride has been studied as an active photocatalyst under visible light, using a full potential linearized augmented plane wave method within the framework of density functional theory. The electronic and optical properties of TaON are calculated using local density approximation (LDA), generalized gradient approximation (GGA), Engel-Vosko generalized gradient approximation (EVGGA) and the modified Becke-Johnson (mBJ) potential approximation to describe the exchange-correlation potential. The calculated band gap value obtained by the mBJ approximation approach (2.5 eV) is very close to the experimental result (2.5 eV). We found that hybridization among the Ta-d, O-p and N-p states results in the formation of a covalent bond between Ta-N and Ta-O. The calculated optical properties confirm that the TaON is an active photocatalyst under visible light irradiation. TaON has a high dielectric constant and the components show anisotropy in the energy range between 3.0 eV and 10.0 eV. A high refractive index of 2.47 at 632.8 nm is obtained which shows better agreement with the experimental value (2.5 at 632.8 nm) than previous results.
The decoupling of epitaxial graphene on SiC by hydrogen intercalation: an ab initio study
Nemec, Lydia; Rinke, Patrick; Blum, Volker; Scheffler, Matthias
2015-03-01
Large-scale ordered epitaxial graphene can be grown on various substrates, out of which silicon carbide (SiC) is one of the most promising. The exact material properties of graphene depend on the growth conditions and its interaction with the substrate. By hydrogen intercalation of epitaxial graphene on the Si-face of SiC the graphene layer decouples from the substrate forming quasi-free-standing monolayer graphene (QFMLG). We performed an density functional theory study of QFMLG on the polar 6H-SiC(0001) surface based on a van der Waals corrected semi-local exchange-correlation functional using the all-electron numeric atom-centered basis function code FHI-aims. We find an adsorption height in excellent agreement with X-ray standing wave experiments, a very low buckling of the graphene layer, and a very homogeneous electron density at the interface. All these features improve the electronic properties of QFMLG compared to epitaxial graphene. Using the insight gleaned on the Si-face, we present the structure of a hypothetical QFMLG phase on the C-face of SiC. We find that hydrogen intercalation is a promising option to control the SiC-graphene interface.
Ab Initio Study of Quasiparticle and Excitonic Properties of MoS2
Qiu, Diana; Jornada, Felipe; Louie, Steven
2013-03-01
MoS2 is a layered, transition-metal dichalcogenide that can be cleaved into single-layer sheets, in a manner similar to graphene. Monolayer MoS2 has a direct band gap, strong spin-orbit coupling and strongly enhanced photoluminescence, compared with the bulk. MoS2's interesting electronic and optical properties mean that it could have many applications in single-layer electronic devices, but on the theoretical level, when many-electron interaction effects are included, there is still some uncertainty about the quasiparticle and excitonic properties of MoS2. We use first-principles calculations to study the quasiparticle band structure and optical absorption spectrum of MoS2 at the GW +BSE level. We include spin-orbit coupling as a perturbation either before or after the GW calculation of the band structure, and we demonstrate that our calculations are fully converged with respect to the dielectric cutoff and summation over empty bands. This work was supported by NSF grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by NERSC.
Z-contrast imaging and ab initio study on "d" superstructure in sedimentary dolomite
Shen, Zhizhang; Szlufarska, Izabela; Brown, Philip E; Xu, Huifang
2016-01-01
Nano-precipitates with tripled periodicity along the c-axis are observed in a Ca-rich dolomite sample from Proterozoic carbonate rocks with "molar tooth" structure. This observation is consistent with previous description of d reflections. High-angle annular dark-field STEM imaging (or Z-contrast imaging) that avoids dynamic diffraction as seen in electron diffraction and high-resolution TEM imaging modes, confirms that d reflections correspond to nanoscale precipitates aligned parallel to (001) of the host dolomite. The lamellae precipitates have a cation ordering sequence of Ca-Ca-Mg-Ca-Ca- Mg along the c direction resulting in a chemical composition of Ca0.67Mg0.33CO3. This superstructure is attributed to the extra or d reflections, thus is referred to as the d superstructure in this study. The structure can be simply described as interstratified calcite/dolomite. The crystal structure of the d superstructure calculated from density functional theory (DFT) has a space group of P31c and has a and c unit-cel...
International Nuclear Information System (INIS)
New valence electron photoelectron spectra of iodobenzene obtained using synchrotron radiation have been recorded. Ionization energies (IEs) determined using multi-configuration SCF calculation (MCSCF) procedures confirmed the adiabatic IE order as: X2B1
Energy Technology Data Exchange (ETDEWEB)
Palmer, Michael H., E-mail: m.h.palmer@ed.ac.uk, E-mail: tr01@staffmail.ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it; Ridley, Trevor [School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland (United Kingdom); Hoffmann, Søren Vrønning; Jones, Nykola C. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Coreno, Marcello [CNR-IMIP, Montelibretti, c/o Laboratorio Elettra, Trieste (Italy); Simone, Monica de [CNR-IOM Laboratorio TASC, Trieste (Italy); Grazioli, Cesare [CNR-IOM Laboratorio TASC, Trieste (Italy); Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste (Italy); Biczysko, Malgorzata [National Research Council ICCOM-CNR, UOS di Pisa, Via G. Moruzzi 1, I-56124 Pisa (Italy); Scuola Normale Superiore, Piazza Cavalieri 7, 56126 Pisa (Italy); Baiardi, Alberto [Scuola Normale Superiore, Piazza Cavalieri 7, 56126 Pisa (Italy)
2015-04-07
New valence electron photoelectron spectra of iodobenzene obtained using synchrotron radiation have been recorded. Ionization energies (IEs) determined using multi-configuration SCF calculation (MCSCF) procedures confirmed the adiabatic IE order as: X{sup 2}B{sub 1}studies. The calculated Franck-Condon vibrational spectral envelopes, including hot band contributions, for the first four ionic states reproduce the observed peak positions and intensities with reasonable accuracy. In order to simulate the observed spectra, different bandwidths are required for different states. The increase in the required bandwidths for the A{sup 2}A{sub 2} and B{sup 2}B{sub 2} states is attributed to internal conversion to lower-lying states. The presence of relatively high intensity sequence bands leads to asymmetry of each of the X{sup 2}B{sub 1} state bands.
Ab initio study of oxygen adsorption and initial incorporation in Pd-Pt alloy
Energy Technology Data Exchange (ETDEWEB)
Dianat, Arezoo; Bobeth, Manfred; Pompe, Wolfgang [Institut fuer Werkstoffwissenschaft, Technische Universitaet Dresden (Germany)
2008-07-01
In order to get insight into the catalytic behavior of the bimetallic alloy Pd-Pt, the adsorption of oxygen on the alloy surface as well as the initial oxygen incorporation have been studied by means of density-functional theory. Due to segregation processes the composition of the near-surface layers of the alloy is in general different from the bulk composition. In this work, ordered bulk phases (L1{sub 0},L1{sub 2}) of Pd{sub x}Pt{sub 1-x} with compositions x=0.25,0.5,0.75 as well as different compositions and atom configurations of the two outermost layers have been investigated. Adsorption energies for oxygen adsorbed on the (111) alloy surface and for oxygen in sub-surface position have been calculated for different oxygen coverages (0.25 to 1 ML). In the case of oxygen adsorption on the surfaces, the highest adsorption energy at low oxygen coverage ({<=}0.25 ML) has been found for the Pd{sub 0.5}Pt{sub 0.5} composition o f the two outermost layers, whereas at higher coverage the oxygen binding energy is highest for a Pd-rich first monolayer and Pt-rich second monolayer. Interestingly, on the latter layer system the oxygen adsorption energy is higher than on pure Pd(111). Oxygen occupation of sub-surface sites starts at a coverage of 0.5 ML for all alloy models considered. The calculated oxygen adsorption energy depends only weakly on the bulk composition. It increases slightly with Pt bulk concentration, but it differs less than 50 meV.
High-pressure polymorphs of TbVO{sub 4}: A Raman and ab initio study
Energy Technology Data Exchange (ETDEWEB)
Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Física Aplicada-ICMUV, Universidad de Valencia, MALTA Consolider Team, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100 Valencia (Spain); Manjón, F.J. [Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Muñoz, A.; Rodríguez-Hernández, P. [Departamento de Física Fundamental II, Instituto de Materiales y Nanotecnología, MALTA Consolider Team, Universidad de La Laguna, La Laguna 38205, Tenerife (Spain); Panchal, V. [Departamento de Física Aplicada-ICMUV, Universidad de Valencia, MALTA Consolider Team, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100 Valencia (Spain); Royal College of Arts, Science and Commerce, Mira Road, Mumbai 401 107 (India); Achary, S.N.; Tyagi, A.K. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)
2013-11-15
Highlights: •Three phase transitions are induced in zircon-type TbVO4 at 6.7, 26.7, and 34.4 GPa. •The proposed structural sequence is zircon-scheelite-fergusonite-orthorhombic Cmca. •Scheelite phase is metaestable after decompression. •The equation of states for all phases is reported. •Compressibility is enhanced in the Cmca phase due to f-electron delocalization. -- Abstract: Raman measurements on TbVO{sub 4} show the occurrence of three pressure-induced phase transitions. The first one, an irreversible transition from the zircon to the scheelite structure, occurs beyond 6.7 GPa. In addition, two reversible transformations take place at 26.7 and 34.4 GPa. The last transition was never reported before. The experimental findings are supported by structural and lattice-dynamics calculations that helped us to identify the post-scheelite phase as a monoclinic fergusonite structure. According to the calculations, the third transition involves a symmetry increase. An orthorhombic structure is proposed for the phase found above 34.4 GPa. The results have been compared with previous studies in TbVO{sub 4} and discussed in comparison with related compounds. The calculated equations of state are reported for the different polymorphs of TbVO{sub 4}. A compressibility increase is caused by the third transition. It is associated to a bond-strength decrease, which is related to a coordination increase and a delocalization of Tb f-electrons.
Ab initio study of gas phase and water-assisted tautomerization of maleimide and formamide
Indian Academy of Sciences (India)
Susheel Kalia; Anju Sharma; B S Kaith
2007-11-01
Maleimide serves as an important starting material in the synthesis of drugs and enzyme inhibitors. In the present paper, knowing the importance of tautomerization in maleimide for its drug action, potential energy surface of maleimide is studied and its tautomerization has been discussed and compared with tautomerization of formamide. Gas phase tautomerization of maleimide requires large amount of energy (23.21 kcal/mol) in comparison to formamide (15.05 kcal/mol) at HF/6-31+G* level. Thus making the proton transfer reaction a difficult process in gas phase. Water molecule lowers the energy barrier of tautomerization thus facilitating the tautomerization of maleimide to 5-hydroxy-pyrrol-2-one. Water assisted tautomerization of maleimide requires 19.60 kcal/mol energy at HF/6-31+G* and 17.63 kcal/mol energy at B3LYP/6-31+G* level, a decrease of 3.61 and 5.96 kcal/mol over gas phase tautomerization. Whereas, tautomerization of formamide requires 14.16 and 12.84 kcal/mol energy, a decrease of 0.89 and 2.01 kcal/mol energy over gas phase tautomerization at HF/6-31+G* and B3LYP/6-31+G* level, respectively. Water-assisted tautomerization in maleimide and formamide showed that difference in energy barrier reduces to 2.83 kcal/mol from 10.41 kcal/mol (in gas phase) at B3LYP level, which resulted that maleimide readily undergoes tautomerization in water molecule.
Origin of using cisplatin over transplatin for cancer treatment: An ab initio study
Li, Sa; Jena, Puru; Department of Physics, Virginia Commonwealth University Team
2011-03-01
Eventhough cisplatin has been used as a chemotherapy anti-cancer drug for over 40 years the thermodynamics and kinetics of the reactions are still largely unknown. Cisplatin molecules are known to be attacked by water molecules before they react with DNA. As a result, two Cl atoms are eliminated. The active piece in the cell, therefore, is not cisplatin but (NH3)2 Pt 2+ . To explain why only cisplatin but not transplatin functions as anticancer drug, we used first principles method to study the dechlorination process in cis- and transplatin. Although transplatin molecule is more stable than cisplatin by 0.52 eV, we found cisplatin to be more favorable for reaction due to the following reasons: 1) the energy cost to remove a Cl atom is less from cisplatin than transplatin. 2) cis-form (NH3)2 Pt 2+ derived from cisplatin with N-Pt-N angle of 97r is lower in energy than trans-form derived from transplatin with N-Pt-N angle of 180r. The rotation barrier for N-Pt-N changing from 180r to 97r is about 1.0 eV. 3) When cis-form of (NH3)2 Pt 2+ reacts with two Guanines in DNA, the two N atoms in Guanines can readily bind to the Pt atom in cisplatin. The transplatin due to steric reasons does not provide that opportunity. This work is supported by grants from the Department of Energy.
Characterization of Ag adsorption on TiC(001)substrate:an ab initio study
Institute of Scientific and Technical Information of China (English)
Ma Shang-Yi; Wang Shao-Qing
2008-01-01
Ag adsorptions at 0.25-3 monolayer(ML)coverage on a perfect TIC(001)surface and at 0.25 ML coverage on C vacancy are separately investigated by using the pseudopotential-based density functional theory.The preferential adsorption sites and the adsorption-induced modifications of electronic structures of both the substrate and adsorbate are analysed.Through the analyses of adsorption energy,ideal work of separation,interface distance,projected local density of states,and the difference electron density,the characteristic evolution of the adatom-surface bonding as a function of the amount of deposited silver is studied.The nature of the Ag/TiC bonding changes as the coverage increases from 0.25 to 3 MLs.Unlike physisorption in an Ag/MgO system.polar covalent component contributes to the Ag/TiC interfacial adhesion in most cases,however,for the case of 1-3 ML coverage,an additional electrostatic interaction between the absorption layer and the substrate should be taken into account.The value of ideal work of separation,1.55 J/m2,for a 3-ML-thick adlayer accords well with other calculations.The calculations predict that Ag does not wet TiC(001)surface and prefers a three-dimensional growth mode in the absence of kinetic factor.This work reports on a clear site and coverage dependence of the measurable physical parameters,which would benefit the understanding of Ag/TiC(001)interface and the analysis of experimental data.
Synthesis, bioassay, crystal structure and ab initio studies of Erlenmeyer azlactones
Parveen, Mehtab; Ali, Akhtar; Ahmed, Sarfaraz; Malla, Ali Mohammed; Alam, Mahboob; Pereira Silva, P. S.; Silva, Manuela Ramos; Lee, Dong-Ung
2013-03-01
Several 4-arylidene-2-phenyl-5(4H)-azlactones have been synthesized via Erlenmeyer method. The synthesized compounds have been characterized on the basis of systematic spectral studies (IR, 1H NMR, 13C NMR, and MS). The compound (4Z)-4-(3,5-dimethoxybenzylidene)-2-phenyl-1,3-oxazol-5(4H)-one, C18H15NO4, (5), crystallizes in the orthorhombic system, space group P212121, with a = 5.6793(3) Å, b = 15.2038(7) Å, c = 17.6919(10) Å, Mr = 309.31, V = 1527.64(14) Å3, Z = 4 and R = 0.0547. The compound (4Z)-2-phenyl-4-(3,4,5-trimethoxybenzylidene)-1,3-oxazol-5(4H)-one, C19H17NO5, (6) crystallizes in triclinic geometry with space group P-1, having unit cell parameters a = 7.3814(3) Å, b = 8.1446(3) Å, c = 13.9845(5) Å, α = 86.918(3), β = 83.314(2), γ = 82.462(3), Mr = 339.34, V = 827.16(5) Å3, Z = 2 and R = 0.0433. The DFT calculations of compounds (5) and (6) have been carried out to ascertain the stability of Z-conformer. The in vitro antimicrobial activity of all the compounds (1-6) was evaluated by the disk diffusion method against gram +ve and gram -ve microorganism and fungal strains. The MIC of the synthesized compounds was determined by agar well diffusion method in 96-well microtiter plate. All the synthesized compounds were also screened for their free radical scavenging activity by DPPH method.
Ab-initio study of C and O impurities in uranium nitride
Lopes, Denise Adorno; Claisse, Antoine; Olsson, Pär
2016-09-01
Uranium nitride (UN) has been considered a potential fuel for Generation IV (GEN-IV) nuclear reactors as well as a possible new fuel for Light Water Reactors (LWR), which would permit an extension of the fuel residence time in the reactor. Carbon and oxygen impurities play a key role in the UN microstructure, influencing important parameters such as creep, swelling, gas release under irradiation, compatibility with structural steel and coolants, and thermal stability. In this work, a systematic study of the electronic structure of UN containing C and O impurities using first-principles calculations by the Density Functional Theory (DFT) method is presented. In order to describe accurately the localized U 5f electrons, the DFT + U formalism was adopted. Moreover, to avoid convergence toward metastable states, the Occupation Matrix Control (OMC) methodology was applied. The incorporation of C and O in the N-vacancy is found to be energetically favorable. In addition, only for O, the incorporation in the interstitial position is energetically possible, showing some degree of solubility for this element in this site. The binding energies show that the pairs (Csbnd Nvac) and (Osbnd Nvac) interact much further than the other defects, which indicate the possible occurrence of vacancy drag phenomena and clustering of these impurities in grain boundaries, dislocations and free surfaces. The migration energy of an impurity by single N-vacancy show that C and O employ different paths during diffusion. Oxygen migration requires significantly lower energy than carbon. This fact is due to flexibility in the Usbnd O chemical bonds, which bend during the diffusion forming a pseudo UO2 coordination. On the other hand, C and N have a directional and inflexible chemical bond with uranium; always requiring the octahedral coordination. These findings provide detailed insight into how these impurities behave in the UN matrix, and can be of great interest for assisting the development of
Ab initio study of 59Co NMR spectra in Co2FeAl1-xSix Heusler alloys
Nishihara, H.; Sato, K.; Akai, H.; Takiguchi, C.; Geshi, M.; Kanomata, T.; Sakon, T.; Wada, T.
2015-05-01
Ab initio electronic structure calculation of a series of Co2FeAl1-xSix Heusler alloys has been performed, using the Korringa-Kohn-Rostoker-coherent potential approximation method to explain experimental 59Co NMR spectra. Two prominent features are explained semi-quantitatively-a global shift of the 59Co resonance line due to alloying with Al and Si atoms in Co2FeAl1-xSix, and the effect of local disorder in creating distinct satellite lines of 59Co NMR in Co2FeAl. The importance is stressed of the positive contribution to the 59Co hyperfine field from valence electron polarization, which emerges from the half-metallic band structure inherent in Co-based Heusler alloys.
Devi, Assa Aravindh Sasikala
2014-05-01
Investigations on freestanding binary and ternary clusters of Fe (x) Co (y) Ir (z) (x + y + z = 5, 6) are carried out using ab initio density functional theory techniques. The geometry, chemical order, binding energy, magnetic moment and electronic structure of the clusters are analyzed for the entire range of composition. Composition dependent structural transition is observed in the five atom clusters, while octahedral geometry prevailed in clusters with six atoms. Both the clusters show increment in binding energy with the increase in number of heterogeneous bonds. Analysis based on the chemical order parameter indicates that clusters favor mixing rather than segregation. The clusters exhibit ferromagnetic ordering and the inter-dependence of optimal cluster geometry to the magnetic moments and electronic structure is observed.
Sousa, J. B.; Calheiros, R.; Rio, V.; Borges, F.; Marques, M. P. M.
2006-02-01
A conformational analysis of ethyl 3-(3,4,5-trihydroxyphenyl)-2-propenoate (ethyl 3,4,5-trihydroxycinnamate, ETHPPE), a polyphenolic cinnamic ester which displays antiproliferative activity towards human adenocarcinoma cells, was carried out by Raman spectroscopy coupled to ab initio MO calculations. Apart from the optimised geometrical parameters for the most stable conformations of this compound (both for the trans and cis isomers), the corresponding harmonic vibrational frequencies were obtained. Eighteen distinct geometries were found, 12 for the lowest energy trans isomer and six for the cis species. The conformational preferences of this system were verified to be mainly ruled by the stabilising effect of π-electron delocalisation, a planar geometry being favoured. The orientation of the ester moiety showed to be the most determinant factor for the overall stability of the molecule. In the light of these results, a complete assignment of the corresponding Raman pattern was performed.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The static O-H bond parameters including O-H bond length, O-H charge difference, O-H Mulliken population and O-H bond stretching force constant (k) for 17 phenols were calculated by ab initio method HF/6-31G**. In combination with the O-H bond dissociation enthalpies (BDE) of the phenols determined by experiment, it was found that there were poor correlationships between the static O-H bond parameters and O-H BDE. Considering the good correlationship between O-H BDE and logarithm of free radical scavenging rate constant for phenolic antioxidant, it is reasonable to believe that the ineffectiveness of static O-H bond parameters in characterizing antioxidant activity arises from the fact that they cannot measure the O-H BDE.
Ichikawa, Kazuhide; Fukushima, Akinori; Ishihara, Yoshio; Isaki, Ryuichiro; Takeguchi, Toshio; Tachibana, Akitomo; 10.1016/j.theochem.2009.08.026
2009-01-01
We investigate a reaction of boron trichloride (BCl3) with iron(III) hydroxide (Fe(OH)3) by ab initio quantum chemical calculation as a simple model for a reaction of iron impurities in BCl3 gas. We also examine a reaction with water. We find that compounds such as Fe(Cl)(OBCl2)2(OHBCl2) and Fe(Cl)2(OBCl2)(OHBCl2) are formed while producing HCl and reaction paths to them are revealed. We also analyze the stabilization mechanism of these paths using newly-developed interaction energy density derived from electronic stress tensor in the framework of the Regional DFT (Density Functional Theory) and Rigged QED (Quantum ElectroDynamics).
The (Lb)S1 0 transition of phenylpropyne and phenylacetylene: an experimental and ab initio study
International Nuclear Information System (INIS)
This work describes the first excited singlet electronic state, Lb, of phenylpropyne (PPR) and phenylacetylene (PA). Ab initio calculations have been performed for the geometry and normal modes in the S0 and S1 states. One-photon and two-photon S1 0 spectra of jet cooled samples have been examined (REMPI detection) and a detailed vibronic analysis has been carried out for PPR and PA. The origin band of PPR (λ = 279.64 nm) is one order of magnitude weaker than the origin band (λ = 278.63 nm) of PA and the acetylenic modes are greatly reduced by the H → CH3 substitution. These changes and the parallel PPR-PA comparison provided a way for secure vibronic assignment in both molecules, which was also aided by theoretical predictions
Kolb, Brian; Guo, Hua
2016-07-01
Scattering and dissociative chemisorption of DCl on Au(111) are investigated using ab initio molecular dynamics with a slab model, in which the top two layers of Au are mobile. Substantial kinetic energy loss in the scattered DCl is found, but the amount of energy transfer is notably smaller than that observed in the experiment. On the other hand, the dissociative chemisorption probability reproduces the experimental trend with respect to the initial kinetic energy, but is about one order of magnitude larger than the reported initial sticking probability. While the theory-experiment agreement is significantly improved from the previous rigid surface model, the remaining discrepancies are still substantial, calling for further scrutiny in both theory and experiment.
Energy Technology Data Exchange (ETDEWEB)
Song, Chi [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Li, Dongdong [National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Xu, Yichun [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Pan, B.C. [National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Liu, C.S., E-mail: csliu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Wang, Zhiguang [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)
2013-11-15
Considerable attention has been devoted to liquid lead-bismuth eutectic (LBE) alloy due to its potential application as spallation target and coolant in future sub-critical reactors. Whether there exists an abnormal structural change at high temperatures in this liquid alloy is still under debate. In this paper, we perform ab initio molecular dynamics simulation on the structure and dynamics of liquid LBE at different temperatures from 573 to 1173 K. Through the analysis of the pair correlation function, static structure factor, coordination number, atomic bonded pair, excess entropy, and diffusion constant with increasing temperature, we find that these structure-sensitive quantities change gradually with temperature and exhibit linear temperature dependence. No abnormal structural transformations with temperature variation are observed.
Ab initio calculation of the Hoyle state
Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G
2011-01-01
The Hoyle state plays a crucial role in the hydrogen burning of stars heavier than our sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle^{1} as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago^{2,3}, nuclear theorists have not yet uncovered the nature of this state from first principles. In this letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of properties of the Hoyle state and in agreement with the experimentally observed energy. These lattice simulations provide insight into the structure of this unique state and new clues as to the amount of fine...
Young Modulus of Crystalline Polyethylene from ab Initio Molecular Dynamics
Hageman, J.C.L.; Meier, Robert J.; M. Heinemann; de Groot, R. A.
1997-01-01
The Young modulus for crystalline polyethylene is calculated using ab initio molecular dynamics based on density functional theory in the local density approximation (DFT-LDA). This modulus, which can be seen as the ultimate value for the Young modulus of polyethylene fibers, is found to be 334 GPa. For the first time the modulus is evaluated ab initio (no bias from experimental data) with demonstrated basis set convergence.
International Nuclear Information System (INIS)
Spinel indium sulphide exists in three phases. The tetragonal β-phase transforms to the cubic α-phase at 420 °C which further transforms to the trigonal γ-phase at 754 °C. Due to wide energy bandgap, the phases of indium sulphide have possibilities of applications in photo-electrochemical solar cell devices as a replacement of toxic CdS. The electronic, optical and transport properties of the three phases have therefore been investigated using full potential linear augmented plane wave (FP-LAPW) + local orbitals (lo) scheme, in the framework of density functional theory (DFT) with generalized gradient approximation (GGA) for the purpose of exchange-correlation energy functional. We present the structure, energy bands and density of states (DOS) for α-, β- and γ-phases. The partial density of states (PDOS) of β-In2S3 is in good agreement with experiment and earlier ab initio calculations. To obtain the fundamental characteristics of these phases we have analysed their linear optical properties such as the dynamic dielectric function in the energy range of 0–15 eV. From the dynamic dielectric function it is seen that there is no directional anisotropy for α-phase since the longitudinal and transverse components are almost identical, however the β and γ-phases show birefringence. The optical absorption profiles clearly indicate that β-phase has possibility of greater multiple direct and indirect interband transitions in the visible regions compared to the other phases. To study the existence of interesting thermoelectric properties, transport properties like electrical and thermal conductivities, Seebeck and Hall coefficients etc. are also calculated. Good agreements are found with the available experimental results. -- Highlights: ► The electronic properties of phases of In2S3 have been investigated. ► The phases exhibit luminescence properties due to vacancies in crystal structure. ► The phases of In2S3 have low thermal conductivity and high
Long, Run; Prezhdo, Oleg V
2015-11-24
TiO2 sensitized with organohalide perovskites gives rise to solar-to-electricity conversion efficiencies reaching close to 20%. Nonradiative electron-hole recombination across the perovskite/TiO2 interface constitutes a major pathway of energy losses, limiting quantum yield of the photoinduced charge. In order to establish the fundamental mechanisms of the energy losses and to propose practical means for controlling the interfacial electron-hole recombination, we applied ab initio nonadiabatic (NA) molecular dynamics to pristine and doped CH3NH3PbI3(100)/TiO2 anatase(001) interfaces. We show that doping by substitution of iodide with chlorine or bromine reduces charge recombination, while replacing lead with tin enhances the recombination. Generally, lighter and faster atoms increase the NA coupling. Since the dopants are lighter than the atoms they replace, one expects a priori that all three dopants should accelerate the recombination. We rationalize the unexpected behavior of chlorine and bromine by three effects. First, the Pb-Cl and Pb-Br bonds are shorter than the Pb-I bond. As a result, Cl and Br atoms are farther away from the TiO2 surface, decreasing the donor-acceptor coupling. In contrast, some iodines form chemical bonds with Ti atoms, increasing the coupling. Second, chlorine and bromine reduce the NA electron-vibrational coupling, because they contribute little to the electron and hole wave functions. Tin increases the coupling, since it is lighter than lead and contributes to the hole wave function. Third, higher frequency modes introduced by chlorine and bromine shorten quantum coherence, thereby decreasing the transition rate. The recombination occurs due to coupling of the electronic subsystem to low-frequency perovskite and TiO2 modes. The simulation shows excellent agreement with the available experimental data and advances our understanding of electronic and vibrational dynamics in perovskite solar cells. The study provides design principles
Energy Technology Data Exchange (ETDEWEB)
Sharma, Yamini, E-mail: sharma.yamini62@gmail.com [Department of Physics, Feroze Gandhi College, Rae Bareli 229001, U.P. (India); Srivastava, Pankaj [Department of Physics, Feroze Gandhi College, Rae Bareli 229001, U.P. (India)
2012-08-15
Spinel indium sulphide exists in three phases. The tetragonal {beta}-phase transforms to the cubic {alpha}-phase at 420 Degree-Sign C which further transforms to the trigonal {gamma}-phase at 754 Degree-Sign C. Due to wide energy bandgap, the phases of indium sulphide have possibilities of applications in photo-electrochemical solar cell devices as a replacement of toxic CdS. The electronic, optical and transport properties of the three phases have therefore been investigated using full potential linear augmented plane wave (FP-LAPW) + local orbitals (lo) scheme, in the framework of density functional theory (DFT) with generalized gradient approximation (GGA) for the purpose of exchange-correlation energy functional. We present the structure, energy bands and density of states (DOS) for {alpha}-, {beta}- and {gamma}-phases. The partial density of states (PDOS) of {beta}-In{sub 2}S{sub 3} is in good agreement with experiment and earlier ab initio calculations. To obtain the fundamental characteristics of these phases we have analysed their linear optical properties such as the dynamic dielectric function in the energy range of 0-15 eV. From the dynamic dielectric function it is seen that there is no directional anisotropy for {alpha}-phase since the longitudinal and transverse components are almost identical, however the {beta} and {gamma}-phases show birefringence. The optical absorption profiles clearly indicate that {beta}-phase has possibility of greater multiple direct and indirect interband transitions in the visible regions compared to the other phases. To study the existence of interesting thermoelectric properties, transport properties like electrical and thermal conductivities, Seebeck and Hall coefficients etc. are also calculated. Good agreements are found with the available experimental results. -- Highlights: Black-Right-Pointing-Pointer The electronic properties of phases of In{sub 2}S{sub 3} have been investigated. Black-Right-Pointing-Pointer The
Directory of Open Access Journals (Sweden)
J. Rychlewski
1997-07-01
Full Text Available The conformation of dimethyl (R,R-tartrate has been analyzed on the basis of the single crystal X-ray diffraction method as well as by ab-initio quantum chemical studies. The results showed that the extended T conformation containing two planar hydroxyester moieties predominates in both ab-initio and X-ray studies. The lowest energy conformer in ab-initio calculations has C2 symmetry and hydrogen bonds between a hydroxyl group and the nearest carbonyl oxygen. The second in energetical sequence, with an energy difference of only 1.2 kcal/mol, is the asymmetrical conformer, which differs from the lowest energy form by the rotation of one of the ester groups by 180Ã‚Â°. Intramolecular OH...O hydrogen bonds observed in this rotamer again involve only proximal functional groups. This conformer is present in the crystal structure of the studied compound, although its conformation in the solid state is no longer stabilized by intramolecular hydrogen bonds of the type mentioned above. In the crystal, hydroxyl groups are mostly involved in intermolecular hydrogen bonds and form only a weak intramolecular hydrogen bond with each other. The planar arrangement of the ÃŽÂ±-hydroxyester moieties combined with the extended conformation of the carbon chain seems to be stabilized by the intramolecular hydrogen bonds between neighboring functional groups and by the long range dipole-dipole interactions between two pairs of CO and (ÃŽÂ²C-H bonds.
International Nuclear Information System (INIS)
Highlights: ► A theoretical study of hydroxide ion-water clusters is carried for varying cluster size and temperature. ► The structures of OH−(H2O)n are found out through quantum chemical calculations for n = 4, 8, 16 and 20. ► The finite temperature behavior of the clusters is studied through ab initio dynamical simulations. ► The spectral features of OH modes (deuterated) and their dependence on hydrogen bonding states of water are discussed. ► The mechanism and kinetics of proton transfer processes in these anionic clusters are also investigated. - Abstract: We have investigated the hydration structure and dynamics of OH−(H2O)n clusters (n = 4, 8, 16 and 20) by means of quantum chemical and ab initio molecular dynamics calculations. Quantum chemical calculations reveal that the solvation structure of the hydroxide ion transforms from three and four-coordinated surface states to five-coordinated interior state with increase in cluster size. Several other isomeric structures with energies not very different from the most stable isomer are also found. Ab initio simulations show that the most probable configurations at higher temperatures need not be the lowest energy isomeric structure. The rates of proton transfer in these clusters are found to be slower than that in bulk water. The vibrational spectral calculations reveal distinct features for free OH (deuterated) stretch modes of water in different hydrogen bonding states. Effects of temperature on the structural and dynamical properties are also investigated for the largest cluster considered here.
Illas i Riera, Francesc; Rubio Martínez, Jaime; Ricart, J M
1985-01-01
The interaction of atomic F and Cl with Si4H9 and Ge4H9 cluster models has been studied by using ab initio pseudopotentials and basis sets of increasing complexity. The results show that the effect of d orbitals is important in order to reproduce the experimental findings. However, the use of polarization functions in the atoms which are directly involved in the chemisorption bond leads to results which are very close to those obtained using extended basis sets. The local nature of the chemis...
Reeh, S; Kasprzak, M; Klusmann, C D; Stalf, F; Music, D; Ekholm, M; Abrikosov, I A; Schneider, J M
2013-06-19
The elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young's modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe-Mn can be predicted by the DLM model.
Energy Technology Data Exchange (ETDEWEB)
Zemen, J., E-mail: zemen@fzu.cz [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Institute of Physics ASCR, v. v. i., Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Mašek, J. [Institute of Physics ASCR, v. v. i., Na Slovance 2, 182 21 Praha 8 (Czech Republic); Kučera, J. [Institute of Physics ASCR, v. v. i., Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Mol, J.A. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Institute of Physics ASCR, v. v. i., Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Motloch, P. [Institute of Physics ASCR, v. v. i., Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Jungwirth, T. [Institute of Physics ASCR, v. v. i., Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)
2014-04-01
An empirical multiorbital (spd) tight binding (TB) model including magnetism and spin–orbit coupling is applied to calculations of magnetic anisotropy energy (MAE) in CoPt L1{sub 0} structure. A realistic Slater–Koster parametrisation for single-element transition metals is adapted for the ordered binary alloy. Spin magnetic moment and density of states are calculated using a full-potential linearised augmented plane-wave (LAPW) ab initio method and our TB code with different variants of the interatomic parameters. Detailed mutual comparison of this data allows for determination of a subset of the compound TB parameters tuning of which improves the agreement of the TB and LAPW results. MAE calculated as a function of band filling using the refined parameters is in broad agreement with ab initio data for all valence states and in quantitative agreement with ab initio and experimental data for the natural band filling. Our work provides a practical basis for further studies of relativistic magnetotransport anisotropies by means of local Green's function formalism which is directly compatible with our TB approach. - Highlights: • Calculations of electronic structure properties of bulk ordered CoPt alloy using tight-binding (TB) and density functional theory (DFT) approach. • Refinement of existing single-element TB parameters for a binary alloy based on a comparison of band structure and spin magnetic moment per atom to DFT results. • Quantitative agreement of magnetic anisotropy energy (MAE) obtained by TB and DFT on a range of band fillings. • Successful description of ground state spin–orbit coupling phenomena using an extended TB model suitable for subsequent magnetotransport simulations.
Schnitzler, Elijah G; Jäger, Wolfgang
2014-02-14
The pure rotational, high-resolution spectrum of the benzoic acid-water complex was measured in the range of 4-14 GHz, using a cavity-based molecular beam Fourier-transform microwave spectrometer. In all, 40 a-type transitions and 2 b-type transitions were measured for benzoic acid-water, and 12 a-type transitions were measured for benzoic acid-D2O. The equilibrium geometry of benzoic acid-water was determined with ab initio calculations, at the B3LYP, M06-2X, and MP2 levels of theory, with the 6-311++G(2df,2pd) basis set. The experimental rotational spectrum is most consistent with the B3LYP-predicted geometry. Narrow splittings were observed in the b-type transitions, and possible tunnelling motions were investigated using the B3LYP/6-311++G(d,p) level of theory. Rotation of the water moiety about the lone electron pair hydrogen-bonded to benzoic acid, across a barrier of 7.0 kJ mol(-1), is the most likely cause for the splitting. Wagging of the unbound hydrogen atom of water is barrier-less, and this large amplitude motion results in the absence of c-type transitions. The interaction and spectroscopic dissociation energies calculated using B3LYP and MP2 are in good agreement, but those calculated using M06-2X indicate excess stabilization, possibly due to dispersive interactions being over-estimated. The equilibrium constant of hydration was calculated by statistical thermodynamics, using ab initio results and the experimental rotational constants. This allowed us to estimate the changes in percentage of hydrated benzoic acid with variations in the altitude, region, and season. Using monitoring data from Calgary, Alberta, and the MP2-predicted dissociation energy, a yearly average of 1% of benzoic acid is expected to be present in the form of benzoic acid-water. However, this percentage depends sensitively on the dissociation energy. For example, when using the M06-2X-predicted dissociation energy, we find it increases to 18%.
Energy Technology Data Exchange (ETDEWEB)
Raybaud, P.
1998-10-28
Ab-initio calculations within the DFT and GGA have been carried out in an attempt to understand better which property sets the activity of transition metal sulfides (TMS) in the hydro-desulfurization reaction (HDS), a most important step in the refining of crude oil. A systematic study of the structural cohesive and electronic properties of more than thirty bulk TMS has allowed us to find a new simple relationship between the experimental catalytic activities known in HDS, and the properly defined sulfur-metal (S-M) bond energy. On this volcano curve reminiscent of the Sabatier principles, ionic metallic sulfides (as Ni{sub 3}S{sub 2}, Ci{sub 9}S{sub 8}) exhibit the weakest bonds whereas ion-covalent semi-conductors (as MoS{sub 2}) exhibit the strongest bonds: the highest activities correspond to intermediate bond strengths (RuS{sub 2}). Our study of the electronic structure of the MoS{sub 2} edge surfaces has revealed acceptor surface states localized on Coordinatively Unsaturated Mo ions and the significance of those states for the activation of hetero-aromatic molecules like thiophene. On such surfaces, the energetic profiles we establish for the thiophene HDS reaction point out the surface anionic vacancy regeneration steps as rate determining. We have calculated the optimal positions of Co (Ni) in decoration on the MoS{sub 2} edge planes, in excellent agreement with available EXAFS data on real catalysts. Introducing the promoter Co (Ni) induces a lower optimal sulfur coverage and a lower surface S-M bond strength in proportion of the Co (Ni) coverage, and lower for Ni than for Co. Simplified energy profiles for the thiophene HDS reactions on promoted (101-bar 0) surfaces show that the C-S scission step is likely to become rate determining. Our results show altogether that bulk and surface S-M strengths in TMS systems show similar trends, insofar as they are primarily determined by the local electronic structure. (author)
International Nuclear Information System (INIS)
The structural organization of water at a model of amorphous silica–liquid water interface is investigated by ab initio molecular dynamics (AIMD) simulations at room temperature. The amorphous surface is constructed with isolated, H-bonded vicinal and geminal silanols. In the absence of water, the silanols have orientations that depend on the local surface topology (i.e. presence of concave and convex zones). However, in the presence of liquid water, only the strong inter-silanol H-bonds are maintained, whereas the weaker ones are replaced by H-bonds formed with interfacial water molecules. All silanols are found to act as H-bond donors to water. The vicinal silanols are simultaneously found to be H-bond acceptors from water. The geminal pairs are also characterized by the formation of water H-bonded rings, which could provide special pathways for proton transfer(s) at the interface. The first water layer above the surface is overall rather disordered, with three main domains of orientations of the water molecules. We discuss the similarities and differences in the structural organization of the interfacial water layer at the surface of the amorphous silica and at the surface of the crystalline (0 0 0 1) quartz surface. (paper)
Song, Bingyi; Jiang, Wenlong; Yang, Bin; Chen, Xiumin; Xu, Baoqiang; Kong, Lingxin; Liu, Dachun; Dai, Yongnian
2016-07-01
The possibility of the separation of Pb-Sb alloys by vacuum distillation was investigated theoretically. The results show that Pb and Sb can be separated by vacuum distillation. However, the experimental results show that vacuum distillation technique does not provide clear separation. According to the literature, Pb-Sb alloys belong to azeotropic compounds under some certain temperature; the experiment and computer simulation were carried out based on the exceptional condition so as to analyze the reason from the experiment and microstructure of Pb-Sb alloys perspective. The separation of Pb-Sb alloys by vacuum distillation was experimentally carried out to probe the azeotropic point. Also, the functions, such as partial radial distributions functions, the structure factor, mean square displacement, and the density of state, were calculated by ab-initio molecular dynamics for the representation of the structure and properties of Pb-Sb alloys with different composition of Sb. The experimental results indicate that there exists common volatilization for Pb-Sb alloys when Sb content is 16.5 wt pct. On the other hand, the calculation results show that there is an intense interaction between Pb and Sb when Sb content is 22 wt pct, which supports the experimental results although Sb content is slightly deviation.
Vázquez-Mayagoitia, Alvaro; Huertas, Oscar; Brancolini, Giorgia; Migliore, Agostino; Sumpter, Bobby G; Orozco, Modesto; Luque, F Javier; Di Felice, Rosa; Fuentes-Cabrera, Miguel
2009-10-29
The structural, tautomeric, hydrogen-bonding, stacking, and electronic properties of a seleno-derivative of thymine (T), denoted here as 4SeT and created by replacing O4 in T with Se, are investigated by means of ab initio computational techniques. The structural properties of T and 4SeT are very similar, and the geometrical differences are mainly limited to the adjacent environment of the C-Se bond. The canonical "keto" form is the most stable tautomer, in the gas phase and in aqueous solution, for both T and 4SeT. It is argued that the competition between two opposite trends, i.e., a decrease in the base-pairing ability and an increase of the stacking interaction upon incorporation of 4SeT into a duplex, likely explains the similar experimental melting points of a seleno-derivative duplex (Se-DNA) and its native counterpart. Interestingly, the underlying electronic structure shows that replacement of O4 with Se promotes a reduction in the HOMO-LUMO gap and an increase in interplane coupling, which suggests that Se-DNA could be potentially useful for nanodevice applications. This finding is further supported by the fact that transfer integrals between 4SeT...A stacked base pairs are larger than those determined for similarly stacked natural T...A pairs. PMID:19813710
Energy Technology Data Exchange (ETDEWEB)
Vazquez-Mayagoitia, Alvaro [ORNL; Fuentes-Cabrera, Miguel A [ORNL; Sumpter, Bobby G [ORNL; Luque, Javier [Universitat de Barcelona; Huertas, Oscar [Universitat de Barcelona; Orozco, Modesto [Institut de Recerca Biomedica, Parc Cientific de Barcelona, Barcelona, Spain; Felice, Rosa [INFM-CNR National Research Center S3; Brancolini, Giorgia [ORNL; Migliore, Agostino [University of Pennsylvania
2009-01-01
The structural, tautomeric, hydrogen-bonding, stacking and electronic properties of a seleno-derivative of thymine (T), denoted here as 4SeT and created by replacing O4 in T with Se, are investigated by means of ab initio computational techniques. The structural properties of T and 4SeT are very similar and the geometrical differences are mainly limited to the adjacent environment of the C-Se bond. The canonical keto form is the most stable tautomer, in gas phase and in aqueous solution, for both T and 4SeT. It is argued that the competition between two opposite trends, i.e. a decrease in the base-pairing ability and an increase of the stacking interaction upon incorporation of 4SeT into a duplex, likely explains the similar experimental melting points of a seleno-derivative duplex (Se-DNA) and its native counterpart. Interestingly, the underlying electronic structure shows that replacement of O4 with Se promotes a reduction in the HOMO-LUMO gap and an increase in inter-plane coupling, which suggests that Se-DNA could be potentially useful for nanodevice applications. This finding is further supported by the fact that transfer integrals between 4SeT---A stacked base pairs are larger than those determined for similarly stacked natural T---A pairs.
N2O + CO reaction over Si- and Se-doped graphenes: An ab initio DFT study
Gholizadeh, Reza; Yu, Yang-Xin
2015-12-01
Catalytic conversion of non-CO2 green house gases and other harmful gases is a promising way to protect the atmospheric environment. Non-metal atom-doped graphene is attractive for use as a catalyst in the conversion due to its unique electronic properties, relatively low price and leaving no burden to the environment. To make an attempt on the development of green catalysts for the conversion, ab initio density functional theory is used to investigate the mechanisms of N2O reduction by CO on Si- and Se-doped graphenes. We have calculated the geometries and adsorption energies of reaction species (N2O, CO, N2 and CO2) as well as energy profiles along the reaction pathways. The activation energies of N2O decomposition and CO oxidation on both Si- and Se-doped graphenes have been obtained. Our calculated results indicate that the catalytic activity of Si-doped graphene is better than the Fe+ in gas phase and comparable to the single Fe atom embedded on graphene. In the calculations, we found that van der Waals interactions and zero-point energy are two non-negligible factors for the predictions of the activation energies. Further discussion shows that Si-doped graphene can be one of efficient green catalysts for conversion of the airborne pollutants and Se-doped graphene can be a candidate for oxidizing CO by atomic oxygen.
Institute of Scientific and Technical Information of China (English)
2008-01-01
Ionic dissociation of chlorosulfonic acid (HSO3Cl) in the molecular clusters HSO3Cl-(H2O)n (n = 1-4) and HSO3Cl-NH3-(H2O)n (n = 0-3) was investigated by density functional theory and ab initio molecular orbital theory. The equilibrium structures, binding energies, and thermodynamic properties, such as relative enthalpy and relative Gibbs free energy, and were calculated using the hybrid density func- tional (B3LYP) method and the second order M?ller-Plesset approximation (MP2) method with the 6-311++G** basis set. Chlorosulfonic acid was found to require a minimum of three water molecules for ionization to occur and at least one water molecule to protonate ammonia. The corresponding clusters with fewer water molecules were found to be strongly hydrogen-bonded. The related properties and acid strength of chlorosulfonic acid were discussed and compared to the acid strengths of perchloric acid and sulfuric acid in the context of clusters with ammonia and water. The relative stabilities of these clusters were also investigated.
Roy, Soumendra K.; Jian, Tian; Lopez, Gary V.; Li, Wei-Li; Su, Jing; Bross, David H.; Peterson, Kirk A.; Wang, Lai-Sheng; Li, Jun
2016-02-01
The observation of the gaseous UFO- anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO- is linear with an O-U-F structure and a 3H4 spectral term derived from a U 7sσ25fφ15fδ1 electron configuration, whereas the ground state of neutral UFO has a 4H7/2 spectral term with a U 7sσ15fφ15fδ1 electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.
DEFF Research Database (Denmark)
Berg, Rolf W.
The hydrogen bonding interactions in selected archetypal vapor molecules formed in the gas phase over protic ionic liquids are discussed, based on Raman spectroscopy assisted with ab initio molecular orbital DFT-type quantum mechanical calculations (B3LYP with 6-311+G(d,p) basis sets) on assumed......-O distances in the N-H…O bond were found as 1.730 and 1.005 Å. The comparable H-O distance in solid ethanoic acid is ~1.011 Å (neutron diffraction). [1] R. W. Berg, A. Riisager & R. Fehrmann, Formation of an ion pair molecule with a single NH+…Cl- hydrogen bond: Raman spectra of 1,1,3,3-Tetramethylguanidin...... of 1,1,3,3-tetramethylguanidinium chloride. The optimized N-H distance in the N-H…Cl bond was 1.099 Å. The H-Cl distance was 1.832 Å to compare with the ~1.27 Å in HCl gas. The bromide behaved similarly [ref 2]. Fig. 2. Not so likely 1-methylimidazolium ethanoate gas molecule. The optimized N-H and H...
Energy Technology Data Exchange (ETDEWEB)
Ono, Yoshio; Arai Mitsuru; Tamura [The University of Tokyo, Tokyo (Japan). Department of Chemical system Engineering; Matsunaga, Takehiro [National Institute of Materials and Chemical Research, Tsukuba (Japan)
1999-10-31
In order to estimate the thermal stability of tetrazoles, ab initio MO calculations of alkyl tetrazoles were carried out and the initial process of thermal decomposition were discussed. The relationships between the chemical structures and the thermal stabilities were investigated. The initial step of the thermal decomposition is the cleavage of the N3-N4 bond, then the C5-N1 bond is cleave. The relationship between the N3-N4 bond length and the thermal stability is recognized, that is, the shorter the bond length is, the more thermally stable the tetrazole is. In addition it turns out, the more positive the ring charge is, the more thermally stable the tetrazole is. The relationship between the {pi}-electron density and the thermal stability is not found. The indexes adopted as a measure of thermal stability indicate that the more equal the bond lengths of the ring are, the more thermally stable they are. From these results, three tetrazoles with both high thermal stability and high nitrogen content are proposed. (author)
Directory of Open Access Journals (Sweden)
Iolanta I. Balan
2011-12-01
Full Text Available The four-stage mechanism of reaction of the rhodium trihydride complex [(triphosRhH3] (triphos=1,1,1-tris(diphenylphosphanylmethylethane with the white phosphorus molecule resulting in the phosphane and the cyclo-P3 complex [(triphosM(η3-P3] is analyzed on the basis of ab initio calculations of reactants, products, and intermediate complexes of reaction. It is shown that generation of the transient complex [(triphosRhH(η1:η1-P4] followed by intramolecular hydrogen atom migration from the metal to one of the phosphorus atoms is the energetically favourable process. Calculations also show that P4 molecule is activated by coordination to the above complex: the metal-bonded P-P edge is broken, and the tetrahedron P4 is opened to form the butterfly geometry. This activation is realized mainly due to the one-orbital back donation of 4d-electron density from the atom of Rh to the unoccupied antibonding triple degenerate t1*-MO of P4.
Institute of Scientific and Technical Information of China (English)
LI ShuJin; TAO FuMing; GU RenAo
2008-01-01
lonic dissociation of chlorosulfonic acid (HSO3Cl) in the molecular clusters HSO3Cl-(H2O)n (n=1-4) and HSO3Cl-NH3-(H2O)n (n=0-3) was investigated by density functional theory and ab initio molecular orbital theory. The equilibrium structures, binding energies, and thermodynamic properties, such as relative enthalpy and relative Gibbs free energy, and were calculated using the hybrid density func-tional (B3LYP) method and the second order Moller-Plesset approximation (MP2) method with the 6-311++G** basis set. Chlorosulfonic acid was found to require a minimum of three water molecules for ionization to occur and at least one water molecule to protonate ammonia. The corresponding clusters with fewer water molecules were found to be strongly hydrogen-bonded. The related properties and acid strength of chlorosulfonic acid were discussed and compared to the acid strengths of perchloric acid and sulfuric acid in the context of clusters with ammonia and water. The relative stabilities of these clusters were also investigated.
Ab initio study of H and He migrations in β-phase Sc, Y, and Er hydrides
Institute of Scientific and Technical Information of China (English)
Chen Ru-Cheng; Yang Li; Dai Yun-Ya; Zhu Zi-Qiang; Peng Shu-Ming; Long Xing-Gui; Gao Fei; Zu Xiao-Tao
2012-01-01
Ab initio calculations based on the density functional theory have been performed to investigate the migrations of hydrogen(H)and helium(He)atoms in β-phase scandium(Sc),yttrium(Y),and erbium(Er)hydrides with three different ratios of H to metal.The results show that the migration mechanisms of H and He atoms mainly depend on the crystal structures of hydrides,but their energy barriers are affected by the host-lattice in metal hydrides.The formation energies of octahedral-occupancy H(Hoct)and tetrahedral vacancy(Vtet)pairs are almost the same(about 1.2 eV).It is of interest to note that the migration barriers of H increase with increasing host-lattice atomic number.In addition,the results show that the favorable migration mechanism of He depends slightly on the Vtet in the Sc hydride,but strongly on that in the Y and Er hydrides,which may account for different behaviours of initial He release from ScT2 and ErT2.
Taming the resistive switching in Fe/MgO/V/Fe magnetic tunnel junctions: An ab initio study
Energy Technology Data Exchange (ETDEWEB)
Aguiar-Hualde, J.M. [IPhT, CEA/Saclay, Orme des Merisiers, 91190 Gif-sur-Yvette Cedex (France); Alouani, M. [IPCMS, UMR 7504 CNRS-UdS, 23 rue du Loess, Strasbourg 67034 (France)
2014-12-15
A possible mechanism for the resistive switching observed experimentally in Fe/MgO/V/Fe junctions is presented. Ab initio total energy calculations within the local density approximation and pseudopotential theory shows that by moving the oxygen ions across the MgO/V interface one obtains a metastable state. It is argued that this state can be reached by applying an electric field across the interface. In addition, the ground state and the metastable state show different electric conductances. The latter results are discussed in terms of the changes of the density of states at the Fermi level and the charge transfer at the interface due to the oxygen ion motion. - Highlights: • Local minima are found for oxygen near the interface with at least one oxygen moved. • Relaxation of a small unit cell preserves this result and lowers energy barrier. • V on the top of Mg exhibits the minimum and a reasonable energy barrier. • Sense of switching: experimental evidence of the configuration (V on O or V on Mg). • Sense of switching can be understood in terms of charge oscillations induced by the O.
Long, Run; Fang, Weihai; Akimov, Alexey V
2016-02-18
We report ab initio time-domain simulations of nonradiative electron-hole recombination and electronic dephasing in ideal and defect-containing monolayer black phosphorus (MBP). Our calculations predict that the presence of phosphorus divacancy in MBP (MBP-DV) substantially reduces the nonradiative recombination rate, with time scales on the order of 1.57 ns. The luminescence line width in ideal MBP of 150 meV is 2.5 times larger than MBP-DV at room temperature, and is in excellent agreement with experiment. We find that the electron-hole recombination in ideal MBP is driven by the 450 cm(-1) vibrational mode, whereas the recombination in the MBP-DV system is driven by a broad range of vibrational modes. The reduced electron-phonon coupling and increased bandgap in MBP-DV rationalize slower recombination in this material, suggesting that electron-phonon energy losses in MBP can be minimized by creating suitable defects in semiconductor device material.
Energy Technology Data Exchange (ETDEWEB)
Barrera, G.D. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Departamento de Quimica, Universidad Nacional de la Patagonia SJB, Ciudad Universitaria, 9005 Comodoro Rivadavia (Argentina); Colognesi, D. [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano s.n.c., 50019 Sesto Fiorentino (Finland) (Italy); Mitchell, P.C.H. [School of Chemistry, University of Reading, RG6 6AD (United Kingdom); Ramirez-Cuesta, A.J. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); School of Chemistry, University of Reading, RG6 6AD (United Kingdom)], E-mail: a.j.ramirez-cuesta@rl.ac.uk
2005-10-31
In a previous work, we carried out inelastic neutron scattering (INS) spectroscopy experiments and preliminary first principles calculations on alkali metal hydrides. The complete series of alkali metal hydrides, LiH, NaH, KH, RbH and CsH was measured in the high-resolution TOSCA INS spectrometer at ISIS. Here, we present the results of ab initio electronic structure calculations of the properties of the alkali metal hydrides using both the local density approximation (LDA) and the generalized gradient approximation (GGA), using the Perdew-Burke-Ernzerhof (PBE) parameterization. Properties calculated were lattice parameters, bulk moduli, dielectric constants, effective charges, electronic densities and inelastic neutron scattering (INS) spectra. We took advantage of the currently available computer power to use full lattice dynamics theory to calculate thermodynamic properties for these materials. For the alkali metal hydrides (LiH, NaH, KH, RbH and CsH) using lattice dynamics, we found that the INS spectra calculated using LDA agreed better with the experimental data than the spectra calculated using GGA. Both zero-point effects and thermal contributions to free energies had an important effect on INS and several thermodynamic properties.
Energy Technology Data Exchange (ETDEWEB)
Barrett, B R; Navratil, P; Vary, J P
2011-04-11
A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory ({chi}EFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The
International Nuclear Information System (INIS)
A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory (χEFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The resulting NN
Verma, Kanupriya; Viswanathan, K. S.
2016-06-01
Borazine (B_3N_3H_6)-C_2H_2 system was studied experimentally, using matrix isolation infrared spectroscopy and supported by ab-initio computations. B_3N_3H_6, also referred to as inorganic benzene, presents an interesting comparison with C_6H_6. While C_6H_6 has a delocalized π system, B_3N_3H_6 has electron density centered on the nitrogen atoms, while the boron atoms are electron deficient. In addition, B_3N_3H_6 can also serve as a proton donor through N-H group. Similarly, C_2H_2 can act both as a proton donor, using the hydrogen attached to the sp carbon or as a proton acceptor at its π-cloud. At the MP2/aug-cc-pVDZ level of theory, C_6H_6-C_2H_2 system showed three minimaThe. global minimum was a structure where the C_2H_2 was the proton donor to the C_6H_6 π system. The next was a local minimum where the C_6H_6 was the proton donor to C_2H_2 and the third was a π stacked structure. B_3N_3H_6-C_2H_2 also shows three minima at the same level of theory mentioned above. One was a structure where C_2H_2 donates a proton to B_3N_3H_6, approaching it from above the plane of the ring, much like in C_6H_6-C_2H_2. A second near degenerate structure was also located where the C_2H_2 serves as a proton acceptor towards the N-H group of B_3N_3H_6. A similar structure in C_6H_6-C_2H_2 was a local minimum. While in the case of C_6H_6-C_2H_2, the global minimum was the only one observed in the experiments, in the case of B_3N_3H_6-C_2H_2, both near degenerate minima mentioned above were observed in the matrix. B_3N_3H_6-C_2H_2 therefore reveals similarities and differences from the C_6H_6-C_2H_2 system. A π-stacked local minimum was also computationally indicated in the B_3N_3H_6-C_2H_2 system, though it was not observed in our experiments. Our earlier work comparing B_3N_3H_6-H_2O to C_6H_6-H_2O also yielded a similar behavioral pattern. Details of the experimental data and computational results will be presented. References: 1. M. Majumder, B. K. Mishra, N
Bryk, Taras; Wax, J.-F.
2016-05-01
Using a combination of ab initio molecular dynamics and several fit models for dynamic structure of liquid metals, we explore an issue of possible manifestation of non-acoustic collective excitations in longitudinal dynamics having liquid Na as a case study. A model with two damped harmonic oscillators (DHOs) in time domain is used for analysis of the density-density time correlation functions. Another similar model with two propagating contributions and three lowest exact sum rules is considered, as well as an extended hydrodynamic model known as thermo-viscoelastic one which permits two types of propagating modes outside the hydrodynamic region to be used for comparison with ab initio obtained time correlation functions and calculations of dispersions of collective excitations. Our results do not support recent suggestions that, even in simple liquid metals, non-hydrodynamics transverse excitations contribute to the longitudinal collective dynamics and can be detected as a DHO-like spectral shape at their transverse frequency. We found that the thermo-viscoelastic dynamic model permits perfect description of the density-density and current-current time correlation functions of the liquid Na in a wide range of wave numbers, which implies that the origin of the non-hydrodynamic collective excitations contributing to longitudinal dynamics can be short-wavelength heat waves.
Ab initio simulation of transport phenomena in rarefied gases.
Sharipov, Felix; Strapasson, José L
2012-09-01
Ab initio potentials are implemented into the direct simulation Monte Carlo (DSMC) method. Such an implementation allows us to model transport phenomena in rarefied gases without any fitting parameter of intermolecular collisions usually extracted from experimental data. Applying the method proposed by Sharipov and Strapasson [Phys. Fluids 24, 011703 (2012)], the use of ab initio potentials in the DSMC requires the same computational efforts as the widely used potentials such as hard spheres, variable hard sphere, variable soft spheres, etc. At the same time, the ab initio potentials provide more reliable results than any other one. As an example, the transport coefficients of a binary mixture He-Ar, viz., viscosity, thermal conductivity, and thermal diffusion factor, have been calculated for several values of the mole fraction. PMID:23030889
Chen, Shuang; Xiong, Wei; Zhou, Yun Shen; Lu, Yong Feng; Zeng, Xiao Cheng
2016-05-01
Ab initio molecular dynamics (AIMD) simulations are employed to investigate the chemical mechanism underlying the Ni-catalyzed transformation of amorphous carbon (a-C) into graphene in the rapid thermal processing (RTP) experiment to directly grow graphene on various dielectric surfaces via the evaporation of surplus Ni and C at 1100 °C (below the melting point of bulk Ni). It is found that the a-C-to-graphene transformation entails the metal-induced crystallization and layer exchange mechanism, rather than the conventional dissolution/precipitation mechanism typically involved in Ni-catalyzed chemical vapor deposition (CVD) growth of graphene. The multi-layer graphene can be tuned by changing the relative thicknesses of deposited a-C and Ni thin films. Our AIMD simulations suggest that the easy evaporation of surplus Ni with excess C is likely attributed to the formation of a viscous-liquid-like Ni-C solution within the temperature range of 900-1800 K and to the faster diffusion of C atoms than that of Ni atoms above 600 K. Even at room temperature, sp3-C atoms in a-C are quickly converted to sp2-C atoms in the course of the simulation, and the graphitic C formation can occur at low temperature. When the temperature is as high as 1200 K, the grown graphitic structures reversely dissolve into Ni. Because the rate of temperature increase is considerably faster in the AIMD simulations than in realistic experiments, defects in the grown graphitic structures are kinetically trapped. In this kinetic growth stage, the carbon structures grown from sp3-carbon or from sp2-carbon exhibit marked differences.Ab initio molecular dynamics (AIMD) simulations are employed to investigate the chemical mechanism underlying the Ni-catalyzed transformation of amorphous carbon (a-C) into graphene in the rapid thermal processing (RTP) experiment to directly grow graphene on various dielectric surfaces via the evaporation of surplus Ni and C at 1100 °C (below the melting point of bulk
Londero, Elisa; Bijeikytė, Monika; Maze, Jeromino R; Alkauskas, Audrius; Gali, Adam
2016-01-01
Understanding optical excitation spectra of point defects is still a scientific challenge. We demonstrate by \\emph{ab initio} calculations that a prominent sharp feature in the photoluminescence (PL) spectrum of the negatively charged silicon-vacancy defect in diamond can be only explained within the Herzberg-Teller approximation that goes beyond the commonly applied Franck-Condon approximation. The effect of the dynamic Jahn-Teller effect on the PL spectrum is also discussed. Our implementation of Herzberg-Teller theory paves the way for full \\emph{ab initio} description of the optical excitation spectrum of point defects in solids
Roy, Soumendra K; Jian, Tian; Lopez, Gary V; Li, Wei-Li; Su, Jing; Bross, David H; Peterson, Kirk A; Wang, Lai-Sheng; Li, Jun
2016-02-28
The observation of the gaseous UFO(-) anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO(-) is linear with an O-U-F structure and a (3)H4 spectral term derived from a U 7sσ(2)5fφ(1)5fδ(1) electron configuration, whereas the ground state of neutral UFO has a (4)H(7/2) spectral term with a U 7sσ(1)5fφ(1)5fδ(1) electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations. PMID:26931704
Roy, Soumendra K; Jian, Tian; Lopez, Gary V; Li, Wei-Li; Su, Jing; Bross, David H; Peterson, Kirk A; Wang, Lai-Sheng; Li, Jun
2016-02-28
The observation of the gaseous UFO(-) anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO(-) is linear with an O-U-F structure and a (3)H4 spectral term derived from a U 7sσ(2)5fφ(1)5fδ(1) electron configuration, whereas the ground state of neutral UFO has a (4)H(7/2) spectral term with a U 7sσ(1)5fφ(1)5fδ(1) electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.
Isayev, Olexandr; Gorb, Leonid; Qasim, Mo; Leszczynski, Jerzy
2008-09-01
CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane or HNIW) is a high-energy nitramine explosive. To improve atomistic understanding of the thermal decomposition of CL-20 gas and solid phases, we performed a series of ab initio molecular dynamics simulations. We found that during unimolecular decomposition, unlike other nitramines (e.g., RDX, HMX), CL-20 has only one distinct initial reaction channelhomolysis of the N-NO2 bond. We did not observe any HONO elimination reaction during unimolecular decomposition, whereas the ring-breaking reaction was followed by NO 2 fission. Therefore, in spite of limited sampling, that provides a mostly qualitative picture, we proposed here a scheme of unimolecular decomposition of CL-20. The averaged product population over all trajectories was estimated at four HCN, two to four NO2, two to four NO, one CO, and one OH molecule per one CL-20 molecule. Our simulations provide a detailed description of the chemical processes in the initial stages of thermal decomposition of condensed CL-20, allowing elucidation of key features of such processes as composition of primary reaction products, reaction timing, and Arrhenius behavior of the system. The primary reactions leading to NO2, NO, N 2O, and N2 occur at very early stages. We also estimated potential activation barriers for the formation of NO2, which essentially determines overall decomposition kinetics and effective rate constants for NO2 and N2. The calculated solid-phase decomposition pathways correlate with available condensed-phase experimental data. PMID:18686996
Energy Technology Data Exchange (ETDEWEB)
Caravaca, M A [Facultad de Ingenieria, Universidad Nacional del Nordeste, Avenida Las Heras 727, 3500-Resistencia (Argentina); Casali, R A [Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avenida Libertad, 5600-Corrientes (Argentina)
2005-09-21
The SIESTA approach based on pseudopotentials and a localized basis set is used to calculate the electronic, elastic and equilibrium properties of P 2{sub 1}/c, Pbca, Pnma, Fm3m, P4{sub 2}nmc and Pa3 phases of HfO{sub 2}. Using separable Troullier-Martins norm-conserving pseudopotentials which include partial core corrections for Hf, we tested important physical properties as a function of the basis set size, grid size and cut-off ratio of the pseudo-atomic orbitals (PAOs). We found that calculations in this oxide with the LDA approach and using a minimal basis set (simple zeta, SZ) improve calculated phase transition pressures with respect to the double-zeta basis set and LDA (DZ-LDA), and show similar accuracy to that determined with the PPPW and GGA approach. Still, the equilibrium volumes and structural properties calculated with SZ-LDA compare better with experiments than the GGA approach. The bandgaps and elastic and structural properties calculated with DZ-LDA are accurate in agreement with previous state of the art ab initio calculations and experimental evidence and cannot be improved with a polarized basis set. These calculated properties show low sensitivity to the PAO localization parameter range between 40 and 100 meV. However, this is not true for the relative energy, which improves upon decrease of the mentioned parameter. We found a non-linear behaviour in the lattice parameters with pressure in the P 2{sub 1}/c phase, showing a discontinuity of the derivative of the a lattice parameter with respect to external pressure, as found in experiments. The common enthalpy values calculated with the minimal basis set give pressure transitions of 3.3 and 10.8?GPa for P2{sub 1}/c {yields} Pbca and Pbca {yields} Pnma, respectively, in accordance with different high pressure experimental values.
Energy Technology Data Exchange (ETDEWEB)
Surin, L. A., E-mail: surin@ph1.uni-koeln.de [I. Physikalisches Institut, University of Cologne, Zülpicher St. 77, 50937 Cologne (Germany); Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya St. 5, 142190 Troitsk, Moscow (Russian Federation); Tarabukin, I. V.; Panfilov, V. A. [Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya St. 5, 142190 Troitsk, Moscow (Russian Federation); Schlemmer, S. [I. Physikalisches Institut, University of Cologne, Zülpicher St. 77, 50937 Cologne (Germany); Kalugina, Y. N. [Department of Optics and Spectroscopy, Tomsk State University, 36 Lenin Ave., 634050 Tomsk (Russian Federation); Faure, A.; Rist, C. [University Grenoble Alpes, IPAG, F-38000 Grenoble (France); CNRS, IPAG, F-38000 Grenoble (France); Avoird, A. van der, E-mail: A.vanderAvoird@theochem.ru.nl [Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)
2015-10-21
The rotational spectrum of the van der Waals complex CH{sub 4}–CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 110–145 GHz. Newly observed and assigned transitions belong to the K = 2–1 subband correlating with the rotationless j{sub CH4} = 0 ground state and the K = 2–1 and K = 0–1 subbands correlating with the j{sub CH4} = 2 excited state of free methane. The (approximate) quantum number K is the projection of the total angular momentum J on the intermolecular axis. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the CH{sub 4}–CO complex. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of CH{sub 4}–CO have been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations [CCSD(T)-F12a] and an augmented correlation-consistent triple zeta (aVTZ) basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the CH{sub 4} face closest to the CO subunit and binding energy D{sub e} = 177.82 cm{sup −1}. The bound rovibrational levels of the CH{sub 4}–CO complex were calculated for total angular momentum J = 0–6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D{sub 0} are 91.32, 94.46, and 104.21 cm{sup −1} for A (j{sub CH4} = 0), F (j{sub CH4} = 1), and E (j{sub CH4} = 2) nuclear spin modifications of CH{sub 4}–CO, respectively.
Institute of Scientific and Technical Information of China (English)
周立新
2000-01-01
Results or ab initio selr-consistent-field ( SCF) and denityfunctional theory (DFr) calculations of the gas-phase structure, acidity (free energy of deprotona tion, △G°) and aroma ticity of tetraselenosquaric acid (3, 4-diseleny-3-cyclobutene-1,2-diselenone, H2C4Se4) are reported.The global minimu found on the potenial energy surface of tetraselenosquaric acid presents a planar conformation. The ZZ isomer was found to have the lowest energy among the three planar conformers and the ZZ and ZE is omers are very close in energy. The optimized geometric parameters exhibit a bond length equalization relative to reference compounds, cyclobutanediselenone, and cyclobutenediselenol. The computed aromaic stabilization energy(ASE)by homodesmotic reaction is -77.4 (MP2(fu)/6 - 311 + G* *//RHF/6 - 311 + G* * ) and - 54.8 kJ/mol (B3LYP/6 - 311 + G* * //B3LYP/6 - 311 + G* * ). The aromaticity of tetraselenosquaric acid is indicated by the calculated diamagnetic susceptibility exaltation (A) - 19.13 (CSGT(IGAIM) - RHF/6 - 311 + G**//RHF/6 - 311 + G* * and - 32.91(4π· 10-6 m3/mo l)(CSGT(IGA1M)-B3LYP/6 - 311 + G* *//B3LYP/6 - 311 + G* * ).Thus, tetraselenosquaric acid fulfils the geometric, energetic and magnetic criteria of aromaticity. The calculated gas-phase acidity is △G10(298K) = 1257.7 and △G20(298K) = 1617.1 kJ/mol. Hence, tetraselenosquarc acid is the stronest acid among the three squaric acids (3,4-dihydroxy-3-cyclobutene-1,2-dione, H2C4O4, 3,4-dithiohydroxy-3- cyclobutene-1,2-dithione, H2C4S4, 3,4- diselenyl-3- cyclobutene- 1,2-diselenone, H2C4Se4).
Xin, Yan; Hou, S. C.; Xiang, Lan; Yu, Yang-Xin
2015-12-01
Calcium sulfate hemihydrate (CaSO4·0.5H2O, CSH) whiskers with high aspect ratio are promising reinforce materials which have drawn much attention. In order to obtain high quality CSH materials, effect of Mg2+ ions on properties of the (0 0 2), (2 0 0)1 and (2 0 0)2 planes of CSH is investigated using an ab initio density functional theory (DFT) with a van der Waals (vdW) dispersion-correction. The computed results show that strong adsorption and substitution effects take place between Mg2+ ion and (2 0 0)1 plane. The adsorption energies of an Mg2+ ion on the (0 0 2), (2 0 0)1 and (2 0 0)2 planes are -0.066, -0.571 and -0.047 eV, respectively. An insight into the electrostatic potential of pristine CSH planes has demonstrated that the (2 0 0)1 plane is much more negatively charged than the (0 0 2) and (2 0 0)2 planes. The energies of the substitution of a Ca atom with an Mg atom on the CSH (0 0 2), (2 0 0)1 and (2 0 0)2 planes are 1.572, 0.063 and 1.349 eV, respectively. It is found that Ca atoms on the (2 0 0)1 plane are relatively easy to be substituted by Mg atoms. The calculation results of a Ca2+ ion adsorption on the Mg-doped (2 0 0)1 plane indicate that the adsorption energies increase apparently as the doping ratio varies from 0 to 1.0. Compared with K+, Na+ and Al3+ ions, Mg2+ ion is the most promising additive to promote the growth of CSH along c axis.
Chen, Shuang; Xiong, Wei; Zhou, Yun Shen; Lu, Yong Feng; Zeng, Xiao Cheng
2016-05-14
Ab initio molecular dynamics (AIMD) simulations are employed to investigate the chemical mechanism underlying the Ni-catalyzed transformation of amorphous carbon (a-C) into graphene in the rapid thermal processing (RTP) experiment to directly grow graphene on various dielectric surfaces via the evaporation of surplus Ni and C at 1100 °C (below the melting point of bulk Ni). It is found that the a-C-to-graphene transformation entails the metal-induced crystallization and layer exchange mechanism, rather than the conventional dissolution/precipitation mechanism typically involved in Ni-catalyzed chemical vapor deposition (CVD) growth of graphene. The multi-layer graphene can be tuned by changing the relative thicknesses of deposited a-C and Ni thin films. Our AIMD simulations suggest that the easy evaporation of surplus Ni with excess C is likely attributed to the formation of a viscous-liquid-like Ni-C solution within the temperature range of 900-1800 K and to the faster diffusion of C atoms than that of Ni atoms above 600 K. Even at room temperature, sp(3)-C atoms in a-C are quickly converted to sp(2)-C atoms in the course of the simulation, and the graphitic C formation can occur at low temperature. When the temperature is as high as 1200 K, the grown graphitic structures reversely dissolve into Ni. Because the rate of temperature increase is considerably faster in the AIMD simulations than in realistic experiments, defects in the grown graphitic structures are kinetically trapped. In this kinetic growth stage, the carbon structures grown from sp(3)-carbon or from sp(2)-carbon exhibit marked differences.
P-V Relation for Mercuric Calcogenides: Ab Initio Method
Directory of Open Access Journals (Sweden)
G. Misra
2011-01-01
Full Text Available Mercuric Calcogenides found many applications in electronic and optical devices as semiconducting materials. An equation of state provides useful information about the relationship between pressure (P, volume (V and temperature (T that helps to understand the behaviour of materials under the effect of high pressure and high temperature. The present paper sheds light on the electronic structure of Mercuric Calcogenides by simulating its electronic properties through ab initio method. This ab initio method is extended to derive the equation of state for Mercuric Calcogenides. The present equation of state has also been tested for the prediction of End Point. The computed results compare well with Quantum statistical data.
Towards new horizons in ab initio nuclear structure theory
International Nuclear Information System (INIS)
We review recent advances in ab initio nuclear structure theory, which have changed the horizons of this field. Starting from chiral effective field theory to construct the nuclear Hamiltonian and the similarity renormalization group to further soften it, we address several many-body approaches that have seen major developments over the past few years. We show that the domain of ab initio nuclear structure theory has been pushed well beyond the p-shell and that quantitative QCD-based predictions are becoming possible all the way from the proton to the neutron drip line up into the medium-mass regime. (authors)
Recent achievements in ab initio modelling of liquid water
Khaliullin, Rustam Z
2013-01-01
The application of newly developed first-principle modeling techniques to liquid water deepens our understanding of the microscopic origins of its unusual macroscopic properties and behaviour. Here, we review two novel ab initio computational methods: second-generation Car-Parrinello molecular dynamics and decomposition analysis based on absolutely localized molecular orbitals. We show that these two methods in combination not only enable ab initio molecular dynamics simulations on previously inaccessible time and length scales, but also provide unprecedented insights into the nature of hydrogen bonding between water molecules. We discuss recent applications of these methods to water clusters and bulk water.
Use of ab initio quantum chemical methods in battery technology
Energy Technology Data Exchange (ETDEWEB)
Deiss, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-06-01
Ab initio quantum chemistry can nowadays predict physical and chemical properties of molecules and solids. An attempt should be made to use this tool more widely for predicting technologically favourable materials. To demonstrate the use of ab initio quantum chemistry in battery technology, the theoretical energy density (energy per volume of active electrode material) and specific energy (energy per mass of active electrode material) of a rechargeable lithium-ion battery consisting of a graphite electrode and a nickel oxide electrode has been calculated with this method. (author) 1 fig., 1 tab., 7 refs.
Energy Technology Data Exchange (ETDEWEB)
Jaiganesh, G., E-mail: jaiganesh@igcar.gov.in; Jaya, S. Mathi [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102 (India)
2015-06-24
The magnetism, structure and spin polarized electronic structure of Ti substituted MO (M = Mg, Ca, Sr) are studied using the ab-initio techniques within the framework of the density functional theory. Appropriately constructed supercell along with the full structural optimization of these cells is used for studying the influence of Ti substitution on the magnetism and electronic structure of these compounds. We find from our calculations that the Ti substituted MO compounds energetically favor magnetically ordered state. The Ti concentration is found to be important in deciding the magnetic order and we have observed antiferromagnetic order for the Ti concentration of 0.25. The Ti substituted MO compounds are thus an interesting class of materials that deserve further studies.
Energy Technology Data Exchange (ETDEWEB)
Ramos de Debiaggi, S., E-mail: sbramos@yahoo.com [Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, (8300) Neuquen (Argentina); CONICET (Argentina); Cabeza, G.F. [CONICET (Argentina); Dpto. de Fisica, Universidad Nacional del Sur, Bahia Blanca (Argentina); Toro, C. Deluque [Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, (8300) Neuquen (Argentina); Monti, A.M. [CNEA e Instituto Sabato (Univ. Nac. de San Martin/CNEA), Centro Atomico Constituyentes, Avda. General Paz 1499, B1650KNA, San Martin, Buenos Aires (Argentina); Sommadossi, S. [Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, (8300) Neuquen (Argentina); CONICET (Argentina); Guillermet, A. Fernandez [CONICET (Argentina); Centro Atomico Bariloche e Instituto Balseiro, Avda. Bustillo 9500, (8400) Bariloche (Argentina)
2011-02-17
Research highlights: > Cu{sub 10}In{sub 7} and Cu{sub 11}In{sub 9} are thermodynamically stable with respect to elements at 0 K. > Cu{sub 10}In{sub 7} phase is more stable than the modelled Cu{sub 11}In{sub 9} compound by only 0.92 kJ/mol. > The present ab initio results reproduce very well the available structural data. > Similar DOS for both phases, the most prominent bonding band comes from Cu-d states. > Enhanced relative thermodynamic stability is predicted for phases with 40-45 at.% In. - Abstract: The physico-chemical properties of the intermetallic phases in the Cu-In system have been a matter of considerable theoretical and experimental interest in connection with, i.a., the application of In-Sn alloys as lead-free micro-soldering alloys. Recently, a new binary compound with the chemical formula Cu{sub 10}In{sub 7} has been detected in a study of the {eta}-phase field. The structure of the Cu{sub 10}In{sub 7} phase has been determined as closely related to that of the Cu{sub 11}In{sub 9} compound occurring in the phase diagram, but no experimental or theoretical information on its electronic structure, thermodynamic and equation-of-state properties has yet been reported. In the present work we report the lattice parameters, bulk modulus, energy of formation from the constituent elements and the electronic structure of the new phase, calculated by applying an ab initio density-functional-theory method. Our calculation technique uses the projector augmented wave potentials and the exchange-correlation functions of Perdew and Wang in the generalized gradient approximation. The present results for the Cu{sub 10}In{sub 7} phase are compared with the experimental data available, and with the trends in structural and thermodynamic properties emerging from ab initio calculations also performed in the present study for various structurally related and neighboring compounds in the Cu-In phase diagram, viz., the ideal B8{sub 2}-Cu{sub 2}In, B8{sub 1}-CuIn, B8{sub 2
Dahmoune, C.; Lounis, S.; Talanana, M.; Benakki, M.; Bouarab, S.; Demangeat, C.
2002-01-01
Ab initio calculations of the local spin polarization at the (0 0 1) surfaces performed on the binary FePd and FeRh alloys are presented. For Rh-terminated FeRh (0 0 1) surface, the calculations indicate a possible magnetic reconstruction leading to a ferromagnetic order in the surface region, in co
Energy Technology Data Exchange (ETDEWEB)
Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, BP. 63, 46000 Safi (Morocco); LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Mounkachi, O.; El Moussaoui, H. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)
2014-06-01
Self-consistent ab initio calculations, based on DFT (Density Functional Theory) approach and using FLAPW (Full potential Linear Augmented Plane Wave) method, are performed to investigate both electronic and magnetic properties of the MnSe lattice. Polarized spin and spin–orbit coupling are included in calculations within the framework of the antiferromagnetic state between two adjacent Mn lattices. Magnetic moments considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters. The zero-field high temperature static susceptibility series of the spin −4.28 nearest-neighbor Ising model on face centered cubic (fcc) and lattices is thoroughly analyzed by means of a power series coherent anomaly method (CAM). The exchange interaction between the magnetic atoms and the Néel temperature are deduced using the mean filed and HTSEs theories. - Highlights: • Ab initio calculations are used to investigate both electronic and magnetic properties of the MnSe alloys. • Obtained data from ab initio calculations are used as input for the HTSEs. • The Néel temperature is obtained for MnSe alloys.
Ab initio molecular dynamics simulation of laser melting of silicon
Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.
1996-01-01
The method of ab initio molecular dynamics, based on finite temperature density functional theory, is used to simulate laser heating of crystal silicon. We have found that a high concentration of excited electrons dramatically weakens the covalent bond. As a result, the system undergoes a melting tr
Cyanogen Azide. Ionization Potentials and Ab Initio SCF MO Calculation
DEFF Research Database (Denmark)
Bak, Börge; Jansen, Peter; Stafast, Herbert
1975-01-01
The Ne(I) and He(I) photoelectron(PE) spectra of cyanogen azide, NCN3, have been recorded at high resolution. Their interpretation is achieved by comparison with the PE spectrum of HN3 and an ab initio LCGO SCF MO calculation. Deviations from Koopmans' theorem of quite different magnitudes are fo...
Young Modulus of Crystalline Polyethylene from ab Initio Molecular Dynamics
Hageman, J.C.L.; Meier, Robert J.; Heinemann, M.; Groot, R.A. de
1997-01-01
The Young modulus for crystalline polyethylene is calculated using ab initio molecular dynamics based on density functional theory in the local density approximation (DFT-LDA). This modulus, which can be seen as the ultimate value for the Young modulus of polyethylene fibers, is found to be 334 GPa.
Extensive ab initio study of the electronic states of S2 molecule including spin-orbit coupling
Xing, Wei; Shi, Deheng; Sun, Jinfeng; Liu, Hui; Zhu, Zunlue
2013-03-01
The potential energy curves (PECs) of 15 Λ-S states and 24 Ω states generated from the 13 Λ-S bound states of the S2 molecule are investigated in detail using an ab initio quantum chemical method. The PECs are calculated for internuclear separations from 0.12 to 1.10 nm by the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with the Davidson modification (MRCI + Q). The spin-orbit (SO) coupling effect is accounted for by the Breit-Pauli Hamiltonian. To discuss the effect on the energy splitting by the core-electron correlations, the all-electron basis set, cc-pCVTZ with and without 2s2p correlations, is used for the SO coupling calculations of the A3 ? and B‧3Πg Λ-S states since their measurements can be found in the literature. By comparison, the cc-pCVTZ basis set with 2s2p correlations is chosen for the SO coupling calculations of 13 Λ-S bound states. To improve the quality of PECs, core-valence correlation and scalar relativistic corrections are included. Scalar relativistic correction calculations are made using the third-order Douglas-Kroll Hamiltonian (DKH3) approximation at the level of a cc-pV5Z basis set. Core-valence correlation corrections are taken into account with a cc-pCVTZ basis set. The spectroscopic parameters of 13 Λ-S bound states and 24 Ω states are calculated. With the PECs obtained by the MRCI + Q/aug-cc-pV6Z + CV + DK + SO calculations, the SO coupling splitting energies are 379.25 cm-1 between the A‧3 and A‧2 Ω state, 83.40 cm-1 between the A1 and A0- Ω state and 210.91 cm-1 between the B‧2 and B‧1 Ω state, which agree well with the corresponding measurements of 383, 77.51 and 209 cm-1, respectively. Moreover, other spectroscopic parameters are also in excellent agreement with the measurements. It demonstrates that the spectroscopic parameters of 24 Ω states reported here for the first time can be expected to be
Energy Technology Data Exchange (ETDEWEB)
Surin, L. A., E-mail: surin@ph1.uni-koeln.de [I. Physikalisches Institut, University of Cologne, Zülpicher Str. 77, 50937 Cologne (Germany); Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya Str. 5, 142190 Troitsk, Moscow (Russian Federation); Potapov, A.; Schlemmer, S. [I. Physikalisches Institut, University of Cologne, Zülpicher Str. 77, 50937 Cologne (Germany); Dolgov, A. A.; Tarabukin, I. V.; Panfilov, V. A. [Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya Str. 5, 142190 Troitsk, Moscow (Russian Federation); Kalugina, Y. N. [Department of Optics and Spectroscopy, Tomsk State University, 36 Lenin av., 634050 Tomsk (Russian Federation); Faure, A. [Université de Grenoble Alpes, IPAG, F-38000 Grenoble (France); CNRS, IPAG, F-38000 Grenoble (France); Avoird, A. van der, E-mail: A.vanderAvoird@theochem.ru.nl [Theoretical Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)
2015-03-21
The rotational spectrum of the van der Waals complex NH{sub 3}–CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 112–139 GHz. Newly observed and assigned transitions belong to the K = 0–0, K = 1–1, K = 1–0, and K = 2–1 subbands correlating with the rotationless (j{sub k}){sub NH3} = 0{sub 0} ground state of free ortho-NH{sub 3} and the K = 0–1 and K = 2–1 subbands correlating with the (j{sub k}){sub NH3} = 1{sub 1} ground state of free para-NH{sub 3}. The (approximate) quantum number K is the projection of the total angular momentum J on the intermolecular axis. Some of these transitions are continuations to higher J values of transition series observed previously [C. Xia et al., Mol. Phys. 99, 643 (2001)], the other transitions constitute newly detected subbands. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the ortho-NH{sub 3}–CO and para-NH{sub 3}–CO complexes. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of NH{sub 3}–CO has been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations and an augmented correlation-consistent triple zeta basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the N atom closest to the CO subunit and binding energy D{sub e} = 359.21 cm{sup −1}. The bound rovibrational levels of the NH{sub 3}–CO complex were calculated for total angular momentum J = 0–6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D{sub 0} are 210.43 and 218.66 cm{sup −1} for ortho-NH{sub 3}–CO and para-NH{sub 3}–CO, respectively.
Jiang, Lei; Xu, Yi-sheng; Ding, Ai-zhong
2010-12-01
The mechanism of the reaction of the sulfur dioxide (SO(2)) with four stabilized Criegee intermediates (stabCI-CH(3)-OO, stabCI-OO, stabCIx-OO, and stabCH(2)OO) produced via the ozonolysis of limonene have been investigated using ab initio and DFT (density functional theory) methods. It has been shown that the intermediate adduct formed by the initiation of these reactions may be followed by two different reaction pathways such as H migration reaction to form carboxylic acids and rearrangement of oxygen to produce the sulfur trioxide (SO(3)) from the terminal oxygen of the COO group and SO(2). We found that the reaction of stabCI-OO and stabCH(2)OO with SO(2) can occur via both the aforementioned scenarios, whereas that of stabCI-CH(3)-OO and stabCIx-OO with SO(2) is limited to the second pathway only due to the absence of migrating H atoms. It has been shown that at the CCSD(T)/6-31G(d) + CF level of theory the activation energies of six reaction pathways are in the range of 14.18-22.59 kcal mol(-1), with the reaction between stabCIx-OO and SO(2) as the most favorable pathway of 14.18 kcal mol(-1) activation energy and that the reaction of stabCI-OO and stabCH(2)OO with SO(2) occurs mainly via the second reaction path. The thermochemical analysis of the reaction between SO(2) and stabilized Criegee intermediates indicates that the reaction of SO(2) and stabilized Criegee intermediates formed from the exocyclic primary ozonide decomposition is the main pathway of the SO(3) formation. This is likely to explain the large (~100%) difference in the production rate in the favor of the exocyclic compounds observed in recent experiments on the formation of H(2)SO(4) from exocyclic and endocyclic compounds. PMID:21053959
Yanov, Ilya; Kholod, Yana; Simeon, Tomekia; Kaczmarek, Anna; Leszczynski, Jerzy
The results of an ab initio quantum chemical study of the Sc3N@C80 endohedral complex are reported. The Hartree-Fock (HF) and B3LYP levels of theory were employed in conjunction with STO-3G and 6-31G(d) basis sets to determine the geometry and properties of the local minima conformations of Sc3N cluster inside the C80 cage. Weak bonding between the Sc3N and C80 molecule and a number of very close geometry and nearly identical by energy local minima structures can explain the large mobility of the endohedral cluster, but complicate determination of the global minimum structure. The effect of the endohedral cluster on the vibrational spectrum of Sc3N@C80 is revealed. Based on the theoretical infrared (IR) spectra, the experimental method to distinguish local minima structures of Sc3N@C80 is proposed.
Saheer, V. C.; Kumar, Sanjay
2016-01-01
The global ground and first three excited electronic state adiabatic as well as the corresponding quasidiabatic potential energy surfaces is reported as a function of nuclear geometries in the Jacobi coordinates ( R → , r → , γ ) using Dunning's cc-pVTZ basis set at the internally contracted multi-reference (single and double) configuration interaction level of accuracy. Nonadiabatic couplings, arising out of relative motion of proton and the vibrational motion of CO, are also reported in terms of coupling potentials. The quasidiabatic potential energy surfaces and the coupling potentials have been obtained using the ab initio procedure [Simah et al., J. Chem. Phys. 111, 4523 (1999)] for the purpose of dynamics studies.
Lucas, J. M.; de Andrés, J.; López, E.; Albertí, M.; Bofill, J. M.; Bassi, D.; Ascenzi, D.; Tosi, P.; Aguilar, A.
2009-08-01
The association reactions between Li+, K+, and Rb+ (M) and butanone and cyclohexanone molecules under single collision conditions have been studied using a radiofrequency-guided ion-beam apparatus, characterizing the adducts by mass spectrometry. The excitation function for the [M-(molecule)]+ adducts (in arbitrary units) has been obtained at low collision energies in the 0.10 eV up to a few eV range in the center of mass frame. The measured relative cross sections decrease when collision energy increases, showing the expected energy dependence for adduct formation. The energetics and structure of the different adducts have been calculated ab initio at the MP2(full) level, showing that the M+-molecule interaction takes place through the carbonyl oxygen atom, as an example of a nontypical covalent chemical bond. The cross-section energy dependence and the role of radiative cooling rates allowing the stabilization of the collision complexes are also discussed.
Institute of Scientific and Technical Information of China (English)
Ali Niazi; Saeed Jameh-Bozorghi; Davood Nori-Shargh
2007-01-01
A quantitative structure-activity relationships (QSAR) study is suggested for the prediction of solubility of some thiazolidine-4-carboxylic acid derivatives in aqueous solution. Ab initio theory was used to calculate some quantum chemical descriptors including electrostatic potentials and local charges at each atom, HOMO and LUMO energies, etc. Modeling of the solubility of thiazolidine4-carboxylic acid derivatives as a function of molecular structures was established by means of the partial least squares (PLS). The subset of descriptors, which resulted in the low prediction error, was selected by genetic algorithm. This model was applied for the prediction of the solubility of some thiazolidine-4-carboxylic acid derivatives, which were not in the modeling procedure. The relative errors of prediction lower that -4% was obtained by using GA-PLS method. The resulted model showed high prediction ability with RMSEP of 3.8836 and 2.9500 for PLS and GA-PLS models, respectively.
Quantum plasmonics: from jellium models to ab initio calculations
Directory of Open Access Journals (Sweden)
Varas Alejandro
2016-08-01
Full Text Available Light-matter interaction in plasmonic nanostructures is often treated within the realm of classical optics. However, recent experimental findings show the need to go beyond the classical models to explain and predict the plasmonic response at the nanoscale. A prototypical system is a nanoparticle dimer, extensively studied using both classical and quantum prescriptions. However, only very recently, fully ab initio time-dependent density functional theory (TDDFT calculations of the optical response of these dimers have been carried out. Here, we review the recent work on the impact of the atomic structure on the optical properties of such systems. We show that TDDFT can be an invaluable tool to simulate the time evolution of plasmonic modes, providing fundamental understanding into the underlying microscopical mechanisms.
Interatomic Coulombic decay widths of helium trimer: Ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Kolorenč, Přemysl, E-mail: kolorenc@mbox.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Institute of Theoretical Physics, V Holešovičkách 2, 180 00 Prague (Czech Republic); Sisourat, Nicolas [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France)
2015-12-14
We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.
Ab Initio Prediction of 29Si-NMR Chemical Shifts
Institute of Scientific and Technical Information of China (English)
CHU Shidong; LI Yingxia; SONG Ni; GUAN Huashi
2002-01-01
The ability of several ab initio models to predict experimental 29Si-NMR chemical shift is examined. The shielding values of trimethylsilyl chloride (A), t-butyldimethylsilyl chloride (B) and allyltrimethylsilane (C) are calculated by GIAO, CSGT and IGAIM methods, using HF/6-31G*, B3LYP/6-31G*, HF/6-311+G**, B3LYP/6-311+G** and MPWlPW91/6-311+G** models respectively. The 29Si chemical shifts calculated by GIAO method using HF/6-311+G**model are highly in agreement with those obtained experimentally. All of the models above reproduce the trends of chemical shifts in all cases studied, suggesting that the models are of practical value.
International Nuclear Information System (INIS)
The F2BO free radical is a known, although little studied, species but similar X2BY (X = H, D, F; Y = O, S) molecules are largely unknown. High level ab initio methods have been used to predict the molecular structures, vibrational frequencies (in cm−1), and relative energies of the ground and first two excited electronic states of these free radicals, as an aid to their eventual spectroscopic identification. The chosen theoretical methods and basis sets were tested on F2BO and found to give good agreement with the known experimental quantities. In particular, complete basis set extrapolations of coupled-cluster single and doubles with perturbative triple excitations/aug-cc-pVXZ (X = 3, 4, 5) energies gave excellent electronic term values, due to small changes in geometry between states and the lack of significant multireference character in the wavefunctions. The radicals are found to have planar C2v geometries in the X~2B2 ground state, the low-lying A~2B1 first excited state, and the higher B~2A1 state. Some of these radicals have very small ground state dipole moments hindering microwave measurements. Infrared studies in matrices or in the gas phase may be possible although the fundamentals of H2BO and H2BS are quite weak. The most promising method of identifying these species in the gas phase appears to be absorption or laser-induced fluorescence spectroscopy through the allowed B~-X~ transitions which occur in the visible-near UV region of the electromagnetic spectrum. The ab initio results have been used to calculate the Franck-Condon profiles of the absorption and emission spectra, and the rotational structure of the B~-X~000 bands has been simulated. The calculated single vibronic level emission spectra provide a unique, readily recognizable fingerprint of each particular radical, facilitating the experimental identification of new X2BY species in the gas phase
Bürger, H.; Schneider, W.; Sommer, S.; Thiel, W.; Willner, H.
1991-10-01
Infrared spectra of the short-lived difluoroethyne molecule have been recorded in neon and argon matrices between 200 and 5000 cm-1. Fourier transform infrared spectra with a resolution of 0.004 cm-1 have been measured in the gas phase around 1350 cm-1 (ν3, ν2+ν4+ν5, hot bands) and 2150 cm-1 (ν2+ν3, ν1-ν5, hot bands). The high resolution study yields rotational parameters of the ground and all singly excited vibrational states. The interpretation of the experimental data has been guided by ab initio calculations at the SCF (self-consistent-field) level and the correlated MP2 level (Moller-Plesset second order perturbation theory) employing three different large basis sets. The theoretical calculations provide the SCF and MP2 harmonic fields as well as the SCF anharmonic force field of FCCF. The agreement between the available theoretical and experimental results is generally quite good, with the exception of the spectroscopic constants involving the trans-bending mode ν4 where more theoretical work is required. The combined use of theoretical and experimental information leads to an estimate of the equilibrium structure [D∞h, re(CC)=1.1865 Å, re(CF)=1.2832 Å] and to recommended ``best'' values for the wave numbers of all fundamental vibrations based on the matrix and high resolution infrared data and some ab initio anharmonicity constants. The present study demonstrates the advantages of a combined theoretical and experimental approach to the spectroscopy of short-lived molecules.
A Comparative X-ray Diffraction Study and Ab Initio Calculation on RU60358, a New Pyrethroid
Directory of Open Access Journals (Sweden)
GÃƒÂ©rard Vergoten
2006-08-01
Full Text Available The crystal structure of RU60358, C20H21NO3, has been determined using X-raydiffraction to establish the configuration and stereochemistry of the molecule around theC15-C16 triple bond. The compound crystallises in the orthorhombic space group P212121, a= 7.7575, b = 11.3182, c = 21.3529ÃƒÂ¥, V = 1874.80ÃƒÂ¥3 and Z = 4. The structure has beenrefined to a final R = 0.068 for the observed structure factors with I Ã¢Â‰Â¥ 3ÃÂƒ (I. The refinedstructure was found to be significantly non planar. A comparative study, using the ab initiocalculations of the structure at B3LYP/6-31G** levels of theory, shows good geometricalagreement with the X-ray diffraction data. Standard deviations between the calculated andexperimental bond values have been shown to be 0.01 ÃƒÂ¥ and 0.5Ã‚Â° for bond angles.Vibrational wavenumbers were obtained from a normal mode analysis using the ab initiocalculations.
Electrical resistivity of NaPb compound-forming liquid alloy using ab initio pseudopotentials
Indian Academy of Sciences (India)
Anil Thakur; N S Negi; P K Ahluwalla
2005-08-01
The study of electrical resistivity of compound-forming liquid alloy, NaPb, is presented as a function of concentration. Hard sphere diameters of Na and Pb are obtained through the interionic pair potentials evaluated using Troullier and Martins ab initio pseudopotential, which have been used to calculate the partial structure factors (). Considering the liquid alloy to be a ternary mixture, Ziman formula, modified for complex formation has been used for calculating resistivity of binary liquid alloys. Form factors are calculated using ab initio pseudopotentials. The results suggest that Ziman formalism, when used with ab initio pseudopotentials, are quite successful in explaining the electrical resistivity data of compound-forming binary liquid alloys.
Understanding phonon transport in thermoelectric materials using ab initio approaches
Broido, David
Good thermoelectric materials have low phonon thermal conductivity, kph. Accurate theories to describe kph are important components in developing predictive models of thermoelectric efficiency that can help guide synthesis and measurement efforts. We have developed ab initio approaches to calculate kph, in which phonon modes and phonon scattering rates are computed using interatomic force constants determined from density functional theory, and a full solution of the Boltzmann transport equation for phonons is implemented. A recent approach to calculate interatomic force constants using ab initio molecular dynamics has yielded a good description of the thermal properties of Bi2Te3. But, the complexity of new promising candidate thermoelectric materials introduces computational challenges in assessing their thermal properties. An example is germanane, a germanium based hydrogen-terminated layered semiconductor, which we will discuss in this talk.
The density matrix renormalization group for ab initio quantum chemistry
Wouters, Sebastian
2014-01-01
During the past 15 years, the density matrix renormalization group (DMRG) has become increasingly important for ab initio quantum chemistry. Its underlying wavefunction ansatz, the matrix product state (MPS), is a low-rank decomposition of the full configuration interaction tensor. The virtual dimension of the MPS, the rank of the decomposition, controls the size of the corner of the many-body Hilbert space that can be reached with the ansatz. This parameter can be systematically increased until numerical convergence is reached. The MPS ansatz naturally captures exponentially decaying correlation functions. Therefore DMRG works extremely well for noncritical one-dimensional systems. The active orbital spaces in quantum chemistry are however often far from one-dimensional, and relatively large virtual dimensions are required to use DMRG for ab initio quantum chemistry (QC-DMRG). The QC-DMRG algorithm, its computational cost, and its properties are discussed. Two important aspects to reduce the computational co...
Toward the Ab-initio Description of Medium Mass Nuclei
Barbieri, C; Soma, V; Duguet, T; Navratil, P
2012-01-01
As ab-initio calculations of atomic nuclei enter the A=40-100 mass range, a great challenge is how to approach the vast majority of open-shell (degenerate) isotopes. We add realistic three-nucleon interactions to the state of the art many-body Green's function theory of closed-shells, and find that physics of neutron driplines is reproduced with very good quality. Further, we introduce the Gorkov formalism to extend ab-initio theory to semi-magic, fully open-shell, isotopes. Proof-of-principle calculations for Ca-44 and Ni-74 confirm that this approach is indeed feasible. Combining these two advances (open-shells and three-nucleon interactions) requires longer, technical, work but it is otherwise within reach.
Londero, Elisa; Thiering, Gergő; Bijeikytė, Monika; Maze, Jeromino R.; Alkauskas, Audrius; Gali, Adam
2016-01-01
Understanding optical excitation spectra of point defects is still a scientific challenge. We demonstrate by \\emph{ab initio} calculations that a prominent sharp feature in the photoluminescence (PL) spectrum of the negatively charged silicon-vacancy defect in diamond can be only explained within the Herzberg-Teller approximation that goes beyond the commonly applied Franck-Condon approximation. The effect of the dynamic Jahn-Teller effect on the PL spectrum is also discussed. Our implementat...
The density matrix renormalization group for ab initio quantum chemistry
Wouters, Sebastian
2015-01-01
During the past 15 years, the density matrix renormalization group (DMRG) has become increasingly important for ab initio quantum chemistry. It is used as a numerically exact solver for highly correlated regions in molecules. While the method works extremely well for one-dimensional systems, the correlated regions of interest are often far from one-dimensional. In this introductory talk, I will discuss the DMRG algorithm from a quantum information perspective, how quantum information theory h...
Molexpl: a tool for ab initio data exploration and visualization
Wang, Xueying; Onofrio, Nicolas,; Strachan, Alejandro
2015-01-01
Density functional theory (DFT) based on ab initio theory, is a powerful method to resolve the electronic structure of atoms, molecules and solids. However, in practical, DFT is limited to few hundreds of atoms. To overcome this limitation, researchers have developed empirical interatomic potentials implemented in molecular dynamics (MD) simulations. MD ignores the movements of electrons and describes bonding and non-bonding interaction as a function of the distance between atoms called force...
Ab initio calculation of tight-binding parameters
Energy Technology Data Exchange (ETDEWEB)
McMahan, A.K.; Klepeis, J.E.
1997-12-01
We calculate ab initio values of tight-binding parameters for the f- electron metal Ce and various phases of Si, from local-density functional one-electron Hamiltonian and overlap matrix elements. Our approach allows us to unambiguously test the validity of the common minimal basis and two-center approximations as well as to determine the degree of transferability of both nonorthogonal and orthogonal hopping parameters in the cases considered.
GAUSSIAN 76: an ab initio molecular orbital program
Energy Technology Data Exchange (ETDEWEB)
Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.
1978-06-01
Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.
P-V Relation for Mercuric Calcogenides: Ab Initio Method
G. Misra; S. Tenguria; Gautam, M.
2011-01-01
Mercuric Calcogenides found many applications in electronic and optical devices as semiconducting materials. An equation of state provides useful information about the relationship between pressure (P), volume (V) and temperature (T) that helps to understand the behaviour of materials under the effect of high pressure and high temperature. The present paper sheds light on the electronic structure of Mercuric Calcogenides by simulating its electronic properties through ab initio method. This a...
Ab-initio calculations for dilute magnetic semiconductors
Belhadji, Brahim
2008-01-01
This thesis focusses on ab-initio calculations for the electronic structure and the magnetic properties of dilute magnetic semiconductors (DMS). In particular we aim at the understanding of the complex exchange interactions in these systems. Our calculations are based on density functional theory, being ideally suited for a description of the material specific properties of the considered DMS. Moreover we use the KKR Green function method in connection with the coherent potential approximatio...
Thermochemical data for CVD modeling from ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Ho, P. [Sandia National Labs., Albuquerque, NM (United States); Melius, C.F. [Sandia National Labs., Livermore, CA (United States)
1993-12-31
Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.
Amokrane, S.; Ayadim, A.; Levrel, L.
2015-11-01
We consider the question of the amorphization of metallic alloys by melt quenching, as predicted by molecular dynamics simulations with semi-empirical potentials. The parametrization of the potentials is discussed on the example of the ternary Cu-Ti-Zr transition metals alloy, using the ab-initio simulation as a reference. The pair structure in the amorphous state is computed from a potential of the Stillinger-Weber form. The transferability of the parameters during the quench is investigated using two parametrizations: from solid state data, as usual and from a new parametrization on the liquid structure. When the adjustment is made on the pair structure of the liquid, a satisfactory transferability is found between the pure components and their alloys. The liquid structure predicted in this way agrees well with experiment, in contrast with the one obtained using the adjustment on the solid. The final structure, after quenches down to the amorphous state, determined with the new set of parameters is shown to be very close to the ab-initio one, the latter being in excellent agreement with recent X-rays diffraction experiments. The corresponding critical temperature of the glass transition is estimated from the behavior of the heat capacity. Discussion on the consistency between the structures predicted using semi-empirical potentials and ab-initio simulation, and comparison of different experimental data underlines the question of the dependence of the final structure on the thermodynamic path followed to reach the amorphous state.
A highly accurate ab initio potential energy surface for methane
Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2016-09-01
A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of 12CH4 reproduced with a root-mean-square error of 0.70 cm-1. The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.
Acceleration of the Convergence in ab initio Atomic Relaxations
Zhao, Zhengji; Wang, Lin-Wang; Meza, Juan
2006-03-01
Atomic relaxations is often required to accurately describe the properties of nanosystems. In ab initio calculations, a common practice is to use a standard search algorithm, such as BFGS (Broyden-Fletcher-Goldfarb-Shanno) or CG (conjugate gradient) method, which starts the atomic relaxations without any knowledge of the Hessian matrix of the system. For example, the initial Hessian in BFGS method is often set to identity, and there is no preconditioning to CG method. One way to accelerate the convergence of the atomic relaxations is to estimate an approximate Hessian matrix of the system and then use it as the initial Hessian in BFGS method or a preconditioner in CG method. Previous attempts to obtain the approximated Hessian were focused on the use of classical force field models which rely on the existence of good parameters. Here, we present an alternative method to estimate the Hessian matrix of a nanosystem. First, we decompose the system into motifs which consist of a few atoms, then calculate the Hessian matrix elements on different motif types from ab initio calculations for small prototype systems. Then we generate the Hessian Matrix of the whole system by putting together these motif Hessians. We have applied our motif-based Hessian matrix in ab initio atomic relaxations in several bulk (with/without impurity) and quantum dot systems, and have found a speed up factor of 2 to 4 depending on the system size.
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics
Makhov, Dmitry V.; Glover, William J.; Martinez, Todd J.; Shalashilin, Dmitrii V.
2014-08-01
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Makhov, Dmitry V.; Shalashilin, Dmitrii V. [Department of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom); Glover, William J.; Martinez, Todd J. [Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)
2014-08-07
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
A Complete and Accurate Ab Initio Repeat Finding Algorithm.
Lian, Shuaibin; Chen, Xinwu; Wang, Peng; Zhang, Xiaoli; Dai, Xianhua
2016-03-01
It has become clear that repetitive sequences have played multiple roles in eukaryotic genome evolution including increasing genetic diversity through mutation, changes in gene expression and facilitating generation of novel genes. However, identification of repetitive elements can be difficult in the ab initio manner. Currently, some classical ab initio tools of finding repeats have already presented and compared. The completeness and accuracy of detecting repeats of them are little pool. To this end, we proposed a new ab initio repeat finding tool, named HashRepeatFinder, which is based on hash index and word counting. Furthermore, we assessed the performances of HashRepeatFinder with other two famous tools, such as RepeatScout and Repeatfinder, in human genome data hg19. The results indicated the following three conclusions: (1) The completeness of HashRepeatFinder is the best one among these three compared tools in almost all chromosomes, especially in chr9 (8 times of RepeatScout, 10 times of Repeatfinder); (2) in terms of detecting large repeats, HashRepeatFinder also performed best in all chromosomes, especially in chr3 (24 times of RepeatScout and 250 times of Repeatfinder) and chr19 (12 times of RepeatScout and 60 times of Repeatfinder); (3) in terms of accuracy, HashRepeatFinder can merge the abundant repeats with high accuracy. PMID:26272474
Ab initio nuclear structure - the large sparse matrix eigenvalue problem
International Nuclear Information System (INIS)
The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several ab initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab initio no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds 1010 and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving this large sparse matrix eigenvalue problem. We also outline the challenges that lie ahead for achieving further breakthroughs in fundamental nuclear theory using these ab initio approaches.
Alnemrat, Sufian
Material science investigates the relationship between the structure of materials at the atomic or molecular scales and their macroscopic properties. Ab-initio DFT, atomistic force-field, and molecular dynamic simulations have been used to investigate the electronic, optical, structural, magnetic properties of group II-VI semiconductor nanoparticles, metal organic frameworks, amide-water complexes, and planetary core materials at the atomic and/or molecular level. Structure, density of electronic states, magnetic dipole moments, and HOMO-LUMO gaps of surface-passivated ZnnSem, Cd nTem, CdTe-core/ZnTe-shell, and ZnSe-core/CdSe-shell nanocrystals are calculated using a first principles. The intrinsic magnetic dipole moments are found to be strongly size dependent. The detailed analysis of the dipole moment as a function of particle size shows the appearance of zincblende-wurtzite polymorphism in these nano-particles. Energy-efficient adsorption processes are considered promising alternatives to traditional separation techniques. Mg-MOF-74, a magnesium-based metal organic framework, has been used as an efficient adsorbent structure for several gas separation purposes. Adsorption equilibria and kinetics of ethane, ethylene, propane, and propylene on Mg-MOF-74 were determined at temperatures of 278, 298, and 318 K and pressures up to 100 kPa. A grand canonical Monte Carlo simulation was conducted to calculate the adsorption isotherms and to explore adsorption mechanisms. I found that propylene and propane have a stronger affinity to the Mg-MOF-74 adsorbent than ethane and ethylene because of their significant dipole moments. Ab-initio molecular dynamics simulations were carried out to study the role of equilibrium volume and magnetism in Fe and FeX alloys (X=Ni, O) and their stability at earth core conditions. This study provides new insights into the pressure dependence of magnetism by tracking the hybridization between crystal orbitals for pressures up to 600 GPa in
Energy Technology Data Exchange (ETDEWEB)
Bernard, St
1998-12-31
The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H{sub 2}){sub 2} which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author) 109 refs.
Energy Technology Data Exchange (ETDEWEB)
Clouthier, Dennis J., E-mail: dclaser@uky.edu [Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055 (United States)
2014-12-28
The F{sub 2}BO free radical is a known, although little studied, species but similar X{sub 2}BY (X = H, D, F; Y = O, S) molecules are largely unknown. High level ab initio methods have been used to predict the molecular structures, vibrational frequencies (in cm{sup −1}), and relative energies of the ground and first two excited electronic states of these free radicals, as an aid to their eventual spectroscopic identification. The chosen theoretical methods and basis sets were tested on F{sub 2}BO and found to give good agreement with the known experimental quantities. In particular, complete basis set extrapolations of coupled-cluster single and doubles with perturbative triple excitations/aug-cc-pVXZ (X = 3, 4, 5) energies gave excellent electronic term values, due to small changes in geometry between states and the lack of significant multireference character in the wavefunctions. The radicals are found to have planar C{sub 2v} geometries in the X{sup ~2}B{sub 2} ground state, the low-lying A{sup ~2}B{sub 1} first excited state, and the higher B{sup ~2}A{sub 1} state. Some of these radicals have very small ground state dipole moments hindering microwave measurements. Infrared studies in matrices or in the gas phase may be possible although the fundamentals of H{sub 2}BO and H{sub 2}BS are quite weak. The most promising method of identifying these species in the gas phase appears to be absorption or laser-induced fluorescence spectroscopy through the allowed B{sup ~}-X{sup ~} transitions which occur in the visible-near UV region of the electromagnetic spectrum. The ab initio results have been used to calculate the Franck-Condon profiles of the absorption and emission spectra, and the rotational structure of the B{sup ~}-X{sup ~}0{sub 0}{sup 0} bands has been simulated. The calculated single vibronic level emission spectra provide a unique, readily recognizable fingerprint of each particular radical, facilitating the experimental identification of new X{sub 2}BY
Ab initio Defect Energetics in LaBO3 Perovskite Solid Oxide Fuel Cell Materials
DEFF Research Database (Denmark)
Lee, Yueh-Lin; Morgan, Dane; Kleis, Jesper;
2009-01-01
Perovskite materials of the form ABO3 are a promising family of compounds for use in solid oxide fuel cell (SOFC) cathodes. Study of the physics of these compounds under SOFC conditions with ab initio methods is particularly challenging due to high temperatures, exchange of oxygen with O2 gas, and...
Olsson, Emilia; Aparicio-Anglès, Xavier; de Leeuw, Nora H.
2016-07-01
Doped LaMnO3 and SmCoO3 are important solid oxide fuel cell cathode materials. The main difference between these two perovskites is that SmCoO3 has proven to be a more efficient cathode material than LaMnO3 at lower temperatures. In order to explain the difference in efficiency, we need to gain insight into the materials' properties at the atomic level. However, while LaMnO3 has been widely studied, ab initio studies on SmCoO3 are rare. Hence, in this paper, we perform a comparative DFT + U study of the structural, electronic, and magnetic properties of these two perovskites. To that end, we first determined a suitable Hubbard parameter for the Co d-electrons to obtain a proper description of SmCoO3 that fully agrees with the available experimental data. We next evaluated the impact of oxygen and cation vacancies on the geometry, electronic, and magnetic properties. Oxygen vacancies strongly alter the electronic and magnetic structures of SmCoO3, but barely affect LaMnO3. However, due to their high formation energy, their concentrations in the material are very low and need to be induced by doping. Studying the cation vacancy concentration showed that the formation of cation vacancies is less energetically favorable than oxygen vacancies and would thus not markedly influence the performance of the cathode.
Experimental and ab initio studies on sub-lattice ordering and magnetism in Co2Fe(Ge1-xSix) alloys
Deka, Bhargab; Kundu, Ashis; Ghosh, Subhradip; Srinivasan, A.
2015-10-01
Crystallographic and magnetic properties of bulk Co2Fe(Ge1-xSix) alloys with 0 ≤ x ≤ 1, synthesized by arc melting method, have been studied. Co2FeSi alloy has been found to crystallize with L21 structure, but the super-lattice peaks are absent in the X-ray diffraction patterns of alloys containing high Ge concentration. Unit cell volume of this series of alloys decreased from 185.2 to 178.5 Å3 as Si content was increased from 0 to 1.00. All alloy compositions exhibit ferromagnetic behavior with a high Curie temperature (TC). TC showed a systematic variation with x. A comparison between the values of saturation magnetization (Ms) and effective moment per magnetic atom pc estimated from the temperature dependent susceptibility data above TC, shows that the alloys have half-metallic character. The alloy with x = 0 follows Slater-Pauling (S-P) rule with Ms of 5.99μB. However, Ms for the alloy with x = 1.00 was found to be 5.42μB, which is lower than the value of 6.0μB predicted by S-P rule. Since atomic disorder is known to affect the Ms and electronic structure of these alloys, ab initio calculations were carried out to explain the deviation in observed Ms from S-P rule prediction and the half-metallic character of the alloys. Ab initio calculations reveal that alloys with L21 structure have Ms value as predicted by S-P rule. However, introduction of 12.5% DO3 disorder, which occurs due to swapping of Co and Fe atoms in the unit cell, decreases Ms of alloys with x > 0 from the S-P prediction to values obtained experimentally. The results analyzed from the view point of electronic structure of the alloys in different ordered states bring out the influence of disorder on the observed magnetic properties of these technologically important alloys.
Energy Technology Data Exchange (ETDEWEB)
Grimminger, Robert; Clouthier, Dennis J., E-mail: dclaser@uky.edu [Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Sheridan, Phillip M. [Department of Chemistry and Biochemistry, Canisius College, Buffalo, New York 14208 (United States)
2014-04-28
We have studied the B{sup ~} {sup 2}A{sub 1}–X{sup ~} {sup 2}B{sub 2} laser-induced fluorescence (LIF) spectrum of the jet-cooled F{sub 2}BO radical for the first time. The transition consists of a strong 0{sub 0}{sup 0} band at 446.5 nm and eight weak sequence bands to shorter wavelengths. Single vibronic level emission spectra obtained by laser excitation of individual levels of the B{sup ~} state exhibit two electronic transitions: a very weak, sparse B{sup ~}–X{sup ~} band system in the 450–500 nm region and a stronger, more extensive set of B{sup ~} {sup 2}A{sub 1}–A{sup ~} {sup 2}B{sub 1} bands in the 580–650 nm region. We have also performed a series of high level ab initio calculations to predict the electronic energies, molecular structures, vibrational frequencies, and rotational and spin-rotation constants in the X{sup ~} {sup 2}B{sub 2}, A{sup ~2}B{sub 1} and B{sup ~} {sup 2}A{sub 1} electronic states as an aid to the analysis of the experimental data. The theoretical results have been used as input for simulations of the rotationally resolved B{sup ~} {sup 2}A{sub 1}–X{sup ~} {sup 2}B{sub 2} 0{sub 0}{sup 0} LIF band and Franck-Condon profiles of the LIF and single vibronic level emission spectra. The agreement between the simulations obtained with purely ab initio parameters and the experimental spectra validates the geometries calculated for the ground and excited states and the conclusion that the radical has C{sub 2v} symmetry in the X{sup ~}, A{sup ~}, and B{sup ~} states. The spectra provide considerable new information about the vibrational energy levels of the X{sup ~} and A{sup ~} states, but very little for the B{sup ~} state, due to the very restrictive Franck-Condon factors in the LIF spectra.
Computer simulation of acetonitrile and methanol with ab initio-based pair potentials
Hloucha, M.; Sum, A. K.; Sandler, S. I.
2000-10-01
This study address the adequacy of ab initio pair interaction energy potentials for the prediction of macroscopic properties. Recently, Bukowski et al. [J. Phys. Chem. A 103, 7322 (1999)] performed a comprehensive study of the potential energy surfaces for several pairs of molecules using symmetry-adapted perturbation theory. These ab initio energies were then fit to an appropriate site-site potential form. In an attempt to bridge the gap between ab initio interaction energy information and macroscopic properties prediction, we performed Gibbs ensemble Monte Carlo (GEMC) simulations using their developed pair potentials for acetonitrile and methanol. The simulations results show that the phase behavior of acetonitrile is well described by just the pair interaction potential. For methanol, on the other hand, pair interactions are insufficient to properly predict its vapor-liquid phase behavior, and its saturated liquid density. We also explored simplified forms for representing the ab initio interaction energies by refitting a selected range of the data to a site-site Lennard-Jones and to a modified Buckingham (exponential-6) potentials plus Coulombic interactions. These were also used in GEMC simulations in order to evaluate the quality and computational efficiency of these different potential forms. It was found that the phase behavior prediction for acetonitrile and methanol are highly dependent on the details of the interaction potentials developed.
Energy Technology Data Exchange (ETDEWEB)
Raybaud, P.; Hafner, J.; Kresse, G.; Kasztelan, S.; Toulhoat, H.
2000-02-15
The determination of the local structure of cobalt- or nickel-promoted MoS{sub 2}-based hydrodesulfurization catalysts is of interest for understanding the mechanism leading to an increased activity brought by cobalt or nickel, the so-called synergetic effect. For that reason, the authors carried out ab initio calculations using density functional theory under the generalized gradient approximation for periodic systems. The edge substitution model emerges as the most stable structure and provides an excellent agreement with local structures experimentally determined on real catalysts by in situ extended X-ray absorption fine structure. The authors studied the absorption of sulfur on the active edge surface of the promoted MoS{sub 2} catalyst and determined the equilibrium coverage under sulfiding conditions. It is demonstrated that the incorporation of promoter atoms has a strong influence on the sulfur-metal bond energy at the surface and in particular leads to a reduction of the equilibrium S coverage of the active metal sites. A comparative study on the effects of Co, Ni, and Cu atoms as promoters was performed. Detailed results on the surface electronic structure of promoted MoS{sub 2} are presented.
Suendo, Veinardi
2011-01-01
Chlorophyll a is one the most abundant pigment on Earth, which is responsible for trapping the light energy to perform the photosynthesis process in green plants. This molecule is a metal-complex compound that consists of a porphyrins ring with high symmetry that acts as ligands with magnesium as the central ion. Chlorophyll a has been studied for many years from different point of views for both experimental and theoretical interests. In this study, the restricted Hartree-Fock configuration interaction single (RHF/CIS), time-dependent density functional theory (TDDFT) and some semi-empirical methods (CNDO/s and ZINDO) calculations were carried out and compared to reconstruct the UV-Vis absorption spectra of chlorophyll a. In some extend, the calculation results based on a single molecule calculation were succeeded to reconstruct the absorption spectra but required to be scaling and broaden to match the experimental one. Different computational methods (ab initio and semi-empirical) exhibits the differences i...
Tuna, Deniz; Udvarhelyi, Anikó; Sobolewski, Andrzej L; Domcke, Wolfgang; Domratcheva, Tatiana
2016-04-14
Eumelanin is a naturally occurring skin pigment which is responsible for developing a suntan. The complex structure of eumelanin consists of π-stacked oligomers of various indole derivatives, such as the monomeric building block 5,6-dihydroxyindole (DHI). In this work, we present an ab initio wave-function study of the absorption behavior of DHI oligomers and of doubly and triply π-stacked species of these oligomers. We have simulated the onset of the electronic absorption spectra by employing the MP2 and the linear-response CC2 methods. Our results demonstrate the effect of an increasing degree of oligomerization of DHI and of an increasing degree of π-stacking of DHI oligomers on the onset of the absorption spectra and on the degree of red-shift toward the visible region of the spectrum. We find that π-stacking of DHI and its oligomers substantially red-shifts the onset of the absorption spectra. Our results also suggest that the optical properties of biological eumelanin cannot be simulated by considering the DHI building blocks alone, but instead the building blocks indole-semiquinone and indole-quinone have to be considered as well. This study contributes to advancing the understanding of the complex photophysics of the eumelanin biopolymer.
Ab initio charge-carrier mobility model for amorphous molecular semiconductors
Massé, Andrea; Friederich, Pascal; Symalla, Franz; Liu, Feilong; Nitsche, Robert; Coehoorn, Reinder; Wenzel, Wolfgang; Bobbert, Peter A.
2016-05-01
Accurate charge-carrier mobility models of amorphous organic molecular semiconductors are essential to describe the electrical properties of devices based on these materials. The disordered nature of these semiconductors leads to percolative charge transport with a large characteristic length scale, posing a challenge to the development of such models from ab initio simulations. Here, we develop an ab initio mobility model using a four-step procedure. First, the amorphous morphology together with its energy disorder and intermolecular charge-transfer integrals are obtained from ab initio simulations in a small box. Next, the ab initio information is used to set up a stochastic model for the morphology and transfer integrals. This stochastic model is then employed to generate a large simulation box with modeled morphology and transfer integrals, which can fully capture the percolative charge transport. Finally, the charge-carrier mobility in this simulation box is calculated by solving a master equation, yielding a mobility function depending on temperature, carrier concentration, and electric field. We demonstrate the procedure for hole transport in two important molecular semiconductors, α -NPD and TCTA. In contrast to a previous study, we conclude that spatial correlations in the energy disorder are unimportant for α -NPD. We apply our mobility model to two types of hole-only α -NPD devices and find that the experimental temperature-dependent current density-voltage characteristics of all devices can be well described by only slightly decreasing the simulated energy disorder strength.
Indian Academy of Sciences (India)
Jinghan Zou; Shuhui Yin; Dan Wu; Mingxing Guo; Xuesong Xu; Hong Gao; Lei Li; Li Che
2013-09-01
Theoretical study on the dynamics of reactions H' + HS( = 0, = 0)→H2 + S and H' + HS( =0, = 0)→ H + H'S is performed with quasi-classical trajectory (QCT) method on a new ab initio potential energy surface for the lowest triplet state of H2S (3A") constructed in 2012 by Lv et al. The QCT-calculated reaction integral cross-sections are in good agreement with previous quantum wave packet results over the collision energy range of 0-50 kcal/mol. Both the abstraction and exchange reactions are governed by direct reaction dynamics and the trajectories follow the minimum energy path. The rotational angular momentum vector ' of products in the two reaction channels are not only aligned perpendicular to scattering plane but also oriented along the negative direction of the axis perpendicular to the scattering plane. With the increase in collision energy, the variation trends of product polarization in the two reaction channels are different and that may be attributed to the obviously different characteristic of the two channels on the potential energy surface.
Ab initio studies of O2−(H2On and O3−(H2On anionic molecular clusters, n≤12
Directory of Open Access Journals (Sweden)
H. Svensmark
2011-05-01
Full Text Available An ab initio study of gaseous clusters of O2− and O2− with water is presented. Based on thorough scans of configurational space, we determine the thermodynamics of cluster growth. The results are in good agreement with benchmark computational methods and existing experimental data. We find that anionic O2−(H2On and O3−(H2On clusters are thermally stabilized at typical atmospheric conditions for at least n = 5. The first 4 water molecules are strongly bound to the anion due to delocalization of the excess charge while stabilization of more than 4 H2O is due to normal hydrogen bonding. Although clustering up to 12 H2O, we find that the O2 and O3 anions retain at least ca. 80 % of the charge and are located at the surface of the cluster. The O2− and O3− speicies are thus accessible for further reactions. Finally, the thermodynamics of a few relevant cluster reactions are considered.
Ab-initio study of the interfacial properties in ultrathin MgO films on O-rich FeO/Fe(001) surfaces
Energy Technology Data Exchange (ETDEWEB)
Jeon, Junjin; Yu, Byungdeok [University of Seoul, Seoul (Korea, Republic of)
2014-09-15
Using ab-initio simulations based on density functional theory, we systematically studied the interfacial properties of MgO films on O-rich FeO/Fe(001) surfaces with increasing number of MgO layers from one to three monolayers (MLs). The structural and the adhesion properties of the MgO/FeO/Fe(001) system were assessed and compared with those of simple MgO/Fe(001) interfaces. Our calculated results showed that the adhesion energy for MgO/FeO/Fe(001) was smaller than that for simple MgO/Fe(001). An analysis of the electronic structures and the charge rearrangements of the MgO/FeO/Fe(001) interfaces was also performed. The work functions of the MgO/FeO/Fe(001) systems upon the deposition of MgO films exhibited smaller decreases (0.45 - 0.67 eV) than those (1.43 - 1.74 eV) of the MgO/Fe(001) systems. In addition, the obtained work functions (3.77 - 3.99 eV) for MgO/FeO/Fe(001) were much larger than those (2.12 - 2.43 eV) for MgO/Fe(001).
Energy Technology Data Exchange (ETDEWEB)
Fischer, Sean A.; Ueltschi, Tyler W.; El-Khoury, Patrick Z.; Mifflin, Amanda L.; Hess, Wayne P.; Wang, Hongfei; Cramer, Christopher J.; Govind, Niranjan
2016-03-03
Carbon-hydrogen (C-H) vibration modes serve as key probes in the chemical iden- tication of hydrocarbons and in vibrational sum-frequency generation (SFG) spec- *troscopy of hydrocarbons at the liquid/gas interface. Their assignments pose a chal- lenge from a theoretical viewpoint. In this work, we present a detailed study of the C-H stretching region of dimethyl sulfoxide (DMSO) using a new Gaussian basis set- based ab initio molecular dynamics (AIMD) module that we have implemented in the NWChem computational chemistry program. By combining AIMD simulations and static normal mode analysis, we interpret experimental infrared and Raman spectra and explore the role of anharmonic effects in this system. Our anharmonic normal mode analysis of the in-phase and out-of-phase symmetric C-H stretching modes chal- lenges the previous experimental assignment of the shoulder in the symmetric C-H stretching peak as an overtone or Fermi resonance. In addition, our AIMD simulations also show signicant broadening of the in-phase symmetric C-H stretching resonance, which suggests that the experimentally observed shoulder is due to thermal broadening of the symmetric stretching resonance.
Energy Technology Data Exchange (ETDEWEB)
Ilyasov, V.V., E-mail: viily@mail.ru; Pham, Khang D., E-mail: dinhkhang307@gmail.com; Holodova, O.M.; Ershov, I.V., E-mail: thijd@mail.ru
2015-10-01
We have performed ab initio simulation of oxygen atom adsorption on TiC(0 0 1) laser-reconstructed surface. Relaxed atomic structures of the O/Ti{sub x}C{sub y}(0 0 1) surface observed upon thermal impact have been studied. DFT calculations of their thermodynamic, electronic, and elastic properties have been carried out. For the first time we have established the bond length and adsorption energy for various reconstructions of the O/Ti{sub x}C{sub y}(0 0 1) surface atomic structure. We have examined the effects of the oxygen adatom upon the band and electron spectra of the O/TiC(0 0 1) surface in its various reconstructions. For the first time we have established a correlation between the energy level of flat bands (−5.4 eV and −5.8 eV) responsible for the doublet of singular peaks of partial densities of oxygen 2p electrons, and the adsorption energy of oxygen atom in non-stoichiometric O/TiC{sub y}(0 0 1) systems. Effective charges of titanium and carbon atoms surrounding the oxygen adatom in various reconstructions have been identified. We have established charge transfer from titanium atom to oxygen and carbon atoms determined by the reconstruction of local atomic and electron structures which correlate with atomic electronegativity values and chemisorption processes. Potential mechanisms for laser nanostructuring of titanium carbide surface have been suggested.
Timoshevskii, Vladimir; Feng, Zimin; Bevan, Kirk H; Zaghib, Karim
2015-08-26
The atomic and electronic structures of the LiFePO4 (LFP) surface, both bare and reconstructed upon possible oxygenation, are theoretically studied by ab initio methods. On the basis of total energy calculations, the atomic structure of the oxygenated surface is proposed, and the effect of surface reconstruction on the electronic properties of the surface is clarified. While bare LFP(010) surface is insulating, adsorption of oxygen leads to the emergence of semimetallic behavior by inducing the conducting states in the band gap of the system. The physical origin of these conducting states is investigated. We further demonstrate that deposition of Li2S layers on top of oxygenated LFP(010) surface leads to the formation of additional conducting hole states in the first layer of Li2S surface because of the charge transfer from sulfur p-states to the gap states of LFP surface. This demonstrates that oxygenated LFP surface not only provides conducting layers itself, but also induces conducting channels in the top layer of Li2S. These results help to achieve further understanding of potential role of LFP particles in improving the performance of Li-S batteries through emergent interface conductivity. PMID:26237114
Marqués, Miriam; González, Luis E; González, David J
2016-02-24
The static and dynamic properties of liquid Fe at high pressure and temperature have been studied using an ab initio molecular dynamics method. We have focused on four thermodynamic states at pressures of 27, 42, 50 and 58 GPa for which x-ray scattering data are available. The calculated static structure shows very good agreement with the available experimental data, including an asymmetric second peak which becomes more marked with increasing pressure. The dynamical structure reveals the existence of propagating density fluctuations and the associated dispersion relation has also been determined. The relaxation mechanisms for the density fluctuations have been analyzed in terms of a model with two decay channels (fast and slow, respectively). We found that the thermal relaxation proceeds along the slow decaying channel whereas the fast one is that of the viscoelastic relaxation. The possible coupling between longitudinal and transverse excitation modes has been investigated by looking at specific signatures in two wavevector regions: the first one is located around the position of the main peak of the structure factor, qp, as suggested by the recently reported appearance of high frequency transverse waves in liquid Li under high pressures; the second region is around qp/2, as suggested by the recent finding of transverse acoustic modes in inelastic x-ray scattering intensities of liquid Fe at ambient pressure. Finally, results are also reported for several transport coefficients. PMID:26811899
International Nuclear Information System (INIS)
The static and dynamic properties of liquid Fe at high pressure and temperature have been studied using an ab initio molecular dynamics method. We have focused on four thermodynamic states at pressures of 27, 42, 50 and 58 GPa for which x-ray scattering data are available. The calculated static structure shows very good agreement with the available experimental data, including an asymmetric second peak which becomes more marked with increasing pressure. The dynamical structure reveals the existence of propagating density fluctuations and the associated dispersion relation has also been determined. The relaxation mechanisms for the density fluctuations have been analyzed in terms of a model with two decay channels (fast and slow, respectively). We found that the thermal relaxation proceeds along the slow decaying channel whereas the fast one is that of the viscoelastic relaxation. The possible coupling between longitudinal and transverse excitation modes has been investigated by looking at specific signatures in two wavevector regions: the first one is located around the position of the main peak of the structure factor, q p, as suggested by the recently reported appearance of high frequency transverse waves in liquid Li under high pressures; the second region is around q p/2, as suggested by the recent finding of transverse acoustic modes in inelastic x-ray scattering intensities of liquid Fe at ambient pressure. Finally, results are also reported for several transport coefficients. (paper)
International Nuclear Information System (INIS)
Order–disorder phase transitions induced by thermal annealing have been studied in the ordered-vacancy compound ZnGa2Se4 by means of Raman scattering and optical absorption measurements. The partially disordered as-grown sample with tetragonal defect stannite (DS) structure and I 4-bar 2 m space group has been subjected to controlled heating and cooling cycles. In situ Raman scattering measurements carried out during the whole annealing cycle show that annealing the sample to 400 °C results in a cation ordering in the sample, leading to the crystallization of the ordered tetragonal defect chalcopyrite (DC) structure with I 4-bar space group. On decreasing temperature the ordered cation scheme of the DC phase can be retained at ambient conditions. The symmetry of the Raman-active modes in both DS and DC phases is discussed and the similarities and differences between the Raman spectra of the two phases emphasized. The ordered structure of annealed samples is confirmed by optical absorption measurements and ab initio calculations, that show that the direct bandgap of DC-ZnGa2Se4 is larger than that of DS-ZnGa2Se4. (paper)
Lee, T. H.; Simdyankin, S. I.; Hegedus, J.; Heo, J.; Elliott, S. R.
2010-03-01
The spatial distribution of Nd3+ ions and GaS4 tetrahedral units in Nd-doped Ge-As-Ga-S glasses has been studied by laser spectroscopy and ab initio molecular dynamics (MD) simulations. A sharp increase in Nd3+ fluorescence intensities and lifetimes was observed with increasing Ga content, and attributed to the formation of tightly bound Nd3+ clusters in Ga-free glasses and the subsequent dissolution of such clusters upon Ga doping. A large modification in Nd3+ sites was also identified from low-temperature site-selective excitation spectra, suggesting preferential spatial correlations between Nd3+ and GaS4 tetrahedra even at low Ga-doping levels. MD simulations of these materials in the liquid state showed a tendency for Ga cluster formation as well as spatial correlations between Nd and Ga atoms consistent with the experimental results. On the basis of this result, a comprehensive structural model for Nd- and Ga-doped sulfide glasses is proposed.
Ji, Min; Zhang, Qun; Chen, Yang
2009-01-01
We report on the photodissociation dynamics study of n-butyl nitrite (n-C_4H_9ONO) and isoamyl nitrite ((CH_3)_2C_3H_5ONO) by means of time-resolved Fourier transform infrared (TR-FTIR) emission spectroscopy. The obtained TR-FTIR emission spectra of the nascent NO fragments produced in the 355-nm laser photolysis of the two alkyl nitrite species showed an almost identical rotational temperature and vibrational distributions of NO. In addition, a close resemblance between the two species was also found in the measured temporal profiles of the IR emission of NO and the recorded UV absorption spectra. The experimental results are consistent with our ab initio calculations using the time-dependent density functional theory at the B3LYP/6-311G(d,p) level, which indicate that the substitution of one of the two {gamma}-H atoms in n-C_4H_9ONO with a methyl group to form (CH_3)_2C_3H_5ONO has only a minor effect on the photodissociation dynamics of the two molecules.
Exploring the free energy surface using ab initio molecular dynamics.
Samanta, Amit; Morales, Miguel A; Schwegler, Eric
2016-04-28
Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti. PMID:27131525
Rational design of electrolyte components by ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Johansson, Patrik; Jacobsson, Per [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)
2006-02-28
This paper is a small review of the use of computer simulations and especially the use of standard quantum-mechanical ab initio electronic structure calculations to rationally design and investigate different choices of chemicals/systems for lithium battery electrolytes. Covered systems and strategies to enhance the performance of electrolytes will range from assisting the interpretation of vibrational spectroscopy experiments over development of potentials for molecular dynamics simulations, to the design of new lithium salts and the lithium ion coordination in liquid, polymer, and gel polymer electrolytes. Examples of studied properties include the vibrational spectra of anions and ion pairs to characterize the nature and extent of the interactions present, the lithium ion affinities of anions, important for the salt solvation and the ability to provide a high concentration of charge carriers, the HOMO energies of the anions to estimate the stability versus oxidation, the anion volumes that correlate to the anion mobility, the lithium ion coordination and dynamics to reveal the limiting steps of lithium ion transport, etc. (author)
Energy Technology Data Exchange (ETDEWEB)
Ganster, P
2004-10-15
A calcium aluminosilicate glass of molar composition 67 % SiO{sub 2} - 12 % Al{sub 2}O{sub 3} - 21 % CaO was modelled by classical and ab initio molecular dynamics. The size effect study in classical MD shows that the systems of 100 atoms are more ordered than the larger ones. These effects are mainly due to the 3-body terms in the empirical potentials. Nevertheless, these effects are small and the structures generated are in agreement with experimental data. In such kind of glass, we denote an aluminium avoidance and an excess of non bridging oxygens which can be compensated by tri coordinated oxygens. When the dynamics of systems of 100 and 200 atoms is followed by ab initio MD, some local arrangements occurs (bond length, angular distributions). Thus, more realistic vibrational properties are obtained in ab initio MD. The modelling of thin films shows that aluminium atoms extend to the most external part of the surface and they are all tri-coordinated. Calcium atoms are set in the sub layer part of the surface and they produce a depolymerization of the network. In classical MD, tri-coordinated aluminium atoms produce an important electric field above the surface. With non bridging oxygens, they constitute attractive sites for single water molecules. (author)
Ab initio lattice dynamics of complex structures
DEFF Research Database (Denmark)
Voss, Johannes
2008-01-01
In this thesis, density functional theory is applied in a study of thermodynamic properties of so-called complex metal hydrides, which are promising materials for hydrogen storage applications. Since the unit cells of these crystals can be relatively large with many symmetrically inequivalent...... atomic coordinates, we have developed a new numerical optimization scheme, which allows for a fast convergence of the coordinate relaxation. Moreover, a method for the efficient calculation of phonon frequencies has been developed, which is based on a combination of density functional theory calculations...
Energy Technology Data Exchange (ETDEWEB)
Arai, K.; Aoyama, S.; Suzuki, Y.; Descouvemont, P.; Baye, D. [Division of General Education, Nagaoka National College of Technology, 888 Nishikatakai, Nagaoka, Niigata, 940-8532 (Japan); Center for Academic Information Service, Niigata University, Niigata 950-2181 (Japan); Department of Physics, Niigata University, Niigata 950-2181, Japan and RIKEN Nishina Center, Wako 351-0198 (Japan); Physique Nucleaire Theorique et Physique Mathematique, C.P.229, Universite Libre de Bruxelles, B 1050 Brussels (Belgium); Physique Quantique, CP165/82, Universite Libre de Bruxelles, B-1050 Brussels (Belgium)
2012-11-12
The {sup 2}H(d,p){sup 3}H, {sup 2}H(d,n){sup 3}He, and {sup 2}H(d,{gamma}){sup 4}He reactions at low energies are studied with realistic nucleon-nucleon interactions in an ab initio approach. The obtained astrophysical S-factors are all in very good agreement with experiment. The most important channels for both transfer and radiative capture are all found to dominate thanks to the tensor force.
Challenges for ab initio defect modeling
Energy Technology Data Exchange (ETDEWEB)
Deak, Peter [U. Bremen, Bremen Center for Computational Materials Science, POB 330440, D-28334 Bremen (Germany)], E-mail: deak@bccms.uni-bremen.de; Aradi, Balint; Frauenheim, Thomas [U. Bremen, Bremen Center for Computational Materials Science, POB 330440, D-28334 Bremen (Germany); Gali, Adam [Budapest University of Technology and Economics, Dept. Atomic Physics, H-1521 Budapest (Hungary)
2008-12-05
Supercell calculations using density functional theory with local or semi-local exchange functionals have proved to be a very successful tool in defect engineering, apparently leading to some degree of overconfidence lately. With a case study on selected defects, we demonstrate that the approximations involved in these functionals lead not only to an underestimation of the gap but also to related errors in the total energy difference of two defect configurations (be these in the same or different charge states). Sometimes the error is so serious, that even the common expectation: 'DFT provides the correct ground state' is refuted. We also demonstrate, that semi-empirical hybrid exchange functionals, which reproduce the correct band gap, give good total energy differences even in these cases. In such calculations, the position of Kohn-Sham gap levels with respect to the band edges gives a good estimation of the vertical ionization energy. Based on that, we propose a simple correction scheme for checking the necessity of extended total energy calculations with a hybrid functional.
Ab initio study of the complexes of first-row transition-metal ions with CH, CH2, and CH3
Institute of Scientific and Technical Information of China (English)
李吉海; 冯大诚; 冯圣玉
1999-01-01
The geometries and bonding characteristics of the complexes of the first-row transition-metal ions with CH, CH2 and CH3 were investigated by ab initio molecular orbital theory. MCH+ and MCH2+ are linear and coplanar, re spectively. Both of them are with obvious treble or double bond characteristics, but these multiple bonds are mostly "im perfect". The calculated bond dissociation energies of C--M+, C=M+ and C≡M+ are mostly close to the experi mental values, and appear in similar periodic trends from Sc to Zn.
Altun, Ahmet; Yokoyama, Shozo; Morokuma, Keiji
2008-01-01
We have investigated photoabsorption spectra of bovine rhodopsin and its mutants (E122Q and E113Q) by hybrid quantum mechanical/molecular mechanical (QM/MM) calculations as well as retinal in vacuo by pure QM calculations, employing multireference (MR) ab initio and TD-B3LYP methods. The sophisticated MR-SORCI+Q and MRCISD+Q methods extrapolated with respect to adopted approximations can reproduce the experimental absorption maxima of retinal very well. The relatively inexpensive MR-DDCI2+Q m...
Mayo, Michael L.; Ray, Asok K.
2003-01-01
Ab initio self-consistent total energy calculations using second order Moller-Plesset perturbation theory and Hay-Wadt effective core potentials for gallium and arsenic have been used to investigate the chemisorption of atomic oxygen on the Ga-rich GaAs (100) (2 x 1) and beta(4 x 2) surfaces. Finite sized hydrogen saturated clusters with the experimental zinc-blende lattice constant of 5.654 angstroms and the energy optimized surface Ga dimer bond length of 2.758 angstroms have been used to m...
Lumbroso, H.; Liégeois, C.; Pappalardo, G. C.; Grassi, A.
From the ab initio molecular energies of the possible conformers and from a classical dipole moment analysis of 2-oxopyrrolidin-l-ylacetamide (μ = 4.02 D in dioxan at 30.0°C), the preferred conformation in solution of this novel nootropic agent has been determined. The exocyclic N-CH 2 bond is rotated in one sense by 90° and the exocyclic CH 2-C bond rotated in the same sense by 120° from the "planar" ( OO)- cis conformation. The structures of the two enantiomers in solution differ from that of the crystalline molecule.
Ab initio structure determination via powder X-ray diffraction
Indian Academy of Sciences (India)
Digamber G Porob; T N Guru Row
2001-10-01
Structure determination by powder X-ray diffraction data has gone through a recent surge since it has become important to get to the structural information of materials which do not yield good quality single crystals. Although the method of structure completion when once the starting model is provided is facile through the Rietveld refinement technique, the structure solution ab initio os still not push-button technology. In this article a survey of the recent development in this area is provided with an illustration of the structure determination of -NaBi3V2O10.
Electrostriction coefficient of ferroelectric materials from ab initio computation
Directory of Open Access Journals (Sweden)
Z. Jiang
2016-06-01
Full Text Available Electrostriction is an important material property that characterizes how strain changes with the development of polarization inside a material. We show that ab initio techniques developed in recent years can be exploited to compute and understand electrostriction of ferroelectric materials. Here, electrostriction coefficients of ferroelectric BaTiO3, PbTiO3, as well as dielectric BaZrO3, are obtained and analyzed. Possible causes of the difference between experimental and numerical results are discussed. We also identified that relative displacements between certain ions at a given polarization could be a good indicator of a material’s electrostriction property.
Accelerating ab initio molecular dynamics simulations by linear prediction methods
Herr, Jonathan D.; Steele, Ryan P.
2016-09-01
Acceleration of ab initio molecular dynamics (AIMD) simulations can be reliably achieved by extrapolation of electronic data from previous timesteps. Existing techniques utilize polynomial least-squares regression to fit previous steps' Fock or density matrix elements. In this work, the recursive Burg 'linear prediction' technique is shown to be a viable alternative to polynomial regression, and the extrapolation-predicted Fock matrix elements were three orders of magnitude closer to converged elements. Accelerations of 1.8-3.4× were observed in test systems, and in all cases, linear prediction outperformed polynomial extrapolation. Importantly, these accelerations were achieved without reducing the MD integration timestep.
Equations of state of heavy metals: ab initio approaches
International Nuclear Information System (INIS)
The determination of equations of states of heavy metals through ab initio calculation, i.e. without any adjustable parameter, allows to access to pressure and temperature thermodynamic conditions sometimes inaccessible to experiment. To perform such calculations, density functional theory (DFT) is a good starting point: when electronic densities are homogeneous enough, the local density approximation (LDA) remarkably accounts for thermodynamic properties of heavy metals, such as tantalum, or the light actinides, as well for static properties - equilibrium volume, elastic constants - as for dynamical quantities like phonon spectra. For heavier elements, like neptunium or plutonium, relativistic effects and strong electronic interactions must be taken into account, which requires more sophisticated theoretical approaches. (authors)
Ab initio calculations and modelling of atomic cluster structure
DEFF Research Database (Denmark)
Solov'yov, Ilia; Lyalin, Andrey G.; Solov'yov, Andrey V.;
2004-01-01
The optimized structure and electronic properties of small sodium and magnesium clusters have been investigated using it ab initio theoretical methods based on density-functional theory and post-Hartree-Fock many-body perturbation theory accounting for all electrons in the system. A new theoretical...... framework for modelling the fusion process of noble gas clusters is presented. We report the striking correspondence of the peaks in the experimentally measured abundance mass spectra with the peaks in the size-dependence of the second derivative of the binding energy per atom calculated for the chain...... of the noble gas clusters up to 150 atoms....
Accelerating Ab Initio Nuclear Physics Calculations with GPUs
Potter, Hugh; Maris, Pieter; Sosonkina, Masha; Vary, James; Binder, Sven; Calci, Angelo; Langhammer, Joachim; Roth, Robert; Çatalyürek, Ümit; Saule, Erik
2014-01-01
This paper describes some applications of GPU acceleration in ab initio nuclear structure calculations. Specifically, we discuss GPU acceleration of the software package MFDn, a parallel nuclear structure eigensolver. We modify the matrix construction stage to run partly on the GPU. On the Titan supercomputer at the Oak Ridge Leadership Computing Facility, this produces a speedup of approximately 2.2x - 2.7x for the matrix construction stage and 1.2x - 1.4x for the entire run.
Vibók, Á.; Halász, G. J.; Suhai, S.; Hoffman, D. K.; Kouri, D. J.; Baer, M.
2006-01-01
In this article we present the first ab initio study of the conical intersections (cis) and their electronic nonadiabatic coupling terms (NACTs) for the {N,H2} system. Efforts were made to reveal the location of cis between the two lower, 1A'2 and 2A'2 states—to be designated as (1,2) cis—and the cis between the two upper, 2A'2 and 3A'2 states—to be designated as the (2,3) cis—of this system. We found that these cis are located along the collinear {NHH) arrangement. The study is carried out by analyzing two-state magnitudes such as the (1,2) and (2,3) adiabatic-to-diabatic transformation angles (known also as the mixing angles) and the corresponding topological phases (known also as the Berry phases or the Longuet-Higgins phases). In addition, a detailed three-state study is carried out. Here the emphasis is on driving the diagonal elements of the topological D matrix and analyzing situations for which the corresponding nonadiabatic coupling matrix is quantized. The reliability of two-state results is carefully examined by comparing them with corresponding outcomes derived for the three-state study. In addition we also calculated the potential-energy surfaces related to the two lower states and studied to what extent they are affected by the (1,2) ci. The results obtained in this treatment were found to be in full agreement with the NACT's calculations.
Pozzi, C. G.; Fantoni, A. C.; Goeta, A. E.; Wilson, C. C.; Autino, J. C.; Punte, G.
2005-10-01
The molecular and crystal structures of the title compound have been determined from a single crystal neutron diffraction experiment at 100 K. A comparison between the main geometrical features and related properties of the in-crystal and the ab initio optimized free molecule structures has shown that crystal packing induces a significant distortion in the molecular geometry. Packing instead would only have a moderate effect on the observed intramolecular resonance assisted hydrogen bond. Supermolecular ab initio molecular orbital calculations have been performed on the six different dimers one molecule forms with its nine nearest neighbours. The obtained results clearly show that dispersion contributions dominate in the most strongly interacting dimers, in good qualitative accord with the predictions made by using different empirical potentials. A qualitative description of the most prominent inductive effects determined from the electron density deformation upon dimer formation is presented. Topological analyses of the dimers charge densities have been performed in the framework of the Bader's AIM theory and all the intermolecular bond critical points have been identified. An attempt to determine some of the interaction energies only from topological quantities made evident the practical limitations of such an approach.
Ab Initio Protein Structure Prediction Using Pathway Models
Directory of Open Access Journals (Sweden)
Christopher Bystroff
2006-04-01
Full Text Available Ab initio prediction is the challenging attempt to predict protein structures based only on sequence information and without using templates. It is often divided into two distinct sub-problems: (a the scoring function that can distinguish native, or native-like structures, from non-native ones; and (b the method of searching the conformational space. Currently, there is no reliable scoring function that can always drive a search to the native fold, and there is no general search method that can guarantee a significant sampling of near-natives. Pathway models combine the scoring function and the search. In this short review, we explore some of the ways pathway models are used in folding, in published works since 2001, and present a new pathway model, HMMSTR-CM, that uses a fragment library and a set of nucleation/propagation-based rules. The new method was used for ab initio predictions as part of CASP5. This work was presented at the Winter School in Bioinformatics, Bologna, Italy, 10Ã¢Â€Â“14 February 2003.
Ab initio dynamics of the cytochrome P450 hydroxylation reaction
Energy Technology Data Exchange (ETDEWEB)
Elenewski, Justin E.; Hackett, John C, E-mail: jchackett@vcu.edu [Department of Physiology and Biophysics and The Massey Cancer Center, School of Medicine, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23219-1540 (United States)
2015-02-14
The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.
Unified ab initio approaches to nuclear structure and reactions
Navrátil, Petr; Quaglioni, Sofia; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo
2016-05-01
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Be {({{p}},γ )}8{{B}} radiative capture. Finally, we highlight our efforts to describe transfer reactions including the 3H{({{d}},{{n}})}4He fusion.
Three-cluster dynamics within an ab initio framework
Quaglioni, S; Navrátil, P
2013-01-01
We introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method (NCSM/RGM). Energy-independent non-local interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schr\\"odinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to an $^4$He+$n+n$ description of $^6$He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the NCSM. Differences between the two calculations provide a measure of core ($^4$He) pola...
AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT
International Nuclear Information System (INIS)
We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grüneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.
Unified ab initio approaches to nuclear structure and reactions
Navratil, Petr; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo
2016-01-01
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in {\\em ab initio} nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches - built upon the No-Core Shell Model - that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the $^6$He halo nucleus, of five- and six...
Abadias, G.; Kanoun, M. B.; Goumri-Said, S.; Koutsokeras, L.; Dub, S. N.; Djemia, Ph.
2014-10-01
The structure, phase stability, and mechanical properties of ternary alloys of the Zr-Ta-N system are investigated by combining thin-film growth and ab initio calculations. Zr1-xTaxN films with 0≤x≤1 were deposited by reactive magnetron cosputtering in Ar +N2 plasma discharge and their structural properties characterized by x-ray diffraction. We considered both ordered and disordered alloys, using supercells and special quasirandom structure approaches, to account for different possible metal atom distributions on the cation sublattice. Density functional theory within the generalized gradient approximation was employed to calculate the electronic structure as well as predict the evolution of the lattice parameter and key mechanical properties, including single-crystal elastic constants and polycrystalline elastic moduli, of ternary Zr1-xTaxN compounds with cubic rocksalt structure. These calculated values are compared with experimental data from thin-film measurements using Brillouin light scattering and nanoindentation tests. We also study the validity of Vegard's empirical rule and the effect of growth-dependent stresses on the lattice parameter. The thermal stability of these Zr1-xTaxN films is also studied, based on their structural and mechanical response upon vacuum annealing at 850 °C for 3 h. Our findings demonstrate that Zr1-xTaxN alloys with Ta fraction 0.51⩽x⩽0.78 exhibit enhanced toughness, while retaining high hardness ˜30 GPa, as a result of increased valence electron concentration and phase stability tuning. Calculations performed for disordered or ordered structures both lead to the same conclusion regarding the mechanical behavior of these nitride alloys, in agreement with recent literature findings [H. Kindlund, D. G. Sangiovanni, L. Martinez-de-Olcoz, J. Lu, J. Jensen, J. Birch, I. Petrov, J. E. Greene, V. Chirita, and L. Hultman, APL Materials 1, 042104 (2013), 10.1063/1.4822440].
Yuan, Shuping; Si, Hongzong; Fu, Aiping; Chu, Tianshu; Tian, Fenghui; Duan, Yun-Bo; Wang, Jianguo
2011-02-10
Titanium silicalite-1 (TS-1) is an important catalyst for selective oxidation reactions. However, the nature and structure of the active sites and the mechanistic details of the catalytic reactions over TS-1 have not been well-understood, leaving a continuous debate on the genesis of active sites on the TS-1 surface in the literature. In this work, the location of Si vacancies and [Ti(OSi)(4)] and [Ti(OSi)(3)OH] sites in the MFI (Framework Type Code of ZSM-5 (Zeolite Socony Mobile-Five)) framework has been studied using a full ab initio method with 40T clusters with a Si:Ti molar ratio of 39:1. It was shown that the former four energetically favorable sites for Si vacancies are T6, T12, T4, and T8 and for Ti centers of [Ti(OSi)(4)] are T10, T4, T8 and T11, being partially the same sites. Whether by replacing Si vacancies or substituting the fully coordinated Si sites, the most preferential site for Ti is T10, which indicates that the insertion mechanism does not affect the favorable sites of Ti in the MFI lattice. For the defective [Ti(OSi)(3)OH] sites, it was found that the Si vacancy at T6 with a Ti at its neighboring T9 site (T6-def-T9-Ti pair) is the most energetically favorable one, followed by a T6-def-T5-Ti pair with a small energy gap. These findings are significant to elucidate the nature of the active sites and the mechanism of reactions catalyzed by TS-1 and to design the TS-1 catalyst.
Energy Technology Data Exchange (ETDEWEB)
Kaminska, A., E-mail: kaminska@ifpan.edu.pl [Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 01-142 Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszynski University, Dewajtis 5, 01-815 Warsaw (Poland); Strak, P.; Sakowski, K. [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw (Poland); Borysiuk, J. [Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 01-142 Warsaw (Poland); Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Sobczak, K.; Domagala, J. Z. [Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 01-142 Warsaw (Poland); Beeler, M.; Monroy, E. [Université Grenoble-Alpes, 38000 Grenoble (France); CEA Grenoble, INAC-SP2M, 17 av. des Martyrs, 38000 Grenoble (France); Grzanka, E. [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw (Poland); TopGaN Ltd. Sokolowska 29/37, 01-142 Warsaw (Poland); Krukowski, S. [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw (Poland); Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw (Poland)
2016-01-07
The results of comprehensive theoretical and experimental study of binary GaN/AlN multi-quantum well (MQW) systems oriented along polar c-direction of their wurtzite structure are presented. A series of structures with quantum wells and barriers of various thicknesses were grown by plasma-assisted molecular-beam epitaxy and characterized by x-ray diffraction and transmission electron microscopy. It was shown that in general the structures of good quality were obtained, with the defect density decreasing with increasing quantum well thickness. The optical transition energies in these structures were investigated comparing experimental measurements with ab initio calculations of the entire GaN/AlN MQW structure depending on the QW widths and strains, allowing for direct determination of the energies of optical transitions and the electric fields in wells/barriers by electric potential double averaging procedure. Photoluminescence (PL) measurements revealed that the emission efficiency as well as the shape of luminescence spectra correlated well with their structural quality. Additionally, due to the Quantum-Confined Stark Effect, the emission energy decreased by over 1 eV for quantum well thicknesses increasing from 1 nm up to 6 nm, and this effect was accompanied by the drastic drop of the PL efficiency. The experimental results are consistent with theoretical models. Comparison of experimental data obtained by a number of different characterization techniques with the density functional theory results received on the same geometry structure allowed to prove directly the theoretical models and to determine the polarization and the oscillator strengths in the AlN/GaN nitride systems for the first time.
Boilleau, Corentin; Suaud, Nicolas; Guihéry, Nathalie
2012-12-01
In spin-crossover (SCO) compounds exhibiting a light induced excited spin state trapping (LIESST) effect, the thermodynamic T1/2 and kinetic T(LIESST) temperature values depend on the features of the potential energy surfaces (PES) of the two lowest singlet and quintet states but also on vibrational contributions, collective effects, such as electrostatics, for instance, spin-orbit couplings to a lesser extent, etc. In this work, the question of the link between the shape of the PES of SCO compounds exhibiting a LIESST effect and their first coordination sphere structure is addressed from wave function theory based ab initio calculations. Fe(II) complexes based on model ligands suited to reproduce the main characteristics of the PES of such compounds are distorted to emphasize selectively the role played by the metal-ligand distances and the ligand-metal-ligand angles. The studied angular deformations are those usually observed in many Fe(L)2(NCS)2 complexes. It is shown that the larger the deformation between the low spin and high spin equilibrium geometries, the higher the energy barrier from the high spin state and the weaker the energy difference between the bottom of the wells. These results corroborate observations made by experimentalists on a large number of complexes. While the PES features only constitutes one of the contributions to these temperatures, it is worth noticing that, relating T1/2 to the energy difference between the bottoms of the singlet and quintet wells and the T(LIESST) to the energy barrier from the quintet bottom well, the same slope of the empirical law T(LIESST) = -0.3T1/2+T0 is observed.
International Nuclear Information System (INIS)
The results of comprehensive theoretical and experimental study of binary GaN/AlN multi-quantum well (MQW) systems oriented along polar c-direction of their wurtzite structure are presented. A series of structures with quantum wells and barriers of various thicknesses were grown by plasma-assisted molecular-beam epitaxy and characterized by x-ray diffraction and transmission electron microscopy. It was shown that in general the structures of good quality were obtained, with the defect density decreasing with increasing quantum well thickness. The optical transition energies in these structures were investigated comparing experimental measurements with ab initio calculations of the entire GaN/AlN MQW structure depending on the QW widths and strains, allowing for direct determination of the energies of optical transitions and the electric fields in wells/barriers by electric potential double averaging procedure. Photoluminescence (PL) measurements revealed that the emission efficiency as well as the shape of luminescence spectra correlated well with their structural quality. Additionally, due to the Quantum-Confined Stark Effect, the emission energy decreased by over 1 eV for quantum well thicknesses increasing from 1 nm up to 6 nm, and this effect was accompanied by the drastic drop of the PL efficiency. The experimental results are consistent with theoretical models. Comparison of experimental data obtained by a number of different characterization techniques with the density functional theory results received on the same geometry structure allowed to prove directly the theoretical models and to determine the polarization and the oscillator strengths in the AlN/GaN nitride systems for the first time
Li, Zhe; Wu, Yinuo; Feng, Ling-Jun; Wu, Ruibo; Luo, Hai-Bin
2014-12-01
Phosphodiesterases (PDEs) are the sole enzymes hydrolyzing the important second messengers cGMP and cAMP and have been identified as therapeutic targets for several diseases. The most successful examples are PDE5 inhibitors (i.e., sildenafil and tadalafil), which have been approved for the treatment of male erectile dysfunction and pulmonary hypertension. However, the side effects mostly due to nonselective inhibition toward other PDE isoforms, set back the clinical usage of PDE5 inhibitors. Until now, the exact catalytic mechanism of the substrate cGMP by PDE5 is still unclear. Herein, the first computational study on the catalytic hydrolysis mechanism of cGMP for PDE5 (catalytic domain) is performed by employing the state-of-the-art ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations. Our simulations show a SN2 type reaction procedure via a highly dissociated transition state with a reaction barrier of 8.88 kcal/mol, which is quite different from the previously suggested hydrolysis mechanism of cAMP for PDE4. Furthermore, the subsequent ligand exchange and the release of the product GMP have also been investigated by binding energy analysis and MD simulations. It is deduced that ligand exchange would be the rate-determining step of the whole reaction, which is consistent with many previous experimental results. The obtained mechanistic insights should be valuable for not only the rational design of more specific inhibitors toward PDE5 but also understanding the general hydrolysis mechanism of cGMP-specific PDEs. PMID:26583228
Sambathkumar, K; Jeyavijayan, S; Arivazhagan, M
2015-08-01
Combined experimental and theoretical studies were conducted on the molecular structure and vibrational spectra of 4-AminoPhthalhydrazide (APH). The FT-IR and FT-Raman spectra of APH were recorded in the solid phase. The molecular geometry and vibrational frequencies of APH in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking 6-311+G(d,p) basis set. The optimized geometric bond lengths and bond angles obtained by HF and B3LYP method show best agreement with the experimental values. Comparison of the observed fundamental vibrational frequencies of APH with calculated results by HF and density functional methods indicates that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems. The difference between the observed and scaled wave number values of most of the fundamentals is very small. A detailed interpretation of the NMR spectra of APH was also reported. The theoretical spectrograms for infrared and Raman spectra of the title molecule have been constructed. UV-vis spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were performed by time dependent density functional theory (TD-DFT) approach. Finally the calculations results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra. And the temperature dependence of the thermodynamic properties of constant pressure (Cp), entropy (S) and enthalpy change (ΔH0→T) for APH were also determined. PMID:25829160
Tasinato, Nicola; Regini, Giorgia; Stoppa, Paolo; Pietropolli Charmet, Andrea; Gambi, Alberto
2012-06-01
Difluoromethane (CH(2)F(2), HFC-32) is a molecule used in refrigerant mixtures as a replacement of the more environmentally hazardous, ozone depleting, chlorofluorocarbons. On the other hand, presenting strong vibration-rotation bands in the 9 μm atmospheric window, it is a greenhouse gas which contributes to global warming. In the present work, the vibrational and ro-vibrational properties of CH(2)F(2), providing basic data for its atmospheric modeling, are studied in detail by coupling medium resolution Fourier transform infrared spectroscopy to high-level electronic structure ab initio calculations. Experimentally a full quantum assignment and accurate integrated absorption cross sections are obtained up to 5000 cm(-1). Ab initio calculations are carried out by using CCSD(T) theory and large basis sets of either the correlation consistent or atomic natural orbital hierarchies. By using vibrational perturbation theory to second order a complete set of vibrational and ro-vibrational parameters is derived from the ab initio quartic anharmonic force fields, which well compares with the spectroscopic constants retrieved experimentally. An excellent agreement between theory and experiment is achieved for vibrational energy levels and integrated absorption cross sections: transition frequencies up to four quanta of vibrational excitation are reproduced with a root mean square deviation (RMSD) of 7 cm(-1) while intensities are predicted within few km mol(-1) from the experiment. Basis set performances and core correlation effects are discussed throughout the paper. Particular attention is focused in the understanding of the anharmonic couplings which rule the vibrational dynamics of the |ν(1)>, |2ν(8)>, |2ν(2)> three levels interacting system. The reliability of the potential energy and dipole moment surfaces in reproducing the vibrational eigenvalues and intensities as well as in modeling the vibrational and ro-vibrational mixings over the whole 400-5000 cm(-1
Ab initio potential energy surface for the highly nonlinear dynamics of the KCN molecule
Energy Technology Data Exchange (ETDEWEB)
Párraga, H.; Arranz, F. J., E-mail: fj.arranz@upm.es; Benito, R. M., E-mail: rosamaria.benito@upm.es [Grupo de Sistemas Complejos, ETSI Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid (Spain); Borondo, F., E-mail: f.borondo@uam.es [Departamento de Química and Instituto de Ciencias Matemáticas (ICMAT), Universidad Autónoma de Madrid, Cantoblanco, 28049-Madrid (Spain)
2013-11-21
An accurate ab initio quantum chemistry study at level of quadratic configuration interaction method of the electronic ground state of the KCN molecule is presented. A fitting of the results to an analytical series expansion was performed to obtain a global potential energy surface suitable for the study of the associated vibrational dynamics. Additionally, classical Poincaré surfaces of section for different energies and quantum eigenstates were calculated, showing the highly nonlinear behavior of this system.
Sahoo, B. K.
2010-01-01
We have studied the correlation effects in Cs and Fr arising from the interplay of the residual Coulomb interaction to all orders and the neutral weak interaction which gives rise to the parity violating electric dipole transition to first order, within the framework of the relativistic coupled-clus
DEFF Research Database (Denmark)
Chaban, Vitaly V.; Prezhdo, Victor; Prezhdo, Oleg
2013-01-01
Nonadiabatic molecular dynamics combined with time-domain density functional theory are used to study electron transfer (ET) from a CdSe quantum dot (QD) to the C-60 fullerene, occurring in several types of hybrid organic/inorganic nanocomposites. By unveiling the time dependence of the ET process...
Ab initio study of metastable layered perovskites R2Ti2O7 (R = Sm and Gd)
Sayede, Adlane; Bruyer, Emilie; Springborg, Michael
2012-09-01
The structural, electronic, and ferroelectric properties of metastable R2Ti2O7(R= Sm and Gd) layered perovskites materials are investigated by first-principles density functional theory calculations. The computed structural parameters are found to be in good agreement with experimental findings. The calculated spontaneous polarizations of the studied titanates are found to be larger than the spontaneous polarization of the usual R2Ti2O7 layered perovskites materials. GGA+U electronic structures predict a good photocatalytic activity for the studied compounds, in particular for Gd2Ti2O7, which lacks electron-carriers trapping in the conduction band. From the results of the total energy and the polarization as functions of structure we estimate the responses of the materials to external electrostatic fields.
AB INITIO STUDY OF THE POSSIBLE SINGLE-CENTER UNITS FOR BINUCLEAR IRON COMPLEX [Fe2(bpym3Cl4
Directory of Open Access Journals (Sweden)
Tihonovschi Andrei
2008-12-01
Full Text Available In present work we study two possible single-center units for binuclear iron complex Fe2(bpym3Cl4 –[Fe(bpym3]2+ and Fe(bpym2Cl2. The obtained ground states for both studied systems are singlet states. In the case of Fe(bpym2Cl2 the lowest excited states were calculated to be 240cm-1 (triplet and 660cm-1 (quintet above the ground state and so are placed according to Lande rule. These states could be populated at room temperatures. For [Fe(bpym3]2+ first excited state was found to be about 6000cm-1 above the ground state and so cannot be populated at normal temperatures.
Low-energy electron scattering from CO. 2: Ab-initio study using the frame-transformation theory
Chandra, N.
1976-01-01
The Wigner-Eisenbud R matrix method has been combined with the frame transformation theory to study electron scattering from molecular systems. The R matrix, calculated at the boundary point of the molecular core radius, has been transformed to the space frame in order to continue the solution of the scattering equations in the outer region where rotational motion of the nuclei is taken into account. This procedure has been applied to a model calculation of thermal energy electron scattering from CO.
Does borazine-water behave like benzene-water? A matrix isolation infrared and ab initio study
Mishra, P.; Verma, K.; Bawari, D.; Viswanathan, K. S.
2016-06-01
Borazine is isoelectronic with benzene and is popularly referred to as inorganic benzene. The study of non-covalent interactions with borazine and comparison with its organic counterpart promises to show interesting similarities and differences. The motivation of the present study of the borazine-water interaction, for the first time, stems from such interesting possibilities. Hydrogen-bonded complexes of borazine and water were studied using matrix isolation infrared spectroscopy and quantum chemical calculations. Computations were performed at M06-2X and MP2 levels of theory using 6-311++G(d,p) and aug-cc-pVDZ basis sets. At both the levels of theory, the complex involving an N-H⋯O interaction, where the N-H of borazine serves as the proton donor to the oxygen of water was found to be the global minimum, in contrast to the benzene-water system, which showed an H-π interaction. The experimentally observed infrared spectra of the complexes corroborated well with our computations for the complex corresponding to the global minimum. In addition to the global minimum, our computations also located two local minima on the borazine-water potential energy surface. Of the two local minima, one corresponded to a structure where the water was the proton donor to the nitrogen of borazine, approaching the borazine ring from above the plane of the ring; a structure that resembled the global minimum in the benzene-water H-π complex. The second local minimum corresponded to an interaction of the oxygen of water with the boron of borazine, which can be termed as the boron bond. Clearly the borazine-water system presents a richer landscape than the benzene-water system.
Does borazine-water behave like benzene-water? A matrix isolation infrared and ab initio study.
Mishra, P; Verma, K; Bawari, D; Viswanathan, K S
2016-06-21
Borazine is isoelectronic with benzene and is popularly referred to as inorganic benzene. The study of non-covalent interactions with borazine and comparison with its organic counterpart promises to show interesting similarities and differences. The motivation of the present study of the borazine-water interaction, for the first time, stems from such interesting possibilities. Hydrogen-bonded complexes of borazine and water were studied using matrix isolation infrared spectroscopy and quantum chemical calculations. Computations were performed at M06-2X and MP2 levels of theory using 6-311++G(d,p) and aug-cc-pVDZ basis sets. At both the levels of theory, the complex involving an N-H⋯O interaction, where the N-H of borazine serves as the proton donor to the oxygen of water was found to be the global minimum, in contrast to the benzene-water system, which showed an H-π interaction. The experimentally observed infrared spectra of the complexes corroborated well with our computations for the complex corresponding to the global minimum. In addition to the global minimum, our computations also located two local minima on the borazine-water potential energy surface. Of the two local minima, one corresponded to a structure where the water was the proton donor to the nitrogen of borazine, approaching the borazine ring from above the plane of the ring; a structure that resembled the global minimum in the benzene-water H-π complex. The second local minimum corresponded to an interaction of the oxygen of water with the boron of borazine, which can be termed as the boron bond. Clearly the borazine-water system presents a richer landscape than the benzene-water system. PMID:27334162
Ab initio study of energetics and magnetism of Fe, Co and Ni along the trigonal deformation path
Energy Technology Data Exchange (ETDEWEB)
Zeleny, Martin [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Brno (Czech Republic); Friak, Martin [Max-Planck Institut fuer Eisenforschung, GmbH, Duesseldorf (Germany); Institute of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno (Czech Republic); Sob, Mojmir [Department of Chemistry, Faculty of Science, Masaryk University, Brno (Czech Republic); Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Brno (Czech Republic)
2011-07-01
We have calculated total energies of iron, cobalt and nickel in several magnetic phases as a function of atomic volume and trigonal deformation and found the phase boundaries between various magnetic modifications in Fe and Ni. In case of Ni, these phase boundaries occur even at the experimental atomic volume. On the other hand, Co keeps its ferromagnetic order in the whole region of the volume and shape deformation studied. Fe does not exhibit any transition between the ferromagnetic and non-magnetic arrangement, but at low atomic volumes around the fcc structure, phase boundaries between the ferromagnetic high-spin, ferromagnetic low-spin and antiferromagnetic states have been found.
A numerical ab initio study of harmonic generation from a ring-shaped model molecule in laser fields
Bauer, D
2001-01-01
When a laser pulse impinges on a molecule which is invariant under certain symmetry operations selection rules for harmonic generation (HG) arise. In other words: symmetry controls which channels are open for the deposition and emission of laser energy---with the possible application of filtering or amplification. We review the derivation of HG selection rules and study numerically the interaction of laser pulses with an effectively one-dimensional ring-shaped model molecule. The harmonic yields obtained from that model and their dependence on laser frequency and intensity are discussed. In a real experiment obvious candidates for such molecules are benzene, other aromatic compounds, or even nanotubes.
Liu, Xiaojie; Wang, C. Z.; Hupalo, M.; Yao, Y. X.; Tringides, M. C.; Lu, W. C.; Ho, K. M.
2010-12-01
Adsorption of rare-earth (RE) adatoms (Nd, Gd, Eu, and Yb) on graphene was studied by first-principles calculations based on the density-functional theory. The calculations show that the hollow site of graphene is the energetically favorable adsorption site for all the RE adatoms studied. The adsorption energies and diffusion barriers of Nd and Gd on graphene are found to be larger than those of Eu and Yb. Comparison with scanning tunneling microscopy experiments for Gd and Eu epitaxially grown on graphene confirms these calculated adsorption and barrier differences, since fractal-like islands are observed for Gd and flat-topped crystalline islands for Eu. The formation of flat Eu islands on graphene can be attributed to its low diffusion barrier and relatively larger ratio of adsorption energy to its bulk cohesive energy. The interactions between the Nd and Gd adatoms and graphene cause noticeable in-plane lattice distortions in the graphene layer. Adsorption of the RE adatoms on graphene also induces significant electric dipole and magnetic moments.
Ab initio study of the bandgap engineering of Al1−xGaxN for optoelectronic applications
Amin, B.
2011-01-19
A theoretical study of Al1−xGaxN, based on the full-potential linearized augmented plane wave method, is used to investigate the variations in the bandgap,optical properties, and nonlinear behavior of the compound with the change in the Ga concentration. It is found that the bandgap decreases with the increase in Ga. A maximum value of 5.50 eV is determined for the bandgap of pure AlN, which reaches a minimum value of 3.0 eV when Al is completely replaced by Ga. The static index of refraction and dielectric constant decreases with the increase in the bandgap of the material, assigning a high index of refraction to pure GaN when compared to pure AlN. The refractive index drops below 1 for higher energy photons, larger than 14 eV. The group velocity of these photons is larger than the vacuum velocity of light. This astonishing result shows that at higher energies the optical properties of the material shifts from linear to nonlinear. Furthermore, frequency dependent reflectivity and absorption coefficients show that peak values of the absorption coefficient and reflectivity shift toward lower energy in the ultraviolet (UV) spectrum with the increase in Ga concentration. This comprehensive theoretical study of the optoelectronic properties predicts that the material can be effectively used in the optical devices working in the visible and UV spectrum.
Kar, Bishnu Prasad; Ramanathan, N.; Sundararajan, K.; Viswanathan, K. S.
2012-09-01
Conformations of dimethyl carbonate (DMC) were studied using matrix isolation infrared spectroscopy. Infrared spectra of DMC trapped in inert gas matrixes, using an effusive source at 298 and 423 K, showed evidence of both the ground state (cis-cis), and higher energy (cis-trans) conformers. Experiments were also performed using a supersonic jet source to deposit the matrix, to look for conformational cooling in the expansion process. The structures and vibrational frequencies of these conformers were computed at the B3LYP/6-31++G** level of theory. Natural bond orbital analyses were performed to understand the role of the delocalization interactions in conformational preferences. Complexes of DMC with H2O were also studied. A 1:1 DMC-H2O complex was identified in the matrix isolation experiments, where the carbonyl oxygen of DMC served as the proton acceptor for the hydrogen bonded complex. This observation was corroborated by computations performed on the complex at the B3LYP/6-31++G** level. Our computations also indicated another minimum, corresponding to an alkoxy bonded DMC-H2O complex, which was less exothermic; however, this complex was not identified in our experiments. Atoms-in-molecules theory was also performed to understand the nature of the intermolecular interaction in the DMC-H2O complex.
Saikia, Nabanita; Deka, Ramesh C
2013-09-01
The application of graphene and related nanomaterials like boron nitride (BN) nanosheets, BN-graphene hybrid nanomaterials, and graphene oxide (GO) for adsorption of anticancer chemotherapeutic camptothecin (CPT) along with the effect on electronic properties prior to functionalization and after functionalization has been reported using density functional theory (DFT) calculations. The inclusion of dispersion correction to DFT is instrumental in accounting for van der Waals π-π stacking between CPT and the nanomaterial. The adsorption of CPT exhibits significant strain within the nanosheets and noncovalent adsorption of CPT is thermodynamically favoured onto the nanosheets. In case of GO, surface incorporation of functional groups result in significant crumpling along the basal plane and the interaction is basically mediated by H-bonding rather than π-π stacking. Docking studies predict the plausible binding of CPT, CPT functionalized graphene and GO with topoisomerase I (top 1) signifying that CPT interacts through π stacking with AT and GC base pairs of DNA and in presence of nano support, DNA bases preferentially gets bound to the basal plane of graphene and GO rather than the edges. At a theoretical level of understanding, our studies point out the noncovalent interaction of CPT with graphene based nanomaterials and GO for loading and delivery of anticancer chemotherapeutic along with active binding to Top1 protein.
Energy Technology Data Exchange (ETDEWEB)
Murtaza, G., E-mail: murtaza@icp.edu.pk [Materials Modeling Laboratory, Department of Physics, Islamia College Peshawar (Pakistan); Gupta, S.K. [Department of Physics, Michigan Technological University, Houghton, MI 49931 (United States); Seddik, T. [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 Mascara (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 Mascara (Algeria); Alahmed, Z.A. [Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Ahmed, R. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Khachai, H. [Physics Department, Djillali Liabes University of Sidi Bel-Abbes (Algeria); Jha, P.K. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar 364001 (India); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia)
2014-06-01
Highlights: • REGa{sub 3} (RE = Sc or Lu) compounds are mechanical stabile. • Both ScGa{sub 3} and LuGa{sub 3} exhibit metallic behavior just like other REGa{sub 3} compounds. • Melting temperature T{sub m} (K) for ScGa{sub 3} and LuGa{sub 3} are 1244.2 and 1143.8. • High absorption observed in the visible energy region. • The present study would be helpful for future experimental/theoretical explorations. - Abstract: Structural, elastic, optoelectronic and thermodynamic properties of REGa{sub 3} (RE = Sc and Lu) compounds have been studied self consistently by employing state of the art full potential (FP) linearized (L) approach of augmented plane wave (APW) plus local orbitals method. Calculations were executed at the level of Perdew–Burke and Ernzerhof (PBE) parameterized generalized gradient approximation (GGA) for exchange correlation functional in addition to modified Becke–Johnson (mBJ) potential. Our obtained results of lattice parameters show reasonable agreement to the previously reported experimental and other theoretical studies. Analysis of the calculated band structure of ScGa{sub 3} and LuGa{sub 3} compounds demonstrates their metallic character. Moreover, a positive value of calculated Cauchy pressure, in addition to reflecting their ductile nature, endorses their metallic character as well. To understand optical behavior calculations related to the important optical parameters; real and imaginary parts of the dielectric function, reflectivity R(ω), refractive index n(ω) and electron energy-loss function L(ω) have also been performed. In the present work, thermodynamically properties are also investigated by employing lattice vibrations integrated in quasi harmonic Debye model. Obtained results of volume, heat capacity and Debye temperature as a function of temperature for both compounds, at different values of pressure, are found to be consistent. The calculated value of melting temperature for both compounds (ScGa{sub 3} and Lu
Ab initio study of the p-hole magnetism at polar surfaces of ZnO: the role of correlations
International Nuclear Information System (INIS)
A standard local density approximation and its self-interaction corrected version are applied to study spontaneous magnetization, promoted by localized p electron holes, of polar oxygen-terminated ZnO surfaces. The electronic properties and magnetic exchange interactions of three different facets are calculated. It is demonstrated that partially filled oxygen p orbitals of the polar surfaces exhibit magnetic moment formation and long range magnetic order leading to the occurrence of a ferromagnetic ground state. Monte Carlo simulations predict Curie temperatures above room temperature. In contrast to isolated defects in bulk materials, applying correlation corrections to the localized p-like surface states does not lead to a collapse of magnetic interaction: as the weakening of the magnetic interaction, caused by the reduced electronic overlap, is compensated by a strengthening due to an increase of the magnetic moments, the ferromagnetism can principally persist above room temperature, provided a large hole concentration exists. (paper)
Aksyonov, D A; Hickel, T; Neugebauer, J; Lipnitskii, A G
2016-09-28
The solution, grain boundary (GB) segregation, and co-segregation of carbon and oxygen atoms in α-titanium are studied using density functional theory. For five titanium tilt boundaries, including T1, T2, and C1 twin systems, we determine the GB structure, as well as GB energy and excess volume. The segregation energies and volumes of carbon and oxygen are calculated for 23 inequivalent interstitial voids, while for co-segregation 75 configurations are considered. It is obtained that depending on the type of the segregation void both a positive and a negative segregation process is possible. The physical reasons of segregation are explained in terms of the analysis of the void atomic geometry, excess volume and features of the electronic structure at the Fermi level. Although carbon and oxygen show qualitatively similar properties in α-Ti, several distinctions are observed for their segregation behavior and mutual interactions. PMID:27460043
Ab initio study of transport properties of an all-carbon molecular switch based on C20 molecule
Institute of Scientific and Technical Information of China (English)
OUYANG Fang-ping; XU Hui
2007-01-01
Choosing closed-ended armchair (5, 5) singlewall carbon nanotubes (CCNTs) as electrodes, we have investigated the electron transport properties across a carbon molecular junction consisting of a C20 molecule sandwiched between two semi-infinite carbon nanotubes. It is shown that the Landauer conductance of this carbon hybrid system can be tuned within several orders of magnitude not only by varying the tube-C20 distance, but more importantly by changing the orientation of the C20 molecule and rotating the C20 molecule or one of the tubes around the symmetry axis of the system at fixed distances. This fact could make this all-carbon molecular system a possible candidate for a nanoelectronic switching device. Moreover, our study also reveals that molecular configuration selection and structural relaxation would play an important role in the design of such devices.
Ab initio study of surface and interface effects on XANES and XMCD of Fe/BaTiO3 systems
Energy Technology Data Exchange (ETDEWEB)
Borek, Stephan; Chasse, Angelika; Govind, Remya Kunjuveettil; Trautmann, Martin; Schindler, Karl-Michael; Maznichenko, Igor [Institute of Physics, Martin-Luther-University Halle-Wittenberg (Germany); Babu, Vasili Hari; Denecke, Reinhard [Wilhelm-Ostwald Institute for Physical and Theoretical Chemistry, University Leipzig (Germany); Bondino, Federica; Malvestuto, Marco [IOM CNR, Laboratorio Nazionale TASC, Area Science Park, Basovizza (Italy); Ernst, Arthur [Max-Planck-Institut fuer Mikrostrukturphysik, Halle (Germany)
2011-07-01
The aim of our work is the spectroscopic characterization of multiferroic heterostructures by means of x-ray absorption spectroscopy (XAS). Starting form first-principles calculations of bulk BaTiO{sub 3} (BTO) the influence of surface and surface termination of BTO on x-ray absorption near edge structure (XANES) and x-ray magnetic circular dichroism (XMCD) is studied for different edges in BTO. In the case of iron layers on BTO, effects at the interface and of layer thickness on XANES and XMCD are considered by means of layer-resolved contributions within a multi-code approach. Calculations are shown in dependence on the direction of polarization of ferroelectric BTO (tetragonal phase). The calculated results are compared to experimental data.
Aksyonov, D. A.; Hickel, T.; Neugebauer, J.; Lipnitskii, A. G.
2016-09-01
The solution, grain boundary (GB) segregation, and co-segregation of carbon and oxygen atoms in α-titanium are studied using density functional theory. For five titanium tilt boundaries, including T1, T2, and C1 twin systems, we determine the GB structure, as well as GB energy and excess volume. The segregation energies and volumes of carbon and oxygen are calculated for 23 inequivalent interstitial voids, while for co-segregation 75 configurations are considered. It is obtained that depending on the type of the segregation void both a positive and a negative segregation process is possible. The physical reasons of segregation are explained in terms of the analysis of the void atomic geometry, excess volume and features of the electronic structure at the Fermi level. Although carbon and oxygen show qualitatively similar properties in α-Ti, several distinctions are observed for their segregation behavior and mutual interactions.
Ab-initio study of the coadsorption of Li and H on Pt(001), Pt(110) and Pt(111) surfaces
Energy Technology Data Exchange (ETDEWEB)
Saad, Farida [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria); Zemirli, Mourad, E-mail: zemirlimourad@mail.ummto.dz [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria); Benakki, Mouloud; Bouarab, Said [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria)
2012-02-15
The coadsorption of Li and H atoms on Pt(001), Pt(110) and Pt(111) surfaces is studied using density functional theory with generalised gradient approximation. In all calculations Li, H and the two topmost layers of the metal were allowed to relax. At coverage of 0.25 mono-layer in a p(2 Multiplication-Sign 2) unit cell, lithium adsorption at the hollow site for the three surfaces is favoured over top and bridge sites. The most favoured adsorption sites for H atom on the Pt(001) and Pt(110) surfaces are the top and bridge sites, while on Pt(111) surface the fcc site appears to be slightly favoured over the hcp site. The coadsorption of Li and atomic hydrogen shows that the interaction between the two adsorbates is stabilising when they are far from each other. The analysis of Li, H and Pt local density of states shows that Li strongly interacts with the Pt surfaces.
Institute of Scientific and Technical Information of China (English)
FU Wei-Wei; ZHOU Li-Xin; WAN Hua-Ping
2004-01-01
We have calculated the first hyperpolarizabilities of four squaric acid homologue molecules: 3,4-dithiohydroxy-3-cyclobutene-1,2-dione (OSSQ), 3,4-dithiohydroxy-3-cyclobutene-1, 2-dithione (SSSQ), 3,4-dithiohydroxy-3-cyclobutene-1,2-diselenone (SeSSQ) and 3,4-dithiohydroxy- 3-cyclobutene-1,2-ditellurone (TeSSQ). The correlation effect was investigated at the second-order Mφller-Plesset (MP2) perturbation and density functional theory (DFT) levels. The frequency disper- sion and solvent effect were considered to compare the theoretical values with the experimental observations. Based on all of these studies, it is worthy to point out that the heavy atom effect dis- covered for furan homologues is an influence on the first hyperpolarizabilities of squaric acid homologues.
Thiering, Gergő; Londero, Elisa; Gali, Adam
2014-10-21
Fluorescent nanodiamonds constitute an outstanding alternative to semiconductor quantum dots and dye molecules for in vivo biomarker applications, where the fluorescence comes from optically active point defects acting as color centers in the nanodiamonds. For practical purposes, these color centers should be photostable as a function of the laser power or the surface termination of nanodiamonds. Furthermore, they should exhibit a sharp and nearly temperature-independent zero-phonon line. In this study, we show by hybrid density functional theory calculations that nickel doped nanodiamonds exhibit the desired properties, thus opening the avenue to practical applications. In particular, harnessing the strong quantum confinement effect in molecule-sized nanodiamonds is very promising for achieving multicolor imaging by single nickel-related defects. PMID:25180791
Ab initio study of the reaction of propionyl (C2H5CO) radical with oxygen (O2).
Hou, Hua; Wang, Baoshan
2007-08-01
The reaction of propionyl radical with oxygen has been studied using the full coupled cluster theory with the complete basis set. This is the first time to gain a conclusive insight into the reaction mechanism and kinetics for this important reaction in detail. The reaction takes place via a chemical activation mechanism. The barrierless association of propionyl with oxygen produces the propionylperoxy radical, which decomposes to form the hydroxyl radical and the three-center alpha-lactone predominantly or the four-center beta-propiolactone. The oxidation of propionyl radical to carbon monoxide or carbon dioxide is not straightforward rather via the secondary decomposition of alpha-lactone and beta-propiolactone. Kinetically, the overall rate constant is almost pressure independent and it approaches the high-pressure limit around tens of torr of helium. At temperatures below 600 K, the rate constant shows negative temperature dependence. The experimental yields of the hydroxyl radical can be well reproduced, with the average energy transferred per collision -DeltaE=20-25 cm(-1) at 213 and 295 K (helium bath gas). At low pressures, together with the hydroxy radical, alpha-lactone is the major product, while beta-propiolactone only accounts for about one-fifth of alpha-lactone. At the high-pressure limit, the production of the propionylperoxy radical is dominant together with a fraction of the isomers. The infrared spectroscopy or the mass spectroscopy techniques are suggested to be employed in the future experimental study of the C2H5CO+O2 reaction. PMID:17688339
Königstein, Markus; Catlow, C. Richard A.
1998-10-01
We report a detailed computationally study of the stability of the alkaline earth metal peroxidesMO2(M=Ba, Sr, Ca, Mg, Be) with respect to decomposition into the corresponding oxidesMOand molecular oxygen using Hartree-Fock and density functional theory (DFT) techniques. A comparison between calculated and experimental binding energies indicates that the DFT method is most suitable for a correct description of the peroxide bond. The DFT reaction energies for the peroxide decompositionMO2→MO+{1}/{2}O2show that only BaO2and SrO2are thermodynamically stable compounds, while CaO2(in the calcium carbide structure), MgO2, and BeO2(in the pyrite structure) are energetically unstable with reaction energies of -24.7, -26.8, and -128.7kJ/mol, respectively, and are therefore unlikely to exist as pure compounds. The published calcium carbide structure for CaO2is probably incorrect, at least for pure calcium peroxide, since apart from the thermodynamical instability the compound is more stable in the pyrite structure by 25.5 kJ/mol. Our analysis suggests that the water and/or hydrogen peroxide content of experimentally prepared MgO2samples is necessary for the stabilization of the structure, while BeO2is clearly unstable under ambient conditions. We studied also the effect of the zero point energies and the entropies on the decomposition free energies and, for this purpose, performed atomistic lattice simulations based on interatomic potentials, which we derived from ourab initiodata; the results indicate a negligible effect of the zero point energies, while the entropy terms favor the decomposition reaction by ca. 20 kJ/mol at 298.15 K.
Chakrabarty, Aurab; Bouhali, Othmane; Mousseau, Normand; Becquart, Charlotte S.; El-Mellouhi, Fedwa
2016-08-01
Adsorption and dissociation of hydrocarbons on metallic surfaces represent crucial steps on the path to carburization, eventually leading to dusting corrosion. While adsorption of CO molecules on Fe surface is a barrier-less exothermic process, this is not the case for the dissociation of CO into C and O adatoms and the diffusion of C beneath the surface that are found to be associated with large energy barriers. In practice, these barriers can be affected by numerous factors that combine to favour the CO-Fe reaction such as the abundance of CO and other hydrocarbons as well as the presence of structural defects. From a numerical point of view, studying these factors is challenging and a step-by-step approach is necessary to assess, in particular, the influence of the finite box size on the reaction parameters for adsorption and dissociation of CO on metal surfaces. Here, we use density functional theory (DFT) total energy calculations with the climbing-image nudged elastic band method to estimate the adsorption energies and dissociation barriers for different CO coverages with surface supercells of different sizes. We further compute the effect of periodic boundary condition for DFT calculations and find that the contribution from van der Waals interaction in the computation of adsorption parameters is important as they contribute to correcting the finite-size error in small systems. The dissociation process involves carbon insertion into the Fe surface causing a lattice deformation that requires a larger surface system for unrestricted relaxation. We show that, in the larger surface systems associated with dilute CO-coverages, C-insertion is energetically more favourable, leading to a significant decrease in the dissociation barrier. This observation suggests that a large surface system with dilute coverage is necessary for all similar metal-hydrocarbon reactions in order to study their fundamental electronic mechanisms, as an isolated phenomenon, free from
Directory of Open Access Journals (Sweden)
Gümüs Hacer Pir
2015-06-01
Full Text Available Quantum chemical calculations have been performed to study the molecular geometry, 1H and 13C NMR chemical shifts, conformational, natural bond orbital (NBO and nonlinear optical (NLO properties of the 2-chloro-5-(2-hydroxyethyl-4- methoxy-6-methylpyrimidine molecule in the ground state using DFT and HF methods with 6-311++G(d,p basis set. The optimized geometric parameters and 1H and 13C NMR chemical shifts have been compared with the experimental values of the title molecule. The results of the calculations show excellent agreement between the experimental and calculated frequencies at B3LYP/6-311++G(d,p level. In order to provide a full understanding of the properties of the title molecule in the context of molecular orbital picture, the highest occupied molecular energy level (EHOMO, the lowest unoccupied molecular energy level (ELUMO, the energy difference (DE between EHOMO and ELUMO, electronegativity (χ, hardness (η and softness (S have been calculated using B3LYP/6-311++G(d,p and HF/6-311++G(d,p levels. The calculated HOMO and LUMO energies show that the charge transfer occurs within the title molecule.
Chakraborty, S.; Ghaisas, S. V.; Majumder, C.
2012-07-01
We report a first-principle investigation of the structure and electronic properties of small Sin (n = 1-6,9) clusters deposited on the Au(111) and Ag(111) surfaces. The calculations were performed using a plane wave based pseudopotential method under the framework of density functional theory. The results reveal the preference of Si atom to be adsorbed on the h.c.p. site of the metal (111) surfaces with strong binding energy. We study monolayer (ML) deposition as well as the cluster deposition on both the surfaces. The clusters introduce interlayer forces in the adsorbate. Based on PDOS (projected density of states) analysis it is found that Si atoms acquire charges from the Au/Ag surface. The binding energies are consistent with the known cohesive energy of Ag and Au silicides. The planar Sin cluster deposition on metal surfaces show that Au provides an adjustable surface with relatively strong Au-Si interaction while Ag-Si relatively weak interaction leading to dimerization of Si. The strong bonding with the surface atoms is a result of p-d hybridization. Some of the 3-D clusters show shape distortions after deposition on metal surfaces. This leads to internal stresses after deposition. A statistical parameter is defined over PDOS. It helps to measure the state delocalization in energy. Implications of the Si-Metal interaction on the initial stages of growth are discussed.
Energy Technology Data Exchange (ETDEWEB)
Lau, E Y; Lightstone, F C; Colvin, M E
2006-02-10
Quantum mechanical calculations were performed to study the differences between the important radiopharmaceutical metals yttrium (Y) and indium (In) bound by DOTA and modified DOTA molecules. Energies were calculated at the MP2/6-31+G(d)//HF/6-31G(d) levels, using effective core potentials on the Y and In ions. Although the minimum energy structures obtained are similar for both metal ion-DOTA complexes, changes in coordination and local environment significantly affect the geometries and energies of these complexes. Coordination by a single water molecule causes a change in the coordination number and a change in the position of the metal ion in In-DOTA; but, Y-DOTA is hardly affected by water coordination. When one of the DOTA carboxylates is replaced by an amide, the coordination energy for the amide arm shows a large variation between the Y and In ions. Optimizations including water and guandinium moieties to approximate the effects of antibody binding indicate a large energy cost for the DOTA-chelated In to adopt the ideal conformation for antibody binding.
Ab initio studies on n-type and p-type Li4Ti5O12
Institute of Scientific and Technical Information of China (English)
Zhong Zhi-Yong; Nie Zheng-Xin; Du Yan-Lan; Ouyang Chu-Ying; Shi Si-Qi; Lei Min-Sheng
2009-01-01
This paper studies the structure and electronic properties of Li4Ti5O12, as anode material for lithium ion batteries,from first principles calculations. The results suggest that there are two kinds of unit cell of Li4Ti5O12: n-type and p-type. The two unit cells have different structures and electronic properties: the n-type with two 16d site Li ions is metallic by electron, while the p-type with three 16d Li ions is metallic by hole. However, the Li4Ti5O12 is an insulator.It is very interesting that one n-type cell and two p-type cells constitute one Li4Ti5O12 supercell which is insulating.The results show that the intercalation potential obtained with a p-type unit cell with one additional electron is quite close to the experimental value of 1.5 V.
Ab initio study of point defects in PbSe and PbTe: Bulk and nanowire
Energy Technology Data Exchange (ETDEWEB)
Wrasse, E. O. [Instituto de Física, Universidade Federal de Uberlândia, 38408-100, Uberlândia, MG, Brazil and Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Venezuela, P. [Instituto de Física, Universidade Federal Fluminense, 24210-346, Niteroi, RJ (Brazil); Baierle, R. J., E-mail: rbaierle@smail.ufsm.br [Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil)
2014-11-14
First principles investigations, within the spin-polarized density functional theory, are performed to study energetic stability and electronic properties of point defects (vacancies and antisites) in PbSe and PbTe: bulk and nanowire (NW). Our results show that the energetic stability of these defects is ruled by relaxation process. These defects have lower formation energies in the nanowire structures as compared to the bulk, being more stable in the surface of the NWs. We also show that in the bulk system only one charge state is stable, otherwise, due to the larger band gaps, more than one charge state may be stable in the NWs. In addition, we have investigated how the presence of intrinsic defects affects the electronic properties of bulk and NW systems. Vacancies give rise to new electronic states near to the edges of the valence and conduction bands while the energetic position of the electronic states from antisites depends on the charge state, being localized inside the band gap or near the edges of the valence or conduction bands. We discuss how these changes in the electronic properties due to intrinsic defects may affect the thermoelectric properties of PbSe and PbTe NWs.
Ab initio studies of [Fe4S4] ^2+/3+ clusters in metalloprotein MutY
Lin, Jong-Chin
2005-03-01
Iron sulfur clusters are present in the DNA repair protein MutY in a region highly homologous in species as diverse as E. Coli and Homo Sapiens, yet their function remains unknown. In MutY, this mixed valence cluster exists in two oxidation states, [Fe4S4]^2+/3+, with the stability depending upon the presence of DNA. We have studied the electronic structure and stability of these clusters using density functional theory, in particular the local orbital based SIESTA program. Our calculation shows that the energy difference between 2+ and 3+ forms is within the range of 0.1eV, which suggests that the redox process is reversible. We use this to propose a possible redox mechanism for modulating the rate for scanning for oxidized G-A mismatches in DNA by MutY ootnotetextM. Slutsky and L.A. Mirny, preprint q-bio.BM/0402005 at http://arxiv.org.. We note that this redox modulation mechanism for site recognition scanning may have broader generality.
International Nuclear Information System (INIS)
Quantum mechanical calculations were performed to study the differences between the important radiopharmaceutical metals yttrium (Y) and indium (In) bound by DOTA and modified DOTA molecules. Energies were calculated at the MP2/6-31+G(d)//HF/6-31G(d) levels, using effective core potentials on the Y and In ions. Although the minimum energy structures obtained are similar for both metal ion-DOTA complexes, changes in coordination and local environment significantly affect the geometries and energies of these complexes. Coordination by a single water molecule causes a change in the coordination number and a change in the position of the metal ion in In-DOTA; but, Y-DOTA is hardly affected by water coordination. When one of the DOTA carboxylates is replaced by an amide, the coordination energy for the amide arm shows a large variation between the Y and In ions. Optimizations including water and guandinium moieties to approximate the effects of antibody binding indicate a large energy cost for the DOTA-chelated In to adopt the ideal conformation for antibody binding
Arab, Fahima; Sahraoui, F. Ali; Haddadi, Khelifa; Bouhemadou, Abdelmadjid; Louail, Layachi
2016-05-01
Structural stability and mechanical and thermodynamic properties of the orthorhombic and trigonal MgSiN2 polymorphs (or-MgSiN2 and tr-MgSiN2) were investigated through density functional theory and quasi-harmonic Debye model (QHDM). Our calculations show that or-MgSiN2 is energetically the stable polymorph at low pressure, in agreement with previous experimental and theoretical study. Under pressure, a crystallographic transition from the orthorhombic structure to the trigonal one occurs around 25, 17.45 and 19.05 GPa as obtained from the generalized gradient approximation of Perdew-Wang (GGA-PW91), the generalized gradient approximation parameterized recently by Perdew et al (GGA-PBEsol) and the local density approximation developed by Ceperley and Alder and parameterized by Perdew and Zunger (LDA-CAPZ), respectively. Single-crystalline and polycrystalline elastic constants and related properties, namely Vickers hardness, acoustic Grüneisen parameter, minimum thermal conductivity, isotropic sound velocities and Debye temperature, were numerically estimated for both or-MgSiN2 and tr-MgSiN2. We have showed that the hardness of tr-MgSiN2 is comparable to that of the harder materials like c-BN and B6O. Temperature and pressure dependencies of volume, bulk modulus, thermal expansion, Grüneisen parameter, heat capacities and Debye temperature were investigated using QHDM.
AB INITIO STUDY OF OPTOELECTRONIC PROPERTIES OF SPINEL ZnAl2O4 BEYOND GGA AND LDA
Yousaf, Masood; Saeed, M. A.; Isa, Ahmad Radzi Mat; Rahnamaye Aliabad, H. A.; Noor, N. A.
2012-12-01
Electronic band structure and optical parameters of ZnAl2O4 are investigated by first-principles technique based on a new potential approximation, known as modified Becke-Johnson (mBJ). This method describes the excited states of insulators and semiconductors more accurately The recent direct band gap result by EV-GGA is underestimated by about 15% compared to our band gap value using mBJ-GGA. The value of the band gap of ZnAl2O4 decreases as follows: Eg(mBJ-GGA/LDA) > Eg(GGA) > Eg(LDA). The band structure base optical parametric quantities (dielectric constant, index of refraction, reflectivity and optical conductivity) are also calculated, and their variations with energy range are discussed. The first critical point (optical absorption's edge) in ZnAl2O4 occurs at about 5.26 eV in case of mBJ. This study about the optoelectronic properties indicates that ZnAl2O4 can be used in optical devices.
High accuracy ab initio studies of electron-densities for the ground state of Be-like atomic systems
Komasa, J.; Słupski, R.; Jankowski, K.; Wasilewski, J.; Teale, A. M.
2013-04-01
Benchmark results for electron densities in the ground states of Li-, Be, C2+, Ne6+, and Ar14+ have been generated from very accurate variational wave functions represented in terms of extensive basis sets of exponentially correlated Gaussian functions. For Ne6+, and Ar14+, the upper bounds to the energies improve over previous results known from the literature. For the remaining systems our bounds are from 0.1 to 1.1 μhartree higher than the most accurate ones. We present in graphical and, partially, numerical form results both for the radial electron densities and for the difference radial density distributions (DRD) (defined with respect to the Hartree-Fock radial density) that highlight the impact of correlation effects on electron densities. Next, we have employed these DRD distributions in studies of the performance of several broadly used orbital-based quantum-chemical methods in accounting for correlation effects on the density. Our computed benchmark densities for Be have been also applied for testing the possibility of using the mathematically strict result concerning exact atomic electron densities, obtained by Ahlrichs et al. [Phys. Rev. A 23, 2106 (1981), 10.1103/PhysRevA.23.2106], for the determination of the reliability range of computed densities in the long-range asymptotic region. The results obtained for Be are encouraging.
Adsorption and dissociation of O2 on MoSe2 and MoTe2 monolayers: ab initio study
Zhu, X. F.; Wang, L.; Chen, L. F.
2014-07-01
Adsorption and dissociation of O2 molecule on the MoSe2 and MoTe2 monolayers are studied by using density functional theory (DFT) within the generalized gradient approximation (GGA) and a supercell approach. The physisorbed O2 molecule on MoSe2 and MoTe2 with a magnetic moment (MM) close to that for an isolated O2 molecule has small adsorption energy and long distance from the surface. The dissociative adsorption of configuration R5(R6) is the most stable adsorption site, whereas the chemisorption of O2 is unfavorable at all adsorption sites. The dissociative adsorption of configuration R4 induces dramatic changes of electronic structures and localized spin polarization both for monolayer MoSe2 and MoTe2. The analysis of electronic density of states (DOSs) shows that the contribution of spin polarization is mainly from the hybridization between O-p, Se(Te)-p and Mo-d orbitals.
An ab initio study of niobium(n=2-11)clusters:structure,stability and magnetism
Institute of Scientific and Technical Information of China (English)
Ren Feng-Zhu; Wang Yuan-Xu; Zhang Guang-Biao; Wei Shu-Ke; Luo You-Hua
2009-01-01
The ground-state configurations of the Nbn(n2-11)clusters are studied through the first-principles calculations.It is found that niobium clusters(n=2-11)tend to form compact structures with low symmetry.The clusters with 4,8 and 10 atoms axe found to be magic and have relatively large highest occupied-lowest unoccupied molecular orbital(HOMO-LUMO)gaps.The Nbn clusters possess low magnetic moments,which exhibit an odd-even oscillational character.The analyses of calculated electronic density and population of the lowest-energy niobium clusters for n=2,3,5,7,9,11 show that the total magnetic moments of Nbn originate mainly from a few Nb atoms with longer spacings between them in most cases,while thcy are located on two Nb atoms for n=2,3,5.The total magnetic moments come mainly from the 4d local moments but with the exception of the Nb5 cluster.
Ab initio MRSDCI study on the low-lying electronic states of the lithium chloride molecule (LiCl).
Kurosaki, Yuzuru; Yokoyama, Keiichi
2012-08-14
Potential energy curves (PECs) for the low-lying states of the lithium chloride molecule (LiCl) have been calculated using the internally contracted multireference single- and double-excitation configuration interaction (MRSDCI) method with the aug-cc-PVnZ (AVnZ) and aug-cc-PCVnZ (ACVnZ) basis sets, where n = T, Q, and 5. First, we calculate PECs for 7 spin-orbit (SO)-free Λ-S states, X(1)Σ(+), A(1)Σ(+), (3)Σ(+), (1)Π, and (3)Π, and then obtain PECs for 13 SO Ω states, X0(+), A0(+), B0(+), 0(-)(I), 0(-)(II), 1(I), 1(II), 1(III), and 2, by diagonalizing the matrix of the electronic Hamiltonian plus the Breit-Pauli SO Hamiltonian. The MRSDCI calculations not including core orbital correlation through the single and double excitations are also performed with the AV5Z and ACV5Z basis sets. The Davidson corrections (Q0) are added to both the Λ-S and Ω state energies. Vibrational eigenstates for the obtained X(1)Σ(+) and X0(+) PECs are calculated by solving the time-independent Schrödinger equation with the grid method. Thus, the effects of basis set, core orbital correlation, and the Davidson correction on the X(1)Σ(+) and X0(+) PECs of LiCl are investigated by comparing the spectroscopic constants calculated from the PECs with one another and with experiment. It is confirmed that to accurately predict the spectroscopic constants we need to include core-electron correlation in the CI expansion and use the basis sets designed to describe core-valence correlation, i.e., ACVnZ. The SO PECs presented in this paper will be of help in the future study of diatomic alkali halide dynamics. PMID:22897271
Ab initio molecular dynamics simulation of hydrogen fluoride at several thermodynamic states
DEFF Research Database (Denmark)
Kreitmeir, M.; Bertagnolli, H.; Mortensen, Jens Jørgen;
2003-01-01
Liquid hydrogen fluoride is a simple but interesting system for studies of the influence of hydrogen bonds on physical properties. We have performed ab initio molecular dynamics simulations of HF at several thermodynamic states, where we examine the microscopic structure of the liquid as well...... as its static and dynamic properties. The results obtained show good agreement with well established data, and, moreover, we were able to show significant changes within the structure depending on the system's temperature and density....
Belousov, Roman; Prencipe, Mauro
2014-01-01
The isothermal compression of magnesium perovskite and postperovskite is examined through the F-f plot and the diagnostic plot of Vinet universal model theoretically from the ab initio quantum-mechanical calculations at the hybrid Hartree-Fock / Density Functional Theory level. A purely numerical approach, first time applied in this paper, shows that the discrepancies largely observed between studies on the perovskite and criticized in geophysical applications are due to the inadequate choice...
International Nuclear Information System (INIS)
We performed the simulation of near edge X-ray absorption fine structure (NEXAFS) spectra of a photo-reactive copolymer with considerably large monomer units by ab initio molecular orbital calculation, in order to explain the spectral change induced by irradiation of the linearly polarized near ultra-violet (LPNUV) light. The 'building block approach' is applied for the theoretical calculation to calculate the core-excited states of the polymer with such large monomer units; the monomer unit is divided into subunits, whose core-excited states are calculated individually, and the results are summed up to simulate the spectra of the polymer. With the result of the simulation, the peaks in the observed spectra were assigned. The spectral change after the LPNUV-irradiation is attributed to the change in the electronic structure caused by the breakdown of the π-conjugation system of chalconyl group after photo-dimerization
Chauhan, Mamta; Gupta, Dinesh C.
2015-12-01
The structural, electronic, mechanical, phase transition, and thermo-physical properties of refractory carbides, viz. VC, NbC, and TaC have been computed in stable B1 and high pressure B2 phases by means of two different ab initio calculations using pseudo- and full-potential schemes. These materials have mixed covalent-, metallic-, and ionic-type bonding. The calculations of elastic constants show the mechanical stability of these materials in B1 phase only. The brittle nature and anisotropy is observed in these materials in B1 phase. Non-central forces are present in both the phases. Elastic wave velocities and Debye temperature have also been calculated. The present results on structural, phase transition, elastic, and other properties are in reasonably good agreement with the available experimental and theoretical data. The calculations in high pressure phase need experimental verification.
Pierce, Levi C. T.; Markwick, Phineus R. L.; McCammon, J. Andrew; Doltsinis, Nikos L.
2011-01-01
A biased potential molecular dynamics simulation approach, accelerated molecular dynamics (AMD), has been implemented in the framework of ab initio molecular dynamics for the study of chemical reactions. Using two examples, the double proton transfer reaction in formic acid dimer and the hypothetical adiabatic ring opening and subsequent rearrangement reactions in methylenecyclopropane, it is demonstrated that ab initio AMD can be readily employed to efficiently explore the reactive potential energy surface, allowing the prediction of chemical reactions and the identification of metastable states. An adaptive variant of the AMD method is developed, which additionally affords an accurate representation of both the free-energy surface and the mechanism associated with the chemical reaction of interest and can also provide an estimate of the reaction rate. PMID:21548673
Knoop, S.; Żuchowski, P. S.; KÈ©dziera, D.; Mentel, Ł.; Puchalski, M.; Mishra, H. P.; Flores, A. S.; Vassen, W.
2014-08-01
We have investigated the ultracold interspecies scattering properties of metastable triplet He and Rb. We performed state-of-the-art ab initio calculations of the relevant interaction potential, and measured the interspecies elastic cross section for an ultracold mixture of metastable triplet He4 and Rb87 in a quadrupole magnetic trap at a temperature of 0.5 mK. Our combined theoretical and experimental study gives an interspecies scattering length a4+87=+17-4+1a0, which prior to this work was unknown. More general, our work shows the possibility of obtaining accurate scattering lengths using ab initio calculations for a system containing a heavy, many-electron atom, such as Rb.
Ab Initio Calculations and Raman and SERS Spectral Analyses of Amphetamine Species
DEFF Research Database (Denmark)
Berg, Rolf W.; Nørbygaard, Thomas; White, Peter C.;
2011-01-01
For the first time, the differences between the spectra of amphetamine and amphetamine-H+ and between different conformers are thoroughly studied by ab initio model calculations, and Raman and surface-enhanced Raman spectroscopy (SERS) spectra are measured for different species of amphetamine....... The spectra of amphetamine and amphetamine-H+ sampleswere obtained and assigned according to a comparison of the experimental spectra and the ab initio MO calculations, performed using the Gaussian 03W program (Gaussian, Inc., Pittsburgh, PA). The analyses were based on complete geometry minimization...... of the conformational energy of the S-plus-amphetamine molecule and the S-plus-amphetamine-H+ ion. The harmonic frequency calculations provide information about the characteristic features of the Raman spectra and the nature of the bonding in the molecule. It is concluded that vibrational bands from salt anions...
Electrical Resistivity of Na-K Binary Liquid Alloy Using Ab-Initio Pseudopotentials
Institute of Scientific and Technical Information of China (English)
Anil Thakur; P. K. Ahluwalia
2005-01-01
@@ The study of electrical resistivity of simple binary liquid alloy Na-K is presented as a function of concentration.Hard sphere diameters of sodium (Na) and potassium (K) are obtained through the inter ionic pair potentials evaluated using Troullier and Martins ab-initio pseudopotentials, which have been used to calculate partial structure factors S(q). The Ziman formula for calculating resistivity of binary liquid alloys has been used. Form factors are calculated using ab-initio pseudopotentials. The results suggest that the first principle approach for calculating pseudopotentials with in the frame work of Ziman formalism is quite successful in explaining the electrical resistivity data of compound forming binary liquid alloys.
Properties of metals during the heating by intense laser irradiation using ab initio simulations
Holst, Bastian; Recoules, Vanina; Torrent, Marc; Mazevet, Stephane
2011-10-01
Ultrashort laser pulses irradiating a target heat the electrons to very high temperatures. In contrast, the ionic lattice is unaffected on the time scale of the laser pulse since the heat capacity of electrons is much smaller than that of the lattice. This non-equilibrium system can be described as a composition of two subsystems: one consisting of hot electrons and the other of an ionic lattice at low temperature. We studied the effect of this intense electronic excitations on the optical properties of gold using ab initio simulations. We additionally use ab initio linear response to compute the phonon spectrum and the electron-phonon coupling constant within Density Functional Theory for several electronic temperatures of few eV. LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France.
Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation
Correa, J. D.; Cisternas, E.
2016-09-01
By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.
Ab initio modelling of the behaviour of point defects and fission products in nuclear fuel
International Nuclear Information System (INIS)
The aim of this work is to determine precisely the mechanisms of formation and migration of defects and fission products as well as the associated energies. Examples on uranium dioxide UO2 (standard nuclear fuel) and on uranium carbide UC (potential fuel for new generation reactors) are given. The obtained results are discussed and compared with the experimental results carried out. The ab initio method used is the Projector Augmented-Wave (PAW) method based on the density functional theory. The particular electronic properties of actinides are especially studied because, on account of their 5f orbitals more or less localized around the nucleus, it is difficult to model the actinide compounds by the DFT method. In particular, the modelling of the exchange-correlation interaction of the 5f electrons of UO2 requires approximations (as GGA+U) beyond those more currently used in ab initio calculations (LDA or GGA). (O.M.)
McKemmish, Laura K; Tennyson, Jonathan
2016-01-01
Accurate knowledge of the rovibronic near-infrared and visible spectra of vanadium monoxide (VO) is very important for studies of cool stellar and hot planetary atmospheres. Here, the required ab initio dipole moment and spin-orbit coupling curves for VO are produced. This data forms the basis of a new VO line list considering 13 different electronic states and containing over 277 million transitions. Open shell transition, metal diatomics are challenging species to model through ab initio quantum mechanics due to the large number of low-lying electronic states, significant spin-orbit coupling and strong static and dynamic electron correlation. Multi-reference configuration interaction methodologies using orbitals from a complete active space self-consistent-field (CASSCF) calculation are the standard technique for these systems. We use different state-specific or minimal-state CASSCF orbitals for each electronic state to maximise the calculation accuracy. The off-diagonal dipole moment controls the intensity...
The ab-initio density matrix renormalization group in practice
Energy Technology Data Exchange (ETDEWEB)
Olivares-Amaya, Roberto; Hu, Weifeng; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Nakatani, Naoki [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Catalysis Research Center, Hokkaido University, Kita 21 Nishi 10, Sapporo, Hokkaido 001-0021 (Japan)
2015-01-21
The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.
High-throughput ab-initio dilute solute diffusion database.
Wu, Henry; Mayeshiba, Tam; Morgan, Dane
2016-01-01
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308
Transport coefficients in diamond from ab-initio calculations
Löfâs, Henrik; Grigoriev, Anton; Isberg, Jan; Ahuja, Rajeev
2013-03-01
By combining the Boltzmann transport equation with ab-initio electronic structure calculations, we obtain transport coefficients for boron-doped diamond. We find the temperature dependence of the resistivity and the hall coefficients in good agreement with experimental measurements. Doping in the samples is treated via the rigid band approximation and scattering is treated in the relaxation time approximation. In contrast to previous results, the acoustic phonon scattering is the dominating scattering mechanism for the considered doping range. At room temperature, we find the thermopower, S, in the range 1-1.6 mV/K and the power factor, S2σ, in the range 0.004-0.16 μW /cm K2.
Efficient Ab initio Modeling of Random Multicomponent Alloys.
Jiang, Chao; Uberuaga, Blas P
2016-03-11
We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches. PMID:27015491
Efficient Ab initio Modeling of Random Multicomponent Alloys
Jiang, Chao; Uberuaga, Blas P.
2016-03-01
We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches.
Ab initio electronic structure and optical conductivity of bismuth tellurohalides
Schwalbe, Sebastian; Starke, Ronald; Schober, Giulio A H; Kortus, Jens
2016-01-01
We investigate the electronic structure, dielectric and optical properties of bismuth tellurohalides BiTeX (X = I, Cl, Br) by means of all-electron density functional theory. In particular, we present the ab initio conductivities and dielectric tensors calculated over a wide frequency range, and compare our results with the recent measurements by Akrap et al. , Makhnev et al. , and Rusinov et al. . We show how the low-frequency branch of the optical conductivity can be used to identify characteristic intra- and interband transitions between the Rashba spin-split bands in all three bismuth tellurohalides. We further calculate the refractive indices and dielectric constants, which in turn are systematically compared to previous predictions and measurements. We expect that our quantitative analysis will contribute to the general assessment of bulk Rashba materials for their potential use in spintronics devices.
Ab initio H2O in realistic hydrophilic confinement.
Allolio, Christoph; Klameth, Felix; Vogel, Michael; Sebastiani, Daniel
2014-12-15
A protocol for the ab initio construction of a realistic cylindrical pore in amorphous silica, serving as a geometric nanoscale confinement for liquids and solutions, is presented. Upon filling the pore with liquid water at different densities, the structure and dynamics of the liquid inside the confinement can be characterized. At high density, the pore introduces long-range oscillations into the water density profile, which makes the water structure unlike that of the bulk across the entire pore. The tetrahedral structure of water is also affected up to the second solvation shell of the pore wall. Furthermore, the effects of the confinement on hydrogen bonding and diffusion, resulting in a weakening and distortion of the water structure at the pore walls and a slowdown in diffusion, are characterized. PMID:25208765
Ab initio methods for electron-molecule collisions
International Nuclear Information System (INIS)
This review concentrates on the recent advances in treating the electronic aspect of the electron-molecule interaction and leaves to other articles the description of the rotational and vibrational motions. Those methods which give the most complete treatment of the direct, exchange, and correlation effects are focused on. Such full treatments are generally necessary at energies below a few Rydbergs (≅ 60 eV). This choice unfortunately necessitates omission of those active and vital areas devoted to the development of model potentials and approximate scattering formulations. The ab initio and model approaches complement each other and are both extremely important to the full explication of the electron-scattering process. Due to the rapid developments of recent years, the approaches that provide the fullest treatment are concentrated on. 81 refs
An Efficient Approach to Ab Initio Monte Carlo Simulation
Leiding, Jeff
2013-01-01
We present a Nested Markov Chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, is used to substantially decorrelate configurations at which the potential of interest is evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure is maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature \\beta^0), which is otherwise unconstrained. Local density approximation (LDA) results are presented for shocked states in argon at pressures from 4 to 60 GPa. Depending on the quality of the reference potential, the acceptance probability is enhanced by factors of 1.2-28 relative to unoptimized NMC sampling, and the procedure's efficiency is found to be competitive with that of standard ab initio...
Ab-initio melting curve and principal Hugoniot of tantalum
International Nuclear Information System (INIS)
We report first principles calculations of the melting curve and principal Hugoniot (P - V curve) of body centered cubic (bcc) tantalum in the pressure range 0-300 GPa. A description of lattice dynamics and thermal properties of bcc Ta using finite temperature density functional theory (DFT) is presented. The approach works within the projector augmented wave (PAW) implementation of DFT and explicitly treats in valence the 5p, 6s and 5d electrons. The principal Hugoniot (P - V curve), obtained using the Rankine-Hugoniot equation, is investigated using the generalized gradient approximations (GGA). Very good agreement with the shock experiments is obtained with GGA in all the range of pressure. We also report the temperature-pressure relation on the shock Hugoniot and the full ab-initio melting curve of Ta
Ab initio electronic stopping power of protons in bulk materials
Shukri, Abdullah Atef; Bruneval, Fabien; Reining, Lucia
2016-01-01
The electronic stopping power is a crucial quantity for ion irradiation: it governs the deposited heat, the damage profile, and the implantation depth. Whereas experimental data are readily available for elemental solids, the data are much more scarce for compounds. Here we develop a fully ab initio computational scheme based on linear response time-dependent density-functional theory to predict the random electronic stopping power (RESP) of materials without any empirical fitting. We show that the calculated RESP compares well with experimental data, when at full convergence, with the inclusion of the core states and of the exchange correlation. We evaluate the unexpectedly limited magnitude of the nonlinear terms in the RESP by comparing with other approaches based on the time propagation of time-dependent density-functional theory. Finally, we check the validity of a few empirical rules of thumbs that are commonly used to estimate the electronic stopping power.
Ab initio Potential Energy Surface for H-H2
Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene
1993-01-01
Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.
Ab initio investigation of the mechanical properties of copper
Institute of Scientific and Technical Information of China (English)
Liu Yue-Lin; Gui Li-Jiang; Jin Shuo
2012-01-01
Employing the ab initio total energy method based on the density functional theory with the generalized gradient approximation,we have systematically investigated the theoretical mechanical properties of copper (Cu).The theoretical tensile strengths are calculated to be 25.3 GPa,5.9 GPa,and 37.6 GPa for the fcc Cu single crystal in the [001],[110],and [111] directions,respectively.Among the three directions,the [110] direction is the weakest one due to the occurrence of structure transition at the lower strain and the weakest interaction of atoms between the (110) planes,while the [111] direction is the strongest direction because of the strongest interaction of atoms between the (111) planes.In terms of the elastic constants of Cu single crystal,we also estimate some mechanical quantities of polycrystalline Cu,including bulk modulus B,shear modulus G,Young's modulus Ep,and Poisson's ratio v.
A Review on Ab Initio Approaches for Multielectron Dynamics
Ishikawa, Kenichi L
2015-01-01
In parallel with the evolution of femtosecond and attosecond laser as well as free-electron laser technology, a variety of theoretical methods have been developed to describe the behavior of atoms, molecules, clusters, and solids under the action of those laser pulses. Here we review major ab initio wave-function-based numerical approaches to simulate multielectron dynamics in atoms and molecules driven by intense long-wavelength and/or ultrashort short-wavelength laser pulses. Direct solution of the time-dependent Schr\\"odinger equation (TDSE), though its applicability is limited to He, ${\\rm H}_2$, and Li, can provide an exact description and has been greatly contributing to the understanding of dynamical electron-electron correlation. Multiconfiguration self-consistent-field (MCSCF) approach offers a flexible framework from which a variety of methods can be derived to treat both atoms and molecules, with possibility to systematically control the accuracy. The equations of motion of configuration interactio...
Ab initio quantum dynamics using coupled-cluster.
Kvaal, Simen
2012-05-21
The curse of dimensionality (COD) limits the current state-of-the-art ab initio propagation methods for non-relativistic quantum mechanics to relatively few particles. For stationary structure calculations, the coupled-cluster (CC) method overcomes the COD in the sense that the method scales polynomially with the number of particles while still being size-consistent and extensive. We generalize the CC method to the time domain while allowing the single-particle functions to vary in an adaptive fashion as well, thereby creating a highly flexible, polynomially scaling approximation to the time-dependent Schrödinger equation. The method inherits size-consistency and extensivity from the CC method. The method is dubbed orbital-adaptive time-dependent coupled-cluster, and is a hierarchy of approximations to the now standard multi-configurational time-dependent Hartree method for fermions. A numerical experiment is also given. PMID:22612082
Ab initio engineering of materials with stacked hexagonal tin frameworks
Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.
2016-01-01
The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140
Magnetic and magneto-optical properties of doped and co-doped CdTe with (Mn, Fe): Ab-initio study
Energy Technology Data Exchange (ETDEWEB)
Ait Raiss, A.; Sbai, Y. [Laboratory of Magnetism and high-energy physics (LMPHE), Faculty of Sciences, University Mohammed-V, Av. Ibn Batouta, B. P. 1014 Rabat (Morocco); Bahmad, L., E-mail: bahmad@fsr.ac.ma [Laboratory of Magnetism and high-energy physics (LMPHE), Faculty of Sciences, University Mohammed-V, Av. Ibn Batouta, B. P. 1014 Rabat (Morocco); Benyoussef, A. [Laboratory of Magnetism and high-energy physics (LMPHE), Faculty of Sciences, University Mohammed-V, Av. Ibn Batouta, B. P. 1014 Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco)
2015-07-01
On the basis of ab-initio calculations performed by the Akai-KKR-CPA method within the spin polarized density functional theory (DFT) and local density approximation (LDA). The magnetic and magneto-optical properties of CdTe doped with Mn and Fe, and co-doped with transitions metals (TM), have been investigated. Moreover, the density of state (DOS) have been calculated and plotted with the energy diagram, for different dopants concentrations. In this work we study, these compounds and compare our theoretical results with the experimental works concerning the doped CdTe. Then we determine which one, Mn or Fe, is responsible of the appearing magnetic and/or optical properties. We also investigate the effect of the co-doping with these elements: Mn and Fe. We show that the iron Fe does not contribute strongly in the magnetism, but it affects the optical properties of the co-doped materials. When comparing our results with the existing experimental works, we found that a low concentration of Fe improves well the magneto-optical properties such as the Faraday rotation. On the other hand, we have investigated the microscopic behavior of electrons by studying their electronic structure and density of states (DOS). - Highlights: • In this revised version, we have calculated the energy difference between the ferromagnetic and anti-ferromagnetic states. • In this revised version we have discussed the ferromagnetic mechanism based on the competition between the anti-ferromagnetic super-exchange interaction (Mn-doped CdTe) and ferromagnetic Zuner's double exchange mechanism (Fe-doped CdTe). We also added the suggested papers. • In the introduction, we added a description of possibility of high blocking temperature in the spinodal nano-decomposition by referring the added papers. The observed results are exactly the same as the blocking effects in the super-paramagnetism with very small hysterethyis. • We compared our results with the SIC-LDA calculations based on
Sun, Geng; Jiang, Hong
2015-12-21
A comprehensive understanding of surface thermodynamics and kinetics based on first-principles approaches is crucial for rational design of novel heterogeneous catalysts, and requires combining accurate electronic structure theory and statistical mechanics modeling. In this work, ab initio molecular dynamics (AIMD) combined with the integrated tempering sampling (ITS) method has been explored to study thermodynamic and kinetic properties of elementary processes on surfaces, using a simple reaction CH2⇌CH+H on the Ni(111) surface as an example. By a careful comparison between the results from ITS-AIMD simulation and those evaluated in terms of the harmonic oscillator (HO) approximation, it is found that the reaction free energy and entropy from the HO approximation are qualitatively consistent with the results from ITS-AIMD simulation, but there are also quantitatively significant discrepancies. In particular, the HO model misses the entropy effects related to the existence of multiple adsorption configurations arising from the frustrated translation and rotation motion of adsorbed species, which are different in the reactant and product states. The rate constants are evaluated from two ITS-enhanced approaches, one using the transition state theory (TST) formulated in terms of the potential of mean force (PMF) and the other one combining ITS with the transition path sampling (TPS) technique, and are further compared to those based on harmonic TST. It is found that the rate constants from the PMF-based TST are significantly smaller than those from the harmonic TST, and that the results from PMF-TST and ITS-TPS are in a surprisingly good agreement. These findings indicate that the basic assumptions of transition state theory are valid in such elementary surface reactions, but the consideration of statistical averaging of all important adsorption configurations and reaction pathways, which are missing in the harmonic TST, are critical for accurate description of
Sun, Geng; Jiang, Hong
2015-12-01
A comprehensive understanding of surface thermodynamics and kinetics based on first-principles approaches is crucial for rational design of novel heterogeneous catalysts, and requires combining accurate electronic structure theory and statistical mechanics modeling. In this work, ab initio molecular dynamics (AIMD) combined with the integrated tempering sampling (ITS) method has been explored to study thermodynamic and kinetic properties of elementary processes on surfaces, using a simple reaction CH 2 ⇌ CH + H on the Ni(111) surface as an example. By a careful comparison between the results from ITS-AIMD simulation and those evaluated in terms of the harmonic oscillator (HO) approximation, it is found that the reaction free energy and entropy from the HO approximation are qualitatively consistent with the results from ITS-AIMD simulation, but there are also quantitatively significant discrepancies. In particular, the HO model misses the entropy effects related to the existence of multiple adsorption configurations arising from the frustrated translation and rotation motion of adsorbed species, which are different in the reactant and product states. The rate constants are evaluated from two ITS-enhanced approaches, one using the transition state theory (TST) formulated in terms of the potential of mean force (PMF) and the other one combining ITS with the transition path sampling (TPS) technique, and are further compared to those based on harmonic TST. It is found that the rate constants from the PMF-based TST are significantly smaller than those from the harmonic TST, and that the results from PMF-TST and ITS-TPS are in a surprisingly good agreement. These findings indicate that the basic assumptions of transition state theory are valid in such elementary surface reactions, but the consideration of statistical averaging of all important adsorption configurations and reaction pathways, which are missing in the harmonic TST, are critical for accurate description of
Halpern, Arthur M.; Glendening, Eric D.
2007-04-01
Intrinsic reaction coordinate (IRC) torsional potentials were calculated for N2O4 and N2O3 based on optimized B3LYP/aug-cc-pVDZ geometries of the respective 90°-twisted saddle points. These potentials were refined by obtaining CCSD(T )/aug-cc-pVXZ energies [in the complete basis set (CBS) limit] of points along the IRC. A comparison is made between these ab initio potentials and an analytical form based on a two-term cosine expansion in terms of the N-N dihedral angle. The shapes of these two potential curves are in close agreement. The torsional barriers in N2O4 and N2O3 obtained from the CCSD(T)/CBS//B3LYP/aug-cc-pVDZ calculations are 2333 and 1704cm-1, respectively. For N2O4 the torsion fundamental frequency from the IRC potential is 87.06cm-1, which is in good agreement with the experimentally reported value of 81.73cm-1. However, in the case of N2O3 the torsional frequency found from the IRC potential, 144cm-1, is considerably larger than the reported experimental values 63-76cm-1. Consistent with this discrepancy, the torsional barrier obtained from several different calculations, 1417-1718cm-1, is higher than the value of 350cm-1 deduced from experimental studies. It is suggested that the assignment of the torsional mode in N2O3 should be reexamined. N2O4 and N2O3 exhibit strong hyperconjugative interactions of in-plane O lone pairs with the central N-N σ* antibond. Hyperconjugative stabilization is somewhat stronger at the planar geometries because 1,4 interactions of lone pairs on cis O atoms promote delocalization of electrons into the N-N antibond. Calculations therefore suggest that the torsional barriers in these molecules arise principally from a combination of 1,4 interactions and hyperconjugation.
Structures of 13-atom clusters of fcc transition metals by ab initio and semiempirical calculations
Longo, R. C.; Gallego, L. J.
2006-11-01
We report the results of ab initio calculations of the structures and magnetic moments of Ni13 , Pd13 , Pt13 , Cu13 , Ag13 , and Au13 that were performed using a density-functional method that employs linear combinations of pseudoatomic orbitals as basis sets (SIESTA). Our structural results for Pt13 , Cu13 , Ag13 , and Au13 show that a buckled biplanar structure (BBP) is more stable than the icosahedral configuration, in keeping with results obtained recently by Chang and Chou [Phys. Rev. Lett. 93, 133401 (2004)] using the Vienna ab initio simulation package with a plane-wave basis. However, for Ni13 and Pd13 we found that the icosahedral structure is more stable than BBP. For all these clusters, two semiempirical methods based on spherically symmetric potentials both found the icosahedral structure to be the more stable, while the modified embedded atom model method, which uses a direction-dependent potential, found BBP to be the more stable structure. When low-energy structures found in recent ab initio studies of Pt13 , Cu13 , and Au13 other than Chang and Chou were optimized with SIESTA, those reported for Pt13 and Cu13 were found to be less stable than BBP, but the two-dimensional planar configuration reported for Au13 proved to be more stable than BBP.
Iron -chromium alloys and free surfaces: from ab initio calculations to thermodynamic modeling
International Nuclear Information System (INIS)
Ferritic steels possibly strengthened by oxide dispersion are candidates as structural materials for generation IV and fusion nuclear reactors. Their use is limited by incomplete knowledge of the iron-chromium phase diagram at low temperatures and of the phenomena inducing preferential segregation of one element at grain boundaries or at surfaces. In this context, this work contributes to the multi-scale study of the model iron-chromium alloy and their free surfaces by numerical simulations. This study begins with ab initio calculations of properties related to the mixture of atoms of iron and chromium. We highlight complex dependency of the magnetic moments of the chromium atoms on their local chemical environment. Surface properties are also proving sensitive to magnetism. This is the case of impurity segregation of chromium in iron and of their interactions near the surface. In a second step, we construct a simple energy model for high numerical efficiency. It is based on pair interactions on a rigid lattice to which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that we compare to Monte Carlo simulations. The last step of our work is to introduce free surfaces in our model. We then study the effect of ab initio calculated bulk and surface properties on surface segregation.Finally, we calculate segregation isotherms. We therefore propose an evolution model of surface composition of iron-chromium alloys as a function of bulk composition. which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that
Emergence of rotational bands in ab initio no-core configuration interaction calculations
Caprio, M A; Vary, J P; Smith, R
2015-01-01
Rotational bands have been observed to emerge in ab initio no-core configuration interaction (NCCI) calculations for p-shell nuclei, as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. We investigate the ab initio emergence of nuclear rotation in the Be isotopes, focusing on 9Be for illustration, and make use of basis extrapolation methods to obtain ab initio predictions of rotational band parameters for comparison with experiment. We find robust signatures for rotational motion, which reproduce both qualitative and quantitative features of the experimentally observed bands.
Lee, Jeehye
2010-01-01
We present the first systematic {\\em ab initio} study of anti-ferrodistortive (AFD) order in Ruddlesden-Popper (RP) phases of strontium titanate, Sr$_{1+n}$Ti$_n$O$_{3n+1}$, as a function of both compressive epitaxial strain and phase number $n$. We find all RP phases to exhibit AFD order under a significant range of strains, recovering the bulk AFD order as $\\sim 1/n^2$. A Ginzburg-Landau Hamiltonian generalized to include inter-octahedral interactions reproduces our {\\em ab initio} results well, opening a pathway to understanding other nanostructured perovskite systems.
Ab initio study of Ti0.5Al0.5N(001)—residual and environmental gas interactions
International Nuclear Information System (INIS)
We have explored surface processes on Ti0.5Al0.5N(001) interacting with residual and environmental gases, namely O2, H2O and CO2, using ab initio molecular dynamics. Dissociative adsorption of O2 occurs on Ti sites, which are unusual sites, as Al2O3 is more stable than TiO2. This may be understood based on the electronic structure. We suggest that an increased Ti–O bond strength relative to Al–O surface bond strength is the electronic origin for the early stages of TiO2 formation on Ti0.5Al0.5N(001). Another unexpected atomic mechanism, identified as O covers the surface: Ti escapes from the Ti0.5Al0.5N(001)/O interface layer, generating vacancies, and hence enabling mobility at the interface. In the case of H2O and CO2, the dominating physical mechanism is dissociative adsorption, where O–H and N–H as well as C–O and Ti–O dipoles are formed, respectively. These fundamental surface processes are relevant for initial stages of oxidation, surface diffusion and nucleation of reaction layers upon exposure to residual and environmental gases. (paper)
Haddadi, K.; Bouhemadou, A.; Bin-Omran, S.; Maabed, S.; Khenata, R.
2015-01-01
The structural parameters, elastic constants, electronic structure and optical properties of the recently reported monoclinic quaternary nitridoaluminate LiCaAlN2 are investigated in detail using the ab initio plane-wave pseudopotential method within the generalized gradient approximation. The calculated equilibrium structural parameters are in excellent agreement with the experimental data, which validate the reliability of the applied theoretical method. The chemical and structural stabilities of LiCaAlN2 are confirmed by calculating the cohesion energy and enthalpy of formation. Chemical band stiffness is calculated to explain the pressure dependence of the lattice parameters. Through the band structure calculation, LiCaAlN2 is predicted to be an indirect band gap of 2.725 eV. The charge-carrier effective masses are estimated from the band structure dispersions. The frequency-dependent dielectric function, absorption coefficient, refractive index, extinction coefficient, reflectivity coefficient and electron energy loss function spectra are calculated for polarized incident light in a wide energy range. Optical spectra exhibit a noticeable anisotropy. Single-crystal and polycrystalline elastic constants and related properties, including isotropic sound velocities and Debye temperatures, are numerically estimated. The calculated elastic constants and elastic compliances are used to analyse and visualize the elastic anisotropy of LiCaAlN2. The calculated elastic constants demonstrate the mechanical stability and brittle behaviour of the considered material.
Chen, K X; Wu, J A; Ji, R Y
1987-09-01
We investigated the cis- and trans-isomers of Pt(NH3)2Cl2 and [Pt(NH3)2]2+ using a quantum chemical non-empirical calculation method, the pseudopotential valence electron-only ab initio method. The electronic structure and electrostatic potential counter maps were in turn determined through the wave functions so obtained. There was a sharp difference between the dipole moments of the cis- and trans-isomers. The electrostatic counter maps of the isomers also had remarkably different features. Based on the interaction between the platinum (II) coordination compound and the base pairs of nucleic acid, the difference in antitumour activity of the isomeric compounds was discussed. It is pointed out that the key factor for antitumour activity is that the platinum (II) coordination compound must be mutually complementary with the target acceptor in both configuration and bonding activity. This mutual-complementary requirement includes a bonding ability of the platinum complex with two negative centers in DNA, so as to form an intrastrand crosslink with two neighbouring guanines.
Salami, N.; Shokri, A. A.; Elahi, S. M.
2016-03-01
Electronic and magnetic properties of a molybdenum disulfide (MoS2) monolayer with some intrinsic and extrinsic vacancies are investigated using ab initio method in the presence of planar strain distributions. The calculations are carried out within the density functional theory (DFT) as implemented in SIESTA package. By using fully relaxed structures and applying a full spin-polarized description to the system, we concentrate on created magnetic moment due to the vacancies under different planar strains. The results show that the extrinsic MoS6 vacancy induces a net magnetic moment of 6.00 μB per supercell. Also, it is found that the pure MoS2 monolayer for the most cases does not show any magnetic properties under the planar strain. While the net magnetic moment of MoS2 monolayer with the vacancies enhances as the planar tensile strain is applied. The tunable magnetic moment of MoS2 monolayer may be utilized for the development of spintronic and flexible electronic nano-devices.
International Nuclear Information System (INIS)
Adsorption enthalpies of N2, CO, CH3CN and NH3 on H-BEA and H-MFI zeolites have been measured calorimetrically at 303K in order to assess the energetic features of the various interactions occurring within the zeolite nanocavities, namely: (i) specific adsorption on Lewis and Broensted acidic sites; (ii) H-bonding interactions with hydroxyl nests; (iii) dispersive forces interactions with the walls of the cavities (confinement effects). Confinement effects have been investigated on an all-silica MFI zeolite (silicalite). The interaction of the molecular probes with model clusters mimicking Lewis and Broensted sites has been simulated at ab initio level. The combined use of the two different approaches allowed to discriminate among the different interactions contributing to the measured heat of adsorption (-ΔadsH). Whereas CO and N2 single out contributions from Lewis and Broensted acidic sites, CH3CN and NH3 are not preferentially adsorbed on Lewis sites, suggesting that the adsorption on Broensted sites is competitive with Lewis sites. The zero-coverage heats of adsorption for the different probes on the various systems correlate well with the proton affinity (PA) of the molecular probes
Härkönen, Ville J.; Karttunen, Antti J.
2016-08-01
The lattice thermal conductivity of silicon clathrate framework Si23 and two Zintl clathrates, [Si19P4] Cl4 and Na4[Al4Si19] , is investigated by using an iterative solution of the linearized Boltzmann transport equation in conjunction with ab initio lattice dynamical techniques. At 300 K, the lattice thermal conductivities for Si23, [Si19P4] Cl4 , and Na4[Al4Si19] were found to be 43 W/(m K), 25 W/(m K), and 2 W/(m K), respectively. In the case of Na4[Al4Si19] , the order-of-magnitude reduction in the lattice thermal conductivity was found to be mostly due to relaxation times and group velocities differing from Si23 and [Si19P4] Cl4 . The difference in the relaxation times and group velocities arises primarily due to the phonon spectrum at low frequencies, resulting eventually from the differences in the second-order interatomic force constants (IFCs). The obtained third-order IFCs were rather similar for all materials considered here. The present findings are similar to those obtained earlier for some skutterudites. The predicted lattice thermal conductivity of Na4[Al4Si19] is in line with the experimentally measured thermal conductivity of recently synthesized type-I Zintl clathrate Na8[Al8Si38] (polycrystalline samples).
Energy Technology Data Exchange (ETDEWEB)
Ponce, C A [Departamento de Fisica, Facultad de Ciencias Exactas, y Naturales y Agrimensura, UNNE, Campus Universitario, Avenida Libertad 5600, CP 3400, Corrientes (Argentina); Casali, R A [Departamento de Fisica, Facultad de Ciencias Exactas, y Naturales y Agrimensura, UNNE, Campus Universitario, Avenida Libertad 5600, CP 3400, Corrientes (Argentina); Caravaca, M A [Departamento de Fisico, Quimica, Facultad de Ingenieria, UNNE, Avenida Las Heras 727, CP 3500, Resistencia (Argentina)
2008-01-30
By means of the ab initio all-electron new full-potential linear-muffin-tin orbitals method, calculations were made for elastic constants C{sub 11}, C{sub 12} and C{sub 44} for Si, ZrO{sub 2} and HfO{sub 2} in their cubic phase, and constants C{sub 11}, C{sub 22}, C{sub 33}, C{sub 12}, C{sub 13}, C{sub 23}, C{sub 44}, C{sub 55} and C{sub 66} for HfO{sub 2} in its orthorhombic phase. Using the Voigt and Reuss theory, estimations were made for polycrystals of their bulk, shear and Young moduli, and Poisson coefficients. The speed of elastic wave propagations and Debye temperatures were estimated for polycrystals built from Si and the above mentioned compounds. The semicore 4f{sup 14} electrons should be included in the valence set of Hf atom in this all-electron approach if accurate results for elastic properties under pressures are looked for.
Saito, Minoru; Kashiwagi, Hiroshi
1985-04-01
For bis(pyridine)(porphinato) iron [FeP(py)2], a correlation between the iron electronic state and the equilibrium Fe-Npy distance was investigated. Potential energy curves as a function of the Fe-Npy distance were calculated for low-spin, intermediate-spin, and high-spin states of the ferric and ferrous ions by the ab initio SCF MO method. The equilibrium Fe-Npy distances were obtained from the potential curves. The values obtained for the ferric low-spin and high-spin states were in good agreement with the experimental values for Fe(III)(OEP)(3-Clpy)2 within the differences, ±0.05 Å. The following significant features were found. The equilibrium distance is elongated by the occupation of the 3dz2 orbital and is shortened by the oxidation of the iron atom. The distance and the force constant for the symmetrical py-Fe-py stretching are strongly correlated with the overlap population between the 3dz2 orbital and pyridine-nitrogen orbitals.
Energy Technology Data Exchange (ETDEWEB)
Zheng Xiaohong; Dai Zhenxiang; Zeng Zhi [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)
2009-04-08
The role of electrodes in the transport properties of molecular devices is investigated by taking C{sub 60} as an example and using gold nanowire and a gold atomic chain as the electrodes. The calculations are done by an ab initio method combined with the non-equilibrium Green function technique. We find that devices in which a single C{sub 60} molecule is connected with different electrodes show completely different transport behavior. In the case of nanowire/C{sub 60}/nanowire the device shows a metallic behavior with a big equilibrium conductance (about 2.18G{sub 0}) and the current increases rapidly and almost linearly starting from zero. The transmission function shows wide peaks and platforms around the Fermi level. While in the atomic-chain/C{sub 60}/atomic-chain case, the device shows resonant tunneling behavior and the Fermi level lies between the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) transmission peaks. This results in a current that is one order of magnitude smaller than that in the nanowire/C{sub 60}/nanowire system and the current increases very slowly until the bias is big enough to include the LUMO peak in the bias window. The big difference in the conductance and the current arises from the different coupling between the electrodes and the C{sub 60} and the different number of channels in the electrodes.
Ab initio no-core solutions for $^6$Li
Shin, Ik Jae; Maris, Pieter; Vary, James P; Forssén, Christian; Rotureau, Jimmy; Michel, Nicolas
2016-01-01
We solve for properties of $^6$Li in the ab initio No-Core Full Configuration approach and we separately solve for its ground state and $J^{\\pi}=2_{2}^{+}$ resonance with the Gamow Shell Model in the Berggren basis. We employ both the JISP16 and chiral NNLO$_{opt}$ realistic nucleon-nucleon interactions and investigate the ground state energy, excitation energies, point proton root-mean-square radius and a suite of electroweak observables. We also extend and test methods to extrapolate the ground state energy, point proton root-mean-square radius, and electric quadrupole moment. We attain improved estimates of these observables in the No-Core Full Configuration approach by using basis spaces up through N$_{max}$=18 that enable more definitive comparisons with experiment. Using the Density Matrix Renormalization Group approach with the JISP16 interaction, we find that we can significantly improve the convergence of the Gamow Shell Model treatment of the $^6$Li ground state and $J^{\\pi}=2_{2}^{+}$ resonance by ...
Ab initio evaluations of the He solubility in liquid Li
Energy Technology Data Exchange (ETDEWEB)
Sedano, Luis A. [EURATOM-CIEMAT Assoc., Materials for Fusion Program, Bd. 43 P0.04, Avda. Complutense 22, 28040 Madrid (Spain)]. E-mail: luis.sedano@ciemat.es; Hassanein, Ahmed [Argonne Nat. Lab, 9700 South Class Av., Argonne, IL (United States)]. E-mail: hassanein@anl.gov; Sanz, Javier [ETSII-UNED, c/Juan del Rosal, 12, 28040 Madrid (E) (Spain)]. E-mail: jsanz@ind.UNED.es
2005-11-15
Modified embedding atom methods (MEAM) are developed to have predictions of the partial molar heat of solution (-H{sub s}) by direct simulation of metal cohesion, He-metal and He-He interaction. Transitions from crystalline Li to configurations, having the liquid Li structure's factors (h-bar (q)), are simulated ab initio. Once h-bar (q) reproduced, He atoms are added, one by one, to the Li system. Parallel lines for each case, with slopes clearly independent on the number of He atoms in the system, are obtained for energy versus pressure at given temperatures. Average differences between two adjacent parallels at zero pressure, once kinetic energy of the system discounted, represents the energy gained by an He atom when added to the Li system, related to the solution energy -H{sub s}. The molar excess entropy of gas in solution (S-bar {sub l}{sup ex}) is previously evaluated following diverse fundamental approaches: a 'thermodynamic liquid-hole' (TL-H) model for alkali liquids and a statistical-mechanics (Neff and McQuarrie's) model (SMM). Between 600 and 900 deg. C, a typical range of interest for the use of Li in fusion technology, the computed values for the (He) Henry's constant in Li range from 8x10{sup -14} to 10{sup -13} at. fr. Pa{sup -1}.
Ab initio simulations of pseudomorphic silicene and germanene bidimensional heterostructures
Debernardi, Alberto; Marchetti, Luigi
2016-06-01
Among the novel two-dimensional (2D) materials, silicene and germanene, which are two honeycomb crystal structures composed of a monolayer of Si and Ge, respectively, have attracted the attention of material scientists because they combine the advantages of the new 2D ultimate-scaled electronics with their compatibility with industrial processes presently based on Si and Ge. We envisage pseudomorphic lateral heterostructures based on ribbons of silicene and germanene, which are the 2D analogs of conventional 3D Si/Ge superlattices and quantum wells. In spite of the considerable lattice mismatch (˜4 % ) between free-standing silicene and germanene, our ab initio simulations predict that, considering striped 2D lateral heterostructures made by alternating silicene and germanene ribbons of constant width, the silicene/germanene junction remains pseudomorphic—i.e., it maintains lattice-matched edges—up to critical ribbon widths that can reach some tens of nanometers. Such critical widths are one order of magnitude larger than the critical thickness measured in 3D pseudomorphic Si/Ge heterostructures and the resolution of state-of-the-art lithography, thus enabling the possibility of lithography patterned silicene/germanene junctions. We computed how the strain produced by the pseudomorphic growth modifies the crystal structure and electronic bands of the ribbons, providing a mechanism for band-structure engineering. Our results pave the way for lithography patterned lateral heterostructures that can serve as the building blocks of novel 2D electronics.
Ab initio calculation of double ionization of atoms
Energy Technology Data Exchange (ETDEWEB)
Serov, V. V., E-mail: vladislav.serov@mail.ru [Saratov State University, Department of Theoretical Physics (Russian Federation)
2013-02-15
The Solov'ev-Vinitsky method was used to perform an ab initio calculation of the triple-differential cross section for the double single-photon photoionization of helium for the case of equal emitted-electron energies. A Gaussian width {gamma} describing angular electron-electron correlations at the total electron energy E taking values in range between 0.1 and 100 eV was obtained for this cross section. The results agree with available experimental data, but they raise a doubt as to whether the well-known Wannier law {gamma} {proportional_to} E{sup 1/4} is applicable at experimentally accessible energies. The Gaussian width {gamma} was investigated as a function of the total emitted-electron energy for targets that have a strongly asymmetric configuration of the initial state-specifically, a negative atomic-hydrogen ion H{sup -} and heliumin the 1s2s{sup 1}S and 1s3s{sup 1}S excited states. It was found that this function, {gamma}(E), had a maximum at low energies. It was also shown that, at low energies, the dependence of the double-differential cross section on the angle between the emitted-electron momenta for the targets indicated above differed substantially from the Gaussian dependence, featuring maxima whose number was equal to the number of radial nodes in the initial state. This opens new possibilities for a qualitative analysis of the electron structure of targets.
Accurate ab initio vibrational energies of methyl chloride
Energy Technology Data Exchange (ETDEWEB)
Owens, Alec, E-mail: owens@mpi-muelheim.mpg.de [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany); Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London (United Kingdom); Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan [Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London (United Kingdom); Thiel, Walter [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)
2015-06-28
Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup HL}, and CBS-37{sup HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup HL} and CBS-37{sup HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.
Volumic omit maps in ab initio dual-space phasing.
Oszlányi, Gábor; Sütő, András
2016-07-01
Alternating-projection-type dual-space algorithms have a clear construction, but are susceptible to stagnation and, thus, inefficient for solving the phase problem ab initio. To improve this behaviour new omit maps are introduced, which are real-space perturbations applied periodically during the iteration process. The omit maps are called volumic, because they delete some predetermined subvolume of the unit cell without searching for atomic regions or analysing the electron density in any other way. The basic algorithms of positivity, histogram matching and low-density elimination are tested by their solution statistics. It is concluded that, while all these algorithms based on weak constraints are practically useless in their pure forms, appropriate volumic omit maps can transform them to practically useful methods. In addition, the efficiency of the already useful reflector-type charge-flipping algorithm can be further improved. It is important that these results are obtained by using non-sharpened structure factors and without any weighting scheme or reciprocal-space perturbation. The mathematical background of volumic omit maps and their expected applications are also discussed. PMID:27357850
Ab-initio calculations for dilute magnetic semiconductors
Energy Technology Data Exchange (ETDEWEB)
Belhadji, Brahim
2008-03-03
This thesis focusses on ab-initio calculations for the electronic structure and the magnetic properties of dilute magnetic semiconductors (DMS). In particular we aim at the understanding of the complex exchange interactions in these systems. Our calculations are based on density functional theory, being ideally suited for a description of the material specific properties of the considered DMS. Moreover we use the KKR Green function method in connection with the coherent potential approximation (CPA), which allows to include the random substitutional disorder in a mean field-like approximation for the electronic structure. Finally we calculate the exchange coupling constants J{sub ij} between two impurities in a CPA medium by using the Lichtenstein formula and from this calculate the Curie temperature by a numerically exact Monte Carlo method. Based on this analysis we found and investigated four different exchange mechanisms being of importance in DMS systems: Double exchange, p-d exchange, antiferromagnetic superexchanges, and ferromagnetic superexchange. A second topic we have investigated in this thesis is the pressure dependence of the exchange interactions and the Curie temperatures in (Ga,Mn)As and (In,Mn)As, using the LDA and the LDA+U approximations. Exact calculations of T{sub C} by Monte Carlo simulations show a somehow different behavior. (orig.)